
Continuous Multilevel Actions in Reinforcement
Learning

by

Daniel Mitchell

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Daniel Mitchell, 2023

Abstract

Multilevel action selection is a reinforcement learning technique in which an

action is broken into two parts, the type and the parameters. When using

multilevel action selection in reinforcement learning, one must break the ac-

tion space into multiple subsets. These subsets are typically disjoint and their

union is equal to the original action space. When doing action selection, the

subset, representing the action type, is chosen separately from the exact value

of the action itself, the parameter values. The majority of research into mul-

tilevel action selection focuses on applying it to problems with conceptually

distinct action types, such as robot soccer, where an agent can run, turn,

tackle, or shoot. However, this is not the only application. In this thesis I

focus on a different application of multilevel action selection, where I break

down a simple one-dimensional action space into action types in order to focus

on specific areas. The goal is to improve learning time by focusing on one area

of the action space and disregarding all actions outside of that area, reducing

the number of actions to search through. Once an agent has enough experience

with actions from a type leading to poor return, it can generalize its experi-

ence to the entire action type and instead favour the other types which are

more rewarding. I attempt to solve the mountain car and cart pole problems,

which I chose for their simple action spaces with a conceptual difference be-

tween forwards and backwards thrust. I find that in these problems, multilevel

action selection can improve the performance, measured by total return, of a

reinforcement learning algorithm.

ii

Acknowledgements

I wish to acknowledge my supervisor Martha Steenstrup for assistance through-

out the process of writing this thesis.

I would additionally like to acknowledge Roshan Shariff and Travis Dick,

who’s code base formed the basis for the majority of experiments I ran. This

was a great help as it saved me the time of writing my own simulator, and

provided several illuminating insights into techniques for efficiently coding re-

inforcement learning agents.

iii

Contents

1 Introduction 1

2 Brief Overview of Reinforcement Learning 4
2.1 Basics of Reinforcement Learning 4
2.2 How Reinforcement Learning Works 4
2.3 Exploration vs. Exploitation 7
2.4 Continuing and Episodic Problems 9
2.5 Large State and Action Spaces 9
2.6 Multiple Dimensions . 11

3 Approaches to Multilevel Actions 13
3.1 Definition of Multilevel Actions 13
3.2 Reasons to Use Multilevel Actions 14
3.3 Methods of Choosing Multilevel Actions 15
3.4 Algorithms . 16

4 Experiments and Analysis of Results 20
4.1 Problems to Test Algorithms 21
4.2 Cart Pole . 22

4.2.1 Experimental Setup . 23
4.2.2 Parameter Sensitivity Analysis 25
4.2.3 Algorithm Comparison Analysis 30

4.3 Mountain Car . 36
4.3.1 Experimental Setup . 36
4.3.2 Parameter Sensitivity Analysis 38
4.3.3 Algorithm Comparison Analysis 42

4.4 Software . 48

5 Conclusion 49

References 51

Appendix A Tables 54

Appendix B Mountain Car Learning Curves 58

Appendix C Average Reward Calculations 62

iv

List of Tables

A.1 Total return after 10,000 time steps for various trace decay rates
in cart pole . 54

A.2 Total return after 10,000 time steps for various step sizes for
high level actions in cart pole 55

A.3 Total return after 10,000 time steps for various step sizes for
the average reward in cart pole 55

A.4 Total return after 10,000 time steps for various values of epsilon
in cart pole . 55

A.5 Total return after 10,000 time steps for various step sizes for
low level actions in cart pole 55

A.6 Total return after 10,000 time steps for various step sizes for
low level actions with truncated distributions in cart pole . . . 55

A.7 Total return after 10,000 time steps for various step sizes with-
out using multi level actions in cart pole 56

A.8 Total successes after 1,000,000 time steps for various trace decay
rates in mountain car . 56

A.9 Total return after 1,000,000 time steps for various values of ep-
silon in mountain car . 56

A.10 Total return after 1,000,000 time steps for various step sizes for
the average reward in mountain car 56

A.11 Total return after 1,000,000 time steps for various step sizes for
low level actions in mountain car 56

A.12 Total return after 1,000,000 time steps for various step sizes for
low level actions with truncated distributions in mountain car 57

A.13 Total return after 1,000,000 time steps for various step sizes
without using multi level actions in mountain car 57

v

List of Figures

2.1 Return vs. Reward . 7

4.1 The mountain car and cart pole problems [21] 22
4.2 Total return after 10,000 time steps for various trace decay rates

in cart pole . 26
4.3 Total return after 10,000 time steps for various step sizes for

action types in cart pole . 27
4.4 Total return after 10,000 time steps for various step sizes for

the average reward in cart pole 28
4.5 Total return after 10,000 time steps for various values of epsilon

in cart pole . 29
4.6 Total return after 10,000 time steps for various step sizes for

low level actions in cart pole 30
4.7 Total return after 10,000 time steps for various step sizes for

low level actions with non truncated distributions in cart pole 32
4.8 Total return after 10,000 time steps for various step sizes with-

out using multilevel actions in cart pole 33
4.9 Comparative performance on the cart pole problem for different

algorithms . 34
4.10 Comparative learning curves on the cart pole problem for mul-

tilevel and single level action selection. 35
4.11 Total successes after 1,000,000 time steps for various trace decay

rates in mountain car . 39
4.12 Total return after 1,000,000 time steps for various values of ep-

silon in mountain car . 40
4.13 Total return after 1,000,000 time steps for various step sizes for

the average reward in mountain car 41
4.14 Total return after 1,000,000 time steps for various step sizes for

low level actions in mountain car 42
4.15 Total return after 1,000,000 time steps for various step sizes for

low level actions with truncated distributions in mountain car 44
4.16 Total return after 1,000,000 time steps for various step sizes

without using multi level actions in mountain car 45
4.17 Comparative performance on the mountain car problem for dif-

ferent algorithms . 46
4.18 Comparative learning curves on the mountain car problem for

multilevel and single level action selection. 47

vi

Glossary

Q(s, a)

The action value function of action a when in state s

V (s)

The state value function for state s

Vd(s)

The action type value function of action type d when selecting the high
level action from a multi level action space in state s

αθ

The step size of the policy parameters

αθ

The decay rate of the policy parameter trace

αw

The step size of the critic weights

αw

The decay rate of the critic weight trace

αr

The step size of the average reward

δ

The TD Error

θ

The policy parameters in an actor critic algorithm

w

The critic weights in an actor critic algorithm

x(s)

The tilecoded representation of state s

zθ

The policy parameter trace in an actor critic algorithm

vii

zw

The critic weight trace in an actor critic algorithm

CATV
Critic Action Type Values. An algorithm using multilevel action selec-
tion in which the action types are chosen based on the values of the
critics for the action parameters associated with that type

Double Actor-Critic
An algorithm using multilevel action selection in which there are two
sets of actors and critics, one for the action types and one for the action
parameters

Rewarding Actions
Actions which lead to a high overall return relative to other actions

Time Step
A discrete point in time at which an agent has to select an action

Unrewarding Actions
Actions which lead to a low overall return relative to other actions

viii

Chapter 1

Introduction

In this thesis, I investigate the use of multilevel action selection in reinforce-

ment learning. In multilevel action selection, an action comprises two parts,

the action type and the action parameters. In general, all actions in reinforce-

ment learning can be considered as multilevel, with a single type covering the

entire action space, and the parameters representing the actual actions. Con-

sider a task of moving over uneven terrain. You can walk in any direction,

or jump over or onto an obstacle. When walking, you choose your speed and

direction, when jumping, you choose your distance, height, and direction. In

this case, walking or jumping represent the action types, while the specifics

of speed, direction, distance, and height represent the parameters. The action

type represents what to do, and the action parameters represent how to do it.

A problem arises when the actions parameters are from a continuum, or even

a discrete set with a very large cardinality, instead of a small discrete set of

actions. As Masson et al. [15] say, “If we use a continuous action space, we lose

the ability to consider differences in kind: all actions must be expressible as a

single vector. If we use only discrete actions, we lose the ability to finely tune

action selection based on the current state.” The solution is to use a hybrid

discrete continuous action space, with the discrete part for the action types,

and the continuous part for the action parameters.

One of the earliest implementations of multilevel action selection was Rachel-

son et al. [17]. Their work is not focused on choosing between multiple action

1

types, but rather includes an option for the agent to either wait for some pe-

riod of time, or take an action. This wait action effectively creates a second

action type, although it has no parameters attached to it.

The majority of the literature on the topic of multilevel action selection

is in the form of parametrized action Markov decision processes (PAMDPs),

and focuses on problems such as robot soccer [11][15][27][7][25][1], platform

[15][25][1], human robot interaction [12], or King of Glory (a multiplayer online

battle arena game) [27]. In PAMDPs, the final action the agent takes is a pair

comprised of the chosen action type and its parametrization.

The most common method of selecting action types is q learning with

epsilon greedy selection [1][25][11][27], although in some cases [12] softmax is

used instead. Fan et al. [7] use actor critic instead to choose action types,

with a single critic for both the action types and action parameters, and two

actors, one for the action types and one for the action parameters.

While in these cases there are two or more conceptually distinct actions

types which do not take their actions from the same continuum, this thesis

focuses on using multilevel action selection to split an action space in which

all actions lie on a single continuum into multiple parts. For example, if the

domain of an action space is from -1 to 1, this can be split into a positive

and negative action type with domains from 0 to 1 and -1 to 0 respectively.

The other major difference between my work and PAMDPs is that in my work

all action types have the same parameters, however in the existing literature,

they are different.

In some states, there may be clusters of rewarding actions and unrewarding

actions. In this case, the whole area of the action space containing rewarding

actions can be favoured, and other areas of the action space focussed on less.

I will show that breaking up an action space can be used to reduce the time it

takes for an agent to learn from a given state by favouring the action type with

good actions. The agent will still initially choose actions from the unrewarding

action type, but when they all give poor return, it can determine not to choose

those actions quicker than without multilevel action selection, where it would

have to explore the whole space corresponding to the unrewarding action type.

2

When solving a task using multilevel action selection, the choice of action

parameter values can be done just like any other action selection in reinforce-

ment learning, but instead of choosing from the entire action space, the agent

can only choose from the subspace associated with the chosen action type.

However, the the choice of action type and action parameter values can be

done in any order. You can first choose an action type, and then the param-

eter values from that type, or you can first choose the parameter values for

each type, and then the type based on the specific values of the parameters.

To demonstrate this, look at the above example again. If you are faced with

a boulder in your path, you can either jump over it or walk around it. You

could first decide if you want to jump or walk, then work out the details of

whichever you choose. Alternately, you could first ask “How would I jump over

this?” and “How would I walk around it?”, then once you have a way of doing

each, decide which is better.

I first give a brief overview of the aspects of reinforcement learning pertinent

to this thesis.

Next, I focus on the specifics of multilevel actions and how I am using

them. This includes a definition of multilevel actions and a discussion of what

situations it is appropriate to use them in. I also cover various methods of

implementing multilevel actions and what must be considered when doing so.

Then I explain the problems I tested on and the specifics of the experi-

mental setup. The experiments were done on the mountain car and cart pole

environments, chosen because they have action spaces that can intuitively be

used with multilevel action selection. They involved comparing the perfor-

mance of multiple implementations of multilevel actions against each other,

measured by the total return, as well as how they compare with non multi-

level action selection methods.

3

Chapter 2

Brief Overview of Reinforcement
Learning

In this chapter, I go over the basics of reinforcement learning and the aspects

of it relevant to the rest of the thesis.

2.1 Basics of Reinforcement Learning

Reinforcement learning is learning through trial and error interaction with the

environment in order to maximize a reward signal. Reinforcement learning has

its roots in animal learning theory, and has many similarities to the methods

by which animals learn.

The agent is not restricted to a specific solution that it is taught by an ex-

pert. This means the set of solutions a reinforcement learning agent is capable

of finding is potentially bigger than the set of solutions humans have discov-

ered. It is therefore possible to learn new and innovative solutions through

reinforcement learning that would not otherwise be found if agents were di-

rectly taught solutions.

2.2 How Reinforcement Learning Works

The basic behaviour of a reinforcement learning agent is as follows. The agent

first makes an observation of its environment. Then it selects and takes an

action based on this observation. The environment may change based on the

agent’s action. The agent observes the environment again and interprets part

4

of its observation as a reward (indicating how good the action was). The other

part of this observation is used as the context for selecting the next action as

this cycle repeats.

An agent’s learning process is based on the following components, the pol-

icy, the reward, and the value function. That is, how it will decide what to

do next, how well it is performing, and how it evaluates its current situation.

There are two additional concepts, the state and the action, which may be

used by the agent in the policy and value function, and by the environment to

determine the reward.

The state is the representation of the agent’s current observation of its

environment, as well as potentially a summary of its previous interactions

with the environment. Some agents do not observe the state, but these cases

are not discussed here. It is important to keep in mind the distinction between

the agent’s observation and the true state of the environment. In some cases

they are identical, but in some the agent is missing information. On the other

hand, the agent may keep track of its past actions, in which case the agent’s

state can have more information than the environment’s state. For example, if

an agent is a person walking down the street, the state they observe is limited

to what they can see in front of them (for the sake of this example, ignore

other senses like hearing). The environment’s state, on the other hand, also

includes everything behind them and out of view.

Additionally, in some problems it may not be necessary to maintain a state

representation in order to take appropriate actions. This is usually in problems

where the environment does not change from one action to the next, so it is

not necessary to keep track of.

The actions are the choices that the agent can make at each timestep. In

some cases, the available actions may depend on the current state, in others

the same set of actions are universally available to the agent regardless of its

state. Actions may be a discrete set of choices (such as ‘go forward’, ‘turn

left’, and ‘turn right’), or a continuum of choices that can be selected from

(such as move forward with some speed between 0 and the maximum speed).

The reward is a numerical signal representing how good the most recently

5

taken action was for the agent (i.e. how much it moves the agent towards

the goal as defined by the experimenter). The agent’s goal is to maximize a

function of the reward signal it receives, such as the average reward over time,

or the maximum total reward. It is important to note that an agent does not

have any concept of having solved the problem as set by the experimenter; its

only feedback is the reward signal it receives. When an experimenter decides on

what reward signal to use for a reinforcement learning problem, it is important

to make sure there are no ways that the agent can achieve a high reward other

than by solving the experimenter’s problem.

The return is another concept closely related to reward. The agent receives

a reward every time it takes an action, and the return is the sum of the reward

from the current time over the rest of the agent’s lifetime.

The value function expresses how good a state or action is for the agent. It

maps either a state, action, or a state-action pair to a number, with a higher

result being more favourable. The value function is based on the agent’s

history of interactions with the environment, the actions it has taken and the

rewards it has received. It is equivalent to how good a state or action is to

the agent in the long term, as opposed to the present. This is similar to the

concept of return, which represents the total reward that the agent expects to

receive following its policy from the current state. To see the importance of

this distinction between long term return and immediate reward, consider a

case where the agent can move to a state from which it can receive a really high

reward, but doing so requires taking an action with a low reward first. This is

a temporary sacrifice in reward for a long term gain. Figure 2.1 is an example

of this. Taking the top path (action 1), may at first look more appealing than

the bottom path (action 2) because it has higher reward. However, when you

consider the state resulting from each action, the total reward over two time

steps will be two for the top path but nine for the bottom path.

The policy determines how the agent decides what action to choose. It is

analogous to a function mapping the the current state to the action which the

agent takes. In some cases, an agent learns its policy as it interacts with the

environment. In other cases, an agent has a fixed policy that never changes.

6

Figure 2.1: Return vs. Reward

What type of policy an agent has is determined by the experimenter. Some

policies select the action based directly on the value function, choosing the

one that will lead to the highest return. Agents using other policies, such as

those in policy gradient methods, don’t directly choose actions with the value

function. They instead use a parameterized policy for selecting actions, but

may learn its parameter values through the value function. An agent may also

have a policy which does not follow the most rewarding action, but instead

tries to fully explore the state and action space, being more likely to choose

actions it has not taken recently.

2.3 Exploration vs. Exploitation

A policy that always chooses the best action, i.e. the action it currently thinks

will lead to the best return, is known as a greedy policy. Oftentimes however,

such a policy is not the optimal policy1 an agent could use.

The agent may either exploit its current knowledge by taking the most

rewarding action, or explore the environment by trying new actions. This

trade off between exploration and exploitation is essential, because if the agent

never explores, it may think it has a good policy for receiving a high return,
1The optimal policy is the hypothetical policy that would lead to equal or higher return

than all other policies from any state.

7

but miss out on discovering one that is even better. On the other hand, there

is a cost to exploring. If an agent spends too much time exploring, it may miss

out on opportunities to take high valued actions and its total return will be

low.

Additionally, if the environment is nonstationary, such that the most re-

warding action from a state changes drastically over time, it is important to

keep exploring, as the best actions now may not be ideal in the future. In a

stationary environment, the amount of exploration can be decreased over time

as the agent gains more experience and is closer to finding the optimal policy.

This is because the better the policy the agent is following, the more likely it

is to choose the action leading to the highest possible return. Since the agent

cannot know if it’s current policy is optimal or not, it should never completely

stop exploration.

An example of this trade off between exploration and exploitation is the

epsilon greedy policy. Every time the agent chooses an action, there is a small

chance, represented by epsilon, that it chooses randomly instead of taking

its currently highest valued action. In a stationary environment, as the agent

gains experience in how rewarding certain action are, epsilon can be decreased,

causing exploration to happen less often. Another example is actor-critic on a

continuous action space, where an action is chosen from a probability distri-

bution, calculated based on parameters learned by the agent, with the mean

representing the most preferred action.2 This causes every action to have some

amount of exploration, but this exploration is focused closer to the most pre-

ferred action (the closer an action is to the most preferred action, the more

likely it is to be explored). As the agent gains experience, it will learn pa-

rameters leading to a smaller variance of the distribution, causing the chosen

actions to be closer to the preferred action.
2Actor-critic learns preferences for actions instead of values

8

2.4 Continuing and Episodic Problems

There are two types of reinforcement learning problems: episodic and contin-

uing. Episodic problems have a definite end point or goal state. The agent

solves the problem by reaching that goal in the most rewarding manner it can.

Once the agent reaches the goal, it will start the problem over again (keeping

its knowledge) from the start point in a new episode. These problems are most

like games or isolated tasks which have a clear start and end.

On the other hand, continuing problems do not have a defined end point.

The agent will keep going indefinitely. There are no success or failure states

in continuing problems, just actions resulting in high or low reward which the

agent will try to take and avoid respectively. Most real world problems can be

classified as continuing problems.

2.5 Large State and Action Spaces

The agent selects actions in the simplest case based on the action values. For

example, the agent may select the action with the highest value, with a small

probability of choosing a random action instead for the purposes of exploration.

An alternative is to use a policy gradient algorithm, where instead of using

the action values, the agent uses a function mapping a state action pair to the

probability of choosing that action from that state. A type of policy gradient

algorithm is actor-critic, which has two parts, the actor which is responsible

for selecting the action, and the critic which determines how good a state is.

The critic will then give feedback to the actor based on how good of a state the

agent ended up in after taking an action. If the critic says that the resulting

state is good, then the actor will know to increase its preference for the most

recent action from the previous state.

When the state and action spaces are small, one can use tabular methods.

These are when instead of a continuous function mapping the state to a value,

a simple one to one lookup table is used. Every state has a value associated

with it stored in the agent’s memory, and when the agent reaches a state, it

simply looks up what that state’s value is.
9

One issue that may arise is when the state or action spaces are very large

is that it is no longer practical to keep track of every state-action pair individ-

ually. Tabular methods are still possible, but they may be inefficient both in

terms of memory and running time. A simple solution is coarse coding, where

a the state space is broken up into buckets, equivalence classes representing a

range of states that are close together. Every state falling within one bucket

is treated the same, resulting in a new state space with fewer elements. These

buckets may overlap, so that a single state falls into more than one bucket. If

the buckets are disjoint, then it is known as a state aggregation.

A more complex method is tile coding, which can create a finer grained

approximation of the original state space than coarse coding. To do this, we

can use multiple state aggregations, or tilings, layered over the space, each

with a slight offset. Any state in the original space will fall into one tile in

each tiling, and the new state representation is the set of these tiles.

The cardinality of the action space can affect the manner in which actions

are selected. If the cardinality is ‘small’, then each action can be looked at

individually and compared to each other. If there is a very large (but still finite)

amount of actions, this is technically still possible, but becomes inefficient due

the number of comparisons to be made. When the action space has an infinite

cardinality, this method of comparing actions is no longer possible, and we

need a different method of choosing actions.

The goal is to transform action spaces with this large or infinite cardinality

into an alternate space of low cardinality. One possible solution is coarse

coding, where you can discretize (for a continuous action space) or group (for

a discrete action space) the action space into small sized buckets, resulting

in a smaller amount of actions spread out along the domain of the action

space.3 The problem with this is that the buckets have to be large enough

to reduce the computational complexity (by having fewer buckets to choose

between) while also being small enough to maintain the precision of the original

action space (i.e. being able to discriminate between two actions close together
3Note that any action space with an unbounded domain would still require infinitely

many buckets (or have at least one bucket of infinite size).

10

which lead to different results). This also requires all the actions in the action

space be in one dimension (or at least a small amount of dimensions). If the

actions to choose between are totally disparate (e.g. they are not from the

same dimension, such as run, jump, or turn around) which cannot be grouped

together, this method is unlikely to work. However, most such action spaces

relatively small sized, so this is not usually an issue. In the edge case of a

large disparate action space, these solutions are unlikely to work, however

these problems are not examined in the rest of this thesis.

When choosing actions from a continuum without first discretizing the

space, the simple tabular method of looking at individual actions is no longer

possible. An alternative to this is to use a function mapping the action to

some metric used to indicate which action the agent prefers. One type of

function that can be used for this is a probability distribution over the action

space with the mean at the most preferred action [26]. An action can then be

sampled from this distribution, and the agent will update the parameters of

the distribution based on the resulting state and reward. The exact parameters

will depend on the type of distribution being used, for a Gaussian distribution,

they are the mean and standard deviation.

2.6 Multiple Dimensions

An action space is multidimensional if there are two actions which have dif-

ferent parameters. For example, the accelerations of 1 m
s2

and -1 m
s2

have the

same parameters and are from the same dimension, but the acceleration 1 m
s2

and the angular acceleration 1 rad
s2

are not. When working with problems with

actions spaces where the agent can select actions from multiple dimensions,

there are two cases to consider. First is the case where the agent can act in

multiple dimensions simultaneously. For example, consider a robot arm where

the rotation of each joint is its own dimension, the agent can choose to move

multiple joints at the same time. In this case, to determine the action, the

agent can determine its action individually in each dimension, and then final

action will be the combination of all of them together. The second case is

11

where the agent must can only act in a single dimension at a time. For exam-

ple, consider travelling by bicycle. At some points the agent has to get off and

walk the bike, at others it can ride the bike, however it can only ever pick one

or the other and cannot simultaneously do both. In this case the agent has to

choose between its available actions in each dimension to see which dimension

contains the most preferred action. If the action space is small, this can easily

be done by directly comparing the actions.

Now consider a problem with actions in multiple dimensions, some of which

are continuums. Each individual action dimension may have a corresponding

‘best’ action, but only one may be selected as the agent’s action for the current

time step. The policy gradient method of choosing the action from a single

probability distribution no longer works, as the actions are taken from multiple

continuums, so the distribution cannot be defined over all of them. We need

a method of choosing a multilevel action which combines the finite choice of

which dimension, or action type, to use with the infinite choice of action, or

parameter values, from any one dimension’s action space. Additionally, there

may be cases where the action space is very large, but in a given state, only

a small subspace will have actions that are preferable, because all actions

outside of that subspace are much less rewarding than those inside of it. In

this case, splitting the space up and favouring the more rewarding subspace

can potentially reduce the search time to find the optimal action, as the agent

is only considering a fraction of the total action space.

12

Chapter 3

Approaches to Multilevel Actions

This chapter will explore the concept of multilevel action selection in contin-

uous action spaces and how it can be applied to solve problems. The first

section covers what multilevel action selection is and how it is used. Then I

will cover the reasons to use multilevel action selection and what situations it

is advantageous in. Then I give a brief overview of prior work regarding multi-

level action selection and the advantages and disadvantages of these different

methods. The next section then goes into detail on the specific algorithms I

have developed and the way they are implemented.

Recall the example from chapter 1 of moving by either walking or jumping.

Since you cannot jump and walk at the same time, a combination of the two

actions is not possible (for contrast, compare this to reaching for an object

with your arm; there are multiple joints that can all move independently and

simultaneously). We need a method to represent this continuous action space

which is broken into two disparate sets.

3.1 Definition of Multilevel Actions

Multilevel action selection is a type of action selection in which the agent

has two (or more) levels of decision making. Each time the agent selects an

action, it chooses both a high level and low level action. The high level action

represents an action type, whereas the low level action represents parameter

values for that type. The subset of the action space the action parameter

values are drawn from depends on which action type is chosen. If the agent

13

selects an action from one action type, the action cannot also be from another

action type at the same time.

3.2 Reasons to Use Multilevel Actions

An obvious question to ask is what advantage is there from using multilevel

action selection instead of just choosing the action parameters directly.

In the case of discrete actions, choosing low level actions directly is still a

possibility, however we have to be aware of how big the action space is. If each

action type has only a couple actions associated with it, then multilevel actions

are probably not necessary. However, as the size of the action space for each

action type increases, the total number of actions increases even faster at a rate

proportional to the number of action types. Consider the case of a continuous

action space that has been discretized with a very high cardinality. In these

cases, using multilevel actions breaks up the action spaces so fewer actions

need to be considered at once. By breaking them into separate action types,

then we only need to select an action from among the actions corresponding

to that type, rather than from the entire action space.

In continuous action spaces, we can use the same justification to split the

action space so we have smaller spaces to search over, however there is a more

important factor. If the different action types are in different dimensions (i.e.

they cannot be drawn from the same continuum), then we cannot combine

them together in one action space the same way we could with discrete action

spaces. In the case of bounded action spaces, one may expect to be able to

combine them by concatenating one after the other. If we have two continua

both ranging from 0 to 1, you would put the second one after the first so

the range 1 to 2 corresponds to the second continuum. The problem is an

algorithm like actor-critic which selects actions from a distribution will have

strange behaviour around the point where the continua are concatenated. If

a distribution has a mean just less than one (in the first continuum), the tail

of the distribution may be greater than one and often select actions there (in

the second continuum).

14

We can use any continuous action selection method within any one contin-

uum, but we need a method of choosing between the multiple continuums. By

associating each continuum with an action type, we can use multilevel actions

to solve such problems. We can also use this technique to break up single con-

tinuum into multiple parts. This may be advantageous if two or more parts of

the continuum are significantly different in terms of which states they produce

good actions from. This means for any one state, the part of the continuum

which contains highly rewarding actions can be favoured over equally explor-

ing the entire action space. The agent will need to spend time exploring all

action types, in order to find which are rewarding and which are unrewarding,

but after a few experiences in each, it can determine which types are which

quicker than if it had to explore the whole action space. There should still be

some amount of exploration among the action types, so the agent does not get

stuck only looking at a single action type when more rewarding actions are

still undiscovered in others.

3.3 Methods of Choosing Multilevel Actions

The way to select a multilevel action depends greatly on what learning algo-

rithm you are using. If you have an action value method, the possibilities open

to you will be different than with a policy gradient method.

One method of selecting multilevel actions is to first select an action type.

The action type selection is based on which type the agent decides to have

more rewarding actions. Then based on which action type was chosen, the

agent will only consider the corresponding action parameters for selection. In

the example above, this would correspond to first choosing how to move: walk

or jump. Then once that decision is made, the agent will look at the details

of the chosen action type and determine the specifics, such as the speed and

direction. [25][27]

An alternate method is to select action parameters from each type sepa-

rately. Then, the agent will compare each of the selected action parameters,

and choose a type based on their action values. The advantage is that the

15

choice of the action type will be based on the actual action to be taken, not

just on the action type. This means any exploration that may take place is

already factored in to the action values when the agent chooses the action.

The downside is that it is dependant on action values, which may not be a

part of the learning algorithm being used, especially if the action parameters

are continuous. Going back to the example, this would mean the agent calcu-

lates both the best way it can walk and the best way it can jump. The agent

will then compare these two, whether walking in that specific way is better or

worse than making the specific jump. [1][15]

3.4 Algorithms

When designing a learning algorithm which incorporates multilevel action se-

lection, how to select the actions is the first thing to consider. First, how

should the action parameters be selected? This can be done with any learning

algorithm, such as the action value or actor-critic methods mentioned previ-

ously in this thesis, given some adjustments to handle multiple action spaces

split between the different action types. Ways to do this include duplicating

the procedure for action selection to have one corresponding to each action

type (e.g. in actor-critic, have multiple actors and critics), or include the se-

lected action type as an extra feature of the state space that is considered when

selecting the action parameters. It is also possible to select action parametriza-

tions with different algorithms for each action type. For example, if one action

type only contains a few discrete actions, but another contains a continuum,

the parametrizations for the discrete action type can be chosen with a tabular

method and the parametrizations for the continuous action type can be chosen

with actor-critic.

Next, consider how to select the action types. While some problems have

a large number of action types, I will assume it is sufficiently small in the

problems discussed in this thesis. The action type selection can be done with

more options than the action parameter value selection. The action type

and action parameter selection may be completely independent, never sharing

16

information with each other, or they may share some elements between them

(e.g. in actor-critic, the two levels could share a critic, or each have their own).

When I designed my algorithm, I specifically wanted to use multilevel ac-

tion selection with tasks that had continuous action spaces. I also wanted to

see how well I could do with a simple algorithm, using linear function approx-

imation with binary features. I chose to use actor-critic [4] at the low level,

with one actor for each action type.

For the action type selection, I tried several methods. One of the most

promising ones were using a completely distinct algorithm for action type

selection, having a second actor and critic to select action types. I refer to this

as the double actor-critic algorithm, shown in algorithm 1. I also tried tying

the two levels closer together by using a separate critic for each action type

and using them to represent action type values. I then used these values to

choose the action type with epsilon greedy selection. I refer to this as the critic

action type value (CATV) algorithm, shown in algorithm 2. The comparisons

between these can be found in chapter 4. I looked at some other methods

as well, such as learning action type values with SARSA and choosing action

types either epsilon greedily or randomly weighted by their action type values,

but these were abandoned due to poor performance and not experimented on

further.

The general form of the algorithm for selecting high and low level actions

is as follows. Depending on its current state, the agent chooses an action

type by comparing the action type values or preferences. Then, it uses the

actor associated with that type to select the action. Based on the observed

response to the selected action, the agent updates the actor and critic of the

selected action type. If using eligibility traces, the unused actor also needs to

be updated in order to decay the eligibility trace properly.

17

Algorithm 1 Double Actor-Critic algorithm for multilevel action selection
with average reward

Input: two differentiable policy parametrizations π(a|s, θ) and π̂(a|s, θ̂)
Input: a feature vector x(s)
Algorithm Parameters: actor eligibility trace decay λθ, critic eligibility
trace decay λw, actor weight step sizes αθ and α̂θ, critic weight step sizes
αw and α̂w, average reward step size αr, number of action types d

1: for i from 1 to d do
2: Initialize policy parameters θi ∈ Rn and critic weights wi ∈ Rm

3: zθi ← 0n (actor eligibility trace)
4: zwi ← 0m (critic eligibility trace)
5: Initialize action type policy parameters θ̂ ∈ Rn̂ and action type critic

weights ŵ ∈ Rm̂

6: zθ̂ ← 0n̂ (action type actor eligibility trace)
7: zŵ ← 0m̂ (action type critic eligibility trace)
8: Initialize r̄ ∈ R
9: Choose initial state s

10: while True do
11: Choose action type D from π̂(D|s, θ̂)
12: Choose action parameters a from πD(a|s)
13: Take action a, observe state s′ and reward r
14: δ̂ ← r − r̄ + ŵx(s′)− ŵx(s)
15: δ ← r − r̄ +wDx(s

′)−wDx(s)
16: r̄ ← r̄ + αrδ
17: for i from 1 to d do
18: zwi ← λwz

w
i

19: zθi ← λθz
θ
i

20: zwD ← zwD + x(s)

21: zθD ← zθD + ∇θπD(a|s,θ)
πD(a|s,θ)

22: zŵ ← λwz
ŵ + x(s)

23: zθ̂ ← λθz
θ̂ +

∇θ̂π̂D(a|s,θ̂)
π̂D(a|s,θ̂)

24: for i from 1 to d do
25: wi ← wi + αwδz

w
i

26: θi ← θi + αθδz
θ
i

27: ŵ← ŵ + αwδ̂z
ŵ

28: θ̂ ← θ̂ + αθδ̂z
θ̂

29: s← s′

18

Algorithm 2 Critic Action Type Values (CATV) algorithm for multilevel
action selection with average reward

Input: a differentiable policy parametrization π(a|s)
Input: a feature vector x(s)
Algorithm Parameters: actor eligibility trace decay λθ, critic eligibility
trace decay λw, actor weight step size αθ, critic weight step size αw, average
reward step size αr, number of action types d

1: for i from 1 to d do
2: Initialize policy parameters θi ∈ Rn and critic weights wi ∈ Rm

3: zθi ← 0n (actor eligibility trace)
4: zwi ← 0m (critic eligibility trace)
5: Initialize r̄ ∈ R
6: Choose initial state s
7: while True do
8: Choose action type D from {1, 2, ...d} epsilon greedily according to

argmax
i

(wix(s))

9: Choose action parameters a from πD(a|s)
10: Take action a, observe state s′ and reward r
11: D′ ← argmax

i
(wix(s

′))

12: δ ← r − r̄ +wD′x(s′)−wDx(s)
13: r̄ ← r̄ + αrδ
14: for i from 1 to d do
15: zwi ← λwz

w
i

16: zθi ← λθz
θ
i

17: zwD ← zwD + x(s)

18: zθD ← zθD + ∇θπD(a|s,θ)
πD(a|s,θ)

19: for i from 1 to d do
20: wi ← wi + αwδz

w
i

21: θi ← θi + αθδz
θ
i

22: s← s′

19

Chapter 4

Experiments and Analysis of
Results

This chapter details the experiments I ran to test multilevel action selection.

My hypothesis is that using multilevel actions can improve the performance

of an algorithm over the single level action variant. For these experiments,

I measure performance by the total return after a set number of time steps,

averaged over 30 different runs, each with a different random seed. I also

present learning curves comparing the average reward of both algorithms for

all time steps of the trial. I chose these metrics to evaluate performance as

the agent’s goal is to maximize a reward signal, and these are two ways of

representing that maximization (average over time, and total). These runs are

performed on both actor-critic with and without multi level action selection,

with two different methods of choosing the action type with multi level action

selection. I tested various setting for different parameters: the step sizes for

the actor, the critic, and the average reward, and the trace decay rates for

the actor and critic for the purposes of analyzing the algorithm’s sensitivity to

different parameters. In the case of the multi level action selection algorithm,

I also tested epsilon when choosing based on the critic values, and the high

level step sizes when choosing with a second actor and critic for the action

types. Statistical analysis is done to determine how sensitive the algorithm is

to different parameters, and how the different algorithms compare.

20

4.1 Problems to Test Algorithms

When choosing a problem to test on, since I was interested in examining how

multilevel action selection can be used to split up a continuous action space, the

first quality I looked for was that action space was continuous. Additionally,

for the sake of conceptual simplicity, I preferred problems with action spaces

that could be broken up into two or more continua that have an obvious

conceptual difference between them, although this is not a requirement of the

algorithm. For example, an action choosing a movement speed ranging from

a negative value (going backwards) to a positive value (going forwards) has a

natural split between forwards and backwards movement.

I also favoured simple problems with relatively simple state and action

spaces, as I wanted to show this method can work with simple algorithms.

Another advantage of simple problems is that when analyzing, it is easier to

understand the cause of any specific results. I ran the experiments on multiple

problems to get a better idea of how it performs in general, instead of results

tailored to a specific problem. The two problems I ended up choosing were

mountain car and cart pole, shown in figure 4.1.

While the simplest version of both problems have a finite action space of

forward and backward thrust, they have a been adapted to use actions from a

continuum between the maximum thrust in the forward and backward direc-

tions, with the backward maximum thrust being the negative of the forward

maximum thrust. These problems both have an action space involving move-

ment in two directions, forward and backward. This gave a natural split in

the action space at zero, resulting in one ‘dimension’ for positive acceleration

and one for negative acceleration1.

Splitting the action space of cart pole and mountain car resulted in simpler

problems than concocting one that had two truly different dimensions (such as

rotation and movement). This also had the added benefit of involving another
1While this leaves out zero, this is not a problem as when choosing actions from the

original continuum, the agent has a vanishingly small chance of ever selecting exactly zero.
Additionally, as the agent can still choose actions arbitrarily close to zero, these will have
effectively no difference in outcome in the simulation from choosing exactly zero.

21

Figure 4.1: The mountain car and cart pole problems [21]

potential application of multilevel actions: breaking a large space into smaller

spaces may speed up learning since some areas of the action space may be all

lead to a poor return, so another area, where the actions leading to a high

return may all be concentrated, can be favoured.

4.2 Cart Pole

The first problem I tested on was cart pole. In this formulation of cart pole,

there is a cart on a one dimensional track with a pole attached to it initially

pointing upwards. The pole is attached by a hinge so it can swing down in the

same direction as the track. The objective is to prevent the pole from falling

for as long as possible. A failure is defined as whenever the pole swings past

a certain threshold from vertical, or the cart hits the end of the track. The

agent’s action is the thrust applied to the cart, and ranges from the maximum

backward thrust to the maximum forward thrust. The reward is 0 for each

timestep the pole stays up, with -1 when it falls, or the cart runs out of track

(see figure 4.1). The state information available to the agent is the position and

velocity of the cart, as well as the angle and angular velocity of the pole. The

cart starts close to the middle of the track with the pole vertical. There is a

small, uniformly distributed, random value added to the position and velocity

of the cart and the pole. The maximum size of this random value is about

12% of the maximum value for the pole, and about 2% of the maximum value

for the cart. For these experiments, I treat cart pole as a continuing problem;

22

when a failure occurs, instead of starting a new episode, the cart and pole are

reset to their starting positions (with the random offsets recalculated) and the

agent continues. This resetting of the position happens immediately, when

the agent takes an action leading to a failure, the next state it transitions to

is with the cart and pole in the new starting positions. Learning continues

uninterrupted over this transition.

4.2.1 Experimental Setup

Both my multilevel action selection algorithm and an actor-critic algorithm

without splitting the action space were tested and compared. This actor-critic

algorithm without multilevel action selection is the effectively identical to my

algorithms if the number of action types was reduced to one. This makes it

the natural algorithm to use for comparison, as differences in performance will

be solely due to the use of multilevel action selection, and not the method of

selecting the action parameters. The multilevel action selection algorithm was

set up to have one action type associated with forward movement (positive

actions) and the other with backwards movement (negative actions). Each

algorithm was run 30 times with different random seeds for each (every run has

two random seeds, one for the agent and one for the environment), with each

run lasting for a total of 10,000 time steps. Clouse and Utgoff [3] used 10,000

time steps as the boundary for when an agent has solved the cart pole problem,

so it was initially included in my simulation as a maximum episode length.

When I switched from episodic to continuous, it became the experiment length

instead. It ended up being both long enough to show differentiation between

the algorithms, but short enough to be simulated quickly, so I stuck with that

value. The metric for comparison was the total return over the whole run,

averaged between the different seeds.

The state space was tile coded, with 16 tilings of 10 tiles each. These

values were chosen as a middle ground between accuracy of representing the

state space (higher numbers) and quickness of both simulation and time to

learn (lower numbers). The tilings were done for each state space dimension

individually, as well as each pair of two dimensions. A single tiling over all
23

four dimensions was not used due to the impact on computation time, and

preliminary tests do not show any notable gains in performance from using

the four way tiling. Additionally, a single always on tile was included in the

tile coding.

The traces were set up to be set to zero automatically after a set number

of time steps. This resulted in a limit for how many past actions were included

in the trace, which improved computation time over leaving all values in the

trace until they decay below a certain value. It should be noted that removing

features after some amount of time is only different from removing them at

some threshold value in cases where the same features get visited again before

being removed. In this case, the weight from the first visit will be removed,

but not the second. The size of the trace (and thus the number of steps that

the record of a past action sticks around) was dependant on the value of the

trace decay rate λ. [20]

The initial values of the policy parameters were set to have a mean in the

middle of the action space and a standard deviation one eighth the width of

the action space. The critic weights were initialized to zeros.

For this problem, I mainly present results from the double actor critic

algorithm for multilevel action selection. Experiments were run for both it

and critic action type values, but double actor critic clearly performed better

in all cases, so I only include one trial of critic action type values for the sake

of comparison.

In addition to comparing the performance of a multilevel action algorithm

to a regular actor-critic algorithm, I also ran some tests comparing the relative

performance for values of certain parameters, to analyze the algorithm’s sensi-

tivity to these values. This included the decay rate of the eligibility traces, the

step sizes, and whether or not to truncate the ends of the normal distribution

used for action selection.2

2If the distribution is truncated, any weight lying outside the bounds of the action space
gets redistributed over the domain of the action space, maintaining the relative probabilities.
If it is untruncated, any selection in the tails of the distribution outside the bounds of the
action space gets clipped to the bounds of the action space, effectively putting all the weight
of the tail right at the bounds.

24

4.2.2 Parameter Sensitivity Analysis

The results shown in the figures throughout this section are plots of the total

return the agent receives after 10,000 time steps, for various values of param-

eters. The results are plotted with error bars indicating the standard error.

These values were compared using a t-test to determine if they are statistically

significantly different. Specifically, either Student’s t-test (when the variances

of the two populations was expected to be equal) or Welch’s t-test (when they

were expected to be different) were used. To determine if the variances are

equal, the Bartlett or Levene tests were used (using Bartlett when the data

followed a normal distribution, Levene when it did not). This test was com-

puted pairwise for each pair of values in a table, and additionally between

the max value in each table. In these tests, a p-value of less than 0.05 was

the condition to reject the null hypothesis that they have an identical mean.

Tables for the data used in the plots throughout this section can be found in

appendix A.

The first experiment was the comparison of the trace decay rates (λ). This

was run with with αθ = 0.001, αw = 0.001 for the action parameter step sizes,

α̂θ = 0.01, α̂w = 0.001 for the action type step sizes, and αr = 0.05 for the

average reward step size. In figure 4.2, out of 36 pairwise comparisons, only 9

were not significantly different. These all correspond to the cases where λθ is

the same and only λw differs. Therefore, I conclude that the trace decay rate

of the critic weight trace has a statistically significant effect on the algorithm’s

performance, while the trace decay rate of the policy parameter trace does

not.

Figure 4.3 shows the results for various values of the step sizes for action

type selection. This was run with with αθ = 0.001, αw = 0.001 for the action

parameter step sizes, λθ = 0.75, λw = 0.9375 for the trace decay rates, and

αr = 0.05 for the average reward step size. α̂θ is the step size for the actor,

and α̂w is the step size for the critic. Of the 120 pairwise comparisons, 52 of

them have a p-value of less than 0.05. Of these, 48 are comparisons between

α̂w = 0.1 and the other values of α̂w. A further 3 are between the best

25

Figure 4.2: Total return after 10,000 time steps for various trace decay rates
in cart pole

26

Figure 4.3: Total return after 10,000 time steps for various step sizes for action
types in cart pole

performing values of α̂θ = 0.01, α̂w = 0.001 and the three worst performing

values excluding those with α̂w = 0.1. The final is between the best and

worst performing values of α̂w = 0.1. From this I conclude that there is

some significance of the step sizes at the high level, but overall, the algorithm

is not very sensitive to it, aside from α̂w = 0.1 having significantly poorer

performance.

Figure 4.4 shows the results for various step sizes for the average reward.

This was run with with αθ = 0.001, αw = 0.001 for the action parameter step

sizes, α̂θ = 0.01, α̂w = 0.001 for the action type step sizes, and λθ = 0.75, λw =

0.9375 for the trace decay rates. Of the 36 pairwise comparisons, 34 of them

are statistically significantly different. The only two not significantly different

are between αr = 0.0005 and αr = 0.001, which are adjacent, and αr = 0.5 and

αr = 0.005 which are on different sides of the peak at αr = 0.05. I conclude

that the algorithm’s performance is dependant on the step size for the average

27

Figure 4.4: Total return after 10,000 time steps for various step sizes for the
average reward in cart pole

reward, with fairly high sensitivity.

Figure 4.5 shows the results for various values of epsilon when using the

low level critic values instead of a second high level actor and critic. This

was run with with αθ = 0.001, αw = 0.001 for the action parameter step sizes,

λθ = 0.75, λw = 0.9375 for the trace decay rates, and αr = 0.05 for the average

reward step size. In this test, 13 out of 28 pairwise comparisons had a p-value

less than 0.05. Of these, ϵ = 0.1 and ϵ = 0.05 are statistically significantly

different from all other values of ϵ. The other values of ϵ do not have any

significant difference between them. I conclude that the algorithm is not very

sensitive to the value of ϵ, outside of the area immediately around the best

performing value.

Figure 4.6 shows the results for various values of the step sizes for action

parameter selection. This was run with with α̂θ = 0.01, α̂w = 0.001 for the

action type step sizes, λθ = 0.75, λw = 0.9375 for the trace decay rates, and

28

Figure 4.5: Total return after 10,000 time steps for various values of epsilon
in cart pole

29

Figure 4.6: Total return after 10,000 time steps for various step sizes for low
level actions in cart pole

αr = 0.05 for the average reward step size. For the comparisons where αθ =

0.1 or αθ = 0.01 in both trials, there no significantly different comparisons.

For the comparisons where αθ = 0.001 or αθ = 0.0001 in both trials, the

only significantly different comparisons are when αw = 0.1 and between αθ =

0.001, αw = 0.01 and αθ = 0.0001, αw = 0.001. Comparing the values in

between these two groups, all values are significantly different from each other

except for when αw = 0.1. I therefore conclude that the performance of the

algorithm is significantly affected by the actor step size, and affected by the

critic step size only for sufficiently small values of the actor step size.

4.2.3 Algorithm Comparison Analysis

Figures 4.7 and 4.8 show the results of using a the same algorithm with a non

truncated distribution and using regular actor-critic algorithm without multi

level actions respectively. Figure 4.9 shows the comparison between the three

30

algorithms. This was run with with αθ = 0.001, αw = 0.001 for the action

parameter step sizes, α̂θ = 0.01, α̂w = 0.001 for the action type step sizes,

αr = 0.05 for the average reward step size, and λθ = 0.75, λw = 0.9375 for the

trace decay rates. Comparing the results of these algorithms for each of the

settings for the step sizes shows a statistically significant difference between

the multi level and single level action algorithms for all values of the steps sizes,

except for αθ = 0.0001, αw = 0.01. The difference between using truncated

and non truncated distributions was never significant for any of the values.

Additionally, comparing the best performing step sizes for each algorithm also

results in a statistically significant difference between multi level and single

level actions, but not between truncated and non truncated. From this, I

conclude that the use of truncated or non truncated distributions does not

have any significant affect on the performance of the algorithm, but using

multilevel action selection can improve performance over not using it.

Figure 4.10 shows the comparison between the learning curves over time

between multilevel (non truncated) and single level action selection. Note that

in this plot, average reward refers to the mean of the reward received over all

time steps so far, not the average reward tracked by r̄ in the agent. This shows

that both algorithms follow a similar curve, and are flattening out at roughly

the same rate. In order to keep average reward steady, an agent must keep the

pole up for a number of time steps equal to the negative of the inverse of the

current average reward (see appendix C for how this value was calculated).

At the beginning, the average reward is zero, so the agent would need to keep

the pole up infinitely in order to prevent the average reward from decreasing.

This is why near the beginning the curve shows a sharp decrease in average

reward. As time goes on, the average reward decreases, and the agent can keep

the pole up longer, increasing the chance the agent will meet this threshold.

Once the agent meets and exceeds the threshold, the average reward will start

to increase, until it is high enough that the agent can’t keep the pole up for

long enough anymore. The multilevel algorithm meets the threshold first and

starts gaining average reward before the single level algorithm does.

31

Figure 4.7: Total return after 10,000 time steps for various step sizes for low
level actions with non truncated distributions in cart pole

32

Figure 4.8: Total return after 10,000 time steps for various step sizes without
using multilevel actions in cart pole

33

Figure 4.9: Comparative performance on the cart pole problem for different
algorithms

34

Figure 4.10: Comparative learning curves on the cart pole problem for multi-
level and single level action selection.

35

4.3 Mountain Car

The algorithms were also tested on the mountain car problem. This formula-

tion of mountain car involves a car trying to reach the top of a mountain, but

its engine is not powerful enough to go directly. It is in a valley with another

mountain behind it. It can however learn to build up speed by driving up one

side of the valley, then reversing direction and driving up the other, until it

reaches the top (see figure 4.1). Some versions of the problem have discrete

actions of either forward or backward, but the version used here is continu-

ous. The agent takes an action between the maximum backward thrust and

the maximum forward thrust, and the reward is -1 for each time step, with

a reward of 0 instead upon reaching the top. The state information provided

to the agent is the position of the car along the ground, as well as its current

velocity. Mountain car can be be either an episodic or a continuing problem,

but I have treated it as continuing for these experiments. This was because

in order to run it as episodic, there needs to be a max time for the episodes

(so a configuration which can never learn to get up the hill won’t run forever).

Setting this max time could be problematic, as there are some configurations

which do eventually learn, but take a long time to reach the top the first

time. These configurations could never learn in episodic, but in a continuing

setup where only the maximum time is set allows them to eventually learn and

produce usable data.

4.3.1 Experimental Setup

Both my multi level action algorithm and a regular actor-critic algorithm with-

out splitting the action space were tested and compared. The multi level action

algorithm was set up to have one action type associated with forward move-

ment (positive actions) and the other with backwards movement (negative

actions). Each algorithm was run for 1,000,000 time steps 30 times each with

different starting seeds. I ran each trial of mountain car longer than cart pole

because for some parameter settings, the agent is very slow to find a solution,

so the longer trials result in fewer parameter settings never finding a solution

36

in the allotted time, giving more meaningful comparisons. I found 1,000,000

time steps to be the best middle ground for giving most configurations a chance

to learn, but not pushing the total experiment time too long. The metric for

comparison between algorithms was the total return over all episodes averaged

between the seeds.

The state space was tile coded, with 16 tilings of 10 tiles each. These

values were chosen as a middle ground between accuracy of representing the

state space (higher numbers) and quickness of both simulation and time to

learn (lower numbers). The tilings were done for both state space dimensions

individually, as well as for the two dimensions together. Adding the individual

tilings did not have a large impact on computation time, as they are only one

dimensional so small in size, so there was no drawback to including the added

precision. Additionally, a single always on tile was included in the tile coding.

The traces were set up to zero automatically after a set number of time

steps. This resulted in a limit for how many past actions were included in the

trace, which improved computation time over leaving all values in the trace

until they decay below a certain value. It should be noted that removing

features after some amount of time is only different from removing them at

some threshold value in cases where the same features get visited again before

being removed. In this case, the weight from the first visit will be removed,

but not the second. The size of the trace (and thus the number of steps that

the record of a past action sticks around) was dependant on the value of the

trace decay rate λ.

The initial values of the policy parameters were set to have a mean in the

middle of the action space and a standard deviation one eighth the width of

the action space. The critic weights were initialized to zeros.

For this problem, I focused on using critic action type values as my method

of choosing action types. I did this due to performance issue, double actor critic

was too slow to produce the results needed to make any sort of statistically

significant claim in a timely manner.

Due to the nature of the problem and reward structure, the return for a

run will be a very large negative number. In order to make results easier to

37

compare, instead of reporting the return, I instead report the number of times

the agent reaches the top within the time limit. This is equal to the number

of time steps plus the total return.

4.3.2 Parameter Sensitivity Analysis

The results shown in the figures throughout this section are plots of the to-

tal return the agent receives after 1,000,000 time steps, for various values of

parameters. The results are plotted with error bars indicating the standard

error.

The first experiment was a comparison of the trace decay rates. This was

run with with αθ = 0.01, αw = 0.01 for the action parameter step sizes, ϵ = 0.1

for the action type selection, and αr = 0.0005 for the average reward step size.

The results are shown in figure 4.11. Of 36 pairwise comparisons, 5 were not

significantly different from each other. Of these, one was between the two

trials with zero return. The remaining four were all cases where λw was the

same and only λθ differed. From this, I conclude that the trace decay rate

has an effect on the algorithm’s performance, with the critic trace decay rate

having a stronger effect than the policy parameter trace decay rate.

The next experiment analyzed was the values of epsilon while choosing the

action type with results in figure 4.12. This was run with with αθ = 0.01, αw =

0.01 for the action parameter step sizes, αr = 0.0005 for the average reward

step size, and λθ = 0, λw = 0.9375 for the trace decay rates. Of 28 pairwise

comparisons, 6 of them do not have a statistically significant difference. These

are from two clusters of three trials each which are not significantly different

from each other. The first cluster involved ϵ = 0, ϵ = 0.0001, and ϵ = 0.0005,

and the second involved ϵ = 0.005, ϵ = 0.01, and ϵ = 0.05. Therefore, the

value of ϵ is statistically significant between low and high values, but when

values are close enough, there is not a significant difference.

Figure 4.13 shows the results for various values of the average reward step

size. This was run with with αθ = 0.01, αw = 0.01 for the action parameter

step sizes, ϵ = 0.1 for the action type selection, and λθ = 0, λw = 0.9375 for the

trace decay rates. Of the 36 pairwise comparisons, only 4 are not significantly
38

Figure 4.11: Total successes after 1,000,000 time steps for various trace decay
rates in mountain car

39

Figure 4.12: Total return after 1,000,000 time steps for various values of epsilon
in mountain car

40

Figure 4.13: Total return after 1,000,000 time steps for various step sizes for
the average reward in mountain car

different. Of these, one is comparing between the two values that lead to zero

return. The remaining three are between αr = 1 and αr = 0.5, αr = 0.5 and

αr = 0.1, and αr = 0.1 and αr = 0.05 As all of these cases are between middle

ground values, there is a significant difference in performance based on the

average reward step size, with a smaller step sizes tending to be better, except

at the extreme.

Figure 4.14 shows the results for various values of the step sizes for low level

action selection. This was run with with ϵ = 0.1 for the action type selection,

αr = 0.0005 for the average reward step size, and λθ = 0, λw = 0.9375 for the

trace decay rates. Of 120 pairwise comparisons, 28 are between the different

values leading to zero return. Other than these, there are only 18 comparisons

which are not significantly different. Of these, eight are comparing αθ =

0.1, αw = 0.0001 to the eight values which resulted in zero return. The other

10 are from a set of five values none of which are significantly different from

41

Figure 4.14: Total return after 1,000,000 time steps for various step sizes for
low level actions in mountain car

each other, αθ = 0.0001, αw = 0.1, αθ = 0.1, αw = 0.1, αθ = 0.01, αw = 0.1,

αθ = 0.001, αw = 0.1, and αθ = 0.1, αw = 0.0001. From this, I conclude that

the step sizes have a significant effect on the performance of the algorithm.

4.3.3 Algorithm Comparison Analysis

Figures 4.15 and 4.16 show the results of using a the same algorithm with a

truncated distribution and using regular actor-critic algorithm without multi

level actions respectively. The results in figure 4.15 are overlapping, with only

αw = 0.1 giving non zero returns, see appendix A for the exact values. Figure

4.17 shows the comparison between the three algorithms. This was run with

with ϵ = 0.1 for the action type selection, αr = 0.0005 for the average reward

step size, and λθ = 0, λw = 0.9375 for the trace decay rates. Comparing the

results of these algorithms for each of the settings for the step sizes shows a

statistically significant difference between the multilevel, multilevel truncated,

42

and single level action algorithms for almost all values of the steps sizes. In a

few cases, the T test could not be completed due to arithmetic errors arising

from identical values. Ignoring these cases, the only cases not significantly

different are αθ = 0.1, αw = 0.0001 between the truncated and non trun-

cated multilevel algorithms, αθ = 0.1, αw = 0.01 between the non truncated

multilevel algorithm and the single level algorithm, and αθ = 0.1, αw = 0.1

between the single level algorithm and both multilevel algorithms. Addition-

ally, comparing the best performing step sizes for each algorithm also results

in a statistically significant difference between all algorithms. From this, I con-

clude that using multilevel actions cannot match the performance of regular

actor-critic. Additionally, since it had so many zero returns, I conclude the

use of truncated distributions does not work for the mountain car problem.

Figure 4.18 shows the comparison between the learning curves over time be-

tween multilevel (non truncated) and single level action selection, with results

averaged over 30 trials. This shows two major factors which are holding back

the performance of the multilevel algorithm. First is that multilevel starts

learning much later on average, with the point where the average reward first

moves above -1 representing when the agent first reached the top of the hill.

Second is the dip that the occurs around 400,000 time steps in the graph.

Such a dip occurs in roughly the same place in all trials. See appendix B for

a selection of learning curves from individual trials to see how they compare.

Such dips could potentially be from unfortunately timed exploration at the

action type level, if the agent is forced to go backward when a forward action

would be ideal or vice versa, although I would expect the agent to be able to

recover from this quite quickly (on the order of a couple hundred timesteps

required to start over and go up the hill again, not the hundred thousand seen

in this graph). Further analysis is required to determine the true source of

this dip. Although the curves for neither trial have reached an asymptote by

the end of the 1,000,000 time steps, they appear to both be flattening out at

about the same rate.

43

Figure 4.15: Total return after 1,000,000 time steps for various step sizes for
low level actions with truncated distributions in mountain car

44

Figure 4.16: Total return after 1,000,000 time steps for various step sizes
without using multi level actions in mountain car

45

Figure 4.17: Comparative performance on the mountain car problem for dif-
ferent algorithms

46

Figure 4.18: Comparative learning curves on the mountain car problem for
multilevel and single level action selection.

47

4.4 Software

The software used to run the experiments used in this thesis can be found

at this git repository [16]. I based this code on an existing simulator for a

different problem [19]. The cart pole and mountain car problems were used

for the experiments, and were modelled based on those from OpenAI Gym,

with some alterations such as the reward signal. I used C++ for the purposes

of efficiency in the simulator, with some additional scripts in Bash and Python.

The statistical analysis was done using the SciPy python library [23]. In order

to save on computation, instead of keeping a full record of the traces, they

were truncated after a set number of time steps, and set to zero. The method

for doing this is from [19].

48

Chapter 5

Conclusion

In this thesis I explore the usage of multilevel action selection. I looked at

problems which had a single dimension action space to see if breaking up

the action space with multi level actions could improve performance. Some

problems have action spaces which are naturally broken up into multiple action

types that lie in different dimensions, such as the example from chapter 1, but

I did not explore these problems in my thesis.

My experiments were done on the cart pole and mountain car problems. I

chose these problems for their simple action spaces with a conceptual difference

between forwards and backwards thrust. They involve an action space ranging

from the maximum backward thrust to the maximum forward thrust which I

split up into positive and negative actions types for the purpose of multi level

actions. In these experiments I was able to see an increase in the total return

after a set amount of time by using a multi level actions instead of a regular

actor-critic algorithm, depending on the problem the agent is solving.

Specifically, the agent was able to achieve significantly better performance

on the cart pole problem using multilevel action selection, but could not match

the performance of regular action selection on the mountain car problem. A

notable difference between these problems is that mountain car is about reach-

ing a goal, and cart pole is about preventing failure. In mountain car, once

the agent reaches the goal, it starts again from the bottom, and tries to reach

the goal again. In cart pole, once the agent can successfully balance the pole,

the pole will never fall over (except for random chance from exploration) and

49

the agent will never restart the problem. I suspect that an agent which can

learn a solution faster will perform better on cart pole, but an agent which

can better iterate on and improve its solution will perform better on mountain

car, however this would require further experiments to confirm.

With only two problems tested, I do not have enough information to spec-

ulate how well multilevel action selection will generalize to other problems.

However, the performance on the cart pole problem shows promise, and I

believe it is worth further investigation on other similar problems.

While the numerical result for the total return did increase, another factor

to consider is computation time. Algorithms with multilevel action selection

took considerably longer to run those without to simulate the same amount

of time. This means that multilevel action selection may be ill suited for real

world situations in which action selection is done live and decisions have to be

made in a time sensitive manner.

There are other aspects I intended to investigate but dropped due to time

constraints. These include further analysis of performance other than just

total return such as the time taken to find a solution, and the quality of the

final solution (return after solution has been learned). Further analysis of the

learning curves would also be useful, including running them for sufficiently

long until the results reach their asymptote, and analyzing the cause of the dip

in the multilevel algorithm’s performance on mountain car. It would also be

illuminating to reproduce these tests on more problems to get a better idea of

when multilevel action selection can help versus when it will be detrimental.

There were also more ways of choosing action types that may have advantages

over the ones used in this thesis, such as using a single critic for both the

action type and action parameters, and using a tabular action value method

such as SARSA to choose the action types.

The results of this thesis show promise for the application of multi level

actions for the purpose of improving performance in at least some specific

circumstances. While they may not always be the best way to approach a

problem, it is worthwhile to have them in the toolkit alongside other rein-

forcement learning methods.

50

References

[1] C. J. Bester, S. D. James, and G. D. Konidaris, “Multi-pass q-networks
for deep reinforcement learning with parameterised action spaces,” arXiv
preprint arXiv:1905.04388, 2019.

[2] P.-W. Chou, D. Maturana, and S. Scherer, “Improving stochastic policy
gradients in continuous control with deep reinforcement learning using
the beta distribution,” in International conference on machine learning,
PMLR, 2017, pp. 834–843.

[3] J. A. Clouse and P. E. Utgoff, “A teaching method for reinforcement
learning,” in Machine learning proceedings 1992, Elsevier, 1992, pp. 92–
101.

[4] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in 2012 American Control
Conference (ACC), IEEE, 2012, pp. 2177–2182.

[5] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” arXiv
preprint arXiv:1205.4839, 2012.

[6] O. Delalleau, M. Peter, E. Alonso, and A. Logut, “Discrete and continu-
ous action representation for practical rl in video games,” arXiv preprint
arXiv:1912.11077, 2019.

[7] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic reinforcement
learning in parameterized action space,” arXiv preprint arXiv:1903.01344,
2019.

[8] Y. Fujita and S.-i. Maeda, “Clipped action policy gradient,” in Interna-
tional Conference on Machine Learning, PMLR, 2018, pp. 1597–1606.

[9] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in continuous
state and action spaces,” in Australasian joint conference on artificial
intelligence, Springer, 1999, pp. 417–428.

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, PMLR, 2018,
pp. 1861–1870.

[11] M. Hausknecht and P. Stone, “Deep reinforcement learning in parame-
terized action space,” arXiv preprint arXiv:1511.04143, 2015.

51

[12] M. Khamassi, G. Velentzas, T. Tsitsimis, and C. Tzafestas, “Active ex-
ploration and parameterized reinforcement learning applied to a simu-
lated human-robot interaction task,” in 2017 First IEEE International
Conference on Robotic Computing (IRC), IEEE, 2017, pp. 28–35.

[13] R. Kumaraswamy, M. Schlegel, A. White, and M. White, “Context-
dependent upper-confidence bounds for directed exploration,” Advances
in Neural Information Processing Systems, vol. 31, 2018.

[14] Q. Lan, S. Tosatto, H. Farrahi, and A. R. Mahmood, “Model-free policy
learning with reward gradients,” arXiv preprint arXiv:2103.05147, 2021.

[15] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning with
parameterized actions,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, vol. 30, 2016.

[16] D. Mitchell, Simulator, https : / / github . com / daniel - mitchell /
lunarlander, 2022.

[17] E. Rachelson, P. Fabiani, and F. Garcia, “Timdppoly: An improved
method for solving time-dependent mdps,” in 2009 21st IEEE Inter-
national Conference on Tools with Artificial Intelligence, IEEE, 2009,
pp. 796–799.

[18] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with rein-
forcement learning in problems with continuous state and action spaces,”
Adaptive behavior, vol. 6, no. 2, pp. 163–217, 1997.

[19] R. Shariff, Lunar lander, https://github.com/roshanshariff/lunarlander,
2021.

[20] R. Shariff and T. Dick, Lunar lander: A continous-action case study for
policy-gradient actor-critic algorithms, 2013.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[22] H. Van Hasselt, “Reinforcement learning in continuous state and action
spaces,” in Reinforcement learning, Springer, 2012, pp. 207–251.

[23] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[24] H. Wang and Y. Yu, “Exploring multi-action relationship in reinforce-
ment learning,” in Pacific Rim International Conference on Artificial
Intelligence, Springer, 2016, pp. 574–587.

[25] E. Wei, D. Wicke, and S. Luke, “Hierarchical approaches for reinforce-
ment learning in parameterized action space,” arXiv preprint arXiv:1810.09656,
2018.

[26] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Reinforcement learning, pp. 5–32,
1992.

52

https://github.com/daniel-mitchell/lunarlander
https://github.com/daniel-mitchell/lunarlander
https://github.com/roshanshariff/lunarlander
https://doi.org/10.1038/s41592-019-0686-2

[27] J. Xiong, Q. Wang, Z. Yang, et al., “Parametrized deep q-networks
learning: Reinforcement learning with discrete-continuous hybrid action
space,” arXiv preprint arXiv:1810.06394, 2018.

[28] S. Zhang, W. Boehmer, and S. Whiteson, “Generalized off-policy actor-
critic,” Advances in neural information processing systems, vol. 32, 2019.

53

Appendix A

Tables

This appendix contains the tabular data for the figures shown in chapter 4.

λw

λθ 0.9375 0.75 0

0.9375 −170.4 −42.96 −68.56
0.75 −162.8 −43.1 −66.63
0 −167.83 −46.43 −67.3

Table A.1: Total return after 10,000 time steps for various trace decay rates
in cart pole

54

α̂w

α̂θ 0.0001 0.001 0.01 0.1

0.0001 −45.46 −46.2 −45.4 47.4

0.001 −46.46 −44.56 −42.96 −47.9
0.01 −46.2 −47.8 −44.96 −45.5
0.1 −193.6 204.46 −207.53 −224.93

Table A.2: Total return after 10,000 time steps for various step sizes for high
level actions in cart pole

αr 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1
Return −250.03 −227.3 −222.36 −84.76 −62.36 −42.96 −50.03 −89.93 −121.63

Table A.3: Total return after 10,000 time steps for various step sizes for the
average reward in cart pole

ϵ 0 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Return −143.48 −143.46 −143.41 −143.58 −143.96 −144.2 −146.35 −148.31

Table A.4: Total return after 10,000 time steps for various values of epsilon in
cart pole

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 −154.26 −181.46 −278.16 −276.8
0.001 −90.13 −42.96 −276.9 −276.83
0.01 −254.23 −90.9 −277.3 −277.8
0.1 −277.73 −280.9 −277.36 −277.73

Table A.5: Total return after 10,000 time steps for various step sizes for low
level actions in cart pole

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 −153.56 −183.13 −277.7 −276.9
0.001 −89.6 45.23 −277.3 −277.3
0.01 −248.6 −91 −277.23 −277.83
0.1 −277.63 −268.7 −277.53 −278.06

Table A.6: Total return after 10,000 time steps for various step sizes for low
level actions with truncated distributions in cart pole

55

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 −246.03 −244.56 −246.03 −242.8
0.001 −245.7 −244.53 −244.06 −226.3
0.01 −244.76 −243.26 −226.96 −138
0.1 −245.36 −240.83 −199.3 −73.5

Table A.7: Total return after 10,000 time steps for various step sizes without
using multi level actions in cart pole

λw

λθ 0.9375 0.75 0

0.9375 1245.1 2111.5 2467.46

0.75 540.46 684.3 661.36

0 0.06 0 0

Table A.8: Total successes after 1,000,000 time steps for various trace decay
rates in mountain car

ϵ 0 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Return 0 0 1.83 66.9 627.7 640.83 795.1 2467.46

Table A.9: Total return after 1,000,000 time steps for various values of epsilon
in mountain car

αr 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1
Return 553.96 2467.46 2010.23 0 0 152.2 107.5 59.83 48.26

Table A.10: Total return after 1,000,000 time steps for various step sizes for
the average reward in mountain car

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 0 0 0 57.3

0.001 0 0 0 607.16

0.01 0 0 2467.46 1322.86

0.1 29.16 38.7 37.53 37.26

Table A.11: Total return after 1,000,000 time steps for various step sizes for
low level actions in mountain car

56

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 0 0 0 0
0.001 0 0 0 0

0.01 0 0 0 0.06

0.1 0.6 0.6 0.63 0.5

Table A.12: Total return after 1,000,000 time steps for various step sizes for
low level actions with truncated distributions in mountain car

αw

αθ 0.0001 0.001 0.01 0.1

0.0001 0 0 2225.83 3485.06

0.001 0 1674.56 7858.96 4196.56

0.01 1451.73 7382.63 7604.03 1533.83

0.1 3678.06 7046.1 6900.3 244.03

Table A.13: Total return after 1,000,000 time steps for various step sizes with-
out using multi level actions in mountain car

57

Appendix B

Mountain Car Learning Curves

This appendix contains a few of the learning curves for single runs of mountain

car with multilevel action selection to show the differences and similarities

between runs.

58

59

60

61

Appendix C

Average Reward Calculations

This appendix contains the calculations determining the conditions for the

average reward to remain the same from one failure to the next in cart pole.

r is the return at time t. ∆t is the time until the next failure.

r

t
=

r − 1

t+∆t
r(t+∆t)

t
= r − 1

t+∆t =
t(r − 1)

r

∆t =
t(r − 1)

r
− t

∆t = t(
r − 1

r
− 1)

∆t =
−t
r

62

	Introduction
	Brief Overview of Reinforcement Learning
	Basics of Reinforcement Learning
	How Reinforcement Learning Works
	Exploration vs. Exploitation
	Continuing and Episodic Problems
	Large State and Action Spaces
	Multiple Dimensions

	Approaches to Multilevel Actions
	Definition of Multilevel Actions
	Reasons to Use Multilevel Actions
	Methods of Choosing Multilevel Actions
	Algorithms

	Experiments and Analysis of Results
	Problems to Test Algorithms
	Cart Pole
	Experimental Setup
	Parameter Sensitivity Analysis
	Algorithm Comparison Analysis

	Mountain Car
	Experimental Setup
	Parameter Sensitivity Analysis
	Algorithm Comparison Analysis

	Software

	Conclusion
	References
	Appendix Tables
	Appendix Mountain Car Learning Curves
	Appendix Average Reward Calculations

