
Unknown-box Approximation to Improve Optical
Character Recognition Performance

by

Ayantha Randika Ponnamperuma Arachchige

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Ayantha Randika Ponnamperuma Arachchige, 2021

Abstract

Optical character recognition (OCR) is a widely used pattern recognition ap-

plication in numerous domains. Several feature-rich commercial OCR solutions

and opensource OCR solutions are available for consumers, which can provide

moderate to excellent accuracy levels. These solutions are general-purpose by

design to serve a wider community. However, accuracy can diminish with dif-

ficult and uncommon document domains. Preprocessing of document images

can be used to minimize the effect of domain shift. In this thesis, we inves-

tigate the possibility and the effect of using OCR engine feedback to train a

preprocessor. The main obstacle in this approach is propagating the error sig-

nal through an opaque OCR engine. Circumventing this obstacle, we propose

a novel preprocessor trained using gradient approximation. Unlike the previ-

ous OCR agnostic preprocessing techniques, the proposed training approach

approximates a particular OCR engine’s gradient and trains the preprocessor

module eliminating the need for intermediate labels. We compare two differ-

ent methods to our proposed approach to establish a better training pipeline.

Experiments with two different datasets and two OCR engines show that the

presented preprocessor is able to improve the accuracy of the OCR engine from

the baseline accuracy by applying pixel-level manipulations to the document

image.

ii

Preface

Parts of this thesis have been submitted to The 16th International Conference

on Document Analysis and Recognition (ICDAR 2021).

iii

To my parents and friends

for the endless support and encouragement

iv

The most exciting phrase to hear in science, the one that heralds new

discoveries, is not “Eureka” but “That’s funny...”

– Isaac Asimov (1920–1992).

v

Acknowledgements

I would like to express my gratitude to my supervisor Nilanjan Ray for his

guidance and support throughout this study. This thesis would not have been

possible without his help. Additionally, I would like to thank Xiao Xiao and

Allegra Latimer from Intuit Inc. for their valuable input. I would also like to

thank Intuit Inc. for the funding support provided for this project.

vi

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Contributions . 4
1.3 Thesis Outline . 4

2 Background 5
2.1 Document Image Preprocessing for OCR 5

2.1.1 Conventional Preprocessing Methods 5
2.1.2 Learning-based Preprocessing methods 7

2.2 Backpropagation and Differentiability 8
2.3 Backpropagation with Non-differentiable Components 9

2.3.1 Straight Through Estimator 10
2.3.2 Score Function Estimator 10
2.3.3 Evolution Strategies 11
2.3.4 Differentiable Bypass 13

3 Training a Preprocessor with Unknown-box OCR 15
3.1 NN-based Approximation . 15

3.1.1 Approximator Model 17
3.1.2 Connectionist Temporal Classification Loss 17
3.1.3 Preprocessor Model . 19
3.1.4 Training Pipeline . 20

3.2 SFE-based Approximation . 21

4 Experiments and Results 24
4.1 Experiment Setup . 24

4.1.1 Datasets . 24
4.1.2 OCR Engines . 26
4.1.3 Evaluation Metrics . 26
4.1.4 Training Details . 27

4.2 Results and Discussion . 29
4.2.1 Preprocessor Performance 29
4.2.2 Comparison with Other Methods 33
4.2.3 Other Experiments . 37
4.2.4 Assumptions and Shortcomings 39

5 Conclusion and Future Work 41

References 44

Appendix A Hyperparameter Tuning 51
A.1 Hyperparameters of the NN-approximation Training Pipeline . 51
A.2 Hyperparameters of the SFE-based Training Pipeline 55

vii

List of Tables

4.1 Accuracy and CER before and after preprocessing with NN-
approximation based preprocessor. 29

4.2 Accuracy and CER before and after preprocessing with SFE-
preprocessor. 29

4.3 Proposed NN-approximation based vs. SFE-based preprocessors. 30
4.4 OCR engine accuracy on POS dataset: comparison with other

preprocessing methods. 36
4.5 OCR accuracy when trained and tested with different engines. 37

A.1 Hyperparameters used in the training process of NN-approximation
based method. 52

A.2 Hyperparameters and accuracy levels of the CRNN models se-
lected to train the preprocessor 53

A.3 Hyperparameters and accuracies of the first set of experiments
conducted . 53

A.4 Hyperparameters and accuracies of the second set of experi-
ments conducted . 54

A.5 Hyperparameters and accuracies of the third set of experiments
conducted . 54

A.6 Hyperparameters and accuracies of the fourth set of experi-
ments conducted . 55

A.7 Final Hyperparameter values determined for U-Net model . . 55

viii

List of Figures

2.1 Overview of a sequentially arranged component pipeline 8
2.2 Overview of the differentiable bypass method 13

3.1 Architecture of the CRNN model 17
3.2 Architecture of the U-Net model 19
3.3 Architecture of the SRGAN generator inspired preprocessor model 20
3.4 Overview of the proposed training pipeline with a NN approxi-

mator based on Algorithm 1 21
3.5 Overview of the proposed SFE based training pipeline utilizing

Algorithm 2 . 22

4.1 A few randomly selected samples from the POS dataset 25
4.2 A few randomly selected samples from the VGG dataset . . . 25
4.3 Overview of the image sizes (POS dataset) in the NN-approximation

based training pipeline . 27
4.4 Sample inputs and outputs from the NN-approximation based

preprocessor on the VGG test dataset 31
4.5 Sample inputs and outputs from the NN-approximation based

preprocessor on the POS test dataset 32
4.6 Sample inputs and outputs from the SFE-preprocessor on the

VGG test dataset . 33
4.7 Sample inputs and outputs from the SFE-preprocessor on the

POS test dataset . 34
4.8 Cropped input (POS test dataset) and output images from

methods considered in Table 4.4 and our models 35
4.9 Test set accuracy and CER of OCR engine and CRNN model

with different training sizes of VGG dataset 38
4.10 VGG test set accuracy and the training time variation of SRE-

preprocessor with the different number of perturbations (n in
Algorithm 2) . 39

ix

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Optical Character Recognition(OCR) is the process of converting an image

of a printed document or a handwritten text into a computer understandable

form. In recent years OCR has thrived alongside machine learning technology

with deep learning and new Recurrent Neural Network (RNN) architectures.

Current OCR systems based on deep learning have achieved significant im-

provements in accuracy, and efficiency [9]. Thanks to these improvements,

several commercial OCR solutions have been developed, and they are used in

numerous fields to automate document handling tasks. Numerous big names

in cloud technologies and OCR technologies have started to offer cloud-based

OCR solutions. This new generation of OCR solutions comes with all the ben-

efits of the Software as a Service (SaaS) delivery model where the consumer

does not have to think about the hardware and maintenance.

One characteristic of commercial OCR solutions is that they are often

general-purpose by design. This trait is desired both from the business per-

spective and consumer perspective. It allows a large number of consumers

to use the same solution for a wider array of document types. This desired

property can become an obstacle when it comes to specialized and uncommon

document domains. Different domains may have different document types

with unique aberrations and degradations, which can hinder the performance

of a general-purpose OCR. While it is theoretically possible to either train an

open-source OCR or to build a new OCR engine from scratch to accommo-

1

date the domain shift, these solutions are not realistic in practice for OCR

users in the industry, given the amount of resources required for training and

the potential degradation of efficiency. Therefore, the more viable approach is

to enhance a commercial OCR solution with external components to improve

accuracy.

OCR combines two different domains. Generally, input for the OCR is an

image, and the output of the OCR process is a text string. The input for the

OCR is a computer vision problem, while the output is frequently a natural

language processing problem. Therefore, it is possible to add components to

an OCR engine to preprocess the input and post-process the output based on

these two technologies. The output of OCR is a text string and can be post-

processed using natural language-based techniques [10], [54] or by leveraging

outputs from multiple OCR engines [45]. This is beyond the scope of this work.

Instead, we focus on preprocessing to enhance image quality prior to the OCR,

which usually occurs in the image domain, though earlier hardware-based pre-

processors have worked in the signal domain [19], [56]. Image preprocessing

for OCR includes image binarization, background elimination, noise removal,

illumination correction and correcting geometric deformations, all of which

aim to produce a simpler and more uniform image that reduces the burden on

the OCR engine [50].

Preprocessing is considered a separate problem when it is used in the con-

text of OCR. Generally, a batch of images is preprocessed and then used to

train the OCR model. The same preprocessing is applied to the new images

at the inference time. We observe a few drawbacks in this approach. What

if the later document images are deviated from the original image set used to

train the model? Utilizing the general preprocessing technique used on train-

ing images will not mitigate the issue of domain shift of input images. On the

other hand, even if the OCR does not use preprocessing, the same problem

will occur with a different document domain. The preprocessing of these new

images should be able to shift the appearance of them to the original images.

At this point, the problem is that new images might not have attached ground

truth images that are similar to the original image set. Therefore, a prepro-

2

cessor must be hand-crafted to manipulate the input images using the original

images as a reference.

Instead of hand-crafting the preprocessor, one can utilize the OCR engine’s

feedback to train the preprocessor model by comparing the OCR output to

the ground truth text and then using the classic backpropagation algorithm

to propagate the OCR error to the preprocessor component. Instead of the

OCR engine agnostic preprocessing approach, we hypothesize that a prepro-

cessor trained based on the OCR feedback will perform better at producing

an image closer to the optimal image expected by the OCR engine than the

uninformed preprocessing techniques. This approach will mitigate the need

for intermediate ground truth containing the ‘clean’ images by depending on

the OCR engine feedback. Even though this approach sounds well-fitting,

it has an unavoidable problem when it comes to commercial OCR solutions.

The internal workings of commercial OCR solutions are not available to the

ordinary consumer. Additionally, they can contain non-differentiable compo-

nents, which will render the use of the backpropagation algorithm harder or

impossible. Therefore another workaround will require to avoid this problem.

In this work, we present an approach to train a preprocessor while avoiding

the aforementioned problem. Our training approach treats the preprocessing

problem as an extension of the OCR engine by directly observing the OCR

error produced by the images. According to our hypothesis, this type of more

informed approach will allow our preprocessor to learn more subtle pixel-level

manipulations producing an image closer to the optimal input image. In our

training pipeline, we consider the OCR engine as an unknown-box and uti-

lize a gradient approximation method to calculate and propagate the error to

the preprocessing component to optimize it. During the training, the forward

pass goes through the OCR engine to the evaluation function to calculate the

output error. Our approximation method calculates the error gradient of the

OCR engine in the backwards pass and propagates that to the preprocessor

component. This technique allows us to use any OCR engine in our train-

ing pipeline to train an individualized preprocessor for that particular engine.

Therefore one can use our approach to train a preprocessor for a specific doc-

3

ument domain and utilize a feature-rich commercial OCR engine combined

with that preprocessor.

1.2 Contributions

We mark the following contributions in this thesis:

• We present a novel approach to train a preprocessor that performs pixel-

level manipulations that can be tweaked to accommodate any OCR en-

gine, including commercial unknown-box OCR solutions. We experiment

with two different approaches to approximate the OCR engine’s error

gradient to establish a viable and pragmatic solution.

• To demonstrate the ability of our preprocessor, we use Point Of Sales

(POS) receipts, which often have poor printing and ink quality and there-

fore renders a challenging task for OCR software [22]. Additionally, we

include the VGG synthetic word dataset [25] to establish the generality

of our solution. To establish the OCR engine agnostic property of our

approach, we use two OCR engines to evaluate our method.

1.3 Thesis Outline

The rest of the thesis is organized as follows. The first part of Chapter 2

discusses the background of conventional and learning-based preprocessing

techniques used in OCR. The second part of Chapter 2 explains the gradi-

ent approximation techniques relevant to our work. Chapter 3 of the thesis

presents our approach and implementation details of our training pipeline.

Chapter 4 contains the details of the experiment setup, results and the discus-

sion of the results. Chapter 5 concludes the thesis with general observations

and future directions for our work.

4

Chapter 2

Background

2.1 Document Image Preprocessing for OCR

Different preprocessing methods address different shortcomings in incoming

images for OCR engines. Binarization and skeletonization focus on creating

less complicated images, while techniques, such as super-resolution, attempt to

add more details. Geometrical correction methods create uniform characters

in shape and orientation. The shared goal of these different methods is to

produce output images that the OCR engine is more comfortable or familiar

with.

2.1.1 Conventional Preprocessing Methods

Image binarization is the process of converting a greyscale image to a com-

pletely black and white image. Perfect execution of binarization should convert

all the foreground elements such as letters to black and reduce everything else

to white or vice versa. Image binarization is a commonly used and studied

preprocessing technique for OCR tasks since the 1980s [56]. The critical com-

ponent of binarization is determining the thresholding value for a given image

pixel. Two thresholding approaches are: global thresholding which applies

the same threshold for the entire image, and local or adaptive thresholding,

where the threshold is calculated for each pixel. Otsu method [40] is one of

the earliest and popular binarization methods, which uses zeroth and the first

order cumulative moments of the grayscale histogram to find a global thresh-

old value. Niblack method [37] is a classic local thresholding method that uses

5

the properties of the neighbourhood to determine the threshold. It uses the

mean and the standard deviation of the pixels in the given window around the

pixel. ‘Object Attribute Thresholding’ [33] is an algorithm that generates a

global threshold based on local attributes. It applies the Otsu method itera-

tively to find a set of global threshold values and uses run-length histogram

based decision tree approach to choose an optimal threshold.‘Object Attribute

Thresholding’ is developed to be used with unconstrained document images

with complex backgrounds.

O’Gorman also proposed an iterative method to calculate a global thresh-

olding value based on the local attribute: connectivity [39]. It utilizes a sliding

window technique along with run-length histograms to maximize the connec-

tivity preservation of thresholded areas. Chang et al. proposed a five-step

document binarization method [7] focused on addressing the connectivity is-

sues in characters. The primary operations in the five steps are: finding a

threshold using the histogram and eliminating the background, applying his-

togram equalization to the thresholded image and improving the edges of the

characters. Sauvola and Pietikäinen proposed an adaptive binarization method

[50] which divides a given image into small regions and classifies them into two

categories: text content and non-textual contents. An adapted version of the

Niblack method [37] is used to binarize the text components in the image,

while a fuzzy logic based algorithm is used for non-textual components. The

double thresholding method proposed by Chen et al. uses the Canny edge

detector to detect edges first and generates the binary image based on the

cleaned-up edge image [8]. Rangoni et al. proposed a fully automatic method

[44] to tune the parameters of Sauvola’s method.

Skeletonization or thinning is another popular technique used to preprocess

documents for OCR. The function of skeletonization is to reduce the dimen-

sions of an object [48] and therefore, in the context of characters, it means

reducing the stroke thickness to 1-D curves. [27] presents a comprehensive

survey and a comparison of thinning from the perspective of OCR. In addi-

tion to the methods discussed in [27], [26] proposed a thinning algorithm that

preserves connectivity and end-points. It mainly focuses on OCR applications.

6

Ahmed and Ward proposed a rule-based rotation invariant thinning algorithm

intended for character recognition [1]. Skew correction is also a preprocessing

technique used to improve OCR results. A skew detection algorithm finds

the skewness angle, and image rotation is used to correct the issue. Srihari

and Govindaraju used Hough transformations to analyze the document images

and proposed a method to detect the skew angle [53]. Hough transformation

is a computationally costly operation. Hinds et al. proposed a skew detection

method that incorporates run-lengths to reduce the amount of data prior to

Hough transformation [20]. Le et al. proposed an algorithm for further data

reduction based on the same techniques[29]. [38], [59] and [16] proposed skew

detection techniques based on the nearest neighbor clustering methods. Das

and Chanda proposed a skew detection algorithm in document images taking

a different approach; mathematical morphology [12].

2.1.2 Learning-based Preprocessing methods

Some learning-based preprocessing techniques have the same goals as con-

ventional methods. These new techniques aim to improve upon conventional

methods. The deep learning-based binarization approach by Vo et al. [55]

is an example of that. This approach uses Convolutional Neural Networks

(CNN) based hierarchical architecture. DeepOtsu [18] is a different approach

to binarization. It uses CNNs iteratively to produce a more uniform image, on

which the Otsu method [40] is used to generate the final binary image. Some

learning-based preprocessing methods approach preprocessing with different

angles than conventional methods. Deep learning-based Super-Resolution

(SR) is employed in [28] and [43] to improve the OCR accuracy. These meth-

ods aim to present a more clear and crisp image to OCR with higher resolution.

Independent component analysis based method, which focuses on images of

inscriptions captured by handheld devices, was proposed by Garain et al. [13].

Bui et al. proposed a CNN-based method to select the most suitable set of pre-

processing techniques from a set of preprocessing techniques which included

binarization, noise reduction and sharpening [6]. Sporici et al. presented a

preprocessing method specific to Tesseract 4.0 OCR, based on CNNs [52].

7

Figure 2.1: Overview of a sequentially arranged component pipeline where fi
represents the function of the component while L represents the loss function.
Arrows indicate the flow of inputs and outputs.

Except for [44], [6] and [52], the other aforementioned methods do not

take the OCR feedback into consideration. They each have an output target

defined separately from the OCR engine. The success of the preprocessor is

measured with respect to this target. Even the methods that specifically fo-

cus on OCR do not consider the OCR feedback. These methods might have

been effective with early OCR attempts such as template matching, structure

analysis or shallow Neural Networks (NN). However, the same behaviour can-

not be expected from the current Deep Learning (DL) based OCR techniques.

[6] shows that preprocessing can reduce the OCR accuracy depending on the

document type. Following the same line of thought, we hypothesize that a

preprocessor optimized for a given OCR engine would be able to produce a

better approximation of the optimal images expected by this specific engine,

leading to higher OCR accuracy compared to traditional generic preprocess-

ing methods. Furthermore, we hypothesize that a DL-based image processing

model would be more successful in applying pixel-level manipulations to the

document images matching the expectations of the OCR than the conventional

methods.

2.2 Backpropagation and Differentiability

Training a preprocessor based on the OCR feedback appears a sound and ap-

pealing approach. The classic backpropagation algorithm can be utilized to

train a preprocessor component based on the error produced by the OCR en-

gine. The backpropagation algorithm depends on the differentiability of each

component in the pipeline. Let’s consider a set of n components {f1, f2, . . . fn−1, fn}

8

arranged sequentially where x is the input to f1, and the input of each fi is

the output of fi−1 (also denoted by fi−1 for convenience) for i = 2, ..., n due

to the sequential nature of the arrangement. The final output, fn goes into

a differentiable loss function L, which compares it with some ground truth to

produce a quantitative error value. This arrangement is depicted in Figure

2.1. Let φi be the parameters of each fi and the gradient with respect to L

can be calculated by the Jacobian-vector product:

∇φiL = (Jfiφi)(∇fiL), (2.1)

where Jfiφi is the Jacobian of fi with respect to φi and the gradient of L with

respect to fi, i.e., ∇fiL is computed by the following Jacobian-vector product:

∇fiL = (J
fi+1

fi
)(∇fi+1

L), (2.2)

where J
fi+1

fi
is the Jacobian of fi+1 with respect to fi and the gradient of

loss L with respect to fi+1, i.e., ∇fi+1
L would be computed at the (i + 1)th

module. The above two equations are the chain-rule of differentiation for

multivariate calculus. If fi is differentiable, the chain rule can be used in the

backpropagation algorithm.

2.3 Backpropagation with Non-differentiable

Components

Using a commercial OCR system in the training pipeline would render the

chain-rule computation difficult because the proprietary system’s internal mech-

anisms are not available to the average user. On the other hand, even if the

code is available, OCR engines may contain non-differentiable components for

which gradient or Jacobian computation may not be possible. Therefore, the

OCR engine needs to be treated as an unknown-box in the training pipeline.

The straightforward way to avoid this problem is to use the optimal in-

put distribution as ground truth when training the preprocessor, completely

removing the OCR engine from the training pipeline. However, such interme-

diate training data are rarely available. Additionally, a preprocessor trained

9

in this setting would not be able to fine-tune the preprocessing operations

according to the specific needs of the OCR engine. Therefore to get the ben-

efit of the OCR engine feedback in the training process, the gradient of the

OCR engine components needs to be approximated, enabling the use of back-

propagation. There are approximation techniques developed in various fields

to handle this type of non-differentiable components in the training pipeline.

The next sections describe a few such techniques.

2.3.1 Straight Through Estimator

Straight Through Estimator (STE) is a simple estimation technique suggested

in [4]. As the name implies the idea is to treat the non-smooth component

or non-differentiable function as the identity function in the backward pass.

This technique is suggested for when the hard threshold function is used as a

layer in the NN. In the forward pass, the thresholding function is used in the

backward pass STE is utilized. However, in our case, with the OCR engine in

the pipeline, we are shifting from the image domain to the text-domain. STE

cannot be used to bridge such a large gap.

2.3.2 Score Function Estimator

Another method of estimating the gradient is using the Score-Function Esti-

mator (SFE) (2.3) [35]:

∇θEx∼pθ [f(x)] = Ex∼pθ [f(x)∇θ log pθ(x)], (2.3)

where f(x) is the unknown-box function and pθ is the input distribution pa-

rameterized by θ. (2.3) can be derived by starting from the calculation of the

expectation of function f . This is a common task in Reinforcement Learning

(RL). Starting from:

∇θEx∼pθ [f(x)] = ∇θ

∫
pθ(x)f(x)dx, (2.4)

where the derivative can be moved inside the integration with mild assump-

tions, and after applying identity trick (pθ(x)
pθ(x)

= 1) and derivative rule of loga-

10

rithms, ∇θ log pθ(x) = ∇θpθ(x)
pθ(x)

we can get the following:

∇θEx∼pθ [f(x)] =

∫
∇θpθ(x)f(x)dx

=

∫
pθ(x)

pθ(x)
∇θpθ(x)f(x)dx

=

∫
pθ(x)∇θ log pθ(x)f(x)dx

= Ex∼pθ [f(x)∇θ log pθ(x)]

(2.5)

In RL, (2.3) was developed into the REINFORCE algorithm [58]. Even though

this estimator is unbiased, it can have a high variance, especially in higher

dimensions [35]. SFE can be easily converted to the following form where the

gradient can be approximated by Monte Carlo sampling from pθ:

Ex∼pθ [f(x)∇θ log pθ(x)] ≈ 1

n

n∑
i=1

f(x(i))∇θ log pθ(x
(i)). (2.6)

There are numerous techniques suggested to lower the variance of SFE while

maintaining unbiasedness. However, since we are working with images, the

higher variance in higher dimensions can pose a problem.

2.3.3 Evolution Strategies

The Evolution Strategies (ES) method belongs to the family of evolutionary

algorithms, which in turn comes under the umbrella of derivative-free opti-

mization techniques. The evolutionary algorithms are inspired by natural se-

lection, where the members of the population who has more favourable traits

for survival in a given environment will procreate more due to the larger prob-

ability of survival. This higher reproduction will lead to more members with

favourable traits in the next generation of offspring. After some generations,

the most considerable portion of the population will carry these favourable

traits making the population robust and more adapted to the environment.

The same principle is utilized in evolutionary algorithms.

The fundamental procedure of an evolutionary algorithm is to generate a

population of solutions for the function f according to the distribution pθ,

which is parameterized by θ. Then evaluate the performance of each solution

11

in the population, select n number of best-performing solutions and finally

optimize θ so that pθ would produce more such solutions. This optimization

is an iterative process that goes until the convergence of solutions or another

termination criterion.

Inspired by the natural evolution strategies [57], Salimans, et al. proposed

to use ES to find optimal policy parameters in RL [49]. The following gradient

approximation is used in their approach:

∇θEε∼N (0,I)[f(θ + σε)] =
1

σ
Eε∼N (0,I)[f(θ + σε)ε]. (2.7)

The equation (2.8) can be arrived by starting from (2.3). Let x ∼ N (θ, σ2I)

and therefore pθ(x) = 1
σ
√
2π

exp
(
−1

2

(
x−θ
σ

)2)
. Now x can be expressed as

x = (θ + σε) where ε ∼ N (0, I).

∇θEx∼pθ [f(x)] = ∇θEε∼N (0,I)[f(θ + σε)] (2.8)

By using the SFE result in (2.8):

∇θEx∼pθ [f(x)] = ∇θEε∼N (0,I) [f(θ + σε)]

= Eε∼N (0,I) [f(θ + σε)∇θ log pθ(x)]

= Eε∼N (0,I)

[
f(θ + σε)∇θ

(
− log

(√
2πσ

)
− (x− θ)2

2σ2

)]
= Eε∼N (0,I)

[
f(θ + σε)

(
x− θ
σ2

)]
= Eε∼N (0,I)

[
f(θ + σε)

(ε
σ

)]
=

1

σ
Eε∼N (0,I) [f(θ + σε)ε]

(2.9)

A key part of this technique is adding the Gaussian noise to the input. Intu-

itively this can be seen as generating a population with random mutations. In

the optimization process, the input distribution (θ) is pushed towards gener-

ating samples containing favourable mutations. Monte Carlo estimates of the

reparameterization (2.8) presents much lower variance than SFE [47]. How-

ever, it can scale poorly with the increase of the dimensions of θ [49]. The

result in (2.8) allows us to get the gradient approximation with respect to

the input, unlike in SFE, where the gradient is approximated with respect

12

Figure 2.2: Overview of the differentiable bypass method where component
fi is non-differentiable in the training pipeline. The differentiable function g
approximates fi (optimally, given the same input, fi and should output the
same output). Solid blue arrows indicate both forward and backward passes.
Broken blue arrows indicate only forward pass while solid green arrows depict
only backward pass.

to the parameters of the input distribution. Additionally, ES can be easily

parallelized with less communication overhead.

2.3.4 Differentiable Bypass

A fascinating property of NNs is that they are universal function approxima-

tors. Cybenko first proposed this property for NNs with sigmoid activation

[11] and later Hornik et al. demonstrated that it is, in fact, a property of

multilayer feed-forward NN, not the activation function [21]. They further

establish that not only the function value, but also its gradient is simulta-

neously approximated by a neural network [21]. Based on this, Nguyen and

Ray proposed EDPCNN [36] in the context of medical image analysis. The

principle behind this approach is providing a differentiable bypass in place of

the non-differentiable component so that the backpropagation algorithm can

operate. Let fi be a non-differentiable component in the training pipeline

(Figure 2.2). Let g be a differentiable function with approximation capability,

parameterized by θ. By optimizing the parameters of g for the following:

minθL(fi(x), g(x)), (2.10)

13

where L is an appropriate loss function, we can obtain an approximated surface

of fi. Therefore the gradient of g, ∇xg can be used in the place of ∇xfi. The

assumption made here is that given g fits to the f sufficiently well, then:

∇xfi ≈ ∇xg. (2.11)

In [36], authors use a NN for approximator g to approximate a non-

differentiable dynamic programming algorithm. This approximating NN is

utilized during training and then discarded for testing. In the inference time,

the original dynamic programming algorithm is used. Authors have applied

EDPCNN in left ventricle segmentation of heart MRI images and demon-

strated that it could achieve better results than a complete NN-based solution,

especially when the number of training samples is small. Jacovi et al. also

proposed the same method under the name ‘Estinet’ and demonstrated its

performance with tasks such as answering ‘greater than or less than’ questions

written in natural language [23]. Additionally, in [36], authors suggest adding

Gaussian noise to enable exploration in the approximator while preventing it

from overfitting. Intuitively this can be seen as allowing the approximator g

to discover the function landscape of fi more widely. With this modification,

the optimization becomes the following:

minθL(fi(x+ ε), g(x+ ε)), (2.12)

where ε ∼ N (µ, σ2I) for some mean µ and standard deviation σ. In its

primary components, this algorithm is similar to the Deep Deterministic Pol-

icy Gradient (DDPG) [32] algorithm in RL. Another approach similar to the

differentiable bypass method is proposed by Jaderberg et al. [24] to enable

asynchronous training of components in an NN by using synthetic gradients.

In their approach, authors use NN models to directly predict the error gradient

of a neural component (a layer in a deep NN) based on the layer output, state

of the next layer and other external information. However, the gradient pre-

diction models are trained using the actual error gradient later in the process.

Therefore, it is hard to adapt to a scenario with an unknown-box.

14

Chapter 3

Training a Preprocessor with
Unknown-box OCR

Out of the methods discussed in 2.3, two methods are selected to implement

the training pipeline to train a document image preprocessor. The aim is to

investigate and select a better performing method for the task. The differen-

tiable bypass technique discussed in section 2.3 is a fitting choice since it has

demonstrated its abilities with images. Therefore it is chosen as the primary

avenue of investigation. Reparameterization of the SFE (2.8) in ES is selected

as an additional avenue of investigation. Both approaches are implemented

using the functions available in the PyTorch [42] library. The following sec-

tions discuss the implementation details of two methods with respect to our

problem.

3.1 NN-based Approximation

Algorithm 1 is adapted from the algorithm in [36] to match our specific prob-

lem. Similar to the original algorithm, our algorithm consists of two loops:

‘inner loop’ and ‘outer loop’. In the inner loop, Gaussian noise εs ∼ N (0, σ)

is added to the image input to ‘jitter’ it and then the error M between OCR

and the approximator is accumulated as
∑

sMs. The loss function M cal-

culates the error between OCR engine output and the approximator output.

The ‘outer loop’ optimizes approximator parameters (φ) by minimizing the

accumulated error
∑

sMs. Note that at this point, this minimization only

15

Algorithm 1: Proposed training

input: σ, S, {Training Images,Ground Truths}
for I, lgt ∈ {Training Images, Ground Truths} do

g = Preprocessor(I);
intialize s to 0;
while s < S do

sample εs ∼ N (0, σ);
Ms =M(Approximator(g + εs), OCR(g + εs));
s = s+ 1;

minφ
∑

sMs;
minψQ(Approximator(g), lgt);

applies to the approximator parameters (φ). Parameters of the preprocessor

(ψ) are frozen and therefore not affected by the first minimization. For the

second minimization in the outer loop, the error Q is calculated by comparing

the approximator output with the ground truth. The second minimization

only applies to the parameters of the preprocessor (ψ), and the parameters of

the approximator (φ) are frozen. This algorithm is an alternating optimization

process between the preprocessor and the approximating NN.

In [23] authors have categorized this type of alternating optimization as

‘online training’. The counterpart approach is ‘offline training’, where the

approximator is trained with the dataset separately from other components

and added to the training pipeline with frozen weights. Offline training can

be advantageous in situations where invoking the unknown-box function is

expensive. However, a disadvantage of offline training is that the previous

component’s (in our case, the preprocessor) output, which is the input for the

approximator, can be different from the original dataset [23]. In our prelimi-

nary studies, online training performed better than offline training. A draw-

back of online training is the ‘cold start’ problem where the approximator

produces garbage outputs at the beginning of the optimization process; there-

fore, meaningful feedback from the OCR engine is not possible. We trained the

approximator with the dataset for some epochs before adding it to the training

pipeline to avoid this problem. Therefore, our approach can be considered a

‘hybrid training’ approach.

16

Figure 3.1: Architecture of the CRNN model.

3.1.1 Approximator Model

The requirement for the approximator model in the proposed training setup

is to take an image as the input and output a text string. Based on this

requirement, we selected the text recognition model, Convolution Recurrent

Neural Network (CRNN) [51]. It is a simple yet powerful model for text

recognition. However, it does not possess the capacity to detect text in an

image. Therefore, the input image of this model needs to be a cropped line of

text. CRNN is a combination of CNN layers and Recurrent Neural Networks

(RNN). The convolutional layers act as the feature extractor, while the RNN

part acts as the character recognizer. The ‘map to sequence’ layer, which sits

between CNN layers and RNN layers, maps CNN feature maps to a sequence

that RNN can consume. Two Bidirectional Long Short Memory (BLSTM)

[14] layers are used as the RNN component. The architecture of the CRNN

model is illustrated in Figure 3.1. CRNN model can handle arbitrary sequence

lengths and can be used either lexicon-free or lexicon-based. Approximator,

combined with the preprocessor, can yield a quite deep model and can be

susceptible to vanishing gradient problem. In that perspective, the smaller

size of the CRNN is an added benefit. Connectionist Temporal Classification

(CTC) loss [15] is used as the loss function of the CRNN model.

3.1.2 Connectionist Temporal Classification Loss

CTC loss presented in [15] is alignment-free, and therefore it eliminates the

need for labelling the positions of the individual sequence items. In our case,

without CTC loss, one needs to label each pixel column of the text image with

17

the corresponding character. More formally, given training set X = {I, l}

where I is the set of images and l is the set of corresponding label sequences,

CTC loss is:

L = −
∑
Ii,li∈X

log p(li | yi) (3.1)

yi is the sequence produced by the model. For a single label sequence, p(l | y)

defined as:

p(l | y) =
∑

π∈B−1(l)

p(π | y) (3.2)

In (3.2) B is a many-to-one mapping B : L′T 7→ L6T where L is the alphabet

of labels and T is the length of the sequence. Therefore L6T represents all

sequences of length less than or equal to T (therefore, l ∈ L6T). L′ =

L∪{blank} where {blank} refers to a special label used to indicate ‘empty’. B

function, merge all the repeated labels and then removes the blank labels (e.g.

B(hel-lo) = B(hhee-ll-loo-) = hello). p(π | y) in (3.2) is defined as follows:

p(π | y) =
T∏
t=1

ytπi , ∀π ∈ L
′T (3.3)

ytk is the probability of observing label k ∈ L′ in the output at time t. Di-

rectly computing (3.2) can be computationally infeasible or extremely costly.

Therefore it is solved by a dynamic programming algorithm named forward-

backward algorithm. Given the input x, the classifier should output the most

probable labelling sequence l′ for the input:

h(x) = arg max
l′∈L6T

p(l′ | x) (3.4)

Due to the lack of a tractable decoding algorithm to decode l′ from y, in [15],

there are two approximations suggested. In our work, we use the trivial best

path decoding approach with the following assumption:

h(x) ≈ B(π∗)

where π∗ is the concatenation of the most active output node at each time

step.

18

Figure 3.2: Architecture of the U-Net model. The downsizing blocks in the
encoder (left) side reduce the input image size by half at each block using
the 2 × 2 max-pooling layers, while the four upsizing blocks on the decoder
(right) side increase the feature map size by a factor of two using Transpose
Convolutional (T. Convolution) layers. Each encoding block is connected to a
decoder block by a skip connection.

3.1.3 Preprocessor Model

The architecture of the preprocessor component is based on the U-Net [46]

model. U-Net is a CNN-based encoder-decoder architecture widely used in

medical image segmentation. We use the U-Net variation proposed in [5]

with added batch normalization layers (Figure 3.2). This U-Net variation has

the same input and output dimensions. The number of input and output

channels is changed to 1 since we work with greyscale images. The sigmoid

function is used as the final activation function to maintain output values

19

Figure 3.3: Architecture of the SRGAN [30] generator inspired preprocessor
model. Pixel shuffle layers of the SRGAN are removed in this model.

in the range [0, 1]. In the preliminary studies, we experimented with RED-

Net [34], another CNN-based encoder-decoder architecture designed for image

restoration such as denoising and super-resolution. After the RED-Net, we

experimented with the generator model of the SRGAN [30] after removing the

pixel shuffle layers (Figure 3.3). SRGAN is a successful Generative Adversarial

Networks (GAN) based approach for image super-resolution. However, the U-

Net model achieved better performance at our experiments than RED-Net and

SRGAN.

3.1.4 Training Pipeline

Figure 3.4 depicts the overview of the proposed training pipeline based on

Algorithm 1. Our training pipeline utilizes two different loss functions for

approximator and preprocessor. As described in section 3.1.1, CTC loss is used

for the optimization of the approximator parameters (φ). This loss is referred

to as M in Algorithm 1. In this error calculation, the comparison is between

approximator output and the OCR engine output. A combination of CTC

and Mean Squared Error (MSE) losses is used to optimize the preprocessor.

CTC loss is calculated by comparing the approximator output to the ground

truth. The MSE loss is calculated by comparing the preprocessor output with

a 2-dimensional tensor of ones: Jm×n where n and m are the dimensions of the

input image. In this context, it represents an entirely white image. Sum of

the CTC loss and the MSE loss is used as the loss function (3.5) to optimize

the preprocessor parameters (ψ) in Algorithm 1.

20

Figure 3.4: Overview of the proposed training pipeline with a NN approx-
imator based on Algorithm 1. The yellow and purple arrows represent the
computation paths equipped with backpropagation of preprocessor loss and
approximator loss, respectively.

Q = CTC(Approximator(g), lgt) + β ∗MSE(g, Jm×n). (3.5)

In (3.5), g = Preprocessor(Image) and lgt is the associated ground truth

text for the input Image. MSE loss component of the loss function nudges the

preprocessor to produce a white image. An excessively bleached image implies

no output or incorrect output from the approximator, which increases CTC

error. On the other hand, it is beneficial to bleach out the noisy background.

Therefore, we hypothesize that this composite loss function will reduce back-

ground clutter while preserving the characters. β acts as a hyperparameter to

control the effect of MSE loss.

3.2 SFE-based Approximation

Algorithm 2 elaborates our implementation of reparameterization of the SFE

in (2.8). The implementation is arranged as a function that returns the error

gradient of the OCR engine. There are two inputs to the function in addition

to the input image and the corresponding ground truth text. Two additional

arguments are σ, the standard deviation of the added Gaussian Noise and

21

Figure 3.5: Overview of the proposed SFE based training pipeline utilizing
Algorithm 2. Solid arrows represent the computation paths equipped with
backpropagation. However, computation paths indicated by purple arrows
can be considered a pseudo backpropagation since the OCR gradient is directly
calculated by Algorithm 2.

Algorithm 2: Gradient approximation by SFE

Function GetGradients(Image, lgt, σ, n):
g = Preprocessor(Image);
sample ε1, . . . εn ∼ N (0, I);
εn+i = −εi for i = 1, . . . n;
Li = L(OCR(g + σεi), lgt) for i = 1, . . . 2n;

gradient = 1
2nσ

2n∑
i=1

Liεi;

return gradient;

n, representing the number of perturbations of the image. In fact, in the

gradient approximation process, 2n perturbations are generated by utilizing

the ‘mirrored sampling’ technique to reduce the variance [49]. In mirrored

sampling, the n number of ε originally sampled from the normal distribution

are negated to create a total of 2n samples. Noise samples ε are added to the

preprocessed image to obtain 2n perturbations of the image. The OCR is run

on these images to get the output text, and the error compared to the ground

truth text is accumulated and multiplied by corresponding ε to produce the

error gradient.

Figure 3.5 depicts the training pipeline based on Algorithm 2. The main

difference compared to the training pipeline in section 3.1 is the absence of

the approximator component and two different loss functions. Therefore,

22

component-wise, this training pipeline is a more simple one. Unlike the prob-

ability distribution output of CRNN in the NN-based method, OCR outputs

a text string. Therefore the loss function needs to compare two text strings.

However, CTC loss is not intended for direct string comparison. Since there is

no need for a differentiable loss function in this approach, we use Levenshtein

distance [31], represented by L in Algorithm 2. It is similar to an evaluation

metric discussed in section 4.1.3, except for the multiplication by a constant.

Composite loss in equation 3.5 is modified as follows to optimize the prepro-

cessor parameters.

R = Levenshtein (s, lgt) + β ∗MSE (g, Jm×n) (3.6)

where s is the OCR output for some input image I and lgt is the associated

ground truth text. g = Preprocessor(I) and Jm×n is a 2-dimensional tensor

of ones in the shape of the input image. Levenshtein component of this loss

is appraximated by the gradient calculation in Algorithm 2. The same U-Net

model (discussed in section 3.1.3) is used as the preprocessor model.

23

Chapter 4

Experiments and Results

4.1 Experiment Setup

4.1.1 Datasets

Document samples from two different domains are used to train and evaluate

the preprocessor. The dataset referred to as ‘POS dataset’, consists of POS

receipt images from three public datasets: ICDAR SOIR competition dataset

[22], Findit fraud detection dataset [2] and CORD dataset[41]. Both the IC-

DAR SOIR dataset and CORD dataset are OCR datasets, and therefore they

provide bounding box coordinates for each word on the image. A drawback

of the ICDAR SOIR dataset is that its ground truth text is given in capital

letters without considering the actual case in the document image. The Findit

dataset is intended for fraud detection, and thus, words are not annotated with

bounding boxes. Due to these reasons, we used the OCR service provided by

Google Cloud Vision API1 to generate ground truth text and bounding boxes

for images in the Findit dataset and the ICDAR SOIR dataset. The output

of Google Cloud Vision is manually inspected and adjusted later. Due to the

extensive manual labour involved in this task, only a fraction of these two

datasets’ images is added to our dataset along with the entire CORD dataset.

The final dataset (Figure 4.1) images are patches extracted from POS receipts.

Patches are extracted without damaging the text areas on the images and re-

sized to have a width of 500 pixels and a maximum of 400 pixels height. The

1https://cloud.google.com/vision/

24

https://cloud.google.com/vision/

Figure 4.1: A few randomly selected samples from the POS dataset.

complete POS dataset contains 3676 train, 424 validation and 417 test images

with approximately 90k text areas.

Figure 4.2: A few randomly selected samples from the VGG dataset.

The dataset referred to as the ‘VGG dataset’ contains the image samples

from the VGG synthetic word dataset [25]. The complete dataset in [25]

contains approximately 2.5 million synthetic word samples. We randomly

selected 60k samples from the original dataset. The final VGG dataset used in

this work includes 50k train, 5k validation and 5k test images, each containing

a single word.

25

4.1.2 OCR Engines

Two free and opensource OCR engines: Tesseract 2 and EasyOCR 3, are used

to train the preprocessor. Tesseract is a well-known and well-established, open-

source OCR engine. In our work, we use the Tesseract version 4.0.0 with LSTM

based text recognizer. EasyOCR is a relatively new opensource OCR engine

implemented using PyTorch [42] library. It uses CRAFT [3] algorithm for

text detection and a CRNN based text recognizer with ResNet [17] as feature

extractor. Even though EasyOCR is not particularly slow, it is slow and ex-

tremely time-consuming when running with our training scripts. Therefore a

modification is added to its code to run on a different GPU than our train-

ing scripts. This modification resolved the issue slightly. Both OCR engines

are treated as unknown-box components throughout the study except for the

slight modification on EasyOCR mentioned earlier.

4.1.3 Evaluation Metrics

Two metrics are used to measure the OCR performance variation with prepro-

cessing. One is a word-level accuracy metric, and the other is a character-level

accuracy metric. Since word-level ground truth values are available for both

datasets, word-level accuracy is defined as the percentage of words exactly

matched with the ground truth. This metric is referred to as ‘Accuracy’ here

onwards. As the character-level measurement, Levenshtein distance [31] based

Character Error Rate (CER) is used. In this study, CER is defined as:

CER = 100 ∗ (i+ s+ d)/m, (4.1)

where i is the number of insertions, s is the number of substitutions, and d

is the number of deletions done to the prediction to get the ground truth text.

m is the number of characters in the ground truth. The OCR engine’s perfor-

mance is measured with original images to establish a baseline accuracy level.

The preprocessing is then applied, and the OCR engine is run on preprocessed

2https://github.com/tesseract-ocr/tesseract
3https://github.com/JaidedAI/EasyOCR

26

https://github.com/tesseract-ocr/tesseract
https://github.com/JaidedAI/EasyOCR

Figure 4.3: Overview of the image sizes (POS dataset) in the NN-
approximation based training pipeline. Only a single cropping is depicted
in the figure for clarity. All the text areas from the image patch are extracted
and sent to the approximator in the training process.

images to measure the impact of preprocessing with respect to accuracy.

4.1.4 Training Details

NN-approximation based Training

A set of preprocessors are trained for fifty epochs each according to the Algo-

rithm 1. A learning rate of 5× 10−5 is used for the preprocessors with Adam

optimizer. Similarly, for approximators, a learning rate of 10−4 is used with

Adam optimizer. The approximator is pre-trained with the dataset for fifty

epochs to avoid ‘cold-start’ before inserting it into the training pipeline. We

maintained β = 1 in (3.5) and S = 2 in Algorithm 1. σ in Algorithm 1 is

randomly selected from a uniform distribution containing 0, 0.01, 0.02, 0.03,

0.04 and 0.05. In this context, images are represented by tensors in the range

[0.0, 1.0]. Therefore, a smaller σ used to introduce noise onto the images to

avoid making the images noisy beyond recognition.

The POS dataset images are padded with white to the size of 500 × 400

pixels to feed into U-Net based preprocessor. Since POS dataset images equal

to or less than the size 500× 400 pixels, image scaling is unnecessary. CRNN

based approximator is arranged only to accept images with a height of 32

pixels. Therefore, to feed into CRNN, words are cropped using bounding-box

27

values and padded to the size of 128 × 32 pixels. Figure 4.3 illustrates this

process. If the size of the crop exceeded 128× 32 pixels, then it is scaled down

while maintaining the aspect ratio. Each sample from the VGG dataset only

contains a single word. Therefore no cropping is necessary to feed into the

approximator. Size of 128× 32 pixels is used for both components in the case

of VGG samples. If the sample size exceeds 128× 32 pixels, it is scaled down

while maintaining the aspect ratio. Similar to POS samples, white padding is

used to pad the images. On average, it took 19 hours to train a preprocessor

with an Nvidia RTX 2080 GPU, while EasyOCR is running on a different

GPU.

SFE-based Training

A different set of preprocessors (referred to as SFE-preprocessor here onwards)

are trained with Algorithm 2 using Adam optimizer and a learning rate of

5× 10−5. We discovered that this approach is also susceptible to a cold start

problem. Often at the beginning of the training, preprocessor output does not

contain recognizable characters. Therefore, the OCR engine outputs ‘empty’

for all the perturbations of the image. Due to the mirrored gradients, in the

summation, errors cancel each other out and produce a gradient of 0. Addi-

tionally, OCR output does not vary much with the perturbations of ε if the σ

is too small. If the σ is too large, the image becomes noisy beyond recognition.

It leads the OCR engine to produce empty text for every perturbation. Both

of these scenarios lead to 0 gradients.

At the beginning of the training, the preprocessor is trained to output the

same image as input using MSE loss and Adam optimizer to avoid the cold

start problem. By trial and error, a constant σ of 0.05 is used. The speed

bottleneck of the pipeline is at the OCR engine. Especially in the case of

EasyOCR. Therefore, the training time heavily depends on parameter n in

Algorithm 2. n = 5 is used in our initial experiments to keep the training time

acceptable when compared with the NN-approximation based training. Similar

to the previous training scenario, we maintained β = 1 (refer to equation

(3.6)), and the same image processing techniques are used for both datasets.

28

Table 4.1: Accuracy and CER before and after preprocessing with NN-
approximation based preprocessor.

OCR engine

(training/

testing)

Data

Without

preprocessing
With preprocessing

Acc. ↑ CER ↓ Acc. ↑ CER ↓ Acc.

gain

CER

reduc.

Tesseract POS 54.51% 26.33 83.36% 8.68 28.86% 17.66

Tesseract VGG 18.52% 64.40 64.94% 14.70 46.42% 49.70

EasyOCR POS 29.69% 44.27 67.97% 16.46 38.27% 27.81

EasyOCR VGG 44.80% 26.90 57.48% 17.15 12.68% 9.75

On average, it took 79 hours to train an SFE-preprocessor with an Nvidia

RTX 2080 GPU, while EasyOCR is running on a different GPU.

4.2 Results and Discussion

4.2.1 Preprocessor Performance

Table 4.2: Accuracy and CER before and after preprocessing with SFE-
preprocessor.

OCR engine

(training/

testing)

Data

Without

preprocessing
With preprocessing

Acc. ↑ CER ↓ Acc. ↑ CER ↓ Acc.

gain

CER

reduc.

Tesseract POS 54.51% 26.33 69.17% 16.62 14.67% 9.71

Tesseract VGG 18.52% 64.40 24.36% 51.97 5.84% 12.43

EasyOCR POS 29.69% 44.27 46.63% 28.13 16.94% 16.14

EasyOCR VGG 44.80% 26.90 47.02% 24.69 2.22% 2.21

Results in Table 4.1 and Table 4.2 show that the performances of both

OCR engines are improved by preprocessing. With both types of preproces-

sors, it can be seen that the more the OCR struggles with the dataset more the

improvement. Tesseract performed poorly with the VGG dataset and gained

a significant accuracy improvement after the preprocessing. The same goes for

29

Table 4.3: Proposed NN-approximation based vs. SFE-based preprocessors.

OCR engine

(training/

testing)

Dataset

NN-based preprocessing SFE-based preprocessing

Accuracy ↑ CER ↓ Accuracy ↑ CER ↓

Tesseract POS 83.36% 8.68 69.17% 16.62

Tesseract VGG 64.94% 14.70 27.76% 52.98

EasyOCR POS 67.97% 16.46 46.63% 28.13

EasyOCR VGG 57.48% 17.15 47.02% 24.69

the EasyOCR and the POS dataset. Table 4.3 summarizes the accuracy and

CER levels of the two approaches. NN-approximation based preprocessors out-

perform SFE-preprocessors in both OCR engines for both datasets. To some

extent, the poor performance of the SFE-preprocessor might be attributed to

the small number of perturbations (n = 5). However, when considering com-

putational time, using large n appears unpragmatic. In both cases, gradient

approximation has proved to work, and it appears that NN-approximation

based bypass technique handles the image domain better than SFE.

Figure 4.4 depicts some sample output images produced by the NN-approximation

based preprocessor running on the VGG test set. The most notable difference

between input images and the processed images is the increased contrast be-

tween text and the background. Preprocessing has eliminated complex back-

ground components. In the case of Tesseract, the text has become darker,

and the background has become lighter. This effect can be seen even when

the input image has lighter text and a darker background. Additionally, the

images preprocessed for Tesseract appear to have slight skew corrections. On

the other hand, in the case of EasyOCR, several images were converted to have

light colour text and darker backgrounds. In both cases, preprocessed images

appear to be bleached, and it can be the effect of the MSE loss component

in the composite loss function (equation 3.5). Additionally, preprocessing has

warped and aberrated the text.

Figure 4.5 depicts sample output images produced by the NN-approximation

30

Figure 4.4: Sample inputs and outputs from the NN-approximation based
preprocessor on the VGG test dataset. Column 1: input images, Column 2:
image output produced by the model trained with Tesseract, Column 3: image
output produced by the model trained with EasyOCR.

based preprocessors running on the POS dataset. It can be observed that shad-

ows, complex backgrounds and noise are suppressed to improve the contrast

of the text. Clean, uncluttered backgrounds and high contrast between text

and the background provide a clear advantage to the OCR engine. Similar to

the VGG samples, the bleaching effect can be seen on the preprocessed im-

ages. Furthermore, characters have gained more fluid and continuous strokes,

especially low-resolution characters printed with visible ‘dots’. Additionally,

preprocessing has introduced new artifacts to the characters. This effect is

clearly visible in the images preprocessed for EasyOCR. Based on the ac-

curacy improvements and reduction of CER, it can be concluded that these

mutations and added artifacts provide extra guidance in character recognition.

Figure 4.6 and Figure 4.7 depict sample output images produced by the

31

Figure 4.5: Sample inputs and outputs from the NN-approximation based
preprocessor on the POS test dataset. Column one contains the sample input
images. Columns two and three contain outputs produced by the preproces-
sor trained with Tesseract and EasyOCR, respectively. Images are slightly
cropped.

32

Figure 4.6: Sample inputs and outputs from the SFE-preprocessor on the VGG
test dataset. Column 1: input images, Column 2: image output produced by
the model trained with Tesseract, Column 3: image output produced by the
model trained with EasyOCR.

SFE-preprocessors running on the VGG test dataset and POS test dataset,

respectively. Compared to NN-approximation based preprocessor outputs, it

can be observed that the document images are relatively intact, and the text is

not warped. The bleaching effect is not prominent except for some cases, and

preprocessing has not added new artifacts. Even though preprocessing has

improved the text areas in few cases, it has not removed complex backgrounds

effectively.

4.2.2 Comparison with Other Methods

Our approach does not require clean document images as targets to train the

preprocessor model. It is trained directly with the ground truth text omitting

the need for intermediate clean images. There are existing datasets for OCR

33

Figure 4.7: Sample inputs and outputs from the SFE-preprocessor on the POS
test dataset. Column one contains the sample input images. Columns two and
three contain outputs produced by the preprocessor trained with Tesseract and
EasyOCR, respectively. Images are slightly cropped.

34

Figure 4.8: Cropped input (POS test dataset) and output images from meth-
ods considered in Table 4.4 and our models. The images in three columns
have average CER reduction of 6.5, 61 and 73.5 respectively from left to right.
CER is based on our NN-based models.

35

Table 4.4: OCR engine accuracy on POS dataset: comparison with other
preprocessing methods.

Preprocessing Method
Tesseract EasyOCR

Accuracy ↑ CER ↓ Accuracy ↑ CER ↓
OCR (no preprocessing) 54.51% 26.33 29.69% 44.27

Otsu [40] 50.98% 29.84 16.96% 52.30

Sauvola [50] 55.39% 25.20 20.19% 48.49

Vo [55] 51.72% 31.81 21.95% 50.07

robin 57.18% 28.45 27.59% 43.55

DeepOtsu [18] 62.47% 21.88 26.33% 42.63

SR [43] 67.13% 15.90 37.51% 31.11

SFE-based 69.17% 16.62 46.63% 28.13

NN-approx. based 83.36% 8.68 67.97% 16.46

tasks, and there are datasets for image preprocessing tasks such as binarization.

However, to the best of our knowledge, there are no publicly available OCR

datasets that contain optimal intermediate images in addition to the ground

truth texts. This lack of intersection between two tasks in the context of

data renders it challenging to compare our model with other preprocessing

techniques.

Due to the lack of clean ground truth images for our dataset, we used pre-

trained weights to compare with other learning-based preprocessing methods.

Five binarization methods and one SR method are compared against our pre-

processors on the POS dataset. The binarization methods Vo [55], DeepOtsu

[18] and robin4 are originally trained with high resolutions images. However,

the images in the POS dataset have considerably low resolution compared to

the images used for training these models. Therefore, to mitigate the effect of

low-resolution, POS dataset images are enlarged by factors of 2 and 3 before

binarization. After the binarization, binarized images were reduced back to

the original size before presenting them to the OCR engine. In the evaluation,

images enlarged by a factor of 2 performed better than the images enlarged by

4https://github.com/masyagin1998/robin

36

https://github.com/masyagin1998/robin

a factor of 3. Therefore we recorded the accuracy measurements of the images

enlarged by a factor of 2. Similarly, with SR method [43], the images are

enlarged by a factor of 2 and presented the same enlarged images to the OCR

since the objective of this experiment is to test the impact of high resolution

on the OCR engine’s performance.

According to the results listed in Table 4.4, two methods based on gra-

dient approximation have outperformed all six methods compared. Sauvola,

robin, DeepOtsu and SR methods increased the Tesseract accuracy, and the

SR method shows the largest improvement. With robin, CER has increased

despite the slight accuracy gain. Only the SR method improved EasyOCR

accuracy. We have to note that learning-based methods such as Vo, robin,

DeepOtsu and SR methods might perform better if trained with our dataset.

However, clean target images are rarely available for different document do-

mains. Often document domains are defined by their unique aberrations and

degradations. Therefore, to train these methods, clean target images must be

manually created based on the original document images. Figure 4.8 depicts

the inputs and outputs from the considered method. Severe loss of details can

be observed in the outputs produced by the preprocessing methods except for

our two methods.

4.2.3 Other Experiments

Table 4.5: OCR accuracy when trained and tested with different engines.

Dataset
OCR used

for training

OCR used

for testing
Test accuracy ↑ Test CER ↓

POS Tesseract EasyOCR 40.44% 31.28

VGG Tesseract EasyOCR 47.14% 21.77

POS EasyOCR Tesseract 60.94% 21.81

VGG EasyOCR Tesseract 21.64% 51.96

Our approach trains an individualized preprocessor specific to a particu-

lar OCR engine. To test the effect of having an individualized preprocessor,

37

Figure 4.9: Test set accuracy (graph on the left) and CER (graph on the right)
of OCR engine and CRNN model with different training sizes of VGG dataset.
Tesseract accuracy and CER without preprocessing are added for reference.

we have cross-tested the preprocessors with OCR engines. The preprocessors

(NN-approximation based) trained for Tesseract are tested with EasyOCR

and vice versa. Table 4.5 depicts the results obtained. After the preprocess-

ing, the OCR engine yields better accuracy than the baseline. owever, the

accuracy gain is lower than the accuracy obtained by the same OCR engine

the preprocessor has trained with. Therefore its is reasonable to assume that

preprocessing has added OCR engine specific artifacts and mutations to the

image to improve recognition. This behaviour confirms that different OCR

engines expect inputs to be optimized differently, thus individualized prepro-

cessing serves better than generic preprocessing.

Figure 4.9 shows that the CRNN model has well approximated the OCR

engine’s recognition capability with different dataset sizes. However, note that

the CRNN model can only recognize text but does not have text detection ca-

pabilities; it cannot fully replace the OCR engine. Additionally, in Figure

4.9, it can be seen that with only 10k samples of the VGG dataset, our pre-

processor was able to improve Tesseract significantly. Figure 4.10 depicts the

change of accuracy and training time with the increase of the number of image

perturbations (n in Algorithm 2) in the SFE-based training pipeline. With

the increase of image perturbations, CER has gone down in a nearly linear

38

Figure 4.10: VGG test set accuracy (graph on the left) CER (graph on
the right) and the training time (graph on the bottom) variation of SFE-
preprocessor with the different number of perturbations (n in Algorithm 2).

manner even though the accuracy has not changed significantly after eight

perturbations. Therefore it can be assumed that the increase of perturbations

might lead to better results. Training time has also increased linearly with

the number of image perturbations. Therefore, increasing n might not be a

pragmatic solution.

4.2.4 Assumptions and Shortcomings

Both avenues we investigated along our hypothesis were able to improve the

accuracy of the considered OCR engines. The recognized downside of our

39

approach is the added complexity in the training regimen and the increased

number of hyperparameters, and the need for ground truth text with bound-

ing boxes. Furthermore, we have observed that if the OCR engine does not

perform at all for a given dataset, the NN-approximation-based method does

not converge or improve the input image. In the implementation of NN-based

gradient approximation, our approximator only approximates the text recog-

nition capability of the OCR engine. Therefore, an assumption made in this

approach is that the preprocessing does not negatively affect other OCR engine

components such as text detection. Additionally, in the NN-based gradient

approximation method, training can be unstable due to the concatenation of

different models. However, in our experiments, it is clear that the NN-based

gradient approximation handles high dimensional input better than the SFE

reparameterization we implemented.

40

Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a novel training pipeline to create an indi-

vidualized preprocessor to improve the accuracy of existing OCR solutions,

including the commercial unknow-box OCR engines. Two different gradient

approximation approaches: an NN-based approach and an SFE based ap-

proach, were implemented and tested. Both training pipelines were able to

produce document image preprocessors that improve the performance of two

OCR engines on two different datasets, demonstrating the power and versa-

tility of the proposed preprocessing method. The preprocessors trained on

the NN-approximation based training pipeline performed better than those

trained on the SFE-based training pipeline. Our preprocessing method was

able to improve the OCR accuracy up to 46% from the baseline accuracy.

Both implementations of our approach of training a preprocessor based on

OCR feedback were able to outperform (within assumed conditions) the es-

tablished preprocessing techniques as we have hypothesized. Even though our

approach has produced promising results, it has a few undesirable properties

that might hinder its usage in a production environment. The relatively large

number of hyperparameters and the added complexity of connecting different

models is an inherent drawback of this approach. Further, our current imple-

mentations need to sample from the OCR engine a considerably large number

of times depending on the dataset size. This sampling can be undesirable

in a cloud SaaS setting where it is billed per request since a single train-

ing session can be significantly costly. When comparing our two approaches,

41

NN-approximation based training has a higher sample efficiency than the SFE-

based training. However, it still can be costly, and therefore we think that an

extension of this project that focuses on sample efficiency as well as accuracy

would be an exciting area to investigate. In this work, we mainly focused

on ‘online training’ where the training pipeline samples from the unknow-box

constantly; however, a system focusing on sample efficiency can investigate

to improve ‘offline training’ where constant access to the unknown box is not

required.

In our current implementation of NN-approximation based method, we

only approximate the character recognition ability of the OCR engine. Ex-

panding the capacity of the approximation model may lead to better outcomes,

and if the approximator is able to detect text, it will eliminate the need for

bounding boxes. Therefore, as future work, different models can be considered

as the approximator to expand approximation capabilities. Our preprocessor

can apply numerous unconventional pixel-level modifications to the document

images to improve the OCR accuracy. Even though slight skew corrections

are visible in some cases, our training does not focus on geometric corrections.

Therefore, parameterized geometric corrections can be suggested as another

future extension of this work. Additionally, different preprocessor architec-

tures can be investigated in the same setting to see whether they yield better

results than the models considered here.

When it comes to the SFE-based training paradigm, there is a bottleneck

at the OCR engine due to the large number of sampling from OCR required for

the image perturbations. Even though the reparameterization used in SFE-

based training can be efficiently parallelized, accessing an OCR engine with

multiple threads may be problematic. Even in a fully parallel environment,

the inherent problem of low sample efficiency in the SFE-based method will

not be resolved.

Based on the success of the training approach discussed in this thesis, the

same approach can be extended to other image processing tasks, which attempt

to improve the output of a secondary function that is non-differentiable. Es-

pecially this approach can be used to train preprocessors to preprocess images

42

for classic image processing algorithms, which are non-differentiable. Even

though NN-approximation based training pipeline performed well, many as-

pects of this training pipeline were established by a trial and error approach.

However, a mathematical investigation of this approach may reveal a more

systematic approach to implementing this type of training pipelines. I.e. a

lower bound of model complexity necessary to approximate the gradient of

a larger complex model effectively. Therefore we think that a mathematical

investigation of this approach would be an exciting avenue of future work.

43

References

[1] M. Ahmed and R. Ward, “A rotation invariant rule-based thinning algo-
rithm for character recognition,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 24, no. 12, pp. 1672–1678, 2002. doi:
10.1109/TPAMI.2002.1114862.

[2] C. Artaud, N. Sidère, A. Doucet, J. Ogier, and V. P. D. Yooz, “Find it!
fraud detection contest report,” in 2018 24th International Conference
on Pattern Recognition (ICPR), 2018, pp. 13–18. doi: 10.1109/ICPR.
2018.8545428.

[3] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region aware-
ness for text detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[4] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
ArXiv, vol. abs/1308.3432, 2013.

[5] M. Buda, A. Saha, and M. A. Mazurowski, “Association of genomic sub-
types of lower-grade gliomas with shape features automatically extracted
by a deep learning algorithm,” Computers in Biology and Medicine,
vol. 109, pp. 218–225, 2019, issn: 0010-4825. doi: https://doi.org/10.
1016/j.compbiomed.2019.05.002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0010482519301520.

[6] Q. A. Bui, D. Mollard, and S. Tabbone, “Selecting automatically pre-
processing methods to improve ocr performances,” in 2017 14th IAPR
International Conference on Document Analysis and Recognition (IC-
DAR), vol. 01, 2017, pp. 169–174. doi: 10.1109/ICDAR.2017.36.

[7] M. S. Chang, S. M. Kang, W. S. Rho, H. G. Kim, and D. J. Kim, “Im-
proved binarization algorithm for document image by histogram and
edge detection,” in Proceedings of the International Conference on Doc-
ument Analysis and Recognition, ICDAR, vol. 2, IEEE Computer Soci-
ety, 1995, pp. 636–639, isbn: 0818671289. doi: 10.1109/ICDAR.1995.
601976.

44

https://doi.org/10.1109/TPAMI.2002.1114862
https://doi.org/10.1109/ICPR.2018.8545428
https://doi.org/10.1109/ICPR.2018.8545428
https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.05.002
https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.05.002
https://www.sciencedirect.com/science/article/pii/S0010482519301520
https://www.sciencedirect.com/science/article/pii/S0010482519301520
https://doi.org/10.1109/ICDAR.2017.36
https://doi.org/10.1109/ICDAR.1995.601976
https://doi.org/10.1109/ICDAR.1995.601976

[8] Q. Chen, Q. sen Sun, P. A. Heng, and D. shen Xia, “A double-threshold
image binarization method based on edge detector,” Pattern Recognition,
vol. 41, pp. 1254–1267, 4 Apr. 2008, issn: 00313203. doi: 10.1016/j.
patcog.2007.09.007.

[9] Y. Chen and Y. Shao, “Scene text recognition based on deep learning:
A brief survey,” in 2019 IEEE 11th International Conference on Com-
munication Software and Networks (ICCSN), 2019.

[10] G. Chiron, A. Doucet, M. Coustaty, and J. Moreux, “Icdar2017 com-
petition on post-ocr text correction,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), vol. 01,
2017, pp. 1423–1428. doi: 10.1109/ICDAR.2017.232.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[12] A. K. Das and B. Chanda, “A fast algorithm for skew detection of doc-
ument images using morphology,” International Journal on Document
Analysis and Recognition, vol. 4, pp. 109–114, 2 2001, issn: 14332833.
doi: 10.1007/PL00010902. [Online]. Available: https://link.springer.
com/article/10.1007/PL00010902.

[13] U. Garain, A. Jain, A. Maity, and B. Chanda, “Machine reading of
camera-held low quality text images: An ica-based image enhancement
approach for improving ocr accuracy,” in 2008 19th International Con-
ference on Pattern Recognition, 2008, pp. 1–4. doi: 10.1109/ICPR.

2008.4761840.

[14] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional lstm networks,” in Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., vol. 4, 2005, 2047–2052
vol. 4. doi: 10.1109/IJCNN.2005.1556215.

[15] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd International Confer-
ence on Machine Learning, ser. ICML ’06, Association for Computing
Machinery, 2006, isbn: 1595933832. doi: 10.1145/1143844.1143891.

[16] A. Hashizume, P.-S. Yeh, and A. Rosenfeld, “A method of detecting the
orientation of aligned components,” Pattern Recognition Letters, vol. 4,
no. 2, pp. 125–132, 1986, issn: 0167-8655. doi: https://doi.org/

10.1016/0167-8655(86)90034-6. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0167865586900346.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

45

https://doi.org/10.1016/j.patcog.2007.09.007
https://doi.org/10.1016/j.patcog.2007.09.007
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.1007/PL00010902
https://link.springer.com/article/10.1007/PL00010902
https://link.springer.com/article/10.1007/PL00010902
https://doi.org/10.1109/ICPR.2008.4761840
https://doi.org/10.1109/ICPR.2008.4761840
https://doi.org/10.1109/IJCNN.2005.1556215
https://doi.org/10.1145/1143844.1143891
https://doi.org/https://doi.org/10.1016/0167-8655(86)90034-6
https://doi.org/https://doi.org/10.1016/0167-8655(86)90034-6
https://www.sciencedirect.com/science/article/pii/0167865586900346
https://www.sciencedirect.com/science/article/pii/0167865586900346

[18] S. He and L. Schomaker, “Deepotsu: Document enhancement and bi-
narization using iterative deep learning,” Pattern Recognition, vol. 91,
pp. 379–390, 2019, issn: 0031-3203. doi: https://doi.org/10.1016/j.
patcog.2019.01.025. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0031320319300330.

[19] J. R. Hicks and J. J. C. Eby, “Signal processing techniques in com-
mercially available high-speed optical character reading equipment,” in
Real-Time Signal Processing II, T. F. Tao, Ed., vol. 0180, SPIE, Sep.
1979, pp. 205–216. doi: 10.1117/12.957332.

[20] S. C. Hinds, J. L. Fisher, and D. P. D’Amato, “A document skew de-
tection method using run-length encoding and the hough transform,” in
[1990] Proceedings. 10th International Conference on Pattern Recogni-
tion, vol. i, 1990, 464–468 vol.1. doi: 10.1109/ICPR.1990.118147.

[21] K. Hornik, M. B. Stinchcombe, and H. White, “Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward
networks,” Neural Networks, vol. 3, pp. 551–560, 1990.

[22] Z. Huang, K. Chen, J. He, X. Bai, D. Karatzas, S. Lu, and C. V. Jawa-
har, “Icdar2019 competition on scanned receipt ocr and information ex-
traction,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR), 2019, pp. 1516–1520. doi: 10.1109/ICDAR.2019.
00244.

[23] A. Jacovi, G. Hadash, E. Kermany, B. Carmeli, O. Lavi, G. Kour, and
J. Berant, “Neural network gradient-based learning of black-box func-
tion interfaces,” in International Conference on Learning Representa-
tions, 2019. [Online]. Available: https://openreview.net/forum?id=
r1e13s05YX.

[24] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using syn-
thetic gradients,” in Proceedings of the 34th International Conference
on Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings
of Machine Learning Research, vol. 70, International Convention Cen-
tre, Sydney, Australia: PMLR, 2017, pp. 1627–1635. [Online]. Available:
http://proceedings.mlr.press/v70/jaderberg17a.html.

[25] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic
data and artificial neural networks for natural scene text recognition,”
in Workshop on Deep Learning, NIPS, 2014.

[26] Y. S. Kim, W. S. Choi, and S. W. Kim, “High-speed thinning proces-
sor for character recognition system,” IEEE Transactions on Consumer
Electronics, vol. 38, no. 4, pp. 762–766, 1992. doi: 10.1109/30.179963.

46

https://doi.org/https://doi.org/10.1016/j.patcog.2019.01.025
https://doi.org/https://doi.org/10.1016/j.patcog.2019.01.025
https://www.sciencedirect.com/science/article/pii/S0031320319300330
https://www.sciencedirect.com/science/article/pii/S0031320319300330
https://doi.org/10.1117/12.957332
https://doi.org/10.1109/ICPR.1990.118147
https://doi.org/10.1109/ICDAR.2019.00244
https://doi.org/10.1109/ICDAR.2019.00244
https://openreview.net/forum?id=r1e13s05YX
https://openreview.net/forum?id=r1e13s05YX
http://proceedings.mlr.press/v70/jaderberg17a.html
https://doi.org/10.1109/30.179963

[27] L. Lam and C. Y. Suen, “An evaluation of parallel thinning algorithms
for character recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, pp. 914–919, 8 1995, issn: 01628828. doi:
10.1109/34.406659.

[28] A. Lat and C. V. Jawahar, “Enhancing ocr accuracy with super reso-
lution,” in 2018 24th International Conference on Pattern Recognition
(ICPR), 2018, pp. 3162–3167. doi: 10.1109/ICPR.2018.8545609.

[29] D. S. Le, G. R. Thoma, and H. Wechsler, “Automated page orienta-
tion and skew angle detection for binary document images,” Pattern
Recognition, vol. 27, no. 10, pp. 1325–1344, 1994, issn: 0031-3203. doi:
https://doi.org/10.1016/0031-3203(94)90068-X. [Online]. Avail-
able: https : / / www . sciencedirect . com / science / article / pii /

003132039490068X.

[30] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[31] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710, 1965.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[33] Y. Liu, R. Feinrich, and S. N. Srihari, “An object attribute thresholding
algorithm for document image binarization,” in Proceedings of 2nd In-
ternational Conference on Document Analysis and Recognition (ICDAR
’93), 1993, pp. 278–281. doi: 10.1109/ICDAR.1993.395732.

[34] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connec-
tions,” in Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Cur-
ran Associates, Inc., 2016. [Online]. Available: https://proceedings.
neurips.cc/paper/2016/file/0ed9422357395a0d4879191c66f4faa2-

Paper.pdf.

[35] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradi-
ent estimation in machine learning,” Journal of Machine Learning Re-
search, vol. 21, pp. 1–63, Jun. 2019. [Online]. Available: http://arxiv.
org/abs/1906.10652.

47

https://doi.org/10.1109/34.406659
https://doi.org/10.1109/ICPR.2018.8545609
https://doi.org/https://doi.org/10.1016/0031-3203(94)90068-X
https://www.sciencedirect.com/science/article/pii/003132039490068X
https://www.sciencedirect.com/science/article/pii/003132039490068X
https://doi.org/10.1109/ICDAR.1993.395732
https://proceedings.neurips.cc/paper/2016/file/0ed9422357395a0d4879191c66f4faa2-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/0ed9422357395a0d4879191c66f4faa2-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/0ed9422357395a0d4879191c66f4faa2-Paper.pdf
http://arxiv.org/abs/1906.10652
http://arxiv.org/abs/1906.10652

[36] N. M. Nguyen and N. Ray, “End-to-end learning of convolutional neural
net and dynamic programming for left ventricle segmentation,” in Pro-
ceedings of the Third Conference on Medical Imaging with Deep Learning,
ser. Proceedings of Machine Learning Research, vol. 121, PMLR, 2020,
pp. 555–569.

[37] W. Niblack, An Introduction to Digital Image Processing, ser. Delaware
Symposia on Language Studies5. Prentice-Hall International, 1986, isbn:
9780134806747.

[38] L. O’Gorman, “The document spectrum for page layout analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1162–1173, 1993. doi: 10.1109/34.244677.

[39] L. Ogorman, “Binarization and multithresholding of document images
using connectivity,” CVGIP: Graphical Models and Image Processing,
vol. 56, pp. 494–506, 6 Nov. 1994, issn: 10499652. doi: 10.1006/cgip.
1994.1044.

[40] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, pp. 62–66,
1 1979.

[41] S. Park, S. Shin, B. Lee, J. Lee, J. Surh, M. Seo, and H. Lee, “Cord: A
consolidated receipt dataset for post-ocr parsing,” in Workshop on Doc-
ument Intelligence at NeurIPS 2019, 2019. [Online]. Available: https:
//openreview.net/forum?id=SJl3z659UH.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[43] X. Peng and C. Wang, “Building super-resolution image generator for
ocr accuracy improvement,” in Document Analysis Systems, X. Bai, D.
Karatzas, and D. Lopresti, Eds., Cham: Springer International Publish-
ing, 2020, pp. 145–160, isbn: 978-3-030-57058-3.

[44] Y. Rangoni, F. Shafait, and T. M. Breuel, “Ocr based thresholding.,” in
MVA, 2009, pp. 98–101.

[45] C. Reul, U. Springmann, C. Wick, and F. Puppe, “Improving ocr accu-
racy on early printed books by utilizing cross fold training and voting,”
in 2018 13th IAPR International Workshop on Document Analysis Sys-
tems (DAS), 2018, pp. 423–428. doi: 10.1109/DAS.2018.30.

48

https://doi.org/10.1109/34.244677
https://doi.org/10.1006/cgip.1994.1044
https://doi.org/10.1006/cgip.1994.1044
https://openreview.net/forum?id=SJl3z659UH
https://openreview.net/forum?id=SJl3z659UH
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/DAS.2018.30

[46] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, Springer Interna-
tional Publishing, 2015, pp. 234–241, isbn: 978-3-319-24574-4.

[47] F. J. R. Ruiz, M. K. Titsias, and D. M. Blei, The generalized reparame-
terization gradient, 2016. arXiv: 1610.02287 [stat.ML].

[48] P. K. Saha, G. Borgefors, and G. Sanniti di Baja, “Chapter 1 - skele-
tonization and its applications – a review,” in Skeletonization, P. K.
Saha, G. Borgefors, and G. Sanniti di Baja, Eds., Academic Press, 2017,
pp. 3–42, isbn: 978-0-08-101291-8. doi: 10.1016/B978-0-08-101291-
8.00002-X.

[49] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strate-
gies as a scalable alternative to reinforcement learning, 2017. arXiv:
1703.03864 [stat.ML].

[50] J. Sauvola and M. Pietikäinen, “Adaptive document image binariza-
tion,” Pattern Recognition, vol. 33, pp. 225–236, 2 Feb. 2000, issn:
00313203. doi: 10.1016/S0031-3203(99)00055-2.

[51] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 39, no. 11, pp. 2298–2304, 2017. doi: 10.1109/TPAMI.
2016.2646371.

[52] D. Sporici, E. Cuşnir, and C. A. Boiangiu, “Improving the accuracy of
tesseract 4.0 ocr engine using convolution-based preprocessing,” Sym-
metry, vol. 12, p. 715, 5 May 2020, issn: 20738994. doi: 10.3390/

SYM12050715.

[53] S. N. Srihari and V. Govindaraju, “Analysis of textual images using
the hough transform,” Machine vision and Applications, vol. 2, no. 3,
pp. 141–153, 1989.

[54] P. Thompson, J. McNaught, and S. Ananiadou, “Customised ocr correc-
tion for historical medical text,” in 2015 Digital Heritage, vol. 1, 2015,
pp. 35–42. doi: 10.1109/DigitalHeritage.2015.7413829.

[55] Q. N. Vo, S. H. Kim, H. J. Yang, and G. Lee, “Binarization of degraded
document images based on hierarchical deep supervised network,” Pat-
tern Recognition, vol. 74, pp. 568–586, Feb. 2018, issn: 00313203. doi:
10.1016/j.patcog.2017.08.025.

[56] J. M. White and G. D. Rohrer, “Image thresholding for optical character
recognition and other applications requiring character image extraction,”
IBM Journal of Research and Development, vol. 27, no. 4, pp. 400–411,
1983. doi: 10.1147/rd.274.0400.

49

https://arxiv.org/abs/1610.02287
https://doi.org/10.1016/B978-0-08-101291-8.00002-X
https://doi.org/10.1016/B978-0-08-101291-8.00002-X
https://arxiv.org/abs/1703.03864
https://doi.org/10.1016/S0031-3203(99)00055-2
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.3390/SYM12050715
https://doi.org/10.3390/SYM12050715
https://doi.org/10.1109/DigitalHeritage.2015.7413829
https://doi.org/10.1016/j.patcog.2017.08.025
https://doi.org/10.1147/rd.274.0400

[57] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, and J. Schmidhuber,
Natural evolution strategies, 2011. arXiv: 1106.4487 [stat.ML].

[58] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine Learning, vol. 8, pp. 229–
256, 3-4 May 1992, issn: 0885-6125. doi: 10.1007/bf00992696.

[59] Xiaoyi Jiang, H. Bunke, and D. Widmer-Kljajo, “Skew detection of
document images by focused nearest-neighbor clustering,” in Proceed-
ings of the Fifth International Conference on Document Analysis and
Recognition. ICDAR ’99 (Cat. No.PR00318), 1999, pp. 629–632. doi:
10.1109/ICDAR.1999.791866.

50

https://arxiv.org/abs/1106.4487
https://doi.org/10.1007/bf00992696
https://doi.org/10.1109/ICDAR.1999.791866

Appendix A

Hyperparameter Tuning

This section discusses the steps and the process of hyperparameter tuning. For

the final training details, refer to Section 4.1.4.

A.1 Hyperparameters of the NN-approximation

Training Pipeline

Table A.1 lists the hyperparameters involved in the main training pipeline of

the NN-approximation based preprocessor. CRNN model (approximator) is

pre-trained before adding it to the main pipeline to avoid the cold-start prob-

lem. Therefore, in addition to the parameters listed in Table A.1, the CRNN

model can be considered another hyperparameter defined by the pre-training

process. The pre-training process involves general hyperparameters such as

learning rate, number of epochs and batch size. Additionally, similar to the

main training pipeline, the standard deviation is considered a hyperparameter

in noise generation of the pre-training of the CRNN model. Due to this rel-

atively large number of hyperparameters involved in the training process and

the unclear nature of the relationship between parameters, an ad hoc approach

is followed in the hyperparameter tuning process.

Our initial experiments were conducted with SRGAN inspired preprocessor

model, Tesseract and the POS dataset. A smaller subset of the POS training

dataset is used with a smaller number of epochs to reduce the training time.

As the first step, a set of CRNN models were trained with different hyper-

parameter settings. Table A.2 lists the hyperparameter values of the CRNN

51

Table A.1: Hyperparameters used in the training process of NN-approximation
based method.

Hyperparameter Explanation

Standard deviation

(σ in Algorithm 1)
Either a fixed standard deviation or random
standard deviation is used in the experiments
to generate noise. In the case of random
standard deviation, the standard deviation
is selected from a discrete uniform distribu-
tion containing a few values. In the exper-
iments, in the fixed case, 0.02 is used and
in the random case following values are used:
[0, 0.01, 0.02, 0.03, 0.04, 0.05].

Epochs The number of training epochs.

CRNN learning rate The learning rate used for the CRNN model
(Approximator) when training the preproces-
sor. In our experiments, initial training of the
CRNN is also conducted with the same learning
rate.

Prep. learning rate The learning rate used for the preprocessor
model.

Inner limit

(S in Algorithm 1)
The number iterations in the inner loop in Al-
gorithm 1.

Scalar

(β in equation 3.5)
The scalar value used in the loss function (3.5)
to control the effect of MSE loss.

Batch size The number of images in a single batch.

models selected to be included in the preprocessor training pipeline. Our pre-

liminary studies with models led to the learning rates 0.0001 and 0.00001 for

the approximator and the preprocessor, respectively. Therefore our first set

of experiments were conducted to determine a batch size. Experiments were

conducted with 18 epochs and later 50 epochs. Table A.3 lists the hyperpa-

rameters and the accuracy levels of these experiments. According to Table

A.3, smaller batch sizes performed better.

The second set of experiments were conducted to determine an inner limit

(S in Algorithm 1) value. Table A.4 lists the hyperparameters, and the ac-

curacy levels and inner limits 1 (batch size 2) and 5 (batch size 1) performed

52

Table A.2: Hyperparameters and accuracy levels of the CRNN models se-
lected to train the preprocessor. [0.01− 0.05] indicates a uniform distribution
containing following values: [0, 0.01, 0.02, 0.03, 0.04, 0.05]

CRNN

model

No.

Standard

deviation
Epochs

Learning

rate

Acc.

compared

to ground

truth

Acc.

compared

to OCR

output

1 0.02 15 0.0001 54% 56%

2 [0− 0.05] 15 0.0001 57% 57%

3 [0− 0.05] 50 0.0001 57% 60%

Table A.3: Hyperparameters and accuracies of the first set of experiments
conducted. The column ‘CRNN model’ corresponds to the column ‘CRNN
model No.’ in Table A.2.

CRNN

model
Std. Epochs

CRNN

l.r.

Prep.

l.r.

Inner

limit
Scalar

Batch

size
Acc.

1 0.02 18 0.0001 0.00001 3 0.5 5 71.18%

1 0.02 18 0.0001 0.00001 3 0.5 2 71.55%

1 0.02 18 0.0001 0.00001 3 0.5 1 72.52%

1 0.02 50 0.0001 0.00001 3 0.5 5 74.15%

1 0.02 50 0.0001 0.00001 3 0.5 2 76.74%

1 0.02 50 0.0001 0.00001 3 0.5 1 77.66%

better than 3. Since a higher inner limit increases the training time signifi-

cantly and the accuracy difference is minimal between 1 and 5, the inner limit

value is set to 1 and batch size is set to 2 for the next set of experiments. The

third set of experiments listed in Table A.5 aimed to determine a value for the

scalar (β in equation 3.5). The highest accuracies were produced by the values

0.1, 0, 0.15 and 1. A reasonable range for the scalar value does not appear in

these results.

In the fourth set of experiments, the standard deviation of the noise is

changed from fixed to stochastic by randomly choosing the σ value from a

list of values. The CRNN model is pre-trained using a similar standard de-

viation for the noise. Staying within the previous experiments’ observations,

53

Table A.4: Hyperparameters and accuracies of the second set of experiments
conducted. The column ‘CRNN model’ corresponds to the column ‘CRNN
model No.’ in Table A.2.

CRNN

model
Std. Epochs

CRNN

l.r.

Prep.

l.r.

Inner

limit
Scalar

Batch

size
Acc.

1 0.02 25 0.0001 0.00001 1 0.5 2 73.86%

1 0.02 25 0.0001 0.00001 1 0.5 1 72.15%

1 0.02 25 0.0001 0.00001 3 0.5 2 73.30%

1 0.02 25 0.0001 0.00001 3 0.5 1 73.51%

1 0.02 25 0.0001 0.00001 5 0.5 2 70.56%

1 0.02 25 0.0001 0.00001 5 0.5 1 73.78%

Table A.5: Hyperparameters and accuracies of the third set of experiments
conducted. The column ‘CRNN model’ corresponds to the column ‘CRNN
model No.’ in Table A.2.

CRNN

model
Std. Epochs

CRNN

l.r.

Prep.

l.r.

Inner

limit
Scalar

Batch

size
Acc.

1 0.02 25 0.0001 0.00001 1 0 2 74.05%

1 0.02 25 0.0001 0.00001 1 0.1 2 74.85%

1 0.02 25 0.0001 0.00001 1 0.15 2 73.82%

1 0.02 25 0.0001 0.00001 1 0.2 2 72.52%

1 0.02 25 0.0001 0.00001 1 0.4 2 72.85%

1 0.02 25 0.0001 0.00001 1 0.6 2 72.07%

1 0.02 25 0.0001 0.00001 1 1 2 73.73%

slight deviations were added to the learning rates, scalar value, and batch size

in the experiments. Table A.6 lists the hyperparameter values and the ac-

curacies of this set of experiments. The best performing model produced an

accuracy of 78.04%. As the next step of experimentation, a U-Net model was

trained using the same parameters as the best performing SRGAN model in

the fourth experiment set. It produced an accuracy of 79.66%. Therefore a

new set of experiments were conducted with the U-Net model by adding slight

modifications to the hyperparameter values. Table A.7 lists the results of both

SRGAN and U-Net models trained with final hyperparameter values derived

for the U-Net model. A small subset of experiments was conducted with the

54

Table A.6: Hyperparameters and accuracies of the fourth set of experiments
conducted. The column ‘CRNN model’ corresponds to the column ‘CRNN
model No.’ in Table A.2. [0.01 − 0.05] indicates a uniform distribution con-
taining following values: [0, 0.01, 0.02, 0.03, 0.04, 0.05]

CRNN

model
Std. Epochs

CRNN

l.r.

Prep.

l.r.

Inner

limit
Scalar

Batch

size
Acc.

2 [0− 0.05] 50 0.0001 0.00001 1 0.1 2 75.42%

2 [0− 0.05] 50 0.0001 0.00001 3 0.5 1 77.41%

2 [0− 0.05] 50 0.0001 0.00001 3 0.5 2 73.88%

2 [0− 0.05] 50 0.00001 0.00001 5 0.5 1 74.53%

2 [0− 0.05] 50 0.0001 0.00005 1 0.5 1 77.71%

2 [0− 0.05] 50 0.0001 0.00005 2 0.5 1 77.68%

2 [0− 0.05] 50 0.0001 0.0001 1 0.6 1 76.09%

2 [0− 0.05] 50 0.0001 0.00005 2 0.7 1 78.04%

Table A.7: Final Hyperparameter values determined for the U-Net model.
Both U-net and SRGAN models were tested with the same set of hyperparam-
eters. The column ‘CRNN model’ corresponds to the column ‘CRNN model
No.’ in Table A.2. [0.01 − 0.05] indicates a uniform distribution containing
following values: [0, 0.01, 0.02, 0.03, 0.04, 0.05]

Prep.

model

CRNN

model
Std. Epochs

CRNN

l.r.

Prep.

l.r.

Inner

limit
Scalar

Batch

size
Acc.

U-Net 3 [0− 0.05] 50 0.0001 0.0001 2 1 1 80.47%

SRGAN 3 [0− 0.05] 50 0.0001 0.00005 2 1 1 78.27%

OCR engine, EasyOCR as well. It was observed that the same hyperparameter

values worked well with EasyOCR. Additionally, the same hyperparameters

were used to train the preprocessor with the VGG dataset.

A.2 Hyperparameters of the SFE-based Train-

ing Pipeline

The hyperparameters preprocessor learning rate, batch size, scalar and epochs

of the SFE-based method are similar to the NN-approximation method in

their application. The number of perturbations (n) mentioned in Algorithm

2 is somewhat analogous to the inner limit (S) in Algorithm 1. Therefore,

experiments of the SFE method started with using the final hyperparameter

55

values listed in Table A.7 where applicable. A set of experiments similar to

the NN-approximation based method was conducted to determine the SFE-

based training pipeline’s hyperparameters. However, due to the significant

training time required, experiments were limited to a smaller number of tests

compared to the NN-approximation method. The final training details and

the hyperparameters are discussed in section 4.1.4.

56

	Introduction
	Motivation and Problem Statement
	Contributions
	Thesis Outline

	Background
	Document Image Preprocessing for OCR
	Conventional Preprocessing Methods
	Learning-based Preprocessing methods

	Backpropagation and Differentiability
	Backpropagation with Non-differentiable Components
	Straight Through Estimator
	Score Function Estimator
	Evolution Strategies
	Differentiable Bypass

	Training a Preprocessor with Unknown-box OCR
	NN-based Approximation
	Approximator Model
	Connectionist Temporal Classification Loss
	Preprocessor Model
	Training Pipeline

	SFE-based Approximation

	Experiments and Results
	Experiment Setup
	Datasets
	OCR Engines
	Evaluation Metrics
	Training Details

	Results and Discussion
	Preprocessor Performance
	Comparison with Other Methods
	Other Experiments
	Assumptions and Shortcomings

	Conclusion and Future Work
	References
	Appendix Hyperparameter Tuning
	Hyperparameters of the NN-approximation Training Pipeline
	Hyperparameters of the SFE-based Training Pipeline

