
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6’ x 9" black and white
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Prototyping Human Perception- 

Action Systems

by

Gordon J Binsted

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy

D epartm ent of Psychology

Edm onton, A lberta 

Fall, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 National Library 
of Canada

Acquisitions and 
Bibliographic Services
395 Waftngton Strset 
Ottawa ON K1A0N4 
Canada

Biblioth^que nationaJe 
du Canada

Acquisitions et 
services bibliographiques
395. rue We«ngton 
Ottawa ON K1A0N4 
Canada

Yotr rn U n i M m

Our Urn Hotrtr4Hrwnca

The author has granted a non­
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, prefer, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L’auteur conserve la propriete du 
droit d’auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation.

0- 612- 68911-5

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Library Release Form

Name of A uthor Gordon fames Binsted

Title of Thesis: Prototyping Human Action-Perception Systems

Degree: Doctor of Philosophy 

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce 
single copies of this thesis and to lend or sell such copies for private, scholarly or 
scientific research purposes only.

The author reserves all other publication and other rights in association with the 
copyright in the thesis, and except as herein before provided, neither the thesis nor 
any substantial portion thereof may be printed or otherwise reproduced in any 
material form whatever without the author's prior written permission.

7  n&9
10945 74,h Avenue 
Edmonton, AB 
Canada, T6G 0E5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies 
and Research for acceptance, a thesis entitled Prototyping Human Perception-Action Systems 
submitted by Gordon fames Binsted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy.

Dr. Terry Caelli

Dr. Romt

Dr. Walter Bischoi

Dr. Brian Maraj

Dr. Pete Dixon

Dr. Steve Wallace

Dr. Martin Jagersand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.1 Abstract

Computational models of motor control vary widely in method and application, often 

demanding extensive calculations in order to minimize cost functions and /o r exten­

sive implicit knowledge of physical properties of the entire system (e.g., Kawato et al, 

1992, 1996). Although such models have had demonstrated success in predicting wide 

ranges of movement behaviour they are limited in their ability to capture the vari­

ability of performance normally displayed by the human system. Current models are 

similarly unable to account for more than a confined task type, often making restric­

tions such as limiting performance to open-loop control of simple reaching movements. 

Presented here are applications of hidden Markov models (HMMs) - a tool known in the 

machine learning literature for representing first-order dynamical systems in a stochas­

tic fashion - and its generalization, dynamical Bayesian networks (DBN), to human 

movement. The HMM approach enables the representation of probabilistic relations 

between elements of a system for the expression of system dynamics; the structure of 

DBNs is such tha t combinations of HMMs may be used to build a model of the tar­

get system based on biological knowledge, or hypothesis. An extensive discussion of 

methods for training and assessing both HMMs and DBN is presented within a motor 

control context. Further, four experiments are described which examine the utility 

and efficacy of these methods for the representation, recognition, and production of 

both discrete and continuous motor tasks. General comparisons are made through­

out between DBN/HMM techniques and other modeling alternatives for representing
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time-varying biological movement signals. Extensions of the HMM/DBN framework 

are provided along with suggestions for future applications and possible implications 

to current theories of motor control.
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0.2 On How to Reach for a Cup o f Coffee

Consider for a moment how to reach out for the cup of coffee on your desk. One way to 

approach this problem is to direct another person, who is blindfolded and unaware of 

the goal, to complete the task. You will likely use commands such as forward, up, close 

your hand; however, attem pt the task by commanding each joint (use only flex and 

extend). While this task is far less trivial, the problem would seem almost impossible 

if one were to have to command each muscle (fibre?) with regard to information such 

as joint viscosity, muscle insertion position and angle, tissue length and velocity.

The ease with which humans move about and interact with their environment has 

been a compelling topic of research for over a century (e.g., Woodworth 1899). The 

simple acts of reaching toward an object or walking across a room require the complex 

integration of perceptual (e.g., visual and kinesthetic) and motor (e.g., kinetic and 

dynamic) processes. How are action and perception coordinated with such ease? Even 

more perplexing is that such performance occurs in an environment defined by complex 

physical principles which are not known, at least at a  conscious level, by most people 

(or animals). How does the motor system account for such properties as gravity and 

friction, which mankind has only recently come to understand (on a evolutionary time- 

scale)?

Many researchers have examined exactly this question, formulating explanations from a 

variety of theoretical and methodological standpoints. However, a conspicuous feature
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of much of this research is the incompatibility of the experimental results -  often re­

ferred to as the “levels of analysis problem” -  whereby hypotheses from one viewpoint 

are untestable or philosophically irrelevant to the other. The work presented in this 

dissertation addresses exactly this problem. The focus here is on developing a frame­

work for prototyping motor behaviour and control that is accessible to a  wide variety 

of scientists. In order to adequately develop this approach, a representative review of 

current models is supplied, giving a  reference for the strengths and weaknesses of extant 

methods in motor control. Similarly, the first chapter discusses some of the seminal 

research in motor control to highlight critical issues on control and problems that must 

be addressable by any general model.

The proposed framework is based on methods of Bayesian network modeling. This 

approach originates in the machine learning /  pattern recognition literature where im­

plementations of hidden Markov models (HMMs), a subset of Bayesian networks, have 

been applied to modeling a wide range of spatio-temporal data including handwrit­

ing (e.g., Marti k  Bunke 2001, Park, Sin, Moon k  Lee 2001), gesture recognition 

(e.g., Wilson k  Bobick 2001) and surveillance (Bui, Venkatesh k  West 2001). While 

this tool has been used widely, its applicability to problems of biological control has 

received little or no investigation. Further, the utility of coupling sets of HMMs (dy­

namical Bayesian networks) to prototype biological dynamical systems has not been 

examined quantitatively.

Although extensive discussions throughout this dissertation centre on the biological
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implications of the presented Bayesian models, the goal is to assess the viability of 

Bayesian modeling as a technique for encapsulating key features of human performance. 

Even if the assumptions of this approach should prove biologically untenable as a pro­

cess, HMMs/DBNs are a  statistical representation of the target system. This being the 

case, the internal structure of the models encapsulate central tendencies of performance 

(x and a) for experimentalists wishing to understand the impact of their independent 

manipulations, or for clinicians wishing to evaluate their patients.
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1

Chapter 1

Perception and Action

Historically, a majority of studies of human perception and action have considered these 

processes as separate and largely independent. However, a parallel viewpoint stresses 

perception-action coupling, where the interdependence and interplay between the sen­

sory environment and the motor system of animal (human) is the focus. Over the last 

50 years, two implementations of this perception-action approach have revolutionized 

the study of human movement. One, proposed by J.J. Gibson, approached perception 

with the goal of removing the need for complex internal representations within an ani­

mal. Instead, a theory of perception was presented that stressed the interplay between 

animal and environment and the active nature of perception. The other, formulated by 

N. Bernstein, posed the analysis of movement by presenting problems, and solutions, 

based on an interdisciplinary method -  seeking complete understanding of behaviour 

in the combined approaches of Biology, Physics, and Psychology.
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1.1 A Brief History o f Perception-Action 2

1.1 A B rief History o f Perception-Action

1.1.1 A  N ew  T heory o f  In form ation  Pickup

The primary thesis of Gibson (Gibson 1966, Gibson 1979) was that traditional theories 

of perception need to be abandoned in favour of an approach tha t reduces the need 

for either substantial cognitive preprocessing or meanings supplied by past experience 

or inheritance. More specifically, Gibson presents the idea that information may be 

picked up by the senses in the active process of perceiving -  picking up information by 

exploring tiny fluxes of energy a t receptors.

Gibson also provided new categories for what is perceived. Instead of breaking the 

world into colour, form, and motion, for example, the environment may be divided into 

groups based upon what they afford the animal and its intent (i.e., actions/properties 

which are possible given the structure):

P laces: A location or series of locations that make up the environment of the 

perceiver. A place affords no natural boundaries. Similarly, places are immobile, 

differentiating them from objects. Places primarily afford the act of locomotion.

O b jec ts :

Attached Objects: An attached object is connected to a place, therefore it 

may not be moved.

Detached Objects: A detached object is fully independent of place and thus 

may move; however, the common features of an object (e.g. colour and bound­

aries) remain.

While these categories may seem trivial divergences from the traditional viewpoint, 

they allow properties to be attached to objects based upon the group they belong 

to. For example, a book is a detached object; thus we may a ttribu te  the ability to
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1.1 A Brief History of Perceptioa-Action 3

retain properties such as colour and texture, independent of place as well as affording 

movement (in this case, perhaps grasping). In order to perceive the environment, an 

animal detects both contiguity and variation in places and objects. Specifically, “the 

perceiver extracts the invariants of structure from the flux of stimulation while still 

noticing the flux” (Gibson 1979, p. 247).

By acknowledging the importance of environmental features and their impact on per­

ception, Gibson provides a basis for the study of behaviour. In order to understand 

behaviour, researchers may investigate the physical properties of the system to extract 

the variations or consistencies which result in the observed behaviour. By placing per­

ceptual information in the environment, the subjective task of perception becomes a 

predictable result of a objective event -  instead of being due to an ambiguous internal 

representation of reality.

1.1.2 A n  In terd iscip linary A pproach to  A ctio n

The Russian physiologist Nicholai Bernstein produced what has now become a land­

mark book in the areas of applied physiology and kinesiology, focusing on the study 

of human movement (Bernstein 1967). While Bernstein came from a physiology back­

ground, his approach to human movement stressed the important contributions of many 

disciplines including psychology, mathematics and physics.

1.1.2.1 The Degrees o f Freedom Problem

A central idea discussed by Bernstein was the “degrees of freedom problem”. This 

concept can most easily be demonstrated by discussing the control of a simple motor 

task, e.g., pointing. Consider a simple motor system composed of four linked rigid 

bodies (torso, upper-arm, lower-arm, hand) with joints containing two, one, and two 

degrees of freedom, respectively. There are five mechanical degrees of freedom (dfs) for
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1.1 A Brief History of Perception-Action 4

the motor system to control, whereas an object only has three dfs, x.y, and z. This 

example is dramatically over-simplified, the actual number of dfs for any movement 

actually includes the joints of the entire body (in the order of 100 dfs).* The excess in 

dfs results in the movement problem or task having infinite possible solutions. How does 

the motor system select from the alternatives to generate apparently orderly movement?

1.1.2.2 The Principle o f Equal Simplicity

A second central idea presented by Bernstein addresses the questions of what is really 

represented in the brain and what is an appropriate taxonomy of actions (i.e., what 

actions are really similar/different?). Bernstein suggests that a line of equal simplicity is 

observed when the transition between tasks generates no change in movement accuracy, 

rate, or variability (i.e, simplicity). For example, it is equally simple for someone to 

use the dominant hand to write their name at many scales, even though these tasks 

could require the contributions of substantially different musculature. However, if the 

foot were used, the accuracy and variability of performance changes substantially.

If the idea of “equal simplicity” were incorrect, the corollary would be that specific mus­

cles are controlled by specific regions of the brain. Thus, acquired movements would be 

difficult to transfer between groups of muscles. As this extension is demonstrably un­

true*, Bernstein surmised tha t movements should be classified independently of muscles 

or muscle commands. Although this final point seems redundant within the literature 

of today where discussions of ideas like generalized motor programs (Schmidt 1982) are 

commonplace, it was presented at a time where localizing function was paramount to 

motor control research.

‘ The degrees of freedom problem  may even be extended further if the additional d f involved with 
muscle selection are considered.

^Examination of an introductory  physiology text quickly dispells the  idea of direct connections 
between specific cortical units and specific muscles, even though som atotopic representations certainly 
exist. Similarly, the learning literature stresses the ability of the m otor system to  transfer learning 
between muscles
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1.2 Approaches to the Study of Movement

In order to systematically address problems of perception and action, the research com­

munity has adopted two views. One describes the flow of information through stages, 

with descriptions remaining relatively independent of physiological mechanisms*. The 

second view follows approaches of Gibson and Bernstein. Here, events are modeled as 

occuring in a  self-organising fashion (i.e, as a result the interaction between elements of 

the system), removing the need for an informed homunculus to manage internal events. 

However, in order for any approach to be accepted as a complete account of movement 

control it must accurately predict the planning and execution of actions as well as the 

manner by which information about the movement and the environment is utilized.

1.2.1 T h e  Inform ation P rocessin g  Approach

The information processing (IP) approach has a long history in the psychological lit­

erature, basing its results primarily upon stimulus-response paradigms. Although not 

initially intended for application beyond the initial reaction to the stimulus, IP has 

made the transition to full movement responses with relative ease. The primary mea­

sure, reaction time, is based on the assumption that processing proceeds in a primarily 

serial^ m anner with the corollary expectation that all processing events require time 

proportional to load and/or difficulty. Allowing for these assumptions, any task may 

be divided into discrete events: in movement these are stimulus encoding, response 

selection, response programming and response execution. However, the reliance upon 

elapsed time to delineate events represents a significant shortfall of all IP based theories; 

events may occur without temporally identifiable features.

1 A lthough most researchers do not address mechanism directly, imaging and  lesioning techniques 
are often used to  place a locus on events.

^This serial assum ption is not necessarily stictly  adhered to. Some IP  views perm it parallel streams 
of processing to  occur until a processing bottleneck is readied (e.g., following stim ulus encoding).
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1.2.1.1 Stimulus Encoding

Stimulus encoding, the initial stage of any response, is sometimes subdivided into stim­

ulus detection and stimulus identification. These sub-stages represent the processes 

involved with the transformation of the physical stimulus into an internal (biological) 

representation. Some important factors influencing processing time include stimulus 

intensity and clarity. While there tire many implications of this stage to movement, the 

majority of principles are common with traditional perceptual IP.

1.2.1.2 Response Selection

Upon detection of the relevant stimuli, the responder must select the correct response 

from a number of possible ones -  a choice reaction paradigm. Perhaps the most famous 

account of this behaviour comes in the form of Hick’s Law (Hick 1952, Hyman 1953, 

see Equation 1.1) which suggests a linear relation between forced choice reaction time 

and the number of response alternatives.

ChoiceRT  =  a + b[log2(N)] (1.1)

Information processing researchers reduce this relation to an expression of the maximum 

rate of information processing (Equation 1.2) , where the amount of information is 

determined by (a) the amount of uncertainty in the environment prior to the stimulus, 

and (b) the reduction in uncertainty given the stimulus occurrence (Schmidt 1988). In 

this sense, information H  may be expressed as:

H  =  log2jy (1.2)

where Pi is the probability of an event (i) occurring. Based on these simple relations, 

a stimulus environment may be expressed as containing a finite number of bits of in­

formation relating to the number of choices required to define a response. Thus, in
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Hick’s Law, the a term may be explicitly defined as the simple reaction time, and the 

[Log2 (N)] term defined as the amount of information being received by the performer. 

This leaves b to represent the rate of information passage. Therefore, assuming a con­

stant for 6, as the environment presents a more variable informational array the time 

occupied by the selection process will increase.

1.2.1.3 Response Programming

Once the appropriate action has been selected, it must be planned in such a manner 

as to succeed in the task. Following the assumption of serial processing that carries 

throughout IP theories, there is an expectation for programming time to increase as 

the amount of processing increases (Henry & Rogers 1960). Also, while the process 

of movement program m ing seems conceptually valid, any explanation of the process 

must deal with two key issues. First, the storage problem suggests that maintaining a  

program for every action would require the motor system to store a very large number of 

instructions to allow movements to occur ‘on com mand’. Second, the novelty problem 

poses how a program based system presumably based upon memory of movements, 

would generate previously unattempted actions (Schmidt 1988).

The most complete account of motor programs comes in the form of Generalized Motor 

Programs (GMP) (Schmidt 1976, Schmidt 1985, Schmidt 1988). A GMP is a set of a 

priori defined instructions for the completion of a class of actions. As such, there are 

features invariant to all movements served by a GM P as well as aspects (parameters) 

which are free to vary depending upon the instance of the action. Specifically, event 

order (e.g., muscle activation) is thought to remain constant across a class of move­

ments specified by a GMP (see Figure 1.1). Similarly, the relative timing and relative 

magnitudes of events are thought to be invariant (e.g., duration of EMG activity). 

Some parameters are however free to vary; the overall duration of the movement, the 

absolute level of muscle activation/force output, and even the effector may be specified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Approaches to the Study of Movement 8

within a program. An often cited demonstration of m otor programs is human hand­

writing (Schmidt 1988), where the invariant features of a  signature remain, even when 

movements are performed with the feet or with the m outh ^ (Raibert 1977).

UJotr
Ou. time

Figure 1.1: The force output of a simple movement. The general observable features of 
the movement remain constant while the time scale an d /o r absolute force levels may 
be varied (Meyer et al. 1982).

1.2.1.4 Response Execution

Traditionally ignored in most cognitive discussions of information processing, the re­

sponse execution phase involves the ‘running’ of the prepared program, its update, 

and correction. At the turn  of the last century researchers observed a speed-accuracy 

trade-off during performance (Woodworth 1899). This result suggested that the human 

motor system had a limited capacity to transmit information about performance (e.g., 

Crossman & Goodeve 1983, Fitts 1954, Fitts & Peterson 1964). Paul Fitts (1954) for­

malized a logarithmic relation between movement time and radial accuracy (Equation 

1.3, F itts’ Law). In an aiming task, movement time (MT) was found to vary linearly 

with the logarithm of the distance to be covered (D) and the width of the target (W).

* Generalized m otor programs have been applied extensively to  b o th  sim ple and complex, rapid and 
long duration movements over the last 20 years.
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M T  = b + log2(2D /W )  (1.3)

If compared with the  previously discussed Hick’s Law, the common unit of bits (binary 

information) is noticed. Thus the complexity of any movement, both in selection and 

execution, is dependent upon the amount of information to be processed.

1.2.1.5 The R ole o f Feedback

Due to the mathematical simplicity of F itts’ Law (Equation 1.3) and its ability to ac­

count for situations involving both macro- and micro-movements, many descriptions of 

the human motor system have been forwarded which justify the relation (e.g., Crossman 

& Goodeve 1983, Keele 1968, Schmidt, Zelaznik, Hawkins, Frank & Quinn 1979). In 

general, most accounts follow the basic framework presented by Woodworth (1899). 

An initial impulse is proposed to carry the limb some distance toward the target. 

This ballistic phase is followed by a corrective phase which allows the amendment of 

the movement trajectory based on error detection. One point of discussion within all 

these models however, is the rate at which feedback may be relayed from the receptor 

(visual or kinesthetic) to the comparator, and back; initial estimates placed this con­

duction as high as half a second (Woodworth 1899), more recent values fall nearer to 

100 ms (Carlton 1981, Carlton & Newell 1993). A shortcoming of these views is that 

speed-accuracy trade-offs also seem to occur in the absence of feedback and during 

the ballistic phase. Regardless of the precise mechanism or process resulting in speed- 

accuracy trade-off’s, issues of feedback and movement information dominate research 

of movement past and present (e.g., Woodworth 1899, Carlton 1981, Elliott, Binsted & 

Heath 1999, Elliott, Heath, Binsted, Ricker, Roy & Chua 1999, Chua & Elliott 1993).
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1.3 Gibsonian Approaches: Branches o f  Ecological Psy­

chology

The discipline of ecological psychology has the goal of dealing with the general problem 

of how actions are coordinated with perceptual information (Michaels & Beek 1995). 

In doing so, ecological psychologists attempt to link (usually mathematically) environ­

mental information with evoked responses, either overt or covert, in a manner that 

requires little central processing. The idea that information is provided by the envi­

ronment instead of being sensed and translated within cognitive processes is directly 

at odds with IP theories. There are three directions from which this interaction be­

tween information and action have been described: direct perception, kinetic theory, 

and pattern dynamics.

1.3.1 D irect P ercep tio n

Theories of direct perception are based on the concepts of informational flow and object 

affordances (Gibson 1966, Lee & Reddish 1981, Michaels & Beek 1995). Specifically, 

the environment of an anim al (human) contains invariant energy signatures (i.e., in­

formation). This energy may come in the form of texture gradients, rates of optical 

expansion/contraction, o r similar values that pertain to acoustics or haptics. This in­

formation energy surrounds the animal and comes in contact with the animal in the 

form of flow (see Kinetic theory). The animal is thought to actively seek temporal and 

spatial invariants within the informational flow, thus accessing the affordances which 

portray possibilities for action.

The majority of interest in the area of direct perception has focused on time-to-contact 

(Lee & Reddish 1981, r )  or its time-derivatives (e.g., f ,  f)(B ootsm a & Mottet 1997, 

Zaal, Bootsma & van W ieringen 1998, Zaal, Bootsma & van Wieringen 1999). Time- 

to-contact is a common tim ing variable for action and perception. If both processes are
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stated using this variable, no translation is needed for appropriate coordination/action. 

The classic example of r  used by Lee and Reddish (1981) is the wing-folding behaviour 

of gannets (a diving sea bird). The bird was observed to fold its wings prior to con­

tact with the water; the folding action occurred at a constant time from the surface, 

regardless of the bird’s velocity. Time to contact is extracted from optical information 

flow based on the expansion/contraction rate of elements on the retina. When the 

movement is prepared in similar terms (i.e., time until wing closure) the two events 

occur with correct timing regardless of absolute velocity. The benefit of such a time- 

to-contact strategy is that multiple actions may be prepared based on a  single optical 

r ,  thus allowing the synchronization of compound tasks.

1.3.2 K inetic T heory

Kinetic theory is primarily a conceptual method for examining act ion-percept ion based 

upon a circular relation between the application of muscular forces and the generation 

of information flow. An example of this reciprocity is the connection between force 

application during walking and r  (time-to-contact) with objects in the environment. 

As a person is moving through the environment, the amount of impulse^ tha t is applied 

to the ground directly affects the rate of object expansion on the retina. Alternately, 

dependent on the rate of expansion of an object, the force to be applied will be dictated. 

W ith this method, one identifies mathematical relations to describe the transformations 

between force fields (physical interaction) and flow fields (information). While beneficial 

as a thought experiment, extending the theoretical considerations of action-perception, 

relatively little headway has been made using this approach due to the uncertainty by 

which the kinematics of movement may be mapped backward to the real world kinetics 

(i.e., the inverse dynamics problem) (Kugler, Kelso & Turvey 1980, Kugler, Kelso & 

Turvey 1982, Kugler & Turvey 1987, Michaels & Beek 1995).

"The horizontal com ponent o f  im pulse is the primary influence due to  its relation to  for­
ward/backward acceleration. However, the  vertical component will likewise influence the direction 
of optical flow by inducing perpendicular acceleration.
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1.3.3 P a ttern  D yn am ics (D yn am ica l S y stem s A pproach)

A third method of research based on Gibson’s writings involves the formulation of 

dynamical equations of motion to capture the coordination patterns within action- 

perception systems (see Wallace 1996, for an  historical discussion and review). These 

formal analogies (Michaels & Beek 1995) to movement are thought to be independent 

of the structure of the motor (or other) system.

The output of a dynamical model is expressed behaviourally by changes in an order 

parameter(s) in response to scaling of a control parameter(s). In this framework, a 

control parameter is a factor which drives the behaviour of a system (e.g., speed, weight, 

force). A simple example to consider is the effect of pace on gait: when one changes the 

rate of locomotion one tends to change gait by which one attains that speed (e.g., walk 

to run). In general control parameters are relatively easy to identify; however their 

importance and independence from other control parameters must also be examined. 

Order parameters, also referred to as collective variables, represent the intrinsic order 

of the coordinated system; these factors are very restrained in their definition and must 

demonstrate specific behaviour.** A collective variable must:

1. display relatively small variations in behaviour in response to large changes in a 

control variable;

2. exhibit large shifts (phase transitions) in behaviour in response to small changes 

in a control param eter that satisfy some criterion value (i.e., a critical frequency);

3. show asymmetric behaviour (hysterisis). Specifically, if a phase transition is 

shown at a critical value of a control param eter while that parameter is increasing, 

the critical value will differ if the param eter is decreasing; and

"C urren tly , only one collective variable, relative phase, has dem onstrated all the required behaviours 
of such a variable in hum an research. Relative phase is the relative timing of positions of movements 
during a cyclical movement
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4. demonstrate critical slowing and critical fluctuations. During phase transitions, 

behaviour of the collective variable will show a sharp increase in variability (fluc­

tuations) and will become slower at returning to a  destabilized state.

While this approach has many proponents (e.g., Byblow, Bysouth-Young, Summers 

& Carson 1998, Carson 1995, Schmidt & Turvey 1995, Schmidt & Turvey 1994) the 

seminal work has been completed by Kelso and colleagues (Fuchs & Kelso 1994, Haken, 

Kelso & Bunz 1985, Kelso 1984, Kelso 1994) and thus will be a focus for discussion in 

the next chapter.

In this chapter we have introduced some of the general concepts necessary for a the 

study of human perception-action. The most important feature of any examination of 

action -  as presented by both Bernstein and Gibson -  is coordinated interconnectivity 

between component systems (e.g., perception and action), limiting the requirements on 

cognitive system. In the next chapter we deal with formal implementations of models 

for action (and sometimes perception). The selected examples span the motor control 

literature at a theoretical level, giving a frame of reference within which to approach 

the development of an alternate framework for action (i.e., one implementing hidden 

Markov models and their extensions).
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Chapter 2

Current M odels in Motor Control

Research into human action presents many outlets for applications to medicine and 

industry. Specifically, a better understanding of the meta-processes guiding the motor 

control system would aid in the diagnosis and treatment of pathologies (e.g. Parkinson’s 

disease) as well as the design of better working environments (e.g., reduce back strain). 

One method of developing this knowledge is to attem pt the construction of a working 

system that mimics the behaviour of the human system. The premise of such models is 

that if a model accurately predicts and generates human-like actions and is consistent 

with known neurophysiology, knowledge regarding the organization of the motor system 

will be gained.

Presented in this chapter are precis of important classes of models in motor control. 

These models all attem pt to account for human motor behaviour; each however uses 

differing assumptions (physical, mathematical or biological) as well as having ranging 

levels of generalizability and unique foci. The discussed models are grouped by their 

theoretical basis, beginning w ith the information processing tradition (Meyer, Abrams, 

Kornbluin, Wright & Smith 1988, Rosenbaum, Meulenbroek, Vaughan & Jansen 1999), 

continuing with engineering-biological hybrid approaches (Bizzi 1980, Plamondon &
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Alimi 1997, Uno, Kawato & Suzuki 1989), and ending with self-organizing systems 

(Bullock, Cisek & Grossberg 1998, Haken et al. 1985).

2.1 The Optim ized Sub-M ovement M odels

As presented in Chapter 1, when people perform goal-directed movements (e.g., point­

ing) there is an ordered relation between precision and speed. For some time, feedback 

based models (visual and /or kinesthetic) have been employed to account for speed- 

accuracy tradeoffs (F itts 1954) in human movement and in doing so explain F itts’ 

Law (see Equation 1.3). The deterministic iterative-corrections model (Crossman 

& Goodeve 1983) and subsequent extensions (Keele 1968, Meyer et al. 1982) con­

sider the act of goal directed aiming (from home position to target in one-dimension) 

to be composed of a series of discrete submovements, dependent on feedback. In 

these formulations each submovement is hypothesized to last a constant duration (t ) 

and to travel a constant proportion of the remaining distance (D) to target centre 

(pdD ). Thus, the distances traveled by the first three submovements would proceed as: 

PdD, pdD( 1 -  pd), and PdD{ 1 ~Pd)2 (Meyer et al. 1988). The movement ends when a 

submovement terminates inside the target boundary.

In this relatively simplistic manner, the deterministic interative-corrections model can 

account quite adequately for F itts’ Law. Given pdD and t , the total time elapsed for 

the movement would approximate a logarithmic function of distance (D) and target 

size (W). However, the model is incapable of accounting for many other features of 

rapid aiming, specifically, spatial variability of submovement endpoints and the fre­

quency of higher-order submovements. The common failing in all these instances is the 

deterministic nature of the model. The model predicts that for every combination of 

distance and width there should be a determined number of submovements each of a 

specified length and duration, each using feedback to shorten the distance to the tar­

get. However, human action is inherently stochastic; submovements do not occur in a
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stereotyped fashion (Chua & Elliott 1993, Elliott, Binsted fe Heath 1999). In addition, 

aiming, including submovements, is possible in the absence of feedback (e.g., Elliott & 

Allard 1985, Carlton 1981, Carlton 1992, Chua & Elliott 1993).

Based on the common premise that human reaching is composed of feedback guided 

submovements, Meyer and colleagues (Meyer et al. 1988) presented the stochastic op­

timized submovement model to account for many of the shortfalls of its determinis­

tic predecessor. Central to this model is research on neuromotor noise, and specif­

ically, examinations of impulse variability (Meyer et al. 1982, Schmidt, Zelaznik & 

Frank 1978, Schmidt et al. 1979, Wright & Meyer 1983) which attribu te increasing 

noise in movement to variablity induces by motor-impulse scaling. In addition, the 

model assumes that an ideal compromise is reached between the lengths and durations 

of the submovements; the exact form of this criterion is a reflection of neuromotor noise 

and required precision.

The stochastic optimized submovement model may be parsed into four central assump­

tions reflecting the inclusion of neuromotor noise into the controlling system:

Number of submovements: All rapid aiming movements are assumed to contain ei­

ther one or two components submovements, regardless of distance or target size. The 

primary submovement is programmed to end at the centre of the target, if this is 

successful, no secondary submovement occurs. If an error occurs, the secondary sub­

movement is thought to correct the error based on feedback (see Figure 2.1).

Distribution shape of subm ovement endpoints: Based on one of the model’s cen­

tral tenets, neuromotor noise, the distribution of endpoints for both the primary and 

secondary movements are proposed as having normal (Gaussian) distributions. As a 

performance correlate of variability, the standard deviation of reaching movements are 

assumed to increased proportionally to the average velocity of movement.

Movement time minimization: The average velocity of the primary and secondary
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Figure 2.1: A. The Determ inistic Iterative Corrections Model (Crossm an & Goodeve 1983, Keele 
1968). Each submovement is thought to last a  constant duration and to  travel a  constant proportion 
of the remaining distance. B. The Stochastic Optimized Sub-movement Model. Solid lines indicate 
possible trajectories of prim ary submovements. The dashed lines indicate feeback guided secondary 
submovements used to correct errrors in the initial movement. Figure is a  recreation based on (Meyer 
et al. 1988).

submovements is considered to be programmed to minimize average movement time 

(based on a Gaussian distribution). Optimization occurs over both submovements; 

as movement velocity increases in the primary submovement, error, and therefore the 

required distance to be covered by the secondary submovement, increases. Given this 

error and the goal of accurate aiming, the secondary submovement must proceed slowly 

enough to guarantee success (>95%).

Preparatory processing: Information regarding the target distance and size are as­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The Knowledge Model 18

sumed to be available to the control system during programming of the primary sub­

movement. The secondary submovement is prepared ‘on the fly’ based on information 

regarding relative target location and movement kinematics (e.g., peak velocity). Al­

though this transmission of information was originally conceived with feedback as a 

mechanism, the secondary submovment may equally occur as a result of feedforward 

processing.*

The stochastic optimized submovement model has found wide support from the motor 

control research community, thus indirectly validating the model’s predictions regarding 

submovements and neuromotor noise. However, like the previous models in the IP 

tradition, this model too has limitations. Meyer’s model demonstrates remarkable 

predictive power regarding simple aiming behaviour, however it makes no attem pt 

to attach mechanisms. Moreover, proponents make explicit attem pts not to indicate 

anatomical correlates. While many of the assumptions have found support, considerable 

controversy still surrounds the assumption of a Gaussian distribution for submovement 

endpoints (Elliott, Binsted & Heath 1999) as well as the notion of planning a movement 

based upon force/impulse (see Section 2.4 for a review). Finally, both the stochastic 

model and its deterministic predecessor are very limited to goal-directed aiming and 

prove difficult to ‘scale-up’ to account for more complex actions.

2.2 The Knowledge M odel

Continuing in the IP tradition, David Rosenbaum and colleagues (Rosenbaum, En- 

gelbrecht, Brushe & Loukopoulos 1993, Rosenbaum et al. 1999) have recently begun 

examining human grasping using a “biologically and physically plausible” (Rosenbaum 

et al. 1993, pp 238) approach. Unlike Meyer (Meyer et al. 1988), no attem pt was made 

to explicitly account for dynamic features of movement. Instead, the reaching control

'Feedforward is defined here as encompassing efference copy and  corrollary discharge generated 
during the program m ing/preparation of the prim ary submovement
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task was regarded as a problem of selecting appropriate joint postures with end-point 

position emerging as a  result. The Knowledge Model is thus cast as a solution to 

a “multiple-constraint satisfaction problem” (Rosenbaum et al. 1999) for solving the 

degrees of freedom problem in a  redundant human limb.

Overall, the Knowledge model is a rule-based approach to human reaching. Graphically, 

the Knowledge model is quite simplistic; a seated human is represented as a rendered 

stick-figure with three degrees of freedom (hip, shoulder, elbow) able to move only in 

the sagittal plane. The model is tested in a Turing-like manner, * requiring the model 

to reach to a region of space within its ‘grasp’.

2.2.1 Storage

The base element of the Knowledge model is posture, w ith actions being the transitions 

from the present posture to stored postures. A posture (joint angle of multiple joints) is 

encoded by registering the Cartesian location of the hand resulting from attainm ent of 

the required joint positions. By reducing the model to the expression of posture states, 

Rosenbaum enables a  reduction in the required storage space to the dimensionality of 

the component joints. Further, a mass-spring (Bizzi, Ivalidi & Giszter 1991) mecha­

nism for movement is employed, with the transition between postures occurring in a 

manner corresponding the physical properties of the system (i.e., spring-like properties 

of muscle).

2.2.2 P lanning

The process of planning in the Knowledge model is entirely driven by the evaluation 

and minimization of the total cost for attaining each sub-posture in a given reaching

f A Turing test is a te s t of intelligent machine, determ ining th e  degree to  which the artificial sys­
tem mimics human behaviour. Specifically, a person is set w ith th e  task of determining w hether the 
responses being generated (in this case a  movement) is the o u tp u t of a  machine or a human.
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movement. Total cost is considered the sum of the spatial error cost and the travel 

cost. The spatial cost is simply equated to the squared Euclidean distance between the 

Cartesian location of the target and proposed location of the hand if the posture was 

selected. Travel cost, Vp, for each posture is defined as:

<2 i >

where atj is the distance in joint centered coordinates, for the j th joint of the n required 

to define the posture.* Movement time, common for all joints, is expressed as t. with 

denoting the cost factor associated with the movement.

The cost factor, is a representation of the friction, intertia, damping, and stiffness 

associated with the ensemble segments. In general, this factor scales with moment of 

inertia for each joint and is assumed to remain invariant for a  segment’s contribution 

to all postures. However, the general cost definition of this variable also enables it to 

be increased for situations such as injury or muscle stiffness (Rosenbaum et al. 1993, 

Rosenbaum et al. 1999).

In the original formulation of the Knowledge model, goal posture was determined by 

combining the total cost, Vp, of all prospective postures into a  weighted sum (Gaussian 

average) using total cost as a scaling factor (Rosenbaum et al. 1993). By assessing 

potential postures in this fashion, previously unattempted postures may be selected by 

the motor system. §

A more recent version of the model takes a somewhat different approach to posture 

selection (see Figure 2.2); goal postures are selected in a two-stage process based upon 

the last N  postures attem pted (limited memory). A search of these memory postures is 

completed based upon a constraint hierarchy (Rosenbaum et al. 1999), containing both

J o in ts  in the Knowledge m odel were considered to only consist of one degree of freedom therefore 
dfe and joints may be considered synonymous.

*The Gaussian function is shaped such th a t the mean is zero and the s ta n d ard  deviation is propor­
tional to  the smallest to ta l cost.
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implicit and explicit requirements of the task (i.e., more weight may be placed upon 

velocity requirements than  accuracy) to be used as gain factors for potential postures. 

Once a likely posture solution is selected, a local search is completed from the postures 

neighbouring the selected one, to see if requirements may be better satisfied (i.e., results 

in a  lower total cost).^ The search is continued in an expanding fashion (number of 

degrees away from memory position) until a pre-specified tem poral deadline is reached. 

This deadline may also be updated based upon the whether a  criterion satisfying posture 

was found prior to the deadline (reduce time) or had not yet been found (increase time).

2.2 .3  E xecu tion

Execution of movements proceeds according to an assum ption of a common movement 

time for all joints. While this time-stimulation may seem overly contrived, such a tem­

poral scenario is required for linear motion to be achieved by the end effector. Moreover, 

several examples have been identified for discrete actions where this feature of termi­

nation timing exists (e.g., Carnahan & Marteniuk 1991, Carnahan & Marteniuk 1994, 

for eye-hand-head coordination in reaching). Thus, w ithin each posture transition, 

movement dynamics may defined such that:

(t) = TljU)j{t -  1) +  (1 -  TIj)ojj(t) (2.2)

where ujj(t) is the angular velocity of the j th component a t time t, and rjj is propor­

tional to the inertia of that element.* The final term, u represents the intended 

angular velocity of the joint component and is directly proportional to the total angu­

lar distance to be covered by that component’s motion. An im portant consideration in 

this representation is its formalization of feedback processes (terms to the left of the

'T h e se  neighbouring possibilities include postures with slight variations in individual joint angles 
from the stored positions.

'T h e  term 7j is a diinensionless index of inertia (0 <  ijj <  1).
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Finding promising

Croat* on accapUbl* movamant trsfactory

Stor* th* goal poatura and forgat tha oidaat 
storad poatura V is full

an poatura until tha 
• iaup

Figure 2.2: A schematic representation of the Knowledge Model (R osenbaum  et al. 1999). Each box 
represents a  time-occupying event w ithin the planning process. Once th e  m ovem ent to the selected 
posture is completed, a feedback-loop updates the process with a new hand  position  until the hand and 
target position coincide.

Knowledge figure is recreated from (Rosenbaum et al. 1999). 

addition sign).

The Knowledge model demonstrates some features im portant for any model of human 

action. In particular, the model easily accounts for movement in the absence of prior 

experience; a search is completed with a start posture from memory (of similar tasks). 

Advantages are also gained by prior knowledge (i.e, if a memory posture satisfies the 

cost requirements). The model accounts for intangible costs associated with normal 

human movement. Quite simply, if a joint or muscle is injured, all cost associated 

with motion requiring tha t item increases. If a component is completely immobilized, 

movement may continue by assigning a high cost to postures involving that segment.
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This approach is also perhaps the most behaviourally complete model of reaching, 

accounting for wide variations in tasks and system geometry/features. Despite demon­

strating qualities tha t satisfy a limited Turing-like criterion, the model fails on several 

fronts. The Knowledge framework is based upon cost optimization, specifically, a sum 

of quantitative (energy) costs and a subjective factor to account for pain, obstacles, 

and other similar features (see Section 2.3). The second, subjective cost, is both the 

strength and weakness of the model. This factor enables the model to account for 

a wide variety of situations using a relatively simple selection/assessment criterion as 

well as allowing the description and prediction of pathological movements based on 

subjective and clinical observations. However, even Rosenbaum and colleagues ac­

knowledge lack of an explicit definition of the cost, i.e., ascribing the cost to a user 

defined term (Rosenbaum et al. 1993). Added criticism should also be made due to the 

vagueness of even the quantitative measures. These factors, while more objective, also 

lack an explicit definition. The inertial cost of moving various limbs is determined only 

by an ordinal estimation of joint moments, t

2.3 M inimum Torque-Change M odel

Moving toward a purely computational approach to movement production, Uno and 

colleagues (Uno et al. 1989) proposed a model based on minimization of energy related 

parameters as a solution for the complex task of trajectory planning during rapid 

two-dimensional aiming. Unlike the Knowledge model which a ttem pted  to pose the 

movement problem from an information processing standpoint, the Minimum Torque- 

Change approach is primarily an ‘engineered’ solution to the indeterminacy problem 

(with biological constraints). As such, the necessary cognitive processes for this system

fCost is assigned based upon rotating weight. Therefore a hip movement would be assigned higher 
cost than  shoulder, which in tu rn  would be higher th a t elbow and  wrist. However, the relative sizes of 
these values is indeterm inable.
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are: (1) select a  appropriate trajectory*, in extrinsic coordinates, from the infinite 

possibilities (see Chapter 1), (2) transform the coordinates of this trajectory into an 

egocentric reference frame, and (3) select the appropriate motor commands to generate 

the needed torques about the component joints. The minimum torque-change (MTC) 

model approaches the reaching problem more completely than some previous energy 

minimization approaches in that multi-joint movements are considered (Flash & Hogan 

1985).

Although demonstrably superior in performance, the MTC model is based on the 

minimum-jerk (MJ) model proposed by Flash and Hogan (1985). This MJ model 

was formulated based on the observation that a unique (ideal) trajectory is defined by 

the minimization of an objective function (Equation 2.3). The function is defined by 

the square of the jerk  (rate of change of acceleration) of the end effector, integrated 

over the entire movement, during a movement of duration, t f ,

where (x , y ) are the Cartesian coordinates of the hand. Based on the minimization of 

Equation 2.3, there is an expectation for a straight line path  between the origin and the 

end location, and for a bell-shaped velocity profile (Uno et al. 1989). Correspondingly, 

Flash and Hogan (1985) demonstrated that this model successfully predicted several 

qualitative and quantitative features of reaching movements performed in front of the 

body. However, as Uno et al.(1989) point out, given tha t the movement is defined only 

in terms of sta rt/end  position and kinematics, there is no place for quantities such as 

mass and torque in the determination of trajectory.

The MTC model is based upon a very similar objective function to that proposed in the 

MJ formulation. In the MTC model however, specifications of mass, selected muscle,

5 Trajectory is defined as both the path and the dynamics of th e  movement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Minimum Torque-Change Model 25

and desired torque are included (Equation 2.4).

°r-u:±0«
The motor command (torque, zt) is sent to the i th of n  muscles such tha t the criterion 

(Ct ) is the sum of the squared rated of change of torque integrated over the movement 

(time, tj).  While some properties of the function are similar to that in the MJ model, 

the prediciton of a trajectory requires consideration of the structure and dynamics 

of both the environment and the musculoskeletal system. Due to the overwhelming 

complexity of these systems, simulations are performed with a system containing a 

two-joint robotic limb constrained to two dimensions. The limbs are also controlled by 

only two muscles presumed to be acting at known lengths, rotary inertia, etc. Even 

given the severe limitations placed upon the system, no analytically obtainable solutions 

were forthcoming. §

As mentioned previously, the MTC model provides superior results to the MJ model 

(Uno et al. 1989). When short movements were simulated as occurring approximately 

in front of the body, results remained similar to the MJ model, qualitatively and quanti­

tatively. However, when movements were simulated in situations which either departed 

from the mid-line of the ‘subject’ or were large in amplitude however, performance was 

different. Under the MJ model, trajectories remained relatively straight. Conversely, 

the MTC model successfully predicted a convex curve in the motion commensurate 

with the region of workspace and movement scale. Benefits were also shown for move­

ments which required a via-point to be attained (Uno et al. 1989).^ The MTC model 

predicted adaptations in movement speed profiles dependent not only on the movement 

geometry but also on the segment postures and external force.

Although the MTC and MJ models demonstrate substantial predictive potential for

5The researchers resolved the minimization through an iterative learning procedure (Uno et al. 1989).
’ A via-point is merely a required interm ediate point which requires tra jecto ry  adaptation to attain .
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simple movement trajectory formation, they have common failings. Both models require 

the motor system to predetermine the entire path and dynamics of the movement 

prior to execution. While this assumption allows for energy minimization and thus 

ideal path trajectory selection, it ignores a substantial literature based on human trials 

that demonstrates continuous, or on-line, control of reaching (for example Chua & 

Elliott 1993, Elliott, Binsted & Heath 1999). A second shortfall is the reliance upon 

over-simplified motor systems. Due to the requirements of the MTC and M J models to 

quantify then derive parameters, the computational load required grows exponentially 

with system complexity. In addition to the limitations that simplification places on 

simulation validity, there are significant drawbacks generated by the high hypothesized 

loads upon the human cognitive system (c.f., Gibson 1966, Gibson 1979).

2.4 Equilibrium-Point M odels

At a similar level of description to the Minimum Torque Change model, a series of 

models exist which describe human movement based on the equilibrium (static or dy­

namic) emerging from the interaction between muscles. Known as the mass-spring 

models (Asatryan & Feldman 1965, Bizzi, Accornero, Chappie & Hogan 1982, Bizzi 

et al. 1991, Feldman 1966a, Feldman 1966b), this general class of approach is based 

upon the anatomical properties of human neuro-muscular system (Figure 2.3) and seek 

to account for control based on the expression of these features. Specifically, muscle 

is proposed to contain a contractile element (To) as well as damping (dash-pot, b) and 

elastic elements (fci and ^(M cM ahon  1984). In Figure 2.3, the elastic elements are 

connected in series to each other and in parallel to both the damping and contrac­

tile elements. This configuration results in the muscle behaving in a fashion similar 

to a damped (non-linear) spring whose output force is dependent upon length. This 

force-length relation is precisely the property that mass-spring models exploit in their 

explanations of the human movement control process. These models also integrate the
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known physiology of the nervous system, using reflex mechanisms specifically associated 

with tissue length, tension, and velocity.

h
Figure 2.3: A muscle represented as a  composite of spring, contractile, and  damping elements. These 
feature connected in series and  parallel replicate a  large proportion of muscle behaviour as well as 
coinciding well w ith the physical stuctures involved.

(From Latash 1993)

2.4.1 T he 7- and a - M odels

In 1953, P.A. Merton (Merton 1953, Eldred, Granit &: Merton 1953) provided the first 

of the mass-spring models by including the load compensation properties of the tonic 

stretch reflex into a comprehensive model of control. This model, the 7-model, has as 

its central tenet that load applied to a limb stimulates a stretch reflex thus modulating 

a-motoneuron pool activity and generating a firing of muscle agonists. The likelihood of 

this reflex occurring is set within the 7 system by central specification of muscle spindle 

sensitivity ranges and thresholds (Latash 1993, Kandel, Schwartz & Jessell 1991). This 

model has high appeal due to its simplicity; a central motor command specifies a new 

position (muscle length) within the 7 system, thus stimulating a reflex response and 

generating closed-loop agonist activity to attain  a position.

In the tradition of Merton, E. Bizzi and colleagues (Bizzi 1980, Bizzi et al. 1982, Bizzi 

et al. 1991) generated the a-model. While borrowing the servo architecture from the 7
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model, the a-model placed the role of response modulation a t the a-motoneuron pool 

level. Specifically, descending inputs fix the transient activation of the pool for a given 

muscle, thus determining the am plitude of response for a given load (as determined by 

muscle spindle firing). Even though the a-model has received considerable criticism 

for inconsistencies with regard to experimental evidence (Feldman 1986, Berkinblit, 

Feldman & Fukson 1986), it still remains a point of discussion in the literature due 

to its compelling prediction of electromyogram (EMG) firing patterns in muscles and 

their direct relation to a-motoneuron pool activity.

2 .4 .2  T h e  A-Model

The A model proposed by A.G. Feldman (Feldman 1966a, Feldman 1966b, Latash 1993) 

has many common features to other mass-spring models, at a fundamental assumptions 

level. T he name of this model is derived from length threshold (at a muscle spindle 

level) necessary to generate recruitment of a-motoneurons during tissue stretch, A. A 

central motor command is proposed to define A, thus choosing a force-length curve 

(Figure 2.4a). Actual muscle length however is also defined by external load. In Figure 

2.4b, three forms of external load are represented (Latash 1993): (1) isometric. (2) 

isotonic, and (3) elastic. The point at which load intersects the force-length curve will 

determine the equilibrium point of the programmed movement. In this manner, the 

spring properties are paramount to the A-model (see Figure 2.3), allowing the limb to 

shift position simply by establishing of new “equilibrium point” (EP).

By utilizing the spring-like properties of the muscles, the central nervous system allows 

the specification of a new location for a limb in a relatively simple manner. Consider 

a joint defined by only one degree of freedom, and, controlled by a single pair of 

muscles (agonist, antagonist). In order to specify a movement, the task is to specify 

the net torque about the joint by constraining A of each muscle given load (L). The
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F ig u re  2 .4 : (a). Examples of how sim ply by choosing a threshold A a descending command also 
specifies a force-length curve. In order to  determ ine an equilibrium point (E P ) a load m ust be present, 
(b). Examples of possible load param eters (1) isometric, (2) isotonic, and (3) elastic. Each load results 
in a unique EP for a given A. (c) An exam ple where a a new EP (12 ) is a tta in ed  by a  shift in load or 
by the selection of a  new force-length curve (A) (Latash 1993)

command will select a new EP for each muscle thus determining its activity stated The 

muscles will continue to be active, according to the relative EP, until the new location 

(equilibrium) is attained.

One strength of equilibrium-point models is their attention to mechanisms for the 

micro-control of limb segments. Control is accomplished in a fashion that is entirely 

joint-centered, and is therefore invariant to alterations in absolute space. As such, the 7 , 

q, and A models account well for the considerable number of findings that demonstrate 

equifinality (for example, Bizzi, Polit & Morasso 1976, Latash & Gottlieb 1990, Polit 

& Bizzi 1978), a scenario where a limb is perturbed unexpectedly by a  transient load

*If a muscle’s length exceeds th a t specified by the EP then the muscle is active.
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yet still reaches its equilibrium-point. However, although the mass-spring hypotheses 

utilize many mechanisms based on the known physiology, they encounter difficulties 

when fully complex actions are considered. Specifically, no comprehensive spring-based 

formulation has been produced that easily predicts the movement and control processes 

during even simple multi-joint movement. The complications arise due to the relation 

between joint torque and ‘length’. A servo-controller based on these combined factors 

has difficulty accounting for multi-joint muscles, as length will be modified due to 

neighbouring joint rotation. This shortfall is important, as all ’real’ movements require 

control of torques about multiple joints, even if the joints must remain immobile. An 

added problem associated with an equilibrium point process of control is the extensive 

behavioural research supporting a  force-specification approach (e.g., Abrams, Meyer & 

Kornblum 1989, Binsted, Cullen & Elliott 1998, Elliott, Heath, Binsted, Ricker, Roy & 

Chua 1999, Schmidt et al. 1979, Sherwood 1986). Force or impulse based models easily 

account for discrete/continuous corrections (Chua & Elliott 1993) as well as adaptive 

behaviours such as target undershooting (Elliott, Binsted & Heath 1999). Conversely, 

an equilibrium-point model generates the expectation that movement endpoints should 

be equally distributed about the target. There is also the false prediction tha t if a 

muscle behaves as a spring, the limbs would be expected to show endpoint oscillations. 

In addition, force specification may be easily matched with the characteristic speed 

variability curves of movement and the expected triphasic -  agonist-antagonist-agonist 

-  EMG pattern for discrete action.

2.5 A Kinematic Theory o f Rapid Human M ovement

Returning again to the discussion of the speed-accuracy trade-off, R. Plamondon and 

colleagues (Plamondon 1995a, Plamondon 1995b, Plamondon & Privitera 1995, Pla­

mondon & Alimi 1997, Plamondon 1998) developed a kinematic theory based on the 

impulse response of neuromuscular systems. While this approach retains much of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 A Kinematic Theory of Rapid Human Movement 31

Agonist system

Antagonist system

Figure 2.5: The Kinematic Theory. An impulse driven representation of a  two muscle synergy. The 
com mand, and its am plitude, are specified to each muscle w ith  the  o u tp u t being the result of cum ulative 
impulse response of the contributing system. Movement velocity occurs if the difference between the 
agonist and antagonist outputs reaches threshold. Figure is a  recreation based on (Plamondon & 
Alimi 1997).

same ‘engineered’ feel as the Minimum Torque approach, it makes a considered (and suc­

cessful) attempt to integrate many of the muscle properties discussed in the A model. 

Unlike other approaches however, the central point of Plamondon’s proposal is that 

speed-accuracy trade-offs are inherent constraints arising from the impulse response of 

the neuro-muscular system. This system is assumed to be composed of a synergy of 

two parallel systems (agonist and antagonist), each a composite of many subsystems 

(see Figure 2.5).

Several initial assumptions are made. First, due to the relative invariance and theoreti­

cal importance of kinematic profiles in extant studies of rapid aiming, showing an asym­

metric bell-shape (for example, Chua & Elliott 1993, Elliott, Binsted & Heath 1999, Uno 

et al. 1989), outputs of the system were modeled based on limb velocity profiles. Sec­

ond, due to the intent of describing well-learned action (simple aiming), subsystems 

were considered to act linearly and to operate in a primarily feedforward fashion. As

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 A Kinematic Theory of Rapid Human Movement 32

such, according to kinematic theory, both agonist and antagonist systems produce a 

velocity output (iq(f) and V 2 ( t )  respectively) based on an impulse program ( U o ( t  -  t o ) )  

with amplitudes D\ and D2  (Equation 2.5).

v(t) = V i { t ) - V 2 ( t )  (2.5)

=  DiH\( t  — to) — D2H2{t — to)

= DiA{t;t0, m , r f )  -  D2A(t; t0, p 2,orj)

where

A(t; to, pi, of)  = H ( t - t 0) (2.6)

= eXP ‘  {|ln(‘ _ *o) '  '“f  ' }

The output velocities may also be viewed as the difference between two log-normal 

functions {DA, Equation 2.6). In these functions p  refers to  the total log-time delay 

{hii...iP(t)) and <r to the log-response time across all elements of the system , relative 

to <o- In summary, the execution of a rapid aiming movement may be viewed as 

resulting from the synergetic activation of agonist and antagonist systems (at t =  to). 

The systems respond to their respective D, amplitude commands with an a log-normal 

response (A, Equations 2.5, 2.6) based on the system param eters er, and p t.

Referred to as the AA Law due to its reliance on the difference between two amplitude 

weighted log functions, this relation (Plamondon 1995a, Plamondon 1995b, Plamondon 

& Alimi 1997) has been used to replicate a variety of experimental findings. The 

theory reproduces single, double, and triple peaked velocity profiles based only on a 

single synergy, using no feedback. This result is contrary to a  large body of literature 

which attributes such velocity features as representative of feedback processes (Carlton 

1981, Chua & Elliott 1993, Chua & Elliott 1997, Elliott, B insted & Heath 1999). In 

addition to this initial departure, the kinematic model has been criticized for its lack 

of a viable theoretical framework (Bootsma & Mottet 1997), specifically with regard to
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the feature of ‘sensory maps’ for movement preparation (Carlton & Liu 1997). A final 

shortfall of the model is its apparent inability to  account for motor variability (Jong 

& Galen 1997); while there are no explicit ‘noise’ terms, the model does draw upon 

Gaussian distributions of er, and m  to generate the impulse response.

Although this approach has several theoretical weaknesses, it explicitly addresses many 

of the key features necessary for a comprehensive model. Specifically, the model is 

inherently stochastic and dynamical -  features which will be at the forefront of later 

discussions of the Bayesian modeling approach to action. Also, the control predictions 

made by the model are based on emergent properties and relationships within the 

physical system, not relying on an all-knowing homunculus, a property at the core of 

the next models in this discussion.

2.6 The V I T E  Model

From the previous discussion it is clear th a t there is a tendency for current models 

to either attend to the cognitive and psychological aspects of control or the physi­

cal/anatomical aspects via computational loading -  but never both. However, the 

vector integration to endpoint ( V I T E )  model of via-point movements presented by 

Bullock and colleagues (Bullock & Grossberg 1988, Bullock & Grossberg 88, Bullock 

et al. 1998, Bullock, Bongers, Lankhorst & Beek 1999) is a departure from previous 

models. That is, the model is one of a collage of models presented by these authors 

to describe a wide range of behaviours, accounting for a large variety of kinematic 

and psychophysical phenomena while rem aining consistent with known neurobiological 

events and structures. The V I T E  model makes explicit predictions of how learning and 

performance rely upon feedback while rem aining relatively free of memory constraints 

(Bullock et al. 1999). The most recent elaboration has been explicitly applied to the 

problems associated with voluntary neural control of 2-dimensional arm  trajectories.
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Owing to a Gibsonian (kinetic theory) standpoint, the V I T E  model for reaching 

stresses the idea th a t information detection and motor performance are mutually de­

pendent processes (see Figure 2.6). In general, the V I T E  circuit is composed of the 

processing required for the preparation, execution, and correction of point-to-point 

movements. In order to calculate a movement vector to guide the hand to a desired 

position, both a target position vector (TPV) and a  present position vector (PPV, i.e., 

current position of the hand) are generated in body-centered space. A difference vector 

(DV) is then calculated with respect to these two positions, specifying both magni­

tude and direction of movement required to contact the target. The DV is gated by 

a scalable GO param eter (i.e., “start”); the GO signal is set to zero during movement 

preparation, thus preventing execution, and scaled to generate voluntary changes in 

movement kinematics independent of DV. In addition to permitting motor priming 

operations, the GO signal provides a convenient mechanism for movement equifinality 

(for example, Bizzi et al. 1976, Latash & Gottlieb 1990, Polit & Bizzi 1978).

GO Signal

Tirgrt Poailon Vactor 
(TPV)

Dm M  Velocity Vactor 
(DV! GO)

Pfaaant Poattfon Vactor 
(PPV)

F ig u re  2.6: A dem onstration of the V IT E  circuit. Initially a difference vector is calculated between 
the current position and  the target. This vector is scaled by the GO signal to  determ ine the dynamics 
of movement prior to  a  negative-feedback updating the  difference vector. (Bullock & G rossberg 1988, 
Bullock et al. 1999) F igure is a re-creation based on (Bullock e t al. 1999)
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The V I T E  representation of movement also makes strong claims regarding cerebral 

organization and cell types used in via-point movements (Bullock et al. 1998).* In sup­

port of this structural view, cells behaving in a manner consistent with DV com putation 

have been identified with the primate cortex (precentral areas 4 and 6, postcentral area 

5)(Bullock et al. 1998). Evidence from the visual system provides support for an in­

ternal GO mechanism (Grossberg, Roberts, Aguilar & Bullock 1997) residing in the 

substantia nigra and globus pallidus, gating the output of eye movements from the su­

perior colliculus (e.g., Georgopolous, Kalaska, Cam initi & Massey 1982, Georgopolous, 

Schwartz & Kettner 1986, Schwartz, Kettner & Georgopolous 1988). This evidence for 

a GO controller in vision is bolstered by evidence from patients with Parkinson’s, 

indicating a gating role for the basal ganglia in gross-motor generation (Jankovic &: 

Tolosa 1993).

The V I T E  model provides a concise explanation of many behaviours dem onstrated 

both at a kinematic (Bullock et al. 1999) and cellular level. The model, however, 

makes no attem pt to deal with the complexities involved with generating the called for 

vectors. However, Bullock et al. (1999) do accent the benefit of continuous updating 

of vectors within V I T E .  While this initially seems a strength of the model, serious 

concerns may be raised as to the biological feasability of feedback at the rate required 

to maintain this circuit. Moreover, as is demonstrated by the A and Minimum Torque 

models, representing muscular force generation even within a two-muscle system is an 

odious task, even when done off-line.

2.7 The Haken-Kelso-Bunz M odel

The final model, HKB, again features aspects of self organization, not dissimilar to 

the neural network approach of Bullock and colleagues (1999). However, the features

‘ Again, via-point actions are those th a t require some in term ediary target attainm ent prior to  reach­
ing the final goal
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of this system are somewhat more abstract and focus at a  much more macroscopic 

scale. For example, even casual observations result in the realization that even simple 

movements require precise temporal and spatial coordination between limb segments. 

As was emphasized by previous discussions of the degrees of freedom problem (Bernstein 

1967), the theoretical computational load to reduce this problem are immense. So, 

consider now the complex act of walking, and extend the problem to animals with 

more than two legs (maybe six-legged ants). It is not reasonable to attribute the 

complex coordination required for multi-pedal motion to the cognitive prowess of an 

insect, instead let us consider a dynamical pattern perspective and look for features 

suggesting self-organization.

Figure 2 .7 : Movements of segm ents may be represented by their relative tim ing/position. In the 
upper diagram, the segments are moving in an in-phase fashion, normally associated with concurrent 
firing of homologous m usculature. In the lower diagram, anti-phase is represented.

Borrowing from non-linear dynamics Haken, Kelso, and Bunz (1985) (HKB) proposed 

a model to describe oscillatory movement coordination (e.g., walking) in terms of a 

self-organizing system. The experimentation that led to the HKB-model involved the 

coordination of rhythmic finger movements. Participants were instructed to move their
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index fingers (or hands) in either an in-phase or anti-phase manner (see Figure 2.7) *. 

For subjects who prepared their movements in an anti-phase fashion, as the frequency 

of the movement increased the stability decreased, and an abrupt shift to the in-phase 

pattern was shown (phase-transition, see Figure 2.8). However, if the movement was 

prepared in-phase, the coordination remained relatively stable and showed no transi­

tion. Haken et al. (1985) proposed a model to describe this behaviour based upon 

concepts in synergetics (Haken 1977, Haken 1983) and nonlinear oscillator theory.

-Jt

0.875

~K

0.500

-K

0.325

Figure 2.8: All panels represent a potential landscape of the system based on the ratio of b and 
a parameters (value in each panel). C urrent behaviour is represented by the dark circle and recent 
behaviour by the open (distribution represents noise). In the upper left panel, relative phase is stable 
in the anti-phase relation (0 = - ) .  As the  a /b  ratio decreases (top right and bo ttom  left) behaviour 
becomes unstable and undergoes a phase transition. The bottom  left panel has behaviour again stable, 
a t in-phase (0 =  0) (Beek et al. 1995, Haken et al. 1985). Figure is a  re-creation of (Beek et al. 1995).

As discussed in Chapter 2, the relative phasing {<p) between segments has been identified 

by dynamical systems theorists as an order parameter for coordinated movements. 

Thus, the goal of the HKB-model is to accurately predict/describe the behaviour of 

<f> across variations in the control parameter (frequency of oscillation). Based upon

* In-phase movements involve the concurrent activation of homologous muscle groups; anti-phase, 
the simultaneous action of non-homologous groups. For example, the alternating action of walking 
is an ecological demonstration of anti-phase. Similarly, two-handed reaching-grasping is an in-phase 
movement.
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the relatively simple behaviour displayed in the “finger-wiggle” experiment, the system 

was modeled as containing fixed point attractors a t 0 =  0 and 0  =  n. In addition, 

the formulation must be 27r-periodic and symmetric when transformed from 0 —> —0 

to account for left/right symmetry between coordinated segments and reversals in the 

leading segment (Beek et al. 1995). Given these constraints and a  premise of simplicity, 

the system was modeled as the superposition of two cosine functions (Equation 2.7).

y  (0) =  - a  cos (<f>) — 6cos(20) (2.7)

Equation 2.7 adequately describes the behaviour in the finger-wiggle experiment, as well 

as a  considerable number of other experiments and tasks quite effectively(e.g., Carson 

1995, Swinnen, Beirinckx, Meugens & Walter 1991, Verschueren, Swinnen, Cordo & 

Dounskaia 1999). The cosine functions generate minima at 0  — 0 and 0  = 7r, while the 

depth of these minima (degree of attraction) is scaled to the ratio of b/a (see Figure 

2.8). As the ratio ranges from 1.0 to 0.0 the behaviour of system moves from its initial 

bi-stable state to a mono-stable one; this ratio may be extrapolated to the frequency 

parameter originally manipulated by Haken et al. (1985). According this model, once 

the system has made a transition to the 0 =  0 attractor, it will not return to anti-phase 

(see Figure 2.8).

While the HKB-model satisfies many of the observations of the original experiment 

(Haken et al. 1985), it fails to represent two key observations in human data. The 

model is unable to represent the variations in the critical frequency that generated 

phase transitions. The model is also unable to account for asymmetries in the frequency 

of transitions initiated by the left and right hands (Byblow et al. 1998, Schmidt & 

Turvey 1995). As such, two terms have been added (Fuchs & Kelso 1994, Schmidt & 

Turvey 1995).

V  (0) =  S — aco s0  — 6cos(20) +  y/QCt (2.8)

The first, 6, is a detuning factor to induce asymmetries associated with handedness or
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similar divergences from the original <f> -> -<f> assumption (Equation 2.8). The other, 

y/Qb,  is a compound term  where £ is a Gaussian white noise process that functions as 

a stochastic force of strength  Q  (Fuchs & Kelso 1994, Schmidt & Turvey 1995). Upon 

the addition of these term s, the HKB-model has become the closest approximation to 

a “phenomenological law of interlimb coordination” (Schmidt fc Turvey 1994), suc­

cessfully describing the behaviour of complex biological systems without making any 

assumptions regarding the mechanistic architecture.

In a recent extension to the HKB-model (Zaal et al. 1998, Zaal et al. 1999), the co­

ordination of prehension movements was proposed with the same dynamical systems 

framework (for discrete aiming, see also Schoner 1990). Discrete trajectory formation 

was modeled as ‘emerging’ during a phase transition from a  point attractor placed at 

the start location to one a t the end-goal. By modeling reaching in this manner, the 

complexities of trajectory selection are accounted for by the ‘self-organizing’ nature of 

the HKB framework. Also, in an ecological psychology tradition, the grasp phase of 

prehension was proposed to be triggered in response to time to contact (r, see Chap­

ter 1). This r-theshold was based on maximum hand-closing rate during reaching. 

Although much of this extension may seem ad-hoc, the basic ideas of the model (i.e., 

having the trajectory be defined and controlled by the properties of the system) parallel 

the mass-spring models.

The fundamental goal of dynamical systems researchers is to develop analogies to move­

ment. While the HKB-model may point to some control heuristics that guide the con­

trolling system, models developed under the umbrella of dynamical pattern theory rely 

heavily on abstraction. Prior to any behavior being examined with this approach, the 

task must be converted to a form that can be represented by relative phase. Similarly, 

although there have been recent attempts to use the dynamical systems approach to 

studies of discrete movement (Schoner 1990, Zaal et al. 1998, Zaal et al. 1999) they 

remain founded on a literature of cyclical actions and associated assumptions. Finally, 

although the dynamical approach has been applied to a wide variety of tasks like walking
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(Diedrich & Warren 1998, Warren, Kay & Yilmaz 1996), reaching (Zaal et al. 1999), 

and multi-person coordination (Veeneman & Lee 2000), its ability to truly predict 

complex, multi degree of freedom, ‘real’ behaviours has yet to  be tested. However, 

dynamical pattern theory as a  whole has been the driving force between a ‘paradigm 

shift’ within the motor control community. Researchers now must at least consider 

the dynamical correlates of information processing constructs such as the executive and 

motor program; proponents of new approaches must similarly be able to account for 

phase transitions and more general non-nonlinear behaviours.

2.8 Conclusions

Table 2.8 summarizes the different types of models discussed to this point; this demon­

strates how each model manages only to describe a subset of human behaviour and 

have limiting model assumptions.

1) Current modeling approaches only indirectly address the issues involved with vari­

ability in motor performance. Consider the HKB-model and the stochastic optimized 

submovement models; both models explicitly acknowledge the indeterminacy of move­

ment. These hypotheses however both consider the indeterminacy to be the result 

of noise in the system which “reduces” performance. This approach is taken to the 

extreme in the HKB model, simply ‘adding a noise term ’ to a deterministic process. 

However, viewing variability as noise is at odds with recent indications that motor 

variability has ‘non-white’ elements: variability should instead be an “intrinsic” rather 

than “explicit” component of action models. Another shortfall comes from the methods 

for forming the internal properties of models. With the exception of the VITE model 

(and derivatives), and to a  limited extent the minimization models, researchers con­

struct the parameters of their models based on a priori hypotheses regarding structure 

and function. For example, Rosenbaum and colleagues make a variety of assumptions 

regarding rule priority (cost).
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Table 2.1: Summary of current models in motor control
Model Properties Calculations Storage Basis

Equilibrium
Point

2-D deterministic open loop 
+  noise

moderate low muscle
mechan­
ics

HKB 1-D deterministic 
+  noise

moderate low synergetics

Knowledge 2-D deterministic open loop moderate high psychology
V I T E 1-D deterministic closed loop moderate moderate neural

networks
Minimum
Jerk

2-D deterministic open loop high low robotics

Minimum
Torque

2-D deterministic open loop v. high low robotics

Iterative
Correc­
tions

1-D deterministicclosed loop moderate low visual
control

Optimized
Sub­
movement

1-D stochastic* closed loop moderate low visual
control

Kinematic
Theory

2-D stochastic* open loop moderate low robotics

* The stochastic nature of model is entirely based on variability as an  expression of 
neuromotor noise
* Although the model is often interpreted in a deterministic fashion, the structure of 
the model is probability based

2) W ith few exceptions (e.g., VITE), current models do not consider the process of 

perceptual motor learning; skill acquisition is in many cases assumed to be pre-encoded. 

Moreover, while some models do provide implications for learning (e.g., the HKB- 

model), even providing examples of learning adaptation (e.g., Schoner, Zanone &; Kelso 

1992), no mechanism is provided for such changes. However, as we will see, learning 

plays a key role in modeling: for parameter estimation, for skill generalization, and for 

performance evaluation.
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An alternative view to assuming model structure is to proceed based entirely on the 

observed data, acquiring the internal form from data-based model update.* While 

some current approaches employ neural network learning methods (e.g., Bullock et al. 

1998, adaptive resonance theory and backpropogation), others similarly draw from the 

machine-learning literature which provides aspects unavailable or impractical to neural 

networks.

2.9 Summary

The previous discussion outlined a number of the more influential models of human 

motor control, which describe a wide range of behaviours. However, as was suggested 

earlier, the goal of this dissertation is to develop a ‘general1 framework for studying 

perception-action systems based on perceptual learning, implicit variability, and the 

ability of fundamental principles to apply to many tasks. Reflecting on the successes 

and failures of the discussed models there are some key features that should be included 

in any new approach:

1: Use current knowledge regarding system organization (both anatomical and pro­

cess related) w ithin the model structure;

2: Place reasonable^ cognitive and computational demands on the system

3: Capture the inherent dynamic variablity of performance within the process model;

l This is the extrem e of th is viewpoint; the researcher may well wish to  constrain the model update 
procedure based on hypotheses.

5 “a minimally intelligent executive intervening minimally” (Kugler e t al. 1980)
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4: Acquire model parameters via learning (supervised or unsupervised) to describe 

the dynamics of the target;and

5: Apply to a wide variety of tasks and levels of analysis.

Bearing in mind these points, a class of modeling procedures based on a probabilistic 

(Bayesian) viewpoint are pursued.
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Chapter 3

A Computational Intelligence 

Perspective

The problem of understanding and representing multivariate signals has a long tradi­

tion within the computing/engineering literatures. From an Artificial Intelligence (Al) 

standpoint, brain/m otor function is contrived as some kind of computation, and the 

ability to simulate human performance provides insight into “biological algorithms” . 

One problem encountered by early Al research was based on the  assumption that in­

formation was processed serially and symbolically, similar to information processing 

approaches in psychology. Using this serial premise, computer processing speeds were 

unable to approach even simple reaction times measured in humans (Stacey 1998). 

However, considering the system as massively parallel and open may alleviate some of 

these shortfalls.

In 1985, Carl Hewitt published “T he Challenge of Open Systems” , which suggests the 

human system is subject to communications and constraints from the outside world 

and is thus characterized by (Hewitt 1985a, Hewitt 1985b):
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Concurrency. Open systems are composed of numerous interacting components which 

must process information concurrently.

Asynchrony. New information may enter the system at any time, preventing syn­

chronous interaction with the outside world. The components of the system are sepa­

rated by distances (physical or philosophical) preventing them from synchronizing.

Decentralized Control. Any central decision-maker comprises a substantive bot­

tleneck. Due to the asynchrony and unreliability of communication, the homunculus 

would never have access to complete and timely system-state information. Thus the 

system requires distributed control, with decisions being made local to  each process.

Inconsistent Information. Due to the possibility of inaccuracies of information from 

within or without the system, decisions must be made by the components of the system.

Arm ’s-length Relationships. The internal state and/or action of one agent or 

component may be unknown to other agents.

Continuous Operation. Open systems must be designed to resist system failure due 

to local (agent) events.

Interestingly, the ‘open’ approach forwarded by Hewitt criticizing many of the serial and 

localized function assumptions of earlier Al views, is reminiscent of the recent ‘levels of 

analysis debate’ within the motor control literature. In this dialog, the concept of self­

organization enables highly organized behaviour to arise from the interaction between 

unknown microscopic dynamics (e.g., Kelso 1984, Kugler et al. 1980, Kugler et al. 

1982, Kugler & Turvey 1987). Moreover, in abstract systems the emergent behaviour 

is only meaningful from a macroscopic viewpoint; at a microscopic level the transitions 

are indistinguishable from randomness (Stacey 1998).

In order to represent the emergent behaviour of the human motor control system dis­
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cussed previously, it is reasonable to pose the problem in terms of a dynamical sys­

tem. Such a system is constrained by a set of initial conditions and passes through 

a succession of states, similar to formulations discussed earlier for coupled oscillator 

models (Kelso 1984, Haken et al. 1985)*. A dram atic benefit of such a dynamical sys­

tems approach is that conclusions are based on the application of evolutionary rules or 

transformations, having no need for a controller (c.f., Hewitt 1985a, Hewitt 1985b).

For the purpose of the present work, two methods of distributed computation are 

discussed with regard to understanding motor behaviour. The first, neural networks, 

are cursorily discussed, covering the basic com putational methods needed to elucidate 

the underpinnings, benefits, and weaknesses of some current motor control models*. 

The primary focus of this chapter however is the implementation and implications of 

Hidden Markov models(HMM). This structure for dynamical system estimation and 

representation is presented in a thorough manner to enable further discussion and 

application for motor control modeling. In later chapters HMMs are extended within 

a Bayesian belief structure for the modeling of more complex behaviour.

3.1 Basic M ethods in Artificial N eural Networks

Artificial Neural Networks (ANNs) are a recognized method for learning real, discrete, 

and vector valued functions (Mitchell 1997), with applications ranging across many 

disciplines. Moreover, ANNs are able to generate outputs quickly despite their relatively 

long training times; outputs are produced by the arithm etic combination of weighted 

nodes without requiring any run-time estimation. These networks have the added 

benefit, for those interested in biological systems, of a structure that may be used as a

'A n  a ttrac to r is a state, or s ta te  vector, to which the system  may evolve. The basin o f attraction  of 
an a ttrac to r  is formed by the set of initial conditions which m ight give rise to the system term inating  
in th a t a ttracto r.

f A sub-category of neural networks (cascade networks) is applied  to  the calibration of collected d a ta  
(see Appendix A).
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X n

Figure 3.1: Graphical schematic of a simple perceptron.

metaphor to cellular formations (Hebbian networks).

3.1 .1  Perceptrons

The simplest neural network, the perceptron, transforms a vector of real numbers into 

an output of 1 or —1 (yes or no). In general, the output may be defined by the linear 

combination of the weighted inputs {wq 4 -...), where the precise weights are learned) in 

relation to some threshold (Equation 3.1). The input weightings, wt's, are real valued 

and — wo is a learned threshold value such that:

O(x0, - - . , 2 :n)  =
— 1 if w0 + w ix l  + W2 X2  + • ■ • + wnxn  > 0

(3.1)
+  1 if otherwise

Initially, the weights of such a network are acquired iteratively based upon an initial set 

of random values. The initial perceptron is applied to each of a  set of training examples; 

each time an incorrect classification is made, an update is performed according to a 

training rule which revises the W{ associated with each (see Equation 3.3). One
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example, which requires training examples to be linearly separable*, is the perceptron 

rule:

lii = w, +  A Wi (3.2)

A Wi =  T](t  — o)xi (3.3)

where the model update value (AWi) is determined by the difference between the ob­

served and target output (o and t respectively), scaled by learning rate, ^(positive 

constant; e.g., 0.1).

Unlike the perceptron rule which updates the weight coefficients based on the thresh- 

olded (+ 1, - 1) value, rules based on gradient descent operate on an unthresholded 

value -  relieving the necessity of linear separability. Here the weights are adjusted in 

the direction of steepest descent in all dimensions of w (see Equation 3.4). In standard 

implementations of gradient descent, the error surface may be determined either on an 

example to example basis or over all training examples before updating is performed 

(Mitchell 1997). However, both methods can be considered to be following the steepest 

descent in weight space provided that step size (learning rate) is adequately small.

=  <3 -4 ) 
3

3 .1 .2  Backpropagat ion

While the the previous examples were convenient for understanding ANN structure, 

most common applications of ANNs require the mapping of input data onto multiple 

outputs (see Figure 3.2). In order accomplish such transformation, additional layers, 

generally composed of nodes containing so-called squashing functions (e.g., logistic 

function), are added to the network. Thus the task of the learning algorithm is to

Classification may be m ade in hypothesis space by a straight line.
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H I D D E N  I 'M T S

Figure 3.2: A Multi-Layer Neural Network

search across this large hypothesis space for a global minimum error. Gradient descent 

is once again applied to a network with a fixed number of units and interconnections 

between units; this process is called backpropagation. Initially, all weights are set to 

small random numbers (e.g., 0.05 to -0 .05). Until the termination state is reached the 

following processes occurs:

1: Propagate Forward Error

i. input x  and compute ou for every output unit in the network

2: Propagate Backward Error

i. for each output unit k, calculate an error term <4 where:

dk < -ok{l -  ok)(tk -  ok ) (3.5)

ii. for each hidden unit h, calculate an error term dk where:

dk o /i(l — o/i) ( Y  WkhSk ) (3 '6 )
\ k c o u tp u ts
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iii. update all w]t :s

Wji =  Wji +  Awji  (3.7)

Awji = TfSjXi (3.8)

In general, each example forms a training pair x, t. The network is then applied to the 

example vectors. The output error of the network is then estimated and a gradient 

calculated; dependent on the chosen method, this procedure may be done after each 

example, (stochastic approximation), or after all examples. Weights are updated in the 

direction of maximum descent; this step is continued, often thousands of times, until 

the termination is criteria is reached. Termination may be determined by a number of 

methods such as total interation count or error threshold. The choice of termination 

condition is important as reaching this state too early will reduce performance while 

reaching this state too late may overtrain the network thus limiting is generalizability 

(Mitchell 1997).

3.1 .3  R ecurrent N etw orks

The previous discussion focused on feedforward networks whereby input data is mapped 

via a number of hidden units and weights onto output nodes. While the exact structure 

of the network and the nature of the output may vary significantly, feedforward networks 

apply only to time-invariant systems. This assumption of temporal stationarity is 

reasonable for applications such as calibration (see Appendix A); there is no expectation 

for the electromagnetic properties of the collection environment to change over time. 

However, further discussion here will focus specifically on biological systems where this 

assumption would be inappropriate.

The alternative to feedforward networks is termed a  recurrent neural network, where 

the output data from units a t time, t, act as inputs to other units at t +  1. In this
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representation, a new unit, 6, is added to the hidden layer, recording the current level 

of activation across the hidden units. Similarly, a new input c(t) is added to the input 

(see Figure 3.3); this unit is a  copy of b from the previous time. These units represent 

the dynamical nature of the system, allowing the internal properties of the system 

previously to impact the ou tpu t of the current model. The difficulty of training such 

a network can be seen by the dependence of o(t + 1) on both  x(t )  as well as c(t) which 

is likewise dependent on network events at t — 1. While training methodologies for 

recurrent networks are still an  item of active research (e.g., Jordan 1996, Mozer 1995), 

in general backpropagation may be applied over a temporally expanded network (see 

Figure 3.3). Using this technique, the final weights are taken as the mean value of 

the corresponding coefficients for all time T. Recurrent networks implementing time- 

dependent back-propagation or similar methods have dem onstrated utility for modeling 

human motor control systems due to their ability to identify (and hence control) non­

linear dynamical systems (Narendra 1995). In particular, they may be applied to the 

estimation of many system configurations including feedforward and internal model 

(feedback) variants (N arendra 1995).

3 .1 .4  A p p lic a tio n s  in  M o to r  C o n tro l

3.1.4.1 V I T E  R ev is ite d

In the V I T E  model discussed earlier, Bullock and colleagues implemented a neural 

network for the examination of reaching to grasp. Unlike all of the supervised network 

systems discussed so far, V I T E  and its extensions (DIRECT, FLETE, AVITE) combine 

a series of unsupervised neural architectures. This is accomplished by applying local 

learning laws to initial random  neuronal weights, thus perm itting self-organized trans­

formations and classifications. Autonomous learning is accomplished through random, 

repetitive, internally generated action-perception-cycles (see Figure 3.4). Specifically, 

this ‘motor babbling’ is achieved via an Endogenous Random Generator (ERG) whose
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o(f+l)

c ( t )x ( t )X ( t )
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Figure 3.3: Schematic of an ‘unfolded’ representation of a recurrent neural network.

output triggers motor commands (Gaudiano & Grossberg 1991). Looking specifically 

at the AVITE implementation of this emergent learning, several features should be 

noted. In the model’s initial formation the ERG output is used to generate random 

movements (Figure 3.4a); this initialization elegantly avoids the novelty problem, dis­

cussed earlier for motor programming solutions to movement. The motor output is 

subsequently used as an 'intended’ movement outcome (TPC). Given a paired input 

and output, the spatial-motor command filter may be acquired by multiple iterations, 

thus acquiring the transformation by randomly sampling the workspace, independently
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a)
TPC

DV

PPC

ERG OFF E R G O N

TPC

DV

PPC

I—  ERG OFF ERGON

C)

25
TPC

DV

PPC

d)

25i s

TPC

DV

PPC

ERG OFF ER G O N

Figure 3.4: Block diagram  of AVITE circuit during autonom ous learning -  “motor babbling” , (a) The 
ERG channel ou tpu t is inpu t as a difference vector to  the P P C  (present position command) node. A 
random arm  motion is generated, (b) At ERG offset, the arm  ceases movement and the ERG O FF gate 
incurs the now print com m and (NP); a copy of the current P P C  is induced as a T PC  (target position) 
command, (c) The T P C  com m and is filtered via the ‘to  be acquired’ spatial-m otor transform ation 
and compared with the inpu t PPC  command at the difference vector node (DV). (d) The learning law 
adjusts the T P C  — ► D V  synapses such that D V  =  0.

(From Gaudiauo & Grossberg, 1991)

of the physical param eters required for muscle/joint preparation.^ In addition to the 

features this provides for initial skill acquisition, added benefits are gained by the gen­

eration of an internal error measure -  DV. The DV signal can be used in an on-line

5 The exact physical im plications of any acquired transform ation could be acquired by increasing 
the extent of the model to  include node for force-length and associated programming variables.
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regulation of both performance and learning. Specifically, during visual regulation of a 

reaching movement, the DV error value reflects the current pointing error, allowing a 

corrective movement to be made (c.f., optimized submovement model of control; Chap­

ter 2). The DV signal in combination with a reinstatiation of the learning loop (NP 

node activation, see Figure 3.4) enable the current movement error to be implemented 

in the spatial-motor transformation, thus reducing future movement errors.

3.1.4.2 M inimization Procedures

In an earlier discussion, several example models utilized minimization of a control 

parameter as a pivotal heuristic, (e.g., Flash & Hogan 1985, Rosenbaum et al. 1993, 

Rosenbaum et al. 1999, Uno et al. 1989). While the performance of this approach 

has demonstrated impressive descriptive power, the process of optimization is far from 

trivial. Although, other alternatives exist to accomplish the minimization, the neural 

network methods will be discussed due to its biological plausibility (Kawato 1996).

In general, any biological neural network implementation must perform under the com­

putational constraints of the target system -  in this case the human action-perception 

system. Therefore a minimization network for torque, jerk, or cost (Rosenbaum et al. 

1993, Rosenbaum et al. 1999) must:

1) Acquire, by training, an internal representation of the physical system; and

2) Simultaneously solve (a) trajectory formation (b) coordinate transformation and (c) 

system control problems.

There are many possible implementations of appropriately constrained, neural net­

work based, minimization. One relatively straightforward approach had Massone and 

colleagues (Massone & Bizzi 1989) train a recurrent neural network to generate a 

minimum-jerk trajectory for a  2-link and six-muscle arm  system. During supervised
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learning, the network was provided w ith a  ‘perfect’ teaching set of the desired ‘min­

imized’ trajectory. Thus dem onstrating that, at least under ideal circumstances, a 

simple supervised recurrent learner can acquire and store the necessary transforma­

tions. A more involved method of optimization utilizes a cascade neural network to 

dynamically adapt to environmental features such as obstacles and  desired via-points. 

For example, Kawato et al. (Kawato 1990) represented the dynamic properties of a sys­

tem spatially in the network. As such, the ‘motor command’ nodes are fully connected 

to those at previous epochs, allowing a  forward model of the network to be acquired 

through backpropagation and motor commands to ‘control’ the object in accord with 

minimum torque change.

3.1.4.3 Neural Networks - Parting  Thoughts

Artificial neural networks present many benefits beyond the superficial similarities be­

tween their structure and that of biological nervous systems. In particular, ANNs 

are able to acquire their internal structu re based on known input-output pairings 

(supervised) or by applying local learning rules to find the appropriate classifica­

tions/transformations. Some formulations are also able to represent motor control 

features such as output variability (Probabilistic Neural Networks) while retaining 

impressive robustness and some degree of generalization. However, there are some 

noticeable shortcomings of ANNs. Specifically when the networks are (1) highly par­

allel/connected, (2) modular, and (3) recurrent (increasing with order), optimization 

and updated procedures have shown to be susceptible to finding sub-optim al solutions 

(Caelli, Guan & Wen 1999).^

^ There is a tendency for methods such as  recurrent backpropagation to  get ‘stu ck ’ in local minima 
of the error landscape (Caelli et al. 1999).
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3.2 First-Order Markov Chains

An alternative to the network/lattice architecture of the ANN is the l s<-order Markov 

chain. While the central concerns regarding ANN use in biological systems are situ­

ations where behaviour is dynamical and the known anatomy appears modular; first- 

order Markov chains are inherently dynamical and may be represented within modular 

arrangements.

One of the central assumptions of all discrete 1^-order Markov chains is tha t a system 

may be described as a series of N  d istinct states, q. The system may undergo change, 

between states, at discrete time intervals (t = 1,2,...,). The initial likelihood of a state 

is expressed by ir,- while the transitions between states are governed by a set of state 

transition probabilities aij such that:

atj = p[qt = j \qt-i  = i] (3-9)

where

aij > 0 Vj, i (3.10)

jV
£ > , . ,  =  1 Vi (3.11)
j = i

Thus, the probability of the system being in a given state, qt , is only dependent on 

the previous state, qt-i- As a simple example, consider a model for weather prediction 

(Rabiner & Juang 1993) that is composed of three states: rainy (R), sunny (S), cloudy 

(C). The transition probabilities (a, j)  are represented by the stationary (time invariant) 

transition matrix A:
(R) (S) (C)

(*) 0.60 0.20 0.20

(S) 0.33 0.33 0.33

(C) 0.30 0.50 0.20

Based on A  we may evaluate the probability of an observation sequence or the likelihood
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of a  state being the next observation. For example, the probability of a series of days 

following the sequence rainy, rainy, sunny, rainy, and cloudy (replacing 1 for rainy, 2 

for sunny, 3 for cloudy):

p[l, 1, 2, 1, 3|Mode/]

p[l]p[l|l]p[2|l]p[l|2]p[3|l] (3.13)

7Ti • On • 021 • 012 • a 31 (3.14)

(0.33) (0.60)(0.2) (0.33) (0.2) (3.15)

2.61 x 10~3 (3.16)

where 7Ti is the initial probability of state 1 (rainy) given no history.

Although somewhat simplistic in presentation, Markov chains are a valuable tool in 

representing non-deterministic processes (like weather). By representing the system in 

this stochastic manner, variability in output, given a constant input, is captured by the 

structure of the model. Similarly, the model may be adjusted to reflect the magnitude 

of indeterminacy between events. Although Markov chains are adept at representing 

relatively simple finite state systems, given the goal of representing human behaviour 

here, they are not easily generalized to more complex systems -  specifically systems 

where the underlying process is unobservable or unknown.

3.3 Hidden Markov M odels

In addition to Markov chains relying on observable events they also have an inherent 

assumption of stationarity -  the relation between state t and t + 1 remains constant over 

time. Alternately, hidden Markov models (HMM) include a second level of probabilities 

(i.e., doubly stochastic), allowing HMM’s to represent substantially more complicated
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systems. The thought experiment presented by Rabiner (1993) of coin tossing provides 

an excellent summary of the properties of HMM and the problems encountered during 

their application.

In this experiment, all the subject is told is the output of the current toss (i.e., Heads 

or Tails). The situation gets more complicated however, because the experimenter may 

have more than one type of coin and does not say which coin was flipped to result in 

the observation of heads or tails (the selected coin is hidden). Given only the sequence 

of observations (O = 010203. . .  or) the subject must predict what the next observation 

will be. In order to succeed, the following must be known (or estimated):

1. How many coins (states) are there?

2. Given a  coin, what are the chances of it producing heads or tails (i.e., what is the 

coin’s bias)?

3. What is the probability of choosing a  given coin for the next toss (i.e., what is 

the relation between coins)?

3.3 .1  D efin itions

Prior to a detailed discussion of HMM algorithms and architecture, it is useful to 

define a number of terms and variables which are used throughout the remainder of the 

chapter. In order to retain meaning to the terms, definitions are given with regard to 

an HMM representing the previous coin example.

T  =  the length of the observation sequence

N  =  the number of states in the model (e.g., the number of coins). Similarly to the 

Markov chain, states are labeled (1 ,2 , . . . ,  N)  and the state at time t is qt 

M  =  the number of possible observations per state (e.g., heads(H) or tails(T))

A  =  the state-transition probability distribution (the same as in the Markov chain).
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For example, given 3 coins:

(1) (2) (3)

(1) 0.10 0.10 0.80

(2) 0.33 0.33 0.33

(3) 0.25 0.25 0.50

B  =  the state-dependent observation probability distribution bj(k), where:

bj(k)=p[ot  = v k \q t= j] ,  I < k < M  (3.18)

{Heads) (Tails) 

b _  (Coin!)  0.50 0.50

(Coin2) 0.60 0.40

(Coin3) 0.10 0.90

defines the probability of an observation (H,T) given a state (coin:

7rt =  the initial state distribution (again, the same as in the Markov 

the distribution of states as initial values.

7n  =  0.33 7T2 =  0.33 7T3 =  0.33 (3.20)

(3.19)

1,2,3)

chain) representing

A =  the model, containing a complete set of parameters (A =  (.4, B.n)) .

3.3 .2  C lassical E stim ation  P rob lem s in  H M M s

There are three types of problems in model estimation for HMMs. They are:

1. Given a sequence of observations O  =  (01O2 ...O T) and a  complete model A, 

compute the likelihood of the observation sequence given the model p(0|A ).
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2. Given the model A and an observation sequence O, select the most probable state 

sequence (qiq2  • ■ ■ qr)-

3. Adjust the model, A =  (A,B,ir),  to maximize the likelihood of the observed 

sequence, p(0 |A ).

Just as with neural networks, HMMs acquire their internal structure from recursive 

update algorithms. While ANNs learn via error propagation through the network to 

update the weights, HMMs base update on a  process termed “Expectation Maximiza­

tion” (EM). In this process the likelihood of each datapoint of the observed system is 

estimated given a model (initially random); the model is updated based on these prob­

abilities via an iterative algorithm known as Baum Welch. The underlying “hidden” 

process of the model can be estimated by a variant of EM which selects the most likely 

sequence of states given the observations and the new model -  the Viterbi algorithm.

While little attem pt is made in this chapter to frame the algorithms within a motor 

control setting, a brief preview of Chapter 5 will serve the reader well while considering 

the methods of optimizing. Consider the simple control system of one-dimensional 

pointing to a object. Let us define the position of end-effector of the arm relative to 

a target (o i. . .  ox) and hypothesize a first-order controller (described by n-states and 

their transitions). The goal of our update procedures will then be to estimate the 

statistics (transition matrix, A, B) directing the control states based on the observed 

arm position.

3 .3 .3  T he V iterb i and Baum -W elch P roced u res

Prior to defining these algorithms, formal definitions of the forward operator a t (0  and 

the backward operator 0t(i) are discussed as they represent the fundamental search 

method incorporated in both the Viterbi and Baum Welch algorithms.
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3.3.3.1 The Forward Operator

The forward variable a t (i) is defined as the probability of being in state i at time t and 

observing a sequence from time 1 to time t (0102 ■ ■ .ot) given the model A (Equation 

3.21). This is calculated for all states M  and. using the coin-tossing example, gives the 

probability of the observation sequence O =  (h, h, h, t, t, h, t). This is accomplished by 

evaluating a t (i) for each observation in turn based on the previous a ((i) for all states.

a t (i) = p { o lo2. . . . o t,qt =  i|A) (3.21)

A solution may be generated for at{i) by three general steps. Initially, for <(1), a t(i) 

is set for all states i based on the initial probability of state i (nt) and the probability 

of the observation (01 from the sequence) given state i (Equation 3.22). The induction 

step (see Figure 3.5, Equation 3.23) demonstrates how state j  at time t +  1 may be 

reached from all N  states a t time t. The chance of being at state j  at time t +  1 is 

based on the summation of the probability of being in all N  states at time t (a«(i) 

for all states),the state transition probabilities (a,j,m atrix A), and the probability of 

observing Oj given state j .  This proceeds for all j  a t time t +  1 and for the entire 

observation sequence until time T  (Equation 3.24).

Initialization

Qi(i) =  Kibi(oi) 1 < i < N  (3.22)

Induction

<*t+i(j) =
r n 

L i = l

bj(ot+1) 1 <  t < T  — 1 (3.23)

1 < j  < N
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t t + 1

o ,

Figure 3.5: Graphical representation of the forward operator. Iterations begin at time ti and search 
forward to T.

Termination
AT

P (0 |A )  =  X > T (t) (3.24)
t=i

Based on this lattice-like procedure, all possible state sequences that will result in the 

given O and state are tested, regardless of the length of the sequence.

3.3.3.2 The Backward Operator

Operationally, the backward variable 0t(i) is very similar to the forward operator and 

may be defined by the probability of the partial observation sequence (ot+iot+2 ■ ■ ■ or) 

given state i at time t and the model A (Equation 3.25). This operator seeks to find 

the probability of an observation and state  based the points following it in time; the 

search proceeds by assessing the probability of state, given O,  based on the /3«(i) for 

the all preceding states.

0t(i) = p(ot+io l + 2  • • • ot\qt = i, A) (3.25)

Initialization
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T -  1

s 4

Figure 3.6: Graphical representation of the backward operator. Iterations begin at time T  (end of 
time series) and proceed backward to ti

0 r(i)  =  1 1 <  * <  N (3.26)

Induction

A(0 = ^ , aijbj{°t+i)0t+i(j) 
j =i

t = T -  1 , T - 2 , . . . , 1  l < i < N

(3.27)

A value of 1 is assigned to /3T for all states and a lattice progression follows, similar to 

the forward procedure (see Figure 3.6, Equations 3.26 and 3.27)JI

3.3.3.3 The Viterbi Algorithm

Sometimes considered a special case of the forward operator, the goal of Viterbi search 

is to find the best state sequence for a  string of observations, given A.** Again, from 

the coin example, what is the most probable sequence of coins (states) to yield the

11 Note the assignment of t = T  — l , T  — 2 , . . .  for the progression so that the algorithm proceeds 
toward t from T.

"R eturning to the pointing example the goal here would be to estimate the sequence of some hypo­
thetical controller given a model and a sequence of observed arm positions.
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observation sequence, O = (h ,h ,h , t , t ,h , t ) .  For each time step (< to £ -F 1) a search 

is performed to find the most likely state (at]bj(ot+i)) given the observation (of+i, see 

Figure 3.7). In a similar fashion to the forward operator, Viterbi is initialized using n 

and 6,, however an additional array {ipt) is also set to allow the recording of the ’found’ 

sequence (Equation 3.28 and 3.29) .

Initialization

6i{i) = n M o i )  I < i  < N  (3.28)

V’i(i) =  0

Recursion

St{j) = 2 <  t < T, 1 < j  < N  (3.29)

ipt(j) =  arg imax.[J«_1(i)ai:,] 2 <  t < T, 1 < j  < N

time = t time = T

S,

O s.

O,I

F ig u re  3.7: Graphical representation of the Viterbi search procedure. The optimal state sequence 
is estimated based on an optimal search. Here the most likely way to get to each state at each time 
interval is recorded (see Equation 3.29, 0 t ); joint state (atJ) and state-given-observation (60) likelihoods 
are evaluated ‘forward’, building a list of possible states given the observations. The state trellis is 
then used to define the most likely state sequence. Only the state transitions are considered during 
this recursion step to select the final state sequence from the list.

During recursion, the procedure continues to select the most probable state-given- 

observation for all time steps with the resulting state sequence being recorded within
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tftij)- Termination is reached at the end of the observation sequence (T). During 

model establishment, the ‘fit’ of the observation sequence is then evaluated both by ex­

amination of the overall likelihood of the sequence and by the number of ‘replacements’ 

which would be necessary to produce the correct state sequence (see Section 3.3.4). 

Finally, the optimal path  through the “state trellis” is determined by back tracking to 

find the sequence of states with the highest probability of occurring.

3.3.3.4 The Baum -W elch Algorithm

The purpose of the Baum-Welch Algorithm is to update the current model with respect 

to the observation sequence, thus increasing the success measures following a Viterbi 

search. In order to accomplish this, two values are required:

=P(Qt =  *.9t+1 = j \ 0 , \ )  (3-30)

that is, the joint probability of being in state i at time t and state j  at time t + 1. As 

one might predict, the forward and backward operators are used to converge on this 

solution (see Figure 3.8, Equation 3.31). Specifically, the forward operator is run until 

time t while and the backward operator from T  until t + 1.

WJ )  =  „ (3.31)
E E a t(i)aijbj{ot+i)0t+i{j)

i = i j = i

The probability of being in state i at time t , 7t(i), is also required . This quantity is

calculated from summing all £t(i,j) across all states j  (Equation 3.32).

N
7 i(0  =  £ & ( m ) (3-32)

j =1
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I » + 1 t + 2 t + n t + (n + 1) T - 2  T -1 T

s ,Q  O  0  .. .  O  O ... O— -------© s,

s2© ^ \  o ° -  • r̂ y o \ \ ^ § s 2
s3o— —°  ••• °  Cy o \ \ >  s3
S4€ T  O  . . . O  O . . .  O  O  O  S4

®l ®l*1 ®l«i ®Mnt1) 0 T2 O j., o t

F ig u re  3.8: Graphical representation of the Baum-Welch model update algorithm. An HMM specific 
form of expectation maximization, the forward and backward operator are used to find the likelihood 
of state transition ij.

Based on £t(i,j)  and 7 t(i), the model A may be re-estimated such that:

7Tj = expected num ber of occurrences of state i at time <(l)(7 i (2)) (3.33)
_  number of transitions expected from state i to j  

13 number of transitions expected from state i
^ ^  _  expected num ber of occurrences of state j  concurrent with observing symbol k
3 expected number of occurrences of state j

where

T - 1
T  7t{i) =  expected number of transitions from sta te  i given O (3.34)
t - 1 

r - i
5 3  £t{i,j) =  expected number of transitions from state  i to state j  given O
t - 1

Thus new parameter values for the model (it. A, B)  are generated based on the ob­

servation sequence. Following model update, the Viterbi algorithm may be run again 

to determine the degree to  which the update has improved performance of the model 

or, as will be the case for the present discussion, the model may be used to generate 

sequences which are then evaluated against the training data.
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3.3.4 A ssessin g  H M M  Perform ance

Although the Viterbi algorithm is often used in “recognition” applications to determine 

the most likely model -  thus recognizing the sequence based on the probability of the 

sequence -  Monte Carlo sampling combined with a Hamming distance (see Section 

3.3.4.3) measure can be used to generate a new sequence and assess the degree of 

agreement with a measured observation sequence.*

3.3.4.1 U nconstrained M onte Carlo Sampling

The “unconstrained” method reflects a ‘full’ sampling of both the s ta te  and observation 

distributions to determine the new observation value. Specifically, a t each time-point, 

a new state is randomly selected from the distribution of all possible states given the 

current state (Equation 3.35); an observation is then selected from the distribution of 

possible observations given the selected state (Equation 3.36).

choose(si) oc pisilsk) (3.35)

choose(oj) <x p(oj\si) (3.36)

where .s, is the current state and s* is the state at the previous epoch. The observation 

(oj) at the present interval is thus dependent on the current state selection s t.

This method will be used extensively in the following examinations as it represents the 

most likely utilization of an HMM as a “motor program” . Thus a  command, in the

form of A (A, B , n), could be selected and initiated centrally and sampled locally to the

joint/subsystem.

'Once again considering the arm control will give some degree of concreteness. Here one would 
generate a new trajectory and perform a point-wise comparison with an observed pointing trial.
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3.3.4.2 Constrained M onteCarlo Sampling

As opposed to the previous method, “constrained” MonteCarlo sampling does not select 

from the state distributions. Instead, the Viterbi generated optimal sequence is used 

to restrict the search; thus, given the Viterbi state (x) a t each epoch, randomly select 

from all observations such that:

Although constrained sampling is the preferred tool w ithin the machine learning com­

munity for prediction -  invariably returning observation sequences with higher corre­

spondence to recorded values than the unconstrained method(i.e., Hamming distance) 

-  this method does not seem feasible within biological control. The Viterbi selection 

would effectively require the observation of the movement prior to the planning of ac­

tion initially. While some might suggest this is reminiscent of planning, it would also 

require the central nervous system to perform a beam search across the sequence. This 

high computational load was a criticism of several earlier models as well as being in 

contradiction to the goal of having a “minimal” central controller.

3.3.4.3 Hamming D istance

Regardless of the generation method, the predicted observation sequence (O ) may then 

be compared at each epoch with a criterion value (measured sequence):

T
< (6 ,o ) = £ / o{0(6 (< )) /T  (3.38)

t

choose(oi) oc p(oi\x) (3.37)

where

/
1 iff 6{t) =  o(t)

(3.39)
0 otherwise
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Thus, if the observed matches the predicted value, a score of “1” is assigned, otherwise 

“0” (Equation 3.39). This binary score is then averaged across the sequence length 

(T) to generate a score (c(o, o), Equation 3.38). Although this method does represent 

correspondence, it is unable to account for phase misalignments. *

3.3 .5  H idden M arkov M od els -  Closing T h ou gh ts

While hidden Markov models have received considerable study and application within 

the pattern recognition community (e.g., Rabiner & Juang 1993, Bose & Kuo 1994, 

Ghahramani 2000, Wilson & Bobick 2001) HMM methods have as yet had few applica­

tions to perception-action modeling of human systems. One exception should be noted 

however (Rimey & Brown 1990). In this report the authors implement a version of 

HMM, augmented HMMs which allow limited feedback, with the aim of modeling se­

lective attention based on ocular point of regard. Unfortunately, the goal of the model 

was once again recognition (although limited constrained MonteCarlo trials were per­

formed), however the results do indicate that HMMs in some form may be applied with 

success to movement production.

Hamming (inverse) distance in this form can be considered a  binary comparison of a form very 
similar to the \ 2 statistic.
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Chapter 4

Hidden Markov Models in Action

4.1 Experiment 1: The Simplest Case

As has been demonstrated by the discussion of extant models, the problem of describing 

and understanding the human control system can be addressed a t many levels. Indeed, 

the researcher may utilize tools ranging from experimental psychology to those derived 

from principles of synergetics/physics. Similarly, an examination may focus at levels 

from mechanistic/anatomical to behavioural. The goal of this experiment is to examine 

the utility of hidden Markov models for studying and representing human actions at a 

behavioural level. Due to the infancy of this line of research, a relatively simple action, 

elbow flexion, is modeled. An explicit attempt is made to make minimal assumptions 

regarding the hidden control process other than those required by HMM structure.

4.1.0.1 Hidden Markov M odels for One-dimensional Aim ing

As was discussed extensively in Chapter 3, hidden Markov models provide a method 

for encoding the inherent variability of the motor system as an  integral part of a motor
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“memory” model. Events are joined in an non-deterministic fashion (e.g., a only some­

times leads to  b); from a stimulus-response standpoint, this allows an identical event to 

cause multiple responses (e.g., a critical value for r  may result in a catching response 

or a ducking response depending on previous events). Similarly, even given the same 

intended response, there may be some variability in the actual output. In a fashion 

similar to neural networks, HMMs also allow the exact mechanism underlying the con­

trol to remain hidden, thus allowing the researcher to make no assumptions regarding 

feedback and other hypothesized events.The goal of the present investigation is to de­

scribe/ model the action of one-dimensional pointing as a first-order dynamical system. 

Instead of describing this process with differential equation(s) as is traditional within 

studies of motor control, hidden Markov models are employed to infer the properties 

of the ‘hidden’ controller from the observed limb positions.

Consistent with this formulation of control, the foundation for many joint-centred ap­

proaches can be traced to hypotheses suggesting joint control via Tsetlin automata 

(for a review see Berkinblit et al. 1986).* In their 1986 position paper, Berkinblit and 

colleagues convincingly assert how a biological control system can utilize a local control 

structure such as autom ata (or HMMs); this is taken as a theoretical justification for 

equilibrium point control. The specifics of the Berkinblit model however have particular 

relevance for the current model discussion. In particular, these authors take the very 

strong theoretical stance that joints behave independently, as a function of the limb 

effector position in relation to the target. W ithin this supposition, they also proffer a 

version of the Bernstein problem aptly phrased with regard to reaching behaviour:

If one takes the view that for each target point ... a table of values of the 

corresponding joint angles is compiled, then it is necessary to assume that 

there are many such tables -  one for each configuration of the body.

(Berkinblit et al. 1986, pp. 143)

‘Tsetlin autom ata are fundamentally similar to Markov chains. In a Tsetlin processes, a probability 
density determines the likelihood of transition; however the destination state is predetermined.
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Figure 4.1: Annotation frames of an elbow rotation task.

Not unlike Rosenbaum and colleagues’ Knowledge Model, Berkinblit suggests a rela­

tively simplistic algorithm for ascertaining future postures, based on connected but 

non-communicating autom ata, rather than requiring a seemingly infinite look-up table 

of requisite joint angles; an approach quite consistent with the idea of a “minimally 

intelligent” controller proposed by Kugler and others (e.g., Kugler et al. 1980, Ku- 

gler & Turvey 1987). The approach taken in this study applies the previously dis­

cussed HMM in a manner consistent with this distributed approach, situating the bulk 

of “responsibility” for control at the joint (peripheral) level (Latash 1993, Latash & 

Gottlieb 1990, Feldman 1986). Specifically, joint control is posed in terms of an ad­

vancing hidden Markov model, with observed positions emerging as a result of state 

transitions; the underlying principles of control are reflected by the model parameters. 

Examining joint control from this standpoint tests two points: the appropriateness of 

local joint behaviour as a  principle of control and the efficacy of HMMs for representing 

simple actions.
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4.1 .1  M ethods

4.1.1.1 Participants

Four male subjects volunteered to participate in this investigation (mean age =  26 

years). All participants were right handed and naive to the purpose of the experiment.

4.1.1.2 Task and Procedure

Each subject completed a total of 60 elbow-pointing trials with their right arm: 15 

to each of 4 targets (Figure 4.1). On each trial the participant was instructed to flex 

their elbow, rapidly and accurately, with the goal of aligning their index finger with 

the designated target. All trials began with the elbow fully extended.

4.1.1.3 Apparatus

Movement data was collected using a Polhemus Ultra-Trak Pro magnetic tracking sys­

tem at a sampling rate of 120Hz. The collection area was calibrated using a 36 hidden 

unit (1 layer) cascade neural network (see Appendix A, accuracy <  1 cm), implemented 

within an in-house data display and analysis package. All incoming da ta  was filtered 

using a Savitsky-Golay least-squares polynomial filter (4th order, 21 sample window) 

prior to further reduction. Elbow angle was determined based on magnetic sensor po- 

sitions(Figure 4.2; red circles). Sensors 1 and 3 were positioned on the lateral aspect 

of the forearm and upperarm respectively (approximately mid-segment). Sensor 2 was 

placed over the lateral head of humerus. Full elbow extension was designated as zero 

degrees flexion. A fourth sensor was placed at the target location to allow calculation 

of a difference angle between forearm and target.* The difference angle was clustered

* Estim ates of joint angle for th e  elbow were confirmed based on change in the pitch angle of the 
sensor 1.
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Figure 4.2: Jo in t angle definitions. Angle a is defined by a  sensor placed on the shoulder, elbow, and 
end-effector (hand). Angle 6 is the difference between the hand and the target.

into discrete bins when determining finite observations.

4.1.1.4 M odel Construction

A total of 12 HMM pointing models were constructed. Across participants, a unique 

model was generated for each pointing distance with each of 3 binning sizes (1 degree, 

3 degree and 5 degrees) applied to the jo in t angle data to determine the number of 

observations. W ithin each of the aforementioned configurations, 4 state distributions 

were examined (5, 10, 20, and 30 hidden states). In this examination, all models began 

with a random initial parameter estimate.

4.1.1.5 M odel Assessment

All models were initially tested using an unconstrained MonteCarlo analysis (see Section 

3.3.4). Each model was sampled 100 times using this method (observation sequence 

length 50). This multiple sampling enabled robust central tendency statistics to be 

calculated for the correspondence between Monte Carlo and recored sequences. A con­

straint was placed during sampling such th a t the first observation matched a potential
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start position (±  5 degrees or 2 observation values). This constitutes a direct measure 

of the likelihood th a t the observed sequence matched those predicted from the mea­

sured observation sequences. While this measure is historically considered a central 

measure for evaluating HMM performance it is unable to account for trajectory simi­

larity, instead merely producing a binary “match-nomatch” score (not unlike a x 2 or 

binomial statistic).

In addition to the Hamming distance measure, a Pearson product moment correlation 

was calculated between the measured and predicted observation sequences. Correlations 

were estimated for multiple lag values (±  3 samples). The maximum r  value was 

used for further analysis as it represented a more accurate estimate of model-data 

correspondence.

Summary statistics were calculated for each model (p,<r), providing a direct estimate 

of how well the model can encode the training data. Parametric comparisons were 

carried out for each trial using the z-scores based on the estimated means and vari­

ances. For all comparisons involving correlation values, a r  -> z transform was cal­

culated prior to evaluation. The hypothesized “random” score (no prior knowledge) of 

1 /  # observations was used for the Hamming measure and r  =  0 for correlation mea­

sures. A non-parametric comparison (x2) was also made for the frequency of significant 

trials. Chi-square statistics were based on a yes/no grouping from the trial parametric 

value. Finally, the average Hamming and correlation value were assessed, again using 

the z-distribution. *

4.1 .2  R esu lts

As demonstrated in Figures 4.3 and 4.4 as well as in the results summary (Table 4.1), the 

hidden Markov models tested successfully demonstrated many of the features required

5 In all cases the  param etric and non-parametric assessment of model performance were in agreement 
(parametric value was more conservative), thus only the maxim um  p  value is reported.
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F ig u re  4.3: U nconstrained MonteCarlo simulation of behavioural d a ta  for a  78 degree elbow rotation 
(3 degree binning size) sam pled across all participants. R eported lines represent the average value 
across 5 sub-sampling runs of 50 Monte-Carlo iteractions.

of any model of aiming. Empirical comparisons of the correlations demonstrated that 

observed r  values were significant (p < 0.05) in all conditions except target-two, 10 

and 20 state, models. The Hamming scores yielded similar yet more conservative 

results; here there was a distinct advantage for larger binning values. Five degree 

binning yielded significant Hamming scores in all cases (p <  0.05) and conversely, one 

degree binning dem onstrated no scores reliably different from chance values. More 

interestingly however, behaviourally ‘typical’ profiles were generated in many cases; 

predicted observation sequences subjectively dem onstrated features reflective of human 

performance for both 78° and 54° movements (Figure 4.3 and 4.4).§ Trajectory paths 

showed path variability while retaining endpoint accuracy (i.e., all predicted trajectories

5Due to the variation in production, both medians and  m eans we exam ined to  allow a perspective 
with regard to the envelope of trajectory likelihood.
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Figure 4.4: Average HMM predicted observation sequences com pared to  average recorded trials for 
a ta rge t distance of 54 degrees.(a) m ean value comparison (b) median value comparison.

attained the target). Similarly, in cases of 20 states (3 or 5° bins) a visual estimate of 

velocity indicates profile symmetry: success was highly dependent on the selection of 

appropriate state numbers and observation clustering.

Although many state-observation combinations within the HMM models presented 

dem onstrated reasonable performance on average, individual model are somewhat less 

appealing. Specifically, predicted observation sequences show ‘state perturbations’ -  

unexpected or unreasonable state  transitions. Although these occurrences contribute 

to some of the variability expression, the deviations they suggest are inconsistent with 

a goal-directed action such as is being discussed here. A further discussion of this point 

and likely solutions and ramifications of it will be further discussed in Chapter 6. In 

brief however, these features may be remedied by the inclusion of additional, coupled, 

HMMs.
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4.2 D iscussion

HMM performance was promising with regard to its descriptive and predictive applica­

tion to movement. Results demonstrate the ability of the simple structure of HMMs to 

represent a dynamical system for pointing. Typical movement trajectories and associ­

ated features were represented by a relatively simple combination of transition matrices 

and observation probabilities. Moreover, no “homuncular node” was required to pro­

gram the progression of the movement. However, the approach can be criticized as to 

its relevance toward increased understanding of human motor control. How does the 

success of HMM methods impact current control hypotheses? How might an HMM be 

instantiated within the human nervous system and/or constructs hypothesized to dwell 

therein?

A good starting  point for discussing HMM impact may be made by revisiting the 

original thesis of Berkinblit et al (Berkinblit et al. 1986). In their formulation, the 

control of multi-joint movements was posited to be produced by independently acting 

joint autom ata. Coordination was accomplished by an output evaluation at each unit. 

While this explanation holds much implicit value, Berkinblit and colleagues did no 

experimental verification of the control strategy. Due to the formal similarity of HMMs 

and the autom ata described by these authors, the current experiment can be viewed 

as an indirect verification. Additionally, the state control demonstrated by the HMM 

is performed in a truly stochastic manner instead of relying on inconsistencies of the 

initial conditions for the differential equations to account for trajectory variability -  as 

is done by many other dynamic accounts of control.

Similar to the position presented by Berkinblit, the symbolic structure of the HMM 

transition and observation matrices enables a  generalization to equilibrium point hy­

potheses for action. Specifically, the end-state of the joint-muscle system can be cap­

tured as an absorbing state; thus all progressions of the system will converge on that 

end-state. However, while the termination may be determined, the evolution of the sys­
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tem is free to vary by the stochastic transitions. The end-state can also be expressed 

by any number of observed features. Thus, while there was no explicit intent to parallel 

biological systems, the hidden control states being modeled can reasonably be mapped 

to the EP invariant characteristics.

In addition to Berkinblit however, HMMs can loosely be viewed as a  unification between 

self-organizing viewpoints and the traditional information processing standpoint. This 

joining is possible by having a dynamical ‘packet’ (HMM) form the motor program 

being selected and prepared by the central processor (see Chapter 1). In this way, the 

‘executive’ selects the task type while the representative nature of the HMM reduces 

the computational load created by trajectory selection and formation. Although it is not 

reasonable to consider the motor control system performing the Baum Welch update 

procedure at task initiation, others have successfully argued tha t the cognitive system 

performs similar functions, such as backpropagation and gradient descent (e.g., Kawato 

1996, Uno et al. 1989) prior to action and perhaps during learning.

In concert with this ‘motor programming’ explanation of HMM representation comes 

a possible explanation for the focal weakness of the approach: the occurrence of mal­

adaptive state/observation selections. These events effectively predict that a movement 

would deviate substantially from the desired/optimal trajectory, perhaps even instanta­

neously returning to  the start position. In fact however, the existence of inappropriate 

or unattainable commands within the motor system is a known phenomenon. For ex­

ample, a loaded muscular system is already known to dem onstrate low-pass filtering 

properties, effectively averaging the high-frequency inputs from the a-motor neuron 

into a manageable command. If one considers a similar process to occur when a se­

ries of commands occurs from a given HMM-program, the output is well behaved, but 

retains flexibility and simplicity.

In summary, HMMs appear functional in the task of movement representation. Al­

though some limitations are apparent, none seem insurmountable within the basic
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structure of the modeling method. Similarly, the success of the HMM structure pro­

vides some experimental support for local control processes. A demonstration of joint 

dynamics being accounted for at a joint level is consistent with more general joint 

control models such as those of the mass-spring proponents.

4.3 Toward a More Generalizeable Framework

The general principle of using HMMs for movement applications seems sound; however, 

implementing finite-state process for more than a  trivial task is awkward. For example, 

if we were to continue with the premise of Berkenblit, we could, for a multi-joint sys­

tem, define a set of positions for each joint and combine them into an n-tuple of values 

representing the system state. There are two obvious criticisms of this generalization. 

First, as the system grows in size (i.e., more joints) the size of the descriptive vec­

tor grows factorially, losing any biological or logical meaning in the process. Second, 

although the joint level autom ata explanation was based on independent processors 

being coupled by their combined output, any independence and/or coupling is lost by 

the vector concatenation between states.

The logical solution to this state ambiguitity is to construct a coupling property be­

tween joint controllers. The generalized dynamical Bayesian network (gDBN), will be 

examined for its effectiveness at representing ju s t this coupling behaviour. In a three 

joint reaching limb, this approach to control can be considered by representing each 

joint as an independent HMM. The interconnections are similarly modeled as Markov 

chains and their influence mediated by a hypothesis guided weighting factor. From a 

biological standpoint, the inherent attractiveness associated with the ANN architec­

tures has once again been included. Hypothetically, each HMM might be envisioned 

as a peripheral controller (perhaps in the spinal cord) with the interconnections being 

the ensemble of activation at the motor neuron pool level or perhaps as a feedfor­

ward/feedback coordinating connection within the cerebellum.
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1 Degree Segmentation 
Mean Sid Deviation

3 Degree Segmentation 
Mean Std Deviation

5 D egree Segmentation
M ean Std Deviation

Target 1
10 States 0.7954688 0.092156488 0.845465182 0.095278933 0.885469462 0.119876543

20 States 0.7690564 0.114765431 0.858569941 0.073443867 0.862262608 0.080347648

30 States 0.81205085 0.074342127 0.878183891 0.113612778 0.858135152 0.083747883

Target 2
10 States 0.48389801 0.282763191 0.805919 0.137901053 0.772837244 0.122766554

20 States 0.44848191 0.307693829 0.573922297 0.210540025 0.881527804 0.076874391

30 States 0.71649795 0.124947203 0.918165125 0.053548537 0.914952847 0.057140713

Target 3
10 States 0.60172382 0.244086538 0.603851763 0.243741777 0.886976299 0.07460326

20 Slates 0.64077467 0.188283884 0.912630064 0.059847697 0.920538612 0.055266429

30 States 0.74893354 0.160542912 0.916450465 0.050988815 0.923219591 0.042431596

Target 4
10 States 0.64002946 0.218416907 0.871385916 0.080526884 0.864178393 0.078856745

20 States 0.62251208 0.176454538 0.915839796 0.056462252 0.897466224 0.074506236

30 States 0.8791048 0.062284346 0.910036832 0.05829504 0.889853891 0.0797290%

T a b le  4.1: Experim ent 1 simulation sum m ary. Results represent the m ean and standard  deviation 
Pearson correlations based on a model trained  across participants (n =  100 , sequence length =  50). 
Comparison trajectories were randomly selected from participant performance.
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Chapter 5

Methods for Increasing HMM  

Utility

In this chapter we explore how to model complex actions in terms of a  generalized Dy­

namical Bayesian Network, implementing multiply connected nodes (HMMs) capable 

of encoding both the initial conditions (e.g., position or intention) and emerging be­

haviours. Such models allow for mixing of hypothesis-based and data-driven parameter 

searches as well as complex feedback/feedforward relations via connection weights and 

transitions.

Similar to the presentation of the basic HMM, some discussion of the gDBN will be 

phrased in reference to a later presented experimental test. Specifically, recall the cou­

pled oscillator models of action discussed in Chapter 2. In these representations the 

motor control system is regarded as a dynamical system which self-organizes in a fash­

ion analogous to a system of oscillators, describable by relatively compact equations 

of motion. From the standpoint of modeling this behaviour with a gDBN, one can 

reasonably hypothesize that two noisy-oscillator HMMs might interact mutually but 

asymmetrically. The transitions displayed by the human behaviour would be repre­
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sented by probabilistic transitions across the connected state dynamics.

5.1 Bayesian Networks

In general, a Bayesian network (BN) may be described as a graphical representation 

for the (conditional) interdependencies between a  set of random variables (Ghahramani 

2000). A common application of such a structure is to infer system properties based 

upon some observed evidence. The process of belief propagation through the BN may 

be considered as ‘evidence gathering’ toward the acceptance of a hypothesis regarding 

the system condition.

For example, we may wish to estimate the likelihood of our car starting. Prior to 

examining this question, a network must be constructed regarding the interconnec­

tions and general relationships between elements of the system (Figure 5.1); e.g., the 

likelihood of the gas gauge reading “full” is dependent on both the amount of fuel 

and the charge in the battery (to relay this information). The network structure may 

therefore simply be a  condensing of knowledge or it may suggest some hypothesized 

formation to be examined. By taking measurements from the battery, the alterna­

tor, the pistons (compression), and the gas tank, we may gain or lose confidence in 

our original proposal (that the car will start). Assuming that observation has de­

termined the car battery  to be 5 years old, the goal of belief propagation within a 

BN is to update the marginal probabilities of the entire network given the new infor­

mation (e.g., what is the new likelihood of Engine Start given an old battery -  see 

http://www.research.microsoft.com/research/dtg/msbn/ for a downloadable demon­

stration tool).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.microsoft.com/research/dtg/msbn/


5.2 Dynamical Bayesian Networks 84
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Battery Age

Charge Delivery Elect Short

GasBattery Power

Gas Gauge
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Engine Turn Over
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Fuel Pump

Spark Plugs

Engine Start

Figure 5.1: TYaditional Bayesian network depicting the inter-relations between elements of a car 
engine.

5.2 Dynamical Bayesian Networks

While BNs are an excellent tool for system modeling and querying, the formulation 

discussed has no explicit mechanism for capturing system dynamics; a subclass of BNs, 

the dynamical Bayesian network (DBN), enables such representation. While hidden 

Markov models, as discussed previously, actually fall into this subclass of BNs, they 

represent a very simplified representation (Ghahramani 2000). Hidden Markov models 

summarize time-series with the assumption of first-order causality; in a BN this has 

conditional arcs flowing forward in time. However, DBN structure may be considered 

in a  more general framework than HMMs. Specifically a dynamical Bayesian network
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01 02

Figure 5.2: Graphical representation of a coupled oscillator gDBN. The two finite-state hidden 
Markov models are analogous to  the oscillators of models such as the HKB-model.

may be constructed by representing the known relations within the modeled system as 

elements of a ‘static’ Bayesian network. An HMM is then inserted within each node 

to represent the evolution of that element; Markov chains (A-matrices) are used to 

represent the dynamics of the inter-relation between nodes. Reflecting on the coupled 

oscillator example (see Figure 5.2), each component may be expected to behave in a 

semi-deterministic fashion, usually advancing to the next sequential state. In order to 

capture interactions, an additional HMM is constructed to represent the dynamics and 

‘shape’ of the interactions between nodes; these inter-node matrices are weighted to 

represent their strength. The interaction matrices may be considered analogous to the 

differences in eigen-frequencies hypothesized to underly handedness effects in transition 

behaviours; the weightings perhaps reflect intention or some similar mitigating property.

5 .2 .1  g D B N  S tr u c tu r e

In general, gDBNs may be considered in a manner similar to HMMs. Just as in the 

HMM, the model (A) is parameterized by a  transition matrix (A ), an observation ma­

trix (B), and the initial likelihood of each state (for all nodes, I I ) .  In addition to the
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HMM features, a gDBN contains a weighting term (fl). The omega term  applies a 

scaling factor to the connecting HMMs, adding a degree of flexibility beneficial in mod­

eling complex system. This plasticity is expressed by the connecting HMM determining 

the relative likelihood of transitions with a connection and the omega term  providing 

an directed weighting of this influence. However, within a gDBN these components 

represent compound interactions between smaller HMMs, leading to the requirement 

of additions to the optimization and analysis algorithms.

Given these additions and extensions, a gDBN may be represented:

A =  {n ,A ,B , f l }  (5.1)

with

n  =  { <  =  p(Sj); i =  1,.., N-, u =  1,.., Ni)  (5.2)

where N  corresponds to the number of HMMs (nodes) in the network, Ni to  the number 

of states in the z’th  HMM (Equation 5.2).

5.2.1.1 Generalized A Matrix

The generalized sta te  transition matrix, A, is defined by

A  = a g = p ( S i ( t  + l)/S'u(t)) (5.3)

where i , j  correspond to a pair of HMMs and u, v to their states (u =  S u,v  =  S v). 

When i = j  the state  transitions are within a  given HMM (node). However, when 

i £  j ,  the state transitions apply between a pair of HMM states(see Figure 5.3 for a 

3 node example).* The shape of A encodes knowledge based models by (dis)allowing 

state transitions between specific HMMs and specific states within and between HMM’s.

'In  all cases a single un it lag model (t to t +  1) has been implemented.
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Thus, A is termed the “causal model matrix” for the generalized DBN.

As is demonstrated in Figure 5.3, the basic configuration of the causal model ma­

trix if fundamentally the same as an A matrix from the one-dimensional HMM. More 

specifically, each HMM conditions the behaviour of the connected HMMs based on 

the off-diagonal sections -  analogous the the connecting arrows in the graphical view 

(5.3a). From the movement perspective outlined earlier in this chapter (i.e., coupled 

oscillators), imagine two of nodes to represent each effector and perhaps the third 

is a metronome timing the movement. From this example one could draw a similar 

graph: perhaps allowing the limbs to influence each other and to be influence by the 

metronome -  no influence arrows would be drawn to the metronome node. However, 

while the causal matrix accounts for the expression of interactions between nodes, it 

does not reflect tenacity of these connection (fi) or the expression (emergent behaviour) 

or each node B.

5.2.1.2 G en era lized  O b se rv a tio n s  (B)

The B component of the gDBN serves a similar purpose to the B matrix in a HMM, 

dictating the most likely observed behaviour for each underlying control state. Thus B 

is a matrix defined by

B =  buK ) = p ( o i | S i ) .  (5.4)

To be precise, for any state, i, of HMM u (S„), the probability of an observation, k, 

(olk) is supplied (i.e., given that the oscillator is in state 5, what is the probability 

distribution for ‘finger’ positions).

5 .2 .1 .3  W eigh ting  M a trix

The final aspect of the DBN, fl, has no analogous HMM term; instead consider a 

parallel to neural networks. Similar to an ANN structure, the contribution of each
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H M M 2

H M M 3

H M M l
(5X3)
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In lc r-2 o n I H M M 2 In ter-2 o n 3
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In te rO o n l ln ccr-2 oa3 H M M 3
(6X5) (6X10) (6X6)

Figure 5.3: Left: G raphical representation  of a 3 node gDBN. All nodes are fully connected and may 
be represented by the causal (Super) A m a trix  (right). Filled circles represent independently determined 
state-observations for each HMM node -  due to  B. Right: Causal m atrix  where the diagonal accounts 
for within-HMM transitions while the bod y  accounts for interactions between HMM states.

node i to the transition of another node j  may be weighted, modulating its systemic 

influence on the rest of the system. Thus adjusts the influence of the alHh  element 

within A; if i = j  (diagonal) the weighting applies the influence of the HMM on itself J  

Although there is no requirement for f l  values to be contained within any range, they 

are expressed as ratio values. Again returning to movement, this parameter would scale 

the magnitude of connection between coordinated limbs, perhaps even behaving in a 

fashion analogous to the b/a ratio  from the HKB-model. As yet, there is no update 

algorithm for optimizing f l  beyond the hypothesized initial values. In summary then, a 

gDBN is simply a series of nodal HMMs linked together by weighted Markov chains. At 

execution, the state selection (<7t+ i) of each node is modulated by the current state of all 

other nodes (based on hypothesized connections). At each time epoch, the expression 

of each nodal HMM is observed based on sampling of the B  matrix (see Figure 5.4).

* While this term  is free to  vary, in all of the present examinations this term  remains a t “1.0” or 
100%, reflecting “normal” HMM inter-HM M  behaviour. If this term  were set to zero it would reflect a 
virtual observation node; the HMM’s transition  would have no bearing on its own behaviour but may 
influence the expression of o ther nodes.
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22
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TiT,

Figure 5.4: Model representation of the 3 node gDBN described in Figure 5.3. T he dynam ics of 
the gDBN progress ftom the selected sta te  for each m odel(at each T),  with those s ta tes contributing 
to the potential transitions for each of the other HMMs a t T  +  1. Connection ’weights’ are sampled 
to  determ ine each HMMs individual path  (bold lines). This represents a modified mass-action pro­
gression similar to the n-Heads formulation (Brand 1997). A: Inter-HMM connections B: Intra-HM M  
connections.

5.2 .2  E stim ate U p d a te  and P red iction

5.2.2.1 The Generalized Baum Welch Algorithm

As before, the generalized Baum Welch algorithm is a version of Expectation Maxi­

mization (EM), updating the initial model estimate based on the observed data. Just 

as in the one-dimensional case, forward and backward algorithms underly the function 

of the update procedure. Thus, as an extension of the single HMM case (Rabiner & 

Juang 1993), the generalized forward operator may be defined:

a i(Sv) = a i(v ) = p (S l )P(ol ( l) \S lv) = n lM o ' ( l ) )  (5.5)
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t+i (•v ) =
i=l, u j&,y

bv(oi(t + 1)) (5.6)

Here, a j+1(i>) corresponds to the likelihood of a s ta te  occurring in HMM v at time 

(t +  1). Following initialization (Equation 5.5), the determ ination of this probability is 

broken into a within and a between nodes component. Looking at Equation 5.6, the 

first component on the right hand side corresponds to  the intra-HMM forward operator 

(identical to single HMM case) while the second refers to the inter-HMM components. 

Notice that the f t  is expressed here as weighting each HMM component in both terms. 

Accordingly one can model (and restrict) the DBN by blocking specific types of inter- 

and intra-state transitions (setting the corresponding ujij to 0).

The generalized backward operator is similarly an extension of the basic HMM operator, 

divisible into an inter- and intra-HMM component. In m atrix form, the generalized 

backward operator may be expressed as:

A = /3 f+1A'b(«) (5.7)

For comparison the parallel forward operator:

a t+i = a tA b(o(t + 1)) (5.8)

where A ’ corresponds to the transpose of A and, Vij, /3t (S1u) =  1.

5.2.2.2 Model R e-estim ation

As with the basic Baum Welch (EM) procedure, in the generalized form, a first estimate 

of the expected state transitions between any two states within a given model is taken. 

As defined above this incorporates influences of other HMM states within and between 

the HMMs according to the gDBN causal model. The net result, however, has the same
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format as the single HMM case, where, at a given time point, we have:

, a i ( u ) A i b v(oJ(t + l))0{+ l(v)
&t( i , j :u ,v )  =  ------------ :-------- --------------------    (5.9)

This amounts to the joint likelihood of a state at time t co-occurring with one at < +  1, 

given an observation a t t +  1, for all states and for all time epochs. So, by summing 

over all states v, for HMMs j  we obtain:

$ ( u ) =  (5-10)

Here, u ) records the probability of being is a given state v at each time. Conse­

quently, by selecting the first time-point, t = 1, a new value for n  can be calculated 

as:

*  =  {< }  = # ( « )  (5.11)

Again similar to the one-dimensional case, by integrating over t we can establish a new

estimate for the causal A  m atrix (Equation 5.12). That is, we calculate the probability

of being in a state v following an instance of state u, across all nodes and times.

Z L L * t ( » , j ; u , t>) 

Z[=iL^ ( u )
A = a y P = ^ r: ; y ;7  (5.12)

Finally, the likelihood of an observation given a state (i.e., B ) can be re-estimated by 

counting the co-occurrences of observations with states:

E[=i $ ( “ )
■D —  U l  1 = 1 1  1 1 '  / c  1 .J\B =  b (ok ) =  ?i/ '------- (5.13)

The generalized Baum Welch algorithm is then iterated until a terminating condition 

is reached; this state may be defined by a maximum number of iterations, a minimum 

step improvement (as with ANNs), or by a Viterbi estimate of the likelihood of the 

observed data being produced by the estimated model.
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The Generalized Baum Welch Procedure The complete Generalized Baum Welch 

method may be described as follows:

1. Select a causal model for A by excluding some dependencies (disallow any inter­

action not considered reasonable).

2. Generate initial estimates of A from the training data, hypothesized structure, 

or initialize a random network.

3. Re-estimate DBN as A = {n , A, B }

4. If A ~  A STOP

5. Set A = A and GoTo 2.

5.2 .3  A ssessin g  g D B N  P erform ance

5.2.3.1 Prediction: The generalized Viterbi algorithm (gV iterbi).

As in the case of hidden Markov models, the extension of the Viterbi algorithm for 

gDBNs predicts the most likely set of state sequences for each node in the system. 

Given an observation for each node in the gDBN, gViterbi accounts for both intra- 

and inter-nodal connections, estimating a state vector for the gDBN at each epoch . 

Like single HMMs this algorithm is based upon computing the most likely trajectories 

over the “state trellis” using a forward estimate of likelihood of each state at each time 

(given the observations). This set of state arrays, one for each node, is then searched 

to determine the optimal solution.

A lgorithm

For the most part, the gViterbi algorithm proceeds similar to the Viterbi procedure. 

Specifically, at initialization <5 (the likelihood of a given state based on the previous
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epoch) for each state of each node is determined from the n (the overall likelihood of a 

state) and 6u(o‘(l)) (the probability of the observation given that state).

Initialization

For 1 < i <  N,  1 <  u < Ni 

6 1(S'u) = 6 \ ( u ) =  ttM o ' ( 1) )

^[{u) = 0

Recursion

The combined likelihood of each state, given all antecedents at each node is estimated 

and held in an array (<S); the maximum estimate for each is selected and stored ($). 

These arrays, analogous to the S and ?/> vectors previously, are determined by the 

likelihood of transitions from each of the previous states (t — 1). As was presented in 

the discussion of the generalized Baum Welch procedure, all connections are conditioned 

by an u li  factor -  as determined by hypothesis or other prior knowledge.

So, for 2 < t < T, 1 <  j  < N ,  1 < v < Nj,  recurse as:

6\(v) = m a x u[6lt_ l (u)uua“v + ^  st - i ( y )u jiayv]bv(ol(t)) (5.14)
J r i . ’J

$t(u) =  a r g m a x u i s i m ^ i i ^ u v  +  H  H - \ i y )u jiayv]bv(pl{t)) (5.15)
jfr.y

The resulting “state trellis” encodes the maximum likelihood of being in each state of 

each HMM at a given t.

Back Tracking

Once again, following the construction of a an array of the probability of each state for 

all epochs (given an observation) the backtracking routine selects the most likely state 

for each time based on state-transition probabilities (i.e., A). The procedure continues 

from time T  to t\. For all HMMs, i:

u l{t — 1) =  argmaxv [$j(u)] ;T  > t > 2 (5.16)
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It is important to note that the trellis search is of size T C N  for sequences of length 

T  and C  HMMs each having N  states, thus reducing the factorial search explosion 

occurring in exhaustive search. This benefit is due to  the “mass action” model explored 

here*; combinatorial vectors of states between the  HMMs were not examined (i.e., 

estimating S for each of the possible vector combinations of states across nodes). As 

will be discussed in Section 5.3 this is not the only possible implementation of this 

framework, however, it does limit the number of required simplifying assumptions, 

thus allowing more functionality.

While the basic Viterbi algorithm was discounted earlier as a controller^ it does provide 

an excellent opportunity for initial examinations of complex systems. Specifically, the 

Viterbi-derived posterior maximum likelihood probability (traditionally reported in log 

units) can be used for trajectory recognition; this value reflects the probability of the 

observed data sequence arising from the selected model.

As will be discussed further in Chapter 7, the gViterbi approach can be used for es­

tablishing estimates of noise and coupling param eters in a coupled oscillator model of 

reaching. Briefly, for now, gViterbi can evaluate the degree of fit of a model to a da ta  

source; in a coupled oscillator scenario, this approach would allow the evaluation of the 

suitablility of the pre-transition coupling versus post-transition value for coordination 

behaviour that may be ambiguous (this is of course presuming a “shift’ in the underlying 

control parameter).

5.2.3.2 Monte Carlo Sampling o f gDBNs

Similar to the procedure discussed earlier for the HMM case, for each node we can 

generate a predicted observation sequence by randomly selecting observations according

*Mass action is a term  th a t simply reflects the combined influence of all terms, as in ANN's.
5 Viterbi was set aside due to  its requirem ent of a com plete observation list prior to initiation. This 

is not a reasonable feature of a realtim e controller (e.g., discrete aim ing/m anipulation). However, it 
can be used in an “incremental” mode for control applications -  see C hapter 8
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to the estimated DBN model probabilities. This amounts to an unconstrained Monte 

Carlo sampling of the model distributions such that:

However, similar to the single HMM case, a constrained Monte Carlo method may 

just as easily be implemented: instead one simply selects from observations given the 

optimal (gViterbi) state sequence. Regardless of constraint, for the case of the gDBN. 

this procedure can become quite complex. Each HMM component, random-variables, 

and associated coupling variables, can be Monte Carlo sampled using various hypothesis 

driven constraints. These may include the most direct interpretation of Monte Carlo 

sampling: sampling each variable and then using this variable to  condition sampling 

all other dependent variables, to eventually select the observation. However, without 

making extensive simplifying assumptions, sampling such a set of m ultivariate densities 

proves a difficult task due to the increasing number of alternatives. For example, in 

an model consisting of 5-HMMs with state segmentations of 5, 10, 6, 4, and 9; The 

number of possible state vector configurations is 10,800.

Consistent with the Viterbi and Baum Welch algorithms, a Monte Carlo sampling mode 

was developed which is consistent with our ‘mass action’ formulation for gDBNs. That 

is, each model is “fully connected” with all other nodes, provided weighted influence at 

each epoch. Thus for each HMM, i, we have:

Again consistent with the previous approach to model sampling, this approach first 

randomly selects a new state for each node (i ) based on the probability of each state

choose x  oc p(x) 

choose o oc p(o\x)

(5-17)

(5.18)

x l{t + 1) oc 5 1  +  51  ^ ,Q< (y)°vu (5.19)
jfr,y
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(u) given all other models (Equation 5.19). Given a state for each HMM, now generate 

an observation by sampling the B matrix:

o(t) oc p(o|s(<)) (5.20)

5.3 Other Approaches to  gD B N s

Although the previous sections imply a single algorithm for gDBN estimation, other 

approaches have been suggested (Brand, Oliver & Pentland 1997, Brand 1983, Caelli, 

Binsted & Frankland in submission, Ghahramani & Jordan 1997, Ghahramani 2000). 

These methods take a range of approaches. However, researchers, for the most part, 

attem pt to reduce the update problem by utilizing ‘cliques’ of states within the con­

nected HMMs. This approach can be considered analogous to using the 5 terms from 

the Viterbi algorithm for model update. For the purpose of reflection and comparison, 

two alternate approaches to gDBN update are briefly presented; each bears a marked 

similarity to the approach described here.

5.3.1 N -H ead s A pproach

Mass  Action  — > a j+ 1(u) 

N  Heads  — ► <S|+1(u)

U n  +  X  U i j < 4 ( w ) a u v
u; i= j

3(“)<c + X {w)quv
w \ i ^ j

6„(ol(« +  l)) (5.21) 

bv(o'(t + 1)) (5.22)

Brand (1997) presents an approach very similar to the current “mass-action” imple­

mentation, there are some notable differences; the most prominent difference being 

the method of probability calculation prior to Baum-Welch recursion. In the N-Heads 

implementation a 5 term (see Section 3.3.3.3) is summed; this amounts to using the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Other Approaches to gDBNs 97

A B C

c&’S
Or O

Figure 5 .5 : Schematic of the (A) Mass action (B) N-Heads and (C) Residual approaches for gener­
alizing the Baum Welch algorithm.

‘most likely’ path only during EM search. By making such an assumption the N-Heads 

approach reduces the number of sequence alternatives, selecting state transitions based 

on state “cliques” (see Figure 5.5).

Conversely, in the mass-action implementation used in this investigation, no path as­

sumptions are made during the Baum Welch algorithm V This difference has several 

implications for the update procedure. First, while the N-Heads procedure does limit 

the search to the ‘most likely’ contributors it is unsuccessful in similarly reducing the 

computational load. Second, while the performance advantages for the mass-action 

versus N-Heads approaches are disputable, and likely dependent on the application 

or data, there can be little argument of the clarity of generalization provided in the 

current method. The elements contributing variance in the mass-action formulation of 

the EM estimate are separable, allowing further additions or restrictions to be easily 

implemented (e.g., an additive model of node interaction).

’ A similar assum ption to the N-Heads model is however utilized during M onteCarlo sampling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Other Approaches to gDBNs 98

5 .3 .2  R esidual A pproach

In parallel to the formulation presented in this chapter an alternative “correlational” or 

“residual” algorithm was investigated for capturing the degree to which the intra- and 

inter- state dependencies are expressed, in parallel or sequentially (Caelli et al. in sub­

mission). The basis of this approach was to estimate the HMM behaviour of each node 

independently, utilizing traditional HMM update procedures. Subsequently, HMMs 

were trained to represent the interaction between nodes, with the observation of each 

intra-HMM being the state of the inter node (Figure 5.5). While not a as complete 

a representation as the previously discussed models, this approach has benefits. In 

particular, given an unknown system structure (i.e., no prior knowledge), the relations 

between node expressions can be “discovered” with a known update procedure. Al­

ternately, in circumstances of reduced data precision, such a methodology could be 

used for data supplementing (estimating missing data given neighbouring node states). 

However, while this approach does simplify model estimation by reducing the “space” 

to be searched via EM, it also has the drawback of being unable to simultaneously 

search inter- and intra- connections to find the optimal balance.

5 .3 .3  g D B N s for A ctio n

Although a number of algorithms are possible for optimizing a  generalized dynamical 

Bayesian network, it is not the intricacies of the method which make the gDBN at­

tractive for modeling human data. Unlike many other modeling methods, the node 

based underpinnings of the gDBN allows researchers to “add dynamics” to models pre­

viously considered to be static  (e.g., “information-processing” approaches to action). 

For example, recent behavioural examinations of motor tasks suggest a common timing 

mechanism housed within the  cerebellum (e.g., Ivry & Keele 1989). This structure is 

proposed to interact with the motor system, enabling precise motor synergies. How­

ever, behavioural researchers implementing traditional IP approaches, while able to
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demonstrate overt effects, are unable to accurately represent the dynamics of the inter­

actions. Similarly, proponents of non-linear modeling techniques such as those proposed 

by Haken and Kelso (Haken e t al. 1985) have difficulty to capture this relation in more 

than abstract terms. This topic is pursued further in Chapter 6.
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Chapter 6

Dynamical Bayesian Networks in 

Action

As was discussed formally in Chapter 5, generalized dynamical Bayesian networks 

present a unique tool for modeling complex dynamical systems. In this and the fol­

lowing chapter, several examples of applications and implications of this approach for 

modeling human action are presented. First, an extension of the previously discussed 

one-dimensional pointing model is described. Later in the chapter a theoretical exten­

sion of the 2-HMM pointing model is applied to a coupled oscillator perspective on 

continuous (phasic) human action using a  gDBN foundation.

6.1 Experim ent 2: A Tim e-Indexed Reach

6.1.1 In tro d u ctio n

Earlier, an experiment was presented which tested the applicability of a  single HMM for 

reproducing one dimensional pointing movements. One of the central criticisms of this
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approach to motor programming was the presence of “state perturbations” -  instances 

where the model predicted impossible or impractical state selections. Secondly, the 

HMM was oversensitive to simple variations in am plitude or temporal scaling; similar 

to early notions of motor programs (Schmidt 1982), the HMM representations were 

unable to generalize across movement parameters (e.g., movement duration). Relative 

scaling of observations and states could have overcome these problems, by encoding 

temporal and spatial relations for each task; however, such solutions lack relevance to 

biological function (i.e., the novely problem). The following experiment suggests an 

alternate solution.

6.1.1.1 A M etronom e for Action

The 1989 proposal of Richard Ivry and Steve Keele (Ivry & Keele 1989) for an internal 

timing mechanism for the motor system provides an interesting solution for the stability 

and generalizing problems encountered by the earlier HMMs. Specifically, the hypoth­

esis that a central tim ing mechanism is housed within the cerebellum has received 

significant support both behaviorally (e.g., tapping; Ivry & Keele 1989, Wing 1973) 

and through clinical studies (e.g., cerebellar lesions; Ivry, Keele & Diener 1988, Franz, 

Ivry & Helmuth 1996).

So, reconsider the case of simple pointing. If a  central timer does exist, as unique 

process intimately linked to the controlling system, this process would impact the state 

dynamics of tha t system. Moreover, a single HMM would be unable to represent this 

compound system and its temporal interactions, as one of the underlying assumptions of 

the HMM method has been compromised. Therefore, perturbations and similar errors 

in a system lacking a  timekeeper are reasonable to expect. Similarly, the presence of 

a timekeeper would introduce a degree of generality by discriminating tasks based on 

expected duration (or relative duration; see Generalized Motor Programs in Chapter 

2).
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6.1.1.2 A gD B N  for Reaching

In keeping with the discussion of the potential benefits of an integrated time keeper, 

a generalized DBN was constructed with such a feature. In particular, a second node 

(HMM) was added to the generation model featured in Chapter 4. This structure was 

examined for its ability to reproduce joint angles measured during manual pointing.

Due to the preliminary nature of this examination of gDBNs for representing biological 

processes, some assumptions were made regarding interconnectivity. Although there are 

undoubtedly significant cerebellar inter-connections with the planning and controlling 

regions for this task (e.g., pre-motor cortex) only unidirectinal connections from the 

cerebellar “clock” to the control mechanism were allowed. This constraint reflects the 

assumption that the timekeeper is generalized in some fashion and therefore should be 

independent in function from the processes it times. Also, in keeping with the Markov 

assumptions underlying gDBN structure, it is assumed tha t the process of all nodes 

within the gDBN operate on a single temporal scale. W ithin the gDBN framework, 

these features were expressed within the Cl term of the model; the connection term 

representing controller influence on the timekeeper was •dissallowed” .

6 .1 .2  M eth od s

6.1.2.1 Participants

The same four male subjects as presented in Experiment 1 volunteered again to partic­

ipate in this investigation (mean age = 26 years). All participants were right handed 

and naive to the purpose of the experiment.
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6.1.2.2 Task and Procedure

Each subject completed a total of 20 elbow-pointing trials w ith their right arm to each 

of 4 targets (approximate mean angles of 20, 50, 75 and 110). In all other manners, 

the task and instructions were identical to Experiment 1 (C hapter 4, Section 4.1.1).

6.1.2.3 Apparatus

The experimental equipment, collection, and data reduction procedures were identical 

in all manners to the first experiment (Section 4.1.1).

6.1.2.4 Model Construction

Once again, the goal of data  modeling was to reproduce the observed angular positions. 

Unlike Experiment 1 however, only one binning size (3 degrees) and one hidden state 

configuration (25) were used for constructing the HMM representing the elbow con­

troller. This state structure was chosen as a mid-point for all the to-be-learned actions. 

The 3-degree observation binning size was deemed most appropriate as a  tradeoff be­

tween observation continuity and temporal scale.* DBN models were trained on random 

sampling of trials from all movement eccentricities. Again sim ilar to previous methods, 

participant data was pooled to attain  a model characterizing “normal” function for 

simple reaching.

The clock component consisted of a 40-state HMM with an equal number of observations 

deterministically dependent on the corresponding state (i.e., a  finite state machine)^. 

A range of connection strengths for the clock node were examined (coupling, w, see 

Chapter 5), each composing a new gDBN model. Specifically, unidirectional weights of

'T h is  assumption should be avoidable in future DBN models as an extension to  bo th  the Baum 
Welch and Monte Carlo routines is possible for a continuous observation d istribu tion .

fThis allowed us to encode a  simple deterministically advancing clock in to  the DBN format.
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100%, 10%, 1%, and 0.1% relative to the within process were examined (i.e., the action 

HMM was dependent on the clock but not vice-versa). Given that no observations could 

be made for the clock variable, a pseudo-deterministic structure was hypothesized for 

its dynamics*. An HMM with this ‘shape’ was used to generate an observation sequence 

for training purposes.

Both the clock and control HMM’s were trained on time-matched sequences 40 samples 

in length; this was sufficient to capture all training movements. The only additional 

restriction placed on training was to initiate the clock starting state to one reflective of 

the movement time of the trial being ‘observed’.

6.1.2.5 M odel Assessment

Model evaluation was undertaken in three modes:

(1) Known Sample - Observed Amplitude and Duration

Initial tests were performed by comparing model output with a known mid-range move­

ment (75 degree movement). As before, all models were tested using an unconstrained 

Monte Carlo analysis (see Section 3.3.4). As an extension of the single HMM method, 

sequences for all internal HMMs were concatenated to produce a single sequence re­

flective of total performance. Each gDBN was sampled 100 times using this method 

(sequence length 50).

As in Experiment 1, a Pearson product moment correlation (see Experiment 1) was 

calculated over multiple lags ( ±3 intervals) to remove phase offset biases. In addition, 

an observation dependent distance measure, similar to a discrete RMS error, was also 

examined. The mean-state-distance (MSD) was calculated for each model sequence as

* A 95% struc tu re  was assigned. This structure entailed th a t the process remained in the  current state 
2.5% of the time, advanced one state 95%, and advanced 2 states 2.5%. As no reasonable alternative 
hypothesis was available, these states were expressed by their corresponding observation 100% of the 
time.
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would be expected:
1 N

M S D  = - ' £ \ d i \  (6-1}
i=i

where dx =  (obsi(i) — 06^2(1)) -  that is, the difference between the actual and observed 

sequence at each epoch. This returns a range of values which reflects the distance 

between sequences, not just a binary ‘yes/no’ comparison.

Summary statistics were calculated (/i,<r), capturing the performance and variability 

of the model. A param etric comparison using the z statistic was also applied; a hy­

pothesized null score of 0.04 (1 / ^observations) was used for the Hamming measure, 

r  =  0 for correlation measures^, and 12.5 (£ observation range) for the MSD measure. 

A non-parametric comparison (x2) was also made based on the frequency of significant 

trials for each measure. Chi-square statistics were based on a yes/no grouping from 

the trial param etric value. Finally, the average Hamming and correlation value were 

assessed, again using the z-distribution.^

(2) Novel Amplitude

Model scaleability was examined by evaluating the efficacy of the model for generating 

unobserved movement amplitudes. To accomplish this, the initial state of the control 

( “arm”) HMM was set to a ‘short’ and a ‘long’ value. The short amplitude roughly 

corresponded to a 30° movement and correspondingly the long to a 60° movement.

(3) Novel Duration

The second aspect of scaleability - time -  was examined here. Specifically, the initial 

state of the clock HMM was set to one of three values. The trained value (hereafter 

‘accurate’) corresponded to normal participant instructions; models were trained on 

trials where subjects were told to point to the target accurately and rapidly. The model

^Pearson product correlations were transformed to  a z-distribution prior to analysis.
* Again, similar to  th e  previous examination, in all cases the  param etric and non-param etric assess­

ment of model perform ance were in agreement (param etric value was more conservative), thus only 
the maximum p value is reported. In all instances, each dependent measure was in agreement as to 
detecting a significant/non-significant dichotomy.
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here was sampled according to normal model start parameters. An unobserved fast and 

accurate (speed as a priority over accuracy) and a fast condition were also examined. 

In these hypothetical scenarios the clock HMM was set to either an intermediate or a 

short duration, simulating an intention to move more quickly.

Model performance under conditions 2 and 3 were evaluated based on trajectory shape 

and appropriate movement scaling in accordance with the temporal or spatial manip­

ulation of the model.

6.1 .3  D iscu ssion  a n d  R esu lts

Overall, participants performed the required pointing action with a movement time of 

561 ms (a =  62ms)  for the modeled reaching movements of 75 degrees. Performance 

on all other amplitudes were of similar order and are displayed in Table 6.1.

As illustrated in Table 6.2, model performance was again very good. The Hamming 

score, Pearson-r, and MSD values reached levels significantly different from chance 

(p < 0.01) in all conditions except the 100% weighting condition. In this condition, 

performance was at chance level for all measures. These results are consistent with im­

pressions reached by visual inspection of Figures 6.1 to 6.3. W hen coupling strength was 

greater than 10%, the model became untrainable; producing a  structure that predicted 

immediate transition to the termination state (Figure 6.1). However, model perfor­

mance rapidly improved even with only slight decreases in coupling strength. Further, 

as coupling continued to weaken, participant performance degraded to the performance 

demonstrated for an uncoupled controller (Experiment 1). This decrease is reflected 

in a rapid increase in observation variability as state perturbations re-emerge (Figure 

6.3). Of particular im portance is the finding that a clock mechanism, in combination 

with the joint based controller, stabilized performance.

Also of note are the performance differences due to variations in clock connection
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T arget I ( 2 0 d e g .) T arge t 2  ( 50  deg.) T arget 3 ( 75 d e g .) T arg e t 4  ( 110 deg.)

M ovem ent T im e 379.17 ms 483.33 ms 561.11 ms 602.65 ms
(stdev) 28.46 ms 55.78 ms 62.06 ms 87.18 ms

Table 6.1: Sum m ary of participant perform ance for Experiment 2. M ovement tim es are the grand- 
mean, averaged across participants and  trials while the standard deviation values represent the average 
variability w ithin a  subject, averaged across subjects.

Target
100 % Connection 

W eight
10 % Connection 

Weight
1 % C onnection 

W eight
0.1 % Connection 

Weight

75 degrees •* Pearson - r 0.0761613 0.910922 0.950262333 0.898814092
M ean Slate Distance 11.438 3.301 1 814 3.41

•*  Sole: 75 degrees corresponds to a 25 unit movement (3 degree b in  size)

Table 6.2: Sum m ary of results for Experim ent 2. Model performance is reported  for the 75 degree 
movement only. Both correlation and M ean S tate  Distance measures are th e  m axim um  value returned 
after ± 3  tim e interval phase shifts.

strength. As is evidenced by the inability of the 100% model to acquire an appropri­

ate trajectory shape, we can now make a reasonable hypothesis regarding the relative 

weakness of any clock-controller interactions (again, see Figures 6.1 and 6.2). The pre­

dicted trajectories would suggest a maximum relative connection strength somewhat 

less than 10% and a minimum strength of greater than 0.1% (as performance appears 

to be degrading at this point). This proposal, while based solely on the ability of 

the simple model presented, provides a testable question to be addressed by further 

behavioural or neuro-anatomical investigations. In particular, this result may have 

relevance when considering ablative injuries to the cerebellum (or similarly expressive 

apraxias). In such situations, behaviour tends to become dismetric -  a feature very 

similar to the earlier examination of a single controller in the absence of a timekeeper. 

Perhaps also, in conditions of less severe cerebellar intrusions (e.g., clinical cooling) 

the hypothesis could be posited tha t instead of the clock itself being disrupted, the 

connection strength is instead being adjusted (perhaps increased). At a deeper level, 

these results demonstrate that if a “timer” or “internal-clock” is explicitly involved in 

the execution of motor tasks, then its influence is quite specific. T hat is, it plays a 

necessary “background” role such tha t if its influence is made to play a more dominant 

role, performance would become inappropriate (e.g., Figure 6.3).
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Figure 6.1: gDBN simulation using a  coupling strength of 100% between th e  clock and controller for 
the training am plitude of 75 degrees (25 units, binning size of 3°.)
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Figure 6.2: gDBN simulation using a  coupling strength of 10% between th e  clock and controller for 
the training am plitude of 75 degrees (25 units, binning size of 3°).
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Figure 6.3: gDBN sim ulation using a  coupling strength  of 0 .1% between the clock and  controller for 
the training am plitude of 75 degrees (25 units, binning size of 3°).
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T u n e  ( s a m p le s )

Figure 6.4: gDBN sim ulation using a  coupling strength  of 1% between the clock and  controller for 
an “unseen” am plitude of 30°.

6.1.3.1 Model Generalization

In addition to reducing the number of state perturbations, it was also hypothesized that 

the model would become more generalizeable for both time and am plitude modulations
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Figure 6.5: gDBN sim ulation using a coupling streng th  of 1% between the clock and  controller for 
an “unseen” am plitude of 60°.

with the addition of a ‘clock’ node. As is apparent in Figures 6.4 and 6.5, simulated 

pointing trajectories appear reasonable across quite a wide range of amplitude; this 

variation was accomplished solely by varying the start position of the limb-control 

(amplitude) intra-HMM. Unfortunately, while mean performance does appear reason­

able, with both 10 and 20 unit “movements” , demonstrating appropriate trajectory 

shapes, trace variation is suspect. Specifically, movement duration increased with am­

plitude as expected while mid-movement variability was unexpectedly high, although 

not completely unreasonable. Moreover, the short amplitude movement variability re­

mained low throughout trajectory, even with the increased movement ’velocity’. This 

final result is somewhat at odds with F itts’ Law (Chapter 1), perhaps suggesting a 

limitation to the simple model structure chosen here.

Modeling performance under the time-variation conditions was also encouraging. As is 

demonstrated in Figure 6.6, variations in trajectory did result from artificial movement 

“intent” to move more quickly. Specifically, the ‘fast’ and ‘accurate’ conditions are 

noticeably different, bearing features suggestive of differences in movement variability 

and perhaps even reaction time. Although not clear, the intermediate ‘fast and accu­

rate’ condition does appear intermediate to the other conditions. Unfortunately again,
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M ultiple Speeds -  1% Connection W eight
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Figure 6 .6 : gDBN simulation using a  coupling strength of 1% between the clock and controller for 3 
tem poral goals: accurate aiming (training), fast and accurate aiming, and fast as possible aiming.

variability was not ideal; all three conditions demonstrated near identical patterns and 

magnitudes of variability.

6.1 .4  C onclusions

The results reported in this cursory examination of gDBNs for representing single joint 

movements suggest a significant potential for such methods to be used in predicting and 

statistically prototyping discrete tasks. Similarly, model behaviour strongly alludes to 

the stability and flexibility of the predictions possible by combining several simple units 

-  a sentiment that is strongly supported in Berkinblit’s 1986 commentary (Berkinblit 

et al. 1986) -  suggesting many new directions of investigation. However, while there 

may be sympathetic explanations from a single joint standpoint of motor control (e.g., 

Bizzi et al. 1976, Feldman 1986) and a reasonably easy conjoining with information 

processing control proponents (F itts 1954, Meyer et al. 1988, Rosenbaum et al. 1999), 

a reasonable question that arises is how this approach relates to current dynamical
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systems theories for discrete tasks (c.f., Schoner 1990, Zaal e t al. 1998). More generally, 

how does this method generalize to  continuous tasks? The reverse of this extension is 

a  central criticism of dynamical pattern  perspectives. Can gDBNs account for the 

demonstrated non-linear behaviour in coordination tasks? -  a feature so easily and 

simply accounted for in these theories.

In the next experiment, a hypothetical system of coupled oscillators is framed within 

a dynamical Bayesian network, examining the efficacy of the gDBN approach for cap­

turing just this type of continuous coordinated activity. More specifically, the goal of 

the next investigation is to examine ability of the gDBN method for representing con­

tinuous tasks, in particular the features of non-linearity (hysteresus, phase transitions, 

etc.) typical in examinations reported in support of the seminal work of Scott Kelso 

(e.g., Haken et al. 1985, Kelso 1984).

6.2 Experiment 3: H ypothetical Coupled Oscillators

6.2.1 Introduction

As discussed in Chapter 3, the basis of dynamical pattern  perspectives toward move­

ment organization are founded in the ideas of self-organization and complex system 

behaviour. Researchers endeavor to present control systems for coordinated behaviour 

that reduce the effective degrees of freedom problem (Bernstein 1967) by coupling joints, 

muscles, or stimuli into movement synergies or coordinative structures. While the sem­

inal work in this area was produced for simple oscillator behaviours such as finger or 

wrist oscillations (Haken et al. 1985, Kelso 1984), applications of this approach have 

been used to examine wide ranges of behaviours (e.g., gait) as well as accounting for 

abstract contexts such as learning and intention.

In an initial attem pt to reproduce the behaviours typically shown for continuous co­
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ordination tasks and thus at least superficially replicate dynamical systems results, 

a model composed of two variably coupled oscillators was constructed. The precise 

form of coupling, both in strength and determinism, was varied widely to better reflect 

the possible expression of such a  system (see Figure 6.7 and Tables 6.3 to 6.5). This 

range examination should be considered a  close approximation to similar investiga­

tions of the Haken-Kelso-Bunz model where coupling and noise param eters were scaled 

(Byblow et al. 1998, Carson 1995). Unlike the earlier presented modeling experiments 

with HMM and gDBN structures, in this investigation there is no “ground-truth” data 

to compare with model predictions to (as we wish to examine behaviours tha t might not 

be realistic but may be enlightening). Moreover, owing to the large literature regard­

ing continuous coordinated behaviour there is a reasonable expectation that a model 

demonstrating features such as phase transitions and hysteresis has some similar prop­

erties to a human coordination system. While it is acknowledged tha t extant coupled 

oscillator models successfully attend to a wider variety of features than these, transi­

tions and hysteresis are the most salient observable behaviours and are thus appropriate 

to examine here.

6 .2 .2  M odel C onstruction

Three hypothetical models were constructed and tested. For all HMMs, 10 x 10 state 

transition matrices were used, with a similar 10 x 10 observation m atrix (i.e., 10 ob­

servation and 10 states). In order for the underlying state behaviour to be directly 

observable this observation matrix was deterministically related to the statesJI The 

final common feature for all models was the range of connection strengths and symme­

tries examined (Table 6.3, fi). In these 2 x 2  matrices the diagonal values represent the 

inter-HMM strengths, these values are always assumed to be 1 as there is currently no 

legitimate reason to expect otherwise; this does not mean tha t oscillators are assumed

11 While the deterministic relation between s ta te  and observation does m ake the  process more trans­
parent, it does limit the degree of nonlinearity possible in model expression. T his relation also effectively 
reduces model behaviour to  th a t of a pair of coupled Markov chains
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HMM 2HMM i

Figure 6.7: G raphical representation of coupled oscillator m odel for continuous action. Oscillators 
are taken in this representation to account for cyclic behaviours such as the “finger-wiggle” experim ent 
so popularized by Scott Kelso.

to have identical properties (this difference would be captured in either the A matrices 

or the inter-HMM structure). The off-diagonal values represent the inter-connections 

between oscillators/nodes, one place to examine symmetry and strength of coupling.

In a similar fashion to the previous examinations of bo th  HMMs and gDBNs, the models 

were Monte Carlo sampled to produce a predicted observation sequence for bo th  nodes 

in the system. This sampling was carried out consistent with the description in section 

5.2.3, basing output observations on the inter-HMMs, intra-HMMs, and the assigned 

connection weights. Due to the restricted, discrete-time, nature of this investigation, 

relative phase was estimated simply by a temporal ratio  relative to each cycle duration. 

Thus a value of 0.5 corresponds to anti-phase behaviour (±180°) and 0.0 to in-phase 

(0° or 360°).
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6.2.2.1 D eterm inistic Oscillators

The first model was built to examine the coordinative properties of a perfect (i.e., noise 

free) oscillator system (see Table 6.3). As such the transition matrix of each inter- 

HMM node was set as deterministically advancing. Thus, if these two oscillators were 

to be controlled independently, regardless of the initial phase relation, they would be 

expected to remain in that relation.**^ While the shape of the inter-HMM remained 

constant for all examinations of this model, the connection weight manipulations were 

expected to scale the importance of this shape to overall model expression (see Table 

6.3).

6.2.2.2 Sem i-determ inistic Oscillators

This second model was an arbitrary selection of a low-noise system. While many 

possibilities existed for how such a system might be expressed, the 5% noise level was 

considered a reasonable hypothesis for a biological signal-noise relation (see Table 6.4). 

Thus, if these two oscillators were to be controlled independently, regardless of the 

initial phase relation, they would be expected to undergo random “phase wandering” 

due to their inherent variability. The inter-HMM A-matrices were similarly established 

with 5% noise.

6.2.2.3 N oisy Oscillators

The final model considered was a high-noise system. The noise level introduced here, 

20% across 3 neighbouring states, was established based on observation of independent 

oscillator behaviours (see Table 6.5). In these pilot examinations, the 20% configuration

*’ The in-phase /  anti-phase distinction throughout th is investigation is of course arbitrary  and the  
models could similarly have been arranged to destabilize the in-phase relation

tf Inter-HMM shape was set as pseudo-deterministic here, this was based on the lack of a reasonable 
hypothesis regarding the determ inistic interaction between two determ inistic processes.
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Table 6.3: Hypothetical model s tru c tu re  for a pair of deterministic coupled oscillators. The A 
structure generates a deterministic oscillation (Si —» S2 ... S10 —> Si).

was the maximum indeterminacy that retained an oscillatory pattern.

6.2 .3  M odel Perform ance

Model performance varied widely as a function of oscillator variability (i.e., noise), cou­

pling strength and symmetry. In general however, across all oscillator configurations, 

very few combinations of param eters demonstrated the transition behaviour expected 

based on human experimentation. For example, in the deterministic oscillator exam-
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Table 6.4: H ypothetical model structure for a  pair of pseudo-deterministic coupled oscillators. The 
A  stru c tu re  generates an oscillation (Si -► S2 ■ • • S 10 -* S i) w ith 5% noise.

pie, in all conditions but 2, transitions occurred immediately (within one oscillation). 

Although the transition was stable, and no return transition occurred, this result ap­

pears incongruent with human data. Conversely, the two conditions showed promising 

results; demonstrating appropriate behaviour were those models with a 1% coupling 

strength, either symmetric or unidirectional (see Figure 6.8, unidirectional shown). In 

the dem onstration shown, a stable anti-phase relation was attained and maintained; 

based on random sampling of the gDBN, a transition occurred, resulting in a stable 

in-phase relation. While no variation exists, thus not replicating a decrease in phase
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Table 6.5: H ypothetical model structure for a  pair of noisy coupled oscillators. T he A  structure 
generates a stochastic oscillation from (Si -> S? . . .  S 10 —► S i).

variability, the transition is certainly reflective of the behavioural predictions. Alter­

nately, when the model was instantiated in an in-phase relation, no transition was 

present. In the second, semi-deterministic, simulation behaviour was much more rem­

iniscent of human coordinated action; the initial phase relation was stable while still 

demonstrating some intra-phase variability. As the connection weight was increased, a 

much more consistent pattern of behaviours emerged. Under light coupling (<  0.01%) 

the coordination pattern  remained in-phase; as coupling strength was increased how­

ever, a slight shift away from an in-phase pattern was evident. Finally, as coupling
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Figure 6 .8 : Cyclic behaviour beginning in an anti-phase configuration and undergoing a phase tran­
sition (deterministic oscillator conditions). Unidirectional coupling occurred with a  relative strength of 
1%.

strength reached 1%, phase transitions began to emerge. However, unlike the deter­

ministic example, uni-directional connections demonstrated unstable phase transitions 

(i.e. transited back to anti-phase). In only one tested condition, asymmetric 1%/0.1% 

coupling (see Figure 6.9) did a reasonable transition occur; as coupling strength was 

increased beyond these values, random behaviour occurred with no discernible phasic 

pattern (see Figure 6.10). Similar to the deterministic oscillator model, when the semi- 

deterministic gDBN was started in an in-phase relation no transitions were present. 

However, unlike the previous example some variability remained present during in-
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Figure 6.9: Variably cyclic behaviour beginning in an anti-phase configuration and undergoing a 
phase transition (semi-deterministic oscillator conditions). Asymmetric coupling of 1% and 0.1%.

phase coordination.

The final model condition (noisy oscillator) demonstrated random and aphasic in all 

coupling was environments. This result is contrary to expectations as the individual 

oscillators were able to maintain at least a pseudo-oscillatory pattern  during indepen­

dent operation, This observation places a  theoretical bound on the noise level that a
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Figure 6.10: Acyclic behaviour beginning in an anti-phase s ta rt configuration (semi-deterministic 
oscillator conditions). Sym m etric coupling conditions of 10%.

gDBN of this structure is able to represent (at least for cyclic behaviour). Perhaps this 

final demonstration provides a point of reference for the functional levels of ‘noise’ in a 

biological coordination system.

Up to this point, the discussion of the gDBN framework (with regard to continuous 

coordinated action) has focused on replicating the most overt predictions of the Haken- 

Kelso-Bunz (Haken et al. 1985) model. The results are very positive, however, the 

similarity of findings should not be unexpected as many of the internal features of the 

gDBN have param etric correlates within the HKB approach (see Equation 6.2, see also
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Chapter 2 for a review).

V  (<f>) = S — acos<j> — 6cos(20) +  VQQ  (6.2)

Specifically, in parallel to Haken and colleagues’ suggestion of a  time dependent noise 

term, £*, the current method integrates ‘noise’ into the dynamics of the system. The 

indeterminism is distributed across the super-A (causal A) matrix as well as in the 

expression of the states, B. Similarly, scaling is applied only to the noise term,v/C?, 

and fl is generalized to all state processes within the DBN. Finally, the ‘detuning term ’, 

<5, is merely combined with the a and 6 terms for prescribing connection direction and 

strength. Thus, while the explicit description of the models vary, the compositions ap­

pear more congruent than not, suggesting the need for further formal investigations into 

their relations and the theoretical implications thereof -  perhaps, in combination ear­

lier results, even indicating a  more parsimonious implementation of coupled oscillators 

toward discrete actions.

6.2.4 C onclusions

Overall, performance of the coupled oscillator simulations was positive, even given the 

simple coupled hidden Markov model case examined. Parameter configurations were 

demonstrated which reproduced phase transitions; moreover, simulations demonstrated 

pre-transition stability followed by transient instability with a transition followed by 

regaining stability a t the in-phase relation. This replication in combination with a 

demonstration of hysteresis are consistent with models such as the HKB formulation; 

the gDBN may indeed be a generalization of coupled oscillator approaches. However, 

although some features were reproduced, many of the additional features accounted 

for by the HKB-model and contemporaries were not addressed. Further investigation 

needs to be made to examine features such as critical slowing and critical fluctuations.

Also with reference to coupled oscillator approaches, the gDBN formulation seems ideal
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for examinations of features such as detuning, stochastic components, and coupling 

behaviour. As has been dem onstrated by a Sternad and colleagues (Sternad, Amazeen 

& Turvey 1996) these features can be difficult to examine due to complex interactions 

and limitations in manipulation. Specifically, these authors suggest that detuning and 

coupling may covary. Comments are also made regarding the benefit of stochastic terms 

but no reference is made to  their role. The gDBN m ethod, in particular the ability 

to adjust features such as coupling strength and behaviour, allows parameters to be 

independently adjusted. Moreover, features such as oscillator eigenfrequency, although 

not examined here, can be manipulated explicitly to explore effects such as shifting 

of fixed point attractors away from 0 and n. Perhaps this approach would enable 

researchers to better classify and describe coupling -  beyond synaptic, synergetic, or 

diffusive.

However, while this demonstration was beneficial for referencing coupled oscillator rep­

resentations in a gDBN it can be criticized for merely “fitting the phenomena” instead 

of acquiring structure directly from observation; model param eters could just as easily 

have been set to display anti-phase stability. In the final experiment in this presenta­

tion of the gDBN method for prototyping action model, structure is “learned” directly 

from continuous participant data. Thus, unlike previous models of coordination the in­

ternal components of the model may be examined to better understand what happened 

instead of attempting to fit a function to the behaviour.
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Chapter 7

On Learning the Internal 

Structure of a Biological 

Oscillator

7.1 Experiment 4: M odeling a Human Oscillator system

Over the last decade and a half, substantial research established the properties of the 

spatial and temporal constraints that exist for the execution of simultaneous, multi-limb 

movements. These constraints, while easy to demonstrate in a task such as “rubbing 

your tummy and patting your head” , have generated what has been termed a paradigm 

shift in the study of the control of human movement: a transition toward examining 

human movement as a complex dynamical system whose behaviour can be better un­

derstood by studying relative phase instead of reaction time. As previous discussion has 

highlighted, current dynamical systems modeling practices successfully account for a 

wide variety of such continuous coordination tasks, both purely motor and perceptual- 

motor. However, although the abstract nature of the param eters have enabled some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Experiment 4: Modeling a Human Oscillator system 125

flexibility in the accounts, it has limited the approach to descriptions of organization 

from that same level, making any formal model update from observed data very dif­

ficult. This final investigation examines the utility of generalized dynamical Bayesian 

networks, and the associated update procedures, for this type of parameter estimation 

problem.*

In addition to appraising the Baum Welch routine for capturing the temporal and 

stochastic features of a coordination task (cyclic pronation-supination), the pattern 

recognition properties of gDBNs are also investigated. Specifically, much of the basis 

for hypotheses regarding the complex features of coordination lie in the existence of 

non-linear behaviours (e.g., phase transitions) or the identification of attractor states in 

the dynamic ‘coordination landscape’ of the participant (e.g., phase scanning; Tuller & 

Kelso 1989). Common to both of these approaches is also a requirement for summarizing 

the action evolution within a collective variable (see Chapter 1). Consider a task, 

perhaps eye-hand coordination, where the coordinated effectors are incongruent with a 

relative phase calculation; a substantial portion of the eye behaviour is ballistic bursts 

(saccades) followed by fixation. Both previously mentioned assessment tools would be 

unable to classify the coordination in such a task. Moreover, even in tasks where relative 

phase (a collective variable) is present, some limb configurations may be impossible due 

to physical limitations (e.g., 90° out of phase walking).

Given the success of Experiment 3 in reproducing some of the key behaviours in os­

cillatory coordination, a similar model formulation was used in this investigation. A 

two-node oscillator model was trained on continuous coordination participant data. A 

unique model was constructed for each of pre-transition, transition, and post-transition 

plateaus. By constructing models in this manner, the efficacy of various coupling 

properties could be examined for reproducing the recorded data. Moreover, da ta  was 

collected for each ‘oscillator’ independently. Thus the coupling interactions could be

'A lthough  some researcher may choose to  map these estim ated  param eter values onto specific theses 
of control or biological organization, within a  gDBN the  values retain  their statistical descriptive power 
regardless of translation.
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estimated versus trying to extrapolate connection properties from collective variable 

behaviour. In addition, the updated models and associated internal transition likeli­

hoods for each coordination stage can be tested for suitability across other behaviours 

(e.g., a model is constructed to represent stable anti-phase behaviour is applied to 

post-transition (in-phase) data). This cross comparison will allow the assessment of 

behaviour similarities -  even when the overt behaviour may be quite disparate.

7.1 .1  M ethods

7.1.1.1 Participants

Three female student volunteered to participate in this investigation. All participants 

were naive to the experimental hypotheses. D ata collection and recruitment was com­

pleted according to the University of British Columbia guidelines for ethical treatm ent 

of human research subjects.

7.1.1.2 Task

Participants made continuous pronation and suppination actions with both their left 

and right wrists. Movements were made in each of two fashions. In-phase (IP) ac­

tions consisted of simultaneous pronation and suppination of both writsts. Anti-phase 

movements consisted of pronation with one wrist concurrent to suppination of the 

other. Complete cycles of movement were completed in synchrony with an auditory 

metronome.

While participants were instructed to maintain tim ing with the metronome, partic­

ipants were also instructed to “do not resist” disruptions in the movement pattern. 

This instruction set entailed that subjects continue to move ‘naturally’, even if this 

required changing the limb coordination pattern (i.e transition).
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7.1.1.3 Apparatus

Pronation-supination movements of the forearms were recorded using a  pair of custom 

built levers (diameter: 2 cm, length: 18cm). The levers were mounted at shoulder 

width on a table-top directly in front of the seated participants. Angular displacement 

was monitored with the use of a rotational potentiometer (single turn, 0.25% linearity) 

attached coaxially with the center of rotation of the lever (see Figure 6.7 in previous 

Chapter). The signal from the potentiometer was sampled a t 250 Hz with a 12 bit, 8 

channel, A/D converter (National Instruments)

7.1.1.4 Procedure

Participants begin each session by familiarizing themselves with the inverted pendu­

lum apparatus until confident with manipulation. Five (5) experimental trials were 

completed in both in-phase (IP) and anti-phase (AP) initial conditions. Participants 

alternated between the in-phase and anti-phase coordination pattern  trials; starting 

phase condition was randomly assigned across subjects.

At the start of each trial, the metronome was set to a frequency of 1.0 Hz. The partic­

ipants were to then attain  the demonstrated frequency in the prescribed coordination 

(IP or AP). Throughout the duration of a trial, metronome frequency was scaled, in 

seven 0.25 Hz increment plateaus, from 1.0 Hz to 2.5 Hz. Each plateau lasted a total 

of 8 seconds. Scaling of the metronome frequency began upon indication of participant 

readiness.

7.1.1.5 Continuous Phase Angle & Relative Phase Estim ates

Relative phase values for the pronation/supination task was calculated in a continuous 

fashion (Beek & Beek 1988). More explicitly, continuous phase angle (6) of each limb
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(potentiometer) was calculated for each sample (j ) of angular displacement such that:

8j — a r c ta n ( - ^ - )  (7.1)

where u is the velocity of the displacement (ir) divided by the mean frequency for the 

current plateau (/„).

uj =  f  (7.2)
J n

Thus, relative phase is defined as difference between the continuous phase values for 

each hand.

^ j  ^j(teft) @j{right) (7-3)

7.1.1.6 D ata Summary and Clustering

Descriptive measures for each frequency plateau were calculated independently for each 

trial and subject. Only the final seven second of each plateau was used for calculations 

to ensure attainm ent of the criteria frequency.

Circular measures of central tendency of relative phase values were calculated accord­

ing to Mardia (1972) (see also Burgess-Limerick, Abernathy & Neal 1991). These 

statistics were chosen over conventional values (x , a) due to computational errors en­

countered while describing circular distributions.* In summary, the average direction 

(vector) is used in place of arithmetic mean while uniformity is used in place of stan­

dard deviation. The circular variance (uniformity) is defined over a range of 0 to 1, 

however a transformation readily converts th is  to the continuous range of 0 to oo for 

inferential calculations.*.

'  A good point to  consider here is the problem of calculating an average direction from a  selection of 
compass readings (from 0° to 360°): 7°, 342°, 350°, a n d  16°. T he arithm etic mean of these values is 179 
degrees w ith a standard  deviation of 193. However, these num bers are unreasonable, more appropriate 
values would be in the order of x =  359, a  =  15.

i st =  ( - 21oge( l  -  S c ))°'5 where St is the transform ed variance and sc uniformity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Experiment 4: Modeling a Human Oscillator system 129

7.1.1.7 M odel Construction and Assessm ent

Prior to the construction and training of the gDBN models, phase values for each limb 

were clustered in a ramp-fashion. The oscillatory amplitude was divided into 18 se­

quential observations representing 10 positions (see Figure 7.1). A total of 40 gDBN

2

Figure 7.1: Schem atic of discrete clustering m ethod for a  10 position (18 observation) oscillator. 
Observation segm ents represent segments of an angular movement through 180°. Note th a t the  # 1  
position and the  #10 position are only encoded by one s ta te  as they represent movement reversals.

configurations were examined in this study. Specifically, a set of models was trained 

on each of anti-phase (AP), transition (TRAN), in-phase post transition (IPpost), and 

inphase (IP) data, grouped by movement frequency plateau. These divisions were es­

tablished independently for each participant, based on continuous relative phase calcu­

lations and observed phase-shifts from the desired (anti-phase) relation to the in-phase 

relation. A classification of a transition frequency was made for plateaus where each 

participant made the majority of their transitions. AP and IPpost classifications were 

assigned to the neighbouring frequency plateau (i.e., for a TRAN plateau of 1.75 Hz, 

AP and IP post plateaus of 1.5 and 2.0 (respectively) would be selected) In the case of 

trials instantiated with an in-phase relation only one class of models was constructed. 

Within each class (AP, TRAN, IPpost, IP) 10 weighting configurations were examined. 

Specifically, models were trained on randomly selected class data (across subjects) 

with H connection values of (0%, 0%)(100%,100%), (10%,10%), (1%,1%), (100%,0%),
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(0%,100%), (10%,0%), (0%,10%), (1%,0%), and (0%,1%)J Following training model 

performance was assessed relative to a novel data set (again randomly sampled from 

participant sequences) from all classes using a  gViterbi evaluation of the most likely 

state sequence followed by a constrained MonteCarlo and MSD measure.^

7.1 .2  D iscu ssion  an d  R esu lts

As is evident in Table 7.1, participants successfully attained their initial coordination 

goals. Moreover, by examination of the relative phase relations, in-phase destabilization 

is evident for each participant beyond a critical oscillation frequency. The graphs of such 

phase transitions also dem onstrate the tendency for movement variability to decrease 

post transition (Figure 7.2). These data are consistent with the HKB model; when the 

coordination system is driven beyond a critical state, it self-organizes toward another 

“attractor” state. The demonstration of this non-linear shift in overt behaviour has 

been replicated many times and is therefore not the focus of this investigation. Of more 

interest was whether this data  set could be used to train  a series of gDBN models to 

replicate the participant behaviour based solely upon variations in coupling strength 

and symmetry -  the variables hypothesized to scale as the perceptual-motor system 

is taxed. Beyond this hypothesis, there was also a goal of statistically summarizing 

the system behaviour at stable and unstable points; regardless of the success of the 

coupling hypothesis this result would demonstrate the general feature of HMMs and 

gDBNs for prototyping a dynamical system based on sequential observations.

Pertaining to the prototyping and replication goal of this investigation, several features

5 Percentage connection values are represented in the ft m atrix  w ithin the gDBN. Values displayed 
here may be read as: (1) left hand influence on right; and right hand  on left. Percentage scale is the 
m agnitude of connection relative to the within node (hand) connection value -  in this examination this 
value was always 1 (100%).

'T h e  included d a ta  tables m ust be examined in an orderly fashion. The Iog(p—L) values represent 
the likelihood tha t a sequence (the gViterbi generated one) would happen. Thus, regardless of the the 
other number performances, if th is number is small (i.e., highly negative) then the model is inneffective 
a t d a ta  representation. If the log probability is reasonable however, then  the Hamming score and MSD 
can be examined to  determ ine the degree of fit of this sequence based on predicted observations
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Starting Coordination Pattern
Plateau Freq. In-Phase Anti-Phase

Subj 1 Subj 2 Subj 3 Subj 1 Subj 2 Subj 3

1 -5.68751 -7.38311 6.25457 173.919 173J 155 -175.412
2 •0.70834 -5.28101 2.707342 169.968 170.8407 -174.223

0.75 Hz 3 -5.98288 -3.74625 1.639168 1711309 170.7757 -175.442
4 -109509 -6.32333 4.675634 173.7061 1710178 -172.902
5 -6.87878 -4.48329 3.178954 171.901 167.7468 -175.031

1 -4.36852 -15.3893 5.661889 172.9944 161.0633 -171359
2 -5.93042 -10.4959 3.624753 167.5246 1610008 -174.567

1.0 Hz. 3 -4.44619 -9.12365 -0.12298 170.4462 168.9609 -174.647
4 -3.16621 -9.6005 119609 171.613 166.1378 -172.347
5 -5.1224 -8.09879 3.405997 170.6817 163.8535 -169.954

1 -7.44776 -14.9543 4.815001 169.2301 155.367 -171286
2 -7.92359 -9.38902 -0.16047 165.5243 159.2785 -168.969

1.25 Hz. 3 -8.28625 -16.7008 0.569401 164.9327 160.2011 -174.943
4 -5.32606 -105618 0.77156 166.2815 158.8451 -166.888
5 -8.48037 -9.71245 -1.94162 161.9432 159.619 -171224

1 -8.72017 •14.9866 5.667345 167.6348 155.5344 178.7646
2 -9.77449 -13.9496 -4.6449 1617758 149.4181 -176.058

1.5 Hz. 3 -9.04643 -15.0031 -0.48608 1612273 154.8856 175.1265
4 -6.47117 -7.46164 1.447535 168.3811 147.7977 164.1789
5 -9.67531 -15.9149 1.033633 161.1832 146.4639 171.9303

1 -8.81558 -15.5987 1.684873 178.1005 139.6547 176.4482
2 -13.923 -26.0418 2.237374 1669159 130.9441 65.0649

1.75 Hz. 3 -12.4435 -14.7905 -2.64522 167.3173 155.5336 -6.01401
4 -6.78448 -15.6614 1093533 -167.299 147.4054 -2.98145
5 -11.7124 -17.0919 -2.61749 -172.927 138.6921 18.93486

1 -5.54158 -13.0426 -5.46019 -18.4796 126.0551 16.89333
2 -11.6138 -26.697 -6.80958 -1.29799 125.1022 0.613117

2.0 Hz. 3 -10.2253 -20.1432 -4.13363 -179.273 127.5976 -7.86285
4 -6.42959 -15.701 4.132981 -6.90305 114.9509 -11.9248
5 -12.2721 -14.7638 3.926155 0.548553 134.143 -6.57041

1 -6.47375 -11.3516 2.082441 -0.68945 165.5397 3.424451
2 -7.6754 -24.8125 -3.40209 -3.34419 106.9974 0.064112

2.25Hz. 3 -10.7416 -12.7207 -10.3684 0.25056 117.0535 -5.19089
4 -8.86305 -9.53002 -5.79766 -3.42637 115.7761 -13.3791
5 -8.21011 -8.53894 0.319829 -6.47561 90.19324 -5.85981

1 -2.25454 -1.29391 -4.90073 3.059222 84.45869 -1.94717
2 -8.85664 -12.0406 -2.92574 -0.34975 119.0302 -10.0016

2.5 3 -8.66613 -7.85433 -13.2347 -3.72669 118.7147 •13.4551
4 -8.11805 -2.52056 -6.63212 -1.07607 58.99432 -7.97849
5 -4.91588 1.728021 -9.34883 0.754367 69.99004 -14.6234

T a b le  7.1: Mean relative phase values for participants across all s ta rt phase relations and frequency 
plateaus. Summary statistics calculated according Mardia 1972.
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AP TRA N  IP post IP.
L - > R TO V r H D istance MSD IoRlOCP(OiL)) H Distance M SD  lo*(P(C){L)) H Distance MSD Ior(P(0|L)> H D istance M SD Ior(P(0{L»

<K

0.00

*

0.00 1.00 0.00 -188.14 0.07 8.47 0.10 7.83 0.26 5.94
1.00 0.00 0.91 010 -295J6 0.47 4.47 0.45 407 0.49 3.84
0.00 1.00 095 a  io -201.87 0.82 0.82 . 0.75 055 0.79 0.40 -455.00
1.00 1.00 0.98 002 •223.41 0.99 0.01 -30278 0.98 002 -*59.26 0.98 0.02 •388.47

10.00 000 0.94 007 •269.34 0.48 4.45 0.47 404 . 0.56 3.13
0.00 10.00 0.95 010 •20297 0.82 0.82 0.77 048 -50468 0.81 0.39 -127.40

10.00 10.00 0.96 004 253.60 0.89 0.12 -303.41 0.94 006 •39608 0.94 0.06 -37558
100.00 0.00 0.94 006 -185.45 0.48 0.45 052 3.27 0.57 3.01

0.00 100.00 0.91 0.17 •216.89 0.80 0.86 - 0.76 046 -457.95 0.78 0.42 •417.12
100.00 10000 0.88 0.12 •299.71 0.88 0.19 -417.54 0.83 039 -447 78 0.84 0.34 -428.31

Table 7.2: AP models versus each of TR A N ,IP,IPpost, and AP data. The left-most column depicts 
the coupling behaviour in % maximum. H D istance and MSD account for the degree of correspondence 
between traces using a  Hamming distance m easure and m ean distance respectively. Independently 
of the distance measures, loglO(p(0 —L)) represents the likelihood of the predicted sequence; if this 
measure is either very small or then then th e  sim ulated observation sequence is non-conforming 
(regardless of the  correspondence measure).

of model performance are important to note (see Tables 7.2 to 7.5; see also Appendix 

B for a model example). In general, the gViterbi solution was exceptional a t predicting 

the recorded observation sequence (e.g., Table 7.2; 0%,0%). Measures of observation 

correspondence often reached values beyond 0.9 (Hamming score) and < 1 . 0  discrete 

observations (MSD); this reflects data being represented accurately over 90% of the 

time and, when errors are made, they occur on average only one ‘step’ away from the 

recorded value. Also, model performance varied as a  function of both the independent 

measures -  coupling and plateau frequency (i.e., IP, IPpost etc) -  showing sensitivity to 

the experimental manipulation. As should be expected, scores were almost invariably 

superior for similar trials. This demonstration of recognition, while im portant, should 

be evaluated with caution. In order for a model to be useful it must show recognition of 

‘itself’ as well as discrimination between similar and dissimilar data sets. This second 

feature should also be considered within the framework of a phase-transition paradigm. 

Specifically, if a coupling-strength variation model is to be considered successful at 

representing the the state of a control variable it should:

1: Recognize similar systems

AP models should be likely when evaluating any anti-phase d a ta  set 

IPpost model should recognize all self-similar conditions (IP & IPpost)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Experiment 4: Modeling a Human Oscillator system 133

I

a

Tune (samples)

Time (samples)

Time (samples)

Figure 7.2: Example phase transitions from participant data. Upper Panel: D ata  from tria l 3 of 
participant # 1  (2.0 Hz. plateau). Middle Panel: D ata  from tria l 1 of participant # 2  in the  (1.3 Hz. 
p lateau )Bottom  Panel: D ata  from trial 5 of participant # 3  in the  (1.5 Hz. plateau).
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AP TRAN IP  DOS! ]P
L * > R R -> L H Distance MSD lofKXP(OiL)) H Distance MSD to*(P(0|L)) H Distance MSD lo*(P(0|U) H Distance MSD Ior(P (0 |L ))

*

0.00

*

0.00 o n 6.95 050 3.17 0.07 7.13 0.11 6.75
1.00 0.00 0.33 5.48 0.75 1.41 -49550 0.28 5.85 0.31 555 -
0.00 1.00 0.19 6.25 057 265 •42051 0.13 5.97 - 0.16 5.72
1.00 1.00 0.62 1.85 -575.34 0.62 221 0.63 203 -605.82 0.62 2.08 -609.95

10.00 0.00 0.33 5.49 0.75 1.45 -494.46 0.28 5.87 - 0.31 557
0.00 10.00 0.19 6.26 - 0.57 264 •420.70 0.13 5.98 - 0.16 5.72

1000 10.00 0.63 1.83 -57299 0.63 221 0.64 200 •606.17 0.62 211
100.00 0.00 0.33 5.53 - 0.70 1.81 •189.48 0.28 5.87 0.31 558

0.00 100.00 0.43 283 -470.79 057 264 -42055 0.31 -429.28 0.28 4.11 •448.41
100.00 100.00 0.61 288 -318.24 0.64 221 -23550 0.60 3.77 -285.48 0.62 1.81 •264.09

Table 7.3: TRAN models versus each of TRAN,IP,IPpost, and AP da ta . T he left-most column depicts 
the  coupling behaviour in % m axim um . H Distance and MSD account for the  degree of correspondence 
between traces using a Hamm ing distance measure and mean distance respectively. Independently 
of the distance measures, logl0 (p (O — L)) represents the likelihood o f the  predicted sequence; if th is 
measure is either very small or then then the simulated observation sequence is non-conforming 
(regardless of the correspondence m easure).

2: Discriminate incongruent data

AP models should discriminate between AP and IP 

IP model should discriminate between IP and AP

3: Be somewhat consistent with neighbouring transition data

Given these restrictions, some tendencies appear. In particular, only the symmetric 

coupling parameterized models accurately replicate behaviour under anti-phase con­

ditions. Conversely, only asymmetric models prototype in-phase behaviours -  either 

IP or IPpost (see Tables 7.2 and 7.5). Contrary to predictions however, no models 

successfully encapsulate all requirements. Attempts either were unable to descriminate 

between inconsistent modes (e.g., AP & IP; Table 7.2, 100%, 100%) or were unable to 

recognize self-similarity (e.g., Table 7.4, 0%, 0%).

While there are many possible explanations for these null results, two proffer testable 

hypotheses. The first account is that similar behaviour may be generated by diver­

gent control parameters. For example, IP and IPpost may be a t different, and likely 

not ‘critical’, positions on the control state spectrum. While this could arise from 

several conditions (e.g., instructions or initial conditions), if this were the case model 

agreement between generated parameters would not be expected. The second, some-
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L -> R R -> L
AP TRAN IP post IP

IlD isuiK ^M SD JinglO IPC O IM ^^^istaiic^lS^JoglPfO jU ^^^tstanc^^S^JoglPIO ILI^^ID isunc^M S^JoglP lO jL))
%

000

*

0.00 0.15 6.99 0.38 4.16 0.87 0.24 •200.66 0.46 4.16
1.00 0.00 051 3.36 0.80 025 -609.88 0.87 0.24 -199.33 0.85 0.33 -241.02
0.00 1.00 0.47 3.82 . 0.46 4.05 0.87 0.22 -210.89 0.84 0.32 -250.38
1.00 1.00 0.79 0.23 •512.45 0.86 0.17 -488.76 0.86 0.23 -211.92 0.85 0.22 •232.72

10.00 0.00 0.63 0.62 •701.15 0.79 0.26 •525.16 0.85 025 •201.62 0.83 0.34 •23457
0.00 10.00 0.47 3.51 0.47 4.05 - 0.87 0.22 •215.53 0.84 0.32 •237.13

iaoo 10.00 0.80 0.23 -455.07 0.87 0.16 -434.22 0.87 0.27 -223.26 0.85 0.19 •240.37
100.00 000 051 3.46 0.74 0.80 ♦338.55 0.84 0.29 -205.02 0.82 0.37 •223.19

0.00 100.00 0.47 3.51 - 0.46 4.05 - 0.86 023 -191.86 0.84 032 •230.85
100.00 100.00 0.89 0.11 -399.57 0.9! 0.10 •338.28 0.89 a n -264.16 0.90 0.11 -287.35

Table 7.4: IPpost models versus each of T R A N ,IP ,IPpost, and AP data. The left-m ost column depicts 
the coupling behaviour in % maximum. H D istance and MSD account for the degree of correspondence 
between traces using a Hamming distance m easure and mean distance respectively. Independently 
of the distance measures, logl0(p(O — L)) represents the likelihood of the pred ic ted  sequence; if this 
measure is either very small or then then  the  sim ulated observation sequence is non-conforming 
(regardless of the correspondence m easure).

L -> R R -> L
AE

H Distance MSD togl0(P(O|L))
THAN

H Distance MSD log(P(0|L))
IP DOSt

H Distance MSD Iok(P(0|L))
IP

H Distance MSD log(P(0|L))
**

000

I

0.00 0.11 6.81 0.05 7.43 0.22 5.35 0.47 3.08
1.00 0.00 0.55 3.87 0.48 4.45 0.67 2.4! 0.91 0.25 -230.96
ooo 1.00 0.29 4.98 0.28 5.22 0.75 0.79 •250.64 0.77 0.75 •21963
1.00 1.00 0.86 0.22 •566.43 0.86 0.27 -39543 0.89 0.26 •243.68 0.89 0.27 •230.91

10.00 000 0.55 3.87 0.51 4.01 0.67 2.42 091 0.25 •23256
000 10.00 0.29 5.16 0.56 2.04 0.75 0.79 -246.12 0.77 0.72 •220.16

10.00 1000 0.85 0.20 -135.23 0.86 0.22 -391.28 0.90 0.17 -247.18 090 0.22 •235.66
100.00 0.00 0.55 3.87 051 4.10 0.81 107 0.92 0.25 185 06

000 100.00 0.56 1.77 -579.31 059 2.00 0.75 0.80 -247.31 0.75 0.76 •22058
100 00 too 00 0.76 0.77 -399.87 0.72 0.73 •31166 0.77 056 •289.60 0.77 0.54 -258.01

Table 7.5: IP models versus each of T R A N ,IP ,IPpost, and AP data. The left-m ost column depicts 
the coupling behaviour in % maximum. H D istance and MSD account for the degree of correspondence 
between traces using a Hamming distance m easure and mean distance respectively. Independently 
of the distance measures, logl0(p(O — L)) represents the likelihood of the pred ic ted  sequence; if this 
measure is either very small or then th en  the sim ulated observation sequence is non-conforming 
(regardless of the correspondence measure).

what more tenable explanation suggests tha t the model param eters were insufficient to 

capture all the subtleties of the system. Regardless of the basis, further examination 

of the underlying parameters of simple coordination is needed before any reasonable 

conclusion can be reached.

7.1.3 C onclusions

Overall, the results of this final investigation again emphasized the utility of the gen­

eralized dynamical Bayesian network for applications in modeling human movement.
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Even though some problems have been raised regarding the performance of models 

within the scope of the current coupling hypotheses, the approach cannot be summa­

rized as anything else but successful. Continuous, complex, non-linear behaviours were 

accurately represented by the acquired models, sometimes accounting for > 95% of the 

data variance! Moreover, recognition of pre- and post-transition behaviours was ac­

complished even given the somewhat ambiguous classifications; participants may have 

made transitions earlier, later, or not at all -  classification was made with reference to 

their modal performance.

This method has demonstrated great representational efficacy, along with appropriate 

and robust estimation methods, suggesting its application to more focused investigation 

of internal motor parameters in movement. For example, one might examine the role 

of control parameters on not only the direction and strength of coupling, but also the 

‘shape’ of coupling. Current models leave little flexibility for changes in the fundamental 

properties other than coupling (6 /a ); the expression of coupling, whether due to the 

fundamental eigenfrequencies of the oscillators or neuromotor noise, is not testable 

under the HKB framework. Using gDBN methods, not only the static values of these 

paremeters are examinable (Appendix B), but also their evolution. Models trained on 

consecutive frequency requirements can be compared at a sub-m atrix level, examining 

the dynamics of features such as oscillator noise and perhaps symmetry as a function 

of the control parameter.

Regardless of the achievements of the gDBN models for reproducing behaviour, the 

final point of this discussion should be the major shortfall of this approach, that is, 

the reliance on a temporally complete search of parameters during evaluation (i.e., 

gViterbi). Although this approach does adequately test the representational power of 

any model, it performs this test in an manner inconsistent with biology. For example, 

it is unreasonable to propose that a control system assess its entire performance (e.g., 

30 sec) via feedforward processes prior to movement. This evaluation would be the 

only way that a Viterbi search could control action. Perhaps, this is an inappropriate
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expectation; perhaps instead a procedure such as this is used at movement completion 

-  to assess for the purposes of learning.
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Chapter 8

On Reaching for a Cup of Coffee: 

Revisited

Having had an extensive exposure to the current approaches to the study of human 

movement, as well as the framework posed here, let us reconsider the simple task of 

picking up a cup of coffee and how one can study it. This movement problem requires 

the rapid inclusion, via computation or otherwise, of a  large number of perceptual and 

motor factors; a problem which has traditionally required an “all-knowing” homunculus 

to act as the puppet master. The focus of this dissertation has been the development, 

discussion and testing of Bayesian process models (i.e., HMMs and gDBNs) for proto­

typing human actions. The framework has demonstrated notable success at replicating 

a variety of tasks, distinguishing it from many of the current modeling approaches in 

the literature on several fronts. Likely the most im portant feature of the gDBN/HMM 

method is its uses and inclusion of variability into its structure; unlike determinis­

tic models of action, the indeterminacy of the motor control system is accounted for 

implicitly within the internal parameters of the model. A property that should also 

be considered is the inherent dynamic behaviour of this framework, while retaining a 

process-oriented or modular format. In concert with transparent, flexible and proven
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optimization, this dynamic modularity separates the gDBN/HM M  methods of control 

representation from competitors such as ANNs and dynam ical pattern  theory, making 

it a  viable choice for researches wishing to prototype action. However, although signif­

icant success has been demonstrated, the immaturity of the approach demands further 

refinements for movement science. Above all, the model is very general, being appli­

cable to any complex motor task while still providing a  principled, optimal parameter 

estimation.

8.1 Extensions

8 .1 .1  Im proving Q T hrough g B a u m  W elch

As was briefly discussed in Chapter 5, there are many ways to  envision the update 

procedures associated with generalized Dynamical Bayesian networks. The format 

discussed and implemented in this dissertation utilized a “m ass action” approach to 

combining evidence from multiple nodes in determining the behaviour of each HMM 

independently. While this contributor approach corresponds subjectively to other ap­

proaches to machine learning (e.g., artificial neural networks) and Bayesian networks 

(e.g, Ghahramani & Jordan 1997) it is unable to replicate some of the features of a 

physical movement system. For example, there should be a mechanism within such a 

model do dissallow individual states; in the current im plementation, the context pro­

vided by the weighting matrix and inter-HMMs can only increase the likelihood of an 

event -  not prevent it.

Two solutions present themselves to extend the mass action model for this purpose. In 

the method described by equation 8.1, only a  slight change has been made; the range of 

values permitted for the weighting term has been extended below zero. The implications 

of this change however allows the effect of a node on the behaviour of another to be 

inhibitory; an effect consistent with other mass action approaches (c.f., ANNs) and
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some biological behaviours (e.g., presynaptic inhibition, inhibition of return). Although 

promising for extending the current method, this amendment is still unable to evoke 

inhibition of individual state transitions.

9t+1 oc E  j +  ( E
^=J-U /  \i#*. y

; For — 1 <  < 1 (8.1)

The second proposed change is somewhat more fundamental; quite simply, the combi­

nation of inter-nodal terms is done in a  multiplicative fashion (Equation 8.2) instead 

of an additive one. The effect of this change however can be dem onstrated by simply 

considering a scenario where the inter-HMM (off-diagonal of the causal A) contains a 

zero. The presence of a zero will make the occurrence of that transition impossible.

? i + i a (8 .2 )

While this second method appears to have many benefits, such as inhibitory control at 

a state level, there are problems. For example, consider the case where all transitions 

are impossible due to inter-connection restrictions. W hat is the expected behaviour of 

the system? The more substantial concern however is the implication for Expectation 

Maximization; although the execution behaviour of the model seems reasonable, the 

effect of many zeroed terms on update and recursion may be more difficult.

A final consideration for improvements to gDBN update and production involves gen­

erating state expressions; again there are two extensions. The first involves the ob­

servations being determined base on a continuous probability density as opposed dis­

crete observations. While the basic expression for the gDBN algorithms would remain 

much unchanged with this approach (e.g. o3 oc p(o>\xJ) the implications for model 

update might be extensive. In addition, the variable type permissible for legitimate 

observations would be increased to continuous, ratio data. The second adjustment re­

quires a  substantial algorithmic and logical extension -  having the behaviour of one 

node influence the expression of another (i.e., o3 oc p (o |iJI); Vz, j) .  While some-
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what against the tradition of HMMs, this approach is definitely reminiscent of the 

the theoretical formulation proposed by Berkinblit for Tsetlin autom ata (Berkinblit 

et al. 1986) and, by extension, proponents of equilibrium point hypotheses for action (; 

Latash 1993, Feldman 1986) the components of the system would be linked based on 

their common output.

8.1.2 A  ‘L oca l’ gV iterb i Controller

As was alluded to in the final section of Chapter 7, the gViterbi procedure makes 

some unreasonable assumptions if it is to be implemented as a real-time controller. 

Specifically, the algorithm requires knowledge of the entire sequence to be able to 

determine the optimal state sequence for it to arise from. The obvious solution, and the 

one suggested, is to restrict the extent of the optimization a  local search -  a “working 

motor memory” model. As such, for t -  n to t, recurse as before, such that <f*‘ is 

vector of the likelihood of each state given the observation. This local recursion would 

occur across the recent ‘memory’ of the system -  effectively estimating the control 

process which ju st occurred or perhaps evaluating the best method of attaining a desired 

outcome. Again, while the implementation seems straight forward, the implications of 

this change raises questions regarding issues like optimal memory size and local versus 

global optimization.

Perhaps the best way to consider this adaptation of Viterbi is to frame it within a 

classic information processing model for movement production. For example, during 

the “movement planning” portion of generation a feedforward expectation of the action 

would be produced. While the exact temporal extent of this event is debatable, one 

might expect this duration to be at least long enough in duration to allow visual 

feedback (i.e., the window size of gViterbi). The goal output of the system could be 

assessed over this window and the optimal set of control states selected. During online 

controlling, the same process can occur in a feedback fashion, determining the events
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which occurred recently (this allows for noise in the transmission and production of 

the commanded action). However, before becoming embroiled in a debate of the online 

control properties of gViterbi, it should be noted that many of the features it provides 

can be augmented or even replaced with a complete model design, improved connection 

implementation (see previous), and perhaps even increased system order (i.e., t-n to t).

8.2 Concluding Remarks

A number of problems for movement scientists have been discussed, a number of pos­

sible solutions presented. However, in light of this dissertation and the information 

it contains, where are we left? A debate still rages between proponents of informa­

tion processing researchers and those who profess a dynamical systems approach; one 

side stresses the importance of understanding the processes of human control while the 

other consideres the emergent behaviour, suggesting tha t the component interact in 

a complex even chaotic fashion better examined at a collective level. Perhaps tha t is 

where this research belongs: bridging the “theoretical chasm” (Newell 2001) that has 

appeared in the motor control literature. This joining is im portant if ever a compre­

hensive understanding -  via modeling or experimentation -  of the action-perception is 

going to be gained.
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Appendix A

Polhemus Operations

A .l System  Configuration

The Polhemus U ltratrak Pro* six dimensional movement sensing system is employed 

for a wide variety of tasks ranging from animation and computer graphics to medical 

applications. In order to capture movement, three orthogonally arranged transm itter 

coils (magnetic-dipole field source) generate a  pulsed field. Within the field, the position 

and orientation of a set of receivers (up to 32), also composed of three coils, are sampled 

(Raab, Blood, Steiner &. Jones 1979). Sampling rates of either 60 or 120 Hz. are possible 

depending upon the number of active sensors and the system configuration.

Magnetic system have several key features th a t make them an attractive alternative 

to optical systems (e.g. Optotrak*). By collecting 6-degree of freedom d a ta  (x, y, z, 

yaw, pitch, roll) collection, magnetic motion tracking allows a more rich description of 

movement. The strongest benefit is occlusion free recording; optical systems are reliant 

upon line-of site between the camera(s) and the transm itter, thus reducing the freedom

’h ttp ://w w w .polhem us.com /; Hereafter “Polhem us”
* http://w w w .ndigital.com
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of the subject to move naturally. One drawback however, is a  high susceptibility to 

field distortions due to ferrous metals, thus lowering the accuracy and precision of 

measurements; these errors may be large depending upon the size and proximity of the 

iron to the receiver coils. Errors have been substantially reduced however, by calibration 

of the collection area, w ith precision in the order of ±1 mm and ±2° for position and 

orientation respectively w ithin 2 m of source coil (Livingston & State 1997, Boulic 1999).

A .2 System Calibration

As mentioned in the previous section, anisotropic distortions in the magnetic field of 

sensing systems such as Polhemus can cause substantial measurement error. Recently, 

Bryson (1992) investigated calibration for a Polhemus system using two methods.

The first, the least squares polynomial model, may be expressed as:

Px =  P° lyxiPx ,Py,P:)  (A-1)

Py =  po ly y {px ,Py,Pz)  (A.2)

p'z = p o l y z (Px,Py ,Pz)  (A.3)

where p x , P y , P z  correspond to position coordinates. After testing polynomials ranging 

in order from 1 to 8, a 4th order solution produced the most accurate result. The alter­

native is table lookup; this method is currently employed by the Polhemus corporation 

for calibration of the U ltratrak Pro. During table lookup an offset value is assigned 

to each incoming point based upon the weighted sums of errors (offsets) observed at 

known fiducial points (Equation A.4):

= XI (A.4)
j€Ni
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where 4>(dij) defines the function of distance between fiducial position X j  in a neigh­

bourhood of i, N{, and a test position X ,. The final term, SXj ,  being the known ad­

justm ent for fiducial Xj .  Due to the reliance of such a model on the distance between 

fiducials for accurate interpolation, a  dense calibration grid would be advantageous; the 

calibration parameters supplied by Polhemus however entail grid dimensions of 1 f t 3.

A .2 .1  Gaussian M ix tu res

The initial calibration method applied to data collection incorporated the non-linearities 

of the polynomial regression and the local-list nature of the lookup table interpolation 

into a single Gaussian Field Mixture Model (GFM). In this method, field distortions 

were modeled as tri-variate normal probability density functions (Equation A.5) sur­

rounding fiducials points.

n  -  - V . ) r - 1 (A> -  A*. )T
PlJ "  ( |r |2 7 r)3/ 2 {A'5)

Here, X t corresponds to the position of fiducial point i and Xj  — Xi  to the difference 

vector between data point j  and fiducial i. X T is the transpose of vector X  with T 

corresponding to the 3D covariance matrix which defines shape of the Gaussian (<LY).

Using a harmonic mean, the net effect of the error distributions associated with all 

neighbouring fiducials (SXj)  may be combined into a correction offset to be applied to 

the incoming data point (Equation A.6, see Figure A.l).

SXj  = ^ l]SXl (A.6)
EiPij

The aim of this calibration procedure was to minimize difference between the veridical 

location of the sensor and its updated value. The parameters of the covariance matrices
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Figure A.l: As a new data point arrives, the harmonic mean of the offsets being applied 
to the surrounding fiducials is applied to that point (Caelli et al. 2000).

were independently modified to further rotate and scale each distribution to maximize 

fit to the data (Caelli et al. in submission).

However, while this mixture m ethod does indeed demonstrate high spatial resolution 

(<  0.5 cm) it induces substantial computational load. In fact, the time required to 

locate a  point within the field, estim ate its nearest distortion distributions, and generate 

a corrected value served to dissable a Pentium (600 MHz, 126 mgb RAM) PC when more 

than 5 sensors were in use. Do to this fatal shortfall, other methods were investigated.

A.3 A Neural Network Calibration Algorithm

Since feed-forward neural networks are well known locally adaptive polynomial fitting 

procedures, a calibration procedure based on such an architecture was implemented 

(Figure A.2). A step-wise approach was implemented where different calibrations were 

performed using an increasing number of hidden units until best performance was 

obtained at the cross-over between RMS error on training and test d a ta  (Mitchell 1997).

Thirty-six (36) hidden units were found to cover the variations in the magnetic field, due 

presumably to the distribution of metal in the environment. For an volume inscribed by
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support positions

input
position

output
adjustment

gaussian basis function

F ig u re  A.2: N eural network calibration model. Here the hidden units are used to as local polynomial 
interpolation functions.

1.5 m from the transm itter, this resulted in a least overall error of ±5mm. Unlike the 

GFM approach, the majority of computation was completed during model estimation; 

at runtime, this approach generated very little processing delay. Returning to earlier 

methods of calibration, note that although this approach implements a neural network, 

the effective behaviour of calibration is very similar to that of the polynomial estimates 

of Bryson (1992).
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Appendix B

Example gDBN

Included here is an example gDBN parameter set. As is evident by the weighting 

matrix, this model was trained with a 10%-10% connection strength. The data used 

for model update was an IPpost file (i.e. post transition in-phase data).
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[Model 1]
M= 18.00
N= 18.00
A:___ _____

0.45 0.47 "ooo 0.00 0.00 0.00 0.00 0.01 0.00 o!ot 0.01 0.00 0.01! 0.0110.00 0.01 0.01
0.02 0.02 0.84 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.01 0.01 0.70 0.15 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.01 0.01 0.01 0.64 0.19 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.0110.01 0.01 0.01 0.02
0.02 0.01 0.01 0.00 0.01 0.68 0.15 0.01 0.01 0.01 0.02 0.01 0.01 0.01! 0.01 0.01 0.01 0.02
0.02 0.01 0.01 0.00 0.01 0.01 0.80 0.03 0.01 0.01 0.02 0.01 0.01 0.01 j 0.0110.01 0.01 0.02
0.02 0.01 0.01 0.00 o'oi 0.00 0.01 0.83 0.02 0.01 0.02 0.01 0.01 0.011 0.01 0.01! 0.01 0.01
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.60 0.03 0.17 0.06 0.01 O.Oli 0.01 0.01 0.01 0.02
0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.65 0.10 0.02 0.01 0.01! 0.01 0.01 0.01 0.02
0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.08 0.69 0.02 0.01 0.01! 0.01 0.01 0.01 0.02
0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.11 0.75 0.01! 0.0110.01 0.01 0.01; 0.01
0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.82 0.01 j 0.01 0.01 0.01! 0.02
0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.65! 0.19 0.01 0.01! 0.02
0.02 0.02 0.01 0.01 0.01 0.01 ,0.01 0.01 0.02 0.01 0.03 0.0110.01! 0.01; 0.38; 0.42 0.01 j 0.02
0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.02! 0.01 0.01 0.01 0.57 020; 0.02
0.02' 0.01 0.01 0.01' 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01! 0.01 0.01' 0.01 i 0.01 0 .70' 0.13
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01! 0.01 0.01! 0.01 0.01 0.01! 0.83
0.79 0.01 0.01 0.00: 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 i 0.01 0.01! 0.0116.61 0.011 0.09

0.77 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o.oo 6.95 "0.65 o.do o.oo 6.66 0.60 6.60 0.00 0.06 6.00 0.00 0.00

1 o.ooi o.ooi 1.0010.00! o.ooi 0.00! 0.00! o.ooi o.ooi 0.00 0.00
0.00

O.OOj 0.00! O.OOi o.ooi 0.00! 0.00! O.OOI
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 io.oo 0.00 0.00 0.00 io.oo
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [0.00 ! 0.00 0.00 0.00 io.oo
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 IO.OO 0.00 0.00 0.00 io.oo
0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.00 0.00 0.00 j 0.00 0.00 0.00 0.00 Io.oo
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.34 0.00 0.00 0.00 0.00 iO.OO 0.00! 0.00 0.00 Io.oo
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 io.oo
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.34 0.00 0.00 0.00 0.00 0.00 0.00 IO.OO
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.24 0.00 [0.00 0.00 0.00 0.00 [0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 [0.00 o.oo; o.oo 0.00 [0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 [o.oo 0.00 0.00 0.00 jO.OO
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 j 1.00 0.00 0.00 0.00 IO.OO
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 1.00 0.00 0.00 [0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [ooo 0.00 1.00 0.00 fo o o
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [0.00 0.00 0.00 1.00 io.oo

1 0.00 0.00! 0.00! 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 io.oo 0.00! 0.00 0.00 11.00

pi:
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
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[Model 2]
M= 18.00
N= 18.00
A:___ _____

0.47 0.49 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00! 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.01 0.80 0.13 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 j 0.00 0.01 0.00 0.00 0.00 0.00
0.01 0.01 0.00 0.60 0.32 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
0.01 0.01 0.00 0.00 0.41 0.49 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01
0.02 0.01 0.01 0.01 0.01 0.63 0.26 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01
0.01 0.01 0.00 0.00 0.01 0.00 0.87 0.05 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01
0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.88 0.04 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.92 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.81 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.32 0.63 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.92 0.00 0.01 0.00 0.00 0.00 0.00
0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.88 0.04 0.00 0.00 0.00 0.01
0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.0110.00 0.81 0.11 0.000.000.01
0.013 0.01 0.000.000.01 0.000.01 0.000.000.01 0.000.01 j 0.000.01 0.29 0.63 0.000.01
0.02 0.01 0.01 0.01 0.01 0.000.02 0.01 0.01 0.01 0.01 0.01 iO.OO 0.01 0.04 0.01 0.80 0.01
0.02 0.01 0.01 0.000.01 0.000.01 0.01 0.01 0.01 0.01 0.011 0.000.01 0.01 0.000.71 0.17
0.02 0.01 0.000.000.01 0.000.01 0.000.000.01 0.000.01 io .oo 0.01 0.000.000.000.91
0.91 0.02 0.000.000.000.000.01 0.000.000.01 0.000.01! O.OO 0.01 0.000.000.000.01

B:
0.89 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.49 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
o.ooi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 000 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
o.oo1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93

pi:
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
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[Model 1on2]
A: _____

0.51 0.37 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00! 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.27 0.43 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00
0.00 0.00 0.19 0.35 0.30 0.15 0.00 0.00 0.00 0.00 0.00 o.oo! ooo 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.06 0.37 0.38 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.06 0.25 0.63 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.12 0.19 0.62 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.22 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.33 0.47 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.35 0.08 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.32] 0.05 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.27 0.06 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.34 0.05 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.29 0.06 0.06 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00; 0.00 0.00 0.33 0.42 0.25 0.00
0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.44 0.15
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.63
0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo! o.oo 0.00 0.00 0.00 0.00 0.34

[Model 2on1] 
A:

0.39 0.43 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O.OOI 0.21 0.45 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.29 0.41 0.18 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.20 0.65 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.23 0.38 0.33 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.51 0.40 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.29 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.26 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.11 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.36 0.42 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.70 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.25 0.60 0.10 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.12 0.53 0.30 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.47 0.41 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.71 0.10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.83
0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.53
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

[Weightings]
C:

1.00 0.10
0.10 1.00
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