University of Alberta

Magnet Design and Optimization for an Integrated Linac-MRI System
by

Tony Tadic

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Medical Physics

Department of Physics

© Tony Tadic

Spring 2012
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where
the thesis is converted to, or otherwise made available in digital form, the University of Alberta will
advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may
be printed or otherwise reproduced in any material form whatsoever without the author's prior
written permission



ABSTRACT

A promising approach to the development of an integrated system for
magnetic resonance imaging-guided radiotherapy involves the rigid coupling
of a medical linear accelerator to a rotating biplanar magnet assembly.
Through near real-time volumetric imaging during irradiation, this hybrid
system will enable dynamic target localization and online treatment plan
optimization. The work presented in this thesis was concerned with the
design of non-axisymmetric yoked biplanar magnets that are suitable for use
with this integrated system. Namely, the goal of this research was to develop
and implement robust optimization algorithms for the design of novel
permanent and superconducting magnet assemblies that are compact in size
and provide an unobstructed beam path. A nonlinear iterative shape
optimization scheme based on the finite element method was developed for
the calculation of axisymmetric and non-axisymmetric pole piece surface
contours that minimize the magnetic field inhomogeneity in a designated
imaging volume. This method was applied to the theoretical design of a full-
body 0.2 T biplanar permanent magnet system, for which the necessity of the
optimized pole piece designs was demonstrated. The algorithm performance
was evaluated and the sensitivity of the optimized designs was investigated.
An iterative optimization scheme based on the finite element method was
also developed for the calculation of minimum volume coil arrangements for
superconducting magnets with magnetic materials. In particular, this
method is well suited for the design of conduction-cooled cryogen-free
magnet systems employing high-temperature superconducting coil
configurations. The effectiveness of the proposed method was demonstrated
with a uniform approach to the optimal design of several full-body 0.5 T
superconducting biplanar magnet systems with bored yoke structures.
These designs were subsequently evaluated with an emphasis on the

relationship between the yoke geometries and magnet performance.
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CHAPTER 1
INTRODUCTION

1.1 IMAGE-GUIDED RADIOTHERAPY

External beam radiotherapy (EBRT) refers to the treatment of cancer
through the delivery of concentrated beams of ionizing radiation. This
radiation is generally comprised of high-energy photons (x-rays) or charged
particles (electrons, protons, or heavy ions), which are generated with a
source that is external to the patient’s body. The primary source of radiation
in modern EBRT systems is the medical linear accelerator (linac), which is
predominantly used for the generation of megavoltage (MV) photon beams

for the radical treatment of deep-seated tumors.

The principal goal of EBRT is to deliver the highest possible dose to
malignant tissues, while maximally sparing surrounding critical structures.
This effectively results in the greatest therapeutic gain, as indicated by an
increased probability of disease control, together with a reduced likelihood
of normal tissue complications. In the current state of the art, this is
achieved by means of the advanced practice of intensity modulated
radiotherapy! (IMRT). By employing radiation fields with non-uniform
intensities, IMRT enables the delivery of highly conformed dose distributions

with sharp dose gradients.

The therapeutic effectiveness of EBRT and IMRT is critically related to the
accuracy and precision to which the treatment can be delivered as planned.
Ultimately, this is limited by the uncertainties that arise due to errors or
variations in the positioning of the targeted tissues with respect to the

treatment system. As EBRT is typically administered on a fractionated basis,



these variations occur both during treatment delivery (intrafractional) and
over the course of the treatment schedule (interfractional). Positioning
uncertainties related to the former typically arise from the anatomical
changes associated with respiration, cardiac motion, swallowing, and bowel
movements. On the other hand, interfractional uncertainties can arise from
the irreproducibility of daily patient setup, mechanical deformation of the
treatment system, and physiological changes such as tumor shrinkage,

weight loss, and the filling status of internal organs.

The impact of positioning uncertainty is best understood in terms of the
volumes and margins that are assigned to the targeted anatomy during the

treatment planning process#3 (Figure 1.1). The gross tumor volume (GTV)
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FIGURE 1.1: Schematic illustration of the treatment volumes defined during radiotherapy
treatment planning. The internal margin (IM) and setup margin (SM) are appended to the
clinical target volume (CTV) as a result of positioning uncertainties arising from

intrafractional and interfractional variations in the patient anatomy, respectively.



is identified as the palpable and demonstrable extent of the cancerous tissue.
The clinical target volume (CTV) is then defined to encompass the GTV and
any suspected subclinical extension of the microscopic disease. Thus, it is
this volume that must be delivered an adequate dose if the malignancy is to
be eliminated. In order to ensure the requisite coverage of the CTV, the
internal margin (IM) and setup margin (SM) are introduced. These margins
act to increase the volume to which the prescribed dose is delivered, thereby
compensating for any intrafractional and interfractional positioning
uncertainties, respectively. Consequently, any healthy tissue within the
resulting planning target volume (PTV) is unnecessarily irradiated, leading

to an increased risk of treatment complications and secondary disease.

The widespread adoption of image-guided radiotherapy (IGRT) has helped
improve EBRT treatment outcomes by enabling greater precision of the
radiation delivery. Through frequent imaging in the treatment position,
patient setup errors can be measured and changes in the shape, size, and
location of the target volume can be detected. This information can then be
used to make the necessary adjustments to maximize the geometric accuracy
of the radiation delivery, ultimately leading to a reduction in positioning
uncertainty and the associated margins introduced during treatment

planning.

There are many devices capable of IGRT that have currently found
mainstream clinical application. The most notable of these involve the
on-board integration of an imaging device with the radiation delivery unit. A
common such instrument is the electronic portal imaging device (EPID),
which is generally positioned opposite a linear accelerator so as to utilize the
MV treatment beam to obtain a two-dimensional (2D) projection image.*
The entire system can then be rotated to obtain a series of projections that
can be reconstructed into a volumetric MV cone-beam computed tomography

(CT) data set.>® The on-board EPID has the advantage that it requires



minimal modification in order to be integrated with a conventional linear
accelerator. In addition, the EPID can be directly used for dose
measurements and therefore provides a useful quality assurance and

treatment verification tool for IMRT.* 7.8

In an effort to obtain improved image quality and soft-tissue visualization,
the on-board EPID can be augmented with an additional kilovoltage (kV)
x-ray tube and flat-panel detector.®- 10 This additional kV imaging system is
typically mounted orthogonal to the treatment beam while maintaining the
same axis of rotation as the linac gantry. Through rotation of the entire
system, an additional cone-beam CT data set can be obtained with improved

spatial resolution and soft-tissue contrast.

A completely integrated approach to volumetric x-ray based IGRT has been
demonstrated with the TomoTherapy treatment system,!! for which the
capability of sequential helical IMRT has been combined with spiral
megavoltage CT imaging. Both operations are performed in a continuous
helical fashion as the patient couch is slowly translated through the bore,
utilizing a single MV fan-beam source comprised of a rotating linear
accelerator mounted on a ring-based gantry. This technique enables highly
conformed dose distributions to be delivered and permits single-slice or
volumetric MV imaging of the patient to be used for patient setup and

treatment verification purposes.1? 13

Despite the ability to effectively reduce interfractional positioning
uncertainties, the aforementioned devices are only capable of serial
volumetric imaging. Specifically, the acquisition of three-dimensional (3D)
data sets is restricted to immediately before or after delivery of the
therapeutic radiation. In an effort to circumvent this limitation, stereoscopic
x-ray imaging has been developed for intrafraction treatment guidance on

the CyberKnife!4 and Novalis!> stereotactic radiotherapy systems. Through



the cinematic acquisition of two orthogonal x-ray projections, these
dedicated systems permit near real-time monitoring of the patient anatomy.
This information can then be used to dynamically guide the treatment

delivery, resulting in greater positional accuracy in the deposited dose.

Notwithstanding the many technological innovations established for x-ray
based IGRT, all of these techniques suffer from two critical drawbacks. First,
contrast in x-ray images is solely due to differences in tissue density and
x-ray attenuation. As such, IGRT techniques based on this modality are of
limited utility for sites with which bony structures cannot be used as
reference objects.1® Second, imaging with x-rays requires the transmission of
additional radiation through the patient, resulting in the deposition of
greater doses within healthy tissues and radiosensitive organs. Although the
dose imparted by a single scan is significantly lower than the prescribed
levels for treatment, the cumulative effect of frequent imaging may be

harmful to the patient.”

Several other IGRT techniques are available that do not rely on radiographic
imaging. One such modality is ultrasonography (US), for the effective
visualization of soft-tissue anatomy that is unobstructed by gas or bone. In
particular, US has been used to aid target localization prior to treatment of
pelvic and abdominal malignancies.1®1° These devices require an operator
to be present and therefore cannot be used during treatment delivery.
Furthermore, inter-observer variations are a significant concern.2?
Peripheral solutions for IGRT also exist, which can involve radiographic,?!
electromagnetic,?? or optical tracking?3 of implanted fiducial markers, radio-
frequency transponders, or external surrogates for tumor motion,
respectively. The major drawbacks of these techniques involve the difficulty
of calibrating the detection systems for accurate target positioning, the
inherent inability to visualize the actual target volume, and the invasive

nature of fiducial implantation.



1.2 MAGNETIC RESONANCE IMAGING-GUIDED RADIOTHERAPY

In order to address the shortcomings of current IGRT technologies, several
groups worldwide are now pursuing the integration of EBRT and magnetic
resonance imaging (MRI) with the goal of achieving online target tracking
and treatment guidance.?4-30 Due to the exquisite soft-tissue contrast
attainable with MRI, it is becoming the preferred modality for the
visualization and discrimination of anatomical structures such as tumors and
organs at risk in cancer patients. MRI is capable of rapidly acquiring
volumetric images with arbitrary orientations, permitting near real-time
monitoring of target motion without interrupting radiation delivery.
Furthermore, MRI does not employ ionizing radiation and is thus considered
harmless to the patient being examined, provided the patient does not have
any contraindications to strong static magnetic fields. Through a reduction
of treatment errors and the associated margins related to patient positioning,
daily anatomical variations, and intrafraction target motion, it is believed
that improved treatment outcomes can be achieved with these hybrid

systems.

Our group at the Cross Cancer Institute (CCI) in Edmonton, AB, Canada, is
actively developing an integrated linac-MRI system?8-4% capable of
performing advanced real-time adaptive radiotherapy (ART?). The proposed
design involves the rigid coupling of a 6 MV in-line side-coupled linear
accelerator with a 0.2—0.5 T biplanar magnetic resonance (MR) imager, such

that the two devices rotate in unison about the superior-inferior patient axis.

A rotating biplanar linac-MRI system permits two practical arrangements
characterized by the relative orientation of the radiation source and
magnetic field within the imaging volume (Figure 1.2). In the perpendicular
configuration, the linac is mounted on the open end of the biplanar magnet

such that the treatment beam is oriented perpendicular to the main magnetic



field. A prototype system comprised of a 6 MV linac and a 27.5 cm gap 0.2 T
biplanar permanent magnet MRI scanner with a perpendicular configuration
has been successfully constructed and tested to demonstrate the feasibility of

the proposed concept.2?

In the alternative parallel configuration, the linac is mounted exterior to the
biplanar magnet with the treatment beam directed through the magnet poles
and aligned parallel with the main magnetic field (Figure 1.2). It was
recently shown that this arrangement leads to favourable dosimetric
advantages. These include a decreased beam penumbra, no lateral shifting of

the associated dose distributions, and a reduction of the hot and cold spots
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FIGURE 1.2: Parallel and perpendicular configurations for an integrated linac and biplanar

magnet assembly. The two devices rotate in unison about the patient superior-inferior axis,
such that the direction of the treatment beam and main magnetic field remain in a fixed

relative orientation.



observed at tissue-air interfaces with the perpendicular configuration.31 46
The construction of a second prototype linac-MRI system with a parallel
configuration is currently underway, for which a 6 MV linac will be coupled
with a 0.5 T superconducting magnet system with a ferromagnetic yoke

structure.

1.3 RESEARCH MOTIVATION

The rotating biplanar linac-MRI concept imposes two unique challenges
involving the design of the MRI magnet assembly. The first is related to the
requirement of rotation within a typical EBRT treatment vault. While
maintaining a suitable pole gap for patient access, the lateral dimensions of
the magnet assembly must be constrained. The second challenge is related to
obtaining a parallel orientation of the linac with respect to the magnetic field.
For a biplanar magnet employing a ferromagnetic yoke structure, a large hole
needs to be bored from the magnet assembly in order to provide an

unobstructed path for the treatment beam.

Both of the design challenges mentioned above involve a departure from the
ideal configuration of the magnetic yoke structure and poles. This is realized
by noting that a completely homogeneous magnetic field can only be
obtained with a biplanar geometry if the magnet poles are infinite in extent.
Constraining the pole dimensions and removing magnetic material from the
region nearest isocenter is therefore expected to adversely impact the
characteristics of the magnetic field in the imaging volume. Consequently, an
investigation into the viability of a compact bored biplanar magnet for MRI

was necessary.

Since the primary purpose of imaging with the hybrid linac-MRI system is to
provide accurate geometrical information regarding the absolute shape and

location of a target volume during treatment, obtaining distortion free



images through the reduction of magnetic field inhomogeneities is
paramount. Therefore, it was the principal objective of this research to
develop and implement novel computational methods for the optimal design
of both permanent and superconducting biplanar magnets exhibiting
uniform magnetic fields. In particular, a goal of this research was to obtain
and evaluate theoretical magnet designs that are compact in size and permit
an unobstructed beam path for a linac-MRI system with a parallel

configuration.

1.4 THESIS OUTLINE

The structure of the thesis is as follows: Chapter 2 provides an overview of
the basic principles of MRI, thereby establishing the necessary background
relevant to nuclear magnetic resonance, image formation, and magnet design.
Chapters 3 and 4 discuss the theory and techniques central to the work
presented in this thesis. Specifically, Chapter 3 introduces classical
electromagnetic theory, which leads to a description of the semi-analytic
formulas used for the calculation of magnetic fields generated by circular coil
systems. This is followed next by a theoretical description of the finite
element method (FEM) and associated software. Chapter 4 introduces the
basic theoretical concepts of mathematical optimization, which leads to a
practical discussion of several algorithms that were incorporated into the
methods developed in this thesis. Chapter 5 investigates the consequences of
lateral size reduction for a 0.2 T biplanar permanent magnet assembly. This
is followed by a description of an iterative pole piece shape optimization
method based on field calculations with the FEM. Novel pole piece designs
are obtained and compared, and the performance of the optimization
algorithm is evaluated. Chapter 6 builds on the work in the preceding
chapter by investigating the consequences imparted by inclusion of a large
hole bored through the laterally reduced magnet assembly. Novel optimized

pole piece designs are obtained and evaluated. Chapter 7 provides a



complete description of a robust optimization scheme for the calculation of
minimum volume coil arrangements for homogenous superconducting
magnet systems containing magnetic yoke structures. Chapter 8 applies the
optimization method from the preceding chapter to a unified design
approach for a collection of 0.5 T compact bored superconducting magnet
assemblies. The resulting designs are evaluated and a candidate is identified
for further optimization. Chapter 9 concludes this thesis with a summary of
the presented work followed by a discussion regarding possible future

extensions.
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CHAPTER 2
MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a powerful non-invasive volumetric
imaging technique that is widely regarded as one of the most significant
advancements in medical technology in the 20th century. Through the
exploitation of various tissue properties and unique contrast mechanisms,
MRI can be used to generate high quality three-dimensional images for the
detailed visualization of anatomical structures. Due to the physical
mechanism underpinning signal formation, MRI is also capable of providing
detailed metabolic and functional information of biological tissues in vivo.
Consequently, MRI has become an indispensable clinical tool with a wide

variety of applications involving the detection and treatment of disease.

2.1 NUCLEAR MAGNETIC RESONANCE

2.1.1 Microscopic Magnetism

Atomic nuclei primarily consist of neutrons and protons. These particles are
collectively referred to as nucleons. The neutron is composed of two down
quarks with charge —e/3 and one up quark with charge +2e/3. Thus, the
total electric charge of the neutron is zero. On the other hand, the proton is
composed of two up quarks and one down quark, resulting in a total electric

charge of +e.

All quarks possess an intrinsic spin of 1/2. In the familiar state for each
nucleon, two of the quarks are in an antiparallel spin configuration. Hence,
according to a simplified model, the presence of the third unpaired quark

leads to a net intrinsic spin of 1/2 for both nucleons.
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TABLE 2.1: Typical values for the spin, gyromagnetic ratio, and natural abundance of various

nuclei which exhibit a magnetic moment.

Ground-state y/2m Natural Abundance in
Isotope spin s (MHz/T) abundance (%) human body (M)
1H 1/2 42.577 99.99 88
170 5/2 -5.774 0.04 80 x 10-3
19F 1/2 40.078 ~100 75 x 10-3
23Na 3/2 11.269 ~100 16 x 10-3
31p 1/2 17.251 ~100 4 x10-6

Atomic nuclei also possess the property of intrinsic spin, with a value for the
nuclear spin quantum number s determined by the configuration of the
constituent nucleons. In particular, if the number of protons and neutrons
are both even, the ground state nuclear spin is given by s = 0. Furthermore,
an even number of nucleons leads to nuclei with integer spin, and an odd
number leads to half-integer spin. The ground-state spins for several nuclear

isotopes are provided! 2 in Table 2.1.

The presence of spin angular momentum as possessed by a particle gives rise

to a nuclear magnetic moment u given as3

p=vS, (2.1)
where the constant of proportionality y, referred to as the gyromagnetic
ratio, is a property of the nuclear species examined. In this equation, S is the

spin angular momentum vector, related to the spin quantum number s by

S§2 = h%s(s + 1). (2.2)
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As evident in Eq. (2.1), the strength of the magnetic dipole moment (and
extent of interaction with external magnetic fields) exhibited by a nucleus is
directly related to the magnitude of y. Consequently, those nuclei with large
y values are of special interest in nuclear magnetic resonance (NMR)
experiments. In particular, the proton (or 'H nucleus) is the dominant
species targeted during magnetic resonance imaging of the human body, due
to a large value of y coupled with an overbearing abundance (as a constituent

of H20) in the human body (Table 2.1).

2.1.2 Spin Precession

The general quantum mechanical state ¥ for a spin 1/2 particle at rest may

be expressed as the superposition

Y=a,9,+a ., (2.3)

where ¥, and P _ represent two independent eigenstates corresponding to
the azimuthal quantum numbers m = 1/2 and —1/2. These eigenstates are
often referred to as the spin-up (parallel) state |a) and the spin-down (anti-

parallel) state |3), respectively.

If the particle is isolated in the absence of a magnetic field, the two
independent eigenstates are degenerate. However, if the spin is immersed

in a static uniform field By = B,Z, the energies of the eigenstates become!

_YBoh
E+:+V0

+ > (2.4)

in accordance with the general Zeeman effect. Hence, the energy of the

eigenstate with a spin parallel to the external field is lower than that of a spin
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anti-parallel to the field, as illustrated in Figure 2.1. Furthermore, the energy

difference AE between the two states is given by

AE = ]/Boh = hwo, (2.5)

where the Larmor precession frequency w is defined by

(Uo = ]/Bo. (2.6)

The effect of the external field on the dynamics of the spin magnetic moment
is of particular interest in NMR experiments. The torque T experienced by

this spin is given by

T=uXB,, (2.7)

and the potential energy U associated with this torque is

AE = h(ﬂ)o

— )

FIGURE 2.1: The nuclear Zeeman energy levels for a spin 1/2 particle in a magnetic field. The
energy difference AE between the spin-up state |a) and the spin-down state |B) is

proportional to the magnitude of the magnetic field.
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A quantum mechanical treatment of the resulting spin behaviour yields an

expectation value of the magnetic moment (u(t)) defined as

(1) = (x(O)X + (y ()Y + (. (D)2, (2.9)

where the components are given by!

(U, (1)) = ?sin 0 cos(—wot + ¢y), (2.10a)
(ny (1)) = )/Z—hsin 0 sin(—wot + ¢g), (2.10b)
(u, () = %cos 0. (2.10¢)

Evidently, as illustrated in Figure 2.2, the magnetic moment (or spin)
precesses about the magnetic field direction with a constant polar angle 6,
initial phase ¢,, and azimuthal frequency —w, (in the right-hand sense).
Moreover, the values? for the constants 8 and ¢, are determined by the
initial relative magnitude and phases of the complex coefficients a, and a_ in

the superposition in Eq. (2.3).

The spin motion described by Egs. (2.10) is precisely that predicted by
classical Newtonian mechanics. Consequently, it often suffices to refer to the
classical interpretation of the spin system dynamics when describing the

basic theory of NMR.
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(u(t)

FIGURE 2.2: The expectation value (u(t)) for the nuclear magnetic moment of a spin 1/2
particle precesses around the direction of the external magnetic field. The Larmor frequency

of precession w, is proportional to the magnitude of the applied field.

2.1.3 The Ensemble of Spins

Consider an ensemble of spins within a bulk object, such as protons within a
sample of water. Further, imagine that the sample is segmented into small
but finite volume segments, each containing trillions or more parent
molecules and spins. The net magnetization M within a segment of volume V

is then given by

Ny
1
M= 1_]2”@ (2.11)
=1

where pu; is the magnetic moment of the 4th spin and N; is the total number

of spins within V.
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Prior to application of an external magnetic field, the individual spins are
randomly oriented within V, yielding M = 0 (Figure 2.3). However, once an
external field By = B,Z is applied, each spin begins to precess about the field
according to Eq. (2.5). Assuming the sample has a non-zero temperature T,
thermal excitations lead to a biasing of the spin orientations towards a
direction parallel with the magnetic field. According to Boltzmann statistics,

the probabilities P, of the two eigenstates are

@ /'/ \ o
TN L

/\\4 i
RN

(b) 7 ? 7
N

i B:B()2

FIGURE 2.3: (@) Prior to the application of an externally applied magnetic field, the directions
of the nuclear spins (indicated by the small arrows) are randomly oriented within the bulk
object. (b) In the presence of an external magnetic field, the orientations of the nuclear spins
are biased towards the direction parallel to the applied field. Coupled with the random
thermal motion of the nuclei, this biasing results in a measurable net magnetization M in the

bulk sample.

23



+AE/2kgT

e
P, = oAE/2kpT 4 o—AE/2kgT’ (2.12)
where kg is Boltzmann’s constant. At temperatures roughly that of the
human body (310 K), and for a practical field strength on the order of
By, = 1.0 T, the energy difference AE is roughly five orders of magnitude

smaller than the thermal energy kzT. Consequently, the difference of

probabilities is given by

AE

AP =P, —P =~ :
* 2ksT

(2.13)

This is an extremely small number on the order of 10-5. However,
considering the enormous number of spins N, within a given voxel, a
measurable net longitudinal magnetization M, = M;,Z is developed at
thermal equilibrium. Manipulation of this magnetization forms the ultimate
basis of the NMR experiment, throughout which it is understood that the

static B field remains active at all times.

2.1.4 Excitation of the Spin System

Typically, the diamagnetic magnetization of the sample examined is several
orders of magnitude larger! than the extremely weak nuclear spin
magnetization M,. Consequently, the direct study of M, is impractical. To
overcome this limitation, NMR exploits the fact that individual spins can
undergo transitions between the parallel and antiparallel spin states via the
absorption or release of photons with energy AE = hw,. By triggering such
transitions over the ensemble of spins, the direction of the net magnetization

of the sample can be perturbed.
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Consider the introduction of a left-circularly polarized time dependent
magnetic field B;(t) in addition to the static uniform field By. Ifw is the

frequency of the field oscillation, then B;(t) can be defined as
B,(t) = B;(cos wt X — sin wty), (2.14)

where the unit vectors (X, y, Z) define the laboratory frame of reference. In
order to understand the effect of the combined field B(t) = B, + B;(t) on

the spin dynamics, the rotating frame of reference defined by the unit vectors

(xp, Yo zp) is introduced:

X, = R;(—wt)X = coswt X — sinwt Y, (2.15a)
Y, = R;(—wt)y = sinwtX + coswty, (2.15b)
Z,=R;(—wt)z = Z. (2.15¢)

In these equations, forward multiplication by the operator R, (8) defines a
positive rotation through the angle 8 (in the right-hand sense) about the

vector u. With this definition of the rotating frame, the unit vector X, rotates

in phase with the left-circularly polarized field B4 (t), such that:

By(t) = B,%,. (2.16)

Consequently, both By and B4(t) appear static when observed from the

rotating frame, as illustrated in Figure 2.4.
A quantum mechanical calculation of the spin behaviour when subjected to

the combined field B(t) yields a time dependent expectation value for the

magnetic moment (u(t)), given by!
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FIGURE 2.4: (a) The static magnetic field By and the left-circularly polarized time varying

field B;(t) are shown in the standard laboratory frame. The rotating frame defined by the

unit vectors (xp, Yo zp) is highlighted in blue. (b) When viewed from the rotating frame,

both magnetic fields By and B4 (t) appear static.

1))y = Rp g (—wert)(1(0)),

(2.17)

where t = 0 corresponds to the instant that B;(t) is applied in addition

to By. In this equation, the effective field B¢ is defined in the rotating frame

as

Beff = Blk\p +

(A)O_(U

14

z

p’

and the frequency wegs is given by

Wefr = YBegr = Vw12 + (0o — w)2,

with

(2.18)

(2.19)
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(Ul == yBl' (2.20)

Therefore, the magnetic moment is rotated through the angle —w.gt about
B¢, as observed in the rotating frame. In particular, if the frequency of
B, (t) is such that the magnetic resonance condition w = w, is satisfied, then
the effective field Begr is coincident with the x, axis and the magnetic

moment is rotated by the flip angle Oy given by

Orr = —W1TRE (2.21)

where tgp is the duration for which B4(t) is applied. Since the resonant
frequency w, typically lies in the RF window of the electromagnetic
spectrum (Table 2.1), the B;(t) field constitutes an RF electromagnetic

pulse.

Since every member within an ensemble of polarized spins experiences the
rotation described in Eq. (2.17), applying B;(t) to a bulk sample results in
the same rotation of the net longitudinal magnetization M,. Furthermore, if
the duration Tgp of B;(t) is chosen such that Oz = —m/2, the net effect is a
rotation of M, onto the xy plane, as illustrated in Figure 2.5. This process of

generating a net transverse magnetization M, via tipping of the individual

spins is referred to as excitation of the nuclear system.
A left-circularly polarized time varying field, such as B;(t) defined in
Eq. (2.14), would be difficult to generate on its own. Thus, a much simpler

approach is often taken in practice. Consider a linearly polarized field Bgg(t)

oscillating along the x direction:

Bgg(t) = 2B; cos wyt X. (2.22)
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FIGURE 2.5: (a) When the magnetic resonance condition is satisfied, the effective field B is

coincident with the X, axis of the rotating frame. When viewed in this frame, the net

magnetization M is tipped towards the transverse plane as it simply precesses about the
direction of the effective field vector. (b) In the laboratory frame, the net magnetization

spirals towards the transverse plane according to the illustrated path.

This field can be decomposed into left and right-circularly polarized

components, denoted By (t) and Bg(t), according to the expression

Bge(t) = By(t) + Bg(2), (2.23)
where

B (t) = Bi(cos wyt X — sin wyt y), (2.24a)

Br(t) = Bi(cos wyt X + sin wyt y). (2.24b)

Hence, B{(t) as defined in Eq. (2.14) is simply equal to By(t). It can
fortunately be shown that the non-resonant component Bgi(t) has a
negligible effect on the motion of the spins in normal circumstances.*

Therefore, the desired effect due to B4 (t) can simply be achieved by applying
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Bgre(t) to the polarized sample. A simple coil that is capable of creating

Bgre(t) as defined in Eq. (2.22) is illustrated in Figure 2.6.

2.1.5 Relaxation

Upon excitation, the net magnetization M within a given voxel is perturbed
from its previous orientation, generally resulting in nonzero transverse and
longitudinal components. In addition to the external field, each of the spins
contributing to M is subjected to a complex microscopic magnetic field, for
which the magnitude and direction perpetually fluctuate due to the random
and violent motion of the molecular surroundings. Consequently, these
fluctuating microscopic fields perturb the constant angle of precession
introduced in Eq. (2.9) as the individual spins exchange energy with the
surrounding medium. Due to the anisotropic biasing of the spin directions
resulting from the energy separation of the spin eigenstates, the individual

magnetic moments tend towards the direction of the equilibrium

FIGURE 2.6: A simple solenoidal coil aligned with the x axis. If a sinusoidal time varying
current I(t) is passed through the coil windings, then a linearly polarized magnetic field

Bgg(t) oscillating along the x direction is produced.
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magnetization (see § 2.1.3). The macroscopic result of this effect can be
summarized by the following differential equation for the longitudinal

magnetization M, (1, t):

dM,(r,t) 1
au T,

[Mo(r) — M, (r, )], (2.25)

where M, (1) is the magnitude of the equilibrium magnetization and T; (r) is
the spatially dependant longitudinal (or spin-lattice) relaxation time. The

solution to this equation is given by
M,(r,t) = M,(r,0)e /@) + My(r)[1 — e~ /M@, (2.26)

where t = 0 corresponds to the moment immediately following excitation.
Hence, M, (1, t) experiences exponential regrowth towards the equilibrium
magnetization, as illustrated in Figure 2.7. Typical values for T; in various

human tissues? are provided in Table 2.2.

As the precessional frequency of an individual spin is directly related to the
magnitude of the magnetic field it experiences (see § 2.1.2), the temporal and
spatial fluctuations in the microscopic field lead to random local variations in
the spin precessional frequencies. Consequently, the phase coherence of the
excited spins contributing to the net transverse magnetization deteriorates
over time. When combined with the thermal coupling of the spin motion
with the surrounding medium, the dephasing of individual spins leads to a

decay of the transverse magnetization M, (r, t) described by the differential

equation

dM,,(r,t)
dt - T2 (r) Mxy (r' t);

(2.27)
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M,(t)

5 t/Ty

—— M,(t) = Mp(1—e~t/™), 90° pulse
—M, 1 —— M,(t) = My(1 — 2e7%/™), 180° pulse

FIGURE 2.7: Relaxation curves for the net longitudinal magnetization following RF excitation

pulses with 90° and 180° flip angles.

TABLE 2.2: Typical values for the longitudinal and transverse relaxation time constants in
human tissues. The values given correspond to a field strength of B, = 1.5T and

temperature of 37 °C.

Tissue T, (ms) T, (ms)
Gray matter 950 100
White matter 600 80
Muscle 900 50
Cerebrospinal Fluid 4500 2200
Fat 250 60
Arterial blood 1200 200
Venous blood 1200 100
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where T, (r) is the spatially dependant transverse (or spin-spin) relaxation

time, satisfying T, (r) < T;(r). The solution to this equation is given by
M, (r,t) = M, (r,0)e /7@, (2.28)

Thus, in the presence of a longitudinal applied magnetic field, the transverse
magnetization diminishes via exponential decay, as illustrated in Figure 2.8.

Typical values for T, are provided in Table 2.2.

In practice, imperfections in the background field due to external sources,
such as errors in the magnet design (see § 2.3), lead to additional static
inhomogeneities that give rise to faster dephasing of M,,(r,t).
Consequently, the intrinsic relaxation time T,(r) in Eq. (2.28) can be

replaced with a smaller effective time constant T, (r) given by

M, (£)
MO — Mxy(t) = Moe_t/Tz
—— My (t) = Mpe V™
0 + t ; . . —>
1 2 3 4 5 t/T,

FIGURE 2.8: Relaxation curves for the transverse magnetization following an RF excitation
pulse with a 90° flip angle. The magnitude of the transverse magnetization decays more
rapidly in the presence of extrinsic magnetic field inhomogeneities, as characterized by the

relaxation time constant T; < T,.
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(2.29)

where T, (1) is the relaxation time specifically associated with the static field
inhomogeneities. Fortunately, certain imaging sequences can be employed to
reverse the dephasing effects characterized by T, (r) (see § 2.2.5). However,

the loss of M, (,t) due to intrinsic dephasing may only be recovered by

allowing the system to reach complete thermal equilibrium and reinitiating

the excitation process.

Differences in the density, microscopic structure, and unique molecular
environment amongst various tissues in the human body give rise to spatially
varying relaxation times, thereby providing a unique mechanism for
generating image contrast that is not possible with other conventional

imaging methods.

2.1.6 Signal Acquisition

Consider a generalized longitudinal magnetic field B(r, t) given by

B(r,t) =By + B'(r,t) = [B, + B'(r,t)]Z, (2.30)
where B'(r,t) represents a time and spatially varying component
superimposed over the static uniform B,. Following excitation, the net
transverse magnetization M,,(r,t) in the voxel located at the point

r = (x,y,z) will precess according to

M, (r,t) = My, (r,0)e /2@ x (2.31)

{cos[¢p(r,t)] X + sin[¢p(r, t)] ¥},
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with the motion of individual spins governed by Eq. (2.5). In this equation,
M, (r,0) is the transverse magnetization immediately following excitation,

and the accumulated phase ¢(r, t) is given by

¢(r,t) = —fw(r,t’)dt’, (2.32)

where the generalized Larmor frequency w(r, t) is
w(r,t) =yB(r,t) = wy + w'(r,t). (2.33)

Similar to B4(t) as defined in Eq. (2.14), a component of M,,(r,t) oscillates

along the x direction. Therefore, the same RF coil apparatus used to generate

B, (t) can also be used to detect M, (r,t). Faraday’s law of electromagnetic

induction states that the electromotive force € induced in the RF coil is given

by>

e=-Lo. 0 (2.34)

Cdt

where @ (t) is the time dependent flux passing through the coil probe due to

the rotating magnetization M, (r,t). Thus, it can be shown that the

measured electronic signal, denoted by the complex output s(t), is given by?
s(t) = f psp(r)e t/T2Meid@t) gy, (2.35)
v

where V is the volume of the entire subject. The effective spin density

psp(r) appearing in this equation is defined as
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p3p (1) = wWoeAM,, (1,0), (2.36)

where the constant A entails all of the gain factors associated with the

electronic detection system.

In a simple NMR spectroscopy experiment, information regarding the
presence and relative abundances of various nuclear species within a given
sample can be extracted via direct Fourier analysis of the measured
signal 8(t). However, in order to determine the spatial distribution of a
particular species in one or more dimensions, a method within the NMR

framework is required for encoding the individual spin locations.
2.2 IMAGE FORMATION

2.2.1 Linear Field Gradients and k-Space

Suppose the spatially and time varying longitudinal field B’ (r, t) appearing
in Eq. (2.30) is defined as

B'(r,t) = [r-6(D)]2z = [xG,(t) + ¥G,(t) + zG, (D], (2.37)

where G(t) = V- B'(r,t) is the spatially independent linear field gradient.
With reference to Eq. (2.32), the phase accumulated by the spins within this
field is given by

¢(r,t) = —wot —yr- ftG(t’)dt’. (2.38)

0

By introducing the parameter k defined as®
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k=y ftG(t’)dt’, (2.39)

the accumulated phase becomes
¢(r,t) = —wot — 2k - 1. (2.40)

Thus, by imposing the linearly varying magnetic field B’ (1, t), the locations of
the individual spins are encoded by their time-dependent phase. In
particular, a one-to-one relationship is established between the spin position
along any three-dimensional line and the phase (or frequency) of the spin

precession.

If decay of the transverse magnetization is neglected, the acquired signal

from Eq. (2.35) can be rewritten as

s(k) = fﬁ psp (e 2 kT dx dy dz. (2.41)

where the integration limits have been extended over all space and it is
assumed that the w, frequency variation has been removed via
demodulation. This equation exactly defines the three-dimensional Fourier

transform of p;p (), denoted as

8(k) = F{psp(r)}, (2.42)

where it is understood thatr and k are conjugate variables. Hence, the
three-dimensional distribution of the effective spin density can then be
determined by the inverse Fourier transform of the measured MRI signal,

according to
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pap(r) = F1{s(k)} = f f f s(k)e2™Tdk. dk,, dk,. (2.43)

Thus, the problem of determining p;p () amounts to evaluating this integral

over the domain of 8(k), commonly referred to as k-space.

Due to practical time constraints, 8(k) can only be determined at a finite
number of points. Accordingly, a truncated and discretized version of s(k) is
obtained in practice. Provided s(k) is sampled adequately, such that the
Nyquist sampling criterion is satisfied (see § 2.2.6), faithful reconstruction of
p3p(r) may be possible by converting Eq. (2.43) into a discrete Fourier

transform.

2.2.2 Slice Selection

If the excitation of spins is restricted to a single plane of finite thickness, then
the task of spatial localization reduces to a two-dimensional (2D) problem.
This can be accomplished by applying a linear field gradient along the
direction orthogonal to the desired slice while simultaneously delivering a

spatially selective excitation pulse, as illustrated in Figure 2.9.
In the presence of a slice-select gradient given by G = G,Z, the spin

precessional frequency defined in Eq. (2.33) becomes spatially dependant

along the z direction according to

w(z) =yB(z2) = wy + y2G,. (2.44)
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FIGURE 2.9: (a) In the presence of a linear field gradient G = G,Z, the frequency of
precession becomes linearly related to the spin locations along the z direction. (b) An RF
excitation pulse with central frequency w, and spectral width Aw,may be used to selectively
excite a slice of spins centered at z, and of thickness Az. (c) The corresponding modulated

RF excitation pulse is illustrated in the time domain.
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Therefore, a slice of spins centered at z, and of thickness Az can be uniformly
excited by applying an excitation pulse possessing a rectangular frequency

profile with center w, and width Aw, given by

W = Wo + Y26y, (2.45a)

Aw, = yAzG,. (2.45b)

With the transverse magnetization M,,,(r, 0) nonzero only within the slice of

excited spins, Eq. (2.41) reduces to the 2D Fourier transform

(ks ky) = f f pap (x, y)e 2l thyy) dx dy, (2.46)

= F{pp (x, y)},

where the effective spin density within the slice is given by
Zo+Az/2
pap(x,y) = f psp(x,y,z)dz. (2.47)

zo—Az/2

Hence, p,p(x,y) can now be obtained via the 2D inverse Fourier transform:

pap(x,y) = FHs(ky ky)}. (2.48)
2.2.3 Frequency and Phase Encoding

Spatial localization of the spins within an excited slice can be achieved by
manipulating the field gradients along the remaining x and y directions
spanning the slice plane. In light of the integral defining k in Eq. (2.39), the

manner in which these gradients are varied in time characterizes how the
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MRI signal is sampled within the two-dimensional k-space spanned by k,

and ky.

First consider the phase encoding (PE) gradient G = G,Z applied to a

selectively excited slice for a length of time tpg. During the application of this
gradient pulse, the accumulated phase within the slice becomes position
dependant in accordance with Eq. (2.38). Therefore, after the PE gradient is

removed, the value of k,, is given by
ky = ]/GyTpE. (24’9)

Similarly, consider next the application of a frequency encoding (FE)
gradient G = G,Z for the length of time tpg, after which the value of k, is

given by
kyx = yGyTrE. (2.50)

Thus, if the MRI signal is acquired following these gradient pulses, then a
sample of 5(kx, ky) is directly obtained at a single point. Furthermore, if the
MRI signal is continuously acquired during the time interval for which the FE
gradient is active, then samples ofzs(kx, ky) are obtained along a complete

line segment within k-space defined by

kx 0 )/Gx
k = = +t , O S t S TFE, (251)
YG,Tp 0

where t = 0 corresponds to the moment when the FE gradient is initially
applied. Since sampling of the MRI signal along this segment is performed in
a consecutive fashion, the spatial direction associated with the FE gradient is

commonly referred to as the readout direction.
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By iterating selective slice excitation followed by the spatial encoding of the
spins via the pulsed gradient method discussed above, a framework for the
complete sampling of 5(kx, ky) is established. In the following subsections,
two common imaging sequences that are based on this framework are

described.

2.2.4 The Gradient Echo Method

The gradient echo (GRE) method is a complete procedure for generating
magnetic resonance (MR) images based on the Fourier transform approach
introduced in the previous sections (see § 2.2.1). A key feature of this
method is the use of a bipolar FE gradient along the readout direction. The
first (dephasing) lobe of this gradient pulse acts to dephase the transverse
magnetization in accordance with Eq. (2.38), which in turn leads to a
reduction of the MRI signal amplitude. The second (rephasing) lobe of the FE
gradient is of opposite polarity, thereby acting to refocus the dephasing
induced during the prior lobe. When the general gradient echo condition is

satisfied:

t

fo(t’)dt’ =0, (2.52)

0

then the net accumulated phase due to the FE gradient is nulled for all spins.
Consequently, the transverse magnetization is partially recovered and the
signal amplitude peaks, forming what is known as a gradient echo. The
precise moment at which this occurs is taken to be the echo time, denoted

t=TE.
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FIGURE 2.10: The pulse sequence diagram for a basic gradient echo imaging sequence. After
the repetition time t = TR has elapsed, the sequence is repeated with the magnitude of the

phase encode gradient incremented along the coloured steps shown.

The essential steps of a basic GRE imaging sequence are summarized in the
pulse sequence timing diagram provided in Figure 2.10. The corresponding
k-space trajectory is illustrated in Figure 2.11. An initial net transverse
magnetization is generated within a desired slice through the use of a
spatially selective RF excitation pulse (see § 2.2.2). This is followed by a PE
gradient of fixed duration 7pg, such that k,, is given by Eq. (2.49). The bipolar
FE gradient described above is subsequently applied, with acquisition of the
MRI signal taking place during the second gradient lobe of duration 5. Since

the dephasing lobe of the FE gradient has a negative amplitude, the resulting

42



y

Mk

>
[ ] [ ] [ ] [ ) [ ] [ ] [ ] [ ] [ ] [ ] [} [} [ )
[ ] [ ] [ ] [ ) [ ] [ ] [ ] [ ] [ ] [} [} [} [ )

aky |

[ ] ° ° [ ] ° [ ] [ ] [ ] [ ] [ ] L] L] [ ]
[ ] ° ° [ ] ° [ ] [ ] [ ] [ ] [ ] L] L] [ ]
L] [ ] [ ] L] ° [ ] [ ] [ ] [ ] [ ] [ ] L] [ ]
L] [ ] [ ] L] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] L)

A /
[ ]

FIGURE 2.11: The k-space trajectory for a basic gradient echo imaging sequence. The
illustrated dots represent the points at which the MRI signal is sampled. Each coloured line
segment represents the portion of the trajectory associated with a single phase encoding
step. The line segment arrows indicate the directions along which the samples are obtained
during signal acquisition. This k-space trajectory is also applicable for a basic spin echo

imaging sequence.

starting point of the associated k-space trajectory is specified by a negative
k, value in accordance with Eq. (2.39). The MRI signal is then consecutively
sampled along the symmetric k,-directed line segment, with the gradient
echo forming at the moment Eq. (2.52) is satisfied and the line k,, = 0 is
passed. After the repetition time t = TR has elapsed, the entire sequence is
repeated with the amplitude of the PE gradient incrementally adjusted,

thereby specifying a different k,, value and corresponding k,-directed line
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segment in the k-space trajectory. Proceeding in this manner,a(kx, ky) is

determined at a number of discrete grid points within k-space, permitting
reconstruction of the estimated spin density via the discrete inverse Fourier

transform.

Although the formation of a gradient echo involves reversing the phase
induced by the first lobe of the FE gradient, the transverse magnetization still
decays throughout the sequence due to the independent effects of both
intrinsic and extrinsic magnetic field inhomogeneities. Consequently, the
MRI signal in the GRE method experiences rapid T, decay following each

excitation.

2.2.5 The Spin Echo Method

The spin echo (SE) method is another basic imaging procedure similar to the
GRE method, with the exception of an additional RF refocusing pulse that is
delivered prior to application of the phase and frequency encoding gradients.
By rotating all of the spins within the excited slice through an angle Oz = 7,
the refocusing pulse acts to reverse the polarity of any phase accumulated by
that point. Hence, if the refocusing pulse is delivered at a timet = 1’
following the initial excitation, then the net dephasing due to static magnetic
field inhomogeneities is reversed at the momentt = 27’. Similar to the
gradient echo described in the previous section, this rephasing of the
transverse magnetization leads to a peak in the MRI signal, forming what is
known as a spin echo. Furthermore, to maximize the signal amplitude at the
midpoint of the acquisition window, the timing of the refocusing pulse is
typically specified such that the spin and gradient echoes coincide. Thus, the

echo time is given by t = 2t' = TE.
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FIGURE 2.12: The pulse sequence diagram for a basic spin echo imaging sequence. After the
repetition time t = TR has elapsed, the sequence is repeated with the magnitude of the

phase encode gradient incremented along the coloured steps shown.

The essential steps of a basic SE imaging sequence are illustrated in the pulse

sequence timing diagram shown in Figure 2.12. As evident in Eq. (2.39), the
RF refocusing pulse does not affect the k-space trajectory. Consequently, the

GRE and SE methods are described by the same k-space diagram, shown in

Figure 2.11.
As the dephasing effects due to static magnetic field inhomogeneities are

reversed when a spin echo is formed, decay of the MRI signal in the

SE method is characterized by the T, time constant (see § 2.1.5). This is
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particularly advantageous in situations involving relatively large extrinsic
field inhomogeneities, for which a small T, value leads to rapid signal loss.
However, inclusion of the RF refocusing pulse requires additional time,
resulting in longer scans than what may be achieved with other techniques

such as the GRE method.

2.2.6 Nyquist Sampling Criteria
Sufficient sampling of the MRI signal 5(kx, ky) must be performed if aliasing

artifacts are to be avoided in the reconstructed image. This amounts to the

well-known Nyquist sampling criterion, which requires that?

Ak; <

1
j <o forj=xy, (2.53)
J

where 4; represents the maximum dimension of the imaged object along the

spatial direction j associated with the sample separation Ak;.

For a fixed duration rectangular PE gradient pulse corresponding to k,, in Eq.

(2.49), the sample separation Ak, is given by

Aky = yAGyTPE' (2.54)
where AG,, is the increment in the gradient amplitude between successive
excitations (Figure 2.11). Similarly, for a fixed amplitude FE gradient pulse

corresponding to k, in Eq. (2.50), the sample separation Ak, is given by

Ak, = yG, At,, (2.55)
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where At is the time separation of the consecutively acquired samples.

Hence, Egs. (2.54) and (2.55) may be substituted into Eq. (2.53), yielding

yG, At A, < 1, (2.56a)

YAG, TpgAy, < 1. (2.56b)

Assuming that the object is resolved with n; pixels of width Aj along the
spatial direction j, such that A; = n;Aj, then the Nyquist criteria may be

expressed as

yG, Atgn,Ax < 1, (2.57a)

YAG, Tpgn, Ay < 1. (2.57b)

2.2.7 Consequences of Magnetic Field Inhomogeneity

The principal assumption of spatial localization in MRI is the one-to-one
linear relationship between the position of spins and their phase of
precession. Specifically, if a known linear field gradient G is imposed on a
perfectly uniform static magnetic field By, then the individual spin locations
may be discriminated based on their position-dependent phase given by
Eq. (2.38). The basis for this approach is the fundamental property that the
Larmor precessional frequency in Eq. (2.33) is directly proportional to the
local magnetic field strength. Consequently, any macroscopic field variations
in addition to the applied linear field gradient leads to the misregistration of
spin positions, as their frequency of precession deviates from that assumed
by the image reconstruction algorithm. This effect is manifested in the
resultant images through geometric distortions, as the calculated spin

density differs spatially from the true physical object.
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The nature and severity of the geometric distortions in MRI are strongly
dependent on the gradient parameters and the specific imaging sequence
employed. This dependence can be analyzed by considering how the phase
of precession at the point (x,y) within an excited slice evolves as the MRI
signal is sampled along each orthogonal k-space direction. Specifically, for
the gradient and spin echo methods in the absence of magnetic field

inhomogeneities, the differences in accumulated phase A¢, (x,y) and

Ay, (x,y) between consecutive frequency and phase encoding samples are

given by
Agy, (x,y) = xAk, = yxG, ATy, (2.58a)
Ay, (x,y) = yAky, = yyAGyTpg. (2.58a)

Similarly, in the presence of the additional magnetic field variation 6B (x, y),

the phase differences Ady, (x,y) and A¢~)ky(x, y) between adjacent samples

along the frequency and phase encoding directions are given by

Ad;kx(xl }’) = Y[xGxATs + 5B(x' y)ATs] = A¢kx(f; y); (2593)
Ay, (x,¥) = yyAGytps = Ady, (X, ), (2.59b)
where
0B (x,
%= x4 2B (2.60)
Gy

Hence, under the influence of the additional field variation §B(x,y), the
signal originating from the point (x, y) is incorrectly registered to the false
position (%,y). That is, the presence of §B(x,y) directly leads to geometric

distortions along the FE direction, whereas the PE direction remains
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unaffected. Furthermore, it is evident from Eq. (2.60) that the extent of
distortion is inversely proportional to the strength of the FE gradient. Thus,
a reduction in this distortion can be always achieved by increasing G,.
However, according to the Nyquist criterion Eq. (2.57a), this would also
necessitate a similar increase in the bandwidth of the acquisition hardware,
as the sampling interval At would have to be reduced in order to avoid

aliasing.

In practice, nonuniformity in the static magnetic field may arise from various
sources. Typically, the dominant culprit is the imperfect design or
manufacturing of the primary magnet assembly generating the external
magnetic field (see § 2.3). This may include errors in the winding or
positioning of the magnet coils, magnetic impurities in the surrounding yoke
structure and poles, or the shifting of components under the influence of
magnetic forces. In addition, if the imaging subject is comprised of a
heterogeneous distribution of magnetic susceptibilities, then the subject

itself can induce significant variations in the local magnetic field.”

2.3 THE MAIN MAGNET

2.3.1 General Design Requirements

Magnetic resonance imaging critically relies on the availability of a strong
static longitudinal magnetic field B for the primary purpose of magnetically
polarizing the imaging subject. When immersed in this external magnetic
field, the individual spin orientations are biased towards a direction parallel
to By, yielding a net longitudinal magnetization M, that is subsequently
manipulated to produce the encoded MRI signal used for image
reconstruction. In the following discussion, the general requirements of the

static magnetic field as related to the main magnet design are introduced.
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The signal to noise ratio (SNR) for an imaging experiment is a key parameter
describing the quality of the images produced. The SNR essentially
quantifies the extent to which the signal generated by an object can be
distinguished from the background noise. Maximizing the SNR is of central
importance in MRI, as it leads to improved sensitivity while permitting
greater resolution and faster scan times. The SNR in a magnetic resonance
image is directly related to the magnetic field strength according to the

approximate proportionality?

B]/*, forB, < 05T,
B,, for B, > 0.5T.

SNR (2.61)

Consequently, a primary requirement of the main magnet system is that the
field produced should be as strong as possible (within the practical limits of
modern magnet design). At present, typical values for clinical field strengths

range from 0.1 to 3.0 T.

In order to facilitate the reliable diagnosis of disease or accurate treatment
guidance, it is critical that reconstructed MR images form a faithful
representation of the true patient anatomy. Consequently, obtaining
geometric accuracy through the reduction of image distortions is an
important concern in clinical MRI. As previously discussed, aberrations in
the static magnetic field are directly translated into geometric distortions in
MR images (see § 2.2.7). Hence, minimizing inhomogeneities in the static
magnetic field is another primary requirement in the design of the main
magnet system. For a practical scanner with a gradient strength of 25 mT/m,
the geometric distortion along the FE direction given by Eq. (2.60) amounts
to 4 cm/mT. Thus, for a 20 X 20 cm? field of view consisting of 128 x 128
pixels, the maximum permissible field variation would be approximately

40 uT if the maximum geometric distortion is to be less than the 1.6 mm
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width of a single pixel. Evidently, image distortions in MRI are extremely
sensitive to variations in the static magnetic field, leading to a required level
of field uniformity that is extremely high. Accordingly, the relative magnetic
field inhomogeneity AB over a region of interest (ROI) is typically quoted in

terms of the parts per million (ppm) fractional variation given by:

Bimax — Bmi
AB = —=— 2. 106, (2.62)
B,

In this equation, By, ,x and By, are the maximum and minimum field values
within the ROI, commonly defined as a large diameter sphere at isocenter.
The inhomogeneity at a given point in space can also be determined with the

similar expression

B(r) — B, _

AB(r) = B

106. (2.63)

It often suffices to strictly consider the axial or longitudinal component of the
static magnetic field when calculating these expressions, since the
contribution of the transverse component in a homogenous magnet design
can be considered negligible in comparison.®? Namely, if the relative error in
the axial field component is of order € < 1, then the relative error in the

transverse field components will be of order €2 « e.

Whole-body magnets capable of generating the strong uniform magnetic field
required by MRI are typically based on either cylindrical or biplanar
geometries, as illustrated in Figure 2.13. If these magnets were of infinite
extent, then the magnetic field within the ROI would theoretically be
perfectly uniform. Of course, due to practical constraints on the size and cost
of these systems, the extent of the magnet geometry must be limited.

Consequently, obtaining a level of uniformity suitable for medical imaging
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requires the intelligent distribution of the magnet sources surrounding the
ROI, which is generally determined with the aid of computer-based design

optimization algorithms.

A common property of all magnetic fields is that they extend for infinite
distances and permeate all space. For the simple magnet designs illustrated
in Figure 2.13, the magnitude of the fringe magnetic field approximately
decreases with the cube of the distance from the magnet sources. Due to the
high field strength generated at the center of a typical MRI magnet, the
strength of this fringe field in an unshielded system? may be in excess of 5 G
(an order of magnitude larger than the Earth’s magnetic field) at distances as
large as 10 to 30 m. Consequently, these systems pose a significant risk of
hazardous interaction with magnetic materials and sensitive electronic

devices that are located in proximity to the imaging area.’

A general requirement for the installation of MRI systems is that the
magnitude of the fringe magnetic field must be limited to less than 5 G at
locations beyond the boundary of the imaging suite. Although this may be
achieved by employing a suitable amount of magnetic material in the
construction of the surrounding walls, the more common strategy is to
integrate substantial magnetic shielding into the design of the main magnet
system itself. In the approach of active shielding, the magnet design is
supplemented with additional shielding coils surrounding the primary
sources. The direction of the current in the shielding coils is chosen such that
the magnetic field they generate is opposed to that produced by the primary
sources, leading to a significant cancellation of the fringe magnetic field. In
the alternative approach of passive shielding, a large magnetic yoke structure
surrounding the primary sources is employed instead. This yoke structure is
necessarily composed of magnetic material with high permeability (such as
steel), thus forming a magnetic flux circuit that acts to confine the fringe

fields produced by the magnet system.
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FIGURE 2.13: Full-body magnets for clinical MRI are generally based on (a) cylindrical or (b)
biplanar geometries. The dotted circle indicates the typical location of the imaging volume
for each geometry. Although the main magnet assembly is usually composed of several bulk
coils (in the case of a superconducting magnet system), simplified current distributions
associated with the illustrated orientations of the static magnetic field are provided. In

addition, portions of the magnetic fringe fields are depicted in green.
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2.3.2 Superconducting Magnet Systems

The vast majority of whole-body MRI magnet systems employ large coils
constructed from superconducting material in order to generate the strong
homogenous static magnetic field that is central to the imaging experiment.
As of 2005, there had been over 15000 superconducting MRI systems
installed world-wide.1?® These systems are capable of greater field strengths,
temporal stability, and field uniformity than their permanent magnet
counterparts. These highly advantageous features permit faster imaging,
greater resolution, and superior image quality. When cooled below their
critical temperature, the superconducting coils used in these magnet systems
adopt the property of zero electrical resistance. When functioning in this
superconducting state, these systems are capable of supporting profoundly
large and stable currents in a persistent mode of operation without the need
of an external power supply. Due to the general desire for improved image
quality in routine clinical imaging, there exists a continuous thrust to
optimize the design of superconducting magnets with increased field

strengths, maximal uniformity, and cost efficiency. 1120

At present, the most popular superconducting material used in MRI magnets
is the metallic alloy of niobium titanium (NbTi). With a critical temperature
of 9.3 K, this material must be cooled to cryogenic temperatures in order to
support the high current densities and external magnetic fields that are
characteristic of MRI applications. In general, this is achieved by submerging
the coils in a liquid helium (LHe) bath, which is maintained at an ultra low

temperature of 4.2 K within a large encapsulating cryostat vessel.

Due to the attractive possibility of eliminating the requirement of large and
expensive cryogenic cooling systems, high-temperature superconducting
materials are currently being explored for widespread use in MRI magnet

systems.?! In particular, of growing interest is the intermetallic compound of
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magnesium diboride (MgBz), for which the property of superconductivity
was recently discovered.??2 With a relatively high critical temperature of
39 K, this material is suitable for use in a cryogen-free conduction-cooled

environment.23

The majority of superconducting magnets for MRI are of cylindrical geometry
and have field strengths in the range of 1.5 to 3.0 T. These systems typically
employ active shielding, with the secondary shielding coils placed at a larger
radius than the primary coils. As this shielding solution leads to a reduction
in the imaging field strength per unit current, the coils in these systems are
necessarily constructed from many windings and are required to carry

especially large currents.

Due to growing concerns regarding patient claustrophobia and physician
access, there has been a recent thrust towards superconducting magnets
with biplanar geometries and open configurations. As a consequence of the
large separation between the two magnet poles, these systems are generally
limited to field strengths of 0.5 to 1.0 T. Moreover, biplanar systems often
consist of large magnetic yoke structures to enhance the magnetic field
strength in the region of interest, while aiding in the passive shielding of the

fringe magnetic fields.

2.3.3 Permanent Magnet Systems

In dedicated applications for which the strength and complexity of
superconducting systems is unnecessary and inconvenient, permanent
magnet systems are becoming a simple and affordable alternative of growing
popularity. These systems often possess biplanar geometries, consisting of
large opposing magnetic poles composed of a rare-earth ferromagnetic

material. The most common ferromagnetic material used in modern designs
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is a neodymium-iron-boron compound (Nd:Fe14B), which typically leads to

magnetic field strengths in the range of 0.1 to 0.3 T.

Due to the limited field strength attainable with a ferromagnetic source,
permanent magnet systems normally involve the use of a large magnetic
yoke structure in order to passively shield the stray magnetic fields.
Furthermore, large pole plates constructed from a material of high
permeability are generally fixed to the opposing surfaces of the magnetic
sources. In addition to enhancing the magnetic field strength, the surfaces of
these pole plates may be optimally contoured so as to assist in obtaining a

suitably homogeneous magnetic field in the imaging volume.

Permanent magnet systems offer the technical advantage that they do not
require a dedicated cooling system. This leads to simple and inexpensive
maintenance, while alleviating the hazards associated with the risk of a
quenching magnet. In addition, the fringe fields they exhibit are comparably
weak, making planning and installation of these systems relatively easy. On
the other hand, thermal instability of the ferromagnetic sources can result in
temperature drift of the magnetic field strength, requiring careful calibration
of the associated Larmor frequency. Furthermore, the level of field
uniformity obtained in practice is often limited, due to unavoidable
impurities in the ferromagnetic sources in addition to the magnetic influence

of the surrounding yoke structure.

2.3.4 Shimming Strategies

Despite the quality of any theoretical magnet design, imperfections in the
manufacturing process inevitably lead to residual field variations in the
region of interest. The magnitude of this residual inhomogeneity is typically
on the order of 102 to 103 ppm. Since medical imaging demands a much

lower level of inhomogeneity on the order of a few ppm, a strategy for
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measuring and eliminating the residual variations after manufacturing is
required. The process that entails these final critical steps during the

installation of a magnet system is referred to as shimming.24-28

The first step in the shimming process is the mapping of the magnetic field
variation within the region of interest. This is typically performed by directly
measuring the magnetic field at a collection of points located on the surface
of a large diameter sphere or cylinder. An expansion of the magnetic field in
terms of the complete basis of spherical harmonics is then calculated
(see § 3.1.3). In this way, the contribution of each individual harmonic to the
residual inhomogeneity can be determined based on the value of the

associated expansion coefficient.

The next step of the shimming process is the determination of a magnetic
source configuration that tends to eliminate the majority of the low order
harmonics present in the previously calculated field expansion.?* In a
manner similar to the techniques of magnetic shielding, shimming methods
can be classified as either active or passive, depending on whether the
correction field is generated with current carrying coils or segments of

magnetic material.

In the case of active shimming, the additional set of shim coils are typically
arranged in a fixed configuration, with the geometry of each coil specifically
designed to produce a magnetic field variation corresponding to a single
harmonic in the field expansion. By independently manipulating the current
in each of the coils, the corresponding component of the field inhomogeneity
can be cancelled. In practice, the difficulty in realizing a pure harmonic shim
increases with the complexity and order of the targeted harmonic.
Specifically, any errors in the design, manufacturing, or positioning of a given
shim system will lead to contamination of the correcting field with

contributions of lower order than the targeted harmonic.?* Although the
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typical amplitudes of these contaminants are much smaller than that of the
desired component, the lower-order terms become increasingly dominant as

the origin is neared (see § 3.1.3).

In the alternative approach of passive shimming, a specific configuration of
magnetic material is strategically placed in the region surrounding the
imaging volume. Unlike the active method described above, modern
techniques for passive shimming do not require independent targeting of
orthogonal harmonics.?7.28 Although possible, the generation of pure
harmonic passive shims is hindered by considerable uncertainties in the
shapes, locations, and magnetic properties of the individual segments
comprising the shim. Rather, a total shim configuration as a whole is
determined which perturbs the net magnetic field in a fashion that
collectively leads to a reduction in the residual inhomogeneities in the region

of interest.

Successful shimming of an MRI magnet typically requires several iterations
of the measure and correct procedure described above. This systematic and
experimental process is generally aided by the use of a computer, which
performs the necessary decomposition of the magnetic field based on the
measured data, followed by the calculation of the optimal adjustments to the
correction system required to improve the homogeneity. Of course, the
effectiveness of these shimming techniques in reaching acceptable levels of
uniformity is limited by the initial inhomogeneities present after
manufacturing. Namely, the ease with which a magnet may be shimmed is
limited by the magnitude and complexity of the residual field variation.
Ultimately, this leads to a significant constraint on the magnet design that
competes with the additional requirement of a suitably large and accessible

gap within the magnet for the subject being examined.
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CHAPTER 3
THEORY AND TECHNIQUES I
COMPUTATIONAL ELECTROMAGNETICS

The generation of the strong uniform magnetic field required by magnetic
resonance imaging (MRI) is primarily accomplished through the use of large
magnetized pole pieces or immense superconducting coil configurations. In
addition, MRI magnet assemblies often employ large magnetic yoke
structures that act to confine the fringe magnetic fields while enhancing the
field strength in the imaging volume. The design of these components to
achieve the level of field uniformity necessary for medical imaging demands
an understanding of how their dimensions and properties relate to the fields
they produce. Consequently, this necessitates the use of accurate formulas
and numerical methods for the calculation of the magnetic fields generated

by these sources.
3.1 THEORY

3.1.1 Introduction

The electromagnetic force is one of the four fundamental interactions of
nature described by the Standard Model of particle physics. The subject of
electrodynamics is concerned with the characterization of this force in the
classical regime, through an understanding of electromagnetic fields and
their interactions with matter. The fundamental theory of electrodynamics

can be elegantly summarized by Maxwell’s equations in differential form:>
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VD =p, (3.1a)

V-B=0, (3.1b)
OB
- _ 3.1c
VXE P (3.1c)
oD
VXH=]+— (3.1d)

These equations describe the principle relationships between the charge
density distribution p, the current density distribution J, the electric field E,
and the magnetic field B. The relations in Eq. (1) also refer to the electric
displacement D and auxiliary magnetic field H. In certain media, these
quantities can be derived from the electric and magnetic fields via

constitutive relationships of the general form

D= D(E, B), (3.23)

H = H(E, B). (3.2b)

In many practical electromagnetic systems, the fields of interest are directly
generated by prescribed configurations of charge or current. The electric
field at a point r due to the charge density distribution p is explicitly given by

the generalized form of Coulomb’s law:

r—r

E() = o f o _av, (33)

| — 7|3

where €, is the permittivity of free space and V is any volume encompassing
all of the charge. A similar expression for the magnetic field due to the

current density distribution J is provided by the Biot-Savart law:
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r—r

B(T) = Z—;f](r’) X de’, (34)
14

where p, is the permeability of free space. The relationship between the

field and source points r and 7’ is illustrated in Figure 3.1.

Electromagnetic fields were first characterized by their interaction with
matter via the force they exert on charged particles. The fundamental
equation describing this interaction is known as the Lorentz force law, which
gives the force F acting on a particle with charge q and velocity v in the

presence of an electric and magnetic field:

F=qlE+ @xB)]. (3.5)

field point

source
point

FIGURE 3.1: Relationship between the field and source points used in the evaluation of the

electric and magnetic field integrals.
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3.1.2 Electromagnetic Fields in Matter

Nearly all ordinary matter interacts with electromagnetic fields due to the
intrinsic electric charge or spin angular momentum possessed by subatomic
constituents. This is manifested in part by the polarization or alignment of
atoms and molecules in the presence of an externally applied field. In bulk
materials, this response may result in a net macroscopic electric polarization
P or magnetization M, defined as the electric and magnetic dipole moments
per unit volume, respectively. The constitutive relations in Eq. (3.2) can then

be expressed as

D =¢€,E+ P, (3.6a)
1

H=—B-M. (3.6b)
Ho

The particular nature of the relationship from which P and M are derived
from E and B depends on the specific properties of the associated medium.

For isotropic linear media,

P =¢,x.E, (3.7a)

M = y,.H, (3.7b)

where the constants y, and y,, are the electric and magnetic susceptibilities,

respectively. Therefore,

D = €E, (3.8a)

B = uH, (3.8b)

where € =¢,(1+ y.,) and u=puy(1+ x,,) are the permittivity and

permeability of the medium, respectively.
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Although y, is always a positive quantity, y,, can be of any sign. Media
containing atoms or molecules with unpaired electrons are typically
paramagnetic and possess x,, > 0. The magnetization M induced in these
materials is always oriented parallel to the externally applied H. This is in
contrast to diamagnetic materials with y,,, < 0, for which the induced M is

antiparallel to the applied H.

In reality, the susceptibilities of most practical materials are not constant.
Often they depend on the temperature of the medium, or on the frequency
content of any time variance in the external applied field. Furthermore, the
susceptibility may be a function of the applied field strength, such that the

expressions in Egs. (3.7) and (3.8) become nonlinear.

The precise spatial distribution of the magnetic field generated by a
magnetized object is of great practical interest. The magnetization M in a
particular region V with boundary § contributes an effective volume and

surface current J; and Ky, given by

Ju=VxM (3.9a)

Ky=Mx# (3.9b)

where 7 is the outward normal unit vector on §. The resulting magnetic field

is then given by the Biot-Savart law in Eq. (3.4), yielding

!

B(r)— f]M(r’)x LIV (3.10)

Ilr =3

r—r
fKM(r’)x T ,”3d5’.
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3.1.3 The Laplace Equation

The calculation of magnetic fields from the explicit integrals in Egs. (3.4) and
(3.10) tends to be extremely cumbersome. Even in the case of trivial current
or magnetization distributions, the integrals become very complicated and
generally require the use numerical integration routines (see §3.2).
Moreover, if nonlinear magnetic materials are considered, evaluation of the

field integral may be impossible.
An alternative approach to solving magnetostatics problems is derived from
the scalar magnetic potential formulation of the auxiliary field H. In a region

absent of currents or time varying fields, Ampere’s law from Eq. (3.1d)

becomes

VxH=0. (3.11)

Therefore, by the Helmholtz theorem,® H can be expressed as the gradient of

a scalar magnetic potential ®,,,:

H=-vo,, (3.12)

Assuming a constitutive relationship of the form in Eq. (3.8b), where the
permeability 4 = u(H) is nonlinear, Eq. (3.9) can be combined with
Eq. (3.1b) to yield

—V - (uVd,,) = 0. (3.13)

Directly solving this second order differential equation is in general very

complicated. However, numerical techniques such as the finite element
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method” are particularly well suited for obtaining its solution (see § 3.3). In

the special case where u is constant, Eq. (3.18) reduces to
Vi, = 0. (3.14)

A similar equation may also be obtained for the vector components of H.
Since the divergence of a curl is always zero, taking the divergence of

Eq. (3.11) gives

V2H = V2H,i + V2H,j + V?H,k = 0. (3.15)
The vector components in this equation are independent, hence,

V?H, = V’H, = V*H, = 0. (3.16)

Therefore, ®,,, Hy, H,, and H, all satisfy the Laplace equation, which takes

the form
Vif =0, (3.17)

for a general scalar function f. In terms of spherical polar coordinates,

Eq. (3.17) can be written as

r2sin @ 060

1 92 1 a<_ af>+ 1 f
Sin 20

sz 0P+ TsnZgagr - (3.18)

The general solution to this equation is then>
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£

F,0,6)=) > [amr’ + by 1170, 9), (3.19)
£

=0 m=—

where Y, (0, ¢) is the spherical harmonic function of order £ and degree m.
By enforcing suitable boundary conditions on this solution, the expansion
coefficients a,,,, and b,,,, can be determined. As evident in the summation in
Eqg. (3.19), the order £ may take on any nonnegative integer value, while the
degree must satisfy |[m| < £. The normalized functions Y;” (0, ¢) are given

by>
Y;*(6,¢) = NP} (cos 6)e?, (3.20)

where P;*(cos8) is the associated Legendre polynomial of order £ and

degree m. The normalization factor N;” is defined as

leer v e—my
Ne _j @ rm)’ (3:21)

such that the spherical harmonics satisfy the orthonormality relation

2T T

f f Y;(6, 9V (6, ) sin 0 d6 d = 8416, (3.22)
0 0

where §,; is the Kronecker delta function.

Within a region for which f is assumed regular, the solution given by

Eq. (3.19) reduces to
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£,6,) = Z Z QT Y/ (6, 9). (3.23)

=0 m=—+

By exploiting the orthonormality property in Eq. (3.22), the expansion

coefficients are given as

2T T

ap,, = % f f f(R,0,0)Y,1(6,¢)sin6 do dg, (3.24)
0 0

where R is the radius of a sphere on which the values of f are known, and the

superscript 1 denotes the complex conjugate.

As evident in Eq. (3.20), the spherical harmonic basis functions are generally
complex. Hence, it is often preferred to rewrite the expansion in Eq. (3.23) in

terms of the all-real basis {y}"}:

£r.6,¢) = Z Z Com VY (6,9) (3.25)

=0 m=—+

where the normalized real spherical harmonic function y;* (6, ¢) is defined

according to

V2 Im(Y") = 7(1@ — (=1)™Y/™), form <0,
yt =1 Y, form =0, (3.26a)

1
V2 Re(Y,") = E(Y{f’” + (—=1)™y, ™), form >0,

which may be expressed as
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V2 N}mlP{Jml(cos 0)sin|m|¢p, form <0,
y¢t =1 NJP?(cosH), form = 0, (3.26b)
V2 N/"Pf*(cos 0) cosme, form > 0.

The real spherical harmonics are also orthonormal on the surface of a sphere

and hence the expansion coefficients c,,,, from Eq. (3.25) are given as

2T W

1
Com = ﬁf ff(R, 0,9)y;"(0,¢p)sin0 do do. (3.27)
0 0

The magnetic field in the imaging volume of an MRI system satisfies
Eq. (3.17) and thus can be expressed in terms of the expansion in Eq. (3.25).
Accordingly, the coefficients c,,,, are typically calculated during the shimming
procedure for these systems, as the active correction coils used to improve
the field uniformity generate field patterns described by the real
harmonics y;"* defined in Eq. (3.26) (see § 2.3.4).

3.2 SEMI-ANALYTICAL METHODS

3.2.1 Ideal Circular Coils

The Biot-Savart integral in Eq. (3.4) provides a direct method for the
calculation of the magnetic field generated by simple current distributions.
Consider an ideal current loop with zero cross-sectional area, coaxial with
the z axis, positioned at z = z;, and with radius s, (Figure 3.2). The magnetic
field at the point (s, ¢, z) in cylindrical coordinates, due to a current I passing

through the loop, is given by?

B(s,¢,2) = Bs(s, ¢,2)8 + By (s, ¢, 2)P + B, (s, ¢, 2)Z, (3.28)
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\<V

FIGURE 3.2: Geometry of an ideal current loop centered on the z axis.

where
B.(s,,2) = 2oL 6 (5,502 — 2) (3.292)
S ¥ 27_[5 1 120 0/
By(s,¢,2) = 0, (3.29b)
Uol
B,(s, ¢,2) = #gz(s, Sor Z — Zp)- (3.29¢)

The intermediate functions G; (t;, t,, t3) and G, (t;, t,, t3) are given by

1
G1(ty, ty,t3) = X 3.30a
1\%1,%2,°¢3 \/(t1+t2)2+t32 ( )

t12 + t,% + t3?
(t, — t2)* + t5°

—K(u) +

Cw)|,
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1
Go(ty, ty,t3) = X 3.30b
2\‘t1, 2,3 \/(t1+t2)2+Z2 ( )

where the parameter u, satisfying 0 < u < 1, is defined as

4t.t,
= 3.31
“ \[(H + )2 + t3% ( )

and where S(u) and €(u) denote the complete elliptic integrals of the first
and second kind, defined by®

1

Ku) = f[(l — )1 -uw2p?)] ap, (3.32a)

0

G(w) = f(1 — ) (1 —u2p?) Pap. (3.32b)

The built-in function ellipke in MATLAB? can be used for the calculation of
the integrals &(u) and €(u) via the arithmetic-geometric mean method,!°

thereby making rapid calculation of Eq. (3.28) practical.

3.2.2 Real Circular Coils with Rectangular Cross-sections

In order to achieve the highest possible accuracy when calculating the
magnetic field due to a real physical coil, the finite cross-sectional area of the
coil must be taken into account. This is necessary in the optimization of

superconducting coil configurations used in MRI, for which the generation of
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FIGURE 3.3: Geometry of a bulk coil with rectangular cross-section centered on the z axis.

a uniform magnetic field within a large imaging volume is a critical design

goal (see Chapter 7).

Consider a bulk circular coil lying in the xy plane and coaxial with the z axis,
as illustrated in Figure 3.3. Suppose the bottom and top surfaces of the coil
are located atz = —Az/2 and z = Az/2, respectively. In addition, the inner
and outer radii of the coil are s =sy, —As/2 and s = s, +As/2. The
magnetic field at the point (x, y, z), due to a uniform current density J across

the coil cross section, is given by!!

B(x,y,z) = By(x,y,2)X + By(x,y,2)y + B,(x,y,2)Z, (3.33)

where the field components are expressed as

By(x,y,2z) = (3.34a)
UoJx []\f < +As Az ) Iy < As Az )
oms [T t\Fo T TS 2 ) TS T TS 2

Iy +As Az Y As Az ]
1<S° 2'2'”) 1<5° 2’2’”)’
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By,(x,y,z) = (3.34b)

woly As Az As Az
A oy ) )

As Az

N, (5o + A As Az ]
1<S° 2'2'5‘Z> 1<5° 2’2’”)’

B,(x,y,2) = (3.34¢0)

HO][N( +AS Az > N< As Az >
oms | 2\So TS 2\So TS

Az +As Az Y As Az ]
2<SO 2 ) 2 ISFZ> 2<SO 2 ) 2 ,S,Z) .

The intermediate functions NV, (t,, t,, t3, t,) and N, (tq, t,, t, t,) are defined as

T

Ni(ty, tp,t3,t) = f cos B’ [\/ (Y1)? + (v2)? (3.35a)

0

+v3 In (V1 +vV()* + (Vz)z)] ap’

Vs

]\fz(tl, tz, t3, t4) = fCOSﬁ’ [Ml(tli tz, t3, t4_,ﬁ,) (3.35b)

0

+ Y3y My (g, ts, t3, 4, 1)

1
+ 575D+ ()2 | dp

where
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M (ty,t, t3,t4, ")

= 2y3¥s In [)/1 +/(r)? + ()’2)2]

1
+Z{3[(V3)2 — ()2l = [(r1)? = (r2)?1} x

)

| [ G+ )% —vs
n

V)2 + (2?2 +vs

My (g, tp, t3,t4, B")

Y1(V1 +V )2 + (Vz)z) + (v)?
= —2 arctan

YaVs

vs +v1 + /)2 + (yz)zl
Va

+ arctan

— arctan

[—ys + 11+ /)2 + (yz)zl
Ya '

and

Y1 =t —tzcosf’,

(¥2)* = t3%sin® B’ + (t; — t,)?,

Y3 = tzcos B,
Vs = t3sinf’,
Vs =ty — 4.

(3.362)

(3.36b)

(3.37a)
(3.37b)
(3.37¢)
(3.37d)

(3.37e)

The built-in function quadgk in MATLAB can be used to rapidly calculate the

integrals defining V] (t,, t, t5, t,) and N, (tq, t,, t5,t,) in Eq. (3.35). This

routine employs adaptive Gauss-Kronrod quadrature and is especially well

suited for obtaining high accuracy integral approximations.12
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3.3 THE FINITE ELEMENT METHOD

3.3.1 Introduction

The finite element method” 13 (FEM) is a numerical technique for calculating

approximate solutions to partial differential equations of the general form:

glo(r)] =f(r), req, (3.38)

where £ is a differential operator defined on the domain (), f is the excitation
or source function, and @ is the unknown quantity. Together with suitable
conditions enforced on the boundary of (1, the problem in Eq. (3.38)
constitutes a boundary value problem. Through discretization of the
continuous domain (), the FEM provides a procedure for converting the
mathematically posed problem of Eq. (3.38) into a set of linear equations
with a finite number of unknowns. The resulting approximate problem is
easily solved with the aid of a computer, whereas the solution to the original
problem can only be obtained via mathematical manipulation. Furthermore,
the accuracy of the FEM approximation is limited in theory only by the extent
of domain discretization, which is in turn only constrained by computing
speed and memory availability. Consequently, the FEM offers an attractive
strategy for solving large arduous boundary value problems with

complicated geometries.

There are four major steps involved with any FEM implementation. The first
and often most difficult step is discretization of the solution domain. This
consists of replacing the continuous domain (1 of the original problem by a
finite number of subdomains in which the solution is to be approximated by
an interpolating polynomial with unknown coefficients. The second step is

then the specification of the interpolating functions, also known as the finite
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FIGURE 3.4: Common finite element shapes used in the discretization of (a) one, (b) two, and

(c) three-dimensional geometries.

element basis functions, which are eventually combined to form the trial
function serving as the approximate global solution. In the third step, the
trial function is applied to the original problem formulation, leading to the
generation and assembly of a large system of linear equations. Lastly, the
fourth and most time consuming step amounts to applying a numerical
routine to efficiently solve the system of equations, thereby obtaining the

final approximation and concluding the procedure.

3.3.2 Domain Discretization

The first step of the FEM consists of partitioning the continuous domain Q of
the given boundary value problem with a finite set of N, polytopal
subdomains or elements, each denoted Q% (p = 1,2, ..., Ng). The resulting
collection of elements constitutes what is commonly referred to as the finite
element mesh. Common polytopes employed in the discretization of one,

two, and three-dimensional problems are illustrated in Figure 3.4. Note that
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triangular or tetrahedral elements are the most widely used, as they are
especially effective at conforming to complex geometries and have also been
shown to yield the greatest solution accuracy.” In a proper discretization, the
elements are connected only at their vertices, such that there is neither
overlap nor gaps amongst adjacent elements. Furthermore, narrow elements
with large dihedral angles are usually avoided, as they compromise the local
solution accuracy while leading to poor conditioning of the final system of
equations.” Hence, in order to address these requirements, a Delaunay
triangulation algorithm is commonly employed for the automatic generation

of the finite element mesh.

3.3.3 Finite Element Basis Functions

Once the domain has been appropriately partitioned, the unknown quantity
® is approximated by an interpolating function that is defined within each of
the finite elements. Specifically, for a finite element mesh of order ng, a
piecewise polynomial ®# of order ng with compact support Q7 is defined
within each element so that the trial function ® forms a continuous

approximation of @ over the entire solution domain:

Ng

O(r) ~ B(r) = Z OP(r), r=(xy72) €. (3.39)
»=1

In order to obtain solution isotropy, each interpolating polynomial ®# must
be complete in the sense that it must contain all mixed terms of the
coordinate variables x, y, and z. For a polynomial of order ng, this amounts
to a total of mg = (1/6)(ng + 1)(ng + 2)(ng + 3) terms.” Consequently, the
mg unknown coefficients of ®# are uniquely determined only if the

interpolating polynomial is enforced atmg distinct points. These points,
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FIGURE 3.5: Distribution and labeling of nodes for a second-order tetrahedral finite element.

Local node numbers and volume coordinate indices are shown.

commonly referred to as the nodes, are typically placed in a regular fashion

within Q7, as illustrated in Figure 3.5 for a tetrahedral element with ng = 2.

The resulting system of equations can be solved for the unknown coefficients
in terms of the coordinates and solution values at the mg nodal points,
denoted (x;,y;,2;) and CDf for the 1th node, respectively. Once this is

accomplished, the interpolating polynomial may be written in the form
mq
o7 (x,y,2) = ) OIS (x,y,2), (3.40)

=1

where Gf (x,y,z) denotes the finite element basis function in Q7
corresponding to the ith node. These basis functions are also polynomials of

order ng, with the special property:

&7 (x4, v52) = 84y (3.41)
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Accordingly, Gf is called a Lagrange basis function and the subdomain Q7

within which it is defined is referred to as a Lagrange finite element.

For convenience, each node within Q7 is labeled with a collection of four
integers (a4, a,, as, a,), such thata, + a, + a; + a, = ng. For the 4th node

located at (x;, y,, z;), the integer labels are defined as

a; = nolf (x4, ¥, ), (3.422)
az = ol (x;, v, 2), (3.42b)
az = ngl% (x4, ¥4, 2,), (3.420)
ay = nglLy (X4, ¥, 20)- (3.42d)

In these equations, L% (x, y, z) is the volume coordinate of the point (x, y, z)

with respect to the #£th vertex of the element (07, given by

VP (x,y,2)
;7 _ /& ) )
L,(x,y,z) = 7R

£ =1,2,3,4, (3.43)
where V7 is the volume of Q% and Vf(x, y,z) is the volume of the
tetrahedron formed by replacing the £th vertex of (0¥ with the point located
at (x,y,z). In this way, a combination of any three volume coordinates
uniquely defines a point within the given element. The resulting nodal labels
determined from Eq. (3.42) for a tetrahedral element with ng = 2 are shown

in Figure 3.5.
With the nodal labels and volume coordinates defined above, a convenient

generating formula for the basis functions Gf of arbitrary order may be

used:13
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&7 (x,y,2) = PR (L])P02 (L5)P05 (13)P0 (1), (3.44)

where L = L% (x,y,z) and P*(L%) is the Lagrange interpolating polynomial

of order ¢ for the 4th node, defined as

9
L#’_LZ’ )
PHLY) = U—M 3.45
R F G o

h#Ed

where L% = L% (x;,y;,2;). It can be verified that &7 (x,y,z) given by

Eq. (3.44) indeed satisfies the property of Eq. (3.43).

[t is now possible to address the relationship between the order of the FEM
discretization error and the mesh element density. Consider the Taylor

series expansion of the solution ® about the point r:

ng 1
O(r + 8) = z —1 (8 V() +0(6m), (3.46)
4=0

where 0(6™*1) represents the error encountered when terminating this
expansion at a polynomial of order n,. Therefore, if § represents a measure
of the size of the element Q#, the local discretization error in the FEM
approximation is of order O(6™*1) in the best-case scenario. Furthermore,
it is well known from Taylor’s theorem that the error term in Eq. (3.46) is
related to the magnitude of V*2*1® within the domain of the approximation.
Thus, refinement of the mesh in regions where @ is expected to have rapid

spatial variations is critical for obtaining an accurate FEM solution.

In reality, the geometry of practical problems often involves complex shapes

with curved edges and surfaces. Consequently, the use of mesh elements
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strictly possessing straight edges leads to unavoidable errors due to the
nonconformity of the elements to the true problem geometry. In order to
alleviate this shortcoming, the polytopal elements illustrated in Figure 3.4
can be mapped into distorted forms with curvilinear surfaces.!3 In a manner

similar to Eq. (3.40), this transformation can be expressed as

m

r= z TP (En,0), T=(xy2) €Q? (3.47)

=1

where rf = (x;,v;, 2;) denotes the position of the ith node of the curved

element in xyz-space and Xf(f,n, {) represents the shape function
responsible for the transformation of the parent polytope defined in
&nd-space. This relationship between the parent and corresponding mapped
element is illustrated in Figure 3.6. It can be shown that the shape functions

in Eq. (3.47) are given by’
TEN ) =P (A —¢—n—DP2EOP P, (3.48)

where the nodal label (aq,a, a3 a,) and Lagrange interpolating
polynomial ?f are defined as before. If the order of the shape functions is
taken to be equal to the order of the basis functions, the resulting elements

defined by Eq. (3.47) are called isoparametric elements.

Most of the nodes generated by the discretization will simultaneously belong
to several elements (see § 3.3.2). Consequently, each node is assigned the
local index 4 within each associated element, in addition to a global index
specifying its position within the complete problem geometry. These indices

are then related via a connectivity array denoted Ug (4, p), which gives the
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(b)

FIGURE 3.6: (a) Illustration of a second-order tetrahedral parent element with straight edges

in énd-space. (b) The transformed element with curved edges in xyz-space. The local node

indices are shown for both elements.

global number of the node possessing local index < in element Q#. In a
similar manner, connectivity arrays denoted U,q (4, p) are constructed to
relate local and global indices on specific interfaces and boundary segments
on which boundary conditions of a particular type are enforced. These
arrays are necessary for an efficient computer implementation of the FEM,
eventually serving as a critical tool during assembly of the final system of

linear equations (see § 3.3.5 and 3.3.6).

3.3.4 Galerkin’'s Method of Weighted Residuals
At the core of the FEM is the conversion of the original boundary value
problem into a system of linear equations with a finite number of unknowns.

This can be accomplished by interpreting the governing equation of

Eq. (3.38) in terms of the residual r defined as

r(d) = 8[d] — f. (3.49)
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Thus, any @ that is a solution of the original boundary value problem must
result inr(®) = 0. In contrast, an approximation of the exact solution D,
such as the one constructed with Egs. (3.39) and (3.40), would result in
r(ff)) # 0. Hence, the problem of seeking an approximate solution of
Eq. (3.38) can now be regarded as determining the approximation ® that
results in the least value of r at all points in (). Mathematically, this amounts

to an attempt to satisfy the condition!#4
R = f w?i(®) da’ = 0, (3.50)
Q

where SRf is the weighted residual associated with the arbitrary weighting
function denoted wf . Accordingly, this approximation procedure is
commonly referred to as the method of weighted residuals. In particular, if a
set of weighting functions {w?} are selected such thatw? = &7, then the
Galerkin formulation of the weighted residuals method is obtained.* Hence,

within each finite element %, a collection of weighted residuals are

generated:

_ , i= 1,2,...,m9,
RY = Ql &7 (E[d)(r)] —f(r)) Q' =0, { o= 12N, (3.51)

As will be demonstrated in the following sections, this collection of weighted
residuals actually represents a system of linear equations, for which the

solution is comprised of the unknown nodal values of ®.
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3.3.5 Magnetostatics Formulation without Currents

The FEM is an effective tool for solving boundary value problems in
magnetostatics characterized by the absence of free electrical current. In
particular, this situation is applicable to the design of permanent magnet
systems for MRI, for which calculation of the magnetic fields produced within
and surrounding complex nonlinear magnetic structures is required (see
Chapter 5). The formulation of this problem begins with the generalized

constitutive relationship given by

B = uH + puoM,.. (3.52)
In ferromagnetic regions we have yu =y, and Eq. (3.6b) is recovered.
Similarly, in regions consisting of nonlinear magnetic media it is often
assumed that M,. = 0, and hence Eq. (3.8b) is obtained. Due to the absence
of currents, H can be defined as the gradient of a scalar magnetic potential
d,, (see §3.1.3):

H=-Vo,,. (3.53)

This result can be combined with the divergence of B in Eq. (3.1d) to obtain

the second order partial differential equation (PDE):

V- (uvod,, — uyM,) = 0. (3.54)

By applying Galerkin’s method of weighted residuals to this equation,
Eq. (3.51) becomes
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R = f STV - (uVby, — 1t M,)] LY, (3.55)
ar

where it is implied thati=1,2,..,mg and p =1,2,..,Ny. Hence, by

Green’s theorem,®

R? = f V&7 - (uVd,,) dQ’ — f V&7 - (uoM,) dQ’ (3.56)
Q» Qr

+ f SYB-adl’,
0¥

where 0Q0? is the boundary of Q. By replacing ®,, with the FEM

approximation ® from Egs. (3.39) and (3.40), the weighted residual in
Eq. (3.56) becomes

m
RY =Zq>§’ f vef-(ﬂvef) dq’ — f V&7 - (uoM,) dQ'  (3.57)
7=1 Qr Qr

+ f SYB-adl'.
0¥

This equation can be expressed in matrix form as
R? = K P? — b7 — g7, (3.58)

where the elements of the mg X mq matrix K#, and mq X 1 vectors b# and

g7, are defined as
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K? = f veﬂ?-(ﬂve?) de, (3.59a)

[oY4
by = f V&7 - (1oM,) A, (3.59b)
[oY4
g7 =- | &B-nadr. (3.590)
Jexs

Summing the weighted residuals from all elements yields

Nq Nq
R = Z R? = Z(Kﬂ’w — b? — g?), (3.60)
p=1 p=1
=K®-b—g, (3.61)

where the augmented matrix K# and vectors ®7, b#, and g# are formed by
expanding the associated elemental quantities of Eq. (3.58) through zero

padding and using the relations?”

K apuaGy = Kip (3.62a)
OF i) = P7 (3.62b)
g = b7 (3.62¢)
Ttiotip) = 90 - (3.62d)

By setting the total residual R = 0 in accordance with Galerkin’s method, the

final matrix equation is obtained:

Kb=b+g. (3.63)
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Assuming that M,. is prescribed in the original problem, the elements of K
and b can be obtained by direct integration of the formulae in Egs. (3.59a)
and (3.59b) using Gaussian quadrature rules.” However, the elements of g
require close consideration of the imposed boundary conditions. From Egs.

(3.59¢) and (3.60), g, is given by

g, = —Z f &’ (B* —B~) A dl’ (3.64)
w |rw
—Z fe;’B-ﬁdr',
v |rv

where I'* and I'” represent internal interfaces and external boundary
surface segments of the finite element mesh that are connected to the 4th
global node, respectively. Hence, p is such that< = U, (4, p) and therefore

Gf represents an appropriate basis function on the surface of integration.

Additionally, the + and — signs in this expression are used to label the
quantities on the upper and lower sides of associated surface. The normal
component of the magnetic field is required to be continuous across internal

interfaces:
n-(B*—-B7)=0, (3.65)

therefore, the integrals over I'* in Eq. (3.64) vanish. Furthermore, if ' is an
external boundary where the magnetic field is expected to be tangential to

the boundary surface:

fi-B=0, (3.66)
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then the integral over ' in Eq. (3.64) also vanishes. However, if the
magnetic field is expected to be orthogonal to I', then the potential on this

surface is constant. Thus, it is possible to specify

®, =0, (3.67)

permitting g, to be discarded and @, directly removed as an unknown from
the system of equations. Consequently, regardless of the boundary condition

imposed, Eq. (3.63) simplifies to

K® = b. (3.68)

The AC/DC module of the commercially available software package CoMsoL
MULTIPHYSICS!® can be used solve magnetostatics problems in the absence of
free currents with the FEM. In doing so, CoMSOL MULTIPHYSICS solves the
linear system of Eq. (3.68) using a flexible generalized minimum residual

method!® (FGMRES) with a geometric multigrid preconditioner.l”

3.3.6 Magnetostatics Formulation with Currents

In regions with conductors carrying electrical current, it is not possible to
define H according to Eq. (3.53). Such conditions arise in the design of
superconducting magnets for MRI, where large circular coils carry immense
currents in order to generate the strong magnetic field used to uniformly
polarize the object being examined (see Chapter 7). In this case, a reduced
potential formulation can be employed, where H is separated into two

components:18

H=H,+H, (3.69)
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where H is the solenoidal component directly generated by the current
distribution and H,, is the irrotational component due to any magnetic
materials. Consequently, Hg can be calculated directly with the Biot-Savart

integral:

H,(r) = f](r’) |T r’||3 dv’, (3.70)

and H,, can be expressed as the gradient of a scalar magnetic potential as in

Egs. (3.12) and (3.53):

H, =-Vo,,. (3.71)
The benefit of this approach is that the reduced potential formulation of
Eq. (3.65) only needs to be applied in the distinct regions of (1 containing the

current carrying conductors. In all other regions, Eq. (3.53) holds as before.

According to the generalized constitutive relationship in Eq. (3.52), the

magnetic field is given by
B = u(=vVo,, + Hy), (3.72)

where M, = 0 has been assumed. Combining this equation with the

divergence of B in Eq. (3.1d) yields
V- [u(-Vd,, + Hy)] = 0. (3.73)

If the free currents are restricted to regions of uniform g, then by noting that

V- (uHy) = 0, Eq. (3.73) simplifies to
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—V - (uVd,,) = 0. (3.74)

This equation is identical to Eq. (3.54) with M,. = 0, hence, the steps of
Galerkin’s method can be followed to yield the weighted residual matrix
equation (see § 3.3.5)

R? = KP 7 — g2, (3.75)

where the elements of the mg X mg matrix K# and mq X 1 vector g# are

given by
K? = f ve? - (uve?) ds, (3.76a)
QP
Y _ _ 6#7 . Y 3.76b
9! ¢ (uH,,) -ndr'. (3.76b)
Jexs

Summing the weighted residuals from all elements yields

Nq Nq
R = z R? = Z(Rﬁiﬂ’ —g?), (3.77)
p=1 p=1
=Kb—g, (3.78)

where the augmented quantities K#, ®#, and g# are given by Eq. (3.62). By
setting the total residual R = 0 as before, the final matrix equation is

obtained:

Ko = g. (3.79)
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The elements of K can be obtained by direct integration of the formula in Eq.
(3.76a) using Gaussian quadrature rules,” whereas the elements of g are
determined by the imposed boundary conditions once again. In general, g;

has the form

go=- )| | 7w~ wHz) - mar (3.80)
w |r«
—Z f@f(,uHm)-ﬁdF’.
v |rv

where p is such that < =Ug(4, p») and therefore 6;.’ represents an

appropriate basis function on the surface of integration. Therefore, on
internal interfaces where the condition of Eq. (3.65) holds, the integrals over

['* become

f &) (W Hy — uHy) - dI’ (3.81)

r«

= fo(u‘H;—#+Hi)-ﬁdF’,
l"/l/t

which may be obtained by direct integration using Eq. (3.70) (see § 3.2).
Similarly, if [ is an external boundary for which the tangential field

condition of Eq. (3.66) holds, then the integral over I'* becomes

f@f(uﬂm)-ﬁdr' = - f@f(uHs)-ﬁdr'. (3.82)

rv rv
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Lastly, if H,, is expected to be orthogonal to ', then it is possible to specify

®, =0, (3.83)

permitting g; to be discarded and ®; once again directly removed as an

unknown from the system of equations.

General magnetostatics problems involving current carrying conductors can
be solved with the FEM using the commercially available software package
OPERA-3D,1° which employs the analysis module ToscA to solve the linear
system of Eq. (3.79) via an incomplete Cholesky decomposition and

conjugate gradient method.20
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CHAPTER 4
THEORY AND TECHNIQUES II
NUMERICAL OPTIMIZATION

The topic of mathematical optimization deals with the minimization or
maximization of a given function subject to constraints on its variables. It
remains a major area of ongoing research, with significant efforts tracing
back to the seminal work by Euler and Lagrange on the development of
variational calculus in the 18t century. Optimization methods have
widespread applications in nearly every field in which numerical information
is processed, such as science, engineering, economics, and finance. In
particular, mathematical optimization techniques play a central role in the
optimal design of permanent and superconducting magnet systems for

magnetic resonance imaging as presented in this thesis.
4.1 THEORY

4.1.1 Introduction

The general optimization problem may be mathematically expressed as

minimize f(p), (4.1a)

subjectto p € B, (4.1b)

where f:R" - Ris known as the objective function, p = [py,p, ..., Pnl" is
the design vector with n independent design variables as elements, and B is
the feasible domain or feasible set. This general formulation also applies to
maximization problems without loss of generality, since maximizing a

function f is equivalent to minimizing the function —f.
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The feasible domain ‘P is a subset of R" that is defined by the particular
conditions imposed on the design variables. Therefore, the problem in Eq.
(4.1) is referred to as a constrained optimization problem and Eq. (4.1b) is
known as the constraint. A point p which satisfies the constraint is said to be
a feasible point. Typically, the feasible set is defined in terms of the

constraint functions c,(p) as

B ={plc;(p) =0,7i € E} U {plc;(p) < 0,7 €T}, (4.2)

where € and J are the index sets for the equality and inequality constraints,
respectively. In the special case where £ =7 = @, we have f = R" and the

problem in Eq. (4.1) is referred to as an unconstrained optimization problem

(see § 4.2).

Optimization problems with the general form of Eq. (4.1) may be further
classified according to the nature of the objective function, constraint
functions, and the design vector. For example, if the objective and constraint
functions are linear in p, the problem is known as a linear programming (LP)
problem (see § 4.3.2). If however at least one of the objective or constraint
functions are nonlinear in p, we have a nonlinear programming or nonlinear

optimization problem.

A point p* that is a solution to Eq. (4.1) is called a minimizer of the function f
over 8. In general, we ultimately wish to locate the global minimizer of
Eq. (4.1), which in particular satisfies f(p*) < f(p) for all p € B. However,
this is extremely difficult in practice and often algorithms for solving
Eq. (4.1) are only able to find a local minimizer, which satisfies f (p*) < f(p)
within a neighbourhood PB* of p*.
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When solving an optimization problem, we rarely have detailed prior
knowledge of the overall shape and behaviour of the objective function. For
example, the objective function may not be explicitly defined in terms of the
variables, or the shear number of variables alone may complicate the
problem to an incomprehensible extent. Consequently, optimization
algorithms typically adopt an iterative approach. They begin with an initial
starting point p(l) and generate a sequence of iterates {p(/‘)} that terminates
when no further progress can be made or when an apparent solution has

been reached. In general, this iterative procedure can be expressed as

pAtD = p) 4 aWpH) | > 1) (4.3)

where the vector d" is the search direction, a™® is the scalar step size, and
the superscript £ denotes the iteration number. Algorithms therefore rely
on the local information about f that is available at the current and previous
iterations to generate search directions that yield future iterates exhibiting a

decrease in the objective function value, that is:

fe**) < £(p™). (4.4)

We say a vector d # 0 is a feasible direction at p € § if there exists a nonzero
@, such thatp + ad € B for all @ € [0, @,). By requiring the search direction
d“® computed at each iteration to be a feasible direction, most algorithms

ensure that the sequence of iterates {p(")} are feasible.

4.1.2 First-Order Necessary Conditions

The methods from which optimization algorithms calculate new search

directions, or determine whether a given iterate is an acceptable solution, are
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typically based on certain necessary and sufficient conditions regarding the

gradient Vf or Hessian V?f that can be established at a local minimizer p*.

A fundamental first-order necessary condition is that if p* is a local
minimizer of the function f over %, then for any feasible direction d at p*, we

havel

Of o\ ropia
5P =d'Vf(p) =0 (45)

Essentially, this means that the rate of increase of f at p* is nonnegative in
any feasible direction at a local minimizer. If p* is an interior point of 3, or if

the problem is unconstrained, then Eq. (4.5) simplifies to the familiar result!

Vf(p*) = 0. (4.6)

Points that satisfy Eq. (4.6) are known as stationary points. Feasible

directions that do not satisfy Eq. (4.5) are known as descent directions.

4.2 UNCONSTRAINED OPTIMIZATION METHODS

4.2.1 Introduction
Unconstrained optimization problems are a special class of problems in the

form of Eq. (4.1) with no constraints present. Specifically, € =7 = @ and we

have

minimize f(p), (4.7a)

subject to p € R™. (4.7b)
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Solutions to Eq. (4.7) are strictly defined by the behaviour of f alone and
therefore the methods that have been developed to solve this type of
problem are significantly more straightforward and have a stronger
theoretical foundation than those dealing with the more complicated class of

general constrained optimization problems.
Unconstrained optimization methods are typically iterative and implement

updates of the form in Eq. (4.3) in the search for a solution to Eq. (4.7).

Specifically, the design vector is updated at the £th iteration according to
p(k+1) = p(fc) +a®dB®, p>1, (4.8)
with the search direction d* often taking the general form
d® = —GW YW 4 gk gia-1) (4.9)

where Vf®) =vVf(p®) . The expressions defining the symmetric
nonsingular matrix G® and the scalar g™ vary amongst the many

established unconstrained optimization algorithms. If G*) is positive

definite, f® > 0,and d%D"VF® < 0, then d® is a descent direction:
dDTYF® = _gfWT W TIgF® 4 g ge-DTy ) <o (4.10)

and the utility of Eq. (4.9) becomes apparent. In the following sections we
review a selection of the most common methods for solving Eq. (4.7) and the

associated choices for the definition of G and B,
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4.2.2 The Steepest Descent Method

The steepest descent method3 is the simplest first-order optimization
method for solving problems in the form of Eq. (4.7). By choosing G* and
B™ from Eq. (4.9) as

G =1, (4.11a)

B = 0, (4.11b)

where I is the identity matrix, the search direction for the steepest descent

method simply becomes

d® = —yf), (4.12)
Motivation for the result in Eq. (4.12) follows from the fact that the gradient
vector Vf (p) points in the direction of maximum rate of increase of f at p, or
conversely, —Vf(p) points in the direction of maximum rate of decrease.
Therefore, this choice for the search direction is a reasonable starting point
for a search for the minimizer of f. If we consider the linear approximation
of f at p“® via the Taylor series expansion:

f(W +8) = f(pW) + 8TVf® + 0(6?), (4.13)
where 8§ = —aVf®, Vf®) = 0, then

£ +8) = £(p9) - all7f | + 0(a, (414

and for sufficiently small « > 0 we have
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f(P® +8) < f(p™). (4.15)

Thus, the steepest descent direction is always a descent direction when the
gradient is nonzero, and so it is always possible to reduce the value of f by
iteratively updating the design vector according to Egs. (4.8) and (4.12) until
Vf = 0 and convergence to a local minimizer of Eq. (4.7) is achieved. A
rigorous treatment of the convergence properties of the steepest descent

method can be found in the literature.*

It can be shown that if the step size a® is chosen exactly so as to minimize f

along d® at each steepest descent iteration, then successive search

directions will be orthogonal, that is d#*D d® = 0. This leads to a
geometrical zig-zagging pattern for the sequence of iterates {p(k)}, which in
turn results in a slow approach to the solution of many optimization
problems in practice. However, selecting a® in this fashion is
computationally expensive and typically avoided in practice, thus alleviating

this undesirable behaviour.

The steepest descent method is simple to implement and does not strongly
depend on the smoothness of the objective function considered.
Furthermore, it can easily be extended to a constrained optimization
algorithm (see § 4.3.3), and thus it is frequently used as a starting point for

solving many practical optimization problems.

4.2.3 The Conjugate Gradient Method

The conjugate gradient method is another first-order technique that has been
proposed for solving nonlinear optimization problems.> Similar to the
steepest descent method, the conjugate gradient method requires the

calculation of the objective function gradient Vf at each iteration. The
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advantage of the conjugate gradient method is that the theoretical
foundation for generating the search directions at each iteration is based on a
quadratic model of the objective function. If we consider the Taylor series

expansion of f at p*®:

1
f(eW +8) = f(pW) + 6TVfP® + 587V fP§ (4.16)
+0(6%),
where V2f®) = v2f(p™®), we see that a quadratic model is generally a
better approximation of f than the linearization in Eq. (4.13), for sufficiently
small §. Consequently, by tailoring a method to specifically perform well for
quadratic functions, it may be possible to achieve improved convergence for

general nonlinear functions as well.

In the conjugate gradient method, the search directions are chosen in an

effort to obtain the property of Q-conjugacy, so that for all 4 # £, we have
dP'Qd® = o, (4.17a)

where Q is real symmetric n X n matrix. This is achieved by choosing G®

from Eq. (4.9) as
GW =1, (4.18a)
with ) defined by either the Fletcher-Reeves formula:5

Vf(k)va(/&)
Vfr-DTyfr-1)

B — (4.18b)

105



or the Polak-Ribiere formula:®

Vf(&)T(Vf(fa) — Vf4-D)

) = 4.18c
g Vf k-0 yfk-1) ( )
In all cases, the conjugate gradient search directions take the form
—Vf@, fors =1,
d® = { 4 (4.19)
—Vf® 4+ pBWa*R-D - for > 1.

The choice of using either Eq. (4.18a) or (4.18a) for computing B is
inconsequential for quadratic functions. However, the two variations can
lead to noticeable differences in performance for general nonlinear functions.
Although both approaches demonstrate unique advantages in certain cases,

the Polak-Ribiere formula is generally considered to be slightly more robust.?

Practically speaking, Q-conjugacy of the search directions can only be fully
achieved for quadratic objective functions. In this special case, the conjugate
gradient method exhibits the desirable property of finite termination, as the

solution to Eqg. (4.7) is obtained in at most n steps.

Although the conjugate gradient method often performs better than the
steepest descent method, there is no guarantee that the search directions
given by Eq. (4.19) will be descent directions.? Hence, conjugate gradient
iterations may actually lead to an increase in f. To overcome this
shortcoming, a modification is often implemented to restart the algorithm
every n steps (or less). This acts to refresh the search direction calculation
by discarding information from distant previous iterations that may no

longer be beneficial.
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4.3 CONSTRAINED OPTIMIZATION METHODS

4.3.1 Introduction

The most general class of optimization problems are those in which
constraints are imposed on the design variable p, so that the solution of the
problem typically requires knowledge of how the objective function f
behaves with respect to the topology of the feasible domain .

Mathematically, constrained optimization problems may be expressed as

minimize f(p), (4.20a)

subject to p € B. (4.20b)

Methods which attempt to solve the problem in Eq. (4.20) are usually
formulated from first and second-order optimality conditions. These
methods are substantially more complicated than those dealing with
unconstrained optimization, and thus in the following sections we restrict
ourselves to the particularly special techniques of linear programming, as
well as a basic projection method for extending the techniques of

unconstrained optimization to problems with constraints.

4.3.2 Linear Programming

Linear programming (LP) refers to a branch of constrained optimization
problems in which the objective function is linear and the constraints form a
set of linear equations or inequalities. Historically speaking, LP methods
have found many applications in science and economics. In particular, LP
became especially popular during World War II, when it arose naturally in
problems associated with the production and allocation of scarce resources.

Consequently, the development of techniques tailored to this class of
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constrained optimization problems has received great attention.

Mathematically, an LP problem in standard form is expressed as

minimize f(p) = ¢'p, (4.21a)
Ap =b,

subject to { (4.21b)
p = 0.

where ¢ € R" is the cost vector, b € R" is the constraint vector satisfying
b >0, and A € R™" is the equality constraint matrix. With reference to

Eq. (4.20), we see that the feasible domain B is defined as

B = {p|lAp = b,p = 0}. (4.22)

If the feasible set is nonempty and the objective function is bounded over §3,
then there must exist at least one solution to Eq. (4.21). Furthermore, since
the objective function is linear, any solution to Eq. (4.21) is a global

minimizer.

It is important to note that any LP problem may be expressed in the standard

form of Eq. (4.21). Consider the seemingly more general expression:

minimize f(p) = ¢'p, (4.23a)
Aeqp = beq'
Sub]ect tO Aineqlp S bineqlﬁ (4.23b)

Ainequ = bineqz '

By introducing auxiliary variables £, £, > 0, we may write
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Aineqlp +1, = bineqli (4243)

Ainequ —t, = bineqz- (424b)

Furthermore, we can define p = p* — p~ where

p* = max(p,0) = 0, (4.25a)

p~ = max(—p,0) > 0. (4.25b)

Hence, by introducing the augmented quantities

p= , (4.26a)

¢= , (4.26b)

eq _Aeq
Aineql _Aineql I ’ (426C)
L Ainqu _Aineqz 0 I

=
Il

eq
bineql , (426d)

S
Il

L bineqz

we may rewrite problem Eq. (4.23) in the equivalent standard form:
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minimize f(Pp) = ¢'D, (4.27a)

subject to { (4.27b)

An interesting feature of LP problems is that the constraint set ¥ defines a
convex polytope in R" (Figure 4.1). In fact, a fundamental theorem of LP is
that if any solutions to Eq. (4.21) exist, then they must occur on the boundary
of that polytope, and at least one solution exists at a vertex.? Thus, although
B may contain an infinite number of feasible points, a global minimizer of Eq.
(4.21) must exist at one of the finite number of vertices of . This important

result forms the basis of all modern LP algorithms.

The well known simplex method is an especially elegant and straightforward
approach to solving LP problems.”-8 This method is still commonly used and
is the preferred choice for solving LP problems that do not contain a large
number of variables. The simplex method is essentially an algebraic
technique consisting of two major phases, as illustrated in Figure 4.1. In the
first phase, an initial vertex of ‘B is located. Provided that this vertex is not
the solution to the problem, linearity of f suggests that at least one edge
containing the current vertex is a direction along which the value of f
decreases. Therefore, in the second phase, such an edge is located and the
algorithm proceeds to the next vertex on the opposite end. Proceeding in
this manner, the simplex method will typically visit as many vertices of ‘8 as
necessary, until a solution is located. The algebraic details of this procedure

are available in the literature.*
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simplex
phase 1

simplex
phase 2

FIGURE 4.1: The two phases of the simplex method. In the first phase, an initial vertex of the
feasible domain 3 is located. In the second phase, the method steps through adjacent

vertices until the minimum p* is reached.

In certain special cases, there can be an iteration of the simplex method for
which the objective function f is constant along all edges adjacent to the
current vertex. Consequently, any step chosen by this method will leave the
value of f unchanged. Iterations of this type are called degenerate steps. Itis
possible that several degenerate steps can occur in succession, causing the
simplex method to arrive back at a vertex that was previously visited.
Typically, the algorithm would then repeatedly cycle through the same
degenerate steps and no further progress would be achieved. In practice,
cycling may indeed be observed with large problems, however, modifications
to the simplex method can be made which attempt to circumvent this

behaviour.*
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An obvious disadvantage of the simplex algorithm is the possibility that the
method will visit many vertices of 9B in a large-dimensional problem. In fact,
examples can be provided for which the simplex method visits each of the 2™
vertices of the feasible domain before locating the solution.® Therefore, the

simplex method is said to have exponential worst-case complexity.

An alternative method to solving LP problems was proposed by Karmarkar!©
in 1984. Karmarkar’s projective algorithm is referred to as an interior-point
method, since the algorithm traverses the interior of the feasible polytope B
when searching for the solution to Eq. (4.21), as opposed to the simplex
method which traverses the boundary. Karmarkar’s method essentially
employs a modified Newton step that is projected onto a central region in ‘8
that leads from the initial point to the solution vertex. This results in a
decrease in f at each iteration, while approaching the solution from a more
direct path than would be possible by following the boundary of 8. By doing
so, Karmarkar’s method achieves polynomial complexity and performs much
faster than the simplex method on large-scale LP problems. A review of the

sophisticated details of Karmarkar’s method is provided in the literature.?

After the introduction of Karmarkar’s method, intense efforts were directed
at developing more advanced interior-point techniques with better
performance. The most notable such method is the primal-dual predictor-
corrector algorithm!! incorporated into the LIPSOL algorithm,? which has
been implemented in many commercial software packages such as the

OPTIMIZATION TOOLBOX of MATLAB.13

4.3.3 Projected Gradient Methods

Several methods were previously discussed for solving unconstrained
optimization problems in the form of Eq. (4.7a). These techniques iteratively

updated the design vector according to

112



pA+D) = ) 4 oW gk, (4.28)

If this formula is directly applied to a constrained optimization problem, the
sequence of iterates {p(")} may not satisfy the constraint Eq. (4.20b).
However, through a simple modification of Eq. (4.28), the structure of
unconstrained optimization methods may be extended to problems with

constraints. The modified update formula is given as#
ptD) = H(p(k) + a(k)d(k)), (4.29)

where II(p) is the projection of p onto B, and IT: R™ — R™ is the projection

operator defined according to

lp — ()|l = min [[p-pll, peP. (4.30)
Hence, II(p) is the closest point in P to p, with respect to the Euclidean
norm. Therefore, provided II(p) is well defined, the update formula in

Eq. (4.29) may be used to generate a sequence of feasible iterates that satisfy

Eq. (4.20b).

An explicit formula for II(p) may not always be available. However, for the

case of box constraints, where ‘B is defined as

P={pli<p<u,i=1..,n} (4.31)

the projection ¢ = II(p) can be defined according to*

113



L, ifp, <L,
y; = min{u, max{l;,p;}} =4 ps ifl;<p;<uy (4.32)

u,;, ifp; >u,.

If the steepest descent search direction in Eq. (4.12) is employed in

Eq. (4.29), the update formula for the projected gradient algorithm becomes:

p(k+1) — H(p(k) _ a(/d)vf(k))_ (4.33)

Similarly, if the conjugate gradient search direction in Eq. (4.19) is used, the

update formula for the projected gradient algorithm becomes:

p#tD = [i(p® + a®[-Vf®  pBGA-D]), (4.34)

There has been a great deal of research characterizing the convergence
properties of projected gradient algorithms,4-16 making this simple class of
methods an attractive choice for solving the constrained optimization
problem of Eq. (4.20). In particular, it can be shown that similar to the
steepest descent and conjugate gradient methods, the iterates generated
from Egs. (4.33) and (4.34) will converge to a point satisfying the

fundamental first-order necessary conditions* stated in Eq. (4.5).
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CHAPTER 5
NON-AXISYMMETRIC POLE PIECE SHAPE
OPTIMIZATION FOR BIPLANAR PERMANENT MAGNET
MRI SYSTEMS

A version of this chapter has been published. T. Tadic and B. G.
Fallone, “Three-dimensional non-axisymmetric pole piece
shape optimization for biplanar permanent magnet MRI

systems,” [EEE Trans. Magn., 47 (1), 231-238 (2011).

5.1 INTRODUCTION

Magnetic field inhomogeneities in the imaging volume of an MRI system are
directly translated into geometrical distortions in the final images produced
(see § 2.2.7). Presently, the major limiting factor in the design of permanent
magnet systems is the difficulty in obtaining a large diameter spherical
volume (DSV) exhibiting a sufficiently homogenous magnetic field while
maintaining suitable patient access and practical device dimensions.! Efforts
in permanent magnet passive shimming have helped to cope with this
issue,2~¢ however the effectiveness of these methods remains limited by the

extent of the initial field inhomogeneities present after manufacturing.

There have been many attempts to improve the magnetic field uniformity of
biplanar permanent magnet systems through the optimal design of the shape
and configuration of the magnetic pole pieces.l.7-16 Generally, these efforts
have focused on annular shimmed pole piece designs,:'7~11 or shape
optimization of the pole piece surfaces.'2~1¢ The final pole piece geometries
obtained and evaluated in these cases are all notably axisymmetric. As such,

these designs are inherently limited in their ability to produce optimally
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homogenous fields since biplanar assemblies typically have non-
axisymmetric configurations. As biplanar magnet systems advance towards
more compact geometries with reduced pole sizes, new design methods and
pole piece geometries are sought that yield improved levels of field

uniformity as compared to those currently provided.

Ultimately, field uniformity on the order of 10—50 ppm over a 40 cm
diameter spherical volume (DSV) is desired, which has been assumed
throughout this work to translate into a specified requirement of better than
500 ppm at the design stage for a biplanar magnet system. When combined
with the additional errors likely to be introduced during manufacturing
(which may be of higher order and several times larger in magnitude), this
level of inhomogeneity constitutes a practical estimate for the maximum

limit that may be passively shimmed to a level suitable for medical imaging.

In this chapter, the finite element method (FEM) was applied to quantify the
effects imparted by lateral size reduction of a full body 0.2 T biplanar
permanent magnet assembly with a four-column yoke structure. The magnet
geometry selected for this investigation was based on the 0.2 T biplanar
permanent magnet utilized by our group in the construction of a prototype
integrated linear accelerator (linac) and MRI system with a perpendicular
configuration.® 2° Due to the unique requirement of this hybrid system to
rotate within a typical radiotherapy vault, it was necessary that the overall
lateral extent, and hence pole diameter, of the magnet assembly be

constrained.

In the present work, an iterative optimization method based on the FEM was
developed to calculate optimal pole piece surface contours that minimize the
magnetic field variation within a specified region of interest. In an attempt to
compensate for the non-axisymmetric magnetic field inhomogeneities that

are characteristic of biplanar permanent magnets, a grid parameterization of
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the pole piece surface was introduced so as to obtain optimized
axisymmetric and non-axisymmetric pole piece designs for the laterally
reduced compact magnet assembly (CMA). These designs were then
compared against flat and single annular ring shimmed pole piece designs as
found commonly in industry. In addition, the sensitivity of the magnetic field
inhomogeneities to geometrical errors in the design surface for the
nonaxisymmetric design was also explored, and statistical parameters

quantifying this sensitivity were approximated.

5.2 METHODS

5.2.1 Magnet Assembly Specifications

In order to quantify the effects of reducing the size of a permanent magnet
MRI system, the four-column biplanar magnet assembly shown in Figure 5.1
was considered. Using the rotating biplanar linac-MRI application! 2 as an
example, the minimum pole separation required for rotation around a typical
human patient was chosen as 70 cm. Due to the presence of pancake
gradient coils mounted to the pole surfaces, this nominal pole separation
would be further reduced by approximately 6—10 cm. Table 5.1 provides the
remaining dimensions labeled in Figure 5.1(b), which were approximately
obtained through a uniformly scaled enlargement of the commercially
available 27.5 cm gap permanent magnet system utilized by a prototype
linac-MRI system described in the literature.l2® This structure is herein

referred to as the uniformly enlarged magnet assembly (UEMA).

Due to a diagonal dimension /; of 2.862 m, the UEMA would provide a
vertical clearance of 63.8 cm if rotated within a typical radiotherapy vault
with 3.50 m height. In order to achieve a more practical clearance of 90 cm
to allow room for additional peripheral equipment, the lateral dimension [,

of the magnet assembly was reduced in order to maintain the minimum
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FIGURE 5.1: (a) A 3D schematic of the four-column biplanar permanent magnet assembly
with the relative orientation of the Cartesian coordinate axes shown. (b) A cross-sectional

view with dimension labels.

nominal pole separation /5 of 70 cm. This effectively results in a reduction of
the magnetic pole diameter [, from 175.5 to 139.8 cm. The remaining
dimensions of this laterally reduced compact magnet assembly (CMA) are

provided in Table 5.1.
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TABLE 5.1: Dimensions of the permanent magnet assembly illustrated in Figure 5.1.

Length (mm)

Quantity UEMA CMA
L 2862 2600
L, 1980 1578
l; 700 700
l, 1755 1398
ls 235 235
lg 2066 2066

The yoke and column structures of the magnet assemblies described are
composed of AISI 1020 plain carbon steel, and the pole pieces are composed
of a special Armco magnetic steel. The nonlinear magnetic properties for
these materials are defined via the magnetization curves?? 23 shown in
Figure 5.2. The permanent magnet poles are constructed from a
neodymium-iron-boron compound (Nd:Fei4sB), with a homogenous

remanent magnetic field of 1.005 T oriented in the z direction.3

For each magnet design, the quality of the magnetic field in a given volume of
interest V was measured in terms of the parts per million (ppm)

inhomogeneity AB defined as:

Bmax — Bmi
AB =2 T. 1068, (5.1)
By

where B,.x and B, are the maximum and minimum values for the
magnetic field magnitude within V, respectively, and B, is the magnetic field
strength at isocenter. For completeness, the maximal extent (xsg, Vs¢, Zs5;) of

the 5 G magnetic field contours (relative to isocenter) was also calculated.
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FIGURE 5.2: Nonlinear magnetization curves for AISI 1020 plain carbon steel and Armco

magnetic steel.

5.2.2 The Finite Element Method

5.2.2.1 Problem Formulation

The FEM is a widely established technique for numerically solving
discretized boundary value problems (see § 3.3). Itis particularly well suited
for problems involving complex geometries and its use in electromagnetic
analysis has been extensively documented.3® The required magnetic field
calculations performed in this chapter were accomplished with the
commercially available three-dimensional (3D) FEM software package
ComsoL MULTIPHYSICS.2? The details of the FEM implementation employed by

ComsoL MULTIPHYSICS have been provided in § 3.3.5, for which the important
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aspects are reviewed here. The FEM problem formulation begins with

Maxwell’s equations in a current free region:

V-B=0, (5.2a)

VX H=0, (5.2b)

where B is the magnetic field vector and H is the auxiliary magnetic field.

The scalar magnetic potential ®,, can then be defined as (see § 3.1.3):

H=-Vo,,. (5.3)

In a region characterized by a magnetic permeability 4 and remanent
magnetization M,., the fields B and H are related through the constitutive

relation:

B = uH + puoM,.. (5.4)

Combining Egs. (5.2), (5.3), and (5.4) yields the second-order partial
differential equation (PDE):

=V Ve, — ueM,) = 0. (5.5)

The magnetostatics application mode in the AC/DC module of ComsoL
MuLTIPHYSICS can be employed to numerically solve Eq. (5.5) for &,, at
discrete points within the model geometry, subject to appropriate boundary
conditions. Solution convergence is achieved when the specified relative
tolerance of 10-¢ exceeds the relative error estimate,?! which is computed as
a weighted L,-norm of the estimated nodal error of ®,,. The required fields

H and B can then be calculated directly by Egs. (5.3) and (5.4), respectively.
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5.2.2.2 Model Description

The FEM model constructed in this work consists of the biplanar magnet
assembly positioned at the center of a large cubic domain referred to as the
global model volume (GMV). This domain was required in order to simulate
the far field behaviour of the magnetic field within the vacated region
surrounding the magnet. Although the real magnetic field is of infinite
extent, the GMV must be truncated at a finite distance so as to limit the
number of degrees of freedom in the FEM analysis. A suitable truncation
distance of 5 m from isocenter was considered to have a negligible effect on
the solution accuracy within a 40 cm DSV at isocenter. This was determined
through a progressive enlargement of the GMV that was terminated when the
associated perturbation of the field solution was dominated by the mesh

discretization error addressed in a later discussion below.

To obtain the closed-loop behaviour characteristic of the magnetic field at far
distances, the tangential field condition was applied at the outer boundaries

of the GMV:

Ai-B=0, (5.6)

where 71 is the unit normal vector at the particular boundary. This condition
can also be applied on internal boundaries or planes across which both the
geometry and B are symmetric upon reflection, effectively simplifying the
model by only solving Eq. (5.5) explicitly on one side of the designated
boundary. As such, this condition was also applied to the xz and yz planes of
the biplanar magnet model. In a similar manner, the model may be further

simplified by applying the zero potential condition

®,, =0, (5.7)
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on internal boundaries or planes across which the geometry and B are
symmetric and antisymmetric upon reflection, respectively. This condition
results in a magnetic field that is orthogonal to the specified boundary
surface. As such, this condition was applied to the xy plane, resulting in a

total reduction of the FEM model to just one eighth of the complete geometry.

The simplified FEM model was partitioned into approximately 1.4 X 10°
isoparametric tetrahedral quadratic Lagrange elements (see § 3.3.2). This
mesh was automatically generated with a Delaunay triangulation algorithm
with a manual selection of parameters that controlled the maximum element
size and maximum element growth rate within the various regions
comprising the model geometry. An appropriate combination of these
parameters was selected so as to obtain a suitably accurate mesh-
independent solution that adequately resolved the field variation in regions
with large gradients. This was determined through a progressive refinement
of the mesh that was terminated when the field variation within a 40 cm DSV
at isocenter was limited to below 1 uT (approximately 5 ppm) upon doubling
the overall nodal density in the model. As a result, a maximum element

dimension of 1.5 cm was specified within this region of interest.

An illustration of the simplified FEM model geometry and finite element
discretization is provided in Figure 5.3. The depicted magnetic field
corresponding to the solution of Eq. (5.5) was calculated in less than two
minutes on a 2.7 GHz Intel Xeon quad-core PC workstation with 16 GB

of RAM.

5.2.3 Pole Piece Design Parameterization

The uniformity of the magnetic field generated by a given magnet design is
strongly influenced by the shape of the ferromagnetic pole pieces that

support the permanent magnet sources. Hence, the contoured surfaces of the
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FIGURE 5.3: (a) A section of the simplified FEM model geometry corresponding to the CMA
with a flat pole piece design. The magnetic field solution is overlaid with the FEM mesh.
Field map values are displayed in units of T. (b) A close-up section illustrating a fine mesh

within the magnet geometry and a 40 cm DSV at isocenter.
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pole piece designs considered were optimized for maximum magnetic field
uniformity in a 40 cm DSV. This was accomplished by mathematically
optimizing a set of design variables that define the geometrical shape of the
pole piece surface according to a specified parameterization. The details of
this optimization method are provided in § 5.2.4. Pole pieces possessing a
flat surface or a single annular ring shimmed (SARS) design were achieved
with a simple parameterization of the pole piece cross-section. More
complex axisymmetric and non-axisymmetric designs were generated from a
direct two-dimensional (2D) grid parameterization of the pole piece surface.
In all cases, the design variables were constrained such that the nominal pole
separation [; remained at least 70 cm, with all other dimensions of the

magnet structure held fixed.

5.2.3.1 Annular Shim Parameterization

The design variables for the SARS parameterizations were selected as the
dimensions of the pole piece cross-section, as shown for an upper pole
section in Figure 5.4. This parameterization results in three unique design
variables, denoted p; (for< = 1,2,3). The initial values specified prior to
optimization were taken from uniform enlargement of the pole piece
dimensions taken from the 27.5 cm gap commercial magnet system
discussed in § 5.2.1. When considering a simple flat surface, the design
variables were constrained such that the pole piece had a maximual uniform

thickness of p; = 218 mm withp, = p; = 0.

5.2.3.2 Grid Parameterization

In addition to the flat and SARS designs, axisymmetric and non-axisymmetric
grid parameterized pole pieces were obtained for the CMA. To this end, the
open surface of the pole piece was parameterized with a distribution of 112
control points defined in the @ plane, as shown in Figure 5.5. The thickness

of the pole pieces at these locations was varied during the optimization
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FIGURE 5.4: Design parameterization for optimization of the SARS pole piece designs. Only

the upper pole piece is illustrated.

process, as the z coordinates of the control points were taken as the design
variables. The pole surface was then generated based on a linear spline

interpolation between the control points.

Due to symmetry in the magnet geometry, additional constraints were
imposed on the control points in order to reduce the number of degrees of
freedom in the optimization procedure. The z coordinates for the control
points in quadrant II were obtained by reflecting the coordinates of the
control points in quadrant I over the line (x =0). Similarly, the
z coordinates for the points in quadrants III and IV were obtained by
reflecting the coordinates of the points in quadrants I and II over the line
(y = 0). Additionally, the control points on the line (r = 0) were constrained
to have the same z coordinate, as they share the same location on the design

surface.

When axisymmetric grid parameterized (AGP) designs were sought, the
control points on the lines (6 = n/8,m/4,31/8, and 7 /2) were constrained
to have the same z coordinates as the points on the line (6 = 0), resulting in

a total of 7 unique design variables. When non-axisymmetric grid
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parameterized designs (NAGP) were considered, the control points on the
lines (0 = 3m/8 and w/2) were constrained to have the same z coordinates
as those on the lines (6 = n/8 and 0), respectively, resulting in a total of 19

unique design variables.

Optimization of the AGP designs was conducted from an initial flat pole
surface configuration, defined by p, = 350 mm (for< =1, ...,7). In order to
partially alleviate the burden of the increased number of degrees of freedom,
the optimization of the NAGP designs was conducted as a two step
procedure. As such, the NAGP optimization was initiated from a manually
selected design state from within the evolution of the aforementioned AGP

optimization.

5.2.4 Nonlinear Optimization

In order to determine the optimal parameters for the pole piece designs
considered, the iterative shape optimization method summarized in
Figure 5.6 was developed. This algorithm was implemented in the MATLAB24
scripting environment and utilized macros from the CoMsoL MULTIPHYSICS
scripting language. This configuration permitted automatic iterative
modification and analysis of the required FEM models, as CoMsoOL
MuLtipHYSICS was directly integrated with the MATLAB application through a

built-in interface.

Mathematically, the optimization problem can be expressed as:

minimize f(p), (5.8a)

subjecttop € B, (4.1b)
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where f is the objective function and p is the design vector.

domain P is defined according to:

‘B - {pll,L S p'i S u,i,’l: = 1, ...,n},

The feasible

(5.9)
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such that the elements of p are subject to the lower and upper limitations [;
and u;, respectively. Forn unique design variables, the elements of p are

denoted p; (fori =1, ...,n).

The objective function is defined by the integral formula:

f) = j [B(r; p) — Byl2dV", (5.10)

v

where B(r; p) is the magnitude of the magnetic field at the point r, implicitly
due to the magnet design defined by p. As such, the objective function
provides a cumulative measure of the magnetic field inhomogeneity within
the target region of interest V. In the current implementation, V was taken

as a 40 cm DSV at isocenter.

The gradient of the objective function Vf with respect to the design variables

is given by

_[Y . 9

= , 5.11
apl apn ( )

vf

for which each of the partial derivatives was approximated using a forward

finite-difference approximation:

of f(pi+6p)—f(ps)
op; 8p ’

(5.12)

where the perturbation interval §p was chosen as 0.1 mm according to trial
and error. Each of the objective function terms in the numerator of

Eq. (5.12) corresponds to a particular design for which an independent FEM
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analysis is performed and the integral in Eq. (5.10) over the entire volume V

calculated.

During the optimization process, the design vector was updated at the £th

iteration according to the projected gradient formula (see § 4.3.3):
ptD) = H(p(k) + a(k)d(k)), (5.13)

where a® is the scalar step size, d® is the search direction, and II(p)
denotes the projection of p onto the feasible domain 8. Two versions of this
optimization scheme were developed, as characterized by the calculation
method specified for d®). In the first version, the steepest descent (SD)

method3 was selected, with d*®) calculated according to (see § 4.2.2):
d® = —yf), (5.14)

This was a suitable starting point, as the SD method is a simple and robust
first-order technique that only requires the calculation of Vf at each
iteration. In an attempt to improve the performance of the optimization
procedure and obtain faster convergence, the second version employed the

conjugate gradient (CG) method, with d“® given by (see § 4.2.3)

—Vf@, fors =1,
d® = { 4 (5.15)

—Vf® 4+ pBa*E-1 - for > 1.

The parameter 8™ appearing in this expression was calculated according to

the Polak-Ribiere formula, ¢ given as
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Vf(&)T(Vf(fa) — Vf4-D)

ﬁ(k) =
VfR-DTyfr-1)

(5.16)

In an effort to refresh the CG method and discard information from distant
previous iterations, the CG search direction was periodically reset to the SD
search direction (i.e. ¥ = 0). A reset frequency of seven iterations was

found to be effective through trial and error.

In general, a solution to the optimization problem in Eq. (5.8a) is reached
when convergence to a local minimum of f has been achieved. Since this
point is characterized by a vanishing objective function gradient (see §), a

sensible choice for the termination criteria would include the condition

|VF®| <k, (5.17)

where k¥ > 0 is a convergence parameter. The appropriate specification of
this parameter, along with the selection of any additional conditions to be
imposed, requires careful thought in addition to thorough experience with
the algorithm performance. In order to avoid untimely termination,
specification of automatic termination criteria was avoided and the

optimization scheme was halted manually.

5.2.5 Design Sensitivity

The relatively complex surface topology of the NAGP pole piece would likely
be subject to random errors during the manufacturing process. In order to
simulate these errors and quantify the effects of geometry perturbations, a
sensitivity analysis was performed on the optimal NAGP pole piece design
obtained with the SD method described in the previous section. To this end,

uniformly distributed random variations, denoted o, (for4< =1, ...,n), were
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applied to each of the unique design variables of the non-axisymmetric
parameterization, thus generating a random perturbation of the optimal

NAGP design. These random variations are mathematically described as:

0; ~ u(_o-max; amax); (518)

where U denotes the standard uniform probability distribution with the
specified maximum variation amplitude o,,,x. The design vector for a

perturbed optimized design p’ was therefore calculated as:

p =p+o. (5.19)

where o is the perturbation vector. Populations of 100 such perturbed
designs were obtained for various maximum amplitudes in the range of
0.1 to 5 mm. For each perturbed design, the resulting field variation AB was

calculated over 10, 20, 30, and 40 cm DSVs.

In order to evaluate the sensitivity of the optimized magnetic field
inhomogeneity to the random variations imposed, the three statistical
parameters Ps,, Pgy, and Py, were calculated for each population. These
parameters are defined as the AB values that upper bound 50, 80, and 90%

of the perturbed designs in a given population, respectively.

5.3 RESULTS AND DISCUSSION

5.3.1 Magnet Assembly Size Reduction
Table 5.2 compares the magnetic field at isocenter B, and calculated

inhomogeneities for the UEMA and CMA. Flat and SARS pole piece designs

were considered, where the width and depth of the peripheral ring of the
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TABLE 5.2: Summary of optimization results and comparison of magnetic field properties for

the magnet designs with flat and annular shimmed pole pieces.

UEMA CMA
Flat Pole SARS Pole Flat Pole SARS Pole

Quantity Piece Piece Piece Piece
Iterations - 9 - 11

B, (T) 0.233 0.204 0.203 0.172

f (10-11 T2-m3) 81.54 0.018 1455 1.899
AB, 30 cm DSV (ppm) 1797 29 8774 321

AB, 40 cm DSV (ppm) 3134 100 15299 1030
Xs¢ (m) 2.7 2.7 2.4 2.4
Vs (m) 2.7 2.7 2.4 2.4
Zs( (m) 3.0 3.0 2.8 2.8

SARS designs were optimized to minimize the cumulative field

inhomogeneity f as measured over a 40 cm DSV.

The magnetic field inhomogeneity AB increased significantly upon reduction
of the magnet assembly dimensions. In particular, AB increased by an order
of magnitude for the SARS pole piece design, resulting in 321 and 1030 ppm
over 30 and 40 cm DSVs, respectively. This effect can be visualized in the
corresponding magnetic field maps in the xy and xz planes at isocenter
provided in Figure 5.7. Assuming that successful post-manufacturing
shimming of a magnet assembly requires better than 500 ppm in a given
volume of interest, these results indicate that the CMA would be unsuitable

for medical imaging within the desired 40 cm DSV.

As noted in § 5.2.1, lateral reduction of the biplanar magnet necessarily

results in a smaller pole diameter and thus a decrease of permanent magnet
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FIGURE 5.7: Magnetic field maps in the xy (first column) and xz (second column) planes at
isocenter corresponding to the: (a), (b) flat and (c), (d) SARS designs for the UEMA;
(e), (f) flat and (g), (h) SARS designs for the CMA. Axis dimensions are in cm. Map values
are displayed in parts per million, measured relative to B, for each design. The dashed

circles represent the boundary of a 40 cm DSV.
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source material. Consequently, B, was reduced by at least 0.03 T for each
pole piece design. The strength of the corresponding fringe magnetic fields
also decreased, as the extent of the 5 G field contours was reduced from

(Xs6, Vsar Zsg) = (2.7,2.7,3.0) to (2.4,2.4,2.8) m.

5.3.2 Nonlinear Optimization

5.3.2.1 Design Comparison

Optimal axisymmetric and non-axisymmetric grid-parameterized pole piece
designs were obtained for the CMA using the SD and CG versions of the
optimization scheme described in § 5.2.4. These designs are visually
compared with the flat and SARS pole piece designs in Figure 5.8. The
calculated field strengths, objective function values, and residual field

inhomogeneities for these designs are compared in Table 5.3.

As seen in Tables 5.2 and 5.3, the AGP pole piece designs resulted in
improved field uniformity as compared to the SARS design. The residual field
variation AB over a 30 cm DSV was improved to 191 and 187 ppm with the
SD and CG variants, respectively. The value for the objective function f was
also improved by a factor of approximately 2.7, despite nearly equal AB
values over a 40 cm DSV. Hence, the advantages of the AGP designs diminish
with increasing distance from isocenter, as both the SARS and AGP designs
were inherently unable to compensate for the non-axisymmetric
inhomogeneity arising from the four-column yoke geometry that dominates

in larger regions of interest.

In contrast, the optimized NAGP pole piece designs clearly exhibited a
surface topology with a non-axisymmetric shape variation. As such, these
designs provided the greatest levels of field uniformity, now permitting post-

manufacturing shimming and medical imaging over both 30 and 40 cm DSVs
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FIGURE 5.8: 3D visualizations of the (a) flat and (b) SARS pole pieces for the CMA, compared
with the (¢) AGP and (d) NAGP optimized designs obtained with the SD method, as well as
the (e) AGP and (f) NAGP optimized designs obtained with the CG method. Axis dimensions

are displayed in meters.

for the CMA. Specifically, AB values over a 40 cm DSV were improved to 279
and 237 ppm for the SD and CG variants, respectively, as compared to values
exceeding 1000 ppm for the SARS and AGP designs. Furthermore, an
additional order of magnitude reduction in the objective function was
achieved, indicating a significant improvement throughout the 40 cm DSV.
These results are visualized in the corresponding magnetic field maps in the

xy and xz planes at isocenter provided in Figure 5.9.
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TABLE 5.3: Summary of optimization results and comparison of magnetic field properties for

the magnet designs with grid parameterized pole pieces.

Steepest Descent Method Conjugate Gradient Method
AGP Pole NAGP Pole AGP Pole NAGP Pole
Quantity Piece Piece Piece Piece
Iterations 720 683 256 358
B, (T) 0.177 0.178 0.179 0.175
f (10-11 T2-m3) 0.710 0.067 0.703 0.049
AB, 30 cm DSV (ppm) 191 51 187 37
AB, 40 cm DSV (ppm) 1001 279 1016 237
X5 (M) 2.4 2.4 2.4 2.4
Vs (M) 2.4 2.4 2.4 2.4
Zs (m) 2.8 2.8 2.8 2.8

As discussed in § 5.2.3.2, the AGP and NAGP designs were based on the same
geometrical parameterization used to generate the pole piece surfaces.
Accordingly, the radial densities of the control points were equal, but the
number of unique design variables was not. By increasing the number of
design variables employed in the axisymmetric approach, the advantages of
the NAGP design may be reduced. That said, the results indicate that the
non-axisymmetric nature of the yoke geometry has a limiting effect on the
uniformity of the residual magnetic field. With regards to the shape of the

pole piece, this can only be abated through use of a non-axisymmetric design.

The field strengths resulting from the SARS, AGP, and NAGP designs were
relatively similar, with values in the range of 0.172—0.179 T. As mentioned
in the previous section, the field strength is limited by the reduced
dimensions of the permanent magnet source. Furthermore, the pole plate

design was not seen to have a significant effect on the passive shielding
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FIGURE 5.9: Magnetic field maps in the xy (first column) and xz (second column) planes at
isocenter corresponding to the: (a), (b) AGP and (c), (d) NAGP designs obtained with the SD
method; (e), (f) AGP and (g), (h) NAGP designs obtained with the CG method. Axis
dimensions are in cm. Map values are displayed in parts per million, measured relative to B,

for each design. The dashed circles represent the boundary of a 40 cm DSV.
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performance of the magnet assembly. The fringe field extent (xsg, Ysc, Zs)
resulting from the AGP and NAGP designs remained unchanged
at (2.4,2.4,2.8) m. The corresponding 1, 5, and 10 G magnetic field contours

are shown in Figure 5.10.

5.3.2.2 Algorithm Performance

The evolution of the objective function f and gradient norm |Vf| is plotted
for the SD and CG optimization schemes in Figures 5.11 and 5.12,
respectively. As evident in these figures, optimization of the NAGP pole piece
design was conducted as a two-step procedure, with the first step coinciding
with a partial segment of the AGP optimization run. The CG version of the
optimization scheme performed significantly better than the SD version,
requiring considerably fewer iterations to arrive at AGP and NAGP pole piece
designs exhibiting comparable levels of field uniformity. Specifically, the
optimized AGP and NAGP designs were obtained with the CG method in 256
and 358 iterations, as compared to 720 and 683 iterations with the SD

method, respectively.

An interesting feature of Figures 5.11(a) and 5.12(a) is that the evolution of
f is comprised of several long plateaus with relatively slow improvement,
separated by short segments exhibiting rapid reduction. This suggests that
the optimization algorithms spend a considerable amount of time trapped
near local minima, during which many computationally expensive iterations
are performed with little or no improvement. This undesirable behaviour is
likely attributed to the first-order nature of the SD and CG methods
employed, for which the curvature information of f is not directly

considered.
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FIGURE 5.10: Plots of the 1, 5, and 10 G magnetic field contours projected onto the (a) xy and
(b) xz planes for the CMA with the NAGP pole piece design obtained via the SD method.
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The SD and CG methods are nonlinear optimization techniques that are
designed to arrive at local solutions to a given nonlinear optimization
problem. As such, the solutions obtained above are not guaranteed to be
globally optimal. This is immediately evident from the results in Table 5.3,
from which it can be seen that the NAGP designs obtained with the SD and CG
methods correspond to different local minima of the objective function f.
Confidence in the solutions above may further be established only through
repeated execution of the optimization algorithm with alternative initial

values for the set of design variables.

As noted in § 5.2.4, a required property of an optimal solution is the nulling
of the objective function gradient Vf. It is therefore an attractive feature of
the optimization scheme developed here that the minimization of f is
accompanied by a corresponding reduction of the gradient norm |Vf| by
approximately four orders of magnitude, as shown in Figures 5.11(b)
and 5.12(b). Furthermore, the segments mentioned above during which f
experiences rapid reduction are coincident with localized spikes in the
gradient norm |Vf|, which is the expected behaviour for the SD and CG

algorithms.

The quality of the search directions, and hence the performance of the
optimization algorithm, is closely related to the accuracy of the objective
function gradients used in Egs. (5.14) and (5.15). Since the curve describing
|[Vf|in Figures 5.11(b) and 5.12(b) is notably nonsmooth, it is important to
consider the accuracy of the forward-difference approximation used to
calculate Vf. If §f denotes a bound on the absolute error of f, then the noise-

level perturbation interval §p can be approximated with28

. of
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This interval represents a lower bound for the useful choice of the
perturbation §p appearing in Eq. (5.12). Any perturbation §p < §p results in
f(p; + 6p) — f(p;) < If. In other words, the resulting change in f will be
less than the noise-level (or error-level) defined by &f, thereby yielding a

meaningless approximation of df /dp;.

It is immediately evident from Eq. (5.20) that in any practical
implementation, the reliability of the forward-difference approximation
decreases with the diminishing gradient |Vf|. As &f is ultimately limited by
the accuracy of the FEM simulations, §p becomes increasingly large.
Therefore, the optimization algorithm will inherently suffer a loss of
performance as a stationary point is approached. As such, this may be a
contributing factor leading to the long plateaus of limited improvement

observed in the evolution of f discussed above.

In order to estimate §p at the point of termination of the NAGP optimization
with the SD method, the absolute error §f was approximated. This was
accomplished by progressively increasing the GMV truncation distance for
the FEM model and calculating the resulting peak variation observed in f.
This variation was random in nature and was attributed to the discretization

error introduced by the unique mesh generated for each truncated model.

Using this procedure, an estimate of §f ~ 2 X 10"'®> T2:m3 was obtained. To

complete the calculation of §p with Eq. (5.20), a worst-case estimate of

|Vf] = 5% 1071° T22m2? was taken from the data graphed in Figure 5.11(a).
Using these values, a noise-level perturbation of &p =~ 0.004 mm was
estimated. As noted in § 5.2.4, a perturbation interval 6p = 0.1 mm was
specified for the finite-difference calculations performed in this work. Since
this value is nearly two orders of magnitude larger than the estimate for 6p,

the aforementioned choice of §p was considered sufficiently large.
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5.3.3 Design Sensitivity

The sensitivity analysis described in § 5.2.5 was performed on the optimal
NAGP pole piece design obtained with the SD method. An example of the
typical data obtained for a given population of randomly perturbed pole
piece designs is provided in Figure 5.13, for which a maximum amplitude of
Omax = 2 mm was specified. For each population obtained, the statistical
parameters Ps, Py, and Py, were calculated for 10, 20, 30, and 40 cm DSVs
at isocenter. These results are plotted as a function of g,,,4 in Figures 5.14

and 5.15.
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FIGURE 5.13: Histogram of magnetic field inhomogeneity values over a 40cm DSV for a
population of 100 perturbed NAGP optimized designs with a maximum variation amplitude

of 00y = 2 mm.
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The parameters Ps, Pgy, and Py, rapidly increase with the diameter of the
spherical volume for which they are calculated. Of course, this is the
expected result as uniformity in the magnetic field is most easily achieved

over smaller volumes.

As shown in Figures 5.14 and 5.15, the NAGP pole piece design is relatively
stable for perturbation amplitudes of 0,4 < 0.5 mm. This is indicated by the
fact that over 90% of the perturbed optimal designs corresponding to
Omax = 0.5 mm provided inhomogeneity values better than 200 and 500 ppm

over 30 and 40 cm DSVs, respectively.

The parameters calculated here and plots such as those provided in Figures
5.14 and 5.15 would be helpful in determining tolerance specifications for
the manufacturing process of the NAGP optimized pole pieces. In particular,
the results suggest that a tolerance on the surface geometry should be no
greater than 0.5 mm if the field uniformity of the optimal design is to be

preserved.

5.4 CONCLUSION

Through the numerical results, it was demonstrated that reducing the lateral
extent of a biplanar permanent magnet MRI system with a four-column yoke
structure leads to a degradation of the field uniformity in the imaging
volume. Flat or annular shimmed pole piece designs were shown to
be ineffective at compensating for the predominantly non-axisymmetric
residual field inhomogeneity. In order to improve on the results obtained
with these designs, a nonlinear pole-piece shape optimization method based
on field calculations with the finite element method was developed and
evaluated. This method was applied to determine axisymmetric and non-
axisymmetric grid parameterized pole piece designs that were optimally

contoured so as to minimize the magnetic field inhomogeneity in a 40 cm
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DSV at isocenter. A subsequent analysis of these designs demonstrated that
the NAGP pole piece design yielded superior levels of field uniformity
through the compensation of the non-axisymmetric field variations induced
by the four-column yoke configuration. As such, it was shown that this
design was necessary for the CMA in order to permit successful passive
shimming within a 40 cm DSV. In this way, the viability of novel compact
magnet assemblies with significantly reduced pole dimensions was
demonstrated, further permitting the development of unique hybrid medical
devices such as an integrated linac-MRI system. Lastly, a sensitivity analysis
was performed to quantify the inhomogeneity consequence of random
geometrical errors on the optimized surface of the NAGP pole piece. The
results of this analysis demonstrated that the uniformity over a 40 cm DSV
obtained with this design was relatively stable for perturbations with a
maximum amplitude that was less than 0.5 mm. Consequently, this value
represents an appropriate upper limit for the specification of manufacturing

tolerances on the design surface.
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CHAPTER 6
DESIGN AND OPTIMIZATION OF A NOVEL BORED
BIPLANAR PERMANENT MAGNET ASSEMBLY FOR
HYBRID MRI SYSTEMS

A version of this chapter has been published. T. Tadic and B. G.
Fallone, “Design and optimization of a novel bored biplanar
permanent magnet assembly for hybrid magnetic resonance
imaging systems,” [EEE Trans. Magn. 46(12), 4052—4058
(2010).

6.1 INTRODUCTION

Due to the highly competitive nature of the current MRI industry, permanent
magnet assemblies have gained widespread popularity in recent years.
These devices are considered to have a more reasonable weight, size, and
overall cost when compared against competing resistive and
superconducting systems. Furthermore, permanent magnet assemblies can
be found in widely varying geometrical configurations and offer greater
flexibility for achieving compact and open designs tailored for dedicated

applications.1-6

In this chapter, a design is proposed for a novel bored biplanar permanent
magnet assembly for MRI. A unique feature of this design is the presence of a
large cylindrical hole longitudinally bored through the entire yoke and pole
structures. The existence of this bore permits the inclusion of additional
therapeutic or diagnostic devices within or proximate to the magnet
structure that might benefit from being directed along, or oriented parallel

to, the main magnetic field of the MRI system. The bored magnet assembly
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(BMA) disclosed in the present work is particularly well suited for
integration with a medical linear accelerator (linac) in a parallel
configuration, as currently being developed by our group.’—3% A schematic

diagram illustrating this configuration has been shown in Figure 1.2.

It was established in the foregoing chapter that the magnetic field
distribution within the imaging volume of biplanar permanent magnets is
strongly related to the configuration of the yoke and pole structures.?’
Accordingly, the finite element method (FEM) was employed in the present
work to quantify the effects of the yoke bore on the magnetic field
homogeneity in the imaging volume of the BMA. Furthermore, similar to the
compact magnet assembly (CMA) investigated in Chapter 5, the overall
dimensions of the BMA were constrained to permit rotation of this structure
within a typical radiotherapy vault. Since it was shown that optimized pole
pieces were required to yield suitable levels of uniformity with the CMA, the
iterative FEM-based optimization method*’ that was developed in Chapter 5
was also applied to the BMA. Through a modification of the surface
parameterizations introduced for the CMA, a novel double annular ring shim
pole piece design was obtained, in addition to axisymmetric and non-
axisymmetric grid parameterized (AGP and NAGP) designs. The magnetic
field inhomogeneities corresponding to these designs were calculated and
the results were compared against flat and single annular ring shimmed
designs as found commonly in industry. The axial and transverse magnetic
fields produced by the BMA with the NAGP optimized design were then
examined within and proximate the large bore, in order to acquire an
understanding of the unique magnetic field characteristics, particularly
within regions that may potentially be occupied by magnetically sensitive
devices. Lastly, a sensitivity analysis as introduced in the preceding chapter
was performed to determine the sensitivity of the field uniformity to random

geometrical variations in the design surface of the NAGP pole piece.
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6.2 METHODS

6.2.1 Magnet Assembly Specifications

The bored four-column biplanar permanent magnet assembly considered in
this work is shown in Figure 6.1. This magnet assembly is identical to the
0.2 T laterally reduced magnet assembly (CMA) analyzed in Chapter 5, with
the exception of a large 20 cm diameter hole longitudinally bored through
the yoke and poke structures along the z axis. Table 6.1 provides the values
for the dimensions labeled in Figure 6.1(b). For a representative linac target
to isocenter distance of 135 cm, a maximum radiation field size of

27 X 27 cm? at isocenter would be possible for this design.

The yoke and column structures of the bored magnet assembly (BMA) are
composed of AISI 1020 plain carbon steel, and the pole pieces are composed
of a special Armco magnetic steel. The magnetization curves?? 23 defining the
nonlinear properties of these materials were previously shown in Figure 5.2.
The permanent magnet poles from which the magnetic field originates are
constructed from a neodymium-iron-boron compound (Nd:Fe14B), with a

homogenous remanent magnetic field of 1.005 T aligned in the z direction.3

In order to evaluate the quality of the magnetic field produced by the BMA,
the parts per million (ppm) inhomogeneity AB of the magnetic field was

introduced:

Bmax — Bmin . 106’

AB =
By

(6.1)

where B.x and B, are the maximum and minimum values for the
magnetic field magnitude within the volume of interest V, respectively, and

B, is the magnetic field strength at isocenter. Additionally, the strength of
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FIGURE 6.1: (a) A 3D schematic of the novel bored four-column biplanar permanent magnet
assembly with the relative orientation of the Cartesian coordinate axes shown. (b) A cross-

sectional view with dimension labels.
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TABLE 6.1: Dimensions of the permanent magnet assembly illustrated in Figure 6.1.

Quantity Length (mm)
Iy 2600
L, 1578
I 700
l, 1398
ls 235
lg 2066
[, 200

the fringe magnetic fields produced by the magnet assembly were calculated
in terms of the maximal extent (Xsg,Ysg, Zsg) of the 5G magnetic field

contours.

6.2.2 The Finite Element Method

The required magnetic field calculations performed in this chapter are
accomplished with the commercially available three-dimensional (3D) FEM
software package ComsoL MULTIPHYSICS.2? Details regarding the FEM
implementation employed by CoMsoL MULTIPHYSICS have been provided

in § 3.3.5.

6.2.2.1 Model Description

Due to similarity with the CMA investigated in Chapter 5, the FEM model
geometry for the BMA was obtained through a simple modification of the
CMA model already available. As such, the FEM model constructed in this
work consists of the BMA positioned at the center of a large cubic global
model volume (GMV) truncated at a distance of 5 m from isocenter. Through

an application of the same boundary conditions described in the preceding
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chapter, the FEM model was reduced to just one eighth of the complete

geometry.

The simplified FEM model was partitioned into approximately 1.4 X 10°
isoparametric tetrahedral quadratic Lagrange elements. As before, this
resulted in a mesh-independent solution, as indicated by a field variation
within a 40 cm DSV of no more than 1 uT (approximately 5 ppm) upon

doubling the overall nodal density in the model.

The magnetostatics application mode in the AC/DC module of ComsoL
MuLTIPHYSICS was employed to numerically solve the governing equation in
Eq. (3.54) for the scalar magnetic potential at discrete points within the
model geometry, from which the magnetic field could be calculated through
use of Egs. (3.52) and (3.53). An illustration of the simplified model
geometry and finite element discretization is provided in Figure 6.2. The
depicted magnetic field corresponding to the FEM solution was calculated in
less than two minutes on a 2.7 GHz Intel Xeon quad-core PC workstation with

16 GB of RAM.

6.2.3 Pole Piece Design Parameterization

Each pole piece design considered that exhibits a contoured open face was
optimized for maximum magnetic field homogeneity in a 40 cm DSV. The
geometric parameterizations used in defining the surface geometries of the
pole pieces were modified from those described in Chapter 5, so as to
account for the presence of the 20 cm diameter yoke bore. In all cases, the
design variables were constrained such that the nominal pole separation [,
remained at least 70 cm, with all other dimensions of the magnet structure

held fixed.
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FIGURE 6.2: (a) A section of the simplified FEM model geometry corresponding to the BMA
with a flat pole piece design. The magnetic field solution is overlaid with the FEM mesh and
displayed in units of T. (b) A close-up section illustrating the fine mesh resolving the magnet

geometry and 40 cm DSV at isocenter.
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FIGURE 6.3: Design parameterization for optimization of the SARS and DARS pole piece

designs. Only the upper pole piece is illustrated.

6.2.3.1 Annular Shim Parameterization

The design variables for the annular ring shim parameterizations were
selected as the dimensions of the pole piece cross-section, as shown for an

upper pole section in Figure 5.4. This parameterization resulted in 5 unique

design variables for the double annular ring shimmed (DARS) design,
denoted p; (for i =1,2,..,5). By enforcing the constraints p, = 0 and
DPs = p; — P3, the parameterization of the SARS design as defined by 3 unique
design variables was obtained. Lastly, in order to consider a simple flat
surface, the remaining design variables were constrained such that the pole

piece had a maximal uniform thickness of p; = 218 mm with p, = p; = 0.

6.2.3.2 Grid Parameterization

In addition to the flat, SARS, and DARS designs, axisymmetric and non-
axisymmetric grid parameterized pole pieces were obtained for the BMA. To
this end, the open surface of the pole piece was parameterized with 112
control points distributed on a grid in the 0 plane, as shown in Figure 6.4.

The z coordinates of the control points were taken as the design variables, at
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which locations the thickness of the pole piece was varied during
optimization. The complete pole piece surface was then generated based on

a linear spline interpolation between the control points.

In a manner similar to that employed in § 5.2.3.2, symmetry in the pole piece
surface allowed for the reduction in the number of unique degrees of
freedom in the optimization procedure. To this end, the same constraints
were applied in this work, with the exception that the control points on the
line (r = 0) were not constrained to share the same z coordinate, as they no
longer reside in the same location on the design surface. In this way, a total 7
and 21 unique design variables were obtained for the AGP and NAGP designs,

respectively.

6.2.4 Nonlinear Optimization

Details of the iterative optimization method employed in this work were
presented in Chapter 5. This algorithm was programmed in the MATLAB?4
scripting environment and utilized macros from the CoMsoL MULTIPHYSICS
scripting language for the automatic generation and analysis of the required
models. A flow diagram summarizing the optimization process is provided in

Figure 5.6.

Mathematically, the optimization problem can be expressed as:

minimize f(p), (6.2a)

subjectto p € B, (6.2b)

where f is the objective function, p is the design vector, and B is the feasible

domain defined according to Eq. (5.9).
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FIGURE 6.5: Iterative optimization flow diagram.

The objective function is defined by the integral formula:

f= f[B(r: p) — Bol?dv’, (6.3)
v
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where B(r; p) is the magnitude of the magnetic field at the point r, implicitly
due to the magnet design defined by p. As before, the target region of

interest V is taken to be a 40 cm DSV at isocenter.

In order to calculate the gradient of the objective function Vf with respect to
the design variables, the forward finite-difference approximation in Eg.
(5.12) was used. A perturbation interval of §p = 0.1 mm was specified for
this calculation, as determined by trial and error. This value was shown to be
reasonable based on an estimate of the noise-level perturbation §p

conducted previously in § 5.3.2.2.

During the optimization process, the design vector was updated at the £th

iteration according to the projected gradient formula (see § 4.3.3):

pHtD = [(p® + a®d®), (6.4)

where a® is the scalar step size, d® is the search direction, and II(p)
denotes the projection of p onto the feasible domain . The conjugate
gradient (CG) version of this optimization method as described in § 5.2.4 was
not implemented at the time of this work. Consequently, d*®) was calculated

according the steepest descent (SD) method? via Eq. (4.12).

6.2.5 Yoke Bore Magnetic Field Analysis

The primary motivation for considering a large hole vacated from the yoke
and pole structures was to permit the inclusion of additional devices within
or proximate the magnet assembly that would benefit from an orientation
parallel to the main magnetic field. Therefore, it was of particular interest to
explore the characteristics and behaviour of the magnetic field in these

regions. To this end, the magnetic field produced by the BMA with the
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optimal NAGP pole piece design was examined in terms of its axial B, and
transverse B, components within and proximate the 20 cm diameter yoke
bore. Specifically, linear profiles of these field components, passing through
the yoke bore and oriented in the z direction, were obtained for a selection of

positions along the x axis.

6.2.6 Design Sensitivity

As discussed in Chapter 5, the NAGP pole piece design would likely be subject
to random errors during the manufacturing process. In order to simulate
these errors and quantify the effects of perturbations to the design surface, a
sensitivity analysis was performed on the optimal NAGP pole piece design.

The details of this procedure were provided in § 5.2.5.

Populations consisting of 100 perturbed designs were obtained for various
maximum amplitudes g,,,,4 in the range of 0.1 to 5 mm. For each perturbed
design, the residual field variation AB was calculated over 10, 20, 30, and 40
cm DSVs. The sensitivity of the optimized design was then evaluated in
terms of the parameters Ps, Pgy, and Py, that are defined as the AB values
that upper bound 50, 80, and 90% of the perturbed designs in a given

population, respectively.

6.3 RESULTS AND DISCUSSION

6.3.1 Yoke Bore Insertion

Table 6.2 compares the magnetic field properties for the magnet assemblies
with and without the 20 cm bore. Flat and SARS pole pieces were
considered, where the width and depth of the peripheral ring of the SARS
designs were optimized to minimize the cumulative field inhomogeneity f as

measured over a 40 cm DSV.
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TABLE 6.2: Summary of optimization results and comparison of magnetic field properties for

the magnet designs with flat and annular shimmed pole pieces.

CMA BMA
Flat Pole SARS Pole Flat Pole SARS Pole
Quantity Piece Piece Piece Piece
Iterations - 11 - 75
B, (T) 0.203 0.172 0.197 0.157
f (10-11 T2-m3) 1455 1.899 647.1 19.51
AB, 30 cm DSV (ppm) 8774 321 7130 1355
AB, 40 cm DSV (ppm) 15299 1030 24978 4474
Xs¢ (m) 2.4 2.4 2.4 2.4
Vs (m) 2.4 2.4 2.4 2.4
Zs( (m) 2.8 2.8 2.8 2.7

The presence of the yoke bore resulted in a dramatic increase in the
magnetic field inhomogeneity AB for the SARS pole piece design. In
particular, AB for this design increased by greater than a factor of four,
resulting in 1355 and 4474 ppm over 30 and 40 cm DSVs, respectively. In
contrast, an interesting effect was observed for the flat pole piece design, for
which the field variation within a 30 cm DSV actually improved from 8774 to
7130 ppm upon inclusion of the yoke bore. The value for f also decreased by
greater than a factor of two for this design, despite a near doubling of AB to
24978 ppm within a 40 cm DSV. As evident in the magnetic field maps
provided in Figure 6.6, the yoke bore results in a smoothing of the
characteristic peak near isocenter in the field distribution for the flat pole
piece. However, this smoothing effect is of limited benefit within larger
volumes, due to the rapid drop off in the field magnitude as the yoke bore is
neared along the z direction. Furthermore, this effect is not observed with
the SARS pole piece, as a peak in the field distribution near isocenter was

likely eliminated through optimization of the pole surface. In any case, based
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isocenter corresponding to the: (a), (b) flat and (c), (d) SARS designs for the CMA;
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on the specification introduced in Chapter 5 that successful passive
shimming requires a value of less than 500 ppm in the volume of interest,
these results indicate that the BMA would not be suitable for medical imaging

within both 30 and 40 cm DSVs with either flat or SARS pole piece designs.

Inclusion of the yoke bore necessitates a removal of magnetic material from
within the yoke and pole structures. Due to the loss of magnetic material
that contributes to the net magnetic field at isocenter, a slight decrease in B,
of 0.006 and 0.015 T was calculated for the flat and SARS pole piece designs,
respectively. The extent of the corresponding fringe fields remained
unchanged for the flat pole piece, but was slightly reduced from

(%56, V56, Zs5g) = (2.4,2.4,2.8) to (2.4, 2.4,2.7) m for the SARS design.

6.3.2 Nonlinear Optimization

6.3.2.1 Design Comparison

An optimal DARS pole piece design was obtained after 186 iterations of the
optimization scheme described in § 6.2.4, while optimized AGP and NAGP
designs were obtained after 672 and 1022 iterations, respectively. The
resulting designs are visually compared in Figure 6.7 alongside the flat and
SARS designs. Magnetic field properties corresponding to the DARS, AGP,
and NAGP designs are compared in Table 6.3.

The greatest level of field uniformity was obtained with the NAGP design,
which resulted in the lowest values for the objective function f and magnetic
field inhomogeneity. Specifically, AB values of 77 and 921 ppm were
obtained for 30 and 40 cm DSVs, respectively. This is compared to values of
180 and 1127 ppm obtained for the AGP design, and 279 and 2116 ppm for
the DARS design, respectively. Thus, with regards to the inhomogeneity over

a 40 cm DSV, the NAGP pole piece provided a relatively marginal
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FIGURE 6.7: 3D visualizations of the (a) flat, (b) SARS, (c) DARS, (d) AGP, and (e) NAGP

optimized pole pieces. Axis dimensions are displayed in meters.

improvement over the AGP design. Furthermore, as can be seen in
Figure 6.7, the surface geometries of these designs are visually similar. These
results contrast those obtained in the preceding chapter, for which the
surface topology of the NAGP design involved more pronounced non-
axisymmetric features, and resulted in a greater reduction of AB within a 40
cm DSV. The limited advantage of the NAGP design here is further visualized
in the magnetic field maps in the xy and xz planes at isocenter provided in
Figure 6.8. Although this design is effective at reducing the non-

axisymmetric field variation near isocenter, the overall improvement is
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TABLE 6.3: Summary of optimization results and comparison of magnetic field properties for

the bored magnet designs with optimized pole pieces.

DARS Pole AGP Pole NAGP Pole

Quantity Piece Piece Piece
Iterations 186 672 1019
B, (T) 0.171 0.179 0.177
f (10-11 T2-m3) 1.685 0.719 0.353
AB, 30 cm DSV (ppm) 279 180 77
AB, 40 cm DSV (ppm) 2116 1127 921
Xs5¢ (m) 2.4 2.4 2.4
Vs (M) 2.4 2.4 2.4
Zs (m) 2.8 2.8 2.7

extenuated over larger volumes due to the rapid drop off in the field

magnitude as the yoke bore is approached along the z direction.

The DARS, AGP, and NAGP pole piece designs all yield inhomogeneity levels
within a 30 cm DSV that are less than the 500 ppm limit specified in order to
permit successful passive shimming. In particular, the simple and effective
DARS design achieves an order of magnitude improvement in f as compared
to the SARS design, while reducing the inhomogeneity by greater than a
factor of four over a 30 cm DSV. Although this design does not perform as
well as the AGP and NAGP designs, the optimization requires significantly
less computation time, and the resulting design would be simpler to

construct.

The field strengths resulting from the DARS, AGP, and NAGP designs were

relatively similar, with values in the range of 0.171—0.179 T. Furthermore,
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FIGURE 6.8: Magnetic field maps in the xy (first column) and xz (second column) planes at
isocenter corresponding to the: (a), (b) DARS, (c¢), (d) AGP, and (e), (f) NAGP designs
obtained for the BMA. Axis dimensions are in cm. Map values are displayed in parts per
million, measured relative to B, for each design. The dashed circles represent the boundary

of a40 cm DSV.
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FIGURE 6.9: Plots of the 1, 5, and 10 G magnetic field contours projected onto the (a) xy and
(b) xz planes for the BMA with the NAGP pole piece design obtained via the SD method.
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little change was observed in the strength of the fringe magnetic fields, as
seen in the values provided in Table 6.3. The corresponding 1, 5, and 10 G

magnetic field contours have been plotted in Figure 6.9.

6.3.2.2 Algorithm Performance

The evolution of the objective function f and gradient norm |Vf| is plotted in
Figure 6.10. These graphs correspond to the optimization of the AGP and
NAGP pole piece designs, using the SD version of the optimization scheme
developed in Chapter 5. From Figure 6.10(a), it can be seen that AGP designs
that surpasses the SARS and DARS designs are obtained in just 17 and 65
iterations, respectively. After this short segment of rapid improvement, the
evolution of f is dominated by a long plateau. This decline in performance
was characteristic of the optimization algorithm during previous use with the
CMA, for which this behaviour was attributed to the first-order nature of the
SD method employed in calculating the search directions. Nevertheless, the
optimization algorithm yielded a reduction in the objective function of
greater than three orders of magnitude relative to the initial design state
describing a simple flat pole piece surface. As seen in Figure 6.10(b), a
similar overall reduction in the gradient norm |Vf| was achieved, indicating
that the optimization algorithm was successful in approaching a stationary

point.

The evolution of the gradient norm |Vf| illustrated in Figure 6.10(b) is
notably non-smooth. In particular, the sharp variations evident in this graph
are seemingly more random and of greater magnitude than those previously
observed during optimization of the CMA. If a similar bound §f on the

absolute error of f is assumed (due to the similarity of the CMA and BMA

FEM models), then the larger value of |Vf|~2 X 10° T?-m? near the
termination of the NAGP optimization suggests a smaller estimate for the

noise-level perturbation intervall? of §p = 0.001 mm (see § 5.3.2.2). Thus,
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the perturbation interval §p = 0.1 mm used here in approximating Vf is of
sufficient magnitude to produce a meaningful change in f that is greater than
the noise-level. That said, too large of a perturbation can also be harmful,
due to the truncation error encountered when neglecting higher-order terms
in the linear approximation for df/dp,;, upon which the finite-difference
approximation is founded. Therefore, improved performance of the
optimization algorithm might be possible through a more thorough

investigation into the optimal choice of ép.

6.3.3 Yoke Bore Magnetic Field Analysis

Linear profiles of the field components B, and B, oriented in the z direction
and positioned at x =0,10,20,and 50 mm, have been provided in
Figure 6.1, for which the inset plots correspond to the region where

magnetically sensitive equipment or devices may be located.

The various B, profiles obtained are relatively similar in their shape and
magnitude. A common trait of these profiles is a drop from the field
strength By = 0.177 T atz = 0, to a large negative value of approximately
—0.300 T within the bore and adjacent to the permanent magnet pole. This is
followed by an increase back to a small positive peak of approximately 47 G,
at a position approximately 18 cm exterior to the yoke. The region of
negative B, in these profiles indicates that the magnetic field reverses
direction within the yoke bore. Indeed, this behaviour can be observed in the

magnetic field line plot generated by CoMsoL MULTIPHYSICS in Figure 6.12.

Although the B, profiles retain a similar shape at various positions, the peak
magnitude of this component changes dramatically. The transverse field
component is nulled at x = 0 due to symmetry about the central bore axis,
and then increases in magnitude with increasing off-axis position as the inner

bore surface is approached. This effect is further illustrated in Figure 6.13,
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pole piece. (b) A zoomed view of the streamline plot detailing the field reversal.
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FIGURE 6.13: The peak magnitude of B, within the bore volume, as a function of distance s

from the z axis.

which shows the peak magnitude of the transverse component B ., within
the bore volume as a function of the off-axis distance s. Within the
cylindrical region identified by s <40 mm, B, .., increases linearly.
However, exterior to this region, the rate of change of B) ., begins to
increase rapidly as the magnetic field lines necessarily bend to form the
closed loops directly evident in Figure 6.12 and indicated by the polarity

change in the B, profiles.

In summary, the magnetic field within the bore is complex and highly non-
uniform, as shown in Figure 6.11 and discussed above. In particular, both the
axial and transverse components reverse direction in this region, with the
total field magnitude peaking around 0.300 T. In comparison, the region
exterior to the bore exhibits a significantly weaker field (< 50 G) with less

variation, and therefore may lend itself as a better candidate for the location
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of a magnetically sensitive device (such as a linac). Now armed with a
complete three-dimensional vector description of the magnetic field
produced by the BMA, the electron dynamics within the linac waveguide can
be simulated in order to precisely evaluate its performance in proximity to

this magnet system.

6.3.4 Design Sensitivity

The sensitivity analysis introduced in Chapter 5 was performed on the
optimal NAGP pole piece design obtained in this work. For each population
of 100 perturbed designs obtained, the statistical parameters Ps,, Py,
and Py, were calculated for 10, 20, 30, and 40 cm DSVs at isocenter. These
results are plotted as a function of the maximum variation amplitudes a,,,x

in Figures 6.14 and 6.15.

The field uniformity corresponding to the NAGP pole piece design is
relatively stable for perturbation amplitudes of g,,,4x < 0.5 mm. This is
indicated by the result that over 90% of the perturbed optimal designs
corresponding to g,,,x = 0.5 mm provided inhomogeneity values better than
250 ppm over a 30 cm DSV. Furthermore, despite exhibiting greater field
inhomogeneity than the CMA over 30 and 40 cm DSVs, similar values for
Py, Pgy, and Py, were obtained for the BMA over 10 and 20 cm DSVs.
Specifically, the NAGP design for the CMA resulted in Py, values,
corresponding to 0,,,x = 0.5 mm, of 17 and 75 ppm over 10 and 20 cm DSVs,

respectively, compared to values of 22 and 91 ppm for the BMA.

6.4 CONCLUSION
The design and optimization of a novel bored biplanar permanent magnet

assembly has been presented. A unique feature of this magnet assembly is

the presence of a 20 cm diameter hole that was vacated from the yoke and
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FIGURE 6.14: Plots of the statistical parameters Ps,, Pg,, and Py, as a function of the
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pole structures to permit the inclusion of additional devices within or near
the magnet structure that may benefit from being oriented along the
direction of the main magnetic field. Through the use of magnetic field
calculations with the FEM, it was demonstrated that the presence of the large
bore degrades the magnetic field uniformity in the imaging volume.
Therefore, optimized DARS, AGP, and NAGP pole pieces were required in
order to permit a level of homogeneity suitable for successful passive
shimming within a 30 cm DSV. Although the NAGP design resulted in the
greatest field uniformity, the newly introduced DARS pole piece was notably
effective, despite the simplicity of the design surface. An examination of the
axial and transverse field components along the yoke bore revealed that the
magnetic field reverses direction within the vacated region of the magnet
assembly. Consequently, a generally non-zero transverse field component
was observed, which is nulled on the central bore axis due to symmetry, but
increases in peak magnitude with off-axis distance. Furthermore, the
magnetic field magnitude peaks at approximately 3000 and 46 G within and
exterior to the yoke bore, respectively, indicating that the bore interior may
not be a suitable location for magnetically sensitive devices. Lastly, a
sensitivity analysis was performed with the NAGP pole piece design, which
indicated that the uniformity over a 30 cm DSV was relatively stable for
perturbations with a maximum amplitude that was less than 0.5 mm.
Therefore, this value represents a reasonable upper limit for the specification

of manufacturing tolerances on the design surface.
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CHAPTER 7
OPTIMIZATION OF SUPERCONDUCTING MRI MAGNET
SYSTEMS WITH MAGNETIC MATERIALS

A version of this chapter has been accepted for publication.
T.Tadic and B. G. Fallone, “Design and optimization of
superconducting MRI magnet systems with magnetic

materials,” IEEE Trans. Appl. Supercond. (2012).

7.1 INTRODUCTION

The optimal design of superconducting magnets for magnetic resonance
imaging (MRI) has been the subject of considerable research. Many
approaches have been reported which focus on the optimization of coil
configurations to yield compact shielded magnets exhibiting a high degree of
uniformity and confined fringe fields.!-11 Despite yielding significantly
different coil arrangements, the majority of the magnet designs resulting
from these methods achieve similar performance.’? Consequently, there has
been a recent thrust to further develop techniques that also minimize the
conductor volume.3-25 Since the cost of a superconducting magnet system is
strongly related to the amount of conductor used, this has become a growing

factor of importance in the increasingly competitive market for MRI magnets.

The majority of optimization algorithms for superconducting magnets only
consider designs which either have a cylindrical geometry,!25-35 or do not
contain any magnetic materials,?2~11.13=24 thereby permitting a simplification
of the required magnetic field analysis. This was largely justified in the past
by the fact that most commercial full-body magnets satisfied these

assumptions.’? Field calculations for coil-only systems can be performed
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rapidly with formulas derived from the Biot-Savart law (see § 3.1.1), or by
employing well known spherical harmonic expansions.3> When considering
magnetized materials with nonlinear susceptibilities, the magnetic field
analysis becomes substantially more complicated. Equivalent magnetization
current methods and other direct techniques utilizing analytical formulas for
the magnetic fields due to magnetized rings have been proposed,?°-32
although these schemes are strictly limited to cylindrical geometries. The
finite element method (FEM) has also been applied in problems involving
magnetic materials due to its high accuracy and ability to handle complicated
geometries. However, to reduce the number of mesh elements and the
associated computation time, the majority of optimization methods
employing the FEM assume simplified cylindrical geometries, permitting the

use of smaller two-dimensional (2D) models.26-28.33,34

Corresponding to the current trend towards improving patient access and
decreasing patient claustrophobia, there is a growing demand for compact
open biplanar magnet systems.1236.47 These magnets typically incorporate
non-cylindrical yoke structures, for which accurate analysis of the complete
three-dimensional (3D) magnetic fields and associated inhomogeneities are
required during the design process. We are therefore motivated to develop

new optimization methods that can be applied to the design of these systems.

In the present work, an iterative method is disclosed for the optimal design
of homogenous superconducting magnet assemblies with general non-
axisymmetric magnetic yoke structures. A linear programming (LP) sub-
problem is solved at each iteration of this method, in order to obtain a
minimum volume coil configuration while constraining the magnetic field
inhomogeneity within an arbitrary target volume. The FEM is then used to
calculate the complete 3D magnetic field produced by the entire magnet
system, thereby taking into account the presence of any magnetic materials.

This method exhibits good performance and typically requires a small
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number of iterations and FEM analyses to converge. Consequently, it is
feasible to employ large 3D FEM models that may require significant

computation time due to high mesh densities or complicated geometries.

The effectiveness of the proposed method was demonstrated with the
optimal design of an open and compact 0.5 T biplanar superconducting
magnet system with a four-column yoke structure. A special feature of this
magnet design is a coil assembly constructed from MgB; high-temperature
superconducting (HTS) material, intended for use in a conduction-cooled
cryogen-free environment. Due to the absence of a massive cryostat vessel
and safety ventilation system, rotation of this magnet structure is feasible.
Hence, this magnet design is suitable for integration with a medical linear

accelerator (linac) in a perpendicular configuration. 38-40

7.2 METHODS

7.2.1 Nonlinear Optimization

7.2.1.1 Algorithm Overview

The ultimate goal of the method presented in this work is to obtain minimum
volume coil configurations subject to magnetic field constraints for
superconducting magnet systems involving non-cylindrical ferromagnetic
yoke structures. This was achieved through the iterative optimization
scheme summarized in the flow diagram of Figure 7.1. The steps

encountered during the optimization procedure are outlined below.

The design process begins with a complete specification of the magnetic yoke
structure and pole pieces, for which the geometry and properties of the
materials involved are held constant for all subsequent steps. The feasible

coil domain is then specified, which defines the permissible region to be
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FIGURE 7.1: Iterative optimization flow diagram.
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occupied by the coil configuration. The precise role of the feasible coil
domain in this process is detailed in the following section. A distribution of
N, target points are specified next, at which locations the axial magnetic field
uniformity is to be constrained. As such, the target points are typically
chosen on the surface of a large diameter spherical volume (DSV) that is

designated for imaging.

Progression through the remaining steps of the optimization process is best
understood through an analysis of the constraint expressions, as it is from
these constraints that the optimal coil configuration is developed. By
denoting the location of theith target point asr;, the preliminary field

uniformity constraints are given as

|AB,(r;)| < k3, fori=1,..,N, (7.1)

where the parts per million (ppm) field variation AB,(r) at the pointris

defined by

AB _ Bz(r) - BO 6

In these expressions, B, refers to the axial component of the magnetic field,
B, is the desired field strength at isocenter, and k; is the relative field error

tolerance specified in units of ppm.

The radial component of the magnetic field can be considered negligible
when the axial component is homogenous,'# and therefore it is not included
in the constraint formulation above (see § 2.3.1). Furthermore, it is assumed
with this design method that the yoke structure itself provides adequate

reduction of the fringe magnetic fields produced by the magnet assembly, as
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typically found with modern passively shielded biplanar MRI systems.!?
Consequently, active shielding constraints are not employed when

optimizing the coil configuration.

By introducing the notation b,; = B, (1), the field uniformity constraints in

Eq. (7.1) may be rewritten as

|bZ/L - BOl < KIBOr fori = 1; ---rNtr (73)

where k; = k1 - 1076, For convenience, b,; can be separated into the two

components:

bzi = bsi + bmir (74)

where the coil field by, is the contribution strictly due to the free current
configuration, and the material field b,,; is the contribution due to the
nonlinear magnetization induced in the magnetic materials. Thus, it is
important to note that although b,; can be calculated with knowledge of only
the current configuration, the calculation of b,,,; is more complicated as it
requires knowledge of the entire system configuration including the
distribution of both current and magnetic material distributions. A target

coil field b;; is then defined as

be; = By — by, (7-5)

and the constraints in Eq. (7.3) are rewritten to give

|bS'i - bt/il S KIBO' fOI"i = 1, ...,Nt. (7.6)

193



Prior to iterating through the optimization loop, it is assumed that a coil
configuration is not initially defined. Thus, in the absence of any magnetic

source, the magnetic field is zero at all points:
by = by = by =0, (7.7)

where the superscript denotes the iteration number. Therefore, since the
constraints in Eq. (7.6) are not initially satisfied, the iterative optimization

loop is engaged.

During the first step of each iteration, an LP method adapted from the
literaturel# is used to determine a minimum volume coil arrangement such
that Eq. (7.6) is satisfied. The details of this procedure are discussed in the
following section. Since the true material field is unknown at this stage, the
target coil field in Eq. (7.6) is calculated by using the material field from the
preceding iteration as an estimate.?”.28 In other words, the LP method is
terminated at the #th iteration when a coil configuration is obtained that

satisfies

b _ pEDl < By, fori=1,..,N, (7.8)

Si ti
where the target coil field is given by
b =By — b, (7.9)

A FEM model that combines the new coil configuration with the specified
yoke design is then generated and the complete axial field at each of the
target points can be calculated. Since the coil field is already known from the
LP step, the updated material field at the #£th iteration is now easily

determined:
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b =P — p®), (7.10)
where béf) has been extracted directly from the result of the £th FEM

analysis.

The true material field typically differs from the estimate used in Egs. (7.8)
and (7.9), since a change in the current configuration necessitates a change
in the magnetization of the magnetic materials. Therefore, the constraint in

Eq. (7.6) is not trivially satisfied.

For example, the initial coil configuration calculated during the first iteration
(# = 1) is always obtained in the absence of magnetic materials. This is
because prior to entering the optimization loop (£ = 0), the material field is
assumed identically zero in accordance with Eq. (7.7). Hence, the magnetic
materials are not accounted for in the calculation of the constraints in
Eq. (7.8). However, after an initial coil configuration is established, the
magnetic materials will become magnetized, and the true material field will
no longer be negligible. If the true material field due to the initial coil
configuration is then determined (with the FEM), it is almost certain that the

constraint in (7.3) will no longer be satisfied.
Successful evolution through the optimization loop relies on the assumption

that the difference in the material field between successive iterations tends

to progressively decrease:
b — b5 V| < b - b5 P), fork 2 2, (7.11)

where b,, is the material field vector with the N, elements b,,,;. Thus, by

iterating the LP and FEM steps described above, the material field estimate
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b%‘_l) at the #th iteration is assumed to eventually provide a close

approximation to the true material field bgf ). Or equivalently, it is assumed
that bgf_l) ~ b™® for sufficiently large %.

ti

In practice, it is beneficial to relax the termination criteria in Eq. (7.6) so that
an excessive number of iterations are avoided. Therefore, the optimization
loop is terminated when

b — b | < 1,1, By, fori =1,...,N,. (7.12)

where k, > 1 is the specified convergence factor, and hence
b® — p*D| < ke, (1 + 1,)By, fori=1,...,N,. (7.13)

In terms of the quantities used to define the preliminary constraints in

Eq. (7.1), these constraints can be stated as
|AB,(1r;)| < k1K, fori=1,..,N,. (7.14)

According to Eq. (7.12), the expected final peak-to-peak field variation AB, at
the target points is bounded above by 2k, k, B, (in absolute units), for which
many combinations of the parameters k; and k, will yield the same value.
However, the particular choice for each of these parameters has additional
consequences. First, the parameter k; plays the critical role of constraining
the field variation in Eq. (7.8) during the LP step. As will be discussed in the
following section, the resulting number of coils in the configuration
determined at this step is strongly related to the extent that the field
uniformity is constrained. Thus, choosing too strict of a value for x; can lead

to an unnecessarily complicated final optimal coil configuration. Second, the
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parameter k, plays the practical role of limiting the total number of
iterations in the optimization loop. Thus, if this parameter is chosen is too
close to unity, then the speed of the optimization algorithm will suffer, as an
unnecessarily large number of computationally expensive FEM simulations

will be performed.

The optimization algorithm described above was implemented in the
MATLAB%* scripting environment. The commercially available 3D FEM
software package*? OPERA-3D was used to calculate the complete magnetic
fields produced by the entire magnet assembly. In order to integrate the
FEM analysis into the optimization script, a Component Object Model (COM)
interface was established between the MATLAB and OPERA-3D application
processes. In this way, OPERA-3D could be controlled from input commands
executed within the MATLAB script. This permitted the automatic and
iterative generation and analysis of the FEM models derived from the
optimization variables. Details of the FEM modeling procedure are provided

in§7.2.3.

7.2.1.2 Linear Programming Formulation

At each iteration of the proposed method, the problem of determining a
minimum volume coil configuration that satisfies the field uniformity
constraint in Eq. (7.8) is encountered. The details of the LP method used to

achieve this are disclosed below.

The specified feasible coil domain introduced in the preceding section is first
segmented with a dense grid that defines an array of n candidate coils, each
of which is located at the center of a grid cell (Figure 7.2). These grid cells do
not represent physical cross-sections of the candidate coils, but rather only
serve to define their spacing and location. The N, X n axial magnetic field

matrix A can then be introduced, for which the element AM is the field per
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#th candidate 1.
coil location . e target points

. . X

FIGURE 7.2: Illustrated section of a feasible coil domain and target point distribution. The
feasible coil domain is segmented by an array of candidate coils defined on a grid, shown
here coaxial with the z axis. The grid cell corresponding to the location of the jth candidate
coil is highlighted red. The target points at which locations the field inhomogeneity is

constrained are typically distributed on the surface of a large DSV designated for imaging.

unit current at the 4th target point due to the jth candidate coil. This permits

the matrix expression:
Ap = by, (7.15)
where by is the vector of axial coil magnetic fields at the N, target points, and

p is the vector of currents, such that the elementp; (for 7 = 1, ...,n) is the

current passing through the jth candidate coil.

The total conductor volume V, in the array of n circular coils is given by
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n
7=1

where s; and a; are the radius and cross-section for the jth coil, respectively.

Assuming a constant current density J/ in all of the candidate coils, the

individual currents satisfy
lp;| = Ja;. (7.17)
Hence, the total conductor volume can be rewritten as

2 n

T

Ve=— s;|p;- (7.18)
=1

By combining Egs. (7.8), (7.15), and (7.18), the coil volume minimization

problem at the #th iteration may be expressed as

n

minimize f(p) = z si-|p7-|, (7.193)
=1
Sub]ect tO - KlBothxl S Ap - bgk_l) S K1B01Nt><1' (7.19b)

where 1,,,,denotes a « X v matrix with all entries equal to 1. In this form,
these equations constitute an L;-norm minimization problem. Through the
use of an algebraic transformation developed below, the solution to
Eq. (7.19) can be obtained via an equivalent LP problem, for which robust

numerical methods are readily available (see § 4.3.2).
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First, the auxiliary vector # is introduced, consisting of n elements denoted 1
(forj =1,...,n). In particular, these elements are required to satisfy the

constraint
0<|p;| <t forj=1,..n (7.20)

Next, the augmented constraint matrix A, constraint vector E, cost vector ¢,

and design vector p are defined as

[ A ONtXTl
— _A ONtXTl
A= , (7.21a)
_ln _In
In _In
[ bt(:k_l) + K1 Bo1y,x1 1 [Boley + Dly,1 — b%_l) ]
I [ A R 3 | Bo(k; — D1ypq + BV
b= t 1B0lnpa [ | Boliey Npx1 m  (7.21b)
ONer ONtxl
ONer - L ONtxl
0
c=| ¢ l (7.21c)
S
2]
P = . 7.21d
p=|, (7.21d)

In these expressions, 0,,,,, denotes a « X v matrix with all entries equal to 0,
and I,, denotes the n X n identity matrix. An augmented LP problem

comprised of the quantities above can then be stated:

minimize f(p) = ¢'P, (7.22a)

subject to Ap < b. (7.22b)
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Since the only constraints on the elements of £ are given by Eq. (7.20), the

solution p*T = [p*T T ] to Eq. (7.22) implies the equality

p; = t;, forj=1,..,n (7.23)

Hence, p* must minimize f, in accordance with

n n

F@) =) slpil = D st = 7@, (7.24)

=1 =1

Since the first 2N, rows of Eq. (7.22b) trivially satisfy the constraint in
Eq. (7.19b), it can be concluded that p* solves the L;-norm minimization
problem. Therefore, the equivalency of the problems in Egs. (4.21) and
(7.19) has been established.

A beneficial feature of L;-norm minimization problems is that the resulting
solution is sparse, in that the minimum number of non-zero elements of p
required to satisfy the constraints are obtained. In the formulation
presented here, this means that the solution to Eq. (7.22) will correspond to
the minimum number of candidate coils (with non-zero currents) that are
needed to produce a magnetic field with the desired level of uniformity.
Furthermore, since Eq.(7.22) constitutes an LP problem, the solution
obtained is guaranteed to be globally optimal (see § 4.3.2). In the current
implementation, Eq. (7.22) was solved with the built-in function 1inprog
from MATLAB, which employs an interior-point predictor-corrector algorithm

based on the LIPSOL method.*3
The solution to Eq. (7.22) ultimately represents the optimal coil

configuration that corresponds to the particular discretization specified for

the feasible coil domain. Thus, improved accuracy in the solution can always
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obtained by specifying a denser coil grid. However, increasing the grid
resolution is matched with an increase in the number of unique degrees of
freedom n in the LP problem, which is directly related to the computational
effort. Moreover, the field matrix A is inherently ill-conditioned. Increasing
the number of candidate coils further spoils this property, thereby
hampering the ability of the LP method to arrive at a true solution to

Eq. (7.22).

In an effort to achieve a balance between solution accuracy and
computational efficiency, the LP step of the optimization loop was split into
three intermediate stages characterized by successively finer grid
resolutions. During the first intermediate stage, a relatively coarse coil grid
spacing of 1—3 cm is typically defined. When performing the magnetic field
calculations required in assembling A at this stage, each of the candidate
coils are approximated by an ideal current loop with zero cross-sectional
area. This permits the use of simple axial field formulae involving complete
elliptic integrals of the first and second kind,** which can be computed
rapidly using the ellipke routine from MATLAB (see § 3.2.1). For the
second and third intermediate stages, the grid cells corresponding to the
coils with non-zero currents from the preceding stage are identified. Only
these grid cells are subsequently divided into finer coil sub-grids, with a coil
spacing that is reduced by the integer grid reduction factor y,.. When
assembling the field matrix A during the second and third stages, the
candidate coils are modeled with finite rectangular cross-sections*> (see
§ 3.2.2). The required cross-sectional areas (and dimensions) of the coils are
determined from the optimal currents from the preceding stage, together
with an aspect ratio y, specified prior to optimization. In this way, by
choosing a typical value of y, = 3, a final grid resolution of approximately

1—3 mm can be obtained.
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7.2.2 Magnet Assembly Specifications

The method described in this work was applied to the optimal design of an
open and compact 0.5 T biplanar superconducting magnet assembly for
potential use in a linac-MRI system with a perpendicular configuration.38-40
Accordingly, the outer dimensions of the four-column yoke structure
illustrated in Figure 7.3 were chosen to permit rotation of the magnet
assembly within a typical radiotherapy vault of 3.50 m height. This results in
a practical vertical clearance of 90 cm, allowing sufficient room for additional
peripheral equipment.3¢47 The remaining dimensions of this assembly were
selected such that the total weight of magnetic material was within 10% of
the 20 tonne yoke structure used in a commercially available 0.5 T biplanar
system with an acceptable fringe field.#¢ In addition, the dimensions of the
yoke and pole structures were chosen to provide adequate space for the coil
configuration and associated patient gap, while also providing an
approximate balance between field strength enhancement at isocenter,
passive shielding of fringe fields, and mechanical stability of the rotating

magnet assembly.

Similar to previous chapters, the yoke and column structures of the magnet
assembly are composed of AISI 1020 plain carbon steel and the pole plates
are composed of a special Armco magnetic steel. The nonlinear

magnetization curves?Z 23 for these materials were provided in Figure 5.2.

The design proposed in this work is intended to employ a cryogen-free coil
configuration constructed from MgB, HTS material. In the absence of any
liquid coolant, the requirement of a bulky cryostat vessel comprised of a
safety ventilation system can be eliminated, thereby making mechanical
rotation of the entire scanner feasible. A practical coil operating temperature
of 12 K could be realized through use of a conduction-cooled split cryostat

design similar to that detailed in the literature.#6.4%.50 Within a vacuum
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FIGURE 7.3: (a) A 3D schematic of the four-column magnetic yoke structure with the relative
orientation of the Cartesian coordinate axes shown. (b) Cross-sectional view with

dimensions in millimeters.

chamber encompassing each of the magnet poles, a thermal screen
surrounding the HTS coil arrangement could be thermally coupled to the first
stage of a Gifford-McMahon (GM) cryocooler subassembly. The second stage
of this cryocooler could then be coupled to a set of thermally conductive

rings and sheets embedded within, and bonded adjacent to, the coil forms
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and windings. By employing superconducting joints recently developed for
MgB: tapes,®! a persistent mode of operation could be permitted. It is
expected that a cryostat design of this type, including the associated support
structures, would only occupy an additional 4—6 cm of space surrounding
the coils, resulting in a nominal pole separation of at least 60 cm. As
previously noted in Chapter 5, the presence of pancake gradient coils would

further reduce the patient gap by approximately 6—10 cm.

A realistic target for the engineering critical current density?4 for MgB: coils
is 28 kA/cm? at 12 K and 4 T. Hence, a working current density of

J = 21 kA/cm? was specified at approximately 75% of the critical value.

The feasible coil domain was defined in the region surrounding the pole
plates such that adequate space was supplied for the cooling and mounting
system described above, while providing a patient gap of approximately
60 cm. The location of the feasible coil domain is illustrated in Figure 7.3(b).
An initial array of n = 24 X 4 = 96 circular candidate coils with a grid spacing
of 2 cm was specified for each magnet pole. This grid spacing was further
reduced to 2.2 mm during the LP refinement process, through specification
of the grid reduction parameter y, = 3 and coil aspect ratio y, = 1.2 (see
§ 7.2.1.2). Complete solution of the LP step at each iteration requires less
than two minutes of computation time on a 3.0 GHz Intel Xeon quad-core PC

workstation with 16 GB of RAM.

Since the coil configuration in this particular magnet design is completely
axisymmetric, only axisymmetric field inhomogeneities can be constrained.
Accordingly, a distribution of 34 target points was defined along a single
polar arc, extending from 8 = 0 to 8 = /2, on the surface of a 40 cm DSV at

isocenter, as illustrated in Figure 7.4.
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The target field strength B, = 0.5 T was specified for the optimization, in
addition to a relative field error x; =5 uT, and a convergence factor k, = 2.
This resulted in an expected peak-to-peak axial field variation of at most

40 ppm at the target points.

7.2.3 The Finite Element Method

7.2.3.1 Problem Formulation

The details of the FEM implementation employed by OPERA-3D have been
provided in § 3.3.6, for which a brief outline is provided here. The FEM
problem formulation begins with Maxwell’s equation for the divergence of

the magnetic field vector B:

V-B=0. (7.25)

FIGURE 7.4: Target point distribution on the surface of a 40 cm DSV at isocenter.
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In a region with magnetic permeability 4 and zero remanent magnetization,

B is related to the auxiliary field H through the constitutive relationship

B = uH. (7.26)
For convenience, the spatial domain of the problem can be divided into a
collection of smaller regions, each belonging to one of two types. In regions

of the first type, free currents are prohibited. Hence, H can be expressed in

terms of the scalar magnetic potential ®,,,:

H =-Vo,, (7.27)

In regions of the second type, free currents are permitted and y is assumed to

be spatially uniform. Thus, H can be separated into the two components
H=H;+H,, (7.28)

where Hj is the solenoidal field due to the free current distribution only, and

H,, is the remaining irrotational component due to any magnetic materials.

In this way, Hy is given by the Biot-Savart integral in Eq. (3.4), and H,,, can

be expressed in terms of the scalar magnetic potential ®,, as before:

H, =-Vo,, (7.29)

By combining Eqgs. (7.25) and (7.26) with either of the expressions for H
above, the governing second-order partial differential equation (PDE) can be

obtained:

—V - (uVd,,) = 0. (7.30)
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The magnetostatics solver ToscA in OPERA-3D can be used to numerically
solve Eq. (7.30) for ®,, at discrete points within the model geometry, subject
to appropriate boundary conditions. In doing so, the L,-norm of the total

FEM residual is reduced to a value below a specified tolerance of 10-8.

7.2.3.2 Model Description

The FEM model constructed in the present work consists of the biplanar
magnet assembly positioned at the center of a large cubic global model
volume (GMV). As noted in Chapter 5, the GMV is required in order to
simulate the far field behaviour of the magnetic field within the vacated
region surrounding the magnet structure. However, due to limited
computational resources, the GMV must be truncated at a finite distance to
limit the number of degrees of freedom in the FEM analysis. The B, strength
of the magnet considered in the present work is roughly 2.5 times that of the
permanent magnet assemblies previously considered. Since the stray
magnetic fields are expected to approximately scale with B,, the GMV was
appropriately truncated at a larger distance of 15 m. Through a procedure
comprising progressive enlargement of the GMV, it was estimated that this
truncation distance resulted in an acceptable error in the magnetic field
solution of at most 2 uT (approximately 4 ppm) within a 40 cm DSV at
isocenter. Furthermore, through application of the same boundary
conditions described in the preceding chapters regarding symmetries in the
magnet structure, the FEM model was reduced to just one eighth of the

complete geometry.

The simplified FEM model was partitioned into approximately 1.017 x 106
isoparametric tetrahedral quadratic Lagrange elements (see § 3.3.2). This
mesh was automatically generated with a Delaunay triangulation algorithm,
in accordance with a manual selection of the maximum element size within

each of the model components. This resulted in a mesh-independent

208



solution, as indicated by a variation in the magnetic field solution within a
40 cm DSV of no more than 0.5 uT (approximately 1 ppm) as the overall
nodal density in the model was doubled. In particular, a maximum mesh
dimension of 4 mm was specified on the surface of a 40 cm DSV, in order to
obtain an estimated error bound of 0.2 uT (approximately 0.4 ppm) on this
surface. An illustration of the simplified FEM model geometry and finite
element discretization is provided in Figure 7.5. Calculation of the FEM
solution required approximately 50 minutes on a 3.0 GHz Intel Xeon quad-

core PC workstation with 16 GB of RAM.

yoke e
pii
pole piece 42 ﬁ -
Waaniiv
40 cm DSV — é 7 .% é
flux return o
column

FIGURE 7.5: The simplified FEM model geometry and mesh. Conductors are not shown. The
entire modeling domain that extends 15 m from isocenter is only partially shown (in grey).
Due to symmetry in the magnet geometries and corresponding magnetic fields, the FEM is
only applied within a fraction of the complete model geometry in an effort to reduce the

computational expense.
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As evident in the discussion above, a substantially more accurate field
simulation was obtained here relative to previous chapters. Specifically, this
was to achieve the smoothest possible field variation over the region
occupied by the target points. The pole piece optimization method
introduced in Chapter 5 was based on minimizing the integrated field
inhomogeneity defined in Eq. (5.10). As such, local variations or oscillations
in the field solution arising from the FEM discretization were not expected to
have a significant impact, due to the smoothing effect of the integral operator.
In contrast, the coil configuration obtained during the LP step in the scheme
presented here is directly influenced by the specific material field values at
each of the target points. Therefore, reducing the discretization error

through an appropriately fine mesh was critical.

7.3 RESULTS AND DISCUSSION

7.3.1 Nonlinear Optimization

The optimal magnet design illustrated in Figure 7.6 was obtained in 11
iterations with the method disclosed in § 7.2.1. The total computation time
required to arrive at a solution was approximately 9.9 hours. The evolution
of the optimization algorithm is plotted in Figure 7.7, which illustrates a

rapid reduction of the axial field inhomogeneity AB, at the target points.

The optimal parameters describing the resulting coil arrangement are given
in Table 7.1. The total conductor volume in the six coil pairs is
V. =1.791 X 10*cm3. A central magnetic field strength of By =0.500 T was
achieved, and a peak-to-peak axial field inhomogeneity of AB, = 26.1 ppm
was obtained at the target points, thereby satisfying the field uniformity
constraints defined in Eq. (7.12). Lastly, the peak magnetic field calculated at
the coils is 3.428 T, which is well below the 4 T limit for the MgB: coils cited
in§7.2.2.
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FIGURE 7.6: The complete magnet geometry and optimal coil configuration. The magnetic
field solution as calculated via the FEM is displayed on the surface of the yoke structure.

Values are displayed in units of T.

A total axial field inhomogeneity AB, of 235 ppm was obtained within the
entire 40 cm DSV, which was inherently limited by the non-axisymmetric
nature of the four-column yoke structure. This can be visualized in the
residual magnetic field pattern illustrated in Figure 7.8. A total field
inhomogeneity AB of 235 ppm was also calculated, thereby verifying the
assumption that the transverse field components within this volume are
negligible (see § 2.3.1). The peak-to-peak inhomogeneity AB, is plotted for
various spherical volumes of interest in Figure 7.9. As expected, the field
uniformity degrades as the volume size increases, due to the increasing
proximity of the flux return columns. Nevertheless, based on the criterion
introduced in Chapter 5 that successful passive-shimming within a given

region of interest (ROI) requires a level of inhomogeneity no worse than
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FIGURE 7.7: The evolution of the axial magnetic field inhomogeneity AB, at the target points
during optimization of the superconducting magnet assembly. The optimal design is
achieved in 11 iterations. The dotted green line indicates the 40 ppm value corresponding to

the termination criteria.

500 ppm, the results suggest that this magnet design yields a 40 cm DSV

suitable for medical imaging.

As seen in Table 7.1, all but one of the coil pairs in the optimized
configuration are located at the lowest attainable axial position of 341.1 mm,
with the remaining coil pair possessing the smallest permissible radius.
Evidently, the greatest impact per unit current, and thus per unit volume of
conductor, is possible when the coils are situated on the boundaries of the
feasible coil domain that are closest to the target surface. Indeed, this is the
general trend observed with cylindrical magnet systems in the absence of

magnetic materials,'? for which the main coils are typically arranged nearest
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FIGURE 7.8: The residual axial magnetic field on the surface of a 40 cm DSV at isocenter.
Field values are displayed in parts per million, measured relative to B,. The limiting nature
of the non-axisymmetric four column yoke structure is reflected in the magnetic field pattern

shown.

the inner bore (with the exception of the active-shielding coil). This
configuration is also attractive from a practical point of view, since it may
simplify the design of the cryostat and support structures. Namely, it may be
possible for several coils to share a common annular cooling plate, thereby
leading to a reduction in the number and complexity of thermal joints and
support rods within the vacuum vessel, which otherwise might be infeasible

if each coil possessed a distinct location.
For completeness, the fringe magnetic fields of the optimized magnet are

illustrated in Figure 7.10. The maximal extent of the 5 G field contours were

calculated as (xs¢, ¥s¢, Z5g) = (4.6,4.6,5.8) m from isocenter.
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FIGURE 7.9: The residual peak-to-peak axial magnetic field inhomogeneity AB, (ppm)

calculated over various spherical regions of interest.

TABLE 7.1: Dimensions of the optimized coil configuration. Due to symmetry, only the

dimensions for the upper magnet pole are provided.

Radial position  Axial position = Radial width  Axial width Current
Coil (mm) (mm) (mm) (mm) (kA-turns)
1 181.1 381.1 3.7 3.1 -2.416
2 194.4 341.1 6.7 5.6 7.909
3 245.6 341.1 10.8 9.0 -20.416
4 324.9 341.1 16.4 13.6 46.888
5 461.1 341.1 29.5 24.6 -152.608
6 658.9 341.1 42.7 35.6 319.034
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FIGURE 7.10: Plots of the 1, 5, and 10 G magnetic field contours projected onto the (a) xy and

(b) xz planes for the optimized magnet. Axes dimensions are in meters.
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7.4 CONCLUSION

An iterative method has been presented for the optimal design of
homogenous superconducting MRI systems containing magnetic materials.
In addition to minimizing the conductor volume, a key feature of this method
is the ability to handle magnet designs involving complicated non-cylindrical
magnetic yoke geometries, such as those found in modern passively shielded
biplanar MRI scanners employing HTS coil configurations. The accurate
design of these systems requires the use of computationally expensive
numerical techniques for the magnetic field analysis, the burden of which is
alleviated by the rapid convergence achieved with the proposed method.
The effectiveness of this technique was demonstrated with the optimal
design of an open and compact 0.5 T biplanar superconducting magnet
system with a four-column yoke structure. This system was designed to
employ a conduction-cooled cryogen-free coil configuration constructed
from MgB2 HTS material, such that rotation of the cryostat would be feasible.
As such, this magnet system would be appropriate for use in an integrated
linac-MRI system with a perpendicular configuration, capable of performing
advanced real-time adaptive radiotherapy. An optimized solution consisting
of six coil pairs was obtained in only 11 iterations with the proposed method,
which resulted in a residual axial magnetic field inhomogeneity of 235.0 ppm

within a 40 cm DSV.
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CHAPTER 8
DESIGN AND OPTIMIZATION OF BIPLANAR
SUPERCONDUCTING MAGNETS FOR AN INTEGRATED
LINAC-MRI SYSTEM

A version of this chapter has been submitted for publication.
T. Tadic and B. G. Fallone, “Design and optimization of biplanar
superconducting magnets for an integrated linac-MRI system,”

(2012).

8.1 INTRODUCTION

The first prototype integrated linear accelerator (linac) and magnetic
resonance imaging (MRI) system designed and built by our group involved
the use of a low-field 0.2 T biplanar permanent magnet assembly.38-40 The
successful acquisition of magnetic resonance (MR) images during
megavoltage irradiation with this system established the feasibility of the
linac-MRI concept and demonstrated that the major technical issues
regarding mutual interference of the two devices have been overcome. A
permanent magnet imager was preferred for the first prototype due to the
relative ease of integration offered by this type of magnet. A low field
strength translated into relatively weak fringe fields, permitting expedited
installation of the magnet system and a simplification of the required linac
shielding. Furthermore, the absence of a cryostat and a relative lack of

electrical wiring lend this system well to mechanical rotation.

In accordance with the desire to achieve improved image quality and greater
acquisition speeds, we are now also considering the use of magnet systems

with higher field strengths. Specifically, we are interested in cryogen-free
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high-temperature superconducting (HTS) magnets with field strengths of
approximately 0.5 T. As noted in the previous chapter, a particularly
attractive feature of these systems is that they do not require massive
cryostats filled with liquid coolant. Hence, the need for a dedicated safety
ventilation line is alleviated, making mechanical rotation of these scanners
practical. However, due to the limited current densities that can be achieved
without quenching, conduction-cooled MRI systems employing HTS
materials typically consist of large steel yoke structures similar to their
permanent magnet counterparts.’~11 These yoke structures act to increase
the strength of the main magnetic field located between the magnet poles,

while passively shielding the stray magnetic fields these systems produce.

The majority of cylindrical superconducting magnets for MRI have similar
geometries. Since the introduction of active shielding methods, these
geometries typically only vary in terms of their overall dimensions, such as
their total length and inner/outer radii.’ In contrast, there is a notable
variation amongst the many possible yoke geometries used in biplanar
magnet assemblies, such as the well-known four-column,'? H-box,!3 pill-
box,14 and C-shaped!> yoke designs. Due to the lack of previously available
design methods, little work has been published in the past to optimize and
evaluate multiple biplanar magnet systems with a unified approach. In
particular, the design of these systems for use in radiotherapy guidance has

yet to be thoroughly explored.

In this work, several theoretical designs for 0.5 T biplanar HTS magnets have
been presented and evaluated for potential use in a rotating linac-MRI
system with a parallel configuration. Each magnet assembly is compact in
size, with a large hole longitudinally bored through the entire yoke structure
to permit an unobstructed beam path for the linac. Four-column, H-box, pill-
box, and C-shaped yoke geometries were considered, in addition to a novel

modified four-column design. Utilizing the FEM-based optimization method
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developed in the foregoing chapter,!'! a minimum volume coil configuration
was determined for each design, subject to constraints on the axisymmetric
magnetic field uniformity in the imaging volume. The residual non-
axisymmetric field variations were then calculated and compared in terms of
a spherical harmonic decomposition of the three-dimensional (3D) magnetic
field patterns. In addition, the magnetic fringe field extent and passive
shielding performance of each design was compared, as well as the total
amount of superconducting material required to obtain the desired field

strength at isocenter.

8.2 METHODS

8.2.1 Magnet Geometry Specifications

Five magnet geometries were investigated in this work: a standard four-
column design with cylindrical posts (54); an H-box design with two open
sides (HB); a closed cylindrical pill-box design (PB); a C-shaped design (CS);
and a modified four-column design with non-cylindrical posts (M4).
[llustrations of these geometries are provided in Figure 8.1. The main
magnetic field is oriented along the axial direction, as designated by the z
axis, and the patient axis about which the magnet rotates is identified with
the x axis (Figures 1.2 and 8.1). Each magnet assembly consists of a yoke
structure constructed from AISI 1020 steel, a pole plate composed of Armco
magnetic steel, and a unique optimized MgB; HTS coil configuration located

within a region referred to herein as the feasible coil domain.

For each yoke geometry, we have considered both [ = 20 and 30 cm diameter
cylindrical beam holes longitudinally bored through the entire yoke
structures, yielding a total of ten different magnet designs. For consistency,

all magnet designs corresponding to a particular yoke bore diameter share
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FIGURE 8.1: Three-dimensional illustrations of the magnet geometries investigated in this
work: (a) a standard four-column design with cylindrical posts (S4); (b) an H-box design
with two open sides (HB); (c) a closed cylindrical pill-box design (PB); (d) a C-shaped design
(CS); and (e) a modified four-column design (M4).
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an identical: pole plate geometry, feasible coil domain, axial yoke thickness

(in the z direction), and volume of steel V,, comprising the yoke structure.

In order to achieve a practical vertical clearance of at least 90 cm in a
radiation therapy vault of 3.50 m height, a maximum diameter of rotation of
2.60 m was specified. This is to provide adequate room for the gantry
structure upon which the rotating magnet is supported, as well as to
accommodate for any additional diagnostic or therapeutic devices and
equipment (such as the linac and other associated structures). For a yoke
extending 1.82 m in the axial direction, this constraint corresponds to a
maximum lateral extent of 1.86 m. Each of the S4, HB, PB, and M4 designs
has either a circular or square footprint in the xy plane. Consequently, these
designs are assigned a lateral extent of 1.85 m. In contrast, the geometry and
footprint of the CS design is naturally asymmetric. Hence, the lateral extent
of 1.50 m assigned to this design is primarily governed by the diameter of the
pole and coil structures it supports. The remaining dimensions of each
magnet geometry were selected such that the total weight of magnetic
material was within 10% of the 20 tonne yoke structure used in a
commercially available conduction-cooled 0.5 T biplanar magnet system with
an acceptable fringe field.#¢ Similar to the approach in the foregoing chapter,
these dimensions were chosen to provide adequate space for the coil
configuration and associated patient gap, while also providing an
approximate balance between field strength enhancement, passive magnetic
shielding, and mechanical stability. A selection of the dimensions common to

all magnet designs are shown in Figure 8.2.

The feasible coil domain for all designs extends between 34 and 42 cm from
isocenter in the axial direction, such that adequate space is available for a
cooling and mounting system while providing a patient gap of at least 60 cm.

The inner radii of the feasible coil domains are 16 and 22 cm for the 20 and
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FIGURE 8.2: A typical magnet cross-section in the yz plane with dimensions given in
millimeters. For dimensions with multiple values, the numbers with and without
parenthesis correspond to the 20 and 30 cm diameter yoke bore variants, respectively. All

other dimensions are common to all magnet designs investigated.

30 cm yoke bore variants, respectively, with all designs sharing an outer
radius of 66 cm. For a representative linac target to isocenter distance of 135
cm, maximum radiation field sizes of 30 X 30 cm? and 45 X 45 cm? at
isocenter would be possible for the 20 and 30 cm diameter yoke bore

variants, respectively.

8.2.1.1 Coil Optimization Procedure

For each of the magnet designs investigated in this work, an iterative
optimization scheme was applied to determine a minimum volume coil
configuration, subject to magnetic field uniformity constraints over a
spherical region of interest. The full details of this method have been
provided in the preceding chapter,!! for which the important aspects of our
implementation are reviewed here. A flow diagram summarizing the

optimization process is shown in Figure 8.3.
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FIGURE 8.3: Iterative optimization flow diagram.
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FIGURE 8.4: Target point distribution on the surface of a 40 cm DSV at isocenter.

An initial array of n circular candidate coils was established by segmenting
the feasible coil domain by means of a dense grid with 2 cm spacing. This
resulted in an initial array of 200 and 176 coils for the 20 and 30 cm yoke
bore variants, respectively. The initial grid spacing of 2 cm was further
reduced to 2.2 mm during the linear programming (LP) refinement process,
through specification of the grid reduction parameter y,. = 3 and coil aspect

ratioy, = 1.2 (see § 7.2.1.2).

A distribution of N; = 25 target points was specified along a single polar arc
extending from 6 =0 to 8=m/2, on the surface of a 40 cm diameter
spherical volume (DSV) at isocenter (Figure 8.4). By denoting the location of
the ith target point as r;, the uniformity of the axial magnetic field at the

target points was constrained according to (see § 7.2.1.1):

231



|AB,(1r;)| < k1Ky, fori=1,..,N;, (8.1)
where the axial field variation AB,(r) at the point r is defined by

AB _ Bz(r) - BO -6

In these expressions, B, refers to the axial component of the magnetic field,
B, is the desired field strength at isocenter, k; is the relative field error
tolerance in units of ppm, and k, > 1 is the specified convergence factor. In
the present work, the values B, =0.5T, k; =10 ppm, and k, = 2 were

specified.

For a common current density J in each of the coils, the total conductor

volume V., is given by:

2 n

T

Ve=— s;|p;- (8.3)
=1

where s; and p; are the radius and current for the jth coil, respectively.

Ultimately, the goal of the optimization scheme is then to minimize V. subject

to the axial field uniformity constraints in (8.1).
Assuming an operating temperature of 12 K, a realistic target for the
engineering critical current density of the MgB: coils?4 is 28 kA/cm? at 4 T,

from which a working value of ] = 21 kA/cm? was specified.

The optimization algorithm was implemented in MATLAB?4 on a 3.0 GHz quad-

core PC workstation with 16 GB of RAM. The minimization of Eq. (8.3) at
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each iteration amounts to a linear programming (LP) that was solved with
the linprog routine from the OPTIMIZATION ToOLBOX in MATLAB. Complete
solution of the LP step and associated grid refinement process required less
than two minutes of computation time. Simulation of the complete magnetic
fields at each iteration was performed with the commercially available 3D
FEM software package*? OPERA-3D. The updated parameters defining the coil
configuration were passed to OPERA-3D using a component object model
(COM) interface that is established within the MATLAB script. In this way,
iteratively updating and solving the complete FEM model is an automated

step. A description of the FEM modeling procedure is given below.

8.2.2 The Finite Element Method

OPERA-3D employs the nonlinear magnetostatics FEM solver Toscal® to
calculate a nodal solution for the scalar magnetic potential within the model
geometry. The 3D magnetic field can then be inferred from this solution. The
complete details of the FEM formulation employed by this solver are

provided in § 3.3.6.

8.2.2.1 Model Description

For each design investigated in this work, a FEM model was generated with
the magnet assembly placed at the center of a large cubic global model
volume (GMV). The GMV was truncated at a distance of 15 m from isocenter
according to the discussion in the preceding chapter (see § 7.2.3.2). This
results in an estimated error in the magnetic field of at most 2 uT
(approximately 4 ppm) within a 40 cm DSV at isocenter. Symmetry in the
magnet assemblies and associated magnetic fields was then exploited to
simplify the model geometries and reduce the complexity and memory
requirements of the FEM simulations. Specifically, one eighth of each magnet

structure was modeled for the S4, HB, CB, and M4 designs, and one quarter of
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FIGURE 8.5: Nonlinear magnetization curves for AISI 1020 plain carbon steel and Armco

magnetic steel.

the structure for the CS design. The required boundary conditions to achieve
this reduction were discussed previously in § 5.2.2.2. In order to take into
account the nonlinear properties of the magnetic materials employed, the
magnetization curves??23 shown in Figure 8.5 were assigned to the

appropriate components.

Each simplified FEM model was partitioned with a three-dimensional mesh
consisting of isoparametric tetrahedral quadratic Lagrange elements (see
§ 3.3.2). The manual selection of mesh parameters was identical to that
specified in Chapter 7. This resulted in an estimated error of at most 0.2 and
0.5 uT (approximately 0.4 and 1 ppm) on the boundary and interior of a
40 cm DSV, respectively. The number of mesh elements and the computation

times for each model are listed in Tables 8.1 and 8.2 in the results (see
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FIGURE 8.6: The simplified FEM model geometry and mesh for the S4 design with a 20 cm
diameter yoke bore. Conductors are not shown. The entire modeling domain that extends
15 m from isocenter is only partially shown (in grey). Due to symmetry in the magnet
geometries and corresponding magnetic fields, the FEM is only applied within a fraction of

the complete model geometry in an effort to reduce the computation expense.

§ 3.3.2) The simplified model geometry and corresponding FEM mesh is
illustrated for the S4 design in Figure 8.6.

8.2.3 Magnetic Field Analysis

In order to evaluate and compare the residual axial field variations produced
by the magnet designs investigated, a spherical harmonic decomposition of
the 3D magnetic field patterns was performed. This analysis elucidates the

nature of these field distributions and how they relate to the geometrical
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configurations of their corresponding yoke structures. In addition, this
analysis is also helpful in determining any passive shimming advantages

potentially offered by the magnet designs investigated.

In a region absent of currents and magnetic materials, the axial magnetic

field component satisfies Laplace’s equation
V2B, = 0. (8.4)

Accordingly, B, may be expressed as?? (see § 3.1.3)

0 £
B.r,6,8) =) D arr'V6,9) (85)
£

=0 m=—+

where (1,0, ¢) denote the usual spherical coordinates and a,,, are the
expansion coefficients. The spherical harmonic function Y,”* (0, ¢) is defined

according to
Y{"(6,¢) = Ni*P*(cos 0)ei™?, (8.6)

where P;"(cos 6) denotes the associated Legendre polynomial of order £ and

degree m, and the normalization factor N;” is defined as

eern@e-—my
Ng ‘j @ rm) (87)

Evidently, the orthonormal basis {YV;”}is composed of complex functions.
Thus, it is instead preferred to express B, in terms of the basis of real

spherical harmonics {y;"}, such that
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00 £
B,(r,0.0)= ) ) conr'yi(0,9), (8:8)
1

=0 m=—+

with y7"* (6, ¢) defined according to

\/_ my — i -m _ (_1\ymym
2Im(Y,™) =- Z(Y{, (=1my,™), form <0
[

\/_
yt =1 Y, form =0 (8.9)
1
V2 Re(Y;™) = E(Y{f’” + (—D™y, ™), form>0.

Due to the orthonormality of the basis {y;*}, the expansion coefficients c,,,

can be calculated using the expression

2T W

1
Copm = ﬁof Of B,(R,0,9)y;*(6,¢)sinf db d¢. (8.10)

For this analysis, B,(R,6,¢) was obtained from the FEM simulations
described in the previous section and sampled on the surface of a 40 cm DSV
at isocenter according to a 131st-order Lebedev quadrature scheme?? that

was used to numerically evaluate the integral in Eq. (8.10).

Although the coefficients c,,, complete the expansion defined in Eq. (8.8),
their values alone are not telling of the relative impact that the various
harmonics have on the magnetic field variation in a particular region of
interest. This is partly due to the fact that the maximum value of |y;* (6, ¢)|
generally differs from unity. Furthermore, Eq. (8.8) clearly shows that the

impact of a given harmonic is proportional to . Hence, in order to compare
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the relative contribution of each harmonic to the total field variation over a

40 cm DSV, the peak harmonic amplitudes C,,,, were calculated with

Com = ComR maxg 4 {|y7" (6, P)I}. (8.11)

In this way, the impact of a given harmonic can easily be expressed in
familiar units of ppm, simply by dividing C,,, by the corresponding field
strength B,.

8.3 RESULTS AND DISCUSSION

Results of the coil optimization procedure are presented in Tables 8.1
and 8.2. Convergence to a minimum volume coil configuration, satisfying the
field uniformity constraint in Eq. (8.1), required no more than 24 iterations
for any magnet design. Each coil configuration is symmetric and consists of
seven coils per magnet pole, with alternating current directions in adjacent
coils. The optimized coil arrangement for each of the 20 cm yoke bore
variants are visualized in Figure 8.7, along with the FEM solution for the
magnetic field within the yoke and pole structures. The residual axial
magnetic field inhomogeneities AB, for these designs are visualized over the
surface of a 40 cm DSV at isocenter in Figure 8.8, and the corresponding
peak-to-peak values are shown in in Tables 8.1 and 8.2. To illustrate the
dependence of the field variation magnitude on the imaging volume size, a
plot of the peak-to-peak inhomogeneity as a function of spherical volume

diameter is provided in Figure 8.10.

To aid in the evaluation of the residual magnetic field patterns, the
coefficients corresponding to the real spherical harmonic decomposition in
Eq. (8.10) were calculated up to a maximum order of £ = 20 for each magnet

design. These coefficients were then scaled by the appropriate factors in
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TABLE 8.1: FEM model properties and optimization results for the 20 cm diameter yoke bore
variants of the magnet designs investigated. The minimized conductor volume V,, final

magnetic field inhomogeneities AB, and AB, peak conductor field B,, and fringe field

extent are given.

Quantity S4 HB PB Ccs M4
Vy (m3) 2.767 2.767 2.759 2.767 2.759
Mesh elements (106) 1.081 1.128 1.100 2.197 1.143
Simulation time (min) 53.1 45.9 55.6 137.6 46.1
Optimization iterations 11 14 15 12 15
B, (T) 0.5000 0.4998 0.5000 0.4997 0.4998
AB,, target points (ppm) 31 32 31 35 36
AB,, 40 cm DSV (ppm) 251 1063 802 3613 399
AB, 40 cm DSV (ppm) 251 1063 802 3613 399
V, (104 cm3) 1.810 1.770 1.852 1.660 1.708
Bpeak (T) 3.406 3.379 3.505 3.280 3.351
X5 (m) 4.6 4.5 1.9 2.6 1.8
ysg (m) 4.6 4.5 1.9 2.5 1.8
s (m) 5.8 5.6 2.2 3.4 2.3

Eq.(8.11) in order to determine the peak amplitudes of the individual
harmonics over a 40 cm DSV. The scaled coefficients with £ < 8 that were
calculated to have a magnitude of at least 0.1 mT are provided in Tables 8.3

and 8.4.

A typical requirement for the installation of clinical MRI systems is the
confinement of magnetic fields with strengths greater than 5 G to within the
boundaries of the imaging suite. Accordingly, the maximal extent

(%56, V56, 256) of the 5G magnetic field contours (measured relative to
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TABLE 8.2: FEM model properties and optimization results for the 30 cm diameter yoke bore
variants of the magnet designs investigated. The minimized conductor volume V,, final

magnetic field inhomogeneities AB, and AB, peak conductor field B,, and fringe field

extent are given.

Quantity S4 HB PB Cs M4
Vy (m3) 2.731 2.731 2.723 2.731 2.723
Mesh elements (106) 1.109 1.158 1.137 2.243 1.176
Simulation time (min) 49.6 53.3 52.8 154.0 48.2
Optimization iterations 18 8 24 7 20
B, (T) 0.5000 0.4999 0.4999 0.4996 0.5000
AB,, target points (ppm) 26 26 38 26 29
AB,, 40 cm DSV (ppm) 241 1078 805 3556 401
AB, 40 cm DSV (ppm) 241 1078 805 3556 401
V, (104 cm3) 2.036 1.989 2.104 1.837 1.923
Bpeak (T) 3.444 3.453 3.550 3.371 3.434
X5 (m) 4.7 4.6 1.9 2.6 1.8
ysg (m) 4.7 4.6 1.9 2.6 1.8
s (m) 5.8 5.7 2.3 3.5 2.3

isocenter) are also provided in Tables 8.1 and 8.2. Projections of these

contours are visualized in Figure 8.9

For a given yoke bore diameter, there was less than a 6.9 % variation in the
peak conductor fields Bpeax amongst the various magnet designs
investigated, as shown in Tables 8.1 and 8.2. A maximum value of 3.550 T
was observed for the PB design with a 30 cm yoke bore diameter, which is
well below the 4 T limit specified for the MgB, material used. This design
also required a conductor volume of 2.104 X 10* cm3, which was greater than

that used in any of the other assemblies. In comparison, the CS design
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resulted in the lowest peak field and required conductor volume, with values

of 3.280 T and 1.660 x 10* cm3, respectively.

The presence of a larger yoke bore clearly necessitates a reduction in the
volume of the magnetized yoke and pole structures that contribute to the net
magnetic field at isocenter. Consequently, the 30 cm yoke bore designs lead
to an increase of at least 10.7% in the minimum conductor volume required
to satisfy the optimization homogeneity constraints, in addition to an

increase of at least 1.1% in the peak conductor fields.

As shown in Figure 8.10, the four-column S4 and M4 magnet designs were
found to exhibit superior magnetic field uniformity over the full range of
spherical volumes examined. In particular, the S4 design achieved the lowest
peak-to-peak AB, values of 251 and 241 ppm over a 40 cm DSV for both 20
and 30 cm yoke bore variants, respectively. Similarly, the M4 design
achieves comparable values of 399 and 401 ppm for the 20 and 30 cm yoke
bore variants, well outperforming the HB, CS, and PB designs. In comparison
to the M4 design, the improved uniformity obtained with the S4 design is
likely due to the use of smaller yoke columns, which have a reduced influence

on the magnetic field pattern near isocenter.

The S4 and M4 magnet designs also result in the fewest number of terms
contributing to the spherical harmonic decomposition of the residual axial
field variation, as shown in Tables 8.3 and 8.4. In addition to the even zonal
harmonics (€ even, m = 0), only those of the fourth degree (m = 4) with
either £ = 4 or 6 have a substantial amplitude (> 1 uT). Indeed, this is the
expected result due to the prominent four-fold symmetry about the z axis
possessed by both of these yoke designs. Coupled with the relatively low
magnitude of the noted sparse harmonics, these results suggest that the S4

and M4 magnet designs are likely to pose the least challenge for post-
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FIGURE 8.7: Half sections of the magnet geometry and corresponding optimal coil
configuration for the (a) S4, (b) HB, (c) PB, (d) CS, and (e) M4 designs with a 20 cm diameter
yoke bore. The magnetic field solutions are displayed on the surface of the yoke and pole
structures. Values are given in units of T according to the color scale shown on the right.
The material in regions for which the induced flux is greater than 1.8 T is magnetically

saturated. The 30 cm diameter yoke bore variants exhibit similar field patterns.
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FIGURE 8.8: The residual axial magnetic field variation AB, (ppm) plotted on the surface of a

40 cm DSV at isocenter for the: (a) S4; (b) HB; (¢) PB; (d) CS; and (e) M4 magnet designs

with a 20 cm diameter yoke bore.

The limiting nature of the non-axisymmetric yoke

structures is reflected in the magnetic field patterns shown. The 30 cm diameter yoke bore

variants exhibit similar distributions.
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FIGURE 8.9: Plots of the 5 G magnetic field contours projected onto the (a) xy, (b) xz, and (c)
yz planes for 20 cm diameter yoke bore variants of the optimized magnet designs. The M4

and PB designs provide the greatest shielding of the fringe magnetic fields.
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calculated over various spherical regions of interest for the (a) 20 and (b) 30 cm diameter

yoke bore variants. The four-column S4 and M4 designs exhibit superior uniformity over the

complete range of spherical diameters.
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TABLE 8.3: Scaled peak amplitudes (uT) for the real spherical harmonic decomposition of the
residual axial magnetic field, computed for the 20 cm yoke bore diameter variants of the
magnet designs investigated. The values given correspond to a 40 cm DSV atisocenter. Only

harmonics of order 0 < ¥ < 8 with a magnitude of atleast 0.1 uT are shown.

Peak harmonic amplitude C,,,, (uT)

Order ¥ Degree m S4 HB PB CS M4
1 1 0.0 0.0 0.0 -633.0 0.0
2 0 45.3 182.3 164.4 436.5 73.4
2 2 0.1 2225 160.3 -247.2 0.0
3 1 0.0 0.0 0.0 240.3 0.0
3 3 0.0 0.0 0.0 -63.8 0.0
4 0 -14.9 -45.8 -57.1 -87.8 -29.0
4 2 0.1 -46.0 -36.4 51.7 0.0
4 4 48.9 -13.0 19.2 -13.1 83.1
5 1 0.0 0.0 0.0 -20.7 0.0
5 3 0.0 0.0 0.0 9.1 0.0
5 5 0.0 0.0 0.0 -2.2 0.0
6 0 5.3 4.1 9.3 1.1 7.5
6 2 0.0 3.2 3.5 -3.1 0.0
6 4 -5.8 1.6 -2.7 1.4 -9.6
6 6 0.0 0.5 1.5 -0.3 0.0
7 1 0.0 0.0 0.0 0.9 0.0
7 3 0.0 0.0 0.0 -0.5 0.0
7 5 0.0 0.0 0.0 0.2 0.0

manufacturing passive shimming. The closed HB and PB designs have
two-fold rotational symmetry, leading to a large contribution from even
order harmonics with 7 = 2, in addition to a decreasing contribution from
those with degrees that are multiples thereof. In contrast, the CS design lacks
rotational symmetry about the z axis, leading to a large number of mixed

harmonics. In particular, the presence of the single large flux return column
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TABLE 8.4: Scaled peak amplitudes (uT) for the real spherical harmonic decomposition of the
residual axial magnetic field, computed for the 30 cm yoke bore diameter variants of the
magnet designs investigated. The values given correspond to a 40 cm DSV atisocenter. Only

harmonics of order 0 < ¢ < 8 with a magnitude of at least 0.1 uT are shown.

Peak harmonic amplitude C,,,, (uT)

Order ¥ Degree m S4 HB PB CS M4
1 1 0.0 0.0 0.0 -615.5 0.0
2 0 41.5 186.1 158.9 430.1 72.6
2 2 0.0 224.7 163.0 -247.8 0.0
3 1 0.0 0.0 0.0 246.5 0.0
3 3 0.0 0.0 0.0 -64.9 0.0
4 0 -16.9 -52.2 -61.9 -94.8 -37.0
4 2 0.0 -46.5 -37.1 53.3 0.0
4 4 49.6 -13.1 19.6 -13.3 84.5
5 1 0.0 0.0 0.0 -21.2 0.0
5 3 0.0 0.0 0.0 9.2 0.0
5 5 0.0 0.0 0.0 -2.2 0.0
6 0 4.7 4.8 8.4 -1.2 7.1
6 2 0.0 3.2 3.6 -3.0 0.0
6 4 -5.9 1.6 -2.7 1.4 -9.7
6 6 0.0 0.5 1.5 -0.3 0.0
7 1 0.0 0.0 0.0 0.7 0.0
7 3 0.0 0.0 0.0 -0.4 0.0
7 5 0.0 0.0 0.0 0.2 0.0

leads to a dominant contribution from low-order harmonics and those with
m = 1. Of course, this is with exception to the harmonics with m < 0 or
(£ —m) odd, which are necessarily zero for all of the designs due to

symmetries across the xz and xy planes, respectively.
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As displayed in Tables 8.1 and 8.2, the M4 and PB designs provide the
greatest shielding of magnetic fringe fields. In comparison to the other
magnet assemblies, these designs employ the greatest amount of magnetic
material in the flux return components of their yoke structures.
Consequently, magnetic saturation of these components is avoided and
improved fringe field confinement is achieved. As can be seen in Figure 8.7,
the magnetic field strength within the M4 and PB yoke structures is generally
limited to 1.8 T. According to Figure 8.5, the comprising steel material
rapidly begins to saturate above this value. In contrast, the flux return
components of the S4 and HB designs are considerably saturated, and the

resultant fringe fields are necessarily expansive.

It is evident that the geometric distribution of yoke material plays an
important role in determining the shielding capability of a given magnet
design. In particular, by reallocating the yoke material from regions with low
levels of induced flux (< 0.5 T) to regions of saturation (> 1.8 T), the
material is more effectively distributed along the flux return path, leading to
a dramatic improvement in fringe field confinement. In addition to
explaining the superior shielding of the M4 design, this suggests that the
shielding performance of the CS magnet could be improved yet. By
introducing a yoke design possessing a graded axial thickness (or lateral
width) that increases towards the single flux return column, the saturation
effect that is observed in Figure 8.7(d) could be corrected without recourse
to incorporating additional material and unnecessarily increasing both the
magnet cost and weight. Indeed, this is the approach observed with a similar
commercially available C-shaped design that has been reported in the

literature.46

As evident in the discussion above, each magnet design investigated in this
work exhibits some extent of trade-off between the various performance

measures considered. Hence, the suitability of a particular design depends

248



on the requirements of the specific application at hand. The primary design
goal for the magnet in a rotating linac-MRI system is maximum field
uniformity in the imaging region so as to minimize geometric distortions that
may complicate the treatment guidance process. Consequently, the open S4
and M4 designs immediately stand out as prime candidates, due to the low
magnitude and sparse harmonic content of their magnetic field
inhomogeneity patterns. That said, special consideration of the fringe field
extent and passive shielding performance is also required. The magnitude of
potential field distortions caused by the relative motion of the rotating
magnet assembly with respect to nearby ferromagnetic objects (such as an
elevator or passive room shielding) is likely to depend on the extent of the
stray magnetic field. Thus, the modified four-column design M4 is deemed
the most suitable candidate. Although the amount of superconducting wire
represents a limited fraction of the total linac-MRI system cost, the M4 design

also represents an economical choice.

It is important to note that the pole plate designs considered in this work
strictly possess flat opposing surfaces. It is well known that optimal
contouring of these surfaces can enhance the magnetic field uniformity in the
imaging volume,?# 25 potentially reducing the conductor volume required for
an optimal coil configuration. As was previously noted in the discussion
above, it is also understood that the modification and optimization of the
basic yoke geometries considered may result in improved uniformity and
passive shielding. Nevertheless, the trends observed in this work are still
expected to apply. Moreover, the results obtained here have provided a
strong practical foundation and useful insight towards the appropriate

selection of a candidate geometry for further design optimization.
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8.4 CONCLUSION

A unified approach has been presented for the optimal design of several
biplanar superconducting magnet assemblies for use in a rotating linac-MRI
system with a parallel configuration. In particular, the magnet designs
considered are compact in size and possess a large hole bored through the
yoke assembly so as to permit an unobstructed path for the treatment beam.
Minimum volume coil configurations comprised of seven coil pairs were
obtained for each of the designs. Based on the optimization results, it was
demonstrated that the geometrical configuration of the yoke structure had a
pronounced effect on several performance characteristics. For instance,
periodicity and symmetry in the flux return structures exhibited a clear
impact on the spherical harmonic decomposition of the residual field
distributions in the imaging volume. Furthermore, the selective allocation of
yoke material to regions of high induced fields, and along the flux return
path, was seen to dramatically improve the passive shielding effectiveness of
the yoke design. In comparison to the other geometries investigated, the
modified four-column design exhibited a relatively high level of field
uniformity in addition to a sparse harmonic decomposition of the associated
field pattern. These attributes are particularly desirable since obtaining a
homogenous field and minimizing geometric distortions are expected to be of
central importance for accurate target tracking with a linac-MRI system. In
contrast, the asymmetric nature of the C-shaped design resulted in a large
number of mixed harmonic terms. The modified four-column and pill-box
geometries exhibited superior passive shielding of the fringe magnetic fields,
which may alleviate the risk of detrimental field perturbations in the imaging
volume due to magnetic interactions with nearby ferromagnetic objects upon
system rotation. Taking these factors into consideration, the modified four-
column geometry has been selected as an excellent candidate for further
design optimization and incorporation into the linac-MRI design pursued by

our group.
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CHAPTER 9
CONCLUSIONS

A compelling approach to the advancement of image-guided radiotherapy
(IGRT) involves the novel integration of magnetic resonance imaging (MRI)
and external beam radiotherapy (EBRT). Through the rapid acquisition of
cinematic magnetic resonance (MR) images bearing exquisite soft tissue
contrast, these hybrid devices will permit real-time target localization and

online treatment guidance.

Our group at the Cross Cancer Institute (CCI) is currently pursuing the
development of an integrated medical linear accelerator (linac) and biplanar
MRI system capable of performing advanced real-time adaptive radiotherapy
(ART?). The first prototype of this system has been successfully constructed
and tested, for which the linac was mounted on the open end of a biplanar
permanent magnet in a perpendicular configuration. In the embodiment
currently pursued for the second prototype, the linac is mounted coaxial with
the magnet pole of a biplanar superconducting system in the dosimetrically

advantageous parallel configuration.

The rotating biplanar linac-MRI concept has introduced two unique
challenges with regards to the design of the main magnet assembly. In
particular, rotation of this system requires that the magnet dimensions be
constrained, while an unobstructed beam path in a parallel configuration
requires a large hole to be bored from the magnetic yoke structure. The
work presented in this thesis investigated the consequences of these
challenges and was specifically aimed at developing novel optimization
methods that could be used for the design of both permanent and

superconducting magnet systems that addressed them.

255



In Chapter 5, the finite element method (FEM) was used to simulate the
magnetic fields generated by a full-body 0.2 T four-column biplanar
permanent magnet assembly. It was demonstrated that reducing the lateral
dimensions of this magnet system led to an increase in the magnetic field
inhomogeneity near isocenter. This resulted in greater restrictions on the
size of the volume over which successful passive shimming is possible, based
on the assumed maximum tolerable inhomogeneity of 500 ppm. Specifically,
it was shown that flat and single annular ring-shimmed (SARS) pole piece
designs were unable to yield suitable levels of field uniformity within a 40 cm
diameter spherical volume (DSV). In an attempt to compensate for the
effects of lateral size reduction, a nonlinear iterative optimization method
based on the FEM was developed and implemented. This method was
demonstrated to arrive at optimal axisymmetric and non-axisymmetric (AGP
and NAGP) pole piece designs that minimized the magnetic field variation
within a spherical region of interest (ROI). The NAGP design resulted in
superior levels of field uniformity, due to the ability to correct for the
predominantly non-axisymmetric influence of the magnetic yoke structure.
As such, the NAGP pole piece was the only design that permitted passive

shimming within a 40 cm DSV.

In Chapter 6, the compact magnet assembly investigated in Chapter 5 was
modified so as to introduce a large 20 cm diameter hole longitudinally bored
through the entire yoke structure. This design would therefore permit an
unobstructed beam path for a linac-MRI system with a parallel configuration.
It was demonstrated through field calculations with the FEM that the
presence of the bore further degraded the magnetic field inhomogeneity of
this magnet assembly. Specifically, flat and SARS pole piece designs were
shown to be incapable of yielding uniformity levels that permitted passive
shimming within either 30 or 40 cm DSVs. Accordingly, the nonlinear
optimization scheme developed in Chapter 5 was adapted to arrive at

optimized double annular ring-shimmed (DARS), AGP, and NAGP pole piece
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designs that permitted passive shimming within a 30 cm DSV. The NAGP
design provided superior field uniformity, however, the advantage of this
design was less apparent within larger volumes due to the overwhelming
inhomogeneity introduced by the yoke bore. Through an examination of the
fields within and proximate the magnet assembly, it was also determined
that the magnetic field within the bore region reverses direction, peaks in
magnitude, and comprises a transverse component that increases with off-
axis distance. Consequently, it was judged that the bore interior may not be a

suitable location for magnetically sensitive devices.

In Chapter 7, the focus of this thesis shifted towards the design of
superconducting magnet systems with magnetic materials. A robust iterative
optimization scheme based on the FEM was presented for the design of
homogeneous yoked superconducting magnets with minimum volume coil
arrangements. In particular, this method is appropriate for the optimization
of conduction-cooled cryogen-free magnet systems employing high-
temperature superconducting (HTS) coils. Magnets of this type are
becoming of increasing interest due to the ability to achieve medium to high
field strengths without the need of liquid cryogens or a safety ventilation line.
As such, these magnets are especially well suited for use in a rotating
biplanar linac-MRI system. The effectiveness of the proposed optimization
method was demonstrated with the design of a compact 05T
superconducting magnet system with a four-column yoke structure.
A solution comprising six coil pairs was rapidly obtained in 11 iterations,
resulting in a level of field uniformity that would permit successful passive

shimming within a 40 cm DSV.

In Chapter 8, a uniform approach was applied to the optimal design and
subsequent evaluation of several full-body 0.5 T superconducting biplanar
magnet systems. Standard four-column, H-box, pill-box, C-shaped, and

modified four-column designs were considered, with 20 and 30 cm diameter
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holes bored from the yoke structures to permit an unobstructed beam path
for a linac-MRI with a parallel configuration. The optimization method
developed in Chapter 7 was used to obtain minimum volume coil
configurations consisting of seven coil pairs for each design. Using the
results of the optimization and FEM simulations, it was verified that the yoke
geometries had a notable impact on the residual magnetic field patterns and
passive shielding performance of the various designs. The greatest field
uniformity was observed for the standard and modified four-column designs,
for which the associated spherical harmonic decomposition had the fewest
number of terms. In contrast, the C-shaped design resulted in the greatest
inhomogeneity and a large number of mixed harmonics. The modified four-
column and pill-box designs demonstrated superior passive shielding, due to
the effective allocation of magnetic material along the flux return path
established with these yoke geometries. Magnetic saturation was observed
with the other geometries, indicating the potential for improved shielding
performance upon redesign. In any case, the relatively low residual
inhomogeneity, sparse harmonic content, and superior passive shielding
observed with the modified four-column design suggests that this assembly

is an excellent candidate for further design and optimization.

It can be concluded based on the research presented in this thesis that the
magnet design issues that challenge the integration of a medical linear
accelerator and biplanar MRI system can be overcome. Specifically, using the
numerical optimization methods developed in this work, the design of
compact bored permanent and superconducting magnet systems is feasible.
The three-dimensional FEM is an integral tool in this design process, for
which flexible and powerful commercially available software packages are

readily available for integration with custom optimization scripts.

There is great potential for future extensions to the present work that may

further contribute to the development of a rotating biplanar linac-MRI
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system. For instance, the proposed optimization methods decidedly neglect
constraints on magnetic shielding, as the yoke design does not enter the
optimization loop. The magnetic material comprising the yoke structure is
highly nonlinear and hence incorporating this aspect into the design process
is computationally expensive. A logical next step would then involve
determining an efficient method for approximating the magnetic field-related
impact of small changes to the geometrical features of the yoke, from the
viewpoint of the fringe magnetic fields. Given such a technique, the complete
optimization process could then either simultaneously or sequentially
address the field shielding and homogeneity goals, as illustrated in

Figures 9.1 and 9.2. This functionality would become increasingly valuable
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FIGURE 9.1: Iterative optimization flow diagram for the simultaneous treatment of passive

shielding and field homogeneity constraints.
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FIGURE 9.2: Iterative optimization flow diagram for the sequential treatment of passive

shielding and field homogeneity constraints.
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as additional magnetic structures are incorporated into the linac-MRI design,
such as passive shielding components for the linac and other magnetically
sensitive devices, in addition to the large steel gantry upon which the linac-
MRI system is supported and rotates. These auxiliary components will
undoubtedly alter the characteristics of a given magnet design and thus
determining their optimal arrangement would be beneficial. Ultimately, this
would permit the greatest performance of the linac-MRI system in its

entirety.
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