
University of Alberta

SEARCH TERM SELECTION AND DOCUMENT CLUSTERING FORQUERY
SUGGESTION

by

Xiaomin Zhang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Xiaomin Zhang
Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University ofAlberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association withthe copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

Examining Committee

Robert Holte, Computing Science

Sandra Zilles, Computer Science, University of Regina

Randy Goebel, Computing Science

Dangzhi Zhao, Library and Information Studies (External)

Abstract

In order to improve a user’s query and help the user quickly satisfy his/her information need, most

search engines provide query suggestions that are meant to be relevant alternatives to the user’s

query. This thesis builds on the query suggestion system andevaluation methodology described in

Shen Jiang’s Masters thesis (2008). Jiang’s system constructs query suggestions by searching for

lexical aliases of web documents and then applying query search to the lexical aliases. A lexical

alias for a web document is a list of terms that return the web document in a top-ranked position.

Query search is a search process that finds useful combinations of search terms. The main focus of

this thesis is to supply alternatives for the components of Jiang’s system. We suggest three term-

scoring mechanisms and generalize Jiang’s lexical alias search to be a general search for terms that

are useful for constructing good query suggestions. We alsoreplace Jiang’s top-down query search

by a bottom-up beam search method. We experimentally show that our query suggestion method

improves Jiang’s system by 30% for short queries and 90% for long queries using Jiang’s evaluation

method. In addition, we add new evidence supporting Jiang’sconclusion that terms in the user’s

initial query terms are important to include in the query suggestions.

In addition, we explore the usefulness of document clustering in creating query suggestions. Our

experimental results are the opposite of what we expected: query suggestion based on clustering

does not perform nearly as well, in terms of the “coverage” scores we are using for evaluation, as

our best method that is not based on document clustering.

Acknowledgements

I would like to thank my supervisors Dr. Robert C. Holte and Dr. Sandra Zilles first. For the project,

they are my advisors and also teammates. They had the initialidea and guided me to quickly get

on track at the beginning. As the study progressed, when there were many possible directions I

could go, they first prevented me from going in too many directions and encouraged me to explore

other possibilities later. Also, they provided me with lotsof great ideas and insights. Though some

of them did not appear in the thesis, I still gained a lot by studying and testing them. During the

writing of my thesis, they’ve been so patient in their revision.

Then I’d like to thank Shen Jiang, Ying Xu, Hsiu-Chin Lin, Zhaochen Guo, Guohua Liu, Michel

Masset. They’ve all helped me on this thesis work at different stages. Also Dr. Russell Greiner

and Dr. Nathan Sturtevant have influenced me in some parts. I also really appreciated AICML

in Department of Computing Science at University of Albertagave me the opportunity to do this

research. My roommates, though we are all different majors,are families to me in Edmonton.

At last, I want to thank my parents and my old friends all over the world. They support me all

these years.

Table of Contents

1 Introduction 1
1.1 Task Definition and Approach 3
1.2 Contributions of This Thesis 5
1.3 Remark on Runtime Efficiency 6
1.4 Outline . 7

2 Essential Background 8
2.1 Content-based Addresses and Related Ideas 8
2.2 Query Search . 9
2.3 Query Suggestion by Query Search (QSQS) 11

2.3.1 Reference Document Collection 12
2.3.2 Lexical Alias Search .. 12
2.3.3 Query Suggestion Candidate Search 14
2.3.4 Query Suggestion Selection 15

2.4 The Google API .16
2.4.1 The Instability of the Google API 16

3 Improved and Greedy Query Suggestion by Query Search (IQSQS & GQSQS) 22
3.1 Introduction .. . 22
3.2 System Overview .. 22
3.3 Stemming . 23
3.4 Search Term Selection 25

3.4.1 Pre-selection .25
3.4.2 Final Selection .27

3.5 Query Suggestion Candidate Search 29
3.5.1 The Order of Search Terms .. 30
3.5.2 Adding Combination (AC) .. 30
3.5.3 Q0 and Adding Combination (QoAC) . 31
3.5.4 Beam Search (BS) . 31
3.5.5 Q0 and Beam Search (QoBS) . 32

3.6 Experiment to Find the Best Configuration of IQSQS 32
3.7 Greedy Query Suggestion by Query Search (GQSQS) 34
3.8 Comparison of QSQS, IQSQS* and GQSQS 35
3.9 Summary . 37

4 Does Document Clustering Help? 38
4.1 Introduction .. . 38
4.2 Query Suggestion by Document Clustering (QSDC) 39

4.2.1 Reference Document Collection 39
4.2.2 Reference Document Clustering 40
4.2.3 Search Term Selection .. 45
4.2.4 Comparison of Different Document Clustering Methods. 46

4.3 Comparison of QSDC with QSQS, IQSQS and GQSQS 47
4.4 Summary . 48

5 Related Work 49
5.1 Query Suggestion Methods 49

5.1.1 Methods Based on Global Thesauri 49
5.1.2 Local Methods . 50
5.1.3 Methods Utilizing Search Logs 51

5.2 Web Document Clustering 53
5.2.1 Clustering . 54
5.2.2 Cluster Labeling Methods .. . 58

5.3 Evaluation Methods for Cluster Labeling 64
5.3.1 Descriptor Ranking Evaluation Methods 64
5.3.2 User Surveys . 66

6 Conclusions 68
6.1 Summary . 68
6.2 Limitations and Future Work 69
6.3 Final Word . 70

A Query Data 71

B Query Suggestion Examples 73

Bibliography 75

List of Tables

1.1 The reference document coverage of the query suggestionprovided by Google.com. 4

2.1 Google API request parameters (see Footnote 1). 16
2.2 The influence of the instability of the Google API on our query suggestion systems. 18
2.3 Data for evaluating the instability of the Google API 18

3.1 The average MCC and MEC scores on 50 queries for stemming on and stemming
off in the IQSQS system. .24

3.2 The p-values for sign tests to compare the effect of stemming in IQSQS. 25
3.3 The average MCC and MEC scores for pre-selecting using snippets and using fre-

quency in IQSQS. 26
3.4 The p-values for sign tests to compare pre-selecting using snippets and using fre-

quency. 26
3.5 The average MCC and MEC score for each combination of methods in IQSQS. . . 33
3.6 The p-values for sign tests to compare CSW and LAW. 33
3.7 The p-values for sign tests to compare methods withQ0 and those withoutQ0. . . 34
3.8 The p-values for the sign test to compare CSW-QoBS and CSW-QoAC. 34
3.9 The average MCC and MEC score for CSW-QoBS and CSW-QoAC onlong queries. 34
3.10 The p-values for the sign test to compare CSW-QoBS and CSW-QoAC on long queries. 35
3.11 The average MCC and MEC scores of each system. 36
3.12 The p-values for sign tests to compare IQSQS* and QSQS. 36
3.13 The p-values for sign tests to compare GQSQS and QSQS. 36
3.14 The p-values for sign tests to compare IQSQS* and GQSQS.. 37

4.1 The average MCC and MEC scores of different document clustering methods in the
QSDC system. 46

4.2 The p-values for sign tests to compare different document clustering methods with
randomly assigning documents on short queries. 46

4.3 The p-values for sign tests to compare different document clustering methods with
randomly assigning documents on long queries. 47

4.4 The average MCC and MEC scores of each system. 47
4.5 The p-values for sign tests to compare QSDC and GQSQS. 47

5.1 The base clusters from Figure 5.2 (from [57]). 56

A.1 The query data. .. 72

B.1 The query suggestions for the queries “volcanos in italy”, “herbs” and “ibm thinkpad
760c” by Google.com and our methods. 74

List of Figures

1.1 The query suggestions for the query “volcanos in italy” on Google.com (Dec. 22nd,
2010). 2

2.1 The structure of the QSQS system [19]. 12
2.2 The corresponding string vector for the text “italy volcanoes cradle volcanology italy

travel”. 12
2.3 The query search tree for the list of search terms “custominformation search stan-

ford”, using the query search method of Jiang et al. [19]. 14

3.1 The structure of the QSQS system [19]. 23
3.2 The structure of the IQSQS system. 23
3.3 One search result for the query “jaguar” from Google.comon Oct. 5th, 2010. The

snippet is under the title “Jaguar - Wikipedia, the free encyclopedia”, begins with
“The jaguar (Panthera once) ...”, and ends with “The jaguar is the ...”. 26

3.4 Query search tree for a list of search terms “custom information search stanford”,
using the AC method. 31

4.1 An example of the K-means algorithm (Lloyd’s algorithm)whenK = 2. Lloyd’s
algorithm first randomly selects two cluster centroids, then iteratively assigns the
documents to the cluster centroids and re-computes the cluster centroids. After nine
iterations, the cluster centroids have converged (the figure is taken from [32]). . . . 42

4.2 An example of the agglomerative hierarchical clustering algorithm (see footnote 4).
A dendrogram is obtained by applying merging iteratively based on the similarity of
the clusters. The dashed line means the cutting point of the hierarchy (described later). 43

5.1 The clustered search results of the query “jaguar” from Yippy (Jul. 15th, 2010). In
addition to the search results in the center of the web page, 10 main clusters of the
search results are shown in the left column. If a user needs the information about the
jaguar cat, s/he may simply click the “Animal, Cat” label forrelated web documents 54

5.2 The suffix tree of strings “cat ate cheese”, “mouse ate cheese too”, and “cat ate
mouse too” (from [57]). .. 55

5.3 The clustering result for Figure 5.2 and Table 5.1. Thereis only one combined
component, therefore, only one cluster is returned which contains all the documents
(from [57]). 56

Chapter 1

Introduction

Web search is one of the most popular and useful services on the Internet. Given the large number of

web documents on the Internet, users find useful informationvia the search engine. For example, if

a user wants to know something about “thermodynamics”, s/hemay form thequery“thermodynam-

ics” and enter it in the search box of a search engine. The search engine returns millions or billions

of web documents related to the query “thermodynamics” and the mostrelevantones are ranked in

the top. Each search result contains a title, asnippetand a URL address. A snippet consists of one

or two sentences or phrases extracted by the search engine from the web document. By looking at

the title and the snippet, a user decides whether to navigateto the corresponding web document or

not.

Users may face some problems when using a search engine. Sometimes the search engine returns

almost nothing for a query, sometimes the search engine returns a large number of irrelevant web

documents. For both cases, the reason is usually not that there is no useful information for the user

on the Internet, it is often because of an inappropriate query. The query entered in the search box is

almost the only knowledge the search engine has to estimate the user’s requirement.

There are several possible reasons for an inappropriate query. On the lexical level, there are

spelling errors [9], splitting a word which should not be split, merging words which should not be

merged, acronym problems, etc. [14]. Considering spellingerrors for example, when the query “ma-

chine learning” is typed as “machin learning”, the quality of the relevant results might be reduced

greatly. For the acronym problems, the query “socs” might retrieve only a few web documents

related to the International Symposium on Combinatorial Search (SoCS) mingled with documents

not related to this subject. Besides lexical mistakes, users tend to form short queries consisting of

only one or two words [3, 5]. Short queries are more likely to be ambiguous [7]. For example, if a

user wants information about the jaguar car and enters the query “jaguar”, the returned results may

contain web documents about the jaguar car, the panthera onca, an aircraft named jaguar, etc. Fur-

thermore, the web documents on the Internet are created and maintained by different people. This

leads to avocabulary mismatchproblem, i.e. the words in the user’s query may be different from the

words in the relevant web documents, though these words refer to the same thing. For example, the

1

query “cat” may not be able to retrieve the web documents containing “feline”. On top of all these

objective reasons, a user may simply not be able to form the correct words for his/her specific intent

sometimes [54].

Therefore, based on the user’s original query, most search engines now supply query suggestions

that may better represent the user’s search intent and help the user find useful web documents faster.

For example, after a user types “volcanos in italy” on Google1, the query suggestions are supplied

at the bottom of the first page as shown in Figure 1.1. The procedure of creating these queries is

calledquery suggestion[3, 31], query refinement[14, 16],query expansion, query reformulationor

query substitution. Different research works may use different names or focus on different aspects,

but they all share the purpose of generating new queries to improve the user’s original query and

enhance the search usability.

Figure 1.1: The query suggestions for the query “volcanos initaly” on Google.com (Dec. 22nd,
2010).

There are many techniques to supply query suggestions for a query, such as methods based on

global thesauri [5, 32, 56], local query suggestion methods[32, 56], methods utilizing search logs

[3, 31, 54], etc. In addition to creating query suggestions that are relevant to the user’s query, most

query suggestion methods also aim to return understandableand recognizable query suggestions for

humans. However, a good query for humnas is not guaranteed tobe a good query for the search

engine. This thesis aims to provide good query suggestions for the search engine.

Since queries are often ambiguous, search results about different subjects often mix together.

There is a considerable amount of research done on organizing search results, i.e. categorizing web

documents for a query. These methods are usually referred toby the termweb document clustering

[12, 13, 15, 57, 58]. Though generating a query suggestion for each web document cluster seems

promising, there appears to be no literature explicitly utilizing web document clustering for query

suggestion. This thesis makes this attempt.

The following sections sketch the problem this thesis aims to solve, the general approach, the

contributions and an outline of this thesis.
1The Google search engine is athttp://www.google.com/ .

2

1.1 Task Definition and Approach

Before introducing our work, the query suggestion method proposed by Jiang et al. [19] has to be

described first, since we follow its basic assumptions, purpose and evaluation methodology.

The query suggestion method of Jiang et al. [19] is based on one crucial assumption. It assumes

the user’s query returns relevant web documents, but that the query is not good enough to return the

relevant web documents in the top positions for the user to see. With this assumption, the general

task of the system developed by Jiang et al. [19] is to create query suggestions that return relevant

web documents which are likely to be missed by the user back tothe top positions for the user to

see.

Given the task, the relevant web documents that are likely tobe missed by users have to be

located first. Jiang et al. [18] conducted an experiment to explore the positions of relevant web

documents in the search results of a query. Their work shows that there is a high probability that

a relevant web document appears in the top 120 search results. However, most users only view the

top 20 results (the first two pages of the search results). In other words, the work of Jiang et al. [18]

shows that a web document between top 21-120 in the search results is very likely to be useful to

users but may be missed because it is ranked too low (below thetop 20).

With the assumption and the work on relevant web documents [18], Jiang et al. [19] suggested a

purpose for their query suggestion method: creating query suggestions to return the web documents

between 21-120 back in the top 20 results. These web documents are calledreference documents for

the user’s query. In addition, they say a querycovers a web document if the query returns the web

document in the top 20 results. Following the previous example (Figure 1.1), we show the reference

document coverage of a query suggestion provided by Google.com for the query “volcanoes in

italy” in Table 1.1. The left column shows the reference documents for the query volcanos in italy

and the right column shows documents returned by the query suggestion major volcanoes in italy.

The covered reference documents are emphasized in Table 1.1(reference documents 59 and 88 are

covered).”

There are some things to be noted about the purpose of both Jiang et al.’s query suggestion system

and the query suggestion methods in this thesis. Covering all and only the reference documents is not

the goal we pursue. Otherwise, a much easier approach would be to cluster the reference documents

in groups, giving each group an understandable label, and returning the labels as links to the grouped

documents directly to the user. The disadvantage of this approach would be thatonly the reference

documents and no other documents would be presented to the user. What we are tackling in this

thesis is how to provide query suggestions that allow the user to find relevant documents when they

are not in the top 20 returned by the initial query. We need a way to estimate how many relevant

documents a given query suggestion returns in its top 20. We follow Jiang et al. in using the number

of reference documents covered to estimate this.

In order to evaluate their query suggestion method, Jiang etal. [19] introduced the MCC score

3

Original query: volcanos in italy Query suggestion: major volcanoes in italy
1. List of volcanoes in Italy - Wikipedia, the free encyclopedia 1. CVO Website - Major Volcanoes in Italy - Map
... 2. CVO Menu - Italy Volcanoes and Volcanics
20. Stromboli volcano (Italy) in eruption — Flickr - Photo Sharing! 3. Volcanism of Italy - Wikipedia, the free encyclopedia
21. CVO Menu - INDEX to CVO Online Volcanoes 4. Mount Etna - Wikipedia, the free encyclopedia
22. Arenal Volcano Costa Rica overview 5. List of volcanoes in Italy - Wikipedia, the free encyclopedia
23. Answers.com - What Volcanos are in Italy 6. major volcanoes of italy map and information page
24. Undersea Volcano Threat For Italy/Undersea Volcanoes Of Asphalt In ... 7. Answers.com - Name 3 major volcanoes in italy
25. Google Maps / Google Earth - Volcanos & Italy & Vulcano 8. Answers.com - What is the most important Volcano in Italy
26. World Map of Volcanoes, Volcanoes Of The World 9. Active Volcanoes: Stromboli, Italy
27. World Volcanoes Map — Volcano Lookup — Kamchatka Volcanos — Japan ... 10. Volcanoes of Italy - Vesuvius, Campi Flegrei, Etna, Stromboli ...
... 11. Major Volcanoes - World Map, Map of the World
57. Most active volcanos in the world? - Yahoo! Answers 12. Volcanoes In Italy
58. Mt Etna Volcano, Italy - John Seach 13. World’s Most Active Volcanoes - John Seach
59. major volcanoes of italy map and information page 14. Global Volcanism Program — Volcanic Activity Reports — Smithsonian ...
60. Volcanoes - Italiansrus.com 15. Italian Volcanoes — Italy
61. Vesuvius, the world’s most closely watched volcano 16. World’s most active volcanoes - Stromboli (Italy) - CSMonitor.com
... 17. Monte Vulture volcano, Italy
85. WebCam Central : WebCams by Category : Volcanos 18. Active Volcanoes in Europe
86. FIRE BELT AWARD 19. Exploring the Volcanoes of Italy — Expatify
87. Volcano Photos, Volcano Wallpapers, Pictures, Images –National .. 20. Names of Volcanoes in Italy — Directhit.com
88. Active Volcanoes: Stromboli, Italy
89. top help: what is the top 5 most deadly volcanoes - Help.com
90. Mt Etna, Sicily’s Dominant Volcano, Italy - Video
91. Volcanoes as emission sources of atmospheric mercury inthe ...
92. Volcanoes - definition of Volcanoes by the Free Online Dictionary ...
...
115. Top 7 Posh Hotels at Volcanic Sites
116. Volcanos by peter francis (volcanos in antartica. how the heck are ...
117. The Sirente crater, Italy: Impact versus mud volcano origins
118. Amazon.com: DK Readers: Volcanoes and Other Natural Disasters ...
119. EARTH CHANGES TV - VOLCANOS: Mt. Etna, Kilauea, Popocateptl ...
120. Vacation and Travel Talk: Active Volcanos

Table 1.1: The reference document coverage of the query suggestion provided by Google.com.

4

(Cumulative Coverage) and the MEC score (Expected Coverage). SupposeK is the number of

query suggestions that are supplied. Then the MCC score equals the number of reference docu-

ments covered by theseK query suggestions. The MEC score is the expected coverage ofreference

documents by one query suggestion. For example, suppose there are three query suggestions which

cover reference documents{22, 46, 50}, {22, 50, 77, 98} and{75, 77} respectively. Then the set of

the covered reference documents is{22, 46, 50, 75, 77, 98}, the MCC score is 6 and the MEC score

is |{22,46,50}|+|{22,50,77,98}|+|{75,77}|
3 = 3.

There is one thing to be noted about the evaluation method. Weonly used MCC and MEC

to measure query suggestions with the purpose of evaluatingthem from the search engine side.

However, there are more factors to be considered for query suggestions in practical use, such as the

understandability of the query suggestion, and the distinction between query suggestions. Therefore,

there are still steps to provide practical query suggestions after creating the ones by our method.

Based on the Query Suggestion by Query Search (QSQS) system of Jiang et al. [19], the first

task of this thesis is to improve QSQS by retaining its control structure but replacing the methods

in some phases of QSQS with our methods. There are four phasesin QSQS, we mainly generalize

the lexical alias search phase to a search term selection phase and suggest two alternatives for the

query suggestion candidate search phase. An Improved QuerySuggestion by Query Search (IQSQS)

system is proposed.

Document clustering methods group documents into different clusters based on their similarities.

Finding a query suggestion for each cluster seems promising. Therefore, another task of this thesis

is to investigate whether document clustering methods helpto find query suggestions with higher

MCC and MEC scores. For this task, we implemented a Query Suggestion by Document Clustering

(QSDC) system. The QSDC system modifies the control structure of QSQS, and inserts a document

clustering module in the system.

1.2 Contributions of This Thesis

We proposed the IQSQS system to create query suggestions. For short queries (containing at most

2 terms), the best configuration of IQSQS (we name it IQSQS*) improves the MCC score by 29.2%

and MEC by 32.6% compared to the QSQS system. For long queries(containing at least 3 terms),

IQSQS* improves the MCC score by 82.1% and MEC by 99.6% compared to QSQS. In addition,

we add evidence supporting the conclusion drawn by Jiang et al. [19] that terms in the user’s query

are important to retain in query suggestions in order to havehigh MCC and MEC scores.

In the lexical alias search phase of QSQS, a lexical alias fora reference document is selected as

the basis of query search. A lexical alias consists of 5 to 10 terms that collectively cover a given

reference document. During query search, some terms from the lexical alias are picked out and

combined to form a query suggestion candidate. Since the main purpose of the lexical alias is not

to cover the current reference document but to supply terms that can be used for forming query

5

suggestions, we suggest a search term selection phase to replace the lexical alias search phase. In

particular, we suggest three scoring mechanisms, LA, OC andEOC, to evaluate terms. LA is evolved

from lexical aliases to evaluate whether a term covers the current reference document, i.e. LA is a

local coverage. OC and EOC measure how many reference documents, not only the current one, are

covered by a term, i.e. the potential of global coverage. With these different scoring mechanisms,

we proposed two search term selection methods: LAW and CSW. The experiment shows that, for

short queries, CSW can improve the MCC score by 56.9% and MEC by 53.8% compared to LAW.

We also modified the query search phase of QSQS proposed by Jiang et al. [19]. Given a list of

terms, query search forms queries by combining terms in different ways. We replace the top-down

search method of Jiang et al. [19] by a bottom-up search method and enhance it by a beam search

method. The experiment shows that, given the same set of terms, our query search methods perform

equally well with Jiang et al.’s query search method.

In order to decrease the running time of evaluating terms andstill select useful terms, we apply

a pre-selection in the search term selection phase. We compared pre-selection by snippets and

by frequency and found that these two methods are equally good. Considering other advantages

snippets supply, we adopt snippets as our pre-selection method.

We also noticed the big improvement by always including the original queryQ0 in the query

suggestions; the experiment in Chapter 3 demonstrates this. For short queries, addingQ0 improved

MCC by 92.3% and MEC by 94.5%. For long queries, addingQ0 increased MCC by 32.4% and

MEC by 36.8%.

QSQS and IQSQS process 100 reference documents one by one to create the final 10 query sug-

gestions. A Greedy Query Suggestion method by Query Search (GQSQS) is developed by running

10 rounds to greedily find 10 best query suggestions. It runs faster than QSQS and IQSQS and its

performance is generally between QSQS and IQSQS. For short queries, QSQS, GQSQS, and IQSQS

roughly cover 50, 60, and 70 reference documents respectively. For long queries, QSQS, GQSQS,

and IQSQS cover about 40, 70, and 80 reference documents respectively.

We evaluate document clustering methods for query suggestion by developing the QSDC sys-

tem. The running time and the MCC/MEC score for QSDC are similarly to these of GQSQS. We

measure the performances of nine different document clustering algorithms in QSDC, none of them

outperforms the others. In order to evaluate whether document clustering helps or not, we carry out

another experiment in which documents are randomly assigned to one of ten clusters with a uniform

probability. By comparing the result, we conclude that the document clustering methods we used in

this thesis do not improve query suggestion in terms of MCC and MEC.

1.3 Remark on Runtime Efficiency

We present our query suggestion methods in this thesis and evaluate them using MCC and MEC

score. We do not consider computational time as an importantissue, though we apply pre-selection

6

in the search term selection phase, pruning in the query search phase, and we make our program code

efficient to decrease the running time. Since most of our computational time is spent on sending

requests to the Google API, we believe that with large scale computing ability and well indexed

web documents, the search engine could compute query suggestions with our methods quickly.

In addition, the search engine may not need to pre-select terms before evaluating terms, because

potentially all terms could be evaluated in a short time. Also, the query search phase could try more

query suggestions from the search engine side. Therefore, the search engine could supply even

better query suggestions in much shorter time than was required to obtain the results in this thesis.

1.4 Outline

This thesis proceeds as follows: Chapter 2 introduces the essential background knowledge for this

work, such as content-based addresses, query search and Jiang et al.’s query suggestion method [19].

Then the Google API used for all experiments in this thesis isintroduced. Instability of the Google

API and its influence on the experimental analysis are explored.

Chapter 3 elaborates on the IQSQS system and then introducesthe GQSQS system. An overview

of the IQSQS system is presented and compared with the work ofJiang et al. [19]. Different phases

of the IQSQS system are described in detail afterwards. The experiments demonstrate the improve-

ments on the work of Jiang et al. [19].

The QSDC system is introduced in Chapter 4. Similar to Chapter 3, Chapter 4 also proceeds

with a system overview and details of each phase in the QSDC system.

Related work about query suggestion methods, web document clustering methods and evaluation

methods of document cluster labeling are all described in Chapter 5.

Chapter 6 summarizes the whole thesis and lists possible future directions for our work.

7

Chapter 2

Essential Background

As introduced in Chapter 1, our query suggestion system has the same purpose as that developed by

Jiang et al. [19]: given an original queryQ0, supplyK (K = 10) query suggestions to return most

of the reference documents forQ0 in the top 20 positions. The idea of finding query suggestions

to return a specific set of web documents originates from the idea ofcontent-based addresses. In

this chapter, we will first describe the concept of content-based addresses, then several methods

to find content-based addresses for web documents are introduced. The idea ofquery searchthat

was proposed to search for a content-based address is illustrated after that. Based on content-based

addresses and query search, the query suggestion method of Jiang et al. [19] is presented. The last

section in this chapter introduces the Google API which we use to retrieve search results for queries

in our experiments. The instability of the Google API is analyzed and its influence on our query

suggestion systems is also investigated in the last section.

2.1 Content-based Addresses and Related Ideas

Martin and Holte [33] proposed the idea of content-based addresses. Later, a similar concept, called

thelexical signature, was suggested by Phelps and Wilensky [39]. After that, Jiang et al. [19] applied

a modified idea in their query suggestion system and named it the lexical alias. We introduce all of

them in chronological order.

Content-based address (summary query): “a content-based alternative to a URL

would be a list of key terms that could be used as a query to retrieve the target web

page from a large search engine. We will call this query acontent-based addressor

more specifically asummary query” [33].

Martin and Holte [33] proposed the idea of content-based addresses with two purposes. First,

retrieving web documents whose URL addresses change, and second, retrieving web documents

whose URL addresses change and whose contents are modified. Furthermore, they noticed that a

content-based address also has some potential to return related web documents.

8

In order to find a content-based address for a web document, aninitial query by concatenating

the document’s most frequent words and the title words is generated first. The initial query is often

long and precise and can be used to retrieve a moved web document at the first position in the

search results. Queries obtained from shortening and simplifying this initial query are evaluated as

to whether they return the web document in the top 10 results or not. All the shortened queries that

return the web document in the top 10 results are also collected as content-based addresses. These

shortened queries can be used to retrieve a web document thatis both moved and modified.

Lexical signature: “it is to include in the hyperlink, along with the URL, some part of

the document content. We call this content a lexical signature, as it is meant to identify

the given page by its content” [39].

Phelps and Wilensky [39] suggested to include the lexical signature in the address of a web

document with the URL to supply a robust hyperlink. With a robust-hyperlink-dereferencing, the

lexical signature is ignored when the URL works. If the URL address fails, the lexical signature is

issued to a search engine and the web document that matches the signature most closely is supplied

to the user.

Phelps and Wilensky thought that rare terms were ideal to form a lexical signature. Therefore,

they first utilized the data from search engines to determinethe rare terms for a web document, then

the term frequency (TF) of each rare term in a web document wascalculated. Since most rare terms

only occur once in a web document, they favored the rare termsby multiplying their TF scores with

their inverse document frequency (IDF) scores (IDF was capped at 5). At the end, they selected the

few best rare terms as the lexical signature for the web document.

Lexical alias: “a lexical alias for a web document is a query for which the web docu-

ment is ranked among the firstKl documents in the corresponding result list, whereKl

is a fixed threshold” [17].

Jiang et al. [19] borrow the ideas of content-based addresses and lexical signatures, and the

way they build up a lexical alias is similar to Martin and Holte’s method [33]. Jiang et al. [19]

concatenate the title words and the most frequent words to form a query. Once the query returns the

web document in the top 20 results, the query is regarded as the lexical alias for the web document.

2.2 Query Search

Query searchwas proposed for finding content-based addresses for web documents [33]. Query

search is a search process that is used to calculate the desired states (the desired queries) from the

start states (a set of important terms). Martin and Holte [33] first proposed the idea ofquery search

as quoted below, then Jiang et al. [19] applied query search in their query suggestion system.

9

“QuerySearch is a system designed to search for a query that results in one or more

particular documents being retrieved. There is a toolbox ofpossible search heuristics

that can be applied. Basically, an initial query is simplified or extended in order to find

a query that does a better job of finding the target documents”[33].

As we introduced in Section 2.1, Martin and Holte [33] first find the initial query and then

compute the shortened queries. Correspondingly, there aretwo kinds of query search in their work:

search for the initial query and search for the short and simplified queries. Query search for the

initial query is simple (Algorithm 2.1 is the pseudocode): the first initial query candidate consists of

thef most frequent terms1 plus the title terms (line 5). If this candidate returns the web document

as the first hit of the search results, this candidate is the initial query and this query search finishes

(lines 6-8). Otherwise,f is increased by 1 and the same process is repeated (lines 4-10). This search

ends when the initial query is found.

Algorithm 2.1 Query search for the initial query by Martin and Holte [33].
Input: a web documentd.
Output: the initial queryinitialQuery that returnsd as the first hit of results.

1: initialize initialQuery to be empty.
2: rank terms ind by frequency from highest to lowest, store sorted terms in a list sortedTerms.
3: initialize f to be a fixed number.
4: for i = f to sortedTerms.size() do
5: the initial query candidateinitialQueryCandidate = top i terms fromsortedTerms +

title terms.
6: if d is returned as the first hit wheninitialQueryCandidate is issued to a search engine

then
7: initialQuery ← initialQueryCandidate
8: break loop.
9: end if

10: end for
11: return initialQuery

Query search for the short and simplified queries is comparatively complicated (Algorithm 2.2

shows the pseudocode). At the beginning, a query queue is created and is initialized to contain

only the initial query (line 1). Then a loop occurs, in which one queryq is taken out of the query

queue (the head of the queue is taken out) and processed in an inner loop (line 3). The inner loop

goes through every term inq (lines 5-11). In the inner loop, a term inq is simplified2 and the

corresponding simplified queryq′ is tested as to whetherq′ returns the web document in the top 10

results or not. Ifq′ does,q′ is inserted in the query queue and the inner loop moves on to the next

term ofq (lines 6-10). If all the terms inq have been simplified and no simplified query forq returns

the web document in the top 10 results,q is regarded as unable to be simplified and is inserted in

the result set (lines 12-14). In this process, testing a query involves issuing it to a search engine and

1A term in [33] could be a phrase.
2Martin and Holte [33] considered various simplifying possibilities. For example, suppose the term is “word1+word2+

word3” where the quotation marks indicate all words have to appear,the term might be simplified by removing the quotation
marks, removing one word from the term, etc.

10

checking the returned results (line 7). After the outer loopfinishes, a result set is returned and all

queries in this set are the desired queries (line 16).

Algorithm 2.2 Query search for simplified queries by Martin and Holte [33].
Input: a web documentd, the initial queryinitialQuery for d.
Output: the simplified query setsimplifiedQuerySet.

1: insertinitialQuery to an empty query queuequeue.
2: while queue 6= NULL do
3: queryq ← queue.pop()
4: flag canBeSimplified← false
5: for every termt in q do
6: simplify t to form a simplified queryq′

7: if d is returned in the top 10 results whenq′ is issued to a search enginethen
8: insertq′ into queue.
9: canBeSimplified← true

10: end if
11: end for
12: if canBeSimplified = false then
13: insertq into the result setsimplifiedQuerySet.
14: end if
15: end while
16: return simplifiedQuerySet

Jiang et al. [19] utilized query search to find the lexical alias and the query suggestion candidates

by adapting the query search methods of Martin and Holte [33]. We will present the details of the

work by Jiang et al. [19] in Section 2.3.

The discussion above shows the idea of query search: constructing different queries by combin-

ing different terms and evaluating these queries by issuingthem to a search engine. Each query is

regarded as a search node in a search tree, different combinations imply different search paths, and

pruning is applied when a query does not meet some condition.

2.3 Query Suggestion by Query Search (QSQS)

Jiang et al. [19] proposed the Query Suggestion method by Query Search (QSQS). Their assumption

and purpose have both been introduced in Chapter 1, an overview and the details of the QSQS system

will be presented in this section.

The structure of the QSQS system is shown in Figure 2.1 [19]. For a user’s original queryQ0,

the reference document collectionphase collects all the reference documents forQ0 from the web,

parses and processes them. Then for each reference documentd, the lexical alias searchphase

analyzesd and finds a lexical alias ford. Different combinations of the terms in the lexical alias are

evaluated to create a set of query suggestion candidates in the query suggestion candidate search

phase. After processing all the reference documents, a greedy selection method is applied to the

set of query suggestion candidates to finalize the query suggestions forQ0 in thequery suggestion

selectionphase. Details of each phase are introduced in the followingsubsections.

11

Reference Document Collection

Lexical Alias Search

Query Suggestion Candidate Search

Query Suggestion Selection

Figure 2.1: The structure of the QSQS system [19].

2.3.1 Reference Document Collection

Given the user’s original queryQ0, the reference document collection phase retrieves raw reference

documents using the Google API, applies HTML parsing, changes all capital letters to lower case,

and removes stop words. Then every reference document is converted into a sequence of terms. A

sample text and its processed result are given below as an example. Figure 2.2 shows the corre-

sponding string vector which stores these terms in the program.

Sample text: ITALY&#39;S VOLCANOES: THE CRADLE OF VOLCANOL-

OGY, ITALY TRAVEL.

Processed text:italy volcanoes cradle volcanology italy travel

italy volcanoes cradle volcanology italy travel

Figure 2.2: The corresponding string vector for the text “italy volcanoes cradle volcanology italy
travel”.

2.3.2 Lexical Alias Search

Jiang et al. [19] think the title is often a summary of a reference document and it is given a higher

weight than other parts of the reference document by the search engine. Similarly, the most frequent

terms are important too, because the most frequent terms arelikely to be related with the content of

the reference document. Therefore, Jiang et al. [19] set theform of the lexical alias to be the title

words plus the most frequent words.

For a reference documentd, a sequence of seed terms consists of title terms and the mostfrequent

terms (frequency of at least 3). If the same term appears morethan once in the title, only the first

occurrence is kept. For instance, if the title of documentd is “gmail email from google gmail”, and

the most frequent terms ind are “access efficient spam mobile ...”, then the sequence of seed terms

for d is “gmail email from google access efficient spam mobile ...”. Given a lengthl, a lexical alias

12

candidate is formed by taking the firstl terms from the sequence of seed terms in order. Suppose

l = 5, the lexical alias candidate from the previous example is “gmail email from google access”.

The length of the lexical alias candidate is set to be between5 and 10 (l loops from 5 to 10). Once

a lexical alias candidate is built up, it is tested whether itcoversd. The loop stops and the current

lexical alias candidate is returned as the lexical alias ford if it coversd. If none of the lexical alias

candidates in the loop coversd, an empty string is returned. Following the example above, the first

lexical alias candidate is “gmail email from google access”. If it does not coverd, the next lexical

alias candidate “google email from google access efficient”is tested. If the second one coversd,

then “google email from google access efficient” is returnedand the lexical alias search ends.

Algorithm 2.3 Lexical Alias Search by Jiang et al. [19].
Input: a reference documentd (title and document body)
Output: a lexical aliaslexicalAlias for d

1: if d = NULL then
2: lexicalAlias← NULL
3: else
4: initialize a list of termstermSequence andlexicalAlias to be empty.
5: remove the duplicate words in the title.
6: for i = 1 to title.length() do
7: append thei-th word in the title to the end oftermSequence.
8: end for
9: sort terms in the document body by frequency from highest to lowest, remove the terms which

appear less than 3 times, store sorted terms insortedTerms.
10: for i = 1 to sortedTerms.length() do
11: append thei-th word insortedTerms to the end oftermSequence.
12: end for
13: if termSequence.length() ≥ 5 then
14: lexicalAliasCandidate← NULL
15: for i = 1 to 5 do
16: append thei-th word intermSequence to the end oflexicalAliasCandidate.
17: end for
18: index← 5
19: while index ≤ 10 do
20: if lexicalAliasCandidate coversd then
21: lexicalAlias← lexicalAliasCandidate
22: break loop.
23: else ifindex ≤ termSequence.length() then
24: append theindex-th word intermSequence to the end oflexicalAliasCandidate.
25: increaseindex by 1.
26: else
27: break loop.
28: end if
29: end while
30: end if
31: end if
32: return lexicalAlias

Algorithm 2.3 shows the pseudocode for lexical alias search. Lines 1-2 return an empty string if

the current reference document is empty. Lines 4-12 form thesequence of seed terms by adding the

13

title terms and the most frequent terms. Line 13 tests whether the sequence of seed terms contains

less than 5 words. Lines 15-17 form the first lexical alias candidate by appending the first 5 terms

from the sequence of seed terms. Line 20 evaluates whether a lexical alias candidate covers the

current document. If it does, line 22 breaks the loop. Otherwise, lines 23-25 append one more word

from the sequence of seed terms to the end of the lexical aliascandidate and loop again. The loop

ends when the length of the lexical alias candidate exceeds 10 or the terms in the sequence of seed

terms have all been tried.

2.3.3 Query Suggestion Candidate Search

Given the lexical alias for a reference documentd, Jiang et al. [19] proposed a depth-first query

search method to try different combinations of terms in the lexical alias. Specifically, the lexical

alias returned by the lexical alias search phase is considered to be the root query (start node) of

the search tree. A child query (child node) is formed by deleting one term from its parent query

(parent node) and the search goes one step deeper. If the child query covers the current document

d, the subtree of this child query is expanded and the search goes on. Otherwise, the subtree of this

child query is pruned and the search proceeds with its next sibling query. The process ends after

searching over the entire space. During searching, all the queries that cover the current documentd

with lengths between 2 and 5 are collected into a query suggestion candidate set.

1.“custom information
search stanford”

2.“information search
stanford”

3.“search
stanford”

4.“stanford” 5.“search”

6.“information
stanford”

7.“information
search”

8.“information”

9.“custom search stan-
ford”

10.“custom
stanford”

11.“custom”

12.“custom
search”

13.“custom information
stanford”

14.“custom
information”

15.“custom information
search”

Figure 2.3: The query search tree for the list of search terms“custom information search stanford”,
using the query search method of Jiang et al. [19].

For example, if the lexical alias is “custom information search stanford”, then the search tree

using the query suggestion candidate search method by Jianget al. [19] is like the one shown in

Figure 2.3. The number on each node indicates the searching order. The root of the search tree is

“custom information search stanford”, four child nodes aregenerated by deleting one word. Each

node is tested as to whether it covers the current documentd or not. The subtree of a node is

expanded if it coversd and pruned if it does not. Nodes that are crossed out in Figure2.3 are those

which do not coverd, so the search does not continue below them. During the search, a table of

visited queries is maintained to avoid duplicate searching. Because of this, for example, the right-

14

most node “custom information” on level 3 (suppose the root is on level 1) in Figure 2.3 is not

expanded. At the end, all the nodes which are not crossed out and satisfy the length limit in the

search tree are collected into a query suggestion candidateset.

2.3.4 Query Suggestion Selection

Given a set of query suggestion candidates, Jiang et al. [19]proposed a greedy selection method to

determine the final query suggestions. The goal of the greedyselection is to maximize the MCC

score. Query suggestion candidates which improve MCC the most are selected as the final query

suggestions. Specifically, ifK (K = 10) query suggestions are returned at the end, then there are

K selection rounds in the greedy selection method. In each round, the query suggestion candidate

which increases MCC the most is selected from the query suggestion candidate set, i.e. the system

selects the query suggestion candidate which covers the most uncovered reference documents. If

there is a tie, the contributions to MEC are compared and the bigger contributor is selected. After

one round is processed, the query suggestion for this round is removed from the query suggestion

candidate set, and the reference documents this query suggestion covers are marked as covered.

After K rounds, theK query suggestions selected are supplied to the user.

Algorithm 2.4 Greedy Selection [19].
Input: the query suggestion candidate setQSC
Output: K (K = 10) final query suggestionsQS

1: initializeQS andcoveredRefDoc to be empty.
2: for round = 1 to K do
3: initializemccContri andmecContri to be 0, the query suggestionqs for this round and the

reference documentqs coversqsCoveredRefDoc to be empty.
4: for qsc ∈ QSC do
5: calculate the reference documents thatqsc covers asqscCoveredRefDoc
6: if (|qscCoveredRefDoc−coveredRefDoc| > mccContri) or (|qscCoveredRefDoc−

coveredRefDoc| = mccContri and |qscCoveredRefDoc| > mecContri) then
7: mccContri← |qscCoveredRefDoc− coveredRefDoc|
8: mecContri← |qscCoveredRefDoc|
9: qs← qsc

10: qsCoveredRefDoc← qscCoveredRefDoc
11: end if
12: end for
13: insertqs intoQS
14: removeqs fromQSC
15: coveredRefDoc← (coveredRefDoc

⋃

qsCoveredRefDoc)
16: end for
17: returnQS

Algorithm 2.4 shows the pseudocode for the greedy selectionmethod. Line 1 does initialization,

and lines 2-16 processK rounds where lines 4-12 evaluate all the query suggestion candidates in

the set and greedily select the best one.

15

2.4 The Google API

We use the Google API from the University Research Program for Google Search3 to retrieve search

results for queries in our experiments. Search results for queries can be retrieved by sending a GET

request to the Google API over HTTP. Each Google API request consists of a base URL and several

request parameters which are appended after the base URL as the URL-encoded query string argu-

ments. The base URL is fixed ashttp://research.google.com/university/search/

service . The request parameters indicate the desired search results. Table 2.1 gives the docu-

mentation for all the parameters. For instance, if we want torequest the top 20 results for the query

“google”, we form a Google API request as “http://research.google.com/university/

search/service?clid=key-string&start=0&rsz=large&q= google ”, where “key-

string” is a secret key Google supplies to us. After the Google API receives this GET HTTP request,

a response string is returned. By parsing the response string, we get the desired search results for a

query.

Parameter Description
clid a secret key assigned by Google which must be included in every re-

quest to get access to the service from the Google API.
rsz indicates the size of the desired search results, the only options available

are “small” (10 results) and “large” (20 results).
start indicates the position of the first search result returned, between 0 and

980 inclusively.
q the URL-encoded search query.
lr restricts the search to a particular language. For example,

“&lr=lang en” is for English, “&lr=langde” is for German.
snippets adding “&snippets=true” will include snippets in the search results, oth-

erwise, the results will contain no snippets.

Table 2.1: Google API request parameters (see Footnote 1).

2.4.1 The Instability of the Google API

We measure different query suggestion systems by MCC and MEC. We find that the score for the

same query with the same method fluctuates irregularly over time. After looking into the problem,

we trace this back to the instability of the Google API.

We say the Google API is unstable because if we request the topKr (Kr = 120) search results

for the same query twice, the Google API may supply us with twodifferent sets of search results,

even if the two copies of the query are issued within seconds of one another. There are two types of

difference that occur in the search results. For the first type, the two sets of results contain the same

web documents, only in different orders. For the second type, the two sets of results contain different

web documents. The rest of this section explains why search results are unstable and analyzes the

3The Google API research documentation is athttp://research.google.com/university/search/
docs.html .

16

influence this instability has on our query suggestion systems and their evaluation.

We want the topKr results forQ0, but we cannot get them with one GET request, because the

only options for the size of the requested results are “small” (10) and “large” (20). In order to get the

top 120 results, we need to issue a request at least120/20 = 6 times. To be specific, we would need

to request 20 results forQ0 starting from 0 (“rsz=large”, “q=Q0”, “start=0”), then request another

20 results forQ0 starting from 20 (“rsz=large”, “q=Q0”, “start=20”), and so on, until we get allKr

results forQ0. We request 6 times consecutively whenKr = 120. If the Google API changes the

search results between any of these requests, the results would be influenced.

In order to investigate the instability of the Google API, wedesigned and carried out an experi-

ment. We requested the top 120 results for the same query twice consecutively (6 requests to get the

top 120 results, then 6 more to get the top 120 results again),and compared the two sets of results.

The Google API was tracked for 24 hours starting from Sep. 13th 2010 and the experimental data is

shown in Table 2.3. The time column in Table 2.3 refers to the time that the first of the 12 (=6+6)

requests to the Google API was submitted. We tested seven different queries (shown in column

“query”) in the experiment. For each query, we compared its two sets of search results from the

Google API. There are three types of results in Table 2.3. “Exactly the same” means the two sets

of search results are exactly the same. “Type 1 difference” means the contents of the two sets of

results are the same but the order of some documents is different. “Type 2 difference” means there

are some documents that only appear in one set of results. Thedata in Table 2.3 shows two things.

First, the instability may happen no matter what query we useand when we issue the query. Second,

the results are relatively stable, since most of the resultsare “exactly the same” and most times only

one or two results are different for “type 2 difference”.

The instability of the Google API influences the evaluation of our query suggestion system. With

two different sets of reference documents for the same query, the same query suggestion system

might produce different query suggestions and different MCC and MEC scores. However, Table 2.3

indicates these scores are only slightly unstable. In orderto judge the validity of evaluating our query

suggestion system with the unstable Google API, we carried out an experiment. In this experiment,

we applied three query suggestion systems, QSQS, QSDC and GQSQS4, on a set of 50 short queries

(see Appendix A). Every system is run two times (shown in column “time” in Table 2.2). The MCC

and MEC scores are averaged on the 50 queries. For each system, its second MCC (MEC) score is

compared with its first MCC (MEC) score, and the difference isgiven in parentheses in Table 2.2.

For example, the second MCC score for QSQS is 0.14 less than its first MCC score. From the table,

we can see that the MCC (MEC) scores for the same system on the same queries are very similar.

By contrast, the MCC (MEC) scores for different systems on the same queries have noticeable

differences. This experiment shows that even if the Google API is unstable, a query suggestion

4QSQS is the query suggestion system proposed by Jiang et al. [19] which has been introduced in Section 2.3; QSDC is a
query suggestion by document clustering and will be introduced in Chapter 4; GQSQS is a greedy query suggestion method
by query search and will be described in Section 3.7.

17

system always has very similar MCC and MEC scores. In addition, good methods and bad methods

are still distinguishable with big differences between theMCC and MEC scores. Therefore, we can

still use our evaluation method even though the Google API isunstable.

Method MCC MEC Time
QSQS 56.08 7.122 Apr 14 2010
QSQS 55.94 (-0.14) 7.144 (+0.022) Apr 18 2010
QSDC 67.46 10.448 Apr 15 2010
QSDC 67.18 (-0.28) 10.546 (+0.098) Apr 20 2010

GQSQS 65.18 9.748 Apr 30 2010
GQSQS 64.84 (-0.34) 9.812 (+0.064) May 1 2010

Table 2.2: The influence of the instability of the Google API on our query suggestion systems.

Because of the instability of the Google API, we consider twosystems “equally good” if their

MCC (MEC) scores are close even if not exactly the same. Good and bad systems are still compara-

ble since their MCC differences are often bigger than 5 and their MEC differences are often bigger

than 1.

Table 2.3: Data for evaluating the instability of the GoogleAPI

query result time
volcanos in italy Type 2 difference: 1/120 results are different.Mon Sep 13 22:00:00 2010
google Exactly the same. Mon Sep 13 22:00:05 2010
watermelon art Type 2 difference: 1/120 results are different.Mon Sep 13 22:00:09 2010
herbs Exactly the same. Mon Sep 13 22:00:14 2010
oreo cookie Type 2 difference: 1/120 results are different.Mon Sep 13 22:00:19 2010
venice hotels Exactly the same. Mon Sep 13 22:00:24 2010
refrigerator magnets Type 2 difference: 1/120 results are different.Mon Sep 13 22:00:29 2010
volcanos in italy Type 1 difference: only different order. Mon Sep 13 23:00:00 2010
google Type 2 difference: 4/120 results are different.Mon Sep 13 23:00:05 2010
watermelon art Exactly the same. Mon Sep 13 23:00:10 2010
herbs Type 1 difference: only different order. Mon Sep 13 23:00:14 2010
oreo cookie Type 2 difference: 2/120 results are different.Mon Sep 13 23:00:19 2010
venice hotels Exactly the same. Mon Sep 13 23:00:27 2010
refrigerator magnets Type 2 difference: 3/120 results are different.Mon Sep 13 23:00:31 2010
volcanos in italy Exactly the same. Tue Sep 14 00:00:00 2010
google Exactly the same. Tue Sep 14 00:00:04 2010
watermelon art Exactly the same. Tue Sep 14 00:00:08 2010
herbs Exactly the same. Tue Sep 14 00:00:12 2010
oreo cookie Exactly the same. Tue Sep 14 00:00:17 2010
venice hotels Exactly the same. Tue Sep 14 00:00:21 2010
refrigerator magnets Exactly the same. Tue Sep 14 00:00:25 2010
volcanos in italy Exactly the same. Tue Sep 14 01:00:05 2010
google Exactly the same. Tue Sep 14 01:00:09 2010
watermelon art Exactly the same. Tue Sep 14 01:00:13 2010
herbs Exactly the same. Tue Sep 14 01:00:17 2010
oreo cookie Exactly the same. Tue Sep 14 01:00:21 2010
venice hotels Exactly the same. Tue Sep 14 01:00:25 2010
refrigerator magnets Exactly the same. Tue Sep 14 01:00:29 2010

Continued on next page

18

Table 2.3 – continued from the previous page
query result time

volcanos in italy Exactly the same. Tue Sep 14 02:00:01 2010
google Exactly the same. Tue Sep 14 02:00:03 2010
watermelon art Exactly the same. Tue Sep 14 02:00:06 2010
herbs Exactly the same. Tue Sep 14 02:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 02:00:11 2010
venice hotels Exactly the same. Tue Sep 14 02:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 02:00:17 2010
volcanos in italy Exactly the same. Tue Sep 14 03:00:01 2010
google Exactly the same. Tue Sep 14 03:00:03 2010
watermelon art Exactly the same. Tue Sep 14 03:00:06 2010
herbs Exactly the same. Tue Sep 14 03:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 03:00:11 2010
venice hotels Exactly the same. Tue Sep 14 03:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 03:00:16 2010
volcanos in italy Exactly the same. Tue Sep 14 04:00:00 2010
google Exactly the same. Tue Sep 14 04:00:03 2010
watermelon art Exactly the same. Tue Sep 14 04:00:05 2010
herbs Exactly the same. Tue Sep 14 04:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 04:00:10 2010
venice hotels Exactly the same. Tue Sep 14 04:00:13 2010
refrigerator magnets Exactly the same. Tue Sep 14 04:00:16 2010
volcanos in italy Exactly the same. Tue Sep 14 05:00:00 2010
google Exactly the same. Tue Sep 14 05:00:03 2010
watermelon art Exactly the same. Tue Sep 14 05:00:05 2010
herbs Exactly the same. Tue Sep 14 05:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 05:00:10 2010
venice hotels Exactly the same. Tue Sep 14 05:00:13 2010
refrigerator magnets Exactly the same. Tue Sep 14 05:00:15 2010
volcanos in italy Type 2 difference: 1/120 results are different.Tue Sep 14 06:00:01 2010
google Type 2 difference: 1/120 results are different.Tue Sep 14 06:00:03 2010
watermelon art Exactly the same. Tue Sep 14 06:00:06 2010
herbs Exactly the same. Tue Sep 14 06:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 06:00:11 2010
venice hotels Exactly the same. Tue Sep 14 06:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 06:00:17 2010
volcanos in italy Exactly the same. Tue Sep 14 07:00:01 2010
google Exactly the same. Tue Sep 14 07:00:04 2010
watermelon art Exactly the same. Tue Sep 14 07:00:06 2010
herbs Exactly the same. Tue Sep 14 07:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 07:00:11 2010
venice hotels Exactly the same. Tue Sep 14 07:00:14 2010
refrigerator magnets Type 1 difference: only different order. Tue Sep 14 07:00:17 2010
volcanos in italy Exactly the same. Tue Sep 14 08:00:00 2010
google Exactly the same. Tue Sep 14 08:00:03 2010
watermelon art Exactly the same. Tue Sep 14 08:00:05 2010
herbs Exactly the same. Tue Sep 14 08:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 08:00:11 2010
venice hotels Exactly the same. Tue Sep 14 08:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 08:00:18 2010
volcanos in italy Exactly the same. Tue Sep 14 09:00:00 2010
google Exactly the same. Tue Sep 14 09:00:04 2010

Continued on next page

19

Table 2.3 – continued from the previous page
query result time

watermelon art Exactly the same. Tue Sep 14 09:00:07 2010
herbs Exactly the same. Tue Sep 14 09:00:10 2010
oreo cookie Exactly the same. Tue Sep 14 09:00:13 2010
venice hotels Exactly the same. Tue Sep 14 09:00:17 2010
refrigerator magnets Exactly the same. Tue Sep 14 09:00:22 2010
volcanos in italy Exactly the same. Tue Sep 14 10:00:01 2010
google Exactly the same. Tue Sep 14 10:00:03 2010
watermelon art Exactly the same. Tue Sep 14 10:00:06 2010
herbs Exactly the same. Tue Sep 14 10:00:10 2010
oreo cookie Exactly the same. Tue Sep 14 10:00:12 2010
venice hotels Exactly the same. Tue Sep 14 10:00:15 2010
refrigerator magnets Exactly the same. Tue Sep 14 10:00:18 2010
volcanos in italy Exactly the same. Tue Sep 14 11:00:00 2010
google Exactly the same. Tue Sep 14 11:00:03 2010
watermelon art Exactly the same. Tue Sep 14 11:00:05 2010
herbs Exactly the same. Tue Sep 14 11:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 11:00:10 2010
venice hotels Exactly the same. Tue Sep 14 11:00:13 2010
refrigerator magnets Exactly the same. Tue Sep 14 11:00:16 2010
volcanos in italy Exactly the same. Tue Sep 14 12:00:00 2010
google Exactly the same. Tue Sep 14 12:00:03 2010
watermelon art Exactly the same. Tue Sep 14 12:00:06 2010
herbs Exactly the same. Tue Sep 14 12:00:10 2010
oreo cookie Exactly the same. Tue Sep 14 12:00:12 2010
venice hotels Exactly the same. Tue Sep 14 12:00:15 2010
refrigerator magnets Exactly the same. Tue Sep 14 12:00:19 2010
volcanos in italy Exactly the same. Tue Sep 14 13:00:00 2010
google Exactly the same. Tue Sep 14 13:00:03 2010
watermelon art Type 1 difference: only different order. Tue Sep 14 13:00:06 2010
herbs Exactly the same. Tue Sep 14 13:00:10 2010
oreo cookie Exactly the same. Tue Sep 14 13:00:12 2010
venice hotels Exactly the same. Tue Sep 14 13:00:16 2010
refrigerator magnets Exactly the same. Tue Sep 14 13:00:19 2010
volcanos in italy Exactly the same. Tue Sep 14 14:00:01 2010
google Exactly the same. Tue Sep 14 14:00:05 2010
watermelon art Exactly the same. Tue Sep 14 14:00:08 2010
herbs Exactly the same. Tue Sep 14 14:00:11 2010
oreo cookie Exactly the same. Tue Sep 14 14:00:14 2010
venice hotels Exactly the same. Tue Sep 14 14:00:17 2010
refrigerator magnets Exactly the same. Tue Sep 14 14:00:22 2010
volcanos in italy Exactly the same. Tue Sep 14 15:00:00 2010
google Exactly the same. Tue Sep 14 15:00:03 2010
watermelon art Exactly the same. Tue Sep 14 15:00:05 2010
herbs Exactly the same. Tue Sep 14 15:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 15:00:11 2010
venice hotels Exactly the same. Tue Sep 14 15:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 15:00:18 2010
volcanos in italy Exactly the same. Tue Sep 14 16:00:00 2010
google Exactly the same. Tue Sep 14 16:00:03 2010
watermelon art Exactly the same. Tue Sep 14 16:00:06 2010
herbs Exactly the same. Tue Sep 14 16:00:08 2010

Continued on next page

20

Table 2.3 – continued from the previous page
query result time

oreo cookie Exactly the same. Tue Sep 14 16:00:11 2010
venice hotels Exactly the same. Tue Sep 14 16:00:13 2010
refrigerator magnets Exactly the same. Tue Sep 14 16:00:16 2010
volcanos in italy Type 2 difference: 2/120 results are different.Tue Sep 14 17:00:00 2010
google Type 2 difference: 1/120 results are different.Tue Sep 14 17:00:06 2010
watermelon art Type 2 difference: 1/120 results are different.Tue Sep 14 17:00:12 2010
herbs Type 1 difference: only different order. Tue Sep 14 17:00:17 2010
oreo cookie Type 2 difference: 1/120 results are different.Tue Sep 14 17:00:22 2010
venice hotels Exactly the same. Tue Sep 14 17:00:27 2010
refrigerator magnets Type 2 difference: 1/120 results are different.Tue Sep 14 17:00:31 2010
volcanos in italy Exactly the same. Tue Sep 14 18:00:01 2010
google Exactly the same. Tue Sep 14 18:00:04 2010
watermelon art Type 1 difference: only different order. Tue Sep 14 18:00:07 2010
herbs Exactly the same. Tue Sep 14 18:00:11 2010
oreo cookie Exactly the same. Tue Sep 14 18:00:14 2010
venice hotels Type 2 difference: 8/120 results are different.Tue Sep 14 18:00:23 2010
refrigerator magnets Exactly the same. Tue Sep 14 18:00:26 2010
volcanos in italy Exactly the same. Tue Sep 14 19:00:00 2010
google Exactly the same. Tue Sep 14 19:00:03 2010
watermelon art Exactly the same. Tue Sep 14 19:00:06 2010
herbs Exactly the same. Tue Sep 14 19:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 19:00:12 2010
venice hotels Exactly the same. Tue Sep 14 19:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 19:00:17 2010
volcanos in italy Exactly the same. Tue Sep 14 20:00:00 2010
google Exactly the same. Tue Sep 14 20:00:03 2010
watermelon art Exactly the same. Tue Sep 14 20:00:06 2010
herbs Exactly the same. Tue Sep 14 20:00:08 2010
oreo cookie Exactly the same. Tue Sep 14 20:00:11 2010
venice hotels Exactly the same. Tue Sep 14 20:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 20:00:17 2010
volcanos in italy Exactly the same. Tue Sep 14 21:00:00 2010
google Exactly the same. Tue Sep 14 21:00:03 2010
watermelon art Exactly the same. Tue Sep 14 21:00:06 2010
herbs Exactly the same. Tue Sep 14 21:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 21:00:12 2010
venice hotels Exactly the same. Tue Sep 14 21:00:16 2010
refrigerator magnets Exactly the same. Tue Sep 14 21:00:19 2010
volcanos in italy Exactly the same. Tue Sep 14 22:00:01 2010
google Exactly the same. Tue Sep 14 22:00:03 2010
watermelon art Exactly the same. Tue Sep 14 22:00:06 2010
herbs Exactly the same. Tue Sep 14 22:00:09 2010
oreo cookie Exactly the same. Tue Sep 14 22:00:12 2010
venice hotels Exactly the same. Tue Sep 14 22:00:14 2010
refrigerator magnets Exactly the same. Tue Sep 14 22:00:17 2010

21

Chapter 3

Improved and Greedy Query
Suggestion by Query Search (IQSQS
& GQSQS)

3.1 Introduction

We introduced the Query Suggestion method by Query Search (QSQS) proposed by Jiang et al.

[19] in Chapter 2. In QSQS, alexical aliasfor every reference document is calculated. The lexical

alias contains terms that are the basis of the query search. Since terms in the lexical alias are

combined to build different query suggestion candidates, we think their lexical alias search is simply

a method to supplysearch terms. We use “search terms” to refer to terms selected from reference

documents and that are important to form query suggestions with high MCC and MEC scores. Based

on this observation, we propose an Improved Query Suggestion method by Query Search (IQSQS)

whose main improvement is to replace the lexical alias search phase in QSQS by asearch term

selectionphase. In addition to the improvements made to each phase of QSQS, we modify the

control structure of QSQS in a greedy way and suggest anotherimproved method, Greedy Query

Suggestion by Query Search (GQSQS). The experimental results demonstrate the superiority of

IQSQS and GQSQS over QSQS.

In this chapter, we will describe the system structure of theIQSQS system and then consider the

alternative implementations of its various components. Experimental comparisons of the alternatives

are then presented. GQSQS is described after IQSQS and a comparison of QSQS, IQSQS and

GQSQS is given to end this chapter.

3.2 System Overview

The structure of the IQSQS system is shown in Figure 3.2. Figure 3.1 [19] presents the structure

of the QSQS system for comparison. Algorithm 3.1 is the pseudocode of IQSQS. For the user’s

original queryQ0, thereference document collectionphase collects all the reference documents for

22

Reference Document Collection

Lexical Alias Search

Query Suggestion Candidate Search

Query Suggestion Selection

Figure 3.1: The structure of the QSQS system
[19].

Query Suggestion Selection

Query Suggestion Candidate Search

Final Selection

Pre-selection

Search Term Selection

Reference Document Collection

Figure 3.2: The structure of the IQSQS system.

Q0 from the web, parses and processes them (line 2). For each reference documentd, thesearch

term selectionphase contains apre-selectionstep and afinal selectionstep to generate a list of search

terms ford (line 4). Different combinations of search terms are evaluated to create a set of query

suggestion candidates in thequery suggestion candidate searchphase (line 5). After processing all

the reference documents, a greedy selection method is applied to the query suggestion candidate set

to finalize the query suggestions forQ0 in thequery suggestion selectionphase (line 7).

Algorithm 3.1 Improved Query Suggestion by Query Search (IQSQS)
Input: the original queryQ0

Output: K (K = 10) query suggestions
1: initialize the query suggestion candidate setQSC to be empty.
2: collect all the reference documentsD (|D| = 100).
3: for i = 1 to |D| do
4: select a list of search termsSTi for theith reference document.
5: apply query search onSTi and add query suggestion candidates for theith reference docu-

ment toQSC.
6: end for
7: greedily selectK query suggestions fromQSC and insert them into the query suggestion set

QS.
8: return QS

3.3 Stemming

Stemming is often used to process texts in theinformation retrievalfield. We do not apply stemming

in the reference document collection phase in IQSQS. This section gives a simple introduction of

stemming and explains why we do not use it.

In linguistic morphology, “the goal of stemming is to reduceinflectional forms and sometimes

derivationally related forms of a word to a common base form”[32]. For instance, “stemming”,

23

“stemmer”, “stemmed” are all based on “stem”. Terms with thesame root usually have similar

meanings, such as “connect”, “connection”, “connected” and “connecting” [32]. “The performance

of the information retrieval system will be improved if these words are grouped together” [42], and

stemming is often applied for this purpose [32, 42].

“A stemming algorithm usually refers to a crude heuristic process that chops off the ends of

words in the hope of reducing all the words with the same stem to a common form correctly most of

the time, and often includes the removal of derivational affixes” [30, 32]. Stemming algorithms are

often called stemmers. The most popular English stemmer is the Porter stemming algorithm [42]

which is the defacto standard English stemmer. The Porter stemmer1 has a group of pre-defined

rules, different rules are applied in different contexts. We cite an example of Manning et al. [32]

below to show the different rules and the way to apply them. Inaddition, “the Porter stemmer

measures whether it is reasonable to remove the suffix. For instance, the word ‘replacement’ is

reduced to ‘replac’, but ‘cement’ is not reduced to ‘c’” [32]. Nevertheless, the Porter stemmer still

cannot achieve perfection as defined by linguists. For example, it mistakenly stems “october” back

to “octob”.

Rule Example
SSES→ SS caresses→ caress
IES→ I ponies→ poni
SS→ SS caress→ caress
S→ cats→ cat

The Porter stemming algorithm may improve the MCC and MEC score of IQSQS, on the other

hand it may lower the quality of query suggestions by making them incomprehensible for humans.

We ran an experiment to compare the effects of stemming in IQSQS. The search term selection

method applied in the experiment is LAW and the query suggestion candidate search method is

QoAC, both will be introduced in the following sections. There are two sets of runs, stemming on

(with stemming) and stemming off (without stemming). Each set was run on a group of 50 short

queries and a group of 50 long queries (see Appendix A). The average MCC and MEC scores on

each group of 50 queries are reported in Table 3.1.

Stemming option Short queries Long queries
stemming off MCC=67.08 MEC=8.82 MCC=73.12 MEC=9.88
stemming on MCC=63.72 MEC=8.25 MCC=70.78 MEC=9.63

Table 3.1: The average MCC and MEC scores on 50 queries for stemming on and stemming off in
the IQSQS system.

From Table 3.1, IQSQS with stemming on has lower MCC and MEC scores on both short queries

and long queries than with stemming off. Since different query data make MCC and MEC fluctu-

ate, the sign test from statistics is adopted to ensure our conclusion. The MCC (MEC) scores of

1The Porter stemming algorithm is athttp://tartarus.org/ ˜ martin/PorterStemmer/ .

24

switching off and on stemming are considered two random variables, the values on 50 queries are 50

samples, the number of times that one is better than the otheris counted, and the p-value (two-tailed)

is reported in Table 3.2.

Short queries Long queries
MCC p-value = 3.10E-07 p-value = 0.31
MEC p-value = 9.85E-05 p-value = 0.68

Table 3.2: The p-values for sign tests to compare the effect of stemming in IQSQS.

We setα = 0.05, then from Table 3.2, the result is significant that stemmingon and off perform

differently for short queries. However, for long queries, we fail to reject the null hypotheses and the

data does not provide sufficient evidence to conclude that stemming on and off perform differently.

To sum up, stemming off works better than stemming on. Additionally, stemming decreases the

understandability of query suggestions. Therefore, we do not apply stemming in IQSQS2.

3.4 Search Term Selection

Each reference document is converted into a sequence of terms after the reference document col-

lection phase. For each reference document, a list of searchtermsT is selected and returned in

the search term selection phase. The search term selection phase consists of two sub-phases: the

pre-selection phase and the final selection phase. The pre-selection phase shrinks a whole reference

document, which contains hundreds or thousands of terms, toa document with around 20 terms.

Then the final selection is applied to select final search terms from these terms. In this section, we

first introduce the pre-selection phase, then define two scoring mechanisms used in the final selec-

tion phase. The rest of this section describes two final selection methods: the Lexical Alias Word

method (LAW) and the Coverage Score Word method (CSW).

3.4.1 Pre-selection

The final selection phase extracts search terms by scoring all the terms in a reference document and

ranking them by their scores from highest to lowest. Becausethe scoring involves requesting to the

Google API which is slow, the final selection will be too slow if there are hundreds or thousands of

terms to evaluate. Therefore, a pre-selection phase is required to decrease the size of the reference

document.

Most term selection methods can be applied here. For example, one could select the most fre-

quent terms in a reference document or select the terms whichappear close to terms inQ0, etc. In

the IQSQS system, we use thesnippets supplied by the search engine as the pre-selection method.

Given an original queryQ0 and a search resultr, a snippet corresponding toQ0 andr is a piece

of text extracted from the web document ofr by the search engine. The snippet helps the user

2In the next chapter, we propose a query suggestion method by document clustering, and we use stemming in the document
clustering phase.

25

recognize the content of the website so that the user can decide whether s/he wants to navigate to it

or not. Figure 3.3 shows one search result of the query “jaguar” by Google.com, the text under the

title is the corresponding snippet.

Figure 3.3: One search result for the query “jaguar” from Google.com on Oct. 5th, 2010. The snippet
is under the title “Jaguar - Wikipedia, the free encyclopedia”, begins with “The jaguar (Panthera
once) ...”, and ends with “The jaguar is the ...”.

There are three reasons why we use snippets in the IQSQS system. First, a snippet often con-

tains around 20 terms which is a suitable size for the final selection phase. Second, snippets need

no calculation on our part. Third, snippets supply terms that might form query suggestions with

high MCC and MEC scores. We ran an experiment to compare the results of pre-selecting terms

using frequency and using snippets in the IQSQS system. Similar with the experimental setting and

method in Section 3.3, the average MCC and MEC scores on 50 short and 50 long queries (see

Appendix A) are shown in Table 3.3, and the p-values of sign tests are shown in Table 3.4.

Pre-selection method Short queries Long queries
snippets MCC=67.08 MEC=8.82 MCC=73.12 MEC=9.88

frequency MCC=66.36 MEC=8.63 MCC=73.20 MEC=9.80

Table 3.3: The average MCC and MEC scores for pre-selecting using snippets and using frequency
in IQSQS.

The performance of pre-selecting using snippets appears nodifferent from that of pre-selecting

using frequency. Sign tests are carried out by considering the MCC (MEC) scores of pre-selecting

using snippets and using frequency as two random variables.The performances on 50 queries are 50

samples for each method. From Table 3.4, we fail to reject thenull hypotheses. Together with the in-

distinguishable results in Table 3.3, we consider pre-selecting using snippets performs equally good

with using frequency. Because of other advantages snippetshave (given above), we use snippets as

the pre-selection method in IQSQS.

Short queries Long queries
MCC p-value=1.00 p-value=0.29
MEC p-value=1.00 p-value=0.66

Table 3.4: The p-values for sign tests to compare pre-selecting using snippets and using frequency.

26

3.4.2 Final Selection

Given around 20 terms after pre-selection, the final selection phase extracts 10 terms and ranks

them from highest to lowest. There are two scoring mechanisms we use in the final selection phase:

the OC score (Overall Cover) and the LA score (Lexical Alias). For termt, the OC score is the

number of reference documents thatt covers when appended toQ0, and the LA score is a binary

value indicating whether or nott covers the current document3 when appended toQ0. For example,

supposeQ0 is “jaguar”, the current reference document isd, andt is the term “car” ind. If the query

“jaguar car” covers 10 reference documents includingd, thenOC(t,D) = 10, whereD is the set of

all reference documents, andLA(t, d) = 1.

There are two reasons why we use the original queryQ0 in OC and LA. First, we want to

evaluate a term’s potential of covering reference documents. However, a term is often unlikely to

cover reference documents by itself. For instance, the term“car” is highly related to the query

“jaguar”, but the query “car” almost returns nothing about “jaguar” in the top results. Appending

the term to the end ofQ0 helps out and is simple to do. Second, in addition to improving the MCC

and MEC score, we also hope our query suggestions can convey more information aboutQ0. For

example, supposeQ0 is “jaguar”, we hope our query suggestions could be “jaguar car”, “jaguar

cat”, “jaguar mac os”, etc. which reflect the subcategories of the query “jaguar”. BondingQ0 with

each subcategory, such as “car” or “cat”, helps creating specific query suggestions.

Lexical Alias Word (LAW)

Referring back to Chapter 2, Jiang et al. [19] restrict the form of a lexical alias to be the title words

plus the most frequent words, but this form is not guaranteedto work the best. Furthermore, words

that are neither title words nor the most frequent words might still be useful for query suggestions.

Therefore, we propose the Lexical Alias Word (LAW) method which uses the LA score to evaluate

all words. For a reference documentd, a word ind is added to the search term set ford if its LA

score is 1. After all the words ind are evaluated, the words in the search term set are ranked by

their OC scores from highest to lowest. The first 10 search terms from the set are returned. If the

search term set contains less than 10 words, all of them are returned. For example, for a reference

document about “google custom search information technology services”, suppose there are only

four words “custom”, “information”, “search”, and “stanford” with LA as 1. If their OC scores rank

them as “custom information search stanford” from highest to lowest, then the list of search terms

for this reference document is “custom information search stanford”.

A special case is when there is no single word whose LA score is1. Our program returns an

empty word list and no query suggestion candidates will be constructed for this case. However,

this case does not threaten our query suggestion method, because the probability that a reference

3Remember that IQSQS processes reference documents individually, a list of search terms is selected for each reference
document.

27

document returns an empty list in our experiments is only around 3.7% (the data is based on 50

short queries and 50 long queries) and there are enough reference documents to generate query

suggestions.

Algorithm 3.2 is the pseudocode of the LAW method. Lines 1-2 return an empty list if a refer-

ence document is empty. Line 4 does initialization. Line 5 collects all the words from a reference

document into a word set. Lines 6-10 calculate the OC and LA scores for all the words and insert

those whose LA score is 1 into a search term set. Lines 11-12 returns an empty list if the search

term set is empty. Line 14 sorts the words in the search term set by their OC scores from highest to

lowest. Lines 15-19 return the list of search terms.

Algorithm 3.2 Lexical Alias Word (LAW).
Input: a reference documentd
Output: a list of search termsT

1: if d = NULL then
2: T ← NULL
3: else
4: initialize searchTermSet andwordSet to be empty.
5: insert all the words ind intowordSet.
6: for w ∈ wordSet do
7: if LA(w) = 1 then
8: addw to searchTermSet
9: end if

10: end for
11: if searchTermSet is emptythen
12: return an empty list.
13: else
14: sort the words insearchTermSet by their OC scores from highest to lowest.
15: if searchTermSet contains at least 10 termsthen
16: return the first 10 words insearchTermSet.
17: else
18: return all the words insearchTermSet.
19: end if
20: end if
21: end if

Coverage Score Word (CSW)

The lexical alias search method of Jiang et al. [19] and the LAW method both utilize the idea of

lexical aliases and focus on covering the current referencedocument. For a reference documentd,

Jiang et al.’s method [19] looks for a lexical alias ford, and LAW returns search terms which coverd

when appended toQ0. However, we want to cover more reference documents rather than only one.

Therefore, the Coverage Score Word method (CSW) is proposed to evaluate a word by its potential

of covering more reference documents, i.e. the CSW method selects words by global coverage rather

than local coverage.

28

Equation 3.1 is the coverage score function to measure the word’s potential for global coverage.

CoverageScore(w, d) = ω1 ×OC(w,D) + ω2 × LA(w, d) (3.1)

The coverage score function is a linear combination of OC andLA. w is the word,d is the current

reference document,D is the set of all reference documents,ω1 andω2 are the weights (ω1 = 0.25

andω2 = 0.75). For example, if the OC and LA score of wordt in reference documentd is 6 and 1

respectively, then the coverage score is

CoverageScore(t, d) = 0.25× 6 + 0.75× 1 = 2.25.

For each reference document, all the words in it are ranked bytheir coverage scores from highest

to lowest, the top scoring 10 words are returned as the searchterms. If there are fewer than 10 words,

all of them are returned. The pseudocode of the CSW method is shown in Algorithm 3.3. Lines 1-

2 return an empty search term list ifd is empty. Line 4 does initialization. Lines 6-9 calculate the

coverage score for every word ind. Line 10 sorts all the words by their coverage scores from highest

to lowest. Lines 11-15 return the final search terms.

Algorithm 3.3 Coverage Score Word (CSW)
Input: a reference documentd, weightsω1 andω2.
Output: a list of search termsT

1: if d = NULL then
2: T ← NULL
3: else
4: initializewordSet to be empty.
5: insert all the words ind intowordSet.
6: for w ∈ wordSet do
7: calculate the OC and LA scores ofw.
8: CoverageScore(w) = ω1 ×OC(w) + ω2 × LA(w)
9: end for

10: sort all the words inwordSet by their coverage scores from highest to lowest.
11: if wordSet contains at least 10 wordsthen
12: return the first 10 words inwordSet.
13: else
14: return all the words inwordSet.
15: end if
16: end if

3.5 Query Suggestion Candidate Search

For every reference document, the search term selection phase provides a list of search terms to

the query suggestion candidate search phase, where query suggestions candidates are built up by

combining search terms. There are many ways to combine a listof terms. Adding one term may

make a query more specific and cover more reference documentsrelated with the term. At the same

time, it also makes a query lose generalization and therefore might lose some reference documents

29

which were covered before. Taking out one term can have similar effects. In this section, we first

explain why we fix the order of search terms in the query suggestion candidates. Then different

query suggestion candidate search methods are described and compared.

3.5.1 The Order of Search Terms

The search term selection phase selects a list of sorted search terms. The order of search terms in

the list is important for our query search. There are two reasons for this. First, the order of terms

in a query influences the corresponding search results. For instance, the query “jaguar car” and the

query “car jaguar” return two different sets of search results. Second, the time cost of trying all

permutations of search terms is too high (there are 3,628,800 different permutations for 10 search

terms). Therefore, we keep the order of search terms in the query suggestion candidates the same as

their order in the search term list. For example, given a sorted search term listw1w2...wi...wj ...wn

(i < j < n), for query suggestion candidates containing bothwi andwj , wi always appears before

wj .

3.5.2 Adding Combination (AC)

In the IQSQS system, we propose a query search method named Adding Combination (AC). If we

only consider the searching method, then AC is the same as thequery search method of Jiang et al.

[19] except that one is top-down and the other is bottom-up. But in IQSQS, AC is different from

the query search method of Jiang et al. [19] in two ways. First, Jiang et al. [19] search queries from

longest to shortest, and prune the sub-tree of a node if the node does not cover the current document

d. AC searches all the queries without pruning. Second, the purpose of the method by Jiang et

al. [19] is different from the purpose of AC. Jiang et al. [19]proposed the query search method in

QSQS to process a lexical alias whose length was around 7, andthey limited the length of the query

suggestion candidate to be between 2 and 5. As opposed to that, AC is proposed to process a list of

search terms whose length is around 10, and we limit the length of the query suggestion candidate

to be between 1 and 3 excludingQ0. If we replace AC with Jiang et al.’s [19] method, because it

is top-down, the valid query nodes will all be at the bottom ofthe search tree. Moreover, since the

length range[1, 3] is not wide, the pruning in Jiang et al.’s method [19] may misspotential query

suggestions. On the other hand, AC might take too much time tosearch all queries with lengths

between 2 and 5. In short, Jiang et al.’s method [19] is more suitable for QSQS and AC is more

suitable for IQSQS.

Figure 3.4 shows a search tree of AC when the search terms are “custom information search

stanford”. The dashed lines from the root node are not the searching paths, they only mean that each

search tree below is from the root. The numbers on the nodes indicate the order of the search. The

search for each tree stops after the last term “stanford” is added. A table of visited queries is used

to avoid duplicate searching. All the queries within the length limit [1,3] are inserted into a query

30

suggestion candidate set.

0.“custom information
search stanford”

1.“custom”

2.“custom
informa-
tion”

3.“custom informa-
tion search”

4.“custom informa-
tion search stan-
ford”

5.“custom informa-
tion stanford”

6.“custom
search”

7.“custom search
stanford”

8.“custom
stanford”

9.“information”

10.“information
search”

11.“information
search stanford”

12.“information
stanford”

13.“search”

14.“search
stanford”

15.“stanford”

Figure 3.4: Query search tree for a list of search terms “custom information search stanford”, using
the AC method.

3.5.3 Q0 and Adding Combination (QoAC)

The terms in the original queryQ0 are special compared with the search terms selected from the

reference document. In order to evaluate the effect ofQ0 in query suggestion candidates, we propose

theQ0 and Adding Combination (QoAC) method. QoAC differs from AC in thatQ0 is always added

at the beginning of query suggestion candidates.

For example, suppose the list of search terms is “custom information search stanford” andQ0

is “google”, then there will be four search trees with the root queries “google custom”, “google

information”, “google search”, and “google stanford”. Under the node “google custom”, the child

queries are “google custom information”, “google custom search”, and “google custom stanford”.

The grandchild queries are “google custom information search”, “google custom information stan-

ford”, etc. Except forQ0, the search tree of QoAC is the same as that of AC.

3.5.4 Beam Search (BS)

Before we introduce the Beam Search (BS) method, the two termswidthanddepthfor a search tree

need to be defined. The depth of a search tree is the number of layers from the root node to the

farthest leaf node. The width of a search tree is defined as themaximum number of nodes on the

same layer. For example, in the search tree shown in Figure 3.4, the depth of the search tree is 5 and

the width is 6.

The query search method of Jiang et al. [19] and AC both sufferfrom the complexity of com-

bining many terms. Because of this, we limit the maximum length of the search term list to be 10.

However, by ignoring the search terms after the top 10, we risk losing useful terms. BS is used

31

to balance the risk and the time cost. In a given amount of time, a fixed quantity of nodes can be

searched. We let the BS method search a similar number of nodes with Jiang et al.’s method [19]

and AC so that BS takes similar time to finish. Jiang et al.’s method [19] and AC search exhaustively

(though Jiang et al. [19] apply pruning), they expand all nodes on one layer and search all the child

nodes on the next layer. BS expands all nodes on one layer too,but it sorts the generated child nodes

by a heuristic function (we use the OC score), retains the best W child nodes and prunes the others.

W is the pre-defined width of the search tree4. WhenW is unlimited, the BS method becomes the

AC method.

We think that the BS method may work better than the method of Jiang et al. [19] and AC,

because BS evaluates more search terms. The only situation in which BS might miss a good query

suggestion candidate is like this: suppose queryt1 + t2 is pruned for bad performance, but query

t1+ t2+ · · ·+ ti (i > 2) is a really good query; it will not appear in the search tree of BS. However,

this kind of situation is unlikely to happen. Because if adding ti could turn a bad query suggestion

candidate into a good one, then in this case termst1 and t2 are probably not important, and BS

would still be expected to find good query suggestion candidates containing termti.

3.5.5 Q0 and Beam Search (QoBS)

The relation between QoBS and BS is the same as the relation between QoAC and AC. The original

queryQ0 is always added in the beginning of query suggestion candidates.

3.6 Experiment to Find the Best Configuration of IQSQS

We have introduced the LAW and CSW search term selection methods, and the AC, QoAC, BS and

QoBS query search methods. In order to evaluate these methods and find out the best match for our

query suggestion objective, an experiment is carried out.

As discussed before, we fix the following settings in our experiment. Reference documents are

processed with stemming off in the reference document collection phase, and terms are pre-selected

using snippets in the search term selection phase. The experiment evaluates each combination of

search term selection methods (LAW and CSW) and query search methods (AC, QoAC, BS and

QoBS). The average MCC and MEC scores for each combination ofmethods are shown in Table

3.5. The test queries in this experiment are 50 short queries5 (see Appendix A).

It is clear from Table 3.5 that LAW is inferior to CSW. For bothAC and BS, CSW improves

MCC by around 20 and MEC by more than 2 compared to LAW. The increase in MCC indicates

that CSW helps query suggestions cover around 20 more reference documents than LAW does when

the initial query is not automatically included in the querysuggestions. The increase in MEC implies

that each query suggestion covers 2 more reference documents on average in these cases. Sign tests

4In our implementation, we start with 20 terms and limit the width to be 15.
5We run on short queries to find the best configuration and run the best configuration on long queries which is reported in

Section 3.8.

32

LAW CSW
AC MCC=37.82 MEC=4.83 MCC=56.66 MEC=7.26

QoAC MCC=67.08 MEC=8.82 MCC=70.88 MEC=8.99
BS MCC=34.36 MEC=4.35 MCC=53.90 MEC=6.69

QoBS MCC=66.06 MEC=8.46 MCC=70.82 MEC=9.15

Table 3.5: The average MCC and MEC score for each combinationof methods in IQSQS.

are used to compare CSW and LAW. With four different search term selection methods (AC, QoAC,

BS, and QoBS), the MCC and MEC scores of CSW and LAW are compared and the p-value for

each test is calculated. All the results are shown in Table 3.6.

MCC MEC
AC p-value = 1.78E-15 p-value = 1.78E-15

QoAC p-value = 3.80E-03 p-value = 0.12
BS p-value = 9.06E-14 p-value = 2.27E-12

QoBS p-value = 6.98E-11 p-value = 5.61E-06

Table 3.6: The p-values for sign tests to compare CSW and LAW.

In Table 3.6, only 1 out of 8 tests fails to reject the null hypothesis. Therefore, we conclude

that CSW performs better than LAW and constantly use it as thesearch term selection method in all

the following experiments. LAW selects a term based on whether it can cover one reference docu-

ment. As opposed to that, CSW selects terms based on their potential of covering more reference

documents. LAW focuses on local coverage and hence may miss terms that are important for global

coverage.

For QoAC and QoBS, CSW still brings an improvement to LAW, though amounting to a much

smaller increase compared to the cases of AC and BS. We attribute the decreased improvement to

the original queryQ0 being included in QoAC and QoBS for two reasons. First, though AC and

BS do not containQ0 automatically, most of their final query suggestions still contain terms inQ0.

The data in our experiment shows that more than 90% of the finalquery suggestions for AC and BS

contain at least one term inQ0. This data shows the superiority of terms inQ0 over other terms from

reference documents. Though the lower scores of AC and BS also indicate that it is not enough to

contain terms inQ0 to achieve higher scores. Second, as we attempt to cover reference documents

D of Q0, queries with the formQ0 plus other terms tend to specifyQ0 and cover a portion of

D. As opposed to that, queries of other forms, even including terms inQ0, are likely to cover

relevant documents which might not be fromD. For example, supposeQ0 is “volcanos in italy”,

the query “volcanos in italy information” is likely to covermore reference documents than the query

“italy volcanos information” and the query “information italy volcanos”. We compared the query

suggestions “volcanos in italy watched” and “watched volcano italy” (the original query is “volcanos

in italy”) and found that “volcanos in italy watched” coversfour more reference documents than

“watched volcano italy”, though they are very similar from humans’ perspective.

33

From Table 3.5, another clear conclusion is that QoAC and QoBS are superior to AC and BS.

This implies that adding the original queryQ0 helps to improve the MCC and MEC scores. The

conclusion is consistent with our analysis in the previous paragraph and also strengthens the same

conclusion drawn by Jiang et al. [19]. Additionally, sign tests are carried out to compare methods

with Q0 (QoAC and QoBS) to those withoutQ0 (AC and BS). The p-values reported in Table 3.7

supply sufficient evidence to conclude that methods withQ0 work differently from methods without

Q0. Therefore, for all the following experiments, we adopt query search methods withQ0.

MCC MEC
QoAC vs AC p-value = 3.48E-13 p-value = 9.02E-05
QoBS vs BS p-value = 1.78E-15 p-value = 2.27E-12

Table 3.7: The p-values for sign tests to compare methods withQ0 and those withoutQ0.

MCC MEC
QoBS-CSW vs QoAC-CSW p-value = 1.00 p-value = 0.89

Table 3.8: The p-values for the sign test to compare CSW-QoBSand CSW-QoAC.

There are two combinations of methods left to be compared: CSW-QoBS and CSW-QoAC.

Their average MCC and MEC scores are close in Table 3.5. The p-values of the sign test reported in

Table 3.8 could not reject the null hypotheses that CSW-QoBSand CSW-QoAC perform similarly

either. Therefore, we ran CSW-QoBS and CSW-QoAC on 50 long queries and reported the scores

and the p-values in Table 3.9 and 3.10. The results on long queries demonstrate the superiority of

CSW-QoBS over CSW-QoAC. Therefore, we conclude that CSW-QoBS is better than CSW-QoAC.

QoBS QoAC
CSW MCC=76.33 MEC=10.51 MCC=73.83 MEC=9.70

Table 3.9: The average MCC and MEC score for CSW-QoBS and CSW-QoAC on long queries.

From the discussion above, our general conclusion is that CSW is better than LAW to select

search terms and methods includingQ0 are better than those without it. The best configurations for

IQSQS is CSW-QoBS and is referred to as IQSQS*.

3.7 Greedy Query Suggestion by Query Search (GQSQS)

The QSQS system by Jiang et al. [19] processes all reference documents individually to accumulate

a set of query suggestion candidates and, at the very end, selects the bestK as the final query

suggestions. The IQSQS system made improvements on each phase of the QSQS system, but did

not change the order in which the phases were executed. We nowconsider a method, Greedy Query

Suggestion by Query Search (GQSQS), that changes the control structure of QSQS [19].

Algorithm 3.4 is the pseudocode of GQSQS. After the reference documents are collected, there

areK rounds to greedily find the bestK query suggestions. In each round, the search term selection

34

MCC MEC
QoBS-CSW vs QoAC-CSW p-value = 4.02E-4 p-value = 6.60E-5

Table 3.10: The p-values for the sign test to compare CSW-QoBS and CSW-QoAC on long queries.

Algorithm 3.4 Greedy Query Suggestion by Query Search (GQSQS)
Input: the original queryQ0

Output: K (K = 10) query suggestions
1: initialize the query suggestion setQS to be empty.
2: collect all the reference documentsD (|D| = 100) for Q0.
3: for i = 1 to K do
4: set the best query suggestionqsi to be empty.
5: select a list of search termsSTi.
6: apply query search onSTi, compare every query suggestion candidate withqsi and update

qsi greedily.
7: insertqsi into the query suggestion setQS
8: end for
9: return QS

phase evaluates all terms in all reference documents and returns the top scoring ones. Query search

is applied on search terms produced by the search term selection phase. The one that contributes the

most to MCC (breaking ties by the contributions to MEC) is added to the final query suggestion set.

In the search term selection phase, a modified coverage scorefunction is used, as shown in

Equation 3.2.

CoverageScore(t, Sk−1) = OC(t,D) + EOC(t, Sk−1) (3.2)

Herek is the current round,Sk−1 is the set of final query suggestions selected from the previous

k− 1 rounds, andD is the set of all reference documents forQ0. The OC score has been introduced

in Equation 3.1. The EOC (Extra Overall Cover) score of a termequals the number of uncovered

reference documents that the term covers when appended toQ0. Different from QSQS and IQSQS,

GQSQS determines one query suggestion after one round. Therefore, when we process roundk

(1 ≤ k ≤ 10), k − 1 query suggestions have been generated and a portion of reference documents

have been covered by these query suggestions. We strive to cover as many reference documents as

possible, the EOC score is brought in to serve this purpose.

An experiment to evaluate GQSQS was carried out. The query data, the experimental setting,

and the experiment method are the same as those in previous experiments. The experiment result is

described in the next section.

3.8 Comparison of QSQS, IQSQS* and GQSQS

The average MCC and MEC scores for QSQS, IQSQS* and GQSQS are reported in Table 3.11.

From Table 3.11, IQSQS* and GQSQS are clearly superior to QSQS on both short queries and long

queries. Sign tests for comparing IQSQS* with QSQS and GQSQSwith QSQS were conducted,

the p-values are shown in Table 3.12 and 3.13. For all the cases, it is significant that IQSQS* (or

35

GQSQS) performs differently from QSQS.

System Short Query Long Query
QSQS MCC=54.80 MEC=6.89 MCC=42.86 MEC=5.34

IQSQS* MCC=70.82 MEC=9.15 MCC=78.05 MEC=10.66
GQSQS MCC=63.88 MEC=9.73 MCC=68.82 MEC=11.08

Table 3.11: The average MCC and MEC scores of each system.

Short queries Long queries
MCC p-value = 3.55E-15 p-value = 2.91E-11
MEC p-value = 7.60E-09 p-value = 1.46E-11

Table 3.12: The p-values for sign tests to compare IQSQS* andQSQS.

Short queries Long queries
MCC p-value = 1.83E-06 p-value = 2.46E-10
MEC p-value = 7.92E-09 p-value = 4.07E-09

Table 3.13: The p-values for sign tests to compare GQSQS and QSQS.

In Table 3.11, IQSQS* is better than GQSQS on the MCC score, while GQSQS works better

than IQSQS* on the MEC score. Again, the differences betweenGQSQS and IQSQS* are tested by

the sign test, and the p-values are reported in Table 3.14.

All the results From Table 3.14 are significant. Therefore, we conclude that IQSQS* performs

better than GQSQS on the MCC score, and GQSQS works better than IQSQS* on the MEC score.

IQSQS* selects a list of search terms for each reference document (100 reference documents) and

applies query search for each list of search terms. As opposed to that, GQSQS selects a list of search

terms for one round (10 rounds) and then applies query search. Therefore, IQSQS* tries far more

query suggestion candidates than GQSQS does. We expect IQSQS* to perform better on both MCC

and MEC. The reason why IQSQS* has a lower MEC score than GQSQSmay be the coverage score

functions. The coverage score function IQSQS* uses is a combination of OC and LA where LA is

given a higher weight. The one GQSQS uses combines OC and EOC with the same weight. The

exact reason needs a deeper investigation to determine.

In Table 3.11, we also notice that QSQS produces better querysuggestions for short queries

than for long queries, but IQSQS* and GQSQS perform better onlong queries than on short ones.

The query suggestions generated by IQSQS* and GQSQS containQ0 and selected search terms,

whereas QSQS does not utilizeQ0 directly. We have shown that terms inQ0 are more likely to be

selected in query suggestions. Since QSQS limits the lengthof the lexical alias to be between 5 and

10, when there are more terms inQ0 (i.e. a long query), there will be less chance for terms from

reference documents. This may hurt the quality of query suggestions from QSQS, therefore, QSQS

has lower MCC and MEC scores on long queries.

36

Short queries Long queries
MCC p-value = 4.62E-10 p-value = 2.33E-10
MEC p-value = 4.53E-03 p-value = 4.55E-03

Table 3.14: The p-values for sign tests to compare IQSQS* andGQSQS.

3.9 Summary

This chapter introduces two variations, IQSQS and GQSQS, onthe QSQS system by Jiang et al.

[19]. Both improve the performance of QSQS substantially.

In each phase of IQSQS, there are usually several options or methods available. We conduct

different experiments to determine the best configuration for IQSQS. In the reference document

collection phase, we find that the application of stemming hurts the system performance so we

switch off stemming in IQSQS. When we pre-select search terms, using snippets works as well as

using frequency, but we chose the snippet-based method because of its other advantages. After the

two new search term selection methods LAW and CSW and the fourquery search methods AC,

QoAC, BS, and QoBS are introduced, an experiment was carriedout to find the best combination

of methods for IQSQS. In the end, CSW with QoBS has the highestMCC and MEC score, and we

refer to it as IQSQS*.

GQSQS changes the control structure of QSQS and adopts all the best options determined in

IQSQS. With a modified coverage score function and the greedystrategy, GQSQS gets better MCC

and MEC scores than QSQS but lower scores than IQSQS with lesseffort.

37

Chapter 4

Does Document Clustering Help?

Queries are usually ambiguous, therefore search results ofthe query usually mix web documents

about different aspects of the query together. For example,for the query “jaguar”, the web doc-

uments about “jaguar car”, “jaguar cat”, “jaguar mac os” etc. are all mixed together in the corre-

sponding search results. Because of this, the user often hasto look for the desired web documents

among all the search results. One possible solution is to useweb document clustering to organize

search results [12, 13, 15, 57, 58]. A general survey of thesemethods is in Chapter 5. Document

clustering groups documents into different clusters by comparing their similarity so that documents

in one cluster are similar to each other and documents in different clusters are dis-similar to each

other. Though there is a large body of research on web document clustering, we seem to be the first

to apply web document clustering to query suggestion.

4.1 Introduction

We think web document clustering methods are promising for query suggestion, assuming web

document clustering methods really group search results about different topics into different clusters.

If query suggestions forQ0 could be created based on each cluster, they might representdifferent

topics ofQ0, which may help users shorten their search time and satisfy their needs more directly.

For instance, if the query suggestions for the query “jaguar” are “jaguar car”, “jaguar cat” etc., the

user who wants the jaguar car models and issues the query “jaguar” might click the query suggestion

“jaguar car” directly.

We propose the Query Suggestion method by Document Clustering (QSDC) by plugging in

different document clustering methods to GQSQS and aim for two goals. First, we would like to

create query suggestions that can cover most of the reference documents. Second, we would like to

create a query suggestion for each cluster that can represent the content of the cluster and also cover

the reference documents in this cluster.

38

4.2 Query Suggestion by Document Clustering (QSDC)

The QSDC system follows the structure of the GQSQS system, but inserts areference document

clusteringphase. Algorithm 4.1 is the pseudocode for QSDC. Reference documents forQ0 are first

collected (line 2), then a document clustering method is applied to cluster them intoK (K = 10)

clusters (line 3). For each cluster, a modified coverage score function is used to evaluate all terms

in the cluster and the top scoring terms are extracted as the search terms for this cluster (line 6).

The query suggestion candidate searchphase generates different query suggestion candidates by

combining search terms in different ways (line 7). The querysuggestion for this cluster is then

found greedily (line 7). After processing allK clusters,K query suggestions are returned (line 10).

Algorithm 4.1 Query Suggestion by Document Clustering (QSDC)
Input: the original queryQ0

Output: K (K = 10) query suggestions
1: initialize the query suggestion setQS to be empty.
2: collect all the reference documentsD (|D| = 100) for Q0.
3: clusterD intoK clusters.
4: for i = 1 to K do
5: set the best query suggestionqsi for clusteri to be empty.
6: select a list of search termsSTi for clusteri.
7: apply query search onSTi, compare every query suggestion candidate withqsi and update

qsi greedily.
8: insertqsi into the query suggestion setQS
9: end for

10: return QS

The following sections will introduce the pre-processing of reference documents for document

clustering, different document clustering methods, and a CC score (Cluster Cover) in the modified

coverage score function.

4.2.1 Reference Document Collection

After reference documents are processed as described in theIQSQS system, there are two more

steps in the QSDC system, applying stemming1 and converting the set of reference documents into

a weighted matrix.

For each reference document, its snippet is extracted and stemming is applied to it (we utilized

the Porter stemmer2). Then the set of reference documents is converted into a weighted matrix.

Each entry of the matrix corresponds to a reference documentd and a termt, the value of the entry

reflects the importance oft to d. Usually, the TFIDF weighting method is used. Suppose the set of

reference documents isD, then for documentd and termt,

TFIDFd,t = TFd,t × IDFt.

1We only apply stemming in the document clustering phase.
2The Porter stemming algorithm is available athttp://tartarus.org/ ˜ martin/PorterStemmer/ .

39

TFd,t is defined as

TFd,t =
N(d, t)

|d|

Here,N(d, t) is the number of the occurrences of themt in documentd, |d| is the number of

occurrences of all the terms ind. IDF (t) is the inverse document frequency of termt,

IDF (t) = log
|D|

|{di : t ∈ di, di ∈ D}|
.

After the TFIDF weight for each entry is calculated, the finalentry value is its TFIDF weight nor-

malized with respect to all the entries of the correspondingreference document, i.e.

entry(d, t) =
TFIDFd,t

Sd

Sd =

√

∑|T |
t=1(TFIDFd,t)2

|T |
.

Here,T is the set of all the terms in the reference documents.

4.2.2 Reference Document Clustering

After the set of reference documents is represented by a weighted matrix, document clustering meth-

ods such as K-means, agglomerative hierarchical clustering, spectral clustering, etc. can be applied.

For the rest of the thesis, we use the termcentroid to refer to the average center of a set of docu-

ments, i.e. a centroid of a set of documents may itself be not contained in that set of documents. The

QSDC system tests the following document clustering methods:

• K-Means: we utilize a library developed by Kanungo et al. [21]. Four versions of K-means,

namely, Lloyd’s [22], Swap [22], Hybrid [22] and EZ-Hybrid [22], are supplied in this li-

brary. The implementation of Lloyd’s algorithm in the library is the typical K-means clus-

tering method. Because Lloyd’s algorithm may get stuck in local minimal solutions, Swap

is proposed to perform swaps between the current centroids and a set of candidate centroids.

A swap is accepted if it decreases the average distortion (the mean squared distance from

each data point to its nearest centroid). EZ-Hybrid is a simple hybrid algorithm of Swap and

Lloyd’s. EZ-Hybrid performs one swap after several iterations of Lloyd’s. Hybrid combines

Swap and Llyod’s in a more complex way. Hybrid performs several swaps and then several

iterations of Lloyd’s. In addition, Hybrid utilizes an approach similar to simulated annealing

to avoid getting trapped in local minimal solutions.

• Agglomerative Hierarchical Clustering (AHC): we implemented four versions of AHC our-

selves: single-linkage, complete-linkage, average-linkage and centroid. They will be intro-

duced in the section on agglomerative hierarchical clustering.

40

• Spectral Clustering: we use an implementation of the normalized spectral clustering method

[37] developed in the XVDM system3.

The following sections introduce these three clustering algorithms. For K-means, we select

Lloyd’s algorithm to introduce because it is the typical K-means method and many variants of K-

means algorithms are based on it. For AHC, we introduce all the four versions used in our experi-

ment. There are different variants of spectral clustering,different mathematical derivations lead to

different spectral clustering algorithms. We select the unnormalized spectral clustering algorithm to

introduce.

K-means Clustering

Given the number of clustersK, K-means clustering partitions a set of documents intoK clusters

with the objective of minimizing the average squared distance of documents in a cluster from their

cluster centroids as defined in Equation 4.1 [32].

~µ(Ci) =
1

|Ci|

∑

~d∈Ci

~d (4.1)

~µ is the centroid of a clusterCi, ~d is a document represented as a vector of term weights and|Ci| is

the size of the clusterCi [32]. The objective of K-means is shown in Equation 4.2 [21].

argmin
C

K
∑

i=1

∑

~dj∈Ci

‖~dj − ~µi‖
2 (4.2)

‖~dj − ~µi‖ is the distance between~dj and ~µi, Euclidean distance and cosine distance are commonly

used. There is no efficient solution to this problem [21], so avariety of heuristic algorithms is used.

One of the most common heuristic algorithms for K-means clustering is based on a simple

iterative mode to find a local minimum, which is often calledLloyd’s algorithm(the idea is from

Lloyd [29]). The first step of Lloyd’s algorithm is to randomly selectK documents as the initial

cluster centroids. Then there are two steps iteratively repeated until a stopping condition is satisfied.

Step one re-assigns each document to its closest cluster centroid. Step two re-computes each cluster

centroid from all the documents belonging to it. There are several conditions that can be used as

termination conditions:a) when the number of iterations exceeds a pre-defined value;b) when the

document re-assignment does not change between two consecutive iterations;c) when the cluster

centroids remain the same between two consecutive iterations;d) when the average squared distance

falls below some threshold; and so on [32]. Figure 4.1 [32] shows an example of the process of

Lloyd’s algorithm.

Lloyd’s algorithm converges because the average squared distance decreases or remains the same

in each iteration. First, re-assigning documents cannot increase it because every document is as-

3The XVDM system is a high dimensional visual data mining systemdeveloped by the department of Computer Science,
Free University of Bozen-Bolzano, Italy. The website of thespectral clustering implementation is athttp://projects.
js-development.com/spectral-clustering .

41

Figure 4.1: An example of the K-means algorithm (Lloyd’s algorithm) whenK = 2. Lloyd’s
algorithm first randomly selects two cluster centroids, then iteratively assigns the documents to the
cluster centroids and re-computes the cluster centroids. After nine iterations, the cluster centroids
have converged (the figure is taken from [32]).

signed to its closest centroid. Second, re-computing the centroids cannnot increase it because the

new centroid of a clusterCi minimizes
∑

~dj∈Ci
‖~dj − ~µi‖

2. Since there is a finite set of partitions,

the decreasing must reach a local minimum point at some stage.

Agglomerative Hierarchical Clustering

K-means clustering producesflat clusters whereashierarchical clusteringconstructs a hierarchy

of clusters by combining or dividing clusters iteratively.The combining version (bottom-up) is

calledagglomerative hierarchical, the dividing version (top-down) is calleddivisive hierarchical.

We introduce agglomerative hierarchical clustering here because it is more popular [32, 48].

The agglomerative hierarchical clustering algorithm treats every document as a singleton cluster

at the beginning, then iteratively finds two clusters that are the most similar and merges them into a

new cluster. A dendrogram is constructed at the end. An example of the agglomerative hierarchical

algorithm is shown in Figure 4.24, whereA,B,C, . . . , G denote the document singleton clusters.

The agglomerative hierarchical clustering algorithm chooses two clusters that are the most sim-

ilar every time. Differentlinkage criteriaare used to evaluate the similarity (or distance) between

two clusters. Before we introduce different linkage criteria, themetricsto measure the similarities

between two documents need to be illustrated first. There areseveral metrics used to compute the

4The figure is from http://en.wikibooks.org/wiki/Data_Mining_Algorithms _In_R/
Clustering/Hybrid_Hierarchical_Clustering .

42

Figure 4.2: An example of the agglomerative hierarchical clustering algorithm (see footnote 4). A
dendrogram is obtained by applying merging iteratively based on the similarity of the clusters. The
dashed line means the cutting point of the hierarchy (described later).

similarity between documents. Thesquared Euclidean distance(Equation 4.3)

dist(~di, ~dj) =
∑

k

(~dik − ~djk)
2 (4.3)

and thecosine similarity(Equation 4.4)

dist(~di, ~dj) = cos−1
~di · ~dj

‖~di‖‖~dj‖
(4.4)

are the most popular ones.

With the metrics to evaluate the distance between two documents, there are four linkage criteria

to measure the distance between two clusters. The four linkage criteria group the agglomerative hier-

archical clustering methods into four types:single-linkageclustering,complete-linkageclustering,

average-linkageclustering andcentroidclustering. The single-linkage clustering method regards

the minimum distance between a pair of documents in two clusters as the distance between the two

clusters,

linkage(Cp, Cq) = min{dist(di, dj) : di ∈ Cp, dj ∈ Cq}

In contrast, the complete-linkage clustering method uses the maximum distance between documents

in two clusters as the distance between the two clusters,

linkage(Cp, Cq) = max{dist(di, dj) : di ∈ Cp, dj ∈ Cq}

The average-linkage clustering method measures the distance between two clusters by the average

distance of documents in the two clusters, expressed as

linkage(Cp, Cq) =
1

|Cp||Cq|

∑

di∈Cp

∑

dj∈Cq

dist(di, dj)

43

The centroid-linkage clustering method uses the distance between the centroids of the two clusters

as the distance between these two clusters. Different distance metrics and linkage criteria lead to

different clusterings [32].

Sometimes we do not need a dendrogram, instead, we need clusters. In this case, we just need

to cut the hierarchy of the clusters. There are several cutting methods, for example, cut at a fixed

similarity level like the dashed line shown in Figure 4.2, cut when the distance of two clusters are

above some threshold, stop merging when there areK clusters ifK clusters are needed, and so on

[32]. We follow the last method in our implementation.

Spectral Clustering

Different from the K-means clustering algorithm and the agglomerative hierarchical clustering al-

gorithm, thespectralclustering algorithm translates the document clustering problem into a graph

partition problem, and utilizes the spectrum of the corresponding matrix to reduce the dimensionality

for clustering. Based on different graph Laplacian matrices, there are different spectral clustering

algorithms, such as unnormalized spectral clustering utilizing the unnormalized graph Laplacian,

normalized spectral clustering utilizing the normalized graph Laplacian, etc. [52]. We select the

unnormalized spectral clusteringalgorithm to describe here.

Given a set of documentsd1, d2, . . . , dn to cluster, if we know the similaritysij (sij ≥ 0)

between all pairs of documentsdi anddj , a similarity graphG = (V,E) can be constructed. InG,

a vertexvi represents a documentdi, vi andvj are connected ifsij > 0 (or above some threshold),

and the edge is weighted bysij , i.e.ωij = sij . G is an undirected (ωij = ωji) and non-negative

weighted graph. SupposeA is a subset of the set of vertices (A ⊂ V), IA = (f1, . . . , fn)
T ∈ R

n

is an indicator vector where an entryfi equals 1 ifvi ∈ A andfi equals 0 otherwise. Clustering

is to partition the graph into different parts so that the vertices in the same part connect with higher

weights and the vertices in different parts connect with lower weights (or don’t connect) [52].

Thegraph Laplacian matricesare very important to the spectral clustering algorithm. The un-

normalized graph Laplacianis defined by Equation 4.5,

L = D −W (4.5)

D is a diagonal matrix with entriesDii =
∑n

j=1 ωij , andW is the weight matrix withW =

(ωij)i,j=1,...,n. L is symmetric and positive semi-definite5, and for every vectorf ∈ R
n

fTLf =
1

2

n
∑

i,j=1

ωij(fi − fj)
2 (4.6)

With these, we can conclude another property related to theunnormalized spectral clustering

algorithm (spectral clustering for unnormalized graph Laplacian) [36, 52]. LetG be an undirected

5A positive semidefinite matrix is a self-adjoint matrix with allof its eigenvalues nonnegative.

44

graph with non-negative weights. Then the multiplicityk of the eigenvalue 0 ofL equals the num-

ber of connected componentsIA1
, . . . , IAk

in the graph. The eigenspace of eigenvalue 0 is spanned

by the indicator vectorsIA1
, . . . , IAk

of those components. This property states that, in a perfect

scenario, i.e. graphG can be partitioned intok connected components, the multiplicity of the eigen-

value 0 ofL equalsk, and the eigenvectors of eigenvalue 0 are the connected component indicators

[52].

With this in mind, the unnormalized spectral clustering algorithm is as follows, whereS ∈ R
n×n

is the given similarity matrix andK is the number of clusters to be constructed.

1. Construct a similarity graph withW as the adjacency matrix.

2. Compute the unnormalized LaplacianL.

3. Compute the smallestK eigenvectorsv1, . . . , vK of L.

4. LetV ∈ R
n×K be the matrix containing the vectorsv1, . . . , vK as columns.

5. Fori = 1, . . . , n, let yi ∈ R
K be the vector corresponding to thei-th row ofV .

6. Cluster the points(yi)i=1,...,n in R
K into clustersC1, . . . , CK with the K-means clustering

algorithm.

The output is a collection of clustersA1, . . . , AK with Ai = {vj |yj ∈ Ci} [37, 52]. For the

practical use, the result of the spectral clustering algorithm is influenced by the similarity measure

mechanisms, the number of clusters, and which graph Laplacian is used.

4.2.3 Search Term Selection

A new score named Cluster Cover (CC) is brought into the coverage score function of QSDC. For a

clusterck, the CC score of a termt is the number of reference documents inck that t covers when

appended toQ0. For instance, if the queryQ0 + t covers 10 reference documents, among which 6

documents belong to clusterck, thenCC(t, ck) = 6. The coverage score function used in the QSDC

system is given in Equation 4.7.

CoverageScore(t, Sk−1) = OC(t,D) + CC(t, ck) + EOC(t, Sk−1) (4.7)

Sk−1 is the set of final query suggestions selected from previous clusters, andD is the set of refer-

ence documents. The OC score (Overall Cover) and the EOC score (Extra Overall Cover) have been

introduced in Chapter 3. Referring to the example above,OC(t,D) = 10. If 8 documents out of

these 10 are newly covered,EOC(t, Sk−1) = 8. The coverage score for the termt is

CoverageScore(t, Sk−1) = OC(t,D) + CC(t, ck) + EOC(t, Sk−1) = 10 + 6 + 8 = 24.

45

4.2.4 Comparison of Different Document Clustering Methods

An experiment is carried out to compare the results of different document clustering methods. Fol-

lowing the test queries (50 short queries and 50 long queries, as Appendix A) and experiment method

applied in Chapter 3, the average MCC and MEC score of each document clustering method is re-

ported in Table 4.1 (AHC refers to the agglomerative hierarchical clustering). From the data, there

appears to be no difference between these document clustering methods. Wondering whether docu-

ment clustering changes anything, we calculated the MCC andMEC score for a random document

clustering method as reported in the last row of Table 4.1. The random clustering method randomly

assigns a document to one of the ten clusters with a uniform probability. Comparing the MCC and

MEC scores of using document clustering methods and random clustering, we find that document

clustering methods contribute nothing to improve MCC and MEC. Sign tests for comparing docu-

ment clustering methods and the random clustering method are conducted too. Table 4.2 shows the

p-values on short queries, and Table 4.3 reports the p-values on long queries.

Clustering Method Short Queries Long Queries
K-means (Lloyd) MCC = 64.04 MEC = 9.56 MCC = 68.39 MEC = 11.08
K-means (Swap) MCC = 63.08 MEC = 9.53 MCC = 68.22 MEC = 10.99
K-means (EZ-Hybrid) MCC = 63.42 MEC = 9.65 MCC = 68.04 MEC = 11.13
K-means (Hybrid) MCC = 63.96 MEC = 9.63 MCC = 68.30 MEC = 11.08
AHC (single-linkage) MCC = 63.12 MEC = 9.66 MCC = 67.22 MEC = 11.07
AHC (complete-linkage) MCC = 63.00 MEC = 9.66 MCC = 68.00 MEC = 11.14
AHC (average-linkage) MCC = 61.72 MEC = 9.47 MCC = 67.30 MEC = 10.96
AHC (centroid) MCC = 63.16 MEC = 9.57 MCC = 67.65 MEC = 11.01
Spectral MCC = 63.16 MEC = 9.49 MCC = 67.61 MEC = 11.02
Random MCC = 63.39 MEC = 9.77 MCC = 67.91 MEC = 11.11

Table 4.1: The average MCC and MEC scores of different document clustering methods in the
QSDC system.

MCC MEC
K-means (Lloyd) p-value = 0.19 p-value = 1.00
K-means (Swap) p-value = 0.82 p-value = 0.66
K-means (EZ-Hybrid) p-value = 0.21 p-value = 0.50
K-means (Hybrid) p-value = 0.19 p-value = 0.66
AHC (single-linkage) p-value = 0.68 p-value = 0.65
AHC (complete-linkage) p-value = 1.00 p-value = 1.00
AHC (average-linkage) p-value = 0.65 p-value = 0.12
AHC (centroid) p-value = 0.50 p-value = 0.36
Spectral p-value = 0.65 p-value = 0.68

Table 4.2: The p-values for sign tests to compare different document clustering methods with ran-
domly assigning documents on short queries.

From Table 4.2 and 4.3, there is only one case (AHC Single-linkage on MCC) in which the

p-value equalsα (we setα = 0.05). The others all fail to reject the null hypotheses, and hence show

that the data is not sufficient to conclude there is a difference between those document clustering

46

MCC MEC
K-means (Lloyd) p-value = 0.66 p-value = 0.83
K-means (Swap) p-value = 0.83 p-value = 0.38
K-means (EZ-Hybrid) p-value = 0.82 p-value = 1.00
K-means (Hybrid) p-value = 1.00 p-value = 0.52
AHC (single-linkage) p-value = 0.05 p-value = 0.38
AHC (complete-linkage) p-value = 0.38 p-value = 0.65
AHC (average-linkage) p-value = 0.82 p-value = 0.13
AHC (centroid) p-value = 0.66 p-value = 0.38
Spectral p-value = 0.50 p-value = 0.60

Table 4.3: The p-values for sign tests to compare different document clustering methods with ran-
domly assigning documents on long queries.

methods and the random clustering method. Therefore, we think document clustering methods, at

least the ones we tested, contribute nothing in our query suggestion system. However, we need to

notice that we evaluate different methods by their MCC and MEC scores instead of the qualities of

the query suggestions they create, which is how document clustering methods are usually evaluated.

4.3 Comparison of QSDC with QSQS, IQSQS and GQSQS

We summarize the performances of all systems in Table 4.4. Since there is no difference between

different document clustering methods, we simply select K-means (Lloyd’s) to represent QSDC in

Table 4.4. We have compared QSQS, IQSQS* and GQSQS in Chapter3, and the values for these

systems in Table 4.4 are copied from Table 3.9. From the average MCC and MEC scores in Table

4.4, QSDC performs similarly to GQSQS. A sign test to compareQSDC and GQSQS is carried out

and the p-values are shown in Table 4.5. None of them succeedsin rejecting the null hypotheses,

therefore, we conclude that QSDC and GQSQS perform equally well.

System Short Query Long Query
QSQS MCC=54.80 MEC=6.89 MCC=42.86 MEC=5.34

IQSQS* MCC=70.82 MEC=9.15 MCC=78.05 MEC=10.66
GQSQS MCC=63.88 MEC=9.73 MCC=68.82MEC=11.08
QSDC MCC=64.04 MEC=9.56 MCC=68.39 MEC=11.08

Table 4.4: The average MCC and MEC scores of each system.

Short queries Long queries
MCC p-value = 1.00 p-value = 1.00
MEC p-value = 0.40 p-value = 0.82

Table 4.5: The p-values for sign tests to compare QSDC and GQSQS.

QSDC has the same control structure as GQSQS. However, in each round, QSDC processes one

cluster of reference documents, while GQSQS processes all the uncovered reference documents.

Therefore, QSDC processes fewer reference documents than GQSQS in each round and creates

47

equally good query suggestions.

4.4 Summary

This chapter applies document clustering to query suggestion and introduces a query suggestion

method by document clustering (QSDC). In QSDC, the set of reference documents is converted into

a weighted matrix after pre-processing; stemming is applied before clustering. Four versions of the

K-means algorithm, four versions of the agglomerative hierarchical clustering algorithm and one

spectral clustering algorithm are tested. In order to attain the purpose that the query suggestion for a

cluster should cover the documents in this cluster, we also propose a Cluster Cover score (CC) that

evaluates the cluster coverage of a term in the coverage score function.

An experiment was carried out to compare the performances ofdifferent document clustering

methods. In terms of MCC and MEC scores, none of the document clustering methods works better

than a random clustering method. Therefore, we think that the document clustering methods we

tested do not help much in our query suggestion system. In addition, QSDC’s performance is the

same as GQSQS’s.

48

Chapter 5

Related Work

There are many methods to create query suggestions. We classify them into three groups and in-

troduce each one. In addition to query suggestion, we surveyweb document clusteringand its use

for organizing search results and helping supply query suggestions. Query suggestion evaluation

methods are discussed at the end of this chapter.

5.1 Query Suggestion Methods

Many query suggestion methods extract words from a public global thesaurus that are relevant or

similar to the words in the user’s query and then use these words to replace or expand the words in the

user’s query. These methods are grouped together as methodsbased onglobal thesauri[5, 32, 56].

Since global thesauri may not be specific enough for one user’s search intent, there is a different

approach based on the documents relevant to the user’s original query. These relevant documents

are usually from the initial search results of the user’s query, so these methods are calledlocal

methods [32, 56]. Similar to methods based on global thesauri, most of the local methods extract

words that are relevant or similar to the words in the user’s query. Recently, research [3, 31, 54] has

begun to utilize search enginelogs accumulated everyday and contributed by all the users to help

query suggestion. We call these the methods based onsearch logs, and sub-classify them into three

groups:probabilistic methods,methods based on semantic relations[3, 5] (these methods aim to

find query suggestions that are semantically related to the user’s query), and methods based ongraph

models. In addition to the methods above, some literature exploresother information resources, such

as the web document’s snippet, theanchor text[23], or the user’s personal information repository

[7] (the personal collection of text documents, emails, cached web pages, etc).

5.1.1 Methods Based on Global Thesauri

Global means the thesauri and information are independent of the user’s original query [32, 56].

The methods based on global thesauri analyze this global knowledge and extract relevant or similar

terms to replace or expand the terms in the user’s query. There are generally two types of thesauri in

49

these methods: existing and manually maintained thesauri,and automatically constructed thesauri.

The problems the methods based on global thesauri need to solve are generally how to construct the

thesaurus and how to extract relevant words from the thesaurus.

There are some existing thesauri for synonyms of different concepts, such as WordNet1. Voorhees

[53] utilizes the word relations encoded in WordNet to expand the user’s query. For each wordw in

the user’s query, the words from the synonym set ofw can be used to supply query suggestions.

Jing and Croft [20] consider every noun as aconceptand build a word similarity thesaurus by

linking different concepts that co-occur in a specifiedwindowrange together. For example, suppose

the window range is three sentences, then for one conceptc, all the concepts that appear within three

sentences fromc are connected with it. A word similarity thesaurus is constructed in this way to

help create query suggestions.

Qiu et al. [43] construct a term similarity thesaurus too. They use thevector space modelto

represent a term as a vector, termt = (wdoc0 , wdoc1 , . . . , wdocn) wherewdoci is the weight of the

term in documenti. A commonly used weighting method is TFIDF. With the vector model, the

similarities between different terms are calculated and a term similarity thesaurus is built. Some

research [53, 56] calculates the similarity with terms in the user’s query to extract terms. Qiu et al.

[43] measure the similarity with the user’s query rather than terms to extract terms. A probabilistic

model expressed in Equation 5.1 is used to measure the similarity between a term and a query.

Sim(q, t) =
∑

ti∈q

ωi × Sim(ti, t). (5.1)

Here,Sim(q, t) is the similarity between queryq and termt. ti is a term inq. Sim(ti, t) is the

similarity between termti andt. ωi is the weight ofti in q.

5.1.2 Local Methods

For local query suggestion methods, usually therelevant documentsfrom the initial search results

of the user’s original query are determined first, then relevant terms from these relevant documents

are extracted to help create query suggestions. Based on howto determine the relevant documents,

there are roughly three types in the literature [32]:relevance feedback[44, 46], pseudo-relevance

feedback[55], andindirect-relevance feedback[10].

Relevance feedback[44, 46] involves an interactive procedure between the userand the search

engine. After the search engine returns the search results for the user’s query, the user is required

to mark which web documents are relevant. Since the user indicates the relevant documents clearly,

all the web documents are classified into two sets: relevant and irrelevant. Terms used for query

suggestions are extracted from the relevant documents withthe purpose of maximizing a function

such as Equation 5.2 [32].

~qoptimal = argmax
~q

[sim(~q, Cr)− sim(~q, Cnr)] (5.2)

1A lexical database for English, its website is athttp://wordnet.princeton.edu/ .

50

Here,~q is a query vector,Cr is the set of relevant documents,Cnr is the set of irrelevant documents.

The functionsim(~q, Cr) (sim(~q, Cnr)) measures the similarity between~q andCr (Cnr). When sim

is defined as cosine similarity, the optimal query vector~qoptimal is (from [32]):

~qoptimal =
1

|Cr|

∑

~di∈Cr

~di −
1

|Cnr|

∑

~dj∈Cnr

~dj , (5.3)

Here,~dk is a document vector,|Ci| is the number of documents in setCi. ~qoptimal equals the vector

difference between the centroids of the relevant and irrelevant documents.

Some research [5] shows that users are usually reluctant to mark relevant documents. Therefore,

pseudo-relevance feedback(also called blind-relevance feedback) [35, 55], in which the involvement

of users is removed, are proposed. Pseudo-relevance feedback often assumes the topT results of the

initial results as relevant. Based on these pseudo-relevant documents, the same methods of finding

query suggestions for relevance feedback can be used in the pseudo-relevance feedback methods.

The third category of local query suggestion methods is called indirect-relevance feedback.

Other information such as thequery session[10], theclickthrough data[10], etc. are used to de-

termine the relevant documents. Some indirect-relevance feedback methods will be introduced in

the next section.

5.1.3 Methods Utilizing Search Logs

Recently, more and more work on query suggestion [3, 9, 16, 34] has been utilizingsearch logs.

Search logs record the search histories of users on the search engine, i.e. the search logs record all

the interactions between the user and the search engine. Query session data is extracted from search

logs. A query session records the process of a user searchingfor a piece of specific information,

and consists of one or more queries and several clicked search results. For example, suppose a user

wants to watch the music videos of rock band “Coldplay”, enters “coldplay” in Google, refines the

query to be “coldplay youtube”, and finally clicks on one result entitled “YouTube - The Best of

Coldplay (PART ONE)”. Then the query session contains the first query “coldplay”, the second

query “coldplay youtube”, and the URL of the clicked result.

Various kinds of information can be inferred from search logs. For example, similar queries from

different users, the queries in one query session, the relations between the queries and the clicked

documents, the last one or last few clicked documents in one query session (they are usually called

landing pagesor landing documents), and so on. We introduce different query suggestion methods

utilizing search logs by categorizing them into probabilistic methods, methods based on semantic

relations and methods based on graph models.

Probabilistic Methods

Cui et al. [10] use query logs to extract the probabilistic correlations between the terms in queries

and terms in web documents. They assume the clicked documents in one query session are relevant

51

to the queries in the same query session. Their main idea is: if a set of documents is often clicked

for similar queries, the terms in these documents are strongly related to the terms in these queries.

By processing all the query logs, Cui et al. [10] calculate the probabilistic correlations between the

terms in queries and the terms in documents. With the correlations, query suggestions are generated.

Cucerzan et al. [9] consider two queries relevant for each other if they return the same or similar

web documents. Therefore, they link queries together if they share the same landing pages in search

logs. Then, the relevant queries to the user’s query are returned as the query suggestions.

Methods Based on Semantic Relations

Many query suggestion methods based on semantic relations [3, 45, 54] utilize search logs. There-

fore, we introduce these methods in this section.

Cao et al. [3] proposed a context-aware query suggestion method. They first cluster the queries

from query logs into different clusters, each cluster represents a concept. Then the most frequent

concept sequences are calculated. A concept sequence captures the process from the user entering

the first query to the user clicking the last landing page. Suppose a query session consists of queries

q0, q1, ..., qm, after representing each query with its corresponding concept, the concept sequence

is c0, c1, ..., cn. m might not equaln because different queries with the same concept are merged.

After the popular concept sequences are calculated, a concept sequence suffix tree is constructed for

faster processing. The concept sequence suffix tree is the query suggestion model. The user’s search

intent is captured by matching his/her original query to theconcept suffix tree and finding out the

concept the user’s next query might belong to. The most popular queries in the next concept are

returned as the query suggestions.

Wang et al. [54] use search logs to calculate the relations atthe level of terms rather than queries.

They define two types of term relation:quasi-synonymsand contexture terms. Quasi-synonyms

means two words are synonymous, such as “car” and “automobile”, or two words are syntactically

substitutable in the similar contexts, for example, “yahoo” and “google” are quasi-synonymous

when used as representatives for a search engine. Two words have a contexture relation if they are

closely related in some specific context. For example, the relation between “car” and “rental” or the

relation between “car” and “price”. The authors build probabilistic models to calculate the relations

between terms and substitute the terms in the user’s query tosupply query suggestions.

Sadikov et al. [45] stated that many relevant queries to the user’s query could be extracted from

query logs. Because only 5 to 10 of them could be suggested to the user, they proposed a query clus-

tering method to cluster all the relevant queries with the purpose of representing distinct information

needs with a limited number of query suggestions.

52

Graph Model

Because a query session is the path of a user’s searching process, a query session can be converted

into a graph. The general method is to treat a query as a graph node. The first query and all the

following queries in one query session can be connected by directed edges. In addition, if the

clicked documents are considered as graph nodes too, a querynodeq and a document noded can

be connected ifd is one of the clicked documents forq. Several works [2, 31, 45] have been done

based on graph models.

Boldi et al. [2] generate query suggestions based on short random walks on aquery-flowgraph.

A query-flow graph represents the query behaviors aggregated from search logs. In a query-flow

graph, two connected queries may indicate these two queriesare in the same query session, any path

in the graph may be a complete search experience. Several kinds of information are attached in the

query-flow graph. For example, the edge weight between two queries indicates the possibility that a

real search goes from the first query to the second query, and so on.

Ma et al. [31] build two bipartite graphs, one consisting of user nodes and query nodes, the other

one consisting of query nodes and document nodes. They extract a latent feature space for queries

from the graphs and construct a query similarity graph basedon these features. The most similar

queries are supplied to the user.

Sadikov et al. [45] convert a query clustering problem into agraph clustering problem, and return

the query clusters as the query suggestions.

5.2 Web Document Clustering

Much research is done onweb document clusteringwith the purpose of organizing search results

[12, 13, 15, 57, 58]. There appears to be no literature explicitly utilizing web document clustering

for query suggestion. However, clustering web documents isa procedure of mining contents and re-

lations between web documents. After a set of web documents is grouped into different clusters, the

content of each cluster expressed by acluster labelcould be used for query suggestion. For example,

for the search results of the query “jaguar”, a web document clustering method may cluster these

documents into the documents related with the jaguar cat, the jaguar car, etc. The corresponding

cluster labels may be “jaguar cat”, “jaguar car”, etc. In addition, there have been commercial search

engines based on web document clustering, such as Vivisimo and Yippy2. Figure 5.1 shows the

search results for the query “jaguar” from Yippy. The left column in Figure 5.1 shows the categories

of the web documents returned for the query “jaguar”.

Most of the works on web document clustering aim to produce good clusters and understand-

able cluster labels, none of them focuses on query suggestion. Furthermore, cluster labels that are

understandable to humans are not guaranteed to be good queries for the search engine. Therefore,

2Vivisimo: http://vivisimo.com/ . Yippy: http://search.yippy.com/ .

53

Figure 5.1: The clustered search results of the query “jaguar” from Yippy (Jul. 15th, 2010). In
addition to the search results in the center of the web page, 10 main clusters of the search results are
shown in the left column. If a user needs the information about the jaguar cat, s/he may simply click
the “Animal, Cat” label for related web documents

even though a system might produce perfect clusters and cluster labels, these labels may not be able

to work as query suggestions directly. For example, in Figure 5.1, the label “Animal, Cat” is very

likely to work terribly if we issue it for the web documents about “jaguar cat”. On the contrary, our

work in Chapter 4 applies web document clustering methods toserve query suggestion. We first

cluster thereference documents for a query, then label each cluster using an optimization equation

to guarantee that the label can return many useful documentswhen used as a query suggestion.

There are generally two steps for web document clustering inthe literature:clusteringandclus-

ter labeling. Both are introduced below.

5.2.1 Clustering

The purpose of document clustering is to group different documents into different clusters so that

documents in the same cluster are similar to each other and documents in different clusters are dis-

similar to each other [1]. In Chapter 4, we have introduced K-means, the agglomerative hierarchical

clustering method and the spectral clustering method. In this section, we will describe several web

documents clustering methods proposed recently. One famous web document clustering method,

Suffix Tree Clustering[57], is introduced as a representative. There are also somemethods first

54

extracting phrases from a set of web documents and then assigning each document to a phrase to

accomplish clustering. We call thesephrase-centered document clusteringmethods.

Suffix Tree Clustering Method

In the web context, Zamir et al. [57] proposed a document clustering method namedSuffix Tree

Clustering(STC). STC considers a document as a sentence string rather than a bag of words to

maintain the information between words. There are two phases for STC: identifying the base clusters

and combining the base clusters.

In the phase of identifying the base clusters, one suffix treefor all the documents is constructed.

A suffix tree for a stringS is acompact triecontaining all the suffixes of the stringS. A suffix tree

for more than one string is a compact trie containing all the suffixes of all the strings. For example,

if there are three documents reading as “cat ate cheese”, “mouse ate cheese too” and “cat ate mouse

too”, the suffix tree for these documents is shown in Figure 5.2 (from [57]). In Figure 5.2, the labels

on the edges are phrases, the label of a node is the concatenated phrase from the root to the node.

Every node represents a common phrase between different documents. For the nodes that represent

the suffixes, the positions of the suffixes are also attached (in the boxes in Figure 5.2). Zamir et

al. [57] say a node contains a document if the phrase of the node appears in the document. After

building the suffix tree, all the nodes in the suffix tree, except those containing only one document,

are the base clusters. Following the previous example, the nodesa, b, c, d, e, f in Figure 5.2 are the

base clusters. Table 5.1 clearly shows the base clusters [57].

Figure 5.2: The suffix tree of strings “cat ate cheese”, “mouse ate cheese too”, and “cat ate mouse
too” (from [57]).

In the phase of combining base clusters, Zamir et al. [57] usea fairly direct way to combine

the base clusters. They combine two base clusters if these two clusters share sufficiently many

documents. Specifically, for base clustersA andB, |A| means the number of documents inA,

55

Node Phrase Documents
a cat ate 1,3
b ate 1,2,3
c cheese 1,2
d mouse 2,3
e too 2,3
f ate cheese 1,2

Table 5.1: The base clusters from Figure 5.2 (from [57]).

|A ∩ B| means the number of documents contained in bothA andB. A andB will be combined

if and only if |A ∩ B|/|A| > 0.5 and |A ∩ B|/|B| > 0.5. After combining the base clusters,

each combined component is considered a final cluster. The documents contained by the nodes in a

cluster are grouped together as a cluster. The clustering result for the previous example is shown in

Figure 5.3 [57].

Figure 5.3: The clustering result for Figure 5.2 and Table 5.1. There is only one combined compo-
nent, therefore, only one cluster is returned which contains all the documents (from [57]).

Phrase-Centered Document Clustering Methods

There are some web document clustering methods adopting the“phrase-centered” approach [6, 12,

26, 27, 59]. These methods first extract phrases that will eventually be used as cluster labels, and

then assign documents to the phrases to form different clusters.

Ferragina et al. [12] proposed a snippet clustering system.They first retrieve the snippets and

enrich them using ananchor text knowledge base3. If there is an anchor text about a URL in the

anchor text knowledge base, this anchor text will be appended to the snippet text of the URL. After

enriching the snippets, thegapped sentenceswill be selected. Ferragina et al. use a gapped sen-

tence to distinguish from acontiguous sentence. For example, when using the gapped sentence, the

phrases “John Fitzgerald Kennedy”, “John F. Kennedy”, and “John Kennedy” all equal the phrase

3The anchor text knowledge base was built by the authors from more than 200 millions web pages. An anchor text is
usually a descriptive text attached with the hyperlink.

56

“John Kennedy”. These phrases are different when using the contiguous sentences. Therefore, the

gapped sentence is more flexible than the contiguous sentence. In order to extract the gapped sen-

tences, they utilize the web directory Open Directory Project (ODP)4 to calculate the ranks for all

the words.TF (w) evaluates the frequency of a wordw in ODP rather than in a document, and is

defined as

TF (w) = 1 + log#(w)

#(w) is the frequency ofw in ODP.IDF (w) evaluates the generalization ofw in all the categories

of ODP rather than in all documents. The authors define the rank of a wordw with respect to a

categoryCi in ODP as

rank(w,Ci) = TF (w)× IDF (w)× b(w,Ci)× ns(Ci)

Here,b(w,Ci) is a boosting factor forw if it appears in special positions ofCi, such as titles or

descriptions.ns(Ci) is a boosting factor for categoryCi by considering the depth ofCi in the

ODP hierarchy, a deeper category is given higher score because a deeper category is regarded more

specific. The rank of a pair of words(wh, wk) is defined as

rank(wh, wk) = maxCi
{
∏

r=h,k

rank(wr, Ci)}

After the ranks based on ODP for all the words are calculated,all pairs of words, i.e. two-word

phrases, within a fixedwindoware extracted. For example, for the sentence “Google API stable

night”, if the window distance is two words, then the extracted pairs of words will be “Google API”,

“API stable”, and “stable night”. After obtaining all pairsof words, the rank for every pair of words

is calculated and the word pairs whose scores are below a threshold are discarded. The remaining

pairs of words are incrementally merged to form longer gapped sentences using the same method,

until no merge is possible or the sentence contains eight words. At the end, all the gapped sentences

are the candidate labels.

Ferragina et al. then build a hierarchical clustering with all the candidate labels as the leaf cluster

labels. A web documentd is assigned to a clusterc if d contains the label ofc. The candidate labels

are theprimary labels for the leaf clusters. In order to form the parent clusters, thesecondarylabels

for the leaf clusters are extracted. If a candidate labell appears in more than 80% of the documents

in clusterc, thenl is a secondary label forc. The leaf clusters that share the same candidate labels in

their primary or secondary labels are combined together to form a parent clusterp. The primary label

for p is the common candidate label shared by its child clusters. Similarly, the secondary labels for

p are candidate labels which occur in more than 80% of the documents inp. In this way, a hierarchy

of at most three levels is built. The label for each cluster isthe primary label.

Chen et al. [6] proposed a web document clustering method based onword sense communities

which are groups of keywords that co-appear frequently in the search results for a query. Chen et

4The ODP is a hierarchical structure of more than 3,500,000 websites in more than 460,000 categories maintained by
humans. The website is athttp://www.dmoz.org/ .

57

al. [6] convert the document clustering problem into a problem of finding the community structure

on the network of extracted keywords. Specifically, all the nouns are regarded as keywords and

are extracted from the web documents using Minipar5. Each keyword is a graph node, two nodes

are connected with an edge if the corresponding keywords co-appear in the same document. After

constructing the graph, an existing algorithm for finding the community structure in the graph is

applied. The objective function aims to form clusters with fewer edges between different clusters

and more edges within the same clusters. In this way, the clustering is finished and each cluster

contains several keywords. After clustering, the documents are assigned to different clusters by

their TFIDF scores. An overall TFIDF score of documentd for clusterc is defined in Equation 5.3.

TFIDFd,c =
∑

f∈c

TFIDFd,f (5.4)

Here,f is a keyword inc. With this score, documentd is assigned to the cluster which has the

highest TFIDF score.

5.2.2 Cluster Labeling Methods

After clustering documents, a cluster label consisting of words is needed for humans to understand

the content of the cluster. Generating cluster labels is called cluster labeling. A cluster label is gen-

erally representative of its cluster and discriminative with other clusters. Manning et al. [32] classify

cluster labeling methods intodifferential cluster labelingandcluster internal labeling. Differential

cluster labeling methods select a word for a cluster label bycomparing its distribution in this cluster

to its distribution in other clusters. The representative methods areMutual Information, χ2 Test, etc.

These methods select label words to distinguish one clusterfrom others. Cluster internal labeling

methods extract label words for a cluster solely based on this cluster. The straightforward methods

are based on frequency or the centroid of the cluster [32]. Weintroduce these popular cluster la-

beling methods and some recent works which utilize externalresources such as Wikipedia6 to label

clusters. Several advanced methods which combine different basic cluster labeling methods together

are described too.

Frequency-Based Methods

Frequency-based methods select the most frequent words in the cluster. The frequency can be easily

calculated in the vector space model. For example, if the document is represented as a vector,

each entry corresponds to a distinct term and equals the number of occurrences of the term in the

document. The frequency of a term can be defined as the number of its occurrences in all the

documents. An intuitive method based on frequency [32] selects the words which occur the most

5Minipar is a broad-coverage parser for the English language, the website is athttp://webdocs.cs.ualberta.
ca/ ˜ lindek/minipar.htm .

6Wikipedia: http://www.wikipedia.org/ .

58

in all the documents in a cluster. Frequency-based methods are simple and straightforward, but the

words for labels selected by these methods may be neither representative nor distinctive.

Mutual Information

Mutual information(MI) measures the mutual dependence of tworandom variables, i.e. MI eval-

uates the information of one random variable that can be inferred when given the other random

variable. Equation 5.5 [8] defines the MI of two discrete random variablesX andY .

I(X;Y) =
∑

y∈Y

∑

x∈X

p(x, y)log(
p(x, y)

p1(x)p2(y)
) (5.5)

Here,I(X;Y) is the mutual information ofX andY , p(x, y) is the joint probability distribution

function ofX andY , andp1(x) andp2(y) are the marginal probability distribution functions of

X andY respectively. With Equation 5.5, whenX andY are independent, MI ofX andY is 0,

i.e. knowing one of them implies nothing about the other one.WhenX equalsY , MI of X andY

becomes the entropy ofX (or Y).

In the context of cluster labeling, MI measures the mutual dependence of random variablesU and

C. U takes the value 1 if the document contains termt, 0 otherwise;C takes the value 1 if cluster

c contains the document, 0 otherwise. MI evaluates the relations between whether a document

contains termt or not and whether clusterc contains the document or not. The MI equation is

shown in Equation 5.6 [32].

I(U ;C) =
N11

N
log

NN11

N1.N.1
+

N01

N
log

NN01

N0.N.1
+

N10

N
log

NN10

N1.N.0
+

N00

N
log

NN00

N0.N.0
(5.6)

Here, eachN value represents the number of documents that contain termt or not (indicated by the

first subscript) and belong to clusterc or not (indicated by the second subscript) at the same time.

N11 is the number of documents which containt and belong toc. N1. is the number of documents

which containt. N.1 is the number of documents which belong toc, etc.N is the total number of

the documents. The MI score in this context measures how mucha term can contribute to make a

document belong to a cluster.

Pearson’sχ2 Test

Pearson’sχ2 (shortened asχ2 test) is usually used to evaluate two things: whether the observed

distribution fits with an expected distribution, and whether paired observations on two variables are

independent of each other. In the cluster labeling field, theχ2 test is often used for measuring the

independence of two variables. SupposeOi,j is the observed number of times of the two variables

taking the valuei andj respectively,Ei,j is the expected number of times that these two variables

take the valuei andj respectively. Then the equation ofEi,j is shown in Equation 5.7 [40].

Ei,j =

∑|c|
k=1 Oi,k

∑|r|
k=1 Ok,j

N
(5.7)

59

Here,c is the set of all the values that the first variable can take.r is the set of all the values that the

second variable can take.N is the number of all the occurrences or observations. WithEi,j , theχ2

test is calculated by Equation 5.8 [40].

χ2 =

|r|
∑

i=1

|c|
∑

j=1

(Oi,j − Ei,j)
2

Ei,j

(5.8)

In the cluster labeling context, theχ2 test measures the independence between the occurrence of

a term and the occurrence of a cluster. Let theNs denote the numbers of the documents containing

term t or not (indicated by the first subscript) and belonging to clusterc or not (indicated by the

second subscript) as defined above. The calculation for the expected frequency is shown in Equation

5.9 [32].

Ei,j =

∑

k∈{0,1} Ni,k

∑

k∈{0,1} Nk,j

N
(5.9)

Equation 5.10 [32] is the correspondingχ2 equation.

χ2 =
(N11 +N10 +N01 +N00)× (N11N00 −N10N01)

2

(N11 +N01)× (N11 +N10)× (N10 +N00)× (N01 +N00)
(5.10)

Jensen-Shannon Divergence

Jensen-Shannon Divergence (JSD) is used to measure the similarity between two probability distri-

butions. SupposeP andQ are two probability distributions, then the JSD ofP andQ is defined by

Equation 5.11 [28].

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M),whereM =

1

2
(P +Q) (5.11)

JSD is a symmetrized version ofKullback-Leibler divergence(Equation 5.12 [25]) which measures

the extra information needed to inferP when givenQ.

D(P ||Q) =
∑

i

P (i)log
P (i)

Q(i)
(5.12)

In the cluster labeling context, Carmel et al. [4] used JSD between the term distribution in the

documents belonging to a cluster and the term distribution in all the documents. In every cluster, a

term is scored with its JSD contribution, the highest scoredterms are selected as the label terms. In

particular, the probability distribution is calculated based on the occurrences of terms. For example,

assume clusterC has 10 terms and the set of all the documentsD contains 100 terms (if one term

occurs twice, count two). Suppose termt occurs 2 times inC and 20 times inD, i.e. termt has the

same distribution inC as inD. PC(t) = 2/10, PD(t) = 20/100, andM(t) = 1
2 (PC(t)+PD(t)) =

PC(t) = PD(t). The JSD contribution oft is

JSDcontribution(t) =
2

10
log(

2/10

2/10
) +

20

100
log(

20/100

20/100
) = 0.

A JSD contribution of 0 is interpreted to mean that termt does not contribute anything to distinguish

the documents in clusterC from all other documents in the document set. Therefore, a 0 JSD

contribution term is not suitable to be a label word for clusterC.

60

Centroid and Title

Suppose a document is represented by a vector in which each entry equals a term weight in the

document. The centroid of a set of documents is the vector averaged on all the document vectors in

the set. Stein et al. [47] first calculate the centroid for thedocuments in a cluster, then use the terms

with top weights in the centroid as the label for the cluster.Cutting et al. [11] calculate the centroid

first, then find the document that is closest to the centroid, and use the title of the document as the

cluster label. The benefit of using document titles is that a title is usually more understandable than

a list of extracted terms. The methods utilizing the centroid and the title are efficient for selecting

label terms that are important to the cluster, but they oftenfail to supply discriminative label terms.

Methods Based on External Resources

External resources such as ODP7, Wikipedia, etc. can be used to help labeling clusters. A large

amount of web documents are clustered and labeled manually in ODP. A document can be compared

with the existing clusters in ODP and be labeled with the manual label for the most similar cluster.

Wikipedia has a hierarchical structure with a label for eachcluster and linking information between

similar or relevant clusters.

Advanced Cluster Labeling Methods

The method by Carmel et al. [4] creates better cluster labelsby combining different cluster labeling

methods or modifying basic cluster labeling methods. Thereare also some works [6, 13, 38, 49,

50, 57] proposing their own cluster labeling methods to tackle their specific problems. We group all

these methods as advanced cluster labeling methods and introduce some here.

Carmel et al. [4] combined mutual information, JSD, Wikipedia etc. to label clusters. For a

cluster, they extract the important phrases (single terms and n-grams) from the documents in this

cluster and also from the related documents from Wikipedia.All these extracted phrases are the

label candidates. A combined scoring method is applied to select the top scored phrases which are

returned as the final cluster labels for the cluster.

Specifically, the JSD score for every phrase in the cluster iscalculated. The top scored phrases

are selected and put into a cluster label candidate set denoted byT (c), wherec represents the clus-

ter. A queryq is formed fromT (c) and issued against Wikipedia8. A list of documentsD(q)

in Wikipedia is retrieved by queryq and considered as the set of relevant documents with cluster

c. The titles and category labels associated with the documents in D(q) are extracted as the label

candidates for clusterc too, denoted asL(c). The MI (Mutual Information) score and SP (Score

Propagation) score for each label candidate inT (c) andL(c) are calculated. The MI and SP scores

7An open directory project athttp://www.dmoz.org/ .
8A search index is retrieved from the Wikipedia Dump:http://en.wikipedia.org/wiki/Wikipedia:

Database_download .

61

are aggregated and all the label candidates are ranked. The top scored candidates are the final labels.

Details about the MI and SP score are as follows.

MI is used to measure the sum of the pointwise mutual information between a label candidate

and all the label candidates fromT (C), whereC = {c1, c2, . . . , cK} is the set of clusters (K is the

number of clusters). In the equation for the MI score (Equation 5.13 [4]),

MI(l, T (C)) =
∑

t∈T (C)

PMI(l, t|corpus)× ω(t) (5.13)

l is the candidate label,l ∈ L(c) ∪ T (c). PMI is the pointwise mutual information.

PMI(l, t|corpus) = log(
Pr(l, t|corpus)

Pr(l|corpus)× Pr(t|corpus)
) (5.14)

Pr(x|corpus) =
#(x|corpus)

#(corpus)
(5.15)

ω(t) is the relative importance of termt ∈ T (C). corpus is an external textual source9. #(x|corpus)

denotes the number of occurrences of termx in corpus. #(corpus) is the number of all the terms

in corpus.

SP measures the label candidates extracted from Wikipedia,i.e. label candidates fromL(c). SP

gives a label candidate higher score if the Wikipedia documents associated with it rank in the top po-

sitions inD(q), i.e. the Wikipedia documents returned by queryq. The SP score of a label candidate

is measured as the averaged weight of words in it. Equation 5.16 [4] shows the SP function,

SP (l|D(q)) =
1

n(l)

∑

w∈l

ω(w) (5.16)

l is a label candidate for clusterc, l ∈ L(c). n(l) is the number of distinct words inl. For example, ifl

is “twitter over capacity twitter”, thenn(l) is 3.ω(w) is the weight of wordw, which is accumulated

by all the weights of label candidates inL(C) that contain the wordw.

ω(w) =
∑

l∈L(C),w∈l

ω(l) (5.17)

For example, if there are two label candidates including “twitter” as ω(“twitter tee”) = 0.2 and

ω(“twitter client”) = 0.3 in the cluster, thenω(“twitter”) = 0.2 + 0.3 = 0.5. ω(l) is the weight of

the label candidate and is measured by the scores of the Wikipedia documents associated withl.

ω(l) =
∑

d∈D(q),l∈d

score(d)

n(d)
(5.18)

d is the Wikipedia document associated withl. score(d) is the score of documentd. Several scoring

mechanisms can be applied here. For example,score(d) = rank−1(d). n(d) is the number of label

candidates associated withd.
9The authors used Google n-grams collection to estimate the term frequency in a very large web collection.

62

Equation 5.19 defines the aggregated MI and SP score for each label candidate.

score(l|C) = β1 ×MI(l|C) + β2 × SP (l|C) (5.19)

Theβi are weights.

Geraci et al. [13] label clusters by three steps: local candidate selection, global candidate selec-

tion, and final labels.

Local candidate selection: for a cluster, initialize scores for all the words to be 0. For each word,

increase its score by 3 if it appears in a document title in thecluster; increase its score by 1 if it

occurs in a snippet in the cluster. The top 10 words are selected as the local candidates.

Global candidate selection: for each cluster, a modified mutual information method (Equation

5.20 [13])

MI ′(t, c) = P (t, c)log
P (t, c)

P (t)P (c)
+ P (t̄, c̄)log

P (t̄, c̄)

P (t̄)P (c̄)
(5.20)

is applied to select 3 terms from 10 local candidates. MI’ measures the mutual dependence of term

t and clusterc. In Equation 5.20,P (t) is the probability of a document containingt. P (c) is the

probability of a document belonging toc. P (t, c) is the probability of a document belonging toc and

containingt at the same time.P (t̄) is the probability that a document does not containt. P (c̄) is the

probability that a document does not belong toc. P (t̄, c̄) is the probability that a document does not

belong toc and does not containt. Comparing Equation 5.20 with the standard mutual information

function (Equation 5.4), the modified mutual information takes the positive correlation and removes

the negative correlation, i.e. the authors are only interested in the co-occurrence or co-absence of a

term and a cluster.

Final labels: all the contiguous substrings of the snippetsand document titles in the cluster are

extracted. All the substrings are scored and the shortest one with the highest score is the final label.

A cumulative method is used to score a substring. To score a substring, a candidate word in the

substring adds a higher score (its MI score), a word in the query adds a lower score, other words

decrease the score. In this way, the final label contains morecandidate words and few other words.

Krishna et al. [24] proposed a concept distinctiveness and document coverage method to label

clusters. They first utilize a tool developed by IBM T. J. Watson Research Lab to extract adjectives

and noun phrases (phrases can be a single term or multiple terms). All the phrases are added to a

phrase set. In addition, the constituent words and the sub-phrases for the phrases in the set are also

extracted and added to the set.

There are two important concepts for their labeling methods: document coverage and sibling

node distinctiveness. A document is said to be covered by a hierarchical cluster structure if at

least one of the top level clusters contains the document. Krishna et al. [24] aim to make the final

hierarchical cluster structure cover more documents. Sibling node distinctiveness means that the

sibling clusters at the same level should be distinctive from each other. They select phrases based

on these two concepts.

63

If there areK clusters on the top level, a greedy method is applied to select phrases. Denote by

Sk−1 the set of phrases which have already been selected.Uk−1 is the set of the remaining phrases.

Denoting a phrase withcj , then the selected phraseck is

ck = argmax
cj∈Uk−1

g(Sk−1, cj) (5.21)

g is the objective function

g(Sk−1, cj) = ω1gc(Sk−1, cj) + ω2gd(Sk−1, cj), (5.22)

wheregc andgd measure the document coverage and sibling node distinctiveness respectively.ω1

andω2 are the weights.gc(Sk−1, cj) measures the increase in the document coverage if phrasecj is

added to the existing phrases setSk−1.

gc(Sk−1, cj) = |d(cj)| − |d(cj) ∩ d(Sk−1)| (5.23)

d(cj) is the set of documentscj covers.d(Sk−1) is the set of documents that all the selected phrases

cover.gd(Sk−1, cj) measures the increase of the total number of topics when phrasecj is added to

Sk−1

gd(Sk−1, cj) = |t(cj)| − |t(cj) ∩ t(Sk−1)|. (5.24)

t(cj) is the set of topics introduced bycj . The documents covered bycj may also be covered by

other phrases, these other phrases pluscj form the sett(cj). t(Sk−1) represents the set analogously

defined for the phrases inSk−1. In the end, the phrases inSk−1 are the final cluster labels.

5.3 Evaluation Methods for Cluster Labeling

Most of the research on web document clustering focuses on clustering or cluster labeling, less ef-

fort has been spent on evaluating the quality of the cluster labels. Some research [4, 12, 51, 59]

used the “descriptor ranking” evaluation methods proposedby Treeratpituk et al. [50], which in-

clude Match@N (Match in the top N results), P@N (Precision inthe top N results), MRR (Mean

Reciprocal Rank), and MTRR (Mean Total Reciprocal Rank). User surveys are also adopted in some

research [12, 13, 41]. Different from all these methods to measure the correctness and understand-

ability of cluster labels, our work evaluates cluster labels by considering them as query suggestions

and uses the MCC and MEC scores proposed by Jiang et al. [19].

5.3.1 Descriptor Ranking Evaluation Methods

Treeratpituk et al. [50] reformalized the document clusterlabeling task as a descriptor ranking prob-

lem. The corresponding evaluation task is reformalized too. Because they ran their experiment on

the web directory Open Directory Project (ODP)10, the manual labels of different categories in ODP

10ODP is an open content directory of Web links and is constructed and maintained by humans. The website is athttp:
//www.dmoz.org/ .

64

are used as the ground truth. In order to compare the cluster labels, they consider a cluster label to be

correct if it is identical to, an inflection of, or a Wordnet synonym of the correct label. In addition,

if there is more than one term in the correct label, containing at least one of them is regarded as

correct. Supposing one or multiple labels for one cluster are supplied, with the best label first, the

following evaluation measures are proposed.

• Match at top N results (Match@N): Match@N is a binary value indicating whether the top N

suggested labels for one cluster contain any correct labels.

• Precision at top N results (P@N): P@N is calculated as shown in the following equation.

P@N =
|SN ∩ C|

N

For one document cluster,SN is the set of the topN suggested labels andC is the set of the

correct labels. P@N measures the percentage of correct labels in the top N suggested labels.

• Mean Reciprocal Rank (MRR): RR is the reciprocal of the rank of the first correct label in the

suggested labels. If the first correct label appears as the 3rd suggested label, then RR is 1/3.

If none of the suggested labels is correct, RR is 0. If the firstsuggested label is correct, then

RR is 1. MRR is the mean of the RR values of all document clusters.

• Mean Total Reciprocal Rank (MTRR): TRR is similar to RR except that TRR considers all

the correct suggested labels rather than only the first correct one. For example, if the set of the

correct labels includes the label “fruit and health”, the set of the suggested labels contains the

label “fruit” (2nd place) and the label ”health” (4th place), then the TRR score is1/2+1/4 =

3/4. MTRR is the mean of all the TRR values of all document clusters.

Carmel et al. [4] used two data collections namely 20 News Group (20NG)11 and ODP to run

their experiment. Both of these data collections have manual labels for categories. These manual

labels are considered as ground truth. Given the number of the required cluster labelsK, they follow

the evaluation methods Match@N and MRR@N (here,N = K) of Treeratpituk et al. [50].

Ferragina et al. [12] implemented a web search engine based on snippet clustering. They used

77 test queries, and for each test query, a cluster hierarchyof the search results is supplied. They

asked people to manually tag whether the generated cluster labels are correct and then used P@N to

evaluate their cluster labeling method. Since they generate a cluster hierarchy, if a label is manually

tagged as “ambiguous”, they consider the label correct if the majority of its children labels are

correct. They reported P@3, P@5, P@7 and P@10 in the end.

Zeng et al. [59] asked 3 people to label the clusters for 30 queries extracted from query logs as

the ground truth. Then they utilized P@N (N ∈ {5, 10, 20}) to evaluate their system. Treeratpituk

et al. [51] used labels in ODP as ground truth and MRR as the evaluation method.

11The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly
across 20 different newsgroups. The website is athttp://people.csail.mit.edu/jrennie/20Newsgroups/ .

65

5.3.2 User Surveys

Descriptor ranking evaluation methods evaluate cluster labels by following several rules, for exam-

ple, whether the label contains a term in the correct label. Therefore, good cluster labels might be

ignored if they do not comply with those rules. User surveys solve this problem. But compared

with descriptor ranking evaluation methods, a user survey is difficult to carry out and proven to be

affected by subjectivity. We introduce several studies [12, 13, 41] that adopt user surveys to evaluate

their cluster labels.

Geraci et al. [13] implemented a meta-search engine that groups the web snippets returned by

auxiliary search engines into disjoint labeled clusters. In order to evaluate their cluster labeling

algorithm, they performed a user study on 22 computer science master students, doctoral students

and post-doctorates. 35 test queries are supplied to the user in a round robin way. For each test

query, all the labels of the clusters are supplied and three questions are asked in the following order

(quoted from [13]):

1. “Is the label syntactically well-formed?”

2. “Can you guess the content of the cluster from the label?”

3. “After inspecting the cluster, do you retrospectively consider the cluster as well described by

the label?”

The first question measures the “elegance” of the cluster labels; the second one evaluates how well

the label allows to predict the content of the cluster a priori; the third one measures whether the

content of the cluster, in hindsight, is well represented bythe label. Three answers{yes, sort-of, no}

are possible for each question.

Popescul et al. [41] compared 4 cluster labeling methods: the most frequent and predictive

words method,χ2 method, most frequent words method, and most predictive words method. They

conducted a user survey to supply 4 cluster labels from these4 methods respectively for one cluster,

and asked three computer science PhD students to rank these 4cluster labels with the best in the first

place. After this, each method is scored by its average ranking.

Ferragina et al. [12] used P@N to evaluate cluster labels. Inaddition, since they implemented a

whole search engine, they gave a general evaluation of theirsystem including the quality of cluster

labels by three user surveys.

1. First study: Is web clustering beneficial? They asked 45 people to use Vivisimo12 for a test

period of 20 days. 85% of them reported they got a good sense ofrange alternatives with the

meaningful labels, and 72% reported that the ability to produce on-the-fly clusters with labels

extracted from the text in response to a query is really important.

12Vivisimo is a commercial search engine based on clustering.http://vivisimo.com/ .

66

2. Second study: Comparison of their system with other systems, such as Mooter, CIIRarchies,

Highlight, Carrot2. 18 test queries were used and three users were asked to help. The authors

collected the general opinions of users for each system, such as users do not like Mooter

because the cluster labels are single words.

3. Third study: Comparison of their system with Vivisimo. The authors asked 20 students to

issue 18 test queries on the two systems and collected their general opinions about the quality

of cluster hierarchy and cluster labels.

67

Chapter 6

Conclusions

6.1 Summary

This thesis proposed three query suggestion systems based on the query suggestion method (QSQS)

developed by Jiang et al. [19]. Our approach follows the sameobjective that Jiang et al. follow,

namely to generate query suggestions to cover most reference documents. In addition, we use the

MCC and MEC scores proposed by Jiang et al. to evaluate query suggestions.

This thesis proposed Improved Query Suggestion by Query Search (IQSQS), Greedy Query

Suggestion by Query Search (GQSQS) and Query Suggestion by Document Clustering (QSDC).

IQSQS follows the structure of QSQS and provides alternative implementations for various compo-

nents in QSQS. Specifically, IQSQS generalizes the lexical alias search phase in QSQS to a search

term selection phase and suggests the three scoring mechanisms LA, OC, and EOC to evaluate

terms from the search engine side. In addition, IQSQS replaces the top-down search in QSQS by a

bottom-up search method and enhances it by a beam search. An experiment was carried out to find

the best configuration of IQSQS (called IQSQS*). The combination of the search term selection

method CSW and the query search method QoBS generates query suggestions with highest MCC

and MEC scores. Our experiment also demonstrates that termsin the user’s query are important to

form desired query suggestions, and also strengthens the same conclusion drawn by Jiang et al.

GQSQS modifies the control structure of QSQS and provides 10 query suggestions in 10 rounds.

Instead of selecting search terms for each reference document, GQSQS extracts search terms from all

the uncovered reference documents in one round with a modified coverage score function. GQSQS

attains high MCC and MEC scores with much less effort compared to QSQS.

QSDC applies document clustering to query suggestion and aims to create a query suggestion

for a document cluster so that the query suggestion represents the content of the cluster as a cluster

label and also covers the web documents in the cluster. Within QSDC, we tested four K-means

clustering methods, four agglomerative hierarchical clustering methods and one spectral clustering

method. The experimental results show that the document clustering methods we tested do not help

much in terms of MCC and MEC.

68

6.2 Limitations and Future Work

Since this thesis is based on QSQS [17], our query suggestionmethods are limited by the assump-

tions of QSQS. One crucial assumption is on the user’s query:Jiang et al. assume the user’s query is

able to return some relevant documents among the reference documents. Therefore, when the user

forms a terrible query for which no document in the top 120 results is of interest to the user, our

query suggestion method will fail.

The target web documents this thesis deals with are those ranked between 21-120. There is

no guarantee that they are relevant, they are just more likely to be relevant than documents ranked

beyond 120. And there may be other useful web documents out ofthis range that our method will

miss.

Concerning the quality of our query suggestions, we mentioned in Chapter 1 that we only use

MCC and MEC for evaluation. This just measures some aspects of query suggestions, we did

not evaluate the understandability of query suggestions which is an important factor in practical

use. Additionally, our method can not avoid that query suggestions are too similar to each other.

Therefore, there may still be ways to make the query suggestions generated by our system more

practical.

Another limitation is that we know almost nothing about how the search engine works. If we

knew why a query returns a web document and how the order of terms in a query influences the

search results, our search term selection and query search could be improved substantially.

The coverage score functions we used in different systems are important for selecting search

terms. There are four scoring mechanisms, LA, OC, EOC and CC,presented in this thesis. A

further study is needed to find out the best weightings for them in the coverage score function.

GQSQS achieving high MCC and MEC scores with much less effortindicates the unnecessity

for IQSQS to process every reference document. How to shorten the processing time of IQSQS

while maintaining similar MCC and MEC scores is worth studying.

For QSDC, a deeper investigation is needed to analyze why document clustering does not help

much in terms of MCC and MEC. Query suggestions created by QSDC might represent different

aspects of the user’s query compared to query suggestions generated by IQSQS and GQSQS, be-

cause query suggestions created by QSDC are based on document clusters. However, we did not

evaluate the query suggestions generated by QSDC in this respect. Concerning document clustering

methods, there are more advanced web document clustering methods we could try. In addition, this

thesis links web documents with queries by issuing queries to the search engine. If we consider

web documents covered by the same query similar, we might be able to create a new web document

clustering method based on this.

There are cluster labeling methods to create understandable and distinguishable cluster labels,

another direction of future work could be to utilize these labeling methods in our query suggestion

system.

69

6.3 Final Word

This thesis proposes three query suggestion systems, IQSQS, GQSQS and QSDC, to generate query

suggestions which could return reference documents to the top positions for the user to see. IQSQS

selects a list of search terms for each reference document, applies query search on the search terms

to generate query suggestion candidates, and greedily selects the final query suggestions to maxi-

mize MCC and MEC. GQSQS modifies the control structure of IQSQS, it selects a list of search

terms, applies query search, and determines a final query suggestion in each round. QSDC inserts a

document clustering phase into the structure of GQSQS, and follows the same control structure of

GQSQS. QSDC supplies one query suggestion for each reference document cluster. The experiment

shows that all three systems improve the performance of QSQSsubstantially.

This thesis selects terms for query suggestions in a new way,in that terms are evaluated by

their coverage scores. The coverage score reflects how well aterm covers reference documents

when included in a query. In addition, this thesis utilizes document clustering methods for query

suggestion. Creating a query suggestion for a reference document cluster may still be a promising

approach, even though our experiment provides no evidence of the usefulness of document clustering

in terms of reference document coverage.

70

Appendix A

Query Data

The query data we tested (50 short queries and 50 long queries) in all the experiments in this thesis

are randomly sampled from the AOL transaction log in 20061, Jiang et al. [19] tested on exactly the

same query data.

The 50 short queries (containing at most 2 terms after removing stop words) are listed in Table

A.1, and the 50 long queries (containing at least 3 terms after removing stop words) are listed in

Table A.2.

1This log was downloaded fromhttp://gregsadetsky.com/aol-data/ .

71

Short Queries Long Queries
volcanos in italy dress up game for kid
google 50ml of corn syrup
samos exercises for thoracic spine instability
cheat codes african american festivals
donbest how to get fat off the thigs of the leg
ebay maryland zoning map
carytown va enviroment board in preschool
zoot suite a sex tape with jenen ackles
wild act savannah morning news
savings institute fleur de lis draperies
teapot swinery kraft cream cheese dessert recipes
supreme court gifts for army mom
teenies baton rouge louisiana
apollo heights marine dock lights
argentina time caribean hilton hotel
directv apocalypse lutheran churches fairfax va
dillon cranes castle in the sky songs
cancer survivor when your husband accidently kisses another girl
asl friend funny peterbilt t-shirts
lincoln ls personality disorders and how to recognize them
viva owen marine base in virginia
sensual kissig coloring pages tullips
decorative paper circuit court of palm beach county florida
running scared ibm thinkpad 760c
watermelon art coming soon nextel
pills yorkie hair cuts
whirlygigs racine journal times
clive owen ged reading standards
portable generators congressional candidate john holmes
adelphia cable small business tax deductions
herbs fn 5.7 reviews
myspace layouts ptarmigan country club
oreo cookie description of sit-up music
ask jeeves work at home customer service jobs
drazen komarica community college baltimore county
walgreens lawrence county in pennsylvania
c j brown key west campground
hugglunds hydraulic myspace music playlists
tribes of rwanda hotels in temple texas
nervous system underworld 2 movie
arlington high wholesaler for god teeth
japanese lure making consulado peruano en georgia
sex for mothers wake county nc records
venice hotels mgm hotel las vegas
sister sister eglise de la madeleine paris
eileen fisher mexican student walkout & california & 1968
kara janx rockingham trading post
jet corp aol apprentice message board
refrigerator magnets divorced over 40 moms photos
allison mack south elgin houses for sale

Table A.1: The query data.

72

Appendix B

Query Suggestion Examples

We select the query suggestions generated for several queries by Google.com and different methods

in Table B.1. We always generate 10 query suggestions, but Google.com may provide none or less

than 10 query suggestions for different queries as shown in Table B.1.

In Table B.1, we notice that some words inQ0 occur twice in the query suggestion. We take

the query suggestion “herbs herbs” in the second part of Table B.1 as an example. The first “herbs”

is included asQ0 and the second “herbs” is a search term from the reference documents. Since we

considerQ0 and the reference documents as two different information sources, we do not eliminate

words from the reference documents if they have already appeared inQ0. The reason why “herbs

herbs” is selected is because it covers more reference documents than other query suggestion candi-

dates under our evaluation method, though this might seem counterintuitive. We do not really know

how the search engine works. However, the search results of “herbs” and “herbs herbs” are clearly

not the same. For many top results of “herbs herbs”, the term “herbs” appears twice in important

positions of the corresponding web documents, like the title, in many cases. For instance, the ti-

tles of some top results for “herbs herbs” from Google.com (Nov. 24th 2010) are “Herbs To Herbs”,

“Herbs Herbals herb and herbal remedies - HerbsHerbals.com”, “Herb’s Herbs & Such”, “Medicinal

herbs - Affordable herbs”, etc. These are not among the top results for the query “herbs”.

As we discussed in the thesis (Section 1.1), our query suggestion method is based on the be-

haviour of the search engine. Hence it is possible that our query suggestions are difficult to under-

stand for humans. Also, we mentioned that there is still someprocessing needed to turn our query

suggestions into practically usable query suggestions.

73

Google QSQS IQSQS GQSQS QSDC
major volcanoes in italy italy volcanoes volcanos in italy studies volcano volcanoesvolcanos in italy volcanos volcanos in italy giant information active
famous volcanoes in italy volcanos worldwide volcanos in italy italy volcanos in italy italy org volcanos in italy volcanos
many volcanoes italy volcano etna italy volcanos in italy volcano erupted volcanoesvolcanos in italy pacific volcanos growingvolcanos in italy constitute
three volcanoes italy volcanoes italy active volcanos in italy cams active east volcanos in italy japan volcanos in italy pacific volcanos worldwide

volcano diagram photo volcanos in italy volcano feb 7 volcanos in italy lands volcanos in italy pacific time
italian volcanos volcanos in italy tv etna volcanos in italy 3350 volcanos in italy 08
volcanoes forces nature mount volcanos in italy moderate eruptions volcanos in italy brief pacific world volcanos in italy fire volcanos description
volcano information encyclopedia comvolcanos in italy explore eruption volcanos in italy uploaded volcanos in italy information definition
online volcano information volcanoes volcanos in italy volcanos specifically volcanos in italy deal volcanos in italy tv
amazon com volcano adventure guidevolcanos in italy pacific volcanos in italy diagram volcanos in italy lands

MCC=5 MEC=1.5 MCC=35 MEC=3.7 MCC=60 MEC=7.2 MCC=49 MEC=6.3 MCC=50 MEC=6.6
list of herbs herbs herbal herbs com herbs herbs herbs learn herb herbs herbs learn herb
types of herbs herbs website herbs company herbs site herbs herbs co herbs com herbs website
cooking herbs herbs com herbs herbal provides herbs herbs com website herbs information
growing herbs herbs herb gardens gardening herbs herbs gardens herbs information herbs co
culinary herbs information herbs herbs information herbs medical herb site herbs herbs
pictures of herbs herbs organic herbs com vitamins herbs herbs herbs gardens
medicinal herbs herb store herbs herbal herbs drying seeds method herbs gardens herbs medicinal
herbal medicine medicinal herbs herbs herbs chinese herbal herbs herbs information database herbs herbal

herbs home herbs herbology 1 herbs remedies herbs com
site herb growing herb herbal herbs herbs education programs herbs seeds herbs seeds

MCC=15 MEC=1.9 MCC=47 MEC=6.1 MCC=54 MEC=5.7 MCC=52 MEC=6.8 MCC=49 MEC=6.7
thinkpad 760c replacement ibm thinkpad 760c 755 760 ibm ibm thinkpad 760c wholesale 760 ibm thinkpad 760c 370 60
thinkpad 760c ibm thinkpad 760c 365 760 ibm ibm thinkpad 760c 560 365 ibm thinkpad 760c 760 755
760c 9547 ibm thinkpad 760c 760 dont mailing ibm thinkpad 760c car ibm thinkpad 760c 380 365
ibm centre thinkpad 755cv ibm thinkpad 760c lcd 24 ibm thinkpad 760c 355 ibm thinkpad 760c fix
memory ibm thinkpad 760c ibm thinkpad 760c 9546 page laptop ibm thinkpad 760c repair ibm thinkpad 760c 340
760c 760cd ibm thinkpad 760c fix ibm thinkpad 760c 29 ibm thinkpad 760c cover
760c 9546 product ibm thinkpad 760c 1995 ibm thinkpad 760c 370 shopping ibm thinkpad 760c 760 06
ibm thinkpad 760 reviews ibm thinkpad 760c replacement 760ld ibm thinkpad 760c shop ibm thinkpad 760c 60
thinkpad 760c win ibm thinkpad 760c vista 760 ibm ibm thinkpad 760c wholesale 755cd ibm thinkpad 760c 365 760 29
ibm 760c battery ibm thinkpad 760c 760 image com ibm thinkpad 760c 560e 755 380 ibm thinkpad 760c 340 accessories 760

MCC=0 MEC=0.0 MCC=60 MEC=8.2 MCC=80 MEC=11.0 MCC=63 MEC=11.4 MCC=65 MEC=11.4

Table B.1: The query suggestions for the queries “volcanos in italy”, “herbs” and “ibm thinkpad 760c” by Google.com and our methods.

74

Bibliography

[1] N. Andrews and E. Fox. Recent developments in document clustering. Technical Report TR-
07-35, Computer Science, Virginia Tech, 2007.

[2] P. Boldi, F. Bonchi, C. Castillo, D. Donato, and S. Vigna.Query suggestions using query-flow
graphs. InProceedings of the 2009 Workshop on Web Search Click Data, pages 56–63, 2009.

[3] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query suggestion by
mining click-through and session data. InProceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 875–883, 2008.

[4] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing cluster labeling using Wikipedia. In
Proceedings of the 32nd International ACM SIGIR Conferenceon Research and Development
in Information Retrieval, pages 139–146, 2009.

[5] C. Carpineto, R. Mori, G. Romano, and B. Bigi. An information-theoretic approach to auto-
matic query expansion.ACM Transactions on Information Systems (TOIS), 19:1–27, 2001.

[6] J. Chen, O. R. Zaiane, and R. Goebel. An unsupervised approach to cluster web search results
based on word sense communities. InIEEE/WIC/ACM Conferences on Web Intelligence, pages
725–729, 2008.

[7] P. Chirita, C. Firan, and W. Nijdl. Personalized query expansion for the web. InProceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 7–14, 2007.

[8] T. Cover and J. Thomas.Elements of information theory. Wiley-Interscience, 2nd edition,
2006.

[9] S. Cucerzan and R. White. Query suggestion based on user landing pages. InProceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 875–876, 2007.

[10] H. Cui, J. Wen, J. Nie, and W. Ma. Probabilistic query expansion using query logs. InPro-
ceedings of the 11th International Conference on World WideWeb, pages 325–332, 2002.

[11] D. R. Cutting, D. R. Karger, J. O. Pederson, and J. W. Tukey. Scatter/gather: a cluster-based
approach to browsing large document collections. InProceedings of the 15th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages
318–329, 1992.

[12] P. Ferragina and A. Gulli. A personalized search enginebased on web-snippet hierarchical
clustering. InSpecial Interest Tracks and Posters of the 14th International Conference on
World Wide Web, pages 801–810, 2005.

[13] F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani. Cluster generation and labeling for
web snippets: A fast, accurate hierarchical solution.Internet Mathematics, 3:413–443, 2006.

[14] J. Guo, G. Xu, H. Li, and X. Cheng. A unified and discriminative model for query refinement.
In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 379–386, 2008.

[15] X. He, H. Zha, C. H. Q. Ding, and H. D. Simon. Web document clustering using hyperlink
structures.Statistics and Computing, 17:395–416, 2007.

75

[16] J. Huang and E. Efthimiadis. Analyzing and evaluating query reformulation strategies in web
search logs. InProceedings of the 18th ACM Conference on Information and Knowledge
Management, pages 77–86, 2009.

[17] S. Jiang. Searching for queries to improve document retrieval in web search. Master’s thesis,
University of Alberta, 2009.

[18] S. Jiang, S. Zilles, and R. Holte. Empirical analysis ofthe rank distribution of relevant docu-
ments in web search. InProceedings of the IEEE/WIC/ACM International Conferenceon Web
Intelligence (WI’08), pages 208–213, 2008.

[19] S. Jiang, S. Zilles, and R. Holte. Query suggestion by query search: a new approach to user
support in web search. InProceedings of the IEEE/WIC/ACM International Conferenceon
Web Intelligence (WI’09), pages 679–684, 2009.

[20] Y. Jing and W. B. Croft. An association thesaurus for information retrieval. InProceedings of
RIAO, pages 146–160, 1994.

[21] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu. An efficient
k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):881–892, 2002.

[22] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu. A local search
approximation algorithm for k-means clustering.Computational Geometry: Theory and Ap-
plications, 28:89–112, 2004.

[23] R. Kraft and J. Zien. Mining anchor text for query refinement. In Proceedings of the 13th
International Conference on World Wide Web, pages 666–674, 2004.

[24] K. Krishna and R. Krishnapuram. A clustering algorithmfor asymmetrically related data
with applications to text mining. InProceedings of the 10th International Conference on
Information and Knowledge Management, pages 571–573, 2001.

[25] S. Kullback and R. Leibler. On information and sufficiency. Annals of Mathematical Statistics,
22(1):79–86, 1951.

[26] K. Kummamuru, R. Lotlikar, S. Roy, and K. Singal. A hierarchical monothetic document
clustering algorithm for summarization and browsing search results. InProceedings of the
13th International Conference on World Wide Web, pages 658–665, 2004.

[27] D. J. Lawrie and W. B. Croft. Generating hierarchical summaries for web searches. InProceed-
ings of the 26th Annual International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, pages 457–458, 2003.

[28] J. Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

[29] S. P. Lloyd. Least squares quantization in PCM.IEEE Transaction of Information Theory,
28:129–137, 1982.

[30] J. B. Lovins. Development of a stemming algorithm.Mechanical Translation and Computa-
tional Linguistics, 11:22–31, 1968.

[31] H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough
data for query suggestion. InProceedings of the 17th ACM Conference on Information and
Knowledge Management, pages 709–718, 2008.

[32] C. Manning, P. Raghavan, and H. Schutze.Introduction to Information Retrieval. Cambridge
University Press, 2008.

[33] J. Martin and R. Holte. Searching for content-based addresses on the world-wide web. In
Proceedings of the 3rd ACM Conference on Digital Libraries, pages 299–300, 1998.

[34] Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. InProceedings of the
17th ACM Conference on Information and Knowledge Management, pages 469–478, 2008.

[35] M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. InProceedings
of the 21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 206–214, 1998.

76

[36] B. Mohar. Some applications of Laplace eigenvalues of graphs. InHahn, G., Sabidussi, G.
(eds.) Graph Symmetry: Algebraic Methods and Applications, pages 225–275, 2007.

[37] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference,
pages 849–856, 2001.

[38] S. Osinski and D. Weiss. A concept-driven algorithm forclustering search results.IEEE
Intelligent Systems, 20(3):48–54, 2005.

[39] T. Phelps and R. Wilensky. Robust hyperlinks: cheap, everywhere, now. InProceedings of
Digital Documents and Electronic Publishing (DDEP), pages 13–15, 2000.

[40] R. Plackett. Karl pearson and the chi-squared test.International Statistical Review (Interna-
tional Statistical Institute (ISI)), 51(1):59–72, 1983.

[41] A. Popescul and L. H. Ungar. Automatic labeling of document clusters, 2000.

[42] M. F. Porter. An algorithm for suffix stripping.Program, 14:130–137, 1980.

[43] Y. Qiu and H. P. Frei. Concept based query expansion. InProceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 160–169, 1993.

[44] I. Ruthven and M. Lalmas. A survey on the use of relevancefeedback for information access
systems.The Knowledge Engineering Review, 18(2):95–145, 2003.

[45] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustering query refinements by user intent.
In Proceedings of the 19th International Conference on World Wide Web, pages 841–850, 2010.

[46] G. Salton. The SMART retrieval system - experiments in automatic document processing.
Prentice-Hall, Inc., 1971.

[47] B. Stein and S. M. Zu Eissen. Topic identification: framework and application. InProceedings
of the International Conference on Knowledge Management, pages 522–531, 2004.

[48] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In
KDD Workshop on Text Mining, pages 109–111, 2000.

[49] Z. Syed, T. Finin, and A. Joshi. Wikipedia as an ontologyfor describing documents. In
Proceedings of the Second International Conference on Weblogs and Social Media, pages 136–
144. AAAI Press, 2008.

[50] P. Treeratpituk and J. Callan. Automatically labelinghierarchical clusters. InProceedings of
the 2006 International Conference on Digital Government Research, pages 167–176, 2006.

[51] P. Treeratpituk and J. Callan. An experimental study onautomatically labeling hierarchical
clusters using statistical features. InProceedings of the 29th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 707–708, 2006.

[52] U. von Luxburg. A tutorial on spectral clustering.Statistics and Computing, 17:395–416,
2007.

[53] E. M. Voorhees. Query expansion using lexical-semantic relations. InProceedings of the 17th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 61–69, 1994.

[54] X. Wang and C. Zhai. Mining term association patterns from search logs for effective query
reformulation. InProceedings of the 17th ACM Conference on Information and Knowledge
Management, pages 479–488, 2008.

[55] R. White, C. Clarke, and S. Cucerzan. Comparing query logs and pseudo-relevance feedback-
for web-search query refinement. InProceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 831–832, 2007.

[56] J. Xu and W. Croft. Query expansion using local and global document analysis. InProceedings
of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 4–11, 1996.

77

[57] O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration. InProceed-
ings of the 21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 46–54, 1998.

[58] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp. Fast and intuitive clustering of web docu-
ments. InProceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, pages 287–290, 1997.

[59] H. Zeng, Q. He, Z. Chen, W. Ma, and J. Ma. Learning to cluster web search results. InProceed-
ings of the 27th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 210–217, 2004.

78

