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Abstract

Efficiency and security are major concerns with increasingly higher importance in

modern wireless communications. These two concerns are especially significant for

multi-user wireless communications where different users share or compete for re-

sources. Among different users, there are possibilities of cooperation, competition,

and/or malicious behavior. Due to the possibility of cooperation among the users,

the spectral and energy efficiency in multi-user wireless communications could be

boosted. Due to the possibility of competition, the resource allocation in multi-user

wireless systems may reach certain equilibrium. Due to the possibility of mali-

cious behavior, the security and reliability of wireless communications can be un-

dermined. In this thesis, a comprehensive analysis on the issues of efficiency and

security in multi-user wireless communications is developed for three systems in

four scenarios. The first multi-user system of multiple-input multiple-output two-

way relaying has the feature of cooperation including a limited coordination sce-

nario and a full coordination scenario. It is shown that high spectral efficiency can

be achieved with efficient energy consumption in this system due to the cooperation

among the users. Moreover, full coordination yields better results in both spectral

and energy efficiency than limited coordination at the cost of higher overhead. The

second multi-user system of legitimate transceiver(s) with a jammer features the

existence of malicious behavior. To measure the jamming threat, the worst-case

jamming is studied for different cases according to the jammer’s knowledge of the

legitimate communication. The optimal/sub-optimal jamming strategy in each case

is analyzed and derived. The third multi-user system of two-user interference chan-

nel features the competition of the users. The situation is modeled using noncoop-

erative games with continuous mixed strategies. The outcomes of the games are



analyzed through the establishment of the conditions for the existence and unique-

ness of mixed strategy Nash equilibrium.
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Chapter 1

Introduction

1.1 Motivation

Wireless communications have experienced an incredibly fast development during

the past decades. Take the cellular communication system as an example. While

the peak bit-rate supported by the third generation (3G) mobile telecommunications

technology was less than 1 megabits per second (Mbit/s) ten years ago, the current

fourth generation (4G) standard supports a data rate up to 100 Mbits/s [1]. As

wireless communication techniques and systems become ubiquitous and change

people’s lives in an unprecedented way, the issues of efficiency and security in

wireless communications become more significant.

Efficiency turns out to be an increasingly more important issue due to the con-

trast between the ever-growing demand for wireless communication resources and

the limited supply of such resources. One of the major resources for all wireless

communications is spectrum. As the most part of the spectrum for wireless com-

munications has been allocated, the problem of spectrum shortage appears [2], [3].

This problem will be even more severe in the future, since it is expected that the

traffic volume of wireless communications will increase to above ten times of its

current scale till 2016/2017 [4]. With the increase in the traffic volume and very

limited supply of spectrum, the most reliable solution to the problem of spectrum

shortage is improving spectral efficiency. Different techniques have been proposed

to improve spectral efficiency including multiple-input multiple-output (MIMO),

two-way relaying (TWR), etc. TWR can achieve high spectral efficiency by utiliz-
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ing a bidirectional communication between two terminals and a relay [5]. MIMO

can significantly increase the data throughput of wireless communications with-

out requiring extra spectrum bandwidth or transmission power [6], [7]. The high

throughput is achieved by transmitting multiple streams of data through different

spatial channels introduced by the multipath propagation. The improvement of

spectral efficiency in TWR is achieved by allowing simultaneous data transmissions

to different directions in the scenario of relay-assisted data exchange [5].

While spectrum is the common resource for all wireless communications, the

transmitting sides of wireless communication systems are limited by their private

resources, e.g., transmission power. In recently years, energy efficiency in wire-

less communications has attracted significant attention [8–10]. Energy-efficiency is

important for two reasons. On a macro-scale, as the total energy consumption for

wireless communications is growing at a high speed, improving energy-efficiency

has both economical and environmental benefits. On a micro-scale, improving

energy-efficiency is crucial for battery-powered wireless terminals or mobile de-

vices. Higher efficiency is most beneficial when it is impossible or inconvenient to

change or recharge the battery of the device such as a wireless sensor or a smart-

phone [11]. Energy efficiency of wireless communications can be improved through

architecture design, resource management, the adoption of MIMO, etc.

Apart from efficiency, security is also a major concern in wireless communi-

cations. Due to the rapid development of wireless communications, the security

issue arises while wireless communication systems of different scales and devices

for different purposes become more common and popular. Major threats to wire-

less communications include passive wiretapping and active jamming. While the

passive threat can be addressed by using well-designed security architectures, wire-

less communications are vulnerable to the active jamming attack [12]. Jamming

aims at degrading the quality of or disrupting the information exchange in a com-

munication system by directing energy toward the target receiver in a destructive

manner [13]. A jamming attack is particularly effective because it is easy to launch

using low-cost and small-sized devices while causing severe damages [14]. One

example is that a jammer can drain the power of sensors in a wireless sensor net-
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work by disrupting their transmissions, which results in the continuous repetitions

of their signal transmission [15]. Another example is that the jammer can cancel

or significantly weaken a target signal at its intended receiver if the jammer knows

that signal [16]. For estimating the jamming threat to a wireless communication

system, the study of worst-case jamming can be adopted [17], [18].

In modern wireless communications, multi-user communications are of increas-

ing importance. Due to the growth of the comparatively new applications in wire-

less communications such as wireless local area network, multi-user wireless com-

munication systems are becoming very common and popular. As an example, the

cell phones and laptops of customers in a cafeteria connected to its Wi-Fi consti-

tute a typical multi-user system. Basic models of multi-user systems include relay

networks, interference channels, multiple access (MA) channels, broadcast (BC)

channels, etc. In multi-user wireless communications, the existence of multiple

users in the same wireless environment in general leads to the sharing of the spec-

tral resource in the system. The wireless users can compete or coordinate with

each other in sharing the resource. In turn, the performance of a multi-user system

depends on the behavior of each and every wireless user in it. Given this unique fea-

ture, the investigation of efficiency and security in multi-user systems is of interest.

Specifically, three questions come into sight:

1. Given that a TWR network is a spectral-efficient multi-user system, is it pos-

sible to achieve both spectral and energy efficiency in a TWR network?

2. In a multi-user system with both legitimate wireless communication(s) and

a malicious jammer, what is the worst-case jamming threat if the jammer is

able to optimize its jamming scheme?

3. When multiple users share and compete for the spectral resource in a multi-

user system, is there a proper model to characterize the interactions of users

and the resulting outcome of competition?

In order to answer the above three questions, the related literature is reviewed

and discussed in detail in the following three subsections, respectively.
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1.1.1 Efficiency in TWR

The performance of TWR depends on the transmit strategies of the participating

nodes, i.e., the source nodes and the relay. Optimizing the transmit strategies such

as power allocation and beamforming is one of the main research interests in TWR,

especially when MIMO is considered [19–27]. The optimization of the transmit

strategies in a TWR system helps to maximize the spectral efficiency in terms of

sum-rate.

The transmit strategies of the relay and source nodes depend on the relaying

scheme. Similar to one-way relaying, the relaying scheme in TWR can be amplify-

and-forward (AF), decode-and-forward (DF), etc. Spectral efficiency for AFMIMO

TWR is investigated in [28–31]. Transmit strategies for maximizing the weighted

sum-rate of a TWR system are studied in [29], where the optimal solution is found

through alternative optimization over the transmit strategies of the relay and source

nodes. In [30], a low-complexity sub-optimal design of relay and source node trans-

mit strategies is derived for either sum-rate maximization or power consumption

minimization under quality-of-service requirements. The authors of [31] solve the

robust joint source and relay optimization problem for a MIMO TWR system with

imperfect channel state information. The joint optimization of transmit strategies

for AF TWR is in general a nonconvex problem. Low-complexity sub-optimal

solution can be obtained through diagonalizing the MIMO channel based on the

singular value decomposition (SVD) or the generalized SVD and thereby transfer-

ring the transmit strategy of the participating nodes to a power allocation problem.

Finding the optimal solution, however, usually requires iterative algorithms with

high complexity.

DF TWR has the advantage over AF TWR that it does not suffer from the prob-

lem of noise propagation. As a result, DF TWR may achieve a better performance

than AF TWR, especially at low signal-to-noise ratio (SNR), at the cost of higher

requirement on the relay due to the decoding and re-encoding [32]. Spectral effi-

ciency for DF TWR has been studied in [33–35]. The optimal time division between

the MA and BC phases and the optimal distribution of the relay’s power for achiev-

ing weighted sum-rate maximization are studied in [33]. The achievable rate region
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and the optimal transmit strategies of both the source nodes and the relay are stud-

ied in [34], where the relay’s optimal transmit strategy is found by two water-filling

based solutions coupled by the relay’s power limit. The authors of [35] specifically

investigate the optimal transmit strategy in the BC phase of the MIMO DF TWR. It

is shown that there may exist different strategies that lead to the same point in the

rate region.

Given the fact that DF TWR may achieve better performance than AF TWR

especially at low SNR and the fact that different transmit strategies of the partici-

pating nodes in DF TWR can lead to the same spectral efficiency (in terms of the

achieved sum-rate in the system), it is logical to ask how to find a strategy that has

the best energy-efficiency among these strategies that lead to the maximum spectral

efficiency. There is no answer to this question in the literature despite the above

mentioned works regarding the spectral efficiency in TWR and those on the energy

efficiency in TWR [30,36,37], which aim at minimizing the power consumption in

TWR subject to quality of service constraints. This thesis work will fill this research

gap.

1.1.2 Jamming threat in MIMO multi-user wireless communi-
cations

The jamming threat in wireless communications has been studied in many research

works [38–44]. One of the research interests in jamming is to investigate the fea-

sibility and effect of jamming from the perspective of the jammer [12, 18, 39–41].

The research works adopting this perspective provide insights in understanding and

measuring the threat of worst-case jamming to the target legitimate communica-

tions.

Different types of jamming are investigated in the literature. Noise jamming is a

common type of jamming in the case that the jammer has no or limited information

on the target signal [18]. Noise jamming impairs the legitimate communication

through decreasing the SNR at the target receiver. The effect of noise jamming

depends on the power of the jamming signal.

It is also possible that the jammer has the knowledge of the target signal, e.g.,
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in the case that the jammer can also perform eavesdropping [42]. With such infor-

mation, the jammer can use another type of jamming, i.e., the correlated jamming,

to damage the legitimate communication by canceling or weakening the target sig-

nal at the target receiver [43]. The jammer’s strategies for correlated jamming are

studied in [16], [44].

It should be noted that with the development and application of MIMO wire-

less communications, a jammer equipped with multiple antennas will become com-

mon and pose a larger threat to the legitimate communication due to its ability to

optimize its jamming strategy over the antennas. However, unfortunately, most

of the aforementioned works on jamming threat focus on the single-input single-

output (SISO) case. The results of jamming threat in the scenario that both the

legitimate transceiver and the jammer have multiple antennas are limited. The jam-

mer’s strategy for worst-case noise jamming is investigated for MIMO MA and

BC channels in [17, 45–47]. It is shown in [45] that without knowledge of the tar-

get signal or its covariance, the jammer can only use basic strategies of allocating

power uniformly or maximizing the total power of the interference at the target re-

ceiver. In [46], the transmit strategies of a legitimate transmitter and a jammer on a

Gaussian MIMO channel are investigated under a game-theoretic modeling with a

general utility function. It is assumed that the jammer and the legitimate transmit-

ter have the same level of channel state information (CSI), i.e., both uninformed,

both with statistical CSI, or both with exact CSI. The optimal transmit strategies of

the legitimate transmitter and the jammer are represented as solutions to different

problems versus different types of CSI. The worst-case jamming on MIMO multi-

ple access and broadcast channels with the covariance of the target signal and all

channel information available at the jammer is studied in [17] using game theory.

Some properties of the optimal jamming strategies are characterized yet the optimal

jamming solutions are not given. The necessary condition for optimal jamming on

MIMO channels with arbitrary inputs when the covariance of the target signal and

all channel information are available at the jammer is derived in [47]. For the case

of Gaussian target signal, the solution of optimal jamming is given in closed-form.

However, it is derived without considering the jamming channel. As a result, the
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system model is simplified by implicitly assuming that the received jamming sig-

nal at the target receiver is exactly the same as the transmitted jamming signal at

the jammer. The correlated jamming on MIMO Gaussian fading channel is studied

in [16]. However, the study in [16] considers only one legitimate communication

session. Therefore, the measure of the worst-case noise jamming threat in general

MIMO wireless communications and the correlated jamming threat in multi-target

wireless communications remains an open problem, and will be investigated in this

thesis.

1.1.3 Game theoretic study of wireless multi-user systems

Game theory studies the interactions of decision makers, in conflict or in cooper-

ation, during their strategic decision making process [48], [49]. While it has been

used to model problems in economics, political science, and many other areas, the

application of game theory in wireless communications has attracted tremendous

research interests during the past decade [50–60].

The problem of sharing and competing for spectral resources among users in a

multi-user system with no central administration or coordination can be modeled in

terms of noncooperative games [54, 55, 61, 62]. A mutual information game in the

Gaussian interference channel is studied in [54], and the conditions guaranteeing the

uniqueness of the Nash equilibrium (NE) are derived. In [55], a power control game

for maximizing spectral efficiency is investigated and an algorithm is designed for

achieving an efficient NE within multiple Nash equilibria (NEs). The common

interest in these works is to study the existence and uniqueness of NE.

Most game theoretic studies of multi-user wireless communications, such as the

above mentioned works, focus on pure strategies. However, there are strong moti-

vations to investigate mixed strategies as an extension. Mixed strategies introduce

deliberate randomness into the decision of a player such that the player can use more

subtle strategies in the competition with other players. In consequence, the utilities

obtained due to applying mixed strategies can be potentially improved for the users.

Introducing mixed strategies is also instrumental for capturing the stochastic regu-

larities of equilibria and players’ strategies in noncooperative games [63].
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There are just a few works on games with mixed strategies in the literature

[62, 64–66]. In [66], a two-user channel selection game is considered. Each user

in the game assigns different probabilities to different power levels that it uses to

communicate on each channel. A transmitter’s channel selection game is studied

in [62] and the mixed-strategy Nash equilibrium (MSNE) of the game is found. All

the above works consider games in which the users’ strategies are represented by

discrete probability mass functions.

Considering the fact that discrete probability mass functions are only special

cases of continuous probability distributions, a more general representation of mixed

strategies is to use continuous distributions. The resulting games are continuous

games. By introducing maximum flexibility in the users’ choice of strategies, the

continuous game modeling of multi-user systems captures the very essence of the

strategy making and interaction. However, the modeling of multi-user wireless sys-

tems using continuous games is an open area of research, and will be addressed in

this thesis for the two-user case.

1.2 Proposed research problems

Motivated by the aforementioned literature, this thesis proposes to investigate four

problems, P1-P4, in multi-user wireless communications as stated in the following

paragraphs.

P1: Energy efficient sum-rate maximization in relay-oriented MIMO DF TWR.

The spectral efficiency of TWR is determined by the transmit strategies of the

participating nodes. The maximum spectral efficiency that can be achieved

depends on the level of coordination among the sources and the relay. The

relay-oriented cooperation, in which the relay adjusts its own strategy accord-

ing to the transmit strategies of the source nodes, has the advantage of low

overhead. Given the transmit strategies of the source nodes, different transmit

strategies of the relay may lead to the same spectral efficiency with different

relay power consumptions in DF TWR. Therefore, it is of interest to find

out the most energy-efficient transmit strategy of the relay that has minimum
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power consumption among all the strategies that maximize the spectral effi-

ciency. The resulting strategy maximizes the spectral efficiency with the best

energy efficiency in the relay-oriented cooperation scenario.

P2: Energy efficient sum-rate maximization in MIMO DF TWR with full coopera-

tion. While the relay-oriented cooperation has the advantage of low overhead,

it does not achieve the maximum spectral efficiency due to the lack of coop-

eration of the source nodes. At the cost of higher overhead, higher spectral

efficiency can be achieved if all the participating nodes (source nodes and

relay) can jointly optimize their transmit strategies. Moreover, the energy ef-

ficiency can also be improved when all the nodes cooperate. Most research

works on joint transmit strategy design in MIMO TWR focus on achieving

the maximum spectral efficiency. However, different transmit strategies may

lead to the same spectral efficiency with different total power consumption in

the system. The investigation has been lacking on the optimal transmit strat-

egy of the source nodes and the relay that maximizes the spectral efficiency

with minimum power consumption. Therefore, finding the above energy ef-

ficient optimal transmit strategy is of interest.

P3: Jamming and correlated jamming in multi-user wireless communications.

The security threat of jamming to a wireless communication system can be

measured by studying the worst-case jamming to the legitimate communica-

tion. The damage that jamming can cause depends on the jammer’s knowl-

edge of the channels and the target signal. The less knowledge available to

the jammer, the simpler the strategy it can use. When the jammer has the

knowledge of the channels and the statistics of the target signal, it can op-

timize its strategy to effectively degrade the information rate of the target

channel. Furthermore, if the jammer knows the exact target signal, it can

cancel or significantly weaken the target signal at the target receiver by per-

forming correlated jamming under some conditions. The jammer’s strategies

and the resulting effects to the legitimate communication in the above two

cases are important yet missing parts of the worst-case jamming in wireless
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communications.

P4: Mixed strategy and MSNE in resource allocation games. While the appli-

cation of game theory in wireless communications is popular, the research

works considering mixed strategies are limited. As mix strategies introduce

deliberate randomness into the strategies of the players, it is suitable for mod-

eling some scenarios in wireless communications. As an example, the re-

source allocation game with mixed strategy is considered in this thesis. Un-

like most games with mixed strategies considered in the literature of wireless

communications, the wireless users’ strategies are represented by continuous

probability distributions. The existence and uniqueness of the MSNE is then

investigated given the above model.

1.3 Thesis outline

Chapter 2 presents the background of the thesis. Chapters 3–6 provide details for

solving the problems P1–P4, respectively. The brief outline is as follows.

• Chapter 2 gives the background on the topics related to this thesis. The sig-

nal model, capacity, and power allocation of MIMO wireless communication

channels are reviewed. The idea of TWR is explained while the signal model

under AF and DF are given. The effect of jamming on the target signal at the

receiver depending on the jammer’s knowledge of the channels and the target

signal is presented. The concept of correlated jamming is introduced. The

basics of game theory, NE and MSNE are illustrated using examples.

• Chapter 3 addresses problem P1. A sufficient and necessary condition for the

optimal strategy of the relay in the scenario of relay-oriented cooperation in

TWR is derived. Based on the above condition, an algorithm is designed for

the relay to calculate its optimal strategy. The results of the power alloca-

tions are discussed versus the power limits of the relay and source nodes. It is

shown that power could be wasted at the source nodes since they do not co-

operate with the relay. Simulation results demonstrate the effectiveness of the
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obtained optimal strategy as well as the effect of asymmetry in the system.

• Chapter 4 addresses problem P2. At the cost of higher overhead, the perfor-

mance of the TWR considered in Chapter 3 can be improved by introducing

full cooperation among the source nodes and relay. In this scenario, proper-

ties of the optimal strategies of the relay and the source nodes are derived in

different cases. The optimal solution is given in each case, either in closed-

form or through algorithms with a very limited number of steps. The results

are simulated and compared with the optimal strategy in Chapter 3. The effect

of asymmetry in the system is also shown in simulations.

• Chapter 5 addresses problem P3. For noise jamming, the worst-case jamming

to the communication over a MIMO target channel is derived. It is shown that

the worst-case jamming can be given in closed-form under a certain condi-

tion. When the condition does not hold, an algorithm is provided to calculate

the worst-case jamming while a closed-form approximation is given. For

correlated jamming, the problem of multi-target correlated jamming is con-

sidered in the SISO case and proved to be convex.

• Chapter 6 addresses problem P4. Modeling the channel selection and power

allocation of two wireless users using games with mixed strategy, the re-

sults regarding the existence and uniqueness of MSNE are derived first for a

two-user two-channel game and then for a two-user N-channel game. In the

two-channel game, the MSNE which maximizes the utilities for both users is

obtained, while for theN-channel game, an algorithm is provided to perform

channel selection for users in order to achieve MSNE.

• Chapter 7 presents the conclusion of this thesis. Future research directions

are also provided.

∼
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Chapter 2

Background

This chapter reviews the essentials of relevant topics for this thesis. The signal

model and power allocation problem for MIMO systems is presented. The basic

forms of multi-user MIMO, i.e., the MA and BC channels, are briefly reviewed.

The concept, model, and relaying strategy is summarized for TWR. Themathematic

model of jamming and noise jamming is provided with discussions. Finally, the

basics of game theory, Nash equilibrium (NE) and mixed strategies are illustrated

using examples.

2.1 Power allocation in MIMO wireless communica-
tions

2.1.1 Basic MIMO channel: signal model and capacity

Consider the data transmission from a transmitter with nt antennas to a receiver with

nr antennas. Assuming additive white Gaussian noise (AWGN) at the receiver, the

signal model for this basic MIMO channel can be expressed as

y H x n︷ ︸︸ ︷⎡⎢⎢⎢⎣
y1
y2
...
ynr

⎤⎥⎥⎥⎦ =

︷ ︸︸ ︷⎡⎢⎢⎣
h11 . . . h1nt

... . . .
hnr1 hnrnt

⎤⎥⎥⎦
︷ ︸︸ ︷⎡⎢⎢⎢⎣
x1

x2
...

xnt

⎤⎥⎥⎥⎦ +

︷ ︸︸ ︷⎡⎢⎢⎢⎣
n1

n2
...

nnr

⎤⎥⎥⎥⎦ (2.1)

where x, y, H, and n represent the transmitted signal, the received signal, the

MIMO channel, and the noise, respectively. The element hkl of the channel H
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represents the path gain from the lth antenna of the transmitter to the kth antenna

of the receiver, which is determined by different factors including the path loss and

fading effects. The elements of x and y represent the transmitted and received data

streams, respectively. The noise is assumed to have zero mean and covariance σ2I

where I stands for the identity matrix.

If H is constant (valid under slow fading) and known at the transmitter and the

receiver, the corresponding capacity of this MIMO channel is given as [67]

C = max
Qx

log

∣∣∣∣I+ 1

σ2
HQxH

H

∣∣∣∣ (2.2)

where Qx is the covariance of the transmitted signal defined as Qx � E{xxH},
| · | stands for the determinant, (·)H stands for the Hermitian transpose, and E{·}
represents the mathematical expectation.

From the expression (2.2), it can be seen that Qx needs to be optimized to

maximize the information rate of the considered MIMO channel. The optimization

overQx is usually subject to the following trace constraint

Tr{Qx} ≤ P (2.3)

in which Tr{·} stands for the trace and P represents the power limit of the trans-
mitter. The maximization of (2.2) over Qx subject to (2.3) is the basic form of

power allocation problem over MIMO channel. The optimal solution to this power

allocation problem is the waterfilling-based solution described in detail as follows.

2.1.2 Waterfilling based power allocation

The first step for optimizing the power allocation, is the singular value decom-

position (SVD) of the MIMO channel. Assume that the rank of H is r, where

r ≤ min (nr, nt). The SVD ofH can be written as

Ω

H = U

︷ ︸︸ ︷⎡⎢⎢⎢⎣
ω1 0 . . .

0
. . . 0r×(nt−r)

... ωr

0(nr−r)×r 0(nr−r)×(nt−r)

⎤⎥⎥⎥⎦VH (2.4)
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where 0 stands for all-zero matrix, andU andV are unitary matrices, i.e.,UUH = I

and VVH = I, of sizes nr × nr and nt × nt, respectively. The diagonal elements

ω1, . . . , ωr are positive singular values of H, or equivalently Ω. These positive

singular values of H represent the effective parallel sub-channels of the MIMO

channel. The number of sub-channels determines the maximum number of different

data streams that can be transmitted and received over the MIMO channel.

Given the above SVD, the capacity of the MIMO channel can be rewritten as

C = max
Q′

x

log

∣∣∣∣I+ 1

σ2
ΩQ′

xΩ
H

∣∣∣∣ (2.5)

where Q′
x � VHQxV is of size nt × nt. The constraint (2.3) now applies as

Tr{Q′
x} ≤ P . Since Q′

x is Hermitian positive semi-definite, according to the

Hadamard’s determinant inequality, the optimal Q′

x that maximizes (2.5) should

be diagonal [68]. Denote the kth diagonal element of Tr{Q′

x} as qk. Then equation
(2.5) can be further rewritten as

C = max
{q1,...qr}

r∑
k=1

log

(
1 +

ω2
kqk
σ2

)
. (2.6)

The trace constraint on Q
′

x simplifies as
r∑

k=1

qk ≤ P . From the above simplifica-

tion, it can be seen that the power allocation problem over the MIMO channel is in

essence the power allocation problem over the sub-channels.

The solution to the problem can be derived using Lagrangian methods. The

optimal solution can be written as [69]

qk =

⎧⎨⎩
(

1
λ
− σ2

ω2
k

)+

, k = 1, . . . , r

0, k > r

(2.7)

where λ is a constant chosen such that the power limit is satisfied with equality

(i.e.,
r∑

k=1

qk = P ) and (·)+ = max{·, 0}. The solution given by (2.7) is called the
waterfilling-based power allocation, while 1/λ is called the water level. The term

“waterfilling” is used because the resulting power allocation on sub-channel k fills

the gap between the water level 1/λ and σ2/ω
2
k (which reflects the quality of the kth

sub-channel) if the water level is higher.
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2.1.3 MIMOMA and BC channels

The previous results on capacity and power allocation apply to the MIMO channel

with a single pair of transceiver. In this section, we are going to review two multi-

user MIMO channels - the MIMO MA channel and the MIMO BC channel.

First consider the MIMO multiple access (MA) channel. Assume that there

is one receiver with nr antennas and M transmitters. The ith transmitter has nti

antennas and transmits the signal xi to the receiver. Denote the channel from the

ith transmitter to the receiver as Hi. Then the received signal at the receiver is

expressed as

y =
M∑
i=1

Hixi + n (2.8)

where n is the AWGN at the receiver. Denote E{xix
H
i } = Qi. The power of the

ith transmitter is limited such that Tr{Qi} ≤ Pi. The sum-capacity of this MIMO

multiple access channel is bounded by [70]

C = max
{Qi,∀i}

log

∣∣∣∣∣I+ 1

σ2

M∑
i=1

HiQiH
H
i

∣∣∣∣∣ (2.9)

subject to the power limits of the transmitters. For deriving the optimal power

allocation that achieves the sum-capacity, the procedure of iterative waterfilling can

be used. Define

Li � I+
1

σ2

M∑
j �=i,j=1

HjQjH
H
j (2.10)

and denote the eigenvalue decomposition (EVD) of Li as Li = UiΛiU
H
i . It is

proved [70] that the optimal power allocation can be achieved at convergence if the

transmitters iteratively update their power allocation according to the single-user

waterfilling procedure described in Section 2.1.2 but with the channel H replaced

by Λ−
1
2

i UH
i Hi.

In a MIMO broadcast (BC) channel, one transmitter sends information to M

receivers. The transmitted information x is a summation of the messages (x1, . . . ,

xM ) intended for all the receivers. Each receiver needs to extract its own message

from the received signal while the messages intended for other receivers become

interference. For the MIMO BC channel, the sum-capacity can be reached using

dirty paper coding. Details can be found in [67] and are omitted here.
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2.2 Two-way relaying

For the case that two source nodes need to exchange messages via a relay, TWR im-

proves spectral efficiency by allowing transmissions on both directions to proceed

simultaneously.

2.2.1 Basic idea

Assume that there are two source nodes S1 and S2 that need to exchange informa-

tion through a relay as shown in Fig. 2.1. The source node S1 needs to send its

message x1 to S2 while S2 needs to send its message x2 to S1. There is no direct

link between S1 and S2 and therefore all traffic goes through the relay.

S1 S2

Relay

Figure 2.1: A basic relay system.

If the information exchange is achieved using one-way relaying, four time slots

are required as illustrated in Fig. 2.2. From this figure, it can be seen that there

is always one node idle in each of the four time slots. This is the consequence of

the half-duplex mode of the nodes, i.e., they cannot transmit and receive message

simultaneously. As a result, there is one idle channel (between one source node and

the relay) in any time slot, which leads to low spectral efficiency.

However, using TWR, the spectral efficiency can be significantly increased by

achieving the same information exchange in just two time slots. The idea is that

the two source nodes S1 and S2 can transmit simultaneously and receive simultane-

ously as illustrated in Fig. 2.3 [5]. As a result, no channel is idle at any time despite

the fact that all node still work in the half-duplex mode.
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S1

S1

S1

S1

S2

S2

S2

S2

Relay

Relay

Relay

Relay

x1

x1

x2

x2

Figure 2.2: The procedure of information exchange in one-way relaying.

S1

S1

S2

S2

Relay

Relay

x1 x2

x1+x2 x1+x2

Figure 2.3: The procedure of information exchange in two-way relaying.

It can be seen that the two time slots of information exchange in TWR corre-

spond to two phases. i.e., the MA phase in the first time slot and the BC phase in

the second time slot.

2.2.2 Relaying strategy

The relaying strategy refers to the manner that the received message is processed

at the relay before it is forwarded to the intended destination(s). Consider the basic

case with single-antenna at all nodes as an example. Denote the channels from the

source nodes S1 and S2 to the relay as h1 and h2, respectively. Assume channel

reciprocity holds, i.e., the channels from S1 to the relay and from the relay to S1

are identical. The received signal at the relay is given as [5]

yr = h1x1 + h2x2 + nr (2.11)

where nr represents the AWGN at the receiver of the relay with variance σ2
r .
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The relay can choose from AF, DF, etc. relay strategies [32].

In the AF relaying strategy, the relay simply amplifies yr by a gainα (determined

by the relay’s power limit Pr) and broadcasts αyr to S1 and S2 in the BC phase. The

received signals at the source nodes S1 and S2 are given as

y1 = αh1h1x1 + αh1h2x2 + αh1nr + n1 (2.12)

y2 = αh2h2x2 + αh2h1x1 + αh2nr + n2 (2.13)

where n1 and n2 are the noise at the receiver of S1 and S2 with variance σ2
1 and

σ2
2 , respectively. The first term in each of the above two expressions represents the

back-propagating self-interference for the corresponding source node. The second

term represents the intended signal. The third term represents the propagated noise

from the relay. Since the source nodes know their own messages, i.e., S1 knows x1

and S2 knows x2, the self-interference can be subtracted from the received signal if

S1 has the knowledge of h1 and S2 has the knowledge of h2. For constant channels,

the sum-rate of the two source nodes is given as

Rs =
1

2
log

(
1 +

α2|h1h2|2P2

σ2
1 + α2|h1|2σ2

r

)
+

1

2
log

(
1 +

α2|h2h1|2P1

σ2
2 + α2|h2|2σ2

r

)
(2.14)

where Pi = E{|xi|2}, i = 1, 2.

The AF relaying strategy features low complexity since the relay does not need

to decode the received messages. However, the noise at the receiver of the relay is

also amplified and forwarded to both source nodes. Therefore, the performance of

AF-relaying can be poor at low SNRs [32], [71].

If the relay uses the DF relaying strategy, it first decodes x1 and x2 from yr (us-

ing successive decoding [67]) and then re-encodes them using either superposition

or exclusive or (XOR) coding [22]. The superposition based re-encoding is the one

illustrated in Fig. 2.3. In this method, the relay performs symbol-level superposition

xr =
√

βPrx1 +
√

(1− β)Prx2 (2.15)

on the two messages where βPr and (1 − β)Pr represent a division of the relay’s

power. Then xr is forwarded to both source nodes. The received signals at the
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source nodes S1 and S2 are expressed as

y1 =
√

βPrh1x1 +
√

(1− β)Prh1x2 + n1 (2.16)

y2 =
√

(1− β)Prh2x2 +
√
βPrh2x1 + n2 (2.17)

where the first term in each expression represents self-interference and the second

term represents the intended signal. With the channel information, each source node

subtracts the self-interference from the received signal. The sum-rate is bounded by

the MA phase sum-rateRma and BC phase sum-rateR1(β)+R2(1−β) and is given

as

Rs =
1

2
min{Rma, R1(β) +R2(1− β)} (2.18)

where

Rma = log

(
1 +

P1|h1|2 + P2|h2|2
σ2
r

)
(2.19)

R1(β) = min
{
log

(
1 +

P1|h1|2
σ2
r

)
, log

(
1 +

β2Pr|h2|2
σ2
2

)}
(2.20)

R2(1− β) = min
{
log

(
1 +

P2|h2|2
σ2
r

)
, log

(
1 +

(1− β)2Pr|h1|2
σ2
1

)}
. (2.21)

For the DF relaying strategy, the relay can also use the XOR coding. In this

method, the relay decodes x1 and x2 into two bit streams and performs the XOR

operation on the two streams to obtain a new bit stream. Then, this new bit stream

is encoded into a symbol x′r and forwarded to the source nodes. Each source node

decodes x′r from its received signal and obtains the corresponding bit stream. The

source node can restore the message intended to it by performing the XOR on this

bit stream and the bit stream of its own message. Details can be found in [72], [73]

and are omitted here. Compared to superposition, XOR coding can achieve better

performance in terms of sum-rate because the relay does not need to split power

for transmitting two symbols. However, XOR coding has the limitation that it is

appropriate only when the rates from the two source nodes to the relay are close

to each other. For both superposition and XOR coding, there is no performance

degradation due to noise propagation, especially at low SNRs .
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2.2.3 Power allocation in TWR

Although the sum-rate expressions (2.14) and (2.18) are derived for TWR, it can

be seen from these expressions that the performance of two-way relaying (TWR)

depends on the power allocation of all participating nodes, especially for the DF

relaying strategy. It follows from (2.14) that the relay and the source nodes should

simply use their maximum power to maximize the sum-rate in AF TWR. However,

it is different for the DF relaying strategy. It can be seen from the sum-rate ex-

pression in (2.18)-(2.21) that the sum-rate in DF TWR is bounded by both the MA

phase and the BC phase sum-rates. The differences for the DF strategy as compared

to the AF one include:

• the relay needs to find optimal division of its power,

• the relay may not need to use full power to maximize the sum-rate,

• the source nodes may not need to use full power to maximize the sum-rate.

Therefore, the optimal power allocation to achieve maximum sum-rate for DF TWR

is not straightforward. The problem of finding the optimal power allocation for DF

TWR is studied in [74]. A similar problem is considered in [75] with the assumption

that the source nodes have equal power budgets. Including fairness as a considera-

tion, the optimal power allocation for DF TWR is studied in [21]. Other studies on

SISO DF TWR include the optimal time division between the MA and BC phases

and the optimal distribution of the relay’s power [33], and the minimization of the

total transmit power consumption under the bit error rate constraints [76].

In the case of multiple antennas, the problem becomes more complicated. When

the nodes have multiple antennas, the power allocation extends to the general term

of transmit strategy including beamforming and precoding. Finding the optimal

transmit strategies of the participating nodes is not straightforward in both AF and

DF TWR. This problem has become the focus of many research efforts. Sum-rate

maximization for MIMO AF TWR, in which the relay and the source nodes all

have multiple antennas, is investigated in [28], [29], while a mean squared error

minimizing scheme for MIMO AF TWR is studied in [19]. The main challenge in

20



investigating AF TWR is the coupling between the transmit strategies of the source

nodes and the relay due to noise propagation. As a result of noise propagation, the

optimization over the transmit strategies of the source nodes and the relay usually

leads to nonconvex problems. For example, the information rate of the communi-

cation in either direction is a nonconvex function of the covariance/beamforming

matrices of the source nodes and the relay [5].

DF TWR with multiple antennas has also been studied [23], [34], [35]. The

achievable rate region and the optimal transmit strategies of both the source nodes

and the relay are studied in [34], where the relay’s optimal transmit strategy is found

by two water-filling based solutions coupled by the relay’s power limit. The authors

of [35] specifically investigate the optimal transmit strategy in the BC phase of the

MIMO DF TWR. It is shown that there may exist different strategies that lead to

the same point in the rate region.

2.3 Jamming and correlated jamming

There are different types of jamming such as noise jamming, intelligent jamming,

etc. [13]. To avoid confusion, we use the term “jamming” in this thesis to refer to

noise jamming unless otherwise specified.

2.3.1 Noise jamming

With the presence of jamming, the target receiver sees extra noise in the received

signal. As a result, the capacity of the target legitimate channel is reduced. If the

target channel is SISO and the jammer has a single antenna, the information rate of

the target channel under jamming is written as

RJ = log

(
1 +

Px|h|2
σ2 + Pz|hz|2

)
(2.22)

where Px and Pz are the transmission powers of the legitimate transmitter and jam-

mer, respectively, while h represents the channel between the legitimate transceiver

and hz represents the channel from the jammer to the target receiver. In the above

SISO case, the jammer does not need to know any information about the channel

and has no advanced strategy. It simply increases its transmission power (subject to
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its power limit) to further reduce the information rate of the target channel. There-

fore, the effect of jamming in the SISO case is power-dominated.

The situation changes significantly when it comes to MIMO. Assume that both

the legitimate transceiver and the jammer have multiple antennas. Denote the

MIMO channel between the transceiver, i.e., the legitimate channel, as H, and the

channel from the jammer to the legitimate receiver as Hz. Further denote the le-

gitimate and jamming signals as x and z, respectively. The information rate of the

target channel under jamming is given as

RJ = log
∣∣I+ (HQxH

H)(σ2I+HzQzH
H
z )
−1

∣∣ (2.23)

whereQx = E{xxH} andQz = E{zzH}. In this situation, the effect of jamming on
the information rate of the legitimate channel depends on the following knowledge

• the knowledge ofHz,

• the knowledge ofH,

• the knowledge ofQx.

In the case that the jammer has none of the above knowledge, the optimal strat-

egy for the jammer is to use Qz = σ2
zI where the constant σ2

z is determined by its

power limit [46].

If the jammer knowsHz, it can use some basic strategies. It can avoid wasting

power by allocating transmission power only in the sub-channels corresponding to

the positive eigen-values ofHzH
H
z . It can also maximize the power of the effective

noise, i.e. the noise power plus the jamming power, at the receiver by maximizing

Tr{σ2I + HzQzH
H
z } [45]. Note that maximizing the jamming power at the target

receiver is not equivalent to minimizing the information rate of the target channel.

If the jammer also knows H in addition to Hz, it can further focus its jam-

ming power as if the legitimate channel is just I and the jamming is applied at the

transmitter side of legitimate channel.

The above-mentioned situations are simple since the strategies available to the

jammer are limited. Without the knowledge of the target signal or its covariance,
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the jammer has no better strategy but maximizing the jamming power at the target

receiver. Then, it is logical to consider what would be the result if the jammer knows

Qx? In such a case, the jammer can optimize its transmit strategy to minimize

the capacity of the target channel. It is the worst-case jamming for the legitimate

transceiver. The resulting information rate of the legitimate transceiver in this case

provides a lower bound of the rate under jamming. The above scenario is considered

in the first part of Chapter 5 of this thesis.

It should be noted, however, that noise jamming is not the only jamming threat.

The worst case of noise jamming described above is not the worst jamming for the

target transceiver. If the jammer has the knowledge of the target signal, the jammer

is capable of using a more powerful form of jamming, i.e., the correlated jamming.

2.3.2 Correlated jamming

A jammer aims at undermining the signal received at the target receiver. When the

jammer knows the target signal, it can use correlated jamming. The basic idea of

correlated jamming is that, instead of transmitting random noise signal to lower the

SNR at the target receiver, the jammer transmits the minus version of the target

signal which neutralizes the received signal at the receiver [16].

Consider the SISO case first. The received signal at the legitimate receiver

without jamming is written as

y = hx+ n. (2.24)

If the jammer knows x, it can transmit the signal

z = −α h

hz
x (2.25)

where α ∈ (0, 1] is a constant determined by the jammer’s power limit Pz.

In the presence of the above jamming signal, the received signal at the target

receiver becomes

y′ = hx+ hzz + n (2.26)

= (1− α)hx+ n. (2.27)
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If the jammer has sufficient power, i.e.,

Pz ≥ |h|2
|hz|2Px (2.28)

where Px � E{|x|2}, it can completely cancel the target signal in (2.27) by setting
α = 1. Otherwise, the jammer can weaken the received signal by setting α as large

as possible subject to its power limit.

For theMIMO case, a jammer can perform correlated jamming if two conditions

hold. The first is that the jammer should have at least the same number of antennas

as the target receiver. The second is that the jamming channel Hz has full rank.

Assuming that the jammer transmits the signal z, the received signal at the target

receiver is given as

y′ = Hx+Hzz+ n. (2.29)

For correlated jamming, it should hold that

Hzz = −αHx. (2.30)

Assuming thatHz has full rank, the solution for the correlated jamming signal can

be found as

z = −αHH
z (HzH

H
z )
−1Hx. (2.31)

Similarly to the SISO case, the power limit of the jammer determines if it can

completely cancel the target signal.

Given the above basic model of correlated jamming, the problem of multi-target

correlated jamming will be studied in the second part of Chapter 5 of this thesis.

With multiple legitimate transceivers, the jammer needs to split its power for jam-

ming the targets. The investigation will reveal how much damage could a single

jammer do in a multi-user wireless system through correlated jamming.

2.4 Game theory, NE, and MSNE

In this section, the basics of game theory are introduced and illustrated using exam-

ples.
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Table 2.1: Matrix representation of a strategic game

s1 =a s1 =b
s2 =c (2, 2) (3, 1)
s2 =d (3, 1) (2, 2)

2.4.1 A brief introduction to game theory

A game can be represented in different forms. A basic form of representation is

the strategic form. An M-player game in strategic form has the following three

parts [50]

• a set of players/users Δ = {1, 2, . . . ,M}

• a set of strategies Si for player/user i, ∀i ∈ Δ. Denote the strategy for

player/user i using the variable si. Then the set Si contains all possible values
of si.

• player/user i(∀i ∈ Δ)’s utility ui(s1, . . . , sM) as a function of strategies of all

players/users.

The above game can be briefly represented using a matrix, in which the relation

between the players’ utilities and their strategies is evident. An example, withΔ =

{1, 2}, S1 = {a, b} and S2 = {c, d}, is given in Table 2.1, where the first and
second items in the brackets in Table 2.1 represent the utilities for player 1 and

player 2, respectively, given their strategies.

Games can be classified into different types from different perspectives [77].

Depending on whether the players make their decisions simultaneously, games can

be divided to simultaneous games and sequential games. Depending on whether

the players’ strategies and utilities are discrete and finite, games can be divided to

discrete games and continuous games. Depending on whether the players’ utilities

always sum up to a constant, games can be divided to zero-sum games and non-

zero-sum games. The most important classification of games, however, should be

cooperative games and non-cooperative games depending on whether the players
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Table 2.2: A game that has one NE

s1 = 0 s1 = 1
s2 = 0 (0, 0) (1,−1)
s2 = 1 (−1, 1) (1, 1)

can coordinate their strategies for their own benefit. The following review will

focus on non-cooperative games as it is adopted in the thesis.

2.4.2 Non-cooperative games and NE

In a non-cooperative game, there is no coordination and the players make decisions

independently. An important concept in non-cooperative games is equilibrium. The

most well-known example of an equilibrium is the NE. An NE is such combination

of strategies, one for each player, that no player can benefit from unilaterally devi-

ating from its current strategy. Mathematically, it can be written as [49]

ui(s
�
i , s

�
−i) ≥ ui(s

′
i, s

�
−i), ∀s′i ∈ Si, ∀i, (2.32)

where s�i represents player i’s strategy in the NE, s�−i represents the strategies of the

set of all players but player i in the NE, and s′i represents any available strategy but

s�i for the ith player. The inequality (2.32) shows that each player’s strategy in an

NE is the best response to the strategies of other players.

Consider the following game as an example. Let Δ = {1, 2}, S1 = {0, 1},
S2 = {0, 1}, u1 = s1 − s2 + s1s2 and u2 = s2 − s1 + s1s2. The utilities of the

two players in the game are shown in Table 2.2. It can be seen that the strategy

combination s1 = 1, s2 = 1 is the unique NE in this game. In such situation, there

is no uncertainty in the outcome of the game.

However, not every game has an NE. The game shown in Table 2.1 does not

have any NE [50]. It is also possible that multiple NEs exist in one game. Consider

the following example. Two pairs of transceivers independently choose from one of

two wireless channels to perform communication. The transmission power of the

first and second transceiver pairs are P1 and P2, respectively. The channel gain of

the two channels are both h1 for the first transceiver pair and both h2 for the second
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Table 2.3: A channel selection game that has two NEs

s1 =c1 s1=c2
s2=c1 (R′1, R

′
2) (R1, R2)

s2=c2 (R1, R2) (R′1, R
′
2)

transceiver pair. The interference channels (from the transmitter of one transceiver

pair to the receiver of the other pair) have the same channel gain c. The noise is

σ2 at both receivers. Model the transceivers as players, their choices of channel as

strategies, and their information rates as utilities. Let S1 = S2 ={channel 1(briefly,
c1), channel 2(briefly, c2)}. The game is shown in Table 2.3, where

R′1 = log

(
1 +

P1|h1|2
σ2 + P2|c|2

)
(2.33)

R1 = log

(
1 +

P1|h1|2
σ2

)
(2.34)

R′2 = log

(
1 +

P2|h2|2
σ2 + P1|c|2

)
(2.35)

R2 = log

(
1 +

P2|h2|2
σ2

)
. (2.36)

Since R′1 < R1 and R′2 < R2, it can be seen that the above game has two Nash

equilibria (NEs), i.e., {s1 =c1, s2=c2} and {s1 =c2, s2=c1}.

2.4.3 Mixed strategy and MSNE

In all the games considered in Sections 2.4.1 and 2.4.2, the players use pure strate-

gies only. Pure strategies represent definite choice with no uncertainty for the play-

ers. For example, player 1 must choose either c 1 or c 2 with probability 1 in the

game represented by Table 2.3 if it uses pure strategy. However, if the players are

able to assign probabilities to their pure strategies as they wish and thereby select

the pure strategies with randomness, they can extend their strategy space to mixed

strategies.

A mixed strategy of a player is a probability distribution over its pure strate-

gies in Si, denoted as pi(Si), with the probability assigned to si being pi(si). For
example, a mixed strategy for player 1 in the game represented by Table 2.3 is to
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choose c 1 with the probability of 0.4 and c 2 with the probability of 0.6. As there

are infinitely many distributions over a set of pure strategies, the number of mixed

strategies for each player is also infinite. In a game with mixed strategies, the utility

of player i is given as

Ui(pi(Si), p−i(S−i)) =
∑

(s1,...,sM )∈S

ui(si, s−i)
∏
k∈Δ

pk(sk) (2.37)

where p−i(S−i) is the combination of the probability distributions of all players but
player i and S is the Cartesian product of S1,. . . , SM .
An MSNE is such a combination of probability distributions, one from each

user, that

Ui(p
�
i (Si), p�−i(S−i)) ≥ Ui(p

′
i(Si), p�−i(S−i)), ∀p′i(Si), ∀i, (2.38)

where p�i (Si) represents the distribution of player i in the MSNE, p�−i(S−i) repre-
sents the combination of the distributions of all players but player i in the MSNE,

and p′i(Si) represents any distribution valid for the ith player but p�i (Si). Denote the
set of player i’s pure strategies with positive possibilities in p�i (Si) in the MSNE as
S+
i . Note that all the pure strategies in S+

i must lead to the same utility for player i

given the distributions of other players, i.e.,

Ui(g(si), p
�
−i(S−i)) = Ui(p

�
i (Si), p�−i(S−i)), ∀si ∈ S+

i , ∀i (2.39)

where g(x) is the distribution over Si defined as

g(x) =

{
0 x 	= si

1 x = si.
(2.40)

The reason is that, otherwise, player i can increase its utility by assigning 0 prob-

ability to the pure strategy in S+
i that leads to the minimum utility for it while

increasing the probabilities of other pure strategies in S+
i , which contradicts the

definition of MSNE.

The admission of mixed strategy and MSNEmarks the beginning of the modern

game theory [78]. The significance of mixed strategy lies in the fact thatMSNEmay

exist with mixed strategies in a significant amount of games that do not have NE
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with pure strategies. Consider the example in Table 2.1 which has no NE in pure

strategies. Assume that player 1 chooses s1 = a and s1 = b with probabilities pa
and pb, respectively, while player 2 chooses s2 = c and s2 = d with probabilities pc
and pd, respectively. According to the table, the utilities of the players are obtained

as

U1 = pa(2pc + 3pd) + pb(3pc + 2pd) (2.41)

U2 = pc(2pa + pb) + pd(pa + 2pb). (2.42)

Using the property in (2.39), we have

2pc + 3pd = 3pc + 2pd (2.43)

2pa + pb = pa + 2pb. (2.44)

Considering that pc + pd = pa + pb = 1, the above equations have the solution

pc = pd = pa = pb = 0.5. Therefore, there exists a unique MSNE in this game

that has no NE in pure strategy. The utilities for the two players in the MSNE are

U1 = 2.5 and U2 = 1.5.

In the proposed research in Chapter 6, the problem of resource allocation in

multi-user wireless communications is investigated using games with mixed strate-

gies. The proposed game model is, however, much more complicated than the one

described above in the following two aspects. First, the strategy of each player in

the game will be represented by a continuous variable. Second, the utilities of the

players are not simply given but defined by continuous functions of the player’s

strategies. With the above modeling, the proposed research aims at studying the

existence and uniqueness of MSNEs for the resource allocation game in the consid-

ered scenario of two-user wireless communications.

∼
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Chapter 3

Relay-Oriented MIMO DF TWR:
Maximizing Spectral Efficiency with
Minimum Power

In this chapter, the MIMO DF TWR is investigated in the relay optimization sce-

nario, in which the relay optimizes its own power allocation to achieve sum-rate

maximization with minimum power consumption given the power allocation of the

source nodes. The objective of this chapter is to find the optimal power allocation

strategy of the relay in the relay optimization scenario.1

The symbols used for specific denotations in this chapter are listed in Table 3.1.

Table 3.1: Symbol table for Chapter 3
Wi precoding matrix of source node i
Di signal covariance matrix of source node i
Tri relay precoding matrix for relaying signal to source node i
Bi relay signal covariance for relaying signal to source node i

R̄ir(Di) rate from source node i to relay
R̂ri(Bi) rate from relay to source node i
Rma(D) sum-rate of MA phase

Rtw(B,D) sum-rate over MA and BC phases
1/λi relay water level for relaying signal to source node i
1/μi relative water level corresponding to R̄ir(Di)
1/μma relative water level corresponding to Rma(D)
Pmax
i power limit for source node i

Pmax
r power limit for relay

1A version of this chapter has been published in IEEE Trans. Signal Process., 61: 3563-3577 (2013).
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3.1 System model

Consider a TWR with two source nodes and one relay, where source node i (i =

1, 2) and the relay have ni and nr antennas, respectively. In the MA phase, source

node i transmits signal Wisi to the relay. Here Wi is the precoding matrix of

source node i and si is the complex Gaussian information symbol vector of source

node i. The elements of si, ∀i are independent and identically distributed with zero
mean and unit variance. The channels from source node i to the relay and from the

relay to source node i are denoted as Hir and Hri, respectively. Receiver channel

state information is assumed to be known at both the relay and the source nodes,

i.e., source node i knows Hri and the relay knows Hir, ∀i. It is also assumed that
the relay knows Hri, ∀i by using either channel reciprocity or channel feedback.
Note that channel reciprocity holds if the system is based on time division duplex.

Otherwise (e.g., when the system is based on frequency division duplex), channel

feedback with higher complication is required [79]. The received signal at the relay

in the MA phase is

yr = H1rW1s1 +H2rW2s2 + nr (3.1)

where nr is the noise at the relay with covariance matrix σ2
r I. The maximum trans-

mission power of source node i is limited to Pmax
i . Define the transmit covariance

matricesDi � WiW
H
i , ∀i, andD � [D1,D2]. Then the sum-rate of the MA phase

is bounded by [67]

Rma(D) = log

∣∣∣∣I+(H1rD1H
H
1r+H2rD2H

H
2r)(σ

2
r )
−1

∣∣∣∣. (3.2)

In the BC phase, the relay decodes s1 and s2 from the received signal, re-encodes

messages using superposition coding and transmits the signal

xr = Tr2s1 +Tr1s2 (3.3)

where Tri is the nr × nj relay precoding matrix for relaying the signal from the

relay to source node i.2 The maximum transmission power of the relay is limited

to Pmax
r . Note that in addition to the above superposition coding, the Exclusive-

OR (XOR) based network coding is also used at the relay in the literature [71, 80,
2It is assumed as default throughout this chapter that the user indices i and j satisfy i 	= j.
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81]. While XOR-based network coding may achieve a better performance than

superposition coding, it relies on the symmetry of the traffic from the two source

nodes. The asymmetry in the traffic in the two directions can lead to a significant

degradation in the performance of XOR in TWR [80], [81]. As the general case of

TWR is considered here and there is no guarantee of traffic symmetry, the approach

of symbol-level superposition is assumed at the relay as it is considered in [5] and

[33]. Moreover, for the MIMO case that we are considering, the superposition

scheme can take advantage of the MIMO channels. In the superposition scheme,

the relay uses separate beamformers for the signals towards two directions, which

guarantees that each transmitted signal is optimal (subject to the transmission power

constraints) given its MIMO channel. This cannot be achieved if the relay uses

XOR-based network coding.

The received signal at source node i can be expressed as

y′i = Hrixr + ni (3.4)

where ni is the noise at source node i with covariance matrix σ2
i I. With the knowl-

edge ofHri andTrj , source node i subtracts the self-interferenceHriTrjsi from the

received signal and the equivalent received signal at source node i is

yi = HriTrisj + ni. (3.5)

Define Bi � TriT
H
ri, ∀i and let B � [B1,B2]. The sum-rate of the considered DF

TWR can be written as [5], [33], [71]

Rtw(B,D) =
1

2
min{Rma(D), R(B,D)} (3.6)

where

R(B,D) = min{R̂r1(B1), R̄2r(D2)}+min{R̂r2(B2), R̄1r(D1)} (3.7)

in which

R̄jr(Dj) = log|I+ (HjrDjH
H
jr)(σ

2
r )
−1| (3.8)

and

R̂ri(Bi) = log|I+ (HriBiH
H
ri)(σ

2
i )
−1|. (3.9)
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For brevity of presentation, we define the following sum-rate of the BC phase

Rbc(B) = R̂r1(B1) + R̂r2(B2). (3.10)

For the relay optimization scenario considered here, the relay maximizes the

sum-rate in (3.6) using minimum transmission power given the power allocation

strategies of the source nodes.3 Since the relay needs to know W1 and W2 for

decoding s1 and s2, respectively, as well as for designing Tr1 and Tr2, the source

nodes should send their respective precoding matrices to the relay after they decide

their transmit strategies. Similarly, the relay should also send Tr1 and Tr2 to both

source nodes.

Given the above system model, we next solve the relay optimization problem.

3.2 Relay optimization

In the relay optimization scenario, the relay and the source nodes do not coordinate

in choosing their respective power allocation strategies. Instead, the relay aims at

maximizingRtw(B,D) in (3.6) with minimum power consumption after the source

nodes decide their strategies and inform the relay.

Denote the power allocation that the source nodes decide to use as D0 �

[D0
1,D

0
2].4 For maximizing the sum-rate given D0, the relay solves the following

optimization problem5

max
B

Rtw(B,D0) (3.11a)

s.t. Tr{B1 +B2} ≤ Pmax
r . (3.11b)

Problem (3.11) is convex. However, in order to find the optimal B with minimum

Tr{B1 + B2} among all possible B’s that achieve the maximum of the objective
3The term ‘sum-rate’ by default means Rtw(B,D) when we do not specify it to be the sum-rate of
the BC or MA phase.
4The source nodes may determine their power allocation strategies using different objectives. Note
that different source node power allocation strategies lead to different solutions of the relay opti-
mization problem. However, the approach adopted in this chapter for solving the relay optimization
problem is valid for arbitrary source node power allocation.
5The positive semi-definite (PSD) constraintsDi � 0, ∀i andBi � 0, ∀i are assumed as default and
omitted for brevity in all formations of optimization problems in this chapter. However, note that
they are taken into account while solving the problems.
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function in (3.11), extra constraints need to be considered. Two necessary con-

straints are given below

R̂ri(Bi) ≤ R̄jr(D
0
j), ∀i (3.12a)

R(B,D0) ≤ Rma(D0). (3.12b)

The considered relay optimization problem (3.11) with additional necessary con-

straints (3.12a) and (3.12b) becomes nonconvex. The above necessary constraints

are introduced here to show that the considered relay optimization problem is non-

convex. For a sufficient and necessary condition for a power allocation strategy to

be optimal in terms of maximizing sum-rate with minimum power consumption,

please see Theorem 3.2 later in this section.

The constraint (3.12a) is necessary because, given D0, due to the expression

of R(B,D) in (3.7), the power consumption of the relay can be reduced while

the sum-rate Rtw(B,D) in (3.6) can be kept unchanged by reducing Tr{Bi} if
R̂ri(Bi) > R̄jr(D

0
j ). Note that (3.12a) is not necessarily satisfied with equality

at optimality. In fact, it can be shown using subsequent results in Section 3.2.2

that (3.12a) should be satisfied with inequality for at least one i at optimality. It

can also be shown that (3.12a) can be satisfied with inequalities for both i’s at

optimality even if the relay has an unlimited power budget. We stress that (3.12a) is

not sufficient for obtaining the optimal solution. Other constraints are also needed

including (3.12b). The constraint (3.12b) is also necessary because, given D0, if

(3.12b) is not satisfied, then the power consumption of the relay can be reduced

while the sum-rate Rtw(B,D0) can be kept unchanged by decreasing R(B,D0) so

that R(B,D0) = Rma(D0).

The constraints in (3.12) make the considered problem nonconvex. The ob-

jective in this section is to find an efficient method of deriving the optimal power

allocation of the relay in the considered scenario of relay optimization. It is straight-

forward to see that the power allocation of the relay should be based on waterfilling

for relaying the signal in either direction regardless of how the relay distributes its

power in the two directions. This is due to the fact that the BC phase is interfer-

ence free since both source nodes are able to subtract their self-interference. If the
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objective were to maximize Rbc(B) instead of Rtw(B,D0), the optimal strategy of

the relay could be found via a simple search. Indeed, in that case, we could find the

optimal power allocation of the relay and consequently the optimalB by searching

for the optimal proportion that the relay distributes its power in the two directions.

However, such approach is infeasible for the considered problem. The reason is that

first of all it is unknown what is the total power that the relay uses in the optimal

solution. As power efficiency is also considered, the relay may not use full power in

its optimal strategy. Moreover, from the expression of Rtw(B,D) in (3.6), it can be

seen that the maximum achievableRtw(B,D0) also depends on R̄1r(D
0
1), R̄2r(D

0
2),

and Rma(D0). Due to this dependence, the two constraints in (3.12) are necessary

for the considered problem of sum-rate maximization with minimum power con-

sumption. However, these two constraints are implicit in the sense that they are

constraints on the rates instead of on the power allocation of the relay. Such con-

straints offer no insight in finding the optimal B. In order to transform the above

mentioned dependence of Rtw(B,D0) on R̄1r(D
0
1), R̄2r(D

0
2), and Rma(D0) into an

explicit form, and to discover the insight behind the constraints in (3.12), we next

propose the idea of relative water-levels and develop a method based on this idea.

3.2.1 Relative water-levels

Denote the rank ofHri as rri and the singular value decomposition (SVD) ofHri as

UriΩriV
H
ri. Assume that the first rri diagonal elements ofΩri are non-zero, sorted in

descending order and denoted as ωri(1), . . . , ωri(rri), while the lastmin{ni, nr}−rri
diagonal elements are zeros. Define Ii � {1, . . . , rri}, ∀i and αi(k) � |ωri(k)|2/σ2

i ,

∀k ∈ Ii, ∀i. For a given D = [D1,D2], define μ1(D1), μ2(D2), and μma(D) such

that ∑
k∈I2

log

(
1 +

( 1

μ1(D1)
α2(k)− 1

)+)
= R̄1r(D1) (3.13a)

∑
k∈I1

log

(
1 +

( 1

μ2(D2)
α1(k)− 1

)+)
= R̄2r(D2) (3.13b)

∑
i

∑
k∈Ii

log

(
1 +

( 1

μma(D)
αi(k)− 1

)+)
= Rma(D) (3.13c)
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where (·)+ stands for the projection to the positive orthant. The physical meaning of
μi(Di) is that if waterfilling is performed on ωrj(k)’s, ∀k ∈ Ij using the water-level
1/μi(Di), then the information rate of the transmission from the relay to source

node j using the resulting waterfilling-based power allocation achieves precisely

R̄ir(Di). The physical meaning of μma(D) is that if waterfilling is performed on

ωri(k)’s, ∀k ∈ Ii, ∀i using the water-level 1/μma(D), then the sum-rate of the

transmission from the relay to the two source nodes using the resulting waterfilling-

based power allocation achieves precisely Rma(D). Note that 1/μi(Di), ∀i and
1/μm(D) are not the actual water-levels for the MA or the BC phases. They are

just relative water-levels introduced to transform and simplify the constraints in

(3.12). Denote the actual water-levels used by the relay for relaying the signal from

source node j to source node i as 1/λi, ∀i. With water-level 1/λi, Bi can be given

as Bi = VriPri(λi)V
H
ri where

Pri(λi) =

⎡⎢⎢⎢⎢⎣
(

1
λi
− 1

αi(1)

)+
. . . (

1
λi
− 1

αi(rri)

)+
0nr−rri,

⎤⎥⎥⎥⎥⎦ ∀i (3.14)

in which 0nr−rri stands for all-zero matrix of size (nr− rri)× (nr− rri). The power

allocated on ωri(k) is pri(k) =
(
1/λi − 1/αi(k)

)+
, ∀k ∈ Ii, ∀i. The resulting

rate R̂ri(Bi) is given by
∑
k∈Ii

log
(
1+

(
αi(k)/λi −1

)+). Using μ1(D1), μ2(D2), and

μma(D), the constraints in (3.12a) can be rewritten as

λi ≥ μj(D
0
j), ∀i (3.15a)∑

i

∑
k∈Ii

log

(
1+

(
1

λi
αi(k)−1

)+)
≤

∑
i

∑
k∈Ii

log

(
1+

(
1

μma(D0)
αi(k)−1

)+)
.

(3.15b)

Given (3.13a) and (3.13b), it is easy to see that (3.12a) is equivalent to (3.15a).

Moreover, the equivalence between (3.12b) and (3.15b) can be explained as fol-

lows. Given D0 and (3.12b), Rtw(B,D0) in (3.11a) becomes R(B,D0)/2. Given

(3.12a), or equivalently (3.15a),R(B,D) in (3.7) withD = D0 becomes R̂r1(B1)+

R̂r2(B2). Then, substituting the left-hand side of (3.12b) with R̂r1(B1) + R̂r2(B2),

i.e., Rbc(B) in (3.10), and using (3.13c), the constraint (3.15b) is obtained.
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The procedure for the relay optimization can be summarized in the following

three steps:

1. Obtain μ1(D
0
1), μ2(D

0
2), and μma(D

0) fromD0;

2. Determine the optimal λi;

3. Obtain Pri(λi) and Bi from λi.

The first and the third steps are straightforward given the definitions (3.13a)-

(3.13c) and (3.14). Therefore, finding the optimal λi, ∀i in the second step is the
essential part to be dealt with later in this section.

From hereon, μ1(D1), μ2(D2), and μma(D) are denoted as μ1, μ2 and μma,

respectively, for brevity. The same markers/superscripts on Di and/or D are used

on μi and/or μma to represent the connection. For example, μi(D
0
i ) and μma(D̃)

are briefly denoted as μ0
i and μ̃ma, respectively. The rate R̂ri(Bi) obtained using

water-level 1/λi is also denoted as R̂ri(λi).

3.2.2 Algorithm for relay optimization

Using the relative water-levels μi, ∀i and μma, we can now develop the algorithm

for relay optimization. In order to do that, the following lemmas are presented.

Lemma 3.1: 1/μma < max{1/μ1, 1/μ2}.
Proof: The proof for Lemma 3.1 is straightforward. Using (3.13a)-(3.13c), it

can be seen that Rma(D) ≥ ∑
i

R̄ir(Di) if 1/μma ≥ max{1/μ1, 1/μ2}. However,
given the definitions in (3.2) and (3.8), it can be seen that Rma(D) ≥∑

i

R̄ir(Di) is

impossible [67]. Therefore, 1/μma < max{1/μ1, 1/μ2}. �

Lemma 3.2: Assume that there exist {λi, λj} and {λ′i, λ′j} such that λ′i < λi ≤
λj < λ′j . If

∑
l

Tr{Prl(λl)} =
∑
l

Tr{Prl(λ
′
l)}, then

∑
l

R̂rl(λl) >
∑
l

R̂rl(λ
′
l) as long

as 1/λj > min
k∈Ij

{1/αj(k)}.
Proof: See Subsection A.1 in Appendix. �

Essentially, Lemma 3.2 states that, for any given {λ1, λ2} such that 1/λ2 >

min
k∈I2

{1/α2(k)} assuming λ1 ≤ λ2, decreasingmin{λ1, λ2} and increasingmax{λ1,

λ2} while fixing the total power consumption leads to a smaller BC phase sum-rate
than that achieved by using {λ1, λ2}.

Lemma 3.3: Assume that there exist {λi, λj} and {λ′i, λ′j} such that λi < λj ,
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λ′i > λi and λ′j > λj , and

R̂ri(λ
′
i) + R̂rj(λj) = R̂ri(λi) + R̂rj(λ

′
j) (3.16)

then as long as λ′i ≤ λj , it holds true that

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)} < Tr{Pri(λi)}+ Tr{Prj(λ

′
j)}. (3.17)

Proof: See Subsection A.2 in Appendix. �

In other words, Lemma 3.3 states that, for any given {λ1, λ2}, decreasingmin{λ1,

λ2} and increasingmax{λ1, λ2} such that the BC phase sum-rate is unchanged, the
power consumption increases.

Theorem 3.1: The optimal solution of the considered relay optimization prob-

lem always satisfies the following properties

min

{
1

λ1
,
1

λ2

}
= min

{
1

μ0
1

,
1

μ0
2

}
if λ1 	= λ2 (3.18a)

1

λ1
=

1

λ2
= min

{
1

μ0
ma

,
1

λ0

}
if λ1 = λ2 (3.18b)

where 1/λ0 is the water-level obtained by waterfilling Pmax
r on ωri(k), ∀k ∈ Ii, ∀i.

Proof: See Subsection A.3 in Appendix. �

According to the proof of Theorem 3.1, it can be seen that λ1 	= λ2 at opti-

mality and consequently the equation in (3.18a) holds when both of the follow-

ing two conditions are satisfied: (i) the relay has sufficient power, i.e., 1/λ0 >

min{1/μ0
1, 1/μ

0
2}, and (ii) there is asymmetry between μ0

1 and μ0
2, i.e., min{1/μ0

1,

1/μ0
2} < 1/μ0

ma < max{1/μ0
1, 1/μ

0
2}. If either of the above two conditions is not

satisfied, λ1 = λ2 at optimality and consequently the equation in (3.18b) holds.

Theorem 3.2: In the relay optimization scenario, the conditions (3.15a), (3.15b),

(3.18a), and (3.18b) are sufficient and necessary to determine the optimal {λ1, λ2}
with minimum power consumption among all {λ1, λ2}’s that maximize the sum-
rate Rtw(B,D0).

Proof: See Subsection A.4 in Appendix. �

It should be noted that the power constraint (3.11b) is not always tight at opti-

mality due to the constraints in (3.15a), (3.15b) (or equivalently (3.12a), (3.12b)),

(3.18a), and (3.18b). Each of (3.15a), (3.15b), (3.18a), and (3.18b) may refrain the
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Table 3.2: The algorithm for relay optimization.
Input: αi(k), ∀i, ∀k, μ0

1, μ0
2, μ0

ma, Rma(D0), R̄1r(D
0
1), R̄2r(D

0
2), Pmax

r

Output: λ1, λ2

1. Initial waterfilling: allocate Pmax
r on ωri(k), ∀k ∈ Ii, ∀i using waterfilling.

Denote the initial water level as 1/λ0. Set 1/λ1 = 1/λ2 = 1/λ0. The power
allocated on ωri(k) is pri(k) =

(
1/λi − 1/αi(k)

)+
, ∀k ∈ Ii, ∀i.

2. Check if 1/λi ≤ 1/μ0
j for both i = 1, 2. If yes, proceed to Step 6.

Otherwise, assume that 1/λ1 > 1/μ0
2, proceed to Step 3.

3. Set λ1 = μ0
2. Check if 1/λ2 > 1/μ0

1. If not, proceed to Step 4. Otherwise,
proceed to Step 5.
4. Calculate P ′r = Pmax

r − ∑
k∈I1

pr1(k). Allocate P ′r on ωr2(k)’s,∀k ∈ I2 via
waterfilling. Obtain the water level 1/λ2. If 1/λ2 > 1/μ0

1, proceed to Step 5.
Otherwise, go to Step 6.
5. Set λ2 = μ0

1 and proceed to Step 6.
6. If 1/λi ≥ 1/μ0

ma, ∀i, set λi = μ0
ma, ∀i. Check if 1/λi ≤ 1/μ0

ma, ∀i. If yes,
output λi, ∀i and break. Otherwise, check if

∑
i

R̂ri(λi) ≤ Rma(D0). If yes,

output λi, ∀i and break. Otherwise, proceed to Step 7.
7. Assuming that λj < λi, find λ′j such that |M+

rj|logλ′j =
∑

k∈M+
rj

logαj(k)−

Rma(D0) + R̄jr(D
0
j), where prj(k) =

(
1/λ′j − 1/αj(k)

)+
, ∀k ∈ Ij ,M+

rj �

{k|prj(k) > 0} and |M+
rj| is the cardinality of the setM+

rj . Set λj = λ′j and
output λi and λj .

relay from using its full power at optimality. The reason can be found from the

proofs of Theorems 1 and 2. Specifically, (3.15a) and (3.18a) make sure that there

is no superfluous power spent for relaying the signal in each direction while (3.15b)

and (3.18b) guarantee that the power consumption of the relay cannot be further

reduced without reducing the sum-rate.

Based on the above results in Theorems 3.1 and 3.2, the algorithm summa-

rized in Table 3.2 is proposed to find the optimal relay power allocation for the

relay optimization problem. In order to make sure that the sum-rate is maximized

while no power is wasted, the algorithm balances R̂r1(B1) and R̂r2(B2) via ad-

justing λ1 and λ2 according to R̄1r(D
0
1), R̄2r(D

0
2), and Rma(D0). The algorithm

uses relative water-levels, which are not explicitly related to corresponding rates.

By relating the relative water-levels to the corresponding rates and power alloca-

tion, the algorithm can be explained more intuitively as follows. Step 1 performs
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initial power allocation and obtains the initial water level λ0. The water-levels

λi = λ0, ∀i maximize Rbc(B) among all possible {λ1, λ2} combinations subject
to the power limit of the relay. Step 2 checks whether min{R̂ri(Bi), R̄jr(Dj)} is
upper-bounded by R̄jr(D

0
j ), ∀i. If R̂r1(λ

0
1) > R̄2r(D

0
2), the relay reduces its trans-

mission power allocated for relaying the signal from source node 2 to source node

1 so that R̂r1(λ1) = R̄2r(D
0
2) in Step 3. In the case that R̂r1(λ1) is reduced in

Step 3, in terms of increasing λ1, extra power becomes available for relaying the

signal from source node 1 to source node 2. Therefore, if R̂r2(λ
0
2) < R̄1r(D

0
1),

the remaining power of the relay is allocated for relaying the signal from source

node 1 to source node 2 at first in Step 4. Later in Step 4, it is checked whether

R̂r2(λ2) > R̄1r(D
0
1) under the new power allocation. If R̂r2(λ2) > R̄1r(D

0
1), the

relay reduces its transmission power allocated for relaying the signal from source

node 1 to source node 2 so that R̂r2(λ2) = R̄1r(D
0
1) in Step 5. Steps 6 checks

whether R̂r1(λ1) + R̂r2(λ2) ≤ Rma(D0) is satisfied. In the case that this constraint

is not satisfied, Step 6 or 7 revise the power allocation so that R̂r1(λ1) + R̂r2(λ2) =

Rma(D0) and the power consumption of the relay is minimized. We stress that the

above procedure in the proposed algorithm, which terminates after Step 6 or 7, is

not iterative.

The following theorem regarding the proposed algorithm is in order.

Theorem 3.3: The water-levels obtained using the algorithm for relay opti-

mization in Table 3.2 achieve the optimal relay power allocation for the considered

relay optimization problem of sum-rate maximization with minimum relay power

consumption.

Proof: See Subsection A.5 in Appendix. �

The solution of the relay optimization problem can be the outputs at several dif-

ferent steps of the algorithm in Table 3.2. The reason is that the system achieves

different results of power allocations depending on the source node power alloca-

tion strategies and the power limit at the relay. The possible results of the relay

optimization problem are discussed in details as follows.

Define the following power thresholdsPma �
∑
i

∑
k∈Ii

(
1/μ0

ma−1/αi(k)
)+

, Psm�
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∑
i

∑
k∈Ii

(
1/max{μ0

1, μ
0
2}−1/αi(k)

)+
, Pmd �

∑
i

∑
k∈Ii

(
1/μ0

i −1/αi(k)
)+ and Plg �∑

i

∑
k∈Ii

(
1/min{μ0

1, μ
0
2}−1/αi(k)

)+ where the subscripts ‘sm’, ‘md’, and ‘lg’ mean
‘small’, ‘medium’ and ‘large’, respectively. Recall from Lemma 3.1 that μ0

ma >

min{μ0
1, μ

0
2}. Denote the situation that μ0

ma ≥ max{μ0
1, μ

0
2} as Case I and the situ-

ation that μ0
ma < max{μ0

1, μ
0
2} as Case II, we next analyze the optimal solution in

these two cases in detail.

For Case I, it can be seen that Pma ≤ Psm ≤ Pmd ≤ Plg. According to the value

of Pmax
r , there are five subcases which are discussed one by one in the following

text.

Subcase I-1: Pmax
r is small such that Pmax

r < Pma. In the Subcase I-1, the

algorithm proceeds through Steps 1-2-6 and

λi = λ0 > μ0
ma, ∀i (3.19a)∑

i

Tr{Pri(λi)} = Pmax
r (3.19b)

at the output of the algorithm, while (3.15a) and (3.15b) are satisfied with inequality.

Note that some power of the source nodes is wasted in this subcase. Since the sum-

rate Rtw(B,D) is bounded by R̂r1(λ1) + R̂r2(λ2) due to the small power limit of

the relay, the source nodes could use less power without reducing Rtw(B,D) if

there would be coordination in the system. Indeed, if the source nodes could be

coordinated to optimize their power allocation as well, they only need to use the

power of Tr{D†
1}+Tr{D†

2} where D† � [D†
1,D

†
2] is the optimal solution to the

following problem

min
D

Tr{D1}+ Tr{D2} (3.20a)

s.t. Rma(D) ≥ R̂r1(λ
0) + R̂r2(λ

0) (3.20b)

R̄1r(D1) ≥ R̂r2(λ
0) (3.20c)

R̄2r(D2) ≥ R̂r1(λ
0). (3.20d)

It can be shown that Tr{D0
1} + Tr{D0

2} > Tr{D†
1} + Tr{D†

2} in this subcase.
Therefore, the power of Tr{D0

1} + Tr{D0
2} − Tr{D†

1} − Tr{D†
2} is wasted at the

source nodes because of the lack of coordination.
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Subcase I-2: increase Pmax
r such that Pma ≤ Pmax

r ≤ Psm. Then the algorithm

proceeds through Steps 1-2-6.

Subcase I-3: increase Pmax
r such that Psm < Pmax

r ≤ Pmd. Then the algorithm

proceeds through Steps 1-2-3-4-6.

Subcase I-4: further increase Pmax
r such that Pmd < Pmax

r ≤ Plg. Then the

algorithm proceeds through Steps 1-2-3-4-5-6.

Subcase I-5: further increase Pmax
r such that Pmax

r > Plg. Then the algorithm

proceeds through Steps 1-2-3-5-6. In the above subcases when Pmax
r ≥ Pma, it

holds that

λi = μ0
ma ≥ λ0, ∀i (3.21a)∑

i

Tr{Pri(λi)} ≤ Pmax
r (3.21b)

at the output of the algorithm, while (3.15a) is satisfied with inequality for each i

such that 1/μ0
i > 1/μ0

ma and (3.15b) is satisfied with equality. For these subcases,

the sum-rate Rtw(B,D) is bounded by Rma(D0) and there is no waste of power at

the source nodes.

For Case II, it holds that min{μ0
1, μ

0
2} < μ0

ma < max{μ0
1, μ

0
2} according to

Lemma 3.1. Assume that μ0
2 > μ0

1 and find λ̄2 such that R̂r2(λ̄2) = Rma(D0) −
R̄2r(D

0
2). Let λ̄1 = μ0

2 and define P ′ma �
∑
i

∑
k∈Ii

(
1/λ̄i − 1/αi(k)

)+. It can be seen
from Lemma 3.3 that P ′ma > Pma. Since μ0

ma < max{μ0
1, μ

0
2}, it holds that P ′ma >

Psm. Therefore, for Case II, the power thresholds satisfy Psm < P ′ma < Pmd < Plg.

The following subcases appear as Pmax
r increases.

Subcase II-1: Pmax
r is small such that Pmax

r < Psm. Then, the algorithm pro-

ceeds through Steps 1-2-6 and

λi = λ0 > max{μ0
1, μ

0
2}, ∀i (3.22a)∑

i

Tr{Pri(λi)} = Pmax
r (3.22b)

at the output of the algorithm, while (3.15a) and (3.15b) are satisfied with inequality.

Subcase II-2: increase Pmax
r such that Psm ≤ Pmax

r ≤ P ′ma. Then the algorithm
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proceeds through Steps 1-2-3-4-6 and

λ1 = μ0
2 ≥ λ0 (3.23a)∑

i

Tr{Pri(λi)} = Pmax
r (3.23b)

at the output of the algorithm, while (3.15a) is satisfied with equality for i = 1 and

inequality for i = 2. Note that there is waste of power at the source nodes for the

above two subcases as long as Pmax
r < P ′ma because the sum-rate Rtw(B,D) is

bounded by R̂r1(λ1) + R̂r2(λ2).

Subcase II-3: increase Pmax
r such that P ′ma < Pmax

r ≤ Pmd. Then the algorithm

proceeds through Steps 1-2-3-4-6-7.

Subcase II-4: further increase Pmax
r such that Pmd < Pmax

r ≤ Plg. Then the

algorithm proceeds through Steps 1-2-3-4-5-6-7. Subcase II-5: further increase

Pmax
r such that Pmax

r > Plg. Then the algorithm proceeds through Steps 1-2-3-5-6-

7. In the subcases when Pmax
r ≥ P ′ma, it holds that

λ1 = μ0
2 > λ0 (3.24a)∑

i

Tr{Pri(λi)} ≤ Pmax
r (3.24b)

at the output of the algorithm, while (3.15a) is satisfied with equality for i = 1 and

inequality for i = 2, and (3.15b) is satisfied with equality. The optimal λ2 is found

in Step 7 of the proposed algorithm. For these subcases, there is no waste of power

at the source nodes.

Two of the above subcases, i.e., Subcases I-1 and II-2, are illustrated in Fig. 3.1.

From the above discussion, it can be seen that the algorithm in Table 3.2 obtains

the optimal power allocation in at most seven steps without iterations.

Recall that the sum-rate of DF TWR is bounded by both the sum-rate of the

MA phase and the sum-rate of the BC phase. In the scenario of relay optimiza-

tion, the relay optimizes its power allocation which affects the sum-rate of the BC

phase. Since the relay may or may not use all its available power at optimality (i.e.,

for the optimal power allocation), the sum-rate of the BC phase is not necessarily

maximized at optimality. Moreover, it is also possible that the sum-rate of the BC

phase at optimality is not even the maximum sum-rate of the BC phase that can be

43



1
μ0
1 1

μ0
2

1
λ0

1
μ0
ma

ωr1(1) ωr1(k) ωr1(rr1) ωr2(1) ωr2(k) ωr2(rr2)

(a) Subcase I-1: Pmax
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Figure 3.1: Illustration of μ0
1, μ0

2, μ0
ma, and λ0 for the scenario of relay optimization.

achieved using the power consumed by the relay at optimality. We specify the term

efficient to describe such optimal power allocation of the relay that maximizes the

BC phase sum-rate Rbc(B) with the actually consumed power at the relay. Thus,

the relay’s power allocation is efficient if it generates the maximum sum-rate for

broadcasting the messages of the source nodes given its power consumption. For

example, when the relay uses all its available power at optimality, the optimal power

allocation of the relay is efficient if it maximizes the sum-rate of the BC phase, and

inefficient otherwise. When the relay uses the power Pr < Pmax
r at optimality, the

optimal power allocation is efficient if the achieved sum-rate of the BC phase is

the maximum achievable sum-rate of the BC phase with power consumption Pr,

and inefficient otherwise. Then the following two conclusions can be drawn for the

scenario of relay optimization.

First, the optimal relay power allocation in the relay optimization scenario is
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always efficient for Case I (i.e., μ0
ma ≥ max{μ0

1, μ
0
2}). In such a case, it can be

seen from (3.19a) and (3.21a) that 1/λ1 = 1/λ2 at optimality regardless of whether

the relay uses all its available power. Therefore, the BC phase sum-rate Rbc(B)

is always maximized given the relay’s power consumption. However, the opti-

mal relay power allocation is inefficient for Case II (i.e., μ0
ma < max{μ0

1, μ
0
2})

as long as Pmax
r > Pl. Moreover, the larger the difference between max{μ0

1, μ
0
2}

and μ0
ma in this case, the more inefficient the optimal relay power allocation be-

comes when Pmax
r > Pl. Given the definitions (3.13a)-(3.13c) and Lemma 3.1,

μ0
ma < max{μ0

1, μ
0
2} in Case II indicates that one source node uses more power,

has more antennas and/or better channel condition compared to those of the other

source node. Indeed, if the power budget, number of antennas, and channel con-

ditions are the same for the two source nodes, as an extreme example, it leads to

μ0
ma > μ0

1 = μ0
2. Therefore, it can be seen that the asymmetry between the power

budget, number of antennas, and/or channel conditions can degrade the relay power

allocation efficiency in the scenario of relay optimization.

Second, the considered relay optimization scenario may result in the waste of

power at the source nodes. However, the relay never wastes any power. This is due

to the fact that the relay is aware of the source node power allocation strategies and

optimizes its own power allocation based on them. As a result, it can use only part

of the available power if its power limit Pmax
r is large. However, the relay power

allocation strategy is unknown to the source nodes when the source nodes decide

their power allocation strategies. Therefore, the possibility of wasting power in

the relay optimization scenario can be viewed as the tradeoff for low complexity.

Indeed, in the relay optimization scenario, there is no coordination between the

relay and the source nodes. As a result, it is almost impossible to achieve the

maximum sum-rate with minimum total power consumption referred to as network-

level optimality. In order to achieve the network-level optimality, the scenario of

network optimization, in which the relay and the source nodes jointly maximize

the sum-rate of the TWR with minimum total power consumption, is considered in

Chapter 4 of this thesis.
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Figure 3.2: R̂r1 + R̂r2 versus 1/λ1 under different Pmax
r /σ2.

3.3 Numerical and simulation results

In this section, we provide simulation examples for some results presented earlier

and demonstrate the proposed algorithm for relay optimization in Table 3.2. The

general setup is as follows. The elements of the channels Hri and Hir, ∀i are gen-
erated from complex Gaussian distribution with zero mean and unit variance unless

otherwise specified. The noise variances σ2
i , ∀i and σ2

r are equal to each other and

denoted uniformly as σ2. While the source node power allocation strategy D0 can

be arbitrary, we use for simulations theD0 that maximizes the MA phase sum-rate

Rma(D). The rates Rma(D), R̄ir(Di), and R̂ri(Bi) are briefly denoted as Rma, R̄ir,

and R̂ri, respectively, in the figures in this section.

3.3.1 A demonstration of Lemma 3.2

It is assumed that the number of antennas at the relay nr is 8 while source node 1

has n1 = 6 antennas and source node 2 has n2 = 5 antennas. Each curve in Fig. 3.2

shows the sum-rate R̂r1 + R̂r2 versus the water-level 1/λ1 for a given ratio of Pmax
r

over σ2. In each curve, for each given 1/λ1, the relay consumes all the remaining

power to maximize 1/λ2. Therefore, the power consumption of the relay is fixed
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and equals Pmax
r . For each curve, σ2 is different. The curve at the bottom corre-

sponds to the ratio Pmax
r /σ2 equal to 4 dB. For each time, when the ratio of Pmax

r

over σ2 increases, a new curve of R̂r1+R̂r2 versus 1/λ1, which lies above the previ-

ous curve, is plotted. The curve at the top corresponds to the ratio Pmax
r /σ2 equal to

7 dB. It can be seen from Fig. 3.2 that the sum-rate R̂r1 + R̂r2 is a nonconvex func-

tion of 1/λ1. However, R̂r1 + R̂r2 is non-decreasing before reaching the maximum

and non-increasing after that. Note that 1/λ1 = 1/λ2 = 1/λ0 when the BC phase

sum-rate is maximized. As a result, it can be seen that increasingmax{1/λ1, 1/λ2}
and decreasing min{1/λ1, 1/λ2} while fixing the total power consumption leads
to a smaller BC phase sum-rate for any given {1/λ1, 1/λ2}. Therefore, Fig. 3.2
verifies the result presented in Lemma 3.2.

3.3.2 The relay optimization problem

Fig. 3.3a compares the BC phase rates at optimality of the relay optimization prob-

lem, which considers power consumption minimization, with the BC phase rates

at optimality of problem (3.11), which does not minimize the power consumption,

under different Pmax
r . One channel realization is shown. The specific setup for

this simulation is as follows. The number of antennas n1, n2, and nr are set to

be 6, 5, and 8, respectively. The power limits for the source nodes are set to be

Pmax
1 = Pmax

2 = 3 W. The noise variance is normalized so that σ2 = 1. The MA

phase rates for this channel realization are 20.7 for Rma(D0), 11.2 for R̄1r(D
0
1),

and 11.0 for R̄2r(D
0
2). In Fig. 3.3a, R̂′ri represents R̂ri(B

′
i) where B′i’s, ∀i are the

optimal solution (obtained using CVX [82]) to problem (3.11) which does not min-

imize the power consumption, and R̂ri represents R̂ri(Bi) where Bi’s, ∀i are the
optimal solution to the relay optimization problem considering power consump-

tion minimization obtained using the algorithm in Table 3.2. It can be seen from

Fig. 3.3a that R̂′ri = R̂ri when Pmax
r is small. The reason is that R̂′ri is small when

Pmax
r is below certain threshold. As a result, the constraints in (3.12) and (3.18b)

are always satisfied and the solutions to the problem (3.11) and the relay optimiza-

tion problem are the same. As Pmax
r increases, Rtw(B,D0) becomes larger and

is finally bounded by Rma(D0), while the relay power consumption is not neces-

47



2 3 4 5 6 7
6

7

8

9

10

11

12

Pmax
r (W)

R
a
te

s
(b

it
s/

s/
H

z)

R̂′

r1

R̂′

r2

R̂r1

R̂r2

(a) R̂ri in the optimal solution of the sum-rate maximization problems
with and without minimization of power consumption, respectively, ver-
sus Pmax

r
.

2 3 4 5 6 7
0

2

4

6

8

Pmax
r (W)

P
o
w
er

co
n
su

m
p
ti

o
n

(W
)

P1
r

P2
r

2 3 4 5 6 7
10

15

20

25

Pmax
r (W)

R
a
te

s
(b

it
s/

s/
H

z)

Rma R̂′

r1 + R̂′

r2 R̂r1 + R̂r2

(b) Relay power consumption,Rma(D0) and
∑
i

R̂ri in the optimal solu-

tion of the sum-rate maximization problems with and without minimiza-
tion of power consumption, respectively, versus Pmax

r
.

Figure 3.3: Illustration of relay optimization.

sarily minimized in the solution of problem (3.11) which does not consider power

consumption minimization.

The first subplot of Fig. 3.3b shows that the power consumption in the solu-

tion derived using the proposed algorithm, denoted as P 2
r , saturates when Pmax

r ≥
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4.9W, while the power consumption in the solution to problem (3.11) which does

not consider power consumptionminimization, denoted as P 1
r , keeps increasing. As

a result, as can be seen from the second subplot of Fig. 3.3b,
∑
i

R̂ri never exceeds

Rma(D0), while
∑
i

R̂′ri grows beyond Rma(D0) when Rtw(B,D0) is bounded by

Rma(D0). Meanwhile, it can also be seen from the second subplot of Fig. 3.3b that

the maximum sum-rates Rtw(B,D0) for the two compared solutions are the same,

both of which equal to
∑
i

R̂′ri =
∑
i

R̂ri when
∑

R̂′ri ≤ Rma(D0) and equal to

Rma(D0) when
∑

R̂′ri > Rma(D0). Thus, this example demonstrates that the pro-

posed algorithm in Table 3.2 achieves maximum sum-rate in the scenario of relay

optimization with minimum power consumption.

3.3.3 Comparison with XOR-based relay scheme

We must first clarify that there is no XOR-based scheme for us to conduct a fair

comparison with the proposed scheme. The reason is that no XOR-based scheme

has been proposed to maximize the sum-rate of the TWR and at the same time min-

imize the power consumption of the relay as the proposed scheme does. Therefore,

to perform this comparison, we need to use the XOR-based scheme that maximizes

the sum-rate of MIMO DF TWR without considering the power consumption as

in [83]. First, we compare the maximum sum-rates achieved by the XOR-based

scheme of [24] and the proposed scheme versus the channel asymmetry. In this

simulation, we set the number of antennas such that n1 = 4, n2 = 3, and nr = 6.

Power limits are Pmax
1 = Pmax

2 = 2 W, Pmax
r = 3 W. Noise power σ2 is set to

1. The elements of the channels Hr1 and Hr2 are complex Gaussian distributed

with zero mean and variances ν and 1/ν, respectively. Therefore, when ν becomes

larger, the channels become more asymmetric. For each value of ν, the sum-rates

obtained by the XOR-based scheme of [24] and the proposed scheme are averaged

over 5000 channel realizations and are shown in Fig. 3.4a, denoted as Rtw
XOR and

Rtw
Pro, respectively. From this figure, it can be seen that the XOR-based scheme is

better than the proposed scheme when the channel asymmetry is not very large. On

the other hand, the proposed scheme becomes superior when the channel asymme-

try is large, i.e., ν > 1.9. Moreover, it can be seen that the XOR-based scheme
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Figure 3.4: Comparison with XOR based relay scheme.

is much more sensitive to channel asymmetry as its performance decreases much

faster than that of the proposed scheme when the asymmetry increases.

We also compare the maximum sum-rates achieved by the XOR-based and the

proposed schemes versus both Pmax
r and ν. In this simulation, the number of an-
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tennas, noise power, and power limits of the source nodes are the same as in the

previous simulation. We vary Pmax
r and ν so that Pmax

r increases from 3 W to

6 W and ν increases from 1 to 3. For each combination of Pmax
r and ν, we ob-

tain the sum-rates of the XOR-based scheme and the proposed scheme (averaged

over 5000 channel realizations) and show their difference in Fig. 3.4b. From this

figure, it can be seen that, the difference of the two compared schemes is small in

terms of achieved sum-rate when Pmax
r is large. Indeed, even for the very symmet-

ric case (ν = 1), the advantage of the XOR-based scheme vanishes as the power

limit Pmax
r increases. Similarly, for the asymmetric case, the advantage of the pro-

posed scheme also decreases when Pmax
r increases. Therefore, it shows that neither

of the proposed scheme and the XOR-based scheme is definitely superior. The

XOR-based scheme achieves higher sum-rate than the proposed scheme when the

channel is symmetric. The proposed scheme, on the other hand, is better for the

case of asymmetric channels. Nevertheless, when the relay power limit increases,

the difference of the two schemes vanishes.

3.3.4 The effect of asymmetry in source node power limits and
number of antennas

The specific setup for this example is as follows. The noise variance is normalized

so that σ2 = 1. The number of antennas at the relay, i.e., nr, is set to be 6. The

power limit of the relay, i.e., Pmax
r is set to be 3 W. The total number of antennas at

both source nodes is fixed such that n1 + n2 = 6. The total available power at both

source nodes is also fixed such that Pmax
1 + Pmax

2 = 5 W. Given the above total

number of antennas and total available power at the source nodes, the relay opti-

mization problem is solved for different n1, n2, Pmax
1 , and Pmax

2 for 1000 channel

realizations. The resulting average sum-rate and average power consumption of the

relay, and the percentage of efficient power allocation at optimality are plotted in

Figs. 3.5a, 3.5b, and 3.5c, respectively, versus the difference between the number

of antennas and the difference between the power limits at the source nodes.

From Fig. 3.5a, it can be seen that the sum-rate at optimality of the relay opti-

mization is the largest when there is no asymmetry in the number of antennas at the
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source nodes and no asymmetry or only small asymmetry in the power limits of the

source nodes. As the asymmetry becomes larger in either number of antennas or

power limits, the sum-rate at optimality of the relay optimization decreases. There-

fore, it can be seen from this figure that the asymmetry in the above aspects leads

to smaller sum-rate at optimality of the considered relay optimization problem.

Relating Figs. 3.5b and 3.5c to Fig. 3.5a, two more observations can be made.

First, the relay does not necessarily use all the available power for sum-rate maxi-

mization in the relay optimization scenario. Second, the asymmetry in the number

of antennas and power limits leads to low power allocation efficiency. It can be

seen from Fig. 3.5b that when one of Pmax
1 −Pmax

2 and n1−n2 is positive while the

other is negative, the relay uses a part of its available power. However, the achieved

sum-rate is smaller compared to the sum-rate in the case when Pmax
1 − Pmax

2 = 0

and n1 − n2 = 0 (see Fig. 3.5a). In this situation, since the average power con-

sumption and the average sum-rate are both low, the percentage of efficient power

allocation is larger than 0 but less than the percentage when Pmax
1 − Pmax

2 = 0 and

n1 − n2 = 0, as can be seen from Fig. 3.5c. When Pmax
1 − Pmax

2 and n1 − n2 are

both positive or both negative, the relay uses more power than the power used in

the case when Pmax
1 − Pmax

2 = 0 and n1 − n2 = 0 while the achieved sum-rate

is smaller than that in the latter case. In this situation, since the average power

consumption is high while the average sum-rate is low, the percentage of efficient

power allocation is very low, if not zero, as can be seen from Fig. 3.5c. The above

facts become more obvious when the asymmetry becomes larger. Therefore, it can

be seen from Figs. 3.5b and 3.5c that the asymmetry on the power limits and the

number of antennas can lead to low power allocation efficiency.

3.4 Conclusion

In this chapter, we have solved the problem of sum-rate maximization with mini-

mum power consumption for MIMODF TWR in the scenario of relay optimization.

For finding the optimal solution, we have found a sufficient and necessary optimal-

ity condition for power allocation. Based on this condition, we have proposed an
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algorithm to find the optimal solution. The proposed algorithm allows the relay

to obtain its optimal power allocation in several steps. We have shown that, as a

trade-off for low complexity, there can be waste of power at the source nodes in

the relay optimization scenario because of the lack of coordination. We have also

shown that the asymmetry in the number of antennas and power limits at the source

nodes can result in the sum-rate performance degradation and the power allocation

inefficiency in MIMO DF TWR.

∼
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Figure 3.5: Effect of asymmetry: the average sum-rate, average relay power con-
sumption, and percentage of efficient power allocation at optimality of relay op-
timization versus the difference between number of antennas and the difference
between power limits at the source nodes in 1000 channel realizations.
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Chapter 4

Maximizing Spectral Efficiency with
Minimum Power in MIMO DF TWR
with Full Cooperation

The solution of the relay optimization scenario derived in Chapter 3 gives the op-

timal power allocation of the relay in a MIMO DF TWR system in the case when

there is no coordination between the relay and the source nodes. However, if the

participating nodes have sufficient computational capability and can jointly opti-

mize their power allocation strategies, a better performance than that in the relay

optimization scenario can be achieved. This chapter studies the problem of sum-

rate maximization with minimum power consumption for MIMO DF TWR in the

network optimization scenario in which the relay and the source nodes jointly op-

timize their power allocations. The objective of this chapter is to find the jointly

optimal power allocation of the relay and the source nodes while reducing the com-

plexity of finding the optimal solution. 1

The symbols used for specific denotations in this chapter are the same as in

Chapter 3 and can be found in Table 3.1.

4.1 System model

The system model used in this chapter is the same as described in Section 3.1 of

Chapter 3. Therefore, expressions (3.1)-(3.10) still hold here. The detailed model
1A version of this chapter has been published in IEEE Trans. Signal Process., 61: 3578–3591
(2013).
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is omitted here. However, it is important to recall that with the actual water-levels

used by the relay for relaying the signal from source node j to source node i denoted

as 1/λi, ∀i, it holds that

R̂r1(B1) =
∑
k∈I1

log

(
1 +

(
1

λ1
α1(k)− 1

)+)
(4.1a)

R̂r2(B2) =
∑
k∈I2

log

(
1 +

(
1

λ2
α2(k)− 1

)+)
(4.1b)

where Ii = {1, . . . , rri}. Therefore, the rate R̂ri(Bi) obtained using water-level

1/λi is alternatively denoted as R̂ri(λi).

It is also necessary to recall that, same as in Chapter 3, the relative water levels

1/μ1(D1), 1/μ2(D2), and 1/μma(D) are defined as

∑
k∈I2

log

(
1 +

(
1

μ1(D1)
α2(k)− 1

)+)
= R̄1r(D1) (4.2a)

∑
k∈I1

log

(
1 +

(
1

μ2(D2)
α1(k)− 1

)+)
= R̄2r(D2) (4.2b)

∑
i

∑
k∈Ii

log

(
1 +

(
1

μma(D)
αi(k)− 1

)+)
= Rma(D). (4.2c)

With the same system model, the considered scenario in this chapter is different.

In Chapter 3 with the relay optimization scenario, givenW1 andW2 as the transmit

strategies of the source nodes, the relay optimize its own transmit strategy B. In

this chapter with network optimization scenario, the source nodes and relay jointly

optimizeW1, W2, and B such that the maximal spectrum efficiency is achieved

with minimum total power consumption in the system.

For the network optimization scenario considered here, the relay and the source

nodes jointly maximize the sum-rate in (3.6) with minimum total transmission

power in the network.2 Similar to the relay optimization scenario, the relay needs

to knowW1 andW2 while both source nodes need to know Tr1 and Tr2. In the

network optimization scenario, it is preferable that the TWR is able to operate in a
2The term ‘sum-rate’ by default means Rtw(B,D) when we do not specify it to be the sum-rate of
the BC or MA phase.
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centralized mode in which the relay can serve as a central node that carries out the

computations. In such case, the overhead in the system is not high. Specifically,

it includes the transmission of the optimalW1, W2, Tr1 and Tr2 obtained at the

relay to the source nodes, and possibly the overhead due to channel feedback (de-

pending on whether or not channel reciprocity holds). In the case that the relay and

the source nodes can serve as central nodes in a round-robin mode, the overhead is

larger since it involves a transmission of W1, W2, Tr1 and Tr2 from the current

central node to the next cental node for each time when the central node changes.

The worst case in terms of overhead is when the the systemworks in a decentralized

mode. In such case, whenever there is an update of Tr1 and/or Tr2 at the relay, the

updated Tr1 and/or Tr2 need to be sent to the corresponding source node(s). Sim-

ilarly, whenever there is an update ofW1 at source node 1 orW2 at source node

2, the updated matrix should be sent to the relay. Fortunately, the transmission of

the matrices Tr1 and Tr2 can be replaced by transmitting the relay water levels λ1

and λ2 since the relay’s optimal power allocation for relaying both signals must be

based on waterfilling.

We next solve the network optimization problem.

4.2 Network optimization

In the network optimization scenario, the relay and the source nodes jointly opti-

mize their power allocation to achieve sum-rate maximization with minimum total

power consumption in the system for the MIMO DF TWR. Compared to the opti-

mal solution of the relay optimization problem in Chapter 3, the optimal solution

of the network optimization problem achieves larger sum-rate and/or less power

consumption at the cost of higher computational complexity.

The sum-rate maximization part can be formulated as the following optimiza-
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tion problem3

max
{B,D}

Rtw(B,D) (4.3a)

s.t. Tr{Di} ≤ Pmax
i , ∀i (4.3b)

Tr{B1 +B2} ≤ Pmax
r . (4.3c)

where Pmax
i and Pmax

r are the power limits for source node i and the relay, respec-

tively. The above problem is a convex problem which can be rewritten into the

standard form by introducing variables t, t1, t2 as follows

max
{t,t1,t2,B,D}

t (4.4a)

s.t. t ≤ Rma(D), t ≤ t1 + t2 (4.4b)

ti ≤ R̂rj(Bj), ti ≤ R̄ir(Di), ∀i (4.4c)

Tr{Di} ≤ Pmax
i , ∀i, Tr{B1 +B2} ≤ Pmax

r . (4.4d)

If transmission power minimization is also taken into account, the following

constraints become necessary

R̂ri(Bi) ≤ R̄jr(Dj), ∀i (4.5a)

Rma(D) = R(B,D). (4.5b)

The reason why the above constraints are necessary if transmission power min-

imization also needs to be taken into account is as follows. Given the fact that

Rma(D) < R̄1r(D1) + R̄2r(D2) whenever Tr{D1} + Tr{D2} > 0, it can be seen

that the power consumption of the relay can be reduced by reducing Tr{Bi} with-
out decreasing the sum-rate Rtw(B,D) in (3.6) if R̂ri(Bi) > R̄jr(Dj). Therefore,

the constraint (4.5a) is necessary. Subject to (4.5a), Rtw(B,D) in (3.6) can be

written as min{Rma(D), R̂r1(B1) + R̂r2(B2)}/2. Using the fact that Rma(D) <

R̂r1(B1) + R̂r2(B2) when R̂r1(B1) = R̄2r(D2) and R̂r2(B2) = R̄1r(D1), it can be

shown that the power consumption of at least one source node can be reduced with-

out decreasing Rtw(B,D) if Rma(D) > R(B,D) while the power consumption
3The positive semi-definite (PSD) constraintsDi � 0, ∀i andBi � 0, ∀i are assumed as default and
omitted for brevity in all formations of optimization problems in this chapter.
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of the relay can be reduced without decreasing Rtw(B,D) if Rma(D) < R(B,D).

Thus, the constraint (4.5b) is also necessary.

Considering the constraints (4.5a) and (4.5b), the problem of finding the optimal

power allocation becomes nonconvex. Relating (4.2a)-(4.2c) with (4.1a)-(4.1b), the

above two constraints (4.5a) and (4.5b) can be rewritten as

λi ≥ μj, ∀i (4.6a)∑
i

∑
k∈Ii

log

(
1+

(
1

λi
αi(k)−1

)+)
=

∑
i

∑
k∈Ii

log

(
1+

(
1

μma
αi(k)−1

)+)
. (4.6b)

It should be noted that the constraints (4.5a) and (4.5b), or equivalently (4.6a)

and (4.6b), are not sufficient in general. Due to the intrinsic complexity of the con-

sidered problem, it is too complicated to formulate a general sufficient and neces-

sary condition for optimality of the original problem of sum-rate maximization with

minimum power consumption. Instead, we will show sufficient and necessary opti-

mality conditions for the equivalent problems in the subcases in which the original

problem can be transferred into equivalent convex problems. For other subcases,

we will develop important properties based on the above necessary conditions (4.5)

or equivalently (4.6) which can significantly reduce the computational complexity

of searching for the optimal solution.

The following lemma that applies for all subcases is introduced for subsequent

analysis.

Lemma 4.1: GivenD1 andD2 withPmax
1 ≥ Tr{D1} > 0 andPmax

2 ≥ Tr{D2} >
0, if 1/μi > 1/μma > 1/μj , then the following two results hold true: 1) 1/μma(D̃) ≤
1/μj where D̃ = [D̃1, D̃2] with D̃i = 0 and D̃j = Dj , 2) there exists t ∈ [0, 1)

such that with D̂i = tDi and D̂j = Dj , we have 1/μi(D̂i) > 1/μma(D̂) = 1/μj

where D̂ = [D̂1, D̂2].

Proof: See Subsection B.1 in Appendix. �

Lemma 4.1 relates the source nodes transmit strategyD with the relative water-

levels 1/μ1, 1/μ2, and 1/μma. It shows a range that the relative water-level 1/μma

can achieve by fixingDj and changingDi given that 1/μi > 1/μma > 1/μj.

Lemma 4.2: The optimal solution of the network optimization problem has the
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following property

λj = μi > μma if λi < λj or μi > μma. (4.7)

Proof: See Subsection B.2 in Appendix. �

Lemma 4.2 develops a property of the optimal solution that follows from the

constraints (4.6a) and (4.6b). This property is needed for future analysis.

In the scenario of network optimization, the three nodes aim at finding the op-

timal matrices D and B that minimize Tr{D1} + Tr{D2} + Tr{B1 + B2} among
all D and B that achieve the maximum of the objective function in (4.3). Consid-

ering the fact that the optimal B andD depend on each other, solving this problem

generally involves alternative optimization ofB andD. It is, however, of interest to

avoid such alternative process when it is possible due to its high complexity. Next

we use an initial power allocation4 to classify the problem of finding the optimalB

andD for network optimization into two cases, each with several subcases.

Consider the following initial power allocation of the source nodes and the re-

lay, which decides the maximum achievable sum-rates of the MA and BC phases,

respectively. The initial power allocation of the source nodes is the solution to the

following problem

max
D

Rma(D) (4.8a)

s.t. Tr{Di} ≤ Pmax
i , ∀i (4.8b)

which is a power allocation problem on multiple-access channels studied in [70],

while the initial power allocation of the relay is to allocate Pmax
r on αi(k)’s, ∀k ∈

Ii, ∀i based on the waterfilling procedure. Denote the optimal solution of (4.8) as
D0 = [D0

1,D
0
2] and the water level corresponding to the relay’s initial power al-

location as 1/λ0. The case when Rma(D0) ≥ R̂r1(λ
0) + R̂r2(λ

0), i.e., when the

maximum achievable sum-rate of the MA phase is lager than or equal to that of the

BC phase, is denoted as Case I and the case when Rma(D0) < R̂r1(λ
0) + R̂r2(λ

0),

i.e., when the maximum achievable sum-rate of the MA phase is less than that of
4 Note that the initial power allocation is not the solution to the considered problem and it is only
used for enabling classification.
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the BC phase, is denoted as Case II. We next study the problem of maximizing

Rtw(B,D) with minimum power consumption and find the optimal power alloca-

tion for Cases I and II, respectively, in the following subsections.

4.2.1 Finding the optimal solution in Case I, i.e., Rma(D0) ≥
R̂r1(λ

0) + R̂r2(λ
0)

Since Rma(D0) ≥ R̂r1(λ
0) + R̂r2(λ

0), it can be inferred that 1/λ0 ≤ 1/μ0
ma. In this

case, the sum-rate Rtw(B,D) in (3.6) is upper-bounded by the sum-rate R̂r1(λ
0) +

R̂r2(λ
0). The following two subcases should be considered separately.

Subcase I-1: The following convex optimization problem is feasible

min
D

Tr{D1}+ Tr{D2} (4.9a)

s.t. Rma(D) ≥ R̂r1(λ
0) + R̂r2(λ

0) (4.9b)

R̄1r(D1) ≥ R̂r2(λ
0) (4.9c)

R̄2r(D2) ≥ R̂r1(λ
0) (4.9d)

Tr{Di} ≤ Pmax
i , ∀i. (4.9e)

In this subcase, the maximum sum-rate Rtw(B,D) can achieve R̂r1(λ
0) + R̂r2(λ

0).

In order to achieve this maximum sum-rate, it is necessary that λ1 = λ2 = λ0.

Therefore, the relay should use up all available power Pmax
r at optimality, and the

optimalBi, ∀i are equal toVriPri(λ
0)VH

ri, ∀i wherePri(λi) is given in Section 4.1.

As a result, the original problem simplifies to finding the optimal D1 and D2 such

that Rtw(B,D) achieves R̂r1(λ
0) + R̂r2(λ

0) with minimum power consumption.

Using equations (3.6) and (3.7), it can be shown that a sufficient and necessary

condition forD to be optimal in this subcase is thatD is the optimal solution to the

convex optimization problem (4.9). Denoting the optimal solution to problem (4.9)

asD� = [D�
1,D

�
2], the total power consumption in this subcase is Pmax

r +Tr{D�
1}+

Tr{D�
2}.

It can be seen that the optimal solution ofB andD in the above specific subcase,

i.e., Subcase I-1, as described above satisfies the general constraint (4.6a), or equiv-

alently (4.5a), for the original problem since the constraints (4.9c) and (4.9d) are

considered in problem (4.9). It can also be shown that the above optimal solution in
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Subcase I- 1 also satisfies the general constraint (4.6b), or equivalently (4.5b), for

the original problem as stated in the following theorem.

Theorem 4.1: The optimal solution in Subcase I-1 satisfies μ�
ma = λ0, and

thereby satisfies (4.6b) given that λ1 = λ2 = λ0 at optimality.

Proof: See Subsection B.3 in Appendix.

Considering the constraints (4.9b)-(4.9e), it can be seen that problem (4.9) is

feasible if and only if the following problem

max
D

R̄jr(Dj) (4.10a)

s.t. R̄ir(Di) ≥ R̂rj(λ
0) (4.10b)

Rma(D) ≥ R̂r1(λ
0) + R̂r2(λ

0) (4.10c)

Tr{D1}≤Pmax
1 (4.10d)

Tr{D2}≤Pmax
2 (4.10e)

is feasible and its optimal solution, denoted asD∗, satisfies R̄jr(D
∗
j) ≥ R̂ri(λ

0), ∀j.5
However, it is possible that R̄jr(D

∗
j) < R̂ri(λ

0) for some i and j. It is also possible

that problem (4.10) is not even feasible. In both of the above two situations problem

(4.9) is infeasible. This leads to the second subcase of Case I.

Subcase I-2: Problem (4.9) is infeasible.

Unlike Subcase I-1, the maximum sum-rate Rtw(B,D) in this subcase cannot

achieve R̂r1(λ
0) + R̂r2(λ

0). As mentioned above, there are two possible situations

when problem (4.9) is infeasible: (i) R̄jr(D
∗
j) < R̂ri(λ

0), ∀j and (ii) problem (4.10)
is infeasible for specific valued of i and j. Using Lemma 3.1 in Chapter 3 and

the fact that Rma(D0) ≥ R̂r1(λ
0) + R̂r2(λ

0) for Case I, it can be shown that if

problem (4.10) is infeasible for specific values of i and j, then it is feasible (but

R̄jr(D
∗
j ) < R̂ri(λ

0)) when the values of i and j are switched. Therefore, problem

(4.9) is infeasible if and only if there exists at least one specific value of j in {1, 2}
such that problem (4.10) is feasible but R̄jr(D

∗
j) < R̂ri(λ

0). Denote this specific

value of j as l and denote the corresponding i as l̄. It infers, based on the definitions

(4.2a)-(4.2c), that 1/μl < 1/λ0 whenever 1/μma ≥ 1/λ0 and 1/μl̄ ≥ 1/λ0. As a
5Note that if R̄jr(D

∗

j ) ≥ R̂ri(λ
0) for i = 1, j = 2 in (4.10) then it also holds that R̄jr(D

∗

j ) ≥
R̂ri(λ

0) for i = 2, j = 1 and vice versa.
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result, whenever 1/μma ≥ 1/λ0, or equivalently,Rma(D) ≥ R̂r1(λ
0)+ R̂r2(λ

0), the

sum-rate Rtw(B,D) is bounded by R̂r1(λ1) + R̂r2(λ2) according to equation (3.6),

which is less than R̂r1(λ
0) + R̂r2(λ

0) when 1/μl < 1/λ0 (according to the con-

straint (4.6a) and Lemma 3.2 in Chapter 3). Moreover, whenever 1/μma < 1/λ0,

or equivalently,Rma(D) < R̂r1(λ
0)+ R̂r2(λ

0), the sum-rate Rtw(B,D) is bounded

by Rma(D) according to equation (3.6), which is also less than R̂r1(λ
0) + R̂r2(λ

0).

Therefore, the maximum sum-rateRtw(B,D) in this subcase always cannot achieve

R̂r1(λ
0) + R̂r2(λ

0).

With the above denotation of l and l̄, the following theorem characterizes the

optimal solution in this subcase.

Theorem 4.2: Denote the optimalDi in Subcase I-2 as D∗
i , ∀i and the optimal

λi as λ∗i , ∀i. The optimal strategies for the source nodes and the relay satisfy the
following properties:

1. min
i
{1/μ∗i } < 1/μ∗ma < 1/λ0;

2. The relay uses full power Pmax
r ;

3. D∗ maximizesmin
i
{1/μi} among allD’s that satisfy

Rma(D) ≥ Rma(D∗) (4.11a)

Tr{Di} ≤ Pmax
i , ∀i (4.11b)

4. 1/μ∗l < 1/μ∗
l̄
.

Proof: Please see Subsection B.4 in Appendix.

While the original problem cannot be simplified into an equivalent form in this

subcase, the properties in Theorem 4.2 help to significantly reduce the complexity

of searching for the optimal solution by narrowing down the set of qualifying power

allocations. DenoteDl
l as the Dl that maximizes R̄lr(Dl) subject to the constraints

μl ≥ μma and Tr{Dl} ≤ Pmax
l and denote μl

l as the corresponding μl. According

to Theorem 4.2, if R̂rl̄(λ
†

l̄
) + R̂rl(λ

†
l ) ≤ Rma(D†), where

λ†
l̄
= μl

l (4.12a)

Tr{Prl̄(λ
†

l̄
)}+ Tr{Prl(λ

†
l )} = Pmax

r (4.12b)
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andD† is the optimal solution of the following problem

max
D

Rma(D) (4.13a)

s.t. R̄lr(Dl) ≥ R̄lr(D
l
l) (4.13b)

Tr{Di}≤Pmax
i , ∀i (4.13c)

then the maximum achievable sum-rate in Subcase I-2 is R̂rl̄(λ
†

l̄
) + R̂rl(λ

†
l ) (ac-

cording to Lemma 3.2 in Chapter 3), the optimal Bi, ∀i in this subcase is given
by Bi = VriPri(λ

†
i)V

H
ri, and the optimal D is the solution to the following power

minimization problem

min
D

Tr{D1}+ Tr{D2} (4.14a)

s.t. Rma(D) ≥
∑
i

R̂ri(λ
†
i) (4.14b)

R̄l̄r(Dl̄) ≥ R̂rl(λ
†
l ) (4.14c)

R̄lr(Dl) ≥ R̂rl̄(λ
†

l̄
) (4.14d)

Tr{Di}≤Pmax
i , ∀i. (4.14e)

If R̂rl̄(λ
†

l̄
)+R̂rl(λ

†
l )>Rma(D†), denote the objective Rtw(B,D) as Robj. Ac-

cording to Theorem 4.2, the optimal solution can be found by maximizing Robj so

that it can be achieved by both Rma(D) and
∑
i

R̂ri(λi) subject to the following two

constraints: 1) 1/λl̄ = 1/μ̃l which is obtained according to Lemma 4.2, Properties

1 and 4 of Theorem 4.2; 2) 1/λl is obtained by waterfilling the remaining power on

αl(k), ∀k ∈ Il (Property 2 of Theorem 4.2), where 1/μ̃l = 1/μl(D̃) is the optimal

value of the objective function in the following optimization problem (Property 3

of Theorem 4.2)

max
D

1

μl
(4.15a)

s.t. Rma(D) ≥ Robj (4.15b)

Tr{Di} ≤ Pmax
i , ∀i. (4.15c)

Here D̃ denotes the optimal solution of (4.15) for the givenRobj. Since maximizing

1/μl is equivalent to maximizing R̄lr(Dl), the objective function of the above prob-

lem can be substituted by R̄lr(Dl) and 1/μ̃l can be obtained from the optimal value
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of R̄lr(Dl) in the above problem using (4.2a) or (4.2b). As mentioned at the be-

ginning of Subcase I-2, the optimal Rtw(B,D) is less than
∑
i

R̂ri(λ
0). Therefore,

starting from the point by settingRobj =
∑
i

R̂ri(λ
0), we can adjust Robj as follows,

to achieve the optimal Rtw(B,D). We first solve the following problem given Robj

max
D

R̄lr(Dl) (4.16a)

s.t. Rma(D) ≥ Robj (4.16b)

Tr{Di} ≤ Pmax
i , ∀i (4.16c)

to get the optimal D̃ for the given Robj and obtain the resulting 1/μ̃l = 1/μl(D̃).

Then, we set 1/λl̄ = 1/μ̃l and allocate all the remaining power on αl(k)’s, ∀k ∈ Il.
If the resulting

∑
i

R̂ri(λi) is less than Robj, it infers that Robj should be decreased

in (4.16) and the above process should be repeated. On the other hand, if the result-

ing
∑
i

R̂ri(λi) is larger than Robj, then Robj should be increased in (4.16) and the

above process should be repeated. The optimal solution is found when the resulting∑
i

R̂ri(λi) is equal to Robj. With an appropriate step size of increasing/decreasing

Robj, Robj in the above procedure converges to the optimal Rtw(B,D).

After obtaining the optimal Robj, 1/μ̃l and λl̄, the source nodes solve the prob-

lem of power minimization, which is

min
D

Tr{D1}+ Tr{D2} (4.17a)

s.t. Rma(D) ≥ Robj (4.17b)

R̄l̄r(Dl̄) ≥ R̂rl(λl) (4.17c)

R̄lr(Dl) ≥ R̂rl̄(λl̄) (4.17d)

Tr{Di} ≤ Pmax
i , ∀i. (4.17e)

However, it can be shown that if R̄lr(D̃l) is not the maximum that R̄lr(Dl) can

achieve subject to the constraint (4.15c) (without the constraint (4.15b)), then B

andD remain the same after solving the above problem.

Using Property 2 of Theorem 4.2, it can be seen from (4.14) and (4.17) that the

minimization of total power consumption becomes the minimization of the source
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Table 4.1: Algorithm for finding the optimal solution for Case I.

Input: λ0, αl(k), ∀l, ∀k, Pmax
1 , Pmax

2 , Pmax
r , R̂r1(λ

0), R̂r2(λ
0),Vr1,Vr2, ε

Output: D,B1,B2

1. Check if problem (4.9) is feasible. If yes, find the optimalD from prob-
lem (4.9). The optimal B is given by Bi = VriPri(λ

0)VH
ri, ∀i. Otherwise,

specify l and l̄ so that problem (4.10) is feasible but R̄lr(D
∗
l ) < R̂rl̄(λ

0) and
proceed to Step 2.
2. Obtain Dl

l and μl
l. Calculate λ

†
i , ∀i using (4.12). Check if

∑
i

R̂ri(λ
†
i) ≤

Rma(D†). If yes, the optimal B is given by Bi = VriPri(λ
†
i )V

H
ri, ∀i. Find

the optimalD from (4.14). Otherwise, proceed to Step 3.
3. Set Rmax =

∑
i

R̂ri(λ
0) and Rmin = 0. Initialize Robj = Rmax and

proceed to Step 4.
4. Solve problem (4.16) and obtainD and 1/μ̃l. Set 1/λl̄ = 1/μ̃l. Allocate
all the remaining power on αl(k)’s, ∀k ∈ Il using waterfilling and obtain
1/λl. Check if |

∑
i

R̂ri(λi)−Rma(D)| < ε, where ε is the positive tolerance.

If yes, proceed to Step 6 withRobj and λi, ∀i. Otherwise, proceed to Step 5.
5. IfRma(D)−∑

i

R̂ri(λi) > ε, setRmax = Robj. If
∑
i

R̂ri(λi)−Rma(D) >

ε, set Rmin = Robj. Let Robj = (Rmax +Rmin)/2 and go back to Step 4.
6. Solve the power minimization problem (4.17). Output D and Bi =
VriPri(λi)V

H
ri, ∀i.

node power consumption in Subcase I-2 since the relay always needs to consume

all its available power for achieving optimality.

The complete procedure of finding the optimal solution in Case I is summarized

in the algorithm in Table 4.1. The algorithm finds the optimal solution either in one

shot (Steps 1 and 2) or through a bisection search for the optimal Robj (Steps 3 to

5). DenotingΔ = Rmax−Rmin, the worst case number of iterations in the bisection

search is log(Δ/ε). Within each iteration, a convex problem, i.e., problem (4.16),

is solved followed by a simple waterfilling procedure which has linear complexity

for the given Robj. Therefore, the complexity of the proposed algorithm is low.

Subcases I-1 and I-2 cover all possible situations for Case I that Rma(D0) ≥
R̂r1(λ

0) + R̂r2(λ
0).
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4.2.2 Finding the optimal solution in Case II, i.e., Rma(D0) <
R̂r1(λ

0) + R̂r2(λ
0)

Since Rma(D0) < R̂r1(λ
0)+ R̂r2(λ

0), it can be seen using (4.1a), (4.1b), and (4.2c)

that 1/λ0 > 1/μ0
ma. The following four subcases are possible.

Subcase II-1: 1/μ0
ma ≤ min{1/μ0

1, 1/μ
0
2}. In this subcase, the maximum sum-

rate Rtw(B,D) is bounded by Rma(D0). The optimal D is D0, and consequently

both source nodes use all their available power at optimality. It can be seen that a

sufficient and necessary condition for B to be optimal in this subcase is that B is

the optimal solution to the following convex optimization problem

min
B

Tr{B1 +B2} (4.18a)

s.t. R̂r1(B1) + R̂r2(B2) ≥ Rma(D0). (4.18b)

The solution of (4.18) can be given in closed-form as Bi = VriPri(μ
0
ma)V

H
ri, ∀i.

Subcase II-2: there exist l and l̄ such that 1/μ0
l ≤ 1/μ0

ma < 1/μ0
l̄
≤ 1/λ0.6 In

this subcase, the maximum achievable Rtw(B,D) is also Rma(D0). Therefore, the

optimal D is D0 and both source nodes use all their available power at optimality.

It can be shown that a sufficient and necessary condition for B to be optimal in

this subcase is that B is the optimal solution to the following convex optimization

problem

min
B

Tr{B1 +B2} (4.19a)

s.t. R̂r1(B1) + R̂r2(B2) ≥ Rma(D0) (4.19b)

R̂rl̄(Bl̄) = R̄lr(D
0
l ). (4.19c)

The solution of (4.19) can also be expressed in closed-form. The optimal Bl̄ is

given by Bl̄ = Vrl̄Prl̄(μ
0
l )V

H
rl̄
and the optimalBl is given by Bl = VrlPrl(λl)V

H
rl ,

where λl satisfies R̂rl(λl) = Rma(D0)− R̄lr(D
0
l ).

Subcase II-3: there exist l and l̄ such that 1/μ0
l ≤ 1/μ0

ma < 1/λ0 < 1/μ0
l̄
and

6For the consistency of denotation, the constrained indices l ∈ {1, 2} and l̄ ∈ {1, 2}\{l} are also
used here in Case II. However, it should be noted that they are not determined by the same constraint
as in Case I.
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there exists λl such that

R̂rl(λl) ≥ Rma(D0)− R̄lr(D
0
l ) (4.20a)

Tr{Prl(λl)} ≤ Pmax
r − Tr{Prl̄(μ

0
l )}. (4.20b)

The optimal solutions of B and D in this subcase are the same as those given in

Subcase II-2.

In the above three subcases, the maximum achievable Rtw(B,D) is Rma(D0).

Therefore, the original problem of maximizing Rtw(B,D) with minimum total

power consumption in the network simplifies to the problem that the relay uses

minimum power consumption to achieve the BC phase sum-rate R̂r1(B1)+R̂r2(B2)

that is equal to Rma(D0).

Subcase II-4: there exist l and l̄ such that 1/μ0
l ≤ 1/μ0

ma < 1/λ0 < 1/μ0
l̄
and

there is no λl that satisfies the conditions in (4.20). In this subcase, the maximum

R(B,D) cannot achieve Rma(D0) although Rma(D0) < R̂r1(λ
0) + R̂r2(λ

0).

Theorem 4.3: Denote the optimalDi as D∗
i , ∀i and the optimal λi as λ∗i , ∀i. In

Subcase II-4, the optimal strategies for the source nodes and the relay satisfy the

following properties:

1. min
i
{1/μ∗i } < 1/μ∗ma < 1/μ0

ma;

2. Properties 2-4 in Theorem 4.2 also apply for Subcase II-4.

Proof: See Subsection B.5 in Appendix.

According to Theorem 4.3, the original problem of maximizingRtw(B,D)with

minimum total power consumption becomes the problem of finding the maximum

achievable Rtw(B,D) with the relay using all its available power and the source

nodes using minimum power. From Theorem 4.3, it can be seen that the optimal

solutions in the Subcases I-2 and II-4 share very similar properties. There is also

an intuitive way to understand the similarity. Although Subcases I-2 and II-4 are

classified to opposite cases according to the initial power allocation, it is the same

for both of them that R(B,D) cannot achieve Rma(D0). As a result, the relay

needs to use as much power as possible and the source nodes need to decrease

Rma(D) from Rma(D0) until the maximum R(B,D) can achieve Rma(D). This
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Table 4.2: Summary of the overall algorithm for network optimization.

1. Initial power allocation. The source nodes solve the MA sum-rate
maximization problem (4.8) and obtain D0, R̄ir(D

0
i ), ∀i, and Rma(D0).

The relay obtains λ0 and R̂ri(λ
0), ∀i.

2. Determining the cases. Check if Rma(D0) ≥ ∑
i

R̂ri(λ
i). If yes, pro-

ceed to Step 3. Otherwise, proceed to Step 4.
3. Case I. Determine the subcase based on μ0

1, μ0
2, μ0

ma, and λ0. For Subcase
I-1, the relay’s optimal strategy is Bi = VriPri(λ

0)VH
ri while the source

nodes solve problem (4.9) for transmission power minimization. For Sub-
case I-2, use Steps 2 to 6 of the algorithm in Table 4.1 for deriving the
optimal strategies for both the source nodes and the relay.
4. Case II. Determine the subcase based on μ0

1, μ0
2, μ0

ma, and λ0. For
Subcases II-1, II-2, and II-3, the optimal strategy for source i is D0

i and
the relay minimizes its transmission power via solving the problems (4.18)
or (4.19). For Subcase II-4, substitute Rmax =

∑
i

R̂ri(λ
0) in Step 3 of

Table 4.1 by Rmax = Rma(D0) and use Steps 2 to 6 of the algorithm in
Table 4.1 for finding the optimal strategies for both the source nodes and
the relay.

similarity leads to the common properties of the above two subcases. Moreover,

due to this similarity between Theorems 2 and 3, Steps 2 to 6 of the algorithm in

Table 4.1 can be used to derive the optimal solution in Subcase II-4 if the part of

Rmax =
∑
i

R̂ri(λ
0) in Step 3 is substituted by Rmax = Rma(D0).

Concluding Cases I and II, the complete procedure of deriving the optimal so-

lution to the problem of sum-rate maximization with minimum total transmission

power for the scenario of network optimization is summarized in Table 4.2.

4.2.3 Discussion: efficiency, the effect of asymmetry, and fair-
ness

In the previous two subsections, we have found the solutions of the network opti-

mization problem for different subcases. Given these solutions, the subcases can

now be compared and related to each other for more insights.

The solutions found in all subcases are optimal in the sense that they achieve

the maximum achievable sum-rate with the minimum possible total power con-
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sumption. However, the optimal solutions in different subcases may not be equally

good from another viewpoint which is power efficiency at the relay and the source

nodes. Specifically, although the power allocation of the source nodes and the relay

jointly maximize the sum-rate of the TWR over the MA and BC phases at optimal-

ity, the power allocation of these nodes may not be optimal in their individual phase

of transmission, which is MA phase for the source nodes and BC phase for the re-

lay. In fact, the power allocations in the two phases have to compromise with each

other in order to achieve optimality over two phases. It is so because of the rate

balancing constraints (4.5a) and (4.5b). It infers that there is a cost of coordinating

the relay and source nodes to achieve optimality over two phases. This cost can be

very different depending on the specific subcase. In order to show the difference

in this cost, we use the metric efficiency defined next. A given power allocation

of the relay (source nodes) is considered as efficient if it maximizes the BC (MA)

phase sum-rate with the actual power consumption of this power allocation. For

example, if the power allocation of the relay consumes the power of Pr ≤ Pmax
r at

optimality and achieves sum-rate Rbc in the BC phase, then this power allocation

is efficient if Rbc is the maximum achievable sum-rate in the BC phase with power

consumption Pr. It is inefficient otherwise. It can be shown that the chance that

the optimal power allocation is efficient for both the relay and the source nodes is

small (such case happens in Subcase II-1 and possibly Subcases I-1). Therefore, a

joint power allocation of the relay and source nodes is considered to be inefficient

if it is inefficient for both the relay and the source nodes, and it is considered to be

efficient otherwise. The following conclusions regarding efficiency and the effect

of asymmetry can be drawn for the scenario of network optimization.

First, it can be shown that the optimal power allocation is efficient in Subcase I-1

and generally inefficient in Subcase I-2. Specifically, the optimal power allocation

of the relay is always efficient in Subcase I-1 while the optimal power allocation

of the source nodes can be either efficient or inefficient. In contrast, the optimal

power allocation of the relay is always inefficient in Subcase I-2 while the optimal

power allocation of the source nodes is also inefficient in general. For Case II, the

optimal power allocation is efficient in Subcases II-1, II-2, and II-3 and generally
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inefficient in Subcase II-4. Specifically, the optimal power allocation of the source

nodes is efficient in Subcases II-1, II-2, and II-3 and generally inefficient in Subcase

II-4 while the optimal power allocation of the relay is efficient in Subcase II-1 and

inefficient in Subcases II-2, II-3, and II-4.

Second, the optimal power allocation in Subcase I-1 achieves R̂r1(λ
0)+R̂r2(λ

0).

In this subcase, the relay uses its full power and achieves the maximum achiev-

able BC phase sum-rate. The source nodes minimize their power consumption

while achieving the maximum sum-rate and in general they do not use up all their

available power at optimality. Unlike Subcase I-1, both source nodes may use up

their available power in Subcase I-2 while the achieved sum-rate is smaller than

R̂r1(λ
0) + R̂r2(λ

0). Similarly, the optimal power allocation in Subcases II-1, II-2,

and II-3 achieves Rma(D0) with the source nodes using their full power while the

relay does not necessarily use up its available power. In contrast, the optimal power

allocation in Subcase II-4 consumes all the available power of the relay while the

achieved sum-rate is smaller than Rma(D0). Therefore, it can be seen that for Sub-

case I-1 and Subcases II-1, II-2, and II-3, in which the optimal power allocation

is efficient, either the maximum possible sum-rate of the MA phase or that of the

BC phase can be achieved at optimality. Moreover, the source nodes and the relay

generally do not both use up their available power. In Subcases I-2 and II-4, in

which the optimal power allocation is inefficient, the achieved sum-rate is however

smaller than either the maximum possible sum-rate of the MA phase or that of the

BC phase, while it is possible that all nodes use up their available power.

Third, it can be shown for Case I that the difference between max
i
{1/μ0

i} and
min

i
{1/μ0

i} increases in general as the subcase changes from Subcase I-1 to Subcase
I-2. Similar result can be observed in Case II. As the subcase changes from Subcase

II-1, via Subcases II-2 and II-3, to Subcase II-4, the difference betweenmax
i
{1/μ0

i}
and min

i
{1/μ0

i } increases.
Last, from the definitions of μ0

i , ∀i, it can be seen that large difference between
max

i
{1/μ0

i} and min
i
{1/μ0

i } can be, and most likely is, a result of asymmetry in
the power limits, number of antennas, and/or channels at the two source nodes.

It will also be shown in detail later in the simulations that such asymmetry can
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increase the occurrence of the two inefficient subcases, i.e., Subcases I-2 and II-4.

In contrary, if the two source nodes have the same available power, same number of

antennas, and same channel matrices, then 1/μ0
1 = 1/μ0

2 > 1/μ0
ma. As a result, only

Subcases I-1 and II-1 are possible, in which the optimal power allocation is efficient.

Combining this fact with the observations in the above three paragraphs, it can be

seen that the asymmetry in the power limits, number of antennas, and/or channels

at the two source nodes can lead to a degradation in the power allocation efficiency

for the considered scenario of network optimization. As efficiency reveals the cost

of coordination between the relay and source nodes required to achieve optimality

over the two phases in the network optimization scenario, it can be seen that such

cost is low with source node symmetry and high otherwise.

It should be noted that the network optimization solution obtained in this chapter

and the relay optimization solution obtained in Chapter 3 cannot guarantee fairness

in the system. As the priorities are spectrum efficiency and power efficiency, the

solutions can be unfair for the two source nodes. However, it is possible to combine

also fairness in the considered system by introducing minimum rate requirements

for the communications on the two directions. As it can be shown that such con-

straints are convex, they do not lead to a significant complication of the considered

problems and the methods used for finding optimal solutions can be extended after

appropriate modifications. However, it should be noted that in general the spectrum

and/or power efficiency must be compromised as the trade-off if the fairness in the

system is to be improved.

4.3 Numerical and simulation results

In this section, we provide simulation examples for some results presented earlier

and demonstrate the proposed algorithm for network optimization in Table 4.1. The

general setup is as follows. The elements of the channels Hri and Hir, ∀i are gen-
erated from complex Gaussian distribution with zero mean and unit variance. The

noise powers σ2
i , ∀i and σ2

r are set to 1. The rates Rma(D), R̄ir(Bi), and R̂ri(Di)

are briefly denoted as Rma, R̄ir, and R̂ri, respectively, in all figures.
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Figure 4.1: Illustration of the algorithm in Table 4.1 for Subcase I-2.

4.3.1 The process of finding the optimal solution for network
optimization, Subcase I-2, using the proposed algorithm
in Table 4.1

The specific setup for this example is as follows. The number of antennas n1, n2,

and nr are set to be 6, 4, and 8, respectively. Power limits for the source nodes are

Pmax
1 = 2, Pmax

2 = 2.5. The relay’s power limit is set to Pmax
r = 3. Since the
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optimality of the solution derived using the algorithm has been proved analytically

by the insights from Theorem 4.2, we focus on demonstrating the iterative process

and the convergence of the algorithm. Fig. 4.1a shows instantaneous Rtw(B,D),

Rma(D), and R(B,D) versus the number of iterations. From the figure, it can be

seen that the above three rates converge very fast. Fig. 4.1b shows the instantaneous

R̄ir(Di), R̂ri(λi), ∀i and the power consumption of the source nodes 1 and 2, de-
noted as P1 and P2, respectively. Two observations can be drawn from Fig. 4.1b.

First, R̂r2(λ2) < R̄1r(D1) and R̂r1(λ1) = R̄2r(D2) at optimality since the sum-rate

is bounded by Rma(D) < R̄1r(D1) + R̄2r(D2). Second, both source nodes use all

available power at optimality. The latter observation verifies the conclusion that for

Case I the optimal power allocation in Subcase I-2 is inefficient for using relatively

more power and achieving relatively less sum-rate comparing to that in Subcase I-1.

4.3.2 Comparison with relay optimization in Chapter 3

The specific setup for this example is as follows. The number of antennas at the re-

lay, i.e., nr, is set to be 5. The power limit of the relay, i.e., Pmax
r , is set to be 3. The

total number of antennas at both source nodes is fixed so that n1+n2 = 5. The total

available power at both source nodes is also fixed so that Pmax
1 + Pmax

2 = 2. Given

the above total number of antennas and total available power at the source nodes,

both the relay optimization and the network optimization problems are solved for

different combinations of n1, n2, Pmax
1 , and Pmax

2 each with 100 channel realiza-

tions. The percentage of the increase in the average sum-rate and the percentage of

the decrease in the average power consumption at optimality of the network opti-

mization problem compared to those at optimality of the relay optimization prob-

lem are plotted in Figs. 4.2a and 4.2b, respectively. These percentages are shown

versus the difference between the number of antennas and the difference between

the power limits at the source nodes. From these two figures, it can be seen that

although the optimal solution of the network optimization problem on average con-

sumes much less power than that of the relay optimization problem, it still achieves

larger sum-rate. Moreover, it can also be seen that the improvements, in either

sum-rate or power consumption of the optimal solution of the network optimiza-
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Figure 4.2: Improvements as compared to relay optimization.

tion problem as compared to that of the relay optimization problem, become more

obvious when there is more asymmetry in the system. This is because the source

nodes and the relay can jointly optimize their power allocations and therefore cope

to some extent with the negative effect of the asymmetry in the system in the net-

work optimization scenario. In contrast, the relay optimization scenario does not

has such capability to combat the negative effect of asymmetry.
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Figure 4.3: Number of channel realizations that Subcases I-2 and II-4 appear de-
pending on the asymmetry in Pmax

1 and Pmax
2 .

4.3.3 The effect of asymmetry in the scenario of network opti-
mization

First, we solve the network optimization problem for different Pmax
1 and Pmax

2 given

that Pmax
r is fixed. The number of antennas of the relay is set to 8 and the number of

antennas of each source node is set to 4. For each combination of Pmax
1 and Pmax

2 ,

we use 200 channel realizations and solve the resulting 200 network optimization

problems. The number of channel realizations that Subcases I-2 and II-4 appear are

plotted in Fig. 4.3. In this figure, the points in the upper surface correspond to the

counts of Subcase I-2 while the points in the lower surface correspond to the counts

of Subcase II-4. From Fig. 4.3, it can be seen that in general the count of either

Subcase I-2 or Subcase II-4 is the smallest when Pmax
1 = Pmax

2 . Moreover, for any

given Pmax
1 or Pmax

2 , the largest count of either Subcase I-2 or Subcase II-4 mostly

appears when the difference between Pmax
1 and Pmax

2 is the largest.7 The above two

observations are accurate for most of the times in Fig. 4.3, which shows that the

asymmetry of Pmax
i leads to the rise of the occurrence of Subcases I-2 and II-4.

7Note, however, that subcases are also determined by the number of antennas at the relay and the
source nodes, the power limit Pmax

r
, the channel realizations, and other factors instead of only by

Pmax

i , ∀i.
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Figure 4.4: Illustration of the effect of asymmetry in the number of antennas at the
source nodes.

Next we demonstrate the effect of asymmetry in the number of antennas at the

source nodes. The number of antennas at the relay is still 8 and Pmax
r is still 4.

However, the number of antennas at the sources nodes 1 and 2 are first set to 4 and

6, respectively, and then set to both 6. The network optimization problem is solved

for different Pmax
1 and Pmax

2 and the sum of the counts of Subcases I-2 and II-4 in

200 channel realizations is plotted in Fig. 4.4 for each combination of Pmax
1 and

77



Pmax
2 . From Fig. 4.4a, it can be seen that the sum of the counts of Subcases I-

2 and II-4 substantially increases when n1 = 4 and n2 = 6 as compared to the sum

of the counts in Fig. 4.3 on most of the points. However, as shown in Fig. 4.4b,

when n1 = n2 = 6, the sum of the counts of Subcases I-2 and II-4 drops to the

same level as the sum of the counts in Fig. 4.3. Therefore, it can be seen that

asymmetry in the number of antennas at the source nodes leads to larger chance of

Subcases I-2 and II-4.

Lastly, we show the effect of asymmetry in channels. Instead of generating the

real and imaginary parts of each element ofHir, ∀i from Gaussian distributions with
zero mean and unit variance, we use here Gaussian distribution with zero mean and

variance vi to generate the real and imaginary parts of each element ofHir, ∀i. For
each combination of v1 and v2, we use 200 channel realizations and solve the result-

ing 200 network optimization problems. The number of antennas at the relay is set

to 6 and the number of antennas at each source node is set to 4. The power limits are

Pmax
r = 5 and Pmax

i = 3, ∀i. The sum of the counts of Subcases I-2 and II-4 is plot-
ted in Fig. 4.5 versus v1 and v2. In Fig. 4.5a, channel reciprocity is not assumed and

the real and imaginary parts of each element ofHri, ∀i are generated from Gaussian
distribution with zero mean and unit variance. In Fig. 4.5b, channel reciprocity is

assumed i.e., Hri = HT
ir, ∀i where (·)T represents transpose. It can be seen from

both Figs. 4.5a and 4.5b that the sum of the counts of Subcases I-2 and II-4 tends to

increase when the difference between v1 and v2 becomes larger. Therefore, Fig. 4.5

clearly shows that the asymmetry in the channels also leads to larger chance of the

inefficient Subcases I-2 and II-4.

4.4 Conclusions

In this chapter, we have solved the problem of sum-rate maximization using min-

imum total transmission power for MIMO DF TWR in the scenario of network

optimization. For finding the optimal solution, we study the original problem in

two cases each of which has several subcases. It has been shown that for all except

two subcases, the originally nonconvex problem can be simplified into correspond-
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Figure 4.5: Illustration of the effect of asymmetry in channel statistics.

ing convex optimization problems. For the remaining two subcases, we have found

the properties that the optimal solution must satisfy and have proposed the algo-

rithm to find the optimal solution based on these properties. We have shown that

the optimal power allocation in these two subcases are inefficient in the sense that it

always consumes all the available power of the relay (and sometimes all the avail-

able power of the source nodes as well) yet cannot achieve the maximum sum-rate
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of either the MA or BC phase. We have also shown that the asymmetry in the

power limits, number of antennas, and channels leads to a higher probability of the

above-mentioned two inefficient subcases. Together with Chapter 3, we have pro-

vided a complete and detailed study of the problem of sum-rate maximization using

minimum power consumption for MIMO DF TWR.

∼
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Chapter 5

Jamming in Multi-User Wireless
Communications

In this chapter, the worst-case noise jamming in MIMO wireless communications

and the worst-case multi-target correlated jamming are investigated. For character-

izing the worst-case jamming threat, it is assumed that the jammer has the channel

information of all channels. Two scenarios are considered. In the first scenario, the

jammer knows the covariance of the target signal and optimizes its jamming sig-

nal to perform worst-case noise jamming. In the second scenario, the jammer has

the knowledge of multiple legitimate signals and performs multi-target correlated

jamming.

The symbols used for specific denotations in this chapter are listed in Table 5.1.

Table 5.1: Symbol table for Chapter 5
Non-correlated Jamming

Hr legitimate channel
Hz jamming channel
Qs legitimate signal covariance
Qz jamming signal covariance
RJ rate of legitimate communication under jamming
Pz power limit of jammer

Correlated Jamming
hi channel between the ith legitimate transceiver
ξi weight for jamming the ith legitimate communication
RC

i rate of the ith legitimate communication under jamming
Pz power limit of jammer
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5.1 Optimal non-correlated jamming

In this section, the problem of finding the non-correlated jamming1 strategy to min-

imize the rate of a legitimate communication will be investigated. Since the jammer

aims at causing maximum damage to the legitimate communication, the worst-case

jamming is achieved when the jammer’s strategy is optimized. Therefore, the term

“optimal jamming”will be used as an alternative for the term “worst-case jamming”

throughout the chapter.

5.1.1 System model

A legitimate transmitter with nt antennas sends a signal s to a receiver with nr

antennas. The elements of s are independent and identically distributed Gaussian

with zero mean and covariance Qs. A jammer with nz antennas attempts to jam

the legitimate communication by transmitting a jamming signal z to the receiver.

Denote the legitimate channel from the legitimate transmitter to the receiver as Hr

(of size nr × nt) and the jamming channel from the jammer to the receiver as Hz

(of size nr × nz). In the presence of the jamming signal, the received signal at the

legitimate receiver is expressed as

y = Hrs+Hzz+ n (5.1)

where n is the noise at the legitimate receiver with zero mean and covariance σ2I.

Note that given the Gaussian channel and Gaussian target signal, the worst-case

form of jamming signal is also Gaussian [84]. Denote the covariance of z as Qz.

Then the information rate of the legitimate communication in presence of the jam-

ming is

RJ = log
∣∣I+HrQsH

H
r (HzQzH

H
z + σ2I)−1

∣∣ . (5.2)

The jammer aims at decreasing the above rate as much as possible given its power

limit Pz. Assuming that the jammer has the knowledge of Hr, Hz, and Qs but

does not know the exact s, the jammer can use the available knowledge to find the
1The term “non-correlated jamming” is used as an alternative for the term “noise jamming” in this
chapter.
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optimalQz such that the rate (5.2) is minimized. This problem is studied in details

in the following section.

5.1.2 Optimal jamming in closed-form under PSD condition

Given the system model, the optimal non-correlated jamming strategy can be found

by solving the following problem2

min
Qz

RJ (5.3a)

s.t. Tr{Qz} ≤ Pz. (5.3b)

With only one pair of transceiver, the above problem is a basic jamming problem

on a MIMO channel.

Denote the SVD of Hz as Hz = UzΩzV
H
z . The matrices Uz, Ωz, and Vz are

of sizes nr × nr, nr × nz, and nz × nz, respectively. Define B � UH
z HrQsH

H
r Uz.

Note thatB has the same rank asHrQsH
H
r . Using the definition of B and the SVD

ofHz, the objective function in (5.2) can be rewritten as

RJ = log|I+B(ΩzQ̂zΩ
H
z + σ2I)−1| (5.4)

where

Q̂z � VH
z QzVz. (5.5)

In order to solve the problem (5.3), we start from introducing the following two

lemmas.

Lemma 5.1: Given a constant Hermitian matrixA withA � 0, the optimization

problem over positive definite matrixX

min
X

log
∣∣I+AX−1

∣∣ (5.6a)

s.t. Tr{X} ≤ 1 (5.6b)

X � 0 (5.6c)

has the following closed-form solution

X = UA

√
ΛA

λ
+

Λ2
A

4
UH

A −
A

2
(5.7)

2The PSD constraintQz � 0 is assumed as default and omitted for brevity throughout this chapter.
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where UA and ΛA are the eigenvector and eigenvalue matrices, respectively, ob-

tained from the EVDA = UAΛAU
H
A, and λ is chosen so that the power constraint

(5.6b) is satisfied with equality.

Proof: See Section C.1 in Appendix C.

Denote the rank ofHz as rz and assume without loss of generality that the first

rz elements on the main diagonal of Ωz are non-zero. Whether or not B is positive

definite, i.e., has the rank of nz, has an impact on the optimal form of Q̂z in (5.4).

Therefore, the following lemma regarding B is in order.

Lemma 5.2: If we denoteB using blocks such that

B =

[ rz nz−rz

rz B11 B12

nz−rz B21 B22

]
(5.8)

and define

B̃ � B11 −B12(σ
2I+B22)

−1B21, (5.9)

then B̃ is positive definite if B is positive definite.

Proof: See Section C.2 in Appendix C.

Let us define a new eigen channel Ω̃z as

Ω̃z �

[ rz nr−rz

rz Ω+
z 0

nr−rz 0 I

]
(5.10)

where Ω+
z is an rz × rz diagonal matrix made of the positive diagonal elements of

Ωz. Also define a new jamming covariance matrix Q̃z as

Q̃z �

[ rz nr−rz

rz Q′
z 0

nr−rz 0 0

]
(5.11)

whereQ′
z is the part of the matrix to be determined. With the above Ω̃z and Q̃z, the

rate in (5.4) can be equivalently rewritten as

RJ = log
∣∣∣I+B(Ω̃zQ̃zΩ̃

H
z + σ2I)−1

∣∣∣. (5.12)

Therefore, we consider Ω̃z and Q̃z as the equivalent channel matrix and the equiv-

alent jamming covariance matrix to Ωz and Q̂z, respectively.
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The equivalent channel Ω̃z has the size nr × nr, which is larger than the size

of Ωz if nr > nz and smaller than the size of Ωz if nr < nz. Correspondingly, the

allocation of jamming power in (5.11) represented by Q′
z is limited to at most rz

dimensions corresponding to the rz non-zero eigenvalues ofΩ+
z . It can be seen that

allocating jamming power anywhere else has no effect on the received signal and

only leads to jamming power waste. Therefore, the optimal structure of Q̂z has to

be in the form

Q̂z ==

[ rz nz−rz

rz Q′
z 0

nz−rz 0 0

]
. (5.13)

Using (5.5) and (5.13) it can be seen that the optimal form of Qz is

Qz = Vz

[
Q′

z 0

0 0nz−rz

]
VH

z . (5.14)

Given the above definitions and lemmas, we next solve the problem (5.3) by

finding the optimalQ′
z in (5.14). First, we consider a specific case thatHrQsH

H
r is

positive definite. Then, we will extend the solution to the general case thatHrQsH
H
r

is PSD but not necessarily positive definite.

Theorem 5.1: When HrQsH
H
r is positive definite, the problem (5.3) has the

following closed-form optimal solution

Q′
z = UÃ

√
1

λ
ΛÃ +

1

4
Λ2

Ã
UH

Ã
−Ω+

z
−1(1

2
B̃+ σ2I

)
Ω+

z
−H (5.15)

under the condition that the above Q′
z is PSD, where B̃ is given by (5.9), UÃ and

ΛÃ are obtained from the EVD Ã = UÃΛÃU
H
Ã
with

Ã � Ω+
z
−1
B̃Ω+

z
−H

, (5.16)

and λ is chosen such that the jammer’s power constraint (5.3b) is satisfied with

equality.

Proof: Please see Section C.3 in Appendix C.

As mentioned in the introduction in Chapter 1, a special case of the problem

(5.3) that assumes the jamming channel Hz is the identity matrix I is investigated

in [47]. Consequently, Uz, Ωz, and VH
z are all equal to I. Therefore, Ã and Ω+

z
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simplify to B̃ and I, respectively. Moreover, the above simplification in [47] leads

to the result that rz = nz, which further simplifies the case so that B̃ = B and

Qz = Q′
z. In such case, the solution in (5.15) simplifies to

Q′
z = UB

(√1

λ
ΛB +

1

4
Λ2

B −
1

2
ΛB − σ2I

)
UH

B (5.17)

where UB and ΛB are obtained from the EVD B = UBΛBU
H
B. An equivalent

scalar form of the above solution is given in [47] for the above simplified case of the

problem. By forcing the negative elements (if any) of
√

ΛB/λ+Λ2
B/4− 1

2
ΛB−σ2I

to be zero and adjustingλ to satisfy the power constraint, the solution given in (5.17)

can always be made PSD.

The solution of Q′
z given by (5.15) is not necessarily PSD for the case con-

sidered in Theorem 5.1. It can be indefinite when the jammer’s power limit Pz

is sufficiently small. It can be seen that 1/λ decreases when the jammer’s power

limit becomes smaller. As a result, Q′
z has a larger chance to be indefinite and

thereby invalid as a solution of a covariance matrix. For a given power limit Pz,

whether or not Q′
z in (5.15) is PSD depends on the channel Hz, or essentially, the

elements of Ω+
z . It can be shown that, for a small Pz and a given Ω+

z such that

Q′
z given by (5.15) is indefinite, there always exists Ω̃+

z with the same trace as Ω+
z

(i.e., Tr{Ω̃+
z } = Tr{Ω+

z }) but different elements, such that Q′
z is PSD if Ω+

z in

(5.15) is substituted by Ω̃+
z . Therefore, the power limit of the jammer as well as the

gains of the eigen-channels determine whether or not Q′
z is PSD. The above fact,

which reveals the effect of the jamming power limit and the jamming channel on

the jammer’s strategy, has not been observed before as the jamming channel has

been neglected.

Unlike the case of [47] in which the solution can always be made PSD by forcing

the negative elements to be zero and adjusting the λ to satisfy the power constraint,

such method does not work for the case considered here. The problem of finding

the solution whenQ′
z in (5.15) is indefinite will be studied in Section 5.1.3.

Now consider the general case thatHrQsH
H
r is PSD but not necessarily positive

definite. Since HrQsH
H
r , or equivalently B, is PSD but not necessarily positive

definite in this case, B̃ in (5.9) and consequently Ã in (5.16) can be rank deficient.
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In this situation, assume that the rank of Ã is rÃ and denote the diagonal matrix

made of the rÃ positive eigenvalues of Ã as Λ
+

Ã
. Denote the EVD of Ã as

Ã = UÃΛÃU
H
Ã
=

[ r
Ã

rz−rÃ

UÃ1 UÃ2

][ Λ+

Ã
0

0 0

][
UH

Ã1

UH
Ã2

]
. (5.18)

The following theorem regarding the solution in this general case is in order.

Theorem 5.2: WhenHrQsH
H
r is PSD but not necessarily positive definite, the

problem (5.3) has the following closed-form optimal solution

Q′
z = UÃ1

√
1

λ
Λ+

Ã
+
1

4
Λ+

Ã

2
UH

Ã1
− 1

2
UÃ1Λ

+

Ã
UH

Ã1
− σ2Ω+

z
−1
Ω+

z
−H (5.19)

under the condition that the above Q′
z is PSD, where λ is chosen such that the

jammer’s power constraint (5.3b) is satisfied with equality.

Proof: See Section C.4 in Appendix C.

It can be seen that if Ã has full rank, then (5.19) is equivalent to (5.15). Simi-

larly, Q′
z given by (5.19) can be indefinite depending on the jammer’s power limit

Pz and the jamming channel Ω+
z . To tackle this problem, we next find solutions of

the problem (5.3) when Q′
z given in (5.15) or (5.19) is indefinite.

5.1.3 Optimal numeric solution and closed-form approximation

As mentioned earlier, the closed-form expressions ofQ′
z given by (5.15) and (5.19)

when HrQsH
H
r is positive definite and PSD, respectively, may not be valid when

the power constraint Pz is small. In such case, the optimal solution may not be

found in closed-form. To solve this problem, we propose two different approaches

in this section. The first one is to find the optimal solution numerically. The second

one is to find a sub-optimal solution in closed-form. The two approaches provide

a choice between accuracy and complexity. We start from describing an algorithm

for finding the optimal solution of (5.3) numerically.

Substituting (5.10) and (5.11) into (5.12) and using the definitions (5.9) and

(5.16), it can be shown3 that the original problem of minimizing (5.4) is equivalent
3The details can be found in the proof of Theorem 5.1, from (C.14) to (C.18), Section C.3 in Ap-
pendix C.
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Table 5.2: Steps for finding the optimal solution of problem (5.21).
Input: Ã,D0, Pz

Output: Q′∗
z

1. Select a startingQ′†
z subject to Tr{Q′†

z} ≤ Pz.
2. Solve problem (5.22) given Q′†

z. Denote the corresponding optimal
solution ofQ′

z as Q′∗
z .

3. Set Q′†
z = Q′∗

z .
4. Repeat the Steps 2 and 3 until the solution converges.

to the minimization of

R̄J = log
∣∣∣I+ Ã(Q′

z + σ2Ω+
z
−1
Ω+

z
−H

)−1
∣∣∣. (5.20)

Although the minimization of (5.20) subject to a power constraint is a convex

problem, it is not a disciplined convex problem [85]. Therefore, the optimal solution

cannot be obtained using classic convex optimization methods. In order to find the

optimal solution, we first rewrite the problem into the following equivalent form

min
α,Q′

z

α− log|Q′
z +D0| (5.21a)

s.t. α ≥ log
∣∣∣Q′

z +D0 + Ã

∣∣∣ (5.21b)

Tr{Q′
z} ≤ Pz (5.21c)

in which D0 � σ2Ω+
z
−1
Ω+

z
−H. In the above problem, the objective function is

convex while the first constraint is not. In order to solve the problem (5.21), we first

consider the following problem in a similar form

min
α,Q′

z

α− log|Q′
z +D0| (5.22a)

s.t. α ≥ log
∣∣∣Q′†

z+D0+Ã

∣∣∣+Tr{(Q′†
z+D0

+Ã
)−1

Q′
z} − Tr{

(
Q′†

z+D0+Ã
)−1

Q′†
z} (5.22b)

Tr{Q′
z} ≤ Pz. (5.22c)

HereQ′†
z stands for a givenQ′

z subject to (5.21c). The optimal solution of the prob-

lem (5.21) can be found from solving the problem (5.22) iteratively. Specifically,

the corresponding algorithm is summarized in Table 5.2.

Lemma 5.3: The Q′∗
z in the procedure described in Table 5.2 converges to the

optimal solution of problem (5.21).
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Proof: See Section C.5 in Appendix C.

After obtaining the optimal Q′∗
z using the algorithm in Table 5.2, the optimal

Qz can be obtained using (5.14).

Using the algorithm for finding the optimal Q′
z can be computationally com-

plex as compared to obtaining a closed-form solution. Therefore, we next give an

approximation of the optimal solution in closed-form when the Q′
z given by (5.15)

(whenHrQsH
H
r is positive definite) or (5.19) (whenHrQsH

H
r is PSD) is indefinite.

When HrQsH
H
r is positive definite, a suboptimal closed-form solution to the

considered problem when theQ′
z in (5.15) is indefinite can be given as

Q′
z = UÃ

√
1

λ̃
ΛÃ +

1

4
Λ2

Ã
UH

Ã
− 1

2
Ã+ (ε̃− 1)D0 (5.23)

in which ε̃ and λ̃ are the optimal solution to the problem

min
ε,λ

ε (5.24a)

s.t. UÃ

√
1

λ
ΛÃ +

1

4
Λ2

Ã
UH

Ã
− 1

2
Ã+ (ε− 1)D0 � 0 (5.24b)

Tr

{√
1

λ
ΛÃ +

1

4
Λ2

Ã
− 1

2
Ã+ (ε− 1)D0

}
= Pz (5.24c)

0 ≤ ε ≤ 1 (5.24d)

λ > 0. (5.24e)

It is worth mentioning that the constraints (5.24b)-(5.24e) specify a non-empty

feasible set. It can be found that the suboptimal solution (5.23) is equal to the ex-

pression in (5.15) plus ε̃D0 (using the definitions (5.16) andD0 = σ2Ω+
z
−1
Ω+

z
−H).

The logic behind the suboptimal solution (5.23) is that the remaining part of the ex-

pression (5.15) without−D0 is always PSD. Therefore, there exists a non-negative

factor ε < 1 such that the summation is PSD if −D0 is scaled by 1 − ε and added

back to the remaining part of (5.15). In order to remain as close as possible to the

form of (5.15) in the above modification, the minimum ε that results in a PSDQ′
z is

used.

The above suboptimal solution given by (5.23) is proposed based on the follow-

ing reasons. First and most important, it can be shown that Q′
z given by the above
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suboptimal solution is the same as theQ′
z given by (5.15) when the latter one is PSD

(and consequently ε̃ = 0). Therefore, the use of (5.23) is sufficient for calculating

the jamming strategy in all cases because (5.23) gives the optimal solution when it

exists in closed-form and gives the suboptimal solution otherwise. Second, when it

is not optimal, the suboptimal solution given by (5.23) is in fact very close to the

optimal one found numerically (as will be shown in simulations). Third, compared

to the numerical solution, the suboptimal solution given by (5.23) can be obtained

with negligible complexity since the parameters ε̃ and λ̃ can be obtained by a sim-

ple bisectional search. Last, the above suboptimal solution is always PSD as can be

seen from the constraint (5.24b).

The closed-form suboptimal solution for the general case when HrQsH
H
r is

PSD but not necessarily positive definite can be obtained similarly. In this case, the

suboptimal solution in closed-form is expressed as

Q′
z = UÃ1

√
1

λ̃
Λ+

Ã
+
1

4
Λ+

Ã

2
UH

Ã1
− 1

2
UÃ1Λ

+

Ã
UH

Ã1
+(ε̃− 1)D0 (5.25)

in which ε̃ and λ̃ are the optimal solution to the problem

min
ε,λ

ε (5.26a)

s.t. UÃ1

√
1

λ
Λ+

Ã
+
1

4
Λ+

Ã

2
UH

Ã1
− 1

2
UÃ1Λ

+

Ã
UH

Ã1
+(ε− 1)D0 � 0 (5.26b)

Tr

{√
1

λ
Λ+

Ã
+
1

4
Λ+

Ã

2− 1

2
Λ+

Ã
+ (ε− 1)D0

}
= Pz (5.26c)

0 ≤ ε ≤ 1 (5.26d)

λ > 0. (5.26e)

With the proposed closed-form optimal and sub-optimal solutions and the algo-

rithm for finding the optimal numerical solution, the complete procedure of calcu-

lating the non-correlated jamming strategyQz is summarized in Table 5.3.

5.2 Multi-target correlated jamming

If the jammer has the information of the legitimate signal (as considered in [16]

and [86]), it can perform another form of jamming, i.e., correlated jamming. Instead
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Table 5.3: Summarizing the procedure for finding the solution to problem (5.3).
1. Check whether or not HrQsH

H
r is positive definite. If yes, obtain Q′

z

using (5.15). Otherwise, obtainQ′
z using (5.19).

2. Check whether or not the above obtained Q′
z is PSD. If yes, substitute

the obtained Q′
z into (5.14) to find the optimal Qz. Otherwise, select from

two options: a) optimal numerical solution; b) sub-optimal closed-form
solution. For a), proceed to step 3. For b), proceed to step 4.
3. Use the algorithm in Table 5.2 to obtain the optimal numerical solution.
Exit.
4. Obtain ε̃ and λ̃ from solving problem (5.24) (if HrQsH

H
r is positive

definite) or problem (5.26) (if HrQsH
H
r is PSD but not positive definite).

Then obtain the suboptimal closed-form solution accordingly using (5.14)
with (5.23) (if HrQsH

H
r is positive definite) or (5.25) (if HrQsH

H
r is PSD

but not positive definite). Exit.

of causing interference to the legitimate receiver, the objective of the jammer in

correlated jamming is to weaken or even completely cancel out the legitimate signal

depending on its power limit. Therefore, correlated jamming can be very efficient

for a jammer. Unlike the cases in [16] and [86], in which the authors investigate

correlated jamming without considering the jamming channel as if the jamming

is applied directly at the target receiver, here the jamming channel is taken into

account in the investigation of jamming strategy. Moreover, the jammer needs to

perform correlated jamming with more than one target. This significantly increases

the complexity of the problem.

5.2.1 System model and problem formulation

To be consistent with Section 5.1 that considers MIMO, the following describes a

general system model for multi-target correlated jamming in which each node has

multiple antennas. There are m legitimate transceiver pairs and one jammer. The

transmitter and receiver in the ith (i = 1, . . . , m) transceiver pair have nsi and nri

antennas, respectively. The channel between the ith transceiver pair is denoted as

Hi and the transmitted signal over channel Hi is xi. It is assumed that the ele-

ments of xi are independent and identically distributed Gaussian with zero mean

and unit variance, i.e., E{xi} = 0 and E{xix
H
i } = I, ∀i. The signals from differ-

ent transmitters are uncorrelated, i.e., E{xix
H
j } = 0, ∀j 	= i, ∀i. The jammer has
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nz antennas and the channel from the jammer to the receiver in the ith transceiver

pair is denoted as Hzi. The maximum jamming power of the jammer is limited

by Pz. The jammer has the knowledge of Hi and Hzi and xi, ∀i and therefore is
able to perform correlated-jamming. It is assumed that the legitimate communi-

cations of all the transceiver pairs are interference-free (e.g., with frequency/time

division multiplexing) or the interference is negligible (as compared to the effect of

jamming).

To completely cancel out the signal from the ith transmitter using correlated

jamming, the jammer should transmit a signal −vi such that

−Hzivi = −Hixi. (5.27)

There exists a vi that satisfies (5.27) only if the following two conditions are satis-

fied. First, the jammer must have at least the same number of antennas as that of

the target receiver, i.e., nz ≥ nri. Second, Hzi must have full rank, i.e., the rank of

Hzi should be nri. Under the above two conditions, vi can be given in the following

form

vi = HH
zi(HziH

H
zi)
−1Hixi. (5.28)

Due to the power limit of the jammer, it may not have sufficient power to transmit

−∑
i

vi to cancel all target signals. Therefore, the overall jammer’s signal targeting

at all the legitimate signals in correlated jamming can be generally expressed as

xz =
∑
i

ξivi + nz (5.29)

where the weight ξi ∈ [−1, 0] is determined by the power that the jammer uses
targeting at the ith signal, and nz is the non-correlated noise jamming part of the

jamming signal with zero mean and covariance σ2
zI. The non-correlated part nz is

uncorrelated with the legitimate signals xi, ∀i.
The received signal at the ith receiver can be written as

yi= Hixi +Hzixz + ni

= (1+ξi)Hixi+Hzi

∑
j �=i

ξjvj +Hzinz + ni (5.30)
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where ni is the noise at the ith receiver with zero mean and covariance σ2
i I.

Define Qv
i � E{viv

H
i } andGi � HiH

H
i . Then the information rate at receiver

i in the presence of correlated jamming is given as

RC
i = log

∣∣∣∣∣I+ (1 + ξi)
2Gi

(
Hzi

(∑
j �=i

ξ2jQ
v
j + σ2

z I
)
HH

zi + σ2
i I

)−1∣∣∣∣∣, ∀i. (5.31)

Due to the power limit of the jammer, the following constraint must be satisfied∑
i

ξ2i Tr{Qv
i }+ nzσ

2
z ≤ Pz. (5.32)

The jammer aims at minimizing the weighted sum-rate
∑
i

wiR
C
i by optimiz-

ing ξi, ∀i and σ2
z subject to the power constraint in (5.32), where wi’s are positive

weights satisfying
∑
i

wi = 1. If the jammer’s power is sufficiently large, i.e.,

Pz ≥
∑
i

Tr{Qv
i }, it can completely cancel out the target signals at the correspond-

ing receivers by setting ξi = −1, ∀i and σ2
z = 0. As a result, the rate RC

i in (5.31)

becomes zero for each i, which suggests that no information is received at any re-

ceiver. This is the ideal case for the jammer. However, a more likely situation is

that Pz is not large enough to cancel all target signals, i.e., Pz <
∑
i

Tr{Qv
i }. In

this situation, the jammer needs to jam the receivers with different priorities and

optimize the weights ξi, ∀i and σ2
z in order to minimize

∑
i

wiR
C
i . The focus of our

investigation in multi-target correlated jamming is on finding the jamming strategy

in the power-limited case, i.e., Pz <
∑
i

Tr{Qv
i }.

In the power-limited case, the problem of finding the optimal correlated jam-

ming strategy can be formulated as the following optimization problem

min
{ξi},σ2

z

∑
i

wiR
C
i (5.33a)

s.t.
∑
i

ξ2i Tr{Qv
i }+ nzσ

2
z ≤ Pz (5.33b)

−min{1,√γi} ≤ ξi ≤ 0, ∀i. (5.33c)

where γi � Pz/Tr{Qv
i } with

√
γi represents the maximum absolute value of ξi

when the jammer uses all power for correlated jamming target i. The above problem

is nonconvex in general.
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Given the above general system model, we investigate the above problem in the

case that all nodes have only a single antenna and therefore all channels are scalars,

as considered in [16]. It should be noted that the difference of our work from [16]

is that we consider multiple targets.

5.2.2 Multi-target correlated jamming: The SISO case

In the case that all nodes have only one antenna, xi, xz,Hi,Hzi, nz, and ni simplify

to xi, xz, hi, hzi, σ2
z , and σ2

i , respectively. Accordingly, vi,Qv
i , andGi simplify to

vi = h−1zi hixi, q
v
i = |h−1zi hi|2, gi = |hi|2 (5.34)

respectively. Then the objective function in (5.33a) can be rewritten as∑
i

wiR
C
i =

∑
i

wilog

(
1 + (1 + ξi)

2gi

(
|hzi|2(

∑
j �=i

ξ2j q
v
j + σ2

z ) + σ2
i

)−1)
.(5.35)

With the above simplification, the following theorem is in order.

Theorem 5.3: Under the condition that the jammer uses full jamming power,

i.e.,
∑
i

ξ2i q
v
i +σ2

z = Pz, the summation
∑
i

wiR
C
i becomes a convex function of ξi, ∀i

in the interval that ξi ∈ [−min{1,√γi}, 0], ∀i, where γi = Pz/q
v
i in the SISO case.

Proof: See Section C.6 in Appendix C.

Since the power-limited case, i.e., Pz <
∑
i

qvi , is considered, it can be seen

that using full jamming power is a necessary condition of the optimal jamming

strategy. With the objective function proved to be convex under the full-power

jamming condition, the solution can be found using an algorithm similar to the

one in Table 5.2 used for numerically finding the solution of the optimal jamming

problem in Section 5.1.3. Specifically, the problem can be first rewritten into the

following equivalent disciplined form4

min
{αi},{ξi}

∑
i

wi

(
αi − log

(
γi − ξ2i + ρi

))
(5.36a)

s.t. αi ≥ log
(
γi − ξ2i + ρi + (1 + ξi)

2
)
, ∀i (5.36b)∑

i

ξ2i q
v
i ≤ Pz (5.36c)

−min{1,√γi} ≤ ξi ≤ 0, ∀i (5.36d)
4Details can be found in the proof of Theorem 5.3, Section C.6, Appendix C, and are omitted here.
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where ρi � σ2
i /gi. The objective function of problem (5.36) is convex while the

first constraint is not. In order to solve problem (5.36), we further rewrite the above

problem into the following form

min
{αi},{ξi}

∑
i

wi

(
αi − log(γi − ξ2i + ρi)

)
(5.37a)

s.t. αi ≥ log
(
γi + ρi + 2ξ†i + 1

)
+

2(ξi − ξ†i )

γi + ρi + 2ξ†i + 1
, ∀i (5.37b)∑

i

ξ2i q
v
i ≤ Pz (5.37c)

−min{1,√γi} ≤ ξi ≤ 0, ∀i (5.37d)

where ξi† stands for a given ξi subject to (5.36c) and (5.36d). Starting from an

initial value of ξi†, ∀i, we solve problem (5.37) and update ξi†, ∀i using the resulting
optimal solution of (5.37). The above process is repeated until convergence. The

proof of convergence to the optimal solution is similar to the proof for Lemma 5.3

and is omitted here.

5.3 Numerical and simulation results

In this section, we provide simulation examples for some results presented earlier

for both non-correlated and correlated jamming.

5.3.1 The optimal and suboptimal solution for non-correlated
jamming

In this simulation, we compare the rates of the legitimate communication under

jamming when the jammer’s strategyQ′
z is given by (i) the expression in (5.15), (ii)

the optimal solution obtained numerically using the algorithm in Table 5.2, and (iii)

the approximation in (5.23), respectively.

The specific setup of this simulation is as follows. The number of antennas

at the legitimate transmitter and receiver are set to be 4 and 3, respectively, while

the number of antennas at the jammer is 5. The power limit for the legitimate

transmitter is 3 and the power allocation at the legitimate transmitter is based on

waterfilling. The noise variance σ2 is set to be 1. The elements of the target signal s
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Figure 5.1: Comparison of RJ versus Pz with Q′
z given by (5.15), the algorithm in

Table 5.2, and (5.23), respectively.

and the channelsHr andHz are generated from complex Gaussian distribution with

zero mean and unit variance. As a result HrQsH
H
r is always positive definite. We

use 800 channel realizations and calculate the average RJ versus the power limit of

the jammer Pz.

Fig. 5.1 shows the average RJ withQ′
z obtained using the three aforementioned

methods. Three observations can be made from this figure. First, there is a gap

between the average RJ with Q′
z given by (5.15) and the average RJ with the op-

timal Q′
z found numerically when Pz is small. The gap exists because Q′

z given

by (5.15) is not always PSD and when it is not PSD, it no longer gives the optimal

solution of the problem. Second, the gap between the average RJ withQ′
z obtained

numerically and the average RJ given by the suboptimalQ′
z in (5.23) is very small.

It verifies that the proposed suboptimal solution is in fact very close to the optimal

solution of the considered problem. Third, the three curves of average RJ converge

when Pz increases.

Fig. 5.2 shows the percentage thatQ′
z given by (5.15) is PSD in all 800 channel

realizations. It verifies the aforementioned fact that Q′
z given by (5.15) can be

indefinite when the jammer’s power limit Pz is small. Even when Pz is larger (above

2), there remains a 20% chance that Q′
z given by (5.15) is indefinite. It verifies the

96



0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pz

P
er

ce
n
ta

g
e

o
f
th

e
Q

z
g
iv

en
in

th
e

T
h
eo

re
m

5
.1

b
ei

n
g

P
S
D

Figure 5.2: The percentage of times when theQ′
z given by (5.15) is PSD versus Pz

other fact that whether Q′
z given by (5.15) is PSD also depends on the jamming

channel.

Using the observations from the two figures, it can be seen that the suboptimal

solution given by (5.23) is a very good approximation of the optimal jamming strat-

egy since it is very close to the optimal one when Q′
z given by (5.15) is indefinite

while it becomes optimal when Q′
z given by (5.15) is PSD.

5.3.2 The SISO correlated jamming

First, we demonstrate the rates and sum-rate of two legitimate communications

under correlated jamming from one jammer when the jamming power is not neces-

sarily fully used. The specific setup of this simulation is as follows. The number

of antennas at the jammer and all legitimate transceivers is 1. The legitimate sig-

nals x1 and x2, the legitimate channels h1 and h2, and the jamming channels hz1

and hz2 are generated from complex Gaussian distribution with zero mean and unit

variance. The noise covariance σ2
i is set to be 0.1 for both i. The power limit for the

jammer is 0.5. The non-correlated jamming part nz is set to be 0. Fig. 5.3 shows

the rates of RC
1 and RC

2 , respectively, calculated using (5.31) versus the correlated

jamming coefficients ξ1 and ξ2. Note that the rates are shown in the ellipse repre-
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Figure 5.3: The rates RC
1 and RC

2 versus coefficients ξ1 and ξ2.

sented by (5.32) for better effect of displaying while only the part with ξi ≤ 0, ∀i
corresponds to correlated jamming. It can be seen from the figure that the rate of

legitimate communications decreases steeply with the magnitude of the correspond-

ing coefficients, which infers that correlated jamming is effective. Fig. 5.4 shows

the sum-rate of the two legitimate communications versus the correlated jamming

coefficients. From the figure, it can be seen that the weighted sum-rate is a noncon-

vex function of ξ1 and ξ2.

Then we demonstrate the sum-rate of the legitimate communications under the

condition that the jammer spends all of its jamming power. There are two legitimate

communications and one jammer. The legitimate signals x1 and x2, the legitimate

channels h1 and h2, and the jamming channels hz1 and hz2 are generated from com-

plex Gaussian distributionwith zero mean and unit variance. The power limit for the

jammer Pz is 0.5. However, unlike the case in Fig. 5.4, in which the non-correlated

jamming part nz is set to be 0, the nz in this simulation is calculated according to the

values of x1 and x2 so that full jamming power is used at any point. Fig. 5.5 shows

the resulting weighted sum-rate versus the correlated jamming coefficients ξ1 and

ξ2. The diamond in the figure corresponds to the optimal solution found using the

method in Section 5.2.2. The convexity of the sum-rate in the figure versus ξ1 and

ξ2 verifies Theorem 5.3.
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Figure 5.4: The sum-rate RC
1 +RC

2 versus coefficients ξ1 and ξ2.

Figure 5.5: Illustration of the convexity for SISO case under the full-power jam-
ming condition and the optimal solution found by the proposed method.

5.4 Conclusions

In this chapter, we have found the optimal noise jamming and correlated jam-

ming for the worst-jamming multi-user systems. For the optimal noise jamming

in MIMO communications, we have found the optimal jamming strategy in closed-

form under PSD conditions. A numerical solution and a sub-optimal solution in
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closed-form have also been obtained for the case when the PSD conditions are not

satisfied and the optimal solution may not be found in closed-form. For the multi-

target correlated jamming, we have proved that the problem of finding the optimal

jamming strategy in the SISO case is convex if the jammer always uses its full

power. Simulation results demonstrate the effectiveness of the proposed solutions

for both non-correlated and correlated jamming.

∼
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Chapter 6

Mixed Strategy Nash Equilibria in
Two-User Resource Allocation
Games Over Interference Channel

The objective of this chapter is to investigate mixed strategies and mixed-strategy

Nash equilibrium (MSNE)1 in non-cooperative resource allocation games in which

the users’ strategies are represented by continuous probability distributions with

discrete distributions as special cases. The necessary and sufficient conditions for

the existence and uniqueness of MSNE are derived for both two-channel and N-

channel games. In the two-channel game, the MSNE which maximizes the utilities

for both users is obtained, while for the N-channel game, an algorithm is provided

to perform channel selection for users in order to achieve MSNE.2

The symbols used for specific denotations in this chapter are listed in Table 6.1.

Table 6.1: Symbol table for Chapter 6
hk
ii kth channel between transceiver i

hk
ij kth channel from transmitter i to receiver j

ti/t
k
i proportion of power allocated to channel 1/channel k by user i

fi(ti) the distribution of ti
ui(t1, t2) utility of user i
Pmax
i power limit for user i

1 MSNE includes pure strategy Nash equilibrium as a special case.
2A version of this chapter has been published in Proc. IEEE Inter. Symp. Info. Theory,, 2011, pp.
2632-2636.
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6.1 A two-user two-channel system model

Consider first a system of two users, i.e., two transmitter-receiver pairs, sharing two

channels. The total transmission power for user i is limited by Pmaxi while each

user is assumed to be able to communicate on either one or both of the channels.

The users interfere with each other when they transmit on the same channel. The

channel state information is known at both transmitter and receiver sides for both

users and both users use Gaussian codebooks. Each user here is a player which

seeks to maximize its own utility defined as its sum information rate on the two

channels.

It is important to identify the condition under which the noncooperative ap-

proach that we use in this chapter is appropriate. In general, a cooperative approach

tends to be more efficient, in terms of providing a larger rate region, than the non-

cooperative one if interference is the major impairment to the data transmission

of the users. However, the cooperative approach becomes inefficient as interfer-

ence power decreases given that the noise power is fixed. Thus, the noncooperative

approach is preferable if noise is larger than interference. Moreover, the noncooper-

ative approach does not require any cooperation between the users and, thus, causes

no information overhead. Therefore, the study in this chapter focuses on the case

of large noise power. An example of such case is when the considered multiuser

system receives external interference from wireless communications outside of the

system, e.g., from other multiuser systems close to it. In such case, the external

interference should be considered as noise when we investigate the transmit strate-

gies for the communications inside the system. In the case of large noise power, the

utility of user i can be approximated by3

ui(ti, tj) =
b1iiti

σ2
1 + b1jitj

+
b2ii(1− ti)

σ2
2 + b2ji(1− tj)

, ∀i (6.1)

where the approximation log(1+x) ≈ log(e) ·x is used and the constant multiplier
log(e) is neglected, ti ∈ [0, 1] denotes the portion of Pmaxi that user i allocates on
3Similar cases are considered in [87] and [88], while received signal-to-interference-plus-noise ra-
tios are directly chosen as users’ utilities in [89] instead of the information rates. Note also that we
neglect the condition i 	= j for brevity and assume it as default when applies.
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channel 1, σ2
k is the noise power on channel k, bkii = Pmaxi |hk

ii|2 and bkij = Pmaxi |hk
ij|2,

and hk
ii and hk

ij are the channel gain of the kth channel from the transmitter of user

i to the receiver of user i and from the transmitter of user i to the receiver of user j,

respectively.

A mixed strategy of user i is represented by the probability distribution of ti.

Denote the mixed strategy of user i as fi(ti), which is assumed to be continuous in

general, but a discrete distribution is considered as a special case. A combination of

strategies {f1(t1), f2(t2)} is called a strategy profile. An MSNE is a strategy profile

{f �
1 (t1), f

�
2 (t2)} that satisfies [90]

Eti,tj{ui(ti, tj)|fi(ti)=f�
i (ti),fj(tj)=f�

j (tj)
}

= max
fi(ti)

Eti,tj{ui(ti, tj)|fi(ti),fj(tj)=f�
j (tj)

}, ∀i. (6.2)

It can be proved that {f �
1 (t1), f

�
2 (t2)} satisfies (6.2) iff the conditions

Etj{ui(ti, tj)}= ci, ∀ti ∈ S�
i , (6.3)

Etj{ui(ti, tj)}≥Etj{ui(t
′

i, tj)}, ∀ti ∈ S�
i , ∀t

′

i /∈ S�
i (6.4)

are satisfied for all i given that fj(tj) = f �
j (tj), where S�

i = {ti | ti ∈ [0, 1], f �
i (ti) 	=

0} is defined as the support of f �
i (ti) and ci is a constant. The following is a brief

illustration of the necessity. If (6.3) is not satisfied or, equivalently, if there ex-

ist t1i , t2i ∈ S�
i such that Etj{ui(t

2
i , tj)} > Etj{ui(t

1
i , tj)}, then ui(ti, tj) can be

increased by transferring the probability density assigned on t1i to t2i . If (6.4)

is not satisfied or, equivalently, if there exist t3i ∈ S�
i and t4i /∈ S�

i such that

Etj{ui(t
4
i , tj)} > Etj{ui(t

3
i , tj)}, then ui(ti, tj) can be increased by transferring

the probability density assigned on t3i to t4i . The illustration for the sufficiency is

straightforward and neglected here due to the space limit.

6.2 MSNE in a two-user two-channel game

The following theorem provides a result on the existence and uniqueness of MSNE

in the considered game.
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Theorem 6.1: The considered two-user game has either a unique or infinitely

many MSNEs. The necessary and sufficient condition for the latter is

σ2
1

σ2
2 + b2ji

≤ b1ii
b2ii
≤ σ2

1 + b1ji
σ2
2

, ∀i. (6.5)

Proof: See Subsection D.1 in Appendix. �

According to Theorem 6.1, there could be infinitely many MSNEs in the con-

sidered two-user game, which can lead to different utilities for the users. Therefore,

it is also of interest to investigate the most efficient MSNE.

Theorem 6.2: In the case when there exist infinitely many MSNEs in the con-

sidered game, the one MSNE among all which maximizes the utilities for both users

is

f̃j(tj) = ξjδ(tj) + (1− ξj)δ(tj − 1), ∀j (6.6)

where δ(·) is the Dirac delta function and

ξj =

b2ii
σ2
2
− b1ii

σ2
1+b1ji

b2ii
σ2
2
− b1ii

σ2
1+b1ji

+
b1ii
σ2
1
− b2ii

σ2
2+b2ji

, ∀j. (6.7)

Proof: See Subsection D.2 in Appendix. �

6.3 Extension to a two-user N -channel game

The two-user N-channel case is more general yet complicated. In the N-channel

case, the utility of user i extends as

ui(ti, tj)=

N−1∑
k=1

bkiit
k
i

σ2
k + bkjit

k
j

+
bNii (1−

∑N−1
k=1 t

k
i )

σ2
N+bNji(1−

∑N−1
k=1 t

k
j )
, ∀i (6.8)

where ti = [t1i , . . . , t
N−1
i ] and tki ∈ [0, 1] is the portion of Pmaxi that user i allocates

on channel k subject to
∑N−1

k=1 tki ∈ [0, 1]. Conditions (6.3)-(6.4) extend accordingly

as

Etj{ui(ti, tj)}=ci, ∀ti ∈ S�
i , (6.9)

Etj{ui(ti, tj)}≥Etj{ui(t
′

i, tj)}, ∀ti ∈ S�
i , ∀t

′

i /∈ S�
i (6.10)
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Table 6.2: Algorithm for channel selection in two-user N channel game
Input: bkii, bkij , ∀i, ∀j, ∀k, σ2

k, ∀k,
Output: Δi=1,Δi=2

1. Let ν1
i = [b1ii/σ

2
1, . . . , b

N
ii /σ

2
N ] and ν2

i = [b1ii/(σ
2
1 + b1ji), . . . , b

N
ii /(σ

2
N +

bNji)] for each user i. Let Δi=1 = Δi=2 = {1, . . . , N}. Initialize d = 1.
2. For user i = 1, let k = Δi=1(d), where Δi=1(d) is the dth element of
the set Δi=1, and check if the inequalities ν1

1(k) > ν2
1(l), ∀l ∈ Δi=1 	= k

are all satisfied. If not, let tk1 = 0, ν2
2(k) = bk22/σ

2
k, remove Δi=1(d) from

Δi=1 and set d = d − 1. Check if d < L(Δi=1) where L(·) denotes the
cardinality of a set. If yes, set d = d+ 1 and repeat the above procedure in
Step 2. If no, set d = 1 and proceed to Step 3.
3. For user i = 2, let k = Δi=2(d) and check if the inequalities ν1

2(k) >
ν2
2(l), ∀l ∈ Δi=2 	= k are all satisfied. If not, let tk2 = 0, ν2

1(k) = bk11/σ
2
k,

remove Δi=2(d) from Δi=2 and set d = d − 1. Check if d < L(Δi=2), If
yes, set d = d + 1 and repeat the above procedure in Step 3. If no, and no
element was deleted from Δi=2 in this step, proceed to Step 4; otherwise
set d = 1 and return to the beginning of Step 2.
4. OutputΔi=1 andΔi=2.

with the mixed strategy of user i now represented by the joint distribution of tki , ∀k∈
{1, . . . ,N − 1} and denoted as fi(ti).
The existence and uniqueness of MSNE in the N-channel game can be derived

based on the outputs of the algorithm in Table 6.2.

Theorem 6.3. The following properties hold for the proposed algorithm in Ta-

ble 6.2.

i) The algorithm converges to the same result regardless of the ordering of users

or channels.

ii) Denote Γi = {k ∈ Δi, k /∈ Δj}, then L(Γi) ≤ 1, ∀i at the output of the

algorithm.

iii) MSNE is unique in the game iff L(Δi=1) = 1 or L(Δi=2) = 1. Otherwise,

infinitely many MSNEs exist.4

Proof: See Subsection D.3 in Appendix. �

4There is a trivial exception. If Δi = {k1}, Δj = {k1, k2} and ν1j (k2) = ν2j (k1) where k1, k2 ∈
{1, . . . , N}, infinitely many MSNEs exist. However, in this case all other MSNEs generate smaller
utilities for user i (and the same utility for user j) than the MSNE which is achievable and unique
in the case whenΔi = {k1}, Δj = {k2}. Therefore, we consider the former case as equivalent to
the latter one.
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The algorithm in Table 6.2 can be intuitively understood as follows. First, user

i should avoid using channel k if there exists a channel l such that channel l is still

better than channel k for user i when there is maximum possible interference on

channel l and no interference on channel k. Here maximum possible interference

means that the other user allocates maximum power on the considered channel and

zero interference means that the other user allocates zero power on the considered

channel. In such case, using channel k cannot be optimal for user i. Therefore,

user i should check through all the channels to abandon such channels. Second,

the maximum possible interference that user j can have on channel k is zero if user

i abandons channel k. Therefore, user j should check through all the channels to

abandon inefficient channels with updated maximum possible interference on all

the channels. Since abandoning a channel by any user always leads to an update

of maximum possible interference on that channel for the other user, the process of

checking and abandoning channels should repeat until no channel is abandoned.

6.4 Numerical and simulation results

Our simulation example illustrates the iterative process of channel selection de-

scribed in Table 6.2. HereN = 8, Pmaxi = 1, ∀i, and σ2
k, ∀k are uniformly generated

from the interval [1, 2]. The real and imaginary parts of hk
ii and hk

ij∀i, ∀k are gener-
ated from zero-mean normal distributions with variances 1 and 0.25, respectively.

The results are shown in Fig. 6.1, where the diamonds and squares are generated

at coordinates (Re(hk
11), Im(hk

11), (|h21|k)2), ∀k and (Re(hk
22), Im(hk

22), (|h12|k)2),
∀k, respectively. The diamond and square corresponding to the same k are con-
nected by dash-dot lines for all k. A diamond/square closer to the corners im-

plies a channel with higher channel gain for the corresponding user, while a dia-

mond/square closer to the top implies a channel with higher gain of interference

from the transmitter of the other user to the receiver of the corresponding user.

At the end of Step 2/Step 3, the diamonds/squares corresponding to the channel

indexes in the updated Δ1/Δ2 are circled in Fig. 6.1. If the algorithm iterates, the

diamonds/squares corresponding to the channel indexes in the most updatedΔ1/Δ2
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are circled by circles with a larger radius at the end of each iteration of Step 2/Step 3.

The diamonds/squares with the maximum number of circles correspond to the chan-

nel indexes in Δ1 and Δ2 at the output of the algorithm. The upper plot of Fig. 6.1

shows the case of Δ1 = 1,Δ2 = 1, in which a unique MSNE exists according to

Theorem 6.3. It can be seen that the first run of Step 2 selects four channels for

user 1 while the second run further selects one out of the four. The lower plot of

Fig. 6.1 shows the case of Δ1 = 2,Δ2 = 3, in which two of the eight channels are

shared and infinitely many MSNEs exist according to Theorem 6.3. Note that the

users interfere with each other only on the channels corresponding to the dash-dot

line with the maximum number of circles at both ends in the plots. From the figure,

it can be seen that the channels selected by the users achieve high channel gains and

low interference.

6.5 Conclusion

Noncooperative resource allocation games are studied in mixed strategies. It is

shown that applying mixed strategies can potentially lead to MSNE which is more

efficient than NE in pure strategies. For two-channel games, the sufficient and nec-

essary condition for the uniqueness of MSNE is derived. The game becomes signif-

icantly more complicated in the case of N channels. A channel selection algorithm

which simplifies the game is proposed. Based on the outputs of the algorithm, the

sufficient and necessary condition for the uniqueness of MSNE in this game is also

derived. Our simulation results demonstrate how the proposed algorithm selects

channels in the N-channel game.

∼
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Figure 6.1: Illustration of the cannel selection algorithm in two examples
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Chapter 7

Conclusion and Future Work

The problems of spectral and power efficiency, worst-case jamming threat, and re-

source allocation in multi-user wireless communications are studied in this thesis.

The following main results are derived.

• Chapter 3 obtains the optimal solution to the problem of maximizing spectral

efficiency, in terms of sum-rate, with minimum relay power consumption in

MIMODF TWRwhen there is limited coordination in the system. It is shown

that the relay optimization scenario may not be energy-efficient to the source

nodes as they can possibly waste part of their transmission power. The asym-

metry is shown to have negative effect on the spectrum and power efficiency

of the DF TWR.

• Chapter 4 obtains the optimal solution to the problem of maximizing spec-

tral efficiency with minimum total power consumption in MIMO DF TWR

with full coordination. The optimal solution is found in closed-form or using

proposed algorithms. It is shown that the cooperation among the participat-

ing nodes can dramatically improve energy-efficiency in the system while at

the same time achieving the same or better spectrum efficiency. The negative

effect of asymmetry is also demonstrated.

• Chapter 5 obtains the optimal form of noise jamming for the worst-case jam-

ming in multi-user wireless communications. The optimal noise jamming is

shown to be in closed-form under certain conditions. A sub-optimal noise

jamming is proposed in closed form and shown to be a good approximation
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of the optimal jamming solution when the latter cannot found in closed-form.

The problem of worst-case multi-target correlated jamming is proved to be

convex in the SISO case under the condition that the jammer uses its full

power.

• Chapter 6 obtains the conditions on the existence and uniqueness of theMSNE

in a continuous resource allocation game with mixed-strategies. For the two-

user two-channel case, the most efficient MSNE is found. It is shown that

mixed-strategy Nash equilibria (MSNEs) are more efficient than the Nash

equilibria (NEs) in pure strategies in the considered game. For the two-user

multiple channel case, an algorithm is proposed for achieving the MSNE.

There are some open problems related to the topics of this thesis, which will be

considered in future work.

• With respect to spectral and energy efficiency, the study of sum-rate max-

imization with minimum power consumption in TWR can be extended by

considering the optimal time division between the MA and BC phases. In

Chapters 3 and 4, it is assumed that each of the MA and BC phases takes a

half of the entire time of message exchange. However, it is not necessarily

the optimal division of time between the two phases. The spectral efficiency

can be further improved if the length of the MA and BC phases are optimally

divided. It is also possible to extend the study of sum-rate maximization

with minimum power consumption to multiuser TWR with multiple pairs of

source nodes and one or multiple relays. Relay selection for source nodes

can be taken into account. The relays can help multiple pairs of source nodes

exchange information by adopting time/frequency division multiple access.

• With respect to the worst-case jamming threat, the study of optimal noise jam-

ming strategy can be extended to the case of multiple legitimate communica-

tions. Optimal solution or sub-optimal in closed-form could be obtained. For

the optimal correlated jamming, it could be extended to the general MIMO

case with the objective to find an efficient suboptimal jamming strategy. It
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could also be extended by adopting game theory to study the interactions

between the legitimate transceivers and the jammer(s).

• With respect to the multi-user resource allocation game, the study of the exis-

tence and uniqueness of MSNE could be extended by considering the multi-

user multi-channel game with mixed strategy. It is also of interest to consider

the case that the utilities of the users are of uncertainty, i.e., the utilities of the

users are subject to small fluctuations.

∼
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.2

Lemma 3.2 is proved in two steps, i.e., Steps A and B. In Step A, we prove that∑
l

R̂rl(λ
′
l) can be increased by modifying the current power allocation on two spe-

cific subchannels. In Step B, we show that
∑
l

R̂rl(λ
′
l) may be further increased.

Step A:
∑
l

R̂rl(λ
′
l) can be increased. Given the fact that

∑
l

Tr{Prl(λl)} =∑
l

Tr{Prl(λ
′
l)}, it can be shown that 1/λ′i > min

k
{1/αi(k)} as long as 1/λj >

min
k
{1/αj(k)}. As a result, there exist k1 and k2 such that 1/λ′i > 1/αi(k1) and

1/λj > 1/αj(k2). Define f(pri(k1)) � log
(
1 + αi(k1)pri(k1)

)
+ log

(
1 + αj(k2)

prj(k2)
)
where prj(k2) = p − pri(k1) and p is a positive constant. It can be

seen that f(pri(k1)) is strictly concave in pri(k1) ∈ [0, p], ∀p > 0. Set p =(
1/λ

′

j − 1/αj(k2)
)+

+ 1/λ′i − 1/αi(k1). The optimal allocation of the power p on

αi(k1) and αj(k2) that maximizes f(pri(k1)) is pri(k1) =
(
1/λopt(p)− 1/αi(k1)

)+
and prj(k2) =

(
1/λopt(p) − 1/αj(k2)

)+ where λopt(p) is a function of p and

1/λopt(p) is the optimal water level. It can be shown that 1/λopt(p) < 1/λ′i. There

exist two cases, i.e., 1/λopt(p) ≤ 1/λi and 1/λopt(p) > 1/λi. In the case when

1/λopt(p) ≤ 1/λi, it follows that
(
1/λopt(p)−1/αi(k1)

)+ ≤ (
1/λi−1/αi(k1))

+ <

1/λ′i − 1/αi(k1). The power allocation on k1 and k2 using λ′i and λ′j is

pri(k1) =

(
1

λ′i
− 1

αi(k1)

)+

(A.1a)

prj(k2) =

(
1

λ′j
− 1

αj(k2)

)+

. (A.1b)

123



Since f(pri(k1)) is strictly concave as mentioned above, it can be seen that the

power allocation

pri(k1) =

(
1

λi
− 1

αi(k1)

)+

(A.2a)

prj(k2) =

(
1

λ′j
− 1

αj(k2)

)+

+
1

λ′i
− 1

αi(k1)
−

(
1

λi
− 1

αi(k1)

)+

(A.2b)

which reduces pri(k1) and increases prj(k2), both by 1/λ′i − 1/αi(k1) −
(
1/λi −

1/αi(k1)
)+, yields higher f(pri(k1)) than the power allocation in (A.1).

Therefore, the sum-rate
∑
l

∑
k

log
(
1 + αl(k)prl(k)

)
achieved using (A.2) and

pri(k) =

(
1

λ′i
− 1

αi(k)

)+

, ∀k ∈ Ii \ {k1} (A.3a)

prj(k) =

(
1

λ′j
− 1

αj(k)

)+

, ∀k ∈ Ij \ {k2} (A.3b)

is larger than
∑
l

R̂rl(λ
′
l). This is the first step of increasing sum-rate. Moreover, it

can be seen that there exists λ̃j such that

1

λ′j
<

1

λ̃j

<
1

λj

(A.4a)

Tr{Pri(λ
′
i)} −

(
1

λ′i
− 1

αi(k1)

)+

+

(
1

λi
− 1

αi(k1)

)+

+ Tr{Prj(λ̃j)} =
∑
l

Tr{Prl(λ
′
l)} (A.4b)

and the power allocation

pri(k1) =

(
1

λi

− 1

αi(k)

)+

(A.5a)

pri(k) =

(
1

λ′i
− 1

αi(k)

)+

, ∀k ∈ Ii \ {k1} (A.5b)

prj(k) =

(
1

λ̃j

− 1

αj(k)

)+

, ∀k ∈ Ij (A.5c)

which spreads the power 1/λ′i − 1/αi(k1) −
(
1/λi − 1/αi(k1)

)+ over αj(k)’s,

∀k ∈ Ij , achieves even higher sum-rate than that achieved by the power allocation
specified by (A.2) and (A.3). This is the second step of increasing the sum-rate.
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For the second case in which 1/λi < 1/λopt(p) < 1/λ′i, the following process

is adopted. Similar to the two steps of increasing the sum-rate in the first case,

the sum-rate
∑
l

∑
k

log
(
1 + αl(k)prl(k)

)
increases after each of the following two

adjustments of power allocation. First, reduce pri(k1) from 1/λ′i − 1/αi(k1) to(
1/λopt(p) − 1/αi(k1)

)+. Then, spread the reduced power 1/λ′i − 1/αi(k1) −(
1/λopt(p) − 1/αi(k1)

)+ over αj(k)’s , k ∈ Ij by finding and using 1/λ̃′j which

satisfies

Tr{Pri(λ
′
i)} −

(
1
λ′

i

− 1
αi(k1)

)+

+

(
1

λopt(p)
− 1

αi(k1)

)+

+Tr{Prj(λ̃
′
j)} =

∑
l

Tr{Prl(λ
′
l)}. (A.6)

After the adjustments, it is straightforward to see that the total power allocated

on k1 and k2 is reduced from p =
(
1/λ′j − 1/αj(k2)

)+
+ 1/λ′i − 1/αi(k1) to p̄ =(

1/λ̃′j−1/αj(k2)
)+

+
(
1/λopt(p)−1/αi(k1)

)+. In consequence, there exists a new
optimal water level 1/λopt(p̄) based on which the optimal allocation of the power

p̄, i.e., pri(k1) =
(
1/λopt(p̄) − 1/αi(k1)

)+ and prj(k2) = 1/λopt(p̄) − 1/αj(k2),

maximizes f(pri(k1)) when p in f(pri(k1)) is substituted by p̄. Since p̄ < p, it can

be seen that 1/λopt(p̄) < 1/λopt(p). Update p and 1/λopt(p) so that p = p̄ and

1/λopt(p) = 1/λopt(p̄). Then the above process of reducing pri(k1) to
(
1/λopt(p)−

1/αi(k1)
)+, finding the new 1/λ̃′j and the new 1/λopt(p) can be repeated until (a)

1/λopt(p) ≤ 1/λi or until (b) 1/λopt(p) ≤ 1/αi(k1). The former matches the

condition for the first case discussed in the previous paragraph and therefore can

be dealt with in the same way as in the first case, which leads to (A.5). The latter

implies that 1/λi < 1/λopt(p) ≤ 1/αi(k1), in which case the power allocation can

also be equivalently written as (A.5). Note that during this process the sum-rate∑
l

∑
k

log
(
1 + αl(k)prl(k)

)
increases. Therefore, summarizing the above two cases

of 1/λopt(p) ≤ 1/λi and 1/λopt(p) > 1/λi, it is proved that the sum-rate can be

increased by reducing pri(k1) from 1/λ′i − 1/αi(k1) to
(
1/λi − 1/αi(k1)

)+ and
using the power allocation in (A.5).

Step B:
∑
l

R̂rl(λ
′
l) may be further increased. Keep the above selected k2 un-

changed. As long as there exists k such that pri(k) =
(
1/λ′i − 1/αi(k1)

)+ and
pri(k) > 0, this k can be selected as k1 and the procedure of reducing pri(k1)
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from 1/λ′i−1/αi(k1) to
(
1/λi−1/αi(k1)

)+ and spreading the reduced power over
αj(k)’s, ∀k ∈ Ij as specified in (A.5) can be performed. This process can be re-
peated until pri(k) =

(
1/λi − 1/αi(k)

)+
, ∀k ∈ {q ∈ Ii|

(
1/λ′i − 1/αi(q)

)+
> 0}

and pri(k) = 0, ∀k ∈ {q ∈ Ii|
(
1/λ′i − 1/αi(q)

)+
= 0}. Note that the sum-

rate
∑
l

∑
k

log
(
1 + αl(k)prl(k)

)
increases in the above process for every qualifying

k1. The resulting power allocation on αi(k)’s, ∀k ∈ Ii is equivalent to pri(k) =(
1/λi−1/αi(k)

)+
, ∀k ∈ Ii since

(
1/λi−1/αi(k)

)+
= 0 if

(
1/λ′i−1/αi(k)

)+
= 0.

From the procedure described in the previous paragraphes, the resulting power al-

location on αj(k)’s, ∀k ∈ Ij is prj(k) =
(
1/λ̃j − 1/αj(k)

)+
, ∀k. According to the

power constraint
∑
l

Tr{Prl(λl)} =
∑
l

Tr{Prl(λ
′
l)} and the fact that the total power

consumption is fixed at all time, it can be seen that 1/λ̃j = 1/λj .

Summarizing the above two steps, Lemma 3.2 is proved.

A.2 Proof of Lemma 3.3

Given that λ′i ≤ λj , we have λi < λ′i ≤ λj < λ′j . According to Lemma 3.2, there

exists λ̃i < λ′i such that

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)}
= Tr{Pri(λ̃i)}+ Tr{Prj(λ

′
j)} (A.7)

and

R̂ri(λ
′
i) + R̂rj(λj) > R̂ri(λ̃i) + R̂rj(λ

′
j). (A.8)

Therefore, given that

R̂ri(λ
′
i) + R̂rj(λj) = R̂ri(λi) + R̂rj(λ

′
j) (A.9)

it is necessary that λ̃i > λi. As a result, it leads to

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)}

< Tr{Pri(λi)}+ Tr{Prj(λ
′
j)}. (A.10)

Lemma 3.3 is thereby proved.
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A.3 Proof of Theorem 3.1

First we prove that the optimal water-levels must satisfy the condition (3.18a). It

can be seen that the maximum Rtw(B,D) is achieved with minimum power con-

sumption using λ1 = λ2 = max{λ0, μ0
ma} when min{1/μ0

1, 1/μ
0
2} ≥ 1/μma at the

optimality. Therefore, it is necessary that min{1/μ0
1, 1/μ

0
2} < 1/μ0

ma given that

λ1 	= λ2 at optimality. Let us consider the case when min{1/λ1, 1/λ2} = 1/λ1 <

1/λ2 at optimality. According to the constraint (3.15a), we have that 1/λ1 ≤ 1/μ0
2

at optimality. Similarly, it can be seen that 1/λ2 ≤ 1/μ0
1 at optimality. Since

1/λ1 < 1/λ2, it leads to the result that 1/λ1 ≤ 1/μ0
2 < 1/μ0

1 at optimality. As-

suming that min{1/μ0
1, 1/μ

0
2} 	= 1/λ1 at optimality when λ1 	= λ2, it infers that

1/λ1 < 1/μ0
2 < 1/λ2. However, it can be seen that the power allocation using

1/λ1 < 1/μ0
2 < 1/λ2 does not provide the maximum achievable Rtw(B,D) ac-

cording to Lemma 3.2. Consequently, the resulting power allocation is not optimal.

It contradicts the assumption that min{1/μ0
1, 1/μ

0
2} 	= 1/λ1 at optimality. Thus,

the above assumption is invalid and it is necessary thatmin{1/μ0
1, 1/μ

0
2} = 1/λ1 at

optimality when λ1 	= λ2. Similarly, it can be proved thatmin{1/μ0
1, 1/μ

0
2} = 1/λ2

at optimality when λ1 	= λ2 for the case when min{1/λ1, 1/λ2} = 1/λ2 < 1/λ1.

Therefore, it always holds true that min{1/λ1, 1/λ2} = min{1/μ0
1, 1/μ

0
2} if λ1 	=

λ2.

Next we prove that the optimal water-levels must satisfy condition (3.18b). It

is straightforward to see that 1/λ1 = 1/λ2 ≤ 1/λ0. Moreover, according to the

constraints (3.15a) and (3.15b), it is not difficult to see that 1/λ1 = 1/λ2 ≤
min{1/μ0

1, 1/μ
0
2, 1/μ

0
ma} when 1/λ1 = 1/λ2 at optimality. Indeed, if 1/λ1 =

1/λ2 > 1/μ0
ma, then (3.15b) cannot be satisfied. If 1/λ1 = 1/λ2 > min{1/μ0

1,

1/μ0
2}, then (3.15a) cannot be satisfied. Combining the above two facts, we have

1/λ1 = 1/λ2 ≤ min{1/μ0
1, 1/μ

0
2, 1/μ

0
ma, 1/λ

0} when 1/λ1 = 1/λ2 at optimality.

For the case that min{1/μ0
1, 1/μ

0
2} ≥ 1/μ0

ma, the above constraint can be written

as 1/λ1 = 1/λ2 ≤ min{1/μ0
ma, 1/λ

0}. For this case, it is straightforward to see
that the achieved sum-rate is not maximized if 1/λ1 = 1/λ2 < min{1/μ0

ma, 1/λ
0}.

Therefore, the optimal water-levels must satisfy the condition (3.18b) when min{
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1/μ0
1, 1/μ

0
2} ≥ 1/μ0

ma given that 1/λ1 = 1/λ2. For the case whenmin{1/μ0
1, 1/μ

0
2}

< 1/μ0
ma, it can be seen that 1/λ0 ≤ min{1/μ0

1, 1/μ
0
2} given that 1/λ1 = 1/λ2 at

optimality. Otherwise, it can be shown that either of the following two results must

occur. If 1/λ0 > min{1/μ0
1, 1/μ

0
2} and 1/λ1 = 1/λ2 ≤ min{1/μ0

1, 1/μ
0
2}, then

the sum-rate can be increased. If 1/λ0 > min{1/μ0
1, 1/μ

0
2} and 1/λ1 = 1/λ2 ≥

min{1/μ0
1, 1/μ

0
2}, then the constraint (3.15a) cannot be satisfied. Therefore, given

that 1/λ0 ≤ min{1/μ0
1, 1/μ

0
2} for the case when min{1/μ0

1, 1/μ
0
2} < 1/μ0

ma and

1/λ1 = 1/λ2 at optimality, we have 1/λ0 ≤ min{1/μ0
1, 1/μ

0
2} < 1/μ0

ma. Con-

sequently, the constraint 1/λ1 = 1/λ2 ≤ min{1/μ0
1, 1/μ

0
2, 1/μ

0
ma, 1/λ

0} can be
rewritten as 1/λ1 = 1/λ2 ≤ 1/λ0 = min{1/μ0

ma, 1/λ
0}. It is straightforward to

see for this case that 1/λ1 = 1/λ2 < 1/λ0 does not maximize the sum-rate. There-

fore, it can also be concluded that 1/λ1 = 1/λ2 = 1/λ0 = min{1/μ0
ma, 1/λ

0}when
min{1/μ0

1, 1/μ
0
2} < 1/μ0

ma. Combining the above two cases ofmin{1/μ0
1, 1/μ

0
2} ≥

1/μ0
ma and min{1/μ0

1, 1/μ
0
2} < 1/μ0

ma, it can be seen that the optimal water-levels

always satisfy the condition (3.18b) given that 1/λ1 = 1/λ2.

The above two parts complete the proof of Theorem 3.1.

A.4 Proof of Theorem 3.2

The necessity of the constraints (3.15a) and (3.15b) is straightforward. It can be

seen that the power consumption can be reduced without reducing the sum-rate

Rtw(B,D)when these constraints are not satisfied. The necessity of the constraints

(3.18a) and (3.18b) is proved in Theorem 3.1 in Section A.3. Therefore, we next

prove the sufficiency of the constraints (3.15a), (3.15b), (3.18a), and (3.18b).

We use proof by contradiction. Assume that the above constrains are not suffi-

cient to determine the optimal {λ1, λ2} with minimum power consumption among
all {λ1, λ2}’s that maximize the sum-rate Rtw(B,D). Then there exists {λ†1, λ†2}
satisfying (3.15) and (3.18a)-(3.18b) that maximizes the sum-rate and does not

minimize the power consumption. Consequently, at least one of 1/λ†1 and 1/λ†2

can be reduced without reducing Rtw(B,D). We consider the following two cases.

The first case is when λ†1 	= λ†2 while the second case is when λ†1 = λ†2. In the
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first case, {λ†1, λ†2} satisfies (3.18a) and it is straightforward to see that reducing
min{1/λ†1, 1/λ†2} is not optimal according to Lemma 3.3. Reducing max{1/λ†1,
1/λ†2}, on the other hand, necessarily leads to the decrease of Rtw(B,D) given

that (3.15b) is satisfied. Therefore, reducing either of 1/λ†1 and 1/λ
†
2 results in the

decrease of the sum-rate, which contradicts the previous assumption. In the sec-

ond case, {λ†1, λ†2} satisfies (3.18b). According to Theorem 3.2, it is necessary that
1/λ†1 = 1/λ†2 = min{1/μ0

ma, 1/λ
0}. From Lemma 3.2, it can be seen that it is not

optimal to reduce only one of 1/λ†1 and 1/λ
†
2. Reducing both of 1/λ

†
1 and 1/λ

†
2, on

the other hand, necessarily leads to the decrease of Rtw(B,D) given that (3.15b) is

satisfied. Therefore, it is impossible that there exists {λ†1, λ†2} with λ†1 = λ†2, sat-

isfying (3.15) and (3.18b), that maximizes the sum-rate while the resulting power

consumption can be reduced. Combining the above two cases, it can be seen that

the power consumption cannot be reduced given that the {λ†1, λ†2} maximizes the
sum-rate subject to the relay power limit and satisfies (3.15) and (3.18a)-(3.18b).

This contradicts the assumption that the above constrains are not sufficient to deter-

mine the optimal {λ1, λ2} with minimum power consumption among all {λ1, λ2}’s
that maximize Rtw(B,D). This completes the proof for Theorem 3.2.

A.5 Proof of Theorem 3.3

The optimality of the pair {λ1, λ2} obtained using the algorithm in Table 3.2 is
proved in three steps: (A) Steps 2-5 of the algorithm in Table 3.2 find {λ1, λ2} that
maximizesRbc(B,D0) with minimum power consumption subject to the constraint

in (3.11) and the constraint (3.15a). (B) The pair {λ1, λ2} obtained from Steps 2-
5 of the algorithm in Table 3.2 needs to be modified to maximize the objective

function in (3.11) with minimum power consumption. Step 6 of the algorithm in

Table 3.2 deals with two cases in which {λ1, λ2} obtained from the previous steps
can be simply modified to obtain the optimal pair {λ1, λ2}. (C) Step 7 of the al-
gorithm in Table 3.2 deals with the remaining case which is more complicated and

finds the corresponding optimal pair {λ1, λ2} in this case. It is not difficult to see
that the constraint in (3.11) is always satisfied in any step of the proposed algorithm.
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It can also be seen that Steps 1, 2, and 6 ensure that (3.18b) is satisfied if λ1 = λ2

at the output of the algorithm while Steps 3 to 5 ensure that (3.18a) is satisfied if

λ1 	= λ2 at the output. Therefore, in the following we only consider the constraints

(3.15a) and (3.15b), which are equivalent to the constraints in (3.12).

(A) Steps 2-5 find the pair {λ1, λ2} that maximizes R(B,D0) with minimum

power consumption subject to the constraint (3.15a). Note that the maximumR(B,

D0) with minimum power consumption is achieved by R̂r1(λ1)+ R̂r2(λ2) for some

specific {λ1, λ2} if (3.15a) is satisfied. Therefore, it is equivalent to finding the
{λ1, λ2} that maximizes R̂r1(λ1) + R̂r2(λ2) subject to (3.15a). The initial power

allocation in Step 1 of the algorithm in Table 3.2 using 1/λ1 = 1/λ2 = 1/λ0

maximizes R̂r1(λ1)+R̂r2(λ2). Regarding the constraint (3.15a), the following cases

are possible.

(A-1) λi ≥ μ0
j , ∀i. In this case, the constraint (3.15a) is satisfied and {λ0, λ0} is

the desired {λ1, λ2}.
(A-2) λi < μ0

j and λj ≥ μ0
i . In this case, the constraint (3.15a) is not satisfied

for i. The relay power consumption can be reduced without decreasing R(B,D0)

by increasing λi until λi = μ0
j . Then, R(B,D0) can be increased by decreasing λj

until the relay power limit is reached or until λj = μ0
i .

(A-3) λi < μ0
j , ∀i. In this case, it is straightforward to see that the pair {λ1, λ2}

that maximizes R(B,D0) with minimum power consumption subject to the con-

straint (3.15a) satisfies λi = μ0
j , ∀i.

The above three cases are determined in Step 2. Case A-1 is dealt with in Step 2

of the algorithm in Table 3.2. Case A-2 is dealt with in Steps 3 and 4. Case A-3 is

dealt with in Steps 3 and 5.

(B) Steps 6 and 7 of the algorithm in Table 3.2 find the optimal pair {λ1, λ2}
that maximizes the objective function in (3.11) with minimum power consumption.

Since Rma(D0) < R̄1r(D
0
1) + R̄2r(D

0
2), it can be seen that λi, ∀i should either

increase or remain the same in order to satisfy the constraint (3.15b) given that

the constraint (3.15a) is satisfied. Therefore, the optimal power allocation can be

derived by increasing λ1 and/or λ2, if necessary, based on the power allocation

derived from Steps 1-5. Regarding the constraint (3.15b), the following cases are
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possible.

(B-1) λi ≥ μ0
ma, ∀i or

(
λi ≥ μ0

ma, λj < μ0
ma and R̂r1(λ1) + R̂r2(λ2) ≤

Rma(D0)

)
. In this case, the constraint (3.15b) is satisfied and the current {λ1, λ2}

is optimal.

(B-2) λi < μ0
ma, ∀i and R̂r1(λ1) + R̂r2(λ2) > Rma(D0). In this case, it is not

difficult to see that it is optimal to simply set λi = μ0
ma, ∀i.

(B-3) λi > μ0
ma, λj < μ0

ma and R̂r1(λ1) + R̂r2(λ2) > Rma(D0).

Subcases B-1 and B-2 are simple and dealt with in Step 6 of the algorithm

in Table 3.2. It can be shown that in these two cases the constraints (3.15a) and

(3.15b) are both necessary and sufficient for finding the optimal power allocation

in terms of maximizing the sum-rate with minimum power consumption. Subcase

B-3 is dealt with in Step 7. The optimal strategy in Subcase B-3, as in Step 7

of the algorithm in Table 3.2, is to increase λj while keeping λi unchanged until

R̂r1(λ1) + R̂r2(λ2) = Rma(D0). In order to prove that this strategy is optimal, the

following three points are necessary and sufficient.

1. It is optimal to increase min
i
{λi}.

2. λi = μ0
j if λi > μ0

ma and λj < μ0
ma.

3. At optimality, the increased λj , denoted as λ′j , satisfies λj < λ′j < μ0
ma.

The first point states that it is optimal to increase λj as long as λj < λi. The

second point infers that it is not optimal to decrease λi. The third point infers that

λ′j is always larger than λi and therefore it is not optimal to increase λi at any time.

The first point follows from Lemma 3.3. For the second point, assume that λi > μ0
j .

It follows that Pmax
r is used up, i.e., Pmax

r =
∑
l

∑
k

(
1/λl − 1/αl(k)

)+. Otherwise,
the equality in the constraint (3.15a) is not achieved for i and the objective function

in (3.11) can be increased by decreasing λi, which contradicts Steps 1-5 of the

algorithm in Table 3.2. Given that λi > μ0
j and Pmax

r =
∑
l

∑
k

(
1/λl − 1/αl(k)

)+,
it can be proved that 1/λi ≥ 1/λj . Otherwise, the power allocation can be proved

not optimal based on Lemma 3.2 because the objective function in (3.11) is not

maximized subject to the constraint (3.15a), which contradicts Steps 1-5 of the

algorithm in Table 3.2. However, the conclusion that 1/λi ≥ 1/λj contradicts
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Subcase B-3 in which λi > μ0
ma, λj < μ0

ma. Thus, the assumption that λi > μ0
j

is invalid. Since λi ≥ μ0
j at the output of Steps 1-5 of the algorithm in Table 3.2,

we have λi = μ0
j . For the third point, assume that λ′j > μ0

ma. Then it follows that

R̂r1(λ1) + R̂r2(λ2) < Rma(D0) , which is not optimal. Therefore, λ′j < μ0
ma at

optimality of Subcase B-3.

(C) Finally, we prove that λ′j found in Step 7 of the algorithm in Table 3.2 for

Subcase B-3 is optimal. The optimal λ′j for Case B-3 is the solution to the following

optimization problem

min
1

λ′j
(A.11a)

s.t. R̂ri(λi) + R̂rj(λ
′
j) = Rma(D0). (A.11b)

Using the definition that pri(k) =
(
1/λi − 1/αi(k)

)+ andM+
ri = {k|pri(k) > 0},

the constraint in (A.11) is equal to

R̂ri(λi) +
∑

k∈M+
rj

log
αj(k)

λ′j
= Rma(D0). (A.12)

As previously proved, λi = μ0
j in Case B-3, which means that R̂ri(λi) = R̄jr(D

0
j).

Thus, the above equation can be written as∑
k∈M+

rj

log
αj(k)

λ′j
= Rma(D0)− R̄jr(D

0
j ). (A.13)

Therefore, the optimal λ′j satisfies

|M+
rj|logλ′j =

∑
k∈M+

rj

logαj(k)− Rma(D0) + R̄jr(D
0
j) (A.14)

and the optimality of the water level λ′j found in Step 7 of the algorithm in Table 3.2

is proved.

The proof of Theorem 3.3 is thereby complete.

∼
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Appendix B

Proofs for Chapter 4

B.1 Proof of Lemma 4.1

Proof for claim 1: Given D̃ as defined in the lemma, it follows that Rma(D̃) =

R̄jr(D̃j). From the definitions (4.2a)-(4.2c), it can be seen that Rma(D̃) > R̄jr(D̃j)

= R̄jr(Dj) if 1/μma(D̃) > 1/μj . Therefore, it is necessary that 1/μma(D̃) ≤ 1/μj .

Proof for claim 2: First, note that Rma(D̂) is a continuous and strictly in-

creasing function of t in [0, 1]. Second, based on the definition (4.2c), it follows

that Rma(D̂) is a strictly increasing function of 1/μma(D̂) when 1/μma(D̂) >

min ({) 1/αi(k), ∀i, ∀k}, or equivalently, Rma(D̂) > 0. Since Tr{D1} > 0 and

Tr{D2} > 0, we have Rma(D̂) > 0 for any t ∈ [0, 1]. Thus, given the fact that

1/μma(D̃)≤ 1/μj when t=0 and that 1/μma(D̃) = 1/μma(D) > 1/μj when t = 1,

it can be seen that there exists t̂ ∈ [0, 1) such that 1/μma(D̂) = 1/μj when t = t̂.

Using Lemma 3.1 in Chapter 3, i.e., 1/μma<max{1/μ1, 1/μ2}, it can be seen that
1/μi(D̂i) > 1/μma(D̂) = 1/μj when t = t̂.

B.2 Proof of Lemma 4.2

First we prove λj = μi > μma if λi < λj . Using Lemma 3.2 in Chapter 3, it can

be seen that λi, ∀i satisfy λ1 = λ2 if min{1/μi} ≥ 1/μma at optimality. Therefore,

we have min{1/μi} < 1/μma given that λ1 	= λ2. Using the same lemma and

the constraint (4.6a), it can be further concluded that 1/μi < 1/μma at optimality

given that λi < λj . Otherwise, the constraint (4.6b) cannot be satisfied. Therefore,

1/μj > 1/μma according to Lemma 3.1 in Chapter 3. Due to the constraint (4.6a),
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we must have 1/λj ≤ 1/μi at optimality. Moreover, from Lemma 3.2 in Chapter 3

and the assumption that λi < λj , it can be seen that 1/λj < 1/μi is not optimal.

Therefore, 1/λj = 1/μi if λi < λj . Following the same approach, we can prove

λj = μi > μma if μi > μma.

B.3 Proof of Theorem 4.1

Recall the definitions of μ1, μ2, and μma in (4.2a)-(4.2c). Considering the con-

straints (4.9b)-(4.9d) in problem (4.9), it can be seen that at optimality we must

have μ�
ma ≤ λ0, μ�

1 ≤ λ0, and μ�
2 ≤ λ0. Otherwise, the above mentioned constraints

cannot be satisfied. We will prove Theorem 4.1 by contradiction.

Assume that μ�
ma 	= λ0 at optimality, then μ�

ma < λ0 according to the above para-

graph. Using Lemma 3.1 in Chapter 3, i.e, 1/μma < max{1/μ1, 1/μ2}, and given
that μ�

1 ≤ λ0 and μ�
2 ≤ λ0, there are only two possible situations as follows: a)

max{1/μ�
1, 1/μ

�
2} > 1/μ�

ma > min{1/μ�
1, 1/μ

�
2} ≥ 1/λ0 and b) max{1/μ�

1, 1/μ
�
2}

≥ min{1/μ�
1, 1/μ

�
2} ≥ 1/μ�

ma > 1/λ0. Assume without loss of generality that

max{ 1/μ�
1, 1/μ

�
2} = 1/μ�

1 and min{1/μ�
1, 1/μ

�
2} = 1/μ�

2. If it is Situation a), then

we have 1/μ�
1 > 1/μ�

ma > 1/μ�
2 ≥ 1/λ0. Use Lemma 4.1 with D̂i = tD�

1 and

D̂j = D�
2. As proved in Lemma 4.1, there exists t ∈ [0, 1) such that μ1(tD

�
1) >

1/μma([tD
�
1,D

�
2]) = 1/μ�

2. Since 1/μ�
2 ≥ 1/λ0, we have μ1(tD

�
1) > 1/μma([tD

�
1,

D�
2]) = 1/μ�

2 ≥ 1/λ0, which indicates that D̂ = [tD�
1,D

�
2] also satisfies (4.9b)-

(4.9e) while Tr{tD�
1} + Tr{D�

2} < Tr{D�
1} + Tr{D�

2}. It contradicts the fact
that D� = [D�

1,D
�
2] is the optimal solution to problem (4.9). Therefore, Situa-

tion a) is impossible. If it is Situation b), there exist two following possible sub-

situations: Sub-situation b-1) there exists i ∈ {1, 2} such that 1/μma(D̂) = 1/λ0

and 1/μi(D̂i) ≥ 1/μma(D̂) where D̂ = [D̂1, D̂2] with D̂i = tiD
�
i and D̂j = D�

j

for some ti ∈ [0, 1) and Sub-situation b-2) there does not exist ti ∈ [0, 1) such

that 1/μma(D̂) = 1/λ0 and 1/μi(D̂i) ≥ 1/μma(D̂) where D̂ = [D̂1, D̂2] with

D̂i = tiD
�
i and D̂j = D�

j for either i = 1 or i = 2. In Sub-situation b-1), it can be

seen that D̂ satisfies (4.9b)-(4.9e) while Tr{tiD�
i }+Tr{D�

j} < Tr{D�
1}+Tr{D�

2}.
It contradicts the fact that D� = [D�

1,D
�
2] is the optimal solution to problem (4.9).
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Therefore, Sub-situation b-1) is impossible. If it is Sub-situation b-2), it indicates

that with ti ∈ [0, 1), for either i = 1 or i = 2, such that 1/μma(D̂) = 1/λ0,

we have 1/μi(D̂i) = 1/μi(tiD̂i) < 1/μma(D̂) = 1/λ0. As a result, there exists

t′i ∈ (ti, 1) such that 1/μi(t
′
iD

�
i ) = 1/λ0 and 1/μma(D

′) > 1/λ0 where D′ =

[D′
1,D

′
2] with D′

i = t′iD
�
i and D′

j = D�
j . Note that 1/μma(D

′) > 1/λ0 because if

1/μi(D
′
i) = 1/λ0 and 1/μma(D

′) = 1/λ0 then we have Sub-situation b-1) instead

of Sub-situation b-2). Recalling that 1/μj(D
�
j ) > 1/μma(D

�) > 1/μma(D
′), we

have 1/μj(D
�
j) > 1/μma(D

′) > 1/μi(D
′
i) = 1/λ0. It indicates that by changing

D�
i at optimality toD′

i = t′iD
�
i , and thus, using less power than Tr{D�

1} + Tr{D�
2}

while satisfying (4.9b)-(4.9e), Sub-situation b-2) changes to Situation a). As it is

proved that Situation a) is impossible at optimality, so it is Sub-situation b-2).

Therefore, it is proved that the assumption μ�
ma 	= λ0 must lead to either of two

situations both of which are impossible at optimality. Thus, it is impossible that

μ�
ma 	= λ0. As a result, we must have μ�

ma = λ0. This completes the proof.

B.4 Proof of Theorem 4.2

Proof of Property 1: First we show that 1/μ∗ma < 1/λ0. Since the maximum

R̄lr(Dl), as the objective function of problem (4.10), cannot achieve R̂rl̄(λ
0) in Sub-

case I-2, it can be seen that 1/μl < 1/λ0 whenever 1/μma ≥ 1/λ0 and 1/μl̄ ≥ 1/λ0.

As a result, any D that leads to 1/μma ≥ 1/λ0 is not optimal. The reason is that

in such a case the optimal relay power allocation requires 1/λl̄ = 1/μl < 1/λ0

according to Lemma 4.2 and such relay power allocation leads to a BC phase sum-

rate
∑
i

R̂ri(λi) which is less than R̂r1(λ
0) + R̂r2(λ

0) according to Lemma 3.2 in

Chapter 3. Since 1/μma ≥ 1/λ0 implies that Rma(D) ≥ R̂r1(λ
0) + R̂r2(λ

0),

it can be seen that the constraint (4.5b) is not satisfied and therefore such strate-

gies cannot be optimal. Next we show that min
i
{1/μ∗i } < 1/μ∗ma. Assuming that

1/μ∗ma ≤ min
i
{1/μ∗i }, it leads to 1/μ∗ma < 1/λ0 given that problem (4.9) is in-

feasible. Moreover, it also leads to the result that λ∗i = μ∗ma, ∀i. However, it is
not difficult to see that Rma(D),

∑
i

R̂ri(λi) and eventually Rtw(B,D) can be in-

creased in this case through appropriately increasing 1/μma, which is feasible since

135



1/μ0
ma > 1/λ0 > 1/μ∗ma, and also increasing at least one of 1/λl̄ and 1/λl, which

is also feasible since 1/λ∗
l̄
= 1/μ∗ma < 1/λ0, given that 1/μ∗ma ≤ min

i
{1/μ∗i}

and 1/μ∗ma < 1/λ0. It contradicts the assumption that D∗ and B∗ are the optimal

solution. Therefore, 1/μ∗ma > min
i
{1/μ∗i}.

Proof of Property 2: Given the fact that 1/μ∗ma < 1/λ0, the problem boils down

to finding the maximum 1/μma such that the corresponding rateRma(D) can also be

achieved by the BC phase sum-rate
∑
i

R̂ri(λi) subject to the first constraint in (4.3)

and the constraint that min
i
{1/λi} = min

i
{1/μi} as stated in Lemma 4.2. Since

the maximum
∑
i

R̂ri(λi) cannot achieve Rma(D) subject to the above-mentioned

constraints as long as 1/μma ≥ 1/λ0, the problem is equivalent to finding the λi, ∀i
to maximize

∑
i

R̂ri(λi) such that the resulting
∑
i

R̂ri(λi) is achievable by Rma(D)

subject to the constraint that min
i
{1/λi} is achievable by min

i
{1/μi} (in addition

to the power constraints). Consider the problem of maximizing Rma(D) subject to

the constraint that min
i
{1/μi} ≥ C where C is a constant. Note that the maximum

of this problem is a non-increasing function of C as long as the problem is feasi-

ble and C < 1/μma. Recall from Property 1 that min
i
{1/μ∗i} < 1/μ∗ma < 1/λ0.

Assume that the relay does not use full power at optimality, then the maximum

achievable
∑
i

R̂ri(λi) and the maximum achievable Rma(D) can be both increased

subject to all the above constraints by appropriately decreasing min
i
{1/μi} (and

thereby increasing the maximum achievable Rma(D)) while letting the relay de-

crease min
i
{1/λi} accordingly and at the same time use all the remaining power to

increase max
i
{1/λi} (and thereby increasing the maximum achievable

∑
i

R̂ri(λi)).

It contradicts the assumption, which infers that the relay must use full power at

optimality.

Proof of Property 3: Define the index i− = argmin
i
{1/μi}. Recall from the

proof of Property 1 that 1/μ∗ma < 1/λ0. As a result, Rma(D∗) is not the maxi-

mum Rma(D) that can be achieved, which implies that there exists Ds such that

Rma(Ds) > Rma(D∗) and R̄i−r(D
s
i−) > R̄i−r(D

∗
i−) − δ where δ is a positive

number. Define Z � H1rD1H
H
1r+H2rD2H

H
2r. It can be seen that Rma(D) is a

concave function of Z. If D∗ is not the optimal solution to the problem of max-

imizing min
i
{1/μi} subject to the constraints in (4.11), there exists Dq such that
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Rma(Dq) ≥ Rma(D∗) and R̄i−r(D
q
i−) > R̄i−r(D

∗
i−). Then, for any 0 < α < 1,

there is a Dc such thatDc
l = αDq

l + (1− α)Ds
l , ∀l. Moreover, for any α such that

R̄i−r(D
∗
i−)− R̄i−r(D

s
i−)

R̄i−r(D
q
i−)− R̄i−r(D

s
i−)

< α < 1 (B.1)

it can be shown that R̄i−r(D
c
i−) > R̄i−r(D

∗
i−) using the fact that R̄ir(Di) is con-

cave with respect to Di, ∀i. Denoting Zq = H1rD
q
1H

H
1r+H2rD

q
2H

H
2r and Zs =

H1rD
s
1H

H
1r+H2rD

s
2H

H
2r, it can be shown thatDc

i , ∀i lead to Zc = αZq + (1−α)Zs

and thereforeRma(Dc) ≥ αRma(Dq)+(1−α)Rma(Ds) > Rma(D∗). Hence, ifD∗

does not maximize R̄i−r(Di−) subject to the constraints in (4.11), then R̄i−r(Di−)

and Rma(D) can be simultaneously increased. The fact that R̄i−r(Di−) can be in-

creased means that min
i
{1/μi} can be increased, which implies that the BC phase

sum-rate
∑
i

R̂ri(λi) can be increased according to Lemma 3.2 in Chapter 3 sub-

ject to the constraint that min
i
{1/λi} = min

i
{1/μi} as implied by Lemma 4.2.

Given this result, the fact that Rma(D) can be simultaneously increased suggests

that Rtw(B,D) can be increased. This contradicts the fact that D∗ is the opti-

mal solution that maximizes Rtw(B,D) withD∗ subject to the related constraints.

Therefore, D∗ must maximizemin
i
{1/μi} subject to (4.11).

Proof of Property 4: It can be seen that the maximum achievable 1/μl subject

to the constraints

Rma(D)≥Robj, Tr(Di)≤Pmax
i , ∀i (B.2)

is a non-increasing function of Robj. If 1/μ∗
l̄
≤ 1/μ∗l , according to property 1 of

this theorem and the fact that 1/μma < max
i
{1/μi}, it indicates that 1/μ∗l > 1/μ∗ma.

Since 1/μ0
ma > 1/μ0

l and the maximum achievable 1/μl is a non-increasing function

of Robj, there exists D̃ such that 1/μ∗l ≥ 1/μ̃l and 1/μ̃l = 1/μ̃ma ≥ 1/μ∗ma. Using

1/μma < max
i
{1/μi} from Lemma 3.1 in Chapter 3, it infers that 1/μ̃l̄ > 1/μ̃l =

1/μ̃ma at this point. Since the maximum R̄lr(Dl) cannot achieve R̂rl̄(λ
0) in problem

(4.10), it can be seen that 1/μ̃l = 1/μ̃ma < 1/λ0. In such a case, the optimal

strategy of the relay is to use 1/λi = 1/μ̃ma < 1/λ0, ∀i, which does not consume
the full power of the relay. Therefore, according to property 2 of this theorem, when

1/μ̃l = 1/μ̃ma, the Rtw(B,D) that can be achieved, specifically Rma(D̃), is not the

maximum that Rtw(B,D) can achieve. Moreover, since 1/μ̃ma ≥ 1/μ∗ma, it can be
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seen that Rma(D∗) ≤ Rma(D̃). As a result, Rtw(B∗,D∗) = Rma(D∗) ≤ Rma(D̃).

Using the above-proved fact that Rma(D̃) is not the maximum that Rtw(B,D) can

achieve, this result obtained under the assumption 1/μ∗
l̄
≤ 1/μ∗l contradicts the

assumption that B∗ and D∗ are optimal. Therefore, the assumption that 1/μ∗
l̄
≤

1/μ∗l must be invalid.

B.5 Proof of Theorem 4.3

The proof follows the same route as the proof of Theorem 4.2.

Proof of Property 1: As there exists no λl which satisfies the constraints in

(4.20), it can be seen that
∑
i

R̂ri(λi) cannot achieve Rma(D0) subject to the con-

straint λl̄ = μ0
l , which is necessary as stated in Lemma 4.2. Therefore, it is nec-

essary that 1/μ∗ma < 1/μ0
ma. Given that 1/μ∗ma < 1/μ0

ma, it can be shown that the

resulting Rtw(B,D) is not maximized if 1/μ∗ma ≤ min
i
{1/μ∗i }. Therefore, it is

necessary that 1/μ∗ma > min
i
{1/μ∗i}.

Proof of properties 2-3 from Section B.4 can be applied here after we substitute

all λ0 therein to μ0
ma. Proof of property 4 of Theorem 4.2 can be directly applied

here.

∼
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Appendix C

Proofs for Chapter 5

C.1 Proof of Lemma 5.1

It is proved that the function log|I+AX−1| is convex in X given that A is PSD

[84]. Moreover, strong convexity holds if A � 0. Therefore, the optimal solution

can be characterized using the Karush-Kuhn-Tucker (KKT) conditions [91].

The Lagrangian of (5.6a) can be written as

L(X, λ,Z) = log|A+X| − log |X|+ λ(Tr{X} − 1) + Tr{XZ} (C.1)

in which λ and Z are the Lagrange multipliers associated with (5.6b) and (5.6c),

respectively. The KKT optimality conditions for problem (5.6) are then given as

Tr{X} ≤ 1, X � 0, λ ≥ 0, (C.2)

Z � 0, λTr{X− 1} = 0, Tr{XZ} = 0, (C.3)

(X+A)−T −X−T + λI+ ZT = 0. (C.4)

It is not difficult to see thatX � 0 and Tr{X} = 1 at optimality. Given thatX � 0

and Z � 0 at optimality, the condition Tr{XZ} = 0 indicates that Z = 0. Then

(C.4) becomes

(X+A)−T = X−T − λI (C.5)

which further indicates that

X+A = (X−1 − λI)−1 (C.6)

Using the matrix inversion lemma [92], the right-hand side of (C.6) is equivalent to

X+X(I− λX)−1λX. (C.7)
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Then (C.6) can be written as

A = X(λ−1I−X)−1X. (C.8)

Denoting the EVD of X as X = UXΛXU
H
X, the expression (C.8) can be rewritten

as

UH
XAUX = ΛX(λ

−1I−ΛX)
−1ΛX. (C.9)

Defining Λ1 � UH
XAUX, and using the fact that UH

XAUX and A share the same

eigen values, it can be found thatΛ1 contains the eigenvalues ofA. SinceUH
XAUX

gives the matrix of eigenvalues ofA, it must hold thatUX = UA. Therefore, using

UX = UA, we obtain that

ΛA = ΛX(λ
−1I−ΛX)

−1ΛX (C.10)

which gives (recall thatA � 0 andX � 0 at optimality)

ΛXΛ
−1
A ΛX = λ−1I−ΛX. (C.11)

Finally, the following equation

Λ2
X +ΛAΛX = λ−1ΛA (C.12)

holds, which leads to (5.7).

C.2 Proof of Lemma 5.2

If B is positive definite, the following matrix

B̄ = B+

[ rz nz−rz

rz 0 0

nz−rz 0 σ2I

]
. (C.13)

and its inverse B̄−1 are also positive definite. Given that B̄ is positive definite, it

can be seen that the two blocks on the diagonal of B̄ are both positive definite.

Then, using block matrix inversion [93], it follows that the first block of B̄−1 is

(B11 − B12(σ
2I + B22)

−1B21)
−1, which is the inverse of B̃. Given that B̄−1 is

positive definite, the first block of B̄−1, i.e., the inverse of B̃ must also be positive

definite. Therefore, B̃ is also positive definite. This proves Lemma 5.2.
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C.3 Proof of Theorem 5.1

Using the definitions (5.9), (5.10), and (5.13), the objective function in (5.4) can be

rewritten as

RJ = log
∣∣∣I+B(Ω̃zQ̃zΩ̃

H
z + σ2I)−1

∣∣∣
= log

∣∣∣∣∣I+ Ω̃−1z BΩ̃−Hz (Q̃z + σ2Ω̃−1z Ω̃−Hz )−1

∣∣∣∣∣
= log

∣∣∣∣∣I+
[
Ω+

z 0

0 I

]−1[
B11 B12

B21 B22

][
Ω+

z
H

0

0 I

]−1 ([
Q′

z 0

0 0

]
+ σ2

[
Ω+

z
−1
Ω+

z
−H

0

0 I

])−1∣∣∣∣∣
= log

∣∣∣∣∣I+
[
Ω+

z
−1
B11Ω

+
z

−H
Ω+

z
−1
B12

B21Ω
+
z
−H

B22

][
(Q′

z + σ2Ω+
z
−1
Ω+

z
−H

)−1 0

0 1
σ2 I

]∣∣∣∣∣
= log

∣∣∣∣[I+Ω+
z
−1
B11Ω

+
z
−H

J−1 1
σ2Ω

+
z
−1
B12

B21Ω
+
z
−H

J−1 I+ 1
σ2B22

]∣∣∣∣ (C.14)

where in the last step J � Q′
z + σ2Ω+

z
−1
Ω+

z
−H.

Since the matrix HrQsH
H
r is positive definite, B, and consequently B11 and

B22, are all positive-definite. The rate RJ in (C.14) can be simplified as

RJ = R0 + R̄J (C.15)

where

R0 = log

∣∣∣∣I+ 1

σ2
B22

∣∣∣∣ (C.16)

is the part of rate that is not affected by jamming which is non-zero if rz < nr and

R̄J = log

∣∣∣∣I+Ω+
z
−1
B11Ω

+
z
−H

J−1 − 1

σ2
Ω+

z
−1
B12(I+

1

σ2
B22)

−1B21Ω
+
z
−H

J−1
∣∣∣∣

(C.17)

is the part of the rate that is affected by jamming. Therefore, the minimization of

RJ in (5.3a) is equivalent to minimizing R̄J. Using the definition of B̃ in (5.9), R̄J

can be rewritten as

R̄J = log
∣∣∣I+Ω+

z
−1
B̃Ω+

z
−H

(Q′
z + σ2Ω+

z
−1
Ω+

z
−H

)−1
∣∣∣. (C.18)

Using Lemma 5.2, it can be seen that B̃ is positive definite when B is positive

definite. Then, Lemma 5.1 can be used to find such Q′ that minimizes (C.18)
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subject to the trace constraint Tr{Q′
z} ≤ Pz. Using (5.7), the definition Ã �

Ω+
z
−1
B̃Ω+

z
−H, and the EVD Ã = UÃΛÃU

H
Ã
, the Q′

z that minimizes (C.18), or

equivalently (C.17), subject to Tr{Q′
z} ≤ Pz can be found as

Q′
z = UÃ

√
1

λ
ΛÃ +

1

4
Λ2

Ã
UH

Ã
−Ω+

z
−1(1

2
B̃+ σ2I

)
Ω+

z
−H (C.19)

under the condition that the aboveQ′
z is PSD. Here λ is chosen such that Tr{Q′

z} =
Pz.

C.4 Proof of Theorem 5.2

The proof of Theorem 5.2 follows the same route as the proof of Theorem 5.1 in

Section C.4 till the expression (C.18). Then, using (5.18), the R̄J in (C.18) can be

rewritten as

R̄J = log
∣∣∣I+ Ã(Q′

z + σ2Ω+
z
−1
Ω+

z
−H

)−1
∣∣∣

= log

∣∣∣∣I+ [
UÃ1 UÃ2

] [ Λ+

Ã
0

0 0

] [
UH

Ã1

UH
Ã2

]
Q′′

z
−1

∣∣∣∣
= log

∣∣∣∣∣I+
[
Λ+

Ã
0

0 0

]([
UH

Ã1

UH
Ã2

]
Q′′

z

[
UÃ1 UÃ2

])−1∣∣∣∣∣
= log

∣∣∣∣∣I+
[
Λ+

Ã
0

0 0

] [
UH

Ã1
Q′′

zUÃ1 UH
Ã1

Q′′
zUÃ2

UH
Ã2

Q′′
zUÃ1 UH

Ã2
Q′′

zUÃ2

]−1∣∣∣∣∣
= log

∣∣∣∣I+ [
Λ+

Ã
0

0 0

] [
F−11 F12

F21 F−12

]∣∣∣∣
= log

∣∣∣I+Λ+

Ã
F−11

∣∣∣ (C.20)

where Q′′
z � Q′

z + σ2Ω+
z
−1
Ω+

z
−H in the second step. The result on block matrix

inversion is used in the last step [93], in which

F1 � F1
1 − F2

1 (C.21)

with F1
1 and F2

1 given by

F1
1 � UH

Ã1
Q′′

zUÃ1 (C.22)

F2
1 � UH

Ã1
Q′′

zUÃ2(U
H
Ã2

Q′′
zUÃ2)

−1UH
Ã2

Q′′
zUÃ1 (C.23)
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and

F12 � −(UH
Ã1

Q′′
zUÃ1)

−1UH
Ã1

Q′′
zUÃ2F

−1
2 (C.24)

F21 � −(UH
Ã2

Q′′
zUÃ2)

−1UH
Ã2

Q′′
zUÃ1F

−1
1 (C.25)

F2 � UH
Ã2

Q′′
zUÃ2 −UH

Ã2
Q′′

zUÃ1(U
H
Ã1

Q′′
zUÃ1)

−1UH
Ã1

Q′′
zUÃ2. (C.26)

Recalling the optimization problem (5.6), it can be seen from the last step of

(C.20) that R̄J is not minimized if the trace of F1 can be increased under the jam-

mer’s power constraint. Therefore, a necessary condition for minimizing (C.20) is

that the trace of F1 is maximized given the trace constraint ofQ′
z.

Considering the fact that Tr{UH
Ã1

Q′′
zUÃ1} ≤ Tr{Q′′

z} and that F2
1 is PSD, max-

imizing Tr{F1} requires thatQ′′
z must have the following form

Q′′
z = UÃ1DxU

H
Ã1

(C.27)

in which Dx is a rÃ × rÃ PSD matrix to be determined. The matrix Dx should

satisfy the constraint Tr{Dx} ≤ Pz + σ2Tr{Ω+
z
−1
Ω+

z
−H}.

Using (C.27), F2
1 is 0 and F1 in (C.21) is equal to D−1

x . Consequently, (C.20)

can be rewritten as

RJ = log
∣∣∣I+Λ+

Ã
D−1

x

∣∣∣. (C.28)

Therefore, the matrix Q′′
z in (C.27) corresponds to spreading the power (including

jamming power and noise power) on the eigen-channels corresponding to the pos-

itive eigenvalues of Ã. Indeed, ‘spilling’ power on the null space of Ã cannot be

optimal.

Using the result from Lemma 5.1, the optimalDx is given as

Dx =

√
1

λ
Λ+

Ã
+
1

4
Λ+

Ã

2−1

2
Λ+

Ã
. (C.29)

Accordingly, the optimalQ′ is given as

Q′
z=UÃ1

√
1

λ
Λ+

Ã
+
1

4
Λ+

Ã

2
UH

Ã1
− 1

2
UÃ1Λ

+

Ã
UH

Ã1
− σ2Ω+

z
−1
Ω+

z
−H (C.30)

if the aboveQ′ is positive semi-definite (PSD), where λ are chosen such that Tr{Q′
z}

= Pz.
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C.5 Proof of Lemma 5.3

The four-step procedure in Table 5.2 uses the sequential parametric convex approxi-

mation method [94]. The convergence of this method to optimality is proved in [94]

assuming that the convex relaxations (in our case, the righthand side of (5.22b)) are

“convex upper estimate functions” of the righthand side of the original nonconvex

constraints (in our case, the righthand side of (5.21b)). Therefore, it is sufficient to

prove that

log
∣∣∣Q′

z +D0 + Ã

∣∣∣ ≤ log
∣∣∣Q′†

z+D0+Ã

∣∣∣+Tr{(Q′†
z+D0+Ã

)−1
Q′

z}
−Tr{(Q′†

z+D0+Ã
)−1

Q′†
z} (C.31)

for all Q′
z and Q′†

z which are positive definite and satisfy (5.21c), and that the

righthand-side of (C.31) is convex and continuously differentiable with respect to

Q′
z givenQ′†

z. It is not difficult to see that the latter condition is satisfied. Thus, we

only need to prove the first point. Using Taylor expansion, it can be shown that the

righthand-side of (C.31) is the tangent of the function f(Q′
z) = log

∣∣∣Q′
z +D0 + Ã

∣∣∣
at Q′

z = Q′†
z [95]. Recalling the fact that the function f(Q′

z) = log
∣∣∣Q′

z +D0 + Ã

∣∣∣
is strictly concave when Q′

z � 0, it can be seen that (C.31) is satisfied for all valid

Q′
z andQ′†

z.
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C.6 Proof of Theorem 5.3

First, the following train of equalities holds true and leads to the simplified expres-

sion for
∑
i

wiR
C
i in (5.35)

∑
i

wiR
C
i =

∑
i

wilog

(
1 + (1 + ξi)

2

(
g−1i |hzi|2(

∑
j �=i

ξ2j q
v
j + σ2

z ) + g−1i σ2
i

)−1)

=
∑
i

wilog

(
1 + (1 + ξi)

2

(
|h−1i hzi|2(Pz − ξ2i q

v
i ) + g−1i σ2

i

)−1)
=

∑
i

wilog

(
1 + (1 + ξi)

2

(
1

qvi
(Pz − ξ2i q

v
i ) + g−1i σ2

i

)−1)
=

∑
i

wilog

(
1 + (1 + ξi)

2

(
Pz

qvi
− ξ2i +

σ2
i

gi

)−1)
=

∑
i

wilog

(
1 + (1 + ξi)

2
(
γi − ξ2i + ρi

)−1) (C.32)

where ρi � σ2
i /gi. The second row in (C.32) uses the fact that the jammer uses

full power, i.e., ξ2i
∑
i

qvi + σ2
z = Pz. It can be seen that γi is the ratio of the

maximum jamming power and the power that is required to completely cancel

the signal from the ith transmitter. Therefore, the range of ξi to be considered is

ξi ∈ [−min{1,√γi}, 0]. We prove the theorem by showing that the Hessian matrix
of

∑
i

wiR
C
i is PSD with respect to ξi in the above interval for all i.

Denote vi1 � γi − ξ2i + ρi + (1 + ξi)
2 and vi2 � γi − ξ2i + ρi. Then

∑
i

wiR
C
i =∑

i

wi

(
logvi1 − logvi2

)
. The first-order and seconder-order derivatives of

∑
i

wiR
C
i

with respect to ξi are given as1

∂
∑
i

wiR
C
i

∂ξi
=

2wi

vi1
− −2wiξi

vi2
(C.33)

∂2
∑
i

wiR
C
i

∂ξ2i
= −4wi

v2i1
+

2wi

vi2
+

4wiξ
2
i

v2i2

=
2wi

v2i1v
2
i2

(
v2i1vi2 + 2ξ2i v

2
i1 − 2v2i2

)
. (C.34)

1A constant multiplier 1/ ln 2 is neglected.
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Define φi � γi + ρi. Then vi2 = φi − ξ2i and (C.34) can be rewritten as

∂2
∑
i

wiR
C
i

∂ξ2i
=

2wi

v2i1v
2
i2

(
v2i1(φi + ξ2i )− 2(φi − ξ2i )

2

)
=

2wi

v2i1v
2
i2

(
(φi − ξ2i )

(
v2i1 − 2(φi − ξ2i )

)
+ 2ξ2i v

2
i1

)
. (C.35)

Denote li � (φi−ξ2i )
(
v2i1−2(φi−ξ2i )

)
+2ξ2i v

2
i1. Using the fact that vi1 = φi+2ξi+1,

li can be expressed as

li = (φi − ξ2i )
(
φ2
i + 4ξ2i + 1 + 4φiξi + 2φi + 4ξi − 2(φi − ξ2i )

)
+ 2ξ2i v

2
i1

= (φi − ξ2i )
(
6ξ2i + 4ξi + 4φiξi + φ2

i + 1
)
+ 2ξ2i v

2
i1 (C.36)

Moreover, using the fact that v2i1 = (vi2 + (1 + ξi)
2)2, the last item in the above

equation can be expanded as

2ξ2i v
2
i1 = 2ξ2i v

2
i2 + 4ξ2i (1 + ξi)

2vi2 + 2ξ2i (1 + ξi)
4 (C.37)

Substituting (C.37) back into the expression li (C.36) and using the fact that vi2 =

φi − ξ2i , we obtain

li =(φi−ξ2i )

(
6ξ2i + 4ξi+4φiξi+φ2

i+1+2ξ2i (φi−ξ2i )+4ξ2i (1+ξi)
2

)
+2ξ2i (1+ξi)

4

=(φi−ξ2i )
(
2ξ4i +8ξ3i +10ξ2i +4ξi+2φiξ

2
i +4φiξi+φ2

i+1
)
+2ξ2i (1+ξi)

4

=(φi−ξ2i )

(
2(1 + ξi)

4 − 2ξ2i − 4ξi + 2φiξ
2
i + 4φiξi + φ2

i − 1

)
+ 2ξ2i (1+ξi)

4

=(φi−ξ2i )

(
2(1 + ξi)

4 + 2(φi − 1)(ξi + 1)2 + (φi − 1)2
)
+ 2ξ2i (1 + ξi)

4

=2(φi − ξ2i )

((
(1 + ξi)

2 +
φi − 1

2

)2

+
(φi − 1)2

4

)
+ 2ξ2i (1 + ξi)

4 (C.38)

Substituting (C.38) back into (C.35), we have

∂2
∑
i

wiR
C
i

∂ξ2i
=

2wi

v2i1v
2
i2

(
2(φi−ξ2i )

((
(1+ξi)

2+
φi−1

2

)2

+
(φi−1)2

4

)
+2ξ2i (1+ξi)

4

)
.

(C.39)

Since φi = γi + ρi, it can be seen that the above second order derivative is always

non-negative if −min
(√

γi, 1
) ≤ ξi ≤ 0. It is also not difficult to see that

∂2
∑
i

wiR
C
i

∂ξi∂ξj
= 0 ∀j 	= i, ∀i. (C.40)
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Therefore, the Hessian matrix of
∑
i

wiR
C
i with respect to ξi’s is diagonal and PSD.

This completes the proof for Theorem 5.3.

∼
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Appendix D

Proofs for Chapter 6

D.1 Proof of Theorem 6.1

First we prove the necessity of (6.5). The expectation of (6.1) with respect to tj can

be found as

Etj{ui(ti, tj)}=
∫
Sj

b2ii
σ2
2 + b2ji(1− tj)

f(tj) dtj

+ ti

∫
Sj

κj(tj)f(tj) dtj (D.1)

where

κj(tj) =

(
b1ii

σ2
1 + b1jitj

− b2ii
σ2
2 + b2ji(1− tj)

)
. (D.2)

In order to satisfy (6.3) in this game, it is necessary that∫
tj∈Sj

κj(tj)fj(tj) dtj = 0. (D.3)

Since κj(tj) is a decreasing function of tj on [0, 1] with

κj(0) < 0

∣∣∣∣ b1
ii

b2
ii

<
σ2
1

σ2
2
+b2

ji

; κj(1) > 0

∣∣∣∣ b1
ii

b2
ii

>
σ2
1+b1

ji

σ2
2

, (D.4)

there is no strategy fj(tj) that satisfies (D.3) if (6.5) is not satisfied. It can be shown

that there exists only one MSNE which is actually a pure strategy Nash equilibrium

(NE) if (6.5) is not satisfied.

Now we prove the sufficiency of (6.5). If (6.5) is satisfied for user i, then there

exists a point t0j ∈ (0, 1) such that κj(t
0
j ) = 0 and κj(tj) > 0, ∀tj < t0j ; κj(tj) <
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0, ∀tj > t0j . It can be proved that for any given ε1j > 0 and ε2j > 0 such that

S̄j = [t0j − ε1j , t
0
j + ε2j ] ⊆ [0, 1], there exists at least one distribution f̄j(tj) defined

on S̄j which satisfies ∫
tj∈S̄j

κj(tj)f̄j(tj) dtj = 0. (D.5)

In this case, (D.1) can be rewritten as

Etj{ui(ti, tj)} =
∫
S̄j

b2ii
σ2
2 + b2ji(1− tj)

f̄j(tj) dtj (D.6)

which satisfies (6.3) for user i. Moreover, condition (6.4) is inherently satisfied if

user j uses f̄j(tj) because Etj{ui(ti, tj)} does not depend on fi(ti) on [0,1]. Since
there are infinitely many different ε1j and ε2j , which satisfy ε1j > 0, ε2j > 0 and

[t0j − ε1j , t
0
j + ε2j ] ⊆ [0, 1], there must be infinitely many distributions f̄j(tj) which

satisfy (D.5). Denote the set of all such f̄j(tj) as Δ̄fj . Since it is the same case for

user j, it can be concluded that Δ̄f1 and Δ̄f2 both have infinitely many elements

if (6.5) is satisfied. Moreover, any strategy profile {f̄1(t1), f̄2(t2)} that satisfies
f̄1(t1) ∈ Δ̄f1 and f̄2(t2) ∈ Δ̄f2 constitutes an MSNE. Therefore, the game has

infinitely many MSNE upon the satisfaction of (6.5).

D.2 Proof of Theorem 6.2

Assume that the most efficient MSNE is {f̃1(t1), f̃2(t2)} and the support of f̃i(ti) is
S̃i. From Theorem 6.1, it can be seen that f̃j(tj) is the distribution which maximizes∫
tj∈Sj

κ̂j(tj)f(tj) dtj among all distributions subject to (D.3), where

κ̂j(tj) =
b2ii

σ2
2 + b2ji(1− tj)

(D.7)

is a strictly convex and increasing function on [0,1]. Denote κ̌j(tj) = κj(tj) +

κ̂j(tj), then

κ̌j(tj) =
b1ii

σ2
1 + b1jitj

(D.8)

and κ̌j(tj) is a strictly convex and decreasing function on [0,1]. Then (D.3) can be

rewritten as ∫
tj∈Sj

κ̂j(tj)fj(tj) dtj =

∫
tj∈Sj

κ̌j(tj)fj(tj) dtj. (D.9)
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Therefore, f̃j(tj) maximizes
∫
Sj
κ̂j(tj) f(tj) dtj and

∫
Sj
κ̌j(tj)f(tj) dtj simultane-

ously among all distributions subject to the condition∫
tj∈S̃j

κ̂j(tj)f̃j(tj) dtj =

∫
tj∈S̃j

κ̌j(tj)f̃j(tj) dtj. (D.10)

First, we prove that S̃j ⊆ {0, 1}, ∀i. Assume that there exists t′j such that 0 <

t
′

j < 1, t′j ∈ S̃j and f̃j(tj) defined on S̃j maximizes
∫
Sj
κ̂j(tj)f(tj) dtj among all

possible fj(tj) and satisfies (D.10). Since both κ̂j(tj) and κ̌j(tj) are strictly convex,

we can write that∫
tj∈S̃j

κ̂j(tj)f̃j(tj) dtj <

∫
tj∈S̃j/{t

′

j}

κ̂j(tj)f̃j(tj) dtj

+(1− t
′

j)f̃j(t
′

j)κ̂j(0) + t
′

j f̃j(t
′

j)κ̂j(1) (D.11)∫
tj∈S̃j

κ̌j(tj)f̃j(tj) dtj <

∫
tj∈S̃j/{t

′

j
}

κ̌j(tj)f̃j(tj) dtj

+(1− t
′

j)f̃j(t
′

j)κ̌j(0) + t
′

j f̃j(t
′

j)κ̌j(1). (D.12)

The above inequalities imply that both the left-hand side and the right-hand side

of (D.10) can be increased by setting f̃j(t
′

j) = 0 and transferring the probability

densities (1− t
′

j)f̃j(t
′

j) and t
′

j f̃j(t
′

j) to tj = 0 and tj = 1, respectively. Let t ∈ [0, 1]

and denote the increases on the left-hand sides of (D.11) and (D.12) via transferring

the probability densities (1 − t)f̃j(t
′

j) and tf̃j(t
′

j) to tj = 0 and tj = 1 as δ̂j(t) and

δ̌j(t), respectively. If δ̂j(t
′

j) = δ̌j(t
′

j), then (D.10) is still satisfied after the above

transferring of probability densities. Note that κ̂j(tj) is strictly increasing and κ̌j(tj)

is strictly decreasing on [0, 1]. Therefore, if δ̂j(t
′

j) > δ̌j(t
′

j), then there exist ε > 0

and ṫj ∈ [t
′

j − ε, t
′

j) such that ṫj ∈ (0, t
′

j) and δ̂j(ṫj) = δ̌j(ṫj) > 0. Similarly, if

δ̂j(t
′

j) < δ̌j(t
′

j), then there exist ε
′

> 0 and ẗj ∈ (t
′

j, t
′

j + ε
′

] such that ẗj ∈ (t
′

j , 1)

and δ̂j(ẗj) = δ̌j(ẗj) > 0. In any of the above three cases, (D.10) can be satisfied

and at the same time both sides of (D.10) can be increased. Thus, f̃j(tj) defined

on any S̃j that includes t′j ∈ (0, 1) cannot be the distribution which maximizes∫
Sj
κ̂j(tj)f(tj) dtj subject to (D.10). Therefore, S̃j ⊆ {0, 1}. It is the same for S̃i.
Second, assume that f̃j(tj) = ξjδ(tj) + (1 − ξj)δ(tj − 1) where 0 ≤ ξj ≤ 1.

150



Then ∫
tj∈S̃j

κ̂j(tj)f̃j(tj) dtj = ξj
b2ii

σ2
2 + b2ji

+ (1− ξj)
b2ii
σ2
2

(D.13)∫
tj∈S̃j

κ̌j(tj)f̃j(tj) dtj = ξj
b1ii
σ2
1

+ (1− ξj)
b1ii

σ2
1 + b1ji

. (D.14)

Using the condition (D.10), ξj can be derived as in (6.7).

D.3 Proof of Theorem 6.3

Denote ΩN = {1, . . . , N} as the set of all channels and define Φ0
i = {k ∈ ΩN |∃l ∈

ΩN 	= k : ν1
i (k) ≤ ν2

i (l)}. If Φ0
i 	= Ø, the first iteration of Step 2 of the algorithm

deletes Φ0
1 from Δi=1 and increases ν2

2(k) to bk22/σ2
k, ∀k ∈ Φ0

1. In the first iteration

of Step 3, in consequence, the set of channels not satisfying the inequalities ν1
2(k) >

ν2
2(l), ∀l ∈ Δi=2 	= k for user 2 can be potentially extended to Φ1

2 = Φ0
2+Φ̄1

2, where

Φ̄1
2 denotes the extra set of channels which do not satisfy the above inequalities due

to the deletion of Φ0
1 from Δi=1 in Step 2. The deletion of Φ1

2 from Δi=2 in Step 3

could break the inequalities of ν1
1(k) > ν2

1(l), ∀l ∈ Δi=1 	= k on certain channels

in Δi=1 (which has been updated in Step 2) and the process potentially repeats as

Step 2 and Step 3 iterate. Denote Φ̄q
i , q ≥ 1 as the set of channels which do not

satisfy the aforementioned inequalities for user i due to the deletion of Φ̄q−1
j (if

q 	= 1) or Φ0
j (if q = 1) from Δj in the preceding step. Note that Φ̄q

i = Ø if Φ̄q−1
j =

Ø. According to the definition of Φ0
i and Φ̄q

i , it follows that Φ2
1 = Φ̄1

1 + Φ̄2
1, and

iteratively Φq
i = Φ̄q−1

i + Φ̄q
i , q = 2, 4, . . . , qmax for i = 1 and q = 1, 3, . . . , qmax +1

for i = 2. Here qmax = min
(
r|r ∈ {0, 2, 4, . . . , N},Φr+1

2 = Ø
)
.

Proof of i) At any iteration of the algorithm, if k̂ ∈ Φq
i , then ∃p 	= k̂ ∈ ΩN

such that ν2
i (p) ≥ ν2

i (k̂). Otherwise there exists l such that ν1
i (k̂) ≤ ν2

i (l) and

ν2
i (l) < ν2

i (k̂). In consequence, it leads to ν2
i (k̂) > ν1

i (k̂) which is impossible.

Thus, deleting any k̂ ∈ Φq
i will not change max

k∈Δi

ν2
i (k). Therefore, the result of

checking the inequalities ν1
i (k) > ν2

i (l), ∀l ∈ Δi 	= k for any other channel, i.e. for

k 	= k̂, will not be affected. In conclusion, the ordering of channels is irrelevant to

the result of the algorithm.

Now consider the ordering of users. When the algorithm starts from user 1, the
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sequences of deletions are Φ0
1, Φ̄

1
1+Φ̄2

1, Φ̄
3
1+Φ̄4

1, . . . , Φ̄
qmax−1
1 +Φ̄qmax

1 for user 1 and

Φ0
2 + Φ̄1

2, Φ̄
2
2 + Φ̄3

2, . . . , Φ̄
qmax

2 + Φ̄qmax+1
2 for user 2 through all iterations of Step 2

and Step 3, respectively. Here Φ̄qmax

2 + Φ̄qmax+1
2 = Φqmax+1

2 = Ø according to the

definitions of Φq
i and qmax. In this case, the outputs of the algorithm are Δ1

i=1 =

ΩN − ∪qΦ
q
1, q = 2, 4, . . . , qmax and Δ1

i=2 = ΩN − ∪qΦ
q
2, q = 1, 3, . . . , qmax + 1.

If the ordering of users is changed or, equivalently, if the algorithm starts from

user 2, the sequences of deletions change to Φ0
2, Φ̄

1
2 + Φ̄2

2, Φ̄
3
2 + Φ̄4

2, . . . , Φ̄
qmax−1
2 +

Φ̄qmax

2 , Φ̄qmax+1
2 for user 2 and Φ0

1 + Φ̄1
1, Φ̄

2
1 + Φ̄3

1, . . . , Φ̄
qmax

1 + Φ̄qmax+1
1 for user 1,

respectively. Here Φ̄qmax+1
1 = Ø since Φ̄qmax

2 = Ø, while Φ̄qmax

2 = Ø because

Φqmax+1
2 = Φ̄qmax

2 + Φ̄qmax+1
2 = Ø. Note that Φ0

i , ∀i and Φ̄q
i , ∀i, ∀q keep unchanged

regardless of the ordering of users according to their definitions. The outputs of

the algorithm in this case are Δ2
i=2 = ΩN − ∪qΦ

q
2, q = 2, 4, . . . , qmax and Δ2

i=1 =

ΩN−∪qΦ
q
1, q = 1, 3, . . . , qmax+1. Using the facts thatΦqmax+1

2 = Ø and Φ̄qmax+1
1 =

Ø, it can be shown that Δ1
i=1 = Δ2

i=1 = ΩN − ∪s=qmax

s=1 Φ̄s
1 − Φ0

1 and Δ1
i=2 =

Δ2
i=2 = ΩN − ∪s=qmax−1

s=1 Φ̄s
2 − Φ0

2 if qmax ≥ 2 and Δ1
i=1 = Δ2

i=1 = ΩN − Φ0
1 and

Δ1
i=2 = Δ2

i=2 = ΩN if qmax = 0. Therefore, the ordering of users is irrelevant.

Proof of ii)According to the algorithm and the definition of Γi, tkj = 0, ∀k ∈ Γi.

In the algorithm, tkj = 0 occurs together with setting ν2
i (k) = bkii/σ

2
k at all times.

Thus, ν2
i (k) = ν1

i (k), ∀k ∈ Γi. Meanwhile, the inequalities ν1
i (k) > ν2

i (l), ∀l ∈
Δi 	= k must be satisfied ∀k ∈ Δi for user i at the output of the algorithm. If

L(Γi) ≥ 2, then there exist l̂, ľ (l̂ 	= ľ) such that the inequalities ν1
i (l̂) > ν2

i (ľ) =

ν1
i (ľ) and ν1

i (ľ) > ν2
i (l̂) = ν1

i (l̂) are satisfied at the same time, which is impossible.

Thus L(Γi) ≤ 1.

Proof of iii) It can be shown that the channel indexes removed fromΔi = 1 and

Δi = 2 in Steps 2 and 3 correspond to the channels which must not be used for user

1 and user 2, respectively, in any MSNE. It can also be shown that one MSNE, in

which both users end up allocating Pmax
i on one channel in the output Δi exits, if

L(Δi=1) = 1 or L(Δi=2) = 1. Given the above two facts, it follows that a unique

MSNE exists if L(Δi=1) = 1 or L(Δi=2) = 1. It proves the sufficiency of the

uniqueness condition of MSNE and the necessity of the condition for the existence

of infinitely manyMSNE at the same time. Now assume thatL(Δi) > 1, ∀i. Denote
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Li = L(Δi), Ti = Δi(Li) and Δ̃i = {Δi(1), . . . ,Δi(Li−1)}. ThenEtj{ui(ti, tj)}
at the output of the algorithm, denoted as Etj{ui}, can be written as

Etj{ui}=
∫
Sj

⎛⎜⎝∑
k∈Δ̃i

bkiit
k
i

σ2
k+bkjit

k
j

+

bTi

ii (1−
∑
k∈Δ̃i

tki )

σ2
Ti
+bTi

ji (ζ−
∑
k∈Δ̃i

tkj )

⎞⎟⎠fj(tj)dtj
=

∫
Sj

∑
k∈Δ̃i

tki ι
kfj(tj)dtj+

∫
Sj

bTi

ii

σ2
Ti
+bTi

ji (ζ−
∑
k∈Δ̃i

tkj )
fj(tj)dtj

(D.15)

where ζ = 1 −∑
k∈Γj

tkj is the total power that user j allocates on the channels

represented by the indexes inΔi and

ιk =
bkii

σ2
k + bkjit

k
j

− bTi

ii

σ2
Ti
+bTi

ji (ζ−
∑
k∈Δ̃i

tkj )
. (D.16)

In order to satisfy (6.9), it is required in this game that
∫
Sj

∑
k∈Δ̃i

tki ι
kfj(tj) =

0. The minimum of
∑

k∈Δ̃i
tki ι

k as a function of tkj , ∀k ∈ Δ̃i can be given as

min
(
tki ι

k, ∀k ∈ Δ̃i|tkj=1

)
. Denote Υ = {k | k ∈ Δi ∩ Δj}, then Υ is nonempty

given that L(Δi) > 1 as assumed, and L(Γi) ≤ 1 as proved in the proof of state-

ment ii). It can be shown that min ({) tki ιk, ∀k ∈ Δ̃i|tkj=1} < 0 if tkj = 1, k ∈ Υ

since ιk|tkj=1 < 0 and tki > 0, ∀k ∈ Δ̃i. Moreover, if Ti = Δi(Li) ∈ Υ, which can

always be satisfied since the elements of Δi can be ordered in any manner with no

effect on anything else, then it holds that limtkj→0,∀k �=Ti
tki ι

k > 0, ∀k ∈ Δ̃i. It fol-

lows that the sets Λ1
j = {tj|tkj = 0, ∀k /∈ Δj ,

∑
k∈Δj

tkj = 1, and
∑

k∈Δ̃i
tki ι

k < 0}
and Λ2

j = {tj|tkj = 0, ∀k /∈ Δj,
∑

k∈Δj
tkj = 1, and

∑
k∈Δ̃i

tki ι
k > 0} are both

nonempty. Then similar to the proof for Theorem 6.1, it can be shown that there ex-

ist infinitely many fj(tj), each of which satisfies
∫
Sj

∑
k∈Δ̃i

tki ι
kfj(tj) = 0. More-

over, similar to the proof for Theorem 6.1, condition (6.10) is inherently satisfied

upon the satisfaction of (6.9).

∼
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