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Abstract

Model predictive control (MPC) is a popular advanced control technology. Unfortunately,

over time the behaviour of the plant may deviate from its initial design conditions resulting

in model-plant-mismatch. The detection and diagnosis of such mismatches is an impor-

tant task to ensure that MPC systems are operating optimally, and any potential model

re-identification is targeted to only necessary sub-models. Conventional mismatch detec-

tion methods directly use plant operating data for such purposes. The quality of assessment

of these methods may suffer in the presence of significant disturbances. In Chapter 2, a

linear slow feature analysis (SFA) data reconstruction is proposed to remove fast and typ-

ically irrelevant variations, extracting only those slow-varying and important components

of the data to detect model-plant-mismatches. This preprocessing approach is shown to im-

prove the performance of a conventional model-plant-mismatch detection method through

both simulated and industrial case studies, and thus provide a more targeted selection of

sub-models for re-identification.

As SFA does not directly model process noise, and the conventional probabilistic SFA

(PSFA) extension treats all noises as Gaussian, these algorithms are susceptible to the pres-

ence of outliers in the data. As industrial data often contains outliers there is motivation

to remedy this issue. In Chapter 3, a robust PSFA (rPSFA) method with the measure-

ment noises modeled as a scale mixture of Gaussians, switched according to a Bernoulli

distribution, is considered for the modelling of systems where data contains outliers. To

demonstrate the effectiveness of the proposed method over regular SFA, conventional PSFA

and a previously developed Student-t robust PSFA, simulations are conducted through
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Tennessee-Eastman benchmark process data. The algorithm is then applied to an indus-

trial zinc roaster process.

The developed rPSFA models the switching between inliers and outliers according to

a Bernoulli distribution which is completely random with respect to the previous outlier-

inlier state. Many industrial systems exhibit correlated noise behaviour in which an outlier

is more likely to occur after another. To account for this, Chapter 4 replaces the Bernoulli

distribution with a Hidden Markov Model (HMM) to allow for the previous measurement

noise mode to influence the prediction of future noise modes. Further, current literature

lacks an outlier robust PSFA based method that is designed to capture the behaviour of

multi-modal systems. To this end, the proposed HMM based robust PSFA is implemented

in a mixture model fashion, where multiple independent process models are developed si-

multaneously, and their results are blended according to some weightings. The proposed

model is verified in a soft-sensor task for a simulated system with a single operating mode

but with outliers generated according to a HMM. Additionally, an industrial system which

contains outliers and displays two distinct operating modes is used to demonstrate the de-

velopment of a soft-sensor and a MPC model-plant-mismatch detection and diagnosis task.
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”Slow and steady wins the race.”

- Robert Lloyd
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Chapter 1

Introduction
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1.1 Motivation

Model predictive control (MPC) is a popular advanced control method with many com-

mercial applications in process industries. This popularity is due to the MPC framework

providing the ability to automatically handle constraints, achieve economic optimization,

recover from upsets, etc., for large scale multiple-input and multiple-output (MIMO) sys-

tems. MPC relies on a predictive model to determine the estimated outcome of possible

future control actions, and thereby attempts to drive the plant towards a desired trajectory

though an optimization solution. As any discrepancy could lead to sub-optimal controller

performance, ensuring that the plant model utilized within a predictive controller is accu-

rate with respect to its real-world equivalence is an important task. One approach to ensure

model quality would be to perform frequent broad spectrum signal excitation experiments

and update the model accordingly. In practice however, this is undesirable as it may require

operation away from the economic optimum and have associated safety concerns. Instead,

the specific sub-models where mismatch exists should be identified so that a reduced set

of experiments can be conducted, and only when necessary. Many methods have been de-

veloped to detect and diagnose the presence of model-plant-mismatches at the input-output

pair level.

However, real world data often includes quicker varying disturbances that are of little

relevance to the plant dynamics and confound the attempts to detect and diagnose model-

plant-mismatch. To this end, slow feature analysis (SFA) is an attractive option to eliminate

the more quickly varying latent features of a data set while retaining those that vary more

slowly and are more likely to be relevant to the model and its quality assessment. Cur-

rent SFA methods however are limited when compared to other latent variable frameworks,

such as PCA and PLS, when it comes to handling issues such as outlier dynamics and mul-

tiple process mode operation. While preprocessing, such as the commonly used 3σ outlier

replacement algorithm, is possible, this may result in an undesirable loss of information.

The motivation of this thesis is to develop a method of SFA based preprocessing to en-
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hance model-plant-mismatch detection and diagnosis performance, as well as to develop

new probabilistic SFA based methods to better handle common issues found in industrial

data sets.

1.2 Literature Overview

In this work, two primary areas are considered, MPC model-plant-mismatch detection and

diagnosis, and slow feature analysis. Summaries of the current literature regarding each of

these two fields are given below.

MPC Model-Plant-Mismatch Detection and Diagnosis

In most MPC applications a predictive model of the plant is identified from previous op-

erating data, identification experiments, or first principles during the commissioning stage.

Over time, changes in feed stock, facility equipment, and operating points can result in the

prediction model no longer being accurate. An inaccurate prediction model can result in

deteriorated control performance of the MPC itself [1] as well as sub-optimal determina-

tion of set points in higher level optimizers that may depend on a steady state version of

the prediction model [2, 3]. To this end, regular re-identification of the plant model could

be performed. However, to get accurate identification results, greater excitation than that

found in typical operating data may be needed [4]. As this additional excitation may re-

quire operation outside the economic optimum and have associated safety concerns, such

experiments should be conducted sparingly and only target those input-output pairs where

re-identification is necessary. To address this, several model-plant-mismatch detection and

diagnosis methods have been developed for MPC systems [5–15]. The approaches taken

to identify model-plant-mismatch vary, but one common method is to attempt to identify a

new linear dynamic model over a short period of time and compare its behaviour to that of

the currently used prediction model [16–19]. Such methods are confounded by the pres-

ence of high order, nonlinear process dynamics or large disturbances [20, 21] which are
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commonly of a relatively quickly varying nature in chemical processes.

Additional detail of the current state of MPC model-plant-mismatch detection and diag-

nosis for industrial MIMO systems can be found in Chapter 2.

Slow Feature Analysis

Slow feature analysis [22] is a latent variable method that can extract the slowly varying

underlying features of data. It has found use in the monitoring and modelling of processes

where the features of interest are believed to be slowly varying in nature, such as industrial

chemical processes [23–25], and human visual perception and movement [26, 27]. Similar

to other latent variable methods it has been extended to a probabilistic framework [28, 29].

This framework has been further extended to address data quality concerns often found in

industrial settings that are poorly handled by the original linear approach [30–34].

Chapters 2, 3 and 4 provide more information on the current state of latent variable meth-

ods with an emphasis on slow feature analysis for modelling and monitoring of chemical

processes.

1.3 Thesis Outline and Contributions

In addition to this introduction, this thesis is structured in a three-paper format with intro-

ductions as follows:

In Chapter 2, a linear SFA based encoder-decoder structure is proposed as a data pre-

processing step to de-emphasize the fast latent features of historical operating data. The

objective of this is to obtain MPC model-plant-mismatch detection and diagnosis that are

more targeted to the slow signals which tend to be of greater importance in chemical pro-

cesses. The proposed method is demonstrated for simulated data with known mismatches

as well as industrial data where the location and severity of mismatch within the plant

model is unknown.

Chapter 3 discusses the development of a robust PSFA model that can overcome the
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issues that outliers in training data cause when using conventional SFA and PSFA. This

method is validated with soft-sensor development case studies for simulated and industrial

data containing outliers.

In Chapter 4, the developed robust PSFA model is extended to further consider the cor-

related transition of inlier and outlier modes while also accounting for multiple process

operating conditions. This method is validated using soft sensor case studies as well as an

industrial MPC model-plant-mismatch detection and diagnosis task.

Finally, in Chapter 5, a summary of conclusions and potential future work related to the

previous chapters is presented.
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Chapter 2

MPC Model Quality Assessment
Through Slow Feature Analysis
Preprocessing

A version of this chapter was presented at the AdCONIP 2022 Symposium as: Cameron Dyson, Santhosh
Kumar Varanasi, Graham Slot, Primo Majoko, and Biao Huang ”MPC Model-Plant-Mismatch Detection
Through Slow Feature Analysis Preprocessing with Industrial Application”
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2.1 Introduction

Model predictive control (MPC) is a model-based control strategy that has found widespread

applications in process industries owing to its ability to handle constraints, achieve eco-

nomic optimization, etc., for large scale multiple-input and multiple-output (MIMO) sys-

tems [35, 36]. MPC computes a sequence of manipulated adjustments that optimize the

future behavior of the plant based on a predictive model and operating constraints.

In most applications, a predictive model is identified during the commissioning stage of

the MPC from historic operating data, first principles or system identification experiments.

Such a model consists of two parts, a plant model which relates measured inputs to the

outputs, and a disturbance model which relates unmeasured inputs to the outputs. The

plant model, G, often consists of first order plus dead time (FOPDT) transfer functions

between relevant input-output pairs, which are selected based on process knowledge or

past experience. The disturbance component of the prediction model, H, may be identified

in a similar manner, or more commonly, may be assumed simply to be a fixed random walk

model. Some commercial MPC software packages include an additional planning module

which may use a steady state version of the plant model to determine optimal set points

based on some economic, environmental, or safety-based cost function. A simplified block

diagram of an MPC structure is shown in Figure 2.1.

Figure 2.1: Simplified MPC Block Diagram with Planning Module.
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While some degree of prediction error is unavoidable due to background noises, inaccu-

racies in the MPC’s prediction model can exacerbate the degree of error. This can lead the

MPC to recommend control actions that are not aligned with the plant’s desired behaviour.

In the case that the prediction model is less responsive to the inputs over the prediction hori-

zon than the real-world plant, this will lead to more severe control actions than are strictly

necessary, likely resulting in some overshoot of the set point and increased signal variance.

Alternatively, if the prediction model is more responsive than its real-world equivalent,

the recommended control actions will result in laggardly tracking of the set point and the

system will be slow to reject disturbances. Further, any discrepancies between the predic-

tions model’s steady state gain and that of the real plant can result in planning modules

recommending set points that are sub-optimal [3].

In industrial settings, changes in operation methods, feedstock, equipment, etc., can

gradually lead to increasing mismatch between the plant and the model. As the accuracy of

the predictive model used in the MPC is paramount to both its own performance and that

of any planning modules, model-plant-mismatches should be detected so that they can be

remedied through re-identification. Re-identification of the entire plant model should be

avoided whenever possible as it may require perturbations to the plant. This procedure can

disturb operation and may lead to safety concerns.

The objective of model quality assessment is then to detect model-plant-mismatch and

diagnose which specific sub-models are the most likely source. This allows for a reduced

set of experiments that target only the input-output pairs where mismatch exists, thereby

reducing the potential loss of profit and safety. Several methods exist in the literature to

perform model-plant-mismatch detection and diagnosis utilizing the predictive model and

historical data. Some methods claimed to have good performance with industrial data are

dynamic partial correlations between the prediction errors and inputs [13], model quality

index (MQI) with a leave-one-out approach (MQILOO), the crossover of MQI [17] and

correlation analysis between input and disturbance [18], and one-class support vector ma-
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chines [37].

In most chemical processes, conditions relating to the plant do not vary quickly and have

large inertia compared to the rapid varying nature of disturbances. Therefore, the slow-

varying features of most chemical process settings are of main interest while the faster

features often relate to the disturbances. As disturbance model changes are of less concern,

especially when a fixed disturbance model is used in MPC, the ability to reconstruct the

data based upon slower varying features for model-plant-mismatch detection is desirable.

Slow feature analysis (SFA) [22] provides a framework to extract slowly varying latent

features of data which can then be used to construct a more relevant data set for model

quality analysis.

The main objective of the current chapter is to demonstrate the improvements in model-

plant-mismatch detection and diagnosis through SFA based data reconstruction. The results

are demonstrated utilizing the MQILOO approach for model-plant-mismatch detection and

diagnosis in a simulated MIMO system with known mismatches as well as in an industrial

data set for which the mismatches are unknown. The remainder of this chapter is organized

as follows: in Section 2.2, methods for detecting model-plant-mismatch and concepts of

slow feature analysis are provided, improvement though slow feature analysis are demon-

strated in Section 2.3, followed by conclusions in Section 2.4.

2.2 Methods

In this section, the methods used in model quality assessment of MPC, and slow feature

analysis are provided.

2.2.1 Model Quality Assessment

Consider a MIMO model which has n inputs, u, and m outputs, y. Based on the model,

each of the outputs can be calculated with a corresponding one-step ahead prediction error,

e. The MQI [17] of an output channel, yi, is the ratio of the sum of the square of one-step
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ahead prediction errors of a high order ARX model, e0i, fitted to the input-output data in

the selected window, to that of prediction from the model used by the MPC, ei,

MQIi =
∑

N
t=1 eT

0ie0i

∑
N
t=1 eT

i ei
, i = 1, ...,m (2.1)

This allows for model quality assessment on a per output basis. Values less than one in-

dicate that the prediction error of the corresponding output channel could be improved by

the re-identification of one or more of its associated sub-models. In order to determine

the related inputs that correspond to a mismatched sub-model, a leave-one-out approach

(MQILOO) is adopted. Here, the MIMO ARX model is fitted again by fixing the sub-

model of one input channel to be the same as the predictive model at a time while all

other inputs are used to fit the ARX model. When the MQILOO of an input-output pair

increases relative to the MQI of the output, it suggests that the sub-model corresponding

to that input-output likely has model-plant-mismatch. The ratio of MQILOO to MQI can

then be tracked as an index to monitor the model quality.

Some degree of model mismatch is unavoidable in a nonlinear process modeled by

FOPDT plant models with an assumed random walk disturbance model. Therefore, the

indices for each sub-model are not monitored directly. Rather, the indices are compared

to their averages from a reference period during which performance was considered ac-

ceptable. When this ratio exceeds a user determined confidence limit, then model-plant-

mismatch can be determined, and re-identification may be performed.

2.2.2 Slow Feature Analysis

Several versions of slow feature analysis (SFA) have been developed since it was first pro-

posed [22]. In general, they share some properties as described in this section.

Given an m-dimensional stochastic and ergodic signal with zero mean, x(t), its temporal

variance (referred to as speed) is defined as:

∆(x(t)) = ⟨ẋ2(t)⟩t (2.2)
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where ⟨⟩t denotes time-based averaging and ẋ(t) is the derivative of x(t) with respect to

time, typically approximated using the first order finite difference. Note that if SFA is to

be performed on a signal without zero mean then a normalization step can be performed

beforehand.

The objective of SFA is to find a set of j = 1, ..,q functions, g j(x(t)), to extract a set of

slowly varying latent variables, s(t), from the input signal, x(t):

s j(t) = g j(x(t)) (2.3)

such that the speed of the extracted features is minimized:

min
g j

∆(s j(t)) (2.4)

with the following constraints:

⟨s j(t)⟩t = 0 (2.5)

⟨s2
j(t)⟩t = 1 (2.6)

∀i ̸= j,⟨si(t)s j(t)⟩t = 0 (2.7)

where (2.5) and (2.6) prevent trivial solutions and (2.7) ensures that slow features are un-

correlated with one another and are found in ascending order of their speed. The extracted

slow features can then be used for dimensionality reduction, soft sensor modelling and pro-

cess monitoring. In systems where the signals of concern are slowly varying and disturbed

by some fast-varying noises, such as many chemical processes, SFA provides more relevant

latent features than similar methods such as PCA.

In this work the linear version of SFA [22] is considered. Linear SFA assumes that the

transform function, g(x(t)) is simply a linear mapping of the inputs, i.e.:

s(t) =W T (x(t)) (2.8)

where W = [w1, ...,wq] ∈ Rm×q is to be optimized. In order to satisfy (2.7) the number of

features obtained must be q ≤ m. In the case of q = m, the global optimum solution can be
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found through solving a generalized eigenvalue problem:

AW = BWΩ (2.9)

where A= ⟨ẋ(t)ẋT (t)⟩t is the covariance of the temporal derivatives of x(t), B= ⟨x(t)xT (t)⟩t

is the covariance of x(t), and Ω = diag{ω1, ...,ωq} contains the generalized eigenvalues

that are the optimal solutions to (2.4):

∆(s j(t)) = ω j (2.10)

Conventionally slow feature analysis is an unsupervised learning method where only the

plant’s inputs are used to find latent variables. Recently it has been shown that a supervised

method that uses both the plant’s input and output signals for the slow feature analysis

has improved performance for regression tasks [31]. Additionally, dynamic-SFA, where

multiple copies of the selected signals are included with introduced lags up to some value

d, have been shown to also have improved performance [38, 39]. Therefore, both of these

improvements are to be used in this work.

Once the slow features are found, they can be used to reconstruct each of the original

input-output signals through a slow feature regression [40]. Here a linear regression is

performed using the q < p slowest features as inputs and each of the original plant input

and output signals as targets:

x̂i(t) = bT s1:q(t)+ c (2.11)

where b ∈ Rq are regression coefficients and c is the bias term to be determined. Guidance

on selecting the value of q can be found in [30]. In this way the original input-output signals

can be encoded as slow features and then a linear regression used to decode the original

signal from selected features, thereby reducing the prevalence of the fast components.

2.2.3 Proposed Method for Model-Plant-Mismatch Detection

In the presence of large disturbances and high order, or non-linear process dynamics,

model-plant-mismatch methods that rely upon identifying a model, such as MQI, may
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falsely attribute the complex disturbances to model-plant-mismatch. An SFA encoder-

decoder step is proposed to reduce disturbances that typically vary quickly and retain the

signals of interest that typically vary slowly. Based on the temporal variation of the nor-

malized signals, chemical processes tend to be slowly varying but affected by some quickly

varying disturbances; therefore, removing the effect of the fastest components should allow

for a more targeted analysis of the plant. The proposed method is as follows:

Step 1: In offline training, collect plant inputs, u(t), outputs, y(t) during a pe-

riod of time when MPC is considered to have adequate performance.

Step 2: Develop a linear SFA model to encode the signals. The input to SFA,

x(t), is the normalized versions of the collected plant inputs and outputs aug-

mented with their lagged copies up to lag d.

Step 3: Reconstruct both the input and output data using slow feature regres-

sion to decode the measurements from q selected features as in equation (2.11).

Step 4: Use the prediction model and reconstructed data to simulate the 1-step

ahead prediction error, e(t).

Step 5: For each input-output pair, determine the ratio of MQILOO to MQI.

Divide each of these by its average over the training period.

Step 6: Develop an upper confidence limit for these values. For example, an

upper limit of three standard deviations above the mean is considered in this

work.

Step 7: During the time period for the model to be monitored, collect the

plant data from the same MPC controlled process and apply the standardiza-

tion along with the lagged augmentation.

Step 8: Apply the SFA model from step 2 to encode, then the slow feature

regression from step 3 to decode the newly collected data over a window to be

monitored.
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Step 9: Again, using the reconstructed data within the moving window, find

the MQILOO to MQI ratio for each sub-model and divide these by the aver-

ages found in step 4.

Step 10: Determine if there are frequent excursions above the confidence lim-

its. These limits are determined during step 5. The presence of such excursions

indicates model-plant-mismatch in the given sub-model.

Step 11: If necessary, design and conduct re-identification experiments for the

concerned sub-models to update the prediction model.

The encoding and decoding portion of these steps are represented graphically in Figure 2.2.

An example of the signals can be seen in Figure 2.3 where d = 3 was used to augment the

raw signal (∴ m = 16), and q = 4 slow features were used to decode the signals. Note that

only the two slowest and two fastest extracted features are shown.

Figure 2.2: SFA Based Encoder-Decoder Structure.

Figure 2.3: SFA Based Encoder-Decoder Prepossessing Sample Results.
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2.3 Case Studies

In this section two sets of case studies are performed. A simulated distillation column is

used to demonstrate the proposed model-plant-mismatch detection and diagnosis method,

and an industrial zinc roaster data set is used to show increased ability in the determination

of sub-models that have model-plant-mismatches.

2.3.1 Simulation Case Studies

The first set of case studies were conducted based on the Wood-Berry column model [41].

This is a MIMO FOPDT system with two inputs, two outputs and disturbances driven by

two independent Gaussian white noises each with zero mean and a variance of 0.03:⎡⎣Y1(s)

Y2(s)

⎤⎦=

⎡⎣ 12.8e−s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

⎤⎦⎡⎣U1(s)

U2(s)

⎤⎦
+

⎡⎣ 3.3e−8s

14.9s+1
4.9e−3s

13.2s+1

⎤⎦⎡⎣N (0,0.03)

N (0,0.03)

⎤⎦ (2.12)

A MPC was designed in MATLAB’s MPC Designer App [42] using the true plant model

discretized with a one-minute sampling time and an assumed random walk disturbance

model. Note that this means that there is always some degree of disturbance-model-

mismatch, as is typical whenever a random walk disturbance is assumed in the MPC design.

The prediction model is then as follows:⎡⎣ŷ1(t)

ŷ2(t)

⎤⎦=

⎡⎣ 0.744z−1

z−0.9419
−0.8789z−3

z−0.9535
0.5786z−7

z−0.9123
−1.302z−3

z−0.9329

⎤⎦⎡⎣u1(t)

u2(t)

⎤⎦
+

⎡⎣ z
z−1

z
z−1

⎤⎦⎡⎣e1(t)

e2(t)

⎤⎦ (2.13)

Simulation Case Study 1

In this study the process is simulated for 10,000 minutes. The gain of the plant sub-model

between input-1 and output-1 is doubled (i.e., 100% parameter mismatch) in time instants
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Figure 2.4: Generated Data for Simulation Case Study 1.

2,000-7,000. The gain of the second disturbance is doubled from 8,000 onward. Both

changes happen gradually over 1,000 time steps within the bounds of the mismatches.

The prediction model used in MPC remains unchanged; therefore, there are both model-

plant-mismatch and disturbance-model-mismatch during these time periods. The simulated

input and output data are shown in Figure 2.4. Here it is clear that during the periods of

mismatch there are increased variances; however, it is difficult to identify what kind of

mismatch is occurring, and if it is a model-plant-mismatch, which sub-model(s) are the

cause. Therefore, a model-plant-mismatch detection and diagnosis must be performed to

identify the source.

Data samples within time 1-2,000 are used to train an SFA reconstruction model with

q = 2 and d = 1. The MQI is found in a data window of 250 minutes. The window

moves by 100 minutes at a time. The ARX models identified are of fifth order. A 3-σ

threshold is used to determine when the ratio of MQILOO to MQI increases substantially

over its average value calculated during the training period. The results can be seen in

Figure 2.5. A clear excursion from the limits, and therefore model-plant-mismatch, can

be correctly identified in the input-1 and output-1 pair in both the SFA reconstructed and
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Figure 2.5: Results of MQILOO to MQI Ratio Normalized to Training Period (1-2000) for
Simulation Case Study 1.

conventional methods. However, the conventional method also shows an apparent model-

plant-mismatch in input-1 and output-2 during the same period, which is a false alarm.

Neither method falsely attributes the disturbance mismatch to a specific sub-model.

Simulation Case Study 2

In the second simulation study, the process is simulated in a similar fashion as case 1.

However, the gain mismatches are of 20% magnitude rather than 100%. As can be seen

in Figure 2.6, it is not immediately apparent that any mismatch has occurred as the MPC

is able to maintain control at the fixed set point without an obvious increase in variance.

However, a 20% mismatch can create a problem when the process experiences a major dis-

turbance or has a large change of set point instructed by a higher-level economic optimizer.

It is therefore of practical interest to detect the model-plant-mismatch even though it may

be relatively small.

The detection results are shown in Figure 2.7. While a small increase is seen in the

conventional non-SFA based method, it nevertheless lies below the threshold. Therefore,

the conventional method fails to clearly indicate that model-plant-mismatch has occurred
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Figure 2.6: Generated Data for Simulation Case Study 2.

during the related time window. The proposed method with SFA reconstruction however

reduces the impact of the disturbance and captures slower dynamics and is thus able to

correctly identify the model-plant-mismatch. Again, neither method falsely identifies the

disturbance mismatch as a plant-model-mismatch.

2.3.2 Industrial Application

A zinc roasting unit with a running MPC is considered in this case study. The main com-

ponents of the roasting process consist of the furnace, waste heat boiler, cyclone, and elec-

trostatic precipitator as shown in Figure 2.8. In such a process, the zinc concentrates from

mines are fed to and roasted in a fluidized bed furnace. To fluidize the bed in a furnace,

air with added oxygen is sent from the bottom. Additionally, the oxygen participates in

chemical reactions with the concentrate. These reactions are exothermic and the heat that

is generated is recovered by the waste-heat boiler. The sulphur dioxide gas from the final

step is then cleaned for Hg removal, and H2SO4 is produced in an acid plant. A stable bed

temperature and good fluidization are essential for effective operation of a fluidized bed

furnace.
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Figure 2.7: Results of MQILOO to MQI Ratio Normalized to Training Period (1-2000) for
Simulation Case Study 2.

Figure 2.8: Zinc Roaster Process Diagram.

The process consists of 13 variables, which are listed in Table 2.1, and a flow sheet

can be seen in Figure 2.8. Ensuring high model quality is essential to maintaining bed

temperature stability, which relates strongly to product quality [43, 44], and to the goal of

improving the economics of the operation [35]. Other important goals that rely upon an ac-

curate prediction model for an effective MPC include the decrease in environmental impact

of the operation and the reduction of safety risks. The predictive model used by the MPC is

in the form of several first order plus dead time transfer function sub-models identified dur-

ing the commissioning stage of the MPC, and a random walk disturbance model is used in
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Table 2.1: Description of Zinc Roaster Process Variables

Variable Description

MV 1 Feed Rate

MV 2 Air Flow Rate

MV 3 Oxygen Flow Rate

MV 4 Bed Spray Water

MV 5 Inlet Pressure

CV 1 Bed Temperature

CV 2 ESP Pressure

CV 3 Cyclone Temperature

CV 4 Pressure Controller Output

CV 5 Fan Speed

CV 6 Oxygen Percentage

CV 7 Required Amount of Oxygen

CV 8 Air:Feed Ratio

the MPC. As can be seen in Table 2.2, sub-models do not exist for every input-output pair

since some of them have no apparent dynamics. It should also be noted that this process

has two distinct operating modes, a normal mode, and a frequent maintenance mode. Only

the normal mode is considered in this Chapter and more detail on the operating modes can

be found in Chapters 3 and 4.

A training window was selected from normal operating data through a 2,000 minute pe-

riod during which the mean squared 1-step ahead prediction errors of the MPC were lowest.

This period was selected to ensure that the best model quality could be achieved during the

training. The slow feature analysis was performed with all inputs and outputs augmented

for lags up to d = 3. The reconstruction model was created using q = 7. MQILOO and

MQI of each sub-model were found using a fifth order ARX model in windows of 500

minutes that are advanced by 100 minutes between each evaluation. The interest for model
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Table 2.2: Model-Plant-Mismatch Detection and Diagnosis Results by Sub-Model.

Checkmarks (!) indicate acceptable performance, crosses (%) indicate de-
tection of model-plant-mismatch, and dashes (-) indicate the lack of a relevant
sub-model. Results without SFA reconstruction are on the left of columns and
with the reconstruction on the right.

MV 1 MV 2 MV 3 MV 4 MV 5

w/o with w/o with w/o with w/o with w/o with

CV 1 ! ! ! ! - ! ! -

CV 2 ! ! ! ! ! ! % % ! !

CV 3 ! ! ! ! ! ! ! % -

CV 4 ! ! % ! % ! % % -

CV 5 ! ! - ! ! ! ! -

CV 6 - - ! ! - -

CV 7 % ! ! ! % ! - -

CV 8 ! ! ! ! ! ! - -

quality assessment lies in a transitional period which occurred at a later time, shortly after

an outage occurred. This period is suspected to have some degree of model-plant-mismatch

as several process variables were outside of their normal operating conditions. A summary

of the detection and diagnosis results is listed in Table 2.2. Note that without the pro-

posed SFA reconstruction, six sub-models in four different input channels are suspected

of having model-plant-mismatch. After the SFA reconstruction step is applied, only three

sub-models corresponding to a single input channel (MV 4) are diagnosed as deficient. As

a result, only a single input needs to be perturbed for a re-identification task rather than the

four suggested by the conventional method. Such an exercise would significantly reduce

the effort for model re-identification and MPC tuning.
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2.4 Conclusions

In this chapter, linear slow feature analysis was proposed to reconstruct input-output data to

improve model-plant-mismatch detection and diagnosis in model predictive control. This

was shown to improve the performance of a conventional approach through a simulated

case study of a distillation column with known mismatches between the plant and predic-

tion model utilizing the MQILOO metric. An industrial application using data from a zinc

roasting unit demonstrates that the proposed method provides more targeted recommenda-

tions for sub-models that have model-plant-mismatch and are in need of re-identification.

This would allow an operator to reduce costly experimentation on the plant.

As can be seen in Chapter 3 and 4, the linear SFA method used in this chapter does not

handle measurement outliers or multiple mode operation well. In order to extend the pro-

posed SFA encoder-decoder step for MPC model-plant-mismatch detection and diagnosis

to industrial settings where such data concerns are common, the development of a SFA

based method that can address these issues is needed.
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Chapter 3

Robust PSFA with Gaussian Scale
Mixture Noise Model

To be submitted to journal as: Cameron Dyson, Jayaram Valluru, Biao Huang, and Graham Slot ”Robust
PSFA using Switching Gaussian Scale Mixtures”
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3.1 Introduction

In industrial processes real-time information regarding critical quality variables is of the

utmost importance for accurate process monitoring, control, and real-time optimization of

the processes. Soft sensors, derived from either first-principles or data driven approaches,

can provide real-time estimation of the quality variables using available measurements.

Developing a first principles model for the prediction of quality variables in complex in-

dustrial processes requires detailed understanding of the underlying physics of the system.

On the other hand, data driven models, are developed based on historical data [4]. As such,

the latter have gained popularity in the recent years with multiple implementations using

various methods [45–51]. With the increasing availability of historical data, the advantages

provided by data-driven methods have led to increased interest in this area.

Industrial data exhibits significant correlations among the process variables. Latent vari-

able (LV) methods, which can extract independent low-dimensional features, have found

wide applications for soft-sensing and process monitoring. The most popular ones of these

methods are principal component regression (PCR) [52–54], partial least squares (PLS)

[55–58], and their probabilistic extensions i.e., probabilistic PCR (PPCR) [59] and prob-

abilistic PLS (PPLS) [60]. One drawback of these methods is that they cannot directly

account for dynamic relationships between measured signals. To combat this, one option is

to further increase the dimensionality of the original signal by introducing lagged copies of

the observations such as in dynamic PCR (DPCR) [61] and dynamic PLS (DPLS). Alter-

natively, slow feature analysis (SFA) [22], an unsupervised machine learning method that

extracts slowly varying latent features from the observed signals, has been successfully

used for soft sensor development and process monitoring [23, 38, 40]. Feature extraction

through SFA relies on the assumption that the parts of a process relevant to modelling are

those that change more slowly; meanwhile those that change more rapidly are often consid-

ered as the noise and disturbances, which are of less value for modelling. This assumption

often holds in chemical processes, which are typically slow in nature. The probabilistic ex-
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tension of SFA (PSFA) [28, 29] models a system in state space form where, conventionally,

the slow features are a set of hidden states that drive the process while being influenced by

normally distributed noises. In the current work, PSFA is considered to develop soft sensor

models for high dimensional data.

The prediction performance of data driven modeling methods heavily relies on the qual-

ity of the historical data considered for modelling. Thus, selection of high-quality training

data becomes an important task in obtaining accurate data-driven predictive models [30,

45, 62]. Raw industrial data, such as that from the zinc roaster introduced in Chapter 2,

often includes potential data quality challenges such as noises, outliers [63, 64], high di-

mensionality, varied sampling rates across different measurements or missing data [65].

Data-driven latent variable approaches prioritize dimensionality reduction and can be used

to address the aforementioned issues by implementing them in probabilistic frameworks.

While the Gaussian measurement noise used in PSFA can prove useful, it does not handle

outliers in the data by its original formulation. These will typically introduce inaccuracies

in the noise parameter estimation and lead to the extraction of less meaningful features

[66]. One approach to remedy this issue would be to use an ad hoc method to preprocess

the data and replace the outlying samples with values that more closely match the inlying

behaviour before training a model. However, outliers may contain some information that

is still relevant to the process, therefore discarding them entirely is not recommended. To

this end, several different approaches exist in literature to deal with the presence of outliers

while retaining them in the training data [62]. A Student-t based approach has been im-

plemented for PSFA for the case of scale outliers [30], and variants utilizing Laplace [67]

or skewed [68] distributions could also be developed to handle specific kinds of outliers.

However, the possible extensions from these approaches are limited when it comes to dif-

ferent kinds of outliers such as location outliers [69], or those that do not occur completely

at random with respect to time and instead follow some correlations of their own. Treating

the measurement noise as a Gaussian mixture model would allow for the development of
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a framework that could address the scale and location outliers as well as different varieties

of outlier contamination [70–74].

The salient contributions of this work are as follows:

• A PSFA algorithm that is robust to measurement outliers is developed through the

use of a Gaussian scale mixture noise structure. The switching of the Gaussian com-

ponents is modeled by a Bernoulli distribution.

• A simulation case study demonstrates the improved performance of the proposed

method compared to conventional methods in a soft-sensing task where the training

data contains outliers.

• The algorithm is tested utilizing an industrial data set where outliers are present.

Finally, conclusions and future work are presented.

3.1.1 Probabilistic SFA

Classical SFA has been formulated in a probabilistic framework [28–30] which can account

for critical data issues such as missing data, outliers, and process drift in a systematic

manner while still satisfying the fundamental constraints of SFA introduced in Chapter 2.

This enables the use of SFA as a generative model as well as allowing for further extensions

to address situations where the regular SFA performs poorly e.g., high signal-to-noise ratio

in x(t).

The formulation of PSFA [28, 29] in which x(t) (m-dimensional, N samples) is measured

while s(t) (q-dimensional) is a hidden state to be estimated as follows:

s(t) = Fs(t −1)+ es(t), es(t)∼ N (0,Γ) (3.1)

x(t) = Hs(t)+ ex(t), ex(t)∼ N (0,Σ) (3.2)

where es(t) and ex(t) are zero mean white noise signals and follow Gaussian distributions.
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H ∈ Rm×q is the emission matrix and F , Γ, and Σ are defined as follows:

F = diag{Γ1, ...,Γq}

Γ = diag{1−Γ
2
1, ...,1−Γ

2
q}

Σ = diag{σ
2
1 , ...,σ

2
m}

(3.3)

Γ is defined as such to ensure the satisfaction of (2.5)-(2.7). The graphical structure of

PSFA is presented in Figure 3.1.

Figure 3.1: Graphical Structure of PSFA.

3.1.2 Slow Feature Regression

Once slow features, s(t), have been extracted, they can be utilized to develop a soft sensor

model for y(t) through linear regression:

ŷ(t) = bT s1:q(t)+ c (3.4)

where b and c are regression coefficients to be determined, and q is the selected number of

features which are significant.

The performance of such soft sensors may be measured through the mean squared error

(MSE ∈ [0,∞)) and the Pearson’s correlation coefficient (corr. ∈ [−1,1]).

MSE =
1
N

N

∑
t=1

(︃
y(t)− ŷ(t)

)︃2

(3.5)

corr.=
cov(ŷ,y)

σŷσy
(3.6)
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where cov represents the covariance between two signals and σ is the standard deviation of

a signal.

3.2 Robust PSFA using Gaussian Mixture Models

In the presence of outliers, the assumption that the noise in the input measurement follows

a Gaussian distribution can lead to inaccurate parameter estimates. In this work, to account

for measurement outliers, the noise in the input measurements is modelled using a scaled

Gaussian mixture model with two Gaussian components, one representing regular noise

(inliers) and the other representing outliers [62]. The noise component of (3.2) is replaced

with (3.7) in which inliers are represented by the first term and outliers by the second term

with the additional parameters of a mixing factor δ and a scaling factor ρ ∈ (0,1]:

ex(t)∼ (1−δ )N (0,Σ)+δN (0,ρ−1
Σ) (3.7)

Figure 3.2 shows the difference in probability density between a normal Gaussian dis-

tribution with µ = 0, Σ = 1 and a Gaussian scale mixture with the additional parameters

ρ = 0.1 and δ = 0.25. The scale mixture displays longer tails which enable it to better han-

dle outliers without inflating the estimated variance of the inliers. In comparison with the

existing robust PSFA approach based on a t-distribution, the mixture Gaussian approach

allows for the occurrence of outliers to follow a certain probability distribution.

To do this, define Qx = [qx(1), ...qx(N)]. This is a binary vector indicating which of the

two mixed Gaussians a specific sample of ex(t) is drawn from. It takes on a value of qxt = 1

when ex(t)∼ N (0,Σ), or a value of qxt = ρ when ex(t)∼ N (0,ρ−1Σ). In this work it is

represented as a Bernoulli distribution [72, 75]:

P(qx(t)|δ ,ρ) = δ
1− qx(t)−ρ

1−qx(t)ρ (1−δ )
qx(t)−ρ

1−qx(t)ρ (3.8)

Thus, for measurement data, X = [x1t, ...,xmt], X ∈ Rm×N , by considering the Gaussian

mixture model the unknown parameters of the robust PSFA (rPSFA) model to be estimated
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Figure 3.2: Probability Density Function of Normal Gaussian Distribution and Scale Mix-
ture of Two Gaussians with ρ = 0.1 and δ = 0.25.

are θ = {H,Γ1, ...,Γq,σ
2
1 , ...,σ

2
m,δ ,ρ} and the hidden variables are S = [s1(t), ...,sq(t)],

S ∈ Rq×N and Qx.

3.2.1 Solution

In the presence of hidden variables, direct maximization of the log-likelihood function

(i.e., P(X |θ)) w.r.t. unknown parameters is intractable. To address this kind of problem

the Expectation Maximization algorithm [76] is widely used in literature, where instead of

maximizing the log-likelihood function, the expectation of the joint log-likelihood function

is maximized w.r.t. to the unknown parameters. The EM algorithm involves two steps, the

E-step (expectation step) and M-step (maximization step), which are discussed in detail as

follows.
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In the E-Step, given the parameters θ for iteration count r, the expectation of the joint

log-likelihood function (Q-function) is evaluated w.r.t. the hidden variables (S, Qx) i.e.:

Q= E
S,Qx|X ,θr

(logP(
Observed⏟⏞⏞⏟

X ,

Hidden⏟⏞⏞⏟
S,Qx |θ)) (3.9)

where:

θ = {H,Γ1, ...,Γq,σ
2
1 , ...,σ

2
m,δ ,ρ} (3.10)

Since the noises acting on input variables and latent variables are independent, the complete

likelihood function can be written as follows:

P(X ,S,Qx|θ) = P(X |S,Qx,θ)P(S,Qx|θ)

= P(X |S,Qx,θ)P(S|θ)P(Qx|θ)

=
N

∏
t=1

P(x(t)|s(t),qx(t),θ)P(s(t)|s(t −1),qx(t),θ)P(qx(t)|θ)

(3.11)

Substituting (3.11) into (3.9) and expanding the Q-function yields:

Q= E
S,Qx|X ,θr

(logP(X ,S,Qx|θ))

= E
S,Qx|X ,θr

(︃
logP(s(1)|θ)⏞ ⏟⏟ ⏞

QA

+
N

∑
t=2

logP(s(t)|s(t −1),qx,θ)⏞ ⏟⏟ ⏞
QB

+
N

∑
t=1

logP(x(t)|s(t),qx(t),θ)⏞ ⏟⏟ ⏞
QC

+
N

∑
t=1

logP(qx(t)|θ)⏞ ⏟⏟ ⏞
QD

)︃ (3.12)

Generally, initial state of slow features are assumed to follow N (0, I) [29], QA can

therefore be expressed as follows:

QA =−q
2

log(2π)− 1
2
E
(︁
s(1)T s(1)

)︁
(3.13)

QB can be found as follows:

QB = E
S,Qx|X ,θr

[︃
− q(N −1)

2
log(2π)− N −1

2

q

∑
j=1

log(1−Γ
2
j)

− 1
2

N

∑
t=2

q

∑
j=1

1
1−Γ2

j

(︁
s j(t)−Γ js j(t −1)

)︁2
]︃ (3.14)
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QC and QD can be split into two parts corresponding to when qx(t) = 1 and qx(t) = ρ

respectively. For QC this is derived as follows:

QC = E
S,Qx|X ,θr

(︁ N

∑
t=1

logP(x(t)|s(t),qx(t),θ)
)︁

= E
S|X ,Qx,θr

(︃
E

Qx|S,X ,θr

(︁ N

∑
t=1

logP(x(t)|s(t),qx(t),θ)
)︁)︃

= E
S|X ,Qx,θr

(︃(︁ N

∑
t=1

∑
i=ρ,1

Pi(t)logP(x(t)|s(t),qx(t) = i,θ)
)︁)︃

= E
S|X ,Qx,θr

(︃ N

∑
t=1

(︁
P1(t)logP(x(t)|s(t)qx(t) = 1,θ)

+Pρ(t)logP(x(t)|s(t)qx(t) = ρ,θ)
)︁)︃

= E
S|X ,Qx,θr

(︃ N

∑
t=1

(︁
P1(t)logP(x(t)|s(t)qx(t) = 1,θ)

)︁)︃
+ E

S|X ,Qx,θr

(︃ N

∑
t=1

(︁
Pρ(t)logP(x(t)|s(t)qx(t) = ρ,θ)

)︁)︃
=Q f irst

C +Qsecond
C

(3.15)

The two terms of QC can then be written as:

Q f irst
C = E

S|X ,Qx,θr

(︃ N

∑
t=1

P1(t)× logP(x(t)|s(t)qx(t) = 1,θ)
)︃

=
N

∑
t=1

P1(t)×
[︃
− 1

2
log((2π)m|Σ|)

− 1
2

E1
(︁
x(t)−Hs(t)

)︁T
Σ
−1(︁x(t)−Hs(t)

)︁]︃
(3.16)

Qsecond
C = E

S|X ,Qx,θr

(︃ N

∑
t=1

Pρ(t)× logP(x(t)|s(t)qx(t) = ρ,θ)

)︃
=

N

∑
t=1

Pρ(t)×
[︃
− 1

2
log((2π)m|ρ−1

Σ|)

− 1
2

Eρ

(︁
x(t)−Hs(t)

)︁T
ρΣ

−1(︁x(t)−Hs(t)
)︁]︃

(3.17)

where P1(t) = P(qx(t) = 1|x(t),θ), E1(·) = E(·|x,qx(t) = 1,θ), Pρ = P(qx(t) = ρ|x(t),θ),

and Eρ(·) = E(·|x,qx(t) = ρ,θ).
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The QD term can also be split into two parts similar to QC:

QD = E
S,Qx|X ,θr

(︁ N

∑
t=1

logP(qx(t)|θ)
)︁

=
N

∑
t=1

E
S,Qx|X ,θr

(︁
logP(qx(t)|θ)

)︁
=

N

∑
t=1

∑
i=1,ρ

Pi(t)logP(qx(t) = i|θ)

=
N

∑
t=1

(︁
P1(t)logP(qx(t) = 1|θ)+Pρ(t)logP(qx(t) = ρ|θ)

)︁
=

N

∑
t=1

(︁
P1(t)logP(qx(t) = 1|θ)

)︁
+

N

∑
t=1

(︁
Pρ(t)logP(qx(t) = ρ|θ)

)︁
=Q f irst

D +Qsecond
D

(3.18)

Each of the two terms of QD can then be found as:

Q f irst
D =

N

∑
t=1

(︁
P1(t)logP(qx(t) = 1|θ)

)︁
=

N

∑
t=1

P1(t)× log(1−δ )

(3.19)

Qsecond
D =

N

∑
t=1

(︁
Pρ(t)logP(qx(t) = ρ|θ)

)︁
=

N

∑
t=1

Pρ(t)× log(δ )

(3.20)

In the M-step, namely the parameter estimation step, the Q-function is maximized w.r.t.

θ :

θ
new = argmax

θ

Q(θ ,θ old) (3.21)

As can be seen in (3.3) the F and Γ matrices share the same subset of parameters, Γ js,

which only appear in QB. Each Γ j can be updated as follows:

∂Q
∂Γ j

=
∂QB

∂Γ j
= 0

=
N −1

2
2Γ j

1−Γ2
j
− 1

2

(1−Γ2
j)J

′(Γ j)+2Γ jJ(Γ j)

(1−Γ2
j)

2

(3.22)
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where:

J(Γ j) =
N

∑
t=2

EX ,θ old

(︃
(s j(t)−Γ js j(t −1))2

)︃
, 1 ≤ j ≤ q

J′(Γ j) = 2Γ j

N

∑
t=2

EX ,θ old

(︃
s2

j(t −1)
)︃
−2

N

∑
t=2

EX ,θ old

(︃
s j(t)s j(t −1)

)︃ (3.23)

Each Γnew
j can be found as the root in [0,1) of a cubic polynomial:

a3Γ
3,new
j +a2Γ

2,new
j +a1Γ

new
j +a0 = 0 (3.24)

where:
a3 = N −1

a2 =−
N

∑
t=2

E
(︃

s j(t)s j(t −1)
)︃

a1 =
N

∑
t=2

(︃(︁
E(s j(t)s j(t)T )+E(s j(t −1)s j(t −1)T )

)︁
−1

)︃
a0 = a2

(3.25)

The updated Hnew can be found as follows:

∂Q
∂H

=
∂QC

∂H
= 0 (3.26)

Hnew =

(︃ N

∑
t=1

P1(t)x(t)E1(s(t))T +ρPρ(t)x(t)Eρ(s(t))T
)︃
×(︃ N

∑
t=1

P1(t)E1(s(t)s(t)T )+ρPρ(t)Eρ(s(t)s(t)T )

)︃−1 (3.27)

Each element of the updated Σnew = diag{σ2new
1 , ...,σ2new

m } can be derived as follows:

∂Q
∂σ2

i
=

∂QC

∂σ2
i
= 0,1 ≤ i ≤ m (3.28)

σ
2new
i =

1
N

N

∑
t=1

[︃
P1(t)

(︃(︁
x2

i (t)−2hT,new
i E1(s(t))xi(t)

)︁
+hT,new

i E1(s(t)s(t)T )hnew
i

)︃
+ρPρ(t)

(︃(︁
x2

i (t)−2hT,new
i Eρ(s(t))xi(t)

)︁
+hT,new

i Eρ(s(t)s(t)T )hnew
i

)︃]︃
(3.29)
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The updated ρnew can be found as follows:

∂Q
∂ρ

=
∂QC

∂ρ
= 0 (3.30)

ρ
new = m

[︃ N

∑
t=1

Pρ(t)
]︃

×
[︃ N

∑
t=1

Pρ(t)Eρ

(︃(︁
x(t)−Hs(t)

)︁T
Σ
−1,new(︁x(t)−Hs(t)

)︁)︃]︃−1 (3.31)

The updated mixing factor, δ new, can be solved similarly:

∂Q
∂δ

=
∂QD

∂δ
= 0 (3.32)

δ
new =

∑
N
t=1 Pρ(t)

N
(3.33)

3.2.2 Posterior Distribution of Hidden Variables

In order to obtain the necessary values to update the parameter estimation, the expectations

related to the hidden variables must be found. Further, to develop a soft sensor model, the

latent slow feature S is needed. The required expectations are as follows:

E∗(s(t)) = E(s(t)|x,qx(t) = ∗,θ) (3.34)

E∗(s(t)s(t)T ) = E(s(t)s(t)T |x,qx(t) = ∗,θ) (3.35)

E∗(s(t)s(t −1)T ) = E(s(t)s(t −1)T |x,qx(t) = ∗,θ) (3.36)

P1(t|x(t),θ)+Pρ(t|x(t),θ)ρ = E(qx(t)|x,θ) (3.37)

E(s(t)) = E(s(t)|x,qx,θ) (3.38)

E(s(t)s(t)T ) = E(s(t)s(t)T |x,qx,θ) (3.39)
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E(s(t)s(t −1)T ) = E(s(t)s(t −1)T |x,qx,θ) (3.40)

Equations (3.34)-(3.36) represent the estimate of the slow features given that all samples

are either inliers or outliers. Each E∗ is to be found twice, once for the inlier case where

∗= 1, and again for the outlier case where ∗= ρ .

E∗(s(t)) = µt∗ˆ

E∗(s(t)s(t)T ) =Vt∗ˆ +µt∗ˆ µt∗ˆ T

E∗(s(t)s(t −1)T ) = Jt−1Vt∗ˆ +µ∗tˆ µt−1∗ˆ T

(3.41)

E∗s that correspond to the inliers and outliers can be found utilizing the Kalman smoothing

for a Linear dynamical system [29, 77, 78]. First, a forward recursion is performed to

estimate the posterior distribution up to time t, P(s(t)|x(t), ...,x(t),qx(1) = ∗, ...,qx(t) =

∗,θ old):

Pt−1∗ = FVt−1∗FT +Γ

µt = Fµt−1∗+Kt∗[x(t)−HFµt−1∗]

Vt∗ = (I −Kt∗H)Pt−1∗

Kt∗ = Pt−1∗HT (HPt−1∗HT +Σ∗)
−1

(3.42)

with the initialization:

µ1∗ = K1∗x(1)

V1∗ = I −K1∗H

K1∗ = HT (HHT +Σ∗)
−1

(3.43)

The backwards recursion can then be done to find the overall posterior distribution P(S|X ,Qx =

∗,θ old):

µt∗ˆ = µt∗+ Jt∗(µt+1∗ˆ −Fµt∗)

Vt∗ˆ =Vt∗+ Jt∗(Vt+1∗ˆ −Pt∗)JT
t∗

Jt∗ =Vt∗FT P−1
t∗

(3.44)

which is initialized with:

µt∗ˆ = µt∗

Vt∗ˆ =Vt∗
(3.45)
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Σ∗s are defined using the Gaussian scale mixture parameters as follows:

Σ1 = Σ

Σρ = ρ
−1

Σ

(3.46)

P(qx(t)|x(t),θ old) =
P(x(t)|qx(t),θ old)P∗(qx(t)|θ old)

P(x(t)|θ old)
(3.47)

In which P* is the prior of Qx and the first factor of the numerator is easily found using

Gaussian properties. The overall expectations (3.38)-(3.40) can then be found as the sum of

the inlier and outlier cases (∗= 1 and ρ respectively) weighted by their respective posterior

at each sample. For example, (3.38) can be found as follows:

E(s(t)) = ∑
∗=1,ρ

P(qx(t)|x(t),θ)E(s(t)|x,qx(t) = ∗,θ)

= P1(t)E1(s(t)|x,qx(t) = 1,θ)+Pρ(t)Eρ(s(t)|x,qx(t) = ρ,θ)
(3.48)

3.3 Verification and Application

In this section, the efficacy of the proposed robust PSFA for soft sensor modelling is demon-

strated on a benchmark simulation and on an industrial data set. Performance of the rPSFA

is compared with the conventional SFA and PSFA, where identical data sets are used for

comparison.

3.3.1 Simulated Study

For the simulation case study, benchmark Tennessee Eastman (TE) [79] simulation data

[80] is considered to verify the developed algorithm. The TE process consists of five main

units: a reactor, stripper, condenser, compressor, and separator. The feed consists of four

reactants (A, C, D and E) and three products (F , G and H). In Fan et al. [30], a slow feature

regression soft sensor is used to build a model for y which is the concentration (mole %)

of component A in the reactor feed. Accordingly, five highly correlated variables were
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considered as inputs:

x1: Normalized Reactor Pressure (kPag)

x2: Normalized Stripper Temperature (oC)

x3: Normalized Stripper Steam Flow (kg/hr)

x4: Normalized Compressor Work (kW)

x5: Normalized Component C in Purge Gas (Mole %)

(3.49)

In order to show the effect of outliers, in the parameter learning step (or model training

step), 10% of the training data is corrupted by adding outliers, which are generated from a

Gaussian distribution with N (0,4I). The training and testing data for model building and

evaluation are reported in Figures 3.3 and 3.4 respectively.

Figure 3.3: Simulated Tennessee Eastman Training Data with 10% Measurement Outliers.

SFA, PSFA, Student-t PSFA (tPSFA) and the proposed robust PSFA are applied to

x = [x1, ..,x5] with the SFA solution as the initialization for the PSFA, tPSFA and rPSFA

methods. The extracted features along with their lag-1 autocorrelation coefficients can be

seen in Figure 3.5 and Table 3.1. Here it can be seen that the features extracted by each

method have similar overall shapes, with the proposed rPSFA and existing tPSFA yielding

the smoothest results.
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Figure 3.4: Simulated Tennessee Eastman Testing Data.

Figure 3.5: Slow Features Extracted from Tennessee Eastman Training and Testing Data
with 10% Outliers in Training.

As the lag-1 autocorrelation directly relates to the slowness of a signal [28], it is clear

that the slow features extracted by SFA and PSFA are negatively impacted by the presence

of outliers in the training data while tPSFA and the proposed rPSFA are robust to them.

In the soft sensor task the objective is to build a linear regression model for y utilizing the

slow features, s, extracted from x. The obtained slow features are then used to develop a
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Table 3.1: Slow Features Lag-1 Autocorrelation Coefficients for Tennessee Eastman Train-
ing and Testing Data with 10% Outliers in Training.

Training Testing

Feature #1 #2 #3 #1 #2 #3

SFA 0.935 0.891 0.592 0.991 0.873 0.681

PSFA 0.992 0.985 0.941 0.997 0.922 0.978

tPSFA 0.994 0.979 0.948 0.997 0.990 0.986

rPSFA 0.995 0.975 0.932 0.998 0.989 0.990

Table 3.2: Slow Features Regression Performance for Tennessee Eastman Training and
Testing Data with 10% Outliers in Training.

Training Testing

Corr. MSE Corr. MSE

SFA 0.288 0.0723 0.465 0.0671

PSFA 0.308 0.0713 0.481 0.0641

tPSFA 0.320 0.0707 0.485 0.0639

rPSFA 0.322 0.0707 0.487 0.0638

regression model for prediction of the quality variable, y. The predictions and performance

of the slow feature based regression models in the training and testing phases are reported

in Figures 3.6 and Table 3.2, respectively. Here it is evident that in the presence of outliers

in the training data, rPSFA has better correlation with the actual data and lower MSE values

compared to the SFA and PSFA approaches in the testing data. rPSFA performs similar to

tPSFA with a minor improvement. A zoomed-in subset of the testing results can also be

found in Figure 3.7. From the figure it can be seen that the regression results for SFA

and PSFA are relatively more affected by measurement noise carried over from the input

variables.
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Figure 3.6: Slow Features Regression for Tennessee Eastman Training and Testing Data
with 10% Outliers in Training.

Figure 3.7: Subset of Slow Features Regression for Tennessee Eastman Testing Data.

Further, the efficacy of the developed robust soft sensor is tested for 50 Monte-Carlo

simulations with outliers added according to N (0,4I) for each of the following outlier

percentages: 1%, 3%, 5%, 10%, 20%, 30%, 40% and 50%. The average correlation co-

efficient and average mean squared error over each set of trials can be seen in Figure 3.8.

Here it can be observed that all the methods show deteriorating performance with increased
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outlier occurrence frequency. However, the proposed robust PSFA outperforms SFA and

PSFA for all outlier fractions with slight improvement over tPSFA.

Figure 3.8: Slow Features Regression Correlation and MSE for Tennessee Eastman Testing
Data with Various Gaussian Mixture Outlier Percentages in Training.

An additional set of Monte-Carlo simulations with 50 trials was performed by adding

10% outliers selected from N (0,ΣoutI) where Σout varied from one to ten. The average

correlation coefficient and average mean squared error over each set of trials can be seen

in Figure 3.9. Again, tPSFA outperforms PSFA and SFA, with rPSFA being slightly better

still.

As the outliers added in the previous two Monte-Carlo simulations followed a Gaussian

mixture, it is expected that modelling the noise as such would result in an improvement

when compared to modelling it as a Student-t distribution. For the sake of fairness, then

the simulations were repeated, and the added noise was selected from a Student-t distribu-

tion. First, 50 Monte-Carlo simulations were performed with outliers added according to

St(0,2I,4) (which has a variance of 4I) for each of the following outlier percentages: 1%,

3%, 5%, 10%, 20%, 30%, 40% and 50%. Next the outlier fraction was fixed as 10% and

simulations were performed with outliers selected from St(0,2I,ν) where ν is the degrees
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Figure 3.9: Slow Features Regression Correlation and MSE for Tennessee Eastman Testing
Data with Various Gaussian Mixture Outlier Severities in Training.

of freedom of the Student-t distribution and lower values indicate more severe outliers. ν

from one to ten were used with 50 trials at each value. The average correlation coefficient

and average mean squared error over each set of trials can be seen in Figures 3.10 and 3.11

respectively.

Here it can again be seen that the rPSFA and tPSFA methods outperform the SFA and

PSFA methods in the presence of outliers. The tPSFA method performs slightly better than

the proposed rPSFA in these cases.

From these four sets of Monte-Carlo simulations it can be seen that the rPSFA method

outperforms the tPSFA method when the outliers follow a Gaussian mixture. Conversely,

when the outliers follow a Student-t distribution, tPSFA outperforms the rPSFA method as

expected. In either case, the difference is small and both methods show clear improvement

over SFA and PSFA. Thus, these simulations demonstrate both the proposed rPSFA and the

existing tPSFA serve their own purposes respectively. However, the effectiveness depends

on the actual outlier distributions. Since the actual outlier distribution is unknown, the

proposed rPSFA provides an effective option and complements the tPSFA for practical
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Figure 3.10: Slow Features Regression Correlation and MSE for Tennessee Eastman Test-
ing Data with Various Student-t Outlier Percentages in Training.

applications. Further, the proposed rPSFA distinguishes between the outlier and the regular

noise so that it provides a flexibility to model possible correlation between the outliers

themselves as well as correlation with the regular noise as will be discussed in the next

Chapter 3. In the next example with an industrial application where the outliers do not

follow a known distribution, the proposed rPSFA shows better performance than tPSFA.

3.3.2 Industrial Case Study

In this case study the development of a soft sensor for a zinc roasting unit is considered. The

main components of the roasting process consist of the furnace, waste heat boiler, cyclone,

and electrostatic precipitator (ESP) as shown in Figure 3.12. In this process, the mined

zinc concentrates are fed to and roasted in a fluidized bed furnace. To fluidize the bed, air

supplemented with additional oxygen is sent in from the bottom of the furnace. The oxygen

participates in exothermic chemical reactions with the concentrate and the generated heat

is recovered by the waste-heat boiler. The sulphur dioxide gas from the final step is then

cleaned for Hg removal, and H2SO4 is produced in an acid sub-plant. In total, the process

consists of 13 variables of interest, which are listed in Table 3.3. Several of these variables
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Figure 3.11: Slow Features Regression Correlation and MSE for Tennessee Eastman Test-
ing Data with Various Student-t Outlier Severities in Training.

contain occasional outliers during the training period, which are believed to come from

sensor faults and should therefore be considered in the soft sensor development.

Figure 3.12: Zinc Roaster Process Diagram.

In this case study the goal is to build a slow feature regression soft sensor for the ESP

pressure using the other variables. A set of slow features q = 5 are to be used and the

parameters are estimated using the proposed algorithm. The lag-1 autocorrelations of the

slow features can be seen in Figure 3.13. The conventional SFA and PSFA methods both

show significantly reduced lag-1 autocorrelations and therefore increased speed during the
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Table 3.3: Description of Zinc Roaster Process Variables.

Variable Description

Feed Rate

Air Flow Rate

Oxygen Flow Rate

Bed Spray Water

Inlet Pressure

Bed Temperature

ESP Pressure

Cyclone Temperature

Pressure Controller Output

Fan Speed

Oxygen Percentage

Required Amount of Oxygen

Air:Feed Ratio
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testing phase while the proposed algorithm is still able to extract features that are more

slowly varying.

Figure 3.13: Slow Feature Lag-1 Autocorrelations for Zinc Roaster Training and Testing
Data.

The results of the slow feature regression soft sensors can be seen in Figure 3.14 and

Table 3.4 where it can be observed that during the testing phase the proposed robust model

outperforms the conventional SFA and PSFA and shows improved or similar performance

to tPSFA depending on the distribution of outliers. Additionally, all models have declined

in performance when compared to the training data while the proposed method has the

smallest decline.

3.4 Conclusions

This work proposed a PSFA algorithm that is robust to outliers, which occur with certain

statistical distributions. This was done by treating the measurement disturbance as scale

mixture of two Gaussian distributions and using a Bernoulli distribution to describe the

statistics of outlier occurrence. The efficacy of the proposed approach was demonstrated

both on a benchmark simulation and an industrial data set. From the results of both the case
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Figure 3.14: Slow Features Regression for Zinc Roaster Training and Testing Data.

studies it was observed that the proposed robust PSFA soft sensor is more robust against

outliers when compared to the conventional SFA and PSFA and shows a slight improvement

over tPSFA when the outliers follow a Gaussian mixture. It also shows better performance

for an industrial data set where the outlier distribution is unknown.

47



Table 3.4: Slow Features Regression Performance for Zinc Roaster Training and Testing
Data.

Training Testing

Corr. MSE Corr. MSE

SFA 0.924 0.145 0.879 0.209

PSFA 0.968 0.0620 0.903 0.113

tPSFA 0.974 0.0515 0.922 0.0943

rPSFA 0.967 0.0967 0.945 0.0654
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Chapter 4

Mixtures of Hidden Markov Model
Robust PSFA

In preparation to submit as: Cameron Dyson, Jayaram Valluru, Biao Huang, and Graham Slot ”Hidden
Markov Approach to Robust PSFA with Dynamic Switching”
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4.1 Introduction

In Chapter 3, a measurement outlier robust PSFA (rPSFA) model was developed by assum-

ing that the measurement noise followed a scale mixture of Gaussians switched according

to a Bernoulli distribution. When compared to the existing Student-t based robust PSFA

[30], the Gaussian mixture framework has similar performance but greater opportunity to

be extended to handle alternate outlier related issues since it treats each noise mode sepa-

rately.

One such extension would be to consider the case where outliers do not occur com-

pletely at random with respect to time, and instead follow some correlation of their own.

In practice, sensor faults and samples with increased noise variance often occur in quick

succession of one another before a return to the typical disturbance distribution. To capture

this dynamic outlier behaviour the noise could be assumed to still consist of two scaled

Gaussians, however that they are switched according to a Hidden Markov Model (HMM)

rather than a Bernoulli distribution. The former considers dynamic switching with autocor-

relation between the modes while the latter assumes static switching without consideration

of noise mode dynamics.

Further, current PSFA literature lacks a solution that is robust to measurement out-

liers while also handling multiple operating point processes. As there are many industrial

processes with multiple operating points, such as in the full data set of the model-plant-

mismatch detection and diagnosis task presented in Chapter 2, where slow feature analysis

could otherwise prove useful, there is motivation to resolve this deficiency.

In this chapter, to address both of these concerns simultaneously, i.e., correlated switch-

ing between inlier and outlier noise modes and multiple operating point processes, a mix-

ture modelling approach to a Hidden Markov Model robust PSFA algorithm (mhrPSFA) is

developed. In Section 4.2, the relevant methods are presented along with a summary of their

related literature. Next in Section 4.3, the methodology under which the parameters of the

mhrPSFA model may be estimated is presented. To demonstrate and verify the proposed
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method, Section 4.4 presents a soft sensor case study for a simulated system with corre-

lated inlier-outlier noise mode switching, as well as soft sensor and model-plant-mismatch

detection and diagnosis case studies for an industrial system with outliers and multiple

process operating conditions. Lastly, Section 4.5 provides conclusions and possible future

directions.

4.2 Fundamentals

This section develops the approach used in this work. First a summary of the rPSFA algo-

rithm proposed in Chapter 3 is presented. Next an overview of Hidden Markov Models and

mixture modelling is provided. Last, the mixture slow feature regression, and the Model

Quality Index (MQI) used in the case studies are discussed.

4.2.1 Robust Probabilistic SFA

Conventional [22] and probabilistic SFA [28, 29] methods have been well studied and

greater detail pertaining to them can be found in Chapter 2 and Chapter 3 respectively.

Chapter 3 proposed the rPSFA model that is robust to outliers in the measurement space

using a scaled Gaussian mixture noise switched according to a Bernoulli distribution. This

retains the benefits of PSFA while enabling the use of training data that contains outliers.

The formulation of rPSFA is similar to conventional PSFA and is defined as follows:

s(t) = Fs(t −1)+ es(t), es(t)∼ N (0,Γ) (4.1)

x(t) = Hs(t)+ ex(t), ex(t)∼ (1−δ )N (0,Σ)+δN (0,ρ−1
Σ) (4.2)

where the two additional parameters when compared to conventional PSFA are δ ∈ [0,1),

which represents the fraction of samples that are outliers, and ρ ∈ (0,1], which is the outlier

scaling factor with lower values corresponding to increased outlier severity. This approach

introduces an additional hidden variable, qx(t), which acts as an indicator to determine

whether the measurement noise in each time sample came from the inlier distribution,
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where qx(t) = 1, or outlier distribution, where qx(t) = ρ . The switching of this hidden

variable was modelled with a Bernoulli distribution which is indiscriminate with respect to

its own state in the previous time sample.

4.2.2 Hidden Markov Models

In the presence of outliers in the process data, the common assumption that the noise fol-

lows a single Gaussian distribution can lead to inaccurate parameter estimates in the train-

ing step. In this work, to account for outliers in the measured variables, the noise in the

measurements is modelled using scale mixture of Gaussians which are switched following

a Hidden Markov Model with two states [69, 81] representing a dynamic relation between

noise modes. HMMs have shown to be useful in various applications with the possibility

for several extensions including handling missing data [82] and nonlinearity [83, 84]. Sim-

ilar to the previously developed rPSFA that uses a Bernoulli distribution to switch between

inliers and outliers, an additional hidden variable is introduced to the conventional PSFA,

Qx = [qx(1), ...qx(N)]. This is a binary vector indicating which of the two Gaussians a par-

ticular sample of ex(t) is drawn from. This takes on a value of qx(t) = 1 in the presence

of regular noise, or a value of qx(t) = ρ for samples that correspond to outliers. Rather

than the completely at random approach associated with a Bernoulli distribution [72, 75],

here the indicator variable is assumed to be governed by a transition probability. This en-

ables the consideration of correlation between the previous state of the indicator variable,

qx(t − 1), and the current value of qx(t). When compared to conventional PSFA the addi-

tional parameters of the model are a transition matrix, α , and a scaling factor, ρ ∈ (0,1]:

s(t) = Fs(t −1)+ es(t), es(t)∼ N (0,Γ) (4.3)

x(t) = Hs(t)+ ex(t), ex(t)∼

{︄
N (0,Σ), f or qx(t) = 1
N (0,ρ−1Σ), f or qx(t) = ρ

(4.4)
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The transition matrix α represents the probability of qx(t) switching between time steps:

α =

⎡⎣α1,1 αρ,1

α1,ρ αρ,ρ

⎤⎦
=

⎡⎣ α1,1 1−α1,1

1−αρ,ρ αρ,ρ

⎤⎦ (4.5)

where αi, j = P(qx(t) = i|qx(t − 1) = j). Additionally, to estimate the initial condition of

the HMM, the prior of each mode, πi, is needed. In the presently considered case of two

measurement noise modes, this can be simplified to a single parameter π = π1 = 1−πρ .

Thus, for measurement data, X = [x1(t), ...,xm(t)], X ∈ Rm×N , by considering the scaled

Gaussian mixture with HMM dynamics, the unknown parameters of the PSFA model to

be estimated are θ = {H,Γ1, ...,Γq,σ
2
1 , ...,σ

2
m,α,π,ρ} and the hidden variables are S =

[s1(t), ...,sq(t)], S ∈ Rq×N and Qx.

As an illustrative example of HMM behaviour, when α1,1 = 0.95 and αρ,ρ = 0.8, the

probability that an outlier occurs given that an outlier occurred in the previous sample

is 80% while there is a 20% chance to transition back to the inliers. If instead in the

previous sample an inlier had occurred then there would be a 5% chance to transition to

an outlier, meanwhile there would be a 95% chance for another inlier to occur. This is

graphically represented in Figure 4.1, where starting from the circle corresponding to the

state at t − 1, a state for t can be generated by selecting one of the two arrows out of the

current circle at the probabilities labelled on the arrows. The result will either be to return

to the original circle or to transition to the other, with the value in the current circle being

the noise mode indicator qx(t). This process repeats for each new time step. Note that the

Bernoulli approach can be considered as a special case of the HMM approach when the

latter is constrained to α1,1 = 1−δ , αρ,ρ = δ and π = 1−δ .

4.2.3 Mixture Models

Many industrial processes include multiple operating conditions, each with their own set

of dynamic behaviours. Several latent variable methods including linear and conventional
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Figure 4.1: Diagram of HMM Transition Structure.

probabilistic SFA, have been extended to handle such cases and have shown improved

performance [33, 74]. Similar methods exist for other non-SFA based latent variable ap-

proaches and have been used to perform soft sensor modelling and fault detection tasks in

systems which contain multiple operating conditions [52, 53, 85, 86]. Further, some latent

variable methods have extensions that consider both robustness to outliers, and multiple

operating point processes simultaneously [87–90]. However, a PSFA based method which

is robust to the presence of measurement outliers while also addressing multiple operating

point behaviour has not been well studied in the literature. To resolve this deficiency, an

extension of the robust PSFA method presented in Chapter 3 with the additional consid-

eration of HMM based noise mode dynamics is proposed. A mixture of K independent

HMM robust PSFA models are to be developed. Each of the k = 1, ...,K models should

correspond to an operating point. The value of K is assumed to be known in advanced,

relying on process knowledge. Independent slow feature regression models can then be

developed for each operating point and the resulting predictions blended using a mixing

factor, P(k(t)) which is the posterior of a given sample coming from model k and is subject

to the following constraint:

K

∑
k=1

P(k(t)) = 1, ∀t = 1, ...,N (4.6)
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Further, SFA assumes that all measured signals have zero mean, which in the conven-

tional method is easily obtained by subtracting the means from each signal or by perform-

ing a normalization step before conducting the analysis. However, when there are multiple

operating points with different means, as is often the case in industrial data, then this step

must be performed separately for each operating point. Combined, these two concerns then

require the introduction of an additional hidden variable that indicates the process operat-

ing point from which a given sample is originated and a parameter for each of the models

which represents the mean of the measured signals across that operating point, µx,k.

4.2.4 Mixture Slow Feature Regression

In order to develop a mixture slow feature model, a weighted linear regression is to be

performed for each operating point with the sample weight vector of model k being P(k(t)):

arg min
bk,ck

N

∑
t=1

P(k(t))
⃓⃓⃓⃓
y(t)− ck −

q

∑
j=1

s j,k(t)b j,k

⃓⃓⃓⃓2
(4.7)

ŷk(t) = bT
k s1:q,k(t)+ ck (4.8)

The overall soft sensor prediction is then the weighted mixture across each operating point:

ŷ =
K

∑
k=1

P(k(t))ŷk (4.9)

The performance of such soft sensors can be measured through the mean squared error

(MSE ∈ [0,∞)) and the Pearson’s correlation coefficient (corr. ∈ [−1,1]).

MSE =
1
N

N

∑
t=1

(︃
y(t)− ŷ(t)

)︃2

(4.10)

corr.=
cov(ŷ,y)

σŷσy
(4.11)

where cov represents the covariance between two signals and σ is the standard deviation of

a signal.
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4.2.5 Model Quality Assessment

The selected model quality assessment method used in the model-plant-mismatch detection

and diagnosis case study is the Model Quality Index with a leave one out approach [17].

This metric compares the sum of the squared one-step ahead prediction error of the model

used in the MPC to the prediction error of a fitted high-order dynamic model. Further detail

can be found in Chapter 2.

4.3 Solution

In this section the development of a mixture modelling approach to HMM robust PSFA

(mhrPSFA) is presented. In the presence of hidden variables, direct maximization of the

log-likelihood function (i.e., P(X |θ) where X is the set of observations and θ the parameter

set) w.r.t. unknown parameters is intractable. To address these kinds of problems, the

Expectation Maximization algorithm [76] is widely used in literature, where instead of

maximizing the log-likelihood function, the expectation of the joint log-likelihood function

is maximized w.r.t. to the unknown parameters. The EM algorithm involves two steps, the

E-step (expectation step) and M-step (maximization step), which are discussed in detail as

follows.

In the E-Step, given the parameters θ for iteration count r, the expectation of the joint

log-likelihood function (Q-function) is evaluated w.r.t. the hidden variables (S, Qx) i.e.:

Q= E
S,Qx,k|X ,θr

(logP(
Observed⏟⏞⏞⏟

X ,

Hidden⏟ ⏞⏞ ⏟
S,Qx,k |θ)) (4.12)

where:

θ = θ1, ...,θK (4.13)

θk = {Hk,Γ1,k, ...,Γq,k,σ
2
1,k, ...,σ

2
m,k,αk,πk,ρk,µx,k} (4.14)
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As the noises corresponding to input variables and latent variables are independent, the

complete likelihood function can be written as follows:

P(X ,S,Qx,k|θ) = P(X |S,Qx,k,θ)P(S,Qx,k|θ)

= P(X |S,Qx,k,θ)P(S|θ)P(Qx|θ)P(k)

=
N

∏
t=1

P(x(t)|s(t),qx(t),θ)P(s(t)|s(t −1),qx(t),θ)

×P(qx(t)|θ)P(k(t))

(4.15)

Substituting (4.15) into (4.12) and expanding the Q-function yields:

Q= E
S,Qx,k|X ,θr

(logP(X ,S,Qx,|θ))

= E
S,Qx,k|X ,θr

(︃
logP(s(1)|k(t),θ)

)︃
⏞ ⏟⏟ ⏞

QA

+ E
S,Qx,k|X ,θr

(︃ N

∑
t=2

logP(s(t)|s(t −1),qx(t),k(t),θ)
)︃

⏞ ⏟⏟ ⏞
QB

+ E
S,Qx,k|X ,θr

(︃ N

∑
t=1

logP(x(t)|s(t),qx(t),k(t),θ)
)︃

⏞ ⏟⏟ ⏞
QC

+ E
S,Qx,k|X ,θr

(︃ N

∑
t=2

logP(qx(t)|qx(t −1),k(t),θ)
)︃

⏞ ⏟⏟ ⏞
QD

+ E
S,Qx,k|X ,θr

(︃
logP(qx(1)|k(t),θ)

)︃
⏞ ⏟⏟ ⏞

QE

+ E
S,Qx,k|X ,θr

(︃ N

∑
t=1

logP(k(t))
)︃

⏞ ⏟⏟ ⏞
QF

(4.16)

4.3.1 Parameter Estimation

In the M-step the Q-function is to be maximized w.r.t. θ . Note that this process is similar

to that presented in Chapter 3 with the addition of each sample being weighted by P(k(t)),

57



which indicates from which operating point a sample is drawn.

θ
new = argmax

θ

Q(θ ,θ old) (4.17)

Fk and Γk share the same parameters (Γ j,ks) which only appear in QB, and by setting the

respective partial derivative to zero, each Γnew
j can be found as the root in [0,1) of a cubic

polynomial:

∂Q
∂Γ j,k

=
∂QB

∂Γ j,k
= 0 (4.18)

a3,kΓ
3,new
j,k +a2,kΓ

2,new
j,k +a1,kΓ

new
j,k +a0,k = 0 (4.19)

where:

a3,k =
N

∑
t=2

P(k(t)|x(t),θ old)

a2,k =−
N

∑
t=2

P(k(t)|x(t),θ old)E
(︃

s j,k(t)s j,k(t −1)
)︃

a1,k =
N

∑
t=2

P(k(t)|x(t),θ old)

(︃(︁
E(s j,k(t)s j,k(t)T )+E(s j,k(t −1)s j,k(t −1)T )

)︁
−1

)︃
a0,k = a2,k

(4.20)

For each k ∈ 1, ...,K the updated Hnew
k can be found as follows:

∂Q
∂Hk

=
∂QC

∂Hk
= 0 (4.21)

Hnew
k =

(︃ N

∑
t=1

P(k(t)|x(t),θ old)
(︁
P1,k(t)xk(t)E1(sk(t))T

+ρkPρ,k(t)xk(t)Eρ(sk(t))T)︁)︃
×
(︃ N

∑
t=1

P(k(t)|x(t),θ old)
(︁
P1,k(t)E1(sk(t)sk(t)T )

+ρkPρ,k(t)Eρ(sk(t)sk(t)T )
)︁)︃−1

(4.22)

where each measured state is centered w.r.t each operating point as follows:

xk(t) = x(t)−µx,k (4.23)
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and the subscript of 1 indicates an inlier while ρ indicates an outlier, i.e P1,k(t)=P(qx,k(t)=

1|xk,θk), E1,k(·)=E(·|xk,qx,k = 1,θk), Pρ,k =P(qx,k(t)= ρk|xk(t),θk), and Eρ,k(·)=E(·|xk,qx,k(t)=

ρk,θk). Each element of the updated Σnew
k = diag{σ2new

1,k , ...,σ2new
m,k } can be found as fol-

lows:

∂Q
∂σ2

i,k
=

∂QC

∂σ2
i,k

= 0,1 ≤ i ≤ m (4.24)

σ
2new
i,k =

1
N

N

∑
t=1

P(k(t)|x(t),θ old)

[︃
P1,k(t)

(︃(︁
x2

i,k(t)−2hT,new
i,k E1(sk(t))xi,k(t)

)︁
+hT,new

i,k E1(sk(t)sk(t)T )hnew
i,k

)︃
+ρkPρ,k(t)

(︃(︁
x2

i,k(t)−2hT,new
i,k Eρ(sk(t))xi,k(t)

)︁
+hT,new

i,k Eρ(sk(t)sk(t)T )hnew
i,k

)︃]︃
(4.25)

The updated ρnew
k s can be found as follows:

∂Q
∂ρk

=
∂QC

∂ρk
= 0 (4.26)

ρ
new
k = m

[︃ N

∑
t=1

P(k(t)|x(t),θ old)Pρ,k(t)
]︃

×
[︃ N

∑
t=1

P(k(t))Pρ,k(t)

×Eρ

(︃(︁
xk(t)−Hksk(t)

)︁T
Σ
−1,new
k

(︁
xk(t)−Hksk(t)

)︁)︃]︃−1

(4.27)

Each element of each αnew
k , αnew

j,∗,k, can be found as follows:

∂Q
∂αk

=
∂QD

∂αk
= 0 (4.28)

α
new
j,∗,k =

[︃ N

∑
t=2

ξ j,∗,k

]︃
×
[︃

∑
∗=1,ρ

N

∑
t=2

ξ j,∗,k

]︃
(4.29)
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where:

ξ j,∗,k = P(k(t)|x(t),θ old)P(qx,k(t −1) = j,qx,k(t) = ∗) (4.30)

The updated πnew
k s can be found as follows:

∂Q
∂πk

=
∂QE

∂πk
= 0 (4.31)

π
new
k =

γ1,1,k

∑∗=1,ρ γ1,∗,k
(4.32)

where:

γt,∗,k = P(k(t)|x(t),θ old)P(qx,k(t) = ∗) (4.33)

Last the updated mean of x(t):

µ
new
x,k =

∑
N
t=1 P(k(t)|x(t),θ old)x(t)

∑
N
t=1 P(k(t)|x(t),θ old)

(4.34)

Further information regarding the motivation for these calculations can be found in Chapter

3.

4.3.2 Posterior Distribution of Hidden Variables

In order to obtain the necessary values to update the parameter estimation in each iteration

step, the expectations related to the hidden variables must be found. Further, to develop a

soft sensor model, the overall Sk of each sub-model is needed. The required expectations

are derived as follows:

E∗,k(sk(t)) = E(sk(t)|xk,qx,k(t) = ∗,k,θk) (4.35)

E∗,k(sk(t)sk(t)T ) = E(sk(t)sk(t)T |xk,qx,k(t) = ∗,k,θk) (4.36)

E∗,k(sk(t)sk(t −1)T ) = E(sk(t)sk(t −1)T |xk,qx,k(t) = ∗,k,θk) (4.37)
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P1,k(t|xk,θk)+Pρ,k(t|xk,θk)ρk = E(qx,k(t)|xk,θk) (4.38)

E(sk(t)) = E(sk(t)|xk,qx,k,θk) (4.39)

E(sk(t)sk(t)T ) = E(sk(t)sk(t)T |xk,qx,k,θk) (4.40)

E(sk(t)sk(t −1)T ) = E(sk(t)sk(t −1)T |xk,qx,k,θk) (4.41)

Equations (4.35)-(4.37) represent the estimate of the slow features given that all samples

are either inliers or outliers. Each E∗,k is to be found twice, one for the inlier case where

∗= 1, and again for the outlier case where ∗= ρk.

E∗,k,k(sk(t)) = µt∗,kˆ

E∗,k,k(sk(t)sk(t)T ) =Vt∗,kˆ +µt∗,kˆ µt∗,kˆ T

E∗,k,k(sk(t)sk(t −1)T ) = Jt−1∗,kVt∗,kˆ +µ∗,ktˆ µt−1∗,kˆ T

(4.42)

With the forward recursions of a Linear Dynamical System [29, 77, 78]:

Pt−1∗,k = FkVt−1∗,kFT
k +Γk

µt,k = Fkµt−1∗,k +Kt∗,k[xk(t)−HkFkµt−1∗,k]

Vt∗,k = (I −Kt∗,kHk)Pt−1∗,k

Kt∗,k = Pt−1∗,kHT
k (HkPt−1∗,kHT

k +Σ∗,k)
−1

(4.43)

Initialized with:

µ1∗,k = K1∗,kxk(1)

V1∗,k = I −K1∗,kHk

K1∗,k = HT
k (HkHT

k +Σ∗,k)
−1

(4.44)

The backwards recursion can then be done:

µt∗,kˆ = µt∗,k + Jt∗,k(µt+1∗,kˆ −Fkµt∗,k)

Vt∗,kˆ =Vt∗,k + Jt∗,k(Vt+1∗,kˆ −Pt∗,k)JT
t∗,k

Jt∗,k =Vt∗,kFT
k P−1

t∗,k

(4.45)

which is initialized with:

µt∗,kˆ = µt∗,k

Vt∗,kˆ =Vt∗,k

(4.46)
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The Σ∗,ks are defined using the Gaussian scale mixture parameters as follows:

Σ1,k = Σk

Σρ,k = ρ
−1
k Σk

(4.47)

Then the expectation (4.38) can be found using the posterior of the hidden variable qx(t) at

each sample.

The overall expectations (4.39)-(4.41) can then be found as the weighted sum of the two

noise mode cases. The weighs are to be determined according to the properties of HMMs

[91]. For example (4.39) can be found as follows:

E(sk(t)) = ∑
∗=1,ρ

P(qx(t)|x(t),k,θ)E(sk(t)|x,qx(t) = ∗,θ)

= P1,k(t)E1(s(t)|x,qx(t) = 1,θ)+Pρ,k(t)Eρ(s(t)|x,qx(t) = ρ,θ)
(4.48)

The posterior of the mixture model weights can be updated using one of several method-

ologies. Lacking any process knowledge regarding when the operating point switching

occurs, P(k(t)) can be updated during each iteration using the current parameter set, θ ,

according to Bayes rule [74] and Gaussian properties [91]:

P(k(t)|x(t),θ old) =
P(x(t)|k,θ old)P(k|θ old)

P(x(t)|θ old)
(4.49)

P(x(t)|k(t),θ old)∼ N (µx,k,HkHT
k +Σk) (4.50)

In practice the direct determination of the operating point indicator according to the

above method is difficult. Alternatively, some process operators may record the current

operating point directly in the data historian. In such a case this information can be used to

obtain P(k(t)) by assigning the recorded operating point to have P(k(t)) = 1 and all others

to zero. In other situations, the operating point may not be recorded directly, however cer-

tain scheduling variables important to the operating point can be identified through process

knowledge. The values of the scheduling variables during training can be used to develop a

soft clustering model using methods such as a Gaussian mixture model or a HMM [92–94].

The posterior of each operating point k at each time sample in the clustering model can then

be taken as the corresponding P(k(t)).
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4.4 Verification and Application

In this section two sets of case studies are presented. First, a soft sensor is developed

for a simulated process with a single operating point where inlier and outlier noises are

switched between according to a transition probability matrix. In the second set of case

studies an industrial zinc roaster process with two operating points and occasional outliers

is considered for the development of a soft sensor and a model-plant-mismatch detection

and diagnosis task.

4.4.1 Simulated Study

This case study is performed using Tennessee Eastman (TE) [79] simulation data [80] to

verify the developed mhrPSFA model in the case of a single operating point (K = 1 ∴

P(k(t)) = 1, ∀t = 1, ...,N) where outliers occur according to a transition probability matrix.

The TE process consists of five main units: a reactor, stripper, condenser, compressor, and

separator. The feed consists of four reactants (A, C, D and E) and three products (F , G and

H). Motivated by Fan et al. [30], a slow feature regression soft sensor is used to build a

model for y which is the concentration (mole %) of component A in the reactor feed. As

per Fan et al. [30] five highly correlated variables were selected as inputs:

x1: Normalized Reactor Pressure (kPag)

x2: Normalized Stripper Temperature (oC)

x3: Normalized Stripper Steam Flow (kg/hr)

x4: Normalized Compressor Work (kW)

x5: Normalized Component C in Purge Gas (Mole %)

(4.51)

In order to show the effect of correlated outliers, they were added to the input data according

to a HMM with α1,1 = 0.95 and αρ,ρ = 0.8. The outliers were selected from N (0,4I). The

training and testing data can be seen in Figures 4.2 and 4.3 respectively, and the generated

Qx can be seen in Figure 4.4. The difference between this simulation and the one presented
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in Chapter 3 is that here, rather than occurring randomly at each time step, the outliers are

more likely to occur after they have previously occurred.

Figure 4.2: Simulated Tennessee Eastman Training Data with α1,1 = 0.95 and αρ,ρ = 0.8.

Figure 4.3: Simulated Tennessee Eastman Testing Data with α1,1 = 0.95 and αρ,ρ = 0.8.

The extracted slow features along with their lag-1 autocorrelations can be seen in Figure

4.5 and Table 4.1. Here it is seen that while all methods were able to obtain meaningful fea-

tures, the HMM version extracted slower features, i.e., it extracted features with higher lag-
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Figure 4.4: Generated Inlier-Outlier HMM States, qx(t), with α1,1 = 0.95 and αρ,ρ = 0.8.

1 autocorrelations when compared to the Bernoulli based Gaussian mixture and Student-t

robust PSFA (tPSFA) [30] approaches, which implies slower features are extracted by the

proposed method. The rPSFA and tPSFA performed similarly to one another. The HMM

version was able to capture slow trends better and was less affected by outliers, particularly

those that are of moderate severity.

Figure 4.5: Extracted Slow Features for Tennessee Eastman Training and Testing Data with
α1,1 = 0.95 and αρ,ρ = 0.8.
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Table 4.1: Slow Features Lag-1 Autocorrelation Coefficients for Tennessee Eastman with
α1,1 = 0.95 and αρ,ρ = 0.8.

Testing Training

Feature #1 #2 #3 #1 #2 #3

rPSFA 0.961 0.825 0.789 0.889 0.885 0.787

tPSFA 0.998 0.822 0.636 0.900 0.883 0.635

mhrPSFA 0.944 0.871 0.736 0.910 0.886 0.790

In the soft sensor task, the objective is to build a linear regression model for y(t) uti-

lizing the slow features, s(t), extracted from x(t). The results are presented in Figure 4.6

and Table 4.2 where during the testing phase, the proposed mhrPSFA method had a higher

correlation coefficient and a lower mean squared error than rPSFA and tPSFA. From these

results it is apparent that when the inlier-outlier state at time t is correlated with its pre-

vious state, modelling this behaviour with a HMM can yield improved performance when

compared to methods that treat the occurrence of outliers as completely random.

Figure 4.6: Slow Features Regression for Tennessee Eastman Training and Testing Data
with α1,1 = 0.95 and αρ,ρ = 0.8.
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Table 4.2: Slow Features Regression Performance for Tennessee Eastman Training and
Testing Data with α1,1 = 0.95 and αρ,ρ = 0.8.

Training Testing

Corr. MSE Corr. MSE

rPSFA 0.270 0.0731 0.313 0.0772

tPSFA 0.257 0.0736 0.312 0.0768

mhrPSFA 0.253 0.0738 0.338 0.0757

4.4.2 Industrial Case Studies

In these case studies a zinc roasting unit with a running model predictive controller is con-

sidered. The process consists of 5 manipulated variables (MVs) and 8 controlled variables

(CVs), which are listed in Table 4.3 and greater detail is provided in Chapter 3. Several of

these variables contain occasional outliers during the training and testing periods which are

believed to come from sensor faults and measurement noise, this should therefore be taken

into account for in the soft sensor development. Additionally, the process operates with two

distinct operating points. The first is the normal operation and the second is a maintenance

operation point where different behaviour can be observed, particularly in y2:5.

Figure 4.7: Zinc Roaster Process Diagram.

Two case studies are considered utilizing the proposed mhrPSFA algorithm. First, a soft
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Table 4.3: Description of Zinc Roaster Process Variables.

Variable Description

u1 Feed Rate

u2 Air Flow Rate

u3 Oxygen Flow Rate

u4 Bed Spray Water

u5 Inlet Pressure

y1 Bed Temperature

y2 ESP Pressure

y3 Cyclone Temperature

y4 Pressure Controller Output

y5 Fan Speed

y6 Oxygen Percentage

y7 Required Amount of Oxygen

y8 Air:Feed Ratio
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sensor is developed. This serves as an extension of the industrial case study presented in

Chapter 3 and shows that utilizing a mixture model approach allows for multiple process

operating points to be more accurately described than with the previously developed rPSFA.

Second, an encoder-decoder is developed for use in MPC model-plant mismatch detection

and diagnosis. This serves as an extension to Chapter 2 where a similar task was performed

for the normal operating point alone utilizing conventional SFA.

Industrial Soft Sensor Case Study

In this case study, the goal is to build a slow feature regression soft sensor for the nor-

malized ESP pressure (y2) using the normalized versions of the other variables. A set of

q = 5 slow features are to be used and the parameters are estimated using the proposed

mhrPSFA model. The number of operating points is specified as K = 2 based on process

knowledge and the mixture weightings are determined using the model parameters as de-

scribed in (4.50). The training prediction, testing prediction, testing parity plot, and results

are presented in Figure 4.8, Figure 4.9, Figure 4.10, and Table 4.4, respectively.

Figure 4.8: Slow Features Regression for Zinc Roaster Training Data with Mode-1 Indica-
tor Variable.

From these figures it is evident that the previously developed rPSFA does not perform
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Figure 4.9: Slow Features Regression for Zinc Roaster Testing Data with Mode-1 Indicator
Variable.

Table 4.4: Slow Features Regression Performance for Zinc Roaster Training and Testing
Data.

Training Testing

Corr. MSE Corr. MSE

rPSFA 0.967 0.0658 0.945 0.0654

mhrPSFA 0.987 0.0253 0.983 0.0209

well in processes with multiple operating points when compared to the proposed mhrPSFA.

In Figure 4.10 an apparent bias in the rPSFA predictions can be seen in each of the identified

operating modes, which approximately correspond to when the measured signal for y2 is

above or below one. The predictions for which P(k(t) = 1)> P(k(t) = 2) (approximately

corresponding to the normal operation point where y(t) < 1) show an apparent bias and

tend to overestimate the measured value. The predictions for those samples where P(k(t) =

2)> P(k(t) = 1) (approximately corresponding to the maintenance operation point where

y(t)> 1) also show a bias and tend to underestimate the measured value. Further, increased
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Figure 4.10: Parity Plot for Slow Features Regression for Zinc Roaster Testing Data.

error variance within each operating point when compared to the mhrPSFA can be seen.

These issues are largely eliminated in the mhrPSFA predictions which follow the line of

parity closely.

Figure 4.11 shows the soft sensor testing performance with alternate numbers of features

with q = 1, ...,10. From this it can be seen that the mhrPSFA algorithm is able to capture

the plant behaviour more efficiently with a lower number of features when compared to

rPSFA. In this system the disparity is particularly prevalent before the fourth feature.
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Figure 4.11: Slow Feature Regression Testing Performance with Varied Number of Fea-
tures.

Industrial Model-Plant-Mismatch Detection and Diagnosis Case Study

In this case study the proposed mhrPSFA model is used to develop an encoder-decoder to

preprocess data for use in a model-plant-mismatch detection task according to the method-

ology proposed in Section 2.2.3. This serves as an extension to the industrial case study

presented in Section 2.3.2. However, without the limitations of a single SFA model, a larger

data set can be considered containing both the normal and maintenance operation points at

once. Here a period of 5,000 data points is considered for each of the testing and training

and the MQILOO [17] metric is again selected as the model quality assessment method.

The training period was selected from normal operating data as the period with the lowest

mean squared 1-step ahead prediction error. The testing period of concern was selected as

it occurred during a transitional period, after a brief shutdown of the plant where potential

model-plant-mismatch was suspected to have been introduced. Utilizing the training data,

a mhrPSFA model is developed to encode the signals using q = 7 components where all

MVs and CVs are treated as inputs. A mixture slow feature regression model is then de-

veloped using the training data to decode the signals by reconstructing all MVs and CVs
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from the encoded signal. The developed encoder-decoder is then applied to the training and

testing data before conducting model-plant-mismatch detection and diagnosis. In this way

the fast-varying signals that are suspected of being less relevant to the plant model are de-

emphasized. Note that no lagged copy augmentation was introduced (d = 0) but all other

parameters remain the same as the case study presented in Chapter 2, i.e., MQI is assessed

using fifth order ARX models that use a window of 500 samples moved by 100 samples at a

time, with sub-model deterioration being diagnosed by a three standard deviation increase

from the mean of the ratio of MQILOO to MQI during the training period.

A summary of the results can be seen in Table 4.5. Compared to the case study presented

in Section 2.3.2, similar results were obtained before and after preprocessing. Without

using the mhrPSFA to preprocess the data, several potential model quality issues are de-

tected, suggesting the requirement of extensive signal excitation to re-identify them accord-

ingly. When utilizing a mhrPSFA preprocessing step however, a reduced set of potential

model-plant-mismatch sources are detected only pertaining to u4, suggesting less exten-

sive re-identification is required. The mhrPSFA method required significantly less work

in identifying relevant data to consider in this analysis when compared to the conventional

SFA used in Chapter 2 which does not handle outliers or multiple operation conditions, and

thereby limits its applications or requires the use of additional preprocessing methods that

result in a loss of information.

4.5 Conclusions

This work proposed an extension to the previously developed scale Gaussian mixture ro-

bust PSFA to replace the random switching of the inlier and outlier mode occurrence with

a correlated switching. This allows for the capture of dynamic noise mode switching and

can better account for situations in which the occurrence of outliers is not completely ran-

dom. Further, this extension was implemented in a mixture model fashion allowing for

the proposed method to better capture the behaviour of multiple operating point processes
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Table 4.5: Model-Plant-Mismatch Detection and Diagnosis Results by Sub-Model.

Checkmarks (!) indicate acceptable performance, crosses (%) indicate de-
tection of model-plant-mismatch, and dashes (-) indicate the lack of a relevant
sub-model. Results without mhrPSFA reconstruction are on the left of columns
and with the reconstruction on the right.

u1 u2 u3 u4 u5

w/o with w/o with w/o with w/o with w/o with

y1 ! ! ! ! - ! ! -

y2 ! ! % ! ! ! % % ! !

y3 ! ! ! ! ! ! ! ! -

y4 ! ! % ! % ! % % -

y5 ! ! - ! ! ! ! -

y6 - - % ! - -

y7 % ! ! ! % ! - -

y8 ! ! ! ! ! ! - -
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when compared to the previously developed rPSFA. Further extensions of this work could

include higher order HMM structures that consider multiple historical time steps [95–97],

or alternate Gaussian mixtures to address outliers not-well described by a scale mixture of

two components.
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Chapter 5

Conclusions and Future Work
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5.1 Conclusions

The main objectives of this thesis were to propose a SFA based framework for preprocess-

ing industrial data for MPC model-plant-mismatch detection and diagnosis in chemical

processes, and to develop robust PSFA models to address data quality concerns commonly

found in industrial processes.

Industrial MPC systems commonly display some degree of change in behaviour over

time which can introduce or worsen existing discrepancies between the prediction model

and the plant. Such mismatches can result in sub-optimal set point tracking and deter-

mination. Frequent broad model re-identification experiments to resolve these issues is

unfavourable due to potential economic and safety concerns. Instead, several methods ex-

ist in the literature to detect errors in specific sub-models that could benefit from model

re-identification, thereby narrowing the scope of the potential experiments. However, the

quality of assessment of these methods is diminished by the presence of significant distur-

bances. In chemical processes the plant is typically slowly varying in nature and disturbed

by some quickly varying noises. To this end, a conventional SFA encoder-decoder struc-

ture to preprocess data and eliminate quickly varying disturbances that are typically of less

value when detecting model-plant-mismatch was proposed in Chapter 2. Simulated and

industrial case studies showed the proposed method’s improved ability to more accurately

determine the sub-models whose mismatch was present and provide a reduced set of can-

didates for re-identification.

Industrial processes often have data quality issues including outliers and multiple op-

erating points that result in deteriorated performance of the conventional SFA algorithm.

To this end, Chapters 3 and 4 introduced improvements to the conventional probabilistic

SFA method to address the aforementioned concerns. First, in Chapter 3 a framework for a

robust PSFA method was proposed by considering a Gaussian scale mixture measurement

noise structure. The noise modes were assumed to be switched according to a Bernoulli

distribution as indicated by the introduction of an additional hidden variable. The param-
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eter and online state estimations for this model were performed according to the iterative

EM algorithm. Soft-sensor applications showed that the proposed method was able to ex-

tract meaningful features better when outliers are present in the training data compared

to SFA and PSFA while performing similarly well as the existing Student-t robust PSFA.

Last, in Chapter 4, to simultaneously resolve the issues of correlated outlier occurrence and

multiple process operating points, the Bernoulli distribution was replaced with a Hidden

Markov Model and a multi-model approach was adopted. The necessary changes to the pa-

rameter and state estimation process from Chapter 3 were discussed. Then the soft-sensor

studies from Chapter 3 and the industrial model-plant-mismatch detection and diagnosis

task from Chapter 2 were revisited with this model structure, and improved performance

was observed.

5.2 Future Considerations

In order to further improve upon the proposed methods, there are several directions one

could take. In this work all measurement outliers were modeled as coming from a Gaussian

scaled distribution with two components. Adaptation for alternate Gaussian mixtures, such

as location outliers or skewed distributions, could be considered for systems where the

outliers are not well described by a scale mixture.

Further, another common issue that can be found in industrial data that was not ad-

dressed in this work is missing samples, or differing sampling rates across measured sig-

nals. In industrial data, sensor faults may not always result in a measurement outlier and

instead may result in no value, or some placeholder value, being recorded to the data histo-

rian. Such values contain no information and should not be treated as outliers. Additionally,

in many systems there are key variables that require manual or lengthy analysis to evaluate.

Operators may wish to have an estimate of the values at the same high frequency that sim-

pler variables are measured. The proposed PSFA methods could be extended to take these

concerns relating to missing data into consideration.
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Finally, in this work only MPC systems where the slowest features are assumed to be

the most important were considered. While this is often the case for chemical systems, the

assumption does not apply to all cases. For example, in the field of robotics the modelling

may be more concerned with the fastest latent features and an alternate encoder-decoder

structure that keeps these instead of the slowest features could be considered.
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