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Abstract

In order to improve a user’s query and help the user quickigfyahis/her information need, most
search engines provide query suggestions that are meaet teldvant alternatives to the user's
query. This thesis builds on the query suggestion systeneealdation methodology described in
Shen Jiang's Masters thesis (2008). Jiang’s system catstquiery suggestions by searching for
lexical aliases of web documents and then applying quemckda the lexical aliases. A lexical
alias for a web document is a list of terms that return the watuthent in a top-ranked position.
Query search is a search process that finds useful combisaifeearch terms. The main focus of
this thesis is to supply alternatives for the componentsasfgls system. We suggest three term-
scoring mechanisms and generalize Jiang’s lexical al@skdo be a general search for terms that
are useful for constructing good query suggestions. Weralslace Jiang’s top-down query search
by a bottom-up beam search method. We experimentally shatotlr query suggestion method
improves Jiang’s system by 30% for short queries and 90%fay queries using Jiang’s evaluation
method. In addition, we add new evidence supporting Jiatgrelusion that terms in the user’s
initial query terms are important to include in the querygesgions.

In addition, we explore the usefulness of document clusgdri creating query suggestions. Our
experimental results are the opposite of what we expectadrygsuggestion based on clustering
does not perform nearly as well, in terms of the “coverag@tass we are using for evaluation, as

our best method that is not based on document clustering.
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Chapter 1

Introduction

Web search is one of the most popular and useful servicesdntirnet. Given the large number of
web documents on the Internet, users find useful informati@the search engine. For example, if
a user wants to know something about “thermodynamics”, midneform thequery“thermodynam-
ics” and enter it in the search box of a search engine. Thelsesgine returns millions or billions
of web documents related to the query “thermodynamics” aedostrelevantones are ranked in
the top. Each search result contains a titlesngpetand a URL address. A snippet consists of one
or two sentences or phrases extracted by the search engmetfe web document. By looking at
the title and the snippet, a user decides whether to navigdtee corresponding web document or
not.

Users may face some problems when using a search engineti®esithe search engine returns
almost nothing for a query, sometimes the search enginensetularge number of irrelevant web
documents. For both cases, the reason is usually not thatitheo useful information for the user
on the Internet, it is often because of an inappropriateyqudre query entered in the search box is
almost the only knowledge the search engine has to estilmaigser’s requirement.

There are several possible reasons for an inappropriatg.q@n the lexical level, there are
spelling errors [9], splitting a word which should not beispherging words which should not be
merged, acronym problems, etc. [14]. Considering spediimgrs for example, when the query “ma-
chine learning” is typed as “machin learning”, the qualifytiee relevant results might be reduced
greatly. For the acronym problems, the query “socs” mighieee only a few web documents
related to the International Symposium on Combinatoriar&e (SoCS) mingled with documents
not related to this subject. Besides lexical mistakes,sussrd to form short queries consisting of
only one or two words [3, 5]. Short queries are more likely ¢éoalonbiguous [7]. For example, if a
user wants information about the jaguar car and enters thgy djaguar”, the returned results may
contain web documents about the jaguar car, the pantheea anaircraft named jaguar, etc. Fur-
thermore, the web documents on the Internet are created aimdaimed by different people. This
leads to avzocabulary mismatcproblem, i.e. the words in the user’s query may be differsamifthe

words in the relevant web documents, though these wordsteefee same thing. For example, the



guery “cat” may not be able to retrieve the web documentsaioimy “feline”. On top of all these
objective reasons, a user may simply not be able to form tirectowords for his/her specific intent
sometimes [54].

Therefore, based on the user’s original query, most seaigihes now supply query suggestions
that may better represent the user’s search intent andheelser find useful web documents faster.
For example, after a user types “volcanos in italy” on Gobglee query suggestions are supplied
at the bottom of the first page as shown in Figure 1.1. The pugreeof creating these queries is
calledquery suggestiof8, 31], query refinemertL4, 16], query expansigmguery reformulatioror
query substitutionDifferent research works may use different names or focudifferent aspects,
but they all share the purpose of generating new queries poove the user’s original query and

enhance the search usability.

Searches related to volcanos in italy
major volcanoes in italy

famous volcanoes in italy

many volcanoes italy

three volcanoes italy

v

Go000000000gle
: 3

2345687 8 910

=
]
=

Figure 1.1: The query suggestions for the query “volcanoisaly” on Google.com (Dec. 22nd,
2010).

There are many techniques to supply query suggestions foewy,gsuch as methods based on
global thesauri [5, 32, 56], local query suggestion metH8a8s56], methods utilizing search logs
[3, 31, 54], etc. In addition to creating query suggestidna aire relevant to the user’s query, most
guery suggestion methods also aim to return understandatlleecognizable query suggestions for
humans. However, a good query for humnas is not guaranteled gogood query for the search
engine. This thesis aims to provide good query suggestarthé search engine.

Since queries are often ambiguous, search results abdertedif subjects often mix together.
There is a considerable amount of research done on orggrsearch results, i.e. categorizing web
documents for a query. These methods are usually referdeglttte termweb document clustering
[12, 13, 15, 57, 58]. Though generating a query suggestioedoh web document cluster seems
promising, there appears to be no literature explicitljizitig web document clustering for query
suggestion. This thesis makes this attempt.

The following sections sketch the problem this thesis aionsalve, the general approach, the

contributions and an outline of this thesis.

1The Google search engine ishitp://www.google.com/



1.1 Task Definition and Approach

Before introducing our work, the query suggestion methamppsed by Jiang et al. [19] has to be
described first, since we follow its basic assumptions, semnd evaluation methodology.

The query suggestion method of Jiang et al. [19] is based ercutial assumption. It assumes
the user’s query returns relevant web documents, but teajukry is not good enough to return the
relevant web documents in the top positions for the useréo ¥éith this assumption, the general
task of the system developed by Jiang et al. [19] is to creageygsuggestions that return relevant
web documents which are likely to be missed by the user batiketdop positions for the user to
see.

Given the task, the relevant web documents that are likelyetanissed by users have to be
located first. Jiang et al. [18] conducted an experiment foeg the positions of relevant web
documents in the search results of a query. Their work shbaisthere is a high probability that
a relevant web document appears in the top 120 search reldokigever, most users only view the
top 20 results (the first two pages of the search results)thieravords, the work of Jiang et al. [18]
shows that a web document between top 21-120 in the seanaltsrissvery likely to be useful to
users but may be missed because it is ranked too low (beloteph0).

With the assumption and the work on relevant web documesis Jiang et al. [19] suggested a
purpose for their query suggestion method: creating queggestions to return the web documents
between 21-120 back in the top 20 results. These web docsrasntalledeference documesifor
the user’s query. In addition, they say a queoyess a web document if the query returns the web
document in the top 20 results. Following the previous eXartfigure 1.1), we show the reference
document coverage of a query suggestion provided by Gaaglefor the query “volcanoes in
italy” in Table 1.1. The left column shows the reference doeats for the query volcanos in italy
and the right column shows documents returned by the queyestion major volcanoes in italy.
The covered reference documents are emphasized in Tabfeefedence documents 59 and 88 are
covered).”

There are some things to be noted about the purpose of bathelial.'s query suggestion system
and the query suggestion methods in this thesis. Coveliiag@dbnly the reference documents is not
the goal we pursue. Otherwise, a much easier approach weuttdbuster the reference documents
in groups, giving each group an understandable label, anchieg the labels as links to the grouped
documents directly to the user. The disadvantage of thisoaigh would be thabdnly the reference
documents and no other documents would be presented to ¢he\What we are tackling in this
thesis is how to provide query suggestions that allow the tasknd relevant documents when they
are not in the top 20 returned by the initial query. We need @ twaestimate how many relevant
documents a given query suggestion returns in its top 20.0iManf Jiang et al. in using the number
of reference documents covered to estimate this.

In order to evaluate their query suggestion method, Jiaad §9] introduced the MCC score



Original query: volcanos in italy

Query suggestion: major volcanoes in italy

1. List of volcanoes in Italy - Wikipedia, the free encyclope

20.
21.
22,
23.
24,
25.
26.
27.
57.
58.
59.
60.
61.
85.
86.
87.
88.
89.
90.
91.
92.

Stromboli volcano (ltaly) in eruption — Flickr - Photo &ing!

CVO Menu - INDEX to CVO Online Volcanoes

Arenal Volcano Costa Rica overview

Answers.com - What Volcanos are in Italy

Undersea Volcano Threat For Italy/Undersea Volcandessphalt In ...
Google Maps / Google Earth - Volcanos & Italy & Vulcano

World Map of Volcanoes, Volcanoes Of The World

World Volcanoes Map — Volcano Lookup — Kamchatka Volcare Japan ...

Most active volcanos in the world? - Yahoo! Answers
Mt Etna Volcano, Italy - John Seach

major volcanoes of italy map and information page
\olcanoes - Italiansrus.com

Vesuvius, the world’s most closely watched volcano

WebCam Central : WebCams by Category : Volcanos

FIRE BELT AWARD

Volcano Photos, Volcano Wallpapers, Pictures, Imadeational ..
Active Volcanoes: Stromboli, Italy

top help: what is the top 5 most deadly volcanoes - Hetp.co

Mt Etna, Sicily’s Dominant Volcano, Italy - Video

\olcanoes as emission sources of atmospheric mercting in.
Volcanoes - definition of Volcanoes by the Free OnlingiDiary ...

115. Top 7 Posh Hotels at Volcanic Sites

116. Volcanos by peter francis (volcanos in antartica. Hoheck are ...

117. The Sirente crater, Italy: Impact versus mud volcangirs

118. Amazon.com: DK Readers: Volcanoes and Other NatusadDérs ...
119. EARTH CHANGES TV - VOLCANOS: Mt. Etna, Kilauea, Popoeptl ...
120. Vacation and Travel Talk: Active Volcanos

. CVO Website - Major Volcanoes in Italy - Map

. CVO Menu - Italy Volcanoes and Volcanics

. Volcanism of Italy - Wikipedia, the free encyclopedia

. Mount Etna - Wikipedia, the free encyclopedia

. List of volcanoes in Italy - Wikipedia, the free encycldie

. major volcanoes of italy map and information page

. Answers.com - Name 3 major volcanoes in italy

. Answers.com - What is the most important Volcano in Italy
. Active Volcanoes: Stromboli, Italy

10. Volcanoes of Italy - Vesuvius, Campi Flegrei, Etna, Sioli ...
11. Major Volcanoes - World Map, Map of the World

12. Volcanoes In Italy

13. World’s Most Active Volcanoes - John Seach

O©Coo~NOULh, WNPE

14. Global Volcanism Program — Volcanic Activity Reports —-mighsonian ...

15. Italian Volcanoes — Italy

16. World’s most active volcanoes - Stromboli (Italy) - CShitor.com
17. Monte Vulture volcano, Italy

18. Active Volcanoes in Europe

19. Exploring the Volcanoes of Italy — Expatify

20. Names of Volcanoes in Italy — Directhit.com

Table 1.1: The reference document coverage of the quenestigg provided by Google.com.



(Cumulative Coverage) and the MEC score (Expected Covgragepposek is the number of
guery suggestions that are supplied. Then the MCC scordsstheanumber of reference docu-
ments covered by thed€ query suggestions. The MEC score is the expected coveragéeoénce
documents by one query suggestion. For example, suppaseatteethree query suggestions which
cover reference documen82, 46, 50}, {22, 50, 77,98} and{75, 77} respectively. Then the set of

the covered reference document$1g, 46, 50, 75, 77,98}, the MCC score is 6 and the MEC score
is 1{22,46,50}|+]{22,50,77,98}|+|{75,77}| =3
3 .

There is one thing to be noted about the evaluation method.oieused MCC and MEC
to measure query suggestions with the purpose of evaluielg from the search engine side.
However, there are more factors to be considered for quegestions in practical use, such as the
understandability of the query suggestion, and the distinkbetween query suggestions. Therefore,
there are still steps to provide practical query suggestifter creating the ones by our method.

Based on the Query Suggestion by Query Search (QSQS) sys$tdiang et al. [19], the first
task of this thesis is to improve QSQS by retaining its cdrgtaucture but replacing the methods
in some phases of QSQS with our methods. There are four pmQ3QS, we mainly generalize
the lexical alias search phase to a search term selectiae @mal suggest two alternatives for the
guery suggestion candidate search phase. An Improved Queggestion by Query Search (IQSQS)
system is proposed.

Document clustering methods group documents into diftesieisters based on their similarities.
Finding a query suggestion for each cluster seems promiSingrefore, another task of this thesis
is to investigate whether document clustering methods teefind query suggestions with higher
MCC and MEC scores. For this task, we implemented a Query &tigg by Document Clustering
(QSDC) system. The QSDC system modifies the control strec®SQS, and inserts a document

clustering module in the system.

1.2 Contributions of This Thesis

We proposed the IQSQS system to create query suggestionshit queries (containing at most
2 terms), the best configuration of IQSQS (we name it IQSQ&Proves the MCC score by 29.2%
and MEC by 32.6% compared to the QSQS system. For long quenetaining at least 3 terms),
IQSQS* improves the MCC score by 82.1% and MEC by 99.6% coethty QSQS. In addition,
we add evidence supporting the conclusion drawn by Jiang @94 that terms in the user’s query
are important to retain in query suggestions in order to lhéyle MCC and MEC scores.

In the lexical alias search phase of QSQS, a lexical aliaa feference document is selected as
the basis of query search. A lexical alias consists of 5 toet®$ that collectively cover a given
reference document. During query search, some terms frenfetical alias are picked out and
combined to form a query suggestion candidate. Since the mapose of the lexical alias is not

to cover the current reference document but to supply tehasdan be used for forming query



suggestions, we suggest a search term selection phasdaoeréipe lexical alias search phase. In
particular, we suggest three scoring mechanisms, LA, O&E&, to evaluate terms. LA is evolved

from lexical aliases to evaluate whether a term covers theegtireference document, i.e. LA is a
local coverage. OC and EOC measure how many reference datsimet only the current one, are

covered by a term, i.e. the potential of global coverage.h\iese different scoring mechanisms,
we proposed two search term selection methods: LAW and C3/.ekperiment shows that, for

short queries, CSW can improve the MCC score by 56.9% and ME&38% compared to LAW.

We also modified the query search phase of QSQS proposedryelial. [19]. Given a list of
terms, query search forms queries by combining terms ierdifft ways. We replace the top-down
search method of Jiang et al. [19] by a bottom-up search rdesthd enhance it by a beam search
method. The experiment shows that, given the same set o teumquery search methods perform
equally well with Jiang et al.'s query search method.

In order to decrease the running time of evaluating termsséiidelect useful terms, we apply
a pre-selection in the search term selection phase. We cenhpaie-selection by snippets and
by frequency and found that these two methods are equallg.g@mnsidering other advantages
snippets supply, we adopt snippets as our pre-selectiomatiet

We also noticed the big improvement by always including thigimal queryQ, in the query
suggestions; the experiment in Chapter 3 demonstrateditishort queries, addin@, improved
MCC by 92.3% and MEC by 94.5%. For long queries, addihgincreased MCC by 32.4% and
MEC by 36.8%.

QSQS and IQSQS process 100 reference documents one by oprat®ihe final 10 query sug-
gestions. A Greedy Query Suggestion method by Query Se&QI$QS) is developed by running
10 rounds to greedily find 10 best query suggestions. It rastef than QSQS and IQSQS and its
performance is generally between QSQS and IQSQS. For shenieg, QSQS, GQSQS, and IQSQS
roughly cover 50, 60, and 70 reference documents respbctiver long queries, QSQS, GQSQS,
and IQSQS cover about 40, 70, and 80 reference documentctsy.

We evaluate document clustering methods for query suggebti developing the QSDC sys-
tem. The running time and the MCC/MEC score for QSDC are sityilto these of GQSQS. We
measure the performances of nine different document clngtalgorithms in QSDC, none of them
outperforms the others. In order to evaluate whether dontiolastering helps or not, we carry out
another experiment in which documents are randomly asgignene of ten clusters with a uniform
probability. By comparing the result, we conclude that tbeudnent clustering methods we used in

this thesis do not improve query suggestion in terms of MCELMEC.

1.3 Remark on Runtime Efficiency

We present our query suggestion methods in this thesis aaldade them using MCC and MEC

score. We do not consider computational time as an impoidaung, though we apply pre-selection



in the search term selection phase, pruning in the querglsghiase, and we make our program code
efficient to decrease the running time. Since most of our edatipnal time is spent on sending
requests to the Google API, we believe that with large scataputing ability and well indexed
web documents, the search engine could compute query sigggewith our methods quickly.
In addition, the search engine may not need to pre-selatistéefore evaluating terms, because
potentially all terms could be evaluated in a short time.oAthe query search phase could try more
guery suggestions from the search engine side. Theretoeesdarch engine could supply even

better query suggestions in much shorter time than wasnedjto obtain the results in this thesis.

1.4 Outline

This thesis proceeds as follows: Chapter 2 introduces thenéial background knowledge for this
work, such as content-based addresses, query search ag@t&.'s query suggestion method [19].
Then the Google API used for all experiments in this thesistieduced. Instability of the Google
API and its influence on the experimental analysis are egglor

Chapter 3 elaborates on the IQSQS system and then introthe€£SQS system. An overview
of the IQSQS system is presented and compared with the wdliaog et al. [19]. Different phases
of the IQSQS system are described in detail afterwards. Xperanents demonstrate the improve-
ments on the work of Jiang et al. [19].

The QSDC system is introduced in Chapter 4. Similar to Chiaqt€hapter 4 also proceeds
with a system overview and details of each phase in the QSB@rsy

Related work about query suggestion methods, web docurhestédng methods and evaluation
methods of document cluster labeling are all described sp@# 5.

Chapter 6 summarizes the whole thesis and lists possihlesfdirections for our work.



Chapter 2

Essential Background

As introduced in Chapter 1, our query suggestion systemhgasame purpose as that developed by
Jiang et al. [19]: given an original que€y,, supply K (K = 10) query suggestions to return most
of the reference documents @, in the top 20 positions. The idea of finding query suggestions
to return a specific set of web documents originates fromdba bfcontent-based address. In

this chapter, we will first describe the concept of conteatdul addresses, then several methods
to find content-based addresses for web documents areuodd The idea ofjuery searctthat
was proposed to search for a content-based address isatecsifter that. Based on content-based
addresses and query search, the query suggestion methea@fd al. [19] is presented. The last
section in this chapter introduces the Google APl which weetagetrieve search results for queries
in our experiments. The instability of the Google API is gzeld and its influence on our query

suggestion systems is also investigated in the last section

2.1 Content-based Addresses and Related Ideas

Martin and Holte [33] proposed the idea of content-basedesdes. Later, a similar concept, called
thelexical signaturewas suggested by Phelps and Wilensky [39]. After thatglimal. [19] applied
a modified idea in their query suggestion system and nambdlixical alias We introduce all of

them in chronological order.

Content-based address (summary query) “a content-based alternative to a URL
would be a list of key terms that could be used as a query t@vetthe target web
page from a large search engine. We will call this quegoatent-based address

more specifically summary query[33].

Martin and Holte [33] proposed the idea of content-basedesd@s with two purposes. First,
retrieving web documents whose URL addresses change, anddseretrieving web documents
whose URL addresses change and whose contents are modifigierfmore, they noticed that a

content-based address also has some potential to retatedeleb documents.



In order to find a content-based address for a web documeinijteh query by concatenating
the document’s most frequent words and the title words ieggad first. The initial query is often
long and precise and can be used to retrieve a moved web dat@anthe first position in the
search results. Queries obtained from shortening and yimgj this initial query are evaluated as
to whether they return the web document in the top 10 result®b All the shortened queries that
return the web document in the top 10 results are also cetlee$ content-based addresses. These

shortened queries can be used to retrieve a web documeid bwih moved and modified.

Lexical signature: “itis to include in the hyperlink, along with the URL, somarp of
the document content. We call this content a lexical sigeas it is meant to identify

the given page by its content” [39].

Phelps and Wilensky [39] suggested to include the lexiaghatiure in the address of a web
document with the URL to supply a robust hyperlink. With austshyperlink-dereferencing, the
lexical signature is ignored when the URL works. If the URIdeabs fails, the lexical signature is
issued to a search engine and the web document that matehgigtiature most closely is supplied
to the user.

Phelps and Wilensky thought that rare terms were ideal to @iexical signature. Therefore,
they first utilized the data from search engines to deterithieeare terms for a web document, then
the term frequency (TF) of each rare term in a web documentalasilated. Since most rare terms
only occur once in a web document, they favored the rare teymmsultiplying their TF scores with
their inverse document frequency (IDF) scores (IDF was edt 5). At the end, they selected the

few best rare terms as the lexical signature for the web deatm

Lexical alias: “a lexical alias for a web document is a query for which théowlecu-
ment is ranked among the fir&f; documents in the corresponding result list, wh&ie
is a fixed threshold” [17].

Jiang et al. [19] borrow the ideas of content-based addsessé lexical signatures, and the
way they build up a lexical alias is similar to Martin and Hddt method [33]. Jiang et al. [19]
concatenate the title words and the most frequent wordsto foquery. Once the query returns the

web document in the top 20 results, the query is regardedcedsstital alias for the web document.

2.2 Query Search

Query searchwas proposed for finding content-based addresses for walmasots [33]. Query
search is a search process that is used to calculate thedlstates (the desired queries) from the
start states (a set of important terms). Martin and Holté fiB& proposed the idea @fuery search

as quoted below, then Jiang et al. [19] applied query searttteir query suggestion system.



“QuerySearch is a system designed to search for a queryedhalts in one or more
particular documents being retrieved. There is a toolbopasfsible search heuristics
that can be applied. Basically, an initial query is simptifee extended in order to find

a query that does a better job of finding the target documé¢asj”

As we introduced in Section 2.1, Martin and Holte [33] firstdfithe initial query and then
compute the shortened queries. Correspondingly, thervarkinds of query search in their work:
search for the initial query and search for the short and Iiegh queries. Query search for the
initial query is simple (Algorithm 2.1 is the pseudocoddke first initial query candidate consists of
the f most frequent termsplus the title terms (line 5). If this candidate returns thebvdocument
as the first hit of the search results, this candidate is titi@liquery and this query search finishes
(lines 6-8). Otherwisef is increased by 1 and the same process is repeated (lings FHi®search

ends when the initial query is found.

Algorithm 2.1 Query search for the initial query by Martin and Holte [33].

Input: aweb documeni.

Output: the initial queryinitialQuery that returnsi as the first hit of results.

. initialize initial Query to be empty.

. rank terms ind by frequency from highest to lowest, store sorted terms istadrtedT erms.

. initialize f to be a fixed number.

for i = f to sortedTerms.size() do
the initial query candidaténitialQueryCandidate = topiterms fromsortedTerms +
title terms.

6: if d is returned as the first hit whemitial QueryCandidate is issued to a search engine

then

7: nitial Query < initial QueryCandidate

8: break loop.

90 endif

10: end for

11: return initialQuery

Query search for the short and simplified queries is compatatcomplicated (Algorithm 2.2
shows the pseudocode). At the beginning, a query queue asecr@nd is initialized to contain
only the initial query (line 1). Then a loop occurs, in whicheoqueryg is taken out of the query
gueue (the head of the queue is taken out) and processedmm@mnl@op (line 3). The inner loop
goes through every term iq (lines 5-11). In the inner loop, a term inis simplified and the
corresponding simplified query is tested as to whethef returns the web document in the top 10
results or not. Ify’ does,q’ is inserted in the query queue and the inner loop moves oretaekt
term ofq (lines 6-10). If all the terms i have been simplified and no simplified query faeturns
the web document in the top 10 resulisis regarded as unable to be simplified and is inserted in

the result set (lines 12-14). In this process, testing ayqueolves issuing it to a search engine and

1A term in [33] could be a phrase.

2Martin and Holte [33] considered various simplifying posiiiles. For example, suppose the termisdrd; +words +
wordz” where the quotation marks indicate all words have to appleaterm might be simplified by removing the quotation
marks, removing one word from the term, etc.
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checking the returned results (line 7). After the outer Ifiojshes, a result set is returned and all

queries in this set are the desired queries (line 16).

Algorithm 2.2 Query search for simplified queries by Martin and Holte [33].
Input: a web document, the initial queryinitialQuery for d.
Output: the simplified query setimpli fiedQuerySet.

1: insertinitial Query to an empty query queugieue.

2: while queue # NULL do

3:  queryq < queue.pop()

4. flag canBeSimplified < false
5. for every termt in ¢ do
6: simplify ¢ to form a simplified query’
7 if d is returned in the top 10 results whehis issued to a search engitien
8: insertq’ into queue.
9: canBeSimplified < true
10: end if
11: end for
12:  if canBeSimplified = false then
13: insertq into the result setimpli fiedQuerySet.
14:  endif
15: end while

16: return simplifiedQuerySet

Jiang et al. [19] utilized query search to find the lexicahsitand the query suggestion candidates
by adapting the query search methods of Martin and Holte [82} will present the details of the
work by Jiang et al. [19] in Section 2.3.

The discussion above shows the idea of query search: cotisguifferent queries by combin-
ing different terms and evaluating these queries by issthiemh to a search engine. Each query is
regarded as a search node in a search tree, different caibmanply different search paths, and

pruning is applied when a query does not meet some condition.

2.3 Query Suggestion by Query Search (QSQS)

Jiang et al. [19] proposed the Query Suggestion method byy@earch (QSQS). Their assumption
and purpose have both been introduced in Chapter 1, an eveavid the details of the QSQS system
will be presented in this section.

The structure of the QSQS system is shown in Figure 2.1 [18].aFuser’s original querg),
thereference document collectigrhase collects all the reference documentgfgifrom the web,
parses and processes them. Then for each reference docdtbetiexical alias searclhphase
analyzes/ and finds a lexical alias fat. Different combinations of the terms in the lexical alias ar
evaluated to create a set of query suggestion candidatég query suggestion candidate search
phase. After processing all the reference documents, algesdection method is applied to the
set of query suggestion candidates to finalize the queryestigags forQ, in the query suggestion

selectionphase. Details of each phase are introduced in the follogihgections.
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Figure 2.1: The structure of the QSQS system [19].

2.3.1 Reference Document Collection

Given the user’s original quer§),, the reference document collection phase retrieves raavaete

documents using the Google API, applies HTML parsing, ckaral capital letters to lower case,
and removes stop words. Then every reference documentygrted into a sequence of terms. A
sample text and its processed result are given below as anpéxa Figure 2.2 shows the corre-

sponding string vector which stores these terms in the progr

Sample text: ITALY&amp;#39;S VOLCANOES: THE CRADLE OF VOLCANOL-
OGY, ITALY TRAVEL.

Processed textitaly volcanoes cradle volcanology italy travel

italy volcanoes cradle volcanology italy travel

Figure 2.2: The corresponding string vector for the texl§itvolcanoes cradle volcanology italy
travel”.

2.3.2 Lexical Alias Search

Jiang et al. [19] think the title is often a summary of a refeedocument and it is given a higher
weight than other parts of the reference document by thelsesagine. Similarly, the most frequent
terms are important too, because the most frequent ternikealseto be related with the content of
the reference document. Therefore, Jiang et al. [19] sefiotine of the lexical alias to be the title
words plus the most frequent words.

For a reference documetita sequence of seed terms consists of title terms and thdnaqpsént
terms (frequency of at least 3). If the same term appears thareonce in the title, only the first
occurrence is kept. For instance, if the title of documeist“gmail email from google gmail”, and
the most frequent terms ihare “access efficient spam mobile ...”, then the sequenceeaf terms

for d is “gmail email from google access efficient spam mobile Given a length, a lexical alias
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candidate is formed by taking the filsterms from the sequence of seed terms in order. Suppose
[ = 5, the lexical alias candidate from the previous example médi email from google access”.
The length of the lexical alias candidate is set to be betviesmd 10 { loops from 5 to 10). Once

a lexical alias candidate is built up, it is tested whetheoitersd. The loop stops and the current
lexical alias candidate is returned as the lexical aliag/fibit coversd. If none of the lexical alias
candidates in the loop covetls an empty string is returned. Following the example abdwe fitst
lexical alias candidate is “gmail email from google acceskit does not coverl, the next lexical
alias candidate “google email from google access efficientésted. If the second one covels

then “google email from google access efficient” is returard the lexical alias search ends.

Algorithm 2.3 Lexical Alias Search by Jiang et al. [19].
Input: a reference documert(title and document body)
Output: alexical aliadexical Alias for d

1: if d = NULL then

2. lewical Alias + NULL

3: else

4: initialize a list of termgermSequence andlexical Alias to be empty.
5. remove the duplicate words in the title.
6: for i = 1to title.length() do
7
8
9

append the-th word in the title to the end akrmSequence.
end for
sort terms in the document body by frequency from highesit@ét, remove the terms which
appear less than 3 times, store sorted termsitiedT erms.
10: for i = 1to sortedTerms.length() do
11: append the-th word insortedT erms to the end otermSequence.
12:  end for
13:  if termSequence.length() > 5 then
14: lexical AliasCandidate <+ NULL

15: fori=1to5do

16: append thé-th word intermSequence to the end ofexical AliasCandidate.
17: end for

18: indexr < 5

19: while index < 10 do

20: if lexical AliasCandidate coversd then

21: lexical Alias <+ lexical AliasCandidate

22: break loop.

23: else ifindex < termSequence.length() then

24: append théndez-th word intermSequence to the end ofexical AliasCandidate.
25: increase@ndex by 1.

26: else

27: break loop.

28: end if

29: end while

30:  endif

31: end if

32: return lexical Alias

Algorithm 2.3 shows the pseudocode for lexical alias sedtiztes 1-2 return an empty string if

the current reference document is empty. Lines 4-12 fornséigeience of seed terms by adding the
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title terms and the most frequent terms. Line 13 tests wheligesequence of seed terms contains
less than 5 words. Lines 15-17 form the first lexical aliasdidate by appending the first 5 terms
from the sequence of seed terms. Line 20 evaluates whetleicall alias candidate covers the
current document. If it does, line 22 breaks the loop. Otleewines 23-25 append one more word
from the sequence of seed terms to the end of the lexical @liadidate and loop again. The loop
ends when the length of the lexical alias candidate exce@ds the terms in the sequence of seed

terms have all been tried.

2.3.3 Query Suggestion Candidate Search

Given the lexical alias for a reference documeéntliang et al. [19] proposed a depth-first query
search method to try different combinations of terms in thechl alias. Specifically, the lexical
alias returned by the lexical alias search phase is corider be the root query (start node) of
the search tree. A child query (child node) is formed by dedebne term from its parent query
(parent node) and the search goes one step deeper. If teqeieity covers the current document
d, the subtree of this child query is expanded and the seah guo. Otherwise, the subtree of this
child query is pruned and the search proceeds with its nblihgiquery. The process ends after
searching over the entire space. During searching, alltkeepg that cover the current document

with lengths between 2 and 5 are collected into a query stiggesandidate set.

1.“custom information
search stanford”

N

2."information search 9.“custom search stan-  13.“custom information  15.“custom information
stanford” ford” stanford” search”

3."search X r n 7."information 10.“custom 14.“custom
stanford” stanfori search” stanford” information”
4 ord” 5 ch” Eiﬁfo@tion" I tom”

Figure 2.3: The query search tree for the list of search técostom information search stanford”,
using the query search method of Jiang et al. [19].

For example, if the lexical alias is “custom information sastanford”, then the search tree
using the query suggestion candidate search method by étaaig[19] is like the one shown in
Figure 2.3. The number on each node indicates the searchdeg or'he root of the search tree is
“custom information search stanford”, four child nodes geaerated by deleting one word. Each
node is tested as to whether it covers the current documhemtnot. The subtree of a node is
expanded if it coverd and pruned if it does not. Nodes that are crossed out in Fg@rare those
which do not coverl, so the search does not continue below them. During thelsearable of

visited queries is maintained to avoid duplicate searchBerause of this, for example, the right-
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most node “custom information” on level 3 (suppose the reodn level 1) in Figure 2.3 is not
expanded. At the end, all the nodes which are not crossednausatisfy the length limit in the

search tree are collected into a query suggestion candidate

2.3.4 Query Suggestion Selection

Given a set of query suggestion candidates, Jiang et alpfbplosed a greedy selection method to
determine the final query suggestions. The goal of the greeliyction is to maximize the MCC
score. Query suggestion candidates which improve MCC th&t are selected as the final query
suggestions. Specifically, & (K = 10) query suggestions are returned at the end, then there are
K selection rounds in the greedy selection method. In eaandrathe query suggestion candidate
which increases MCC the most is selected from the query stiggecandidate set, i.e. the system
selects the query suggestion candidate which covers theunoevered reference documents. If
there is a tie, the contributions to MEC are compared and ithgeb contributor is selected. After
one round is processed, the query suggestion for this raireimoved from the query suggestion
candidate set, and the reference documents this query sigygeovers are marked as covered.

After K rounds, the/X' query suggestions selected are supplied to the user.

Algorithm 2.4 Greedy Selection [19].
Input: the query suggestion candidate &4C
Output: K (K = 10) final query suggestiong.S
1: initialize QS andcoveredRef Doc to be empty.
2: for round = 1to K do
3. initialize mccContri andmecContri to be 0, the query suggestigs for this round and the
reference documents coversgsCoveredRe f Doc to be empty.

4. for gsc € QSC do

5: calculate the reference documents tratcovers agjscCoveredRef Doc

6: if (|gscCoveredRe f Doc—coveredRef Doc| > mecContri) or (JgscCoveredRe f Doc—

coveredRe f Doc| = mccContri and |gscCoveredRe f Doc| > mecContri) then

7: mccContri + |gscCoveredRef Doc — coveredRef Doc|

8: mecContri < |qgscCoveredRe f Doc|

9: qs < gsc
10: qsCoveredRef Doc < gscCoveredRef Doc
11: end if
12 end for

13: insertgsinto QS

14:  removegs from QSC

15:  coveredRefDoc + (coveredRef Doc| ] qsCoveredRe f Doc)
16: end for

17: return@S

Algorithm 2.4 shows the pseudocode for the greedy seleatigihod. Line 1 does initialization,
and lines 2-16 procesk rounds where lines 4-12 evaluate all the query suggestindidates in

the set and greedily select the best one.
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2.4 The Google API

We use the Google API from the University Research PrograrGémgle Searchto retrieve search
results for queries in our experiments. Search resultsiferigs can be retrieved by sending a GET
request to the Google API over HTTP. Each Google API requasists of a base URL and several
request parameters which are appended after the base URE BRL-encoded query string argu-
ments. The base URL is fixed bB&p://research.google.com/university/search/

service . The request parameters indicate the desired searchste3alble 2.1 gives the docu-
mentation for all the parameters. For instance, if we wan¢¢mest the top 20 results for the query
“google”, we form a Google API request dsttp://research.google.com/university/

search/service?clid=key-string&start=0&rsz=large&q= google ", where “key-
string” is a secret key Google supplies to us. After the Gedd?l receives this GET HTTP request,

a response string is returned. By parsing the responseg sivanget the desired search results for a

query.
Parameter Description
clid a secret key assigned by Google which must be included iry eeer
quest to get access to the service from the Google API.
rsz indicates the size of the desired search results, the otilyrgpavailable
are “small” (10 results) and “large” (20 results).
start indicates the position of the first search result returnetiveen 0 and

980 inclusively.
the URL-encoded search query.

Ir restricts the search to a particular language. For example,
“&lr=lang _en” is for English, “&Ir=langde” is for German.

snippets adding “&snippets=true” will include snippets in the sdaresults, oth-
erwise, the results will contain no snippets.

Table 2.1: Google API request parameters (see Footnote 1).

2.4.1 The Instability of the Google API

We measure different query suggestion systems by MCC and.M&Xind that the score for the
same query with the same method fluctuates irregularly awve. tAfter looking into the problem,
we trace this back to the instability of the Google API.

We say the Google API is unstable because if we request th& tq@<, = 120) search results
for the same query twice, the Google API may supply us with difi@rent sets of search results,
even if the two copies of the query are issued within secohda®another. There are two types of
difference that occur in the search results. For the firg tifme two sets of results contain the same
web documents, only in different orders. For the second, tyy@stwo sets of results contain different

web documents. The rest of this section explains why seailits are unstable and analyzes the

3The Google API research documentation is hip://research.google.com/university/search/
docs.html
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influence this instability has on our query suggestion sgstand their evaluation.

We want the topK,. results forQy, but we cannot get them with one GET request, because the
only options for the size of the requested results are “Sri{idl) and “large” (20). In order to get the
top 120 results, we need to issue a request at 128320 = 6 times. To be specific, we would need
to request 20 results fa@p, starting from 0 (“rsz=large”, “q&,", “start=0"), then request another
20 results forQ, starting from 20 (“rsz=large”, “q&,", “start=20"), and so on, until we get alt’,
results forQy. We request 6 times consecutively whgn = 120. If the Google API changes the
search results between any of these requests, the resuild beinfluenced.

In order to investigate the instability of the Google API, designed and carried out an experi-
ment. We requested the top 120 results for the same querg twitsecutively (6 requests to get the
top 120 results, then 6 more to get the top 120 results agaid)compared the two sets of results.
The Google API was tracked for 24 hours starting from Seh 2810 and the experimental data is
shown in Table 2.3. The time column in Table 2.3 refers to time that the first of the 12 (=6+6)
requests to the Google APl was submitted. We tested sevimalit queries (shown in column
“query”) in the experiment. For each query, we comparedwts $ets of search results from the
Google API. There are three types of results in Table 2.3.atlHy the same” means the two sets
of search results are exactly the same. “Type 1 differencedima the contents of the two sets of
results are the same but the order of some documents isatlifféiType 2 difference” means there
are some documents that only appear in one set of resultsdathen Table 2.3 shows two things.
First, the instability may happen no matter what query weamnsbwhen we issue the query. Second,
the results are relatively stable, since most of the reanétSexactly the same” and most times only
one or two results are different for “type 2 difference”.

The instability of the Google API influences the evaluatibour query suggestion system. With
two different sets of reference documents for the same gtieeysame query suggestion system
might produce different query suggestions and differeniQv#®d MEC scores. However, Table 2.3
indicates these scores are only slightly unstable. In dodedge the validity of evaluating our query
suggestion system with the unstable Google API, we carng@io experiment. In this experiment,
we applied three query suggestion systems, QSQS, QSDC aB@SQon a set of 50 short queries
(see Appendix A). Every system is run two times (shown in goidtime” in Table 2.2). The MCC
and MEC scores are averaged on the 50 queries. For each sitsteecond MCC (MEC) score is
compared with its first MCC (MEC) score, and the differencgii@n in parentheses in Table 2.2.
For example, the second MCC score for QSQS is 0.14 less thérsitMCC score. From the table,
we can see that the MCC (MEC) scores for the same system omuthe gueries are very similar.
By contrast, the MCC (MEC) scores for different systems om $hme queries have noticeable

differences. This experiment shows that even if the Goodt i& unstable, a query suggestion

4QSQs is the query suggestion system proposed by Jiang £0pwhich has been introduced in Section 2.3; QSDC is a
query suggestion by document clustering and will be intreduo Chapter 4; GQSQS is a greedy query suggestion method
by query search and will be described in Section 3.7.

17



system always has very similar MCC and MEC scores. In addiood methods and bad methods
are still distinguishable with big differences betweenM@C and MEC scores. Therefore, we can

still use our evaluation method even though the Google ABh&able.

Method MCC MEC Time
QSQs 56.08 7.122 Apr 14 2010
QSQS | 55.94 (-0.14)| 7.144 (+0.022) | Apr 18 2010
QSDC 67.46 10.448 Apr 152010
QSDC | 67.18(-0.28)| 10.546 (+0.098) Apr 202010

GQSQS 65.18 9.748 Apr 30 2010

GQSQS| 64.84 (-0.34)| 9.812 (+0.064) | May 12010

Table 2.2: The influence of the instability of the Google ARIaur query suggestion systems.

Because of the instability of the Google API, we consider systems “equally good” if their

MCC (MEC) scores are close even if not exactly the same. Goddbad systems are still compara-

ble since their MCC differences are often bigger than 5 ard MEC differences are often bigger

than 1.
Table 2.3: Data for evaluating the instability of the Googfel
query result time

volcanos in italy Type 2 difference: 1/120 results are differentMon Sep 13 22:00:00 2010
google Exactly the same. Mon Sep 13 22:00:05 2010
watermelon art Type 2 difference: 1/120 results are differentMon Sep 13 22:00:09 2010
herbs Exactly the same. Mon Sep 13 22:00:14 2010
oreo cookie Type 2 difference: 1/120 results are differentMon Sep 13 22:00:19 2010
venice hotels Exactly the same. Mon Sep 13 22:00:24 2010
refrigerator magnets Type 2 difference: 1/120 results are differentMon Sep 13 22:00:29 2010
volcanos in italy Type 1 difference: only different order. Mon Sep 13 23:00:00 2010
google Type 2 difference: 4/120 results are differentMon Sep 13 23:00:05 2010
watermelon art Exactly the same. Mon Sep 13 23:00:10 2010
herbs Type 1 difference: only different order. Mon Sep 13 23:00:14 2010
oreo cookie Type 2 difference: 2/120 results are differentMon Sep 13 23:00:19 2010
venice hotels Exactly the same. Mon Sep 13 23:00:27 2010

D

refrigerator magnets

3 Type 2 difference:

3/120 results are differentMon Sep 13 23:00:31 201

volcanos in italy

Exactly the same.

Tue Sep 14 00:00:00 201Q

google Exactly the same. Tue Sep 14 00:00:04 2010Q
watermelon art Exactly the same. Tue Sep 14 00:00:08 2010
herbs Exactly the same. Tue Sep 14 00:00:12 2010Q
oreo cookie Exactly the same. Tue Sep 14 00:00:17 2010

venice hotels
refrigerator magnets

Exactly the same.
3 Exactly the same.

Tue Sep 14 00:00:21 2010
Tue Sep 14 00:00:25 2010

volcanos in italy

Exactly the same.

Tue Sep 14 01:00:05 2010

google Exactly the same. Tue Sep 14 01:00:09 2010
watermelon art Exactly the same. Tue Sep 14 01:00:13 2010Q
herbs Exactly the same. Tue Sep 14 01:00:17 2010
oreo cookie Exactly the same. Tue Sep 14 01:00:21 2010

venice hotels
refrigerator magnets

Exactly the same.
3 Exactly the same.

Tue Sep 14 01:00:25 2010
Tue Sep 14 01:00:29 2010

Continued on next pag
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Table 2.3 — continued from the previous page

query

result

time

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 02:00:01 2010
Tue Sep 14 02:00:03 2010
Tue Sep 14 02:00:06 201Q
Tue Sep 14 02:00:09 2010Q
Tue Sep 14 02:00:11 201Q
Tue Sep 14 02:00:14 2010
Tue Sep 14 02:00:17 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 03:00:01 201Q
Tue Sep 14 03:00:03 2010
Tue Sep 14 03:00:06 2010
Tue Sep 14 03:00:09 2010
Tue Sep 14 03:00:11 2010Q
Tue Sep 14 03:00:14 2010Q
Tue Sep 14 03:00:16 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 04:00:00 2010
Tue Sep 14 04:00:03 2010
Tue Sep 14 04:00:05 2010
Tue Sep 14 04:00:08 2010
Tue Sep 14 04:00:10 2010
Tue Sep 14 04:00:13 2010
Tue Sep 14 04:00:16 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 05:00:00 2010
Tue Sep 14 05:00:03 2010
Tue Sep 14 05:00:05 2010
Tue Sep 14 05:00:08 201Q
Tue Sep 14 05:00:10 201Q
Tue Sep 14 05:00:13 2010
Tue Sep 14 05:00:15 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Type 2 difference
Type 2 difference

1 1/120 results are differe
1 1/120 results are differe

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

ntTue Sep 14 06:00:01 201Q
ntTue Sep 14 06:00:03 2010
Tue Sep 14 06:00:06 2010
Tue Sep 14 06:00:09 2010
Tue Sep 14 06:00:11 2010
Tue Sep 14 06:00:14 2010
Tue Sep 14 06:00:17 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

D

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Type 1 difference

: only different order.

Tue Sep 14 07:00:01 2010
Tue Sep 14 07:00:04 201Q
Tue Sep 14 07:00:06 201Q
Tue Sep 14 07:00:09 2010
Tue Sep 14 07:00:11 2010
Tue Sep 14 07:00:14 2010
Tue Sep 14 07:00:17 201Q

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 08:00:00 2010
Tue Sep 14 08:00:03 2010
Tue Sep 14 08:00:05 2010
Tue Sep 14 08:00:08 201Q
Tue Sep 14 08:00:11 201Q
Tue Sep 14 08:00:14 2010
Tue Sep 14 08:00:18 2010

volcanos in italy
google

Exactly the same.
Exactly the same.

Tue Sep 14 09:00:00 2010
Tue Sep 14 09:00:04 2010

Continued on next pag
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Table 2.3 — continued from the previous page

query result time
watermelon art Exactly the same. Tue Sep 14 09:00:07 2010
herbs Exactly the same. Tue Sep 14 09:00:10 201Q
oreo cookie Exactly the same. Tue Sep 14 09:00:13 201Q

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.

Tue Sep 14 09:00:17 201Q
Tue Sep 14 09:00:22 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 10:00:01 2010
Tue Sep 14 10:00:03 2010
Tue Sep 14 10:00:06 2010
Tue Sep 14 10:00:10 2010
Tue Sep 14 10:00:12 2010
Tue Sep 14 10:00:15 2010
Tue Sep 14 10:00:18 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 11:00:00 2010
Tue Sep 14 11:00:03 2010
Tue Sep 14 11:00:05 2010
Tue Sep 14 11:00:08 201Q
Tue Sep 14 11:00:10 201Q
Tue Sep 14 11:00:13 2010
Tue Sep 14 11:00:16 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 12:00:00 2010Q
Tue Sep 14 12:00:03 2010
Tue Sep 14 12:00:06 2010
Tue Sep 14 12:00:10 2010
Tue Sep 14 12:00:12 2010
Tue Sep 14 12:00:15 2010Q
Tue Sep 14 12:00:19 2010Q

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.

Type 1 difference

: only different order.

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 13:00:00 2010
Tue Sep 14 13:00:03 201Q
Tue Sep 14 13:00:06 201Q
Tue Sep 14 13:00:10 2010
Tue Sep 14 13:00:12 2010
Tue Sep 14 13:00:16 2010
Tue Sep 14 13:00:19 2010Q

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 14:00:01 2010
Tue Sep 14 14:00:05 2010
Tue Sep 14 14:00:08 2010
Tue Sep 14 14:00:11 201Q
Tue Sep 14 14:00:14 2010Q
Tue Sep 14 14:00:17 2010
Tue Sep 14 14:00:22 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 15:00:00 201Q
Tue Sep 14 15:00:03 2010Q
Tue Sep 14 15:00:05 2010
Tue Sep 14 15:00:08 2010
Tue Sep 14 15:00:11 2010
Tue Sep 14 15:00:14 2010Q
Tue Sep 14 15:00:18 2010Q

volcanos in italy
google
watermelon art
herbs

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.

Tue Sep 14 16:00:00 2010
Tue Sep 14 16:00:03 2010
Tue Sep 14 16:00:06 2010
Tue Sep 14 16:00:08 201Q

Continued on next pag
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Table 2.3 — continued from the previous page

query

result

time

oreo cookie
venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
3 Exactly the same.

Tue Sep 14 16:00:11 2010
Tue Sep 14 16:00:13 2010
Tue Sep 14 16:00:16 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Type 2 difference:
Type 2 difference:
Type 2 difference:
Type 1 difference:
Type 2 difference:
Exactly the same.
3 Type 2 difference:

2/120 results are differe
1/120 results are differe
1/120 results are differe
only different order.

1/120 results are differe

1/120 results are differe

ntTue Sep 14 17:00:00 2010
NtTue Sep 14 17:00:06 2010
NtTue Sep 14 17:00:12 2010

Tue Sep 14 17:00:17 201Q
ntTue Sep 14 17:00:22 2010

Tue Sep 14 17:00:27 201Q
ntTue Sep 14 17:00:31 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Type 1 difference:
Exactly the same.
Exactly the same.
Type 2 difference:
5 Exactly the same.

only different order.

8/120 results are differe

Tue Sep 14 18:00:01 2010Q
Tue Sep 14 18:00:04 2010Q
Tue Sep 14 18:00:07 2010
Tue Sep 14 18:00:11 2010
Tue Sep 14 18:00:14 2010
ntTue Sep 14 18:00:23 2010
Tue Sep 14 18:00:26 2010Q

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
3 Exactly the same.

Tue Sep 14 19:00:00 2010
Tue Sep 14 19:00:03 201Q
Tue Sep 14 19:00:06 201Q
Tue Sep 14 19:00:09 2010
Tue Sep 14 19:00:12 2010
Tue Sep 14 19:00:14 2010
Tue Sep 14 19:00:17 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
3 Exactly the same.

Tue Sep 14 20:00:00 2010
Tue Sep 14 20:00:03 2010
Tue Sep 14 20:00:06 2010
Tue Sep 14 20:00:08 201Q
Tue Sep 14 20:00:11 201Q
Tue Sep 14 20:00:14 2010
Tue Sep 14 20:00:17 2010

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
5 Exactly the same.

Tue Sep 14 21:00:00 201Q
Tue Sep 14 21:00:03 2010Q
Tue Sep 14 21:00:06 2010
Tue Sep 14 21:00:09 2010
Tue Sep 14 21:00:12 2010
Tue Sep 14 21:00:16 201Q
Tue Sep 14 21:00:19 2010Q

volcanos in italy
google

watermelon art
herbs

oreo cookie

venice hotels
refrigerator magnets

Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
Exactly the same.
3 Exactly the same.

Tue Sep 14 22:00:01 201Q
Tue Sep 14 22:00:03 2010
Tue Sep 14 22:00:06 2010
Tue Sep 14 22:00:09 2010
Tue Sep 14 22:00:12 2010Q
Tue Sep 14 22:00:14 2010Q
Tue Sep 14 22:00:17 2010
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Chapter 3

Improved and Greedy Query
Suggestion by Query Search (1QSQS
& GQSQS)

3.1 Introduction

We introduced the Query Suggestion method by Query Sear8iQ&) proposed by Jiang et al.
[19] in Chapter 2. In QSQS, lexical aliasfor every reference document is calculated. The lexical
alias contains terms that are the basis of the query seartite &rms in the lexical alias are
combined to build different query suggestion candidatesthink their lexical alias search is simply
a method to supplgearch terrs. We use “search terms” to refer to terms selected fromenéer
documents and that are important to form query suggestighswgh MCC and MEC scores. Based
on this observation, we propose an Improved Query Suggestaithod by Query Search (IQSQS)
whose main improvement is to replace the lexical alias $ephase in QSQS by search term
selectionphase. In addition to the improvements made to each phas&@SQwe modify the
control structure of QSQS in a greedy way and suggest anotipoved method, Greedy Query
Suggestion by Query Search (GQSQS). The experimentaltsedainonstrate the superiority of
IQSQS and GQSQS over QSQS.

In this chapter, we will describe the system structure ol@®QS system and then consider the
alternative implementations of its various componentgpédfimental comparisons of the alternatives
are then presented. GQSQS is described after IQSQS and aadeamof QSQS, 1QSQS and
GQSQS is given to end this chapter.

3.2 System Overview

The structure of the IQSQS system is shown in Figure 3.2. rEi@ul [19] presents the structure
of the QSQS system for comparison. Algorithm 3.1 is the pseade of IQSQS. For the user’s

original queryQ,, thereference document collectigrhase collects all the reference documents for
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Reference Document Collection}
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{ Search Term Selection

Reference Document Collectiorﬂ
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[ Lexical Alias Search }
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|
[
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i

Query Suggestion Candidate Sea}ch

i

[ Query Suggestion Selection } i
E Query Suggestion Selection J

Query Suggestion Candidate Sea}ch

Figure 3.1: The structure of the QSQS system
[19]. Figure 3.2: The structure of the IQSQS system.

Qo from the web, parses and processes them (line 2). For eamtemet document, the search
term selectiophase containspre-selectiorstep and dinal selectiorstep to generate a list of search
terms ford (line 4). Different combinations of search terms are ev@lddo create a set of query
suggestion candidates in theery suggestion candidate seaggase (line 5). After processing all
the reference documents, a greedy selection method isdpplithe query suggestion candidate set

to finalize the query suggestions Qg in thequery suggestion selectigmase (line 7).

Algorithm 3.1 Improved Query Suggestion by Query Search (IQSQS)

Input: the original queryQq
Output: K (K = 10) query suggestions

1: initialize the query suggestion candidate @C to be empty.
2: collect all the reference documeniis(| D| = 100).
3: for i = 1to |D| do
4: select a list of search tern$&l; for theith reference document.
5. apply query search ofT; and add query suggestion candidates foritheeference docu-
ment toQSC.
6: end for
7: greedily selectk” query suggestions fro.SC and insert them into the query suggestion set
QS.
8: return @S
3.3 Stemming

Stemming is often used to process texts inittiermation retrievaffield. We do not apply stemming
in the reference document collection phase in IQSQS. ThiBwegives a simple introduction of
stemming and explains why we do not use it.

In linguistic morphology, “the goal of stemming is to redun#ectional forms and sometimes

derivationally related forms of a word to a common base fof&2]. For instance, “stemming”,
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“stemmer”, “stemmed” are all based on “stem”. Terms with siaene root usually have similar

meanings, such as “connect”,

connection”, “connectedf ‘@onnecting” [32]. “The performance
of the information retrieval system will be improved if tleesords are grouped together” [42], and
stemming is often applied for this purpose [32, 42].

“A stemming algorithm usually refers to a crude heuristiogass that chops off the ends of
words in the hope of reducing all the words with the same steandommon form correctly most of
the time, and often includes the removal of derivationakafff [30, 32]. Stemming algorithms are
often called stemmers. The most popular English stemméreifbrter stemming algorithm [42]
which is the defacto standard English stemmer. The Porenrset has a group of pre-defined
rules, different rules are applied in different contextse ¥ite an example of Manning et al. [32]
below to show the different rules and the way to apply them.addition, “the Porter stemmer
measures whether it is reasonable to remove the suffix. Bteirine, the word ‘replacement’ is
reduced to ‘replac’, but ‘cement’ is not reduced to ‘c’” [32)evertheless, the Porter stemmer still

cannot achieve perfection as defined by linguists. For el@ntpnistakenly stems “october” back

to “octob”.
Rule Example
SSES— SS caressesy caress
IES— | ponies— poni
SS— SS caress— caress
S— cats— cat

The Porter stemming algorithm may improve the MCC and MECes0b1QSQS, on the other
hand it may lower the quality of query suggestions by makirent incomprehensible for humans.
We ran an experiment to compare the effects of stemming iMQ®SThe search term selection
method applied in the experiment is LAW and the query sujgestandidate search method is
QOAC, both will be introduced in the following sections. Taeare two sets of runs, stemming on
(with stemming) and stemming off (without stemming). Eaehwas run on a group of 50 short
gueries and a group of 50 long queries (see Appendix A). Tekeage MCC and MEC scores on
each group of 50 queries are reported in Table 3.1.

Stemming option Short queries Long queries
stemming off MCC=67.08 MEC=8.82] MCC=73.12 MEC=9.88
stemming on MCC=63.72 MEC=8.25 MCC=70.78 MEC=9.63

Table 3.1: The average MCC and MEC scores on 50 queries fonsteg on and stemming off in
the 1QSQS system.

From Table 3.1, IQSQS with stemming on has lower MCC and ME®excon both short queries
and long queries than with stemming off. Since differentrgwata make MCC and MEC fluctu-

ate, the sign test from statistics is adopted to ensure aqwlgsion. The MCC (MEC) scores of

1The Porter stemming algorithm is laittp://tartarus.org/ ~ martin/PorterStemmer/
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switching off and on stemming are considered two randonatses, the values on 50 queries are 50
samples, the number of times that one is better than the istbeunted, and the p-value (two-tailed)

is reported in Table 3.2.

Short queries Long queries
MCC | p-value = 3.10E-07 p-value =0.31
MEC | p-value = 9.85E-05 p-value = 0.68

Table 3.2: The p-values for sign tests to compare the effesteonming in IQSQS.

We sete = 0.05, then from Table 3.2, the result is significant that stemneingnd off perform
differently for short queries. However, for long queries fail to reject the null hypotheses and the
data does not provide sufficient evidence to conclude teatrsing on and off perform differently.
To sum up, stemming off works better than stemming on. Addélly, stemming decreases the

understandability of query suggestions. Therefore, weal@pply stemming in IQSGS

3.4 Search Term Selection

Each reference document is converted into a sequence of titar the reference document col-
lection phase. For each reference document, a list of searofsT is selected and returned in
the search term selection phase. The search term selettase gonsists of two sub-phases: the
pre-selection phase and the final selection phase. Theefgetion phase shrinks a whole reference
document, which contains hundreds or thousands of terme,dmcument with around 20 terms.
Then the final selection is applied to select final searchddrom these terms. In this section, we
first introduce the pre-selection phase, then define twdrsgonechanisms used in the final selec-
tion phase. The rest of this section describes two final 8efemethods: the Lexical Alias Word
method (LAW) and the Coverage Score Word method (CSW).

3.4.1 Pre-selection

The final selection phase extracts search terms by scotitigegterms in a reference document and
ranking them by their scores from highest to lowest. Bec#usacoring involves requesting to the
Google API which is slow, the final selection will be too sldwttiere are hundreds or thousands of
terms to evaluate. Therefore, a pre-selection phase isreelgio decrease the size of the reference
document.
Most term selection methods can be applied here. For exampéecould select the most fre-
guent terms in a reference document or select the terms alpijgbar close to terms @, etc. In
the 1IQSQS system, we use thigippes supplied by the search engine as the pre-selection method.
Given an original query), and a search resulf a snippet corresponding &, andr is a piece

of text extracted from the web documentsoby the search engine. The snippet helps the user

2|n the next chapter, we propose a query suggestion methoddoyrdnt clustering, and we use stemming in the document
clustering phase.
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recognize the content of the website so that the user cadelediether s/he wants to navigate to it
or not. Figure 3.3 shows one search result of the query “ddiyaGoogle.com, the text under the
title is the corresponding snippet.

Jaguar - Wikipedia, the free encyclopedia = - 4 visits - 12

Jul

The jaguar (Panthera onca) is a big cat, a feline in the Panthera genus,
and is the only Panthera species found in the Americas. The jaguar is the

Etymology - Taxonomy - Biology and behavior - Ecology
en.wikipedia.org/wiki/Jaguar - Cached - Similar

Figure 3.3: One search result for the query “jaguar” from @eaom on Oct. 5th, 2010. The snippet
is under the title “Jaguar - Wikipedia, the free encyclop&dbegins with “The jaguar (Panthera
once) ...", and ends with “The jaguar is the ...".

There are three reasons why we use snippets in the IQSQ3rsyBiest, a snippet often con-
tains around 20 terms which is a suitable size for the fin@ctiein phase. Second, snippets need
no calculation on our part. Third, snippets supply terms thigght form query suggestions with
high MCC and MEC scores. We ran an experiment to compare thdtseof pre-selecting terms
using frequency and using snippets in the IQSQS systeml&imith the experimental setting and
method in Section 3.3, the average MCC and MEC scores on 50 ahd 50 long queries (see
Appendix A) are shown in Table 3.3, and the p-values of sigtstare shown in Table 3.4.

Pre-selection method Short queries Long queries
snippets MCC=67.08 MEC=8.82] MCC=73.12 MEC=9.88
frequency MCC=66.36 MEC=8.63 MCC=73.20 MEC=9.80

Table 3.3: The average MCC and MEC scores for pre-selecimgsnippets and using frequency

in 1QSQS.

The performance of pre-selecting using snippets appead#ffecent from that of pre-selecting
using frequency. Sign tests are carried out by considehagtCC (MEC) scores of pre-selecting
using snippets and using frequency as two random variablesperformances on 50 queries are 50
samples for each method. From Table 3.4, we fail to rejeattitihypotheses. Together with the in-
distinguishable results in Table 3.3, we consider preesielg using snippets performs equally good
with using frequency. Because of other advantages snipp&ts(given above), we use snippets as

the pre-selection method in IQSQS.

Short queries | Long queries
MCC | p-value=1.00| p-value=0.29
MEC | p-value=1.00| p-value=0.66

Table 3.4: The p-values for sign tests to compare pre-setpasing snippets and using frequency.
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3.4.2 Final Selection

Given around 20 terms after pre-selection, the final selegbhase extracts 10 terms and ranks
them from highest to lowest. There are two scoring mechaniseuse in the final selection phase:
the OC score (Overall Cover) and the LA score (Lexical AliaBpr termt, the OC score is the
number of reference documents thatovers when appended €@, and the LA score is a binary
value indicating whether or netcovers the current documénhen appended tQ,. For example,
SUppose) is “jaguar”, the current reference documentjsandt is the term “car” ind. If the query
“jaguar car” covers 10 reference documents includinthenOC (¢, D) = 10, whereD is the set of
all reference documents, afdd (¢, d) = 1.

There are two reasons why we use the original quggyin OC and LA. First, we want to
evaluate a term’s potential of covering reference documeédbwever, a term is often unlikely to
cover reference documents by itself. For instance, the temf is highly related to the query
“jaguar”, but the query “car” almost returns nothing abojaigfuar” in the top results. Appending
the term to the end af, helps out and is simple to do. Second, in addition to imprgvire MCC
and MEC score, we also hope our query suggestions can cormeyinformation abouf),. For
example, suppos€, is “jaguar”, we hope our query suggestions could be “jaguat, ¢jaguar
cat”, “jaguar mac os”, etc. which reflect the subcategorfab® query “jaguar”. Bonding), with

each subcategory, such as “car” or “cat”, helps creatingipeguery suggestions.

Lexical Alias Word (LAW)

Referring back to Chapter 2, Jiang et al. [19] restrict threnfof a lexical alias to be the title words
plus the most frequent words, but this form is not guaranteedork the best. Furthermore, words
that are neither title words nor the most frequent words trstjl be useful for query suggestions.
Therefore, we propose the Lexical Alias Word (LAW) method ethiises the LA score to evaluate
all words. For a reference documefta word ind is added to the search term set &bif its LA
score is 1. After all the words id are evaluated, the words in the search term set are ranked by
their OC scores from highest to lowest. The first 10 searahddrom the set are returned. If the
search term set contains less than 10 words, all of them anmaeel. For example, for a reference
document about “google custom search information tectyyoservices”, suppose there are only
four words “custom”, “information”, “search”, and “stanfdf’ with LA as 1. If their OC scores rank
them as “custom information search stanford” from highedbtvest, then the list of search terms
for this reference document is “custom information seatahferd”.

A special case is when there is no single word whose LA scote ®ur program returns an
empty word list and no query suggestion candidates will hestacted for this case. However,

this case does not threaten our query suggestion methodysethe probability that a reference

SRemember that IQSQS processes reference documents indiyjdulist of search terms is selected for each reference
document.
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document returns an empty list in our experiments is onlyiiado3.7% (the data is based on 50
short queries and 50 long queries) and there are enouglemefedocuments to generate query
suggestions.

Algorithm 3.2 is the pseudocode of the LAW method. Lines Btim an empty list if a refer-
ence document is empty. Line 4 does initialization. Line Bexts all the words from a reference
document into a word set. Lines 6-10 calculate the OC and lokescfor all the words and insert
those whose LA score is 1 into a search term set. Lines 11tliPnseean empty list if the search
term set is empty. Line 14 sorts the words in the search tetfoysteir OC scores from highest to

lowest. Lines 15-19 return the list of search terms.

Algorithm 3.2 Lexical Alias Word (LAW).
Input: a reference documerit
Output: a list of search term#

1: if d = NULL then

22 T+ NULL

3: else
4: initialize searchTermSet andwordSet to be empty.
5. insert all the words inl into wordSet.
6: for w € wordSet do
7: if LA(w) = 1then
8: addw to searchT ermSet
9: end if
10:  end for
11:  if searchTermSet is emptythen
12: return an empty list.
13: else
14 sort the words irsearchTermSet by their OC scores from highest to lowest.
15: if searchTermdSet contains at least 10 terntisen
16: return the first 10 words igearchTermSet.
17: else
18: return all the words inearchTermSet.
19: end if
20. endif
21: end if

Coverage Score Word (CSW)

The lexical alias search method of Jiang et al. [19] and thé/LAethod both utilize the idea of
lexical aliases and focus on covering the current referelocement. For a reference document
Jiang et al.'s method [19] looks for a lexical alias thiand LAW returns search terms which coder
when appended t@,. However, we want to cover more reference documents rdtherdnly one.
Therefore, the Coverage Score Word method (CSW) is propasedhtuate a word by its potential
of covering more reference documents, i.e. the CSW metHedtsavords by global coverage rather

than local coverage.
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Equation 3.1 is the coverage score function to measure thdsyaotential for global coverage.
CoverageScore(w,d) = w; x OC(w, D) + we x LA(w,d) (3.1

The coverage score function is a linear combination of OClakdw is the word,d is the current
reference documenti) is the set of all reference documents,andw, are the weightsi{; = 0.25
andw, = 0.75). For example, if the OC and LA score of waréh reference documentis 6 and 1

respectively, then the coverage score is
CoverageScore(t,d) = 0.25 x 6 + 0.75 x 1 = 2.25.

For each reference document, all the words in it are rankékddiycoverage scores from highest
to lowest, the top scoring 10 words are returned as the seanmols. If there are fewer than 10 words,
all of them are returned. The pseudocode of the CSW methdubisrsin Algorithm 3.3. Lines 1-
2 return an empty search term listdfis empty. Line 4 does initialization. Lines 6-9 calculate th
coverage score for every worddn Line 10 sorts all the words by their coverage scores frorhésg

to lowest. Lines 11-15 return the final search terms.

Algorithm 3.3 Coverage Score Word (CSW)
Input: a reference documednt weightsw; andws.
Output: a list of search term#
1. if d = NULL then
22 T+ NULL
. else
initialize wordSet to be empty.
insert all the words il into wordSet.
for w € wordSet do
calculate the OC and LA scores of
CoverageScore(w) = w; X OC(w) + wg x LA(w)
end for
10:  sort all the words invordSet by their coverage scores from highest to lowest.
11:  if wordSet contains at least 10 wordlsen
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12: return the first 10 words imordSet.
13: else

14: return all the words invordSet.

15:  end if

16: end if

3.5 Query Suggestion Candidate Search

For every reference document, the search term selectioseptr@vides a list of search terms to
the query suggestion candidate search phase, where qugggssions candidates are built up by
combining search terms. There are many ways to combine afltstms. Adding one term may

make a query more specific and cover more reference documnedetisd with the term. At the same

time, it also makes a query lose generalization and thexefoght lose some reference documents
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which were covered before. Taking out one term can have airaffects. In this section, we first
explain why we fix the order of search terms in the query sugmesandidates. Then different

guery suggestion candidate search methods are describedepared.

3.5.1 The Order of Search Terms

The search term selection phase selects a list of sortedhsams. The order of search terms in
the list is important for our query search. There are twoanador this. First, the order of terms
in a query influences the corresponding search results.nBtarice, the query “jaguar car” and the
query “car jaguar” return two different sets of search rssuSecond, the time cost of trying all
permutations of search terms is too high (there are 3,628]#terent permutations for 10 search
terms). Therefore, we keep the order of search terms in taeyquggestion candidates the same as
their order in the search term list. For example, given aesosearch term ligb,ws...w;...w;...wy,

(¢ < j < n), for query suggestion candidates containing hoffandw;, w; always appears before

U}j.

3.5.2 Adding Combination (AC)

In the IQSQS system, we propose a query search method nantidgAdombination (AC). If we
only consider the searching method, then AC is the same agitity search method of Jiang et al.
[19] except that one is top-down and the other is bottom-upt iB IQSQS, AC is different from
the query search method of Jiang et al. [19] in two ways. Riiahg et al. [19] search queries from
longest to shortest, and prune the sub-tree of a node if ttie does not cover the current document
d. AC searches all the queries without pruning. Second, tlipgse of the method by Jiang et
al. [19] is different from the purpose of AC. Jiang et al. [J®pposed the query search method in
QSQS to process a lexical alias whose length was around Thapdimited the length of the query
suggestion candidate to be between 2 and 5. As opposed (@@ proposed to process a list of
search terms whose length is around 10, and we limit the heofgthe query suggestion candidate
to be between 1 and 3 excludidg,. If we replace AC with Jiang et al.’s [19] method, because it
is top-down, the valid query nodes will all be at the bottomihaf search tree. Moreover, since the
length rang€1, 3] is not wide, the pruning in Jiang et al.'s method [19] may npietential query
suggestions. On the other hand, AC might take too much tinrszéoch all queries with lengths
between 2 and 5. In short, Jiang et al.'s method [19] is moitalse for QSQS and AC is more
suitable for IQSQS.

Figure 3.4 shows a search tree of AC when the search termsastofn information search
stanford”. The dashed lines from the root node are not thekieg paths, they only mean that each
search tree below is from the root. The numbers on the nodésaie the order of the search. The
search for each tree stops after the last term “stanforddded. A table of visited queries is used

to avoid duplicate searching. All the queries within thegignlimit [1,3] are inserted into a query
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suggestion candidate set.

0.“custom information
search stanford”
P g ' S

- -7 | SN
1.“custom” 9.“information” 13.“search” 15."stanford”

.2' custom 6."“custom 8.“custom 10.“information 12.“information 14.“search
informa- N " M H n
tion” search stanford search stanford stanford
3.“custom informa- 5.“custom informa- 7.“custom search 11.“information
tion search” tion stanford” stanford” search stanford”

4.“custom informa-
tion search stan-
ford”

Figure 3.4: Query search tree for a list of search terms tenshformation search stanford”, using
the AC method.

3.5.3 @y and Adding Combination (QoAC)

The terms in the original quer§), are special compared with the search terms selected from the
reference document. In order to evaluate the effe§lh query suggestion candidates, we propose
the@, and Adding Combination (Q0AC) method. QoAC differs from AChatQ) is always added
at the beginning of query suggestion candidates.

For example, suppose the list of search terms is “customrirdtion search stanford” ar@,
is “google”, then there will be four search trees with thetrqueries “google custom”, “google
information”, “google search”, and “google stanford”. UWmdhe node “google custom”, the child
gueries are “google custom information”, “google custorareR”, and “google custom stanford”.
The grandchild queries are “google custom information@d®ar'google custom information stan-

ford”, etc. Except foiQ)g, the search tree of QOAC is the same as that of AC.

3.5.4 Beam Search (BS)

Before we introduce the Beam Search (BS) method, the twosterdih anddepthfor a search tree
need to be defined. The depth of a search tree is the numbeyay§lrom the root node to the
farthest leaf node. The width of a search tree is defined amtxémum number of nodes on the
same layer. For example, in the search tree shown in Figdrét# depth of the search tree is 5 and
the width is 6.

The query search method of Jiang et al. [19] and AC both séféen the complexity of com-
bining many terms. Because of this, we limit the maximum targf the search term list to be 10.

However, by ignoring the search terms after the top 10, weldsing useful terms. BS is used
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to balance the risk and the time cost. In a given amount of,tarféxed quantity of nodes can be
searched. We let the BS method search a similar number osnwitle Jiang et al.'s method [19]
and AC so that BS takes similar time to finish. Jiang et al.'hoe [19] and AC search exhaustively
(though Jiang et al. [19] apply pruning), they expand allesdn one layer and search all the child
nodes on the next layer. BS expands all nodes on one laydsubib sorts the generated child nodes
by a heuristic function (we use the OC score), retains thellbeshild nodes and prunes the others.
W is the pre-defined width of the search tre@/henV is unlimited, the BS method becomes the
AC method.

We think that the BS method may work better than the methodasfglet al. [19] and AC,
because BS evaluates more search terms. The only situati@mich BS might miss a good query
suggestion candidate is like this: suppose query t is pruned for bad performance, but query
t1 +t2+---+1t; (i > 2)is areally good query; it will not appear in the search treB®. However,
this kind of situation is unlikely to happen. Because if adi; could turn a bad query suggestion
candidate into a good one, then in this case tetymand¢, are probably not important, and BS

would still be expected to find good query suggestion cartegdeontaining term.

3.5.5 @y and Beam Search (QoBS)

The relation between QoBS and BS is the same as the relatimede Q0AC and AC. The original

queryQ is always added in the beginning of query suggestion cateida

3.6 Experiment to Find the Best Configuration of IQSQS

We have introduced the LAW and CSW search term selectionadsttand the AC, QoAC, BS and
QoBS query search methods. In order to evaluate these nsedmodfind out the best match for our
query suggestion objective, an experiment is carried out.

As discussed before, we fix the following settings in our expent. Reference documents are
processed with stemming off in the reference documentcaodie phase, and terms are pre-selected
using snippets in the search term selection phase. Theimgrerevaluates each combination of
search term selection methods (LAW and CSW) and query seaethoas (AC, QoAC, BS and
QoBS). The average MCC and MEC scores for each combinatiometfiods are shown in Table
3.5. The test queries in this experiment are 50 short qie(ses Appendix A).

It is clear from Table 3.5 that LAW is inferior to CSW. For bo#fC and BS, CSW improves
MCC by around 20 and MEC by more than 2 compared to LAW. Theeimse in MCC indicates
that CSW helps query suggestions cover around 20 more nefegocuments than LAW does when
the initial query is not automatically included in the qustggestions. The increase in MEC implies

that each query suggestion covers 2 more reference docsimeaterage in these cases. Sign tests

4In our implementation, we start with 20 terms and limit the widttbe 15.
SWe run on short queries to find the best configuration and reibéist configuration on long queries which is reported in
Section 3.8.
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LAW CSW
AC MCC=37.82 MEC=4.83] MCC=56.66 MEC=7.26
QoAC | MCC=67.08 MEC=8.82 MCC=70.88 MEC=8.99
BS MCC=34.36 MEC=4.35| MCC=53.90 MEC=6.69
QoBS | MCC=66.06 MEC=8.46| MCC=70.82 MEC=9.15

Table 3.5: The average MCC and MEC score for each combinafiorethods in 1QSQS.

are used to compare CSW and LAW. With four different searah telection methods (AC, QoAC,
BS, and QoBS), the MCC and MEC scores of CSW and LAW are cordpamd the p-value for

each test is calculated. All the results are shown in Tal@ie 3.

MCC MEC
AC p-value = 1.78E-15 p-value = 1.78E-15
QOAC | p-value =3.80E-03  p-value =0.12
BS p-value = 9.06E-14 p-value = 2.27E-12
QoBS | p-value = 6.98E-11 p-value =5.61E-06

Table 3.6: The p-values for sign tests to compare CSW and LAW.

In Table 3.6, only 1 out of 8 tests fails to reject the null hiyasis. Therefore, we conclude
that CSW performs better than LAW and constantly use it asé¢laech term selection method in all
the following experiments. LAW selects a term based on wdretican cover one reference docu-
ment. As opposed to that, CSW selects terms based on theitftof covering more reference
documents. LAW focuses on local coverage and hence may emiss that are important for global
coverage.

For QOAC and QoBS, CSW still brings an improvement to LAW,ugb amounting to a much
smaller increase compared to the cases of AC and BS. Weutdtihe decreased improvement to
the original queryQ, being included in QoAC and QoBS for two reasons. First, thoAg and
BS do not contair), automatically, most of their final query suggestions stih@in terms inQ),.
The data in our experiment shows that more than 90% of thedimetdy suggestions for AC and BS
contain at least one term @y. This data shows the superiority of termsjg over other terms from
reference documents. Though the lower scores of AC and RBSraltcate that it is not enough to
contain terms inQ, to achieve higher scores. Second, as we attempt to coveemefedocuments
D of Qo, queries with the fornQ), plus other terms tend to specify, and cover a portion of
D. As opposed to that, queries of other forms, even includémms inQg, are likely to cover
relevant documents which might not be fradin For example, supposg, is “volcanos in italy”,
the query “volcanos in italy information” is likely to coverore reference documents than the query
“italy volcanos information” and the query “informatioraly volcanos”. We compared the query
suggestions “volcanos in italy watched” and “watched votcaaly” (the original query is “volcanos
in italy”) and found that “volcanos in italy watched” covefieur more reference documents than

“watched volcano italy”, though they are very similar fromrhans’ perspective.
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From Table 3.5, another clear conclusion is that Q0AC and Rai superior to AC and BS.
This implies that adding the original que€y, helps to improve the MCC and MEC scores. The
conclusion is consistent with our analysis in the previocaisagraph and also strengthens the same
conclusion drawn by Jiang et al. [19]. Additionally, sigisteeare carried out to compare methods
with Qg (QOAC and QoBS) to those witho@, (AC and BS). The p-values reported in Table 3.7
supply sufficient evidence to conclude that methods @igtwork differently from methods without

Q. Therefore, for all the following experiments, we adoptigusearch methods wit§.

MCC MEC
QOAC vs AC | p-value = 3.48E-13 p-value = 9.02E-05
QoBS vs BS | p-value =1.78E-15 p-value = 2.27E-12

Table 3.7: The p-values for sign tests to compare methods@jtand those withou),.

MCC MEC
QoBS-CSW vs QOAC-CSW/| p-value =1.00| p-value =0.89

Table 3.8: The p-values for the sign test to compare CSW-QuRBCSW-QoAC.

There are two combinations of methods left to be comparedV-@Q®BS and CSW-Qo0AC.
Their average MCC and MEC scores are close in Table 3.5. Madys of the sign test reported in
Table 3.8 could not reject the null hypotheses that CSW-QaBECSW-QoAC perform similarly
either. Therefore, we ran CSW-QoBS and CSW-Qo0AC on 50 loregigs and reported the scores
and the p-values in Table 3.9 and 3.10. The results on longegudemonstrate the superiority of
CSW-QoBS over CSW-QoAC. Therefore, we conclude that CS\B®)s better than CSW-QoAC.

QoBS QoAC
CSW | MCC=76.33 MEC=10.51 MCC=73.83 MEC=9.70

Table 3.9: The average MCC and MEC score for CSW-QoBS and G8¥E on long queries.

From the discussion above, our general conclusion is th&y @Sbetter than LAW to select
search terms and methods includifjg are better than those without it. The best configurations for
IQSQS is CSW-QoBS and is referred to as IQSQS*.

3.7 Greedy Query Suggestion by Query Search (GQSQS)

The QSQS system by Jiang et al. [19] processes all referamanknts individually to accumulate
a set of query suggestion candidates and, at the very erattse¢he besK as the final query
suggestions. The IQSQS system made improvements on easé phthe QSQS system, but did
not change the order in which the phases were executed. Weamsider a method, Greedy Query
Suggestion by Query Search (GQSQS), that changes the ksintrcture of QSQS [19].

Algorithm 3.4 is the pseudocode of GQSQS. After the refezatacuments are collected, there

are K rounds to greedily find the be&t query suggestions. In each round, the search term selection
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MCC MEC
QO0BS-CSW vs QOAC-CSW| p-value = 4.02E-4/ p-value = 6.60E-5

Table 3.10: The p-values for the sign test to compare CSWSxmRI CSW-Qo0AC on long queries.

Algorithm 3.4 Greedy Query Suggestion by Query Search (GQSQS)
Input: the original quen@q
Output: K (K = 10) query suggestions

1: initialize the query suggestion s@tS to be empty.

2: collect all the reference documers(|D| = 100) for Q.

3: for i =1to K do

4.  set the best query suggestigs} to be empty.

5

6

select a list of search ternssl;.

apply query search 087;, compare every query suggestion candidate withand update
qs; greedily.

insertgs; into the query suggestion s@tS

. end for

return QS

© ® N

phase evaluates all terms in all reference documents amshsethe top scoring ones. Query search
is applied on search terms produced by the search termiselpttase. The one that contributes the
most to MCC (breaking ties by the contributions to MEC) isedlitb the final query suggestion set.
In the search term selection phase, a modified coverage fomcton is used, as shown in
Equation 3.2.
CoverageScore(t, Sy_1) = OC(t, D) + EOC(t, Si_1) (3.2)

Herek is the current roundSy_, is the set of final query suggestions selected from the pusvio
k — 1 rounds, and is the set of all reference documents €@y. The OC score has been introduced
in Equation 3.1. The EOC (Extra Overall Cover) score of a teguals the number of uncovered
reference documents that the term covers when appendggl Different from QSQS and 1QSQS,
GQSQS determines one query suggestion after one round.eféher when we process rourkd
(1 < k < 10), k — 1 query suggestions have been generated and a portion acdmeéedocuments
have been covered by these query suggestions. We striveréo @ many reference documents as
possible, the EOC score is brought in to serve this purpose.

An experiment to evaluate GQSQS was carried out. The quegy thee experimental setting,
and the experiment method are the same as those in previpesragnts. The experiment result is

described in the next section.

3.8 Comparison of QSQS, IQSQS* and GQSQS

The average MCC and MEC scores for QSQS, IQSQS* and GQSQ<®jneted in Table 3.11.
From Table 3.11, IQSQS* and GQSQS are clearly superior to ®&@both short queries and long
queries. Sign tests for comparing IQSQS* with QSQS and GQ#IEQSQS were conducted,
the p-values are shown in Table 3.12 and 3.13. For all thesci#tsis significant that IQSQS* (or
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GQSQS) performs differently from QSQS.

System Short Query Long Query

QSQS | MCC=54.80 MEC=6.89 MCC=42.86 MEC=5.34
IQSQS* | MCC=70.82 MEC=9.15] MCC=78.05 MEC=10.66
GQSQS | MCC=63.88 MEC=9.73] MCC=68.82 MEC=11.08

Table 3.11: The average MCC and MEC scores of each system.

Short queries Long queries
MCC | p-value = 3.55E-15 p-value =2.91E-11
MEC | p-value = 7.60E-09 p-value = 1.46E-11

Table 3.12: The p-values for sign tests to compare IQSQS'GBHQS.

Short queries Long queries
MCC | p-value = 1.83E-06 p-value = 2.46E-10
MEC | p-value = 7.92E-09 p-value = 4.07E-09

Table 3.13: The p-values for sign tests to compare GQSQS &QIQ

In Table 3.11, IQSQS* is better than GQSQS on the MCC scordev@QSQS works better
than IQSQS* on the MEC score. Again, the differences betvi@@8QS and IQSQS* are tested by
the sign test, and the p-values are reported in Table 3.14.

All the results From Table 3.14 are significant. Therefore,a@nclude that IQSQS* performs
better than GQSQS on the MCC score, and GQSQS works bettef@&80QS* on the MEC score.
IQSQS* selects a list of search terms for each referencendenti(100 reference documents) and
applies query search for each list of search terms. As opipogbat, GQSQS selects a list of search
terms for one round (10 rounds) and then applies query sediodrefore, IQSQS* tries far more
guery suggestion candidates than GQSQS does. We expec8Q8Qerform better on both MCC
and MEC. The reason why IQSQS* has a lower MEC score than GQf&Y®e the coverage score
functions. The coverage score function IQSQS* uses is a omtibn of OC and LA where LA is
given a higher weight. The one GQSQS uses combines OC and Hth@he same weight. The
exact reason needs a deeper investigation to determine.

In Table 3.11, we also notice that QSQS produces better cagggestions for short queries
than for long queries, but IQSQS* and GQSQS perform bettdoong queries than on short ones.
The query suggestions generated by IQSQS* and GQSQS capgaamd selected search terms,
whereas QSQS does not utiligk directly. We have shown that terms@, are more likely to be
selected in query suggestions. Since QSQS limits the lesfgtie lexical alias to be between 5 and
10, when there are more termsah (i.e. a long query), there will be less chance for terms from
reference documents. This may hurt the quality of query sstigns from QSQS, therefore, QSQS

has lower MCC and MEC scores on long queries.
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Short queries Long queries
MCC | p-value = 4.62E-1Q p-value = 2.33E-10
MEC | p-value = 4.53E-03 p-value = 4.55E-03

Table 3.14: The p-values for sign tests to compare IQSQS'GREQS.

3.9 Summary

This chapter introduces two variations, 1QSQS and GQSQShemSQS system by Jiang et al.
[19]. Both improve the performance of QSQS substantially.

In each phase of IQSQS, there are usually several optionsethaus available. We conduct
different experiments to determine the best configuratmml®SQS. In the reference document
collection phase, we find that the application of stemmingshthe system performance so we
switch off stemming in IQSQS. When we pre-select search teusiag snippets works as well as
using frequency, but we chose the snippet-based methodidcdiits other advantages. After the
two new search term selection methods LAW and CSW and thecdfoery search methods AC,
QOAC, BS, and QoBS are introduced, an experiment was caorietb find the best combination
of methods for IQSQS. In the end, CSW with QoBS has the higl€Xt and MEC score, and we
refer to it as IQSQS™.

GQSQS changes the control structure of QSQS and adoptsediletst options determined in
IQSQS. With a modified coverage score function and the gregdiegy, GQSQS gets better MCC
and MEC scores than QSQS but lower scores than IQSQS witleffess
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Chapter 4

Does Document Clustering Help?

Queries are usually ambiguous, therefore search resutteajuery usually mix web documents
about different aspects of the query together. For exanfiptehe query “jaguar”, the web doc-

uments about “jaguar car”, “jaguar cat”, “jaguar mac os”. et@ all mixed together in the corre-
sponding search results. Because of this, the user oftetohask for the desired web documents
among all the search results. One possible solution is tavebedocument clustering to organize
search results [12, 13, 15, 57, 58]. A general survey of thesthods is in Chapter 5. Document
clustering groups documents into different clusters by garimg their similarity so that documents
in one cluster are similar to each other and documents ieréffit clusters are dis-similar to each
other. Though there is a large body of research on web doduchestering, we seem to be the first

to apply web document clustering to query suggestion.

4.1 Introduction

We think web document clustering methods are promising faryg suggestion, assuming web
document clustering methods really group search resutistalifferent topics into different clusters.
If query suggestions fof), could be created based on each cluster, they might repreéigment
topics ofQg, which may help users shorten their search time and satisfy needs more directly.
For instance, if the query suggestions for the query “jagas “jaguar car”, “jaguar cat” etc., the
user who wants the jaguar car models and issues the quengatjamight click the query suggestion
“jaguar car” directly.

We propose the Query Suggestion method by Document Clogté@SDC) by plugging in
different document clustering methods to GQSQS and aimworgoals. First, we would like to
create query suggestions that can cover most of the refedowuments. Second, we would like to
create a query suggestion for each cluster that can repithsecontent of the cluster and also cover

the reference documents in this cluster.
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4.2 Query Suggestion by Document Clustering (QSDC)

The QSDC system follows the structure of the GQSQS systemminbarts areference document
clusteringphase. Algorithm 4.1 is the pseudocode for QSDC. Refereacerdents fo), are first
collected (line 2), then a document clustering method idiegpo cluster them intd¢ (K = 10)
clusters (line 3). For each cluster, a modified coverageesitorction is used to evaluate all terms

in the cluster and the top scoring terms are extracted asetirels terms for this cluster (line 6).
The query suggestion candidate seanghase generates different query suggestion candidates by
combining search terms in different ways (line 7). The quauggestion for this cluster is then

found greedily (line 7). After processing dll clusters, K query suggestions are returned (line 10).

Algorithm 4.1 Query Suggestion by Document Clustering (QSDC)
Input: the original queryq

Output: K (K = 10) query suggestions
initialize the query suggestion s@tS to be empty.
. collect all the reference documerds(|D| = 100) for Q.
clusterD into K clusters.
: fori=1to K do
set the best query suggestigs} for clusteri to be empty.
select a list of search tern$&l’; for clusteri.
apply query search o8T;, compare every query suggestion candidate withand update
qs; greedily.

insertgs; into the query suggestion s@tS

9: end for
10: return QS

NoarwNR

®

The following sections will introduce the pre-processidgaference documents for document
clustering, different document clustering methods, andCas€ore (Cluster Cover) in the modified

coverage score function.

4.2.1 Reference Document Collection

After reference documents are processed as described IQ8®@S system, there are two more
steps in the QSDC system, applying stemmiagd converting the set of reference documents into
a weighted matrix.

For each reference document, its snippet is extracted anthsing is applied to it (we utilized
the Porter stemmé&). Then the set of reference documents is converted into ghted matrix.
Each entry of the matrix corresponds to a reference docudhaendl a ternt, the value of the entry
reflects the importance ofto d. Usually, the TFIDF weighting method is used. Suppose thefse

reference documents i3, then for documend and ternv,

TFIDF,, =TFy, x IDF,.

1We only apply stemming in the document clustering phase.
2The Porter stemming algorithm is availablenétp://tartarus.org/ ~ martin/PorterStemmer/
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TFy, is defined as
N(d,t)
|d]|

Here, N(d,t) is the number of the occurrences of therm documentd, |d| is the number of

TFd;t -

occurrences of all the terms ih I DF(t) is the inverse document frequency of tetm

|D|
‘{dl cted;,d; € D}l

IDF(t) = log

After the TFIDF weight for each entry is calculated, the fieatry value is its TFIDF weight nor-
malized with respect to all the entries of the correspondéafigrence document, i.e.

TFIDF,,

entry(d,t) = S,

\/ s TFIDFd 0?
Here,T is the set of all the terms in the reference documents.

4.2.2 Reference Document Clustering

After the set of reference documents is represented by dwesignatrix, document clustering meth-

ods such as K-means, agglomerative hierarchical clugtesjpectral clustering, etc. can be applied.
For the rest of the thesis, we use the taremtroidto refer to the average center of a set of docu-
ments, i.e. a centroid of a set of documents may itself beamtained in that set of documents. The

QSDC system tests the following document clustering method

e K-Means: we utilize a library developed by Kanungo et al][Zour versions of K-means,
namely, Lloyd’s [22], Swap [22], Hybrid [22] and EZ-Hybri@2], are supplied in this li-
brary. The implementation of Lloyd’s algorithm in the lilbyas the typical K-means clus-
tering method. Because Lloyd’s algorithm may get stuck gsalaninimal solutions, Swap
is proposed to perform swaps between the current centraitia et of candidate centroids.
A swap is accepted if it decreases the average distortienrftban squared distance from
each data point to its nearest centroid). EZ-Hybrid is a &rhgbrid algorithm of Swap and
Lloyd’s. EZ-Hybrid performs one swap after several itayasi of Lloyd’s. Hybrid combines
Swap and Llyod’s in a more complex way. Hybrid performs salvswaps and then several
iterations of Lloyd’s. In addition, Hybrid utilizes an amarch similar to simulated annealing

to avoid getting trapped in local minimal solutions.

e Agglomerative Hierarchical Clustering (AHC): we implented four versions of AHC our-
selves: single-linkage, complete-linkage, averagealygkand centroid. They will be intro-

duced in the section on agglomerative hierarchical clirgier

40



e Spectral Clustering: we use an implementation of the ndmedlspectral clustering method
[37] developed in the XVDM systefn

The following sections introduce these three clusterigp@thms. For K-means, we select
Lloyd’s algorithm to introduce because it is the typical kkams method and many variants of K-
means algorithms are based on it. For AHC, we introduce alfdlr versions used in our experi-
ment. There are different variants of spectral clusterifiierent mathematical derivations lead to
different spectral clustering algorithms. We select thearmalized spectral clustering algorithm to

introduce.

K-means Clustering

Given the number of clustei®, K-means clustering partitions a set of documents fstolusters
with the objective of minimizing the average squared distaof documents in a cluster from their
cluster centroids as defined in Equation 4.1 [32].

1
|C

f(Cy) = d (4.1)
dec;
[l is the centroid of a clustef;, d is a document represented as a vector of term weights@ns

the size of the clustar; [32]. The objective of K-means is shown in Equation 4.2 [21].

K
argmin y 3 |d; — il (4.2)
=1l giec;
Hd} — ;|| is the distance betweeﬁ andz;, Euclidean distance and cosine distance are commonly
used. There is no efficient solution to this problem [21], saudety of heuristic algorithms is used.
One of the most common heuristic algorithms for K-meanstehirsy is based on a simple
iterative mode to find a local minimum, which is often callddyd’s algorithm(the idea is from
Lloyd [29]). The first step of Lloyd's algorithm is to randoyn$elect '’ documents as the initial
cluster centroids. Then there are two steps iterativelgaga until a stopping condition is satisfied.
Step one re-assigns each document to its closest clusteoicerstep two re-computes each cluster
centroid from all the documents belonging to it. There areeisd conditions that can be used as
termination conditionsa) when the number of iterations exceeds a pre-defined vhjughen the
document re-assignment does not change between two coimedterations;c) when the cluster
centroids remain the same between two consecutive itagtpwhen the average squared distance
falls below some threshold; and so on [32]. Figure 4.1 [3Zw&han example of the process of
Lloyd’s algorithm.
Lloyd’s algorithm converges because the average squastahde decreases or remains the same

in each iteration. First, re-assigning documents canroease it because every document is as-

3The XVDM system is a high dimensional visual data mining systeweloped by the department of Computer Science,
Free University of Bozen-Bolzano, Italy. The website of sppectral clustering implementation istdtp://projects.
js-development.com/spectral-clustering
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Figure 4.1: An example of the K-means algorithm (Lloyd'salthm) whenK = 2. Lloyd’s
algorithm first randomly selects two cluster centroidsntheratively assigns the documents to the
cluster centroids and re-computes the cluster centroidi®r Aine iterations, the cluster centroids
have converged (the figure is taken from [32]).

signed to its closest centroid. Second, re-computing thé&r@iels cannnot increase it because the
new centroid of a clustef’; minimizes)_ ;- . Hd} — 1;]|?. Since there is a finite set of partitions,
5€C;

the decreasing must reach a local minimum point at some.stage

Agglomerative Hierarchical Clustering

K-means clustering producédkt clusters whereahierarchical clusteringconstructs a hierarchy
of clusters by combining or dividing clusters iterativelfhe combining version (bottom-up) is
calledagglomerative hierarchicalthe dividing version (top-down) is calledivisive hierarchical
We introduce agglomerative hierarchical clustering hereglise it is more popular [32, 48].

The agglomerative hierarchical clustering algorithmtsesery document as a singleton cluster
at the beginning, then iteratively finds two clusters thattae most similar and merges them into a
new cluster. A dendrogram is constructed at the end. An eleaoighe agglomerative hierarchical
algorithm is shown in Figure 4%2whereA, B, C, ..., G denote the document singleton clusters.

The agglomerative hierarchical clustering algorithm cesotwo clusters that are the most sim-
ilar every time. Differentinkage criteriaare used to evaluate the similarity (or distance) between
two clusters. Before we introduce different linkage ciaethemetricsto measure the similarities

between two documents need to be illustrated first. Thersewreral metrics used to compute the

4The  figure is  from http://en.wikibooks.org/wiki/Data_Mining_Algorithms _In_R/
Clustering/Hybrid_Hierarchical_Clustering .
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Figure 4.2: An example of the agglomerative hierarchicastring algorithm (see footnote 4). A
dendrogram is obtained by applying merging iterativelydolen the similarity of the clusters. The
dashed line means the cutting point of the hierarchy (desdriater).

similarity between documents. Tguared Euclidean distan¢&quation 4.3)

dist(dy, dj) = > (di — djr,)? (4.3)
k
and thecosine similarity(Equation 4.4)

- —

d;-d;

d’LSt(CZL, d;) = COSilﬁ
i d]l

(4.4)

are the most popular ones.

With the metrics to evaluate the distance between two dontsnthere are four linkage criteria
to measure the distance between two clusters. The fouldakgteria group the agglomerative hier-
archical clustering methods into four typesngle-linkageclustering,complete-linkagelustering,
average-linkageclustering anccentroid clustering. The single-linkage clustering method regards
the minimum distance between a pair of documents in two etssts the distance between the two
clusters,

linkage(Cyp, Cy) = min{dist(d;,d;) : d; € Cp,d; € Cy}
In contrast, the complete-linkage clustering method usestaximum distance between documents

in two clusters as the distance between the two clusters,
linkage(Cp, Cy) = maz{dist(d;,d;) : di € Cp,d; € Cy}

The average-linkage clustering method measures the destaatween two clusters by the average

distance of documents in the two clusters, expressed as

‘ 1 .
linkage(Cp, Cy) = TeAlH] Z Z dist(d;, d;)
plltq

diGCT_, d]’ ch
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The centroid-linkage clustering method uses the distapt@den the centroids of the two clusters
as the distance between these two clusters. Differentndistenetrics and linkage criteria lead to
different clusterings [32].

Sometimes we do not need a dendrogram, instead, we neeedrslult this case, we just need
to cut the hierarchy of the clusters. There are severalnguttiethods, for example, cut at a fixed
similarity level like the dashed line shown in Figure 4.2t winen the distance of two clusters are
above some threshold, stop merging when therdsarusters if X' clusters are needed, and so on

[32]. We follow the last method in our implementation.

Spectral Clustering

Different from the K-means clustering algorithm and thelaggerative hierarchical clustering al-
gorithm, thespectralclustering algorithm translates the document clusterimiplem into a graph
partition problem, and utilizes the spectrum of the coroesiing matrix to reduce the dimensionality
for clustering. Based on different graph Laplacian masii¢bere are different spectral clustering
algorithms, such as unnormalized spectral clusteringzing the unnormalized graph Laplacian,
normalized spectral clustering utilizing the normalizedpgh Laplacian, etc. [52]. We select the
unnormalized spectral clusterirajgorithm to describe here.

Given a set of documeni$,, ds, ..., d, to cluster, if we know the similarity;; (s;; > 0)
between all pairs of documends andd;, a similarity graphG = (V, E) can be constructed. I&,
a vertexv; represents a documediy, v; andv; are connected i§;; > 0 (or above some threshold),
and the edge is weighted By;, i.e.w;; = s;;. G is an undirectedu;; = w;;) and non-negative
weighted graph. Suppostis a subset of the set of verticed € V), Ia = (f1,..., fn)? € R®
is an indicator vector where an entfy equals 1 ifv; € A and f; equals O otherwise. Clustering
is to partition the graph into different parts so that theiges in the same part connect with higher
weights and the vertices in different parts connect withdoweights (or don’t connect) [52].

The graph Laplacian matriceare very important to the spectral clustering algorithme Tih-

normalized graph Laplaciais defined by Equation 4.5,
L=D-W (4.5)

D is a diagonal matrix with entrie®,; = Z?leij, and IV is the weight matrix withiW =
(wij)ij=1,...n. L is symmetric and positive semi-defiritand for every vectof € R"

n

fTLf = % > wiifi - f)? (4.6)

i,j=1
With these, we can conclude another property related tatim®rmalized spectral clustering

algorithm (spectral clustering for unnormalized graphlbajan) [36, 52]. LetG be an undirected

5A positive semidefinite matrix is a self-adjoint matrix with eflits eigenvalues nonnegative.
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graph with non-negative weights. Then the multiplidityf the eigenvalue 0 of. equals the num-
ber of connected componerts, , ..., L4, in the graph. The eigenspace of eigenvalue 0 is spanned
by the indicator vectorg,,,. .., 14, of those components. This property states that, in a perfect
scenario, i.e. grap& can be partitioned inté connected components, the multiplicity of the eigen-
value 0 ofL equalsk, and the eigenvectors of eigenvalue 0 are the connectedamnpindicators
[52].

With this in mind, the unnormalized spectral clusteringoaihm is as follows, wherg € R™*"

is the given similarity matrix and is the number of clusters to be constructed.

1. Construct a similarity graph with” as the adjacency matrix.
2. Compute the unnormalized Laplacian
3. Compute the smallegf eigenvectors,, ..., vk of L.

4. LetV € R™*K pe the matrix containing the vectars, . . ., vx as columns.

5. Fori = 1,...,n, lety; € RX be the vector corresponding to théh row of 1.
6. Cluster the point$y;);=1,..., in RX into clustersCy, . .., Ck with the K-means clustering
algorithm.

The output is a collection of clusters,, ..., Ax with A; = {v;ly; € C;} [37, 52]. For the
practical use, the result of the spectral clustering alboriis influenced by the similarity measure

mechanisms, the number of clusters, and which graph Lamiasiused.

4.2.3 Search Term Selection

A new score named Cluster Cover (CC) is brought into the @mescore function of QSDC. For a
clustercy, the CC score of a termis the number of reference documents:jrthat¢ covers when
appended t@),. For instance, if the quer§), + ¢ covers 10 reference documents, among which 6
documents belong to cluster, thenC'C(¢, ¢,) = 6. The coverage score function used in the QSDC

system is given in Equation 4.7.
CoverageScore(t,Sx—1) = OC(t,D) + CC(t,ck) + EOC(t, Sk—1) 4.7

Sy_1 is the set of final query suggestions selected from previtugtars, andD is the set of refer-
ence documents. The OC score (Overall Cover) and the EO€ fertra Overall Cover) have been
introduced in Chapter 3. Referring to the example ab@@(t, D) = 10. If 8 documents out of

these 10 are newly covereBOC(t, Sx_1) = 8. The coverage score for the tetis

CoverageScore(t,S,—1) = OC(t,D) + CC(t,c;) + EOC(t,Sk—1) =10+ 6 + 8 = 24.
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4.2.4 Comparison of Different Document Clustering Methods

An experiment is carried out to compare the results of dffiédocument clustering methods. Fol-
lowing the test queries (50 short queries and 50 long quexte&ppendix A) and experiment method
applied in Chapter 3, the average MCC and MEC score of eadlmagat clustering method is re-
ported in Table 4.1 (AHC refers to the agglomerative hidraad clustering). From the data, there
appears to be no difference between these document chgstagthods. Wondering whether docu-
ment clustering changes anything, we calculated the MCQMB@ score for a random document
clustering method as reported in the last row of Table 4.% rBimdom clustering method randomly
assigns a document to one of the ten clusters with a unifooiaility. Comparing the MCC and
MEC scores of using document clustering methods and randisstecng, we find that document
clustering methods contribute nothing to improve MCC andOMBign tests for comparing docu-
ment clustering methods and the random clustering metl®darducted too. Table 4.2 shows the

p-values on short queries, and Table 4.3 reports the psaluéong queries.

Clustering Method

Short Queries

Long Queries

K-means (Lloyd)

MCC =64.04 MEC = 9.56

MCC =68.39 MEC = 11.08

K-means (Swap)

MCC =63.08 MEC = 9.53

MCC =68.22 MEC = 10.99

K-means (EZ-Hybrid)

MCC =63.42 MEC = 9.65

MCC =68.04 MEC =11.13

K-means (Hybrid)

MCC =63.96 MEC = 9.63

MCC =68.30 MEC = 11.08

AHC (single-linkage)

MCC =63.12 MEC = 9.66

MCC =6722 MEC =11.07

AHC (complete-linkage)

MCC =63.00 MEC = 9.66

MCC =68.00 MEC =11.14

AHC (average-linkage)

MCC =61.72 MEC = 9.47

MCC =67.30 MEC = 10.96

AHC (centroid)

MCC =63.16 MEC = 9.57

MCC =676 MEC =11.01

Spectral

MCC =63.16 MEC =9.49

MCC =67.61 MEC = 11.02

Random

MCC =63.39 MEC =9.77

MCC=6791 MEC =11.11

Table 4.1: The average MCC and MEC scores of different dootrokeistering methods in the

QSDC system.

MCC MEC
K-means (Lloyd) p-value = 0.19| p-value =1.00
K-means (Swap) p-value = 0.82| p-value = 0.66
K-means (EZ-Hybrid) p-value =0.21| p-value =0.50
K-means (Hybrid) p-value =0.19| p-value = 0.66
AHC (single-linkage) p-value = 0.68| p-value = 0.65
AHC (complete-linkage) | p-value =1.00| p-value =1.00
AHC (average-linkage) | p-value =0.65| p-value =0.12
AHC (centroid) p-value = 0.50| p-value =0.36
Spectral p-value = 0.65| p-value = 0.68

Table 4.2: The p-values for sign tests to compare differestichent clustering methods with ran-
domly assigning documents on short queries.

From Table 4.2 and 4.3, there is only one case (AHC Singleatie on MCC) in which the
p-value equals: (we setor = 0.05). The others all fail to reject the null hypotheses, and kestow

that the data is not sufficient to conclude there is a diffeeelmetween those document clustering
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MCC MEC
K-means (Lloyd) p-value = 0.66| p-value =0.83
K-means (Swap) p-value = 0.83| p-value =0.38
K-means (EZ-Hybrid) p-value = 0.82| p-value =1.00
K-means (Hybrid) p-value = 1.00| p-value =0.52
AHC (single-linkage) p-value = 0.05| p-value =0.38
AHC (complete-linkage) | p-value = 0.38| p-value = 0.65
AHC (average-linkage) | p-value =0.82| p-value =0.13
AHC (centroid) p-value = 0.66| p-value =0.38
Spectral p-value = 0.50| p-value = 0.60

Table 4.3: The p-values for sign tests to compare differestichent clustering methods with ran-
domly assigning documents on long queries.

methods and the random clustering method. Therefore, wi& ttocument clustering methods, at
least the ones we tested, contribute nothing in our quergesigpn system. However, we need to
notice that we evaluate different methods by their MCC andOMEores instead of the qualities of

the query suggestions they create, which is how documesiscing methods are usually evaluated.

4.3 Comparison of QSDC with QSQS, IQSQS and GQSQS

We summarize the performances of all systems in Table 4r@keShere is no difference between
different document clustering methods, we simply selech&ans (Lloyd’s) to represent QSDC in
Table 4.4. We have compared QSQS, IQSQS* and GQSQS in Chymed the values for these
systems in Table 4.4 are copied from Table 3.9. From the geev®CC and MEC scores in Table
4.4, QSDC performs similarly to GQSQS. A sign test to com@&®C and GQSQS is carried out
and the p-values are shown in Table 4.5. None of them sucdéeedgecting the null hypotheses,

therefore, we conclude that QSDC and GQSQS perform equally w

System Short Query Long Query

QSQS | MCC=54.80 MEC=6.89) MCC=42.86 MEC=5.34
IQSQS* | MCC=70.82 MEC=9.15] MCC=78.05 MEC=10.66
GQSQS | MCC=63.88 MEC=9.73 MCC=68.82MEC=11.08
QSDC | MCC=64.04 MEC=9.56| MCC=68.39 MEC=11.08

Table 4.4: The average MCC and MEC scores of each system.

Short queries

Long queries

MCC | p-value =1.00

p-value = 1.00

MEC | p-value =0.40

p-value = 0.82

Table 4.5: The p-values for sign tests to compare QSDC and@)S

QSDC has the same control structure as GQSQS. However, lireasd, QSDC processes one
cluster of reference documents, while GQSQS processekealliicovered reference documents.

Therefore, QSDC processes fewer reference documents tQ&80GS in each round and creates
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equally good query suggestions.

4.4 Summary

This chapter applies document clustering to query suggestnd introduces a query suggestion
method by document clustering (QSDC). In QSDC, the set efegfce documents is converted into
a weighted matrix after pre-processing; stemming is agiefore clustering. Four versions of the
K-means algorithm, four versions of the agglomerative dmehical clustering algorithm and one
spectral clustering algorithm are tested. In order toattae purpose that the query suggestion for a
cluster should cover the documents in this cluster, we algpgse a Cluster Cover score (CC) that
evaluates the cluster coverage of a term in the coverage faoction.

An experiment was carried out to compare the performancetffefent document clustering
methods. In terms of MCC and MEC scores, none of the docunhestecing methods works better
than a random clustering method. Therefore, we think thatdibcument clustering methods we
tested do not help much in our query suggestion system. liti@odQSDC's performance is the
same as GQSQS's.
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Chapter 5

Related Work

There are many methods to create query suggestions. Weéfcldgsn into three groups and in-
troduce each one. In addition to query suggestion, we sumatydocument clusteringnd its use
for organizing search results and helping supply query ssiggns. Query suggestion evaluation

methods are discussed at the end of this chapter.

5.1 Query Suggestion Methods

Many query suggestion methods extract words from a pubtibajlthesaurus that are relevant or
similar to the words in the user’s query and then use thesdsxoreplace or expand the words in the
user’s query. These methods are grouped together as mdtased orglobal thesauri5, 32, 56].
Since global thesauri may not be specific enough for one susedrch intent, there is a different
approach based on the documents relevant to the user'sarigiery. These relevant documents
are usually from the initial search results of the user'srguso these methods are callkxtal
methods [32, 56]. Similar to methods based on global thesaast of the local methods extract
words that are relevant or similar to the words in the usar&rg Recently, research [3, 31, 54] has
begun to utilize search engihegs accumulated everyday and contributed by all the users  hel
guery suggestion. We call these the methods basegamh logsand sub-classify them into three
groups: probabilistic methods methods based on semantic relatig8s5] (these methods aim to
find query suggestions that are semantically related togagaquery), and methods basedyaph
models In addition to the methods above, some literature explottesr information resources, such
as the web document’s snippet, tiechor tex{23], or the user’s personal information repository

[7] (the personal collection of text documents, emailshealcweb pages, etc).

5.1.1 Methods Based on Global Thesauri

Global means the thesauri and information are independent of tesusriginal query [32, 56].
The methods based on global thesauri analyze this globallkdge and extract relevant or similar

terms to replace or expand the terms in the user’s queryefrergenerally two types of thesauri in
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these methods: existing and manually maintained thesandli automatically constructed thesauri.
The problems the methods based on global thesauri needia@ generally how to construct the
thesaurus and how to extract relevant words from the thesaur

There are some existing thesauri for synonyms of differentepts, such as WordNetMoorhees
[53] utilizes the word relations encoded in WordNet to exgbtire user’s query. For each wondn
the user’s query, the words from the synonym setvafin be used to supply query suggestions.

Jing and Croft [20] consider every noun asanceptand build a word similarity thesaurus by
linking different concepts that co-occur in a specifieiddowrange together. For example, suppose
the window range is three sentences, then for one comcalpthe concepts that appear within three
sentences frons are connected with it. A word similarity thesaurus is comstied in this way to
help create query suggestions.

Qiu et al. [43] construct a term similarity thesaurus too.efluse thevector space modeb
represent a term as a vector, tefre (Waocys Wdoey s - - - » Wdoe,, ) Wherewq,, is the weight of the
term in document. A commonly used weighting method is TFIDF. With the vectardal, the
similarities between different terms are calculated andrmntsimilarity thesaurus is built. Some
research [53, 56] calculates the similarity with terms ia tiser's query to extract terms. Qiu et al.
[43] measure the similarity with the user’'s query rathentterms to extract terms. A probabilistic
model expressed in Equation 5.1 is used to measure the giynbatween a term and a query.

Sim(q,t) = Zwi x Sim(t;,t). (5.1)
ti€q
Here, Sim(q,t) is the similarity between query and term¢. ¢; is a term ing. Sim(t;,t) is the

similarity between ternt; andt. w; is the weight oft; in q.

5.1.2 Local Methods

For local query suggestion methods, usually idevant documentom the initial search results
of the user’s original query are determined first, then i@iterms from these relevant documents
are extracted to help create query suggestions. Based otohastermine the relevant documents,
there are roughly three types in the literature [32]evance feedbadd4, 46], pseudo-relevance
feedbacK55], andindirect-relevance feedbagkO].

Relevance feedba¢k4, 46] involves an interactive procedure between the ardrthe search
engine. After the search engine returns the search resulthd user’s query, the user is required
to mark which web documents are relevant. Since the userdteti the relevant documents clearly,
all the web documents are classified into two sets: relevadtimelevant. Terms used for query
suggestions are extracted from the relevant documentstiétipurpose of maximizing a function
such as Equation 5.2 [32].

Joptimal = arg max[sim(q, Cy) — sim(q, Cpy)] (5.2)
q

1A lexical database for English, its website ishatp://wordnet.princeton.edu/
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Here,q'is a query vector(,. is the set of relevant documengs,,. is the set of irrelevant documents.
The functionsim/(q, C..) (sim/(q, Cy-)) measures the similarity betwegmandC,. (C,,..). When sim

is defined as cosine similarity, the optimal query vegigki .. is (from [32]):
. 1 -1 - 3
GQoptimal = m _‘Z d; — |Onr| _‘Z dj’ (5 )
d,eC,.

d; €Chnr

Here,cZ}.C is a document vectof(;| is the number of documents in 8t. ¢,,timaq €quals the vector
difference between the centroids of the relevant and iragiedocuments.
Some research [5] shows that users are usually reluctardriorelevant documents. Therefore,
pseudo-relevance feedbggltso called blind-relevance feedback) [35, 55], in whivdinvolvement
of users is removed, are proposed. Pseudo-relevance fdedftan assumes the tdpresults of the
initial results as relevant. Based on these pseudo-rdlemuments, the same methods of finding
query suggestions for relevance feedback can be used is¢help-relevance feedback methods.
The third category of local query suggestion methods isedaihdirect-relevance feedback.
Other information such as thguery sessioffil0], the clickthrough data[10], etc. are used to de-
termine the relevant documents. Some indirect-relevapedbfack methods will be introduced in

the next section.

5.1.3 Methods Utilizing Search Logs

Recently, more and more work on query suggestion [3, 9, 1ph&4 been utilizingsearch logs
Search logs record the search histories of users on thehseiagine, i.e. the search logs record all
the interactions between the user and the search enginey §ession data is extracted from search
logs. A query session records the process of a user searfdriagpiece of specific information,
and consists of one or more queries and several clickedrsessults. For example, suppose a user
wants to watch the music videos of rock band “Coldplay”, enteoldplay” in Google, refines the
guery to be “coldplay youtube”, and finally clicks on one desutitled “YouTube - The Best of
Coldplay (PART ONE)". Then the query session contains thet fiuery “coldplay”, the second
query “coldplay youtube”, and the URL of the clicked result.

Various kinds of information can be inferred from searchsldgor example, similar queries from
different users, the queries in one query session, theéaetabetween the queries and the clicked
documents, the last one or last few clicked documents in areycgsession (they are usually called
landing pagesr landing documenjsand so on. We introduce different query suggestion method
utilizing search logs by categorizing them into probabiisnethods, methods based on semantic

relations and methods based on graph models.

Probabilistic Methods

Cui et al. [10] use query logs to extract the probabilisticrelations between the terms in queries

and terms in web documents. They assume the clicked docarnmenhe query session are relevant
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to the queries in the same query session. Their main idefassdt of documents is often clicked
for similar queries, the terms in these documents are diyartated to the terms in these queries.
By processing all the query logs, Cui et al. [10] calculai phobabilistic correlations between the
terms in queries and the terms in documents. With the cdioakg query suggestions are generated.
Cucerzan et al. [9] consider two queries relevant for ealkbraf they return the same or similar
web documents. Therefore, they link queries together if #iware the same landing pages in search

logs. Then, the relevant queries to the user’s query arenedias the query suggestions.

Methods Based on Semantic Relations

Many query suggestion methods based on semantic relaBod$ [ 54] utilize search logs. There-
fore, we introduce these methods in this section.

Cao et al. [3] proposed a context-aware query suggestiohadef hey first cluster the queries
from query logs into different clusters, each cluster reprnts a concept. Then the most frequent
concept sequences are calculated. A concept sequenceesaihte process from the user entering
the first query to the user clicking the last landing page.pB8p a query session consists of queries
q0,q1, ---, Gm, after representing each query with its corresponding epin¢he concept sequence
is cg, c1, ..., cp. m Might not equah because different queries with the same concept are merged.
After the popular concept sequences are calculated, a pbseguence suffix tree is constructed for
faster processing. The concept sequence suffix tree is t#rg quggestion model. The user’s search
intent is captured by matching his/her original query totbacept suffix tree and finding out the
concept the user’s next query might belong to. The most popleries in the next concept are
returned as the query suggestions.

Wang et al. [54] use search logs to calculate the relatiotigedével of terms rather than queries.
They define two types of term relatiomuasi-synonymand contexture terms Quasi-synonyms
means two words are synonymous, such as “car” and “autoefobit two words are syntactically
substitutable in the similar contexts, for example, “yahand “google” are quasi-synonymous
when used as representatives for a search engine. Two wavdsalcontexture relation if they are
closely related in some specific context. For example, tlaioa between “car” and “rental” or the
relation between “car” and “price”. The authors build prbltiatic models to calculate the relations
between terms and substitute the terms in the user’s quenpialy query suggestions.

Sadikov et al. [45] stated that many relevant queries to see'siquery could be extracted from
guery logs. Because only 5 to 10 of them could be suggestée taser, they proposed a query clus-
tering method to cluster all the relevant queries with thgppse of representing distinct information

needs with a limited number of query suggestions.
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Graph Model

Because a query session is the path of a user’s searchingspra@query session can be converted
into a graph. The general method is to treat a query as a gregé rirhe first query and all the
following queries in one query session can be connected iBctéid edges. In addition, if the
clicked documents are considered as graph nodes too, a noeeg and a document nodican
be connected ifl is one of the clicked documents fqr Several works [2, 31, 45] have been done
based on graph models.

Boldi et al. [2] generate query suggestions based on shudbra walks on auery-flowgraph.
A query-flow graph represents the query behaviors aggrédeden search logs. In a query-flow
graph, two connected queries may indicate these two queneda the same query session, any path
in the graph may be a complete search experience. Sevedsl &frinformation are attached in the
query-flow graph. For example, the edge weight between twoiegiindicates the possibility that a
real search goes from the first query to the second query,@ad.s

Ma et al. [31] build two bipartite graphs, one consisting séunodes and query nodes, the other
one consisting of query nodes and document nodes. Theyceattatent feature space for queries
from the graphs and construct a query similarity graph basethese features. The most similar
queries are supplied to the user.

Sadikov et al. [45] convert a query clustering problem ingwagph clustering problem, and return

the query clusters as the query suggestions.

5.2 Web Document Clustering

Much research is done omeb document clusteringith the purpose of organizing search results
[12, 13, 15, 57, 58]. There appears to be no literature eXgliatilizing web document clustering
for query suggestion. However, clustering web documerapi®cedure of mining contents and re-
lations between web documents. After a set of web documegi®uped into different clusters, the
content of each cluster expressed lmhaster labelcould be used for query suggestion. For example,
for the search results of the query “jaguar”, a web documkrstering method may cluster these
documents into the documents related with the jaguar catjatjuar car, etc. The corresponding
cluster labels may be “jaguar cat”, “jaguar car”, etc. Initidd, there have been commercial search
engines based on web document clustering, such as Vivisidoygppy?. Figure 5.1 shows the
search results for the query “jaguar” from Yippy. The lefiisan in Figure 5.1 shows the categories
of the web documents returned for the query “jaguar”.

Most of the works on web document clustering aim to produaedgdiusters and understand-
able cluster labels, none of them focuses on query suggedtiarthermore, cluster labels that are

understandable to humans are not guaranteed to be gooégjfmrihe search engine. Therefore,

2Vivisimo: http://vivisimo.com/ . Yippy: http://search.yippy.com/
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Figure 5.1: The clustered search results of the query “jdduam Yippy (Jul. 15th, 2010). In
addition to the search results in the center of the web pdpedin clusters of the search results are
shown in the left column. If a user needs the information abfeljaguar cat, s/he may simply click
the “Animal, Cat” label for related web documents

even though a system might produce perfect clusters antkclabels, these labels may not be able

to work as query suggestions directly. For example, in Fdud, the label “Animal, Cat” is very

likely to work terribly if we issue it for the web documentsaa “jaguar cat”. On the contrary, our

work in Chapter 4 applies web document clustering methodsetee query suggestion. We first

cluster thereference documesifor a query, then label each cluster using an optimizatipragon

to guarantee that the label can return many useful documadr@s used as a query suggestion.
There are generally two steps for web document clusteritigeititerature clusteringandclus-

ter labeling Both are introduced below.

5.2.1 Clustering

The purpose of document clustering is to group differentudoents into different clusters so that
documents in the same cluster are similar to each other asuhtents in different clusters are dis-
similar to each other [1]. In Chapter 4, we have introducech&ans, the agglomerative hierarchical
clustering method and the spectral clustering method. ignsiction, we will describe several web
documents clustering methods proposed recently. One faweb document clustering method,

Suffix Tree Clusteringb7], is introduced as a representative. There are also soatkods first
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extracting phrases from a set of web documents and themasgigach document to a phrase to

accomplish clustering. We call thepbrase-centered document clusteringthods.

Suffix Tree Clustering Method

In the web context, Zamir et al. [57] proposed a documenttetirsy method name&uffix Tree
Clustering(STC). STC considers a document as a sentence string ratheratbag of words to
maintain the information between words. There are two EhEBseSTC: identifying the base clusters
and combining the base clusters.

In the phase of identifying the base clusters, one suffixfoeeall the documents is constructed.
A suffix tree for a stringS is acompact triecontaining all the suffixes of the string) A suffix tree
for more than one string is a compact trie containing all thféxes of all the strings. For example,
if there are three documents reading as “cat ate cheeseljsenate cheese too” and “cat ate mouse
too”, the sulffix tree for these documents is shown in Figu2gfsom [57]). In Figure 5.2, the labels
on the edges are phrases, the label of a node is the coneatgtatise from the root to the node.
Every node represents a common phrase between differentdots. For the nodes that represent
the suffixes, the positions of the suffixes are also attacimeth¢ boxes in Figure 5.2). Zamir et
al. [57] say a node contains a document if the phrase of the apgears in the document. After
building the suffix tree, all the nodes in the suffix tree, gtdbose containing only one document,
are the base clusters. Following the previous example,dtesa, b, ¢, d, e, f in Figure 5.2 are the

base clusters. Table 5.1 clearly shows the base clustdrs [57

Figure 5.2: The suffix tree of strings “cat ate cheese”, “neoaie cheese too”, and “cat ate mouse
too” (from [57]).

In the phase of combining base clusters, Zamir et al. [57]aufarly direct way to combine
the base clusters. They combine two base clusters if theselvgters share sufficiently many

documents. Specifically, for base clustetsand B, |A| means the number of documentsAn
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Node Phrase Documentsg
a cat ate 1,3
b ate 1,2,3
c cheese 1,2
d mouse 2,3
e too 2,3
f ate cheese 1,2

Table 5.1: The base clusters from Figure 5.2 (from [57]).

|A N B| means the number of documents contained in bb#md B. A and B will be combined

if and only if |[A N B|/|A| > 0.5 and|A N B|/|B| > 0.5. After combining the base clusters,

each combined component is considered a final cluster. Ttignents contained by the nodes in a
cluster are grouped together as a cluster. The clustergut fer the previous example is shown in

Figure 5.3 [57].

Phrase: cat ate
Documents: 1,3

Phrase: cheese
Documents: 1,2

Phrase: mouse
Documents: 2,3

Phrase: ate
Documents: 1,2,3

Phrase: too Phrase: ate cheese
Documents: 2,3 Documents: 1,2

Figure 5.3: The clustering result for Figure 5.2 and Table $here is only one combined compo-
nent, therefore, only one cluster is returned which costalhthe documents (from [57]).

Phrase-Centered Document Clustering Methods

There are some web document clustering methods adoptirfiptinese-centered” approach [6, 12,
26, 27, 59]. These methods first extract phrases that wiltexadly be used as cluster labels, and
then assign documents to the phrases to form differenteckist

Ferragina et al. [12] proposed a snippet clustering systEmey first retrieve the snippets and
enrich them using aanchor text knowledge baself there is an anchor text about a URL in the
anchor text knowledge base, this anchor text will be appe:tal¢ghe snippet text of the URL. After
enriching the snippets, thgapped sentencesill be selected. Ferragina et al. use a gapped sen-
tence to distinguish from eontiguous sentenc&or example, when using the gapped sentence, the
phrases “John Fitzgerald Kennedy”, “John F. Kennedy”, alahti Kennedy” all equal the phrase

3The anchor text knowledge base was built by the authors frome tihan 200 millions web pages. An anchor text is
usually a descriptive text attached with the hyperlink.
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“John Kennedy”. These phrases are different when usingdh#guious sentences. Therefore, the
gapped sentence is more flexible than the contiguous sentémorder to extract the gapped sen-
tences, they utilize the web directory Open Directory Rib{©DP} to calculate the ranks for all
the words.T F'(w) evaluates the frequency of a wordin ODP rather than in a document, and is
defined as

TF(w) =1+ log#(w)

#(w) is the frequency ofv in ODP.I D F(w) evaluates the generalizationw®fin all the categories
of ODP rather than in all documents. The authors define thie ol wordw with respect to a
categoryC; in ODP as

rank(w,C;) = TF(w) x IDF(w) x b(w,C;) X ns(C;)

Here,b(w, C;) is a boosting factor fotw if it appears in special positions @f;, such as titles or
descriptions. ns(C;) is a boosting factor for category; by considering the depth af; in the
ODRP hierarchy, a deeper category is given higher score be@deeper category is regarded more
specific. The rank of a pair of wordsvy,, wy) is defined as
rank(wp, wy) = mazc,{ H rank(w,,C;)}
r=h,k

After the ranks based on ODP for all the words are calculatikgairs of words, i.e. two-word
phrases, within a fixesvindoware extracted. For example, for the sentence “Google APlesta
night”, if the window distance is two words, then the exteatpairs of words will be “Google API”,
“API stable”, and “stable night”. After obtaining all paic words, the rank for every pair of words
is calculated and the word pairs whose scores are below shibickare discarded. The remaining
pairs of words are incrementally merged to form longer gdpgmtences using the same method,
until no merge is possible or the sentence contains eighdsvakt the end, all the gapped sentences
are the candidate labels.

Ferragina et al. then build a hierarchical clustering witthee candidate labels as the leaf cluster
labels. A web documentis assigned to a clusteiif d contains the label of. The candidate labels
are theprimary labels for the leaf clusters. In order to form the parenttelss thesecondaryabels
for the leaf clusters are extracted. If a candidate lalglpears in more than 80% of the documents
in clusterc, theni is a secondary label fat. The leaf clusters that share the same candidate labels in
their primary or secondary labels are combined togethanta & parent cluster. The primary label
for p is the common candidate label shared by its child clustémsil&@ly, the secondary labels for
p are candidate labels which occur in more than 80% of the deatsinp. In this way, a hierarchy
of at most three levels is built. The label for each clustéhésprimary label.

Chen et al. [6] proposed a web document clustering methoeldbaisword sense communities

which are groups of keywords that co-appear frequently énsdmarch results for a query. Chen et

4The ODP is a hierarchical structure of more than 3,500,000sitexbin more than 460,000 categories maintained by
humans. The website is http://www.dmoz.org/
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al. [6] convert the document clustering problem into a peabbf finding the community structure
on the network of extracted keywords. Specifically, all thoeims are regarded as keywords and
are extracted from the web documents using Miriip&ach keyword is a graph node, two nodes
are connected with an edge if the corresponding keywordsppear in the same document. After
constructing the graph, an existing algorithm for finding tommunity structure in the graph is
applied. The objective function aims to form clusters wighvér edges between different clusters
and more edges within the same clusters. In this way, theetlog is finished and each cluster
contains several keywords. After clustering, the documené assigned to different clusters by

their TFIDF scores. An overall TFIDF score of documétibr clusterc is defined in Equation 5.3.

TFIDF,.=» TFIDF,; (5.4)
fec

Here, f is a keyword inc. With this score, document is assigned to the cluster which has the
highest TFIDF score.

5.2.2 Cluster Labeling Methods

After clustering documents, a cluster label consisting ofdg is needed for humans to understand
the content of the cluster. Generating cluster labels iedaluster labeling A cluster label is gen-
erally representative of its cluster and discriminativéhwather clusters. Manning et al. [32] classify
cluster labeling methods indifferential cluster labelingandcluster internal labeling Differential
cluster labeling methods select a word for a cluster lab&dgparing its distribution in this cluster
to its distribution in other clusters. The representatiwthnds ardiutual Information y? Test etc.
These methods select label words to distinguish one clérster others. Cluster internal labeling
methods extract label words for a cluster solely based @ncthister. The straightforward methods
are based on frequency or the centroid of the cluster [32].intveduce these popular cluster la-
beling methods and some recent works which utilize exteasalurces such as Wikipe#ia label
clusters. Several advanced methods which combine diffeseic cluster labeling methods together

are described too.

Frequency-Based Methods

Frequency-based methods select the most frequent worlds aluster. The frequency can be easily
calculated in the vector space model. For example, if thauehent is represented as a vector,
each entry corresponds to a distinct term and equals the euaflmccurrences of the term in the
document. The frequency of a term can be defined as the nunfilisr @ccurrences in all the

documents. An intuitive method based on frequency [32]cteldhe words which occur the most

SMinipar is a broad-coverage parser for the English langutigewebsite is atttp://webdocs.cs.ualberta.
ca/ ~ lindek/minipar.htm
Swikipedia: http://www.wikipedia.org/
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in all the documents in a cluster. Frequency-based methedsiraple and straightforward, but the

words for labels selected by these methods may be neitherseptative nor distinctive.

Mutual Information

Mutual information(MI) measures the mutual dependence of tandom variablesi.e. Ml eval-
uates the information of one random variable that can beredewhen given the other random
variable. Equation 5.5 [8] defines the MI of two discrete @amdvariablesX andY'.

16Y) = 3 3 pla, y)log(—2EY) (5.5)

yey zeX p1(2)p2(y)

Here,I(X;Y) is the mutual information o andY’, p(z,y) is the joint probability distribution
function of X andY, andp;(z) andps(y) are the marginal probability distribution functions of
X andY respectively. With Equation 5.5, wheXi andY are independent, Ml oK andY is O,
i.e. knowing one of them implies nothing about the other dvien X equalsy’, Ml of X andY
becomes the entropy df (orY).

In the context of cluster labeling, Ml measures the mutupkdelence of random variablésand
C. U takes the value 1 if the document contains ter otherwise,C takes the value 1 if cluster
¢ contains the document, 0 otherwise. MI evaluates the osistbetween whether a document
contains term or not and whether cluster contains the document or not. The MI equation is

shown in Equation 5.6 [32].

N1y NNyy | Noy, NNoi  Nig, NNig  No, NNy
I(U;C) = —I —1 —1
e A TR LS A VA s A M s A

(5.6)

Here, eachV value represents the number of documents that containttermot (indicated by the
first subscript) and belong to clustenr not (indicated by the second subscript) at the same time.
N1, is the number of documents which contaiand belong tae. N, is the number of documents
which containt. NV ; is the number of documents which belongetetc. N is the total number of
the documents. The MI score in this context measures how muehm can contribute to make a

document belong to a cluster.

Pearson’sy? Test

Pearson’sy? (shortened ag? test) is usually used to evaluate two things: whether themesl
distribution fits with an expected distribution, and whetpaired observations on two variables are
independent of each other. In the cluster labeling field xthéest is often used for measuring the
independence of two variables. Suppassg is the observed number of times of the two variables
taking the valug andj respectivelyF; ; is the expected number of times that these two variables

take the value and; respectively. Then the equation bf ; is shown in Equation 5.7 [40].

Iel o oNoIT o
E: . = Zk:l OZJ}VZIQ:I Ok,y (5.7)

) T
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Here,c is the set of all the values that the first variable can take.the set of all the values that the
second variable can tak&! is the number of all the occurrences or observations. Wijth, thex?

test is calculated by Equation 5.8 [40].

rl e

=)

le
i=1 j=1 i

O, — Ei;)?
( JE "7) (58)

In the cluster labeling context, the test measures the independence between the occurrence of
a term and the occurrence of a cluster. LetA®denote the numbers of the documents containing
termt or not (indicated by the first subscript) and belonging tastguc or not (indicated by the
second subscript) as defined above. The calculation foxiected frequency is shown in Equation

5.9[32].
. Zke{o,l} Ni Zke{o,l} Ni,j

E;; = ~ (5.9)
Equation 5.10 [32] is the correspondirg equation.
= (N11 + N1 + Not + Noo) x (N11Noog — N1oNo1)? (5.10)

(N11 + No1) x (N11 + Nig) x (N1o + Noo) x (No1 + Noo)
Jensen-Shannon Divergence

Jensen-Shannon Divergence (JSD) is used to measure thargjntietween two probability distri-
butions. Suppos® and@ are two probability distributions, then the JSDBfand( is defined by
Equation 5.11 [28].

1 1 1
JSD(P||Q) = 5D(P||M) + §D(Q\|M),whereM = §(P +Q) (5.11)
JSD is a symmetrized version Kbillback-Leibler divergencéEquation 5.12 [25]) which measures

the extra information needed to infErwhen givenq.

DIPIQ) = 3 Plosy ) (512
; )

In the cluster labeling context, Carmel et al. [4] used JSfwben the term distribution in the
documents belonging to a cluster and the term distributicallithe documents. In every cluster, a
term is scored with its JSD contribution, the highest scoeehs are selected as the label terms. In
particular, the probability distribution is calculatedsied on the occurrences of terms. For example,
assume clustef’ has 10 terms and the set of all the documéntsontains 100 terms (if one term
occurs twice, count two). Suppose tetroccurs 2 times irC’ and 20 times inD, i.e. term¢ has the
same distribution i’ as inD. Pc(t) = 2/10, Pp(t) = 20/100, andM (t) = $(Pc(t)+ Pp(t)) =
Pc(t) = Pp(t). The IJSD contribution of is

2/10, 20, 20/100,
5710 T 1009 %0100 =

A JSD contribution of 0 is interpreted to mean that teérdoes not contribute anything to distinguish

2
JSDcontribution(t) = EZOQ(

the documents in cluster from all other documents in the document set. Therefore, 8D J

contribution term is not suitable to be a label word for cdust.
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Centroid and Title

Suppose a document is represented by a vector in which eaghezuals a term weight in the
document. The centroid of a set of documents is the vectoaged on all the document vectors in
the set. Stein et al. [47] first calculate the centroid fordbeuments in a cluster, then use the terms
with top weights in the centroid as the label for the clusirtting et al. [11] calculate the centroid
first, then find the document that is closest to the centraid, e the title of the document as the
cluster label. The benefit of using document titles is thétlais usually more understandable than
a list of extracted terms. The methods utilizing the cedtiand the title are efficient for selecting

label terms that are important to the cluster, but they d&ério supply discriminative label terms.

Methods Based on External Resources

External resources such as ODRVikipedia, etc. can be used to help labeling clusters. &dar
amount of web documents are clustered and labeled mano&pP. A document can be compared
with the existing clusters in ODP and be labeled with the raatabel for the most similar cluster.
Wikipedia has a hierarchical structure with a label for eeleister and linking information between

similar or relevant clusters.

Advanced Cluster Labeling Methods

The method by Carmel et al. [4] creates better cluster ldiyetmbining different cluster labeling
methods or modifying basic cluster labeling methods. Theesalso some works [6, 13, 38, 49,
50, 57] proposing their own cluster labeling methods toltteir specific problems. We group all
these methods as advanced cluster labeling methods aodun& some here.

Carmel et al. [4] combined mutual information, JSD, Wikijzedtc. to label clusters. For a
cluster, they extract the important phrases (single temasragrams) from the documents in this
cluster and also from the related documents from Wikipedili.these extracted phrases are the
label candidates. A combined scoring method is appliedlexsthe top scored phrases which are
returned as the final cluster labels for the cluster.

Specifically, the JSD score for every phrase in the clustealisulated. The top scored phrases
are selected and put into a cluster label candidate seteh9t(c), wherec represents the clus-
ter. A queryq is formed from7'(c) and issued against Wikipedia A list of documentsD(q)
in Wikipedia is retrieved by query and considered as the set of relevant documents with cluster
c. The titles and category labels associated with the doctarerD(q) are extracted as the label
candidates for cluster too, denoted as.(c). The MI (Mutual Information) score and SP (Score

Propagation) score for each label candidat#'{n) and L(c) are calculated. The Ml and SP scores

7An open directory project dtttp://www.dmoz.org/
8A search index is retrieved from the Wikipedia Dumpttp://en.wikipedia.org/wiki/Wikipedia:
Database_download
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are aggregated and all the label candidates are rankedoplsedred candidates are the final labels.
Details about the Ml and SP score are as follows.

Ml is used to measure the sum of the pointwise mutual infolonatetween a label candidate
and all the label candidates frof(C'), whereC' = {c1, co, ..., ¢k } is the set of clustergy( is the
number of clusters). In the equation for the Ml score (Equati.13 [4]),

MI(,T(C))= Y PMI(,t|corpus) x w(t) (5.13)
teT(C)
lis the candidate label,e L(c) UT(c). PM1 is the pointwise mutual information.

Pr(l, t|corpus)

PMI(1,t|corpus) = log( ) (5.14)

Pr(l|corpus) x Pr(t|corpus)

#(x|corpus)
#(corpus)
w(t) is the relative importance of tertre T'(C). corpus is an external textual sourte# (x|corpus)

Pr(z|corpus) = (5.15)

denotes the number of occurrences of terin corpus. #(corpus) is the number of all the terms
in corpus.

SP measures the label candidates extracted from Wikipieglidabel candidates frorh(c). SP
gives a label candidate higher score if the Wikipedia doauimassociated with it rank in the top po-
sitions inD(q), i.e. the Wikipedia documents returned by querifhe SP score of a label candidate
is measured as the averaged weight of words in it. Equatith[8] shows the SP function,

SPID() =~ 3 wlw) (5.16)

TL(Z) wel

lis alabel candidate for clusterl € L(c). n(l) is the number of distinct words in For example, it
is “twitter over capacity twitter”, them (1) is 3. w(w) is the weight of wordw, which is accumulated

by all the weights of label candidatesi{C') that contain the worab.

ww)= Y w) (5.17)

leL(C),wel

For example, if there are two label candidates includingittes” as w(“twitter tee”) = 0.2 and
w(“twitter client”) = 0.3 in the cluster, them (“twitter”) = 0.2 + 0.3 = 0.5. w(l) is the weight of

the label candidate and is measured by the scores of the &dikiplocuments associated with
score(d)
)= — 5.18
wO= > = (5.18)
deD(q),led

d is the Wikipedia document associated witlscore(d) is the score of document Several scoring
mechanisms can be applied here. For examjte;e(d) = rank—1(d). n(d) is the number of label

candidates associated wiih

9The authors used Google n-grams collection to estimate theftequency in a very large web collection.
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Equation 5.19 defines the aggregated MI and SP score for @aehdandidate.
score(l|C) = By x MI(I|C) 4 B2 x SP(I|C) (5.19)

The j; are weights.

Geraci et al. [13] label clusters by three steps: local adatdi selection, global candidate selec-
tion, and final labels.

Local candidate selection: for a cluster, initialize sedigr all the words to be 0. For each word,
increase its score by 3 if it appears in a document title inctheter; increase its score by 1 if it
occurs in a snippet in the cluster. The top 10 words are sslexg the local candidates.

Global candidate selection: for each cluster, a modifiecuadubformation method (Equation
5.20[13)]) ~

MTI'(t,c) = P(t, c)log;(ggjf(l) + P(t, c)log]jz)f()tjjc()(i) (5.20)
is applied to select 3 terms from 10 local candidates. MI’ soeas the mutual dependence of term
t and cluster. In Equation 5.20P(t) is the probability of a document containing P(c) is the
probability of a document belonging to P(¢, ¢) is the probability of a document belongingtand
containingt at the same timeP(¥) is the probability that a document does not contaiR(c) is the
probability that a document does not belongtd(z, ¢) is the probability that a document does not
belong toc and does not contain Comparing Equation 5.20 with the standard mutual inforomat
function (Equation 5.4), the modified mutual informatiokea the positive correlation and removes
the negative correlation, i.e. the authors are only intetes the co-occurrence or co-absence of a
term and a cluster.

Final labels: all the contiguous substrings of the snippeats document titles in the cluster are
extracted. All the substrings are scored and the shortesivith the highest score is the final label.
A cumulative method is used to score a substring. To scorésirsng, a candidate word in the
substring adds a higher score (its Ml score), a word in theyqgadds a lower score, other words
decrease the score. In this way, the final label contains ceardidate words and few other words.

Krishna et al. [24] proposed a concept distinctiveness arditient coverage method to label
clusters. They first utilize a tool developed by IBM T. J. V@mtsResearch Lab to extract adjectives
and noun phrases (phrases can be a single term or multiphs)teAll the phrases are added to a
phrase set. In addition, the constituent words and the tu#isps for the phrases in the set are also
extracted and added to the set.

There are two important concepts for their labeling methattsument coverage and sibling
node distinctiveness. A document is said to be covered byemituhical cluster structure if at
least one of the top level clusters contains the documerishKa et al. [24] aim to make the final
hierarchical cluster structure cover more documents.irjbiode distinctiveness means that the
sibling clusters at the same level should be distinctivenfemch other. They select phrases based

on these two concepts.
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If there areK clusters on the top level, a greedy method is applied to spteases. Denote by
Sk_1 the set of phrases which have already been seletted, is the set of the remaining phrases.

Denoting a phrase with;, then the selected phrasgis

¢ = argmax g(Sg—1,¢;) (5.22)
CjEUk71
g is the objective function
9(Sk=1,¢j) = w19c(Sk—-1, ¢j) + waga(Sk=1,¢;), (5.22)

whereg. andg, measure the document coverage and sibling node distinegerespectivelyw,
andw, are the weightsg.(S;—1, ¢;) measures the increase in the document coverage if phyése

added to the existing phrases $gt ;.
9e(Sk-1,¢;) = |d(c;)| — |d(cj) N d(Sk-1)| (5.23)

d(c;) is the set of documents covers.d(Sj—1) is the set of documents that all the selected phrases
cover. gq4(Sk—1,¢;) measures the increase of the total number of topics whers@hyrés added to
Sk—1

9a(Sk-1,¢;) = [t(c;)] = [t(e;) N E(Sk—1)l- (5.24)

t(c;) is the set of topics introduced lzy. The documents covered lzy may also be covered by
other phrases, these other phrases pJderm the set(c;). ¢(Sx—1) represents the set analogously

defined for the phrases #),_;. In the end, the phrases #),_; are the final cluster labels.

5.3 Evaluation Methods for Cluster Labeling

Most of the research on web document clustering focusesusttecing or cluster labeling, less ef-
fort has been spent on evaluating the quality of the clusteels. Some research [4, 12, 51, 59]
used the “descriptor ranking” evaluation methods propdsedreeratpituk et al. [50], which in-
clude Match@N (Match in the top N results), P@N (Precisiothmtop N results), MRR (Mean
Reciprocal Rank), and MTRR (Mean Total Reciprocal Rankendsirveys are also adopted in some
research [12, 13, 41]. Different from all these methods tasunee the correctness and understand-
ability of cluster labels, our work evaluates cluster lab®} considering them as query suggestions

and uses the MCC and MEC scores proposed by Jiang et al. [19].

5.3.1 Descriptor Ranking Evaluation Methods

Treeratpituk et al. [50] reformalized the document clukbeling task as a descriptor ranking prob-
lem. The corresponding evaluation task is reformalized Because they ran their experiment on

the web directory Open Directory Project (OBPYthe manual labels of different categories in ODP

100DP is an open content directory of Web links and is constdiand maintained by humans. The website Istigt
/lwww.dmoz.org/
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are used as the ground truth. In order to compare the cladtels, they consider a cluster label to be
correct if it is identical to, an inflection of, or a Wordnetngnym of the correct label. In addition,

if there is more than one term in the correct label, contgjrdhleast one of them is regarded as
correct. Supposing one or multiple labels for one clustersaipplied, with the best label first, the

following evaluation measures are proposed.

e Match at top N results (Match@N): Match@N is a binary valugiégating whether the top N

suggested labels for one cluster contain any correct labels

e Precision at top N results (P@N): P@N is calculated as showmei following equation.

|SNOC‘

PQN =
N
For one document cluste$,y is the set of the topv suggested labels and is the set of the

correct labels. P@N measures the percentage of correts iatibe top N suggested labels.

e Mean Reciprocal Rank (MRR): RR is the reciprocal of the raftke first correct label in the
suggested labels. If the first correct label appears as thewgygested label, then RR is 1/3.
If none of the suggested labels is correct, RR is 0. If the $ugigested label is correct, then

RRis 1. MRR is the mean of the RR values of all document claster

e Mean Total Reciprocal Rank (MTRR): TRR is similar to RR exctyat TRR considers all
the correct suggested labels rather than only the firstctooree. For example, if the set of the
correct labels includes the label “fruit and health”, theafaéhe suggested labels contains the
label “fruit” (2nd place) and the label "health” (4th plac#)en the TRR score is/2+1/4 =

3/4. MTRR is the mean of all the TRR values of all document clisster

Carmel et al. [4] used two data collections namely 20 Newsu@i@ONG}* and ODP to run
their experiment. Both of these data collections have mldabals for categories. These manual
labels are considered as ground truth. Given the numbeeaétijuired cluster labels, they follow
the evaluation methods Match@N and MRR@N (héfes= K) of Treeratpituk et al. [50].

Ferragina et al. [12] implemented a web search engine basedippet clustering. They used
77 test queries, and for each test query, a cluster hieratcthe search results is supplied. They
asked people to manually tag whether the generated clastelslare correct and then used P@N to
evaluate their cluster labeling method. Since they geaeratuster hierarchy, if a label is manually
tagged as “ambiguous”, they consider the label correctafriajority of its children labels are
correct. They reported P@3, P@5, P@7 and P@10 in the end.

Zeng et al. [59] asked 3 people to label the clusters for 30igsiextracted from query logs as
the ground truth. Then they utilized P@N (€ {5, 10, 20}) to evaluate their system. Treeratpituk
et al. [51] used labels in ODP as ground truth and MRR as thiei@ian method.

11The 20 Newsgroups data set is a collection of approximate§@dnewsgroup documents, partitioned (nearly) evenly
across 20 different newsgroups. The website tstigt//people.csail.mit.edu/jrennie/20Newsgroups/ .
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5.3.2 User Surveys

Descriptor ranking evaluation methods evaluate clusteltaby following several rules, for exam-
ple, whether the label contains a term in the correct labber@fore, good cluster labels might be
ignored if they do not comply with those rules. User surveylsesthis problem. But compared
with descriptor ranking evaluation methods, a user sursalifficult to carry out and proven to be
affected by subjectivity. We introduce several studies |12 41] that adopt user surveys to evaluate
their cluster labels.

Geraci et al. [13] implemented a meta-search engine thatpgrthe web snippets returned by
auxiliary search engines into disjoint labeled clustens.oider to evaluate their cluster labeling
algorithm, they performed a user study on 22 computer seiemaster students, doctoral students
and post-doctorates. 35 test queries are supplied to thrdruseround robin way. For each test
query, all the labels of the clusters are supplied and thuestepns are asked in the following order
(quoted from [13]):

1. “Is the label syntactically well-formed?”
2. “Can you guess the content of the cluster from the label?”

3. “After inspecting the cluster, do you retrospectivelysider the cluster as well described by

the label?”

The first question measures the “elegance” of the clusteidathe second one evaluates how well
the label allows to predict the content of the cluster a pritve third one measures whether the
content of the cluster, in hindsight, is well representethigjabel. Three answefyes, sort-of, n
are possible for each question.

Popescul et al. [41] compared 4 cluster labeling methods: ntbst frequent and predictive
words methody? method, most frequent words method, and most predictivelsvarethod. They
conducted a user survey to supply 4 cluster labels from #hesethods respectively for one cluster,
and asked three computer science PhD students to rank ticesset labels with the best in the first
place. After this, each method is scored by its average mgnki

Ferragina et al. [12] used P@N to evaluate cluster labeladttition, since they implemented a
whole search engine, they gave a general evaluation ofsiisiem including the quality of cluster

labels by three user surveys.

1. First study: Is web clustering beneficial? They asked 4fpfeeto use Vivisimé? for a test
period of 20 days. 85% of them reported they got a good sensagé alternatives with the
meaningful labels, and 72% reported that the ability to posdon-the-fly clusters with labels

extracted from the text in response to a query is really itgor

2yjivisimo is a commercial search engine based on clustetitig:/vivisimo.com/
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2. Second study: Comparison of their system with other systsuch as Mooter, ClIRarchies,
Highlight, Carrot2. 18 test queries were used and threeswgere asked to help. The authors
collected the general opinions of users for each systenh asaisers do not like Mooter

because the cluster labels are single words.

3. Third study: Comparison of their system with Vivisimo. elauthors asked 20 students to
issue 18 test queries on the two systems and collected #eérgl opinions about the quality

of cluster hierarchy and cluster labels.
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Chapter 6

Conclusions

6.1 Summary

This thesis proposed three query suggestion systems baskd query suggestion method (QSQS)
developed by Jiang et al. [19]. Our approach follows the sahjective that Jiang et al. follow,
namely to generate query suggestions to cover most refeidomuments. In addition, we use the
MCC and MEC scores proposed by Jiang et al. to evaluate quggestions.

This thesis proposed Improved Query Suggestion by QuerncBdHSQS), Greedy Query
Suggestion by Query Search (GQSQS) and Query Suggestiorobynient Clustering (QSDC).
IQSQS follows the structure of QSQS and provides alteraatiyplementations for various compo-
nents in QSQS. Specifically, IQSQS generalizes the lexi@d aearch phase in QSQS to a search
term selection phase and suggests the three scoring merighiA, OC, and EOC to evaluate
terms from the search engine side. In addition, IQSQS repl#te top-down search in QSQS by a
bottom-up search method and enhances it by a beam searclkpAnneent was carried out to find
the best configuration of IQSQS (called IQSQS*). The comimaof the search term selection
method CSW and the query search method QoBS generates aquggrgstions with highest MCC
and MEC scores. Our experiment also demonstrates that tertine user’s query are important to
form desired query suggestions, and also strengthenstie @anclusion drawn by Jiang et al.

GQSQS modifies the control structure of QSQS and providesiéfycsuggestions in 10 rounds.
Instead of selecting search terms for each reference dotu@@©SQS extracts search terms from all
the uncovered reference documents in one round with a madifieerage score function. GQSQS
attains high MCC and MEC scores with much less effort conphar€)SQS.

QSDC applies document clustering to query suggestion and & create a query suggestion
for a document cluster so that the query suggestion repe@ncontent of the cluster as a cluster
label and also covers the web documents in the cluster. WIBDC, we tested four K-means
clustering methods, four agglomerative hierarchicalteltisg methods and one spectral clustering
method. The experimental results show that the documesiteclng methods we tested do not help
much in terms of MCC and MEC.
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6.2 Limitations and Future Work

Since this thesis is based on QSQS [17], our query suggesiitinods are limited by the assump-
tions of QSQS. One crucial assumption is on the user’s qukapyg et al. assume the user’s query is
able to return some relevant documents among the referemeerents. Therefore, when the user
forms a terrible query for which no document in the top 12Qktssis of interest to the user, our
guery suggestion method will fail.

The target web documents this thesis deals with are thodedametween 21-120. There is
no guarantee that they are relevant, they are just morg ltkdbe relevant than documents ranked
beyond 120. And there may be other useful web documents dhtsofange that our method will
miss.

Concerning the quality of our query suggestions, we meatidn Chapter 1 that we only use
MCC and MEC for evaluation. This just measures some aspéajsiery suggestions, we did
not evaluate the understandability of query suggestionshmMs an important factor in practical
use. Additionally, our method can not avoid that query sstiges are too similar to each other.
Therefore, there may still be ways to make the query suggestjenerated by our system more
practical.

Another limitation is that we know almost nothing about hdwe search engine works. If we
knew why a query returns a web document and how the order iwistér a query influences the
search results, our search term selection and query seautthlie improved substantially.

The coverage score functions we used in different system$ngortant for selecting search
terms. There are four scoring mechanisms, LA, OC, EOC andpt&sented in this thesis. A
further study is needed to find out the best weightings famtirethe coverage score function.

GQSQS achieving high MCC and MEC scores with much less dffditates the unnecessity
for IQSQS to process every reference document. How to ghdine processing time of IQSQS
while maintaining similar MCC and MEC scores is worth studyi

For QSDC, a deeper investigation is needed to analyze whyndewt clustering does not help
much in terms of MCC and MEC. Query suggestions created by @8Iiigyht represent different
aspects of the user’'s query compared to query suggestiosajed by IQSQS and GQSQS, be-
cause query suggestions created by QSDC are based on ddalosters. However, we did not
evaluate the query suggestions generated by QSDC in tiisae<Concerning document clustering
methods, there are more advanced web document clusterithgpdsene could try. In addition, this
thesis links web documents with queries by issuing quetddhe search engine. If we consider
web documents covered by the same query similar, we mightleg@create a new web document
clustering method based on this.

There are cluster labeling methods to create understamaalol distinguishable cluster labels,
another direction of future work could be to utilize thedediing methods in our query suggestion

system.
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6.3 Final Word

This thesis proposes three query suggestion systems, |JBQSQS and QSDC, to generate query
suggestions which could return reference documents tathpdsitions for the user to see. IQSQS
selects a list of search terms for each reference documapitea query search on the search terms
to generate query suggestion candidates, and greedilgtsé¢fe final query suggestions to maxi-
mize MCC and MEC. GQSQS modifies the control structure of I@SiQselects a list of search
terms, applies query search, and determines a final quegestign in each round. QSDC inserts a
document clustering phase into the structure of GQSQS, @havk the same control structure of
GQSQS. QSDC supplies one query suggestion for each refedemtiment cluster. The experiment
shows that all three systems improve the performance of @S antially.

This thesis selects terms for query suggestions in a new wafpat terms are evaluated by
their coverage scores. The coverage score reflects how wviethracovers reference documents
when included in a query. In addition, this thesis utilizeswment clustering methods for query
suggestion. Creating a query suggestion for a referencgnaierst cluster may still be a promising
approach, even though our experiment provides no eviddte asefulness of document clustering

in terms of reference document coverage.

70



Appendix A

Query Data

The query data we tested (50 short queries and 50 long quarial the experiments in this thesis
are randomly sampled from the AOL transaction log in 200@ng et al. [19] tested on exactly the
same query data.

The 50 short queries (containing at most 2 terms after remgosiop words) are listed in Table
A.1, and the 50 long queries (containing at least 3 terms aft@oving stop words) are listed in
Table A.2.

1This log was downloaded froimttp:/gregsadetsky.com/aol-data/
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Short Queries

Long Queries

volcanos in italy
google

samos

cheat codes
donbest

ebay

carytown va

Zoot suite

wild act

savings institute
teapot swinery
supreme court
teenies

apollo heights
argentina time
directv apocalypse
dillon cranes
cancer survivor
asl friend

lincoln Is

viva owen

sensual kissig
decorative paper
running scared
watermelon art
pills

whirlygigs

clive owen
portable generators
adelphia cable
herbs

myspace layouts
oreo cookie

ask jeeves

drazen komarica
walgreens

cj brown
hugglunds hydraulic
tribes of rwanda
nervous system
arlington high
japanese lure making
sex for mothers
venice hotels
sister sister

eileen fisher

kara janx

jet corp
refrigerator magnets
allison mack

dress up game for kid
50ml of corn syrup
exercises for thoracic spine instability
african american festivals
how to get fat off the thigs of the leg
maryland zoning map
enviroment board in preschool
a sex tape with jenen ackles
savannah morning news
fleur de lis draperies
kraft cream cheese dessert recipes
gifts for army mom
baton rouge louisiana
marine dock lights
caribean hilton hotel
lutheran churches fairfax va
castle in the sky songs
when your husband accidently kisses angtte
funny peterbilt t-shirts
personality disorders and how to recognize them
marine base in virginia
coloring pages tullips
circuit court of palm beach county florida
ibm thinkpad 760c
coming soon nextel
yorkie hair cuts
racine journal times
ged reading standards
congressional candidate john holmes
small business tax deductions
fn 5.7 reviews
ptarmigan country club
description of sit-up music
work at home customer service jobs
community college baltimore county
lawrence county in pennsylvania
key west campground
myspace music playlists
hotels in temple texas
underworld 2 movie
wholesaler for god teeth
consulado peruano en georgia
wake county nc records
mgm hotel las vegas
eglise de la madeleine paris
mexican student walkout & california & 1968
rockingham trading post
aol apprentice message board
divorced over 40 moms photos
south elgin houses for sale

Table A.1: The query data.
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Appendix B

Query Suggestion Examples

We select the query suggestions generated for severabgu®riGoogle.com and different methods
in Table B.1. We always generate 10 query suggestions, boglé@om may provide none or less
than 10 query suggestions for different queries as showaliteTB.1.

In Table B.1, we notice that some words@h occur twice in the query suggestion. We take
the query suggestion “herbs herbs” in the second part oETBUl as an example. The first “herbs”
is included ag), and the second “herbs” is a search term from the referenaguents. Since we
consider), and the reference documents as two different informatiomnces, we do not eliminate
words from the reference documents if they have alreadyaappgen()y. The reason why “herbs
herbs” is selected is because it covers more reference dotsrhan other query suggestion candi-
dates under our evaluation method, though this might seemtenntuitive. We do not really know
how the search engine works. However, the search resultseobs” and “herbs herbs” are clearly
not the same. For many top results of “herbs herbs”, the témanbs” appears twice in important
positions of the corresponding web documents, like the,titi many cases. For instance, the ti-
tles of some top results for “herbs herbs” from Google.comvN4th 2010) are “Herbs To Herbs”,
“Herbs Herbals herb and herbal remedies - HerbsHerbal$, ¢etarb’s Herbs & Such”, “Medicinal
herbs - Affordable herbs”, etc. These are not among the ®ydtesfor the query “herbs”.

As we discussed in the thesis (Section 1.1), our query stiggemethod is based on the be-
haviour of the search engine. Hence it is possible that oangsuggestions are difficult to under-
stand for humans. Also, we mentioned that there is still spreessing needed to turn our query

suggestions into practically usable query suggestions.
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v,

Google

QSQs

IQSQS

GQS0S

QSDC

major volcanoes in italy
famous volcanoes in italy
many volcanoes italy
three volcanoes italy

italy volcanoes

volcanos worldwide

volcano etna italy

volcanoes italy active

volcano diagram photo

italian volcanos

volcanoes forces nature mount
volcano information encyclopedia co

online volcano information volcanoes

amazon com volcano adventure guid|

volcanos in italy italy

volcanos in italy volcano erupted volcano

volcanos in italy cams active east

volcanos in italy volcano feb 7

volcanos in italy tv etna

volcanos in italy moderate eruptions
mvolcanos in italy explore eruption

volcanos in italy volcanos specifically
evolcanos in italy pacific

volcanos in italy studies volcano volcanoesvolcanos in italy volcanos

volcanos in italy italy org
ewolcanos in italy pacific volcanos growin|
volcanos in italy japan
volcanos in italy lands
volcanos in italy 3350
volcanos in italy brief pacific world
volcanos in italy uploaded
volcanos in italy deal
volcanos in italy diagram

volcanos in italy giant information active
volcanos in italy volcanos

gvolcanos in italy constitute
volcanos in italy pacific volcanos worldwid
volcanos in italy pacific time
volcanos in italy 08
volcanos in italy fire volcanos description
volcanos in italy information definition
volcanos in italy tv
volcanos in italy lands

MCC=5 MEC=1.5

MCC=35 MEC=3.7

MCC=60 MEC=7.2

MCC=49 MEC=6.3

MCC=50 MEC=6.6

list of herbs
types of herbs
cooking herbs
growing herbs
culinary herbs
pictures of herbs
medicinal herbs
herbal medicine

herbs herbal

herbs website

herbs com

herbs herb gardens gardening
information herbs

herbs organic

herb store herbs herbal
medicinal herbs

herbs home

site herb growing herb herbal

herbs com herbs

herbs company herbs site

herbs herbal provides

herbs herbs gardens

herbs information

herbs com vitamins

herbs drying seeds method
herbs herbs chinese herbal
herbs herbology 1

herbs herbs education programs

herbs herbs learn herb

herbs herbs co

herbs herbs com website

herbs information

herbs medical herb site

herbs herbs

herbs gardens

herbs herbs information database
herbs remedies

herbs seeds

herbs herbs learn herb
herbs com herbs website
herbs information

herbs co

herbs herbs

herbs gardens

herbs medicinal

herbs herbal

herbs com

herbs seeds

MCC=15 MEC=1.9

MCC=47 MEC=6.1

MCC=54 MEC=5.7

MCC=52 MEC=6.8

MCC=49 MEC=6.7

thinkpad 760c replacement
thinkpad 760c

760c 9547

ibm centre thinkpad 755cv
memory ibm thinkpad 760c
760c 760cd

760c 9546 product

ibm thinkpad 760 reviews
thinkpad 760c win

ibm 760c battery

ibm thinkpad 760c 755 760 ibm

ibm thinkpad 760c 365 760 ibm

ibm thinkpad 760c 760 dont mailing
ibm thinkpad 760c Icd 24

ibm thinkpad 760c 9546 page laptop
ibm thinkpad 760c fix

ibm thinkpad 760c 1995

ibm thinkpad 760c replacement 760Id
ibm thinkpad 760c vista 760 ibm

ibm thinkpad 760c 760 image com

ibm thinkpad 760c wholesale 760
ibm thinkpad 760c 560 365

ibm thinkpad 760c car

ibm thinkpad 760c 355

ibm thinkpad 760c repair

ibm thinkpad 760c 29

ibm thinkpad 760c 370 shopping
ibm thinkpad 760c shop

ibm thinkpad 760c wholesale 755cd
ibm thinkpad 760c 560e 755 380

ibm thinkpad 760c 370 60

ibm thinkpad 760c 760 755

ibm thinkpad 760c 380 365

ibm thinkpad 760c fix

ibm thinkpad 760c 340

ibm thinkpad 760c cover

ibm thinkpad 760c 760 06

ibm thinkpad 760c 60

ibm thinkpad 760c 365 760 29

ibm thinkpad 760c 340 accessories 760

MCC=0 MEC=0.0

MCC=60 MEC=8.2

MCC=80 MEC=11.0

MCC=63 MEC=11.4

MCC=65 MEC=11.4

Table B.1: The query suggestions for the queries “volcanaly”, “herbs” and “ibm thinkpad 760c” by Google.com andranethods.
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