
University of Alberta

Implementation of the TIGUKAT Object Model

by

Boman B� Irani

Technical Report TR �����

June ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

UNIVERSITY OF ALBERTA

Implementation of the TIGUKAT Object Model

BY

Boman B� Irani

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful�llment
of the requirements for the degree of Master of Science�

DEPARTMENT OF COMPUTING SCIENCE

Edmonton� Alberta
Fall ����

Abstract

The object�oriented paradigm of computing has started to have a signi�cant in�uence on

many areas of information and data processing� including database systems� This thesis

focuses on the various issues and aspects governing the implementation design and develop�

ment of the object model for TIGUKAT�� an object management system which is intended

to be a full featured object�oriented database system on completion� The TIGUKAT object

model �	
� is behaviorally de�ned with a uniform object semantics� The model is behavioral

in the sense that all access and manipulation of objects is restricted to the application of

behaviors on objects� and it is uniform in that every entity within the model has the status

of a �rst�class object� Various implementation design alternatives are discussed and the

approaches that were chosen are justi�ed� The ensuing implementation provides a robust

kernel around which the rest of the system may be conveniently synthesized�

�TIGUKAT�tee�goo�kat� is a term in the language of the Canadian Inuit people meaning �objects�� The
Canadian Inuits� commonly known as Eskimos� are native to Canada with an ancestry originating in the
Arctic regions of the country�

Acknowledgements

I would like to express my deepest gratitude and appreciation to Dr� M� Tamer �Ozsu� my

supervisor� for granting me this wonderful opportunity to work under him� He has provided

me with constant support throughout this research in the form of guidance� invaluable

advice� encouragement and funds� It was a rewarding and pleasant experience to have

worked with him and I could not have hoped for a better guru�

Dr� Duane Szafron provided stimulating ideas� suggestions and directions� for which

I am sincerely grateful� Thanks are also due to my other thesis committee members� Dr�

Jack Mowchenko and Dr� Peter van Beek� for their insightful comments�

Very many warm thanks to Ana� Adriana� Iqbal� Youping� Randy and Yuri� You guys

made the DB lab a whole lot livelier�

Without the love and support from my parents� I would have never made it this far�

Special thanks to my wonderful Memas for all her prayers and a
ection and also to my

sister� Gover� for her loving encouragement�

And last� but de�nitely not the least� Shalini� you are the most beautiful person in my

life�

Contents

� Introduction �

��� Motivation �

��	 Objectives and Overview �

��� Organization of the Thesis � 	

� The TIGUKAT System �

	�� System Architecture �

	�	 The Conceptual Object Model �

� System Implementation �

��� Data Structures and Mapping �

��	 Behavior Application ��

��� Stored and Computed Functions ��

��� Behavioral and Implementation Inheritance � � � � � � � � � � � � � � � � � � 	�

� Design for Persistence ��

��� The Model of Persistence for TIGUKAT �	

��	 The EXODUS Storage Manager ��

��	�� Architecture �

��	�	 Objects� Oids and Files ��

��	�� Interface Routines ��

��� Integrating TIGUKAT with EXODUS ��

��� A Review of Other Storage Managers �	

����� The Wisconsin Storage System �	

����	 The ObServer Object Server �	

����� The Mneme Persistent Object Store � � � � � � � � � � � � � � � � � � ��

����� EOS ��

� Conclusion ��

�� Future Research ��

Bibliography ��

A C�� Class Declarations ��

A�� The TgObject Class ��

A�	 The Cache Class �
	

A�� The Set and Bag Classes �
�

B Behavioral Speci�cations ��

B�� Non�atomic Types �
�

B�	 Atomic Types �
�

List of Figures

	�� The TIGUKAT System Architecture �

	�	 Primitive Type Lattice of TIGUKAT �

��� Representation of the Generic TgObject Structure � � � � � � � � � � � � � � ��

��� The Type Object�s Structure �	

��
 Schematic of the Dispatch Cache Structure � � � � � � � � � � � � � � � � � � ��

��� The Class Object�s Structure ��

��� The Behavior Object�s Structure ��

��� The Function Object�s Structure ��

��� The Collection Object�s Structure �

���� The Representation of an Atomic Object �

���� Casting References ��

���	 The Behavior Application Process ��

���� Stored and Computed Functions � 		

���� The Class Creation Algorithm � 	�

���
 The Behavioral Inheritance Algorithm � 	

���� The Implementation Inheritance Algorithm � � � � � � � � � � � � � � � � � � 	�

���� Implementation Inheritance Requiring Con�ict Resolution � � � � � � � � � 	�

���� Implementation Inheritance for Multiple Supertypes � � � � � � � � � � � � � 	�

���� The Persistency Matrix ��

��	� Architecture of the EXODUS Storage Manager � � � � � � � � � � � � � � � � ��

��	� The ESM OID Structure ��

��		 The Structure of a User Descriptor ��

��	� Persistent Object Access in TIGUKAT ��

��	� Format Mapping during the Passivation Process � � � � � � � � � � � � � � � ��

Chapter �

Introduction

��� Motivation

It is now commonly accepted that relational database management systems �RDBMSs�
cannot support the needs of new applications� Many of these shortcomings stem directly
from the �at nature of the relational data model� This inadequacy is evident when we
attempt to gracefully accommodate complex data and its manipulation within the relational
framework� Object�oriented database systems �OODBSs� primarily aim to alleviate this
de�ciency�

The TIGUKAT� project�s primary objective is the design and implementation of a full
�edged next�generation data management system which would e�ciently and reliably handle
complex data as found in many data�intensive application environments� These would
include geographical information systems �GIS�� CAD�CAM�CAE� software engineering�
expert systems and o�ce automation� to mention just a few�

The semantic richness of an object model o
ers enhanced power in the modeling of
real world concepts as data while preserving a high level of abstraction and encapsulation�
leading to a greater degree of modularization� reusability and interoperability� Researchers
have proposed numerous extended relational� semantic and functional data models ���� 		�
��� which promise functionality far exceeding that of traditional relational systems� Many of
these semantic data�modeling concepts have been incorporated into the TIGUKAT object
model �	�� 	
��

��� Objectives and Overview

TIGUKAT is being designed as a full�featured OODBS supporting a query language� trans�
actions� versioning� and view management for accessing� updating and reliably manipulating
large quantities of arbitrarily complex� shared data� The object�oriented paradigm is sup�
ported by the integration of features such as the uniform encapsulation of all system entities
as �rst�class objects with unique object identities �oids�� behavioral and implementation in�
heritance via single or multiple subtyping� runtime binding of behaviors to functions and
the potential for convenient expansion through incremental development and code reuse�

This thesis focuses on the implementation of the conceptual core object model and a
proposed architecture for achieving persistence� TIGUKAT�s primitive object system was

�TIGUKAT�tee�goo�kat� is a term in the language of the Canadian Inuit people meaning �objects�� The
Canadian Inuits� commonly known as Eskimos� are native to Canada with an ancestry originating in the
Arctic regions of the country�

�

	

mapped into a feasible implementation design conserving the prime aspects of uniformity
and extensibility as dictated by the conceptual model� Since TIGUKAT has a generic
object model� its implementation is isolated from the type system of the language �C���
used to implement it� Issues governing the modeling of meta and meta�meta data within
the core model� behavior application �method dispatch�� the behavioral and implementation
inheritance mechanisms and the handling of stored and computed functions proved to be
the most signi�cant� Some of the choices we made may have performance penalties� We
make a note of these and suggest future remedial measures which ought to be taken to
mitigate them�

We propose a suitable system design to achieve persistence employing the EXODUS
storage manager �ESM� ��� ��� ��� to manage migration of system objects to and from
disk� While the storage manager �SM� perceives objects as passive sequences of uninter�
preted bytes of arbitrary size� determines the on�disk format of objects and performs any
necessary translation between memory and disk formats� it is the object manager �OM�
that implements object creation and deletion as instances of types� message passing be�
tween objects �behavior application� and fetching of persistent objects through the SM� All
manipulation of objects is undertaken via the OM which also attaches object semantics to
the underlying byte streams and represents them as objects� The OM makes decisions as
to when objects are required to be read from or written to disk and it utilizes the SM�s
capabilities to perform these functions e�ciently�

To date very limited information is available on a complete implementation of an object�
oriented system although a number of such systems are in existence� We aim to present a
demonstrable system implementation in this thesis stressing the mapping from the concep�
tual to the implementation level�

��� Organization of the Thesis

This thesis is divided into �ve chapters� In this introductory chapter we addressed the
problem we attempt to tackle and our motivation for doing so� The TIGUKAT object
model is introduced in su�cient detail in Chapter 	� We highlight those features which are
of direct concern to the system implementor�

The system implementation design and development are fully discussed in Chapter ��
We scrutinize each option available for the decisions and justify the approach we have
chosen� Chapter � focuses on our proposed design to achieve persistence in the system� We
discuss ESM� emphasizing those constructs which are of particular relevance to our design
of persistence in TIGUKAT� We also give a brief literature survey with the intention of
taking a �where are we now� look at some existing storage managers�

Finally� we conclude with Chapter
� giving directions for future research and suggesting
some enhancements and improvements for the present system�

Chapter �

The TIGUKAT System

During the last decade a signi�cant amount of research e
ort has been directed towards
the individual areas of OODBSs and object�oriented programming languages �OOPLs�� It
is only recently that both these areas seem to be converging with a common goal in sight�
a universal� extensible object model� In this chapter we discuss the architecture of the
entire system and examine the TIGUKAT object model in su�cient detail� highlighting
those features which demanded crucial consideration in many of our implementation design
decisions� For the complete and formal speci�cations of the model� including the structural
counterpart� we refer the reader to �	
��

��� System Architecture

Depicted in Figure 	�� is a simpli�ed schematic of the TIGUKAT system architecture� With
reference to this �gure� the TQL block represents the TIGUKAT Query Language which
is presently being developed� This module will interact with the object model through the
query optimizer� The actual query processing will involve a sequence of transformations
�not shown in the diagram� including the translation from calculus to algebra� typechecking�
algebraic optimizations and execution plan generation� Details may be found in ��	�� The
TIGUKAT De�nition Language �TDL� is the language interface to be used by the type
implementor and has constructs for de�ning and generating new types� classes� objects�
behaviors� etc�

ESM� shown at the lowest end of the system� will be responsible for persistent storage
on disk� ESM supports a client�server topology where ESM�s client module is linked with
the host application program and interacts with the ESM server which may be running on
the same or a di
erent machine� In our system� the TIGUKAT library will be linked with
ESM�s client module to form an executable module�

The TIGUKAT library comprises the complete primitive object system� including be�
haviors� functions and the macros for atomic object creation� Communication between this
module and the server is transparent to the OM� All object manipulation is via de�ned
behaviors� The OM encloses the core model and is responsible for interaction with the
higher layers of the system �primarily TDL and the query optimizer�� It is also responsible
for maintaining the oids of persistent objects and providing a correspondence between oids
and objects on disk�

The client module may request persistent objects from the server� passing it an oid� or
write objects out to disk via the server and storing the oid returned� It is the OM which
attaches TIGUKAT object semantics to the bytes and presents them as an �object� to the

�

�

TQL

TIGUKAT Object Model

ESM Client
+

ESM Server

TDL Query Optimizer

Disks

OM

ObjectBase

Figure 	��� The TIGUKAT System Architecture

other modules� We discuss persistency issues in further detail in Chapter ��

��� The Conceptual Object Model

The TIGUKAT object model is intended to serve as the central core of a system which may
be conveniently extended� to support either an OODBSs or an OOPL or a fusion of the
two� It is a behavioral model with a complete formal semantics attached and a seamless
integration of behavioral and structural perspectives� Uniformity of all model abstractions
is paramount and imparts a clean and precise semantics� Everything in the model �types�
classes� etc�� is uniformly modeled as a �rst�class object� The behavioral nature ensues from
the fact that all object access and manipulation is achieved by the application of behaviors
�operations� on objects� An object will respond to the application of any behavior which is
de�ned in its type�s interface�

TIGUKAT�s uniformity aspects are similar to the approaches of the functional data
models such as OODAPLEX ���� and FROOM �		�� The functional approach to de�ning

�Extensibility is the capability of de�ning new data types which are integrated into the existing type
hierarchy such that no di�erence in usage exists between these user de�ned types and the system de�ned
types 	
��

�Database systems usually maintain a schema of the types de�ned in the database� shared across the
system� This has been termed the meta�information� which is not treated as data 	
��� The TIGUKAT
model makes no di�erentiation between schema and data� Thus the concept of a �rst�class object�

behaviors has been borrowed from them and enhanced via integration with a structural
counterpart� Several other experimental and commercial systems helped provide insights
into the development of TIGUKAT� These include O� �
�� Smalltalk ���� and EXODUS �����

OODAPLEX is the object�oriented extension of the functional data model and the
data language� DAPLEX ����� which de �nes entities and functions as primitive model�
ing constructs� The properties of entities and the relationships among them are modeled
as functions� OODAPLEX supports the concepts of encapsulation and permits recursive
queries� TIGUKAT adopts a complete encapsulation of behaviors which uniformly accept
objects as input and produce objects as results�

The FROOM �functional�relational object�oriented model� model is another functional
model quite similar to OODAPLEX� FROOM perceives the uniformity of objects in de��
nition and treatment allowing object access solely through behavior application� Behaviors
are implemented via functions which are also objects �		�� TIGUKAT extends this percep�
tion of object s across every system entity�

The TIGUKAT model�s groundwork is laid by a set of primitive objects which include�
atomic entities such as reals� integers� strings� characters� sets� bags� lists� etc�� types for
de�ning and structuring the information carried by common objects� including the opera�
tions which may be performed on them� within a centralized framework for these objects�
behaviors for specifying the semantics of the operations which may be performed on ob�
jects� functions for specifying the implementations of behaviors over various types� classes
for the automatic classi�cation of objects related through their types� and collections for
supporting possibly heterogeneous user�de�nable grouping of objects �	
��

TIGUKAT objects are perceived as �identity�state� pairs where identity represents a
unique� immutable� system managed identity implying the unique existence of every object
and state represents the encapsulated information content contained by the object� An ob�
ject identity �oid� is an internal reference to the object� not accessible to the user� This does
not preclude extended environments from maintaining multiple references �or denotations�
to objects which are not necessarily unique or which evolve depending on the scoping rules in
e
ect as de�ned by the reference model� The state is the assortment of information content
carried by the object and may be composed of references to other objects� Conceptually�
every object is a composite object � which implies that every object has references �not nec�
essarily implemented as pointers� to other objects� The identity of an object is distinct from
the state and serves as an immutable internal identi�er which is automatically maintained
by the system without any user involvement� Nevertheless� user de�ned notions of oids are
possible through application speci�c interpretations which may chose to recognize the result
of a certain behavior application �e�g� B social insurance number� as an oid for all objects
of that type� TIGUKAT does not o
er any exact semantics of object deletion or garbage
collection of objects� These are issues presently being studied� Our implementation adheres
strictly to the conceptual model and as such avoids any implementation details which lack
a formal semantics�

TIGUKAT precisely delineates the means for de�ning an object�s characteristics �i�e� a
type� from the mechanism for grouping instances of that type �i�e� a class�� The type serves
as an information repository �template� which speci�es object structure� behaviors and their
implementations �functions�methods� for instances created using this type template� Types
are organized in a lattice structure constrained by the subtyping notion which promotes
software reuse and incremental extension of the lattice� If a type B is a subtype of type A�
then B must inherit all the behaviors in type A�s interface and may add additional behaviors

�

speci�c to type B� Subtyping� enforces an isa relationship between types �substitutability��
TIGUKAT supports multiple subtyping where a type can de�ned as a direct subtype of
multiple types� Since the semantics of behaviors is preserved across types� behavioral inher�
itance is no problem in the face of multiple subtyping� but inheriting implementations could
be di�cult to resolve� A con�ict resolution policy is needed to decide �if possible� which
implementation to inherit when more than one of the super types has semantically identical
behaviors with disparate implementations� The naive approach is to always request user
intervention in resolving con�icts� We discuss our implementation in Section ���� We opted
for a partial solution attempting implementation inheritance but requesting intervention if
it fails�

Every type that supports instantiation is paired with a corresponding class which serves
to tie together that type and its object instances� This supplemental� but distinct� construct
plays the role of instance manager for housing all instances of the type �the extent of the
type�� Object creation is via the unique corresponding class of the type whose instance is
required� Creation is supported only if the type to be instantiated possesses an associated
class� Thus� the model enforces a total mapping classof from objects into classes and a
total� injective mapping typeof which maps each class to an unique type� Object creation
occurs through a class� using the information content present in the corresponding type as
a template and ensuring that all behaviors in the type�s interface are applicable to these
instances�

The model supports an additional object grouping construct� the collection� similar to
a class but more general in certain respects� Unlike a class� a collection does not permit
object creation� implying that only existing objects may be collected� An object may be a
member of multiple collections� but class membership is restricted by the lattice structure
on types� Classes are managed implicitly by the system whereas collections require user
intervention in managing their extents� Finally� a collection may group objects of heteroge�
neous types while class membership is con�ned to only those objects which conform to its
unique corresponding type�

The behavior objects de�ne a semantics which describes their functionality� Functions
implement this semantics� that is� they provide the operational semantics for a behavior� A
behavior is applicable only to those objects which were created in accordance with a type
whose interface incorporates that behavior� Although the implementation of a behavior� �i�e�
the function it is associated with� may vary over the types which support it� implying that
each type is free to provide its own implementation for that behavior� the semantics of that
behavior remains constant and unique over all behaviors� Each behavior de�ned on a type
must be associated with some implementation of the behavior for that type� No restriction is
placed on what this implementation might be so long as it satis�es the behavior�s semantics�
If the same implementation is used by the subtypes� then the implementation is said to
be inherited� but if it di
ers then we say that the implementation has been rede�ned or
overridden� A behavior is applied on its �rst argument object� hereafter termed the receiver�
whose type determines the appropriate function to be invoked� TIGUKAT has no concept
of an instance operation or class operation as found in other systems such as Trellis�Owl
�	�� or of instance variables and class variables as in Smalltalk �����

Figure 	�	 depicts the subtyping relationships of the primitive type system� � � Each box
represents a primitive type and the edges between boxes denote a subtyping relationship
�left to right�� Every type in � is associated with a corresponding primitive class object and

�There is a distinction made in the model between subtyping and specializing 	
��� A type is said to
specialize some other type if it�s behavioral speci�cation subsumes that of the other type�

�

has primitive behaviors which are associated with some functions� The union of all the types
in � along with the set of primitive classes� behaviors� functions and other instance objects
comprises the primitive object system� o� Since TIGUKAT supports multiple subtyping� the
primitive type structure is potentially a directed acyclic graph� however� the addition of the
base type� T null� results in converting it to a lattice�

As can be seen in Figure 	�	� TIGUKAT is entirely self�contained� No external meta�
data or meta�meta�data �traditionally known as the schema of the database� is required to
support the core model� The uniformity aspect allows every entity to be managed as an
object and the higher level constructs ensure this by encompassing the entire model within
itself� These higher level constructs comprise the types T class class� T type class�
T collection class and their corresponding classes �not shown in Figure 	�	�� which are
the basis of new class� type and collection generation� respectively �	
�� We have also in�
troduced the types T behavior class and T function class which o
er the semantics for
new behavior and function object creation respectively�

T_behavior_class

T_function_class

T_type_class

T_class_class

T_class

T_type

T_collection

T_behavior

T_function

T_semantics

T_atomic T_set

T_boolean

T_character

T_string

T_real T_integer T_natural

SubtypeSupertype

T_object

T_collection_class

T_bag

T_poset

T_list T_null

Figure 	�	� Primitive Type Lattice of TIGUKAT

A behavior may be associated with a function which has runtime calls to executable
code �computed function� or with one that simply references another existing database
object �stored function�� TIGUKAT perceives behavior application as the invocation of
some appropriate function regardless of the nature of the function� The distinction between
stored and computed functions is of no consequence to the model� Whether a function
be stored or computed� a semantic description �behavior� of that function always exists�
The model supports any kind of function by abstracting the implementation details of the

�

function with the semantic consistency of behaviors� We discuss our present implementation
approach in Section ����

Sets� bags� strings� reals� etc�� are system maintained immutable atomic types� From
the user�s perspective� it is expected that the entire domain of these types exists and may
be manipulated using the prede�ned operations� Maintaining this conceptual abstraction is
implementation dependent� It is not feasible to actually maintain every possible real in the
extent of the type T real � This is an in�nite domain� The solution we have adopted is to
automatically generate an atomic object when it is accessed for the �rst time� Each atomic
type has an associated atomic class which groups the instances of that type� It is assumed
that instances of atomic types serve as state� identity and reference simultaneously� For
example the integer reference
 would refer to the object
 which is an instance of T integer

whose identity and state is the universally known abstraction of the integer
� The system
recognizes the existence of one and only one integer object
� We discuss the approach we
took in the implementation in Section ����

A behavior is an object which when applied to another object performs some opera�
tion and produces a resultant object� The uniqueness of a behavior is determined by a
semantic expression of its functionality and equality for behaviors is re�ned to incorporate
equality of the semantic expression� There is a behavior� B semantics de�ned on the type
T behavior which returns the semantics of the behavior object it is applied on� We in�
troduced an additional type T semantics whose instances correspond to the semantics of
behavior objects� On application of the B semantics behavior the resultant object is an in�
stance of T semantics� Presently� the semantics of a behavior is an aggregation of its name�
argument types and return type but in subsequent research a more complete speci�cation
is being sought� Introduction of the T semantics type o
ers a convenient mechanism to
introduce as complex a behavioral semantics as desired into the system�

The only form of equality that the model recognizes at the conceptual level is that of
identity equality� Two objects are considered to be equal if they are the same object� i�e�
they have the same oid� There is no notion of shallow or deep equality as found in other
models� These can be attained by customized interpretations through behavior application�
These are design decisions which are strictly implementation dependent� However� the
model does suggest a specialization of equality on behaviors to mean semantically identical
and on each of the atomic types to mean value equivalence� The B equal behavior is de�ned
on the root type T object� At this level it veri�es identity equality only� Each of the
atomic types rede�ne this B equal to do a comparison of values which they represent� The
type T behavior rede�nes B equal to verify that the two behavior objects being compared
possess identical semantics�

Chapter �

System Implementation

A true object�oriented system should e�ciently support the key paradigms of polymorphism�
abstraction� encapsulation� message passing� inheritance� instantiation� code reuse and the
dynamic binding of functions �methods� to behaviors �messages� ���� We strive to achieve
all of these in our system and this chapter takes an implementor�s view at them� The
implementation task proved to be a considerably complex and challenging one due to the
intrinsic richness and extensible nature of the object model� We describe and discuss the
resolution of various design decisions and relative tradeo
s we faced and try to enumerate
the alternative choices available at each of these decision points�

The prototype runs on the SunOS operating system on SparcStations and the coding
style has been borrowed from Texas Instrument�s C�� object�oriented library �COOL�
����� It was from reading through some of COOL�s working source code segments that
our ideas for e�cient use of C�� classes� polymorphism and inheritance in an application
framework were founded� At times when we needed a particular class functionality we
examined the COOL source code implementation for a similar class and then proceeded by
signi�cantly altering� modifying or decomposing the structure and implementation design
to appropriately suit our needs� An outstanding feature of the COOL library is the clarity
and simplicity of code accompanied by an abundance of informative comments�

The current size of the executeable code is approximately a Megabyte and the memory
used by the primitive object system totals about seventy Kilobytes�

��� Data Structures and Mapping

We chose to implement the TIGUKAT object model using C�� ���� �actually GNU�s C��
implementation called g��� mainly because of the power and structuring ability an object�
oriented programming language o
ers in modeling real world applications� This being the
�rst attempt at implementation� the prospect of numerous revisions and enhanced versions
in the future is imminent� Maintainability of our code is thus of critical importance� An
object�oriented language such as C�� o
ers a high degree of abstraction� information hiding
and modularity all of which facilitate code readability and maintenance� Object�oriented
design and implementation techniques provide a simple� incremental method of developing
otherwise overly complex large software systems� We are of the opinion that a good object�
oriented design invariably results in a robust and reliable implementation� However� the
relationship between TIGUKAT and C�� ends at this�

The object models and primitive type systems of the two are only remotely compatible�
This discrepancy stems from the distinguished manner in which the TIGUKAT model

�

��

concisely segregates classes from types and behaviors from functions�� TIGUKAT has what
is called a generic object model� Its type system is not an extension of the C�� type system
�unlike systems such as ObjectStore �	���� On the other hand� C�� possesses no notion
of these distinct abstractions and the only template for object instantiation is that of the
C�� class� which is a combination of our types and classes� TIGUKAT uniformly treats
all entities in the model as �rst class objects �including types� classes� behaviors� functions
and collections �� In C��� the class template does not exist at run time� The TIGUKAT
model perceives types and classes as two disparate entities� A type provides the behavioral
template structure for maintaining the characteristics of all its instances �objects� and for
behavioral inheritance via subtyping while a class serves as a repository for objects of its
unique corresponding type and is used for the generation of instances of this type� Object
instantiation may be done only through a class and the objects created will conform to
the type associated with that class� Every type may be associated with one and only one
distinct class� Semantic details concerning the heterogeneous grouping construct can be
found in �	�� under the discussion on collections�

As a direct consequence of the separation of behaviors from functions� TIGUKAT deals
with behavioral and implementation inheritance as two relatively disjunct mechanisms�
Conceptually the model itself fully supports multiple behavioral inheritance �multiple sub�
typing�� while implementation inheritance is an entirely implementation dependent issue�
The degree of implementation inheritance o
ered by any particular implementation of the
system may vary from nil to full� Our present implementation provides an intermediate
between the two� as discussed in Section ����

The TIGUKAT object model is intended to be the lowest semantically complete level
of the system� One may choose to build an OODBS or a OOPL around this kernel� The
semantically rich functionality provided by the core model is powerful enough to support
arbitrarily complex extensions as may be eventually desired�

We initially proposed to map the primitive type system of TIGUKAT directly into a se�
mantically corresponding C�� inheritance hierarchy� This proposal was ultimately rejected
due to its unwanted coherence to and dependence on the C�� object model and inheri�
tance support mechanism� One of the prime features of TIGUKAT is that it is entirely
self�de�nitive� It is not sustained by any form of external metadata or metametadata� like
many other systems are� The higher level constructs such as T class class� T type class

and T collection class ensure this independence �	��� By mapping TIGUKAT�s types di�
rectly into C�� classes we stand to lose this prominent feature of the model� Embracement
of this approach would have compelled us to be content with C���s inheritance structure�
which we found to be lacking in certain respects�

TIGUKAT strongly mandates that all types de�ned in the system have the semantics of
�rst class objects� The technique we have employed to accomplish this is to �rst establish
semantically di
erent kinds of C�� object instances in the system viz� type objects� class
objects� object objects� behavior objects� function objects� collection objects and atomic
objects� These template instances di
er in their structural contents� For example� a type
object has a �xed number of slots dedicated for maintaining information such as its cor�
responding class �implemented as a reference to another C�� instance which is a class
object�� its subtypes set �reference to a C�� set instance�� its supertypes� etc�

Once we had this comprehensive and well�de�ned semantic mapping established for the

�Each TIGUKAT function object is stored in the database itself along with references to its source code
component and its compiled binary executable� The interested reader is referred to 	
��
�� for complete
formal details� In case of any source code modi�cations� recompilation is required�

��

complete gamut of di
erent kinds of system objects we went ahead and synthesized the rest
of TIGUKAT�s primitive object system utilizing these basic components as building blocks�

There exists a single foundation C�� class� TgObject �Appendix A���� which is the
principal template for instantiation of all the other system objects� Every TIGUKAT object
�type objects� class objects� behavior objects� collection objects� function objects� object
objects� atomic objects and other primitive or user�de�ned objects� is an instance of this
same fundamental C�� class� This approach ensures the uniform representation of all
objects in the system since they may each be treated as an instance of TgObject� The
TIGUKAT type� class� etc� semantics is buried within the TgObject structure� Following
this approach� the TIGUKAT model could just as well have been implemented using any
programming language that would su�ce in building the foundation primitive system�

TgObject
Reference Pointer to the object’s type

String

Set

Integer

Character

Figure ���� Representation of the Generic TgObject Structure

From the structural viewpoint every instance of TgObject comprises an array of records
as depicted in Figure ���� These can be thought of as the attributes �data �elds� of that
particular instance� TgObject is a dynamic linear array each element of which is a pointer to
an instance of the AttrEntry facilitator class� The AttrEntry class �Appendix A��� provides
instances each one of which is a four byte void pointer and may potentially reference any
other object in the system� Member functions of this class provide functionality to set� get
and compare instances� Integers and characters are stored in the element slot itself while all
other objects� including the atomic objects such as reals� sets� strings� bags� lists and posets�
have only references to them stored in the slots� This decision was made to ensure e�cient
use of memory� Presently we store pointers to �oats but intend to use contiguous slots for
storing these too� For any object� the �rst slot always contains a pointer to that object�s
type which was the template used for its creation� Thus� every object carries knowledge
about its type�

Every type object� as shown in Figure ���� possesses a slot assigned to index into its
exclusive row in the dispatch cache �Appendix A�	�� This cache is implemented as a static
matrix �two�dimensional array� of pointers to functions which accept a variable number of
TgObject references as arguments and return a reference to a TgObject� The columns of
the cache correspond to the unique method selectors �an integer mapping de�ned on each

�	

1

2

7

0

3

4

5

6

8

9

T_type

Dispatch Cache

Corresponding Class

SuperLattice Set

Native Behaviors Set

Inherited Behaviors Set

Slots10

Cache Row

TgObject
Reference

SubTypes Set

SuperTypes Set

SubLattice Set

Figure ���� The Type Object�s Structure

unique behavior object� and the rows correspond to all the types presently existing in the
system� The creation of a new type results in the addition of a new row to the cache while
new behavior creation adds a column� The schematic of the dispatch cache structure is as
shown in Figure ��
�

With reference to Appendix B��� it is seen that all type objects �which are instances
of the type T type �	
�� should support the behaviors in T type�s interface� As shown in
Figure ���� slots in the type object are either used to store references to the various C��
data structures that hold the necessary information or the required value is itself directly
stored in the slot �only for integers and characters�� The primitive system types are set
up with appropriate contents in the slots so as to re�ect a semantic correspondence to
the primitive type system �shown in Figure 	�	� and to support the behaviors detailed in
Appendix B� Any new types created will obtain their unique information from the argument
list passed to the type creating B new behavior de�ned on the type T type class�

Similar object structures exist for the class� behavior� function and collection abstrac�
tions as depicted in Figure ���� Figure ���� Figure ��� and Figure ��� respectively� With
reference to Figure ���� the de�nes set is the set of all types which de�ne that behavior
object in their interface and the functions list holds the corresponding functions that im�
plement the concerned behavior over the various types� This structure is maintained as a
list because duplicate entries are permitted and there exists an ordering on its elements�

The TgObject class has been implemented as a dynamic data structure supporting the
ability to append slots at the end and to insert or delete slots at any location within the

��

Cache
Pointer 0

1

m-1

m rows n columns

0 1 n-1

Figure ��
� Schematic of the Dispatch Cache Structure

1

2

3

T_class

Corresponding Type

Extent Set

Shallow Set

0
TgObject
Reference

Figure ���� The Class Object�s Structure

object� This functionality was necessary in order that we could support the reassociation
of behaviors with stored or computed functions irrespective of any earlier association� We
need to achieve this without incurring the overhead of carrying empty �unused� slots� in all
the objects within the shallow extent� of the a
ected type� Dynamic type changes� updating
and schema evolution will require that all system objects be dynamic �possess the ability
to grow�shrink as required� in nature� ESM e�ciently supports dynamic objects on disk�

TIGUKAT�s atomic string� boolean� set� poset� bag and list abstractions have been
implemented using the semantically corresponding low level C�� classes while the real�
natural� integer and character abstractions borrow the C�� primitive types directly� The
mapping though has been kept transparent to the type implementor or user of the system�
who only deals with TIGUKAT entities� Other important structures used are the system
caches �a dispatch cache� a cache for maintaining information about the nature of the
functions that have been associated with the behaviors and a cache for pairing primitive
set�get accessor functions�� an internally used bag class �di
ers from the bag class used
for the T bag abstraction in that no count of occurrences of an element is maintained��

�An empty slot is generated if a behavior previously associated with a stored function is now reassociated
with a computed function�

�The shallow extent of a type comprises those instances which were created using this type as a template�

��

1

2

3

0

4

5

6

T_behavior

Behavior’s Name

Defines Set

Bag of Argument Types

Result Type

Reference
TgObject

Functions Bag

Method
Selector

Figure ���� The Behavior Object�s Structure

1

2

3

0
TgObject
Reference

4

T_function

Bag of Argument Types

Return Types

Executable Code

Source Code

Figure ���� The Function Object�s Structure

facilitator classes �to provide the slot element abstractions� for the elements of TgObject
and the container classes �set� bag� etc�� and routines to generate objects of the atomic
types �to be automatically invoked by the system when an atomic object is referenced for
the �rst time�� Source code abstracts for the set and bag abstractions are given in Appendix
A���

Objects of all the atomic types too are uniformly handled as instances of TgObject�
Although there is considerable overhead involved here� for lack of a better solution at
the present time we decided that the uniform handling of only TgObject references being
maintained across all types in the system o
ered the best initial compromise� The actual
existence of these atomic TgObject instances is restricted to that period during which they
are passed across other objects or behaviors� Once stored as a component of some other
object they lose their typing information and exist as mere references to the underlying
C�� structures or counterparts� The structure of an atomic object is shown in Figure �����

Atomic object creation is not supported by the model �	��� Every atomic object ever
needed is assumed to be in existence and always available when required� This is perfectly
logical at the conceptual level but does not �t in gracefully at the implementation level�

�

1

2

0
TgObject
Reference T_collection

Corresponding Type

Extent Set

Figure ���� The Collection Object�s Structure

Pointer to the atomic type

Pointer to an underlying

Atomic object
reference

C++ structure or type

Figure ����� The Representation of an Atomic Object

We eventually handled atomic object creation by a special set of macros which are invoked
when an atomic object is referenced for the �rst time� Contingent on which atomic type
object is required� the appropriate macro is invoked� which generates the required object
and returns a reference to it� A considerable amount of research is still required before we
can propose a more elegant solution to this problem� This would involve the design of a
convenient runtime environment other than that of C��� For the moment we are content
with using this�

The T function type object de�nes in its interface a behavior called B executable which
returns a reference to an executable piece of code� Type T function also de�nes a behavior
called B execute whose operational functionality is to access the piece of code to be executed
and to execute it using the list of arguments supplied� All arguments required must be
passed to these behaviors� In the implementation we use a number of functions which accept
a variable number of arguments to accomplish this� Thus we have a pretty straightforward
implementation of functions as objects�

The instantiation of a new object summons an updating of all extents in the object�s
type�s superlattice� One way to accomplish this is to simply mark all the supertypes whose
sublattices and class extents are presently not current and need updating in order that
they accurately re�ect the instantiation of the new object� The actual update is deferred
to a later time� maybe at the end of the current session or when the system is not in
use� We proposed this mechanism since it would not inhibit system speed during object
creation� It is trading the e�ciency with which types are created to obtain e�ciency in
object instantiation since type creation is expected to occur less frequently than general
object instantiation�

Another alternative here is maintaining only the shallow extents and when the deep
extent� is required it is computed as an union of the shallow extents of all the subtypes�
This proposal too would have a slowing e
ect� especially during querying� Presently we
adopt the approach of performing all the computation immediately during object creation

�The shallow extent of a class includes only those objects instantiated using this class� type as a template
while the deep extent comprises all the objects in the shallow extents of the class as well as those in each of
its subclasses�

��

and storing the deep extent as a stored value�

��� Behavior Application

Dispatching is the process by which the application of a behavior on an object �message
sending� is bound to a particular function �implementation of that behavior�� In the event
that the applied behavior�s implementation is not clearly evident �as a result of subtyping��
the right function associated with that applied behavior for the type of the receiver object
must be invoked� This requires what is called dynamic binding� Behavior application
thus involves the retrieval and application of an appropriate piece of binary code that is
contingent on the receiver�s type and the selector for that behavior�

Dispatching may be considered as a special case of what is called resolution ����� Res�
olution has been de�ned as a runtime interpretation process that selects a particular value
from a possibly ambiguous set of values� Method dispatch �behavior application�� hence�
seeks to select an appropriate function object �method� whose code needs to be executed�
from a set of function objects each of which implement the same named behavior object
over di
erent types� In order to correctly make this decision some additional information
�actual type of the receiver and the method selector� relevant to the context is required�

Any e�cient implementation of an object�oriented system based on the message passing
paradigm needs to give due consideration to the time and space tradeo
s inherent in a
method dispatcher� We have opted for a relatively simple but fast mechanism at the cost of
bearing the consequential memory overhead� The system maintains a dispatch cache which
consists of a slot for each behavior�type pair that exists in the system� This cache is a
statically allocated volatile structure which needs to be reinitialized on program startup�
The size of this lookup table is accordingly proportional to the total number of unique
behaviors in the system and the total number of types in existence� We sacri�ce memory
usage for quick response time during execution� but as proposed in �	� �
�� an incremental
coloring algorithm would help reduce this excessive memory consumption drastically� We
have not implemented this optimization in this version�

Each entry in the dispatch cache is a function pointer to some executable code which
implements that behavior �column� for the concerned type �row�� Every behavior with a
unique signature de�ned in the system has a unique integer mapping associated with it�
We call this integer mapping the method selector� The method selector provides access to
the appropriate column of the cache� That column is said to �belong� to the behavior�
The addresses stored in the slots down this column may be di
erent or identical� This
depends on which of the subtypes have inherited the same implementation of that behavior
and which have had that behavior rede�ned� overridden or reassociated �associated with a
di
erent function�� The process of �lling the cache row with appropriate values during the
creation of a new type has been termed implementation inheritance and our system handles
it automatically up to a certain degree of complexity�

Behaviors may be reassociated with functions at any time �rede�nition of behaviors� and
this makes it imperative that we support the dynamic binding of behaviors and perform
dispatch on the �y� Although it is evident that static �compile time� dispatching is more
e�cient ��	�� this will seldom be possible in our system� The reference to an object of a
particular type may potentially be referencing an object of any of this type�s subtypes�
The ambiguity about which function should be invoked can only be resolved at runtime
when knowledge about which type�s instance is being referenced becomes available� Thus�
the actual type of a receiver object needs to be identi�ed prior to function execution� We

��

note that although dynamic binding might render static type checking di�cult it does not
entirely preclude it�

To elucidate this further consider the following� The system is statically typed�� which
implies that all typechecking is performed at compile time� In most cases the compiler �or
preprocessor� will be capable of statically determining which function needs to be executed
for the application of a certain behavior on a particular object� This� however� will not
always be possible� With reference to Figure ���� and Example ���� consider an object of
some type� say T mango� which may either be accessed through a pointer of type T mango

�pterM� or a pointer of one of its supertypes� say T fruit �pterF�� depending on the outcome
of some particular condition�

T_mango

T_fruit

B_eat

B_eat

Figure ����� Casting References

Example �	�

T mango� pterM � B new�C mango��
if �someCondition� then

T fruit� pterF � B new�C fruit��
else

T fruit� pterF � �pterF�� pterM�
B eat�pterF��

This ambiguous situation is arrived at because we permit the casting of a reference to
some T mango type object into a reference to a T fruit type object�� It is now impossible for
the compiler to statically determine which row of the cache needs to be accessed to jump to
the appropriate executable code when the behavior B eat is applied to the object presently
being referenced via the T fruit pointer� This has to be done at run time following a check
on the receiver�s actual type�

Let us take a cursory look at how method dispatch is implemented in the C�� and
Smalltalk��� systems� In C�� terminology� a virtual function is a member function which
is de�ned in some base class but may potentially be replaced in each of the derived classes
by any alternative function which has a matching semantics ����� Virtual functions may
be de�ned for any class and the C�� system implementation maintains a virtual table for
every class that has at least one virtual function� This table is a direct jump table and
selectors are speci�c to the objects for which that table applies� Each object of a class that
has virtual functions needs to maintain a pointer to that class� virtual table� To handle
multiple inheritance in the presence of virtual functions the tables are segmented with

�Static typing should not be confused with strong typing� which we interpret as the requirement that
every single system object has information about its type�

�The analogy here is to permit viewing a mango as a fruit� since all mangoes are after all fruits�

��

each segment corresponding to one of the superclasses� The proper o
set into the table
is computed at runtime during function dispatch� to get to the address of the appropriate
code to be executed� This o
set depends on the class of the receiver object �����

The Smalltalk��� system maintains a structure called the method dictionary for each
class� When an object receives a message the dispatcher checks the method dictionary of
the receiver�s class for the presence of the method selector� visiting the dictionaries of the
superclasses of that class� each time the check fails ����� This process will terminate with
failure if the root class� method dictionary is �nally searched and the required method is not
found� It is interesting to note here that Smalltalk��� is a language with untyped variables
and object references and inferring types at compile time is di�cult� This makes runtime
typechecking mandatory�

In our system types exist as objects and every object has knowledge about its type�
Behavior application on any object is via the type of this receiver object� The type has
knowledge �a pointer� about its corresponding row in the dispatch cache� Our inheritance
structure is di
erent from that used by C��� The reasoning behind this is that since
behaviors in the system are the equivalent of C���s virtual member functions we would need
to maintain a virtual table for each and every type in the system� That would be extremely
ine�cient in memory usage and needlessly convoluted� The reason the C�� implementation
can a
ord to do this is that in any one application they expect the percentage of types which
have virtual functions to be negligible� In this respect C�� is not considered to be a pure
object�oriented language in comparison to a language like Smalltalk��� since all functions
can not be rede�ned down a type hierarchy�

slot-1

slot-n

slot-1

slot-n
recObj’s Structure

recObj Behavior methodSelector

Dispatch Cache
recType’s Structure

Type

Executable Code

Behavior Application

Figure ���	� The Behavior Application Process

The behavior application process in TIGUKAT involves the following procedure� With
reference to Figure ���	� given an object� recObj� the receiver of a particular message� we
extract its type �the B mapsto behavior de�ned on T object�� recType� which is readily
available since every object knows its type� All types have knowledge of the unique cache
row that they correspond to� From the applied behavior object we extract the method
selector� methodSelector� This integer value indexes into a unique column in the dispatch
cache� Having arrived at the desired slot� the address of the executable code stored in it�

��

which serves as a pointer to the entry point of the function� may now be accessed and
executed� The list of arguments passed to the behavior is carried over to function execution
after relevant typechecking is done�� Behavior application is conveniently reduced to the
execution of a single line of code�

JMP �recObj � recType� dispatchCache�methodSelector��
Where recObj is a pointer to the object on which the behavior is to be applied �receiver
object reference�� recType is the receiver object�s type� dispatchCache is the matrix of
executable addresses and methodSelector gives access to the appropriate column in the
dispatch cache� Therefore� the two basic requisites for binding an executable piece of code
to the applied behavior at runtime are the type of the receiver object and the method
selector for the behavior�

The only behaviors applicable on an object are those which are de�ned in the object�s
type�s interface set� The behaviors in this set might have either been inherited from the
supertypes or passed as an argument set to the type creating B new behavior de�ned on
the type T type class �refer to the Appendix B���� Irrespective of how membership in
the interface set was attained� it is mandatory that each of the behaviors in this set be
associated with some function object before class creation� We permit the reassociation
of behaviors after class creation and this does not cause any complications so long as the
behavior is being reassociated with a computed function� If the desired reassociation is with
a stored function� then that function would expect a slot in all the objects in the extent
of the types for which it has been de�ned� In this implementation we do not support the
reassociation of a behavior with a stored function once the type has a corresponding class
associated with it and thus possesses the potential for object creation� We have proposed
a suitable algorithm for achieving this �Section ���� and intend supporting this feature in a
later version�

Functions are treated as �rst class objects being instances of the type T function� Al�
though the only di
erence between two stored functions which implement the same behavior
down a type hierarchy may be the slot in the object to be accessed� the function is still
considered to be rede�ned� This rede�nition is transparent to the type implementor and
does not require any intervention on his part� The system will automatically handle this
change in slot access during class creation�

��� Stored and Computed Functions

The TIGUKAT object model is a behavioral model and has no notion of attributes� All
object creation� access and manipulation is achieved purely by the application of behaviors
on objects� No concept of an attribute exists� Consider that some behavior is associated
with a stored function� On invocation� that function will require to access a memory location
�data �eld or slot� within the physical structure of the object it was invoked on� The function
either places an attribute� into this slot or retrieves one from it� The stored function accesses
the concerned memory location via primitive system provided set and get accessor functions�
For accessing any particular slot a set�get pair is created� This pairing is applicable on a
type basis and is maintained in an auxiliary cache structure �SC	 in Figure ������

�Although the association of a behavior object for a particular type is with an instance of T function� the
actual address of the executable code is placed into the appropriate cache slot by the behavior association
process� This decision seeks to eliminate the extra level of indirection �pointer chasing� via the associated
function object�

�Since every object in the system is potentially a composite object� the term attribute implies a reference
to some other system object� Contained objects are accessed via these stored functions�

	�

Although the object model does not distinguish between stored and computed functions
at the conceptual level this distinction needs to be addressed in the implementation� The
uniformity of functions is maintained at the upper levels but not when viewed by the type
implementor� This concept of distinguishing the stored and computed functions is a purely
implementation dependent issue and is concealed at the implementation level� Only stored
functions will require the existence of physical slots �attributes� in all instances of those
types which support behaviors associated with a stored function� All objects are instances
of some type that possesses one or more behaviors in its interface� Those behaviors which
have been associated with stored functions will require as many slots in their physical
structure as there are stored behaviors� in the type�s interface �in addition to the single slot
that references the object�s type� which is a universal requirement for all system objects��
The information about the total number of slots required in each of the type�s instances is
maintained in the slots �eld of that type object and is accessed during application of the
object creating B new behavior de�ned on T class�

An alternative for overcoming the slot access problem is to maintain �named� attributes
in a property list and to perform a search on this list� with the attribute name being the key�
whenever access is desired� The model supports no concept of attributes and since named
attributes would violate the behavioral nature of the model� this is not an acceptable option�

The approach we have taken is as follows� When a new type is created its inherited
behavior set contains those behaviors which are inherited from its speci�ed direct super�
types� Information about which of these behaviors are associated with stored functions
in the supertypes is maintained in an additional data structure we call the supplementary
cache� This is a matrix similar to the dispatch cache �SC� in Figure ������ For every en�
try in the dispatch cache there is a corresponding entry in the supplementary cache used
to indicate the stored or computed nature of the associated function� The supplementary
cache makes its information content available to the type creation process� The implemen�
tation inheritance mechanism �part of the type creating process� extracts all the relevant
information from the supplementary cache and attempts to resolve which of the inherited
behaviors should be associated with stored and which with computed functions in the new
type� Reassociation of these behaviors is permitted �irrespective of whether it is with a
stored or computed function� until class creation time� following which associations with
stored functions is prohibited�

An alternative to maintaining a separate cache is to mask the least signi�cant bit of
the function pointers stored in the dispatch cache and use it as an escape bit to indicate
the nature of the function it addresses� Since there is a possibility that pointers might be
corrupted� we have not implemented this optimization in this version�

The native behavior set consists of those behaviors which are passed in the argument set
of behaviors required by the type creating B new behavior de�ned on T behavior class�
These might later be associated with stored or computed functions �application of the
B associate behavior de�ned on T behavior�� The nature of the function that every behav�
ior is presently associated with is maintained in the supplementary cache� A union of the
interface set of behaviors of the type�s direct supertypes is inherited into the inherited Set�
Only the stored functions require slots to be created in each of the instances of the new
type� It is possible that some behaviors which were previously associated with stored func�
tions in one or more of the direct supertypes are now to be reassociated with a computed
function� If this information about the switch in association is available prior to object
instantiation for the new type� no overhead is incurred since the need to carry any empty

�Simply� any behavior that has presently been associated with a stored function�

	�

slots is eliminated�
When a behavior is associated with a function for a particular type �B associate� the

behavior association process detects whether it is a stored �set or get� or computed function
and places the relevant indication in the corresponding supplementary cache entry for that
behavior�

Now� if we were to permit the reassociation of a behavior with a stored function for a
type which already has a class �and possibly some instances� we are faced with the problem
of determining which slot should that function be accessing� The association of behaviors
with computed functions is permitted and easily accommodated because the structure of
the instances of that type will not be a
ected� But� if the behavior is associated with a
stored function� the existing object structures do not possess that extra slot� as would be
expected by that function� This is the reason why we prohibit reassociation of a behavior
with stored functions once the type has a class and as a consequence it now possesses the
potential for object creation �and in fact may already have some instances��

For this �rst implementation we have decided to carry the overhead of an empty slot if a
behavior initially associated with a stored function is reassociated with a computed function�
In the future� however� we will permit any kind of reassociation� switch from computed
to stored or from stored to computed� The computational overhead involved will be an
iteration through all objects in that type�s shallow extent� The present implementation has
provided for this enhancement to be easily incorporated chie�y by providing dynamic slot
allocation and deallocation capabilities in the fundamental TgObject class� The proposed
mechanism will iterate through all the object�s in the shallow extent of that type�s class and
for each object in it allocate an extra slot� This may be appended to the end of the object
since particular location is of no signi�cance until a class is created� Marked slots could be
kept around� A slot is said to be marked if a behavior which was previously associated with
a stored function is reassociated with a computed one� making that slot redundant� The
marked slot may then be reused to accommodate more recent reassociations of behaviors
with stored functions� In case the instances of that type already possess a marked empty slot�
then that slot may be conveniently and safely reused� Presently� although a reassociation
is permitted from stored to computed� all objects which may be instantiated after the
reassociation will still carry the extra empty slots� This is due to the type�s knowledge of
slots which may not be conveniently modi�ed�

The example depicted in Figure ���� shows an inheritance graph with multiple subtyp�
ing� the resulting object structure with stored and computed functions accounted for and
the dispatch cache as it would appear for this simple system� Behaviors marked with an
asterix are those which have been reassociated or rede�ned down the type hierarchy� The
behaviors a�� b�� c� and d� are associated with stored functions�

With reference to Figure ����� the types B and C each have the type A as their single
supertype� while the type D inherits from multiple supertypes B and C� The object instance
structures show the appropriate number of slots required for access by the stored functions
associated with some of the behaviors in their respective types�

An X in the dispatch cache indicates a unused entry� an integer value represents the slot
number to be accessed by the stored function while a behavior name represents the address
of the executable code� The behavior a� when inherited by types B and C is considered
to be rede�ned �shown marked with an asterix� because the slot access number is di
erent
from that used in the type A �as can be seen from the instance structures�� Behaviors b�
and c� in type D are marked with an asterix for the same reason� but behavior a� is shown
marked in type B because its association is with a di
erent function than it was associated

		

a1
a2
a3

c1
c2

d1d2 d3
b1
b2

a1*
a3*

c1*

a1*

a1* a2*
b1*

B::a3*

Type

a3*

d2 d3

X

XX X

XXXX

X

X

XX

a3*

a2*

C

D

Behs

B

A

X

A

7

d1

c2

D 4

2

1

a2

a2

a2 a3 X

d3

X X

b2

a3

2 31 4 5 6 8 109

a1 a2 a3 b1 b2 c1 c2

c2

X

d2b2

3

B

C

1

2

2

4

1

2 3

1

1

0

1

2

0

1

2

0

1

2

3

4

0

1

A

a1

B

b1

a1

C

c1

a1

D

d1

b1

c1

a1

Object Instances

Dispatch Cache

Inheritance Graph

Figure ����� Stored and Computed Functions

with in type A� Finally� implementation inheritance in type D required intervention from
the type implementor to resolve the con�ict for the behavior a�� The choice of code to be
used is that from the type B �depicted as B��a����

As can be seen in the �gure� it is possible that more than half the cache may be empty�
This results in a sheer waste of space� We intend to alleviate this waste by using an
incremental coloring scheme that allows rows of the cache to be shared by multiple types
in e
ect reducing the overall cache size �	� �
�� Cache slot assignments will be made using
a coloring algorithm which searches for an optimal assignment scheme� Since the graph
coloring problem has an exponential complexity� the resultant cache will seldom be the
optimal one� However� the application of heuristics help obtain a quick solution which is
satisfactorily close to the optimal one� Space reduction estimates of up to sixty percent are
deemed possible� This reduction is dependent on the number of types whose interfaces have
a partial overlap due to subtyping or specialization�

We presently prohibit subtyping any type which still has behaviors which have not
yet been associated with any function for that type� We also considered the following
implementation alternative� For a function object three kinds of implementations could be
possible� stored� computed and don�t know� During type creation the requisite� possibly
empty� set of behaviors passed as arguments to the B new behavior for type creation� are
by default don�t knows� that is� they are not associated with any implementation as yet�
stored or computed�

	�

These behaviors must be associated with a particular implementation �function� before
the type is considered to be fully de�ned� Any type which still has a don�t know is said to be
functionally incomplete� It is behaviorally de�ned� but functionally unde�ned� Class cre�
ation is disallowed for such an incomplete type and thus no objects may ever be instantiated
of this type till it has been entirely de�ned�

However� one may choose to subtype this partially de�ned type� inheriting the don�t
knows� but also inheriting the non�instantiation feature� All don�t knows for the subtype
may then be resolved via association with implementations and we may create objects� The
supertype might still possess the don�t know behaviors and continue to be regarded as an
incomplete type� This is analogous to the notion of abstract super types� as de�ned in other
models including Smalltalk� The type exists solely for achieving behavioral inheritance� but
no objects may ever be created of that type�

All slot accesses �the o
set number of the �eld which is to be accessed in the object
structure� are reassigned during the creation of a class for a new type� A single slot number
is assigned to each matched pair of the set�get primitive accessor functions associated with
a corresponding pair of stored behaviors de�ned on that type� Class creation �Figure �����
marks the deadline for association of any of the type�s behaviors with stored functions� The
class creation process iterates through all behaviors associated with stored functions and
for every pair of accessor primitives discovered it allocates a unique slot which they will
access in the objects that may now be instantiated for this new type�

Recapitulating brie�y� class creation implies the potential for instantiation� which in
turn requires structural knowledge about the objects to be instantiated� Therefore� since
reassociation of a behavior with a stored function might result in structural modi�cations
to existing objects it is not sanctioned once a class exists for that particular type� In later
versions we will permit the dynamic reassociation of behaviors with stored or computed
functions at any time� This is presently being studied in conjunction with schema evolution
and update semantics�

��� Behavioral and Implementation Inheritance

Two kinds of inheritance are supported by our system� behavioral and implementation in�
heritance� Behavioral inheritance �subtyping� is the simpler and more intuitive of the two�
This has been precisely conceived at the conceptual model level� The implementation strat�
egy involves taking the union of the interface sets of all the types declared as immediate
supertypes of the new type being created � This set forms the contents of the new type�s
inherited set and comprises the minimum set of behaviors that all objects of this type should
conform to� The nature of the functions that these behaviors have been associated with is
of no consequence to the behavioral inheritance mechanism� The algorithm implemented
�shown in Figure ���
� iterates through the relevant interfaces and selects all the behaviors
with unique signatures as candidates for insertion into the new type�s inherited set � This
is a relatively straightforward technique�

Implementation inheritance is an entirely implementation dependent feature which fa�
cilitates code resusability by ensuring that all code be at a level at which the maximum
number of types can share it ���� It can get arbitrarily complex depending on the degree of
behavioral con�ict which occurs among the declared direct supertypes� If only single inheri�
tance is present the inherited set of the new type is precisely the contents of the interface set
of its sole supertype� No con�ict resolution is necessary and all entries in the dispatch cache
and the supplementary cache are merely duplicated in the row allocated for the new type

	�

Algorithm �	� �Class Creation Algorithm	

begin

input T � the type for which a class is to be created�
DC � dispatch cache�
SC� � supplementary cache for stored and computed information�
SC
 � supplementary cache for pairing the primitive accessors�

var interfaceSet � set of behaviors de�ned on the type�
slotCount � integer count of slot numbers�
methSelector � integer index into DC�s columns�
cacheRow � integer index into DC�s rows�
pair � integer value which indicates accessor�s counterpart function�

interfaceSet � B interface�T��
slotCount � ��
cacheRow � row in DC for T�
for each interfaceSeti � interfaceSet do
begin

methSelector � column in DC for interfaceSeti�
if SC��cacheRow�methSelector� �� stored �
SC��cacheRow�methSelector� �� computed then

begin

class creation failure�
incomplete behaviors in type T�

end

else if SC��cacheRow�methSelector� � stored then

begin

pair � SC
�cacheRow�methSelector��
if DC�cacheRow�methSelector� � NULL then

begin

DC�cacheRow�methSelector� � slotCount�
DC�cacheRow�pair� � slotCount�
slotCount � slotCount � ��

end

endif

end

endif

end

endfor

update slots �eld in T�
end

Figure ����� The Class Creation Algorithm

	

Algorithm �	� �Behavioral Inheritance Algorithm	

begin

input ST � set of direct superTypes�
var candidateSet � interface set de�ned on type STi�

inherSet � inherited behaviors set for new type�
addBehavior � boolean

candidateSet � �� ���
inherSet � �� ���
addBehavior � TRUE� ���
for each STi � ST do

begin

candidateSet � B interface�STi�� ���
for each candidateSeti � candidateSet do �	�
begin

for each inherSeti � inherSet do �
�
begin

if B semantics�candidateSeti� � B semantics�inherSeti� then ���
begin

notify about possible Con
ict Resolution� ���
addBehavior � FALSE� ���
next candidateSeti� ����

end

else

next inherSet� ����
endif

end

endfor

if addBehavior � TRUE then ����
inherSet � inherSet � candidateSeti� ����

endif

end

endfor

end

endfor

end

Figure ���
� The Behavioral Inheritance Algorithm

	�

for the complete set of inherited behaviors� as shown in Figure ����� Each of the inherited
behavior�s internal information structures �the de�nes set and the functions bag� are also
updated appropriately to re�ect the current state� This implies that all implementations
for the inherited set of behaviors are inherited too� However� the type�implementor has the
liberty to reassociate any or all of these inherited behaviors�

The purpose of an implementation inheritance mechanism is to make things as conve�
nient for the type implementor as possible� In the worst case absolutely no implementation
inheritance may be possible by the system� This situation occurs when the new type�s spec�
i�ed multiple direct supertypes have interfaces which happen to be perfectly identical but
all of the behaviors con�ict with respect to their associations with functions� We note that
such an occurrence is in fact rare and would re�ect a poor design on the part of the type
speci�er�	� It will now be the type implementor�s responsibility to resolve all con�icts and
reassociate behaviors� A system generated message requesting intervention is displayed and
the new type is considered to be functionally incomplete until bindings are reestablished�

Figure ���� depicts an inheritance graph with multiple subtyping� The arrows indicate
a subtyping relationship between the types shown by ovals and the dotted arrow indicates
an instance of the type� The dashed boxes contain the interface sets of the corresponding
types while the matrices shown as DC� SC� �maintains the stored or computed nature of
the associated functions� and SC	 �contains the pairing information for all accessor function
pairs� are the dispatch cache and the two auxiliary caches� respectively�

This inheritance structure has a clash in behaviors that the system is unable to resolve
automatically and requires the type implementor�s intervention� The Con�ict resolution
policy fails because the behaviors B setName and B getName are de�ned in the interfaces
of both the direct supertypes �T person and T student are immediate supertypes of T ta

and have con�icting implementations associated in each of these types� being computed
in T student but stored in T person �indicated by the bracketed s�s or c�s�� We have
assumed that the type implementor opted for the stored implementations to be inherited
and therefore each instance of T ta requires a total of three slots�

Consider the scenario when multiple direct supertypes �multiple subtyping� have been
speci�ed� The inheritance algorithm employed is shown in Figure ����� We iterate through
each of the behavior objects in the new inherited set which has been generated during behav�
ioral inheritance� If that particular behavior exists in no more than one of the supertype�s
interfaces that would imply a con�ict�free condition and thus no necessity of performing
any con�ict resolution� The implementation for that behavior may be safely inherited to�
gether with the property of its associated function being either stored or computed� The
appropriate entry in the supplementary cache� indicating a stored or computed association�
is inserted� If the association is with a computed function then the address of that function
is also inserted into the dispatch cache� All the stored functions will possess a NULL entry
in the dispatch cache until class creation time� At that time slots will be assigned to all the
stored functions� one slot per pair of set�get accessors �Figure ������ Note that although
the function may have been accessing a certain slot in the supertype that slot access value
will no longer be valid in the new type� Reallocation of these slot accesses is entirely system
managed�

For each clash in behavior �which occurs as a result of some particular behavior object

�	By type speci�er we mean the person who designs the inheritance hierarchy for the user application�
The type implementor is the one who actually implements this required hierarchy using TDL� He is the one
who has authority to create new types� classes� functions� behaviors� etc� The user is the end user who may
query the existing system and instantiate new objects� but may not be authorized to modify the existing
type structure�

	�

Algorithm �	� �Implementation Inheritance Algorithm	

begin

input ST � set of direct superTypes�
IS � inherited set of behaviors in the new type�
DC � dispatch cache�
SC� � supplementary cache for stored and computed information�
SC� � supplementary cache for pairing the primitive accessors�

var candidateType � one of the types from the direct superTypes set ST�
candidateType � �� ���
if cardinality�ST� � � then ���
begin

multiple inheritance algorithm� ���
end

else begin

candidateType � STi� ���
for each ISi � IS do

begin

if SC��candidateType� ISi� � computed then �	�
begin

SC��newType� ISi� � computed� �
�
DC�newType� ISi� � DC�candidateType� ISi�� ���

end

else if SC��candidateType� ISi� � stored then ���
begin

SC��newType� ISi� � stored� ���
DC�newType� ISi� � NULL� ����
SC��newType� ISi� � SC��candidateType� ISi�� ����

else begin

ISi has an incomplete implementation� ����
Inheritance failure� ����

end

endif

end

endfor

end

endif

end

Figure ����� The Implementation Inheritance Algorithm

	�

1 2 3 4 5 6

T_person

T_object

T_student

T_ta

T_object

1

1

1

s

c

2

1 s c c s s

ss

2

1

1 6 5

1 2 3 4 5 6 1 3 4 5 62

DC SC1 SC2

2 2

[1] B_setName (s)

[2] B_getName (s)

[5] B_setAge (s)

[4] B_pay (c)

[6] B_getAge (s)

[1] B_setName (c)

[2] B_getName (c)

[3] B_school (c)

T_person

T_student

T_ta

2

0

1

T_ta’s instance

c c

Figure ����� Implementation Inheritance Requiring Con�ict Resolution

having a signature identical to that of a behavior in the interface of one or more of the
other types in the new type�s speci�ed direct supertypes� the con�ict resolution policy has
to be applied� The supplementary cache values for that behavior are examined� If they
happen to indicate a consistent computed for all the concerned supertypes� the values of
the addresses of the functions from the dispatch cache are then examined� If these too are
identical for each of the types in the supertypes set� then this behavior�s implementation is
safely inherited and the corresponding address �will be identical in all the entries� is inserted
into the dispatch cache� A computed indication is placed in the supplementary cache�

In case it has been found that there is a consistent stored in all the entries for the
supertypes� the corresponding value of T function is examined for each type and if these
too match perfectly� then a stored indicator is placed in the supplementary cache and a
NULL is entered into the dispatch cache� Note that for all the stored functions� the dispatch
cache will hold the corresponding slot number to access �an identical value for each paired
set�get� instead of containing the address of the executable code� These slot numbers will
only be inferred and allocated during class creation� at which time we will be in a position
to determine the total number of all the associated stored functions� both inherited and
natively de�ned for that type �Figure ������

In the event that an inherited behavior is associated with a stored function in one of
the supertypes and a computed function in another� or there is mismatch in the values
of function pointers then no con�ict resolution is possible by the system and a NULL is
entered in both caches� It is the type implementor�s responsibility to associate this behavior

	�

Algorithm �	� �Implementation Inheritance for Multiple Supertypes	

begin

input ST � set of direct supertypes�
IS � inherited set of behaviors in the new type�
DC � dispatch cache�
SC� � supplementary cache for stored and computed information�
SC
 � supplementary cache for pairing the primitive accessors�

var confTypeSet � set of supertypes in which a behavior con�icts�
confTypeSet � �� ���
for each ISi � IS do �
�
begin

for each STi � ST do �
�
begin

if ISi � B interface�STi� then ���
confTypeSet � confTypeSet � STi� ���

endif

end

endfor

if cardinality�confTypeSet� � � then ���
similar to single inheritance ���

else begin

if � confTypeSeti � confTypeSet ���
SC��confTypeSeti� ISi� � computed � ���
B impln�confTypeSeti �ISi� � B impln�confTypeSeti
� � ISi� then
begin

SC��newType�ISi� � computed� ����
DC�newType�ISi� � DC�confTypeSeti �ISi�� ����

end

else if � confTypeSeti � confTypeSet ��
�
SC��confTypeSeti� ISi� � stored � ��
�
B impln�confTypeSeti �ISi� � B impln�confTypeSeti
� � ISi� then
begin

SC��newType�ISi� � stored� ����
DC�newType�ISi� � NULL� ����
SC
�newType�ISi� � SC
�confTypeSeti �ISi�� ����

end

else begin

Con�ict Resolution Failure� ����
Type Implementor�s Responsibility�

end

endif

endif

end

endfor

end

Figure ����� Implementation Inheritance for Multiple Supertypes

��

with an appropriate implementation of his choice or to specify which of the supertype�s
implementations is to be inherited� A message requesting intervention will be displayed� The
cache values for this behavior must be �lled in �i�e� each behavior must be associated with
some function� before class creation in order that the newly established type be considered
functionally complete�

All internal information maintaining structures of the new type as well as those of the
inherited behaviors need to be updated to re�ect an accurate status of the system� These
include the de�nes set and corresponding functions bag of the behavior objects�

Chapter �

Design for Persistence

In the previous chapter the main memory implementation of TIGUKAT is described� In
this chapter an extension of this implementation to provide persistence is described� It
should be noted that this is one possible design which has not been implemented�

The storage manager �SM� is that module of an OODBS that lies at the lowest end of
the system� Persistent data needs to be stored on permanent disk storage devices to ensure
its survival across application program executions� The SM stores and retrieves these data
chunks as uninterpreted� untyped� undi
erentiated� passive sequences of bytes� determines
the on�disk format of objects and performs any necessary translation between main memory
and disk formats� It does not attach any semantics to this data and consequently does not
see them as �objects� at this level� It is the responsibility of the layer built on top of
the SM to attach the necessary object semantics and represent the uninterpreted sequence
of bytes as an �object�� This upper layer has been termed the OM� It is the OM that
implements object creation and deletion as instances of types� handles behavior application
and fetching�storing of persistent objects through relevant calls to the SM� All manipulation
of objects is undertaken via the OM� The OM determines when objects are required to be
read in from or written to disk and it utilizes the SM�s functionality to perform these tasks
e�ciently� The procedural interface through which the rest of the system interacts with the
OM is called the object manager interface �OMI��

A SM should handle the concept of a unique object identi�er �oid� which may be either
a physical �they contain the actual physical address of the object� or a logical �they are
mapped through an indexing scheme to obtain the object� oid� If this low level layer has
appropriate information about the semantic details of objects there might exist a greater
potential for various sorts of optimization �querying� clustering and pre�fetching��

Most of the current RDBMS�s storage systems employ a similar technique for handling
large amounts of data by splitting data bytes over the smaller pieces of a B�tree�like in�
dexed structure ��	�� This strategy has been carried over to the presently available SMs
for OODBSs� o
ering a mere transitory solution to the problem� The development of spe�
cialized object storage management facilities is as yet a wide open research problem and
needs to be examined in more detail in conjunction with the development of a specialized
programming environment that supports the object�oriented paradigm more fully�

In the remainder of this chapter we examine the requirements of persistent data man�
agement in an object�oriented environment and propose a suitable design for achieving
persistence in the TIGUKAT system� We present a model of persistence based on explicit
object level persistence in Section ���� In Section ��	 we discuss ESM in considerable detail
and then in Section ��� we propose a possible integration methodology between TIGUKAT

��

�	

and ESM� In Section ��� we take a look at some additional storage managers�

��� The Model of Persistence for TIGUKAT

A fundamental decision governing the implementation of an object�oriented database system
is the strategy to be employed for managing the persistence of system objects� Persistence
can be de�ned as the ability of an object to survive across multiple application program
executions and a persistent object is one which has been endowed with this property� A
database system requires that persistence be transparent to the user� The user should not
be required to perform any explicit I�O requests or open and close any �les� A declarative
speci�cation indicating that a particular object be made to persist across sessions should
su�ce� It will then be the responsibility of the OM to achieve this� The OM could either
act immediately or at the end of the current session� by issuing the appropriate commands
to the low level SM� The SM �ESM in our case� will write the object out to disk and return
a handle �ESM oid� to the OM� The oid serves as a guarantee that at any time in the future�
given the oid as input� the SM will extract and return the required object� It is the OM�s
responsibility to track the handle for gaining access to the object during some future session�
As far as the manipulation of all system objects are concerned there should be no distinction
between transient� and persistent objects� Uniformity of access and manipulation of every
object should be provided� Ideally� the same piece of compiled code should be able to
process all objects irrespective of whether they are transient or persistent and every object
should possess an equal right to persistence ���� In other words� persistence should be a
characteristic of an object independent of its type or any of its other characteristics�

As enumerated in ���� there are �ve basic approaches to persistence prevalent in present
systems� The �rst strategy suggests that the decision about persistence be made prior to
object creation� Depending upon whether one wants a persistent or transient object the
appropriate object creation routine will be invoked� The second approach is what has been
termed reachability based persistence� This methodology� incorporated in systems such as
O� �
�� requires that for an object to persist it must be hung o
 some persistent root object
via direct or indirect references� In this scheme an object can be made to persist at any
stage during its lifetime and may later be made transient� Garbage collection occurs when
no references remain to that object� The third predominant approach to persistence is
allocation based� It restricts the persistence of an object by requiring it to be allocated
within some persistent container �collection� during object creation� This requires the
existence of persistent storage space with variables naming locations within that space�
Objects which are written into persistent variables are guaranteed to be persistent so long
as they are maintained in the persistent variable� Systems like ObjectStore �	�� take this
approach although it renders garbage collection di�cult due to the dangling references
problem�

The design approach we resolved upon supports the application of an explicit B persistent�

behavior on an object of any type� This behavior coerces the receiver object to be persistent�
Thus� we intend supporting explicit object level persistence� Finally� earlier suggestions for
persistence were type based� but this was far too restrictive an approach� It was requisite to
designate certain types as persistent and all objects instantiated of these types are automat�

�Transient objects are those objects whose lifetimes span only the current application execution� They
cease to exist on program completion and may not be referenced in any successive session�

�The primitive behaviors B persistent and B transient are de�ned on the TIGUKAT type lattice�s root
type� T object�

��

ically made to persist� The E language �	�� ��� 	�� uses a similar approach and maintains
a parallel hierarchy of persistent and corresponding non�persistent �db� types� An illusion
of orthogonal persistence may be achieved by programming exclusively using db types�

Many researchers now agree that persistence should be a characteristic of objects en�
tirely orthogonal to their type ���� We opted for this approach since it best maintains the
uniformity of object access in the system and does not inhibit the universal use of all types
as might be required by an application� Any object existing in the transient system may
be explicitly made to persist at any stage of its transient life� Thus� all TIGUKAT objects
should be potentially persistable while being inherently transient� The default is that all
objects instantiated during a particular application session are transient unless explicitly
made persistent by application of the B persistent behavior� On the other hand� applying
the B transient behavior on a previously persistent object will render it transient and that
object should cease to exist when the present session terminates� This object though� should
continue to be in scope until the end of the current session�� We use the terms activation
and passivation for the mechanisms of bringing in a persistent object from disk into main
memory and writing out an object from main memory onto disk� respectively� These terms
have been borrowed from ����

The primary grouping construct over which all querying will be done is the collection� We
should permit the creation of persistent as well as transient collections� Other considerations
would be permitting transient objects to be allocated within persistent collections �these
should cease to exist at the end of that particular session�� persistent objects allocated
within transient collections �these objects should continue to exist in their respective class
extents after the session� although the collection itself would be volatile� and �nally� objects
and the containing collection are either both transient or both persistent�

Type

Type Class Inst

Inst

Class

X

X+

+

- -

-

X+

Figure ����� The Persistency Matrix

Coercing an object into persistence might result in what we term persistency side�e
ects�
We interpret the persistency matrix shown in Figure ���� as follows� The matrix depicts the
various alternative strategies involved in making a TIGUKAT object persist �application
of the B persistent behavior on an object�� A � entry indicates some persistency side�
e
ect while a � entry indicates side�e
ect free persistence� If a type object is to be made
persistent� it is e
ect�free� This implies that its corresponding class and instances� if any
exist� are not required to be made persistent� In the second case� if a class object is required
to be persistent� the corresponding type must be made persistent but the instances� if any�
are not necessarily made to persist� The �nal case is when a particular instance is made to
persist� This has the e
ect of making both its type and class �excluding other instances�

�If it requires to be deleted then a B delete behavior could be applied immediately following the ap�
plication of B transient� Update and deletion semantics have not as yet been speci�ed in the TIGUKAT
model�

��

persistent� This protects against the object being passivated as an instance of one type and
sometime later being erroneously activated as an instance of some other type� The type
and class of all the type and class objects in the system form part of the primitive type
system� Since these primitive types are by default persistent� the question of making them
persistent does not arise�

All system types �whether primitive or user de�ned� are instances of the type T type

and are maintained in the extent of the class C type� All user de�ned classes are instances
of the type T class and are maintained in the extent of the class C class �	
�� Persistent
type and class objects should all be allocated within a pair of default ESM �le objects�
A persistent object will be contained in the extent of its type�s corresponding class� Each
TIGUKAT class should be mapped into an ESM �le object� At the termination of the
current active session all objects marked as persistent should be passivated by the OM via
ESM� This will result in the return of an ESM physical oid �handle� which is to be tracked
by the OM�

There exists the compliment of the persistency matrix� which we term the transiency
matrix �not shown�� This matrix derives the repercussions of making presently persistent
objects transient during a session �application of the B transient behavior on an object��
The e
ects induced will be precisely the opposite of those seen in the persistency matrix
�i�e� making an instance transient will not e
ect its type or class� making a class transient
does not e
ect its corresponding type but all its instances will be made transient too and
making a type transient will have the e
ect of making its corresponding class and all its
instances transient�� This model of persistence is a fairly low level and basic one� leaving
the responsibility for referential integrity on the application programmer� However� it may
be easily extended by taking into consideration other concepts such as the transitive closure
of persistency e
ects� This would ensure that no information is lost when a certain object
is asserted to persist but other objects that it references are transient� The system could
automatically compute the closure and make persistent every e
ected object� preserving
the referential integrity�

��� The EXODUS Storage Manager

It is after examining some of the other storage systems such as Mneme �	��� ObServer �	���
WiSS ����� EOS ��� and that we are in a position to propose using the EXODUS storage
manager ��� �� ��� 	�� to satisfy our persistence requirements� The features ESM has to o
er
seem to suite our purpose rather aptly� We have been fairly impressed with the performance
of an earlier prototype of this system� WiSS ����� as used by the O� ��
�
� OODBS� Besides�
the E persistent programming language extension of EXODUS �	�� is very similar to what
we have in mind� Concrete opinions about using ESM in large implementation e
orts� such
as in ����� help strengthen our proposal�

To summarize the basic requirements of a SM� it should e�ciently and reliably support
the storage and retrieval of arbitrarily sized objects �a few bytes to a few gigabytes�� It
should not discriminate between small and large objects and access should be uniform over
all objects� The SM must be able to handle changes in an object�s size by permitting it
to grow or shrink when needed� One should be able to add or delete a speci�c range of
bytes at any location within an object� An SM should provide reasonable random access
performance to enable e�cient handling of these byte range operations� It should also either
directly support oids or provide the functionality needed to support this� An SM should
provide for distribution of data and remote access� A client�server con�guration is usually

�

su�cient� Some basic forms of transaction management� recovery and clustering must be
o
ered� Versioning and garbage collection would be plus points� Internal fragmentation
should be kept at acceptable levels giving a high disk utilization� In addition� an SM should
provide a clear and simple� yet powerful� interface to it�s users�

The EXODUS��� �� ��� 	�� extensible database system project undertaken at the Uni�
versity of Wisconsin o
ers as its disk manager an e�cient� multi�user object storage system
��� �� ���� ESM supports most of the required traditional database functionality such as
transactions� concurrency control� versioning� indexing and recovery� though at a rudimen�
tary level ���� ESM is an enhanced version of WiSS �Wisconsin Storage System� ���� with
the major added functionality being its uniform treatment of small and large objects as far
as the applications built on top of it are concerned� Internally ESM di
erentiates between
small and large objects but this distinction is transparent to application programs�

ESM has been written in a combination of C and C�� and o
ers a procedural interface
to applications� It can be thought of as an hybrid between a SM and an OM� since it manages
persistent objects both on disk and in main memory� ESM�s primary construct is the storage
object which consists of an uninterpreted� dynamic sequence of bytes of practically any size�
Related storage objects are stored within a �le object which supports indexes for e�cient
object access�� Presently supported indexes are B
�tree and linear hashing� For complete
internal and operational details the reader is referred to ��� �� 	�� ����

����� Architecture

ESM supports the client�server con�guration� The client and server may be running on
di
erent machines and while the server presently supports multiple clients� a client may
not connect to more than one server at a time�� The term client refers to the application
program linked with ESM�s code and data structures to form a library� the client module��
All data is stored by the server on volumes which might either be Unix �les or raw disk
partitions�

Concurrency control is achieved at either the page or �le level and employs the standard
	PL �	 phase locking� protocol� Not only may an entire object be locked� but subportions
�pages� of it may be locked if so desired� Six modes of locking are supported and although
�le objects may be locked in any of these� page level locking supports only the shared or
exclusive mode� System recovery is attained using a fairly traditional form of WAL �write
ahead logging� ����� The transaction manager uses the notion of basic� atomic� serializable
transactions� All operations involving �les or objects must be bracketed within a begin and
commit� Nested transactions are not yet supported� An abort may be initiated either by
the client or the server�

The basic system architecture of ESM is as shown in Figure ��	�� The client�s� and
server communicate via RPCs �remote procedure call� through reliable TCP �transmission
control protocol� sockets� Object and index operations are performed on the client but
operations on �le objects are performed on the server to enable e�cient recovery techniques
to be applied�

If an object is requested by the client� referencing it via its oid� and it is not found to be
presently pinned in the client�s bu
er pool� then a request is made to the server to fetch the

�It is mandatory that every storage object reside within some �le object� If no �le object is speci�ed then
ESM assumes a default �le�

�The recent release� Version
��� now supports distributed transactions�
�The TIGUKAT object model and the OMI together can be considered to be the client in our system

implementation�

��

Interface Layer

Lock Cache

Logging Support

Transaction Support

Buffer Manager

Buffer Pool

RPC I/O

Buffer Pool

Buffer Manager

System
Recovery

Logging & Transaction

& Lock

Managers

File Managers

Administration

RPC

DATA

LOG

&

CLIENT PROCESS SERVER

TIGUKAT + OM

Figure ��	�� Architecture of the EXODUS Storage Manager

object� The server inspects its bu
er pool and if it too does not �nd the requested object
there then it reads in the object from disk and sends the required portion of it to the client�

����� Objects� Oids and Files

ESM internally distinguishes between two types of storage objects� small and large� The
small objects are those whose size is limited to a maximum of one data page �� Kbytes�
while large objects may be of virtually any size� exceeding a page� A small object may
dynamically grow� due to appending or inserting bytes into it� If its size exceeds a page
ESM then treats it as a large object� A new large object header� is left in place of the old
object and the actual data bytes are split across multiple pages of a B
�tree�like structure�
The procedural interface of ESM does not however di
erentiate between the two and all
object creation and manipulation is independent of the size of the object� Small objects
may share the page they reside on with other small objects as well as large object headers�
The header of a large object is the root of a B
�tree�like structure and the actual portions
of the object are split across multiple pages� each of which is reserved for the exclusive use
of that object and sharing of these pages is prohibited with other small objects or headers�

All objects are accessed via object identi�ers �oids�� The oid of a small object points
directly to the physical location of that object on disk while the oid of a large object points
to its header� ESM employs structured physical oids� as opposed to logical oids mainly for
e�ciency reasons ��� �	�� An ESM oid is a twelve byte entity which is structured as shown

�Each ESM object has a special piece of data prepended to it� called the the object header� The contents
of this header include object size� certain properties pertaining to versions and two bytes� the tag �eld� which
applications are free to use in an arbitrary manner�

��

in Figure ��	��

Page ID

Slot Vol Id

Unique

4 Bytes

Figure ��	�� The ESM OID Structure

An oid is the permanent address of the object on disk and is generated by the server
module of the system upon object creation� The unique �eld is a �	�bit value determined
by a counter at object creation time and its purpose is to ensure detection of dangling or
corrupted references� This �eld ensures that it is practically impossible for any two objects
to have the same oid ����� Subportions of an object may be addressed by combining a ��byte
o
set from the start of the object with its �	�byte oid� This gives us a ���byte pointer to
the portion of an object which resides on disk�

All ESM objects are created within some �le object� A �le object is the grouping con�
struct for objects which might be related in some way� ESM provides a mechanism for
iterating through the objects within a �le sequentially� The objects in a �le are unordered
and every �le object has zero or one distinguished root object which may be used to attach
a name string to the �le�

When ESM brings an object �or portion of it� into the main memory bu
ers� it returns
a pointer to a user descriptor �UD� in its user descriptor pool� The total size of a UD is
thirty two bytes� The object is accessed by dereferencing the base pointer portion of that
UD� The structure of a user descriptor is as depicted in Figure ��		�

4 Bytes

Base Pointer

Byte Count

Object Size

Properties

Figure ��		� The Structure of a User Descriptor

The base pointer serves as the ��byte in�memory pointer to the start of data� The byte
count contains the size in bytes of the data presently available to the application and the
object size contains the total size of the object a portion of which is currently �xed� The
properties �eld holds certain information �ags obtained from the object header as well as
some user �ags which may be employed arbitrarily for application speci�c purposes such

��

as maintaining the type of the object� Besides these� the UD also maintains the oid of the
object that it currently points to �in a slot in the properties �eld��

The UD serves as a handle on the memory resident object which is now said to be
pinned ��xed�� ESM reserves the right to relocate the object in its bu
er subsequently
re�ecting this change in the UD� Pinning is basically a two�way contract between ESM and
the application program with ESM guaranteeing that the object will be available in main
memory so long as it is not explicitly released by the application�

We note that an oid is a permanent valid speci�er for an object during its entire lifetime
and across all applications that have access to the volume on which the object resides� while
the UD serves as its handle only for that duration of pinning in main memory� ESM does
not support explicit I�O requests from its clients and reserves the right to schedule actual
disk I�O at a convenient time� The OM might call ESM to release a pinned object� but this
does not compel ESM to perform any disk I�O� It might just mark that object as unpinned
and will eventually write it out�

����� Interface Routines

In this subsection we examine some of the routines provided by the ESM interface which are
of prime consequence to our proposed implementation design for persistence� Routines are
provided for creation and destruction of objects� dynamic growth or shrinking of existing
objects and sequencing through all the storage objects within a �le object� We are particu�
larly concerned with those routines which are provided to create� read and write persistent
objects�

The routine sm ReadObject brings into memory the requested portion of an object�
given its oid and an o
set plus length� If the object is not already pinned in the bu
er�
it is read in and a pointer to a UD is returned to the requesting application� It is to be
noted that an object should not be accessed directly while it is resident� Object access is
always via dereferencing of the UD�s base pointer� The pinned object will remain so until
explicitly unpinned either by using the sm ReleaseObject routine or by using the option to
release the object consequent to an update on it� Sm ReleaseObject informs ESM that the
application has �nished with the object which may now be safely written out to disk and
its UD returned to the pool�

To update an object� once it has been brought into main memory� the routine used is
sm WriteObject� which needs to be provided with the UD returned by sm ReadObject� We
also need to specify the range of data to be updated and a pointer to the data to be added�
For reasons pertaining to recovery it is not advisable to ever write an object directly �����

Initialization and shutdown routines need to be used at the start and end of an applica�
tion program� A new persistent object is created using the routine sm CreateObject which
expects as its arguments details about which bu
er group� to use� the �le in which the
object is to be created� the initial value of its data and possibly a pointer to some object
header whose tag �eld is copied into the header for the new object� The application can
also specify some storage hints for physical placement of �basic clustering� the new object�
although ESM might choose to ignore these� Successful creation of the new object is indi�
cated by the return of a pointer to the oid of the object� which is then used for all future
references to that object�

It is also possible to read only the object header portion of any object� and this is useful

�ESM implements the concept of a bu�er group which is a collection of pages in the bu�er pool that may
be physically contiguous and have an attached replacement policy�

��

when it is desired only to know details about a particular object without having to perform
actual I�O and have the data read in� especially in the case of large objects�

File objects are handled via similar create and destroy routines besides others which may
be used to scan through all objects currently placed in that �le� Routines are provided for
the B
�tree and linear hashing indexes currently supported by ESM� A complete discussion
of ESM�s procedural interface can be found in �����

��� Integrating TIGUKAT with EXODUS

Two main approaches to object activation�passivation can be identi�ed� the object�faulting
model ���� and the load�store model �	��� We discuss both but emphasize on the load�store
model and propose the adoption of a similar strategy�

In TIGUKAT� a class manages all instances created of its corresponding type� We pro�
pose using ESM�s �le object facility to map each persistent class �which will hold persistent
object instances� onto a corresponding ESM �le object� ESM requires that every storage
object should be allocated in some �le object� This �ts the TIGUKAT concept of a class
well� Each ESM �le can be modeled as an instance of a C�� �le class� All applicable
operations �as supported by ESM� should be de�ned by that C�� class� member functions
�implemented as ESM calls�� Other collections �classes are also collections� within which
these objects are allocated will have relevant references �oids� stored in them�

The object�faulting model aims to provide virtual memory for memory resident objects�
Mechanisms similar to demand paging are used to fault a referenced object into the storage
manager�s bu
er� The object is then copied into the virtual memory space and subsequently
released from the bu
er� All further access to the object is directly via main memory
pointers� This model of persistence employs some form of pointer swizzling Swizzling is the
process of converting persistent database objects between an external form �oid� and an
internal form �direct memory pointers�� Since swizzling would require an entire object be
faulted into virtual memory� we foresee some problems associated with the swizzling of large
objects�

Our implementation design for persistence proposes the access of activated �memory
resident persistent objects� in the ESM client�s� bu
er in�place via relevant calls to the
procedural interface provided� We considered this conventional access approach since we
do not currently have a programming language interface that can take advantage of swiz�
zled pointers� Furthermore� in�place access makes sharing of objects easier� Although the
client bu
er is allocated within the applications�s private data space objects should never
be accessed directly since recovery will be hampered� Object access and manipulation is
enclosed within a begin�commit of an ESM supported transaction� Object creation will be
via a call to the relevant ESM function and will result in the return of an ESM oid� It is
then the OM�s responsibility to keep track of this handle� When a TIGUKAT application
needs to read a persistent object� the OM �rst obtains the handle on this object� i�e� the
oid� A call to ESM�s sm readObject function is issued� passing it the oid� If the object is
not present in the client bu
er then the page containing the object is requested from the
ESM server �possibly resulting in some disk I�O if that object is not presently bu
ered by
the server� �����

ESM will then pin the requested object in the client�s bu
er and return a pointer to
a UD in the pool of UDs that it maintains �Figure ��	��� Dereferencing the base pointer
portion of the UD will give access to the resident object itself� The object� once pinned

�The client would comprise the TIGUKAT library linked with ESM�s client interface module�

��

ESM Server

TIGUKAT + ESM Client

BP

Lock
Manager

Recovery
Manager

Log
Volume

Buffer Pool

Client Buffer Pool

UD

Page 1 Page 2 Page n

Data
Volume

Network

Figure ��	�� Persistent Object Access in TIGUKAT

in the client bu
er pool� may be updated with a call to ESM�s sm writeObject function�
Arguments to this call include the UD and a pointer to the data value that is to be written
into the object� ESM will update the object in the client bu
er and generate a log record
�for recovery purposes��

Once the TIGUKAT application has �nished with the object� the OMmust call sm releaseObject
to unpin the object �maybe tagged onto the sm writeObject routine�� If all the objects on
the page are unpinned at this time� then the client bu
er manager marks it as a candidate
for replacement and it will be shipped out to the server when the bu
er space is full�

ESM now supports callbacks from server to client and therefore inter�transaction caching
of data pages is permitted� This eliminates the disadvantage of the procedural persistence
mechanism which was that it might lead to redundant �xing of data since the same object
maybe pinned�unpinned multiple times by the application�

The format of an object in main memory will be di
erent from its format on disk�
Consider the case where two objects are in main memory and have inter�object references�
These references will be normal C�� pointers �� bytes� in main memory but need to be
replaced with appropriate ESM oids ��	 bytes� when passivated� The reverse holds through
when an object is activated� The OM needs to maintain information about which portions
of a object holds references in order to do this�

One approach would involve maintaining a type table containing a segment for each
de�ned type� This table would hold information as to which slots within the instances
of various types hold references� Note that this structure would hold similar information

��

1

2

0

Mapping

Module

Format

In-memory
pointer

ESM

oid

O1

O1’

0

2

Figure ��	�� Format Mapping during the Passivation Process

as the SC� supplementary cache described in Chapter �� In fact� the information in SC�
can be incorporated into the new table� When an object is marked for passivation� the
format mapping module of the OM will iterate through the reference holding slots and
determine whether the referenced objects are also marked for persistence� Those that are
will need to have their main memory pointers replaced by appropriate ESM oids� This
process is as depicted in Figure ��	�� where O� is the object format prior to passivation
and O�� is the passivated form� It is required that these referenced objects be passivated
prior to the passivation of the referencing object� ESM is then called to store them and
an oid is returned for each object made persistent� This oid is inserted into the referencing
object in place of the earlier in�memory pointer� A passivated object with references to
other peristent objects thus grows in size proportional to the number of persistent objects
it references� Note that determining the exhaustive chain of persistency side e
ects would
require a transitive closure of the object references� In case the referenced object is transient�
then at the end of the current session a null indicator is inserted into the in�memory pointer
slot� This implies that we would be losing some information during passivation�

On activation of a persistent object� the OM iterates through those portions which hold
oids of other persistent objects �determined from the type table�� On need for access to
any of these objects it consults another table �called the resident object table or ROT� to
infer whether they have already been pinned in the bu
er� The ROT could be a hashed
dictionary of oid�UD pairs� If no entry for the oid is present in the ROT� ESM is invoked
to bring that object in� The object is then referenced via its present UD�

Another issue which needs to be addressed is how to determine whether a slot in an
object contains an oid or a direct in�memory pointer� A runtime software check will be
required� We propose masking the �rst bit of each referential slot in every object� This
is used to indicate whether the reference stored there is either a direct memory pointer or
a pointer to an oid structure� This will e
ectively reduce the addressable space by half�
The four byte slots will thus su�ce in holding references to either transient or persistent
objects� If the object being referenced is a persistent object� its oid is obtained from the
oid struct� ESM is called and the object is pinned in the bu
er� The four byte slot can now
be made to point to the UD of the pinned object� Note that the UD also contains the oid
of the object it currently references� The oid pointer has to be restored in the slot when
the object is passivated�

�	

Our current research has not touched upon some other relevant issues such as garbage
collecting� clustering and pre�fetching of persistent objects� These are still open research
topics and will be examined at some other stage�

��� A Review of Other Storage Managers

A number of other storage managers have been speci�cally built or adapted to meet the
requirements of an object�oriented system� In this section we brie�y discuss some of these
viz� WiSS ����� ObServer �	��� Mneme �	�� and EOS ����

����� The Wisconsin Storage System

The Wisconsin storage system �WiSS� ���� was originally designed as a relational storage
manager at the University of Wisconsin� It supports sequential and indexed access to data
on disk through a low level manipulation language� providing full control of the physical
location of pages on disk� It was designed for operation with a raw disk device and uses
record�structured sequential �les� unstructured �les� B
�trees and supports the concept
of long data items of variable� arbitrary size� All these are eventually mapped into the
basic unit of persistence� pages� The WiSS interface di
erentiates between small and long
data items� WiSS is restricted to a single thread of execution and this can have serious
performance implications due to excessive cpu idle times while WiSS is performing some
I�O operation� WiSS does support a basic form of concurrency control but the level of
granularity is the entire �le and no recovery is possible�

In spite of these shortcomings WiSS has been successfully employed by the O� �
�
OODBS as the disk manager� providing persistence� disk management and concurrency
control for ��at� records of data� with an O� transaction being mapped directly into a
WiSS transaction� We suggest the use of ESM as our storage manager because it is an
enhanced� upward compatible version of WiSS�

����� The ObServer Object Server

ObServer �object server� �	�� is designed to be used as a typeless backend of an object�
oriented system� responsible for managing the persistent object store on disk� It reads
and writes chunks �contiguous stream of bytes� of memory from disk storage as requested
by higher level modules� ObServer possesses a primitive notion of transactions supporting
object�level locking� All objects reside on a central server which manages them and controls
access to them�

A higher type level is responsible to deal with the semantics of data chunks as objects�
interpreted through the associated type de�nitions� This layer acts as a �client� to the
ObServer backend and has to be bound with the client module of the server� Clients
request objects from the server� make any required modi�cations and commit changes back
to the server� This is very similar to ESM� When a request is issued to the server the client
is not suspended while awaiting a response but continues execution� When ObServer does
reply the client may choose to ignore it�

Each chunk of memory stored has an associated handle called the UID �unique identi�
�er�� A single UID is associated with each object and when the UID is dereferenced it leads
to a header block for that object �similar to ESM�� The server maintains the correspon�
dence between UIDs and chunks� This concept is identical to the concept of oids in ESM�
ObServer uses a sequential approach to storing data on disks� The objects are stored in

��

segments on disk and each object may be contained within more than one segment� Each
segment in turn is stored in consecutive pages� A hash table is used to store the logical
correspondence between UIDs and objects� This involves some overhead which is eliminated
by using physical oids� as in ESM�

����� The Mneme Persistent Object Store

The Mneme �Greek word for memory� project stemmed from an e
ort to integrate pro�
gramming language and database features for providing better support for cooperative�
information�intensive tasks such as those found in software engineering environments �	���
The aim is to provide an e�cient persistence mechanism for object�oriented programming
languages giving an illusion of a large� shared heap of �objects� which would be directly
accessible from the programming language �the ESM interface restricts direct access to ob�
jects�� The Mneme system seems to be tuned for better performance and less overhead
for small objects rather than for large objects� It is more suited for use with a persistent
programming language �short oids� an orientation towards automatic storage management�
focusing on large scale distribution� than with a OODBS�

A Mneme object is conceived as a contiguous chunk of �elds with an associated logical
�not linked to precise physical locations� oid ���bytes�� as opposed from the physical oids
��	�bytes� used by ESM� The oid scheme used is a novel idea based on locality of reference
and operating system �les� A �le is basically a disk �le containing a collection of physi�
cal segments each of which contains several logical segments� Oids thus have three �elds
of ten bits each� one �eld indicating the �le� one specifying the logical segment and one
referencing the object� Given an oid� objects are accessed via a sequence of table lookups�
These �objects� possess no notion of types� classes� behaviors or inheritance� that is the
responsibility of upper layers� The con�guration of the system is client�server� with the
application interfacing with the client interface �Mneme client library�� and the client and
server possibly running on di
erent machines�

Mneme also supports the notion of transactions within which all object manipulation
occurs and store consistency is guaranteed� Mneme provides adequately for a garbage
collection algorithm to be implemented within it �ESM is not concerned with garbage
collection��

����� EOS

EOS ��� is a SM for experimental database implementation whose key di
erence from ESM
is that its large object support mechanism eliminates the �xed segment size constraint
imposed by ESM� Instead of a large object being stored as a sequence of �xed sized segments
consisting of physically contiguous disk blocks� as in ESM� EOS stores its large objects as
a sequence of variable�sized segments� It o
ers superior storage utilization by disallowing
holes in a segment� Thus� the B�tree�like structure used to store the large objects is slightly
di
erent from that used by ESM and therefore EOS�s insert� delete and append algorithms
are signi�cantly di
erent�

Biliris ��� justi�es the need for variable�sized segments to improve ESM�s performance
for large object reads�

Chapter �

Conclusion

The implementation design and development of the TIGUKAT object model proved to be an
interesting and di�cult problem� The objective of the research presented in this thesis was
the demonstration of the feasibility of implementing an extensible and uniform core object
system� This is precisely what we have achieved� We have a�rmed through implemented
evidence that the TIGUKAT object model can be successfully employed to satisfy the needs
of object data management� We have striven to maintain the uniformity and extensibility
of the object model in order that the prototype facilitate modular growth of the system
while preserving its modeling power� The type system should be easily modi�able as the
system evolves through imminent extensions without unduly a
ecting the existing logical
structure� This requirement dictated that the architecture be modular and structured in
layers�

On the basis of di�culties encountered while investigating the mapping from the con�
ceptual model to a feasible implementation design numerous changes managed to �lter their
way up to the object model �an updated version of the TIGUKAT object model is presently
being researched�� During the course of this research potential model imperfections were
exposed and possible solutions to these were discussed� Some of these might never have
surfaced without this attempt at system implementation�

��� Future Research

There are several areas which require further work� In this section we propose some guide�
lines for future research which would help enhance the TIGUKAT system�

� In the current implementation� the system dispatch cache provides an extremely fast
dispatch mechanism but su
ers a poor space utilization� This excessive memory con�
sumption can be alleviated by using one of the coloring schemes proposed in ��
� 	��
The technique involves assigning colors to method selectors with the possibility of
multiple selectors being assigned an identical color� This would in e
ect reduce the
number of columns required in the cache� Also� instead of maintaining two supplemen�
tary byte caches� as we presently do� they could be combined into a single structure
which maintains both pieces of information� the nature of the associated functions
and accessor function pairing�

� The reassociation of a behavior with either a stored or a computed function� irrespec�
tive of any earlier association or of existing instances� needs to be supported� This

��

�

should be studied in conjunction with a precise speci�cation of schema evolution�
update and deletion semantics�

� The system�s performance appears to be de�cient during the type creation process�
There is quite a bit of iteration involved through the interface sets of the speci�ed
direct supertypes� This could cause a signi�cant delay if the number of supertypes is
large� each having a considerable interface�

� Investigation of a runtime environment that would directly support TIGUKAT�s no�
tion of atomic types is needed� Our present approach of generating atomic types when
they are �rst referenced seems to be a bottleneck to e�ciency� This integrated envi�
ronment should manage its own memory instead of using the memory management
provided by the programming language �C�� at present��

� The design for persistence that we have suggested is via ESM�s functional interface�
This might be a little ine�cient since persistent object access is indirect� A consid�
erable amount of non�trivial research is needed to study an elegant pointer swizzling
technique where persistent objects might be dynamically faulted into the system�s
virtual memory on dereference�

� The consequences of accessing multiple databases needs to be studied and issues per�
taining to clustering and garbage collecting persistent objects should be investigated
in relation to persistence�

Bibliography

��� R� Agrawal� S� Dar� and N� H� Gehani� The O�� Database Programming Language

Implementation and Experience� AT�T Bell Labs� �����

�	� P� Andr�e and J� Royer� Optimizing Method Search with Lookup Caches and Incre�
mental Coloring� In Proceedings ACM Conference on Object�Oriented Programming
Systems� Languages and Applications� pages ��� �	�� September ���	�

��� M� Atkinson� F� Bancilhon� D� DeWitt� K� Dittrich� D� Maier� and S� Zdonik� The
Object�Oriented Database System Manifesto� In Proceedings �st International Confer�
ence on Deductive and Object�Oriented Databases� pages ��
�� �����

��� M� P� Atkinson and O� P� Buneman� Types and Persistence in Database Programming
Languages� ACM Computing Surveys� ���	����
 ���� June �����

�
� F� Bancilhon� C� Delobel� and O� Kanellakis� editors� Building an Object�Oriented
Database System
 The Story of O�� Morgan Kaufmann Publishers� ���	�

��� A� Biliris� The Performance of Three Database Storage Structures for Managing Large
Objects� In Proceedings of the ACM SIGMOD International Conference on Manage�
ment of Data� pages 	�� 	�
� ���	�

��� M� J� Carey� D� J� DeWitt� D� Frank� G� Graefe� J� E� Richardson� E� J� Shekita� and
M� Muralikrishna� The Architecture of the EXODUS Extensible DBMS� In Proceedings
of the International Workshop on Object�Oriented Database Systems� �����

��� M� J� Carey� D� J� DeWitt� G� Graefe� D� M� Haight� J� E� Richardson� D� T� Schuh�
E� J� Shekita� and S� L� Vandenberg� The EXODUS Extensible DBMS Project� An
Overview� In S� Zdonik and D� Maier� editors� Readings in Object�Oriented Databases�
Morgan�Kaufman� �����

��� M� J� Carey� D� J� DeWitt� J� E� Richardson� and E� J� Shekita� Object and File
Management in the EXODUS Extensible Database System� In Proceedings of the ��th
International Conference on Very Large Data Bases� pages �� ���� August �����

���� M� J� Carey� D� J� DeWitt� J� E� Richardson� and E� J� Shekita� Storage Manage�
ment for Objects in Exodus� In W� Kim and F� Lochovsky� editors� Object�Oriented
Concepts� Databases and Applications� Addison�Wesley Publishing Co�� �����

���� M� J� Carey� D� J� DeWitt� and S� L� Vandenberg� A Data Model and Query Language
for EXODUS� In Proceedings of the ACM SIGMOD Conference� pages ��� �	�� June
�����

��	� R� G� Cattell� Object Data Management� Addison�Wesley Publishing Co�� �����

��

��

���� H� Chou� D� DeWitt� and S� L� Vandenberg� Design and Implementation of the Wis�
consin Storage System� Software � Practice and Experience� �
�������� ��	� October
���
�

���� U� Dayal� Queries and Views in an Object�Oriented Data Model� In Proceedings �nd
International Workshop on Database Programming Languages� pages �� ��	� �����

��
� R� Dixon� T� McKee� P� Schweizer� and M� Vaughan� A Fast Method Dispatcher for
Compiled Languages with Multiple Inheritance� In Proceedings ACM Conference on
Object�Oriented Programming Systems� Languages and Applications� pages 	�� 	���
October �����

���� M� Ellis and B� Stroustrup� The Annotated C�� Reference Manual� Addison�Wesley
Publishing Co�� second edition� �����

���� M� Fontana and M� Neath� Checked Out and Long Overdue� Experiences in the
Design of a C�� Class Library� Technical report� Texas Instruments Incorporated�
Information Technology Group� �����

���� A� Goldberg and D� Robson� Smalltalk���
 The Language and its Implementation�
Addison�Wesley Publishing Co�� �����

���� E� Hanson� T� Harvey� and M� Roth� Experiences in DBMS Implementation Using
an Object�Oriented Persistent Programming Language and a Database Toolkit� In
Proceedings ACM Conference on Object�Oriented Programming Systems� Languages
and Applications� pages ��� �	�� October �����

�	�� M� Hornick and S� Zdonik� A Shared� Segmented Memory System for an Object�
Oriented Database� ACM Transactions on O�ce Information Systems�
������ �
�
January �����

�	�� C� Lamb� G� Orenstein� and D� Weinreb� The ObjectStore Database System� Com�
munications of the ACM� �������
� ��� October �����

�		� F� Manola and A� P� Buchmann� A Functional�Relational Object�Oriented Model for
Distributed Object Management� Technical Report TM��������������
� GTE Labo�
ratories Incorporated� �����

�	�� J� E� B� Moss� Design of the Mneme Persistent Object Store� ACM Transactions on
O�ce Information Systems� ��	����� ���� April �����

�	�� R� Peters� TIGUKAT
 A Uniform Behavioral Object Model� Query Model and View
Manager for Object Management Systems� PhD thesis� University of Alberta� �����

�	
� R� J� Peters� M� T� �Ozsu� and D� Szafron� TIGUKAT� An Object Model for Query and
View Support in Object Database Systems� Technical Report TR��	���� University of
Alberta� October ���	�

�	�� J� Richardson� M� Carey� and D� Schuh� The Design of the E Programming Language�
Technical Report �	�� University of Wisconsin� February �����

�	�� J� E� Richardson and M� J� Carey� Programming constructs for Database System
Implementation in EXODUS� In Proceedings of the ACM SIGMOD Conference� pages
	�� 	��� June �����

��

�	�� J� E� Richardson and M� J� Carey� Persistence in the E Language� Issues and Imple�
mentation� Software � Practice and Experience� ����	�����
 ��
�� December �����

�	�� C� Scha
ert� T� Cooper� B� Bullis� M� Killian� and C� Wilpolt� An Introduction to Trel�
lis�Owl� In Proceedings ACM Conference on Object�Oriented Programming Systems�
Languages and Applications� pages � ��� September �����

���� D� T� Schuh� M� J� Carey� and D� J� DeWitt� Persistence in E Revisited � Implemen�
tation Experiences� In Proceedings �th International Workshop on Persistent Object
Systems� pages ��
 �
�� September �����

���� D� W� Shipman� The Functional Model and the Data Language DAPLEX� In ACM
Transactions on Database Systems� pages ��� ���� �����

��	� D� D� Straube and M� T� �Ozsu� Queries and Query Processing in Object�Oriented
Database Systems� ACM Transactions on O�ce Information Systems� �������� ����
October �����

���� B� Stroustrup� The C�� Programming Language� Addison�Wesley Publishing Co��
second edition� �����

���� University of Wisconsin� Using the EXODUS Storage Manager V���� November ���	�

��
� F� Velez� G� Bernard� and V� Darnis� The O� Object Manager� An Overview� In
Proceedings ��th International Conference on Very Large Data Bases� August �����

���� S� J� White and D� J� DeWitt� A Performance Study of Alternative Object Faulting
and Pointer Swizzling Strategies� In Proceedings of the ��th International Conference
on Very Large Data Bases� pages ��� ���� August ���	�

���� S� Zdonik and D� Maier� Fundamentals of Object�Oriented Databases� In S� Zdonik
and D� Maier� editors� Readings in Object�Oriented Databases� pages � ��� Morgan�
Kaufman� �����

A

C�� Class Declarations

This chapter contains source code excerpts from the class declarations of some of the im�
portant support structures�

A�� The TgObject Class

�� The class declaration for TgObject

class TgObject f

protected�
AttrEntry� elem� �� Pointer to allocated storage
int size� �� Size of allocated storage
int numberElements� �� Number of elements in TgObject
int curPos� �� Keeps current position
void remove ��� �� Remove element at current position
Boolean push �const AttrEntry��� �� Append slot to TgObject

public�
TgObject ��� �� TgObject v�
TgObject �unsigned int�� �� TgObject v���	�
TgObject �const TgObject��� �� TgObject v � y�
�TgObject ��� �� Destructor

Boolean isEmpty��� �� Any elements in TgObject�
int length �� const� �� Number of elements
int capacity �� const� �� Maximum number of elements

void setType�TgObject��� �� Set �st attr
TgObject� getType�� const� �� Returns �st attr � always the type
pter getAttrAt�int� const� �� return attribute at that slot
TgObject� getTgObj�int� const� �� return attribute at that slot
Set� getSetAt�int� const� �� return attribute at that slot
Bag� getBagAt�int� const� �� return attribute at that slot
TgBag� getTgBagAt�int� const� �� return attribute at that slot
TgString� getStringAt�int� const� �� return attribute at that slot

��

�

Cache� getCache�� const� �� return Cache
int getCacheRow�� const� �� return Cache row index
int getIntAt�int� const� �� return attribute at that slot
double� getDoubleAt�int� const� �� return attribute at that slot
char getCharAt�int� const� �� return attribute at that slot

Boolean putAttrAt�int�pter�� �� insert attribute at that slot
Boolean putAttrAt�int�char�� �� insert attribute at that slot
Boolean putAttrAt�int�TgString��� �� insert attribute at that slot
Boolean putAttrAt�int�char��� �� insert attribute at that slot
Boolean putAttrAt�int�TgObject��� �� insert attribute at that slot
Boolean putAttrAt�int�Cache��� �� insert attribute at that slot
Boolean putAttrAt�int�Set��� �� insert attribute at that slot
Boolean putAttrAt�int�Bag��� �� insert attribute at that slot
Boolean putAttrAt�int�TgBag��� �� insert attribute at that slot
Boolean putAttrAt�int�int�� �� insert attribute at that slot
Boolean putAttrAt�int�double��� �� insert attribute at that slot

Boolean addEntry �pter�� �� Append entry at end of array
Boolean addEntry �TgString��� �� Append entry at end of array
Boolean addEntry �Cache��� �� Append entry at end of array
Boolean addEntry �char��� �� Append entry at end of array
Boolean addEntry �Set��� �� Append entry at end of array
Boolean addEntry �Bag��� �� Append entry at end of array
Boolean addEntry �TgBag��� �� Append entry at end of array
Boolean addEntry �TgObject��� �� Append entry at end of array
Boolean addEntry �int�� �� Append entry at end of array
Boolean addEntry �double��� �� Append entry at end of array
Boolean addEntry �char�� �� Append entry at end of array
Boolean removeEntry �int�� �� delete this slot

TgObject� operator� �const TgObject��� �� v � vec��
Boolean operator�� �const TgObject�� const� �� Comparison
Boolean operator�� �const TgObject�� const� �� Comparison

g�

�� Declaration for the class AttrEntry �each element of TgObject	

class AttrEntry f
private�

pter pf� �� A void pointer � may point to any type of object

public�

AttrEntry��� �� Default Constructor
AttrEntry�pter�� �� constructor expecting void�
�AttrEntry��� �� destructor

pter getPter�� const� �� Get the pointer � return it

�

void setPter�pter�� �� Set the pointer

Boolean operator�� �const AttrEntry�� const� �� Comparison
AttrEntry� operator� �const AttrEntry� �� �� Assignment

g�

	

A�� The Cache Class

typedef TgObject� ��pfun��� � ���
�� A pointer to a function that returns a pointer to a TgObject

�� Class declaration for class Cache

class Cache f
private�
pfun�� data� �� Pointer to the Cache
int numRows� �� Number of rows
int numCols� �� Number of columns

public�
Cache �unsigned int� unsigned int�� �� Cache C�r�c	�
Cache �const Cache��� �� C� � C� Copy Constructor�
�Cache��� �� Destructor

void put �unsigned int� unsigned int� pfun�� �� Assign value
pfun get �unsigned int� unsigned int� const� �� Get value

void �ll �const pfun��� �� Set elements to value

int rows �� const� �� Return number of rows
int columns �� const� �� Return number of columns

g�

�

A�� The Set and Bag Classes

�� Class declaration for the purely virtual BaseSet class

class BaseSet f
public�
virtual int length�� const � �� �� Virtual � de�ned in subclasses
virtual TgObject� get�int� � �� �� Virtual � de�ned in subclasses
virtual Boolean addEntry�TgObject�� � ��
virtual Boolean removeEntry�const TgObject�� � ��
virtual Boolean �nd �const TgObject�� unsigned int start � �� � ��

g�

�� Class declaration for the Set class

class Set � public BaseSet f

protected�
SetEntry� elem� �� Pointer to allocated storage
int size� �� Size of allocated storage
int numberElements� �� Number of elements in Set
int curPos� �� Keeps current position

void remove ��� �� Remove element at current position
Boolean push �const SetEntry��� �� Add TgObject to end of Set

public�
Set ��� �� Set s � Default constructor�
Set �unsigned int�� �� Set s���	�
Set �const Set��� �� Set s� � s� � Copy Constructor�
virtual �Set ��� �� Destructor

Boolean �nd �const TgObject�� unsigned int start � ���
�� Set current positi on

Boolean isEmpty��� �� Any elements in Set�
int length �� const� �� Number of elements
int capacity �� const� �� Maximum number of elements

TgObject� get�int�� �� Return element� set curpos

Set� operator� �const Set��� �� s � s��

virtual Boolean addEntry�TgObject��� �� Add this element to the set
Boolean removeEntry�const TgObject��� �� Remove this element from the set

virtual Boolean operator�� �const Set�� const� �� Compare � Sets
Boolean operator�� �const Set�� const� �� Compare � Sets

�

g�

�� Class declaration for the Bag class

class Bag � public Set f

public�
Bag ��� �� Bag b�
Bag �unsigned int�� �� Bag b���	�
Bag �const Bag��� �� Bag b� � b��
virtual �Bag��� �� Destructor

Boolean put �TgObject��int�� �� Put element into Bag at given slot
Boolean addEntry�TgObject��� �� Add element to Bag
Boolean operator�� �const Bag�� const� �� Compare � Bags

g�

�� Declarations for the TgBag Class

class TgBag � public BaseSet f

protected�
BagElem� elem� �� Pointer to allocated storage
int size� �� Size of allocated storage
int numberElements� �� Number of elements in TgBag
int curPos� �� Keeps current position

void remove ��� �� Remove element at current position
Boolean push �TgObject��� �� add TgObject to end of TgBag

public�
TgBag ��� �� TgBag v � Default constructor�
TgBag �unsigned int�� �� TgBag v���	�
TgBag �const TgBag��� �� TgBag v � y � Copy Constructor�
virtual �TgBag ��� �� Destructor

Boolean �nd�const TgObject�� unsigned int start � ���
Boolean isEmpty��� �� Any elements in TgBag�
int length �� const� �� Number of elements
int capacity �� const� �� Maximum number of elements
int occurences�const TgObject�� � �� number of occurences of the object
int card�� const� �� Total value of all counts

TgObject� get�int�� �� Return TgObject
BagElem� getElem�int�� �� Return element

TgBag� operator� �const TgBag��� �� tBag� � tBag��

Boolean addEntry�TgObject��� �� add this element to the Bag

Boolean removeEntry�const TgObject��� �� remove this element from the Bag

Boolean operator�� �const TgBag�� const� �� Compare � TgBags
Boolean operator�� �const TgBag�� const� �� Compare � TgBags

g�

�� Declarations for the BagElem class

class BagElem f
int count�
TgObject� elem�

public�
BagElem��� �� Default constructor
BagElem�TgObject�� � �� Constructor
�BagElem��� �� destructor

int getCount�� const� �� Returns occurences of element
void setCount�int� � �� Sets occurences of element
void incrCount��� �� Increments occurences of element
void decrCount��� �� Decrements occurences of element
TgObject� getElem��� �� Returns reference element object
void setElem�TgObject��� �� Inserts reference to object into bag
Boolean operator�� �const BagElem�� const� �� Compare � elems
BagElem� operator� �const BagElem��� �� Assignment operator

g�

B

Behavioral Speci�cations

This chapter contains a comprehensive behavioral summary of all TIGUKAT�s primi�
tive system types implemented as required in �	��� In addition we have added the types
T behavior class� T function class and T semantics�

Section � contains the summary of the non�atomic types and section 	 that for the
atomic types�

�

�

B�� Non�atomic Types

Type Signatures

T object B self � T object

B mapsTo� T type

B conformsTo� T type� T boolean

B equal� T object� T boolean

B notequal� T object� T boolean

B persistent� T object

B transient� T object

T type B interface� T sethT behaviori
B native� T sethT behaviori

B inherited� T sethT behaviori
B specialize� T type� T boolean

B subType� T type� T boolean

B subTypes� T sethT typei
B superTypes� T sethT typei
B subLattice� T posethT typei

B superLattice� T posethT typei
B classof � T class

T behavior B name� T string

B argTypes� T listhT typei
B resultType� T type

B semantics� T semantics

B associate� T type� T function� T behavior

B implementation� T type� T function

B apply � T object� T list� T object

B de�nes� T sethT typei
T function B argTypes� T listhT typei

B resultType� T type

B source� T object

B execute� T list� T object

B executable� T object

�

Type Signatures

T collection B typeOf � T type

B extent� T set

T class B shallow � T set

B new � T object

T class class B new � T type� T class

T type class B new � T sethT typei � T sethT behaviori
� T type

T collection class B new � T type� T collection

T behavior class B new � T string� T listhT typei
� T type� T behavior

T function class B new � T listhT typei � T type

� T function

T semantics B name� T string

B argTypes� T listhT typei
B resultType� T type

B�� Atomic Types

Type Signatures

T atomic

T boolean B not� T boolean

B or� T boolean� T boolean

B if � T object� T object� T object

B and� T boolean� T boolean

B xor� T boolean� T boolean

T character B ord� T natural

T string B car� T character

B cdr� T string

B concat� T string� T string

T real B add� T real� T real

B subtract� T real� T real

B multiply� T real� T real

B divide� T real� T real

B trunc� T integer

B round� T integer

B lessThan� T real� T boolean

B lessThanEQ� T real� T boolean

B greaterThan� T real� T boolean

B greaterThanEQ� T real� T boolean

T integer Behaviors from T real re�ned to work on integers
T naturals Behaviors from T integer re�ned to work on naturals
T set B mbrType� T type

B union� T set� T set

B di� � T set� T set

B intersect� T set� T set

B forEach� T behavior� T list� T bag

B containedBy � T set� T boolean

B cardinality � T natural

B elementOf � T object� T boolean

�

Type Signatures

T bag B occurrences� T object� T natural

B count� T natural

Behaviors from T set re�ned to preserve duplicates
T poset B ordered� T object� T object� T boolean

B ordering � T behavior

Behaviors from T set re�ned to preserve ordering
T list Behaviors from T bag and T poset re�ned to preserve

duplication and ordering

