
An Empirical Study to Repair Deep Object Detectors

by

Yuxin Yue

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent System

Department of Electrical and Computer Engineering
University of Alberta

© Yuxin Yue, 2023

Abstract

Visual object detection predicts the categories of objects in an image and estimates bounding

boxes that can wrap those objects accurately, playing a crucial role in many vision-based

AI systems like autonomous cars, robotics, and smart monitoring. Although achieving

significant progress, even the state-of-the-art (SOTA) detectors could inevitably raise errors

when we deploy them in the real-world application scenario due to the potential distribution

shift between the training dataset and testing data. For example, the detectors trained on a

clean dataset usually yield a significant precision reduction under the corrupted images (e.g.,

noisy or rainy images). Such an error type is often inevitable in the operational environment

where the system is deployed, and cannot be completely solved by modifying the network

architecture or optimization algorithm either since the deployed detectors could unavoidably

encounter unseen corruptions.

A promising and practical solution is to use the examples captured in the operational

environment to guide the updating of the object detector and avoid similar errors. We, in

this paper, denote such a task as detector repairing (DetRepair). So far, there are few works

studying object detection from the repairing perspective, which hinders the deployment of

SOTA object detectors and a better understanding of their limitations. To bridge this gap,

we conduct an in-depth and extensive empirical study to benchmark the object detection

repairing techniques for DetRepair tasks. Our goal is to understand the current status,

limitations, and challenges of DetRepair, and to identify future opportunities for the research

community.

Specifically, we build a detector repairing benchmark by considering different failure

ii

patterns of objects and different error types and by collecting state-of-the-art detectors and

various corruptions. The analysis enables us to gain a deep understanding and insight into the

failure patterns and the underlying potential causes. Then based on clues from the analysis,

we systematically and comprehensively study a series of repairing schemes and conduct

extensive experiments on different schemes based on the constructed benchmark. We notice

many inspirational facts on repairing schemes for object detectors. With all the above efforts

and the evaluation results, we can understand the significance and challenges of this task

and the strengths and weaknesses of different solutions. Furthermore, we propose several

potential future directions based on our benchmark, opening new doors for developing

robust object detectors.

iii

Preface

This thesis is conducted under the supervision of Prof. Lei Ma. It’s based on my work

named as How to Repair Object Detectors? A Benchmark, an Empirical Study, and a

Way Forward, which has been submitted to the Software Engineering In Practice track in

International Conference on Software Engineering(ICSE) 2024 under review. The article

was completed in collaboration with Zhijie Wang, who helped with writing, Prof. Qing Guo,

who contributed a lot to the structure and the manuscript, and Prof. Felix Juefei Xu, who

offered valuable advice and assistance.

iv

Acknowledgements

I would like to first thank my supervisor Prof. Lei Ma for his great kindness and support. I

would also like to offer my sincere gratitude to my collaborators, Dr. Qing Guo and Dr. Felix

Juefei Xu. I benefit so much from their enthusiasm, professionalism, and research insights.

In addition, I’m grateful to my friends, Shuangzhi for the inspiration of denoising, Yuan

and Xuan for mathematical tools and details, Zhijie for discussion and writing, Jiayang for

figures and visualization, Yuheng for discussion, and all other members of the Momentum

Lab for their help. Besides, I’m grateful to all the professors who gave very awesome

lectures where I obtained knowledge and inspiration.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objectives . 3
1.3 Thesis Outline . 4

2 Background 5
2.1 General Information . 5

2.1.1 Object Detection and Common Metrics for Evaluation 5
2.2 Specific Information . 14

2.2.1 Failure in Object Detection . 14
2.2.2 Problem Formulation . 15

2.3 Discussion and Conclusion . 17

3 How to Repair Object Detectors? A Benchmark, an Empirical Study, and a
Way Forward 18
3.1 Introduction . 18
3.2 Related Work . 23
3.3 Object Detector Repairing Schemes . 27
3.4 Detector Repairing Benchmark Construction 36

3.4.1 Experimental Setup . 37
3.4.2 Evaluation Metrics for Repairing 39

3.5 Analysis on Failure . 40
3.5.1 RQ1.1. How do common corruptions impact deep object detectors? 41
3.5.2 RQ1.2. How do detectors perform under common corruptions? . . . 43
3.5.3 RQ1.3. Are there any patterns in the failure datasets? 45
3.5.4 RQ1.4: What are the major error types of detectors under common

corruptions? . 49
3.6 Repair Experimental Results . 50

vi

3.6.1 Fine-tuning . 51
3.6.2 Fusing Images with Augmentations 53
3.6.3 BN Calibration . 61
3.6.4 Denoising . 64
3.6.5 Naive DeepRepair . 66
3.6.6 Comparative Analysis . 68

3.7 Discussion . 71
3.7.1 Future directions . 71

3.8 Conclusion . 72

4 Conclusions & Future Work 73
4.1 Conclusion . 73
4.2 Future Directions . 74

4.2.1 Catastrophic Forgetting . 74
4.2.2 Better Augmentations . 74
4.2.3 Denoisers and Style Transfer for Common Corruptions 75
4.2.4 Efficient Repair . 75

Bibliography 76

Appendix A: Appendix 83
A.1 Abbreviations . 83
A.2 More Results . 84

A.2.1 Results on the clean and failure datasets 84
A.2.2 Results on corruptions for all methods 84

vii

List of Tables

3.1 Methods in the benchmark and their counterparts. 24
3.2 A pilot study for consistency between BN updating schemes during training

and repair. BN@Train is the status of batch normalization layers when
training the detectors to be repaired. And BN@Repair is the BN status when
repairing detectors. AP@Cl, AP@Fl, and AP@Avg mean the mean average
precision of the object detectors on the clean test set, the failure test set, and
their average values. BN calibration on detection can be only applied to
models trained with updated BN. BN calibration on classification improves
average performance on failure and clean test datasets. 30

3.3 On gaussian_noise, both the self-supervised and supervised denoisers work
and achieve comparable performance. But the self-supervised one fails on
defocus_blur and there is a large gap between the denoisers. 32

3.4 Pilot experiments on Mosaic. Mosaic fails to exceed fine-tuning due to its
degradation in the learning of large objects. We utilize an improved version,
PMosaic, and achieve much better AP scores than Mosaic. It suffers from
slow convergence and catastrophic forgetting, too. 34

3.5 Pilot experiments for the naive version of DeepRepair. 1000*8 means
1000 images trained for 8 epochs. And all the others are trained for 1
epoch. 118287 is the size of the COCO training dataset. For the naive
version DeepRepair, the performance increases as the number of training
images increases. For the upper bound, training images are generated with
corruptions instead of style transfer. When compared with the upper-bound,
naive DeepRepair shows comparable performance on clean data, but it has a
large performance gap on the failure test set. Besides, it fails to outperform
fine-tuning despite it costs about 30 times more GPU hours. 35

3.6 Results of DETR-ResNet50 corrupted by brightness. PMosaic prefers small
objects but degrades medium and large ones. 55

viii

3.7 Results of DETR-ResNet50 corrupted by defocus_blur. PMosaic improves
the detector on failure data. But the performance on the clean test set drops
too much when compared with fine-tuning on the combined datasets. It
might be a result of slow convergence and catastrophic forgetting. 56

3.8 Pilot experiments on MixUp. MixUp degrades the performance compared
with naive fine-tuning. Even worse, we notice that the augmentation itself
would harm the detection performance when applied in repair, as is shown
in the fourth line of the table. From the results in the last two lines, we find
MixUp cannot effectively help improve information fusion across domains. 59

3.9 The marks 1-7 are fine-tuning with combined data, fine-tuning with failure
data, PMosaic, MixUp, BN calibration, denoising, and the naive DeepRepair,
respectively. The darker mark means the approach successfully repairs the
detector under one corruption, while the lighter one indicates repair failure.
"-" means no results. The best repair approaches are in red. The relative
performance improvement values of the best methods are noted within
parentheses. 68

3.10 Overall relative performance improvement for the repairing methods. The
winning configurations mean the method achieves the best in our benchmark
under the configuration. 70

3.11 Repair costs of the repairing methods. Values in parentheses are average
costs shared across detectors. 71

A.1 Abbreviations of corruptions. 83
A.2 Abbreviation of models. 83
A.3 All experimental results of repair methods for detectors under common

corruptions. We present relative performance improvement for AP on the
failure test sets. 85

A.4 All experimental results of repair methods for detectors under common
corruptions. We present relative performance improvement for AP on the
clean test sets. 86

A.5 All experimental results of repair methods for detectors under common
corruptions. We present relative performance improvement for AP averaged
on the clean and failure test sets. 87

ix

List of Figures

2.1 Framework of detectors. DETR, Faster R-CNN, RetinaNet, and FCOS are
illustrated here. 14

2.2 AP scores of detectors after corruptions. The last box shows those without
any corruption. Performance degradation can be observed across corruptions. 15

3.1 Overview of our workflow. We initiate the analysis of failures in object
detection from multiple aspects. Next, we conduct an extensive study of
potential repair methods for addressing these failures. Methods are located
in leaf nodes and the orange ones are included in our benchmark. 23

3.2 Correlation between corruptions based on relative performance decrease
values. 41

3.3 Distributions of RPD values for corruptions. They form three clusters as
shown in different colors. 42

3.4 Left: RPD(relative performance decrease) values for corruptions and detec-
tors. Right: MRPD of detectors. 43

3.5 Mean relative performance decrease values of detectors. The gray dotted
line is estimated by linear regression. In general, larger detectors are more
likely to survive degradation under common corruptions. RetinaNets seem
to be marginally less vulnerable than Faster R-CNNs. A longer training
schedule hurts robustness. 45

3.6 The values of RPD w.r.t. different object scales and IoU thresholds. Left:
the smaller objects are more sensitive to corruption while the larger ones are
more robust. Small and large objects show different degradation patterns
from overall mAP. DETR-ResNet50 shows different patterns from others
in performance on object scales. Right: detectors with more strict box
matching strategies drop more in performance. 46

3.7 Failure patterns for object scales, instance ratio, and crowd ratio. 48
3.8 Object categories on the core failure dataset have a different distribution

with the whole test set. 49

x

3.9 An example of error analysis results provided by COCO toolkit. Errors are
shown in colored regions. 50

3.10 Performance improvement for detection models after being repaired by
methods. 52

3.11 Performance gain on corruptions for fine-tuning-based and augmentation-
based methods. 53

3.12 AP scores on clean, failure datasets and their average values across training
epochs. The fine-tuning-based models suffer from catastrophic forgetting.
It’s better to fine-tune with combined data than on only failure datasets.
PMosaic converges slower than the other two methods. 54

3.13 The kernel-estimated cumulative distribution function of relative improve-
ment for PMosaic w.r.t. fine-tuning based on AP scores on different object
scales. It indicates that PMosaic improves small objects in general but
degrades large objects. The overall performance of PMosaic is correlated to
its performance drop on large objects. 57

3.14 Comparison between BN calibration and its estimated upper bound. 63
3.15 Comparison between BN calibration and its estimated upper bound in terms

of corruptions. It sometimes outperforms its upper bound as a result of task
transfer. 63

3.16 Comparison between self-supervised denoising and its supervised counterpart. 65
3.17 Comparison between self-supervised denoising and its supervised counter-

part in terms of corruption. There are large performance gaps in terms of
blurs and weather. 65

3.18 Corruption-oriented analysis for the naive DeepRepair. It’s outstanding in
contrast. 67

xi

List of Symbols

Latin

A Architecture of a model.

bi = (xi,yi,hi,wi) A bounding box annotated with its center point, height, and width.

D A detector(detection model).

I The input image.

oi = (bi,ci) An object denoted with its bounding box and category.

W Weights of a model.

D A dataset.

D fail The failure dataset.

Dtest The clean test dataset.

D fail
test The failure test dataset.

Dtrain The original training dataset.

D fail
train The failure training dataset.

O = {oi}N
i=1 The set of all objects inside one image.

P = {b′
j}M

j=1 The proposals.

H Height of the input image.

W Width of the input image.

Greek

Φ(·) The region of interest (RoI) feature extraction module

ψcls(·) The region classification module for the RoIs

ψreg(·) The bounding box regression module for the RoIs

ϕ(·) The deep image representation module

xii

Abbreviations

AP Average Precision, evaluation metrics for object detection.

BN Batch Normalization, a type of operator in neural networks.

FPN Feature Pyramid Network.

NMS Non-Maximum Suppression. A technique to remove duplicated bounding box predic-
tions.

R-CNN Region-based Convolutional Neural Networks.

RoI Regions of interest.

xiii

Glossary

Bounding Boxes. A bounding box is an axis-aligned tight box of an object in the image.
A bounding box in an image is a 4-d vector, usually represented by its center point
coordinates, height, and width.

Classification. The classification branch in the object detector serves to predict the object
category of the RoI.

Corruption. Noise or distortion in the input images, e.g., Gaussian Noise, glass blur, fog.

Proposals (RoIs) A proposal in an image is a pre-defined region that is likely to contain
one or no object of interest.

Regression. Refining predefined to obtain the bounding box of a RoI by predicting the
relative offsets.

The RoI feature extraction module. The region of interest (RoI) feature extraction mod-
ule generates features for each RoI.

The deep image representation module. The deep image representation module aims to
extract features from the input image.

The input image The input image is usually a 3-d vector from an RGB digital image.

xiv

Chapter 1

Introduction

1.1 Motivation

Object detection [1] is a critical perception task in deep learning and general AI systems. It

serves as the upstream task for many downstream tasks, such as object tracking [2], instance

segmentation [3], pose estimation [4], etc. Moreover, it plays a significant role in real-world

applied deep learning systems, such as autonomous driving, robotics, the smart city, video

surveillance, and healthcare. Compared to object recognition, object detection is inherently

more complex and challenging since it involves both classification and localization. However,

similar to other machine learning models, deep object detectors are vulnerable to distortions,

weather conditions, and adversarial perturbations that can frequently occur in the operational

environment. Previous research [5, 6] have shown that models can experience performance

degradation with corrupted input images for image classification and object detection.

Furthermore, despite many detectors achieving high accuracy and performance, they still

face challenges when deployed in real-world environments.

In the realm of traditional software development, program repair is a process that is

typically conducted either manually or automatically subsequent to the detection of bugs

during testing or deployment. However, in the context of the data-driven iterative model

development process that underlies the AI industry, bug repair is a critical concern that

frequently fails to receive adequate attention. For instance, consider a well-trained object

detector that functions flawlessly within an application but abruptly fails to operate as

1

intended under unexpected conditions. In such instances, machine learning researchers and

practitioners are obliged to undertake detector repair in order to forestall any further loss

that may occur in the operational environment. Hence, it is paramount to prioritize the issue

of bug repair and to develop effective approaches to resolving such challenges within the

context of AI systems.

Different from traditional robustness enhancement, we focus on improving object de-

tectors given images under a certain unknown common corruption instead of for general

unknown cases. Real-world applications present numerous challenges that can cause object

detectors to fail. For instance, if objects in the deployed environment differ significantly

in scale from those in the training dataset, the detector may not be able to detect extremely

large or small objects. Unseen background objects can also cause detection failures, such

as dogs being detected as pedestrians by surveillance detectors. This is because the train-

ing set only includes categories of interest, such as pedestrians and vehicles, but fails to

capture challenging background samples. Furthermore, illumination variation can pose a

critical challenge for object detectors. High-quality images and videos captured at night

are more difficult to obtain than those captured during the day, resulting in scarce datasets.

Additionally, objects in night scenarios are often blurry and less salient, and digital captures

in low-light environments tend to be noisier due to the need for higher ISO levels. Hence,

multifarious factors, such as changes in illumination and weather patterns, present significant

challenges to the development of robust object detection models.

Among these factors, the issue of image-wise corruptions has received significant at-

tention in the realm of robust computer vision. In this thesis, we concentrate on repairing

object detectors that fail due to such corruptions, which are prevalent in the operational

environment. However, the number of failure samples is often small, as collecting such

samples is a challenging task. Additionally, we make an assumption that there exist unknown

deterministic connections between the failure data and the original data, similar to a previous

work [7], based on industrial demands. In contrast to recent related works that focus on

2

unsupervised or weakly supervised problems [8, 9], we aim to systematically investigate

and address corner cases to ensure the robustness and safety of object detection systems.

While annotations for supervised training are often readily available, our focus is not on

such cases but rather on repairing detectors in challenging real-world scenarios.

1.2 Thesis Objectives

In this thesis, our goal is to obtain a comprehensive understanding of state-of-the-art (SOTA)

techniques for object detection repair. To accomplish this, we establish a benchmark of

repairing techniques for SOTA object detectors, which we evaluate under various common

corruptions, followed by a detailed analysis of the challenges and opportunities in this

field. Our objective is to move beyond an empirical study and achieve a comprehensive

understanding of repair in object detection. Through a large-scale evaluation and comparative

study, we investigate the potential failures of these object detectors from various angles,

such as corruptions, models, failure datasets, and error types. This analysis allows us to gain

a deep understanding of the failure patterns and underlying potential causes. Based on this

understanding, we propose potential approaches for repairing object detectors and expand

the benchmark with our techniques for more comprehensive and comparative evaluation.

Through a large-scale comparative evaluation, we identify key clues and problems that will

be important for future work in this field.

Overall, this work aims to study object detection repair comprehensively and to highlight

the challenges and opportunities in this area. We also provide a benchmark for repairing

object detectors, which will enable further research and study along this line.

In summary, this thesis makes the following contributions:

• Benchmark. We establish the first benchmark for repairing deep object detectors against

common image corruptions through a systematic and comprehensive evaluation of SOTA

techniques, providing a common ground for the study and analysis in this direction.

3

• Empirical Study. On the basis of our benchmark, we perform an empirical study to better

understand the SOTA repairing approaches’ efficacy and efficiency.

• Discussion. Following the findings in the empirical study, we pose discussions and

pinpoint challenges and opportunities for further research on detector repairing.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces background information.

We first introduce the object detection framework and milestone detection models. Then, we

provide the formal definition of the failures in object detection. Chapter 3 then details the

research topic based on my submitted work How to Repair Object Detectors? A Benchmark,

an Empirical Study, and a Way Forward. We discuss potential techniques for repairing

object detectors, after which the remaining sections are about evaluation results and our

in-depth analysis. Later we provide the results of the large-scale comparative evaluation and

results on diverse object detection repairing techniques. Based on this, we further discuss

the challenges and future research opportunities of repair in object detection, followed by

the conclusion of this work in Chapter 4.

4

Chapter 2

Background

2.1 General Information

2.1.1 Object Detection and Common Metrics for Evaluation

Object detection plays a key role in many vision-intelligent tasks, e.g., it is the upstream

task of object tracking [2], instance segmentation [3], pose estimation [4], etc. Given

an input image denoted as I ∈ RH×W×3, a detector aims to localize the objects within

the image and predict their categories. We denote the ith object as oi = (bi,ci), where

the bi = (xi,yi,hi,wi) represents a bounding box tightly wrapping the object and ci is the

object’s category. Moreover, we use O = {oi}N
i=1 to denote the set of all objects in the image.

To obtain a better understanding of the task of repairing object detectors, it is important to

first introduce the existing general detection framework in Sec. 2.1.1. Based on this, we

further discuss some milestone detection techniques in Sec. 2.1.1. We include the common

and widely used evaluation metrics in Sec. 2.1.1.

Detection Framework

The main challenges of accurate object detection stem from four aspects:

(1) The large number of tentative object categories. The detector needs to have discrimi-

nation capability, especially under many open background objects.

(2) The intra-category variations caused by environmental conditions and intrinsic factors,

5

e.g., shape variations handling require the detector to be robust enough.

(3) Difficulty in achieving high-quality tight bounding boxes, where accurate box regres-

sion is demanded.

(4) The detection techniques often need to be efficient at real-time speed so that to be

adopted in real-world efficiency-sensitive applications, e.g., autonomous driving, and

robotics.

Object scale variance is a critical issue for object detection, closely related to the afore-

mentioned challenges. It encompasses two aspects: scale variance within a single image and

scale variance across different images. Within a single image, objects of various scales can

coexist, ranging from small to large. Detecting objects accurately across this scale range

poses a challenge as the detector needs to effectively handle objects of different sizes and

maintain consistent performance. Across different images, the same object may appear at

different scales due to variations in camera angle, camera distance, or other factors. This

variability in object scale further complicates the detection task as the detector needs to be

robust enough to handle such scale variations and consistently identify the object regardless

of its size. Object scale variance is not only a challenge but also an important consideration

for lightweight detectors. In resource-constrained scenarios, such as embedded systems

or edge devices, the detector’s efficiency and computational complexity become crucial.

Balancing the detection accuracy and the computational requirements becomes critical when

addressing the issue of object scale variance in lightweight detectors.

A naive object detection framework is a natural extension of the image classification

method, which employs the classifier to predict the categories of sub-regions sampled from

the input image. For example, traditional object detection conducts the classification on

sub-regions sampled by the sliding-window strategy [10–12]. However, such a framework

still falls far from the aforementioned four requirements. Over the past few years, with

the fast progress of cutting-edge deep learning techniques, researchers have performed

6

extensive research to design and enhance detectors in different directions, e.g., enhancing

detectors’ discrimination powers, addressing the diverse object appearances, and achieving

real-time running speeds. These modern object detectors are mostly based on the regions

of interest (RoI). Given an image I, a detector can sample regions of interest (i.e., object

proposals) that are usually rectangle samples in I and can be represented via the bounding

boxes as P = {b′
j}M

j=1, and then predict their categories. More specifically, we summarize

existing detection methods comprised of three key components, including the deep image

representation denoted as ϕ(·), region of interest (RoI) feature extraction denoted as Φ(·),

and region classification and bounding box regression, which are named as ψcls(·) and

ψreg(·), respectively.

In the object detection process, a detector performs several steps to identify and localize

objects in an input image. First, the detector samples a set of Regions of Interest (RoIs)

denoted as P from the input image. These RoIs represent potential object locations in

the image. Next, the detector extracts the features of these RoIs using a function Φ(·) that

takes as inputs the deep representation network ϕ(·), the input image I, and the RoIs P .

The deep representation network, also known as the backbone network, is typically derived

from a pre-trained classification network and serves as a feature extractor from the images.

Finally, the output features of each RoI are further fed to the box prediction module ψreg(·)

and classification prediction module ψcls(·), respectively.

To be specific, we start with the well-known region-based convolution neural network

(R-CNN) [13, 14] as an example for discussion. Initially, the algorithm generates a set of M

RoIs P = {b′
i}M

i=1 using selective search [15], which identifies potential object locations

in the image. These RoIs are then individually processed by a deep convolutional neural

network (CNN) ϕ(·) to extract features specific to each region. The RoI feature extraction

function Φ(·) in the R-CNN algorithm involves two main steps. (1) It crops the image to

obtain sub-regions and resizes the sub-regions to fit the input size of ϕ(·). (2) R-CNN uses

the ϕ(·) to extract the features of each sub-region and get the M RoI features denoted as

7

F = {Fi}M
i=1. We then summarize the whole detection process as

F = Φ(I,P,ϕ) = {Fi = ϕ(Xi)}M
i=1,

s.t. Xi = CropResize(I,b′
i),∀b′

i ∈ P. (2.1)

To further enhance the performance of the object detection models, a deep representation

network is first typically pre-trained on large-scale datasets such as ImageNet [16], which

contains a vast collection of images spanning various object categories. The purpose of

pre-training on ImageNet is to allow the network to learn general features that are relevant to

a wide range of computer vision tasks. Once the deep representation network is pre-trained,

it can be fine-tuned on specific object detection datasets, where the network learns to refine

its features and further enhance the ability to detect and classify objects accurately.

Meanwhile, R-CNN trains a support vector machine (SVM) and a regressor as the ψcls(·)

and ψreg(·), respectively. With the two functions, R-CNN feeds the extracted features of

each RoI to the two functions, respectively, and outputs the refined bounding box (i.e., bi)

and category (i.e., ci) of that RoI (i.e., oi = (bi,ci)). If the region does not contain any object,

ci will be the background and the predicted bounding box will be discarded. The module

can be represented as

ci,si = ψcls(Fi),bi = ψreg(Fi,b′
i),∀b′

i ∈ P, (2.2)

where si is the confidence score of the category prediction.

As the early work of using deep neural networks for object detection, R-CNN provides an

intuitive idea but with obvious limitations: (1) The training method is a multi-stage strategy,

which is slow and hard to optimize. (2) It’s not efficient to crop and forward patches due

to the large number of overlapping RoIs. Inspired by R-CNN, researchers developed a

series of novel techniques to continuously address the efficiency issue and improve accuracy.

Based on the modern object detection framework, a number of detection techniques are

proposed to improve object detection from multiple aspects, e.g.two-stage (and multi-stage)

detectors [17–21] v.s. single-stage detectors [22–28], anchor-based detectors v.s. anchor-free

8

detectors [29–32], CNN-based detectors v.s. multi-head-attention-based and transformer-

based detectors [33–36], etc. In the following, we mainly discuss four recently developed

representative detection methods, whose architectures are shown in Fig. 2.1.

Representative Detection Methods

Faster R-CNN. To address the key limitations of R-CNN, Girshick [17] develops Fast

R-CNN that improves R-CNN’s efficiency and accuracy by constructing an end-to-end

network that includes a two-branch architecture for class prediction and bounding box

regression, respectively. Meanwhile, it employs RoI pooling to enable extracted RoIs to

share the deep feature calculation process and significantly reduce the computation. Later,

[18] further pushes the efficiency of Fast R-CNN forward by proposing to remove the

explicit RoI extraction process and replace it with a CNN, i.e., region proposal network

(RPN). Specifically, beyond extracting the features of RoIs independently like Eq. (2.1),

Faster R-CNN designs a new RoI feature extraction process

F = Φ(I,ϕ) = {Fi = RoIPool(ϕ(I),b′
i)}M

i=1,

s.t. {b′
i}M

i=1 = RPN(ϕ(I)), (2.3)

where RPN(·) denotes the region proposal network and takes the feature of the whole input

image (i.e., ϕ(I)) as input, which addresses the feature via a convolution layer followed by

two 1×1 convolutions for objectness classification head and regression head, respectively.

Note that, the outputs of the two heads are defined based on a set of reference boxes called

anchors. The anchors are pre-defined bounding boxes with different scales and aspect ratios

and can cover objects with different shapes. Finally, the RPN can output feature-level

RoIs (i.e., b′
i) that are filtered by non-maximum suppression (NMS) based on the predicted

objectness scores. These RoIs are used to extract the RoI features via the RoIPooling layer.

Compared with the RoI feature extraction of R-CNN in Eq. (2.1), Faster R-CNN adopts

the RPN to replace the search selective method and generate RoIs based on the feature

representation of the whole image. Meanwhile, the extracted RoI features are fed to a

9

sequence of fully convolutional layers like the Fast RCNN, followed by a two-branch

architecture: a softmax classifier for object category prediction, and class-specific bounding

box regression offsets for proposal refinement. Such a design enables Faster R-CNN for

end-to-end training, which is much faster than the training process of traditional R-CNN.

Feature Pyramid Network (FPN). [37] proposes the feature pyramid network (FPN) for

a more powerful deep representation that employs the inherent multi-scale and pyramidal

hierarchy structures of the deep convolution network to extract pyramidal features of input

images. Specifically, based on a deep convolution neural network (CNN) like ResNet [38],

FPN consists of a bottom-up pathway, a top-down pathway, and lateral connections. The

bottom-up pathway outputs multi-scale features from different layers of the CNN while

the top-down pathway upsamples the smallest feature to a higher resolution feature that

is combined with the bottom-up’s features with the same resolution via the element-wise

addition. This process is recurrently conducted until the finest resolution is achieved. [37]

equips the deep representation (i.e., ϕ(·)) of Faster R-CNN with the FPN architecture,

achieving much higher detection accuracy, that is, we have

F = Φ(I,ϕ) = {Fi = RoIPool(FPN(ϕ(I)),b′
i)}M

i=1,

s.t. {b′
i}M

i=1 = RPN(FPN(ϕ(I))). (2.4)

The extracted features are further fed to the two-branch architecture to predict the category

and regress the bounding box for each RoI as done in Faster R-CNN.

RetinaNet. Although Fast R-CNN, Faster R-CNN, and FPN have enhanced the detection

accuracy as well as the running speed of the raw R-CNN significantly, it is still a two-

stage detection framework that can be less efficient and may neglect some potential spatial

locations in the extracted features. Therefore, [22] proposes a one-stage detector, i.e.,

RetinaNet, based on the deep representations extracted from the FPN, which removes the

RoIPooling layer and regresses the features to a category tensor and a bounding box tensor

10

straightforwardly. It is worth noting that RetinaNet conducts a dense sampling process

where each location of the feature corresponds to A RoIs that all center at that location with

different aspect ratios and scales, also known as A anchors. Specifically, we can reformulate

the RoI feature extraction process as

F = Φ(I,ϕ) = {Fs}S
s=1,

Fs = {Fs,i = F̃s[x′i,y
′
i]|b′

i = (
H
Hs

x′i,
W
Ws

y′i,
H
Hs

h′i,
W
Ws

w′
i),

∀(x′i,y′i) ∈ [(1,1),(Hs,Ws)],∀(h′i,w′
i) ∈ A },

s.t. {F̃s}S
s=1 = FPN(ϕ(I)), (2.5)

where FPN(·) extracts features of the input image with S different scales (i.e., {F̃s}S
s=1). Hs

and Ws are the height and width of the feature F̃s. For each location of F̃s (i.e., (x′i,y
′
i), a

H
Hs

× W
Ws

region of the input image), we have A anchors denoted as the set A . Then, the

Eq. (2.5) actually extracts the features of Hs ·Ws ·A RoIs for each scale, and the anchors at

each location share the same feature (i.e., Fs,i). The final set Fs for the s scale can form

a tensor that is fed to two sub-networks for classification and bounding box regression,

respectively. Compared with the Faster R-CNN or FPN, RetinaNet does not include the

region proposal network and predicts the categories and tight bounding boxes for each

feature location directly. Specifically, for the sth scale feature, there are two branches for

classification and bounding box regression, respectively, i.e.,

Cs = ψ
s
cls(Fs),Bs = ψ

s
reg(Fs,{b′

i}), (2.6)

where Cs ∈RHs×Ws×A×C and Bs ∈RHs×Ws×A×C×4, that is, Cs contains C category probabil-

ities of all spatial locations of the sth scale feature and A anchors. Bs contains all regressed

bounding boxes centered at all locations with different anchors.

Fully convolutional one-stage object detection (FCOS). [29] further introduces the

semantic segmentation structure, i.e., fully-convolutional network [39], to the object detec-

tion framework, which is anchor-free, reduces the number of anchor-related parameters,

11

and avoids the anchor-related complicated computation. In particular, FCOS follows a

similar RoI feature extraction process with RetinaNet but adopts different classification

and bounding box regression branches. Specifically, with S features Fs at different scales,

FCOS sets three branches for each scale, that is, ψs
cls, ψs

reg, and ψs
ctr. The three branches

output three tensors having the same resolutions as the input feature, that is,

Cs = ψ
s
cls(Fs),Bs = ψ

s
reg(Fs,{b′

i}),Ts = ψ
s
ctr(Fs), (2.7)

where Cs ∈ RHs×Ws×C, Bs ∈ RHs×Ws×4, and Ts ∈ RHs×Ws×1. Cs indicates the category

probability of each location in the feature, which is similar to semantic segmentation.

Bs means the absolute offsets from each location to the corresponding object center. Ts

denotes the normalized distance from each location in the feature to the center of an object.

Compared Eq. (2.7) with Eq. (2.6), we can see FCOS is not based on the anchor but treats it

more like a semantic segmentation problem, which further benefits the accuracy.

Detection Transformer (DETR). [33] employs the transformer to detect objects due to the

high capability of the transformer to perceive global information. Specifically, DETR uses a

CNN as the deep representation ϕ(·) to extract the deep feature of the input image, which is

fed to a transformer. The transformer could be regarded as the RoI feature extraction module

(i.e., the function Φ(·)) and outputs a fixed number of features for different RoIs. After that,

each feature is further passed to a shared feed-forward network (FFN) that estimates the

normalized center coordinates, height, and width of the bounding box w.r.t. the input, and

also predicts the class label using a softmax function. DETR is also anchor-free but needs to

pre-define a number to detect in an image.

Evaluation Metrics

Given a testing dataset and a detector, we employ the precision, recall, and average precision

(AP) for accuracy evaluation. To make it more clear, we start with the definition of true

positive (TP), true negative (TN), false positive (FP), and false negative (FN) samples. Given

12

a detector and a testing image, we have the predicted objects denoted as the set O = {oi =

(bi,ci)}N
i=1 and we also have the ground truth object set denoted as O∗ = {o∗j = (b∗

j ,c
∗
j)}N∗

j=1,

where the N∗ is the real object number that may be different from the predicted number N.

The predicted object (i.e., oi = (bi,ci)) is positive if and only if the following conditions are

satisfied:

(1) There is a ground truth object having high bounding-box overlap with the predicted

object (i.e., o∗j = (b∗
j ,c

∗
j)), that is, IoU(bi,b∗

j)> δ , where δ is a pre-defined threshold

and usually set as 0.5.

(2) The category of the predicted object is the same as the one of the ground truth object,

that is, ci = c∗j .

(3) A ground truth object can only match the predicted object with the highest score.

(4) If there exist multiple ground truth objects satisfying (1)-(3), the predicted object will

only match the one with the highest IoU.

With the above definition of a positive predicted object, we can count the number of true

positive (TP), false positive (FP), and false negative (FN) samples, and further define the

precision, recall, and average precision (AP) as follows,

Precision =
TP

TP+FP
, (2.8)

Recall =
TP

TP+FN
, (2.9)

AP =
1

N∗

N

∑
i=1

TPi

i
, (2.10)

where TPi is the number of true positive samples in the first i predicted objects. Note that,

with different thresholds (i.e., δ) for IoU evaluation, we get different AP scores and rename

AP as AP@δ . For example, we usually use AP@0.5 and AP@0.75 for the AP scores under

δ = 0.5 and δ = 0.75, respectively. A larger threshold can lead to a more strict overlap

calculation and a lower AP score. In the COCO dataset [40], we usually compare the

13

averaging AP scores from δ = 0.5 to δ = 0.95. Besides, to conduct more comprehensive

evaluations, we also define the AP scores for small, medium, and large objects, which are

denoted as AP@S, AP@M, and AP@L, respectively, if we only consider the objects within

a certain area range.

Backbone
(Deep Representation Network)

FPN

Retina Head FCOS HeadRPN Head

RCNN

RoI Pool

Cls Reg

Cls Reg Cls Ctr Reg

NxC NxCx4

HxWxAxC HxWxAxCx4 HxWxC HxWx1 HxWx4

Cls: classification; Reg: regression
Ctr: center-ness; N: number of proposals
C: number of categories; Q: number of object queries
H, W: shape of the dense prediction feature map
A: anchors per point in the feature map

Transformer
Encoder

Transformer
Decoder

FFN

Object
Query

Cls Reg

QxC Qx4

Figure 2.1: Framework of detectors. DETR, Faster R-CNN, RetinaNet, and FCOS are
illustrated here.

2.2 Specific Information

2.2.1 Failure in Object Detection

Deploying a well-trained object detector in real-world scenarios can be challenging due to

various degradation factors and common corruptions present in the operational environment,

e.g., noise, blur, rain, etc. These factors can significantly impact the detector’s performance

and lead to errors. To this end, we first introduce some common degradation types in

the Sec. 2.2.1 that usually occur in the real world and will be used in subsequent studies.

Meanwhile, we provide the failure definition of object detection in Sec. ??.

Common Degradation

Previous works [5, 6] test deep neural networks on corrupted datasets and claim performance

degradation and limited robustness. We would like first to confirm the existence of perfor-

mance degradation, which is a critical pre-condition for repair. We perform evaluations of

all the 48 collected and prepared models of RetinaNet, Faster R-CNN, FCOS, and DETR

in MMDetection [41] model zoo across 15 corruption types including brightness, contrast,

defocus blur, elastic transform, fog, frost, gaussian noise, impulse noise, snow, pixelate, jpeg

14

compression, motion blur, shot noise, and zoom blur. These corruptions are natural factors

and usually appear in daily life. Hence, it is critical to study the accuracy of detectors under

these corruptions. Intuitively, we follow the setups of [6] and add each corruption to the raw

testing dataset of COCO. As a result, we have 15 corrupted testing datasets. We obtain a

box plot with AP scores of all 48 detection models of interest over corruptions as shown in

Fig. 2.2. The last column shows the performance of models on the clean test set. A higher

AP score means better performance. Based on the figure, we can easily conclude that the

detectors’ performance drops when the input images are corrupted.

GsN
ois

e

ShN
ois

e

Im
Nois

e
DfB

lur

GlBlur

MtB
lur

ZmBlur
Sno

w
Fros

t
Fog

Brig
ht

Con
tra

st

Elas
tic Pix

JP
EG

Clea
n

Corruptions

5

10

15

20

25

30

35

40

A
P

Figure 2.2: AP scores of detectors after corruptions. The last box shows those without any
corruption. Performance degradation can be observed across corruptions.

2.2.2 Problem Formulation

We represent a deep object detector as D= {W,A} notated by its weights W and architecture-

related parameters A. The detector is trained with clean training dataset Dtrain by optimizer

J and is tested with on clean testing dataset denoted as Dtest.

D = argminD∗J(Dtrain,D∗). (2.11)

15

The trained deep detector obtains high detection accuracy on the clean test dataset Dtest,

whose accuracy decreases when a type of natural corruption appears and is added to the

clean testing dataset Dtest, leading to a corrupted testing dataset Dc
test. Note that, we consider

the situation where corruption patterns of all examples in the corrupted dataset belong to the

same type. After evaluating the detector on Dc
test, we can collect failure examples where the

detector fails (See Sec. 2.2.1) and construct a dataset D fail. Then, we further split the failure

dataset D fail into failure training subset D fail
train and failure testing subset D fail

test . We use the

function AP(D ,D) to calculate the performance of the detector D on the dataset D . Then, we

can evaluate the detector on the clean testing dataset Dtest, corrupted testing dataset Dc
test, and

the failure testing dataset D fail
train, and obtain AP(Dtest,D), AP(Dc

test,D), and AP(D fail
train,D),

respectively. In general, we have the following results: ❶ AP(Dtest,D) ≫ AP(Dc
test,D),

indicating that the corruptions can lead to significant accuracy degradation; ❷ We have

AP(D fail
test ,D)<AP(Dc

test,D) since the D fail is a part of Dc
test and fails the detector. ❸ We also

have AP(D fail
train,D)≈ AP(D fail

test ,D) since they are sampled from the D fail in an independent

way.

Given a pre-trained detector D, the detection repair aims to update the detector’s weights

W or architecture A to get much higher accuracy on the failure test dataset D fail
test while

maintaining the accuracy on the original clean dataset Dtest. Such a repair problem com-

monly occurs in practice, and it is often important and necessary to repair a detector to avoid

making similar errors when a type of corruption appears. In particular, the problem can be

formulated as

D′ =argminD∗ϒ(T (D fail
train ∪Dtrain),D∗),

s. t. AP(D fail
test ,D

′)> AP(D fail
test ,D),

AP(Dtest,D)−AP(Dtest,D′)< ε, (2.12)

where the function ϒ(·) represents a repair scheme, and ε is a small positive value. The

function ϒ(·) denotes the repair optimization, the abstraction of model-oriented repair in

16

Sec. 3.3. T (·) indicates how to combine the data, which leads to data-oriented repair in

Sec. 3.3.

2.3 Discussion and Conclusion

The field of object detection has indeed made significant strides in academic and industrial

applications. Previous attempts have developed the detection framework and various detector

styles, contributing to the success of object detection systems. However, object detectors

are vulnerable and can exhibit incorrect behavior when being deployed into operational

environments. To fix the deficiency, one promising approach in both academic and industrial

areas is DNN (deep neural networks) repair. Despite the substantial efforts dedicated

to improving detection accuracy, the exploration of methods for repairing detectors has

been relatively limited, with only a few research works delving into this crucial aspect.

Therefore, it’s important to take the first step of benchmarking DNN repair methods for

object detectors.

17

Chapter 3

How to Repair Object Detectors? A
Benchmark, an Empirical Study, and a
Way Forward

3.1 Introduction

Object detection is a fundamental task in computer vision with widespread applications

in many domains, including autonomous driving, surveillance, and robotics. Despite the

success of deep learning-based object detectors in recent years, they are still prone to errors

and inaccuracies due to common corruptions, e.g., the inherent complexity and variability

of object appearances, backgrounds, and lighting conditions. With the growing attention

to robust and reliable object detection, it has become increasingly important to understand

how to repair deep object detectors when they fail or underperform in challenging scenarios.

Despite this need, there is currently no comprehensive and in-depth analysis of how to repair

deep object detectors.

Common corruptions and distortions have been important issues in robust computer vision.

Hence in this paper, we work on a specific but important scenario, where failure cases are

caused by an unknown image-wise corruption (e.g., ImageNet-C) [5] that received much

attention recently. The aforementioned corruptions are widely used in various robustness-

related efforts for perception. We attempt to repair the detectors under these common

corruptions that could often occur in the operational environment. Nevertheless, the failure

18

dataset can still be small since failure samples are difficult to collect. We share similar

assumptions of a previous work [7] that are based on industrial demands, i.e., we have few

supervised failure cases collected after the model is deployed in the operational environment,

with unknown connections with the original data. In general, annotations for supervised

training are often not difficult to obtain. Instead of focusing on unsupervised or weakly

supervised problems like recent related works [8, 9], we aim to systematically investigate

and deal with the corner cases to ensure the robustness and safety of the object detection

systems.

While some previous works are related to DNN for image classifiers, it is still not clear

how to repair the object detectors in a systematic way, e.g., what the current status of existing

techniques for repair is and what the gap is there, although there are some relevant work and

direction that could be helpful and relevant to object detector repair.

Domain adaptation [8, 9] aims to improve the performance of a DNN in the target

domain. It is usually assumed that sufficient unlabeled images are available in the target

domain, while the scenarios we study only have very few labeled failure samples. As a result,

domain adaptation methods may fall short when directly tasked to solve the repair problems.

Continual learning methods [42] attempt to expand models to more tasks and they typically

work on a task-based sequential learning setup. In our context, we focus on a single task

with data from different domains. In other words, if we treat the task in different domains as

different sub-tasks, the sub-tasks are not sequential but can be seen as connected or joint.

Some works [43] dive deep into limited corruptions and have made some attempts to remedy

the models with corrupted input images. They have only studied certain corruptions with

much a priori knowledge, and thus the methods could not be directly generalized to other

corruptions or unknown corruptions.

Different from image recognition, multiple instances with different scales and categories

can appear in a single image. Besides, the extreme imbalance [22] between foreground and

background boxes can be one of the key challenging properties of deep object detectors.

19

Together with other challenges, it requires more effort to repair object detectors. Although

some previous attempts have claimed success in repairing neural networks [7, 44], they

only consider image classification tasks and can not be directly applied to object detection

tasks that often require more complex neural network architecture design. For example,

DeepRepair [7] proposes style-transfer guided augmentation to repair neural networks by

retraining on the whole training set. However, it can be much more expensive to train a

detector than a classifier, making DeepRepair not efficient enough in large-scale object

detector repair benchmarks.

To sum up, there is still a long way toward effective and efficient repair schemes for

object detectors.

In this work, our goal is to benchmark the SOTA techniques for object detection repairing,

based on which we further performed a comprehensive study to better understand the

challenges and pinpoint the directions for further research in this direction. To achieve this,

we establish and create a benchmark of repairing techniques for SOTA object detectors under

various common corrections. Then, we performed a large-scale evaluation and comparative

study to investigate the potential failures of these object detectors from various angles,

including corruptions, models, failure datasets, and error types. The analysis enables us to

gain a deep understanding and insight into the failure patterns and the underlying potential

causes. Based on this, we further propose potential approaches for repairing object detectors

and expand the benchmark with our techniques for more comprehensive and comparative

evaluation. Through such a large-scale comparative evaluation, we identify a few key clues

and problems that will be important for future work in this field. Overall, this paper aims to

provide a deeper understanding of repair and to highlight the challenges and opportunities

in this area. We also provide a benchmark for repairing object detectors, to enable further

research and study along this line. The contents of this paper are organized toward addressing

the three research questions as follows.

20

RQ1: Are there any failure patterns for robustness and repair of object detectors?

To begin with, we confirm the performance degradation of object detectors when the input

images are corrupted across diverse categories and families of object detectors and types

of corruptions as shown in Fig. 3.4. For common corruptions, we notice that shot_noise

and gaussian_noise are highly correlated in terms of their effect on performance decrease.

For detectors, DETR [33] shows different erroneous patterns from others in object scales

and box qualities. Additionally, we further study the distributions of object scales on the

failure datasets and obtain clues for repair. Besides, we compute the major error type for

the detectors after corruptions and find that the missing detection error increases the most

in general. These observations confirm the importance and necessity of developing novel

repair schemes for object detection.

RQ2: Are current SOTA techniques able to repair the object detectors effectively and

efficiently? To obtain more comprehensive insights and understanding, we carefully design

our study, establish an object detection repairing benchmark, and conduct a systematic and

comprehensive evaluation, the workflow of which is summarized in Fig. 3.1. In particular,

we perform a comparative analysis of all the potential repairing techniques (highlighted

in orange color). Although we tried our best to include as many techniques as possible,

we found that some were not feasible in our study. Eventually, We include as many as

seven different techniques in our benchmark for comparative evaluation in terms of their

effectiveness, efficiency, and inference impact. At a high level, we have the following

observations.

• For fine-tuning-based methods, it’s better to fine-tune on combined datasets than

failure datasets. We observe catastrophic forgetting in fine-tuning-based methods.

• For augmentation-based methods, we work on MixUp [45] and Mosaic [26] to boost

information fusion between the original training data and failure data. However, both

of them fail to achieve outstanding performance in repair due to their impacts on the

21

object scales and instance densities.

• For denoisers-based techniques, we find the self-supervised method, Neighbor2Neighbor

[46], works on limited cases.

• BN (Batch Normalization) calibration techniques cannot be directly applied to our ex-

periments, and we tried our best to modify it with a practical version. Its performance

varies across models and corruptions.

• For DeepRepair [7], we study a naive version and find its enormous potential relying

on the style transfer method.

Among all the repair techniques, the performance of fine-tuning with combined data

stands out. BN calibration and denoising can benefit multiple detectors with one repair.

RQ3: What are the challenges and opportunities of future work for repairing object

detectors? Based on results in RQ1 and RQ2, we highlight some potential directions and

opportunities for future work, e.g.,

• For fine-tuning-based and augmentation-based repairing techniques, catastrophic

forgetting can be a bottleneck, and it would be important and quite beneficial to design

novel techniques to address such problems.

• Robust denoising techniques and style transfer-based techniques can be helpful for

improving the repairing effectiveness.

• In addition, more advanced better image fusion schemes, e.g., better augmentations

can also be beneficial for object detection repairing.

• To accelerate the deployment of object detectors with possible version updates and

evolution, it is highly desirable the repairing techniques could be efficient, to be able to

quickly adapt to potential changes in both system-level and operational environments.

22

Overall, the contributions of this paper are summarized as follows.

• We systematically investigate the failure patterns of object detection techniques based

on diverse corruptions, detectors, object distributions on the failure datasets, and the

error types.

• We construct an object detection repairing benchmark and performed a comprehensive

evaluation and comparative studies on the SOTA repair schemes.

• We identify current potential challenges and pinpoint future and opportunities direc-

tions for repairing object detectors.

Corruptions

Bug Analysis Repair Schemes

Degradation Correlation

Detectors

RPD vs FLOPs IoU Scale

Failure Patterns

Scale Instance Ratio

Error Types

Fg-Bg Loc FN Cls

Data
(Ω, Ω’)

Single

Combined

Ω->Ω’

Ω’

Ω-∪Ω’

Ω∪Ω’+Deep Repair

Ω’->ΩDenoising

FT Failure

FT Combined

PMosaic

Mixup

Model

Architecture

Weights

ArchRepair

Gradient-
based

Statistics
-based BN Calibration

Fine-tuning

Re-training

Figure 3.1: Overview of our workflow. We initiate the analysis of failures in object detection
from multiple aspects. Next, we conduct an extensive study of potential repair methods
for addressing these failures. Methods are located in leaf nodes and the orange ones are
included in our benchmark.

3.2 Related Work

Similar to traditional software repairing, the purpose of machine learning (ML) model/sys-

tem (including deep learning) repairing is to fix the identified erroneous data, so as to ensure

the ML models can be continuously deployed and function with high performance. Up

to the present, there have been some early and recent efforts to repair image classifiers.

However, the repairing of object detectors can be much more challenging, and has not

been comprehensively investigated so far. Furthermore, there could be quite a few research

23

Table 3.1: Methods in the benchmark and their counterparts.

Method Better Version Upper-bound/Baseline

Fine-tuning on failure data

Fine-tuning on combined data

BN calibration Calibration on classification Calibration on ImageNet-C [5]

Neighbor2Neighbor [46] Supervised denoising

Mosaic [26] PMosaic

MixUp [47]

DeepRepair [7]

approaches that could be relevant and helpful for the repairing purpose. In this section, we

discuss the most relevant work of repairing object detectors by categories.

Deep Neural Network Repair. Apricot [48] is an early work on repairing deep neural

networks (DNN), which presents a weight-adaptation approach to merge several reduced

models trained on the subset of all training data. MODE [49] performs fault localization by

model state differential analysis and repair by training input selection. Both Apricot and

MODE aim to improve accuracy instead of handling system errors caused by corruption.

NNRepair [50] proposes a constraint-based approach to repairing classifiers. Before solving

the constraints, it first conducts fault localization to mark neurons for repair. It repairs

only a single layer of the whole network, while actual faults might be located in multiple

layers. [51] follows a similar workflow, which applies causality-based fault localization

and PSO optimization. Archane [52] conducts bidirectional fault localization and repair

with a population-based heuristic optimization algorithm. However, heuristic methods are

often quite challenging for deep object detectors. DeepRepair [7] is an augmentation-based

repair method to conduct data-driven repair for DNNs. It employs style transfer to augment

the datasets so that it solves the problem of insufficient data. ArchRepair [44] repairs the

classifiers by searching for better architectures. In addition, some other works [53, 54]

24

attempt to repair more neural networks than feed-forward networks.

Robustness and Augmentation. Besides the aftermentioned work that directly repairs

DNNs, other techniques can also be helpful to achieve the repairing effects under different

contexts. For example, some recent works [5, 6] on robustness study the overall accuracy

performance of detectors under various corruptions. Augmix [55] and AutoAug [56] propose

automatic augmentations for image classification to help improve accuracy performance and

robustness. [57] and [58] make attempts to boost deep object detectors with augmentation.

Safety, where repair works, revolves around a restricted specification. On the contrary,

robustness revolves around everything not specified. Robustness usually concerns reducing

failure when the input is corrupted or fake. However, repair aims to fix bugs when failure

cases occur.

Domain Adaptation. Domain adaptation transfers a model from the source domain to

the target domain. Batch normalization(BN) [59] is a critical component in the neural

network architecture. AdaBN [60] assumes that models from different domains share similar

weights except for BN and statistics in BN capture information in diverse domains. Some

related papers [61, 62] also show great success in domain adaptation with BN calibration.

Recent works on domain adaptation for object detection [8, 9, 63] employ schemes in

detection frameworks to improve the detectors’ performance in the target domain. There

can be several differences between repair and domain adaptation. Domain adaptation mostly

focuses on performance in the target domain, while repair has to take performance on both

the failure set and clean set into consideration. Domain adaptation is usually formulated

as an unsupervised or semi-supervised problem, and repair is treated more as supervised

few-shot learning. Besides, it would be less preferred to conduct repair by large architecture

modification as is usually used in domain adaptation.

25

Continual Learning. Continual learning [42, 64] works on a sequence of well-defined

tasks. [42] clarifies three scenarios for continual learning, i.e., task-incremental learning,

domain-incremental learning, and class-incremental learning. In continual learning, tasks

are sequential and the models can only access data from the current task. However, in repair

scenarios, both clean training data and corrupted data are available. As a result of task

sequences, the key point of continual learning is the problem of catastrophic forgetting. They

utilize regularization-based methods [65, 66], data modification [67, 68], and an episodic

memory [69, 70]. Although we observe catastrophic forgetting in some repair methods, it’s

beyond our discussion to solve catastrophic forgetting.

Out-of-distribution in Object Detection. Out-of-distribution problems are critical in data-

centric machine learning. [71–73] work on open-set object detection. Open-set problems

occur when unseen categories exist after deployment. Most related works [74] aim to detect

out-of-distribution samples but fail to work on how to solve the failure prediction, which is

the main goal of the repair.

Image Denoising. Image denoising has been a popular research topic, and it has been

revived recently by deep learning techniques. As noted in [75], some deep denoisers are

recently proposed for additive white noisy images [76–79], real noisy images [80–82], blind

denoising [83–85], and hybrid-noisy images (i.e., the combination of noisy, blurred, and

low-resolution images) [86, 87]. Image denoising models could serve to solve some of the

corruptions in our study. Due to limited available computational resources at our hands, we

eventually include Neighbor2Neighbor [46] in our benchmark. It is a self-supervised model,

achieving state-of-the-art results on image denoising. Intuitively, better denoisers would be

beneficial for repairing detectors under diverse common corruptions.

26

3.3 Object Detector Repairing Schemes

As shown in Fig. 3.1, we propose to investigate two directions to solve the above repair

problem based on the detector formulation D = {W,A}, that is, data-oriented repair and

model-oriented repair. Intuitively, data-oriented repair focuses on modifying or enhancing

the training dataset, such as through data augmentation techniques. This approach aims to

update the weights of the detector or preprocess the input data during the testing process to

improve its performance against corruption examples. On the other hand, model-oriented

repair aims to update the weights or architectures within the detector itself to enhance

its robustness against corruption examples. This approach involves making modifications

directly to the model’s parameters or structure to improve its ability to handle and mitigate

the impact of corruption.

Model-oriented Detector Repairing

In general, a model of a detector is comprised of the architecture (i.e., A) and its weights

(i.e., W). So based on the model view, we identify four potential solutions based on the

characteristic training of object detectors, i.e., fine-tuning-based weight repairing, retraining-

based weight repairing, statistic-based weight repairing, and neural architecture search-

based architecture repairing.

Retraining-based weight repairing. A straightforward idea for improving robustness

against a specific corruption is to incorporate the collected failure training dataset D fail
train to

the clean training dataset Dtrain and then to retrain the model from scratch. This method is

denoted as retraining-based weight repairing. In our benchmark, we have excluded retraining

as a repairing technique due to its high time and computation cost.

Fine-tuning-based weight repairing. One potential solution for repairing object detectors

is to perform fine-tuning on the pre-trained detector D with the failure training dataset

D fail
train. This process allows the detector to adapt and learn from the failure cases, effectively

27

repairing and enhancing its capabilities. Fine-tuning provides a practical and efficient

solution for repairing object detectors without the need for extensive retraining, as it focuses

on updating the pre-existing model using the collected failure data. While fine-tuning the

detector with failure data can help improve its performance and reduce the occurrence of

similar errors, there is a potential risk of introducing errors in the original testing dataset.

This is because the fine-tuning process may lead to overfitting on the failure data, causing

the detector to become less accurate or reliable when applied to the original dataset. We will

detail the training configurations for fine-tuning in Sec. 3.3.

Neural architecture search-based repairing. On the other side, we can also achieve the

goal of repair by modifying the architectures A of the detectors. For example, ArchRepair

[44] proposes to localize the vulnerable block of a network and use the neural architecture

search (NAS) to repair the localized block with the guidance of the collected failure training

dataset. However, it is not easy to repair the architecture of a detector since the modifications

on operators and modules might lead to a negative impact on inference. For example,

ArchRepair searches the architectures without any consideration for computation. But

the repaired network directly adds extra convolutions to the failed model. It increases the

network’s computation and inference time, and it is an unfair comparison between models

before and after repair. It could result in more severe problems in deployment after repairing

the detectors, especially when the deployed hardware device has a gap with the ones that are

used for training and development. For instance, group convolution, a widely-used operator

in NAS search spaces, is not optimized across all devices and backends. Considering that it

can be risky to repair by modifying the architectures in many cases, especially those without

specifying the hardware configurations of the deployed environment. Therefore, in this

paper, we don’t include neural architecture search-based repairing methods.

Statistics-based repairing. Like many state-of-the-art neural networks for image clas-

sification, object detectors also often employ statistics-based operators, e.g., batch nor-

28

malization (BN). Recent works [60, 61] hypothesize that running statistics in BN layers

store the domain-specific knowledge while other weights of networks capture semantic

pattern information across domains. They highlight the effectiveness of Batch normaliza-

tion (BN) calibration in handling distribution shift. BN calibration updates a network’s

running statistics while keeping other weights unchanged. Acknowledging the significance

of statistics-based operators in object detectors and their ability to capture domain-specific

knowledge, it is indeed worth exploring the potential of BN calibration as a candidate for

repairing object detection models.

However, in our pilot experiment, we found that BN calibration failed to repair the

detector and resulted in a significant drop in performance on both the clean and failure test

sets. This failure may be due to inconsistency between the training and repairing BN status.

If the detector is trained with frozen BN statistics, meaning that the statistics are directly

copied from its classification pre-trained model instead of calculated on the detection dataset,

we cannot calibrate the BN statistics. Unfortunately, most models in the experimental model

zoo are trained with frozen BN statistics, which could explain the failure of BN calibration

for object detection repairing.

To further study the reason why BN calibration fails and explore its potential, we conduct

an ablation experiment in Table 3.2 based on BN status (frozen or updated) during training

and repairing. Our conjecture is that BN calibration fails in repairing due to inconsistency

between training and repairing BN status. To begin with, we confirm that different BN

statuses during training result in similar performance. They can achieve comparable per-

formance after being repaired with frozen BN statistics, too. However, the detector trained

with updated BN statistics succeeds in achieving improvement after being repaired with

updated BN statistics, while the other one trained with frozen BN statistics fails. It confirms

our conjecture, and we conclude that BN calibration can only be applied to the detectors

trained with updated BN statistics.

Given our experimental models are trained with frozen BNs, direct BN calibration is not

29

practical in our benchmark. Therefore, we propose an improved version of BN calibration,

i.e., BN calibration on classification. We follow three steps to detector repairing via BN

calibration on classification. First, generate images as the input of the classification model.

A simple example is to transfer images from ImageNet using the failure images as the

style. Second, calibrate batch normalization layers of the pre-trained classification model.

Finally, copy the running BN statistics to the detector. As shown in Table 3.2, it improves

the detector successfully. Eventually, we adopt this approach in our benchmark.

Only once repair would benefit all of the object detectors sharing the same pre-trained

model. On the other side, BN calibration on classification also has explicit limitations. To

repair the detector, the pre-trained classification model is supposed to be accessible due to

privacy or other reasons. For example, our benchmark fails to include experiments of BN

calibration on classification on FCOS [29] because they utilize Caffe versions of ResNets as

pre-trained models.

Table 3.2: A pilot study for consistency between BN updating schemes during training and
repair. BN@Train is the status of batch normalization layers when training the detectors to
be repaired. And BN@Repair is the BN status when repairing detectors. AP@Cl, AP@Fl,
and AP@Avg mean the mean average precision of the object detectors on the clean test set,
the failure test set, and their average values. BN calibration on detection can be only applied
to models trained with updated BN. BN calibration on classification improves average
performance on failure and clean test datasets.

BN @ Train BN @ Repair AP@Cl AP@Fl AP@Avg

Frozen - 36.5 26.0 31.25

Updated - 36.1 26.3 31.2

Frozen Frozen 35.2 31.0 33.1

Frozen Updated 30.0 26.2 28.1

Updated Updated 35.2 30.8 33.0

Frozen
Updated on

35.6 27.8 31.7
Classification

30

Data-oriented Detector Repairing

As noted before, the original training dataset Dtrain and failure dataset D f ail are available

in repairing tasks. For clarity, we assume they belong to different domains, i.e., Ω and Ω′

respectively. To resolve problems across domains, we can transfer the images into a single

domain or combine the images to enable the models to capture knowledge in both domains.

For repairing proposals in a single domain, we can repair the detectors by transferring the

images to Ω′ or Ω, discussed in Sec. 3.3. For domain combination, we first propose two

approaches based on naive fine-tuning. Then we step further to boost domain fusion with

advanced techniques like data augmentations. Among all the transforms and augmentations

in MMDetection [41], we study those that can help the detectors fuse images from different

domains, i.e., MixUp [45] and Mosaic [26]. Finally, we study the repairing method on

classification, DeepRepair [7].

Single domain: transferring images to Ω′. In order to transfer the images into a single

domain, we can merge the images into Ω or Ω′. As failure samples are not frequently

observed in the application environment, it’s not reasonable to transfer all images into Ω′.

Single domain: denoising. We include a denoising method to transfer the images Ω′

to Ω. In detail, we study one of the best self-supervised methods, Neighbor2Neighbor

[46]. It removes noises based on the locality and smoothness of clean images. To further

estimate the technical opportunities of denoising methods, we study a supervised version of

Neighbor2Neighbor as an appropriate upper bound.

We first conducted a pilot experiment to study its effectiveness on denoising. Here we

employ the widely-used PSNR(Peak Signal-to-Noise Ratio) to evaluate the output image

quality and report AP scores as the final evaluation. For gaussian_noise, it achieves a very

high PSNR score and succeeds in improving detection performance. However, it leads to

a much lower PSNR score on defocus_blur and fails to repair the detector. Therefore, to

31

further investigate the opportunities in denoising for repair, we experiment on a supervised

version as an estimated upper bound. In the pilot study, we find that Neighbor2Neighbor

performs close to its supervised counterpart on gaussian_noise but far less than the upper

bound on defocus_blur.

Table 3.3: On gaussian_noise, both the self-supervised and supervised denoisers work and
achieve comparable performance. But the self-supervised one fails on defocus_blur and
there is a large gap between the denoisers.

Corruption Repair PSNR AP@Fl

GsNoise

- - 16.3

Self-supervised 26.74 26.3

Supervised 26.74 26.8

DfBlur

- - 15.0

Self-supervised 22.20 15.5

Supervised 30.55 31.9

Multiple domains: fine-tuning with failure data. Multiple schemes could be applied

to combine images from two domains (see Fig. 3.1). A naive solution is to fine-tune the

model on the failure dataset directly. The model to be repaired is well-trained and captures

sufficient information in Ω. Fine-tuning will only result in limited changes from the original

optima. Then, the model owns knowledge across both domains. We include this method in

the benchmark as a simple baseline.

Multiple domains: fine-tuning with combined data. In our pilot experiments, we find

that for fine-tuning with only failure data, the performance improves in Ω′ but drops in Ω

severely. Therefore, we propose to fine-tune the detectors with both failure data and sampled

clean data. It explicitly updates the models with data from both domains. It is a simple but

effective repairing method.However, as Fig. 3.12 shows, we notice catastrophic forgetting in

these two fine-tuning-based methods, which we will discuss later in Sec. 3.4.

32

Multiple domains: MixUp. MixUp [45] is a data augmentation to boost training by

mixing two images with random weights. In object detection, MixUp merges two images by

weighted sum and aggregates all ground truth bounding boxes. [47] is the first to explore

MixUp in object detection. YOLOv4 [26] and YOLOX [27] utilize MixUp as one of the

transform pipelines to boost training. However, as our later experiments show, it would

result in some problems in repair.

Multiple domains: Mosaic. Mosaic [26] mixes four images into a collage one. Sticher

[57] is a similar augmentation based on the observation of object scale statistics. Compared

to MixUp, it enriches the context without fusing semantic information of objects. As noted in

Stitcher [57], it would also benefit the training of small objects, one of the critical problems

in object detection.

We conduct a pilot study on Mosaic as shown in Table 3.4 as well, where the detector

after being repaired with Mosaic shows some advantages over that before repair. However, it

performs much worse than the fine-tuning one on the failure test set. In Stitcher [57], we find

similar experimental results. They notice all collaged inputs (similar to Mosaic) would lead

to severe performance degradation compared to all regular inputs. They propose random

sampling between collaged and regular input images and find it better than the all-regular

baseline. In our work, we implement a random-sampling-based version of Mosaic, noted as

PMosaic. To be more specific,

PMosaic(I) =

⎧⎨⎩ Mosaic(I), w.p. 0.5,

I, w.p. 0.5.
(3.1)

In the pilot experiment in Table 3.4, PMosaic exceeds Mosaic greatly on the failure test

set, but fails to achieve better performance than fine-tuning. However, we notice that Mosaic

and Stitcher converge slower in training an object detector. It motivates us to observe its

behavior on a longer schedule. In Table 3.4, PMosaic at epoch 49, notated as PMosaic+,

shows comparable performance with fine-tuning on the failure test set. But the model suffers

from catastrophic forgetting, i.e., the performance on the original clean test set drops with

33

the fine-tuning process. Fig. 3.12 shows the forgetting curves. To conclude, PMosaic can be

promising for detector repair if either a slow convergence rate or catastrophic forgetting is

solved or relieved.

They [57] argue that all collaged inputs would harm the learning of large objects. In

our experiments, we validate it by observing a severe performance drop of large objects on

both clean and failure test sets. For instance, the detectors repaired by naive fine-tuning and

Mosaic share comparable performance in overall mean AP. However, there is a remarkable

gap between their performance in AP@L. It motivates them to develop the random sampling

method. In Table 3.4, we find that it relieves the problem in Mosaic(AP@L increases from

26.7 to 31.4). But there remains much scope for improvement.

Table 3.4: Pilot experiments on Mosaic. Mosaic fails to exceed fine-tuning due to its
degradation in the learning of large objects. We utilize an improved version, PMosaic,
and achieve much better AP scores than Mosaic. It suffers from slow convergence and
catastrophic forgetting, too.

Repair AP@Cl AP@Fl AP@Fl@SML AP@Cl@SML

- 36.6 16.3 6.9 18.5 24.8 21.6 41.0 49.8

Fine-tune 35.8 21.4 9.1 23.8 32.7 21.4 40.4 48.8

Mosaic 35.6 18.4 7.9 21.1 26.7 21.4 39.9 47.0

PMosaic 35.4 20.8 9.3 23.1 31.4 20.8 39.7 47.1

PMosaic+ 34.4 21.3 9.4 23.8 31.6 20.0 38.4 46.5

Multiple domains: DeepRepair. When we attempt to combine data in Ω and Ω′, we

have to handle the lack of failure data. Moreover, there exists an imbalance between

sufficient clean data and insufficient failure data. DeepRepair [7] generates data in Ω′ with

style transfer and fuse images with AugMix [55]. Since DeepRepair is implemented on

classification, here we apply a naive version for detection. We directly fine-tune the detector

with both clean data and generated failure data. Based on our pilot experiments in Table 3.5,

we notice that the performance increases as the size of the training set increases for both

34

naive DeepRepair and its upper bound. The training dataset of COCO contains 118,287

images. To achieve the upper bound, we generated the training images with corruptions

instead of style transfer. When compared with the upper-bound, naive DeepRepair shows

comparable performance on clean data. On the other hand, it performs much worse on the

failure test set. Here we utilize the same style transfer model as DeepRepair and we suggest

that a better style transfer method would help even more. However, it’s far beyond our

discussion in this paper to improve style transfer. But we still encourage further attempts at

detection repair to follow and improve it.

Table 3.5: Pilot experiments for the naive version of DeepRepair. 1000*8 means 1000
images trained for 8 epochs. And all the others are trained for 1 epoch. 118287 is the size of
the COCO training dataset. For the naive version DeepRepair, the performance increases as
the number of training images increases. For the upper bound, training images are generated
with corruptions instead of style transfer. When compared with the upper-bound, naive
DeepRepair shows comparable performance on clean data, but it has a large performance
gap on the failure test set. Besides, it fails to outperform fine-tuning despite it costs about
30 times more GPU hours.

Method Images AP@Avg AP@Fl AP@Cl

Fine-tuning 1000*8 28.6 21.4 35.8

Naive DeepRepair

8000 26.3 16.4 36.2

50000 26.45 16.7 36.2

118287 26.6 16.9 36.3

Upper bound

8000 28.8 21.6 36.0

50000 29.95 23.7 36.2

118287 30.45 24.6 36.3

Summary

To sum up, we systematically analyze and discuss potential methods to repair object detectors

as shown in Fig. 3.1. We attempt nine different candidate methods in this section. Two of

them are eventually not included in the benchmark due to huge computation costs and one is

35

not included as a result of the unclear and common mismatching of training and deployment

hardware configurations. In our pilot experiments, we find that:

• Mosaic harms the performance of large objects and PMosaic suffers from slow

convergence.

• BN calibration can only be directly applied to models trained with updated BN.

• The self-supervised denoiser works on some corruptions but fails on others.

• The naive DeepRepair can retain the performance on the clean test set and there is a

performance gap between this approach and its upper bound.

Finally, we will include the seven repairing methods in our benchmark, i.e., fine-tuning

on the failure dataset, fine-tuning on the combined dataset, MixUp, PMosaic, BN calibration

on classification, denoising, and the naive DeepRepair. More information is available in

Table 3.1.

3.4 Detector Repairing Benchmark Construction

We’ve discussed the problem formulation and our repairing proposals. Based on these

proposals, we’ll continue to build our benchmark. In this section, we’ll show how we

construct our repairing benchmark. In Sec. 3.4.1, we first set up experimental configurations,

including the dataset, corruptions, detectors, and training schedule. More implementation

details about the repairing methods are in Sec. 3.6. We introduce the evaluation metrics for

repair in object detection in Sec. 3.4.2.

In the following sections, we’ll discuss our analysis and comparative experimental results

on repairing object detectors. In Sec. 3.5, we aim to confirm and synthesize failure patterns

to benefit repair further. In Sec. 3.6, we empirically study the performance of repairing

methods and accumulate deep insights into these methods and the task.

36

3.4.1 Experimental Setup

We will present our experimental settings in this section. We involve most details in the

experimental environment and more information for the repairing methods can be found in

the implementation details of the methods in Sec. 3.6.

Dataset. We perform all of our experiments on COCO [40], one of the most important and

widely-used dataset in object detection. COCO includes common objects and annotations

across 80 categories. It captures objects with a wide range of scales, from very small objects

to very large ones. It’s challenging and has a great influence on the object detection research

community.

Failure Definition. In terms of the image classification task, we can easily define a

failure sample of a classifier by checking whether the predicted category is the same as

the ground truth. However, it is more complicated for object detection. The widely-used

metric like average precision (AP) is calculated based on the ranking of bounding boxes

across images, and cannot be used to determine the failure sample directly. Then, we need a

new way to define a failure sample for a detector under corruption. To address this issue,

we first define the image-wise AP of a detector D on an input image I as APimg(I,D) with

Eq. (2.8) by evaluating AP of the objects within an image instead of the whole dataset,

i.e., APimg(I,D) = AP(DI,D) where DI = {I}. Besides, we define the failure samples in

COCO-C [6], which is constructed by adding corruption to clean images in COCO [40].

Given a detector D and an image Ic in COCO-C corrupted by the corruption c, we name this

image as a failure sample of the detector under the corruption if and only if its image-wise

AP drops when compared to its clean counterpart Io in COCO. To validate the rationality of

the definition of failure sample under a kind of corruption, we check whether the image-wise

AP variation is consistent with the dataset-level AP variation. Specifically, given a corrupted

testing dataset, we evaluate a detector on that dataset and collect the failure samples based on

37

the failure sample definition. Then, we construct a failure dataset and can calculate the size

of the dataset (i.e., the number of samples within the failure dataset). Then, we compute the

correlation between the size of the failure dataset and overall performance (i.e., the AP on

the whole corrupted testing dataset). The size of the failure dataset is significantly negatively

correlated (Kendall’s Tau=-0.896) to the AP scores on the whole corrupted testing dataset.

Intuitively, when a detector shows lower performance on the whole testing dataset, it’s more

likely to collect more failure samples. When a detector fails at all the images, its AP score

falls to 0 and the size of the failure dataset reaches the maximum. To sum up, our definition

of failure is consistent with performance degradation on the whole corrupted test dataset.

Failure Collection. As stated before, we assume that failure is caused by a single image-

wise corruption. Following COCO-C [6], we experiment on all 15 corruption types. The

corruptions include brightness, contrast, defocus_blur, elastic_transform, fog, frost, gaus-

sian_noise, impulse_noise, snow, pixelate, jpeg_compression, motion_blur, shot_noise, and

zoom_blur. The abbreviations of corruptions are summarized in Table A.1. For simplicity,

we only study severity at level three, the middle one across all five levels. All of our

experiments and analysis methods can be easily extended to other levels without any extra

workload except GPU hours. We collect all failure samples based on the definition in Sec. ??.

Following DeepRepair [7], we randomly sample 1000 failure images as the failure training

set and leave the others as the failure test set. We repeat each repair experiment five times.

Empirically, we find the randomness comes from the split of training and test sets while the

results of repeated single experiments are stable.

Detectors. We conduct our experiments on MMDetection [41], one of the most popular

open-source detection repositories. We directly utilize detection models from MMDetection

model zoo, where almost all state-of-the-art detectors are available. Due to the limitation

of computation resources and time, we only focus on RetinaNet, Faster R-CNN, FCOS,

and DETR as the representatives of single-stage detectors, two-stage detectors, anchor-free

38

detectors, and transformer-based detectors. We use their abbreviations as noted in Table A.2

in figures. In the study of repairing methods, we experiment on RetinaNet, Faster R-CNN,

FCOS, and DETR with ResNet50 and ResNet101 backbone. DETR-ResNet101 is not

included because of its absence in the MMDetection model zoo. In detail, we experiment

to evaluate repairing methods on retinanet_r50_fpn_1x (RetinaNet-ResNet50), retinanet_-

r101_fpn_1x (RetinaNet-ResNet101), fcos_r50_caffe_fpn_gn-head_1x (FCOS-ResNet50),

fcos_r101_caffe_fpn_gn-head_1x (FCOS-ResNet101), and detr_r50_8x2_150e (DETR-

ResNet50). To sum up, we have 105 experimental configurations with 5 repetitions, 525

experiments in total, to evaluate each repairing technique.

Training schedule. For fine-tuning-based and augmentation-based methods, we report the

ones with the best average AP. For denoising, we utilize the denoiser with the best PSNR.

For BN calibration, we apply the classifier with the best average accuracy. We finally report

the AP scores for denoising and BN calibration. When fine-tuning the detectors, we inherit

the training settings and load the pre-trained models provided by the model zoo. The batch

size during fine-tuning is set as 8 on a single NVIDIA A6000 GPU. In most experiments,

we fine-tune the detectors for 8 epochs. The learning rates are set the same as the ones at the

end of training and we do not apply decay to learning rates.

3.4.2 Evaluation Metrics for Repairing

We employ relative performance decrease to conduct our quantitative analysis for perfor-

mance degradation and relative performance improvement to evaluate repairing methods.

Relative Performance Decrease. To investigate performance degradation in a quantitative

way, the performance decrease is formally defined as Eq. (3.2), where D represents an object

detector, Dtest is the clean test dataset, and Dc
test is the corrupted dataset. The notations

are the same as those in Sec. 2.2.2. It’s obvious the smaller RPD is, the better the model

performs.

39

RPD = 1− AP(Dc
test,D)

AP(Dtest ,D)
(3.2)

MRPD of one model refers to average RPD values over the corruptions. We utilize RPD

to analyze degradation for a single model with one corruption and MRPD for the overall

impact of the corruptions on one model. In Fig. 3.4, we present MRPD values for 48 models

under 15 corruptions.

Relative Performance Improvement. Based on definition in Eq. (2.12), we evaluate the

repairing methods with Eq. (3.3).

λAP(D fail
test ,D′)+(1−λ)AP(Dtest ,D′)

λAP(D fail
test ,D)+(1−λ)AP(Dtest ,D))

−1 (3.3)

, where we use λ = 0.5 in this paper for equal importance.

Different from RPD, a higher value in RPI means a higher performance gain. Similarly, a

higher overall value indicates a better repair method.

3.5 Analysis on Failure

To further discover knowledge in object detectors with corrupted input images, we propose

four sub-research questions from multiple aspects. Different from existing papers [6] work

on differences between images before and after corruption, we pay attention to failure

patterns closely related to object detection.

RQ1.1. How do common corruptions impact deep object detectors?

RQ1.2. How do detectors perform under common corruptions?

RQ1.3. Are there any patterns in the failure datasets?

RQ1.4. What are the major error types of detectors under common corruptions?

40

3.5.1 RQ1.1. How do common corruptions impact deep object detec-
tors?

In RQ1.1, we aim to study the corruptions based on RPD values and statistics. In Fig. 2.2,

the corrupted detectors have lower AP scores than clean ones. In Fig. 3.4, no negative RPD

value is observed. Therefore, all corruptions lead to performance degradation, although to a

different extent. From the colors of the heatmap in Fig. 3.4, we find that different types of

corruption can lead to different levels of degradation in performance. In general, zoom blur

leads to the most degradation in performance across models, while brightness results in the

slightest performance drop.

Bright

Fog

Contrast

Elastic

Frost

Snow

JPEG

ShNoise

GsNoise

DfBlur

ImNoise

Pix

MtBlur

GlBlur

0.2 0.4 0.6 0.8
RPD

ZmBlur

Figure 3.2: Correlation between corruptions based on relative performance decrease values.

In Fig. 3.2, we observe three clusters in corruptions based on performance degradation.

Brightness, fog, and contrast form the first cluster, where all models have much smaller

relative performance decrease values. Glass blur and zoom blur locate in the third cluster and

they both lead to large RPD scores. The others with overlapped RPD values in distribution

belong to the second cluster, which locates in the middle of the figure. The clusters imply

41

possible connections among the corruptions.

 G
sN

oi
se

 S
hN

oi
se

 Im
No

ise
Df

Bl
ur

Gl
Bl

ur
M

tB
lu

r
Zm

Bl
ur

 S
no

w
Fr

os
t

Fo
g

Br
ig

ht
 C

on
tra

st
El

as
tic Pi
x

JP
EG

 GsNoise
 ShNoise
 ImNoise

DfBlur
GlBlur
MtBlur

ZmBlur
 Snow
Frost
Fog

Bright
 Contrast

Elastic
Pix

JPEG
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.3: Distributions of RPD values for corruptions. They form three clusters as shown
in different colors.

Correlation Analysis between Corruptions We further study the relationships between

corruptions by analyzing the correlations between their relative performance decreases.

The heatmap is located in Fig. 3.3. The minimal correlation appears between zoom_blur

and jpeg_compression(0.24), and the maximal one is between shot_noise and gaussian_-

noise(0.91). In the later study of repairing methods, we notice that the detectors achieve

comparable performance gain after being repaired under shot_noise and gaussian_noise.

Fog and contrast are another pair of corruptions with a high correlation in the relative

performance decrease. The co-repair of different corruptions could be conducted based on

correlations between corruption types in further works.

42

GsNoise

ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow

Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

detr_r50

fcos_r50c_1x
fcos_r50c_1x_giou
fcos_r50c_1x_dc_giou
fcos_r101c_1x
fcos_r50c_2x
fcos_r101c_2x
fcos_x64_2x

retina_r50c_1x
retina_r50_1x
retina_r50_1x_fp16
retina_r50_2x
retina_r101c_1x
retina_r101c_3x
retina_r101_1x
retina_r101_2x
retina_x32_1x
retina_x32_2x
retina_x64_1x
retina_x64_2x

faster_r50c_1x_dc
faster_r50c_1x
faster_r50_1x
faster_r50_1x_fp16
faster_r50_2x
faster_r101c_1x
faster_r101_1x
faster_r101_2x
faster_x32_1x
faster_x32_2x
faster_x64_1x
faster_x64_2x
faster_r50_1x_iou
faster_r50_1x_giou
faster_r50_1x_biou
faster_r50c_ms1x_dc
faster_r50c_3x_dc
faster_r50c_2x
faster_r50c_3x
faster_r50_3x
faster_r101c_3x
faster_r101_3x
faster_x32_3x
faster_3x
faster_x64_3x

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Figure 3.4: Left: RPD(relative performance decrease) values for corruptions and detectors.
Right: MRPD of detectors.

Answer to RQ1.1: All 15 common corruptions we study result in performance degra-
dation. In general, zoom blur leads to the most degradation in performance across
models while brightness results in the slightest performance drop. Based on relative
performance decrease, shot_noise and gaussian_noise are highly correlated.

3.5.2 RQ1.2. How do detectors perform under common corruptions?

In this section, we focus on models to understand performance degradation. Instead of

working on only the overall AP decrease, we dive deeper to study the details of detectors

under common corruptions.

From Fig. 3.4, we find that retinanet_x101_64x4d_fpn_1x has the least performance

decrease among the models and faster_rcnn_r50 _fpn_mstrain_3x yields the most degra-

dation. In Fig. 3.5, we plot the models as scatters based on MRPD and FLOPs. The gray

line is the linear regression results based on MRPD and FLOPs and it shows a negative

correlation between performance drops and model computation. In general, larger detectors

are more likely to survive degradation under corruption. We group the models based on their

detection heads and training schedules. We notice that RetinaNets seem to be marginally less

43

vulnerable than Faster R-CNNs. What’s more, a longer training schedule hurts robustness.

Object Scales. As one of the most important features that distinguish object detection

from image classification, objects with different scales locate inside a single image. Thus, it

has long been a critical methodology for object detection to synthesize performance across

different scales. Our experimented dataset, COCO [40], defines the object scale based

on the area of bounding boxes, i.e., small, medium, and large objects. In the left plot in

Fig. 3.6, we analyze the performance degradation for different scales, i.e., AP@S, AP@M,

and AP@L. It can be easily observed that smaller objects suffer from more degradation

while larger ones are more robust. The relative performance decreases of medium objects

agree with that of overall mAP in general. There are significantly different patterns between

the impact of common corruptions across scales and overall mAP. The curves share similar

trends but differ in detail. We rank the models along the x-axis based on the performance

decrease of overall mAP, and thus the curve of MRPD@AP is increasing. Therefore, the

bumpy curves show differences in local rankings between decreases in small and large

objects and overall performance. We can also find many interesting points in the figure. For

example, retinanet_r101_fpn_1x and retinanet_r101_caffe_fpn_1x, with the same backbone

architecture but different pre-trained models, have comparable MRPD values, but the latter

one decreases much more in large objects and vice versa. Moreover, compared with other

models, detr_r50_8x2_150e_coco suffers more performance decreases in large objects, as

we highlight in the figure.

IoU Threshold. As we noted in Sec. 2.1.1, IoU threshold, δ in Sec. 2.1.1, is used to

match predicted bounding boxes and ground truths. The IoU threshold implies the box

quality. Unlike previous works that only focus on the overall performance, we obtain relative

performance decrease values based on different values of δ to study the impact of corruptions

for bounding boxes on different levels of quality. The right plot in Fig. 3.6 visualizes the

RPD values at different δ . It shows that detectors with more strict box-matching strategies

44

drop more in performance. It might indicate why Michael et al. [6] find Cascade R-CNN

[21], which heavily relies on boxes with high quality, suffers from severe performance

degradation. Besides, different from what we observe about scales, MRPD values own

similar curves across IoU thresholds. The only point here is a significantly lower MRPD

at IoU δ = 0.75 for detr_r50_8x2_150e_coco. DETR behaves differently from others in

detailed analysis. We suggest there would be more interesting facts and observations in

further analysis between CNN-based and transformer-based detectors and we leave it for

further work.

50 100 150 200 250 300 350 400 450 500
GFLOPs

0.42

0.44

0.46

0.48

0.50

0.52

0.54

M
R

P
D

retinanet-1x
retinanet-2x
retinanet-3x
faster_rcnn-1x
faster_rcnn-2x
faster_rcnn-3x
fcos-1x
fcos-2x
detr

Figure 3.5: Mean relative performance decrease values of detectors. The gray dotted line
is estimated by linear regression. In general, larger detectors are more likely to survive
degradation under common corruptions. RetinaNets seem to be marginally less vulnerable
than Faster R-CNNs. A longer training schedule hurts robustness.

Answer to RQ1.2: Common corruptions cause performance degradation across models.
In general, larger detectors are more likely to survive degradation under common
corruptions. A longer training schedule might hurt robustness. Smaller objects and
more accurate boxes are more sensitive to corruption. DETR-ResNet50 shows different
degradation patterns from others in object scales and IoU thresholds.

3.5.3 RQ1.3. Are there any patterns in the failure datasets?

This research question is to analyze the errors in failure samples. In this section, we only

study the seven models of interest in our study for repair, as noted in Sec. 3.4.1. Following

45

re
tin

a_
x6

4_
1x

fa
st

er
_x

64
_1

x
re

tin
a_

x3
2_

1x
re

tin
a_

x6
4_

2x
fc

os
_r

50
c_

1x
_d

c_
gi

ou
fa

st
er

_x
32

_1
x

re
tin

a_
r1

01
_1

x
re

tin
a_

x3
2_

2x
fa

st
er

_x
64

_2
x

re
tin

a_
r1

01
c_

1x
fc

os
_x

64
_2

x
fc

os
_r

10
1c

_1
x

fa
st

er
_r

10
1_

1x
fa

st
er

_r
10

1c
_1

x
re

tin
a_

r1
01

_2
x

re
tin

a_
x6

4_
3x

fa
st

er
_x

32
_2

x
fa

st
er

_x
64

_3
x

fa
st

er
_r

10
1_

2x
fa

st
er

_x
32

_3
x

fa
st

er
_r

10
1_

3x
fa

st
er

_r
50

c_
1x

_d
c

re
tin

a_
r1

01
_3

x
fc

os
_r

10
1c

_2
x

re
tin

a_
r5

0c
_1

x
fa

st
er

_r
10

1c
_3

x
fa

st
er

_r
50

c_
m

s1
x_

dc
fc

os
_r

50
c_

1x
re

tin
a_

r5
0_

1x
_f

p1
6

fa
st

er
_r

50
c_

1x
re

tin
a_

r5
0_

1x
fc

os
_r

50
c_

1x
_g

io
u

re
tin

a_
r1

01
c_

3x
de

tr_
r5

0
fa

st
er

_r
50

_1
x_

gi
ou

fa
st

er
_r

50
_1

x
fa

st
er

_r
50

_1
x_

io
u

fa
st

er
_r

50
c_

2x
fa

st
er

_r
50

_1
x_

fp
16

fa
st

er
_r

50
_1

x_
bi

ou
re

tin
a_

r5
0_

2x
fa

st
er

_3
x

fc
os

_r
50

c_
2x

fa
st

er
_r

50
c_

3x
fa

st
er

_r
50

c_
3x

_d
c

fa
st

er
_r

50
_2

x
re

tin
a_

r5
0_

3x
fa

st
er

_r
50

_3
x

Models

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
RP

D
DETR-ResNet50DETR-ResNet50

AP
AP@S
AP@M
AP@L

re
tin

a_
x6

4_
1x

fa
st

er
_x

64
_1

x
re

tin
a_

x3
2_

1x
re

tin
a_

x6
4_

2x
fc

os
_r

50
c_

1x
_d

c_
gi

ou
fa

st
er

_x
32

_1
x

re
tin

a_
r1

01
_1

x
re

tin
a_

x3
2_

2x
fa

st
er

_x
64

_2
x

re
tin

a_
r1

01
c_

1x
fc

os
_x

64
_2

x
fc

os
_r

10
1c

_1
x

fa
st

er
_r

10
1_

1x
fa

st
er

_r
10

1c
_1

x
re

tin
a_

r1
01

_2
x

re
tin

a_
x6

4_
3x

fa
st

er
_x

32
_2

x
fa

st
er

_x
64

_3
x

fa
st

er
_r

10
1_

2x
fa

st
er

_x
32

_3
x

fa
st

er
_r

10
1_

3x
fa

st
er

_r
50

c_
1x

_d
c

re
tin

a_
r1

01
_3

x
fc

os
_r

10
1c

_2
x

re
tin

a_
r5

0c
_1

x
fa

st
er

_r
10

1c
_3

x
fa

st
er

_r
50

c_
m

s1
x_

dc
fc

os
_r

50
c_

1x
re

tin
a_

r5
0_

1x
_f

p1
6

fa
st

er
_r

50
c_

1x
re

tin
a_

r5
0_

1x
fc

os
_r

50
c_

1x
_g

io
u

re
tin

a_
r1

01
c_

3x
de

tr_
r5

0
fa

st
er

_r
50

_1
x_

gi
ou

fa
st

er
_r

50
_1

x
fa

st
er

_r
50

_1
x_

io
u

fa
st

er
_r

50
c_

2x
fa

st
er

_r
50

_1
x_

fp
16

fa
st

er
_r

50
_1

x_
bi

ou
re

tin
a_

r5
0_

2x
fa

st
er

_3
x

fc
os

_r
50

c_
2x

fa
st

er
_r

50
c_

3x
fa

st
er

_r
50

c_
3x

_d
c

fa
st

er
_r

50
_2

x
re

tin
a_

r5
0_

3x
fa

st
er

_r
50

_3
x

Models

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

M
RP

D

DETR-ResNet50
AP
AP@0.5
AP@0.75

Figure 3.6: The values of RPD w.r.t. different object scales and IoU thresholds. Left: the
smaller objects are more sensitive to corruption while the larger ones are more robust. Small
and large objects show different degradation patterns from overall mAP. DETR-ResNet50
shows different patterns from others in performance on object scales. Right: detectors with
more strict box matching strategies drop more in performance.

the failure definition in Sec. 2.2.2, we analyze the failure patterns based on the statistics of

objects on the failure datasets.

We attempt to discover knowledge towards a better understanding of model failure by

synthesizing and observing the relationships between performance decreases and potential

statistical reasons or factors on the failure dataset. Based on experience with object detection,

we study three factors, i.e., the average number of instances per image(instance ratio), the

ratio of instances marked as crowded over all instances(crowd ratio), and the ratio of small,

medium, and large objects over all instances(small ratio, medium ratio, and large ratio). To

obtain observations of their relationships with the performance decrease, we plot the scatters

in Fig. 3.7. The blue points are the results of our experiments and the red ’x’ markers are

the extreme cases when the detector never achieves any correct prediction. It is often that

the failure dataset of a detector is a proper subset of the test set. However, if a detector fails

at every image on the test set, its failure dataset equals the test set. Therefore, we compute

the statistics on the test set as a reference for later analysis.

46

Scales. Plots in the first row in Fig. 3.7 show results of object ratio with different scales.

We can easily observe that the ratios of small objects on the failure test sets are higher

than that on the whole test set. And as the RPD value increases, the ratio of small objects

decreases. For large objects, we can obtain similar observations but in the reverse direction.

We infer that small objects are difficult for all the models across corruptions. On the

contrary, large objects might be the key point for performance drop gaps among models and

corruptions. In terms of medium objects, several cases show lower ratios than the extreme

case. Five of all seven cases are Faster R-CNN with ResNet50 backbone, showing great

advantages on medium objects.

Instance Ratio and Crowd Ratio. The bottom left plot shows a negative correlation

between RPD and the instance ratio. We further measure their correlation by Kendall’s tau

with a coefficient of -0.715 and p-value of 3.10e−27, which confirms our observation of

a strong negative correlation. It implies images with more instances are vulnerable across

corruptions and models, while those with fewer instances contribute to differences in RPD

between models and corruptions. In the bottom right figure in Fig. 3.7, most of the failure

datasets are more crowded than the whole test set. We notice that only three points fall

below the dashed line. All three cases occur on DETR-ResNet50 under weather corruptions

(snow, fog, and frost).

Core Failure Set. To validate the intuition, we obtain a core failure set for all 7 models

and 15 corruptions. The core failure set is the intersection of all failure datasets, as defined

in Eq. (3.4)

D∗ =
⋂︂

e∈E

D fail
e (3.4)

, where E is the set of all the experiments(105 in total here) and De
fail is the failure set of

experiment e. The core failure set contains vulnerable samples for all models and corruptions.

There are 114 images and 1,824 instances in D∗, and thus the instance ratio is 16.0. The

instance ratio is quite large and even much larger than the maximum on the experimental

47

failure datasets. It’s consistent with our conjectures about degradation and instance ratio.

The crowd ratio of D∗ is 0.01261, close to those suffering from severe degradation. For

object scales, the small, medium, and large ratios are respectively 0.471, 0.356, and 0.160.

Compared with results in the first row of Fig. 3.7, D∗ has fewer large objects and more

small and medium objects. It agrees with our inference on object scales.

What’s more, we find that D∗ only includes 69 of all 80 categories. Categories not

involved in D∗ include airplane, stop sign, parking meter, bear, zebra, giraffe, frisbee,

skis, snowboard, surfboard, and hair drier. In Fig. 3.8, we observe differences in category

distributions between the core failure dataset and the whole test set. The percentage of

dominant person instances decreases from 30% to 25%. In the meantime, we notice

increased percentages of cups, bottles, dining tables, books, and bananas. As instances of

these categories frequently appear in occluded scenarios, we argue the category distribution

shift agrees with the increase in instance ratio.

0.0 0.2 0.4 0.6 0.8 1.0
RPD

0.416

0.420

0.424

0.428

0.432

0.436

Sm
al

l r
at

io

0.0 0.2 0.4 0.6 0.8 1.0
RPD

0.336

0.338

0.340

0.342

0.344

M
ed

iu
m

 ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
RPD

0.216

0.220

0.224

0.228

0.232

0.236

La
rg

e
ra

tio

0.0 0.2 0.4 0.6 0.8 1.0
RPD

7.5

7.8

8.1

8.4

8.7

In
st

an
ce

 ra
tio

0.0 0.2 0.4 0.6 0.8 1.0
RPD

0.01200

0.01225

0.01250

0.01275

0.01300

Cr
ow

d
ra

tio

Figure 3.7: Failure patterns for object scales, instance ratio, and crowd ratio.

Clues for Repair. Based on our conjectures from the analysis of the failure datasets, we

summarize some clues for repairing detectors. Methods that help detection with dense

instances could benefit all models under all corruptions, while those that can improve

48

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Test set
Core failure set

pe
rs

on
bi

cy
cle ca

r
m

ot
or

cy
cle

ai
rp

la
ne bu

s
tra

in
tru

ck
bo

at
tra

ffi
c

lig
ht

fir
e

hy
dr

an
t

st
op

 si
gn

pa
rk

in
g

m
et

er
be

nc
h

bi
rd ca

t
do

g
ho

rs
e

sh
ee

p
co

w
el

ep
ha

nt
be

ar
ze

br
a

gi
ra

ffe
ba

ck
pa

ck
um

br
el

la
ha

nd
ba

g tie
su

itc
as

e
fri

sb
ee sk
is

sn
ow

bo
ar

d
sp

or
ts

 b
al

l
ki

te
ba

se
ba

ll
ba

t
ba

se
ba

ll
gl

ov
e

sk
at

eb
oa

rd
su

rfb
oa

rd
te

nn
is

ra
ck

et
bo

ttl
e

wi
ne

 g
la

ss cu
p

fo
rk

kn
ife

sp
oo

n
bo

wl
ba

na
na

ap
pl

e
sa

nd
wi

ch
or

an
ge

br
oc

co
li

ca
rro

t
ho

t d
og

pi
zz

a
do

nu
t

ca
ke

ch
ai

r
co

uc
h

po
tte

d
pl

an
t

be
d

di
ni

ng
 ta

bl
e

to
ile

t tv
la

pt
op

m
ou

se
re

m
ot

e
ke

yb
oa

rd
ce

ll
ph

on
e

m
icr

ow
av

e
ov

en
to

as
te

r
sin

k
re

fri
ge

ra
to

r
bo

ok
clo

ck
va

se
sc

iss
or

s
te

dd
y

be
ar

ha
ir

dr
ie

r
to

ot
hb

ru
sh

Categories

1

0

1

2

Pr
op

or
tio

na
l c

ha
ng

e
in

 fr
eq

ue
nc

y

Figure 3.8: Object categories on the core failure dataset have a different distribution with
the whole test set.

detection with sparse instances could benefit some of the models. Methods with better

small object detection could help to repair object detectors, and those with a preference for

detecting large objects could be beneficial for some models.

Answer to RQ1.3: Yes. We observe a negative correlation between performance
degradation and average instances per image of the failure dataset. In addition, when
compared with the whole test dataset, there are more small objects and fewer large
objects in the failure datasets. Based on the observations of correlations between
performance degradation and object scales, we infer that small objects are vulnerable
across models and corruptions while large ones contribute to the degradation gaps
among experiments. We find some clues for better detector repairing as well.

3.5.4 RQ1.4: What are the major error types of detectors under com-
mon corruptions?

We try to synthesize the error types based on official COCO toolkits [40] in this section. In

object detection, performance and error analysis are roughly defined by several error types

based on AP on the test set. Localization error means inaccurate predicted bounding boxes

overlapping with the ground truth at an IoU value lower than the threshold. Classification

error is caused by predicting the objects into incorrect categories. More specifically, the

49

official COCO Toolkit [40] divides the classification error into errors in or out of a super

category as shown in Fig. 3.9. False positive samples are boxes that cannot match any

ground truth. False positive error is a result of misclassification between foreground and

background objects. Although it seems like another type of classification error, background

objects are not a specific category but include all categories beyond interest. False negative

error is a result of missing detection. The quantitative error is estimated by the gap between

its potential upper bound. We obtain the estimated error values for each type across models

corrupted by various distortions. Then we compute the error that increases the most after

corruption for each experiment and treat it as the major error type. We find that the false

negative error (missing detection) increases the most in general. It confirms the importance

of developing repair schemes for object detection.

overall-all-all

0 0.2 0.4 0.6 0.8 1
recall

0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

[.391] C75
[.554] C50
[.632] Loc
[.658] Sim
[.691] Oth
[.863] BG
[1.00] FN

Figure 3.9: An example of error analysis results provided by COCO toolkit. Errors are
shown in colored regions.

Answer to RQ1.4: The missing detection error increases the most in general, and Faster
R-CNNs show different error patterns from the others.

3.6 Repair Experimental Results

Armed with analysis in the last section, we aim to conduct a comprehensive study and

come up with inspirational results by analyzing repairing methods in object detection.

50

In this section, we will study each repairing method in detail. For each method, we

study its performance on repairing and step further to obtain its characteristics and clues

for improvement. In addition, we conduct a comparative analysis for a comprehensive

understanding of repair. Finally, we highlight that we find limitations and possible solutions

for repairing methods.

3.6.1 Fine-tuning

Fine-tuning is a naive and efficient scheme for repair. As we discussed in Sec. 3.3, the key

point here is the construction of the training datasets. In this section, we focus on repairing

detectors by fine-tuning the models on the failure datasets and combined datasets. The first

one refers to directly fine-tuning the models on the failure training datasets. The training

datasets of the latter method are composed of the failure training sets and the corresponding

clean samples.

Fine-tuning on combined data shows its effectiveness on all models and corruptions.

However, fine-tuning on failure data works on lots of configurations but fails to repair some

models.

Detectors. In Fig. 3.10, both of the two fine-tuning methods work for repairing detectors

and result in about 10% improvement for all the detectors. Faster R-CNN with ResNet50

and FPN gains the most improvement in general. Fine-tuning on combined datasets shows

advantages over the other one across models. Specifically, fine-tuning only with failure data

on DETR-ResNet50 would result in some lower performance after repair. In addition, we

notice DETR-ResNet50 suffers from a 41% performance drop on the clean test set after

fine-tuning only on the failure dataset of zoom_blur.

Corruptions. We perform analysis of the two methods in the radar plots based on corrup-

tion types in Fig. 3.11. We notice fine-tuning on combined datasets improves models under

all corruptions. However, fine-tuning only with the failure data fails on zoom_blur. They

51

Retina_R50 Retina_R101 FR_R50 FR_R101 FCOS_R50 FCOS_R101 DETR_R50

0.6

0.4

0.2

0.0

0.2

0.4

Pe
rfo

rm
an

ce
 g

ai
n

method
finetune_combine
finetune_failure
PMosaic
mixup
bn-calibration
denoise
naiveDeepRepair

Figure 3.10: Performance improvement for detection models after being repaired by meth-
ods.

show comparable performance gains for brightness. For other corruptions, fine-tuning on

combined datasets performs better. For both methods, pixelate obtains the most performance

gains. Besides, among the three most degraded corruptions(glass_blur, zoom_blur, and pixe-

late), only zoom_blur shows improvement of less than 10% after fine-tuning. Glass_blur and

zoom_blur suffer much more degradation than others on the clean test set after fine-tuning.

Statistical Tests. To validate the improvement, we conduct t-tests for each configuration

with repeated experiments. We assume repeated experiments are normally distributed. For

fine-tuning on combined datasets, FCOS-ResNet50 and DETR-ResNet50 corrupted by

brightness cannot reject the hypothesis of no improvement. For fine-tuning with the failure

training sets, there are seven cases of failing to reject the null hypothesis. Three of them

were on zoom_blur and four of them occur on DETR-ResNet50.

Analysis on Forgetting. To better understand fine-tuning-based methods, we conduct a

case study on RetinaNet-ResNet50 corrupted by gaussian_noise. We plot the learning curves

of AP scores on the clean, corrupted test sets, and their mean performance, as shown in

52

GsNoise
ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.2

0.0

0.2

0.4

baseline
ft_combine
ft_failure
PMosaic
mixup

Figure 3.11: Performance gain on corruptions for fine-tuning-based and augmentation-based
methods.

Fig. 3.12. We notice that both fine-tuning-based methods suffer from catastrophic forgetting.

The performance keeps decreasing on the clean test set as fine-tuning progress goes on.

The model converges on the corrupted datasets after training for some epochs. Combined

datasets can be helpful for slowing down catastrophic forgetting while it suffers from severe

forgetting to fine-tune with only failure samples. That might be the reason that fine-tuning

with combined datasets achieves better performance gains. Fine-tuning with only the failure

datasets shows much more improvement on the failure test set. However, we notice it drops

too much on the clean test set. Common catastrophic forgetting occurs across models and

corruptions when fine-tuning the detectors with only failure data.

Challenges and Opportunities. We observe catastrophic forgetting in fine-tuning-based

repairing methods. Repairing can benefit from works to solve catastrophic forgetting, e.g.,

continual learning [42].

3.6.2 Fusing Images with Augmentations

In this part, we study methods based on augmentations to fuse images from different domains.

As noted before, we focus on PMosaic and MixUp in this paper and conduct analysis based

on pilot experiments. We discuss the problem of Mosaic in Sec. 3.3 and propose PMosaic

53

0 20 40 60 80 100
Epoch

0.200

0.225

0.250

0.275

0.300

0.325

0.350

AP

finetune_failure-clean
finetune_failure-failure
finetune_failure-mean

finetune_combine-clean
finetune_combine-failure
finetune_combine-mean

pmosaic-clean
pmosaic-failure
pmosaic-mean

Figure 3.12: AP scores on clean, failure datasets and their average values across training
epochs. The fine-tuning-based models suffer from catastrophic forgetting. It’s better to
fine-tune with combined data than on only failure datasets. PMosaic converges slower than
the other two methods.

as an improved version. Following two research questions, the pilot experiments show that

MixUp is not an effective approach to repairing detectors. In this section, we’ll experiment

with more configurations to expand our provisional conclusions.

Implementation Details. Our experimental settings are similar to those in fine-tuning

with combined data. As the two augmentations require square images, we set the input

image scales to 1024x1024, very similar to 800x1333 in naive fine-tuning. The padding

values for both augmentations are 0. The ratio range of MixUp is 0.8 to 1.6, the same as that

in YOLOX. In PMosaic, inputs are sampled uniformly from the raw images and the mixed

ones. For PMosaic, we train the detectors for 24 epochs due to slow convergence.

PMosaic

In general, PMosaic shows its effectiveness to repair detectors. The maximal performance

gain, 32.7%, appears at Faster R-CNN with ResNet50 corrupted by pixelate. However, based

on Table A.5, PMosaic fails to repair the DETR-ResNet50 corrupted by defocus_blur and

brightness and FCOS-ResNet50 corrupted by brightness. For the last one, its improvement

on the failure test set and decrease on the clean test set are very close, and thus it results

in a marginal performance drop. In Sec. 3.6.1, fine-tuning on combined datasets fails to

54

obtain remarkable performance gain on brightness. Therefore, it’s not surprising to find

PMosaic with no improvement in brightness since we study PMosaic based on fine-tuning

with combined data.

In Table 3.6, PMosaic does not lead to much more performance drops of DETR-ResNet50

on brightness. And we notice that it obtains very a marginal performance gain after PMosaic.

Therefore, we observe AP scores of different object scales as shown in Table 3.6. Compared

with that before repair, PMosaic improves the detector on small and medium objects but

shows no improvement on large objects. PMosaic performs better than fine-tuning with

combined datasets on small objects. However, it has much lower performance on medium

and large objects. As discussed in Sec. 3.3, PMosaic prefers small objects while degrading

large objects. This indicates that it explains the failure of PMosaic on DETR-ResNet50

under brightness.

Different from what happens on brightness, DETR-ResNet50 after PMosaic on defocus_-

blur shows comparable improvement with fine-tuning on combined datasets. However, it

suffers from much more performance drop on the clean test set. We can observe these

from Table 3.7. In fact, the results are reported at epoch 10 and epoch 7 for PMosaic and

fine-tuning respectively. It seems not a result of catastrophic forgetting. Furthermore, we

notice PMosaic has a much lower AP score on the clean test set even at the first epoch. We

do not find clear reasons for its severe degradation and we leave it for further study.

Table 3.6: Results of DETR-ResNet50 corrupted by brightness. PMosaic prefers small
objects but degrades medium and large ones.

Repair AP@Cl AP@Fl AP@Avg AP@Fl@SML

- 40.0 33.0 36.5 17.1 37.5 50.1

PMosaic 38.5 33.1 35.8 17.6 37.4 50.8

Fine-tune 39.0 34.0 36.5 17.3 38.8 51.6

55

Table 3.7: Results of DETR-ResNet50 corrupted by defocus_blur. PMosaic improves
the detector on failure data. But the performance on the clean test set drops too much
when compared with fine-tuning on the combined datasets. It might be a result of slow
convergence and catastrophic forgetting.

Repair AP@Cl AP@Fl AP@Avg

- 40.0 18.0 29.0

PMosaic 37.5 19.6 28.55

Fine-tune 38.8 20.0 29.4

Detectors. In Fig. 3.10, Faster R-CNN with ResNet50 as the backbone benefits the most

from PMosaic. Among the seven models, CNN-based detectors, i.e., all detectors except

DETR-ResNet50 achieve similar improvement, around 8.6%. DETR-ResNet50 has slightly

lower performance, as for brightness and defocus_blur, it shows no improvement after being

repaired by PMosaic. In addition, we compare the results of PMosaic with fine-tuning on

the combined datasets. In Fig. 3.10, we can see that most models have fewer performance

gains with PMosaic. For RetinaNets and Faster R-CNNs, PMosaic performs closer to naive

fine-tuning than others.

Corruptions. With the help of PMosaic, we can repair the detectors and improve their

AP scores on both the clean test sets and the failure datasets for most corruptions. Models

corrupted by pixelate achieve the most performance gains, while models with brightness

show the least improvement. Two of the three cases, when PMosaic fails to conduct

repairing, occur in brightness. Based on observations in Sec. 3.5.3, most of the failure

datasets generated by brightness own much fewer medium objects.

Statistical Tests. Similar to what we do in the last section, we attempt to validate the

improvement of PMosaic. We find that all models under brightness fail to pass t-tests. It

is consistent with the observations when we conduct corruption-based analysis. Besides,

DETR-ResNet50 corrupted by defocus_blur cannot reject the null hypothesis either.

56

Analysis on Scales. As noted before, PMosaic generates more small objects while it

suppresses large objects. In Sec. 3.5.3, we infer that methods of improving small object

detection would benefit most detectors. The general improvement with PMosaic agrees with

our conjecture. And about 50% of the configurations obtain improvement in AP scores of

small objects. For large objects, we suggest the performance changes vary for different

configurations. In Fig. 3.13, we plot the kernel-estimated cumulative distribution function

of relative improvement for PMosaic w.r.t. fine-tuning based on AP scores on different

object scales. First of all, the curve of small objects locates on the right of that of large ones,

indicating that small objects benefit more than large objects. In some cases, large objects

show to have improvement in performance. However, in most configurations, AP scores

on large objects drop when compared to naive fine-tuning. In addition, we notice that the

curve of the overall AP score is close to that of large objects. It indicates that large objects

might be to blame for overall performance degradation when compared PMosaic with naive

fine-tuning.

Figure 3.13: The kernel-estimated cumulative distribution function of relative improvement
for PMosaic w.r.t. fine-tuning based on AP scores on different object scales. It indicates
that PMosaic improves small objects in general but degrades large objects. The overall
performance of PMosaic is correlated to its performance drop on large objects.

3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

small
large
all

MixUp

Unlike previous methods, MixUp fails to repair lots of models. The relative performance

gain varies from -9.4% to 26.3%. Around 60% of the configurations suffer from performance

57

drop after being repaired by MixUp. To investigate the reasons for its failure, we study a

case in detail before presenting results on more models and corruptions.

Case Analysis. In particular, to further investigate the reasons, we propose two research

questions and conduct an empirical analysis on a pilot experiment.

• Can MixUp boost detection performance during repair?

• Can MixUp help information fusion across domains?

The first question aims to investigate whether MixUp can reduce the detectors’ learning

error if applied to repair. To answer the first question, we fine-tune the model with MixUp

on only the clean dataset and the results are available in the fourth line of the Table 3.8. It

would result in a severe performance drop on both the clean test set and the corrupted test set

even when compared to the original detector before repair. It implies that the augmentation

itself would harm the detection performance when applied in repair. Zhang et al. [47] find

the correlation between the performance gains of MixUp on the detectors and the utilization

of MixUp in their ImageNet pre-trained models. Based on the previous results, we infer that

it might be the inconsistency of the augmentation utilization between the detector’s training

and repair that is to blame for the degradation. As a result, we find that MixUp cannot boost

detection during the repair.

As for the second question, we first fuse images both with or without corruption and

forbid fusion between images across domains. By comparing results in the third and fifth

line of Table 3.8, we notice that MixUp doesn’t contribute to information fusion across

domains as expected. Moreover, we add another pilot experiment, noted as the Corrupted-

oriented MixUp in Table 3.8, to roughly estimate the upper bound of knowledge fusion

between domains for MixUp in repairing object detectors. In this experiment, one clean

image and its corrupted counterpart are fused by a random weight without extra resizing

and cropping. There is no inter-image fusion as the input of the detector. Hence, the ground

58

truth bounding boxes are not duplicated. It achieves better AP scores on both test datasets

than naive MixUp but fails to exceed the fine-tuning baseline. Therefore, we confirm that

MixUp cannot effectively help improve information fusion across domains.

Table 3.8: Pilot experiments on MixUp. MixUp degrades the performance compared with
naive fine-tuning. Even worse, we notice that the augmentation itself would harm the
detection performance when applied in repair, as is shown in the fourth line of the table.
From the results in the last two lines, we find MixUp cannot effectively help improve
information fusion across domains.

Repair AP@Cl AP@Fl AP@Avg

- 36.6 16.3 26.45

Fine-tune 35.8 21.4 28.6

MixUp 34.3 18.6 26.45

MixUp w. clean data 35.2 14.8 25.0

MixUp in individual domains 34.3 18.6 26.45

Corruption-oriented MixUp 35.5 21.3 28.4

BGMixUp 34.8 19.2 27.0

MixUp w. small weights 34.9 15.0 24.95

Detectors. In Fig. 3.10, we find that DETR with ResNet50 fails to obtain improvement

with MixUp and suffers from about 5% performance drop. Faster R-CNN with ResNet50

benefits the most from MixUp. All other five models have marginal improvement after being

repaired by MixUp. Similar to the analysis for PMosaic, we also compare MixUp’s results

with naive fine-tuning. Six of all seven detectors show about 100% less performance gain

than fine-tuning. However, DETR-ResNet50 has about 300% less improvement compared

to fine-tuning.

Corruptions. Models corrupted by pixelate benefit the most from MixUp. MixUp fails

to repair the detectors under brightness and defocus_blur. The shape in its radar figure

59

on different corruptions is quite similar to those of the previous three methods. Besides,

we notice that MixUp shows less improvement than fine-tuning on failure datasets on 14

corruptions except zoom_blur.

Statistical Tests. MixUp only passes the t-tests for DETR-ResNet50 under pixelate and

elastic_transform. It fails to pass the tests for Faster R-CNN with ResNet50 corrupted by

defocus_blur and brightness. For RetinaNet-ResNet50, RetinaNet-ResNet101, and Faster

R-CNN ResNet101, it cannot reject the null hypothesis under 6, 8, and 6 corruptions. In

addition, all models fail to achieve statistically remarkable improvement under brightness.

For elastic_transform and pixelate, MixUp succeeds in repairing all the detectors. For

impulse_noise, contrast, jpeg_compression, and snow, all detectors except DETR-ResNet50

pass the tests.

Analysis on Instance Ratio. In the case analysis, we empirically study the functionality

of MixUp on one pilot configuration with two research questions. Here we aim to turn to

the instance ratio based on analysis in Sec. 3.5.3. MixUp includes all the boxes of merged

images and thus it drastically increases the instance ratio. In Sec. 3.5.3, we find that the

failure dataset has a much larger instance ratio. Then MixUp aggravates it and makes the

detectors more difficult to repair since modern deep object detectors perform poorly on

crowded images. In Table 3.8, corruption-oriented MixUp, which mixes the images without

increasing the instance ratio, achieves good performance. To validate it, we further conduct

another experiment, notated as BGMixUp in Table 3.8. We add one image Ia with a very

small weight(0.01) to the original image Io and drop all the boxes in Ia. When compared

with MixUp, BGMixUp improves AP scores on both the clean and failure test sets. In

addition, we conduct another experiment, where we directly apply the small weight without

dropping the boxes, and it shows terrible performance. The three experiments together

indicate the impact on instance ratio is a potential reason why MixUp fails.

60

Summary

In this section, we study two potential augmentations for repair. PMosaic is closely related

to object scales, one of the most important and challenging problems in object detection.

MixUp impacts on instance ratio, and thus is correlated with the occlusion problem. Ac-

cording to clues as noted in Sec. 3.5.3, we suggest the necessity of augmentations designed

for repair.

3.6.3 BN Calibration

In this part, we explore the possibility of repairing the detectors with BN calibration. In

Sec. 3.3, we discuss why we calibrate batch normalization layers on classification. In this

work, we utilize the style transfer model to generate the images for classification and later

works can take more effective and efficient methods for image generation. We also conduct

BN calibration on clean and corrupted images from ImageNet [16] to estimate the upper

bound of BN calibration in repairing object detectors.

Implementation Details. For BN calibration on classification, we calibrate the classifi-

cation models with batch-size 32 for 2,000 iterations on the dataset combined with clean

and corrupted samples from ImageNet. In style-transfer-based BN calibration, the model

for style transfer is the same as Deep Repair [7]. We randomly sample 32k images from

ImageNet as the content and 10 corrupted images in the core failure dataset as the style to

generate 32k corrupted images for the classification model. We conduct the experiments on

the checkpoints from the official torch hub, the same ones as the pre-trained models in the

training process. FCOS-ResNet50 and FCOS-ResNet101 are not included in BN calibration

because they utilize the Caffe versions of pre-trained classification models.

Detectors. In general, BN calibration improves some of the failure configurations. All six

CNN-based models show similar performance gain and Faster R-CNN with ResNet101 as

backbone has slightly lower improvement. Notably, DETR-ResNet50 benefits much more

61

than other detectors from BN calibration across corruptions. In the meantime, its perfor-

mance shows a larger variance than others. Transformers usually prefer layer normalization

to batch normalization. It inspires us to take robustness into consideration when choosing

normalization operations in neural networks.

Corruptions. BN calibration improves six of all fifteen corruptions. Contrast benefits the

most after being repaired by BN calibration. Moreover, it achieves obvious performance

gain on image distortions, e.g.jpeg_compression, pixelate, and contrast. And it shows only

marginal improvement in the weather, like snow, frost, and fog. However, it fails on usual

noises and blurs except impulse_noise.

Statistical Tests. In all 105 failure configurations, only 22 of them pass t-tests of significant

improvement. All the models corrupted by jpeg_compression, pixelate, and contrast succeed

in the tests. All the detectors pass the t-tests for four to five corruptions. Note that DETR-

ResNet50 doesn’t show significant advantages over other models in terms of corruption

types. Together with our observations in the last paragraph, DETR-ResNet50 benefits more

from BN calibration than others under some corruption types. In Table A.5, we notice that it

gains more improvement for pixelate and jpeg_compression after repair.

Compared with Estimated Upper Bound. We estimate the upper bound by calibrating

the classifier with ImageNet-C [5]. In Fig. 3.14 and Fig. 3.15, we notice that it achieves

comparable or better performance when compared with the estimated upper bound. In

shot_noise, impulse_noise, and jpeg_compression, our approach significantly outperforms

the estimated upper bound. For the classifier’s accuracy after calibration, the estimated

upper bound is much better than our approach. Therefore, the outperformance should be a

result of mismatching between tasks. As noted in Sec. 3.3, it would be better to calibrate the

detectors with detection data if the detectors are trained with updated BN layers.

62

0.075

0.050

0.025

0.000

0.025

0.050

0.075

R
P

I

head = retinanet head = faster_rcnn
backbone = r50

head = detr

G
sN

oi
se

S
hN

oi
se

Im
N

oi
se

D
fB

lu
r

G
lB

lu
r

M
tB

lu
r

Zm
B

lu
r

S
no

w
Fr

os
t

Fo
g

B
rig

ht
C

on
tra

st
E

la
st

ic
P

ix
JP

E
G

Corruption

0.075

0.050

0.025

0.000

0.025

0.050

0.075

R
P

I

G
sN

oi
se

S
hN

oi
se

Im
N

oi
se

D
fB

lu
r

G
lB

lu
r

M
tB

lu
r

Zm
B

lu
r

S
no

w
Fr

os
t

Fo
g

B
rig

ht
C

on
tra

st
E

la
st

ic
P

ix
JP

E
G

Corruption

backbone = r101

bn-calibration
upper-bound

Figure 3.14: Comparison between BN calibration and its estimated upper bound.

GsNoise
ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.2

0.0

0.2

0.4

baseline
bn-calibration
upper-bound

Figure 3.15: Comparison between BN calibration and its estimated upper bound in terms of
corruptions. It sometimes outperforms its upper bound as a result of task transfer.

Challenges and Opportunities. Although BN calibration fails to show great improvement

for repair, it’s still attractive to develop similar simple and efficient methods for repair.

What’s more, its diverse performance on different corruptions motivates us to study the

semantic meaning of statistical parameters in neural networks. It might further benefit

interpretable neural networks, especially when very few works aim to interpret object

detectors.

63

3.6.4 Denoising

Denoising aims to obtain clean images from corrupted ones. Lots of related works can act

as a denoiser and we select a self-supervised method, Neighbor2Neighbor [46]. During

training, it optimizes the differences between two sub-image samples to smooth the images.

We provide a supervised version as a possible upper bound to inspire further repairing work

based on denoising.

Implementation Details. We train an independent denoiser in each experiment for 1,000

epochs. The supervised versions share the same architectures as the self-supervised ones.

We notice that the failure training set with 1,000 random samples is sufficient to train a

well-performed denoising model. So, there is no concern about the size of the datasets.

In addition, we empirically find that the supervised denoiser trained with only corrupted

images would fail to conduct identity mapping for clean images. Therefore, we train the

supervised denoiser with images equally sampled from corrupted and clean data.

Detectors. All the detectors show similar performance gains with denoising. We observe

Faster R-CNN-ResNet50 and DETR-ResNet50 have larger variance in improvement. Note

that denoising has much larger values than other methods in variance in Fig. 3.10. When we

later turn to analyze denoising based on the corruptions, we can know the reason for the

variance.

Corruptions. The performance of the self-supervised denoiser is closely related to the

corruption types. The denoiser improves remarkably on gaussian_noise, shot_noise, im-

pulse_noise, pixelate, and jpeg_compression. However, it fails to work well on other

corruptions. The correlation between performance and corruption types is related to the

optimization target for smoothness. For those corrupted in the frequency domain or other

dimensions, they require different strategies.

64

Statistical Tests. We also conduct t-tests for denoising. 70 of all 105 configurations fail to

pass the t-tests. Gaussian_noise, shot_noise, impulse_noise, pixelate, and jpeg_compression

succeed in the tests for all the detectors. The other ten corruptions fail the tests for all the

detectors. The results agree with our observations in the last paragraph.

Compared with the Supervised Upper Bound. Although the self-supervised denoiser

works on some corruptions, its supervised counterpart achieves great performance for most

corruptions. However, brightness fails to benefit from the supervised denoiser. On gaussian_-

noise, shot_noise, impulse_noise, and jpeg_compression, the self-supervised denoiser has

comparable performance with the supervised one. And the results are available in Fig. 3.16

and Fig. 3.17.

0.6

0.4

0.2

0.0

0.2

0.4

R
P

I

head = retinanet head = faster_rcnn head = fcos

backbone = r50

head = detr

G
sN

oi
se

S
hN

oi
se

Im
N

oi
se

D
fB

lu
r

G
lB

lu
r

M
tB

lu
r

Zm
B

lu
r

S
no

w

Fr
os

t

Fo
g

B
rig

ht

C
on

tra
st

E
la

st
ic

P
ix

JP
E

G

Corruption

0.6

0.4

0.2

0.0

0.2

0.4

R
P

I

G
sN

oi
se

S
hN

oi
se

Im
N

oi
se

D
fB

lu
r

G
lB

lu
r

M
tB

lu
r

Zm
B

lu
r

S
no

w

Fr
os

t

Fo
g

B
rig

ht

C
on

tra
st

E
la

st
ic

P
ix

JP
E

G

Corruption

G
sN

oi
se

S
hN

oi
se

Im
N

oi
se

D
fB

lu
r

G
lB

lu
r

M
tB

lu
r

Zm
B

lu
r

S
no

w

Fr
os

t

Fo
g

B
rig

ht

C
on

tra
st

E
la

st
ic

P
ix

JP
E

G

Corruption

backbone = r101

denoise-self-supervised
denoise-supervised

Figure 3.16: Comparison between self-supervised denoising and its supervised counterpart.

GsNoise
ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.2

0.0

0.2

0.4

baseline
denoise-self-supervised
denoise-supervised

Figure 3.17: Comparison between self-supervised denoising and its supervised counterpart
in terms of corruption. There are large performance gaps in terms of blurs and weather.

65

Challenges and Opportunities. Denoisers with better performance will potentially boost

more on the repair. Here we study one self-supervised denoising method. It fixes failures in

some corruptions but fails in other cases. In the meanwhile, its supervised counterpart shows

great performance in all the corruptions. Therefore, we expect further work on denoising to

bridge the gaps and enhance repair.

3.6.5 Naive DeepRepair

DeepRepair [7] is an approach to repairing classifiers and it cannot be directly applied to

detection. We study a naive version of DeepRepair, which costs much more time than other

methods. In general, it does not achieve excellent performance gains, which might be a

result of performance problems in style transfer. However, it still stands out in some cases,

e.g., contrast. Notably, it does not cause performance drops on the clean test set and it is not

impacted by catastrophic forgetting.

Implementation Details. We adopt a very simple baseline to study the feasibility of

augmenting the training dataset Dtrain. DeepRepair [7] utilizes style transfer on the training

dataset and Augmix [55] to further fuse the images. As AugMix is seldom observed in

detection models and not available in MMDetection, we directly fine-tune the model with

the clean and transferred data without augmentations. Similar to DeepRepair, we employ

the WCT2 [88] to transfer the COCO training set, i.e., Dtrain, with the failure samples as the

style to extend the failure dataset to the augmented training set Dc
train. We then fine-tune the

detectors with both Dtrain and Dc
train for one epoch. Due to limited time and computation

resources, we does not repeat the experiments five times as others.

Detectors. Following a similar pipeline as previous methods, we first analyze the repair

results based on detection models. It shows limited and comparable performance gains

for the seven detectors. The performance improvement for FCOS-ResNet50 is marginally

higher than others and that for DETR-ResNet50 is slightly lower than others. However, we

66

GsNoise
ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.2

0.0

0.2

0.4

baseline
ft_combine
ft_failure
naiveDeepRepair

Figure 3.18: Corruption-oriented analysis for the naive DeepRepair. It’s outstanding in
contrast.

notice that it’s the best method in DETR-ResNet50 corrupted by fog and contrast.

Corruptions. Then, we step to conduct a corruption-oriented analysis as illustrated in

Fig. 3.18. For fog, snow, brightness, and contrast, it improves performance remarkably.

However, on glass_blur and pixelate, the performance drops after applying the naive Deep-

Repair. In most cases, the naive DeepRepair does not have a significant negative impact

on the performance of the clean data. When observing its results on the failure test set, it

achieves significant performance gains on contrast, frost, and fog. And the performance of

the detectors drops on defocus_blur, glass_blur, motion_blur, pixelate, jpeg_compression,

and elastic_transform, especially on glass_blur and pixelate. When compared to the other

two fine-tuning-based methods, it has better performance on contrast. As we discussed in

Sec. 3.3, we find its upper bound is rather attractive, which might be caused by style transfer

methods.

Challenges and Opportunities. Note that the naive DeepRepair successfully retains the

performance on the clean test sets for all the detectors. The performance drops on the clean

data are less than 2.5% and are within 1% in most cases, which are much smaller than the

others. It is not limited by catastrophic forgetting and leaves us with incremental updating

67

without concerns. We also notice that it results in the most improvement on the failure

test set and the least performance drop on the clean test set for contrast. It indicates the

method has enormous potential and is rather promising for repair on object detection. In the

meantime, it achieves less improvement in other corruptions than fine-tuning-based methods.

We are convinced a better style transfer approach would result in significant improvement

for repair. What’s more, as style transfer methods [89] usually do not focus on transferring

image corruptions, other approaches, e.g., an inverted denoiser, could be applied to improve

DeepRepair.

3.6.6 Comparative Analysis

So far, we’ve studied the proposed repairing approaches in detail based on their performance

from the viewpoint of corruption, detectors, and statistical test results. We’ve discussed the

strengths and weaknesses, and challenges and opportunities for each method. To summarize

our experimental results above, we conduct a comparative analysis of the methods based on

effectiveness, efficiency, and their impact on inference.

Corruption Retina_R50 Retina_R101 Faster_R50 Faster_R101 FCOS_R50 FCOS_R101 DETR_R50 Acc Avg RPI

GsNoise ❶ ❷ ❸ ➃ ➄ ❻ ❼ (0.109) ❶ ❷ ❸ ➃ ➄ ❻ ➆ (0.101) ❶ ❷ ❸ ❹ ➄ ❻ ❼ (0.144) ❶ ❷ ❸ ➃ ➄ ❻ ➆ (0.104) ❶ ❷ ❸ ➃ - ❻ ❼ (0.161) ❶ ❷ ❸ ➃ - ❻ ❼ (0.133) ❶ ❷ ❸ ➃ ➄ ❻ ➆ (0.178) 33/49 0.133

ShNoise ❶ ❷ ❸ ➃ ➄ ❻ ❼ (0.148) ❶ ❷ ❸ ➃ ➄ ❻ ❼ (0.116) ❶ ❷ ❸ ❹ ➄ ❻ ➆ (0.153) ❶ ❷ ❸ ➃ ➄ ❻ ➆ (0.116) ❶ ❷ ❸ ➃ - ❻ ❼ (0.159) ❶ ❷ ❸ ➃ - ❻ ❼ (0.149) ❶ ❷ ❸ ➃ ➄ ❻ ➆ (0.192) 33/49 0.148

ImNoise ❶ ❷ ❸ ❹ ➄ ❻ ❼ (0.310) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.323) ❶ ❷ ❸ ❹ ❺ ❻ ❼ (0.346) ❶ ❷ ❸ ❹ ➄ ❻ ➆ (0.318) ❶ ❷ ❸ ❹ - ❻ ❼ (0.362) ❶ ❷ ❸ ❹ - ❻ ❼ (0.318) ❶ ❷ ❸ ➃ ❺ ❻ ❼ (0.395) 42/49 0.339

DfBlur ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.052) ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.057) ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.065) ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.063) ❶ ❷ ❸ ➃ - ➅ ❼ (0.071) ❶ ❷ ❸ ➃ - ➅ ❼ (0.054) ❶ ➁ ➂ ➃ ➄ ➅ ➆ (0.014) 21/49 0.054

GlBlur ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.211) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.223) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.234) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.227) ❶ ❷ ❸ ❹ - ➅ ➆ (0.223) ❶ ❷ ❸ ❹ - ➅ ➆ (0.229) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.192) 28/49 0.22

MtBlur ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.090) ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.082) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.103) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.088) ❶ ❷ ❸ ➃ - ➅ ➆ (0.086) ❶ ❷ ❸ ❹ - ➅ ➆ (0.083) ❶ ➁ ❸ ➃ ➄ ➅ ➆ (0.052) 24/49 0.083

ZmBlur ❶ ➁ ❸ ➃ ➄ ➅ ➆ (0.074) ❶ ❷ ❸ ➃ ➄ ➅ ➆ (0.089) ❶ ➁ ❸ ❹ ➄ ➅ ➆ (0.094) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.111) ❶ ❷ ❸ ➃ - ➅ ➆ (0.085) ❶ ❷ ❸ ➃ - ➅ ❼ (0.095) ❶ ➁ ❸ ➃ ➄ ➅ ➆ (0.042) 21/49 0.084

Snow ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.119) ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.114) ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.131) ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.121) ❶ ❷ ❸ ❹ - ➅ ❼ (0.111) ❶ ❷ ❸ ❹ - ➅ ❼ (0.108) ❶ ❷ ❸ ➃ ❺ ➅ ❼ (0.079) 35/49 0.112

Frost ❶ ❷ ❸ ➃ ➄ ➅ ❼ (0.069) ❶ ❷ ❸ ➃ ➄ ➅ ❼ (0.071) ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.073) ❶ ❷ ❸ ➃ ➄ ➅ ❼ (0.072) ❶ ❷ ❸ ➃ - ➅ ❼ (0.063) ❶ ❷ ❸ ➃ - ➅ ❼ (0.074) ❶ ❷ ❸ ➃ ➄ ➅ ❼ (0.046) 29/49 0.067

Fog ❶ ❷ ❸ ❹ ❺ ➅ ❼ (0.057) ❶ ❷ ❸ ➃ ❺ ➅ ❼ (0.052) ❶ ❷ ❸ ❹ ➄ ➅ ❼ (0.061) ❶ ❷ ❸ ➃ ❺ ➅ ❼ (0.051) ❶ ❷ ❸ ❹ - ➅ ❼ (0.070) ❶ ❷ ❸ ➃ - ➅ ❼ (0.047) ❶ ❷ ❸ ➃ ➄ ➅ ❼ (0.037) 34/49 0.053

Bright ❶ ❷ ➂ ➃ ➄ ➅ ❼ (0.021) ❶ ❷ ➂ ➃ ➄ ➅ ❼ (0.021) ❶ ❷ ➂ ➃ ➄ ➅ ❼ (0.015) ❶ ❷ ➂ ➃ ➄ ➅ ❼ (0.019) ➀ ➁ ➂ ➃ - ➅ ❼ (0.026) ❶ ❷ ➂ ➃ - ➅ ❼ (0.027) ➀ ➁ ➂ ➃ ➄ ➅ ➆ (0.007) 16/49 0.019

Contrast ❶ ❷ ❸ ❹ ❺ ➅ ❼ (0.110) ❶ ❷ ❸ ❹ ❺ ➅ ❼ (0.096) ❶ ❷ ❸ ❹ ❺ ➅ ❼ (0.123) ❶ ❷ ❸ ❹ ❺ ➅ ❼ (0.109) ❶ ❷ ❸ ❹ - ➅ ❼ (0.123) ❶ ❷ ❸ ❹ - ➅ ❼ (0.100) ❶ ❷ ❸ ➃ ❺ ➅ ❼ (0.104) 39/49 0.109

Elastic ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.115) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.106) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.124) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.109) ❶ ❷ ❸ ❹ - ➅ ➆ (0.098) ❶ ❷ ❸ ❹ - ➅ ➆ (0.114) ❶ ❷ ❸ ❹ ➄ ➅ ➆ (0.116) 28/49 0.112

Pix ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.260) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.206) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.352) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.259) ❶ ❷ ❸ ❹ - ❻ ➆ (0.232) ❶ ❷ ❸ ❹ - ❻ ➆ (0.192) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.258) 40/49 0.251

JPEG ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.137) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.134) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.185) ❶ ❷ ❸ ❹ ❺ ❻ ➆ (0.170) ❶ ❷ ❸ ❹ - ❻ ❼ (0.138) ❶ ❷ ❸ ❹ - ❻ ➆ (0.128) ❶ ❷ ❸ ➃ ❺ ❻ ➆ (0.091) 40/49 0.14

Acc 69/105 67/105 72/105 67/105 65/105 67/105 56/105 463/735

Avg RPI 0.125 0.119 0.147 0.129 0.134 0.123 0.12 0.128

Table 3.9: The marks 1-7 are fine-tuning with combined data, fine-tuning with failure data,
PMosaic, MixUp, BN calibration, denoising, and the naive DeepRepair, respectively. The
darker mark means the approach successfully repairs the detector under one corruption,
while the lighter one indicates repair failure. "-" means no results. The best repair approaches
are in red. The relative performance improvement values of the best methods are noted
within parentheses.

68

Effectiveness

In Table 3.9, we present the results of repair success using statistical t-tests, with the null

hypothesis assuming that a repair method does not statistically improve the detector’s

performance. In this study, we did not apply BN calibration to FCOS-ResNet50 and FCOS-

ResNet101, as their backbone classification models were unavailable for calibration. As a

result, their respective repair results are denoted with "-" in the table. According to the data

presented in Table 3.9, the detectors exhibit performance gains ranging from 0.7% to 39.5%,

with an average improvement of 12.8% achieved through the best repair methods.

In general, fine-tuning with combined data improves the most for repair while self-

supervised denoising shows the least improvement after repair. Most repairing methods can

be applied to all detectors and corruptions in our experiments. In this work, we do not apply

BN calibration to FCOS-ResNet50 and FCOS-ResNet101 since their backbone classification

models are not available for calibration. We compute the overall average RPI, as noted in

Eq. (3.3), to evaluate each repairing method and the results are shown in Table 3.10.

For fine-tuning and augmentation-based methods, pixelate benefits the most, and bright-

ness shows the least improvement. And Faster R-CNN with ResNet101 backbone always

shows the most improvement. Among the four approaches, fine-tuning with combined data

performs the best and MixUp performs the worst. These methods could roughly work across

corruptions and models.

BN calibration and the self-supervised denoiser are closely related to the corruption types.

BN calibration achieves remarkable performance gains on image distortions, e.g.jpeg_-

compression, pixelate, and contrast. But it shows only marginal or no improvement on other

corruptions except impulse_noise. On the contrary, the denoiser improves a lot on noises,

e.g., gaussian_noise, shot_noise, and impulse_noise, while it fails on other corruptions.

The naive DeepRepair, which also relies on style transfer, is correlated with the corruption

type. It achieves outstanding performance on the contrast. Notably, it doesn’t result in a

performance drop on the clean test set as other fine-tuning-based methods.

69

Table 3.10: Overall relative performance improvement for the repairing methods. The
winning configurations mean the method achieves the best in our benchmark under the
configuration.

Method Overall RPI Winning ConFigs

Fine-tuning with combined data 0.105 72

PMosaic 0.087 0

Fine-tuning with failure data 0.081 5

MixUp 0.023 0

Naive DeepRepair 0.005 7

BN calibration 0.002 0

Denoising 0.001 21

Impact on Inference

Training-time strategies are free lunch for inference and we don’t have any concerns after

deployment. Six of the repairing methods in this paper are training-time strategies. However,

denoising would put some extra workload on inference speed. The denoiser works at around

4 fps on a single NVIDIA A6000 GPU.

Efficiency

In Table 3.11, we report roughly estimated costs for the approaches on a single NVIDIA

A6000 GPU. For fine-tuning-based and augmentation-based methods, the repair cost depends

on the detector. For denoising and BN calibration, repairing once could benefit many

related models. A denoiser could be applied to multiple detectors corrupted by the same

corruption. BN calibration on classification can repair all the detectors with the same

backbone. Therefore, in the table, we include the average repair costs per configuration in

our work in parentheses. In conclusion, fine-tuning with failure data is the most efficient

among all the proposed methods.

70

Table 3.11: Repair costs of the repairing methods. Values in parentheses are average costs
shared across detectors.

Method Cost

Fine-tuning w. combined data 0.33 hour

PMosaic 1.4 hours

Fine-tuning w. failure data 0.2 hour

MixUp 0.33 hour

Naive DeepRepair 9.6hours

BN calibration 10hours (0.67 hour)

Denoising 23hours(0.66 hour)

3.7 Discussion

3.7.1 Future directions

We’ve discussed the repairing approaches in detail and compared them in the benchmark.

What’s more, we offer some clues to further improve detection repair. In this section, we

highlight some problems and topics to inspire better repair methods for object detection.

• In our benchmark, five of all the involved methods work with fine-tuning. But most of

them suffer from catastrophic forgetting, as illustrated in Fig. 3.12. There is a compelling

need to handle catastrophic forgetting on object detection.

• Building upon our analysis, we anticipate the potential effectiveness of novel augmentation

techniques or alternative information fusion schemes for repair, particularly in cases where

the distributions of objects in terms of scales, density, and categories undergo significant

changes.

• In addition to denoising and style transfer techniques tailored to patterns of common

corruption, there is a pressing need to devise transformation models capable of addressing

unknown types of corruption. Developing unsupervised or self-supervised robust transfer

71

models presents an even greater challenge, but it is crucial for handling unforeseen

corruption scenarios effectively.

• It is essential to explore efficient repair schemes, as they represent a significant and

promising direction for research.

3.8 Conclusion

In this paper, our focus has been on the critical task of repairing object detection models

when they encounter failures caused by common corruptions. Our work has provided

a comprehensive benchmark and empirical study of object detection repair approaches,

shedding light on their effectiveness and highlighting areas for improvement. We have

identified strengths and limitations in fine-tuning, augmentation, denoising, and calibration-

based methods, offering insights into the complex landscape of repair techniques. Moving

forward, addressing challenges such as catastrophic forgetting and innovating augmentation

strategies, will be essential for advancing the field. As the demands for resilient object

detection systems continue to grow, these future directions will play a pivotal role in

enhancing the reliability and effectiveness of detection repair mechanisms.

72

Chapter 4

Conclusions & Future Work

4.1 Conclusion

The goal of this paper is to address the issue of object detection models failing under

common corruptions and to propose methods for repairing these failures. To begin, we

formally define failure and repair in the context of object detection. Our objective is to

improve the performance of the model on the failure dataset while minimizing degradation

on the clean set.

We first systematically analyze failure patterns in object detection and identify clues for

repairing detectors. We suggest that better localization and improvement in detecting small

and occluded objects would be beneficial for repairing object detectors. We then investigate

potential methods for repair and construct a comprehensive benchmark for evaluating their

performance.

Our experiments reveal that fine-tuning with combined datasets performs the best, while

other approaches also show promise after we attempt to optimize their upper bounds.

Furthermore, we highlight key points for repairing object detectors and summarize the

challenges and future directions for further research.

We acknowledge that all the approaches in our benchmark have room for improvement,

and we hope that our benchmark, comparative results, and identified challenges and oppor-

tunities can inspire future research in this area. Our ultimate goal is to develop high-quality

object detectors that can function continuously in operational environments.

73

4.2 Future Directions

In summary, we have discussed various repairing approaches for object detectors and

compared them in our benchmark. Based on our observations, we can provide some clues

for repairing object detectors. However, there are still several key challenges and potential

directions that need to be addressed in future research. Here, we outline some of these

challenges and topics to inspire better repairing methods for object detection.

4.2.1 Catastrophic Forgetting

In the last section, five of all the involved methods work with fine-tuning, but most of them

suffer from catastrophic forgetting. Many approaches [42, 67, 70] could be applied in

repairing to handle catastrophic forgetting.

It’s usually expensive to train the detection models; thus it’s more important to deal

with catastrophic forgetting in object detection. Repairing would be much more efficient

if the detectors could only focus on the failure data without concerns about forgetting.

It’s a critical problem for object detection, even more than repair. However, it’s more

challenging to handle catastrophic forgetting on object detection than classification. For

example, there exists an extreme imbalance between categories, and regularization working

on the logits might fail. If we turn to feature-level regularization, the detection framework is

more complex and we have to take both the image-wise features and RoI-wise features into

account. It’s quite interesting to solve the problem with the properties of object detection.

4.2.2 Better Augmentations

In this paper, we attempt two widely-used augmentations, MixUp, and Mosaic. However,

both of them failed to achieve outstanding performance in our repairing benchmark. Aug-

mentations designed for detection usually focus on mixing between objects and background

scenes, and they don’t match our problem formulation. Following the clues, we expect a

novel augmentation, or other information fusion schemes, to work for repair, when the distri-

74

butions of objects in scales, density, and category change significantly. Their improvement

would benefit generic object detection and many other detection problems.

4.2.3 Denoisers and Style Transfer for Common Corruptions

In Sec. 3.6.4, we find the self-supervised denoiser [46] in our benchmark works pretty well

on some corruptions but fails on others. Similarly, the style transfer method [88] involved in

Sec. 3.6.3 and Sec. 3.6.5 performs varying from the corruptions, too. These methods are

designed with corruption properties and thus may not work among the common corruptions.

Therefore, it is challenging and critical to propose methods for transfer between corrupted

and clean images. In addition to denoising and style transfer based on patterns of common

corruptions, it’s important to design transformation models for unknown corruption types. It

is even more difficult to develop unsupervised or self-supervised robust transferring models.

4.2.4 Efficient Repair

Repairing happens when the deployed model encounters challenges in the operational

environment. Sometimes it can be urgent to repair the model. Therefore, efficiency is a

crucial point in repair. In traditional detection tasks, we usually only care about the inference

speed but ignore the training time. However, repairing takes both the inference and training

time into account. Hence efficient repair schemes can be an important and promising

direction to explore. For example, as we noted in Sec. 3.3, it is an efficient proposal to

calibrate BN layers directly on detectors trained without frozen BNs, which takes about 1/8

time of fine-tuning-based methods. Moreover, it’s a critical but neglected topic to achieve

efficient training in all the deep learning tasks beyond repair.

75

Bibliography

[1] L. Jiao et al., “A survey of deep learning-based object detection,” IEEE access, vol. 7,
pp. 128 837–128 868, 2019.

[2] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual tracking with
siamese region proposal network,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 8971–8980.

[3] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: State of the art,”
International journal of multimedia information retrieval, vol. 9, no. 3, pp. 171–189,
2020.

[4] Q. Dang, J. Yin, B. Wang, and W. Zheng, “Deep learning based 2d human pose
estimation: A survey,” Tsinghua Science and Technology, vol. 24, no. 6, pp. 663–676,
2019.

[5] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to com-
mon corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.

[6] C. Michaelis et al., “Benchmarking robustness in object detection: Autonomous
driving when winter is coming,” arXiv preprint arXiv:1907.07484, 2019.

[7] B. Yu et al., “Deeprepair: Style-guided repairing for deep neural networks in the
real-world operational environment,” IEEE Transactions on Reliability, 2021.

[8] R. Ramamonjison, A. Banitalebi-Dehkordi, X. Kang, X. Bai, and Y. Zhang, “Simrod:
A simple adaptation method for robust object detection,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 3570–3579.

[9] P. Oza, V. A. Sindagi, V. VS, and V. M. Patel, “Unsupervised domain adaptation of
object detectors: A survey,” arXiv preprint arXiv:2105.13502, 2021.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), Ieee, vol. 1, 2005, pp. 886–893.

[11] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, mul-
tiscale, deformable part model,” in 2008 IEEE conference on computer vision and
pattern recognition, Ieee, 2008, pp. 1–8.

[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

76

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580–587.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional
networks for accurate object detection and segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 1, pp. 142–158, 2015.

[15] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective search
for object recognition,” International journal of computer vision, vol. 104, no. 2,
pp. 154–171, 2013.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[17] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information processing
systems, vol. 28, 2015.

[19] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks,” Advances in neural information processing systems, vol. 29,
2016.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[21] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6154–6162.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 2980–2988.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[24] W. Liu et al., “Ssd: Single shot multibox detector,” in European conference on
computer vision, Springer, 2016, pp. 21–37.

[25] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[26] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[27] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,”
arXiv preprint arXiv:2107.08430, 2021.

77

https://doi.org/10.1109/CVPR.2009.5206848

[28] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional single
shot detector,” arXiv preprint arXiv:1701.06659, 2017.

[29] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object
detection,” in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 9627–9636.

[30] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, “Foveabox: Beyound anchor-based
object detection,” IEEE Transactions on Image Processing, vol. 29, pp. 7389–7398,
2020.

[31] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv preprint arXiv:1904.07850,
2019.

[32] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets
for object detection,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6569–6578.

[33] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-
to-end object detection with transformers,” in European conference on computer
vision, Springer, 2020, pp. 213–229.

[34] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object detection,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 3588–3597.

[35] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted win-
dows,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 10 012–10 022.

[36] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision transformer backbones
for object detection,” arXiv preprint arXiv:2203.16527, 2022.

[37] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2117–2125.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[39] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[40] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in European conference
on computer vision, Springer, 2014, pp. 740–755.

[41] K. Chen et al., “MMDetection: Open mmlab detection toolbox and benchmark,”
arXiv preprint arXiv:1906.07155, 2019.

[42] G. M. Van de Ven and A. S. Tolias, “Three scenarios for continual learning,” arXiv
preprint arXiv:1904.07734, 2019.

78

[43] M. Sayed and G. Brostow, “Improved handling of motion blur in online object
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 1706–1716.

[44] H. Qi et al., “Archrepair: Block-level architecture-oriented repairing for deep neural
networks,” arXiv preprint arXiv:2111.13330, 2021.

[45] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical
risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[46] T. Huang, S. Li, X. Jia, H. Lu, and J. Liu, “Neighbor2neighbor: Self-supervised
denoising from single noisy images,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 14 781–14 790.

[47] Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of freebies for training
object detection neural networks,” arXiv preprint arXiv:1902.04103, 2019.

[48] H. Zhang and W. Chan, “Apricot: A weight-adaptation approach to fixing deep
learning models,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2019, pp. 376–387.

[49] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: Automated neural network
model debugging via state differential analysis and input selection,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp. 175–186.

[50] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu, “Nn repair: Constraint-
based repair of neural network classifiers,” in International Conference on Computer
Aided Verification, Springer, 2021, pp. 3–25.

[51] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. T. Johnson, and D. Prokhorov,
“Neural network repair with reachability analysis,” arXiv preprint arXiv:2108.04214,
2021.

[52] J. Sohn, S. Kang, and S. Yoo, “Arachne: Search based repair of deep neural networks,”
ACM Transactions on Software Engineering and Methodology, 2022.

[53] X. Xie et al., “Rnnrepair: Automatic rnn repair via model-based analysis,” in Pro-
ceedings of the 38th International Conference on Machine Learning, M. Meila and
T. Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139, PMLR,
2021, pp. 11 383–11 392. [Online]. Available: https://proceedings.mlr.press/v139/
xie21b.html.

[54] B Taylor, “Neural network repair with reachability analysis,” in Formal Modeling and
Analysis of Timed Systems: 20th International Conference, FORMATS 2022, Warsaw,
Poland, September 13-15, 2022, Proceedings, Springer Nature, vol. 13465, 2022,
p. 221.

[55] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan,
“Augmix: A simple data processing method to improve robustness and uncertainty,”
arXiv preprint arXiv:1912.02781, 2019.

79

https://proceedings.mlr.press/v139/xie21b.html
https://proceedings.mlr.press/v139/xie21b.html

[56] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning
augmentation strategies from data,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 113–123.

[57] Y. Chen et al., “Dynamic scale training for object detection,” arXiv preprint arXiv:2004.12432,
2020.

[58] B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le, “Learning data
augmentation strategies for object detection,” in European conference on computer
vision, Springer, 2020, pp. 566–583.

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
PMLR, 2015, pp. 448–456.

[60] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization for
practical domain adaptation,” arXiv preprint arXiv:1603.04779, 2016.

[61] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time
adaptation by entropy minimization,” arXiv preprint arXiv:2006.10726, 2020.

[62] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge, “Improv-
ing robustness against common corruptions by covariate shift adaptation,” Advances
in Neural Information Processing Systems, vol. 33, pp. 11 539–11 551, 2020.

[63] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Strong-weak distribution align-
ment for adaptive object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 6956–6965.

[64] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, “Re-evaluating continual learning
scenarios: A categorization and case for strong baselines,” arXiv preprint arXiv:1810.12488,
2018.

[65] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[66] F. Zenke, B. Poole, and S. Ganguli, Improved multitask learning through synaptic
intelligence, 2017.

[67] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[68] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder based lifelong
learning,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 1320–1328.

[69] P. Sprechmann et al., “Memory-based parameter adaptation,” arXiv preprint arXiv:1802.10542,
2018.

[70] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “Icarl: Incremental
classifier and representation learning,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

80

[71] K. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian, “Towards open world
object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 5830–5840.

[72] X. Du, G. Gozum, Y. Ming, and Y. Li, “Siren: Shaping representations for detecting
out-of-distribution objects,” in Advances in Neural Information Processing Systems,
2022.

[73] X. Du, Z. Wang, M. Cai, and Y. Li, “Vos: Learning what you don’t know by virtual
outlier synthesis,” arXiv preprint arXiv:2202.01197, 2022.

[74] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A
survey,” arXiv preprint arXiv:2110.11334, 2021.

[75] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep learning on image
denoising: An overview,” Neural Networks, vol. 131, pp. 251–275, 2020.

[76] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising,” IEEE transactions on image
processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[77] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural
network for inverse problems in imaging,” IEEE Transactions on Image Processing,
vol. 26, no. 9, pp. 4509–4522, 2017.

[78] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-cnn for image
restoration,” in Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2018, pp. 773–782.

[79] R. A. Yeh, T. Y. Lim, C. Chen, A. G. Schwing, M. Hasegawa-Johnson, and M. N.
Do, “Image restoration with deep generative models,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018,
pp. 6772–6776.

[80] J. Chen, J. Chen, H. Chao, and M. Yang, “Image blind denoising with generative
adversarial network based noise modeling,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 3155–3164.

[81] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind
denoising of real photographs,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 1712–1722.

[82] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser prior for image
restoration,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3929–3938.

[83] K. Zhang, W. Zuo, and L. Zhang, “Ffdnet: Toward a fast and flexible solution for
cnn-based image denoising,” IEEE Transactions on Image Processing, vol. 27, no. 9,
pp. 4608–4622, 2018.

[84] S. Soltanayev and S. Y. Chun, “Training deep learning based denoisers without
ground truth data,” Advances in neural information processing systems, vol. 31, 2018.

81

[85] J. Yang, X. Liu, X. Song, and K. Li, “Estimation of signal-dependent noise level func-
tion using multi-column convolutional neural network,” in 2017 IEEE International
Conference on Image Processing (ICIP), IEEE, 2017, pp. 2418–2422.

[86] X. Li, M. Liu, Y. Ye, W. Zuo, L. Lin, and R. Yang, “Learning warped guidance for
blind face restoration,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 272–289.

[87] K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-resolution
network for multiple degradations,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 3262–3271.

[88] J. Yoo, Y. Uh, S. Chun, B. Kang, and J.-W. Ha, “Photorealistic style transfer via
wavelet transforms,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9036–9045.

[89] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer: A
review,” IEEE transactions on visualization and computer graphics, vol. 26, no. 11,
pp. 3365–3385, 2019.

82

Appendix A: Appendix

A.1 Abbreviations

Abbreviations of models in our work are available in Table A.2. And abbreviations of

corruptions in our work are available in Table A.1.

Table A.1: Abbreviations of corruptions.

gaussian_noise GsNoise shot_noise ShNoise impulse_noise ImNoise

defocus_blur DfBlur glass_blur GlBlur motion_blur MtBlur

zoom_blur ZmBlur snow Snow fog Fog

frost Frost brightness Bright contrast Contrast

elastic_transform Elastic pixelate Pix jpeg_compression JPEG

Table A.2: Abbreviation of models.

model name in mmdetection abbr

retinanet_x101_64x4d_fpn_1x_coco retina_x64_1x faster_rcnn_x101_64x4d_fpn_1x_coco faster_x64_1x retinanet_x101_32x4d_fpn_1x_coco retina_x32_1x

retinanet_x101_64x4d_fpn_2x_coco retina_x64_2x fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco fcos_r50c_1x_dc_giou faster_rcnn_x101_32x4d_fpn_1x_coco faster_x32_1x

retinanet_r101_fpn_1x_coco retina_r101_1x retinanet_x101_32x4d_fpn_2x_coco retina_x32_2x faster_rcnn_x101_64x4d_fpn_2x_coco faster_x64_2x

retinanet_r101_caffe_fpn_1x_coco retina_r101c_1x fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco fcos_x64_2x fcos_r101_caffe_fpn_gn-head_1x_coco fcos_r101c_1x

faster_rcnn_r101_fpn_1x_coco faster_r101_1x faster_rcnn_r101_caffe_fpn_1x_coco faster_r101c_1x retinanet_r101_fpn_2x_coco retina_r101_2x

retinanet_x101_64x4d_fpn_mstrain_3x_coco retina_x64_3x faster_rcnn_x101_32x4d_fpn_2x_coco faster_x32_2x faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco faster_x64_3x

faster_rcnn_r101_fpn_2x_coco faster_r101_2x faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco faster_x32_3x faster_rcnn_r101_fpn_mstrain_3x_coco faster_r101_3x

faster_rcnn_r50_caffe_dc5_1x_coco faster_r50c_1x_dc retinanet_r101_fpn_mstrain_3x_coco retina_r101_3x fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco fcos_r101c_2x

retinanet_r50_caffe_fpn_1x_coco retina_r50c_1x faster_rcnn_r101_caffe_fpn_mstrain_3x_coco faster_r101c_3x faster_rcnn_r50_caffe_dc5_mstrain_1x_coco faster_r50c_ms1x_dc

fcos_r50_caffe_fpn_gn-head_1x_coco fcos_r50c_1x retinanet_r50_fpn_fp16_1x_coco retina_r50_1x_fp16 faster_rcnn_r50_caffe_fpn_1x_coco faster_r50c_1x

retinanet_r50_fpn_1x_coco retina_r50_1x fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco fcos_r50c_1x_giou retinanet_r101_caffe_fpn_mstrain_3x_coco retina_r101c_3x

detr_r50_8x2_150e_coco detr_r50 faster_rcnn_r50_fpn_giou_1x_coco faster_r50_1x_giou faster_rcnn_r50_fpn_1x_coco faster_r50_1x

faster_rcnn_r50_fpn_iou_1x_coco faster_r50_1x_iou faster_rcnn_r50_caffe_fpn_mstrain_2x_coco faster_r50c_2x faster_rcnn_r50_fpn_fp16_1x_coco faster_r50_1x_fp16

faster_rcnn_r50_fpn_bounded_iou_1x_coco faster_r50_1x_biou retinanet_r50_fpn_2x_coco retina_r50_2x faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco faster_3x

fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco fcos_r50c_2x faster_rcnn_r50_caffe_fpn_mstrain_3x_coco faster_r50c_3x faster_rcnn_r50_caffe_dc5_mstrain_3x_coco faster_r50c_3x_dc

faster_rcnn_r50_fpn_2x_coco faster_r50_2x retinanet_r50_fpn_mstrain_3x_coco retina_r50_3x faster_rcnn_r50_fpn_mstrain_3x_coco faster_r50_3x

83

A.2 More Results

A.2.1 Results on the clean and failure datasets

Relative performance improvement values of detectors across corruptions on the clean and

failure test sets are available on Table A.4 and Table A.3.

A.2.2 Results on corruptions for all methods

GsNoise
ShNoise

ImNoise

DfBlur

GlBlur

MtBlur

ZmBlur

Snow Frost

Fog

Bright

Contrast

Elastic

Pix

JPEG

0.2

0.0

0.2

0.4

baseline
ft_combine
ft_failure
PMosaic
mixup
bn-calibration
denoise

Plate A.1: Improvement on corruptions for all methods

84

Table A.3: All experimental results of repair methods for detectors under common corrup-
tions. We present relative performance improvement for AP on the failure test sets.

model method GsNoise ShNoise ImNoise DfBlur GlBlur MtBlur ZmBlur Snow Frost Fog Bright Contrast Elastic Pix JPEG

retinanet_r50_fpn_1x_coco

finetune_failure 0.318 0.325 0.408 0.227 1.801 0.369 0.518 0.470 0.283 0.170 0.064 0.333 0.449 1.056 0.526

bn-calibration -0.012 -0.007 0.027 -0.057 0.052 -0.032 -0.061 0.045 0.006 0.048 0.032 0.175 -0.004 0.114 0.152

finetune_combine 0.299 0.323 0.401 0.235 1.706 0.426 0.913 0.443 0.266 0.161 0.054 0.314 0.415 1.040 0.496

mixup 0.108 0.130 0.193 0.020 1.200 0.229 0.463 0.264 0.115 0.114 -0.002 0.246 0.260 0.781 0.176

PMosaic 0.285 0.309 0.366 0.190 1.701 0.426 0.933 0.456 0.280 0.157 0.041 0.312 0.385 0.916 0.433

denoise 0.584 0.617 1.179 -0.057 0.177 -0.059 -0.183 -0.130 -0.112 -0.176 -0.025 -0.232 -0.044 0.418 0.163

naiveDeepRepair 0.027 0.049 0.025 -0.027 -0.197 -0.074 -0.032 0.060 0.107 0.124 0.047 0.261 -0.031 -0.261 -0.036

retinanet_r101_fpn_1x_coco

finetune_failure 0.227 0.261 0.484 0.223 1.442 0.323 0.905 0.411 0.253 0.142 0.055 0.275 0.364 0.745 0.454

bn-calibration -0.062 -0.003 0.057 -0.033 0.017 -0.034 -0.050 0.039 0.012 0.045 0.017 0.151 0.007 0.056 0.145

finetune_combine 0.219 0.249 0.469 0.222 1.421 0.327 0.809 0.393 0.244 0.139 0.044 0.262 0.355 0.712 0.448

mixup 0.070 0.101 0.253 0.028 1.012 0.151 0.398 0.225 0.093 0.085 0.003 0.194 0.212 0.532 0.194

PMosaic 0.204 0.237 0.436 0.183 1.360 0.314 0.828 0.399 0.247 0.131 0.037 0.264 0.329 0.623 0.383

denoise 0.420 0.453 1.163 -0.063 0.162 -0.053 -0.159 -0.108 -0.114 -0.144 -0.027 -0.203 -0.027 0.279 0.160

naiveDeepRepair 0.005 0.025 0.000 -0.012 -0.160 -0.041 -0.013 0.057 0.063 0.102 0.044 0.237 -0.028 -0.282 -0.032

faster_rcnn_r50_fpn_1x_coco

finetune_failure 0.347 0.393 0.543 0.293 1.832 0.359 0.826 0.514 0.301 0.205 0.060 0.379 0.455 1.806 0.749

bn-calibration -0.006 -0.010 0.060 -0.080 0.056 -0.030 -0.045 0.056 -0.002 0.049 0.030 0.197 -0.003 0.176 0.182

finetune_combine 0.362 0.374 0.529 0.301 1.838 0.494 1.009 0.506 0.276 0.179 0.055 0.360 0.438 1.746 0.721

mixup 0.173 0.180 0.299 0.137 1.379 0.306 0.682 0.336 0.152 0.146 0.013 0.332 0.328 1.423 0.341

PMosaic 0.328 0.353 0.504 0.252 1.792 0.492 1.048 0.517 0.276 0.182 0.049 0.354 0.422 1.618 0.649

denoise 0.626 0.660 1.341 -0.062 0.165 -0.044 -0.147 -0.127 -0.128 -0.169 -0.020 -0.234 -0.039 0.616 0.203

naiveDeepRepair 0.042 0.018 0.013 -0.041 -0.154 -0.050 -0.030 0.069 0.062 0.131 0.052 0.315 -0.056 -0.198 -0.026

faster_rcnn_r101_fpn_1x_coco

finetune_failure 0.265 0.293 0.515 0.258 1.435 0.377 1.090 0.439 0.277 0.160 0.060 0.327 0.397 1.004 0.618

bn-calibration -0.064 -0.017 0.028 -0.031 -0.009 -0.044 -0.038 0.040 0.007 0.052 0.025 0.180 0.001 0.063 0.176

finetune_combine 0.261 0.285 0.500 0.253 1.418 0.366 1.022 0.431 0.259 0.148 0.053 0.309 0.372 0.973 0.596

mixup 0.114 0.132 0.313 0.129 1.093 0.227 0.639 0.291 0.145 0.105 0.002 0.271 0.263 0.781 0.328

PMosaic 0.232 0.254 0.473 0.210 1.362 0.358 0.987 0.422 0.251 0.146 0.041 0.306 0.350 0.890 0.530

denoise 0.441 0.465 1.164 -0.047 0.133 -0.063 -0.152 -0.115 -0.127 -0.143 -0.024 -0.194 -0.031 0.370 0.193

naiveDeepRepair -0.010 0.010 0.017 0.006 -0.202 -0.024 0.000 0.074 0.065 0.116 0.058 0.252 -0.044 -0.287 -0.011

fcos_r50_caffe_fpn_gn-head_1x_coco

finetune_failure 0.385 0.357 0.540 0.319 1.866 0.406 0.947 0.441 0.247 0.188 0.055 0.319 0.391 0.948 0.487

bn-calibration - - - - - - - - - - - - - - -

finetune_combine 0.365 0.340 0.520 0.302 1.787 0.408 0.918 0.422 0.241 0.181 0.045 0.303 0.369 0.908 0.472

mixup 0.182 0.159 0.287 0.108 1.256 0.214 0.422 0.246 0.117 0.120 -0.006 0.268 0.242 0.717 0.217

PMosaic 0.328 0.314 0.480 0.241 1.715 0.404 0.874 0.425 0.225 0.148 0.021 0.302 0.349 0.816 0.394

denoise 0.712 0.668 1.439 -0.060 0.230 -0.049 -0.179 -0.119 -0.116 -0.162 -0.033 -0.224 -0.047 0.281 0.159

naiveDeepRepair 0.065 0.030 0.043 0.007 -0.213 -0.050 -0.034 0.059 0.070 0.141 0.057 0.318 -0.025 -0.174 0.023

fcos_r101_caffe_fpn_gn-head_1x_coco

finetune_failure 0.291 0.296 0.441 0.221 1.562 0.336 1.031 0.393 0.272 0.139 0.072 0.287 0.386 0.663 0.444

bn-calibration - - - - - - - - - - - - - - -

finetune_combine 0.282 0.292 0.418 0.208 1.518 0.328 0.971 0.381 0.255 0.132 0.062 0.266 0.372 0.644 0.432

mixup 0.106 0.126 0.217 0.046 1.130 0.182 0.493 0.223 0.139 0.083 0.001 0.217 0.242 0.489 0.198

PMosaic 0.250 0.271 0.376 0.149 1.453 0.329 0.931 0.369 0.259 0.112 0.036 0.246 0.343 0.581 0.375

denoise 0.542 0.566 1.150 -0.054 0.150 -0.056 -0.176 -0.099 -0.110 -0.143 -0.026 -0.195 -0.048 0.217 0.143

naiveDeepRepair 0.027 0.047 0.017 0.006 -0.187 -0.036 0.015 0.051 0.078 0.094 0.057 0.245 -0.027 -0.132 -0.005

detr_r50_8x2_150e_coco

finetune_failure 0.253 0.261 0.448 0.097 1.866 0.280 0.592 0.314 0.180 0.123 0.037 0.258 0.456 1.215 0.325

bn-calibration 0.025 0.010 0.122 -0.074 0.095 -0.076 -0.093 0.071 -0.002 0.043 0.042 0.202 0.007 0.237 0.197

finetune_combine 0.271 0.284 0.462 0.120 1.946 0.282 0.680 0.325 0.216 0.123 0.033 0.263 0.446 1.199 0.325

mixup 0.073 0.053 0.204 -0.099 1.275 0.049 0.151 0.112 0.027 0.016 -0.048 0.129 0.240 0.825 0.021

PMosaic 0.254 0.296 0.429 0.099 1.926 0.291 0.652 0.318 0.209 0.107 0.008 0.262 0.431 1.070 0.265

denoise 0.760 0.776 1.610 -0.045 0.244 -0.066 -0.180 -0.149 -0.120 -0.143 -0.022 -0.203 -0.026 0.702 0.196

naiveDeepRepair 0.018 0.006 0.098 0.023 -0.203 -0.044 0.015 0.053 0.059 0.118 0.027 0.302 -0.020 -0.190 -0.021

85

Table A.4: All experimental results of repair methods for detectors under common corrup-
tions. We present relative performance improvement for AP on the clean test sets.

model method GsNoise ShNoise ImNoise DfBlur GlBlur MtBlur ZmBlur Snow Frost Fog Bright Contrast Elastic Pix JPEG

retinanet_r50_fpn_1x_coco

finetune_failure -0.036 -0.041 -0.036 -0.035 -0.125 -0.063 -0.086 -0.052 -0.048 -0.032 -0.015 -0.046 -0.091 -0.093 -0.054

bn-calibration -0.016 -0.015 -0.016 -0.010 -0.007 -0.013 -0.008 -0.016 -0.022 -0.019 -0.028 -0.026 -0.012 -0.010 -0.013

finetune_combine -0.020 -0.020 -0.019 -0.023 -0.040 -0.036 -0.067 -0.030 -0.028 -0.023 -0.008 -0.026 -0.043 -0.031 -0.025

mixup -0.054 -0.056 -0.060 -0.049 -0.077 -0.072 -0.087 -0.073 -0.060 -0.068 -0.043 -0.075 -0.074 -0.071 -0.055

PMosaic -0.036 -0.037 -0.040 -0.039 -0.059 -0.051 -0.081 -0.049 -0.046 -0.036 -0.018 -0.038 -0.047 -0.032 -0.035

denoise -0.104 -0.066 -0.060 -0.060 -0.046 -0.059 -0.053 -0.073 -0.075 -0.074 -0.078 -0.069 -0.060 -0.055 -0.059

naiveDeepRepair -0.008 -0.005 -0.005 0.000 -0.005 -0.003 -0.005 -0.008 -0.008 -0.008 -0.006 -0.008 -0.005 -0.006 0.000

retinanet_r101_fpn_1x_coco

finetune_failure -0.023 -0.031 -0.030 -0.032 -0.101 -0.074 -0.146 -0.040 -0.031 -0.019 -0.008 -0.035 -0.066 -0.084 -0.033

bn-calibration -0.063 -0.015 -0.010 -0.008 -0.009 -0.007 -0.008 -0.020 -0.017 -0.022 -0.024 -0.028 -0.009 -0.009 -0.010

finetune_combine -0.016 -0.019 -0.016 -0.017 -0.033 -0.026 -0.050 -0.024 -0.022 -0.017 -0.007 -0.020 -0.035 -0.025 -0.020

mixup -0.047 -0.055 -0.047 -0.038 -0.069 -0.056 -0.071 -0.070 -0.050 -0.059 -0.045 -0.067 -0.071 -0.068 -0.052

PMosaic -0.030 -0.031 -0.031 -0.032 -0.050 -0.038 -0.067 -0.041 -0.039 -0.027 -0.016 -0.033 -0.044 -0.028 -0.029

denoise -0.064 -0.060 -0.044 -0.051 -0.042 -0.046 -0.042 -0.066 -0.057 -0.067 -0.063 -0.060 -0.048 -0.045 -0.050

naiveDeepRepair -0.003 -0.008 -0.008 -0.005 -0.003 -0.005 -0.008 -0.003 -0.010 -0.008 -0.010 -0.008 -0.003 -0.008 -0.005

faster_rcnn_r50_fpn_1x_coco

finetune_failure -0.038 -0.047 -0.038 -0.050 -0.117 -0.081 -0.150 -0.061 -0.059 -0.049 -0.022 -0.057 -0.090 -0.112 -0.055

bn-calibration -0.013 -0.014 -0.013 -0.011 -0.006 -0.009 -0.006 -0.014 -0.022 -0.019 -0.031 -0.028 -0.013 -0.009 -0.010

finetune_combine -0.022 -0.022 -0.023 -0.028 -0.039 -0.042 -0.066 -0.040 -0.030 -0.027 -0.019 -0.029 -0.041 -0.036 -0.030

mixup -0.055 -0.060 -0.056 -0.066 -0.077 -0.070 -0.091 -0.082 -0.065 -0.079 -0.058 -0.081 -0.075 -0.066 -0.063

PMosaic -0.027 -0.035 -0.038 -0.038 -0.056 -0.058 -0.095 -0.052 -0.040 -0.031 -0.021 -0.034 -0.043 -0.033 -0.037

denoise -0.068 -0.073 -0.052 -0.059 -0.049 -0.056 -0.052 -0.069 -0.078 -0.077 -0.083 -0.066 -0.058 -0.050 -0.054

naiveDeepRepair -0.008 -0.011 -0.003 -0.005 0.003 -0.005 -0.003 -0.005 -0.003 -0.013 -0.016 -0.008 -0.011 -0.003 0.000

faster_rcnn_r101_fpn_1x_coco

finetune_failure -0.031 -0.032 -0.030 -0.042 -0.107 -0.088 -0.168 -0.054 -0.043 -0.034 -0.021 -0.049 -0.076 -0.085 -0.042

bn-calibration -0.074 -0.014 -0.009 -0.010 -0.009 -0.008 -0.011 -0.019 -0.019 -0.020 -0.027 -0.032 -0.012 -0.010 -0.011

finetune_combine -0.018 -0.021 -0.020 -0.022 -0.034 -0.031 -0.057 -0.036 -0.030 -0.024 -0.014 -0.026 -0.039 -0.027 -0.024

mixup -0.056 -0.059 -0.057 -0.062 -0.069 -0.068 -0.080 -0.071 -0.075 -0.071 -0.062 -0.076 -0.068 -0.064 -0.063

PMosaic -0.023 -0.025 -0.030 -0.032 -0.044 -0.042 -0.075 -0.043 -0.037 -0.030 -0.018 -0.035 -0.037 -0.028 -0.024

denoise -0.069 -0.064 -0.049 -0.052 -0.044 -0.049 -0.044 -0.064 -0.063 -0.072 -0.072 -0.061 -0.055 -0.048 -0.049

naiveDeepRepair -0.010 -0.005 -0.010 -0.003 0.000 -0.003 0.000 -0.005 -0.003 -0.008 -0.013 -0.010 -0.008 -0.010 -0.005

fcos_r50_caffe_fpn_gn-head_1x_coco

finetune_failure -0.040 -0.041 -0.048 -0.050 -0.118 -0.095 -0.138 -0.058 -0.052 -0.032 -0.022 -0.067 -0.096 -0.090 -0.033

bn-calibration - - - - - - - - - - - - - - -

finetune_combine -0.016 -0.017 -0.026 -0.019 -0.035 -0.035 -0.050 -0.033 -0.027 -0.014 -0.014 -0.041 -0.047 -0.030 -0.018

mixup -0.069 -0.067 -0.065 -0.058 -0.073 -0.069 -0.079 -0.071 -0.070 -0.076 -0.059 -0.089 -0.076 -0.068 -0.061

PMosaic -0.041 -0.046 -0.047 -0.039 -0.059 -0.044 -0.077 -0.055 -0.048 -0.043 -0.028 -0.049 -0.056 -0.037 -0.033

denoise -0.072 -0.069 -0.052 -0.061 -0.049 -0.058 -0.050 -0.067 -0.070 -0.079 -0.081 -0.068 -0.059 -0.056 -0.057

naiveDeepRepair 0.003 -0.003 0.000 0.008 0.003 0.000 0.003 0.000 -0.005 -0.008 0.000 -0.003 0.003 0.003 0.005

fcos_r101_caffe_fpn_gn-head_1x_coco

finetune_failure -0.032 -0.031 -0.042 -0.045 -0.102 -0.085 -0.141 -0.052 -0.044 -0.033 -0.009 -0.045 -0.072 -0.077 -0.036

bn-calibration - - - - - - - - - - - - - - -

finetune_combine -0.016 -0.014 -0.021 -0.015 -0.025 -0.021 -0.054 -0.027 -0.021 -0.020 -0.005 -0.021 -0.030 -0.020 -0.021

mixup -0.065 -0.064 -0.068 -0.062 -0.073 -0.067 -0.083 -0.075 -0.076 -0.075 -0.057 -0.080 -0.080 -0.074 -0.066

PMosaic -0.032 -0.031 -0.036 -0.036 -0.050 -0.040 -0.063 -0.044 -0.042 -0.038 -0.024 -0.040 -0.047 -0.033 -0.030

denoise -0.063 -0.055 -0.047 -0.046 -0.043 -0.047 -0.041 -0.053 -0.063 -0.063 -0.064 -0.057 -0.048 -0.045 -0.052

naiveDeepRepair -0.003 -0.003 0.003 0.000 0.000 0.003 0.003 0.000 0.003 -0.003 -0.003 0.000 0.000 0.003 0.000

detr_r50_8x2_150e_coco

finetune_failure -0.057 -0.059 -0.050 -0.085 -0.186 -0.105 -0.412 -0.059 -0.060 -0.045 -0.017 -0.061 -0.100 -0.080 -0.035

bn-calibration -0.012 -0.012 -0.013 -0.012 -0.006 -0.013 -0.009 -0.017 -0.029 -0.025 -0.027 -0.039 -0.010 -0.007 -0.009

finetune_combine -0.030 -0.037 -0.026 -0.033 -0.064 -0.038 -0.066 -0.033 -0.040 -0.032 -0.018 -0.034 -0.050 -0.038 -0.022

mixup -0.104 -0.100 -0.099 -0.085 -0.119 -0.096 -0.103 -0.111 -0.091 -0.097 -0.074 -0.119 -0.105 -0.103 -0.095

PMosaic -0.061 -0.062 -0.057 -0.063 -0.083 -0.066 -0.084 -0.067 -0.067 -0.050 -0.039 -0.060 -0.072 -0.058 -0.044

denoise -0.063 -0.055 -0.045 -0.048 -0.040 -0.051 -0.044 -0.066 -0.059 -0.068 -0.069 -0.208 -0.053 -0.043 -0.052

naiveDeepRepair -0.022 -0.017 -0.018 -0.010 -0.007 -0.020 -0.015 -0.015 -0.020 -0.025 -0.025 -0.022 -0.012 -0.025 -0.012

86

Table A.5: All experimental results of repair methods for detectors under common corrup-
tions. We present relative performance improvement for AP averaged on the clean and
failure test sets.

model method GsNoise ShNoise ImNoise DfBlur GlBlur MtBlur ZmBlur Snow Frost Fog Bright Contrast Elastic Pix JPEG

retinanet_r50_fpn_1x_coco

finetune_failure 0.074 0.074 0.097 0.041 0.153 0.055 0.001 0.112 0.061 0.055 0.021 0.105 0.095 0.218 0.126

bn-calibration -0.015 -0.012 -0.003 -0.024 0.001 -0.018 -0.015 0.003 -0.013 0.010 -0.001 0.054 -0.009 0.024 0.039

finetune_combine 0.079 0.087 0.107 0.052 0.211 0.090 0.074 0.119 0.069 0.057 0.020 0.110 0.115 0.260 0.137

mixup -0.003 0.002 0.016 -0.029 0.107 0.010 -0.007 0.033 -0.002 0.011 -0.024 0.053 0.041 0.160 0.017

PMosaic 0.064 0.071 0.081 0.027 0.195 0.079 0.065 0.110 0.062 0.048 0.008 0.101 0.103 0.225 0.111

denoise 0.109 0.148 0.310 -0.059 -0.013 -0.059 -0.071 -0.091 -0.087 -0.118 -0.054 -0.134 -0.054 0.074 0.010

naiveDeepRepair 0.003 0.011 0.004 -0.008 -0.033 -0.022 -0.009 0.013 0.029 0.049 0.018 0.100 -0.014 -0.075 -0.011

retinanet_r101_fpn_1x_coco

finetune_failure 0.062 0.069 0.126 0.047 0.171 0.046 0.025 0.110 0.068 0.052 0.021 0.093 0.089 0.176 0.127

bn-calibration -0.063 -0.011 0.011 -0.016 -0.004 -0.015 -0.015 -0.000 -0.007 0.008 -0.005 0.046 -0.003 0.011 0.041

finetune_combine 0.064 0.073 0.131 0.057 0.223 0.082 0.089 0.114 0.071 0.051 0.016 0.096 0.106 0.206 0.134

mixup -0.007 -0.002 0.044 -0.018 0.122 0.007 0.005 0.028 -0.000 0.004 -0.023 0.040 0.031 0.120 0.030

PMosaic 0.050 0.061 0.111 0.034 0.199 0.069 0.078 0.106 0.061 0.043 0.008 0.089 0.091 0.177 0.107

denoise 0.101 0.116 0.323 -0.055 -0.006 -0.048 -0.061 -0.080 -0.077 -0.101 -0.047 -0.119 -0.041 0.057 0.019

naiveDeepRepair 0.000 0.003 -0.005 -0.007 -0.030 -0.016 -0.009 0.017 0.015 0.040 0.014 0.092 -0.012 -0.093 -0.014

faster_rcnn_r50_fpn_1x_coco

finetune_failure 0.080 0.089 0.129 0.047 0.167 0.038 -0.005 0.120 0.063 0.060 0.014 0.113 0.098 0.305 0.175

bn-calibration -0.011 -0.013 0.008 -0.030 0.003 -0.015 -0.012 0.008 -0.015 0.010 -0.003 0.060 -0.009 0.032 0.045

finetune_combine 0.095 0.100 0.135 0.065 0.234 0.103 0.094 0.131 0.073 0.061 0.014 0.123 0.124 0.352 0.185

mixup 0.015 0.014 0.045 -0.008 0.135 0.031 0.025 0.049 0.008 0.017 -0.026 0.081 0.064 0.258 0.053

PMosaic 0.081 0.085 0.117 0.044 0.213 0.090 0.075 0.126 0.066 0.060 0.010 0.117 0.117 0.327 0.160

denoise 0.144 0.153 0.346 -0.060 -0.018 -0.053 -0.066 -0.087 -0.095 -0.116 -0.055 -0.132 -0.051 0.095 0.019

naiveDeepRepair 0.007 -0.002 0.002 -0.015 -0.021 -0.017 -0.007 0.018 0.019 0.049 0.015 0.118 -0.026 -0.046 -0.008

faster_rcnn_r101_fpn_1x_coco

finetune_failure 0.069 0.079 0.135 0.050 0.170 0.051 0.028 0.111 0.070 0.051 0.016 0.102 0.094 0.226 0.165

bn-calibration -0.071 -0.015 0.002 -0.017 -0.009 -0.018 -0.015 0.001 -0.009 0.011 -0.003 0.053 -0.007 0.011 0.048

finetune_combine 0.077 0.083 0.138 0.063 0.227 0.088 0.111 0.121 0.072 0.051 0.016 0.109 0.109 0.259 0.170

mixup 0.001 0.006 0.055 -0.003 0.139 0.021 0.032 0.050 0.003 0.006 -0.033 0.063 0.051 0.177 0.060

PMosaic 0.064 0.070 0.122 0.043 0.208 0.078 0.090 0.113 0.065 0.047 0.009 0.102 0.102 0.235 0.149

denoise 0.104 0.116 0.318 -0.051 -0.012 -0.053 -0.060 -0.081 -0.086 -0.103 -0.050 -0.115 -0.047 0.071 0.027

naiveDeepRepair -0.010 0.000 -0.002 0.000 -0.035 -0.009 0.000 0.022 0.021 0.046 0.019 0.096 -0.021 -0.089 -0.007

fcos_r50_caffe_fpn_gn-head_1x_coco

finetune_failure 0.086 0.082 0.115 0.053 0.164 0.043 0.013 0.100 0.049 0.062 0.013 0.084 0.075 0.200 0.132

bn-calibration - - - - - - - - - - - - - - -

finetune_combine 0.097 0.093 0.126 0.071 0.223 0.086 0.085 0.111 0.063 0.070 0.013 0.094 0.098 0.232 0.138

mixup 0.005 0.003 0.033 -0.012 0.116 0.009 -0.009 0.029 -0.007 0.008 -0.035 0.051 0.035 0.151 0.027

PMosaic 0.069 0.066 0.100 0.040 0.193 0.079 0.056 0.097 0.045 0.039 -0.006 0.088 0.086 0.201 0.103

denoise 0.161 0.159 0.362 -0.061 -0.009 -0.056 -0.068 -0.084 -0.086 -0.115 -0.059 -0.129 -0.055 0.038 0.012

naiveDeepRepair 0.021 0.008 0.012 0.008 -0.028 -0.014 -0.002 0.019 0.020 0.056 0.026 0.123 -0.007 -0.047 0.011

fcos_r101_caffe_fpn_gn-head_1x_coco

finetune_failure 0.073 0.077 0.105 0.037 0.172 0.041 0.029 0.096 0.065 0.043 0.027 0.090 0.092 0.160 0.123

bn-calibration - - - - - - - - - - - - - - -

finetune_combine 0.080 0.087 0.113 0.054 0.229 0.083 0.095 0.108 0.074 0.047 0.026 0.096 0.114 0.192 0.128

mixup -0.010 -0.002 0.019 -0.028 0.125 0.008 0.000 0.024 -0.002 -0.005 -0.031 0.041 0.035 0.106 0.022

PMosaic 0.059 0.068 0.090 0.021 0.197 0.070 0.082 0.093 0.061 0.028 0.003 0.076 0.093 0.163 0.104

denoise 0.133 0.149 0.318 -0.048 -0.011 -0.050 -0.061 -0.069 -0.079 -0.098 -0.047 -0.113 -0.048 0.039 0.013

naiveDeepRepair 0.007 0.014 0.007 0.002 -0.030 -0.009 0.004 0.017 0.028 0.040 0.024 0.100 -0.010 -0.040 -0.002

detr_r50_8x2_150e_coco

finetune_failure 0.034 0.036 0.082 -0.029 0.075 0.003 -0.268 0.058 0.020 0.027 0.007 0.064 0.087 0.230 0.082

bn-calibration -0.001 -0.005 0.023 -0.031 0.006 -0.031 -0.021 0.010 -0.020 0.004 0.004 0.056 -0.005 0.051 0.058

finetune_combine 0.058 0.058 0.104 0.014 0.192 0.052 0.042 0.079 0.046 0.035 0.005 0.083 0.116 0.258 0.091

mixup -0.053 -0.054 -0.018 -0.089 0.058 -0.056 -0.066 -0.041 -0.052 -0.048 -0.062 -0.021 0.011 0.119 -0.057

PMosaic 0.031 0.045 0.072 -0.013 0.173 0.034 0.022 0.053 0.026 0.018 -0.018 0.067 0.097 0.212 0.057

denoise 0.178 0.192 0.395 -0.047 -0.004 -0.055 -0.063 -0.092 -0.079 -0.100 -0.047 -0.206 -0.044 0.135 0.029

naiveDeepRepair -0.011 -0.010 0.013 0.000 -0.033 -0.027 -0.011 0.007 0.007 0.037 -0.001 0.104 -0.015 -0.064 -0.015

87

	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Background
	General Information
	Object Detection and Common Metrics for Evaluation

	Specific Information
	Failure in Object Detection
	Problem Formulation

	Discussion and Conclusion

	How to Repair Object Detectors? A Benchmark, an Empirical Study, and a Way Forward
	Introduction
	Related Work
	Object Detector Repairing Schemes
	Detector Repairing Benchmark Construction
	Experimental Setup
	Evaluation Metrics for Repairing

	Analysis on Failure
	RQ1.1. How do common corruptions impact deep object detectors?
	RQ1.2. How do detectors perform under common corruptions?
	RQ1.3. Are there any patterns in the failure datasets?
	RQ1.4: What are the major error types of detectors under common corruptions?

	Repair Experimental Results
	Fine-tuning
	Fusing Images with Augmentations
	BN Calibration
	Denoising
	Naive DeepRepair
	Comparative Analysis

	Discussion
	Future directions

	Conclusion

	Conclusions & Future Work
	Conclusion
	Future Directions
	Catastrophic Forgetting
	Better Augmentations
	Denoisers and Style Transfer for Common Corruptions
	Efficient Repair

	Bibliography
	Appendix A: Appendix
	Abbreviations
	More Results
	Results on the clean and failure datasets
	Results on corruptions for all methods

