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Abstract—In this study, we present an intuitive machine learning-
based approach to evaluate and interpret surgical skills level of a
participant working with robotic platforms. The proposed method is
domain-adapted, i.e., jointly utilizes an end-to-end learning approach
for smoothness detection and domain knowledge-based metrics such
as fluidity and economy of motion for extracting skills-related features
within a given trajectory. An advantage of our approach compared
to similar stochastic or deep learning models is its intuitive and
transparent manner for extraction and visualization of skills-related
features within the data. We illustrate the performance of our
proposed method on trials of the JIGSAWS data set as well as our
own experimental data gathered from Phantom Premium 1.5A
Haptic Device. This approach utilized t-SNE technique and provides
visualized low-dimensional representation for different trials that
highlights nuanced information within the executive task and returns
unusual or faulty trials as outliers far away from their normal skill
or participant clusters. This information regarding the input trajectory
can be used for evaluation and education applications such as learning
curve analysis in surgical assessment and training programs.

Index Terms—Machine Learning, Surgical Skills Evaluation,
Ensemble Models, Contrastive Principal Component Analysis
(cPCA), t-distributed Stochastic Neighbor Embedding (t-SNE).

I. INTRODUCTION

Robot-assisted minimally invasive surgery (RAMIS) is gaining
traction in modern clinical practice. To do RAMIS safely and
effectively, surgeons must acquire a variety of skills [1]. To
assist surgical trainees, reliable surgical assessment methods with
informative and instructive feedback would be helpful.

Conventionally, RAMIS skills assessment has been carried out
via outcome-based analysis, structured checklists, and rating scales
[2]. These qualitative assessment methods need extensive expert
monitoring, time, and manual ratings that make them less efficient
as well as less reliable because of human bias and variability in
human interpretation about similar events. Moreover, these scoring
systems due to their observational nature can be insensitive to small
but important improvements in the skills level of the trainee and
fail to provide insights into the core reasons for surgical failures.

Automated RAMIS skills assessment techniques, on the other
hand, bridge these gaps, save time and money, and provide targeted
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feedback to inexperienced surgeons during their learning phase
[3]. Thanks to surgical robot technologies, surgical procedural data
are becoming more available and have the potential to pave the
way for artificial intelligence (AI) based systems such as machine
learning and deep learning models to be deployed in surgical skills
assessment.

Autonomous robotic surgery assessment approaches use two
main categories of AI models: data-driven (or inductive) models
and feature-based (or domain knowledge-based) models [4]. The
overwhelming philosophy behind the data-driven models is to use
end-to-end models with minimal use of domain knowledge to
prevent introducing user bias into the learning procedure. These
approaches let the model learn features, choose its structure, and
tune its hyperparameters mostly from the input data.

The feature-based models, on the other hand, do not rely on a
model to learn features that are already known according to human
intuition or dynamical equations of the system. The model of
operator’s skill is too complex to be captured by a limited amount
of training data and always there are model uncertainties and
unmodeled dynamics involved. Incorporating domain knowledge
as priors reduces uncertainties rendering the modeling problems
easier to solve with fewer training data points [5].

A. Data-Driven Models

There is a rich body of literature including papers from our
research group addressing the autonomous robotic skills evaluation
problem using data-driven models. For instance, [6], [7] incorporate
convolutional neural networks (CNNs) to discover skills-related
temporal patterns of kinematic data in the motions of participants
performing robotic surgery. Some work tries to combine CNN with
recurrent neural networks (RNNs) to systematically classify various
levels of expertise in surgical training data sets [8]. Other work such
as [3], [9], [10] incorporate CNN or RNN-based spatial attention
models to extract skills-related temporal features from endoscopic
video frames and predict users’ surgical skills level.

Although the majority of these work have reported a relatively
low skill misclassification rate, the feature extraction and decision-
making procedures in these black-box models are unknown and
sometimes unreliable. Moreover, these models due to their high ca-
pacity are always prone to be overfitted on small data sets, especially
in the field of robotic surgery where the scarcity of qualified human
participants and expensive experimentation limit access to standard
and large data sets. The mentioned limitations negatively affect
the transparency and generalization of any performance feedback
for the trainee since the feedback is relied on the model’s learned
parameters and its confidence about the predicted outcome (see [6]).

Another category of data-driven research in the area of skills
assessment rely on utilizing hidden Markov models (HMMs) to
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segment a surgical task into its pre-defined building blocks so-called
gestures to classify subjects according to their skills level [11]. In
addition to the fact that these methods mainly suffer from limited
recognition rates and challenges for finding the optimal number of
hidden states, they require a large number of manually made gesture
annotations, which would be very laborious. Moreover, HMMs
project trajectories into another space defined by static descriptors
that increases the chance of losing important temporal information.

B. Feature-Based Models

Feature-based approaches for skills evaluation calculate meaning-
ful features as evaluation metrics including total path length [12],
motion jerk [13], execution time [12], [13], etc., and run descriptive
statistic analysis between human participants on a single metric at
a time. Since such metrics have a lot of statistical variation intra
and between participants, usually there are considerable overlaps be-
tween skill classes and there is little statistically significant difference
between different human users. This is because some features such
as motion jerk are too noisy or other ones such as total path length
or execution time are not informative enough as a single factor for
revealing the skills level of the user. Additionally, these papers just
consider global metrics across the entire procedure and do not take
care of detailed events within the sub-task level of the operation. For
instance, these work neglect challenging temporal metrics such as tra-
jectory smoothness (i.e., lack of random motions such as hand tremor
or uncontrolled fast actions) as an important contributing factor in
skills evaluation of a given trajectory. Different metrics complement
each other and could be considered together in a high-dimensional
space to find a meaningful and expressive representation of surgical
performance for comparison. These methods remain ad-hoc and non-
generalizable for new trajectories due to the fact that they neglect
temporal patterns and do not build a model for skills assessment.

C. Contributions

In this work, we bridge the gap between data-driven models and
feature-based models and introduce a domain-adapted model that
simultaneously incorporates manually engineered metrics as well
as temporal features learnt from the input data for skills assessment
purposes in surgical training programs in which there is more
focus on generic trajectory-based skills of surgeons than patient’s
surgical outcome. Our proposed novel approach extracts smoothness
features from the input data under the context of data-driven
learning and utilizes global metrics such as fluidity and economy
of motions as approved features for detecting the skills level of the
executed trajectory [14]. We adopt contrastive principal component
analysis (cPCA) technique [15] to tackle the challenging problem
of smoothness/noise detection within trajectories.

By ensembling these clinically meaningful features, we will
achieve an expressive high-dimensional feature space that mean-
ingfully reflects the user’s skills level and highlights nuanced infor-
mation within the surgery. We use t-distributed stochastic neighbor
embedding (t-SNE) as an unsupervised technique [16] to visualize
the high-dimensional feature space in a three-dimensional embed-
ding space and investigate the performance of our proposed model.

Leveraging domain knowledge together with data in an
unsupervised learning mode reduces the reliance of our method

on large data sets and benefits its generalizability, transparency,
and reliability compared to other black-box models including
deep learning-based models. These features make our approach
have a potentially good impact in robotic surgery, where demands
for enhanced reliability and explainability in educational and
assessment procedures are extremely strong. Note that since this
paper proposes general criteria for the surgical skills assessment,
it cannot provide detailed feedback about the sub-task performance
of the trainee. However, abnormal behaviors will implicitly show
themselves in the final global metric, and faulty trajectories will be
mapped as outliers far from the more skillful clusters.

The outline of the paper is organized as follows: In Section II,
basic concepts and motivations will be discussed. In Section III,
experimental results with Phantom Premium Haptic Device will
be provided. In Section IV, the quality and performance of the
proposed approach will be investigated using JIGSAWS data set.
Concluding remarks are provided in Section V.

II. METHODOLOGY

It has been proven that a casual observer can discover and
rate the skills levels of a surgeon just by looking at pre-recorded
endoscopic videos of surgical tasks with comparable accuracy
to an experienced surgical mentor [17]. The intuition behind this
observation is that the human understanding of skill can be more
intuitive and intrinsic than sophisticated assessment [18]. A possible
hypothesis about this interesting result is that the observer does not
care about extreme details and miniscale translations/rotations inside
the surgical trajectories. He/she mainly focuses on hand movement
and tool maneuver skills of the user such as smoothness, fluidity,
the economy of motion, and so on.

We conclude that as smoothness, fluidity, and energy economy
of a given trajectory improve, the assigned level of expertise to the
user should increase as well. Inspired by these facts, we develop
intuitive and transparent domain adapted sub-models that separately
capture each and every one of these important factors. Later on, we
will show that by ensembling these sub-models we can achieve a
practical feature extraction model, suitable for any downstream task
such as classification or data visualization.

First, we elaborate on the smoothness detection technique in
the following sections since it is the most challenging part of
developing our sub-models. The challenge arises from the fact that
the smoothness is a temporal feature that can happen anywhere
inside a given trajectory and can be masked by other temporal
patterns such as general trend and seasonal patterns. Moreover,
there is no straightforward definition or method to search or detect
the non-smooth behavior across the time series.

A. Trajectory Smoothness

1) Preliminaries: Exploration of high-dimensional data is
always considered as an omnipresent challenge across different
fields of applications. Conventional techniques such as principal
component analysis (PCA) [19] or multidimensional scaling (MDS)
[20] aims to identify dominant trends inside the data. To capture
nonlinear trends inside the more complex data sets, other methods
including locally linear embedding (LLE) [21] and Isomap [22]
were developed to find the sub-manifold that preserves local
relations between data points in the original space.
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(a)                                                         (b)                                                  (c)

Fig. 1: Visualizing time series in X s and Xn (n=2000) in the three dimensional space using (a) MDS and nonlinear manifold learning
methods, (b) LLE, and (c) Isomap. These manifold learning methods try to discover the lower dimensional (in this case, three-dimensional)
internal structure of each time series for illustration purposes. As it is clear, non of these techniques capture salient features that distiguish
fundamental differences between two probability distributions p and q that X s and Xn are sampled from.

However, in many settings we are interested in identifying trends
or patterns that are rich in some specific features. For instance, in a
data set of gene-expression measurements from intact and cancerous
individuals, we want to highlight cancer-related variations that
purely distinguish the two clusters of individuals. If we directly apply
PCA or MDS, it is very likely that the top principal components
capture the demographic variations of the individuals such as gene
features related to skin color, age, or gender instead of gene features
related to the cause of the cancer. Similarly, for nonlinear manifold
learning methods such as LLE and Isomap, features of interest may
not appear as dominant latent factors, or may be entangled with
other prominent ones in the low-dimensional embedding.

Moreover, methods that embed data based on preserving pairwise
distances (e.g., MDS) or local patterns of the original data (e.g.,
LLE and Isomap) provide mappings only for those given training
points with no straightforward and deterministic extension for
out-of-sample examples [23]. In other words, if we want to embed
new test points, we have to run these methods from scratch for
the new training set, which is the old training set plus new query
points. In addition to significant computational cost, we have no
clear boundary between training and test sets for verifying the
generalization of the method in classification tasks.

2) Motivation: We face a similar problem when we want
to extract salient features related to hand tremor or in general
noise inside a given trajectory as an informative factor in skills
classification of surgical tasks. Consider a fabricated data set
X = X s ∪ Xn containing two different types of trajectories:
randomly generated smooth trajectories X s and noisy trajectories
Xn to model the hand tremor (not sensor or process noises)

X s={xi}ni=1∈Rd×n, Xn={x̂i}ni=1∈Rd×n (1)

and we define each noisy sample x̂i as

x̂i=xi+ε, ε=[ε1,...,εd]
⊤ (2)

where εl̸=τk=0, and ετk∼N (0,σ2) in which τ is the tremor period
and 0≤ k ≤ d

τ . The variance σ2 controls the tremor intensity of
samples within Xn with three different values of 1 mm, 2 mm, and
3 mm. The reason behind such modeling is that physiological tremor
is approximately a linear and Gaussian random process with the fre-
quency ranging from 2.5 Hz to 13 Hz [24]. For the example case of
τ=3, since the sampling frequency is 30 Hz, we add random tremor
to time-stamps that are multiples of three (i.e., ε3k∼N (0,σ2)) to

fabricate a 10 Hz tremor signal. We repeat the same procedure to
generate tremors with other valid frequencies to make a realistic
and intense noisy data set Xn for the contrastive learning paradigm
which will be discussed in Section II-A3. In a broader sense, we
assume that X s ∼ p and Xn ∼ q where p and q are probability
distributions corresponding to smooth and non-smooth time series,
respectively. Real-world trajectories Xh do not fall into one of these
two groups; they are sampled from another probability distribution r.

Since Xh, X s, and Xn share substantial temporal features (e.g.,
general trend or seasonal patterns such as surgical gestures) and
these features are entangled with each other, there is no meaningful
and straightforward relation between r, p, and q in the original space.
However, if these data points are mapped to a specific embedding
space that each dimension identifies and exhibits the most interesting
difference between samples from p and q, real-world samples lie
somewhere between these two ultimate boundaries. In other words,
r can be expressed as a linear combination of p and q.

Time series are high-dimensional data, mostly with a lot of
correlated and redundant variations inside. Dimensionality reduction
techniques allow us to extract and analyze only the high-impact
information to make insightful data-driven decisions. Fig. 1 and Fig.
2a illustrate four different dimensionality reduction and manifold
learning methods that try to uncover the low-dimensional intrinsic
structure of each time series. Each point in the three-dimensional
embedding space represents a high-dimensional original time series
after detecting and deleting unnecessary correlations and dimensions.
As it is illustrated in Fig. 1 and Fig. 2a, applying conventional
methods do not return a low-dimensional map with enhanced
noise-related features for the fabricated training sets X s and Xn

since there is no clear boundary between mapped data points of
the two sets. In fact, noise-related features are masked due to
their entanglement with other dominant temporal features inside
trajectories. In addition to the computational simplicity of PCA,
non of the above-mentioned techniques are capable to return a
mapping function F :Rd 7→Re for out-of-sample points which acts
similar to a trained model where e is the intrinsic dimensionality
of the embedding space. Another motivation for utilizing PCA is
its compatibility with contrastive learning paradigm which will be
elaborated in Section II-A3.

3) Solution: cPCA is a machine learning technique designed
to fill the above-mentioned gaps that distinguishes noisy trajectories
from smooth ones. cPCA generates a mapping function F that
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Fig. 2: Visualizing data points in X s and Xn (n=10,000) in the three dimensional space using (a) PCA (8,000 training data), (b) cPCA
in the three dimensional sub-space (with 8,000 training data and 2,000 test data), and (c) illustration of ensemble model used in this research.
cPCA technique successfully managed to separate noisy and smooth data (for both test and training) in the three dimensional space.

projects X to a low-dimensional map where each contrastive
principal component (cPC) exhibits the most expressive differences
between X s and Xn that are related to the smoothness.
cPCA takes a target data set that has some patterns of interest

within as the first input and a background data set that does not con-
tain the patterns that we are looking for as the second input. cPCA
returns sub-spaces that capture variations that are large in the target,
but little in the background. In our problem formulations, target pat-
terns are the tremor inside the trajectories. As a result, our target data
set is Xn and the background data set is X s. At first, we calculate
Ct andCb, which are the target and background covariance matrices

Ct=XnX⊤
n , Cb=X sX⊤

s . (3)

Then, we calculate the so-called contrastive covariance matrix Cc

and its eigen decomposition

Cc=Ct−αCb=W cΛW⊤
c (4)

where the contrastive strength parameter α represents our desire
to magnify interesting target variances and attenuate the irrelevant
background variance [15]. For α = 0, cPCA reduces to PCA
applied on the target dataset and as α increases, directions with
smaller background variance become more significant. For very
large α, cPCA first projects the target data onto the null space
of the background data, and then applies conventional PCA on
the projected data. This is because when α increases in (4), the
penalty for any direction not in the null space of the background
data increases accordingly. Hence, the mapping function of cPCA
technique to the e- dimensional embedding for a given data set X is:

F(X)= eW
⊤
c X (5)

where eW c is the matrix composed of top first e columns of W c.
We incorporate cPCA technique to extract noise-related features

from real surgical trajectories. To produce a general and unbiased
smoothness detector mapping function F, we fabricate 10,000
randomly generated smooth trajectories xi for the smooth trajectory
set X s and add each of them with randomly generated noise vector
ε to generate noisy trajectories x̂i for Xn with three different values
for σ2 in (2) to have a more realistic noisy data set. In this setting, we
choose Xn as the target and X s as the background data set in the
cPCA formulations. As it is shown in Fig. 2b, cPCA with α≥30
gives us a good embedding space for which noisy and smooth sam-
ples are well separated from each other. Since the performance of the
approach is the same for a large range of parameter α, the sensitivity

of the data separation is very low to this particular hyperparameter.
The calculated mapping function F in (5) successfully mapped
8,000 training data points into e=3 dimensional embedding space
in such a way that all smooth samples are densely clustered around
origin and as the noise intensity increases, the embedded representa-
tion of the trajectory goes further away from 0⃗ (note that a possible
approach for measuring the density of each cluster is calculating the
variance inverse of each class). As a result, three cPCs in this space
form a feature vector fsmooth=[cPC−1

1 , cPC−1
2 , cPC−1

3 ]⊤ that
reflects the smooth behavior of a given trajectory. Using the trained
mapping function F expressed in (5), we mapped other 2,000 test
points to the latent space and get the same embedding similar to Fig.
2b (i.e., all smooth data points separately clustered near origin with
a scatter of noisy trajectories’ representation around them). fsmooth

returns higher values for smoother trajectories and low values for
jittery motions or trajectories with a lot of hand tremors.

B. Fluidity of Movements

Fluidity of the movement is another informative skills-related fea-
ture that can be extracted from the translational or rotational trajecto-
ries. Fluidity reflects how quick and accurate a task is done in transna-
tional or rotational space and can be derived from the time derivative
of the input trajectory [25]. A good metric to capture fluidity for a
given time series u(t) is calculating the inverse of relative total path
length during the execution time. u(t) can be robot’s end effector
motions along x, y, and z axis of the Cartesian coordinate system or
its rotations around roll, pitch, and yaw directions. This feature ffluid
for both continuous and discrete time series can be calculated as

ffluid=
(

1
T

∫ T

t=0
|u̇(t)|dt

)−1

, or ffluid=
(

1
N

∑N
t=0|u̇[t]|

)−1

(6)

where T is the execution time of u(t), u̇(t) is the time derivative
of u(t), and N is the total number of time samples of u̇[t]. In
this way, ffluid returns high values for fluent trajectories and low
values for faulty, non-accurate, and suddenly generated paths (i.e.,
happening frequent mid-task failures and restarts). Note that (6) can
be vulnerable to sensor noise and return low values even for fluid
motions. To address this problem, we filtered all frequencies above
25 Hz which is beyond the human working frequency range [24] to
exclude any measurement noise while preserving important human
motion variations. Moreover, for the fast but fluid tasks since we
have the total execution time T or N in the denominator, (6) will
not return incorrect low values for expert trials.
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Fig. 3: Phantom Premium 1.5A Haptic Device in the squiggly line
tracking task.

C. Economy of Motion

Economy of motion reflects the total energy demand for
accomplishing a particular task and is a generally accepted factor
contributing in skills assessment of various activities [26]. In
addition to the fact that in RAMIS applications, user’s high energy
consumption reflects his/her skills deficiency, human errors (i.e.,
unintentional random events) typically result in higher execution
velocity and higher energy injection to the patient-side robot
which are the main sources of danger and trauma in an operation
[27]. One possible way to approximate this important factor for
RAMIS applications is calculating the total kinetic energy within
a given trajectory. We do not consider potential energy because
it is trajectory-independent and only depends on what the task
requires to do so (i.e., potential energy change for displacing from
point P1 to P2 is the same for all possible trajectories with any
execution quality). Since the lumped mass of patient-side robot is
quite the same for surgical configurations, we can neglect its mass
in calculating the inverse of kinetic energy and define fecono as:

fecono=
(
1
2

∫ T

t=0
u̇2(t)dt

)−1

, or fecono=
(
1
2

∑N
t=0u̇

2[t]
)−1

. (7)

In this context, fecono returns high values for energy economic
and safe surgical motions and low values for unsafe and aggressive
trajectories.

D. Ensembling Sub-models

Each one of the above-mentioned metrics is not comprehensive
enough to reflect the skills levels of the user during the execution
of the trajectory. A possible solution is to concatenate all of these
metrics and feed them to downstream data analysis (see Fig. 2c).
This makes sense since generating plentiful uncorrelated and
meaningful features is an essential part of training a model to make
the feature space rich and expressive to achieve better accuracy and
generalization.

One major advantage of using such ensemble model in skills
assessment task is that the contribution of each factor in the final
decision making procedure is transparent. In this way, the framework
can give instructive feedback to each user about their performance,
weaknesses, and strengths in different characteristics of surgery.
This simple and transparent advantage makes our approach superior
over other black-box machine learning or deep learning models in
which the procedure of feature extraction and decision making is
not clear, understandable, or reliable under the context of end-to-end
learning over small data sets of surgical tasks.

One method of assessing the feature ensemble is to feed all
generated features to a classifier and evaluate its performance.

A

B

Fig. 4: Three dimensional visualization of Phantom robot
experimental trajectories using t-SNE technique. Cluster boundaries
(i.e., dashed lines) are for the demonstration purpose.

However, since this approach tries to minimize misclassification rate,
it does not differentiate between different trials of the same class
or a particular participant. In other words, we cannot discriminate
outlier points and investigate the reasons for them. Additionally,
classification techniques are supervised learning methods which
are prone to overfitting over a small dataset. Such a model is not
favorable in tasks such as robotic surgery where demands for safety
and explainability of intelligent algorithms are very high.

Unsupervised clustering-based data visualization techniques, on
the other hand, bridge these gaps and provides an understandable
low-dimensional graphical representation of high-dimensional data.
Since in this study we have a relatively high-dimensional feature
space, linear data visualization techniques such as PCA may fail
to capture relationships within the data that may be entangled
with others (e.g., tangent, parallel, enveloping, or orthogonal
features). Moreover, due to the limited and sparse data points in the
feature space, capturing global structure of the data might fail to
represent true local structure (cluster) of data points. In this study,
we apply t-SNE for this purpose. Briefly, t-SNE is a nonlinear
data visualization method that keeps neighboring points of the
high dimensional space close to each other in the low-dimensional
embedding [16]. The advantage of t-SNE over other nonlinear data
visualization methods (e.g., LLE or Isomap) and the main reason for
incorporating this method in our paper is the ability to preserve the
local structure of the high-dimensional data and handle outliers while
taking care of other dimensionality reduction challenges including
crowding problem [16] that are neglected in other approaches which
are typically slower than t-SNE in terms of training time. That is,
similar ensemble features in our tasks will be mapped to close by
representations (i.e., clusters) in the t-SNE visualization space that
gives us a feel or intuition of how the data points are arranged in
a high-dimensional space. The consistency between results and
interpretations of this work and the sequel paper of this research line
[28] (which incorporates a completely different skills evaluation and
data visualization technique) reinforces the fact that the choice of
t-SNE as a powerful dimensionality reduction and data visualization
technique was right (more details are provided in Section IV).

III. PRELIMINARY ANALYSIS AND DISCUSSION

To evaluate and observe the performance of the proposed method
in practice, we gathered a data set resulting from the collaboration
of the user and Phantom Premium 1.5A Haptic Device, Geomagic
Inc (see Fig. 3). The experiments were approved by the University
of Alberta Research Ethics and Management Online under study
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ID Pro00055825. Five right-handed users performed the task of
tracking squiggly line in 6 trials (data, codes, and supplementary
video are available here).

Since there is a significant difference between the performance of
the trials done by the dominant hand and with ones performed by the
non-dominant hand, we consider trajectories of the dominant hand of
the users as expert data and trajectories coming from the other hand
as novice data. This assumption is due to the fact that our dominant
hand is fully trained to skillfully perform elaborate motions with low
hand tremor and high precision compared to the non-dominant hand.
We are not arguing that the differences between the left and right
hand exactly correspond to the differences between the skills level of
novices and experts, we are trying to create two conditions that are
different in the performance level to test our approach on. To increase
the dexterity of the dominant hand, each participant performed at
least five trial sessions with his/her dominant hand until he/she
feels is well-prepared before starting the actual experiment. In this
experiment, we will show that our proposed method can deliver an
expressive representation of skills in which all trajectories coming
from the different hands have their own skill clusters. Moreover, we
will see that hidden information such as mental concentration can
be implicitly interpreted from the visualized representation and how
can be affected by the level of expertise of the executing hand.

We feed translational data (i.e., motions executed along x, y, and
z axes of the Cartesian coordinate system) of a given trajectory to
the feature extractor model described in Fig. 2c after normalizing
each trajectory and unifying the length of each trial. In this paper,
we resampled trajectories using a linear interpolation between two
consecutive time stamps to bring the sequences from different trials
at the same length (i.e., 600 samples) and then rescaled them between
0 and 1 before feeding into feature extractor sub-models. Note that in
case of downsampling, the final sampling frequency is greater than
20 Hz since the maximum length of trials is less than 30 seconds.
This preserves human-related variations within each time series since
the final sampling frequency is higher than the upper limit of the
frequency range of human hands movements. Moreover, according
to our investigations, no data variation is removed during the
resampling/rescaling since we have no sudden motion in minimally
invasive surgical tasks. Since task execution time and total path
length will change during the resampling and rescaling procedures,
we can investigate these factors for our further investigations.
To capture inter-channel dependencies between x, y, and z, we
calculate robot’s end effector’s position P=

√
x2+y2+z2 and feed

it to the feature extractor model as well as other transnational data
to extract and concatenate all smoothness, fluidity, and economy
of motion features for the downstream tasks. In this way, each trial
will be represented in the 20-dimensional feature space. The 3D
visualization of trials using t-SNE technique is illustrated in Fig. 4.
As it is clear, novice trials (i.e., trials performed by the left hand) have
two different dense clusters A and B and are completely separated
from expert cluster with green scattered points. ClusterA exclusively
belongs to participants 1 to 3 and cluster B exclusively belongs
to participants 4 and 5. This separation can be attributed to the
possible nonlinear nature of smoothness that the cPCA as a linear
transformation cannot catch it properly. Our observations suggest
that due to the crisp separation between different data clusters in
the high dimensional space, generated 3D visualizations were not

sensitive to changes in t-SNE hyperparameters (e.g., perplexity,
early exaggeration, random state, etc. [16]) which can be attributed
to the fact that proposed metrics in this work are expressive in term
of capturing skills-related features within surgical trajectories.

Moreover, this separation can be attributed to the different levels
of mental concentration between participants of clusters A and
B. Participants in cluster A showed significant vertical variation
and higher tracking error while performing the task compared
to participants in cluster B which we assume is related to their
lower level of attention or concentration while performing the task.
However, the right hand trajectories have quite the same behavior
between all participants. This can be attributed to the high level of
expertise of the dominant hand that even compensate the lack of
concentration of the user. Although class label-free factors such as
concentration are not part of our problem formulations, they leave
their tracks in the embedding space and a knowledgeable person
can interpret them from the visualized data.

Although the main focus of this paper is the visual evaluation
and interpretation of task trajectories in terms of the skills level
of the user, one may whether the meaningful separation between
different skills clusters in Fig. 4 is due to the performance of t-SNE
as a powerful data visualization technique. A complementary
approach is to show that utilizing proposed features in Section II
is beneficial for user’s skills classification. We trained a primary
machine learning-based support-vector machine (SVM) model
[29] with a simple third-degree polynomial kernel to classify the
right-hand data (i.e., experts) and the left-hand data (i.e., novices)
from each other. Since we have a limited number of data samples,
we performed a 10-fold cross-validation [10] for 500 times over
original features set (i.e., without applying t-SNE). We achieved
the skills classification accuracy of 96.27% (±1.06) for the training
set and that of 95.2% (±2.98) for the test set. This result indicates
that features presented in Section II are expressive, performant, and
interpretable for the user’s skills assessment purposes.

IV. FULL ANALYSIS AND DISCUSSION

In addition to translational data (i.e., x, y, z, and P) we also can
feed rotational data (i.e., roll (Φ), pitch (Θ), and yaw (Ψ) angles)
of a given trajectory to the feature extractor model described in Fig.
2c. To capture inter-channel dependencies between rotational data,
we feed R=

√
Φ2+Θ2+Ψ2 to the feature extractor model as well.

All analyses in this section are based on the standard JIGSAWS
data set [30] collected from surgical activities of eight surgeons in
three different levels of expertise (i.e., novice, intermediate, and
expert) performing suturing, knot-tying, and needle-passing tasks
on the da Vinci Surgical System. JIGSAWS contains three Cartesian
motions along x, y, and z axes as well as 9 elements of rotation ma-
trix R∈R3×3 for both hands of the user. Note that, all 9 elements of
rotation matrixR can be expressed as Φ, Θ, and Ψ angles as follows

Φ=atan
(
r21
r11

)
,Θ=atan

(
−r31√
r232+r233

)
,Ψ=atan

(
r32
r33

)
where rij is the element in the ith row and jth column of R.

We applied feature extraction method described in Fig. 2c on all 6
axes of translational and rotational data as well as P and R for both
hands of all participants in the JIGSAWS data set. In total, we will
have an 80-dimensional feature vector f for each trial inside the data

https://drive.google.com/drive/folders/1bt-yEgvJg4f6YIojNBigs970ANsdB2bn?usp=sharing
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Fig. 5: t-SNE visualization of three different tasks of the JIGSAWS data set: (a) suturing task, (b) needle passing task, and (c) knot tying task.

set. Here, we will show that the ensemble of these features together
is expressive enough in terms of capturing core features related to the
skills level of each participant. Note that since the criteria discussed
in this paper are very generic metrics in capturing trajectory-based
skills-related features, they may not fully capture high-level hidden
information within the trajectories such as surgeon style.

Now, we apply t-SNE technique on the extracted feature space
of several surgical tasks to reach three-dimensional visualizations
shown in Fig. 5. Fig. 5a illustrates the visualization of extracted fea-
tures of the suturing task. As it is clear, trials of two expert users and
one intermediate user cluster close to each other and create the good
cluster G. Note that the level of goodness of each cluster is primarily
determined by the class label of its trials (i.e., expert trials are more
likely to be good) and our investigation into endoscopic data (i.e.,
trials with no or a very small number of mid-task failures and restarts
are more probable to belong to the good cluster). Other novice and
intermediate trials generate poor and moderate clusters P and M , re-
spectively, far from the cluster G. An important point regarding clus-
terG is that each individual user has his/her own dense sub-cluster. In
fact, participants with higher level of expertise perform each trial in a
more consistent manner (i.e., denser sub-clusters) relative to less ex-
perienced ones. Such hidden information cannot be revealed by clas-
sification techniques or cannot be trusted in the data-driven models.

Another point about the cluster G is existence of an intermediate
user In2 near to expert users. Manual annotations with several labels
are usually coarse-grained and our approach reveals their limitations.
Based on the definition in [30], novice users have less than 10
hours of operation experience with the da Vinci Surgical Systems,
intermediate users have between 10 and 100 hours, and expert
users have more than 100 hours. It is clear that there is a big bound
for intermediate users. Based on our investigation on endoscopic
videos, In2 performed very well compared to expert users in the
suturing task. It can be speculated that In2 have near to 100 hours
of operation experience with the da Vinci Surgical Systems. This
advantage of our method can be used to extract learning curve of
a participant when he/she proceeds from the poor cluster towards
the good cluster during the training program.

As it is clear in Fig. 5b and Fig. 5c, there is no sign of crisp
boundaries between skills clusters and users’ sub-clusters for needle
passing and knot tying tasks, respectively. Additionally, each G,
M , and P clusters are not exclusive enough in terms of containing
data points of their own users. This is because of frequent mid-task
failures and restarts in many trials of all users which we found based
on the recorded endoscopic video for each trials in the JIGSAWS
data set. Under these circumstances, data points do not belong

to specific sub-spaces or sub-manifolds and randomly occurring
mistakes inside trajectories map them to random places in the
feature space. In this situation, black-box models and supervised
learning-based models fail to detect such information and are
prone to be overfitted and unreliable. For further clarification of the
above-mentioned discussions, a supplementary video is provided.

A majority of these notable results are well-supported in the
sequel work of this research published by the same authors [28].
Surgical trials considered in this research are structured tasks
and the main variations within each time series can be broken
up into finite components namely general trends and seasonal
patterns. According to this intuition, [28] took a completely different
approach and proposed a novel dictionary factorization technique for
approximate trajectory decomposition and surgical skills evaluation
task. For example, the observed patterns in Fig. 5a (i.e., the
neighborhood of In2 and expert trials in cluster G and having trials
of In1 and other novice trials near to each other) is similar to the
patterns observed in [28] for suturing task. This result gets even
more interesting when considering the fact that data illustration
in [28] is according to the embedding space representation of the
proposed method, not based on data visualization techniques such as
t-SNE. This emphasizes the fact that first, the proposed approach in
this paper despite its simplicity, is reliable and comparable to more
sophisticated unsupervised techniques in revealing underlying skills-
related features which might be forsaken by end-to-end learning
methods. Secondly, the visualization similarity emphasizes that the
t-SNE method is a reliable data dimensionality reduction technique
for our particular skills evaluation task.

The method discussed in this paper unlike other high-capacity
end-to-end models that address the same surgical skills evaluation
problem fabricates a limited number of meaningful features and
then t -SNE method further reduces the dimensionality of the
feature space to make it easier for human analysis and interpretation.
Since always there is a trade-off between prediction accuracy (high-
dimensional feature space) and interpretability (low dimensional
illustration), comparing our approach with other high-capacity
models in terms of classification accuracy is not quite fair as we
are not competing with existing methods in terms of predicting
class labels (i.e., cross-validation accuracy). The merit of this
paper is uncovering label-free information within trials and offering
insightful correction hints (e.g., the user should improve his/her
smoothness or avoid unnecessary movements) to the trainees which
none of the end-to-end models with high classification accuracy are
capable of. One example of label-free information that our method
provided in this study is clustering In2 near to experts despite the
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intermediate skill label assigned to that participant. The assigned
global rating scores (GRS) by an experienced gynecologic surgeon
using a modified objective structured assessments of technical skills
(OSATS) approach [31] in suturing task to In2 (i.e., 3.1±0.57 out
of 5) are similar to those of expert trials (i.e., 2.64±0.47 for Ex1
and 3.2±0.3 for Ex2) and are significantly higher than GRS of
In1 (i.e., 2±0.54) and other novice participants (i.e., 1.75±1.07 for
No1, 1.66±0.3 for No2, and 2.8±0.84 for No3) [30].

One similar work in this area that attempted to explain the internal
behavior of the neural network is [6] in which authors used class
activation maps (CAM) method [32] to visualize in which part of
the input data, the deep model pays more attention that leads to
the predicted outcome. This method heavily relies on the learned
parameters of the deep network which makes it less transparent and
explainable in human terms compared to our method. Moreover,
the self-judgment paradigm in the CAM approach can suffer from
an obvious problem: if the model generates incorrect or uncertain
predictions for a given trajectory, the CAM method can be wrong
and become progressively relied on artifacts that are generated
by the network itself. This issue intensifies the confirmation bias
[33] since the model is continually confirming its own incorrect
or overestimated belief about the decision rule. Note that since we
incorporated a large synthetic data set for the data-driven part of
our solution (i.e., smoothness detection), we are less vulnerable
to drawbacks of the CAM method discussed so far. Finally, CAM-
based methods provide explanations in the trajectory domain without
highlighting the skills deficiencies of the user.

V. CONCLUSIONS

A novel domain-adapted approach for the evaluation, interpre-
tation, and visualization of surgical maneuvers was presented in this
paper. Inspired by domain knowledge, we defined clinically mean-
ingful features such as fluidity and economy of motion as important
metrics for evaluating the skills of surgical tasks. These metrics
alongside the smoothness-related features captured by an end-to-end
learning paradigm revealed salient features corresponding to the
skills level of the user. The visualization of the ensemble of extracted
features in the three-dimensional space using t -SNE technique
for both experimental data gathered from the Phantom robot and
JIGSAWS data set showed that our approach can meaningfully
express skills level, abnormality, and hidden information within a
given surgical trajectory. The explainability and transparency of our
approach make it more reliable, safe, and interpretable compared
to other state-of-the-art black-box models in the skills assessment
of surgical tasks and learning curve analysis of intern users.
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