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Abstract

This thesis focuses on the search for neutrinos from the solar hep reaction

using the combined three phases of the Sudbury Neutrino Observatory (SNO)

data. The data were taken over the years 1999–2006, totalling 1,083 days of

live neutrino time.

The previous published SNO hep neutrino search was completed in 2001

and only included the first phase of data taking. That hep search used an

event counting approach in one energy bin with no energy spectral information

included. This thesis will use a spectral analysis approach.

The hep neutrino search will be a Bayesian analysis using Markov Chain

Monte Carlo (MCMC), and a Metropolis-Hastings algorithm to sample the

likelihood space. The method allows us to determine the best fit values for the

parameters. This signal extraction will measure the 8B flux, the atmospheric

neutrino background rate in the SNO detector, and the hep flux.

This thesis describes the tests used to verify the MCMC algorithm and

signal extraction. It defines the systematic uncertainties and how they were

accounted for in the fit. It also shows the correlations between all of the

parameters and the effect of each systematic uncertainty on the result.

The three phase hep signal extraction was completed using only 1/3 of the

full data set. With these lowered statistics, this analysis was able to place an

upper limit on the hep flux of 4.2× 104 cm−2 s−1 with a 90% confidence limit.

It was able to measure a hep flux of (2.40+1.19
−1.60)×104 cm−2 s−1. These numbers

can be compared with the previous SNO upper limit of 2.3×104 cm−2 s−1 with

a 90% confidence limit, and the standard solar model prediction of (7.970 ±

1.236)× 103 cm−2 s−1.
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Chapter 1

Introduction

1.1 The Sun and Solar Neutrinos

The Sun is our closest star, and wondering how it works has always puzzled

humanity. There is a large field of scientists who work to unravel the mystery

of the Sun. Astrophysicists have made theoretical predictions (or models) of

how the Sun behaves, and have compared their predictions to observational

information.

Most observations come in the form of optical, radio, and helioseismic data.

This information has provided a good basis for comparison to solar models.

Another source of information is neutrinos that are created from the solar

nuclear fusion.

Neutrinos rarely interact with matter, so those produced in the core con-

tain information about the core, unlike photons which can take thousands of

years to travel from the core to the surface of the star, interacting millions of

times, leaving them with no information about how, or when they were pro-

duced. This means that neutrinos are the best way we have to obtain direct

information about the solar interior.

The following section will explain the production of neutrinos that can be

used to extract information about the Sun and test the standard solar model

(SSM).
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1.1.1 Neutrino Production in the Sun

The Sun produces most of its energy through a fusion process known as the

proton-proton (pp) chain. Some of the reactions in the fusion process produce

neutrinos. This section will outline the pp chain and highlight the reactions

that produce neutrinos. Figure 1.2 shows a schematic view of the pp chain,

including the branching ratios of each interaction.

The pp chain is divided into four branches, where the start of the chain

is shown in Equation (1.1), in which two protons combine to form 2H, which

subsequently combines another proton to form 3He, using

1
1H +1

1H→2
1 H + e+ + ν

2
1H +1

1H→3
2 He + γ. (1.1)

The first branch (pp I) has a termination of 85%, shown in Equation (1.2),

3
2He +3

2He→4
2 He + 2 1

1H (pp I). (1.2)

The termination percentage is the branching fraction of the pp chain, origi-

nating from Equation (1.1), in which each reaction occurs. The termination

percentage is based on the BP2000 solar model [1].

The pp II chain is shown in Equation (1.3),

3
2He +4

2He→7
4 Be + γ

7
4Be + e− →7

3 Li + νe (pp II) (1.3)

7
3Li +1

1H→ 2 4
2He,

and the resulting neutrino spectrum is labelled as 7Be in Figure 1.1. This

reaction has a termination of 15%.

2



After the pp II reactions, a proton can be captured on the 7
4Be and the pp

III chain takes place as shown in Equation (1.4),

7
4Be +1

1H→8
5 B + γ

8
5B→8

4 Be + e+ + νe (pp III) (1.4)

8
4Be→ 2 4

2He.

The pp III reaction has a termination of 0.02%. The resulting neutrino spec-

trum is labelled as 8B in Figure 1.1.

An even more rare reaction is the pp IV chain, also called the hep reaction,

shown in Equation (1.5). The hep reaction has a termination of 0.00003%.

The resulting neutrino spectrum is labelled as hep on Figure 1.1. This chain

also branches off Equation (1.1).

3He + p→4 He + e+ + νe (pp IV or hep ) (1.5)

There is a second independent source of energy from the Sun, called the

CNO cycle. Although it dominates in some stars, the cycle is highly tempera-

ture dependent and, at the Sun’s temperature, only accounts for about 1% of

the solar energy production. The neutrino spectra from this cycle are shown

as (blue) dashed lines on Figure 1.1.

Another source of neutrinos is from the pep reaction, which is the forming

of deuterium by electron capture on two protons. This is rare because of the

need for three objects to combine, instead of two as in the pp chain. The

pep reaction is shown in Equation (1.6) and the resulting neutrino spectrum

is labelled pep on Figure 1.1.

1
1H + e− +1

1H→2
1 D + νe (1.6)

3



The pp III chain and the hep reaction create neutrinos that can be mea-

sured by terrestrial C̆erenkov detectors. The low energy radioactivity in SNO

dominates over the low energy neutrinos, and we are only able to see neutrinos

with energies greater that 3.5 MeV, which means we are not sensitive to any

solar neutrino sources except for those produced by the 8B and hep reactions.

Figure 1.1: Solar neutrino energy spectra. The blue dashed lines are those
lines produced in the CNO cycle. The uncertainties shown are the theoretical
uncertainties [2].

Measurement of 8B neutrinos by water C̆erenkov detectors has already

been done by the SNO and Super-Kamiokande experiments, and is described

in References [4] and [5]. These experiments have updated their results as

they have collected more data, and the most recent results can be found in

References [6], [7], and [8].

4



Figure 1.2: A schematic view of the proton-proton chain [3]. The neutrinos
have been highlighted in red.
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1.1.2 Neutrino Oscillations

Neutrino experiments have been observing solar neutrinos since 1964 when Ray

Davis first published his results from a chlorine detector in the Homestake

mine [9]. This was the first evidence of non-standard model physics with

respect to neutrinos. Davis observed a discrepancy of the flux of neutrinos

produced in the Sun when compared to the SSM. This was called the solar

neutrino problem.

A theoretical framework for the solution to the solar neutrino problem

had been in place since 1969 when Pontecorvo first postulated neutrino os-

cillations [10]. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is a

mechanism that allows for massive neutrinos to oscillate. The PMNS matrix

is developed in Refernces [11] and [12] and summarized as

|να〉 =
∑
i

Uαi|νi〉, (1.7)

where |να > is the neutrino flavour eigenstate, |νi〉 is the neutrino mass eigen-

state, and Uαi is the matrix that governs the probability of oscillation between

states. In the case of two neutrino flavours, which is a very good approximation

for the case of solar neutrinos [13], we have:

U =

(
cos θ12 sin θ12

− sin θ12 cos θ12

)
, (1.8)

where θ12 is the mixing angle between neutrino mass eigenstates 1 and 2. If we

now calculate the probability of a neutrino oscillating from an electron flavour

state, α = e, to a muon flavour state, α = µ we get, from Reference [13],

Pe→µ = sin22θ12sin2

(
∆m2L

4E

)
, (1.9)

where L is the distance travelled, E is the energy of the neutrino, and ∆m2

is the mass difference of the neutrino mass eigenstates squared. In the case of

solar neutrinos, the L parameter is fixed, and the θ12 and ∆m2 parameters are

referred to as the neutrino oscillation parameters.
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1.1.3 Neutrino Oscillations in Matter

Section 1.1.2 discussed neutrino oscillations in a vacuum, but it is possible

for neutrinos to oscillate at a higher frequency when moving through matter.

Electron neutrinos produced near the core of the Sun are influenced by the

large electron density within the Sun and are much more likely to change

flavour because of this.

Mikheyev-Smirnov-Wolfenstein (MSW) postulated an effect which explains

how matter acts on neutrinos causing oscillations [14, 15]. The MSW effect

can be seen if we consider the propagation of a neutrino (a lepton) to follow

the Schrödinger equation. The potential energy of the electron neutrino, Vνe ,

is given by,

Vνe =
√

2GFNe, (1.10)

where GF is the Fermi constant and Ne is the electron density.

The equation of neutrino propagation is given by,

i
d

dx

(
νe
να

)
=

1

2E
M2

(
νe
να

)
, (1.11)

where α is a muon or tau neutrino, and the matrix M2 is,

M2 =
1

2

[
U

(
−∆m2 0

0 ∆m2

)
UT + 2E

( √
2GFNe 0

0 −
√

2GFNe

)]
,

(1.12)

where U is the same as in Equation (1.8) and ∆m2 is the same as in Equa-

tion 1.9.

To summarize Equation (1.11), the neutrino oscillation length decreases for

a higher electron density medium. The Sun has a very high electron density

at the core so the distortion of the electron neutrinos is significant. As will

be mentioned in Section 1.2 we know that hep neutrinos are produced with a

different radial distribution than 8B neutrinos. Figures 1.3 and 1.4 show the

probability that an electron neutrino created in the Sun remains an electron

7



neutrino at the Earth (Pee) for various values of the neutrino oscillation pa-

rameters for the hep and 8B neutrinos respectively. The oscillation parameters

are represented as tan2θ12 and ∆m2
12.

The current best fit of the neutrino oscillation parameters is in the large

mixing angle (LMA) region. In the LMA region, the survival probability is

nearly constant in the high energy range (13.5 < E < 20 MeV). It has a mean

survival probability of around 0.36.
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Figure 1.3: Probability of an electron neutrino created by the hep reaction re-
maining an electron neutrino at the SNO detector as a function of the neutrino
oscillation parameters.
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Figure 1.4: Probability of an electron neutrino created by the 8B reaction re-
maining an electron neutrino at the SNO detector as a function of the neutrino
oscillation parameters.
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1.2 hep Neutrinos

The hep reaction occurs according to all standard solar models (SSMs) and

therefore hep neutrinos (i.e., neutrinos with a hep energy spectrum) should

be found. The proton-proton solar fusion chain (Section 1.1.1) necessarily

produces hep neutrinos. As shown in Figure 1.1, the 8B neutrino spectrum is

similar (and overwhelms) that of the hep up to 15 MeV; the 8B spectrum then

ends at 16 MeV, where the hep neutrino extends to 18.8 MeV.

The hep neutrino is also interesting because of its origin in the Sun. The

hep neutrino production takes place out to a much larger solar radius than

the 8B neutrino. Figure 1.5 shows that the hep neutrino production extends

out to 0.3 of the solar radius where 8B neutrino production only reaches 0.1

solar radii. Since neutrinos react with matter through matter-induced flavour

oscillations (discussed in Section 1.1.3) that depend on the density of electrons,

such reactions are quite different for hep and 8B neutrinos.

The hep neutrino flux is a parameter in the SSM, so the precision in mea-

suring this flux can be important for the accuracy of the model. John Bahcall

calculated the value of 21 input parameters to his solar model by running

10, 000 simulations varying each input for each simulation [16]. He then used

the models that resulted in a helium abundance within the accepted range.

One of the input parameters was the hep flux, the distribution of good hep

fluxes is shown in Figure 1.6. The calculated hep flux from this model is

(7.970 ± 1.236) × 103 cm−1s−1. This is the best calculation of the hep flux.

This model states that the theoretical uncertainty of the hep flux is as high as

15.1%.
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Figure 1.5: Radial production of neutrinos in the Sun [13]. In units of
cm−2 s−1.

Figure 1.6: Bahcall’s calculation of the hep flux using 10,000 simulations [16].
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1.2.1 The History of hep Reaction

From 1999–2001, the Super-Kamiokande collaboration reported that the hep

flux was 16.7 times larger than the theoretical prediction with a 24% confidence

level on their χ2 fit [17, 18, 19, 20] . This fit is shown in Figure 1.7. The fit

was done allowing the hep flux to be a free parameter. The hep flux was

then experimentally determined by looking at the flux above the 8B neutrino

endpoint (18 MeV). Super-Kamiokande used a low energy threshold placed at

6.5 MeV, then after 708 days, they moved the threshold to a super low energy

(SLE) threshold of 5 MeV, corresponding to an additional 524 days. “SLE”

in Figure 1.7 refers to this lower energy range. If we look at Figure 1.8 we can

see the high energy neutrino spectrum based on events beyond the end point

of the 8B neutrino spectrum.

Figure 1.7: Super-Kamiokande recoil energy spectrum. Plotted as a fraction
of the Standard Solar Model (BP98) [18].

The Super-Kamiokande result spurred much excitement in the nuclear as-

trophysics community. This result caused a lot work to be done in the calcu-

lation of the hep reaction flux. Physicists went to work on their calculations
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Figure 1.8: Super-Kamiokande high energy spectrum. The hep flux is obtained
from the data above 18 MeV [20].

of the astrophysical S-factor:

S(E) = Eσ(E)e
4πα
vrel

where σ(E) is the cross section at centre of mass energy E, vrel is the relative

velocity between the 3He and the proton, and α is the fine structure constant.

This S-factor is the main input into the SSM for the hep flux, it is basically

the 3He-proton cross section, which will almost totally dominate the hep rate.

The S-factor has been calculated in References [21], [22], [23], and [24],

which found an S-factor 4.5 times larger than the one used in the SSM. It is

noted in Reference [22] that this is still not large enough to be consistent with

the Super-Kamiokande measurement. In Reference [25], the reaction:

n+3 He→4 He + e− + ν̄e

is proposed to estimate the S-factor for the similar hep reaction. This reaction

is much easier to work with because there are experiments with high intensity

beams of thermal neutrons that can quite accurately measure the cross section.

The hope would then be to extrapolate to the hep cross section. The goal was
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to find an S-factor that would influence the SSM prediction of the hep flux to

agree with the Super-Kamiokande result.

Other work has also been motivated by the Super-Kamiokande result, such

as trying to use the solar luminosity to constrain the hep flux [26] and more

complex associations of the hep S-factor to the s- and p-wave calculations [27].

In Reference [28] the hep flux disagreement was tested in models that added

variations in the Maxwell-Boltzmann distribution expected in the solar core

plasma.

A review of the solar hep process was published in 2004 [29] which gives

an overview of many of the calculations preformed to predict the hep flux, as

well as the comparison to the experimental results. The review also states the

importance of a hep measurement.

The measurement of the hep flux can affect the SSM. A hep flux that is

higher than predicted, as measured by Super-Kamiokande, means that the

calculation of the 3He-proton cross section is not accurate. This can also be

true if the hep flux were lower than predicted, as long as it can be measured.

A more interesting result could be the absence of the hep flux, as this could

imply some sort of new physics.

The Super-Kamiokande result did not stand the test of time: as statistics

increased, the limit that Super-Kamiokande was able to put on the hep reaction

converged toward the SSM prediction. In 2001, Super-Kamiokande was able

to bring the hep limit down to 4.0×104 cm−2 s−1, which was only 4.3 times the

SSM [30]. In 2006 Super-Kamiokande’s hep limit was 7.3× 104 cm−2 s−1 [31].

Both limits are stated at the 90% confidence limit.

The hep flux was placed by SNO in 2006 [32]. This method was done

by counting all events with energy above 14.3 MeV and below 20 MeV. This

counting experiment is detailed in Section 5.1 and resulted in an upper limit

of 2.3× 104 cm2 s−1 with a 90% confidence level.
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1.3 The Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) is located near Sudbury, Ontario,

Canada, two kilometres underground in Vale INCO’s Creighton mine. This

location uses the 6,000 metre water equivalent (two km of norite rock) over

burden as a shield against cosmic rays. The detector itself is a one-kilotonne

ultra-pure heavy water C̆erenkov light detector. The heavy water (D2O) is

contained in a 12 metre diameter spherical acrylic vessel (AV), surrounded by

a 17.8 metre geodesic photomultiplier support structure (PSUP). This frame

houses nearly 10,000 photomultiplier tubes (PMTs or PMT array). The PMT

array is how SNO observes the C̆erenkov light that is produced by the neutri-

nos. To shield the heavy water from external backgrounds and help support

the AV there is ultra-pure light water (H2O) between the PSUP and the AV.

On the outside of the PSUP the remainder of the cavity is filled with light

water. This light water outside the PSUP is also acts as neutron shielding and

as support to the PSUP. This structure is shown in Figure 1.9. Full details of

the SNO detector can be found in Reference [33].

SNO has the unique ability to detect all three neutrino flavours via the

reactions:

νe + d→ p+ p+ e− (1.13)

νx + d→ p+ n+ νx (1.14)

νx + e− → νx + e−. (1.15)

These equations describe the charged current (CC), neutral current (NC)

and elastic scattering (ES) reactions, respectively. The charged current re-

action is only sensitive to the νe flavour. The elastic scattering reaction is

sensitive mostly to the νe flavour, but has some sensitivity to the νµ and ντ

15



Figure 1.9: An artist’s representation of the SNO cavity containing the support
structure and AV.

flavours. The neutral current reaction is equally sensitive to any of the three

flavours, νx, where x can be e, µ, or τ .

All prior solar neutrino experiments showed a deficit of νe neutrinos to the

rate predicted by the SSM [9, 34, 35, 5], the solar neutrino problem. SNO’s

sensitivity to both NC and CC allowed SNO to distinguish an oscillation sce-

nario
(
νe
νx

= 1
3

)
from a solar model scenario

(
νe
νx

= 1
)

. SNO solved the solar

neutrino problem by showing that the rate of NC reaction events agreed with

the number predicted by the standard solar model [4], while the rates of CC

reaction events and ES events were consistent with oscillations in which two-

thirds of the neutrinos at the Earth are νµ or ντ neutrinos.

For SNO to detect a neutrino, the neutrino must react in the SNO detector,

and the reaction must produce C̆erenkov light. C̆erenkov light (or C̆erenkov

radiation) is produced by a charged particle moving faster than the speed of

light in the medium it is moving in. The CC and ES reactions produce elec-
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trons, which directly produce C̆erenkov light. The NC reaction does not. The

NC reaction produces a neutron that will thermalize and may be captured,

which produces a gamma particle which can then Compton scatter an electron

to produce C̆erenkov light. This means that events that are produced by neu-

trons, including those from the NC reaction have little information about the

source of the neutron that caused it. The direction that the gamma particle

is emitted after neutron caption is random, and the energy of the gamma par-

ticle produced by thermal neutron capture is also independent of the neutron

source.

The SNO experiment was done in three phases. Each phase employed

a different technique to detect neutrons. This three phase approach gave

SNO the ability to self-verify its results. Each phase has different systematic

uncertainties allowing the results from each phase to be compared to each

other. This also allows the phases to be combined into one global analysis

where the different systematic uncertainties are used to break correlations

that limit one phase analyses.

1.3.1 Phase I (D2O)

The first phase of the SNO experiment ran from November 2, 1999 to May

31, 2001 and contained 277.4 days of neutrino live time; that is the amount of

time that SNO was able to detect a neutrino. The active volume was made up

of ultra-pure heavy water (D2O). This phase detected the neutrons from the

NC reaction by neutron capture on the deuterium, which has a cross-section

of 0.5 mb. The capture leads to the production of a single gamma particle,

which then Compton scatters off an electron to produce C̆erenkov radiation.
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1.3.2 Phase II (NaCl)

The second phase of SNO took place from July 26, 2001 to August 28, 2003

resulting in 391.4 live days of neutrino data. In this phase, pure sodium

chloride (23Na35Cl) was dissolved into the ultra-pure heavy water. We refer

to this phase as the salt phase. The salt was added to the active volume

because the chlorine has a much larger thermal neutron capture cross-section

than deuterium. Chlorine has a cross-section of 44 b to neutron capture.

n+35 Cl→36 Cl + γ (1.16)

This large cross-section allows this phase to capture a much higher rate

of neutrons produced by the NC reaction. This led to a more precise mea-

surement of the NC flux. Equation (1.16) shows the neutron capture on 35Cl.

When the neutron is captured multiple gamma particles are produced. This

multiple gamma particle production leads to easier NC identification compared

to a single gamma particle produced from neutron capture on deuterium as in

phase I.

1.3.3 Phase III (Neutral Current Detector Array)

The third and final phase of SNO collected data from November 27, 2004

to November 28, 2006, accumulating 385.2 live days of neutrino data. In this

phase, 3He proportional neutron counters were installed into the active volume.

36 of these detectors were used as well as four 4He counters. The purpose of the

36 3He detectors is to detect neutrons from the NC reaction. The advantages

are to increase the efficiency for the detection of the NC reaction, as compared

to pure D2O, and to allow event-by-event particle identification.

The counters are referred to as neutral current detectors (NCDs). The

NCD array is made up of “strings,” each of which is divided into three or four
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Figure 1.10: An artist’s drawing of SNO and the NCD array.

individual counters. Each counter is an ultra-pure nickel tube with a 5.08 cm

inner diameter. The tubes are strung with a 50 µm copper anode wire down

the centre, and are filled with a 3He-CF4 gas mix. The NCDs are 9 to 11

metres in length. They are arranged in a one metre rectangular grid inside

the AV, as shown in Figure 1.10.

The 3He nucleus has a large cross-section to thermal neutrons (5330 b),

which allows the NCD to capture virtually all the neutrons which enter the

tube. The detection reaction is

n+3He→ p+ t, (1.17)

where p is a proton and t is a triton. The proton and triton are emitted

anti-parallel with kinetic energies of 573 and 191 keV, respectively. If both

the full energy of the proton and triton are deposited into the NCD a total

kinetic energy of 764 keV can be detected. If either or both hit the wall before

depositing all their energy, less energy is seen.
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1.3.4 Combined Three Phase Analysis

Over the three phases of running, the SNO experiment has accumulated data

corresponding to a neutrino live time of 1,054.0 days. Combining the three

phases of data allows us to measure a neutrino flux, where the systematic

uncertainties are different, and in some cases completely independent, from

phase to phase. This allows us to break some of the correlations that may exist

in a single phase type analysis. The most important gain for the hep analysis

is the increased number of events. The number of events in the energy range

of interest is less than 10 for any single phase. With so few events, a flux

upper limit is all that can be determined. Using all three phases, we expect

to observe 15–30 events, meaning that we may be able to, for the first time

in any experiment, measure the hep flux. At the time for writing the SNO

internal review committee has not approve the release of the full data set. The

results presented in this thesis are based on a 1/3 of the full data set.
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Chapter 2

Characterizing Events in the
Sudbury Neutrino Observatory
for the Measurement of hep
Neutrinos

2.1 Calibrations

The SNO detector is a C̆erenkov light detector, which measures information

about the light that the PMTs observe. The distribution of the light in the

detector and timing of the light arriving at the PMTs can be used to identify

the light as C̆erenkov radiation. The distribution of PMT hits due to C̆erenkov

radiation (a C̆erenkov cone) is shown in Figure 2.1. Events that are more

energetic produce more light than those of lower energy.

The relationship between the amount of light detected, or the number of

PMTs that are triggered, is complicated by optical effects in the water such

as attenuation (see Reference [36] for details on the optical characterization of

SNO), PMT efficiencies, and asymmetries in the PMT arrangement.

For the hep analysis the most important information about an event is

the energy of the event. The calculation of the energy of an event is done in

the energy response processor (RSP), which is discussed in Section 2.2.1, and

explained in detail in Reference [37].
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Figure 2.1: A Monte Carlo event (from a Michel Electron) in the Sudbury
Neutrino Observatory. The dots represent PMTs triggered by the event.

To be able to estimate the energy of an event we must first see what events

of known energies look like in SNO. The hep analysis relies on four calibration

sources at various energies: a 6.13 MeV 16N gamma particle source (Section

2.1.1), a 19.8 MeV gamma particle from a positron-triton (pT) source (Sec-

tion 2.1.2), a 8Li beta particle source with an end-point energy of 12.96 MeV

(Section 2.1.3), and a Michel electron source which can have energies up to

60 MeV (Section 2.1.4). These calibration sources were used to characterize

the RSP algorithm, which allowed us to get an accurate determination of the

energy of events in the energy range we chose to look for hep neturinos.

2.1.1 16N Source

The 16N source is the main energy calibration device used in the SNO de-

tector. It produces a 6.13 MeV gamma particle that Compton scatters off

electrons producing C̆erenkov light. To create the 16N, high energy neutrons
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are produced outside of the SNO volume by an external deuteron-triton (DT)

generator that uses the fusion reaction:

d+ t→ n+4He, (2.1)

where d is a deuteron (2H), t is a triton (3H), and n is a neutron. These

neutrons are used to produce the 16N through the (n, p) reaction on 16O where

the 16O is in the form of CO2 gas.

The 16N gas is then brought into the chamber shown in Figure 2.2 through

a long tube called the umbilical. The umbilical enters through the top O-ring

plate and the gas flows into the decay chamber which is enclosed by the plastic

scintillator shell.

The 16N decays in the chamber through the beta decay scheme shown in

Figure 2.3. Only the decay to the 6.1 MeV branch produces a gamma particle

and a beta particle. The beta particle reacts with the scintillator producing

light that is observed by the PMT above the decay chamber. The gamma

particle escapes into SNO to be used in the energy calibration. The 16N source

is encased in stainless steel so that no light from the scintillation is allowed

into SNO.

The beta particles produced are mainly stopped in the steel housing; how-

ever, there is a chance they may cause bremsstrahlung radiation, or additional

gamma particles in the steel. Nevertheless, this effect has been studied using

a Monte Carlo simulation, and was determined to be small. Reference [38] is

a published Nuclear Instruments and Methods article which contains in-depth

details about the source.

Figure 2.4 shows the result from an 16N calibration run. The source was

placed in in the centre of the volume; this calibration run was taken in the

first phase of SNO. The number of events in this figure has been normalized.

The blue histogram represents the data, and the red histogram represents the
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Figure 2.2: Decay chamber of the 16N source as shown in Reference [38].
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Figure 2.3: The decay scheme of 16N as shown in Reference [38].

MC. Each histogram has a Gaussian fit to determine the resolution (sigma).

It is from a set of plots similar to Figure 2.4, taken from many positions

throughout the three phases that we can determine the overall measurement

of the level of agreement between the data and Monte Carlo. This characteri-

zation, in part, leads to the energy systematic uncertainties that are discussed

in Section 6.1.1.

2.1.2 pT Source

The 16N source probes energies near 6 MeV, which is in the heart of the 8B

neutrino energy spectrum. The energy response can be assumed to be constant

up to higher energies. However, it is alway a good idea to test this sort of

assumption. The pT source was designed to do just that. It was designed

to test and set limits on the energy non-linear response of the SNO detector.

The pT source was made up of three parts, the gas discharge line, the ion

acceleration line, and the target chamber. Protons were accelerated through

the source and they collided with a high-purity scandium tritide target.

The pT reaction is given by:

p+ t→4 He + γ (19.8 MeV). (2.2)
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Figure 2.4: The 16N data compared to the 16N MC for a central calibration run
in phase I [39]. This figure is used in part to evaluate the energy systematic
uncertainties.
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The pT source (Figure 2.5) produces a gamma particle with an energy

of 19.8 MeV. This is much higher than the 6.1 MeV produced by the 16N

source. The pT source allowed us to calibrate the detector near the 8B and

hep endpoints.

Figure 2.5: Diagram of the pT source [40].

A secondary reaction that takes place is the 3H + 3H reaction, which
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produces large numbers of neutrons. This secondary reaction in the pT source

produces 1000 times as many neutrons as gamma particles, and if this were

to be run in the salt phases, they would all capture and produce gamma

particles. It was only then feasible to deploy the source in the pure D2O

phase. Reference [40] is a published Nuclear Instruments and Methods article

with contains in-depth details about the source.

Figure 2.6 shows the energy spectrum produced by the pT source. We can

see in the top panel the large low-energy peak. This is the peak from the

neutron producing 3H + 3H reaction. A set of data cleaning cuts are applied

to this spectrum, resulting in the lower panel of Figure 2.6. It is this lower

panel spectrum that we use to verify the energy characterization determined

by the 16N source is valid at higher energies.

2.1.3 8Li Source

The 8Li source was designed to produce a similar energy spectrum to the 8B

neutrino energy spectrum. The 8Li source produces beta particles with an

end-point energy of 12.96 MeV. The 8Li is produced by the 11B(n,α) reaction,

where the neutrons are produced by the same DT generator as mentioned in

Section 2.1.1. The 8Li is carried from the DT generator to the 8Li source,

shown in Figure 2.7, by helium gas with a salt aerosol.

The decay volume is made of spun stainless steel, in the decay volume, the

8Li decays via the scheme in Figure 2.8. The 8Li that decays in the decay

volume also produces two alphas, and these alphas cause scintillation in the

helium transport gas. There is not much light produced by the scintillation,

and most of the light produced is in the UV wavelengths, which is outside of

the detectable wavelength range of the PMT.

The inside of the decay volume is coated with a reflective white titanium

oxide paint to reflect the light, and then a thin layer of tetraphenyl oxide is
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Figure 2.6: The pT data fit to find the resolution at high energy [41].
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Figure 2.7: Decay chamber of the 8Li source as shown in Reference [42].

Figure 2.8: Decay scheme of 8Li [42].
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applied to act as a wavelength shifter. To aid in the wavelength shifting, a

small amount of N2 gas is also added to the helium gas. This light is then

detected by the PMT on the source so that the beta particles can be tagged

for analysis. Reference [42] is a published Nuclear Instruments and Methods

article which contains in-depth details about the source.

Figure 2.9 shows the comparison of the data taken with the 8Li source,

compared to the 8Li Monte Carlo. This agreement is used to verify our char-

acterization of the SNOs energy response to electrons in the 8B neutrino energy

region.

Figure 2.9: The 8Li data compared to the 8Li MC [43]. This comparison is
used to verify the detectors energy response up to the end of the 8B energy
spectrum.
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2.1.4 Michel Electrons

Michel electrons come from cosmic ray muons that decay within the SNO

volume. The muon can decay via the modes:

µ− → e− + ν̄e + νµ (2.3)

or

µ+ → e+ + νe + ν̄µ. (2.4)

These decays produce C̆erenkov electrons (or positrons) which appear as a

high energy event. These events can only be separated out of the data anal-

ysis because of their timing. Each event starts with a muon, which creates

C̆erenkov light that is detected by the PMT array; then any event within a

5 µs window is tagged as a decay electron. This 5 µs window is approximately

2.5 muon lifetimes. If an event is detected in this window we call this event

a re-trigger. If a re-trigger event is detected, then we start the 5 µs window

over again, so in the case of a re-trigger event, the cut window can be much

longer than 5 µs.

The Michel electron energy spectrum was calculated using the SNO MC,

and compared to the events tagged as mentioned above. Figure 2.10 shows

the comparison of the data to the MC. These events are removed from the

data analysis, but because they are distributed over such high energies, they

become an excellent high energy calibration source. Further study of event

selection and MC verification can be found in Reference [41].

2.2 Event Energy Estimation

As stated earlier, the most important measurement that is made with the

SNO detector with respect to the hep analysis is the energy of an event. The
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Figure 2.10: Energy spectrum (in MeV) of Michel Electrons in phase I for
data and Monte Carlo [41]. The MC is scaled to the number of data events.
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previous section described the SNO calibration sources, which show us how

events of various energies will be observed. We can now use this as a basis to

determine the energy of any event.

The energy of an event at a given position and direction is proportional to

the number of PMTs that are triggered by the C̆erenkov light caused by the

event. Section 2.2.1 will describe how we then turn the number of PMT hits

into an energy.

2.2.1 The RSP Energy Estimator

The hep analysis uses an algorithm, called RSP as an abbreviation for energy

ReSPonse, in the SNO analysis software to estimate the energy in all three

phases of SNO. The RSP estimator uses information obtained by all of the

calibration sources. The laserball (explained in Reference [36]) was used to

measure the attenuation lengths as a function of wavelength in each of the

optical media, the efficiency of the PMT-concentrator module as a function of

energy (the so-called angular response of the PMT), and the relative efficiencies

of the different PMTs. The 16N and pT sources (Sections 2.1.1 and 2.1.2,

respectively) were used to measure the PMT array response to C̆erenkov light

produced by gamma rays Compton scattering off electrons. The 8Li source

allows us to measure the PMT response to beta particles (Section 2.1.3), and

a 252Cf source measures the response of PMT array to electrons produced by

neutrons captured on deuterium or chlorine.

To estimate the energy of an event in the SNO detector, SNO MC simula-

tions of monoenergetic electrons emitted isotropically from the centre of SNO

are used to create a mapping of triggered PMTs to energy. This is done by

comparing the number of PMTs triggered to the number of expected to occur

at the centre of the detector.

The RSP algorithm starts by correcting the number of PMT triggers,
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NPMTs, to the number of PMTs that would have been triggered if that event

had happened at the centre of the detector. The corrected number of triggered

PMTs, Ncorr is given by

Ncorr = Neff
Rcentre

R

NPMTs

Nworking

, (2.5)

where Nworking is the number of PMTs that are turned on in the detector, R

is the optical response of the detector, Rcentre is the optical response at the

centre of the detector, and Neff is the number of triggered PMTs in a selected

time window (prompt). It is this Ncorr that is then mapped to the electron

energy through MC.

This has been simplified here, as the actual mapping is from the num-

ber of C̆erenkov photons created by an event to electron energy. The process

is essentially the same, except corrections to the response are considered in

more detail. The effects of Rayleigh scattering, PMT angular response, and

PMT optical and electronic efficiencies must be carefully added and compared

to calibration measurements and MC. Further details can be found in Refer-

ence [37].

2.3 Three Phase Data and Data Cleaning

The data and MC used in the analysis must pass a series of quality control

checks before it is included. These verifications are done on an event by event

basis to ensure that an event is a neutrino candidate. There are two types of

data cuts:

1. Instrumental or low level

2. Analysis

The low level, or instrumental cuts, test the raw measurements from the

PMTs such as the timing and location of the triggered PMTs. The low level
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cuts are used to reject events that are not caused by C̆erenkov light. These are

predominantly events from flashers, large pulses of light occasionally emitted

from PMTs, neck events which are believed to originate by static electric

discharges at the water-acrylic interface, cross-talk and electronic noise (give

pulses with anomalous charges, and high correlation inside certain electronic

modules or crates), and cosmic-ray muons and muon followers.

The selection of the low level events (events that pass low level cuts) are

done on a phase by phase basis. The low level cuts used in phase I and II

are the same low level cuts as developed for the low energy threshold analysis

(LETA) [6]. The cuts for phase III are the same as those used in the NCD

phase analysis [7].

The analysis cuts are the cuts that check the calculated values, such as

energy, position, and direction, using the events that pass the low level cuts.

The specific cuts used in the hep analysis include restricting the energy range

of interest, the isotropy of the C̆erenkov light, and the fiducial volume.

Table 2.1 shows the number of events that pass all the cuts for each phase.

The number of events in the Total column express how many events pass

all the analysis cuts, the number of Good events are those that pass all the

analysis and low level cuts. These good events that will be used in the hep

analysis. Figure 2.11 shows the data energy spectrum for the three phases of

the analysis.

Total Cut Good
Phase I 22 19 3
Phase II 34 25 9
Phase III 82 62 20

Table 2.1: Number of events passing cuts in the three phase data set.
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Figure 2.11: Three phase data energy spectrum.

2.3.1 Corrections

Corrections sometimes need to be made to the Monte Carlo or data when

discrepancies are found in comparing calibration data to calibration Monte

Carlo. Most corrections that are made to the SNO data and MC are not rel-

evant for the hep analysis. Most of the effort with respect to the corrections

were done at low-energies, to distinguish the signal from the low energy back-

ground. The hep analysis has a very high low-energy threshold, meaning that

these corrections have negligible impact on the hep results.

The only correction that needed to be done to the data was to correct a

difference observed between the main optical calibration source (laserball) and

the event position reconstruction. The data had to be lowered globally 5 cm

along the z-axis, which may affect the events that fall into the fiducial volume.
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2.4 Backgrounds

The hep analysis is only interested in events that occur at much higher energies

than the traditional SNO analysis. Most of the backgrounds that occur within

the SNO detector originate from low energy sources such as radon. These

backgrounds typically have a maximum energy in the 6 MeV range. The hep

analysis will have a low energy threshold of 13.5 MeV. This threshold makes

the hep analysis nearly background-free.

The remaining background to the hep analysis is the atmospheric neutrinos,

detailed in Section 2.4.1. The Michel electrons are also in the energy range of

interest; however, as mentioned in Section 2.1.4, they are easily identified to

be removed from the analysis. It is possible for a Michel electron to be missed

if the preceding muon is below the C̆erenkov threshold, and therefore missed.

This would then look like a high energy electron type event. This happens

rarely, and is included in the atmospheric neutrino background, as defined in

Section 2.4.1.

The most significant background to the hep analysis are the neutrinos

produced in the 8B solar reaction, which mis-reconstruct with an anomalously

high energy.

2.4.1 Atmospheric Neutrinos

Atmospheric neutrinos, νatm, are produced when high energy cosmic rays in-

teract with the atmosphere and cause muons and other sources of neutrinos.

The neutrinos can be of any flavour of neutrino or anti-neutrino, although

they are mostly of the νe and νµ type. These neutrinos can then travel to and

interact in the SNO detector. These neutrinos are at energies that can cause

complications in the hep analysis, and are included in the signal extraction.

The simulation package NUANCE [44] is used to generate the atmospheric
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neutrino flux at the SNO detector and then to create the events inside SNO.

These events were then passed to the SNO MC for simulation inside the SNO

detector. The NUANCE simulation assumed the atmospheric neutrino model

Bartol04 [45] as an input flux for neutrinos produced with an energy above

100 MeV and the Battistoni et al. model [46] for neutrinos produced with an

energy below 100 MeV.

The resulting NUANCE simulation creates events in the SNO detector.

These events are then used as input to the SNO MC, at which point they

are propagated to simulate the SNO detector response to the atmospheric

neutrino background. The energy spectrum as produced by the SNO MC and

NUANCE is shown in Figure 2.12.

Figure 2.12: The atmospheric neutrino energy spectrum.

The specific sources that make up the atmospheric neutrino background

are:
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• CC events from the νe and ν̄e interactions;

• Invisible Michel electrons; that is, Michel electrons where the leading

muon is not detected (below C̆erekov threshold);

• 15.1 MeV gamma particles from the de-excitation of 12C from an excited

state, which was created by a neutrino interaction on 16O;

• Events that were mis-reconstructed as electrons.

The work to characterize and place limits on the flux of atmospheric neu-

trinos was done for the previous hep paper [32][41]. This hep analysis uses the

previous measurement for phase I, and assumes a constant rate for phase II

and III. This implies that the electron (CC and ES signals) energy response

is consistent over time in the high energy range. As the detector is the same,

the uncertainties on the atmospheric neutrino background is large, and the

number of events is expected to be an order of magnitude smaller than the

hep signal, these approximations are fair.

Section 2.3 discussed many ways in which the SNO data is cleaned. These

data cuts remove much of the atmospheric neutrino background. Most events

occur close together in time, as most of the events that follow an atmospheric

neutrino event are neutron type events. This is cut with the SNO burst cut,

which looks for events too close together in time.

Section 6.2 will give the measurement of the atmospheric neutrino back-

ground, and the corresponding constraint on the signal extraction. Because

of the structure of the atmospheric neutrino simulation, the input flux is not

straightforward. In this thesis, the atmospheric neutrino result will be mea-

sured as a rate in the SNO detector.
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Chapter 3

Probability Distribution
Functions for hep Neutrinos in
the Three Phases of SNO

This section will outline the SNO MC software and the probability distribu-

tion functions (PDFs) that make up the expected signals. The probability

distribution function describes how likely it is that a given event has a given

value of an observable (Section 3.2). This section will describe the details of

how the probability distribution functions are estimated.

3.1 SNO Monte Carlo

The SNO Monte Carlo and Analysis software (SNOMAN) is a set of simu-

lation and analysis routines that both model the SNO detector and process

the data. The modelling uses information such as detector geometry, particle

propagation tracking, and particle direction. During the data processing, vari-

ous parameters are estimated for each event, including the position, direction,

energy, and angle to the Sun. The neutrinos originate at the Sun and propa-

gate to the SNO detector. Those which interact via the CC or ES reactions

produce electrons directly; the NC reaction produce electrons indirectly. These

electrons move faster than the speed of light in heavy water, and consequently

produce C̆erekov light. This light then travels through the water to reach the
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PMT array where it is detected.

The spacial and temporal distributions of the PMT triggers are used to

determine the direction and position of the source of the light. C̆erenkov

light has a characteristic cone shape. SNOMAN has been designed to output

parameters that allows easy determination of the event shape. From the data,

other information can also be inferred from an event, such as the direction the

source of the light was travelling and the energy of the event.

SNOMAN has been designed so that we can simulate, through a Monte

Carlo (MC) technique, the expected SNO signals and backgrounds and can

generate a data set consisting of simulated events that can be analyzed in

exactly the same way as actual data. This allows us to predict the response of

the detector to compare to the observed data. Given a type and distribution

of particles within SNO, SNOMAN can track all relevant particles that can

be observed, or lead to particles that can be observed within SNO. It uses the

MCNP [47] and FLUKA [48] packages to track neutrons and hadrons. The

MCNP package is a specialized neutron package, and FLUKA is a general

package to simulate hadrons. The EGS4 [49] package is used to track gamma

particles and electrons.

Starting from a theoretical production of neutrinos in the Sun, as shown in

Figure 1.1, the Monte Carlo can produce expected results to compare to our

data. In the hep analysis we are interested in two solar spectra, from the 8B

and hep neutrinos. Differences that arise between the SNOMAN simulation

and the data are quantified as part of the systematic uncertainties. The im-

plementation of the systematic uncertainties for this analysis is described in

Section 6.1
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3.2 Observables

An observable is a physical distribution that can be used to distinguish one

signal from another. There are two observables used in this analysis: 1) energy,

and 2) the angle between the event direction and the Sun. These observables

are explained in the following sections.

3.2.1 Energy

The energy of any event in the SNO detector is estimated by the RSP, dis-

cussed in Section 2.2.1. In Equations (1.13), 1.14, and 1.15, the three possible

interactions of neutrinos with heavy water in SNO are listed. Each of these

interactions results in a distinct energy spectrum, which can be used to dis-

tinguish hep events from other events. Figure 3.1 shows the energy spectrum

from these equations from the 8B and hep signals.

The neutral current reaction produces neutrons, which are subsequently

detected. Since the neutrons are captured as thermal neutrons, the energy

distributions from any initial reaction cannot be distinguished and any hep

event that interacts via the NC reaction will contribute to the overall NC

normalization; that is, it is impossible to distinguish any NC contributor from

another. The NC reaction has an energy distribution that does not exceed

10 MeV, which is well below the 13.5 MeV low energy threshold chosen for

the hep analysis. Thus, the NC signal is not considered in this analysis.

The hep events that interact via the CC and ES distribution will be com-

bined into one signal. This is done for two reasons: 1) the cross section of each

of these reactions is known, so we are not physically free to let their relative

normalizations vary with respect to each other; 2) this allows us to increase

the number of events we can possibly observe. In the hep analysis, we are

not trying to determine information about the shape of the neutrino energy
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Figure 3.1: 8B and hep energy spectra for the CC, ES, and NC reactions in
SNO. NC events are captured as thermal neutrons, and thus all neutrons fit
into this label.
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spectra; rather, we are more interested in the overall number of hep events

(the hep flux). This is called an energy constrained analysis.

Other SNO analyses that focus on the 8B spectrum determine the shape of

the energy spectrum (unconstrained analysis). This is possible for a 8B analysis

because of the larger solar flux and extended energy range, resulting in many

more events and increased sensitivity to changes in survival probability as a

function of energy.

SNOMAN does not consider neutrino oscillations as it propagates the neu-

trinos. This is done so that the distortion due to the neutrino oscillations can

be measured by the data directly. The size of the distortion to the data is the

difference between the MC energy distribution and the data distribution.

Since the hep analysis is constrained we will not attempt to measure this

distortion. Instead, this analysis explicitly distorts the MC energy shape by

the expected energy distortion due to neutrino oscillations. To do this, we mul-

tiply the neutrino energy spectrum used to generate the SNOMAN simulation

by the Pee distortion, described in Section 1.1.3, using the best fit neutrino

oscillation parameters. Using the SNO best fit parameters in the LMA region

from Reference [6], tan2θ12 = 0.457+0.038
−0.042 and ∆m2 = 5.50+2.21

−1.62 × 10−5 eV2, we

obtain the Pee distortion from Figures 1.3 and 1.4 to make Figures 3.2 and

3.3 respectively. Also included in these Figures is the size of change to the

distortion with a fluctuation of one standard deviation (1σ) to the best fit

parameters.

After combining the CC and ES signals and distorting them by Figures 3.2

and 3.3, the hep analysis expects signals from three sources, 8B CC+ES, hep

CC+ES and atmospheric neutrinos. The expected energy probability distri-

butions functions (PDFs) are shown in Figures 3.4 to 3.6 for the three phases.

It can be seen from Figures 3.4 to 3.6 that the atmospheric neutrino signal

is distinctly different from the other signals and therefore easy to separate.
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Figure 3.2: Probability that an electron neutrino of a given energy produce by
the hep reaction will remain an electron neutrino at the SNO detector for the
SNO best neutrino oscillation parameters.
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Figure 3.3: Probability that an electron neutrino of a given energy produce by
the 8B reaction will remain an electron neutrino at the SNO detector for the
SNO best neutrino oscillation parameters.

46



The 8B CC+ES and hep CC+ES signals however are similar. The difference

only occurs at higher energies, the focus of this analysis.

Figure 3.4: Energy probability distribution functions for the D2O phase.

If we now scale each of the PDFs in Figures 3.4, 3.5, and 3.6 by the SSM

as determined by SNOMAN we can see the predicted three phase energy spec-

trum. This is shown in Figure 3.7. We can again see that the dominant signal

at lower energies is the 8B signal, and hep at higher energies, while the νatm

signal is nearly flat.

3.2.2 cos θSun

The cos θSun observable is defined as the angle between the direction of the

C̆erenkov light cone and the direction to the Sun. This can be useful to

distinguish events that have a dependence on the direction to the Sun from

those that do not. In SNO this is used to aid in separating the NC signal,

which has no dependence on the direction to the Sun, from the CC and ES

signals, which have a mild and strong dependence, respectively. It also helps

with background radiation, which also has no solar direction dependence.
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Figure 3.5: Energy probability distribution functions for the salt phase.

Figure 3.6: Energy probability distribution functions for the NCD phase.
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Figure 3.7: Predicted three phase energy spectrum.

Because we are observing the CC+ES reaction for both 8B and hep sig-

nals, the cos θSun distribution is very similar, and thus has very little influence

in separating the signals. However, the atmospheric neutrino flux has some

cosθSun dependence, but with so few events expected this will have little im-

pact.

Because the effect of this observable is so small the PDF is coarsely binned.

The cosθSun PDFs for the three phases are shown in Figures 3.8 to 3.10.
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Figure 3.8: cos θSun probability distribution functions for the D2O phase.

Figure 3.9: cos θSun probability distribution functions for the salt phase.
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Figure 3.10: cos θSun probability distribution functions for the NCD phase.
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Chapter 4

Signal Extraction

The goal of the signal extraction is to precisely determine the contributions of

each signal type to our data set based on our knowledge of the signal character-

istics. The signals that make up the data set have been outlined in Chapter 3.

The signal extraction method should also allow for constraints to be placed on

any signal due to previous measurements and calibrations. The signal extrac-

tion method will have the ability to float systematic uncertainties as will be

discussed in section 6.1. This section will also outline the statistical method

used to separate the data into its component signals. It will describe how

the method was verified for accuracy. This section will finally detail how the

90% confidence limit will be determined in the case no statistically significant

signal can be measured.

4.1 Likelihood Function

The likelihood function provides a way to statistically separate a data set into

the various signals that compose the data. We start with a function, f(x; θ),

which is the probability distribution function; i.e.
∫
f(x; θ) dx = 1, and the

value of f(x; θ)dx gives the probability, for a given θ, that x lies within a bin

of size dx. We then measure the observable, x, multiple times, (x1, ..., xn). For

the set of multiple events, i, the likelihood is defined as the function:
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L(θ) =
data∏
i=1

f(xi; θ), (4.1)

where L(θ) is the likelihood for a given parameter θ. In our case, the xi are

our observables and θ is the normalization of the signal flux, which we will

now call Φ. The function f(xi; Φ) is the joint probability distribution function

of xi.

If we were to repeat this same measurement k times we would expect the

measured parameter Φ to be Poisson distributed around its true value. The

likelihood is then multiplied by a Poisson probability, resulting in the extended

likelihood function:

L(Φ) =
Φn

n!
e−Φ

n∏
i=1

f(xi; Φ) =
e−Φ

n!

n∏
i=1

Φf(xi; Φ). (4.2)

where n is the number of events in the data set.

For computational simplicity it is usually written in the form of log likeli-

hood function

logL(Φ) = −Φ +
n∑
i=1

log (Φf(xi; Φ)) , (4.3)

where all the constant terms have been dropped. We can drop these terms

because the constant terms do not contribute to the overall normalization of

the parameters. The PDF f(xi; θ) is made up of several signals, so we can

write it as

f(x; Φ) =
∑
j=1

Φjfj(xi), (4.4)

and

Φ =
m∑
j=1

Φj (4.5)

giving,

logL(Φj) = −
m∑
j=1

Φj +
n∑
i=1

log

(
m∑
j=1

Φjfj(xi)

)
. (4.6)

53



where m is the number of signals.

The maximum value of the log likelihood function results in the best set

of parameters, Φ.

4.1.1 Extension to Three Phases

To extend the signal extraction over three phases, we must acknowledge that

the PDF of each distribution, fj(xi), will be different in each phase. We must

then sum the log likelihood from each phase.

The modified log likelihood will look like:

logL =
data∑
i=0

log

(
signal∑
j=0

Φjfj (xi)

)
−

signal∑
j=0

Φj

+
data′∑
i′=0

log

(
signal∑
j=0

Φ′jf
′
j (x′i)

)
−

signal∑
j=0

Φ′j

+
data′′∑
i′′=0

log

(
signal∑
j=0

Φ′′jf
′′
j (x′′i )

)
−

signal∑
j=0

Φ′′j ,

(4.7)

where the prime and double prime notation denotes the addition of the salt

and NCD data sets to the D2O data set, respectively.

4.1.2 Adding a Constraint to the Likelihood

In cases where extra information is known, presumably from some calibration

or measurement, it is possible to influence the likelihood in a way that reflects

this knowledge. We can modify our likelihood by prior knowledge about some

parameter α, by applying a Gaussian constraint G(α), to our likelihood by

L′ = L G(α) (4.8)

where L′ is the modified likelihood. In the case of a log likelihood, this becomes:

logL′ = logL+ logG(α), (4.9)
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This means that Equation (4.6) would be modified to be:

logL =
data∑
i=0

log

(
signal∑
j=0

Φjfj (xi)

)
−

signal∑
j=0

Φj + log(G(α)) (4.10)

Explicitly, G(α) is:

log(g(α)) = −1

2

(
α− µα
σα

)2

(4.11)

where µα is the mean measured value of α and σα is the standard deviation

of the measured value of α. Since Equation (4.11) constrains the likelihood

function, we call it a penalty term.

4.1.3 Bayesian Prior

This analysis uses a Bayesian approach. That is, we start with Bayes’ Theo-

rem:

P (θ|xi) =
P (xi|θ)P (θ)

P (xi)
(4.12)

where P (θ) is the prior probability of θ; this is assumed to be known before

starting. P (θ|xi) is the posterior probability, which depends on xi, P (xi|θ) is

the likelihood of xi given θ, and our likelihood function, P (xi) is the probability

of xi which is just a normalization constant [50].

Because our parameter θ is the number of events, we will consider that we

have a uniform prior above zero, as shown in Equation (4.13). This means

that the resulting posterior distribution is the likelihood distribution. The

prior must be defined this way because we cannot allow negative (unphysical)

values for the number of events in any signal.

P (θ) =

{
1 if θ ≥ 0
0 if θ < 0

(4.13)

4.2 Markov Chain Monte Carlo

To find the best set of parameters that maximizes the likelihood in the previous

sections, we use a Markov Chain Monte Carlo (MCMC). The MCMC uses the

55



Metropolis-Hastings algorithm [51] to efficiently map out the likelihood space.

The Metropolis-Hastings algorithm is a simple technique to build a Markov

Chain. The algorithm is:

1. Select an initial set of parameters, θ.

2. Smear this set of parameters. Use a symmetric function, such as a gaus-

sian centered on the parameter, with a width of 1
3

the statistical uncer-

tainty (θ′).

3. Calculate the likelihood with these initial parameters (P(θ′)).

4. Smear the previous set of parameters. Again, use a symmetric function

centered on the parameter, with a width of 1
3

the statistical uncertainty

(θ).

5. Calculate the likelihood with these new parameters (P(θ)).

6. Take the ratio, R, between the new likelihood and the old. Take this

number or one, whichever is lower.

R = Min

(
P (θ)

P (θ′)
, 1

)
(4.14)

7. Randomly select a number between zero and one (α).

8. If the ratio, R, is greater than the random number, α, record the new

set of parameters. If not, record the previous set.

α =

{
≤ R then P (θ) Accepted
> R then P (θ) Rejected

(4.15)

9. Repeat steps 4–8.
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Continue this procedure until the likelihood distribution is smooth. For

each run, the initial steps of the Markov chain must be removed as burn-in.

The initial steps are used to allow the chain to converge to the most probable

points in the likelihood space. Section 7.1 will show the tests of convergence

used.

This algorithm starts from an initial set of parameters and walks to the

best-fit position in the likelihood space. This walking can be seen in Fig-

ure 4.1 and is removed with the burn-in cut. A simple check will verify that

the algorithm has converged on the right location in likelihood space. This

check tracks the value of the likelihood for each step in the Markov chain (See

Figure 4.2). We can see that after 800 steps the Markov Chain has converged

around the maximum of the likelihood. The Markov Chain will sample the

space around the maximum likelihood for a statistically significant number of

points, which can be seen by the slight variation around the converged likeli-

hood in Figure 4.2. It has been proven that the Metropolis-Hastings algorithm

will result in a sampling of parameter space in proportion to the likelihood.

The MCMC method has a significant advantage over minimization routines

to find the best fit parameters of the likelihood function. Minimization rou-

tines, such as minuit [52], have trouble with choppy likelihood shapes and have

problems with large numbers of parameters. The MCMC method produces

the likelihood shape and allows the interpretation to be shown more directly.

For example, we can see that in Figure 4.3 the signal extraction has produced

a smooth posterior distribution (likelihood space when normalized). A simple

way to represent the best fit value and its uncertainty is to use the mean and

RMS of the posterior distribution. This choice is independent of the MCMC

method giving much more freedom in the analysis. There is no limit to the

number of parameters that can be used in the MCMC, but a large number of

parameters can lead to longer convergence times. The MCMC method also
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Figure 4.1: A simple example of a Markov Chain using two parameters chosen
based on the Metropolis-Hastings algorithm. After the burn-in period, the
algorithm ensure that the parameters are selected in proportion to their likeli-
hood. During the burn-in period, which starts at arbitrary parameters, regions
with lower likelihood are sampled. The colour scale represents the number of
MCMC steps, the blue points are the lowest on the scale, and the red region
is the largest.
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Figure 4.2: A check of the convergence of the Metropolis-Hastings algorithm.
We see convergence after 800 Markov chain steps.

does not require that the likelihood space is a Gaussian distribution. Since it

just samples the likelihood space, even non-Gaussian likelihoods can be sam-

pled accurately.

4.3 Ensemble Test

Ensemble tests are used to verify that the signal extraction technique is correct.

The procedure is to create sets of data, with a known number of events for each

class, such as data drawn from the MC. Section 4.3.1 will explain the creation

of the data sets. Each data set in the ensemble then has the signal extraction

fit preformed individually and the result recorded. Each result should then

be in statistical agreement with the known answer. The method to determine

agreement is explained in Section 4.3.2.

Simply put, we use the likelihood function to generate the ensemble data,
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Figure 4.3: Sample posterior distribution, using data drawn randomly for the
MC as a sample data set for the signal extraction.

we then use the likelihood function to fit the data, and measure our agreement.

This gives us confidence that we understand the accuracy and precision as well

as limitations of our signal extraction technique.

4.3.1 Fake Data Set

Each fake data set is drawn from the SNOMAN simulation. Each data set

contains events from each expected signal type. In the case of the hep analysis,

these signals are hep, 8B, and atmospheric neutrinos. In each case only the

CC and ES events are used because the NC events are below our energy

threshold. Each data set contains data from all three phases, generated with

phase-specific detector parameters.

Normally the number of events of each signal are chosen by using the

expected results. This was not done for our test because the expected number

of hep and atmospheric neutrino events is so low that the mean of the posterior

distribution may not be the same as the number of events in the fake data
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set. For example, the hep signal may be low enough that the resolution of

the posterior distribution can be statistically consistent with zero. Our prior

(Equation (4.13)) restricts us to a non-negative mean which necessarily leads

to a biased mean.

When there are many events in the data set, the posterior distribution is a

Gaussian distribution and the mean is a good representation of the expected

result. In testing this signal extraction, the number of events of each signal

is increased until the signal is large enough that the mean of each posterior

distribution is the same as the mean as determined by a Gaussian fit.

When creating the fake data sets, each data set has a fixed number of

events, which is selected according to a Poisson distribution about the expected

number of events. The mean of the Poisson distribution is the expected number

of events. Table 4.1 shows the mean of the Poisson distribution used for each

signal.

Signal Mean

hep (Phase I) 207
8B (Phase I) 238
νatm (Phase I) 10
hep (Phase II) 207
8B (Phase II) 238
νatm (Phase II) 10
hep (Phase III) 207
8B (Phase III) 238
νatm (Phase III) 10

Table 4.1: Mean number of events used to create ensemble data sets. The
number of events in each signal are arbitrarily increased from expected to
allow the signal extract fit values that are not consistent with zero. This was
only done as a check for errors in the routine, and no information about the
sensitivity about the hep signal extraction should be inferred from this study.

The reason we use a Poisson distribution is because that is the statistical

probability distribution that naturally defines a process with a fixed rate of

independent events. If for example we were to run SNO multiple times, we
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would not expect to measure the same flux in each experiment. The flux

measurement in each experiment would be distributed as a Poisson distribution

around the true flux.

This distribution has also been taken into consideration in the definition of

the extended maximum log likelihood function used for the signal extraction,

as shown in Equation (4.6).

4.3.2 Bias and Pull

Once ensemble data sets are created as described in Section 4.3.1 then we must

quantify how well the signal extraction fits each signal. There are two sides

to this question. 1) The bias test which measures how well we determine the

mean; 2) The pull test which measures how well we determine the uncertainty.

To calculate the pull and bias for each parameter in an individual data set

we:

1. Start with the parameter posterior distribution.

2. Remove the burn-in MCMC steps, and use the resulting posterior dis-

tribution.

3. Fit a symmetric Gaussian to the peak using the range ±2 standard

deviations. The size of the bins have little impact on this, as long as

there are more than 10 bins within 1 standard deviation.

4. Use the mean of the Gaussian as µfit, and the width of the Gaussian as

σGauss.

5. Use these to find the bias and pull, Equations (4.16) and 4.18 respec-

tively, for the given parameter in the data set.

The bias for each signal for an individual data set is calculated by:

bias =
µfit − µinput

µinput

, (4.16)
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where µfit is the mean of the fit and µinput is the mean of the Poisson distri-

bution for the signal being calculated.

Once the biases for each data set (and signal) are calculated we can then

look at the bias distributions. Figure 4.4 shows the bias distribution for each

signal. Each parameter distribution has one entry from each of the ensemble

data sets. These are Gaussian distributed. The mean is said to be the bias for

the signal, and the error on the bias is given by the standard error:

σbias =
σGauss√

n
, (4.17)

where σGauss is one standard deviation of the Gaussian fit. This is equal to

the RMS of the distribution, if the distribution is truly Gaussian, and n is the

number of ensemble fake data sets. Also, if the fit is Gaussian, σbias is the

same as the error on the mean, µfit.

The bias mean and uncertainties for each signal are summarized in Fig-

ure 4.5. The bias for each signal is less than 3%, and less than 2 standard

deviations from zero. This is small enough to have negligible impact on the

signal extraction.

Like the bias, the pull calculation is done for each ensemble fake data set

(and signal). The pull is calculated using:

pull =
µfit − µinput

σfit

, (4.18)

where µfit is the mean of the fit, µinput is mean of the Poisson distribution for

the given signal and σfit is the uncertainty of the fit for the given signal.

Once the pulls have been calculated for each fake data set the pull distri-

butions for each signal can be made, as shown in Figure 4.6. Again, like the

bias distributions, there is one entry in each pull distribution for each ensem-

ble data set. These distributions are also Gaussian in nature. The mean and

one standard deviation of this distribution is used to measure the pull and

uncertainty.
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Figure 4.4: Bias distribution for each signal.

Figure 4.5: Summary of the bias distributions.
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If the signal extraction is working properly, we expect the uncertainty of

the pull to be one. This is because the µfit term in Equation (4.18) is drawn

from a Poisson distribution. So if µfit is distributed around µinput then the

width of the pull should be one. We can see from Figure 4.7 that the width

of the pull distribution is roughly one for all the signals as expected. We

see a larger pull for the atmospheric neutrino flux. This may mean the the

uncertainty in the atmospheric neutrino rate is less than the constraint.

Figure 4.6: Pull distribution for each signal.

4.4 Setting an Upper Flux Limit

In searching for rare processes, the measurement of the parameter can be close

to (consistent with) zero, as may be the situation in our analysis. In this case

an upper limit is given to the parameter. In the case of the hep flux, we use the

posterior (likelihood) distribution to make this measurement. In the case of an

upper limit measurement, we will use a 90% confidence limit (1 − α = 0.90).
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Figure 4.7: Summary of the pull distributions.

This upper limit is set by integrating the likelihood distribution, P (θ):

1− α =

∫ θupper

0

P (θ)d(θ) (4.19)

where θ is the parameter (hep flux in our case). Solving Equation (4.19)

for θupper gives us the limit. Figure 4.8 shows an example of a likelihood

distribution that is consistant with zero. The shaded (blue) region represents

the allowed 90% confidence level. We would quote the highest value of the

number of events in this area as a 90% c.l. upper limit.
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Figure 4.8: Sensitivity to hep events using MC as input data for a sample
signal extraction.
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Chapter 5

hep Search Methods

There are two methods that can be used to look for hep neutrinos. 1) Define

a region of interest in the energy spectrum, estimate the number of expected

background and signal events, and then count the number of events in this

region. This is known as a box analysis. 2) Use the information in the shape

of the spectrum to statistically distinguish the signals from the backgrounds.

This is known as a spectral analysis.

This section will outline the box analysis as previously done by SNO [32].

It will then discuss the motivation to move to a spectral analysis. Finally I

will compare the box analysis to the spectral analysis.

5.1 Box Analysis

A box analysis is conducted by defining a region of interest in the energy

spectrum (a box ) and counting the number of events observed in this box

(energy range). The box limits are chosen to maximize the sensitivity to the

desired signal. When trying to distinguish hep neutrinos from 8B neutrinos

only the CC and ES signals can be used. If a hep neutrino interacts via the

NC reaction it would be impossible to distinguish from any other neutrino

interacting via the NC reaction. The only observable difference that the hep

neutrino has compared to other neutrinos is its energy distribution.
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For the published SNO hep search [32], SNOMAN was used to determine

the sensitivity to the hep signal for various energy thresholds. Figure 5.1 shows

the expected number of signal and background events for a given low energy

threshold, Tthres, while always using 20 MeV as the upper energy threshold. It

also shows the corresponding sensitivity to the signal as a function of the energy

threshold. The sensitivity is mainly determined by the signal to background

ratio. We want the highest signal-to-noise ratio; that is, the highest number

of hep events with the lowest number of background events. Based on the

previous MC study the optimum energy window for the hep box was 14.3 <

E < 20 MeV.

Figure 5.1: The sensitivity of the box analysis as a function of a lower energy
threshold [32].

The Monte Carlo was used to simulate 10,000 experiments to predict the

number of expected background and signal events in the box. Each experiment
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was carried out by varying all of the input parameters within their uncertain-

ties. The results from these experiments are shown in Figure 5.2. At the 68%

c.l., 3.13±0.60 background events and 0.99±0.09 signal events were expected

within the box.

Figure 5.2: Monte Carlo simulations to determine the number of expected
background and signal events [32].

5.2 Motivation for a Spectral Analysis

The main advantage of a box analysis is its simplicity. The main effort is

optimizing the size of the box, as described in Section 5.1. This method only

uses the number of events and neglects the energy distribution in the box where

the events occur. This lost information can be harnessed by incorporating the

spectral shape into the analysis.

Including the spectral information in the hep analysis allows us to distin-

guish the signal from the background. Figure 5.3 shows the PDFs from the

D2O phase. The main feature of interest for the hep analysis in Figure 5.3 is

that the hep CC+ES PDF reaches out to a higher energy than the 8B CC+ES
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PDF. We can also see that the shape of the atmospheric neutrino PDF is sig-

nificantly different from the 8B and hep CC+ES PDFs. This means that by

observing the energy shape of the data we can more precisely place the data

into the most likely signal.

Figure 5.3: PDFs for the first phase of SNO using the SNO MC.

5.3 The Spectral Analysis in this Thesis

The goal of this thesis is to use the data from the three phases of SNO to

conduct a search for hep neutrinos using a spectral analysis. The spectral

signal extraction technique that will be used in this thesis has been outlined

in Section 4. This section will highlight the improvements to the analysis over

the previous box analysis.

The increase in sensitivity by including all three phases of data over just

one can be estimated. The number of signal events, Ns, in one phase of running
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with a live time, T , with a rate Rs would be

Ns = Rs × T, (5.1)

and number of background events, NB, in one phase of running with a live

time, T , with a rate RB would be

NB = RB × T. (5.2)

This would result in a sensitivity, σN , in the number of events measured as

σN =
Ns√
NB

. (5.3)

If we then include all three phases for a live time 3T (assuming T1 = T2 =

T3), we expect the number of signal events to be 3Ns, and the number of

background events to be 3NB, assuming a constant rate throughout all the

phases. This results in a sensitivity

σ3N =
3Ns√
3NB

=
√

3σN . (5.4)

The addition of approximately three times the livetime to the analysis is ex-

pected to increase the sensitivity (decrease the uncertainty) by a factor of
√

3.

The MCMC signal extraction method has similarities to the box analysis.

The box analysis used 10,000 MC experiments to define the probability of

signal and background events, as shown in Figure 5.2. In each of these exper-

iments the parameters were smeared within their uncertainties. The MCMC

method does this more elegantly. It allows the parameters to be smeared for

each step of the Markov chain sampling the likelihood space.

In this analysis the low energy threshold will be set to 13.5 MeV. At lower

energies the hep energy spectrum is dominated by the 8B energy spectrum,

making the signal extraction difficult, and even less precise. Using a low energy
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threshold does increase the number of hep events in our data set; however, the

dominance and similar shapes of the energy spectra lead to a large correlation.

This correlation increases the uncertainty (lowers the precision) of the hep

measurement.

The 13.5 MeV energy threshold cuts out most of the 8B events. Past SNO

analyses have focused on measuring the 8B flux. The hep analysis is going to

use this past measurement as a constraint on the 8B flux. Because so few of the

8B events are in the region of interest for the hep analysis we are not concerned

that these events could have significantly influenced past measurement, and

thus we are not using these events to constrain themselves. That is, the past

SNO 8B flux measurement has been done with a significantly different sample

than our data set. The constraint on the 8B flux is applied as a Gaussian

constraint on the likelihood, as described in Section 4.1.2.

5.4 Comparison of Projected Sensitivity of the

Spectral Analysis to the Previous Phase I

Box Analysis

This comparison was concluded before the 13.5 MeV low energy threshold was

determined. This was done as a proof of concept for the spectral approach to

the hep search. For this section only, the low energy threshold has been set to

6 MeV (consistent with the low energy threshold of previous analyses). This

will not affect our conclusions, as our 13.5 MeV threshold should only improve

our sensitivity.

To show the improvement that the spectral analysis can have over a box

analysis, both methods were used on common data sets for comparison. We

use Monte Carlo events as our simulated data. We set a known number of

8B CC+ES, NC, and atmospheric neutrino type events and try to extract the

number of hep CC+ES events.

73



A simple box analysis can be done using the same energy range as the

previous SNO hep search, 14.3 < E < 20 MeV. We first find the number

of background, B, events (non-hep events, this can be done exactly since we

are using MC). We then define an uncertainty on the number of background

events, δB, by

δB =
√
B. (5.5)

The number of events, N , in the energy window were counted. The number

of signal events (hep), S, is then determined by

S = N −B. (5.6)

The upper limit of the number of hep events is

Supper = S + 1.282 δB, (5.7)

where 1.282σ is a 90% one-sided confidence limit [50].

The spectral (MCMC) analysis solves for the number of events in a different

(much larger, 6 < E < 60 MeV) energy window, so to compare the box and

spectral analysis they are converted to fluxes. The SSM hep flux, ΦSSM , is

7.97× 103 cm−2 s−1, so to determine the flux we use

Φupper

ΦSSM

=
Supper
SSSM

, (5.8)

where

SSSM =

{
= 1 for box analysis energy range
= 19 for spectral analysis energy range

(5.9)

SSSM is determined from SNOMAN.

We run each analysis over 100 sets of data Poisson distributed at some

input number of event of each signal type (See Section 4.3 for details on how

the data sets are built). Ten different input values were chosen. The results for

the box and spectral signal extractions are shown in Figure 5.4. The number

of hep events are defined as the number of hep events in the spectral analysis
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window. The results show that the spectral analysis is an improvement over

the box analysis by approximately 30%.
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Figure 5.4: Comparison of a box analysis to a spectral analysis using the MC
data sets. The inputted number of hep events are defined as the number of
hep events in the spectral analysis window.

5.5 Comparison of Results using Only the Phase

I Data Set for the Box and Spectral Anal-

ysis

Figure 5.5 shows the results from the first SNO hep search. Section 5.1 details

the analysis used and states that there were 3.13± 0.60 expected background

events and 0.99± 0.09 signal events expected. The box contained two events,

consistent with background events. This allows an upper hep flux limit at a

90% confidence level of 2.3× 104 cm−2 s−1 [32].
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Figure 5.5: First SNO hep search results showing the hep signal box and
observed data [32].
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The details of the spectral analysis will be discussed in Chapter 6. This

section will just outline the results of the box analysis and the spectral analysis

using only the first phase of the SNO experiment. Figure 5.6 shows the 90%

confidence level of the hep flux extracted using a spectral analysis. The hep

flux at the 90% confidence level is 1.4× 104 cm−2 s−1. This limit is 1.6 times

lower than the previous SNO hep search on the same data.

The SSM prediction for the hep flux is (7.97±1.24)×103 cm−2 s−1, meaning

that this result is still above the SSM, but it is closing in. The remaining

Chapters will describe all of the parameters that go into the signal extraction,

and conclude with the three phase hep search results.

Figure 5.6: The likelihood distribution, integrated to a 90% confidence level,
of the hep flux using the phase I data set.
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Chapter 6

Systematic Uncertainties and
Determination of the Low
Energy Threshold

6.1 Systematic Uncertainties

Systematic uncertainties are defined in SNO as differences between the SNO-

MAN and the data as determined by calibrations. The section will first explain

the difference in application of the uncertainties between an extended likeli-

hood approach and a χ2 approach. It will then define the terms that charac-

terize the energy systematic uncertainties and summarize the values used for

each uncertainty in the hep signal extraction.

Uncertainties in the χ2 and Extended Likelihood Approaches

We now compare how we would deal with systematic uncertainties in a χ2

analysis to a likelihood approach. Let us consider a flat data distribution,

that is, a flat PDF with n data points, where the number in each bin i is

Ni and depends on some parameter p. Lets also assume that there is some

efficiency εi in each bin. The number of events in a given bin is then

Ni =
N̄(p)

εi
. (6.1)
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The uncertainty is determined by

σ =
√
σ2
stat + σ2

sys, (6.2)

where the σstat is the statistical uncertainty and σsys is the systematic un-

certainty. The systematic uncertainty can be found by solving for N̄
εi

for a

calibration source and then calculating the mean and RMS of
(
N̄
εi
− N̄

ε0

)
. The

χ2 is then given by:

χ2 =
n∑
i

(
N̄
εi
− N̄

ε0

)2

σ2
. (6.3)

We can see that we will get a good χ2 for any shape of the PDF that is

consistent with the uncertainty σ. For a good fit, we expect χ2 = 1.

This is different then the extended likelihood approach, where the system-

atic uncertainties are applied as constraints (penalty terms). In the case of

the likelihood, we find the best fit parameters for the PDF, but there is no

defined good value.

The likelihood approach is preferred because it can easily handle low statis-

tics analysis. σstat becomes hard to define, and thus finding a best fit parameter

in the χ2 approach becomes difficult. Also, for large statistics and small σsys

the two approaches converge to one another.

6.1.1 Defining the Systematic Uncertainties

The estimation of the energy scale and energy resolution uncertainty is de-

fined as the difference between looking at the data from the 16N calibration

source (see Section 2.1.1) and comparing them to the SNOMAN simulation.

This source was a well-defined and tagged gamma particle source, providing a

precise and known energy in SNO, and therefore allowed for the most precise

measurement of the energy response. This measurement was then verified by

using the 8Li calibration source (see Section 2.1.3). Constraints were able to
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be applied from the pT source (see Section 2.1.2) in the first phase, as well as

further verification by using the Michel elections as a constraint.

To evaluate the systematic uncertainty we compare the MC to data for

given calibration sources. These sources are placed in finite locations ~x in

the SNO volume at given times t. That is, we measure the discrete energy

response of the detector Ej(~x, t) for n calibration runs j. We then can take

the average of our calibration,

E0 =

∑n
j Ej(~x, t)

n
, (6.4)

where E0 is the average energy for all calibrations. The uncertainty is then

measured to be the spread in the energy calibration measurements, σE0 . In a

perfectly calibrated detector we would uniformly sample the volume (because

we expect the data to interact uniformly in SNO) as n→∞.

To apply this exactly we would use a systematic uncertainty parameter for

each region in ~x and t. Although possible, this would be very difficult and

impractical for large values of n. Instead this Ej(~x, t) is averaged over, as

shown in Equation (6.4), with an uncertainty, σE0 .

The calibration sources were not always deployed in a spatially uniform

way, as the calibration system was restricted to two planes in the volume.

There were other variations in the location of deployment; e.g., we calibrated

more often in lower regions than higher regions.

To account for all the variations in calibration deployment locations, times,

and averaging, the measured uncertainty σE0 is widened. That is, we added

an additional uncertainty δ to the width of the distribution σE0 to get

σa,r = σE0 + δ. (6.5)

This approximation is exactly right if all Ej(~x, t) terms are the same, that
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is if Ej(~x, t) = E0. However, using E0 ± σa,r is a large enough distribution

to ensure that we are not underestimating our systematic uncertainty. The

resulting measurement is then what is used as the systematic uncertainties,

the a and r terms in the following discussion, specifically in Equations (6.6)

to 6.9.

To apply the systematic uncertainties in the signal extraction we must

apply the systematic uncertainties to the PDFs. The energy of a simulated

event T is modified to a new energy Tnew by a series of equations:

Tnew = (1 + a0 + ax)T, (6.6)

Tnew =

(
1 + a1

T − 5.05

19.0− 5.05

)
T, (6.7)

Tnew = TG(0, ry)), (6.8)

and

Tnew = T + rIII(T − Tg), (6.9)

where a0 is the linear energy scaling component and correlated between all

three phases, ax is the linear energy scaling component that is uncorrelated

between the phases (x =I, II, or III), a1 is the non-linear (quadratic) energy

scaling component, ry, and rIII are the linear energy resolution components

(y =I, or II), Tg is the energy as generated by the Monte Carlo, and G(= c, d)

is a Gaussian with a centre located at c, and a width of d.

The energy scale is applied in this way, (a0 + ax), to account for differ-

ences that we believe feed into our energy scale systematic uncertainty. There

are many effects that can cause energy scale uncertainty but are character-

istics of the detector and therefore do not change over time. These include
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the uncertainty in the 16N source, which we use to set the scale. There are

other time-dependent causes, such as PMT breakdown and PMT concentra-

tor degradation, that make us consider an additional phase dependent energy

scale uncertainty.

Equations (6.6) to 6.9 can be thought of in two parts. First, the (1 + a0 +

ax)T and
(
1 + a1

T−5.05
19.0−5.05

)
T terms are a fractional shift in the energy, this just

scales the energy up or down. Equation (6.7) is specifically designed to add

energy-dependent scaling effects into the signal extraction. This shift is set to

zero at the 16N energy (5.05 MeV electron kinetic energy) where the scale was

best measured, and to the scaling at the pT energy (19.0 MeV electron kinetic

energy). We then linearly interpolate between.

The final terms are a widening or narrowing of the energy distribution,

applied slightly different. The Tnew = TG(0, ry) term, used in phases I and

II, convolves the energy from the energy fitter with an extra Gaussian with a

width, ry and the T +rIII(T −Tg) term, used in phase III, multiplies the differ-

ence between the true energy and the energy from the energy fitter by an extra

scaling term. These are essentially the same, however the formalisms are dif-

ferent to maintain consistency with past analyses. Combining all these terms

ensures that we can accurately account for any differences in the simulation

through out the phases.

When estimating the energy scale and non-linearity systematic uncertain-

ties, the estimation was done for each phase, then the most conservative value

was taken and that value was applied in each phase. Table 6.1 shows the value

used for each energy systematic uncertainty, for each phase. Table 7.2 shows

the summary of the effect of each systematic uncertainty.

To apply this to the code, the energy scaling is written in the parameteri-

zation:

T ′ = (1 + s0 + s1T0)T0. (6.10)
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Phase I Phase II Phase III

a0 0± 0.0041 0± 0.0041 0± 0.0041
ax 0+0.0039

−0.0047 0+0.0034
−0.0032 0± 0.0081

a1 0± 0.0069 0± 0.0069 0± 0.0069
rx 0.155+0.041

−0.080 0.168+0.041
−0.080 0.0161± 0.0141

Table 6.1: Summary of energy systematics for all phases. x refers to the given
phase, I, II, or III. Note here that rI and rII are the values that correspond to
∆ in Section 6.1.2.

This formalism was used for reason historical to the first SNO hep analysis,

but as shown in Section 6.1.2 the (a0+ax) and a1 terms can easily be re-written

to be equivalent.

6.1.2 Re-parameterizing Energy Systematic Uncertain-
ties from 8B Three Phase Analysis to hep Analysis

Energy Scale Systematic Uncertainty

The hep energy scale systematic uncertainty has been implemented into the

the signal extraction code in the form of:

T ′ = (1 + s0 + s1T0)T0, (6.11)

where T ′ is the re-mapped energy, T0 is the energy from the SNO energy fitter,

s0 is the linear energy scale, and s1 is the quadratic energy scale parameter.

This parameterization of the energy scale systematic uncertainty was used

for historical reasons. The first SNO hep search used this form, and this

analysis was designed using that search as a starting point. However, to be

consistent with the three phase 8B analysis the application of the energy scale

systematics must be the same.

In the three phase analysis the energy scale is done in two steps, first the

energy scale term:

T ′ = (1 + aE0 )T0, (6.12)
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where aE0 is the three phase energy scale parameter (a0 + ax in Section 6.1.1).

The second step is the energy non-linearity:

T ′′ =

(
1 + a1

T ′ − 5.05

19.0− 5.05

)
T ′, (6.13)

where T ′′ is the re-mapped energy, and cE0 is the three phase energy non-

linearity parameter.

Putting Equation (6.12) into Equation (6.12) and solving for the resulting

re-mapped energy, T ′′, we get:

T ′′ =

(
1 + aE0 −

5.05

19.0− 5.05
a1 −

5.05

19.0− 5.05
aE0 a1 +

(1 + aE0 )2

19.0− 5.05
a1T0

)
T0,

(6.14)

now comparing Equation (6.14) to Equation (6.11) we get the parameteriza-

tion:

s0 = aE0 −
5.05

19.0− 5.05
a1(1 + aE0 ), (6.15)

and

s1 =
(1 + aE0 )2

19.0− 5.05
a1. (6.16)

In the signal extraction we vary the aE0 and a1 terms and use the same

constraints as the three phase 8B analysis, but they are applied using the s0

and s1 parameters internally to the hep signal extraction code.

Energy Resolution Systematic Uncertainty

Similar to the energy scale systematic uncertainty situation, the energy res-

olution systematic uncertainty needs to be re-parameterized from the three

phase 8B analysis to the hep implementation for consistency. The hep signal

extraction applies the energy resolution systematic uncertainty in the form:

T ′ = T0 + (T0 − Tg)rx, (6.17)
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where T ′ is the re-mapped energy, T0 is the energy as returned by the SNO

energy fitter, Tg is the true energy (MC generated energy), and rx is the hep

energy resolution parameter in phase x, where x = I, II, or III.

Equation (6.17) is the same form as that used in the NCD phase of the three

phase 8B analysis. The D2O and salt phases use the same parameterization

as the LETA analysis.

The LETA analysis convolve each fitted energy with a Gaussian, G(1, 0,∆),

normalized to one, a mean of zero, and with a width (one standard deviation)

equal to the energy resolution, ∆. That is,

T ′ = T0 G(1, 0,∆). (6.18)

Figure 6.1 shows this convolution. The black curve represents the en-

ergy resolution, with a width σ, and the red curve represents the Gaussian,

G(1, 0,∆), which is an additional energy resolution, which we will smear the

energy by.

Figure 6.1: The convolution of the black curve by the red curve. The black
curve has a width σ and the red curve has a width ∆.
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In Equation (6.17) the width, σ′ is given by:

σ′ = rxσ, (6.19)

where σ is the true resolution between the fitted energy and the true MC

generated energy.

In Equation (6.18) the width, σ′ is given by:

σ′ =
√

∆2 + σ2. (6.20)

Combining Equations (6.19) and 6.20 we find:

rx =

√
1 +

∆2

σ2
− 1, (6.21)

where −1 comes from the T0 term in Equation (6.17), which is the scaling part

of the expression. The σ term has been evaluated previously in Reference [37]

and is given by:

σ = −0.185 + 0.413
√
T0 + 0.0254T0. (6.22)

The resolution, ∆, will be varied in the code using the same constraints

as the three phase 8B analysis. This will then be re-parameterized by Equa-

tion (6.21) which will then be used directly in the hep signal extraction code.

6.1.3 Floating Systematic Uncertainties

There are two way systematic uncertainties can be considered by a signal

extraction; 1) To be shifted and re-fit and 2) floated. The first is a very sim-

ple and conservative approach where several signal extractions are performed,

each with a different likelihood function and PDFs defined with different fixed

parameters. The sensitivity of the fit to a change in parameters is determined

by calculating the derivative of the extracted values from the fit with respect

to the variation of the systematic parameters.

The second approach is to modify the (log) likelihood function in the signal

extraction (Equation (4.6)) by a penalty term as mentioned in Section 4.1.2,
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and to explicitly incorporate the dependence on a systematic parameter into

the likelihood function. In this approach the uncertainties are assumed to be

Gaussian. In this case we add a Gaussian to the log likelihood function giving:

logL =
data∑
i=0

log

(
signal∑
j=0

Φjfj (xi)

)
−

signal∑
j=0

Φj −
(
α− µα

2σα

)
, (6.23)

where the first two term are Equation (4.6) and the last term is the Gaussian

penalty term, constraining the systematic uncertainty, α, to the mean, µα,

with a width, σα. This is analogous to adding another signal with an analytic

Gaussian PDF. As many of these penalty terms can be added as necessary. In

this analysis we float the three energy systematic uncertainties (one in each

phase), we float a correlated energy scale systematic uncertainty that is corre-

lated through all the phases, we float the non-linearity of the energy response

systematic uncertanty, and we float the three energy resolution systematic

uncertainties (one in each phase).

It should be noted here that when floating the systematic uncertainties,

one needs to be aware of the extracted results. The systematic uncertainty

parameter results, in general, should not be more precise (narrower posterior

distribution) then the constraint, or penalty term. If this occurs, the set of

parameter must be examined. That is, we do not expect the signal extraction

to give better results then the calibration data to the systematic uncertainty.

There are cases where this may look like the case. These cases may included

the situation where two systematic uncertainties are constraining the same

physical parameter, and thus may act to constrain each other, resulting in a

narrower posterior distribution. With this all being said, we still prefer the

floating systematics method, because of its ability to measure the correlations

between the various parameters.
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6.1.4 Normalization of PDFs After Application of Sys-
tematic Uncertainties

The usual way in which SNO has added systematic uncertainties to the signal

extraction has been to modify the PDFs (defined in Section 3) by rebuilding (or

smearing) them for various statistically allowed sets of systematic uncertainty

values. This method is relatively easy, however each of the PDFs can have

millions of entries making the rebuilding part extremely computationally long.

As the rebuilding of the PDFs must be done for every choice in the sampling

of the parameters. In the case of the Markov chain, that is a rebuilding for

each MCMC step

The other option is to modify the mapping from data to MC space, keeping

the PDFs the same shape. This is what we have chosen to use for the hep

analysis. This section will detail how to maintain normalized PDFs with this

approach.

The definition of a PDF requires that it is always the case that:

N(S)

∫ x2

x1

f(x, S)dx = 1, (6.24)

where f(x) is a probability distribution, f(x)dx is the probability of the PDF

at x in data space, and N(S) is the normalization constant and S is the

systematic uncertainty parameters..

We now define the analogous variable in MC as y, and the mapping from

data to MC space as:

y = g(x, S), (6.25)

and

dy = g′(x, S)dx, (6.26)

putting Equations (6.25) and 6.26 into Equation (6.24) we get:∫ y2=g(x2,S)

y1=g(x1,S)

N(S)
f(g−1(y, S))

g′(g−1(y, S))
dy = 1. (6.27)
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We now define the value that is taken directly from the MC for a given y

as:

h(y, S) =
f(g−1(y, S))

g′(g−1(y, S))
, (6.28)

and the normalization of h(y) for a given set of systematic uncertainty values,

N(S), is given by as:

N(S) =
1∫ y2

y1
h(y, S)dy

. (6.29)

This results in the final normalized expression:∫ x2

x1

Nh(y, S)g′(x)dx = 1, (6.30)

which re-normalizes the MC, allowing the use of the MC as they are, while

ensuring the condition of Equation (6.24). Equation (6.30) states that multi-

plying the value from the MC distribution, h(y), by the normalization for a

given set of systematics, N , and the derivative of the mapping, g′(x), we get

the probability of an event with the observable, x.

6.1.5 Normalization of PDFs in the Case of Interpola-
tion

To determine the effect of certain systematic uncertainties on the PDFs, it is

often complicated to use an explicit analytic form as is outlined in the method

of Section6.1.4. This is true in the case of the energy resolution systematic

uncertainty.

Instead a table of PDFs was initially calculated for known values of the res-

olution and used for interpolation durning the signal extraction. This section

will show the way in which we interpolated between two PDFs and normalized

the result.

Starting with two normalized PDFs:∫ x2

x1

f1(x)dx = 1, (6.31)

89



at some value α1, and ∫ x2

x1

f2(x)dx = 1, (6.32)

at α2. To interpolate to a point α between α1 and α2 we use:

fa(x) =
α2 − α
α2 − α1

f1(x) +
α− α1

α2 − α1

f2(x), (6.33)

where fα(x) is the value of the PDF at α between f1(x) and f2(x). To normalize

the fα(x) PDF we require:

Nα

∫ x2

x1

(
α2 − α
α2 − α1

f1(x) +
α− α1

α2 − α1

f2(x)

)
dx = 1, (6.34)

where Nα is the normalization constant at α More specifically, as will be

explained later in Section 6.1.1 we know that a takes the form:

α = r0, (6.35)

where r0 is a systematic uncertainty. Continuing with the normalization we

get:

Nα

∫ x2

x1

(
α2 − r0

α2 − α1

f1(x) +
r0 − α1

α2 − α1

f2(x)

)
dx = 1, (6.36)

expanding:

1

Nα

=

∫ x2

x1

(
α2 − r0

α2 − α1

f1(x) +
r0 − α1

α2 − α1

f2(x)

)
dx, (6.37)

because f1(x) and f2(x) integrate to one, the sum also integrates to one, leaving

the normalization constant, Na being:

Nα = 1. (6.38)

This means that for any selection of the energy resolution and interpolating

between the calculated PDFs we maintain normalization.
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6.2 Constraining the Signals

Previous measurements have been done that can aid in extracting the best

possible hep measurement [6]. Given that the hep flux is totally dominated

at low energies by the 8B flux, we have chosen a low energy threshold that is

high enough so that the residual 8B flux above the threshold is comparable

to the expected hep flux. With so few events we have limited statistics with

which to limit the 8B flux; however, we are able to use the previous SNO solar

analyses to constrain the 8B flux.

This previous 8B flux measurement can be used to constrain the number

of 8B events in this hep analysis, assuming that we understand the energy

spectrum of the 8B and hep signals. Also, the atmospheric background was

studied in much detail for the first SNO hep search [32] and discussed in Section

2.4.1. Each of these measured signals can be used to constrain the likelihood

function, as is shown in Section 4.1.2.

This section will summarize the measurement of each signal that is used

as the constraint. The 8B flux constraint is shown in Table 6.2 and the atmo-

spheric neutrino background is shown in Table 6.3.

8B mean uncertainty
All phases 5.05 +0.159

−0.152

Table 6.2: Constraint on the 8B flux. In units of ×106 cm−2 s−1.

νatm mean uncertainty
Phase I 0.122 0.087
Phase II 0.156 0.111
Phase III 0.153 0.109

Rate (×10−4νatm/day) 3.89 2.84

Table 6.3: Number of expected νatm background events for each phase, and
the constraint on the rate of νatm events in the SNO detector.
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6.3 Flux to Event Conversion

The flux of each signal is assumed to be the same in all three phases; however,

the number of events in each phase is not. The number of events varies for

many reasons such as different live times between phases, different energy

resolutions, different thresholds on the electronics, and different amount of

absorption in the media. These efficiencies can be seen when we compare the

8B or hep spectra from each phase to each other. They are not identical. The

number of events in a phase, i, for a signal is given by:

Ni = ΦSun εi Pee Tlivei , (6.39)

where ΦSun is the solar flux, εi is the capture efficiency (including neutrino-

deuteron cross-sections, and detector efficiencies) for phase i, Pee is the proba-

bility that an electron neutrino created in the Sun is still an electron neutrino

what it reaches the detector, and Tlivei is the detector neutrino live time for

phase i.

The SNOMAN software has all of the known components of εi and Tlivei

included and we have evaluated systematic uncertainties that we can add to

the Pee distortion to our PDFs before we do the signal extraction, making this

conversion simpler. To calculated the number of events we can use the MC

from SNOMAN to do the calculation. This is done by:

Ndata

Φdata

=
NMC

ΦMC

, (6.40)

giving:

Ndata = Φdata
NMC

ΦMC

, (6.41)

where Ndata is the number of expected events in the data, Φdata is the flux that

is expected in the data, NMC is the number of events in the Monte Carlo, and

ΦMC is the flux used to generate the Monte Carlo. In the signal extraction the
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flux, Φdata is the same over all three phases for one step of the Markov chain

and the NMC

ΦMC
ratio is unique to each phase, resulting in Ndata being unique to

each phase. The Φdata term is then varied for each step of the Markov chain

converging on the best fit value.

6.4 Determination of the Lower Energy Thresh-

old

The sensitivity (the upper flux limit at 90% c.l.) of the hep analysis a function

of the low energy threshold. There are two forces playing off against one

another in the determination of the threshold. The first is that, as we lower

the threshold we increase the number of signal (hep ) events. The second is as

we raise the threshold we reduce the number of background events (8B).

The placement of the low energy threshold was determined by calculating

the sensitivity to the hep signal using different low energy thresholds. To

do this test, 100 data sets were created by drawing the expected number of

signal events from the Monte Carlo for the given low energy threshold. A

signal extraction was then done over each of these 100 data sets for a given

low energy threshold. The 90% upper confidence limit on the hep flux was

calculated using the method described in Section 4.4. These upper limits for

a given low energy threshold were then recorded.

Low energy thresholds between 12–15 MeV were scanned in 0.5 MeV in-

crements. Figure 6.2 shows the results for each low energy threshold. From

Figure 6.2 we can see that the best sensitivity for the hep is achieved with

a low energy threshold of 13.5 MeV. We want the low energy threshold to

have as few 8B neutrinos as possible because they are a background to the

hep measurement, and to maintain independence between the hep measure-

ment and the data set used in the LETA analysis that provides us with our

8B constraint. At 14 MeV we can see that we are harming our sensitivity, so
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we place the low energy threshold at 13.5 MeV.
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Figure 6.2: The sensitivity to various lower energy thresholds to determine the
optimal placement for the three phase hep analysis. The upper panel shows
the 90% upper c.l. flux from each of the 100 data sets used to probe sensitivity.
The bottom panel shows the mean and RMS distribution from the points in
the upper panel.
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Chapter 7

Flux Results

Up to now the method of signal extraction has been presented, the systematic

uncertainties have been described and we have decided on the optimal range

in which to analyze to get the most sensitive result. The final step is to

run the analysis. Once the signal extraction has been completed, the MCMC

must be verified that it has reached convergence. Sections 7.1 and 7.2 will

present the tests and confirmation that all signals have sampled the likelihood

space, converged to a most likely value, and have no dependence on the initial

parameters.

The Data has been presented in Section 2.3, and this section will present

the results. This section will include the all correlations between parameters

in the signal extraction as well as the effect of each systematic uncertainty on

the hep result.

At the time of writing, the SNO internal analysis review committee has

not approved this analysis to fully examine the data. What will be presented,

is a 1/3 random selection of the actual data set. This thesis will present a

comparison of a MC simulation of a three phase data set, to the 1/3 data set,

and state conclusions using this comparison. All sections will contain results

from the 1/3 data set unless otherwise stated.
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7.1 Convergence

The MCMC method samples the likelihood space for various choices of the

parameters. This method inherently means that some of the initial samples

are more correlated with the initial guess of the parameter than with the actual

shape of the likelihood space. The steps at the start of the Markov chain that

we remove we call burn-in.

The number of steps required in the burn-in period is determined by the

number of the parameters, the correlations between the parameters, and the

size of the Markov step. It takes many steps of the Markov chain before any

meaning came be taking from the results. That is, we have to wait for the

Markov chain to converge.

One way to test convergence is to remove the burn-in steps then split the

posterior into two halves. If the posterior distribution for the two halves are

different, the chain has not converged. Figure 7.1 shows that the chain is

converged for the signals, and Figure 7.2 shows that the chain has converged

for the systematics uncertainties.

A better test to verify convergence is to check that the likelihood value

does not change as a function of MCMC step, this is shown in Figure 7.3.

This check is also used for the determination the burn in period, as we can see

how long the likelihood value takes to converge. Figure 7.3 shows that after

100 steps the likelihood value no longer changes by large amounts.

Extending this procedure we can look at Figures 7.4 and 7.5 to see how

each parameter converges as a function Markov chain step. This also pro-

vides another important check. These distributions explicitly show how the

MCMC samples each parameter. This allows us to see if the parameter changes

its mean value as a function of MCMC step, this would be a sign of non-

convergence and is a symptom of a poor choice for MCMC step size for that

97



Figure 7.1: A comparison between the first half and the second half of the
posterior distribution for the signals.

parameter.

7.2 Auto-Correlation Function

The auto-correlation function (ACF) is a way of measuring the lag that the

Markov chain has before it forgets the value of a step. This is important to

measure because the likelihood space can have no dependence on the initial

guess giving to the Markov chain.

A side effect of this lag is that if the posterior is fit to a Gaussian the

agreement in most cases looks good by eye but will have a poor χ2 value. This

is because of the Markov chain’s inherent correlation to the previous value in

the chain. It should be noted that this feature is what defines a Markov chain.
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Figure 7.2: A comparison between the first half and the second half of the
posterior distribution for the systematic uncertainties.
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Figure 7.3: The convergence of the log likelihood as a function of the Markov
chain step.

Figure 7.4: The sampling of the signals.
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Figure 7.5: The sampling of the energy systematic uncertainties.
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The auto-correlation function is defined as:

ACF(h) =

i−h∑
i

(θi − θ̄)(θi+h − θ̄)√√√√ i−h∑
i

(θi − θ̄)2 ×
i−h∑
i

(θi+h − θ̄)2

. (7.1)

The ACF for all parameters in the signal extraction is shown in Figure 7.6.

We can see that the MCMC step quickly become uncorrelated to the initial

parameters. This gives us confidence that we are sampling the likelihood

properly. To compare, the burn-in period selected for this analysis is 60,000

MCMC steps.

Figure 7.6: The auto-correlation function for the three phase hep analysis.

7.3 Correlations Between Parameters

The correlation matrix is given in Table 7.1. The correlation matrix is the

representation of the correlation coefficients, ρxy, between the parameters x
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and y. The correlation coefficient is defined as:

ρxy =
Vxy
σxσy

, (7.2)

where Vxy is the covariance between parameters x and y and σx is the variance

in x. Further details can be found in Reference [50].

Figure 7.7 shows the correlations between the signals. The distributions of

the correlations between the all of the systematic uncertainty parameters can

be found in Appendix A.

Figure 7.7: Correlation between the signals.

7.4 8B Result

Figure 7.8 shows the likelihood distribution as determined by MCMC signal

extraction for the 8B flux. This distribution shows that the best fit value

for the 8B flux is (5.0± 0.2)×106 cm−2 s−1. This value was constrained by(
5.046+0.192

−0.196

)
× 106 cm−2 s−1, which came from the previous LETA analysis [6].
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Table 7.1: Three phase correlation matrix. The correlation between all of the
signals and systematic uncertainties included in the signal extraction.

104



We can see that the extracted result compares well with the previous analysis,

as expected.

Figure 7.8: The extracted three phase 8B flux. The left panel shows the result
using the data set. The right panel is the result from the MC data set.

7.5 Atmospheric Neutrino Result

The atmospheric neutrino flux had been previously estimated by prior analysis,

and was constrained by these measurements. The constraint, as listed in

Table 6.3, is (3.98 ± 2.84) × 10−4 νatm/day. Figure 7.9 shows the extraction

of the atmospheric neutrino background, which is in good agreement with the

measured constraints.

The rate of atmospheric neutrinos in the SNO detector extracted from the

data set was (4.36 ± 2.43) × 10−4 νatm/day. As mentioned in Section 2.4.1,

this is the rate of atmospheric neutrinos that pass all of the hep analysis cuts,

and which fall into this energy range, and which do not have any associated

secondary events.

Figure 7.9 shows good agreement between the posterior distribution and

the constraint.
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Figure 7.9: The extracted three phase atmospheric neutrino signal. The left
panel shows the result using the data set. The right panel is the result from
the MC data set.

7.6 hep Result

Figure 7.10 is the resulting likelihood distribution for the hep flux as deter-

mined my the MCMC signal extraction. This extraction was calculated si-

multaneously with a 8B and atmospheric neutrino background, which were

constrained to previous measurements. The resulting hep flux measurement is

constant with a null measurement.

Using the method outlined in Section 4.4, we obtain a 90% upper confidence

limit on the hep flux of 2.0 × 104 cm−2 s−1 using the MC data (Figure 7.10)

and a we are able to place a limit of 4.2 × 104 cm−2 s−1. This limit is larger

the previous best upper limit of 2.3 × 104 cm−2 s−1. The new limit can be

compared to the SSM, which predicts a flux of (7.97± 1.24)× 103 cm−2 s−1.

We notice in Figure 7.10 that the most probable value is not zero. This

alludes to a non-zero hep flux, as predicted by the SSM. As stated in Refer-

ence [50] placing limits can be difficult when near a boundary. The suggested

strategy is to present the method chosen so that the result can be used by

others.

The simplest approach is to use the mean and RMS of the distribution.

Using this approach we get the measured hep flux to be (2.40 ± 1.25) ×
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Figure 7.10: The extracted three phase hep flux, using a 90% c.l. The left
panel shows the result using the data set. The right panel is the result from
the MC data set.

104 cm−2 s−1.

In general, the Bayesian interval can be determine by integrating the prob-

ability in the range [θlo, θup] to a confidence level 1− α. This is done with:

1− α =

∫ θup

θlo

p(θ|x)dθ, (7.3)

where p(θ|x) is the posterior distribution.

Here I will show the results using the application of Equation (7.3). To

make this consistent with traditional analyses we chose our most probably

value to be the peak of the posterior distribution, and chose our 1 σ error

bands to include 68.27%, and to so that p(θlo) = p(θup). This is presented in

Figure 7.11.

From Figure 7.11 we obtain a range for the MC data set to be (1.10+0.44
−1.07)×

104 cm−2 s−1, and a range (2.40+1.19
−1.60) × 104 cm−2 s−1 for the data set. We can

see that these results are consistent, meaning a good agreement between our

MC prediction and the data set.
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Figure 7.11: The 68.27% or 1σ confidence levels for the hep flux. The left
panel shows the result using the data set. The right panel is the result from
the MC data set.

7.7 Comparison of the Signal Extraction to

the Data

To show how well the model in this thesis represents the data, we compare

the most probable results from each parameter to the data. That is, we use

the most probable value from Figures 7.8 7.9, and 7.10 to scale their PDF.

Figure 7.12 shows good agreement between the signal extraction and the data

for both the data set and MC data set. The error bars are the combined (in

quadrature) statistical error and the error produced by the 1 σ range in flux

from the signal extraction (the systematic error).

Figure 7.12: The result of the MCMC signal extraction, using the the most
probably result for each parameter, compared to the data. The left panel is
the data set, the right panel is the MC data set.
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7.8 The Floated Systematic Parameters Re-

sult

As discussed the systematic parameters associated with the uncertainties were

allowed to float in the signal extraction. Figures 7.13 and 7.14 show the

final posterior distributions of these systematic uncertainties. These were con-

strained using the values in Table 6.1, we can see that the values from the fit

are in good agreement.

Figure 7.13: The likelihood distributions of the floated energy scale systematic
uncertainties.
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Figure 7.14: The likelihood distributions of the floated energy resolution sys-
tematic uncertainties.

7.9 Effect of Each Systematic Uncertainty on

the hep Flux

To measure the size of each systematic uncertainty on the hep flux a test was

done where all of the systematic uncertainties were fixed to their nominal val-

ues. Each parameter was then individually fixed to +1σ and then −1σ, while

still holding all others at their nominal value. The fit was re-calculated for

each of these situations. In the case of Pee, both neutrino oscillation parame-

ters, tan2θ12 and ∆m2
12, were shifted at the same time in the direction specified

by the ±1σ. The effect of changing each of these systematic uncertainties in

isolation is recorded in Table 7.2.

We can see that the size of the effect on the results largest on the phase de-

pendent energy scale systematic uncertainties, and that the energy resolution

systematic uncertainties have very little impact on the results. In any case,

none of the effects on the results due to the systematics are very large. This

110



is consistent with the correlations, where we see no strong correlation between

the systematics and the hep flux.
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Table 7.2: The 1σ effect of each systematic uncertainty on the hep flux. The
nominal value is the signal extraction with all of the systematic uncertainties
fixed to their nominal values. The (+) and (−) labels refer to the application
of the +1σ and −1σ of the systematic uncertainty, while holding the others
fixed to their nominal values.
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Chapter 8

Conclusion

Physicists have been building neutrino detectors with energy resolution for 20

years, but have been unable to measure the elusive hep neutrino. The hep

neutrino is hidden by neutrinos produced by the 8B solar reaction for most

of its energy range, and thus limits hep searches to a very localized energy

range. Even now, energy resolution is just good enough to resolve the end

point energies between the two signals. Super-Kamiokande, though large, only

uses the elastic scattering reaction to measure neutrinos. This reaction gives

quite poor energy resolution, especially in comparison to the charged current

reaction.

SNOs ability to measure neutrino energies that are produced through the

charged current reaction gives it a huge advantage, even at a much smaller

active volume. This thesis describes SNOs hep search, using all the neutrino

available over the three phases. That is over 1,000 days of neutrino data! Only

a very few hep events occur at the very tail of the energy spectrum, so the

longer you look, the more precisely you can measure these events.

This thesis has defined and verified a method to search for the hep neu-

trinos. This method is a Bayesian approach, using a Markov Chain Monte

Carlo. This MCMC is applied using a Metropolis-Hastings algorithm, which

correctly and efficiently maps out the likelihood space for the signals.
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The signals that are considered are the 8B and hep neutrino fluxes, and the

atmospheric neutrino background. An energy range was chosen so that the 8B

and hep energy distributions would look different, and break the correlation

that plagues their separation at lower energies. This was successful as shown

in Table 7.1. The effect of the 8B flux was also reduced by using prior SNO

analyses to add a constraint to 8B flux, this was shown in Section 6.2.

Also, events were chosen to minimize any contaminants from all back-

ground events, from electronic to natural sources. This cleaning was discussed

in Section 2.3. This cleaning led to an estimation of the atmospheric back-

ground of an order of magnitude lower than the expected hep flux as shown

in Sections 2.4.1 and 6.2.

All of this work to optimize the accuracy and precision of the signal ex-

traction, combined with limiting the various backgrounds, has led to the best

possible result of the hep flux as determined by the SNO experiment.

An upper 90% c.l. of 4.2 × 104cm−2s−1 is placed on the hep flux using in

this analysis, using 1/3 of the data. This seems worse when compared to the

previous Super-Kamiokande result of 7.3 × 104cm−2s−1, and to the previous

SNO measurement of 2.3× 104cm−2s−1. However, this is the first time that a

measurement, albeit less than 2σ from null, is observed. This measured value

for the hep flux is (2.40+1.19
−1.60)× 104cm−2s−1.

This is not a discovery however, this is still very exciting. We are now at

a sensitivity to show some evidence that there is in fact a solar hep neutrino

flux. At this time, we are only using one-third of the available data, as the

analysis is under review by an internal SNO analysis committee. When the

full data set is observed, this value may improve. When comparing our result

to the Monte Carlo prediction for the full data set we expect a 90% upper c.l.

of 2.0 × 104cm−2s−1 and a hep flux value of (1.10+0.44
−1.07) × 104cm−2s−1, which

is consistent with the one-third data hep flux measurement, and close to the
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SSM prediction of (7.970± 1.236)× 103cm−2s−1.
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Appendix A

The Correlation between
Parameters in the Signal
Extraction

This appendix shows the remaining correlation distributions, as described in
Section 7.3. These figures show the correlation, ρ, between each of the param-
eters in the signal extraction.
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Figure A.1: Correlation between the 8B flux and the energy systematic uncer-
tainties.
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Figure A.2: Correlation between the hep flux and the energy scale systematic
uncertainty.
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Figure A.3: Correlation between the νatm and the energy systematic uncer-
tainties.
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Figure A.4: Correlations between the energy scale, energy non-linearity, and
energy resolution systematic uncertainties.
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Figure A.5: Correlations between the energy scale, energy non-linearity, and
energy resolution systematic uncertainties.
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Figure A.6: Correlations between the energy scale, energy non-linearity, and
energy resolution systematic uncertainties.
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Figure A.7: Correlations between the energy scale, energy non-linearity, and
energy resolution systematic uncertainties.
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