18174
NATIONAL LIBRARY
OTTAWA

BIBLIOTHEQUE NATIONALE
OTTAWA

---------------------------

TITIE OF THESIS.. ﬂéf”'ﬂﬂ// En e /9674'0\«, )
LLleall Thavgtern Al L.
. /&/,?JMaﬁmma SEA G e

C}A/¢4»<LJJ Cléi%mgr71<2r(’s
mnvnaRsm(................0’...0.7.[.../61./.‘.J/:.é/.)./.%.é&C ........
DEGREE FOR WHICH THESIS WAS PRESENTED.............,/ A7 P
YEAR THIS DEGREE GRANTED........... VA NEAS ST

Permission is hereby granted to THE NATIONAL LIBRARY

OF CANADA to microfilm this thesis and to lend or sell copies

of the film.
The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may be

printed or otherwise reproduced without the author's

written permission.

DATED I.7%. . .. /%7"// 19773 |

NL-91 ¢10-68)



THE UNIVERSITY OF ALBERTA

THERMAL ENTRANCE REGION HEAT TRANSFER
AND HYDRODYNAMIC STABILITY IN CURVED CHANNELS

by

@ MITSUNOBU AKIYAMA

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

EDMONTON, ALBERTA
Spring, 1973



UNIVERISTY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend
to the Faculty of Graduate Studies and Research for acceptance, a
thesis entitled "THERMAL ENTRANCE REGION HEAT TRANSFER AND HYDRODYNAMIC
STABILITY IN CURVED CHANNELS" submitted by MITSUNOBU AKIYAMA in partial

fulfilment of the requirements for the degree of Doctor of Philosophy.

External Examiner

1



ABSTRACT

A deductive analysis is carried out for the basic general
equations governing the steady flow and heat transfer in curved cir-
cular pipes and rectangular channels for an incompressible fluid with
constant properties except for density variations in the buoyancy
term. The effects of viscous dissipation are neglected. As a result
of the order of magnitude analysis, the important physical parameters
and the mathematically tractable sets of governing equations for
entrance flow and heat transfer in curved channels are clearly
identified.

The boundary vorticity method is applied to the numerical
solution of fully developed laminar flow and forced convection heat
transfer in curved pipes subjected to axially uniform wall heat flux
with peripherally uniform wall temperéture for Dean numbers from 0 to
approximately 200, and Prandtl numbers from 0 to 500. The boundary
vorticity method is compared with the conventional stream function
vorticity method.

The numerical solution for Graetz problem in curved pipes
is also carried out for the two basic thermal boundary conditions of
uniform wall temperature and uniform wall heat flux. The Prandti
number effect on thermal entrance region heat transfer is studied and
the numerical results are examined carefully against the reported
results in the literature. |

A direct vorticity method is developed and applied to the

numerical solution of laminar flow development in the hydrodynamic



entrance region of curved parallel-plate channels with uniform,
parabolic and triangular entrance velocity profiles.

The Dean's hydrodynamic instability analysis for Taylor-
Gortler longitudinal vortices is extended to the hydrodynamic
entrance flow in curved parallel-plate channels and the neutral
stability results are obtained for fully developed condition with

various curvature ratios.
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CHAPTER 1

INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

Curved pipes or channels for fluid flow are used in various
engineering applications notably in tubular heat exchanger for heating
or cooling in the forms of helices, spirals, 90 and 180 degree or other
short pipe bends. Curved flow of fluids 9;% also found in various
fluid machineries, heat engines, cryogenic systems, canals, rivers
and many other natural phenomena. In contrast to fluid flows in
straight channels, curved channel flows are characterized by secondary
flow in the cross-section normal to the main flow as a result of
centrifugal forces acting on the fluid. Also the velocity profile for
fully developed laminar flow in curved pipes due to the action of the
centrifugal forces exerted on the fluid particles. Besides centri-
fugal forces, other body forces such as buoyancy forces in gravitational
field, acceleration forces due to rotation, Coriolis forces, and
body forces in magnetic and electric fields may give rise to the
secondary flow in a fluid passage. For the purpose of illustrating
the possibility of obtaining different types of laminar flows depending
on the geometrical shape, and to clarify the role of the body forces
in setting up the secondary flow, a fully developed laminar flow
in a curved rectangular channel with constant radius of curvature
Rc is shown in Fig. 1, and will be considered next. In this
connection, it is noted that, in contrast to flow in straight pipes,

analytical solutions for entry flow in curved pipes or channels
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do not seem to be available in the literature.
At a given point in the channel, the centrifugal
force acting in a direction away from the center of curvature is
proportional to NZ/(RC+ X) and as a result a pressure gradient
prevails throughout the whole cross-section. Noting the velocity
distribution in the rectangular channel, the fluid in the central
portion is subjected to a larger centrifugal force than the fluid _

near the wall. As a consequence, the fluid in the central core T

)

will be pushed toward the outer wall. It is seen that the pressure

is greatest at the outer wall, and least at the inner wall for a given
fluid layer parallel to the plane of curvature. At the outer wall,
the pressure at A in Fig. 1 is greater than that at B, whilst at the
inner wall the pressure at D is less than that at C. Because of a
smaller horizontal pressure near the top and bottom walls, a secondary
flow in the form of a pair of vortices is set up as indicated in

the figure. With the superposition of the secondary flow on the main
flow, a pair of resultant helical flows appears. With secondary flow,
the region of maximum velocity is displaced from the center of the
channel toward the outer wall as well as towards the upper and lower
wall as shown in Fig. 1. The iso-axial velocity lines in the domain
ABCD and the axial velocity profile along the centerline DA are also
shown in Fig. 1. Since the secondary flow derives its kinetic

energy from the main flow, the wall friction in the curved channel
becomes greater than that for a straight channel for a given axial

pressure gradient and geometrical shape.



It should be pointed out that the type of secondary fiow
which appears in curved pipes or channels mentioned above is set up
immediately after the fluid is brought into motion in the passage
regardless of the shape of its cross-section. However, for a curved
rectangular channel, as the aspect ratio Y (vertical height divided
by horizontal width) is increased, the "eyes" of a pair of vortices
will move further toward the upper or Tower wall, and the intensity
of the secondary flow in the central region of the channel decreases.
For the 1imiting case of an infinite aspect ratio it is not difficult
to visualize that the secondary flow disappears completely. Based on
the mechanism of secondary flow explained so far, one cannot have
secondary flow without the existence of the upper and lower walls shown
in Fig. 1. As the aspect ratio vy - =, one obtains a curved parallel-
plate channel, or a flow in the annulus between two infinite coaxial
cylinders as shown in Fig. 2. Apperently, a new flow situation arises.
now. The creation of the centrifugal forces due to the curvature, and
the associated pressure gradients in the cross-section of the channel
remains much the same as that of the previous case shown in Fig. 1.

For the present case, the horizontal pressure gradient in the channel

is independent of the height. Fig. 1 shows that with secondary flow,

a much thicker layer of slowly moving fluid exists at the inner wall of

a curved channe! than at the outer wall. Thus there is an accumulation

of retarded fluid at the inner wall. For a curved parallel-plate channel
shovm in Fig. 2, an exactly opposite situation occurs with an accumulation of

retarded fluid at the outer wall. The reason for this can be explained from an
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inspection of the equation of motion in the axial direction. As a
result, a distortion of the main flow toward the inner wall occurs

as shown in Fig. 2. In a two-dimensional curved flow shown in Fig. 2,
the centrifugal force on a fluid element must be balanced by a
pressure gradient inwards. The pressure is still greatest at the
outer wall, and least at the inner wall. The pressure is seen to

increase monotonically from the inner wall to the outer wall. On the

NN

other hand, the centrifugal force (body force) increases from zero
at the inner wall to a maximum value Et a point of maximum velocity,
and then decreases to zero again at the outer wall. Therefore, the
region near the inner wall up to the point of maximum velocity is
always stable and the outer region is potentially unstable. Thus
an instability problem arises, and it may lead to another type of
laminar flow. With further increase of Reynolds number for a given
radius of curvature, a secondary flow pattern in the form of longitudinal
vortices with axes parallel to main flow as shown in Fig. 3 may
appear. After the onset of longitudinal vortices, the main flow will
be further distorted. The present longitudinal vortices may be called
Taylor-Goertler vortices since the physical mechanism is similar.

If now one has a curved rectangular channel with a large
aspect ratio of say 10, the secondary flow is confined to the ends.
Near the middle of the channel, no appreciable pressure gradient towards
or away from the upper or lower wall is induced. Consequently, the
longitudinal vortices due to hydrodynamic instability as shown in

Fig. 3 may appear in the central portion of this curved rectangular
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channel. In other words, a pair of vortices near the upper and lower
walls and longitudinal vortices (Taylor-Goertler vortices) in the
central portion may coexist under certain conditions. Apparently,
the coexistence of boundary-value and instability problems in the
same channel will lead to a formidable flow and heat transfer problem.
The above reasoning is suggested from the experimental work
carried out by Akiyama, Hwang, and Cheng [1] for the onset of
longitudinal vortices due to thermal instability (onset of natural
convection) in laminar forced convection between horizontal parallel
plates using a wide horizontal rectangular channel shown in Fig. 4.
A pair of vortices due to free convection near the side walls and
longitudinal vortices in the central portion of the channel due to
thermal instability are depicted in Fig. 4. The central portion of
the Tongitudinal vortices due to thermal instability shown in Fig. 4
may arise under various thermal boundary conditions [2], and
experimental details including the flow visualization technique
employed are described in Reference [1]. It should be noted that in
the case of thermal-instability, buoyant forces are the cause of
instability whereas in the case of hydrodynamic-instability under
consideration, centrifugal forces are the cause. A situation similar
to that shown in Fig. 4 also arises in the case where the body force
is a Coriolis force instead of the centrifugal and buoyancy forces
considered so far. If a rectangular straight channel with large aspect
ratio is rotating about an axis normal to the main flow direction with

constant angular velocity, for example, in such a way that its longer
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side is paraliel to the axis of rotation, then a pair of vortices

appear near the ends, and a series of periodic longitudinal vortices

may appear in the central portion due to hydrodynamic instability caused
by the Coriolis forces. Such a flow pattern may occur in various
rotating fluid machineries such as centrifugal pumps and turbines.

It is clear that secondary flow in a channel will enhance
heat or mass transfer in various industrial equipments utilizing
various shapes of curved or straight channels such as those in heat
exchangers, heat engines, nuclear reactors, chemical reactors and
cryogenic deviceé. Recent applications of secondary flow effects
include desalination processes and an artificia] kidney in the
bioengineering field.

Before presenting a brief historical background and
review of the pertinent literature, it is appropriate at this point
to state the scope of the present work. In view of the Tlack of
theoretical solutions involving laminar forced convection in the thermal
entrance region of curved pipes or channels (analogous to the Graetz
problem for a straight channel) at the time of initiation of this
work, an attempt was made to obtain numerical solutions for the
classical Graetz problem in curved pipes for the two basic or reference
thermal boundary conditions of uniform wall heat flux and uniform
wall temperature. Since more than one kind of body force may appear
in a given curved channel flow under certain conditions, an order of
magnitude analysis is carried out to assess the importance of buoyancy

and Coriolis forces in curved pipes and rectangular channels.
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However, the numerical results will be presented for the cases where
the secondary flow is caused solely by centrifugal forces acting on
the fluid elements.

As a preliminary step toward the study of hydrodynamic
stability in a curved parallel-plate channel or flow in the annular
space between two coaxial infinite cylinders, a hydrodynamic entrance
region problem is solved for the curved parallel-plate channel using
three different entrance velocity profiles. The final portion of
this thesis is concerned with the solution of the hydrodynamic stability

problem for fully developed flow in a curved parallel-plate channel.

1.2 BACKGROUND LITERATURE

Transport processes with secondary flow can be found in
many natural or artificial physical phenomena. If one dissolves
a cube of sugar in a cup of tea by stirring with a teaspoon, one
can observe that the tea leaves ancvundisso]ved sugar are deposited
near the center at the bottom of the cup due to the secondary flow.
In river bends [3,4,5] one observes that sand, gravel or other
material is continually being picked up from the bottom at the outer
bank and piled up on the inner bank. The effect of the secondary
flow at bends is to increase the depth and curvature at the outer
side, and shal]ownéss near the inner one. This confirms the observed
fact that beds -of rivers are scoured near the outer bank and silted
near the inner bank with the bend becoming more and more pronounced.
This explanation was given by Thomson [3,4] who also presented an

experimental confirmation. In meteorology, the combined thermal
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and rotational effects on secondary flow are of interest in
investigating the mechanisms of such atmospheric phenomena as storm
systems and jet streams. In geophysics, one is interested in the
secondary flows that could be induced in the earth's molten core
due to the earth's rotation and magnetic field. It is seen that
the transport phenomena involving secondary flow cover a wide range
of physical subjects. Attention will now be focussed on secondary
flow problems in fluid engineering.

In 1963, Ito [6] discussed secondary flow problems in
fluid engineering quoting 100 references. Ito [7] in 1965, also
reviewed recent trends in secondary flow studies listing 29 references.
Since secondary flow appears in a variety of fluid mechanics problems
including various fluid machineries [6,7], it is impractical to present
a list of all the work that has been done in this area. Instead,
an attempt will be made here to review published works on fluid flow
and heat transfer in curved pipes and closely related problems.
Secondary flow problems also arise in hydrodynamic stability
investigations, and this class of problems will be reviewed in a
separate section as an introduction to hydrodynamic entrance and
stability problems in a curved parallel-plate channel treated in this
thesis. A brief account on historical background in the field of curved
pipes will serve to indicate the scope and limitation of the present
work on the Graetz problem in curved pipes.

Fluid flow problems in curved pipes have received the

attention of many investigators since the early part of the present
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century. Earlier works in this field are mainly concerned with
obtaining experimental or theoretical data on the increase of friction
resistance due to secondary flow in a curved pipe, whose axis has a
constant radius of curvature. In 1908, Grindley and Gibson [8]
presented experimental data on a coil which indicate the increased
resistance to air flow. Experimental investigations on fluid flow

in coils were reported by Eustice [9,10,11] in 1910, 1911, and 1925.
His work [10], demonstrating the skewed streamlines for helical flow
in glass coils using the flow visualization technique of injecting

a colored dye into the fluid, is praticularly noteworthy.

Dean [12] in 1927, presented the first theoretical
analysis for fully developed laminar flow in a curved pipe. The
Navier-Stokes equations were written for an incompressible fluid
and it was assumed that the curvature ratio, representing the ratio
of pipe radius to radius of curvature, was small compared to unity.
A solution was obtained applying a perturbation method. He pointed
out that the secondary flow in curved pipes is characterized by

]/2, which has since been

a dynamical similarity parameter, K = Re\
called the Dean number in the literature. His analytical solution
predicts a secondary flow field similar to that observed by Eustice
in the dye injection experiments. Dean's second analytical solution
[13] using a higher order approximation in the series solution is
now known to be applicable only for very small Dean numbers. In
this connection, it is of interest to note that the perturbation

method employed by Morton [14] in solving the combined free and forced

convection problem for fully developed laminar flow in uniformly



14

heated horizontal pipes at low Rayleigh numbers is similar to that used

origina]]y by Dean. Later Trefethen [15] pointed out that the secondary

flow patterns caused by Coriolis forces in radial rotating tubes,
centrifugal forces in curved pipes, or buoyancy forces in heated
horizontal tubes with fully developed laminar flow are at least
qualitatively analogous, and one would expect that similar mathematical
methods may be used in solving physically analogous problems. Indeed,
the perturbation method remains to be the only analytical method
available for the solution of secondary flow probiems in various
channels involving rather low characteristic parameters. It can be
said that Dean's pioneer work [12,13] has sparked the series of
theoretical and experimental works on curved pipes which appeared
since then.

The secondary flow in curved pipes has also been confirmed
in a striking manner by Taylor [16] in 1929 using a colored thread.
Taylor [16] provided experimental data on transition from laminar
to turbulent flow and concluded that a higher speed of flow is necessary
to maintain turbulence in a curved pipe than in a straight one.

White [17,18] in 1929, conducted resistance measurements in curved
pipes using curvature ratios of 1/8.9, 1/15.15, 1/112, and 1/2050.

His empirical resistance formula based on the correlation of experi-
mental data involving the Dean number K has subsequently been

verified both experimentally and theoretically to be accurate, and

is quoted widely. In 1934, Adler [19] introduced the important concept

of the boundary layer for secondary flow along the pipe wall in his
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analysis of laminar flow with large Reynolds number. His experimental
work covers a rather wide range encompassing both laminar and
turbulent flows. His accurate experimental result for local velocity
measurements in curved pipes is also noteworthy. White's empirical
equation for flow resistance and the experimental data of White [17]
and Adler [18] are given in a book edited by Goldstein [5]. In 1932,
Hawes [20] presented measured velocity distributions in the horizontal
and vertical directions of a coiled pipe with curvature ratio of 1/10.
Yarmell and Nagler [21] in 1934, presented the results of a series of
experiments on the flow of water around bends of various shapes and
various degrees of curvature in 6 in. diameter pipes. Wattendorf [22]
in 1935 presented the results of an experimental study of the effect
of curvature on fully developed turbulent flow. 'In 1937, Keulegan

and Beij [23] presented the results of an experimental study of the
flow of water in smooth-walled, large-radius curved pipes for the
laminar and turbulent regimes over a range of Reynolds numbers

from 500 to 60,000. A method of computing a first approximation

for the length of curve (hydrodynamic entrance length) required for
the establishment of the velocity distribution characteristic of a
curved pipe was also presented. In 1948, Weske [24] pointed out

that turbulent flow in curved ducts may be analyzed by methods

adapted from the theory of boundary layers. Ito [25] in 1951,
reported a theory on laminar flows through curved pipes of elliptic
and rectangular cross-sections using a series expansion in terms of

the Dean number. Using boundary layer approximations along the wall,
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Ludwieg [26] in 1951, presented analytical results for friction
factors for fully developed laminar flow in helically coiled square
channels rotating around its axis. Extensiye experimental results for
both Taminar and turbulent flows are presented. Comparison between
theoretical and experimental results for laminar flow shows good
agreement. Experimental results for friction factors are also presented
for the case of stationary curved square channels for both laminar and
turbulent flows. Hawthorne [27] in 1951, analyzed the flow in bent
circular pipes and the theory based on inviscid fluid is compared with
experiments on bent pipes and rectangular ducts. Cuming [28] in 1952,
presented a theoretical analysis for flow in curved pipes of circular,
elliptic and rectangular sections using the perturbation method.
Eichenberger [29] in 1953, analyzed the entrance region flow problem
in a curved rectangular bend with secondary flow by assuming an inviscid
flow. Detra [30] in 1953, presented a study on experimental investi-
gation of the secondary flow phenomenon, and a theoretical investigation
on the initial or starting phases of the secondary flow in slightly
bent pipes by assuming an incompressible inviscid fluid. He listed
17 references. Eskinazi and Yeh [31] in 1956, reported an experimental
investigation on fully developed turbulent air flows in a plane curved
channel between concentric circular walls. Dean and Hurst [32] in
1959, obtained some analytical results for laminar flow in a curved
square channel by'assuming a uniform stream for the secondary flow.

Ito [33] in 1959, proposed accurate semi-empirical formulas

for friction factors in fully developed turbulent flow in curved pipes
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and an empirical equation for transition from laminar to turbulent
flow. Ito's data range from a Reynolds number of 1,000 to 300,000
using curvature ratios of 1/16.40, 1/40, 1/100, 1/250, and 1/648 and
are quoted widely since they agree with earlier reported results.

Barua [34] in 1963, approached Dean's problem [12,13] for
the high Dean number regime using a boundary layer approximation
near the wall. His theoretical results agree with the experimental
data of White [17] and Adler [19] for Dean numbers as low as about 200.
In 1963, Truesdell [35,36] presented a numerical solution for fully
developed laminar flow in helically coiled tubes of circular cross-
sections for curvature ratios ranging from 0.01 to 0.1, and Dean
numbers ranging from 1.0 to about 280 obtaining a good accuracy in his
numerical results for Dean numbers up to approximately 200. A relaxation
technique was applied for the numerical solution of a coupled fourth-
order partial differential equation involving the stream function for
secondary flow and a second-order partial differential equation for
the axjal velocity written in terms of rectangular coordinates. His
formulation includes the curvature ratio as an independent parameter
in addition to the Dean number. His results reveal no appreciable
effect of curvature ratio on flow resistance. Also some references

quoted by Truesdell [35] are worth consulting.
In 1964, Kapur, Tyagi and Srivastava [37] solved the fully

developed laminar flow problem in a curved annulus of concentric cross-
sections for the case when the radius of curvature of the annulus is

large compared with the radius of the outer curved pipe. Kubair and
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Kuloor [38] in 1964, presented data on diametrical pressure drop for
water flowing through copper spirals of different geometry at various
points on the spirals. The effect of curvature ratio and length

to diameter ratio on diametral pressure drop and the influence of
diametrical pressure drop on total pressure drop, and onset of turbulence
in spiral coils are investigated. Topakoglu [39] in 1967, presented an
approximate solution using a method similar to that of Dean [12] for
steady laminar flows of an incompressible viscous fluid in curved pipes
of circular and annular cross-sections without the assumption of small
curvature ratio. For the curved pipes with concentric annular cross-
section, his solution predicts the existence of four vortices for the
secondary flow in contradiction with a pair of vortices predicted by
Kapur et. al. [37] on the basis of a simplified analysis. In 1968,
McConalgue and Srivastava [40] extended Dean's pioneering work on the
steady motion of an incompressible fluid through a curved tube of
circular cross-section. A method using a Fourier-series development

with respect to the polar angle in the plane of a cross-section was
formulated and the resulting coupled nonlinear equations solved numerically
up to a Dean number of K = 77.05. 1In 1969, Ito [41] presented a
theoretical analysis for steady laminar flow in a curved pipe of circular
cross-section. He assumed that the flow consists of a frictionless
central core surrounded by a boundary layer for the large Dean number
flow regime. A formula for the friction factor of a curved pipe was
derived by using Pohlhausen's approximate method. A comparison between

his resistance formulas (theoretical and experimental) and various
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experimental data shows good agreement except in the low Dean number
region where some discrepancy exists. In 1970, Larrain and Bonilla
[42] presented a theoretical analysis of pressure drop in the laminar
flow of fluid in a coiled pipe applicable to Dean numbers below
about 16. This is the normal range for viscometry with coiled capil-
laries. A series solution with terms depending on the curvature of
the pipe is presented for the coiling effect. In 1971, Baylis [43]
presented experimental results on laminar flow in curved channels of
square section.

It is of interest to note that laminar flow results for
non-Newtonian fluids in curved pipes are reported, for example, by
Jones [44] in 1960, Clegg and Power [45] in 1963, Thomas and Walters
[46,47] in 1963 and 1965, Jones [48] in 1967, and Jones and Walters
[49] in 1968. Also, Barnes and Walters [50] in 1969 reported an
experimental study on the flow of viscous and elastico-viscous Tiquids
through curved pipes.

It is more convenient to mention other recent results for
flow in curved pipes or channels in connection with a review of the
literature on heat transfer in curved pipes or channels. Before
proceeding to heat transfer prblems in curved pipes, it is useful to
summarize the status up to this point in regard to flow problems in
curved pipes. The mechanism of secondary flow in curved pipes is now
well understood for fully developed laminar flow in curved pipes.

For the very low Dean number regime, a perturbation method u§ed by Dean

[17,18] appears to be the only analytical method available for the
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solution of fully developed laminar flow problems in curved pipes.
On the other hand, in the high Dean number range, an analytical
solution is possible only if the physical model of a frictioniéis
central core sourrounded by a boundary layer near the wall is employed.
It is seen that an analytical solution is ineffective for the inter-
mediate Dean number-flow regime. The effect of curvature ratio on flow
in a curved pipe is also well understood. It can be said that accurate
design data are now available for predicting pressure drop for fully
developed 1amfnar and turbulent flows in curved pipes. An accurate
empirical equation is also available for predicting the critical
Reynolds number determining the transition from laminar to turbulent
flow in a curved pipe. In contrast to the many analytical investigations
in the area of developing laminar flows in straight pipes or channels,
no theoretical work appears to have been reported so far in the
literature for the hydrodynamic laminar entrance region problem involving
viscous flow in curved pipes.

Turning to heat transfer problems in curved pipes, it is
noted that the earlier reported works are mainly experimental. In 1925,
Jeschke [51,52] presented an empirical equation for heat transfer for
turbulent flow of air in helically coiled tubes. His empirical equation
was modified by Merkel [53] and the result is given in McAdams' book
[54]. Hawes' experimental investigation [20] in 1932 was concerned
with the measurement of velocity and temperature distributions for water
in a coiled pipe. His temperature profiles near the inner wall show

somewhat unusual character but his isothermals on a cross-section is
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now known to be qualitatively correct. Pratt's work [55] in 1947
reported heat transfer in a reaction tank cooled by means of a coil.
He developed empirical equations for internal and external heat
transfer coefficients for turbulent flow in a cooling coil immersed

iﬁ a stirred liquid contained in a tank. In 1950, Berg and Bonilla
[56] presented an experimental investigation on the thermal entrance
region problem .in curved pipes under the condition of uniform wall
temperature. fheir work is mainly concerned with the development of
empirical correlation equations for heat transfer and as such the
range of applicability is rather limited. In 1955, Kreith [57]
investigated the influence of curvature on heat transfer to incom-
pre%sib]e fluids for Reynolds numbers ranging from 104 to 106 and
Prandtl numbers ranging from 0.01 te 100, and for radii of curvature
ranging from 0.12 to 1.2 ft. In 1958, Eckert and Irvine [58] presented
measurements of the temperature and velocity fields for a specific
duct geometry (square at entrance and a rectangle with aspect ratio 2
at exit) which bends the flow by 90 degrees and simultaneously
accelerates it to an average exit velocity which is twice the inlet
velocity. It is found that the temperature field existing in a cross-
section upstream of the bend is considerably rearranged by the action
of the secondary flow. The temperature field also influences the
velocity field at the exit cross-section. In 1961, Ede [59] pointed
out the lack of heat transfer data on various pipe bends and reported
the experimental results on local heat transfer coefficients for water

in a right-angled pipe bend covering a range of Reynolds numbers from
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500 to 50,000. He noted that with laminar flow the effect of the
ratio of bend radius to pipe radius js large. In 1962, Tangri and
Jayaraman [60] presented heat transfer studies on a spiral plate heat
exchanger and showed that the heat transfer coefficient is increased
by more than 60 per cent compared to a conventional heat exchanger

for transfer from water to water and from moisture-laden air to water.
In 1963, Seban and McLaughlin [61] presented friction and heat

transfer results fgr the laminar flow of oil and the turbulent flow

of water in tube coils with uniform heating having the ratios of coil
to tube diameter of 17 and 104, for Reynolds numbers from 12 to 65,000.
Correlation equations for the asymptotic heat transfer coefficient

are presented for both laminar and turbulent flows. Their experimental
study has clarified some aspects of the thermal entrance region heat
trahsfer in curved pipes. They too noted the need for additional
experimental data to properly define the heat transfer in curved

tubes. In 1963, Kubair and Kuloor [62] presented correlation equations
for pressure drop and heat transfer in spiral tube coils. Rogers and
Mavhew [63] in 1964, provided additional experimental results for forced
convection heat transfer and friétion factors using water in steam-
heated helically coiled tubes with turbulent flow.

It should be noted that no theoretical analysis on convection
heat transfer in curved pipes appears to exist up to 1964. It is clear
that experimentq] correlation of heat transfer data will have rather
limited applicability if the correlation is not based on the complete

theoretical understanding of the heat transfer mechanism involved.
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In 1964, Maekawa [64] approached the problem of fully developed

laminar forced convection in curved pipes by a perturbation method

similar to that of Dean [12,13] and presented heat transfer results

for the thermal boundary conditions of uniform wall temperature and
uniform wall heat flux. Because of the perturbation method used, his
results are valid only for extremely small Dean number region. However,
his analytical results are useful 1n;understanding the effects of Dean
number and Prandtl number. Noting the need for theoretical work, Mori

and Nakayama [65,66,67] presented a series of rather comprehensive studies
on forced convective heat transfer in curved pipes for both laminar and
turbulent flows starting in 1965. The results of theoretical analysis
based on boundary layer approximation along the pipe wall for fully
developed laminar flow in a curved ptpe under the condition of uniform heat
flux at large Dean numbers were shown to be in good agreement with

~ experimental study using air. For fully developed turbulent flow under
the condition of unifqrm heat flux, the results of theoretical analysis
assuming a boundary layer along the pipe wall and experimental results
using air were again shown to be in good agreement. The theoretical
analysis under the condition of uniform wall temperature and the presenta-
tion of practjca] formulae for both laminar and turbulent flows rounded
out this series of investigations. In 1966, Kubair and Kuloor [68]
presented experimental data on pressure drop and heaf transfer to aqueous
solutions of glycerol flowing in different types of coiled pipes with
uniform wall temperature for laminar flow in the Reynolds number range

80 to 6,000. An empirical correlation in the thermal entrance region is
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given but one finds it difficult to obtain the asymptotic Nusselt
number. In 1966, Kubair and Kuloor [69] also compared the pérformance
of helical and spiral coil heat exchangers. In 1967, Mori and Uchida
[70] presented analytical results using boundary layer approximation
for fully developed laminar flow in a curved square channel under the
thermal condition of axially uniform wall temperature gradient. Their
results for flow and heat transfer are applicable for the regime where
the Dean number is large. Velocity and temperature fields were obtained
by dividing the cross-section into core and boundary regions and
considering the balances of kinetic energy and entropy production for
the boundary layers. In 1967, Mori, Nakayama and Uchida [71] presented
a review paper on convection heat transfer in ducts with secondary

flow considering possible combinations of body force (buoyancy, Coriolis
and centrifugal forces) and geometrical shape of the channel cross-
section (circular, rectangular and parallel-plate channels). Analytical
methods of solution for both small and large parameter regions are
outlined. Schmidt [72] in 1967, discussed heat transfer and pressure
drop in curved pipes. Experimental correlation equations for Nusselt
number are given for laminar and turbulent conditions. A discussion

on related published works is also given. In 1967, Shchukin and Filin
[73] presented an experimental investigation on the dependence of the
heat transfer coefficient on the length of a short curved channel.

The effect of buoyancy forces on convective heat transfer in short
curved channels is also discussed. Some correlation equations are

given. In 1968, Ozisik and Topakoglu [74] presented heat transfer
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results for hydrodynamically and thermally fully developed laminar
flow in a curved pipe under the conditions of axially uniform heat
flux and uniform peripheral wall temperature at any cross-section
for the small Dean number region using a perturbation method. Their
analysis includes curvature ratio as an independent parameter but
the result shows that the curvature ratio effect is small. The
various published correlation equations for pressure drop and heat
transfer in coils are summarized by Srinivason, Nandapukar and
Holland [75] in 1968 quoting 57 references. In 1969, Shchukin [76]
reported correlation of experimental data on heat transfer in curved
pipes. In 1969, MiropoTskii, Annadurdyev and Kakabaev [77] reported
experiments for water flow in coiled tubes, and showed that the heat
transfer coefficient and friction factor increase during heating and
decrease during cooling when the tube-to-coil diameter ratio is
increased.

At this point, it is moted that theoretical results on
heat transfer in curved pipes are available only for hydrodynamically
and thermally fully developed conditions only. Moreover, from the
viewpoint of method of solution, the perturbation method is applicable
only for extremely low Dean numbers which is practically not important;
on the other hand, the method of boundary layer approximation is valid
only for.high Dean numbers. For the intermediate Dean number regime,
neither the perturbation method nor the boundary layer technique
proves to be effective. It is clear that a numerical solution presents

another possibility.
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In 1970, Cheng and Akiyama [78,79] presented numerical
results for flow and heat transfer in curved rectangular channels
under the thermal boundary conditions of axially uniform wall heat
flux and peripherally uniform wall temperature at any axial position.
The numerical method yields solutions up to a reasonably high Dean
number for the aspect ratios y = 0.2, 0.5, 1, 2 and 5. 1In particular,
for a square channel with Prandtl number of 0.71, the solution reaches
a Dean number of 500 complementing Mori and Uchida's work [70].
Subsequently, in the course of the present thesis investigation,
flow and heat transfer results for hydrodynamically and thermally
fully developed laminar forced convection in curved pipes subjected
to the thermal boundary condition of uniform wall heat flux per unit
axial length were reported by Akiyama and Cheng [80] in 1971. The
numerical solution converges for Dean numbers ranging from small to
jntermediate values. The Prandt! number effect on heat transfer
was studied and a possible correlation for heat transfer using a
new parameter (KZPr) was proposed [80,81]. In 1971, Dravid, Smith,
Merrill and Brian [82,83] reported a numerical study on thermal
entrance region problem (Graetz probiem) in curved pipes for three
wall boundary conditions of constant wall temperature, constant wall
heat flux, and axially uniform wall heat fiux but circumferentially
uniform wall temperature with a Dean number of 225 only. For the
fully developed flow field, they used Mori and Nakayama's approximate
solution [65] based on a boundary layer model. Some experimental

results for the case of an isothermal periphery with axially constant
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wall heat flux are also reported. Dravid et al. [82] reported that
the numerical solution exhibits a cyclic oscillation of Tocal Nusselt
number value before reaching an asymptotic 1limiting value with Dean
number of 225. It may be of some interest to point out that the
author became aware of Dravid et al's work [82] on the Graetz problem
in curved pipes in September 1971 after part of the present thesis
work dealing with the same Graetz problem was completed, and was right
in the process of preparing the manuscript for publication. An
abstract of one phase of the present work on the Graetz problem was
presented in 1572 [84].

In 1971, Miyazaki [85] reported a numerical study on
combined free and forced convective heat transfer and fluid flow in
a rotating curved circular tube for the fully developed flow with the
thermal boundary condition of constant heat flux per unit length of
tube. In 1972, Akiyama and Cheng [86] reported asymptotic heat
transfer resu1ts‘for fully developed laminar forced convection in
curved pipes with uniform wall temperature. Also in 1972, Kalb and
Seader [87] presented numerical results for fully developed velocity
and temperature fields under the thermal boundary condition of axially
uniform wall heat flux with peripherally uniform wall temperature
by including curvature ratio as an independent parameter in the
formation of the problem. The numerical solutions are pfesented
for Dean numbers ranging from 1 to 1,200 and Prandtl number and
curvature ratio varying from 0.005 to 1,600 dnd 1/10 to 1/100,

respectively. With the exception of including the curvature ratio



28

effect in the analysis, the problem treated is exactly the same as
that reported by Akiyama and Cheng [80]. Kalb and Seader [87] also
note that the curvature ratio effect on over-all heat transfer
result is negligibly small.

In contrast to the abundance of 1literature on convective
heat transfer in straight pipes, the corresponding literature for
curved pipes is rather limited except for the fully developed
asymptotic céses. For example, the literature on heat transfer
involving simultaneous development of flow and temperature fields in
curved pipes is nonexistent. Because of the rather limited theoretical
and experimental works on the Graetz problem in cur&ed pipes reported
so far, some uncertainties still exist. In this review of heat transfer
literature relating to convection heat transfer in curved pipes, no
attempt is made to present a complete list of all the work that has
been published in this area. Rather a literature closely related to

the present work is surveyed. In particular, heat transfer literature

here. Since an analogy exists between heat and mass transfer problems,
some mention on works relating to mass transfer in curved tubes and
channels may be in order. In 1967, Erdogan and Chatwin [88] studied
Taminar dispersion in a curved circular pipe with no buoyancy effect.
In 1968, Weissman and Mockros [89] demonstrated experimentally as well
as theoretically that helical coiling of tube leads to signfficant
improvement in gas transfer rate to blood flowing in curved tubes

because of induced secondary flow. In 1970, McConalogue [90] studied
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the effects of secondary flow on the laminar dispersiop of an

jnjected substance in a curved tube. Chang and Mockros [91] in 1971,
studied theoretically the convective dispersion of blood gases in
curved channel exchangers. Ruthven [92] in 1971, derived a theoretical
residence time distribution for ideal laminar flow through a helical
tube with no diffusion. Nunge, Lin and Gill [93] in 1972, presented
a theoretical analysis on laminar dispersion in curved tubes and
channels by using the velocity distribution of Topakoglu [39] for
tubes, and that of Goldstein [5] for curved channels. It is seen

that curved tubes and channels have applications also in bio-

logical systems.



CHAPTER II

THEORETICAL ANALYSIS FOR FLOW AND HEAT TRANSFER
IN CURVED CHANNELS

2.1 INTRODUCTION
In order to identify or establish the possible flow and
heat transfer problems which may arise in curved channels and clarify
the 1imitation§ of the various mathematical formulations such as
those reported in the literature, a general study of the governing
equations will be made in this chapter. The present study will also
serve as a basis for the work of later chapters, and bring out the
dynamical similarity and other characteristic parameters. Thus the
governing equations to be used in this investigation will be obtained
in a somewhat formal manner instead of resorting to a purely intuitive
approach. The following assumptions are made to limit the scope
of the investigation:
1. Newtonian fluids
2. Steady laminar incompressible flow
3. Constant physical properties with the Boussinesq approximation
for the buoyancy force
4. Negligible viscous dissipation effects and no heat sources
The flow of any fluid with temperature variations due to
applied heating is described by the differential equations expressing

the conservation of mass, momentum and energy. With the above

assumptions, the fundamental governing equations in vector notation become:

30
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Continuity quation:

Navier-Stokes Equation:

o(V - V)V <=vp + WiV + F

Energy Equation:

2

oCp(V - V)T = kvéT

The governing equations in a toroidal coordinate system
will be studied specifically for the two practical configurations in
the form of curved circular pipes and curved rectangular channels.
Some simplifications are usually required in making the problem tractable.
To provide a basis for simplification is also one of the objectives of
the present general study. With free convection, the additional
motion results from density variations throughout the fluid which
are due to temperature differences. Then the momentum and energy
equations become coupled. The topics to be.discussed in this chapter

are shown by the flow chart in Fig. 5.

Fundamental Equations for
Flow and Heat Transfer
I

.. I [ A
Governing Equations for Governing Equations for
Flow in Curved Ducts Flow in Curved Parallel-
L (Chapt. II) Plates (Chapt. V)
- \ 1LES b

l 1

Curved Circular Curved Rectangular
Pipe Flow Channel Flow
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[Pitch Effect on Helical Channel Flow |

e emd

Fig. 5. Flow Chart for Topics Considered in Chapter II

Specifically, the basic equations applicable to curved
circular pipes and rectangular channels, respectively, will be studied
using two different physical reasonings by employing proper reference
scales or quantities for the normalization procedure. Several systems
of equations will be derived and categorized. The sets of governing
equations appearing in the literature will be identified whenever
possible. Also a detailed discussion on some important sets of equations

will be made.

2.2 DEDUCTIVE ANALYSIS OF FUNDAMENTAL EQUATIONS FOR FLOW AND HEAT

TRANSFER IN A CURVED CIRCULAR PIPE

The invariant vector forms of the continuity equation,
equations of motion and energy apply for any coordinate system. In

order to expand them in component form for any particular system, it is
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necessary to employ the formulae for the gradient of a scalar and the
divergence and curl of a vector in that system [94]. For convenience,
the governing equations in a general orthogonal coordinate system
are given in Appendix 1. The derivation of the governing equations
applicable to flow in curved circular pipes using toroidal coordinates
is given in Appendix 2. The fundamental difficulty in solving the
Navier-Stokes equations either exactly or approximately is the non-
linearity introduced by the convection terms in the momentum equations
(A - 10) - (A -12). For the formulation of complex physical problems,
a study of the relative importance of the various terms in the funda-
mental equations and the dimeﬁs1on1ess parameters pertaining to the
physical phenomenon is required. The first step in the procedure of
carrying out the deductive analysis [95] is to normalize the general
equations by finding the proper scales or reference quantities so that
the variables and their derivatives when made dimensionless will be
of order unity. The appropriate characteristic or reference quantities
are determined by using all the known physical information and intuition.
After normalization, the important dimensionless parameters appear
directly as coefficients of the unit order terms in the equations.

Although a physical understanding and justification of the
governing equations applicable to the Graetz problem in curved pipes
js the main goal, an attempt will be made to deal with a general flow
and heat transfer problem. The following dimensionless variables
are defined by using proper reference quantities:

r = R/a, ¢ = ¢/¢C, w=8/ ,u=U0/U_,v=V/NVN

and p = P/Pc,

c c? co W= WG,
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where a denotes the radius of the circular pipe and the subscript ¢
signifies the characteristic quantity. For the temperature field,

one may define
Wy = Q/ch and 8 = (T - Tw)/oc

A1l the characteristic or reference quantities employed are considered
to be suitable for normalization at this point and will be identified
clearly later on. Using the dimensionless variables, the continuity

equation (A - 9) becomes

.ﬂ+g+[g] u cos ¢
or v LR (74 [a6./R_] r cos ¢)
) : ‘ .
N P
ad. Ue r oo Re (1+[ a<I>C/Rc ] r cos ¢)
+ [ We a } 1 : M _ g
RE% U] (1+[a /Re 17 cos ) w

Noting that the secondary velocity components in the R- and ¢- directions
are of equal importance, one obtains
58]
c a
—= . =] (1)
[a@c U,
If the flow problem is symmetric with respect to the horizontal plane,

the value of °c varies from 0 to II. Otherwise, ¢, may vary from 0 to 2I.

For the purpose of simplicity in the argument, the reference quantity



35

°c will be assumed to vary from 0 to 1. Since one is interested in
an order of magnitude analysis, this simplification is justifiable,
and will not lead to any loss of generality in the deductive analysis.
In this regard, ¢ = ¢/¢c may be considered to be a quasi-normalization.
With the above simplification, one obtains O[UC] = O[Vc].

One may now proceed to the normalization of the momenthm
and energy equations. In carrying out the deductive analysis, two
possibilities may arise depending on the physical emphasis to be placed
on the problem. The first possibility is based on the reasoning that
the centrifugal force term in the momentum equations (A - 10) or (A - 11)
should be of the same order of magnitude as the viscous force terms
representing the highest order term in the equation. This reasoning
js based on the physical fact that centrifugal forces play an important
role when investigating flow inside a curved pipe or channel. Another
possibility arises by considering thebconvective terms due to secondary
flow to be of the same order as the conduction terms in the energy
equation. The consequences of the two different normalization pro-

cedures will also be investigated.

2.3 DEDUCTIVE ANALYSIS WITH THE CENTRIFUGAL FORCE TERM CONSIDERED

T0 BE OF ORDER UNITY

After normalization equation (A - 10) and noting that the
centrifugal force term and the viscous terms are of the same order of
magnitude, one obtains

2
c__c
a Re

wU W
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Rewriting the above relationship, one has

2
2

Re

=

Re\ = %m‘/z (2)

=
o ln
nj—

<

where A = a/R_ (3)
It is also expected that in the axial momentum equation
the lateral viscous terms and the axial pressure gradient term are

of the same order of magnitude. This observation leads to the following

relationship:
P. ) VW,
PR % a2

p
¢ _ 2
W 2 ~ o Re (4)
P¥e
where
o= M9 = alRQ (5)

After introducing equations (2) and (4), the normalized governing
equations become:
Continuity equation

u cos ¢ _yvsin ¢ )+ L &Y
(1 + Ar cos ¢) (1 + Ar cos ¢) 3¢

ou
__r..;. +

3|
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1/2 1 M _ g (6)

S 2
(1 + Ar cos ¢) ®

R- momentum equation

2 2
K u vVou Vv 1, -1/2 1 u
(uss+ -5 - ) + Ko W
r r r 3¢ r 2 (-l + \r cos ¢) ow
= _U-IK-l)\—I/Z p, ( 1 azu 1 v 1 azv )
ar 2 5'2' 2 3 T r 3¢ar
sin ¢ v . v 1 au
+ A (=+=--—-=)
(1 + Ar cos ¢) ar r re
' 2 2
- o2 12, il L au
(1 + ar cos ¢)2 aw (1 + ar cos ¢ )
+ 2K'10A1/2 cos ¢ oW

(1 + Ar cos )2

2@ sin ¢ (7)

2
+ (cos p)w (1- %-GrK'ZFrG) + %GrK'
(1 + Ar cos ¢)

It is noted here that the following two familiar characteristic
parameters, namely the Grashof and Froude numbers, appear naturally.

These are defined by

Gr = BgG)C(Za)3/v2

2
Fr = wc /ch
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Here the Froude number may be interpreted as the ratio of centrifugal
acceleration (HCZIRC) to gravitational acceleration (g). In this sense,
it may be called a centrifugal Froude number. The last three terms

on the right-hand side of equation (7) are of special interest. The
term cos ¢ w2/(1 + Ar cos ¢) Ean be readily identified as that due to

a centrifugal force effect. The terms involving the parameter Gr‘K'2
represent the buoyancy force effects in the centrifugal force field.
When the product of the Froude number and the buoyancy force parameter
Gr‘l('2 is of order unity or greater, the additional centrifugal force
effect appears as a term involving the Froude number and is also seen

to give a coupled éffect.

¢-momentum equation

1/2 1 w

2
K v , uv 1. -
+ =) + 5 K =
r H (1 + Ar cos ¢) W

oV \'/
T Wty

2 2
- _~1.-1,-1/2 1 3p 3°v ,lav _v _13wu
KA et (St rar T2 v ager T2

|_.|

au
5 )

-

cos ¢ (3V+

v, v _lau,
(1 + Ar cos ¢ ) ar ~r ra

+ A

. - 2 2
2 1 3%y _ 1172 2 3%

(1 + ar cos ¢)2 3wl (1 + ar cos ¢ )P

+0

1..,1/2 2sind ow

(1 + Ar cos 0)e W

+ K 'ox
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- 2
__sind W (1- %-GrK-zFre) - %-GrK'Zecos¢ (8)
(1 + Ar cos ¢)

It is noted that the last three terms on the right-hand side of equation
(8) correspond to those in equation (7) and the physical meanings are

identical.

Q-momentum equation

%2- (u s LS+ %m'”z T )\r]cos . w i
i -(] + Al €os ¢) %‘%+ (%E%+—::§¥+£Z§%)
+ A((] - §05'¢ %%-- sin ¢ %.%ga G 1 5w
r cos ¢) (1 + Ar cos ¢) (1 + Ar cos ¢)
* 62 (1 + Arlcos ¢)2 22; + o (1 +c§i ios ¢)2 %g.- e ii:r¢cos ¢)2 %éo}
+ sin ¢ W - cos ¢ uw) (9)

(1 + ar cos ¢) (1 + Ar cos ¢)

The last two terms involving the products uw and vw on the right-hand
side of equation (9) are readily jdentified to be the Coriolis force
terms. For the energy equation, one may further introduce the geometric

ratio g = A/QCe= a/Reszce for convenience.
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Energy equation

2
K~Pr 36 . v 38 1 -1/2 W 38
gt rae Yz T T cos @) 3,
2 2
_ (36,1308 12386
GETTETE
+( cos ¢ 38 _ sin ¢ lﬁ)
Tr+ arcos ¢) or (1 +arcos ¢) r 3¢
2

0 (1 + Ar cos ¢)2 amez

The viscous dissipation is neglected in the above energy equation for

steady viscous flow of a constaht-property fluid. The foregoing set of

governing equations (6) through (10) are valid for general flow and

heat transfer such as the general convection heat transfer problem in-

volving simultaneous development of velocity and temperature fields in

the entrance region. A study of the non dimensionalized equations

reveals that the following dimensionless parameters are of importance

for flow and heat transfer problems in a curved pipe.

Primary Parameters:

Curvature ratio A= a/RC

Reynolds number Re 2awc/v

Grashof number Gr Bgec(Za)3/v2



Centrifugal Froude number

Prandt] number

Entrance length geometric

ratio

Thermal entrance length

geometric ratio

Derived Parameters:

Dean number

A ratio of Grashof number

to Dean number squared

Centrifugal Rayleigh number

41

Fr = W.2/R g
Pr = v/a

o= a/(Rc Qc)
og = a/(RO¢q)
K =Re 11/2
c=6rK?

Ra, = K& Pr

It is noted that the Dean number K is not essentially an in-

dependent characteristics parameter and consists of Re and A ™' ~.

1/2 How-

ever, it becomes an independent parameter when the curvature ratio

A = a/Rc is small.

This situation will be confirmed later.

In order

to see the physical meaning or gquantitative criterion, the Dean number

K may be rewritten as

2
pwc /2a

K= (%-Re . Rec)”2 = (———)

W/ (2a)

2
172, oM. /R, 1/2

) &7
uwc/(Za)2 2

It is seen that the Dean number can be decomposed into a product of
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Reynolds number representing the ratio of inertia force (pWCZ/(Za)) and
viscous force (uwc/(Za)z) and the centrifugal Reynolds number represen-
ting the ratio of centrifugal force (pNCZ/RC) and viscous force (uwc/(Za)z).

2 represents a measure of the buoyancy

The parameter C = Gr K~
force relative to the centrifugal force. Consequently, the importance
of the free convection effect in the centrifugal force field can be
ascertained by the magnitude of this characteristic parameter. A striking
similarity exists between the parameter Gr K'2 and the familiar para-

2 indicating the relative effect of buoyancy upon forced

meter Gr Re”
convection in the combined forced and natural convection problem.
Furthermore, when the buoyancy and centrifugal force effects dre com-
parable, one obtains Gr = O[Kz]. From this relationship, one may reason
that the effect of the Grashof number in combined free and forced con-
vection, for example, in a horizontal pipe is éimilar to the effect of
K2 on the flow in a curved pipe. As a matter of fact the roles of Gr
and K2 are seen to be almost identical or equivalent in the respective
vorticity transport equation for secondary flow [96,80]. With the above
observation, it is not difficult to see the physical meaning of the new
parameter K2Pr. For combined free and forced convection problems, the
Rayleigh number (GrePr) arises naturally. Noting that K2 corresponds

to the Grashof number for the present problem, one obtains the para-
meter KzPr. The new parameter may be called the "centrifugal Rayleigh
number" because of its physical similarity. As will be confirmed later,

the parameter KzPr becomes an independent parameter when the Prandtl

number is large.
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A study of the governing equations (6) - (10), reveals
that the independent dimensionless parameters are A, Re, Gr, Fr, Pr,
o and Og- The foregoing set of governing equations is a general one
and is applicable to the entrance region problem involving the simul-
taneous development of velocity and temperature fields. When the
buoyancy force terms are retained in the momentum equations, the
momentum and energy equations become coupled. At this point, the
relative magnitudes of the entfance length parameters, o and TOgs still
remain to be determined. Equations (9) and (10) clearly indicate that

the relative importance of the axial viscous terms such as azw/aw? and

2 2

the axial conduction term aze/awze depend on the coefficients ¢° and Tg >

respectively. Apparently, these terms cannot be neglected near the
hydrodynamic or thermal entrance. It would be useful if the order of
magnitude for cand g can be estimated. For this purpose, it is noted
that the axial inertia terms in the momentum equations vanish when the
flow becomes fully developed. Consequently, in the hydrodynamic entrance
region one may regard the axial inertia terms to be of the same order

as the viscous terms. This viewpoint will be pursued further next.

An Order of Magnitude Analysis Based on the Assumption that the Axial

Inertia Term is of Order Unity

Noting that the axial inertia terms in the momentum equations

are of order unity, one obtains

%-ch']/z =loro=2k"a2= gpe”! (12)



Using the above relationship, the set of governing equaiions (6)

to (10) become:
Continuity equation

au ,u_13v ucos ¢ _ v sin ¢
ar+r+ra¢+)‘((T+Arcos¢) (T + Ar cos ¢)

-2 1 aw_o

4K T+ Ar cos ¢)ow

(13)

R-momentum equation

2 2
K U, Vvou Vv 1 au
(u +r3¢ r)+(

T+ r cos ¢)" 0

2
='%’KA-3/222'+(] 9 u 1 o9v ]Bv)

v_1lau,
T

sin ¢ v
T }‘(T+ Ar COS ¢)(ar +

(1 + Ar cos ¢)2 ajz {1 + Ar cos ¢)ardw

- 4K'2 X

2
-2 cos ¢ oW COS ¢ W 1 -2
+ 8K ° A — + (1 - = GrK “Fre

(1 + Ar cos ¢)23w (T + Ar cos ¢) 7 A )

1 . -
+ ‘é‘GY‘K

25 sin ¢ (14)

44
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¢-momentum equation

K2 (u Y v , vav uv) 1 v
or r 3¢ (1 + Ar cos ¢) W

]

-3/213p , la_V-l_J_éU_
2KA T 36 ( troar *

cos ¢ (av+¥_%g_;)

+ (T+ Ar COS ¢)

Z ‘ 2
P (1 + ar cos ¢)2 3,,,2 K (1 + Ar cos ¢)ragaw

. 2
2 sin ¢ oW sin ¢ w 1 -2
(1 + Ar cos q:)2 %~ T+ arces gl -z Gk Fre)

+ 4K7°A
+ £ Grk"% cos ¢ (15)

Q-momentum equation

( V aW) 1 3w
r 99 (1T + Ar cos ¢)

2
_ 1 §B+ (3 W + L 1 Bw + ]_ ) W)
{T ¥ ar cos ¢)dw ar2 r or 2 ;;'2'

+ cos ¢ W _ sin ¢ 1 aw)
(T + ar cos ¢)or (T + Ar cos o)r 3d

2 1
" A (T ¥rcos )"
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2 .
-2 1 W coS ¢ au
+ 4K “x { + 2\ ( =
(1 + ar cos ¢)2 3w 2wl (1 + ar cos ¢)2
sin ¢ ) }
(1 + Ar cos ¢)2
-C0S ¢ sin ¢
* Mrr s ™t T ar dos )™ (16)
Energy equation
KZpr (u28 4 Y238 b " 36
'TF" or " r 3¢ (T + xr cos ¢)%w
- (aze lae,1 aze)
vt 27
+A( Ccos ¢ 36 sin ¢ 1 ae)
(T + xrcos ¢)ar ~ T + xr cos ¢)r ar
2
+ 4K'2x ] (17)

(1 + Ar cos ¢)2 7

One may now proceed to the order of magnitude analysis.
The dimensionless parameters will now be evaluated for the conditions
of particular interest. Since the terms themselves have physical
meaning, it is possible to ascertain the dominarice of particular physical
aspects of the general problem. A study of the parameters may suggest

various possible mathematical simplifications depending on the emphasis



47

of physical aépects. The quantitative criteria or conditions with
physical meaning will be sought to indicate the order of the approximation
from the general governing equations and to identify the physical problem
represented by the simplified set of equations.

As noted earlier, the relative importance of the free convection
effect in the centrifugal force field is represented by the parameter
GrK'2 Thus the free convection effect may be neglected provided the

following restriction is satisfied.

2k2 >> Gr (18)

In the absence of heat transfer results for curved pipes taking
both centrifugal and buoyancy force effects into consideration, the
above relation provides the quantitative criterion for neglecting
buoyancy effects. When the buoyancy effect is negligible, the momentum
and energy equations are effectively decoupled. It is noted that the

2Fr appears in the R- and ¢-momentum equations for

term involving GrkK™
secondary flow. In the centrifugal force field, one-readily obtains

the condition Fr > Order [1] for most practical problems. Consequently,
the effect of the centrifugal Froude number in the form of %-GrK'zFr

must also be considered in assessing the effect of the buoyancy force.

In this respect, when the magnitude of Fr is of order unity, then the
buoyancy effect can be neglected under the condition given by equation (18).
Depending on the emphasis of the physical situation or condition

of interest, the following four cases arise and may be of practical

interest. A study of the important special cases also leads to greater
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physical understanding, and formal justification of the mathematical

simplification.

case (1)

Disregarding the buoyancy and centrifugal Froude number
effects, one sees that the remaining coefficients with unit order terms
in the momentum equations are A, K2 and K'ZA. The terms with K'ZA
represent the axial viscous terms. Consequently, one may regard the
axial viscous term or viscous normal stress to be of importance under

the foilowing condition:
K2 > 0[107%] (19)

The geometrical restriction requires that A < 0[1]. Thus one concludes
that the axial viscous terms must be retained when the Dean number

satisfies the condition given by
K < 0[20] (20)

It is further noted that the lateral inertia terms (the terms with

K2/4) in the momentum equations may be neglected if K2/4 < 0[10'2] or

K <0[2x 10'1]. It is then concluded that when 0[2 x 10'1] < K < 0[20],
every term of the whole set of equations (13) through (17) must be
retained. Apparently, it is not practical to solve the set of equations
in its entirety either numerically or analytically. It is also of
interest to note that even in the case of curved pipes the axial viscous

2

terms are governed by the parameter 4K “A = 4Re~Z which is seen to be
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jndependent of the curvature ratio A.

Case (2)

Consideration will now be given to the curvature ratio effect.

When the curvature ratio A is small or

» < 0[1072]

2

one may neglect the terms involving A and A" alone in the governing

equations. However, the resulting simplified set of equations is ex-
pected to be still difficult to solve even numerically because of the
existence of the second derivative terms in the axial direction (axial

viscous term or viscous normal stress term).

Case (3)

It is desirable to study the condition under which the axial
viscous terms (or terms involving 4K'ZA) may be neglected. The con-

dition is given by
K2 << 0[1] (21)

Noting that A < O[1] practically, the above condition does not neces-

2 2, the relation (21), corres-

sarily imply K2 >> 0[1]. Since K™“A = Re”
ponds to large Reynolds number flow conditions in the limiting case of
a straight tube. However, a stricter condition of K2 >> 0[1] provides
an important criterion for neglecting the term involving 3w/3w in the

continuity equation (13). Considering the condition given by equation
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(21), one may say that when K > 20, the axial viscous terms in the mo-
mentum equations are negligible. The condition K > 20 is nearly equiva-

1ént to that given by K2 >> 0[1]. Using also the latter condition the

set of governing equations become:

Continuity equation

ucosoe vsing ) =0 (22)

u, 1 3v
et F'§$'+ >‘(1-l~)\r'c0567" (T+Arcosd)

3l
al!

R-momentum equation

2t v _¥Ay, 1 .2
r 3¢ r (T + xr cos ¢) = 3w
2 2
-3/2ap 1 3% 1 av_ 13
-z K (g;;z-;za r 5557
sing _av,v _13u
A (T + Ar cos¢) Grty- r a¢)
cos ¢ 2
+ {T + Ar cos ¢) W (23)
¢-momentum equation
Kz(ua_vq.l.ay.q..lﬂ)-y 1 B_V
T YTy T+ ar cos &) " 2w
_ 121 (32v+1_a_v_v_1_32u+1a_u)
2 r 3¢ a_rf rar :Z T 3%ar :2'34»
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cos ¢ v, v _1au
+A(]+>\rcos¢)(ar+r ra¢)
sin ¢ w2 (24)

- {7+ xr cos ¢)

Q-momentum equation

2
K oW , V ow 1 oW
T g R T s o Y

2 2

- 1 p L (dw, Tow, 13w
T T T1 ¥ Ar cos ¢) T (ar2+F_r+:Za¢2)
CoS & oW sin ¢ : 'Iaw)

+>‘(Tl ¥ Ar cos ¢) or (1 + Ar cos ) r 3¢

_ )\2 1 .
(1 + Ar cos ¢)
- cos ¢ sin ¢
+ A(('I + Ar cos ¢) uw + (T + Ar cos 9) ) (25)
Energy equation
KPPr (20, ¥ 38y ,p. W 2
Z r raor (T + Ar cos ¢) dw
2 2
g , 1236, 378
- CS et
cos ¢ 90 sin ¢ 1 26,
=35 (26)

+ )‘(('I ¥ Ar cos ) or (1 + Ar cos ¢)
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It is now possible to introduce a stream function which satis-
fies the continuity equation automatically. In the foriation of the
problem, the R- and ¢-momentum equations may be combined into a single
equation by eliminating the pressure terms. In the resulting momentum
equation for secondary flow, one may introduce the vorticity. The re-
sulting vorticity transport equation is of parabolic type. At the same
time, the axial momentum and the energy equations are of parabolic type.
It is obvious that the analytical solution of the set of equations cannot

be obtained readily and a numerical technique must be used.

Case (4)
Further simplification of the problem is possible by using
the conditions A << O[1] (see Case (2)) and K2 >> 0[1] (see Case (3)).
For convenience the resulting simplified set of equations is given

below.

Continuity equation

au , u 1 oav _
ar Trtrag 0 (27)
R-momentum equation
K2 2w, vou_vh o
ar ra r w
S lgpd2e, 1k av 19,
or :252' :Za r 3¢ar

- Cos ¢ W (28)
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¢-momentum equation

V3V, uv v
T(" Frrse Y R
1K>\-3/21_§Q_+(82v+1_8_v_1_3u 2u,
r 3¢ 5:2' rar r —2"3q>
- sin ¢ W (29)

K oW , V oW w
TlUgrtrse *va
2 2
ow ;’Z rar ;?;;2
Energy equation
Kepr 2
T ( ) + Prw—
2 2
370 1 38 1 376
e R s (31)
;‘Z r or ;2' a¢2

Although one cannot study the effect of curvature ratio A
using the above set of simplified equations, the equations are believed
to be in a form which is suitable for a study of the hydrodynamic or

simultaneous hydrodynamic and thermal entrance region problem for curved
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pipes. This observation is important in view of the fact that a theo-
retical analysis on hydrodynamic entry flow problems for curved pipes
is not available in the literature. Also the system of equations
appears to be rather simple and one may include the buoyancy force
effect in addition to the centrifugal force effect for the thermal
entrance region problem. An experimental work given by Shchukin and
Filin [73] appears to be the only work considering the coupled effects
of centrifugal and buoyancy forces in curved pipes.

Finally, a summary of the four cases under consideration is
given as Table 1 for convenience. It should be noted that the present
order of magnitude analysis is based on the assumptions that the centri-

fugal force and the axial inertia terms in the momentum equations are

of order unity.

Table 1
A Summary of Possible Hydrodynamic and

Thermal Entrance Region Problems

k2. Arbitrary K2 >> 0[1]
Second Derivatives Second Derivatives
in Axial Direction in Axial Direction
Retained Neglected

A = Arbitrary Case (1) Case (3)

A << 0[1] Case (2) Case (4)
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An Order of Magnitude Analysis Considering the Axial Convective Term

to be of Order Unity

Consideration is now focussed to the thermal entrance region
problem. In order to obtain a measure for the thermal entry problem,
one may assume that the axial convection term in the energy equation
is as important as the conduction terms is of order unity. This leads

to

1

-1/2
che)\

Pr =1 (32)

Using the above relationship, the set of governing equations (6) to

(10) becomes.

Continuity equation

au

u _,u,.1av ucos ¢ vsin ¢
ety % + A((] - )

Ar cos ¢) (1 + Ar cos )

r

-2, -1 1 ow  _
+ A TPr (T + Ar cos ¢) dug =0 (33)

R-momentum equation

2 2
K u . vaou v -1 1 au
T (u TR r) + Pr T+ arcos &) " 3w
1 on3/2 38, (] azu_lgl_la?'v)
ar ;?';;?' ;2'3 r 3agar



sin ¢
+ >‘(T+ AT COS ¢)(

2p.-2y 1
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f 12y
r r 9

Bzu

- 4K “Pr

(1 +Ar cos ¢)

-1 1

2 arawe

azw

+ 4K %pr

25,1

cos ¢

{1 + Ar cos ¢)aram6

oW

+ 4K Pr A

(1 + Ar cos ¢)

cos ¢

2 B,

+

$-momentum equation

2
K oV
7T v g

2

__i.+

2 ar

r 3¢

cos ¢ (

+ )
T+ Ar cos ¢)'3

2p.=2y

(T + Ar cos ¢)

W’ (34)

1 Pl

vV 3V , uv -
* T + r) + Pr

-3/219p ., (3v,1
KA +( ror

{1 + Ar cos v ame

3"u 1 du
r r

+ 4K “Pr

2
=2 -1 1 3w
- K P T3y cos 3)Ta00ug

(1 + Ar cos ¢)2 3w

+ 4K %pr

sin ¢ W
(1 + ar cos $)2 %%
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sin ¢ 2
{1 + Ar cos ¢) (35)

Q-momentum equation

-1 1 aw
(T + Ar cos ¢) e

K
i e

-1 2
Pr” 3P (3 w, 1w, )
" T +7Ar cos ¢) dug ;;?' r or r2 a¢2

+ ( cos ¢ W sin ¢ 1 aw)
T+ ar cos ¢)or ~ (T + Ar cos ®) r 3¢

A (1 + Ar cos ¢)2

2
+ 8272 ¢ ! ,
(1 + Ar cos ¢)° Bw
cos ¢ u _ sin ¢
+a( 2 30 2 aw)}

(1 + Ar cos ¢) (1 + Ar cos ¢)

né cos ¢
* A((1 + Ar oS ¢)vw {1 + xr cos 6) uw) (36)
Energy equation
2
K™Pr 36 v ae w 36
“Z"'(" artr ) (T + Ar cos ¢)§Z%
2 2
_ (38,136 1 36 cos ¢ 29 sin ¢ 1236
- (;;Z *var T r2 g;§§ + >‘((1 + Ar cos 6)ar _ (1 + Ar cos &)r a¢)
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2
+ 4K 1 , 2, (37)
(1-+ Ar cos ¢) g
It is seen that the coefficient 4K Gpr2 = ape~2 appears

for both axial viscous and conduction terms and this is in contrast to

2 2 obtained for these terms in the earlier

the coefficient 4K “A = 4Re
analysis. Thus the condition under which the axial viscous and conduction

terms may be neg]écted is given by

25, -2

4~ %pr2, = ape? << O[1] (38)

Since the main emphasis here is on ‘the thermal field, there
js some question as to the importance of the present ordering procedure
in regard to the momentum equations. It is seen that the parameter
K2/4 appears as the coefficient of the lateral viscous terms and the
paramter Pr'] appears as the coefficient of the axial inertia terms
in the momentum equations. Thus one sees that the significance of the
lateral inertia terms depends on hydrodynamic conditions and the
jmportance of the axial inertia terms depends on the measure of thermal

properties.

2.4 DEDUCTIVE ANALYSIS CONSIDERING ADVECTIVE TERMS DUE TO SECONDARY

FLOW TO BE OF ORDER UNITY

In contrast to the earlier emphasis on the flow field, the
emphasis on physical phenomena will now be directed towards the thermal
field in the entrance region of a curved pipe. Noting the importance

of secondary flow in distorting the temperature field, it is reasonable
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to assume that the advective terms in the energy equation are of the
same order of magnitude as the conduction terms. Using the reference
quantities defined in Sections 2.2 and 2.3, and by equating the
coefficient of the advective terms with that of the conduction terms
in the normalized energy equation for equat.ion (A - 13), the following

relationship results:

% _ %
a a2
U Ca
or : (—\,-) = 1/Pr (39)

As noted in Section 2.3, the axial pressure gradient term
and the viscous terms in the axial momentum equation may be ragarded

to be equally important and one obtains

Pe .2 (
2 Re 4)
wc
and g = A/Qc = a/Rch (5)

Using equations (4) and (39), the normalized governing

equations become:

Continuity equation

ou, u,lav ucos ¢ _ __vsing
ar+r+ra¢f)‘((f+ ar cos ¢) (1 + ar cos ¢))



+ % KProx"1/2 ‘ L)

(T + Ar cos ¢)ow
R-momentum equation
’ 2
=1, 3u . vau v 1.,.,-1/2 1 du
Pr (uﬁ+ra¢'r)+2m)‘ (T +ar cos o) 30
=-lpr~c K)\]/Z_E+(l azu_.]_. a_V_]_a_zv_)
or Y2 ;f 2 30~ r 3gar
sin ¢ LY _lau
* A(] + Ar cos qD( r r acp)
2 2
_02 1 3—2-+]—KPro>\]/2 1 ow

(1 + Ar cos ¢)2 (T '+ Ar cos ¢)orow

+ %KPro)\]/z ces ¢ 2 gx
(1 + aAr cos ¢)

2
1,2 COSdp w 1 -2, -1
+ 'y K™Pr T+ ar cos‘) b GrK “Pr 'Fr}

+ ;—GrPre sin ¢ (41)
¢-momentum equation
=1y 3Y L v 3v _ uv 1. .-1/2 1 av
Pr (uar+ra¢+r)+2K°)‘ (1+Arcos¢7
2
= lpre /2100, 3% . 1av v 10% . 1 au
mzPro KT R % (a—rf+ra 2T v et 25e)

r

(40)
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cos ¢ v, v 1 3u
¥ A(I + Ar cos ¢) (ar vy a¢)
2, 2
2 1 l -1/2 1 52w
to KProA~
(1 + ar cos ¢)%u 2" (T + Ar cos §) rabow
+ Lkprapl/2 —sine 2
(1 + ar cos ¢)
1,2 sin ¢ 2 _1 -2, -1
- Z K™Pr (] ¥ \r COS ¢) W (] 2 GrK “Pr Fr)
+ %—GrPr coso © (42)
Q-Momentum equation
T oW o vawy 1, .-1/2 ] W
Pro(ugr * v 590 * 2 Ko (T ¥ ar cose) " w
= - ! §-9-+(32w+l.al 132)
(TFArcosp)aw ~ ‘52" vrar " 2.7
cos ¢ L sin ¢ 1w,

+ A((I T Ar cos ¢) or (1 * Ar cos ¢) r 30

_ AZ 1 W

(1 + Ar cos ¢)2

2 1 5w
+ 08 —mm— ——2-+2K Pr oA

(T+ar cos¢)

3/2( s¢ __sing¢ av)
23w 2 3w
(1+kr cosd) (1+xr cosd)

-1 1
+ Pr ') T +r

) (sing vw - cos¢ uw) (43)
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Energy equation

08 ,vae 1 -1/2 W 38
ugrt Far T 7 KProgh T+ 2r cos ¢) Buy
_o% 10,1 3%
T2 v 2.2
ar r- 9¢

+( cos ¢ 98 sin ¢ j_gg_)
T + ar cos ¢) ar (1 + Ar cos ¢) r 3¢

2 1 2

+ 06 9 (44)
(1 + Ar cos ¢) duw,

2

The physical meaning of each term in the above set of
equations is similar to that discussed in Section 2.3. However, some
different characteristic parameter appears because of the different
physiéa] basis. It is noted that in the R and ¢-momentum equations
the famiiiar Rayieigh number, Ra = PrGr, appears. It is of interest to
note that by considering the relative importance of boundary force terms
with respect to the centrifugal force terms in equations (41) and (42),
one obtains Gr/2K2. Thus the physical meaning of the parameter

2 obtained in Section 2.3 is now clear. The centrifugal Rayleigh

Gr/2K
number PrK2 now appears as the coefficient of the centrifugal force
term. The foregoing set of equations is apparently still very involved
and further simplifications are desired for practical solutions. The

ordering procedure used in Section 2.3 will be followed next.
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An Order of Magnitude Analysis Considering the Axial Inertia Term

to be of Order Unity

For the hydrodynamic entrance region problem, it is reasonable
to expect the axial inertia term to be the same order of magnitude as
the lateral viscous terms. This observation leads to equation (12)

namely, (1/2)Kc>\-]/ 2 . 1, and the governing equations become:

Continuity equation

ou ., u_153v u cos ¢ _ v sin ¢
ar+r+ra¢fk(('ﬁ+)\rcos¢) U+Arcos¢))
+ Pr L LAY (45)

(T + Ar cos ¢) w

R-momentum equation

Pr'](u %{'4’%%! - %,") T kr]cos oy ¥ %
B} -A—KZA']P ., 22 1 v _12% )
r r.2 ;’)—2- rz 3¢ r oar
+A(1 + i:‘nc%s ) (g_:+ ¥' ]Fg_g)
- K2 R Ar]cos ¢)2:jg *ProE Al cos &) gigm
+pry —S05 9 au

(1 + Ar cos ¢)2 8w
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2
1.2 cos o W
+ 3 KPr T 5r cos 9) Q -ZGrK ZorFr}

+ %GrPr sin ¢ © (46)

$-momentum equation

P 1(u%\r17+y;_g_v_+uv Tl+klcos o v éy'
P LB G LAY 1,1,
r
*ATE iascgs ) ( * F - T}g—:
* 4K-2)‘ (1 +ar ::os ¢) _?'2' - Pr 1+ xl cos o) rgz‘gw
+ Pra sin ¢ ) %Vwi
(1 + Ar cos ¢)
Y R R R W2(1 - & 6rk%er )
- lGr Pr cos ¢ 8 (47)

8

Q-momentum equation

1 aw

-1
Pro( ra¢) TT + Ar cos Y
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2 2
Z - 1 §E+(3W+]_3_W+]____3W)
(T + Ar cos ¢) dw ar? ror r2 3¢2

cos ¢ W sin ¢ 1 aw)

+ X((1 + AT coS ¢) or (1 + Ar cos ¢) r 3¢

2 1
> W
(1 + Ar cos ¢)

- A

2
-2 1 3 W
+ 4K ")
(1 + Ar cos ¢)2 w2
+ 4k~%;2 ( cos ¢ \ gg__ sin ¢ 2%1
(1 +2arcos ¢)° ° (1 + Ar cos ¢)°%®
+ Pr']x ! (sin ¢ vw - cos ¢ uw) (48)
(1 + Xr cos ¢)
Energy equation
20 vV 36 W 96
Usr*trartPr (T + Xr cos ¢) 3w

o, 1,1 ok
5;2' ror - 2 8¢2
cos ¢ 3 sin ¢ 1 38

+ A( 38 _ L 95
(1 +Aarcos ¢) or ~ (T + Ar cos ¢) r or

2 1 228

+ 4K %)
(1 + Ar cos ¢)23w2

(49)

In the above formulation, the role of the Prandtl number becomes clear.
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When the Prandtl number is large, the lateral inertia terms in the
momentum equations can be neglected since Pr'] appears as the coef-
ficient. This simplification is not obvious for the set of equations
(13) through (17). As a matter of fact, the assumption Pr >> O[1]
does not lead to any simplification. It is seen that with Pr >> 0[1],
the only remaining nonlinear term is the axial inertia term in each
momentum equatidn. The other interesting fact is that the continuity
equation for secondary flow may become independent of the main flow in
equation (45). When the curvature ratio A is extremely small or
A<<0[1], one obtains the 1imiting case of a horizontal straight tube.
With » - 0, one sees that K -~ 0. However, one should note that the
pr'oduc’c.KA'l/2 = Re does not vanish as A - 0. The corresponding
governing equations can be obtained by neglecting the terms involving

A and 12. The resulting equations are:

Continuity equation

U , u, 1 3v ow _
EtrtyaptPraz=0 (50)

R-momentum equation

2
1 U , Vou Vv du
Pro(ugr+vse v t ¥z
Lty 125 2 av, o w1 o
or r23¢ r2 ) ;:7 2 ror
+ 4Re~2 2 + L grPro sin ¢ (51)
28
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$-momentum equation

-1, av , vav uv
Priugrtrss - v Tz

2
1215130, (¥ 1 3°v,2 du
= -7k 12, e 25+ 55
7 r o r rz 8¢2 r %%
e e 2 20 _ L arpro cos ¢ (52)
a? 8
Q-momentum equation
-1 aw vV W
Pr (u t a¢)
2 2
—-.QB+(BW+.]_.§!’_+]_ a__vi)
9z 3?' rar r23¢2
2
-2 3w
+ 4Re ~ —5
822 (53)
Energy equation
36 , v 96 96
uset T Pr w a7
2 2 2
_ 99, 1930, 1 23786 -2 38 (54)
= +—==t+ = + 4Re
g:? ror 2 ;;f 5;7

The problem now reduces to the combined free and forced
convection problem in the hydrodynamically and thermally developing

entrance region in a horizontal pipe. Some observations are of special
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interest here. With buoyancy effects, the momentum and energy

2, azv/az2 and

equations are coupled. The axial viscous terms azu/az
azw/az2 and the axial conduction term 326/322 are negligible when the
Reynolds number is large (say 100). The importance of the axial viscous

terms is seen to depend on the magnitude of Re_z.

0f course in the
neighbourhood of the hydrodynamic entrance (RCQ = O0[a]), the second
derivative terms mentioned cannot be neglected under any circumstance.
In view of the practical impoftance of the entrance region problem,

the case of Pr >> O[1] and Re >> 0[1] is of specié] interest. For this
case, the governing eduations are seen to be of parabolic type and

1 can be neglected. The

the lateral inertial terms involving Pr~
Rayleigh number Ra = GrPr becomes the only characteristic parameter
remaining in the momentum equations. It is also seen that the axial
momentum equation is independent of the momentum equations for
secondary flow. Also, the continuity equation (50) can now be

effectively split into two parts; one for the secondary flow,

%%-+ %—+ %-%%-= 0, and another for the main flow in the integral form.
Considering the importance and difficulty of solving of solving the
general entrance region problem, the resulting simplified set of
equations for Pr >> 0[1] and Re >> O[1] is particularly noteworthy.
The problem can be further simplified for the thermal entrance region
problem where the flow field becomes fully developed with aw/3z = 0.

In the energy equation, one sees that the advective terms cannot be

neglected under any circumstances and must be retained.
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An Order of Magnitude Analysis Considering the Axial Convective Term

to be of Order Unity

The axial convective term in the energy equation is important

both in the thermal entrance region and in the thermally fully developed

region. Consequently the axial convective term may be considered to be

of the same order of magnitude as the lateral conduction terms. This

observation leads to equation (32) again and subsequently the governing

equations (40) - (44) become:
Continuity equation

U u cos ¢ v sin ¢

)

1 oW _
* T +3r cos 9) 556_ 0

R-momentum equation

G %%' ¥'%§-' ¥F+ (m+ Ar]cos " %ﬁg
o, e 1 1ot
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- 4K %pr2 1 32“2

(1 + Ar cos ¢)2 ow
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T rtrtrse T M arcos ey - TT+r cos 9)
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1 2w sin ¢ oW

{1 + Ar cos ¢)ra¢ame (1 + Ar cos ¢)2 ame

2

2
Pr—Si0 8 W (1 _ 1 GrFr o)

1k
[ (T + Ar cos ¢)

- %-GrPre cos ¢
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(56)

(57)



Q-momentum equation

-1 aw aw 1
Pro(u 57 n F r (1 + Ar cos ¢) )
2 2
1 __E ( L) _]__w.q.l aW)
T +ar cosWame 8—'2 r or rz?
cos ¢ oW sin ¢ 1 aw)

+ A((1 +Ar cos ¢) or _ (T + Ar cos ¢) r ¢

2 1

‘)t 2w
(1 + ar cos ¢)

2
- 4K-2Pr-2A{—————J-—-—— 2 3 W2+ ZA(_______Q__.Z =3 __§JILHL__.2 =
(1+Ar cosé) (1+xr cos¢)® °“6  (1+rr cos¢)¢ “s
sin ¢ coS ¢
* l((1 + Ar cos ¢) " T+ xr cos ¢) uw) (58)
Energy equation
vl 36
ar r 9¢ awe
_d% 10,1 o
g;?' ror 2 ;;f
1 06 a6
A(] + Ar cos 67’(C°S¢ 3r - sin ¢ r ar
-2, -2 1 2% (59)
+ 4K “Pr "2 —

(1 + Ar cos ¢)2 ame
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It is seen again that the axial viscous and conduction terms

may be neglected for the following conditions:

-2
4 "pr-2y < o[1] (38)

25,2 =252 _ po=2

It is useful to recall that K"“Pr © = Re “Pr” = Pe ~ and that the
criterion for the neglect of second derivative terms in the axial
direction is identical to that for a straight tube. Generally, the
present system of equations is similar to that of equations (45) - (49).
It is again seen that the governing equations can be simplified
considerably if Pr >> O[1]. However, it is worth noting that the
assumption Pr >> 0[1] does not simplify the continuity equation (55)
and the three momentum equations are coupled through the continuity
equation, but have no inertia terms. The governing equations are
valid for both hydrodynamically and thermally developing flow problems.
Also the effect of curvature ratio A is clear.

For convenience, a summary of the results for the present
deductivé analysis is given in Table 2. The degree of difficulty
involved in solving various possible systems of equations listed in
Table 2 cannot be explained readily. However, considering the order
of derivative in each space variable, one may say that the degree of
difficulty in obtaining the solution increases in the order of the
systems of equation indicated by broken lines, solid lines and finally
those without markings. Generally, those systems of equations iden-

-1/2

tified under the "Arbitrary" column for Ki are the most difficult

to solve.
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2.5 SOME FURTHER REMARKS ON THE AXIAL VISCOUS AND CONDUCTION TERMS

As shown in the previous two sections, the axial viscous terms
for the hydrodynamic entrance region problem and the axial conduction
term for the thermal entrance region problem can be neglected under the
conditions, a2 = aRe~? << 0[1] and 4K'2Pr'2A = ape~2 «< o[1]1,
raspectively. These conditions are obtained by considering the axial
inertia term and the axial convection term to be equally as important
as the lateral viscous and conduction terms, respectively. The above
two conditions reveal that the importance of axial momentum or thermal
diffusion in curved pipes is exactly the same as that in straight pipes.
Another analysis such as that shown in [95] for the Graetz problem
reveals that near the discontinuity (thermal entrance), axial conduction
dominates over the radial conduction. For the Graetz problem the role
of the axial conduction term is now well understood. The role of the
axial viscous term in the hydrodynamic entry flow problem is similar
to that of the axial conduction term in thermal entry flow probiems.

By comparing the magnitudes of the axial second derivative
terms, one can obtain the additional conditions under which the axial
viscous and conduction terms, respectively, can be neglected. The
analysis (see equations (9) and (10) in Section 2.3) shows that the
relative magnitude of the axial and lateral momentum or thermal diffusion
depends only on the geometric ratio o = (a/Rch)2 or the other geo-
metric ratio cze = (a/Rche)z, respectively. Thus, for (a/RCQ)2 << 1
or equivalently (a/RCQ) < 1, the axial momentum diffusion will be small

relative to the radial momentum diffusion and can be neglected. Similarly,
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for (a/Rch) << 1or (a/RCQe) < 1, the axial thermal diffusion terms
may be neglected in comparison to the radial thermal diffusion terms.
It is now clear that the relative importance of the axial momentum or
thermal diffusion depends on the axial distance from the discontinuity
or entrance point. For clarity, the general situation regarding the
relative ihportance of axial momentum or thermal diffusion is illustrated
in Fig. 6 for three kinds of entry flow problems. In region I, the
axial momentum or thermal diffusion is more important than radial
momentum or diffusion. In region II, the axial and radial momentum
or thermal diffusion are comparable. In region III, the axial momentum
or thermal diffusion is negligible in comparison to the radial direction.
In region IV, the flow or thermal field becomes a fully deve1oped one.
For reference this region is identified and some further details will
be given in Section 2.7.

Regarding the relationship between a = a/RCQ and Oy = a/RCQG,
a remark will be added next.

When one considers the momentum and energy equations separately
(see equatfons (9) and (10)), both quantities a/RCQ and a/RcQe appear
purely as geometric ratio. The thickness of the thermal boundary layer
relative to the hydrodynamic boundary layer in the simultaneously
developing flow field, depends on the magnitude of the Prandtl number.
Some indication of the relationship between velocity and temperature
fields may be obtained by equating ¢ and g from equations (12) and

1

(32), respectively. The result is R, = RQ.Pr . Attention is now

given to case (3) of Fig. 6 for the simultaneous development of velocity
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(1) Hydrodynamic entrance region problem

Momentum boundary layer

IV
RCQ >> a
(2) Thermal entrance (Graetz) problem
(a) Small Pr R Qg < @ -_
T NI frxpansg w
a 11 {b‘ S, )
; > cofRcY > @ R, >> 2
i N XY P
o RQ. -
(b) Large Pr Thermal boundary layer :
il T
a
L Rch > a

Fig. 6 Relative Importance of Axial and Radial Momentum or

Thermal Diffusion for Three Entry Flow Problems.
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and temperature fields. When the Prandtl number is small, the relative
jmportance of the axial second derivative terms with respect to the
lateral second derivative terms depends on the geometric ratio a/RcQ.
This observation is based on a slower development of the velocity

field in comparison with the thermal field. The situation is seen to
be similar to Case (1) shown in Fig. 6. On the other hand, when the
Prandtl number is large, the relative significance of axial momentum

or thermal diffusion with respect to the transverse one depends on
1

the geometric ratio a/Rch. In view of the relationship RCQC = RCQCePr' ,
the length of the specific region I, II, or III may actually become
longer than that for the hydrodynamic entrance problem shown as Case (1)
in Fig. 6.

2 o[1], given

When the two criteria, 4Re << 0[1] and 4Pe”
earlier for assessing the importance of the axial momentum or thermal
diffusion in comparison to the radial one contradict each other or do
not agree, then one must check whether or not the length scales used
are proper in cafrying out the particular normalization procedure.

Tt is significant to note that one analysis provides the
restrictions on Reynolds and Peclet numbers under which the axial
momentum and thermal diffusions, respectively, can be neglected. This
is in contrast with the result of another analysis where the restriction
is mainly on geometric ratio a/RcQ or a/RcQe depending on whether the

emphasis is on the hydrodynamic or thermal entrance problem. Apparently,

the two analyses complement each other.
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2.6 A DEDUCTIVE ANALYSIS OF FUNDAMENTAL EQUATIONS GOVERNING LAMINAR

FLOW AND HEAT TRANSFER IN CURVED RECTANGULAR CHANNELS

A study of the basic equations for flow and heat transfer
in curved rectangular channels similar to that reported in earlier
sections for curved circular pipes is also possible. However, for the
present problem the aspect ratio of the rectangular cross-section
appears as an additional parameter. For reference purposes, the basic
equations for curved rectangular channels are givan in Appendix 3, and

the results of a deductive analysis are listed in Appendix 4.

2.7 BASIC EQUATIONS FOR THE GRAETZ PROBLEM IN CURVED PIPES OR CHANNELS

In this investigation the Graetz problem in curved pipes and
its asymptotic case of thermally fully developed conditions will be

studied in detai]i The basic equations for the general problem of

hydrodynamically and thermally developing flow in curved pipes or channels

have been studied in some detail in earlier sections. In order to gain
a clearer physical understanding and for convenience in later use, the
basic equations for the special case of the thermal entrance region
problem will be studied in some detail. It should be pointed out that
no theoretical analysis for hydrodynamic entrance flow in curved pipes
or channels is available at present in iiterature. The basic equations
for a hydrodynamically fully developed flow can be obtained by noting
that the velocity components are independent of the axial coordinate.
The above statement also corresponds to the case with a very small

entrance length geometric ratio o <<< 0[1]. Curved rectangular channels

|
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will be considered first. At this point, it is recalled that two sets
of formulation are possible depending on whether the centrifugal force
term in the normalized momentum equation is regarded to be of unit
order of 'magm‘tude or whether the convective terms due to secondary
flow in the normalized energy equation are considered to be of unit

order of magnitude.

Basic Equations for Curved Rectangular Channels With the Centrifugal

Force Term Considered to be of Order Unity

For simplicity the case of curved square channels (y=1)
will be considered here. This effectively eliminates the aspect ratio
effect. For the hydrodynamically fully developed flow with aspect

ratio y = 1, the basic equations (A - 27) to (A - 31) become

+ A-(T——)-+ ELAS (60)
x-momentum equation
21 Ju au
K vy (u 3% + Vv W
P 2 2
- c ,-173p ,pu W (61)
[pw A 9X o axay) T+ xx)
c .
y-momentum equation
(u — <tV 3V

oy



80

[ Pe 1-1] A4 2%y _ 2% _ A au
y 8227 oxay (1 + Ax) 9y

inan <AL L (&)
Q-momentum equation
Clutee .
- [‘WP—:Z"] i (::g.“ \ERTRTS
-n‘}»—zm“%é - %—2 T (63)

Energy equation

2 36 -1/2 W - 38
Kpr 7 (uge + v 33) + Kor 2T+ 3] %
2 2 2
_ 086 A 06 9 0 A 90 (64)
';z‘*mw*gf” T 2

It is of interest to note that Truesdell [35] treated the
fully developed laminar flow in curved pipes by using a set of equations
similar to equations (60) through (63). The above set of equations
suggests that the inertia terms in the momentum equations may be neg-
lected if K < O[107'].

The two basic thermal boundary conditions of uniform wall
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heat flux and uniform wall temperature are of interest for reference
purposes. For the 1imiting case of a thermally fully developed flow,

the energy equation for uniform wall heat flux becomes

201, 26, . 26 /2 W
KPrI(Ua—’('+Vay)+KPY'>\ mc

_3% ., A 98 3% . (65)
522' 17 + Ax) ax ayz
where 6 = —5—-(T - Ta) (66)
q,2 0
and C=o0 %g—= constant (67)

and % js the uniform wall heat flux. It is noted that with the
uniform wall heat flux condition, the axial conduction term vanishes
from the energy equation for thermally developed flow.

For a uniform wall temperature, the energy equation for

thermally fully developed flow becomes

20 1 39
K%Pr o ;. 30 , . 36 -1/2 woe b
B (u e+ v gy + KPra 25,5
220 X 26 . 3% 6 azeb (68)
= + — + + AOW =
axz (T+ Ax) ax ;;? N
T T T
where 8 = Tw = 1) > 8 = Tw — Tb (69)
w 0 0
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Tw = uniform wall temperature,
Tb = bulk temperature, and
T0 = uniform entrance temperature.

It is noted that the terms 36/3w and aze/awz vanish for

fully developed thermal field and do not appear in equation (68).

For the condition of uniform wall temperature, the terms with aeb/aw
and azeb/aw2 do not vanish and are not known in advance. In this
connection, Maekawa's method of solution [64] for the thermally fully
developed flow with a uniform wa11-temperature js noteworthy. His
method of solution is in contrast to the usual trial-and-error solution
required for the case of uniform wall temperature. The details of the
method can be found in [64]. The other possibility for normalizing

the basic equations will be considered next.

Basic Equations for Curved Rectangular Channels With the Convective

Terms in the Energy Equations Due to Secondary Flow Considered to be

of Order Unity

For simplicity, a small curvature ratio} A << O[1] and
negligible free convection effects (6r << Kz) for fully developed
laminar flow in a curved square channel will be considered. Using
equations (A - 32) to (A - 36) and applying the stated assumptions,
the following normalized governing equations can be obtained after
eliminating the pressure terms 1in the momentum equations for secondary

flow. The momentum equation for secondary flow becomes
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1 ;3¢ T 3? oz 2
(ay X ~ ax ay) c * I'K Pr2w S% ay (70)
) _ Y
where u = 3y and v % (71)

Vorticity equation

_ 2
L= Yy (72)
Axial momentum equation
l(?ié!’.-a_wa_)=v W ['Pc 1 ].52 (73)
Prioy x Xy X3y | oW Z Pr
c
Energy equation
(ﬂ_a__ 9!&) _e_z v 29 (74)
gy 9X  9X dy Y 3 Xy

Cheng and Akiyama [78] solved numerically the above set of
equations (70) to (74) for the asymptotic case of thermally fully
' &eveloped flow in curved rectangular channels with various aspect ratios
subjected to an axially uniform wall heat flux. The above formulation
reveals that when the Prandtl number is large, say Pr 3_0[102], the
only parameter appearing in the normalized equations is K2Pr and the

inertia terms (non-linear terms) in_ the momentum equations may be

neglected. When the Prandtl number is large, considerable simplifications

are possible and the resulting set of equations will be listed below for

reference purposes.
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Momentum equation for secondary flow

_ o2 1.2 oW
0= Vx,y z+3 K°Pr w 3y (75)
Vorticity equation
_ 2
2=Vy (72)

Axial momentum equation

P
= c_ 1,3p 2.
0=-[ 2 Pr] 3w T Vx,y w (76)
ow
c
Energy equation
Y 36 aY 238 36 _ 2
(g.y-a—x_a—x-a?)""wm-vx’y (74)

It is observed that the above set of equations is valid
regardless of the order of magnitude of the Dean number K. Furthermore,
the secondary flow cannot be regarded as a creeping flow since the
inertia term, in the form of a centrifugal force term, is included in
the momentum equation for secondary flow.

Since curved circular pipes will be studied in detail in
this thesis, i1t is convenient to 1ist also the normalized basic
equations in cylindrical toroidal coordinates. For a hydrodynamically
fully developed flow, the basic equations (40) to (44) for curved pipes,
where the convective terms in the energy equation are considered to be

of unit order, hecome
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(79)

(80)

1 36.
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The above set of equations, which take the curvature
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ratio effect (1) into consideration, was first derived by Dean []2]

for the flow problem only, and recently Kalb and Seader [87] used

a similar set of equations for solving the thermally fully developed

convective heat transfer problem in curved circular tubes with
buoyant force effects omitted. Assuming that A << O[1], the set

of equations becomes:

Continuity equation

wlw
sic
+
"S|(:
+
S |—
e
1]
o

R-momentum equation

2
=1, 3u _ ,vadu v
Prolugr+vde - v)

2 2

_ -2,-1/2 -1 3p 137u_ 1 av_ 1 3%
= - 2K A% t (5 —=5-=%--= —)
or r2 3¢2 r2 9% r 9¢dr
+ %-KzPr cos ¢ W’ a- %-GrK'zPr'1Fr}

+ %-GrPre sin ¢

(82)

(83)
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¢-momentum equation

-1, 3v , V3V . uv
Priusrty gt )
- . 2K'2X']/20'] l_a_gi_.(azv s1v _v 1 azu + _a_u_)
r 3¢ 'a-;f ror ‘? T 3gor = 2 3¢
r
1,2 . 2 1 -25..~1
-7 KPr sin ¢ w" {1 + -2-'GrK Pr Frc}
- —;-GrPre_ cos ¢ (84)
Q-momentum equation
-1, OW , V W
Proi(ugpet Fﬁ?f)
=_§E+(£V2’.+l§£+] 32"‘) (85)
uw sy L :2"3;'2
Energy equation
u .3_9_'_ .V__a_e_.pl](prc )"]/2 w-a—g-: 329 +l§_9_+ _]_3_2_6.
ar  ror 2 8 W ap2 T Or 25
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+g 228 (86)

The above momentum equations without the terms involving Gr were
first derived and solved by Dean [12,13] using a perturbation method.
It is interesting to observe that the perturbation method used by
Dean is similar to that used by Morton f4] in solving combined forced
and free convection for laminar flow in horizontal tubes with uniform
heat flux at Tow Rayleigh numbers. Apparently Morton [14] was not
aware of the similarity between the secondary flow caused by centrifugal
"foécés in curved pipes and the secondary flow caused by buoyancy forces
in horizontal pipes. Dean's formulation for curved pipe flow is a
standard one and subsequently'has been employed by many investigators.
The above set of equations without free convection effects will be
solved by numerical methods in Chapters III, IV and V for thermally
fully developed flows and for the Graetz problem in ;urved pipes.

As pointed out earlier, a large Prandtl number is of special
interest because it is of practical importance as well as resulting in

a simplified set of equations. With Pr >> 0[1], one obtains

Continuity equation

au , u . 1 av_
wrrrtrse O (82)
R-momentum equation
0= a2 1, 1 ] av 1 9%
ar 2 2 203 r 3¢ar

r- 3¢ r
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+ %-KzPr cos ¢ W {1 - %-GrK'zPr']Fr}
+ %-GrPre sin ¢ (87)
¢-momentum equation
0=-2u1% ]-]r—%g--l-(-z—:%i-%-g—v—-}z-%—;-— ‘:g;;;)
- %—KzPr sin ¢ we {1 - %-GrK'ZPr']Fr}
- %—GrPre cos ¢ (88)
Energy equatibn»

It 1is seen KzPr is the on]y‘charécteristic parameter in the
normalized equations when (1/8)GrPr and GrFr << 0[1]. The above
formulation is valid regardless of the value of the Dean number K.

An examination of the above set of equations reveals that the Graetz
problem in curved pipes with significant free convection effects can
be approached at least by a numerical method. This observation for
large Prandtl number fluids in curved pipes is believed to be significant

since the problem now becomes tractable.
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2.8 SOME CONSIDERATIONS OF PITCH EFFECTS IN HELICAL PIPES

Curved pipes are usually used in the form of helices and
flat spirals and for simplicity only helical coils will be considered
here. Consideration is now given to a helical tube with its center
line in the form of a circular helix obtained by winding a tube around
a circular cylinder with a constant pitch as shown in Fig. 7. For
this configuration the perpendicular distance from the cylinder axis
to the tube center line is a constant Rc' Geometrical restrictions
require that the pitch h must be at least equal or greater than the
outside diameter of the tube. Due to the pitch effect, one sees
clearly that the tube center line is jnclined to the horizontal plane
and the radius of curvature at any point on the helical center line
will deviate from RC and becomes RC + (]/RC) (h/2ﬂ)2. The latter aspect
of the pitch effects was discussed briefly by Truesdell and Adler [35]
and in some detail by Truesdell [35].

Geometrically, a helical pipe is generated by translating
a circle along and normal to a circular helix. Thus, a point in the
tube cross-section at a distance RC + X from the helical axis has a
radius of curvature (RC + X) + (1/RC + X) (h/2n)2. Under the conditions
that h is small in comparison to the helical circumference (ZWRC) and
Rc >> X or equivalently RC >> a, the radius of curvature at any point
in the cross-section of the tube may be approximated very closely by
R, + X + (1/RC) (h/2ﬂ)2. The basic equations for flow and heat transfer
discussed in this chapter can be modified to take the above effect

into consideration. However, one should note that for helical pipes



cylinder wall

Fig. 7 Helical Tube

Fig. 8 A Coordinate System for Helical Tubes
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the centrifugal forces cease to act solely in the plane of the cross-
section normal to the circular helix or pipe center line. This fact
will be elaborated further.

Every point in the cross-sectional plane of the helical
pipe circumscribes a helix with the same central axis. The radii of
curvature of all the points in the cross-section intersect the common
heli¢al axis and are perpendicular to the helical axis. One also
observes that the tangents to a helix make a fixed angle with the axis
of the helix and the pricipal normal is perpendicular to the axis of
the helix. Furthermore, the inclination of the pipe cross-section
with respect to the helical axis leads to the radii of curvature
forming a set of skewlines intersecting and perpendicular to the
helical axis. It is noted that only points on the diameter containing
'the radius of curvature of the pipe center line have radii of curvature
solely in the plane of the cross-section. It is now obvious that the
cent¥{fugal forces will not act solely in the plane of the pipe cross-
section. Excluding the points on the diameter containing the radius
of curvature of the pipe center line, the centrifugal forces acting
at any point on the cross-sectional plane will have components also
in the direction of main flow. As pointed out by Truesdell [35], these
centrifugal forces generally tend to enhance the downstream velocity
in one half of the cross-section and hinder the velocities in the
other half, thus completely destroying the symmetry with respect to the
center line diameter. Truesdell [35] further explains this effect in

some detail by using experimental information obtained by dye injection
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into helical systems. This aspect of the pitch effects is now clear
but is expected to introduce the additional complexity in the theo-
retical analysis.

To pursue this subject further, some geometrical relation-
ships for helically couled pipes considered in this section will be
given next. Referring to the Cartesian coordinates (X], Xz, X3) and
the helical coordinate system (R, ¢, Q), one obtains the following

relationships (see Fig. 8),

Xy = o cos a cos o+ Rc(cos Q cos ¢
+ sin @ sin 6 sin o)
X2 = g cos o sin ¢ + Rc(cos Q sin ¢
- sin Q cos 6 sin a)
X3 =gsinao * ¢+ Rc sin ¢ cos o
where 21R_ = o cos @, 21C = h =0 sina, o =(R.Z + ¢3)1/2, o = pitch

angle and h = pitch. Using the above relations, the metric coefficients

hl’ h2, h3 can be obtained and are given below for future reference.

_ 9 . . . 2
hy = {[ER'(U cos o cos & + Rc(cos Q cos & + sin Q sin 8 sin a))]
+ [3%-(0 cos o sin ¢ + Rc(cos Q sin & - sin Q cos 6 sin a))]2

+ [g%_(o sing » &+ Rc sin & cos a)]z}]/2
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hy = -—— (o cos o cos & + R, (cos @ cos & + sin @ sin & sin a))]
+ [é%-(c cos a sin & + Rc(cos Q sin & - sin Q cos 6 sin a))]
+ [5%-(0 sina « ¢ + R_ sin @ cos ou)]z}]/2 (89)

hs =‘{é%-(c cos a cos ¢ + Rc(cos Q cos ¢ + sin Q sin 6 sin a))]2

+ [5%-(0 cos a sin & + R_(cos @ sin & - sin Q cos 6 sin )12

+ [: (0 sina + &+ R, sin & cos a)]2 /2

The resulting rather lengthy expressions for h]; h2’ h3
discourage one to obtain a set of general governing equations for flow
and heat transfer in helical pipes taking pitch effects into account.
However, it is worth noting that the additional geometrical parameters
o and o appear. In view of the fact that in most practical applications
the helices would be closely wound and fabrication and experimental
errors may arise, the additional effort required in considering the
pitch effects may not be warrantéd under certain circumstances.

Disregarding the unsymmetric effect due to the components
of the centrifugal forces in the main flow direction, one may consider
two additional factors resulting from the pitch effects of helically
coiled pipes. It has already been shown that the radius of curvature
of any point on the helical center line becomes RC + (1/Rc) (h/21r)2
where the increment from Rc js caused by the angle of inclination.

This increase of the radius of curvature is one factor. Another factor

js the inclination angle itself and it becomes important when the effects
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due to other body forces such as buoyancy forces become significant.
An attempt will be made first to assess the effect due to the increase
of radius of curvature on the helical center line. Referring to

Fig. 9, one readily obtains the following relationship:
L = [(2mr ) + n21'/2 (90)

One may now define the effective radius of curvature as

L po2.1/2
R =757 Rell *+ () ] (91)

It is useful to consider the ratio RL/Rc in evaluating the effective

increase of the radius of curvature of the helical center line. The

result is

R
L _ h \291/2
RO () 1Y (92)

In most practical cases one has R. > h. However, we must also consider

the case RC = h in order to gain some idea about the ratio RL/Rc' With

Rc = h, one has RL/Rc = 1.0126. It is now seen that the difference
between RL and Rc js less than 1.3 per cent and one may conclude that
as far as this aspect of the pitch effect is concerned the formulation

based on the torus coordinates should provide reasonable accuracy.

However, one may wish to use the following expression for the effective

radius of curvature, RL’ instead of Rcin evaluating the flow and heat

transfer characteristics in helically coiled pipes.



Fig. 9 Expanded view of Helical

pipe on a Plane
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The above expression is reasonably accurate when the pitch h is small
in coﬁparison to Rc and when Rc >> a. It should be pointed out that
the above suggested correction is based purely on effective radius of
curvature and does not take other factors into consideration.

Referring to Fig. 9, the inclination angle is found to be

o= tan'](h/ZWRc). When the buoyancy force effects become significant,

the inclination angle effect must be assessed. In the formulation,
the buoyancy force effects can be readily included by adding the terms

1isted in Table 3 to the respective momentum equation as noted.

Table 3

Buoyant Force Terms with Helix Effect

Equation No. Plane Torus With Helix Effect
Circular R-Mom. (A-10) -gg(T-T )sind -8g(T-T,,)sinecosa
Pipe o-Mom. (A-11) eg(T—Tw)cos¢ BQ(T—Tw)cosécosa
o-Mom. (A-12) 0 -BQ(T-Tw)sina
Rectangular X-Mom. (A-17) 0
Channel Y-Mom. (A-18)  B8g(T-T,) Bg(T-T, )cosa

o-Mom. (A-19) 0 Bg(T-Tw)sina

~{



99

With the 1imiting case h = RC, the angle of inclination o
is found to be approximately g°. According to a recent analysis by
Cheng and Hong [97], for a range of inclination anglea = 0 = 9°,
the inclination angle effect depends on the Rayleigh number and becomes
particular]y.important for high Rayleigh numbers. In general, the
concept of effective radius of curvature may be applied to plane spiral
tubes. When the central plane of the spiral tubes is not horizontal,
the inclination angle effect caused by the orientation of buoyancy
forces may become significant under certain circumstances such as for

high Rayleigh numbers.



CHAPTER III

FULLY DEVELOPED LAMINAR FORCED CONVECTION
HEAT TRANSFER IN CURVED PIPES*

3.1 INTRODUCTION

A review of the literature shows that accurate fluid flow and
heat transfer results are not available for the intermediate Dean
number flow regime under hydrodynamically and thermally fully deve-
loped conditions. The perturbation method [12,39] is known to be
applicable only when the Dean number is very small. On the other‘
hand, thé approximate method [34,65] based on boundary layer concept
near the pipe wall is valid only for high Dean numbers. For the inter-
mediate Dean number flow regime, neither the perturbation method nor
the boundary layer technique is effective. It is obvious that sb]ution
by numerical methods provide the only practical approach for the inter-
mediate Dean number region.

Recently studies by McConalogue and Srivastava [40] and
Truesdell and Adler [35,36] have also carried out the numerical solu-
tions for fully developed laminar flow in curved pipes. The work by
Truesdell [35] completed in 1963 remained unpub]ished until 1970.

The purpose of this study is to present an accurate numerical
solution, using boundary vorticity method [96] for a steady fully de-

veloped laminar forced convection in axially uniformly heated curved

*Reference [80] is based on this part of the thesis work.
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pipes, valid up to a reasonably high value of the Dean number in order
to brfdge the gap between perturbation method and boundary layer
approximation. This work was carried out as a first step toward the
numerical solution of Graetz probiem for curved pipes. In addition

to presenting accurate flow and heat transfer results, the Prandtl
number effect on Iaminar forced convection heat transfer in curved
pipes is clarified for the first time. The numerical results for flow
and heat transfer from this study will be compared with the data avail-

able in the literature, and the discrepancy will be clearly pointed

out.

3.2 FORMULATION OF THE PROBLEM

Consideration is given to a steady hydrodynamically and
thermally fully developed laminar flow of viscous incompressible fluid
in a curved pipe under the thermal boundary conditions of axially
uniform wall heat flux and peripherally uniform wall temperature at
any axial position. In order to facilitate the analysis, the follow-
ing assumptions are made:

| 1. The radius of curvature of the pipe axis is‘large in
comparison to the radius of the pipe.
2. Physical properties are constant and buoyancy effect
is neglected.
3. Viscous dissipation is negligible and heat sources do

not exist.

Referring to the cylindrical coordinates (R,¢,RCQ) shown in
Fig. 10, the governing equations for the present problem can be shown

to be:
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Continuity equation

L+ X-o0. (94)

JU LY Vi 19kt v 3
R T R 3 R P 3 R 3¢
@l+l-lw)+&cm¢ (95)
53R 'R R3¢ R,
v, Vv, W _ _ 1 3P 3
Usk*R3e+t R “PR36 & R
@, r 1. W in (96)
R TRTORW TR ¢
3P
W . VoW _ 1 "o
UR*R3 ™ "R 3
5 .1y oM, 13 1M
+v[(ﬁ+§)r+§$(ga—)] (97)

where the piressure at any point consists of two parts and is expressed

as,

P =P (RQ) + P'(R,0) -
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Energy equation

9T , VoT , W 3T
UR*R3 R 3
2 2

9T, 1 9°T . 10T
=a(=+ + o) - (98)

R REag? R?

The boundary conditions are:

U=V=W=T-T =0 atpipe wall. (99)

The circumstances under which the above set of equations
app]fes are well discussed in Section 2.7 and need not be repeated
here. It is mentioned that the above governing equations (95) through
(98) correspond to equétions (82) thfough (86) obtained in Section
2.7.

In the.present formulation, however, the free convection
effects are neglected. The simplified Navier-Stokes equations (95)
through (97) and the energy equation (98) are quasi-linear, second-
order partial differential equations of elliptic type. Introdﬁcing

the following transformations,
R =T[alr, R, =[alr,, U=T[valu,

V= [vy/alv, W= [Cvalw,
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T, - 1= [CePr alo, 3P/R.32 = Cp
- C1a3/4vu -, 3T/RPQ =T

and a dimensionless stream function ¥,

12 _ 3 '
w18, v--R (100)

the momentum and energy equétions can be restated in the following
dimensionless forms after eliminating-pressure terms between equations
(95) and .(96).

Momentum equation for secondary flow

=
2

+
Si<
3l

VZ; + 2(-—0 w(] cos¢ = ¢ —+ s1n¢ -(101)
. 2 - 2
2 3 13,13

Vorticity equation

T = vzw ) (102)
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Axial momentum equation

oW , vV oW _ 2
uSh+TE= Vw4 (103)
Energy equation
98 , v 30y _ 2 '
Pr(u §F+ 'Y-;'ajo-) = V.B +w (104)

It is noted that the vorticity function ¢ is introduced here to avoid
using biharmonic function V4¢ in the momentum equation for secondary
‘flow. Because of symmetry it is only required to consider, for example,
the upper half of the circular region (see Fig. 10). The boundary con-

ditions are now restated as follows:

P = %%-= w=06=0 atpipe wall (r ='])
(105)
along horizontal center
y=z= %§-= %%-= 1ine (¢ = 0 and )

In contrast to the forced convection with secondary flow
caused by buoyancy forces, a set of momentum equations (101)—(103)}15
seen to be uncoupled with the energy equation (104) and the flow
proﬁ]em can be solved independently. Since a perturbation method
[12,39] is known to diverge quickly with the increase of Dean number,

a numerical solution appears to be the only practical approach for the



107

accurate solution of the present problem. By substituting the vorti-
city function into the momentum equation (101) for secondary‘flow, the
vorticity function can be eliminated, but the numerical solution of
the resulting set of equations in cylindrical coordinates by the con-
ventional method [98] is known to converge extremely slowly and is

not practical from the viewpoint of computing time. Because of recent
devetopment of the bdundary vorticity method [96], the above diffi-
culty can be overcome readily. The vorticity at the wall is computed
numerically by use of the “boundary vorticity" method. In addition
the usual method "stream function-vorticity" is discussed in Appendix
5. The proposed new method called the "direct vorticity" method is

a]sb explained in the Appendix.

3.3 FINITE DIFFERENCE APPROXIMATIONS AND BOUNDARY VORTICITY METHOD

By using a three-point central-difference approximation and
a dummy variable f for the dependent variables w, ¢, ¥ and 8, a general
finite-difference equation can be written for equations (101) through

(104) as follows:

2
- Ar Ar Ar ‘
[ "ot B]fi-'l gt [‘2'2 TL8% ]fi gt [1 Yoy T B]fm ,j
Ar 2 _[_Ar 2
[&5" e e s [T g re 000

l"iA(b

where
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( )2
’éﬁ Ar =
Z .3 20,08 Viu3 T i T By 2 Mg
B = A 0 s YF 0 for f1’j=¢1’j
Ar Ar 2

2 ( )2
c Ar - -
r(;;'Wi,j[ (W5 57705 547)C080; + Ar(wi-],j'wi+l’3)51"¢i]

r;ae
for fi,j = ci,j
) »(Ar)zz;i,j for fi,j =¥ 3
-(Ar)24 for fi,j =W 3
-(Ar)zwi’j ' for f; 5= 8;

In order to circumvent the singularity at the origin of
the cylindrical coordinates, finite difference equation in Cartesian
coordinates is employed at the origin instead of the usual approximate
or extrapolation method. 4

For the purpose of illustrating the computational procedure
using boundary vorticity method, a set of fihite—difference equations
for secondary flow obtained by applying equation (106) to the grid

points along the radial line j = 1 will be written in a matrix form

as follows:
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[ B, Cp NEAREER |
Ay By C3 0 23,1 63,1
Ay By G4 24,1 C4,1
. . ={ . (107)
0 vt Buo1 Ow-rl| Sm1,1] | M1
[ Av By | a1 | ] GO

Here the symbols Ai’ B; and C; represent the coefficient for the depen-
dent variables ;1_1’1, 2,1 and Ci+1,1 respectively, in equation (106)
at the grid point (i,1) and the symbol Gi 1 represents all the terms

on the right hand side of the same equation for fi 1° %1 Similarly,
by considering the radial line j = 1, a set of linear algebraic equations

for the stream function y; ; can be written in a matrix form as
b

[E, F HEZZREE S
Dy E3 F3 0 Y31 H3 1
Dy By Fy Fy Yg,1 He 1
.o ) =| . (108).
0 Dy Em Fu n,1 Hy,1
i (Oper*Fuer) Ewar || Yme1,1] | Mwer, 1l

where Di’ Ei and Fi stand for the coefficient of the stream functions
Y5110 ¥s 9 and Vit 1 respectively, in equation (106) at the grid

point (i,1), and Hi ] denotes all the terms on the right hand side of
3



110

the same equation when fi,] = wi,]'

It is noted that equations (107) and (108) are obtained after
applying the boundary conditions 251 =.Ci,N+1 =i, " 0 for equation
(101) and the boundary conditions wi,] = wi,N+1 = w1’j = 0 and
awM+],j/8r =0 (or wM,j = wM+2,j) for equation (102). The success of
the boundary vorticity method is based on the observation that a
linear relationship exists between the vorticity function CM+],1 and
the stream function wM+1,] at the boundary. For example, given three
sets of values at a boundary point for the vorticity function and the
stream function, namely, ;é]) and ;é]), ;éz) and céz), énd c§3) and
w£3), the following Tinear relationship exists.

(2 ()
R S R (109)
Yy ¥

At the beginning one assumes that CM+1,1 = cé]) in equations
(107) and (108). Then equation (107) can be solved simultaneously for
Ci,]’ i=2,3,...M, by using the Gaussian elimination method. Using
the obtéined vorticity functions, the right hand column of the matrix
equation (108) can be evaluated. Applying the Gaussian elimination
method to equation (108), the values for the stream function wi,] can
be found, and the boundary value wM+],] = wé]) will be stored. By
assuming again CM+1,1 = ;éz) and following exactly the same procedure,
the secondary boundary value wM+1,1 = wéZ) will also be stored. Using

the Tinear relation (109) and noting that ¢é3)= 0, cé3) can be obtained.

Substituting the newly obtained boundary vorticity géz) into equations
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(107) and (108) and solving these equations, one obtains Zi and wi,]’
i=2,3,...M, which represent the numerical solutions along the radial
line j = 1. The same computational procedure will be repeated for
the succeeding radial Tines j =1+ 1,1+ 2, ... etc. with j = 2 at
the beginning. Numerical experiments show that using cé3) the values

of the stream function on the boundary, ¢M+1 1, range from ]0-7 to 0

as compared with the largest value at interior point. Theoretically,
of course, the stream function must vanish at the boundary. It is
noted that an error of the above magnitude may be caused by a round-
off error using a single precision.

With a computational procedure for the numerical determina-
tion of the boundary vorticity established, it suffices to mention
that the usual Tine iterative relaxation method for the numerical
solution of a set of finite-difference equations with the associated
boundary conditions may be employed.

In the numerical computation, the prescribed error for all

the dependent variables and the secondary velocity components is

M+1 M+1
CNH] N
_ (n+1) (n) (n+1) -5
€= 1.23. f'i,j - 35 izj fi5 | <10 (110)

Since the momentum equations (101) and (103) are coupled,
the number of inner iterations involving the boundary vorticity method
is of some interest. The following result is found to be satisfactory

from the viewpoint of computing time after some numerical experiments:
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Number of inner iterations

relating to boundary (f Re)/(f Re)0
vorticity method
20 ~ 50 1.0 ~ 1.1
20 ~ 5 1.1 ~ 1.35
1 1.35 or higher

The parameter f Re will be defined later. The number of inner itera-
tions for wi,j js always one. It is noted that further increase of
the number of inner iterations may destabilize the convefgence of the
iteration process..

In order to accelerate the convergence, an overrelaxation
factor is used. Since nonlinear terms are jnvolved in the elliptic
type partial differential equations for the present problem, no general
method is available for the evaluation of an optimum relaxation factor.
However, with a mesh size of M, N = 28, a relaxation factor ranging
from 1.7 for small Dean number to 1.0 for large Dean number is found
to be satisfactory for all the equations except the momentum equation
(101) for secondary flow where a factor of 1.0 is used always in the
numerical computation. In order to stabilize the convergence in the
high Dean number region, underrelaxation factors of 0.7, 0.5, 0.1 and
0.02 are also tried. However, no appreciable difference is observed
in extending the parametric value as compared with the relaxation
factor of 1.0, confirming that the boundary vorticity method is com-
putationally very stable.

The convergence of the jteration process depends on whether
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or not the coefficient matrix is diagonally dominant. Consider, for

example, an off-diagonal element

jn equation (107). To ensure diagonal dominance, one expects a re-
striction on the magnitude of the secondary flow velocity component
to be '"1’]| < (2/ar-1/r;). If the limit is exceeded, the coeffi-
cient may no longer be diagonally dominant, and the numerical solu-
tion. starts oscillation and finally diverges. At this point it is
useful to recgll the convergence conditions for solving a linear

system Bz = G. The convergence conditions for the coefficient matrix

B are [98].
1y - by 5> 0, = 1,250 ,MH
M+1
(2) bi,i 3_121 ]bi,jl and for at least one i (111)
_j=i the strict inequality holds
(3) The matrix B is irreducible.

Here bi,j denotes an element of the matrix B. In the pre-
sent problem, violation of the above conditions occurs when the
velocity component ui,] becomes large in high Dean number flow regime.
This difficulty can be overcome by using finer mesh sizes, but the
computing time and the round-off errors increase correspondingly. In

order to extend the numerical solution into high parameter region, the
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mesh sizes of M, N = 56 and M = 74, N = 42 are also tried in some
cases in addition to the mesh size of M, N = 28 for most compufations.

Another way of stabilizing the numerical computation is to
introduce an under-re]axatfon factor w < 1. Numerical solution may
be extended further to higher parameter values by use of the under-
relaxation factor but only at the expense of considerable computing
time. It is worth noting that a close analogy exists between the |
numerical methods of solutions for parabolic and elliptic partial .
differential equations. One observes that the stability criteria for
parabolic equations correspond to the convergence criteria for elliptic
eqﬁations [99,100]. As a matter of fact, if one consider convergence
and stability in the sense of Lax and Richtmyer [101j, then it can be
proved equivalent for a difference equation approximating a differential
equation in the formal sense [100]. In this connection it is noted
that the stability condition suitable for parabolic equations with
jnertia or convective terms for explicit finite-difference‘method
is given by Barakat and Clark [102]. This stability criterion was
pointed out by Nunchal, Spalding and Wolfshtein [103] to be the con-
vergence criterion for elliptic equations.

At this point a comparison between the boundary vorticity
method and the conventional methods of determining the boundary vorticity
is of practical interest. One may determine the boundary vorticity by
writing the central finite difference equation for equation (102) at

the boundary leading to the following expression:

o 2
CM"’] g ZIPM,J-/(AF) .
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The approximation of the boundary vorticity is known to have a signi-
ficant effect on the stability of numerical solution. Using the

above expression for boundary vorticity, a set of the governing
equations can be solved by the conventional 1line iterative method.

This method of solution will be referred to as stream function-vorticity
method in this paper. Figure 11 illustrates the results of numerical
experiments for the boundary vorticity method and the stream function-
vorticity method at the values of Dean number K = 0.32, 54 and 90,
respectively. For this comparison, the number of inner itefations

is fixed. At K = 0.32 and 54, the stream function-vorticity method
fails to yield convergent solution with the restriction of equation
(110) for relaxation factor w > 1. In particular, the stream fun¢tion—
.vorticity method fails to yield convergent solution for K = 90 even
with an underrelaxation factor as small as w = 0.05. In contrast,

the boundary vorticity method converges quickly with w = 0.8 ~ 1.0.
InAhigh Dean number range, the boundary vorticity method has definite

advantage in regard to convergence.

3.4 FLOW AND HEAT TRANSFER RESULTS

It is possible to obtain the expressions for the product of
friction factor and Reynolds number (f Re) and Nusselt number (Nu) by
consideriné either the velocity and temperature gradients, respectively,
along the pipe wall, or the overall force and energy balances, respectively,

for the axial length RCdQ. The results are

(f Re); = 4|§W73r|wlﬁ
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(Nu), = 2|B/2r]/ [#0] (112)

(f R-e)2 = 8/w

Evaluation of the mean values indicated above are carried out by using
Simpson’s rule. The above two expressions for the overall character-

istics, f Re and Nu, afford checking the convergence of the numerical

results.

In order to assess the accuracy of the numerical solution,
the axial velocity profile along the central horizontal axis and
jsolines for velocity from this analysis at K = 196 are compared against
Adler's experimental data [19] at K = 205 in Fig. 12. A good agree-
ment is observed between the present numerical solution and the
experimental data. The numerical solution can be extended to K = 205
with relaxation of the prescribed error but the numerical resu]fs at
K = 196 are based on equation (110). The streamlines are also illu-
strated in Fig. 12, and one sees that at K = 196 the center of cir-
culation is situated near the inner wall. The loci of the centers
of circulation are of interest. As Dean number increases, the centers
of circulation move toward the wall radially, but horizontally they
move away first from the central vertical axis toward the outer wall.
With further increase of Dean number they then move back toward the
inner wall. The distribution of the secondary flow velocity is un-

symmetric with respect to the central vertical axis. Furthermore,
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the distribution of the streamlines suggests that at K = 196, the
boundary layer approximation cannot be applied.

The effect of Dean number on average friction factor is
well understood. The effect of Dean number on the local distribu-
tion of friction factor is of theoretical interest but appears to
have not been reported in the literature. Figure 13 shows fhe local
angular distribution of (f Re)¢/(f Re)o as K varies from 0 to 186.8.
At K = 13.8 the value of (f Re)¢/(f Re)0 is seen to be larger than
one along the outer wall (-w/2 <¢<m/2) and less than one along the
inner wall such that the average value is slightly larger than one.
At K = 94.7, the region with (f Re)¢ > f Re)0 occupies nearly three-
quarters of the whole region including the outer wall. With further
increase of Dean number, the value of (f Re)¢/(f Re)0 is always seen
to be less than one in the neighbourhood of ¢ = .

In order to bring out the effect of Dean number on local
friction factor more clearly, the value of (f Re)¢/(f Re)o js plotted
againstAK in Fig. 14 for ¢ = 0 and ¢ = w, together with the average
value (f Re)/(f Re)0 indicated for comparison. In very low Dean
number region, say up to K = 10, the centrifugal force effect on
the average value of f Re is negligible, but one can clearly see the
difference between the Tocal value at ¢ = 0 (or ¢ = w) and the average
value. Within the range of present investigation one notes that both
the local value of (f Re)¢ at ¢ = 0 and the average value increase con-
tinuously with K, but the Tocal value of (f Re)¢/(f Re)0 at ¢ = 7w
remains at around 0.84 after reaching say K = 40.

Fully deve]oped Taminar flow in curved pipes has been
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Local angular distribution of (fRe)¢/(fRe)0 with Dean number K as a parameter.

Fig. 13
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studied very extensively in the past because of its technical im-
portance. Figure 15 shows the comparison between the result of.pre-
sent numerical analysis and the experimental and theoretical data
available in the literature for f Re/(f Re)0 vs. Dean number K. It
is seen clearly that the present result agrees with the experimental
data of White [17] and Ito [41] from relatively small to high Dean
number region, while the predictions based on boundary layer approxi-
mation [19,23,65] lead to completely wrong trend in the low Dean
number region. Ito's prediction is generally good for the range of
Dean numbers under consideration, but has some error in the low para-
meter range. The above comparison serves to illustrate the relative
merits of the various theoretical methods. For the high Dean number
region, Ito's prediction is recommended for use in design. Ito's
empirical equation is given below for reference.

f Re/(f Re), = 0.1008K/2(1 + 3.985k" /2 + 7.782k72)

+9.097k"3/2 + 5.608k°%)
for K > 30

Typical temperature profiles along the central horizontal
and vertical axe§ and isothermals from the present analysis for
Pr = 100 and K = 7.66 are shown in Fig. 16. At K = 7.66 it is ex-
pected that the secondary flow due to centrifugal force is rather

weak. An examination of the energy equation (104) reveals that the
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role of Prandtl number in convective terms is similar to that of Dean
number, and this observation is confirmed by the temperature proff]es
shown in Fig. 16. The temperature profile along the central vertical
axis exhibits saddle shape in the central region, indicating a rather
dominant convective motion therein. One should point out that the
characteristics noted above for the temperature field are further
magnified with the increase of the parameters K and Pr within the
range of the present investigation. Unfortunately the present nu-
merical solution cannot reach the value of K = 632 to enable one to
make direct comparison with the experimental temperature profiles
for air reported by Mori and Nakayama [65]. However, one notes a
significant difference for temperature profile along central horizon-
tal axis in the neighborhood of inner wall (¢ = w), with the present
numerical result and the experimental data lying on opposite sides
of the temperature profile for a straight pipe.

In order to consider the above discrepancy further, the
angular distribution of the local Nusselt number along the pipe
wall with Dean number as a parameter is shown in Fig. 17 for Pr = 0.7
and 100. The variations of the local Nusselt numbers at ¢ = 0
(outer wall) and ¢ = 7 (inner wall) with Dean number K, are shown
in Fig. 18 for Pr = 0.7, with the average Nusselt number included
for comparison. As expected, the situation is similar to that shown
in Fig. 14 for friction factor.

The overall heat transfer resutls in terms of the Nusselt
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Fig. 18 . (Nu)¢/(Nu)0 versus K at outer surface (¢ = 0) and inner surface (¢ = =)
with comparison mede against Nu/(i\lu)0 for Pr = 0.7.
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number ratio Nu/(Nu)0 vs. Dean number K from this analysis are shown
in Fig. 19 for various Prandtl numbers with comparison made against
0zisik and Topakoglu's results [74] using perturbation method, Mori
and Nakayama's theoretical results using boundary layer approxi-
mation and their experimental data [65], and also Seban and McLaughlin's
experimental data [61]. It is noted that. the data obtained by Seban
and McLaughlin [61] are reproduced here by using the same transfor-
mation as that used by Ozisik and Topakoglu [74]. It can be seen
that the average Nusselt number from this analysis is closer to the
experimental data at outer surface than those at inner surface éiven
by Seban and McLaughlin [61]. For Pr = 0.7 (air) the result from the
present analysis agrees with Mori and Nakayama's data [65] for air.
As can be clearly seen, Ozisik and Topakoglu's results from perturba-
tion method diverge quickly with the increase of Dean number. It is
now evident that the perturbation method cannot be applied to the
forced convective heat transfer with secondary flow except in a very
low parameter region which is practically not important. Based on the
results from this analysis, it appears that Mori and Nakayama's
theoretical result from boundary layer approximation is valid near
Pr = 1.0 only, and the result for Pr = « shown in [65] is believed
to be invalid. The existence of asymptotic value for Pr » « is
doubtful; but the asymptotic value does indeed exist for Pr -+ 0,
as shown in Fig. 19.

The effect of Prandtl number on forced convective heat

transfer in curved pipes is of considerable theoretical and practical
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interest. A careful study of the heat transfer results for Pr > 1
shown in Fig. 19 reveals that after reaching a certain Dean number

or Nu/(Nu)0 ~ 1.35, all the curves become straight lines and more or
less parallel to each other. For a given value of Nu/(Nu)o, the
Prandt] number effect can also be seen from the decrease of K with the
corresponding increase of Pr. The above observation for Prandtl number
effect on heat transfer result also confirms the role of Prandtl
number in the convective terms of the energy equation (104) noted
earlier. A study of the basic equations shows that when the Prandtl
number is large, the inertia terms in the momentum equations (101)

ahd (103) can be neglected. This fact is also verified by the nu-
merical results. In other words, while the secondary flow is rather
weak, the convective terms in the energy equation (104) are impdrtant
because of large Prandtl number. With large Prandtl number it can be
shown that a new parameter KZPr results.

For example, by introducing the secondary flow characteristic
axial velocity W and other suitable characteristic quantities for
T-T, P'andQ, the radial momentum equation (95) and the energy
equation (98) may be normalized. Noting that the centrifugal force
term and the viscous terms in the momentum equation must be of the
same order of magnitude, one obtains UC/ﬁ'= Re(a/ZRC). Using this
relation, the new parameter K2Pr can be shown to appear as a coeffi-
cient of the convective terms in the normalized energy equation. Al-
ternatively, by normalizing the dimensional momentum eauation for

secondary flow corresponding to equation (101) and the energy equation
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(98), the parameter k2Pr can also be shown to arise.

It is now possible to obtain a new correlation of heat
transfer results for high Prandtl number fluids as shown in Fig. 20
where all the results presented in Fig. 19 are replotted on the basis
of Nu/(Nu)O VS. (KZPY)1/2 for illustration. Since Seban and McLaugh~
lin's experimental data [61] are for fluids with Prandtl number rang-
ing from 100 to 657, the arithmetic mean value of 379 is taken as a
value of Prandtl number for simplicity in replotting. It is signi-
ficant to note that with the new correlation all the theoretical curves
for Pr > 1 from the present analysis nearly coincide. This sﬁggests
the practical implication of "large" Pr. Furthermore, all the experi-
mental data for Pr = 379 and 0.7 (air) are seen to scatter within a
narrow band around a new correlation Eurve with a higher Dean. number
portion obtained by a 1inear extrapolation of the present theoreti-
cal results. The agreement between a new correlation curve and the
" available experimental data is considered td be remarkasle in view
of the fact that the new correlation is based on the assumption that
the Dean number is small and the Prandtl number is large. Further-
more, one should note the inherent difficulties in the experimental
measurements and the experimental simulation of the thermal boundary
condition such as the uniform peripheral wall temeprature at any
cross section. The following approximate equation is deduced using .

the new parameter K2Pr as the curve to best fit all the numerical

results.
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Nu/ (Nu),, = 0.1819(1-0.8390" 1+35.40~2-207q"+4190"%) (113)

where 0 = (k2Pr)1/% > 3.5 for Pr > 1.

For Q < 3.5, the secondary flow effect is estimated to be
less than 1.5 per cent in terms of the Nusselt number ratio Nu/(Nu)o.
In view of the possible experimental errors in the region Q < 3.5,
the secondary flow effect is not considered to be important in that
region. The correlation equation (113) can now be considered to be
valid for all the practically important laminar regimes ‘with suffi-
cient accuracy. In the application of the correlation equation (113)
to the flow pegime where the Dean number K is greater than say 200, it
is well to note that secondary flow stabilizes laminar flow with the
transition Reynolds numbers of 6000-8000 being characteristic of
helically coiled tubes [35] and also the present analysis is valid
up to a/R; = 0[10']]. Recent experiments by Baylis [43] for laminar
flow in curved chénne]s of square section confirm that the present
formulation is valid up to a/R. = 1/3.5 in practice. Baylis [43]
observes a good agreement between his experimental data [43] and the
numerical results given by Cheng and Akiyama [78].

The inconsistent behavior of the boundary layer approxi-
mation [65] for the Prandtl number effect is evident from Fig. 20.
For example, the heat transfer results for Pr =1, 4, and Pr = 379,
500, are c]éarly on the opposite sides of the new correlation curve.

This leads to the conclusion that the boundary layer approximation
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[65] is valid only near Pr = 1.0.

In view of the recent experimental data for the asymptotic
Nusselt numbers presented by Dravid et a1 [82] for the case of uni-
form wall heat flux, a comparison among all the existing theoretical
and experimental results is believed to be pertinent and is shown in
Fig. 22. The new experimental data for Pr = 5, 55 and 125, and ;he
predictions based on empirical equation for the asymptotic Nusselt
numbers presented by Dravid et al [82] and valid for K = 50 ~ 2000
and Pr = 5 ~ 175 are seen to lie below the numerical result for the
corresponding Prandtl number. However, the slopes of the curves are
seen to agree with each other. It is also seen that Seban and McLaugh-
lin's experimental data do not check with either the experimental
data for Pr = 175 or the empirical correlation equation suggested
by Dravid et al [82].

A comment on the computing time required to obtain a com-
plete numerical result for fiow and heat transfer at each value of
the parameter Cz/rc may be of interest. It takes about 2 min for CZ/rc =
103 and 8 min for C%/r_ = 4 x 10% with M, N = 28 and Pr = 1.0 on
IBM 360/67. On the other hand, a computing time of approximately
40 min is required to obtain a complete result up to Cz/rc =4 x 104

with M, N = 28 and Pr = 1.0. One notes that the computing time de-

pends to a large extent on the selection of a relaxation factor.
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3.5 CONCLUDING REMARKS

. 1. The numerical solution using a combination of the line
jterative method and boundary vorticity method is shown to be very
effective up to a reasonably high value of the Dean number where an
asymptotic behavior already appears for flow and heat transfer re-
sults, and further result for high Dean number range can be obtained
by a Tinear extrapolation. The distinctive features of the new method
are its simplificity, computational stability, and a significant
saving in computing time as compared with the conventional methods.

2. The Prandt] number effect for fully developed laminar forced
convection in curved pipe is clarified for the first time. It is
shown that all the heat transfer data for the present prob]eﬁ can be
correlated by a single curve using a new parameter Q = (KzPr')]/4 for
Pr > 1. This observation of the asymptotic behavior in heat transfer
résu]ts for Prandtl number effect is noteworthy and significant.

The final validity of the proposed correlation equation using the
new parameter Q should be checked critically by future theoretical
and experimental data.

3. According to the order of magnitude analysis, the present
formulation is considered to be valid for a/R. 5_0[10'2]. Hdwever,
it is of practical interest to note that the assumption 1 in the formu-
lation of the problem may be considered to be valid up to a/RC = 1/10
in practice. This observation is based on the theoretical and experi-

mental flow results available in the literature [17,41,35].
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4. The correlation equation (113) clearly indicates the
existence of the asymptotic behavior for large Prandtl number or
large Dean number, and only the first term on the right hand side
of equation .(113) is significant. This finding is similar to that
observed in earlier work [78] and is considered to be of practical
importance.

5. Based on the present numerical results it is now evident
that the perturbation method as used in the literature diverges
quickly with the increase of the Dean number. This remark applies
to a class of broadly similar forced Taminar convection problems
with secondary flow. Furthermore, it is shown that the boundary
layer approximation predicts inconsistent Prandtl number effect
and is valid only near Pr = 1.0.

6. The numerical results resulting from the present study

are listed as Appendix 6 for future reference.



CHAPTER IV

GRAETZ PROBLEM IN CURVED PIPES
WITH UNIFORM WALL TEMPERATURE*

4.1 INTRODUCTION

The thermal entrance region problem for fully developed
laminar flow in curved pipes is of practical and theoretical interest
but no theoretical analysis is available in the literature until
recently. Dravid, Smith, Merri11 and Brian [82] reported 2 numerical
study on thermal entrance region problems in curved pipes for three
basic thermal boundary conditions including those for a uniform wall
temperature. Their numerical study for laminar flow is Timited to
the case with Dean number 225 only and with a fully developed velocity
field obtained from Mori and Nakayama's theoretical solution [65]
based on boundary layer approximations. The author became aware of
the numerical analysis of Dravid et al [82] after the present work
was completed. In view of the rather 1imited work reported so far
on the Graetz problem in curved pipes, it is obvious that further
theoretical and experimental work is‘requjred before the design data
comparabie to the classical Graetz problem in straight pipes is
complete.

The purpose of this part of the thesis work is to present

a complete numerical solution for the Graetz problem in a curved pipe

*The abstract for this work was presented in reference [84].
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with auniform wall temperature valid up to Dean numbers of order 100.
The present numerical result and its implications will be critically
examined against the main conclusions of Dravid et al [82,83] based

on numerical and experimental investigations for high Dean numbers.

It should be pointed out that the numerical results obtained in this
investigation are directly applicable to the corresponding mass transfer

problem by noting the analogy.

4.2 GRAETZ PROBLEM IN CURVED PIPES

The classical Graetz problem is to determine the development
of the temperature profile along the heated (or cooled) section of
flow passages for a steady fully developed laminar flow of an incom-
pressible viscous fluid with constant physical properties (see Fig.
22). Since the publication of Graetz's classical work [100], the
problem of thermal entrance region heat transfer has been extended
in many ways to include various real effects which were not considered
originally by Graetz. The Graetz problem in curved pipes is characterized
by the inclusion of the convection terms due to secondary flow in the
energy equation which is additional to the case of steady Poiseuille
flow in straight tubes where the axial convection term represents the
sole convection effect. The following assumptions are made in order to
1imit the scope of the present analysis:

1. The curvature ratio a/R. is small (a/Rc<< 1).

2. The physical properties are constant and free convection
effect is negligible.

3. Viscous dissipation is negligible and heat sources do not

exist.
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4. The axial conduction term is negligible compared with the

radial conduction term in the energy equation (Pe > 50).

The practical implications of these assumptions are known.
For example, according to recent work [96] the Graetz solution is
found to be applicable only when the Rayleigh number [96] is less
than about 103. With assumption 2, the energy equation is seen to
be uncoupled with the momentum equations, and the flow problem solved
in Chapter III can be applied to the present problem as well. The
energy equation without the axial conduction term becomes parabolic.
A variety of thermal boundary conditions may be possible in practice,
but the conditions most frequently studied as reference cases are
uniform wall temperature and uniform heat flux at the wall. In this
analysis, the fluid temperature is assumed to be constant (To) and equal
to the wall temperature up to some axial position RCQ = 0 where a step
change in the wall temperature to a higher (or tower) value (Tw) is
jmposed (see Fig. 22). Referring to the coordinate system defined in

Fig. 10 of Chapter III, the energy equation can be written as,

2
ELRE:

Lk
R. 3@ “'gp

-—f

aT T
U-é—ﬁ-+ ﬁ‘*

0| <
N

157, 1 3%

It is noted that the above equation corresponds to equation

2 neglected. The cir-

(86) with the axial conduction term a azT/RczaQ
cumstances under which the axial conduction term may be neglected are
well discussed in Chapter II. In general, one may state that the axial

conduction term is negligible except very near the thermal entrance of
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a pipe and for a low Peclet number flow regime. The boundary condition

is simply,

1]
o

T= T0 = constant at Q
(115)

constant at R

e |
u
—
1]
n
[+})

and

- Introducing the following non-dimensional variables and the

characteristic parameters,
= [alr, R, = [alr_, U = [v/alu, V = [v/alv, W = [Cv/alw,
(T-1,) = [T,-T, 6, (a3/4vu)(aP0/RCaQ) = C, and v/a = Pr,

equations (114) and (115) become

2 1/2 1/2 2
96 vV 30 C 1 36 _ 1 ) ]__g 1
8=1at Q=0
(117)
8=0 at r=1

The parabolic equation (116) is seen to be of second-order
in r and ¢ and first-order in Q. Therefore, only one boundary condi-

tion in Q can be satisfied with the asymptotic condition 6 = 0 at Q = =,
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required for the elliptic problem abandoned. Due to symmetry of the
problem, one has ae/a¢'= 0 along the horizontal center 1ine (¢ = 0

and w) and a solution is required only for the upper half of the circular
region (see Fig. 10). The difficulty of the analytical solution for
thg present Graetz problem in curved pipes is manifested by the rather
1ihfted applicability of the perturbation method [64] even for the
asymptotic case involving the fully developed region. In view of the
difficulty with the analytical solution and the availability of the
numerical solutions for the momentum equation in Chapter III, the
parabolic energy equation (116) will be solved numerically by using

an alternating direction implicit method.

The 1imiting case of Pr - 0 is of considerable practical
interest. For this purpose, the energy equation (114) can be normalized
by introducing additionally @ = QW with Qc denoting a characteristic
“value indicating an axial angle Q required for the thermal entrance
length. By noting that the axial convection term must be of order

one in the normalized equation, one obtains

2 2
3 ,v3ey, 38 _ 3%, 1230, 1 3%
Prlugr*rag *"aw= 2" r 2R

(118)
a. = Pr(c/r.) = Pr(a/R )" 2(x/2W)

It is seen that when Pr >~ 0, the convective terms involving Pr can be
neglected and the secondary flow effect appears indirectly through w in
the axial convection term. It is significant to note that Qc provides

a measure of the thermal entrance length. The energy equation also
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suggests that the Nusselt number is a function of the Prandtl and Dean

numbers and the curvature ratio a/Rc does not appear explicitly.

4.3 NUMERICAL SOLUTION USING THE ADI METHOD

The numerical solution of the momentum equations given in
Chapter III is accomplished by a combination of the boundary vorticity
method and a 1ine iterative relaxation technique. The numerical solu-
tion of the general Graetz equation is of considerable interest, and
an ADI method is employed for the integration of the parabolic equation.
Since the numerical experiments concerning the stability and conver-
gence in connection with the ADI method for the problem under consi-
deration seem to be rather -1imited, and furthermore the numerical solu-
tion of the Graetz problem with secondary flow apparently has been re-
ported only once in the past [82], a brief account of the ADI method
used will be given here.

For the purpose of illustrating the computational procedure,
a set of finite-difference equations in the radial and tangential
directions, respectively, for equation (116) will be written in matrix

form as follows using a three-point central-difference formula:



r-direction

(k+172)  (k+1/2)
By i Caj ®2.,3 62,3
A, Bai G35 83,3 63,
Al,J Bi,J ¢ i,J Gi,J
0 )
_ Mg Wi | | %) [ B
where j = 1,2,...,N+1.
¢-direction
(k+1) (k+1)
~ o .
Ei Fin 1 [®i
D; 2 Bi2 Fy2 8,2
Di,i Bii.F %53
0 . .
Diner Eigner | [ i Ne1
where 1 = 2,2,...,M.
The elements of the coefficient matrices are:
Ai,j = - (Prar/2) Ui g - 1+ Ar‘/Zr.i
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(k)

(119)

(k+1/2)

- (120)
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[Bi’j](k+1/2)=[Pr(C2/rc)]/z(l/rc)]/z . 2(Ar)2/AQ . wi,j+2](k+]/2)
Ci,j = (Prar/2) uj 5 - 1 - (Ar/Zri)

= Pr(Ar)2/2A¢ri . Vi,j + (Ar)zlriz(A¢)2

(e
1}

= [-Plr‘(c‘?/rc)1/‘2(1/1":)1/2 . 2(Ar)2/AQ "W

—/
m
o
-
[N
—
~~
Foyd
+
—
d
|

- 2(ar)%/r 2(a0) 21 (K1)

Fiyg = Pr(en/aras - vi 3+ @n?reFas)?

o5 511 + [epr(c®r )2 (1/r )2 2(ar) 220,

67,519 = o,

wig - 20 0% - e 10 4k e 100

p(k+172) [{-Pr(CZ/rc)]/2(1/r‘c)]/22(A'”)2

(k+1/2)_
[Hi 9j] -Ai ’j[ei"l ’j

JAQ wi,j + 2} e-i ’j](k"']/Z) + c1,j[ei+'| ’j](k+]/2)

It is noted that the finite-difference equations along the horizontal
center line, i=1,2,...M#1 for j=1 and N+1, take a special form after
satisfying the symmetry condition 36/9¢ = 0 and the wall boundary con-
dition also modifies the elements of the coefficient matrix. One also

notes that the singularity inherent ét the origin of the cylindrical
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coordinates can be -avoided by employing a finite-difference equation in
Cartesian coordinates there.

Before presenting the main steps for the ADI method, the cal-
culation procedure at the center point will be outlined. The usual
procedure is to compute the value at (1,1) for the intermediate step
(k+1/2) using the forward difference method based on the known values
for (1,1), (2,1) and (2,N+1) from the previous step k. Using the new
value for the center, the computation then proceeds to the intermediate
step (k+1/2). The modified procedure used in this study consists of
replacing the point (2,N/2+1) at the intermediate step (k+1/2) by the
corresponding points for steps k and (k+1). The modified procedure
now involves a forward difference explicit and a backward difference
scheme and thus eliminates the need of using the grid point (2,N/2+1)
at the intermediate step (k+1/2) in applying the ADI method.

With the procedure for the center point established, the
solution of equation (116) can be accomplished by performing the fol-
lowing main steps:

1. The values for u;

and W; 5 are obtained from the

SA 3
solutions of the related momentum equations in Chapter III.

The initial values for 6; ; are set to be one, or any other

sJ
reasonable values, since the fully developed condition
is of primary interest here. Then the boundary condition
6M+1,j = 0 is applied.

2. The value of 8y 1 for the intermediate step (k+1/2) is com-
puted, using the values at (1,1), (2,1), (2,N/2+1) and

(2,N+1) from the previous step k.



148

3. After knowing 61’] for the intermediate step (k+1/2) and
all the values for ei,j at the previous step (k), equation
(6) can now be solved for ei,j at step (k+1/2) using
Thomas' method.

4. With all the values for ei,j known at the intermediate
step (k+1/2), equation (120) can be solved for ei,j at
step (k+1). '

5. Since the values for the center point and the adjacent -
three points at the intermediate step (k+1/2) are known,
the value for e],] at step (k+1) can be computed.

6. The above procedure can now be repeated until a fully

developed temperature field is reached.

Since the computation of the Nusselt number is of primary
interest in this study, the thermally fully developed situation is
ascertained by the relative variation of the Nusselt number along the

axial direction using the following relationship:
e = (™) _ (M) (n) (g, g3 (121)

where n is an axial step number and ¢ is a reasonably large integer
such as 20 or 50.

The mesh sizes of M=N=14, M=14 and N=28, M=28 and N=14, and
M=N=56 are examined to establish the accuracy for the numerical re-
sults and the mesh size of M=N=28 is found to be satisfactory from

the viewpoint of accuracy and computing time. The angular coordinate
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is transformed into n by using the equationn =1 - e'Q and the axial

4 -4

step sizes A2 = 0.1 x 10™F ~ 0.2 x 10" corresponding to An = 0.1 x 10

0.1 x 1072 are used.

Wheri the Dean number or Prandtl number is large, the local
Nusselt number starts fluctuations after reaching a minimum Nusselt
number and a subsequent maximum value at some distance from the thermal
entrance as shown in Fig. 23 if the numerical solution starts with
ei,j = 1 at the entrance. This phenomenon is similar to that reported
by Dravid et al [82,83] for the high Dean number regime. The question
arises as to whether or not this is a true physical solution or merely
a manifestation of numerical instability. In order to clarify this
point, the 1imiting Nusselt number for the fully developed temperature
field is computed using three different initial values for the case of
Pr = 500 and K = 6.26. It is found that if the numerical solution
starts at some distances from the entrance with the initial values
obtained from the completely converged cases of K = 2.44 and 3.14,
respectively, the limiting Nusselt number of 12.1 is obtained for
both cases, (see Fig. 23). On the other hand, with ei,j =1 at the
entrance, the fluctuation phenomenon as pointed out earlier appears.
Eventually the oscillation of the Nusselt number is damped out and a
stable lower Timiting Nusselt number of 8.0 is obtained. The oscil-
lTation of the local Nusselt number remains even with a further de-
crease of the mesh size. It should be pointed out that the local maxi-

mum value of the Nusselt number at the start of fluctuation corresponds

closely to a limiting value of 12.1. If the fluctuation of the local
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Nusselt number is regarded as a true physical! solution [82], .
then it seems to contradict the known fact that the effect of the
secondary flow is to decrease the thermal entrance length. In this
connection, the numerical data for local Nusselt number variation
with axial distance from entrance for the case of a constant uniform
wall temperature reported in [82] §how that the thermal entrance
length for the case Pr = 5 and K = 225 is nearly identical to that
of a straight tube. In addition, if the damped limiting value of the
Nusselt number is taken as a true physical solution, the plot for
limiting Nusselt number versus Dean number will have a lower slope
after reaching a certain high Dean number depending on the Prandtl
number.

In view of the above fluctuating phenomenon for local
Nusselt number observed at Pr = 500 and K = 6.26 in the thermal entrance
region, it is desirable to study the possibility of a fluctuating
phenomenon arising from a numerical instability of the méthod used.
As noted in Chapter III, the stability of the numerical method for
parabolic equations is somewhat similar to the convergence of the
iteration method for elliptic equations and the axial steps K, K+ 1/2
and K + 1 in equations (119) and (120) for the ADI method corresponds
to the iteration steps in the iteration method. The repeated use of
either equation (119) or (120) in the ADI method is much the same as
that of the corresponding finite-difference equation in the line
successive-overrelaxation method discussed in Chapter III, and the

convergence criteria given by equation (111) may be applied to the
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present case. However, in the present ADI method, a complete
computation cycle consists of the first sweep in the r-direction
using equation (119) and the second sweep in ¢-direction using
equation (120). In general, the alternating use of the r- and
¢-directions, computation processes would give favorable effects on
stability. As a matter of fact, the numerical solution [104] of
Poisson's equation for the unsteady heat conduction problem involving
a rectangular region using an ADI method is known to be stable for
any combination of the time jncrement At and spacial mesh size Ah.
In contrast, the repeated use of the single direction computation
process may be unstable for some combination of At and Ah [99].

One may now study the stability of the ADI method by using
the convergence criteria given by equation (111). It is noted that
the diagonal dominance of the coefficient matrix may be an important
factor for the stability of ADI methods. An inspection of the off-
diagonal elements in the coefficient matrices in equations (119) and

(120) reveals that the following restriction will ensure the diagonal

dominance.
|.A2L’|.|-}:i - Prou; s | <1
for equation (119)
l’Azilr'l"i Prov, ) 1 <1 (122)

for equation (120)
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The above relations show that the magnitude of Pr Ui ;

and Pr Vi ; are of primary importance for convergence criteria. The
9

J
violation of the above restrictions may lead to stability problems

and the solution may not be convergent. Rewriting equation (119)

as B(k +1/2) e(k +1/2) = G(k), one notes that the present discussion
is concerned only with the characteristics of the coefficient mafrix
B(k ¥ ]/2). A source of computational error may also arise from the
column vector G(k) and this possibility will be considered next.

One may define the residual R(k)for the system involving

equation (119) as

r(K) < (k) _ gk +1/2) ok +1/2) (123)

One notes that the accumulation of the round-off errors can reasonably

be represented by the above residual [105]. One may write G(k) as

2
a(K) - [ A¢ - Provy 5+ (A¢ T =) ] 0, (k)

2.1/2 4 172 2
+ [Pr (9 / (T L),

re re A2 i,
20w
g %
2
+ [- gt LU + (e ) ‘] 0 50V (124)

Consideration will now be given to the evaluation of the

(), 6, (K and o, . (%), Taking the

coefficients for ei 1. i3+
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(k)

coefficient of ei j-1 as an example, one notes that the computational
b ]

accuracy of a point velocity Vi is much less than that of (Ar/A¢ ri)z.

J
The multiplication of Vi by a large Prandtl number, for example
may magnify the computational error for the term involving Pr Vi,j
in comparison to that of the term (Ar/ri A¢)2. Specifically, the
difficulty may arise when Pr Vi,jlz becomes more important than ]/ri Ad.
This possibility may arise when either the Prandt]l number is large or

the secondary velocity is large for large Dean numbers. The above
observation suggests that the numerical difficulty may arise when

either the Prandtl number or the Dean number is large. At present

this is generally the observed fact for the numerical solution

involving secondary flow problems. 1in the computation of the coefficient

(k)
for 6, j-1° the inaccurate term involving Pr v. . may dominate. If
>

153
this happens, the numerical evaluation of the column vector G(k) may
be quite off from its true value and the resulting error may be directly
responsible for the numerical instability. This in turn may lead to
the fluctuating phenomenon for the local Nusseit number. This obser-
vation cannot be regarded as conclusive, but the possibilty cannot be
ruled out completely. Of course, the round-off error .involving the
coefficient matrix B(k +1/2) is also related to the residual R(k).
The situation for the coefficient matrix and the right-hand column
vector in equation (120) is similar to that discussed so far. It is
now clear that the numerical instability is a possibility when either

the Prandtl number or Dean number is large. Further reasoning against

the oscillation phenomenon as the true physical solution can best be
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achieved with a detailed study of the temperature development

in the thermal entrance region.

4.4 DEVELOPMENT OF THE TEMPERATURE FIELD IN THE THERMAL
ENTRANCE REGION '

The interaction between the fully established secondary
flow and the developing temperature field in curved pipes represents
a departure from the classical Graetz problem in straight tubes. A
study of the developing temperature field may shed some 1ight on the
physical mechanism of convective heat transfer in the thermal entrance
region of a curved pipe and provide a means for fhe fundamental under-
standing of overall heat transfer characteristics. For this purpose
the temperature profile developments along the central horizontal
and vertical axes are illustrated in Figs. 24, to 27 for Pr = 0.1,
0.7, 10 and 500, respectively, with a typical Dean number. The
characteristics of developing temperature profiles are distinctively
different from those of the classical Graetz problem in straight
tubes or channels in that the thermal boundary layer development
along the wall around the circumference. Here the thermal boundary
layer is defined as the region near the wall where the fluid temperature
is different from the uniform entrance fluid temperature. It is
clearly seen that the thermal boundary layer develops much more
rapidly at the inner wall (¢ = w) than at the outer wall (¢ = 0)
and eventually the thermal boundary layer at all angular positions

(6 = 0 ~ w) merges at some distance from thermal entrance depending
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on the Prandtl and Dean numbers. After the merging of the thermal
boundary layer at all angular positions, the temperature profile may
further adjust itself and finally the fully developed temperature
field is attained. The above observation is significant and a
crucial one in arguing against the physical realization of the
Nussé1t number oscillation phenomenon observed numerically by Dravid
et al [82] just before reaching the asymptotic value. This point will
be critically examined when numerical results for Nusselt number are
presented later. Note also the complete disappearance of the initial
uniform temperature profile at the entrance does not signal the
completion of the developing temperature fieid. .

Since the Dean numbers are identical (K = 123.2) for
Figs. 24 and 25, the effect of increase in Prandtl number from Pr = 0.1
in Fig. 24 to Pr = 0.7 in Fig. 25 is seen to decrease the thermal
entrance length for a given value of Dean number. On the other hand,

the general characteristics for developing temperature fields shown in

Fig. 26 for Pr = 10 and K = 37.1 and Fig. 27 for Pr = 500 and K = 4.45
are qualitatively similar and from this, one may conclude that the
effect of the Dean number on temperature profile development is similar
to that of the Prandtl number for a given Peclet number. Of course,
when one considers the effect of one independent parameter such as the
Dean number, the other independent parameter, namely the Prandtl number,
must be kept constani. In Figs. 24 to 27 the last temperature profile

may be regarded as a fully developed one.

Further insight regarding developing temperature fields
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may be obtained by a study on the distributions of isothermals

and the cases of Pr = 0.7, K = 123.2 and Pr = 10 and K = 37.1
corresponding to the cases of Figs. 25 and 26,respectively, are

shown in Figs. 28 and 29. In observing the distributions shown in
Figs. 28 and 29, one should note that wifhout secondary flow, the
isothermals are concentric circles, and the gradual distortion from
near circles close to the entrance represents the secondary flow effect.
The effect is seen to increase with the axial distance. The patterns
of isothermals at various axial distances are closely related to the
Nusselt number variation which will be discussed 1ater.‘ At this point,
it suffices to note that at 1/Gz = (1/Pe) (R _/2a) = 2.98 x 102 shown
in Fig. 28, kidney-shaped isothermals with concave part appears and
the isothermals for 1/6z = 5.06 x 10°2 and 8.83 x 1072 are remark-
able similar since both represent thermally fully developed situations.
In Fig. 29, at 1/Gz = 1.01 x 10'2 eventually the concave portion of
isothermals merges with the convex portion of isothermals near the
outer wall, and the eyes of isothermals appear. As a result, the
minimum temperature location is shifted toward ¢ = ©/2 in contrast to
those along ¢ = 0 for all axial positions shown in Fig. 28. The
location of the minimum temperature point or the existence of one or
two such points apparently depends on Prandtl and Dean numbers and
axial position. It is interesting to note that the plume-like behavior
in the form of a warm current penetrating into the cold fluid core

region becomes apparent after reaching some axial position.
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4.5 NUMERICAL RESULTS FOR NUSSELT NUMBERS

For the case of constant wall temperature, the average
Nusselt number is of practical interest in design. However, the
Jocal Nusselt number variation in the thermal entrance region is of
considerable importance for a basic understanding and might clarify
the reasons behind the practical difficulty in correlating the Timited
experimental data as experienced by several investigators. The use
of two alternative expressions in evaluating the local Nusselt number
js particularly useful in checking the accuracy of the numerical
results. The Nusselt number, Nu = h(2a)/k, can be obtained in two
ways by.considering either the average wall temperature gradient or

the local energy balance in the axial direction as:

(Nu); = 2w [38/ar], / W8]

172 V2 .
(Nu), = pr (c¥/r)) " (/r)  WIWaG/oa] / [Wel (125)

Simpson's rule is used in evaluating the mean values
appearing in equation (125) except for |wa8732| wﬁere the trapezoidal
rule is employed. The local Nusselt numbers versus 1/6z = (1/Pe)(RcQ/2a)
with Dean number as a parameter for Pr = 0.1, 0.7, 10 and 500 are
shown in Figs. 30 to 33, and the corresponding plots for the average
Nusselt numbers over the length are included as Figs. 34 to 37. In
plotting the numerical results, the average value of the two Nusselt
number expressions is used and each definition is found to deviate

from 0 to 1.5 per cent from the average value indicating good
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conVergence and accuracy. The deviation of 1.5 per cent occurs
only between the minimum Nusselt number point and the fully
developed point.

At Pr = 0.1, shown in Fig. 30, the general feature of
the Tocal Nusselt number variation is similar to that of the classical
Graetz problem without secondary flow and one can identify easily
the Leveque solution region [106] as the straight 1ine part near the
entrance. The effect of the Dean number is seen to increase the
Nusselt number and shorten the thermal entrance length. At Pr = 0.7
shown in Fig. 31, the behavior of the local Nusselt number variation
| is considerably different from that of the classical one in that
after reaching a minimum Nusselt number value depending on Dean number
at some downstream axial position, the effect of secondary flow
predominates over the entrance effect and the Nusselt number increases
until a fully developed temperature field is reached. Once the
temperature field is fully established, no further variation in
Nusselt number is physically possible as shown in Fig. 31. It is
instructive to contrast the local Nusselt number variation with the
temperature field development in the forms of temperature profiles
along ¢ = 0, m and 7/2 and isothermals explained in Section 4.4.

2 shown in Fig. 28

For example, the isothermals at 1/Gz = 1.02 x 10°
correspond to a minimum Nusselt number point shown in Fig. 31 for

K = 123.2. At this axial position fhe isothermals are still convex
everywhere, but from this position on, the concave portion appears,

and the secondary effect is felt throughout the whole region of
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the cross-section.

By noting the curves for K = 123.3 shown in Figs. 30 to
32, one can see clearly that the effect of Prandtl number is to
increase the Nusselt number gt any axial position and shorten the
thermal entrance length. With Pr = 10 and 500 shown in Figs. 32
and 33, the fluctuation of Nusselt number value similar to that shown
in Fig. 23 appears from the points indicated by arrows onward, and
s eventually damped out. A study of the temperature development
reveals that at these points fhe temperaturg field is already deve-
Toped and the fluctuations observed may be attributed to numerical
instabf]ity since once the temperature field is established, the
Nusselt number cannot change. One possible cause for the numerical
difficulty is suspected to arise from the fact that when the Prandtl
or Dean number is large, two points of inflection for aze/ar2 appear
after the temperature field becomes established as shown in Figs. 26
and 27. This is in contrast to only one point of inflection for
326/3r2 Shown in Figs. 24 and 25 for Pr = 0.1 and 0.7, respectively.
The change in sign of curvature for the temperature profile with
large Prandtl or Dean numbers is due to the dominance of the éonvective
tefms involving ude/ar and va6/ra¢ representing the secondary flow
effect over the axial convection term involving wa6/32 with the con-
duction terms becoming negligible in the core region, and as a result,
the character of the coefficient matrix for equation (119) or (120)
may change drastically leading to the off-diagonal dominant matrix.

In interpreting the graphical results shown in Figs. 30
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to 37, the effect of the Peclet number appearing in the abscissa

must be taken into account. For example, with Pr = 500 and the

4

inverse of Graetz number (1/Gz) = (1/Pe)(RcQ/2a) = 10" ', the dimension-

less axial distance (RCQ/Za) becomes 10, 100 and 500 for Re = 200,
2000, and 10,000, respectively.

‘At this point it is desirable to compare the present
numerical result and its implications with the main conclusions of
Dravid et al [82]. According to the present numerical study, the
fluctuations in the values of Nusselt numbers appear only after the
growth of the thermal boundary layer a]png the axial direction is
fully arrested by the complete development of the temperature field,
and furthermore the growth of the thermal boundary layer is continuous.
The above observation is in tompléte disagreement with the interaction
mechanism between secondary flow and propagating thermal boundary
layer as proposed in Fig. 8 of Refernce [82]. . According to Dravid
et al [82], the fluctuations in the values of Nusselt numbers occur
while the colder fluid core region still occupies most of the region
of the tube cross-section. This is in direct contradiction with the
present fesu1t, and the proposed explanation and subsequent computed
prediction for the first wavelength are believed to be invalid. It
should be noted that for the numerical results shown in Figs. 30 and
31 for Pr = 0.1 and 0.7, respectively, no fluctuations of the Nusselt
number values are encountered. At present no satisfactory explanation
can be found for the true cause of the fluctuation phenomenon after

a fully developed temperature field is approached.
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.In contrast to the complete numerical solution presented
in this work, Dravid et al [82] carried out a numerical solution for
the energy equation only with the velocity field obtained directly
from Mori ﬁnd Nakayama;s approximate analytical solution [65] based
on a hydrodynamic boundary layer near the wall and a potential inner
core for the secondary flow. The numerical study in Chapter III
indicates that this model is inaccurate since even at K = 196 (see
Fig. lé) the secondary flow streamlines are distorted considerably
from the idealized model shown in [65] and the eyes are shifted
‘toward the inner wall instead of remaining at ¢ = m/2 regardless of
the Dean number. Because of the idealized model, some uncertainty
"also exists for the cohvective terms due to secondary flow in the
energy equation, and the situation becomes progressively worse as the
Prandt] number increases. Furthermore, Dravid [83] assumes that there
is no heat flow in the radial direction at the tube center in his
numerical solution which is clearly incorrect. Dravid et al [82]
obtained a numerical'solution with a Dean number of 225 only. Ii
should be pointed out that numerical difficulty arises when the Dean
number exceeds the highest values indicated in the figures for
Pr = 10 and 500 only. Generally, it can be said that the convergent
solution cannot be obtained when the value for the parameter KPr]/2
exceeds about 350. The gradual divergence is manifested by the
jncreasing difference between the values for (Nu)] and (Nu)z.
Reference [82] notes that the convergence becomes progressively

poorer when Re + Pr increases beyond 5,000. However, it is believed
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that KPr]/z is a more reasonable convergence criterion.

A correlation equation for the average Nusselt number
similar to that of Hausen [107] for the Graetz problem in stra1ght

tubes (K = 0) is highly desirable for the present Graetz problem in
~curved tubes. It is clear that the increment of Nusselt number over
that of straight tubes (k = O)Iis a function of the Graetz number for
given Prandtl and Dean numbers. The difference in behaviour for the
increment of the avefage Nusselt number between ihe Leveque type solu-
tion region very near the entfance and the 1imiting asymptotic region
coupled with the existence of a minimum value for Nusselt number makes
the development of the correlation equation rather difficult. This
indirectly suggests the great difficulty in correlating the experimental

data.

4.6 HEAT TRANSFER RESULTS FOR THE THERMALLY FULLY DEVELOPED REGION*
=i TUR The THERMALLY FULLY I

Heat transfer results for thermally fully developed regions
in curved p1pes with uniform wall temperature are of practical interseét
in design. As shown in Fig. 22, temperature profiles in fully developed
regions are similar and only the relative magnitude of the profile varies.
in the axial direction. The region of interest under consideration may

be termed the similarity region [65].

Temperature Field Characteristics

In order to see the effect of the Dean number on the

temperature field, temperature profiles along the central horizontal

*  Reference [86] is based on this part of the work.
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and vertical axes are illustrated in Fig. 38 for several representative
Dean numbers with Pr = 0.7. Since the fully developed temperature
field in the region of similarity is of interest, the temperature
profile is normalized using the maximum dimensionless temperature;,

It is seen that the effect 6f centrifugal forces represented by the
bean number is to shift thé Tocation of the maximum value toward the
outer wall. The change of sign of the curvature for the temperature
profile in the central region from a negative value for K = 0 (straight
tube) to a positive value for K = finite is cauged by the fact that
.the terms ud6/3r and vae/ré¢ are dominant‘oyer the axial convection
term wae/rcaﬂ which is always negative for heating. It is expected
that the gradual increase of the radial temperature gradient at the
outer wall (n/2 > ¢ > - n/2) with the increase of Dean number will
contribute to the gradual incfease of the Nusselt number.

" The distributions of isothermals will provide some insﬁght
into tﬁe heat transfer mechanism, and are shown in Fig. 39 together
with the isothermals from the uniform wall heat flux case from
Chapter III for Pr = 0.7 and K = 123.2. By examining the distribution
for 6 = 0.2, one finds that the wall temperature gradient for the
uniform wall heat flux case is 1ar§er than that for the uniform wall
temperature case. Focussing one's attention on the distribution
along the central horizontal direction (¢ = 0 and ), one notes that
the rate of temperature drop for the uniform wall temperature case
is larger than that of the uniform wall heat flux case. The relative

rate of increase of the Nusselt number ratio, Nu/(Nu)o, for the two
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basic thermal boundary conditions is of considerable interest. 1In
this respect, one should note that the Nusselt number depends on the
average wall temperature gradient as well as the bulk temperature of
the fluid. 1Indeed, it will be shown later that the value of the
Nusselt number ratio for the uniform wall temperature case is higher
than that for a uniform wall heat flux for a given value of

Dean number.

Local Nusselt Number

The effect of the Dean number on the angular distribution
of Tocal Nusselt number along the pipe wall is shown in Fig. 40 for
Pr = 0.7. At K = 65.3, the region with Nu/(Nu)0 > 1 occupies nearly
two-thirds of.the wall, including the outer wall. It is of interest

“to note that with further increase of Dean number, the value for
Nu/(Nu)0 near the inner wall ¢ = 7 remains tp be less than one. A
comparison between Fig. 40 and the corresponding plot shown in Fig. 17
of Chapter III for the case of uniform wall heat flux reveals that
the local Nusselt number ratio for a uniform wall temperature is
consistently higher than that for a uniform wall heat flux with the
same Dean number, such as K = 123.2 shown in both figures, but'the
general trend is similar. For example, at ¢ = 0 and with K = 123.2,
the Nusselt number ratio is 4.75 for the uniform wall temperature
case, whereas fﬁe corresponding value is 3.3 for the uniform wall
heat flux case. |

The overall heat transfer results in terms of the Nusselt

number ratio versus Dean number are shown in Fig. 41 for several



182

)

Se Y J3qUNU ueaq yj LM oaszv\easzv 40 u

‘L'0 = Udd 404 4dj3weded e
oLInqiugstp Jegnbue (e207

o 614




183

*S49qUNY <|JpURLd | RUBADS

404 111 493dey) wouafased xnij 3esy LM WiCSLun pue 3Sed asnjesadusy ,
LLBM WAOFLUN 404 SI{NSAL 43isuRLY B3Y ueamjaq uostaedwod ¥ LY ‘614

A
701 1]} | Ll
TTT T ;.”_\.uubjtuﬂﬁnlaﬂ“.n 5 . _BHJ!&E; O.P
o
’ 4 Gl
_ 1¢
i 2 2 =
$ % 1°&
0, ., 1 £
! 9€7="(NK)'(xny 3eay jlem wuoyun) i1 “adewdm - |
co.mno?zv ‘(asnjeieduioy [|em WO ) YLOM JUSSBU] e 17
5 ] . |
. G



184

Prandt] numbers with the results from the uniform wall heat flux
case from Chapter III inclu ed for comparison. The trends of heat
transfer results for both cases are seen to be quite similar except
for the fact that with a given value of Dean number the value of
Nu/(Nu)0 for a uniform wall temperature is always higher than that
for a uniform wall heat flux. This situation is in contrast to the
limiting Nusselt number of 4.36 and 3.66, respectively, for fully
developed laminar flow in straight tubes with uniform wall heat

flux and uniform wall temperature.

Comparison with Results from Approx1mate Analytical Methods

In the absence of experimental data for the present
problem, it is desirable to compare tne present numerical results
with the available results from a perturbation method [64] and a _
boundary-layer approximation method [65]. This comparison will also
serve to ascertain the adequacy of the two currently known approximate
analytical methods.

Maekawa [64] approached the problem of fully developed
laminar forced convection in curved pipes with the therma1 boundary
conditions of both uniform wall heat flux and uniform wall temperature
using a perturbation method. Maekawa used Dean's solution [13] for
the momentum equations based on a second-order perturbation and carried
out the solution of the energy equation up to a fourth-order per-
turbation. Maekawa's results are reproduced in Fig. 42 with comparison

made against the numerical results from Chapter III and Ozisik and
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Topakoglu's results [74] based on a second-order perturbation for
the uniform wall heat flux case using a perturbation method. In recent
years, Morton's perturbation method [14] has been applied by several
investigators to the solution of fﬁ]]y developed convective heat
transfer problems with secoridary flow. It is now known that the
perturbation mathod has a rather limited range of applicability.
Maekawa [64] presented results up to Nu/(Nu)0 = 1.05 and further
results shown in Fig. 42 are based on computations from the equations
for Nu/(Nu)0 given in [64]. Apparently Maekawa's results are incoreect
with further increase of Dean number. In contrast to Maekawa's
results 0Ozisik and Topakoglu's results show a blow-up trend as the
Dean number increases. It is noted that Maekawa's results do show
that at a given value of Dean number, the value of Nu/(Nu)0 for a
uniform wall temperature is higher than the corresponding value for
the uniform wall heat flux case, and this trend is consistent with the
numerical results shown in Fig. 42. Fig. 42 clearly shows that the
perturbation method 1leads to doubtful results as the Dean numbér
increases. It should be noted that a low Dean number range such as
K < 20 for Pr <1is noﬁ of practical importance because of possible
experimental error.

Mori and Nakayama's boundary-layer approximation [65] is.
valid only for high Dean numbers. Mori and Nakayama conclude that
the formula for the Nusselt number for a uniform wall temperature
is the same as that for a uniform wall heat flux. A comparison

between the present numerical results and those of Mori and Nakayama
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from their recommended correlation equation [65] is shown in Fig. 43.
An asymptotic Nusselt number of 16 obtained by Dravid et al [82] for
the case of Pr = 5, K = 225 and a/Rc = 0.05 is also shown in Fig. 43
fof comparison. As explained earlier, the asymptotic value obtained
after the cyclic variation of local Nusselt number damps out is lower
fhaﬁ the value obtained by the present numericai sotution. It is
evident that the correlation equation given by‘Mori and Nakayama does
not lead to the 1imiting Nusselt number of 3.66, and furthermoré,
appears to be valid only near Pr = 1.0. This remark is similar to
that reported in Chapter III for the uniform wall heat flux case. The
discrepahcy in predictions based on the two different methods for

Pr > 2 is believed to be significant, and Mori and Nakayama's Prandtl
number éffect is now knowh to be incorrect [82]. For given Prandtl

and DeanAnumbers, the difference in Nusselt numbers between the uniform
wall temperature and uniform wall heat flux is so small that experi-
mental confirmation would be extremely difficult. Consequently, Mori
and Nakayama's conclusion [65] that the Nusselt number in curved pipes
is hardly affected by the wall temperature condition at high Dean
numbers, which is similar to that of turbulent flow in a straight pipe,

is qualitatively correct from a practical viewpoint.

A Correlation'Equation for Prandtl Number Effects

Thé possibility for correlating the Prandtl number effect
on heat transfer results for fully developed laminar forced convection

with secondary flow was pointed out in Section 2.7. The correlation
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equation for Prandtl number effects on the Nusselt number in

Chapter III is based on a study of the governing equations and

veriffed by fhe numerical results. As pointed out earlier, and shown
in Fig. 41, the heat transfer results for the two thermal boundary

- conditions of uniform wall temperature and uniform wall heat flux

are quite similar. Consequently, one can expect that a correlation

" equation for the Nusse]t number,simi]ar to that reported in Chaptér 111,

2

using a parametef K*Pr, is also possible for the present problem.

The heat transfer results from this study using the
parameter KPr1/2 instead of K are shown in Fig. 44 together with
Mori and Nakayama's results [65] and the results for a uniform wall
heat flux‘aré included for -comparison. The new correlation is seeh
to be very effective since all the numerical results for Pr > 1 nearly

coincide. The correlation equation for the Nusselt number similar

to the one deduced in Chapter III is

Nu/(Nu), = 0.270 Q(1 - 1.4807" + 23.207% - 120073 + 2120™")  (126)
where

Q= (KPr"'/z)”2 >3.0 for Pr>1

As indicated in Chapter III, the range with Q < 3.0 is of
1i£t1e practical importance because of a rather weak secondarv flow,
and the correlation equation (126) can now be regarded as valid,
with sufficient accuracy for all the practically important laminar

flow regimes. In interpreting the results presented in Fiq. 44, one
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should note that (Nu)0 = 3.66 for a uniform wall temperature
and (Nu)0 = 4.36 for a uniform wall heat flux. Fig. 44 clearly

indicates that Mori and Nakayama's Prandtl number effect is in or-

rect except Pr = 1.

4.7 CONCLUDING REMARKS

1. The Graetz problem in curved pipes is characterized by
the secondary flow effect syperimposed upon the usual entry effect.
For given Prandtl and Dean numbers, the local Nusselt number first
decreases continuously from the entrance due to the entry effect,.
but the gradual increase of the secondary flow effect eventually
takes over the entry effect with the Nusselt number reachﬁng a mini-
mum value from which point on the Nusselt number increases until a
' fully developed temperature field is reached. Up to the point where
the Nusselt number is a minimum; the isothermals are o% covex shape,
but from there on a kidney shape appears. The parallel straight
1ines for different Dean numbers such as those shown in Fig. 30 and 31
for the Leveque solution region are caused by the different degree of
deviation of the axial velocity profile from the parabolic Poiseuille
profile since very near the entrance only the axial convection term.
(wd0/9Q) is significant as compared with the secondary flow convective
terms. For a given Dean number, the effect of the Prandtl number is
to shorten the thermal entrance length (1/Gz). For large Prandtl
numbers the temperature field develops rather rapidly. The effect

of the Dean number is similar to that of the Prandtl number. However,
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the Dean number effect becomes much more appreciable at high Prandt1
numbefs than at low Prandtl numbers.

2. In this study, the development of the temperature field
is contrasted clearly to the local Nusselt number variation in order
to see the secondary flow effect. In particular, the fully developed
temperature field is shown to be attained when the thermal boundary
layer at all points around thg tube circumference merges completely.
It is reasoned that once the temperature field is fully established,
the temperature profiles remain constant, and only the relative még-
nitude véries along the axial distance in the so-called similarity
region, (see Fig. 22). This observation is a crucial one since
Dravid et al [82]'assert that the cyclic oscillation of the local
Nusselt number encountered after reaching a local maximum value is a
real physical effect whereas the above reasoning suggests that the
oscillation phénomenon is a result of numerical instability. Other
reasons fdr this argument are already given in Section 4.3. It is
suspected thai the numerical instability is caused by a deviation
from the diagonal dominance for the coefficient matrix when either the
Prandtl or Dean number is large. It should be noted fhat‘a convergence

study based on the reduction of mesh sizes by a factor of, say 2, will

not guarantee that the convergence to the physical solution is achieved.

The convergence of the numerical solution at high Prandtl or Dean
numbers apparently needs further study. In proposing a model for the
interaction between secondary flow and the propagating thermal boundary

layer to explain the first wavelength and the oscillation phenomenon,
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Dravid et al [82] apparently are not aware of the fact that the
temperature field is already fully established at the initiation of
the fluctuation. '

‘3. The limitation of thisvanalysis imposed by the assumptidns
1‘and 2 in Section 4.2 must be emphasized. Recently, the Graetz
. solution is shown to be a limiting case applicable only when the
Rayleigh number is less than 103 [96]. Obviously in many practical
app]ications,'thelfree convection and variable property effects must
also be taken into consideration.

4. The heat transfer results for fully developed laminar flow
in curved pipes with the two basic thermal boundary conditions of
uniform wall temperature and uniform wall heat flux are quite similar,
but distinct. For given Prandtl and Dean numbers, .the 1imiting
Nusselt number for the uniform wall temperature case becomes higher
than that for the uniform wall heat flux case after reaching a certain
Dean number. This situation is opposite to that of a pure forced
cpnvecéioh in a straight tube. This finding is consistent with fhe
results from perturbation methods [64] for extremely low parametgrs
but contradicts the results from the boundary-layer approximation [65]
which suggests that at high Dean numbers the same formula for Nusselt
number can be applied for both thermal boundary conditions.
5. A comparison between the numerical reﬁu]ts and the approximate

analytical results indicates that the perturbation method is not a '
practical method, and the boundary-]ayer approximation for high Dean

numbers appears to valid only near Pr = 1.
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6. The Prandtl number effect on heat transfer result for a
uniform wall temperature is found to be similar to the case of uni-
form wall heat flux. It is sigﬁificant that the new correlation
equation for the Nusselt number is valid for Pr > 1.

7. It should be pointed out that the fluctuating phenomenon
for the local Nusselt number observed in this study is similar to
that of Dravid et al [82]. However, the physicaf interpretation
presented. in this study is completely different from that of Dravid
et al [82]. The present study presents another viewpoint regar&ing
the fluctuating phenomenon. If is not suggested that the present
jnterpretation is a conclusive one and it is felt that much more work
is required to clarify the present uncertainty.

8. The numerical results for this chapter are tabulated in

"Appendix 7 for future réference.



CHAPTER V

GRAETZ PROBLEM IN CURVED PIPES
WITH UNIFROM WALL HEAT FLUX

5.1 INTRODUCTION

The feported theoretical and experimental works on thermal
entrance region heat transfer in curved pipes with various thermal
boundary conditions are rather limited and some uncertainties still
exist. As pointed out in Chapter IV, the numerical solution for a
large Prandt1 number fluid or for a large Dean number leads to a
fluctuating phenomenon for the local Nusselt number before approaching
the fully developed condition. The possibility that the fluctuating
phenomenon is caused by a numerical instability cannot be ruled qut
completely and further work in this regard is required.

The purpose of this chapter is to present results for
thermal entrance region heat transfer (Graetz problem) in curved
pipes with a uniform wall heat flux and report the results of some
numerical experiments in an attempt to ascertain the possibility of

numerical instability causing the fluctuating phenomenon.

5.2 FORMULATION OF THE PROBLEM

Consideration is given to a steady fully-developed laminar
flow of an incompressible viscous fluid with constant properties.
The present analogous Graetz problem is to find the development of the
temperatufe profile along the heated (or cooled ) section of the

curved pipe. The fluid temperature is constant and equal to the

195
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wall temperature up to the thermal entrance where there is a
discontinuous step change in wall heat flux from zero to a finite

higher (or lower) value. The assumptions employed in Chapter IV for

the case of a uniform wall temperature will be used fdr the formulation

of the present problem. Using. the dimensionless variables defined
in Chapter IV, except for the temperature, and referring to the co-
ordinate system defined in Fig. 10, the energy equation and the

boundary conditions become:

30 v 80. Cz.l/2 90
uErtraet T2 Ve
C
2 . 2
1 9% 180, 1 30
TP ( 2 v oor MY ) (127)
r ar r- ¢

(128)
a—"i=1 at r=1, w>0
where
k
O—E—a’(T—TO)
W

and q - uniform wall heat flux.

It is noted that the ve]oéity field obtained in Chapter III
can be used for the present problem. Equation (127) is of parabolic
type and an analytical solution is apparently not practical. The
numerical method used in Chapter IV will be applied again to the

present problem. At present, the numerical solution of the secondary -

_f
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flow probiem invariably leads to a numerical difficulty when the
Dean number or the Prandtl number is large. Physically, when the
Dean number is large, the convective terms due to secondary flow
and the axial convection term in the energy equation dominates over
the conduction terms in the core region. On the other hand, for
large Prandtl numbers, the‘conduction terms may be negligible
compared with the convection terms. Consequenf1y, a large Dean
number or a large Prandtl number leads to the same effect as far as
the relative importance of the convection aﬁd conduction terms are
concerned. The effects of a large Dean number and lérge Prandtl
number are now seen to be equivalent. One may now conclude that the
role of the convective terms due to secondary flow in the numerical
solution is significant and presents the major source of numerical
dif%icu]ty. Thus, it is believed that the key to the question of
fluctuating local Nusselt number before approaching an asymptotic
Nusselt number when either the Prandtl or Dean number is large lies
in the behavior of the convective terms (u3g/or + vae/ra¢). For this
reason, the effect of several different finite-difference represen-
tations for the convective terms on the Nusselt number calculations

will be examined.

5.3 A GENERAL FINITE-DIFFERENCE APPROXIMATION TO THE CONVECTIVE TERM

In carrying out the numerical solution of the present problem
using the ADI method and central difference approximations for the con-

vective terms, difficulty is encountered when the secondary flow convective
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terms are large compared with the conduction terms. This observation
was also noted in the previous chapter. Thus, the problem is closely
related to the question of stability and convergence of numerical
solutions of parabolic equations. The stability and convergence of
the numerical solution depend on the mesh size. However, a reduction
of the mesh size by a factor of, say 2 or 3, will not guarantee the
convergence of the.numerical solution to the physical solution. Since
the damped fluctuating Nusselt number phenomenon observed in the
numerical solution has not been confirmed experiment§11y, it is
desirable to ascertain whether or not a particular finite-difference
representation yields a true so]ufion to the original partial dif-
ferential equation. Thus, the convergence study must be supplemented
bj using different finite-difference approximations.

| When the Dean number or Prandtl number is large, a central
difference approximation for the convective terms does not lead to a
coefficient matrix with diagonal dominance. The situation can be
corrected by using a non-centra] difference approximation, but the
increased numerical stability may be accompanied by a decrease in
numerical accuracy. It is possible to devise a general finite-difference
approximation for the convectfve transport terms which represents a
compromise between numerical stability and accuracy and yet recovers
either a central or non-central approximation as a limiting case.
In order to see this more clearly, the central and non-central

approximations for the term u30/5r are given as,
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It is noted that the second equation becomes a backward difference

is positive and a forward difference is obta1ned when u,

when u; i, i.j

J
is negative. By introducing a coefficient 8 which may vary from
0 to 1, a general finite-difference approximation for u36/3r can be

obtained as,
( ) L (u + Blu; .|) 0
Yj ,J ‘or/i J T 2hr ‘Ui,3 1,3 i-1

1

* i Blu, ¢l

l,j] i,J
+ o Uy s - Blus o]) 0:4q -
ZAr 2,3 i, i+1,j (130)

where B may vary from 0 to 1. It is seen thatVB = 0 represents the
central difference approximation and that B = 1 recovers the non-central
difference approximation. The expression similar to equation (130)

can be applied to other convection terms. The numerical solution of

equation (130) can now be made by specifying a value for the coefficient
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such as B8 = 0.5 for example.
With the above modification for the finite-difference
approximations of the convective terms, the ADI procedure outlihed

in Section 4.3 can now be applied to the present problem.

5.4 NUMERICAL EXPERIMENTS ON THE EFFECTS OF DIFFERENT FINITE-
DIFFERENCE APPROXIMATIONS FOR CONVECTIVE TERMS ON LOCAL

NUSSELT NUMBER RESULTS

Before proceeding to present numerical results such as
the temperature profile development and evaluation of the Nusselt
number, it is appropriate to present the results of some numericai
experiments regarding the effect of using B = 0; 0.5 and 1.0 in
equation (130) for the convective terms due to secondary flow.

It is noted that all the numerical results in this study
are obtained by using the mesh size of M, N = 28. Other detai]sv
given in Section 4.3 also apply to the present numerical solution.
The computing time required to obtain a complete solution for given
values of Préndtl and Dean numbers ranges from 3 to 10 minutes using
the IBM 360/67 system. ' |

The results of local Nusselt number variations using
£ =10, 0.5 and 1.0 together with the Graetz solution (K = 0) for
Pr = 10 and K = 43.8 are shown in Fig. 45 for comparison. By using
B = 0 (central difference approximation), the fluctuation of the
local Nusselt number (see Section 5.6) is seen to disappear after

passing through two local maximum values of Nu and eventually a
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fairly stationary value is approached. It is noted that the
fluctuating phenomenon remains identical even with a change of mesh
size‘by a factor of three. At first glance, one‘may think thét the
numerical solution with B = 0 is a reasonable one. With g8 = 0.5, one
sees that the numerical solution agrees closely with that of g =

‘up to 1/Gz = 13.x 10'2 and thereafter a different trend appears.
With 8 = 1 (non-central difference approximation), the trend of the
numerical solution follows those of 8 = 0 and 0.5 up to 1/6z = 10'2,
but appérently.the truncation error due to the non-central difference
approximation is too large.

The deviation of the numerical solution from the Graetz
solution (K = 0)-at 1/6z = 1073 represents the onset of the secondary
flow effect and the first local minimum value of Nu méy be considered
as the balance between entrance and secondary flow effects. After
passing through this Tocal m1nimum Nusselt number, the secondary f]ow
effect is seen to take over the entrance effect and the Nusselt number
increases until a local maximum value is reached at 1/62 =8 x 10'3.
The beﬁavibr of the local Nusselt number can be explained physically
up to this point but the physical mechanism for the subsequent decrease-
increase cycle cannot be understood readily. It is clear that the
role of secondary flow is to increase the Nusselt number over that
from the Graetz solution and yet after reaching a local maximum value,
tﬁe Nusselt number is seen to decrease at a rate which is greater than
that 6f the Graetz solution further downstream. This phenomenon

cannot be understood readily and at this point one hesitates to accepi
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the numerical solution after reaching a local maximum value as a
physica] meaningful solution. The role of the convective terms
 (ude/ar + vae/rag) is clearly seen in the energy equation (127) and
it is not understood why thg effects of lateral convective terms are
similar to that of the axial convective terms after reaching a local
‘maximum for Nu and thus contribute to a decrease of Nu over that of
the.Graetz solﬁtion. It may be concluded that even with g = 0.5

the result of the numerical solution after reaching a Tocal maximum
value of Nu 1s still uncertain. Apparentjy the possibility of
nhmerica] instability cannot be ruled out entirely and this view-
point is completely different from that of Dravid et al [82,83]
where the damped fluctuating Nusselt number phenomenon is cbnsidered
to be a real physical phenomenon.

The pre#ent numerical difficulty is, to some extent,
similar to that encouﬁtered in the elliptic problem treated in
Chapter III with large Prandtl or Dean numbers. Physically, the present
parabo]ic problem approached the elliptic problem asymptotically when
the temperature field becomes fully established. Consequently,
the deviation from diagonal dominance for the coefficient matrix (see
~ equation (122) in Section 4.3) and the difficulty in evaluating the
associated right-hand column vector accurately for the case of a
large Prandtil number or strong secondary flow may contribute to the
numerical diffipu]ty for the present parabo]ic problem. The non-central

difference approximation with 8 = 1.0 ensures diagonal dominance for
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the coefficient matrix but appareﬁtIy the resulting truncation error
leads to large numerical errors.

At present ¥t is not possible to find the best value of
the parameter g to be used. In view of the fact that different values
of g such as 0 and 0.5 lead to different fluctuating phenomenon for
Nu after reaching a local maximum one may conclude that the fluctuating
phenomenon is due to numerical instability and does not represent a
true physicél solution. Further discussion on this point will be made
in connection with the presentation of temperature pfofi1e development

and Nusselt number result.

5.5 TEMPERATURE PROFILE_DEVELOPMENT

Temperature profile developments along the horizontal and
vertical central axes for the cases Pr = 0.7, K = 123.2 and Pr = 10,
K = 27.8 are shown in Figs. 46 and 47, respectively. The distortion
of the temperature profiles from those of the Graetz solution for a

stfaight pipe: (K =.0) is obvious. It is seen that after reaching a

certain downstream location, the temberature at the inner wall (¢ = m)
becomes progressively greater than that at the outer wall (6 = 0).

The thermal boundary layer at the inner wall develops much more rapidly
along the downstream than at the outer wall and eventually the thermal
boundary layer at all angular positions merges. For example, with

Pr = 0.7 and K = 123.2, the region with 8 = 0 disappears completely

at a downstream distance of 1/Gz = 0.0130 and after reaching 1/Gz = 0.0504

the profiles are seen to be similar and only vary in relative
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Fig. 46 Temperature Profile Development for Pr = 0.7 and K = 123.2
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10

F——— (¢ = 7/2)

Fig. 47 Temperature Profile Development for Pr = 10"and K = 27.8
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magnitude. Consequently, the temperature profile may be considered
fully developed at 1/6z = 0.0504. This fact will be cénfirmed'further
when the axial distributions of average wall temperature,  bulk tempér-
ature and mixeq mean temperature difference are discussed. By noting
that the fully developed temperature field may be obtained at 1/GZ % 'IC)"'|
for a straight pipe (K = 0), ohe sees that the thermal entrance ]engfh
is shortened considerably with the existence of secon&any flow.

One gains better -physical insight into the Qevelopment of
the temperature field by studying the development of isothermals along
the downstream direcfidn; A series of isothermals correspoqdihg to
the axial locations shown in Fig. 46 and 47 are shown in Figs. 48 and
49, respectively. 'It is uSefu] to contrast the profile developments
shown.in Figs. 46 and 47, directly with the correspondihg iéotherma1
fieids illustrated in Figs. 48 and 49, respectively. For example,

Fig. 48 shows that at 1/Gz = 0.0130 the region with 8 = 0 indeed dis-
appears completely as indicated by the fact that the minimum temperature
is 6 = 0.00196. As noted earlier, downstream of 1/6z = 0.0504 the
temperature field becomes fully developed as confirmed by similar iso-
thermal fields at 1/6z = 0.0504 and 0.1066. It is clearly seen that
between 1/Gz = 0.0130 and 0.0504 the temperature field is still under-
going some change. Génera]ly one sees from Fig. 48 that the effect of
secondary flow on temperature field increases with downstream distance.
Of course the pattern of isothermals at various axial distances are
closely related to the Nusselt numBer variation.

An examination of the isothermal patterns illustrated in
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Fig. 49 shows that with Pr = 10 and K = 27.8 two eyes for the iso-
thermals appear at 1/Gz = 0.0130 and the minimum temperature point is
not located along the horizontal‘central axis. For Pr =10 and K =
27.8, the temperature f%Zﬁd becomes fully established at 1/Gz = 0.0148
"and the thermal entrance length is shortened considerably in compari-
son to 1/6z 5 107! for a straight pipe (K = 0).
The temperature field development in the form of such over-

a1l_quanf1ties as bulk teﬁpefature eb;'average wall temperature 5&

and mixed mean temperature differenée A8 are of considerable practicél
as wel]‘és theoretical interest and the results are shown in Fig. 50
for the case of Pr = 0.7 and K = 123.2 together with the limiting .
case of K = 0 showﬁ for comparison. Because of the nature of a uni-
form wall heat flux boundary cbndi;ion, the.bulk temperature 6y is
known to vary iinear]y‘a]ong the downstream distance regardless of the
',value of Dean number K. As a matter of fact the bulk .temperature
distribution 8 is known in advance without solving the problem. It

is readily understood that the average wall temperature along the axial-
direction for K = 123.2, for example, is lower than that of K = 0 due
to the secondary-f1ow effect. As a resﬁlt, the mixed mean temperature
difference A6 for K = 123.2 is seen to be lower than that of K = 0
along the axial distance. This in turn will increase the local Nusselt
number since the temperature gradient at the wall is constant for the
present problem. It is noted that the mixed mean temperature difference
A8 for K = 0 and 123.2 becomes constant at approximately 1/Gz = 0.09 and

0.045, respectively, indicating the establishment of the temperature
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field. It is observed that with K = 123.2 the difference between e
and eb or A6 undergoes one undulation before reaching a fully developed
condition. Once the temperature field is established, the average
wall temperature 5& Chenges linearly with the axial distance and be-
cemesAparallel to the bulk temperature distribution 8-

From Fig. 50, one can recognize generally three regions of
interest. Near the thermal entrance the effect of secondary flow may
be'sma]1 or negligible and the regfon is identical with the Leveque
so]ution'region fbr a straight pipe (K = 0). In this region the iso-
thermals are expected to be fairly concentric.  On the other hand,
far downstreem, the temperature field,becomes fully established as
indicated by the region with constant A6. In the remaining inter-
mediate region, the secondary flow effect gradually increases along
the downstream until no further increase of the effect is possible.
The temperature distributions shown in Fig. 50 may be contrasted with
the temperature profiles and isothermals shown in Figs. 46 and 48,

respectively.

5.6 HEAT TRANSFER RESULTS .
As noted in Section 4.5, the Nusselt number, Nu = | (2a)/k,

may be obtained in two ways as

2B
w(ew - 9)

Nu, = Pr(EE)I/Z(—lQI/Z( ) — (131)
2 r r R ——
C Cc W(ew )
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The numerical results show that the values for Nu; and Nu2
deviate generally from 0 to 1.3 per cent from the average value of
Nu] and Nuz. The deviatfon increases to about 3 per cent in the
. higher parameter region when Pr 3_10.; The agreement between the two
values Nu] and Nu2 servés to confirm the accuracy and convergence of
the numerical solution. It is possibﬁe to ascertain the accuracy of
| the numerical solution for the 1imiting case of a straight pipe (K = 0)
by compériné the present numérica] evaluation of the local Nussélt
number with that of the numerical solution of Reference [108] and the
.analytical solutions of References [109,110]. The numerical result
for the case of a uniform wall temperature (see Chapter IV) is also -
included in Fig. 51 for reference. It is seen that the present work
agrees with that of Hsu [109,110]. Thus the accuracy and cdnvergence
of the numerical solutiqn are confirmed for the limiting case with
K=0. The local Nusselt number variations for Pr = 0.1,-0.7, 10
“and 500 are shown in Figs. 52 to 55 with the Dean number as a parameter. ‘
For the cases Pr = 0.7, K = 123.2 and Pr = 10, K = 27.8 shown in .
Figs. 53 and 54, respeectivgly, the Nysselt number variation can be
contrasted'directly with the development of the temperature profile
and isothermals shown in Figs. 46, 47 and 48, 49, respectively. A
“close relationship éxists between the temperature field development
and the local Nusselt number variation and some observations will be

noted next.

For the purpose of understanding the physical mechanism



0L

foLL60L] nsy pue [g0L] SAey wo.y

S3LNSOY pue SI|NSBY LBOLJSWNN JUISBU4 USIMIG uosjueduwo) vy 1§ 6td

oA
Ol | !

T ¥ T [Ty T T T Y - [T

99-t

9ty

aanjeaadwa |
LLEM waojiun

Xn{4 jesy
LLeM waostun

((0=3) AuoM Juesaug pue [60L] nsH
. [80L] sAey

((0=3) YoM Jussaug pue [60L] nsy
| [80L] sAey | M

Gl

0]/

(0]



215

J938weded se

A3GUNN URSQ YIIM |0 = Ad 404 UOL}RLARA 4BQUNN 3[3SSNN @907 2§ 6l

| 29/1 o
oL - .0l .0l

T T [vrrr o1 T T [rrrr o1 | IR | i__...,




. 216

J933uedRd SE

J9quinN :mma Yam /- o dd Lo.._. uoijetaep Lmn___:z p_.wmmzz _.coo._ £G *BL4
R 29/ .
-o_ \_ ol 0l
. L [4 £
T 1 T B | . ____._.. ._ T 1 __.._..._ LI gt
ui4d
0°0
Ve i
19
8°th
£°99
ev6
2'eel = N

L70 =d




217

Jdgjsuieaed se

JA3qUINN ueaq Y3iM Q0] = 4d 404 uoLjeraep JAaqunN 319SSnN Led07 g ‘614

~ .
Ol /L . Ol

0°0

(0]



~218

A3qUNN ueag YILM 0OG = Jd 404 UOLqE

.0l

29/

z-0l

Jd9jaweaed se

HARA JSQUAN 3|9SSIN 18007 g5 B}

0°0

. 688°

L

00§ = 4d

o€



219

behind the Nusselt number behavior, one may consider the three
regions consisting of the Leveque solution region, the intermediate
region where thé secondary flow effect is important and finally the
asymptot1c region as noted in Section 5.5. In the Leveque region
corresponding approximately to the straight line portion shown in
Figs. 52 to 55, the behavior of the local Nusselt number depends on
the Prandtl number For example, with Pr = 0.1 and 0.7, the Nusselt
number variations for different Dean numbers are seen to be parallel
to. each other while for Pr = 10 and 500, the Nusselt number variation
for a.given-pean number is seen to coincide with the Graetz so]ution
" for a straighf pipe (K= 0). The bara]le] behavior of the local
Nusselt number for Pr = 0.1. and 0 7 is caused by the distortion of
the axial velocity profile w from the parabolic profile and the axia]
convection term involving w 36/3w is seen to be dominant as compared '
with the transverse convection terms due to secondary flow, u 36/dr
+ v 38/rdd, in the Leveque solution region. In contrast, for fhe
cases Pr = 10 and 500 shown in Figs, 54 and 55, respectively, the
secondary f]owlis generaljy weak and the Nusselt number variation
is seen to follow closely theIGraetz'solution (k = 0) for a straight
pipe. Thus, for Pr = 10 and 500; the secondary flow effect is seen
to be negligible in the Levequé region for the range of Dean numbers
. under investigation.

For the intermediate region noted above, the behavior of
Nusselt number variation with Pr = 0.1 is similar to that of the

‘Graetz solution (K = 0) for several Dean numbers shown in Fig. 52.
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0f course, the increase of Nusselt number at any axial location is.
due to the secondary flow effect. For Pr = 0.7, the Tocal Nusselt .
number behavior exhibits a local minimum value and finally the
.eeymptotic value {is approached and remains constant. It should be
noted'that for Pr = 0.7, no fluctuating Nusseit nuﬁber behavior is

. observed up to K = 123.2 shown in Fig. 53. It is of interest to note
that the minimum Nusselt number point for Pr = 0.7 and K = 123.2
shown in Fig. 53 coirespends approximately to the axial position
1/6z = 0.013 in Figs. 40 and 48 vhere the heat transfer from the
wall already penetrates the whole region. Simitarly, the minimum
Nusselt number point fer Pr = 10 and K = 27.8 shown in Fig. 54
 correspond§ to the axial position 1/6z = 0.00593 shown in Figs. 47
and 49. After reaching the point of mimimum Nusselt number, the.
temperature field will continue te'deve1op until the fully deve]oped
condition is approached at.wh1ch point the asymptotic Nusselt |
number appears. For Pr = 10 and 500 shown in Figs. 54 and 55, the
numer1ca1 so]ution exhibits a fluctuating Nusselt number phenomenon
at higher values of Dean number and the local maximum Nusse]t number
s considered to be the asymptotic value 1n.v1ew of the discussion
given in Section 5.4. This assumption regarding the asymptotic
Nusée]t number is consistent with the result shown in Fig. 53 ﬁhere
ﬁo fluctuating phenomenon is observed and the Nusselt number remains
constant in the asymptotic region. In Fig. 48, the isothermals at
1/6z = 0 0504 and 0.1066 are seen to be remarkab]y similar and a

check with the corresponding axial locations in Fig. 53 shows clearly
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that the fully developed condition is reached. Similarly, for
Pr =10 and K = 27.8,'the temperature field becomes fuliy developed
at 1/6z = 0130 |
_ The average Nusse1t numbers over the axial distance from
‘the thermal entrance are shown 1n Figs. 56 to 59 for Pr = 0.1, 0.7,
10 and 500, respective]y.
_ The asymptotic Nusselt number results are of special
interest in many design probleme, and the results from the present |
study are summarized in Fig 60 together with the results for an
axial]y uniform wall heat flux (circumferent1a11y uniform wall
temperature at any axial pos1tion, Chapter III), and for the uniform
. wall temperature case -(Chapter IV) for comparison. It is to be noted
‘that for a given Prandtl number, the uniform wall heat-fTux case
gives the highest asymptotic Nusselt number for a given Dean number
after reaching a certain Dean number depending on ‘the Prandtl number
As K » 0, all the curves are seen to approach either 4. 36 for a
uniform heat flux or 3.66 for a uniform wall temperature. It is also
noted that the Prandtl number effect on the asymptotic Nusselt number
is quite similar regard1ess of the kind of thermal boundary condition.
Based on the known fact and the present resu1ts, it 1s now
poesible to propose a model in order to explain the observed behavior
of the local Nusselt number. It is known that for a given Prandtl
number the effect of secondary flow as indicated by the Dean number
js to decrease the thermal entrance 1ength. The behavior of the

asymptotic Nusselt number as a function of Dean number is also
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genera]]y known. The decrease of local Nusselt number with axial
distance for the Graetz prob1em (K = 0) is known to be caused solely
by the axial convection term and the behavior is generally known to
_be an entrance effect.. For the case of large Prandt]l number fluids,
- say Fr > 10, and censidering only the Leveque solution region, the
‘secondary flow effect as represented by the transverse convection

- term (u 36/9r + v 36/rd¢) are st111 negligible as compared with the
axfal convection term in the energy equation and the local Nusselt

" number will coincide with the Graetz solution. This fact together
with the extent of the Leveque solution region as indicated by the
‘exial d1stance‘1/G; is EIearly shown in Fig. 54 for Pr =.10. "By |

‘ regafdipg the Tocal Nusselt number as cbnsisting of a part due to
vthe Graetz solution and an incremental part due to the secondary flow
effect, one may obtain the sketch shown in Fig. 61(a). In the sketch
a point indicated by the circle denotes the fully developed cendition.
It is now assumed that the incremental part of the Nusselt number,
namely ANu, may increase monotonically along the axial distance 1/Gz.
By superimposing the incremental part ANu onto the Graetz solution,
one obtains the Nusselt number variation shown in Fig. 61(b). The
pbint»represented by the triangle corresponds to the Tocal maximum
value of Nu. Admittedly, the proposed model shown in Fig. 61 is a
crude one but it does explain the behavior{of local Nusse]t-number
at least qualitatively %n the thermal entrance region as a function
of Dean number. At a certain higher Dean number the local minimum

Nusselt number is seen to disappear. Because of the nonlinear effect
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due to the convective terms and the distortion of the axial velocity
profile from the parabo1ic:one due to secondary flow, the superficial
superposition of the two parts as represented by the Graetz solution
__and the incremental part ANo:in the intermediate region preceeding
the.asymptotic region may not have any physical basis. Nevertheless,
'the above model mey serve to demonstrate the general behavior of
Tocal Nusselt number. Even with the rather simple model for large
'Prendtl number fluids p?esénted here, the development of the empirical
correIation equation is expected to be extreme]y difficult for the
present prob]em According to the proposed model, the asymptotic
Nusselt number is approached once thé temperature fie]d becomes fully
_ estab1ished and the asymptotic region is 1nd1cated by the dotted
1nes. The present mode1 applies only to high Prandtl number fluids
and it suffices to mention here that a different model is required

for low Prandtl number fluids.

5.7 SOME OBSERVATIONS ON DRAVID'S>NORK [83]

As pointed out earlier, theoretical and experimental works
on the Graetz problem in curved pipes are rather 1imited. Recently,
Dravid et al [82] conclude that the fluctuating local Nusselt number
before reaching the asymptotic value is a true physical phenomenon
whereas the author interprets the fluctuating phenomenon as a
manifestation of numepica1 instability. It is useful to discuss
here some of Dravid's work [83]. Dravid's numerical énd experimental

results are reproduced in Fig. 62. The numerical results for Pr = 5



230

[€8¢28] S3Lnsay |ejudwiaadxy pue —Stuszz S,le 39 plLAeag 29 °byy

0 /1

Ol ,.0l .0l ,.0l
qITT T T T 1 I TTTT T T T T [TTT T T T 1 T 14
B (sased 4308 404 GO0 = Y pue 7
o /8 = 0001 = 3y ‘G = ud ‘522 = ¥) do
g = 4df _ . Uoj309s Aue 3e JuelsUOd = o
S g9z =% ® - |
i | Juau 10X pue JUR3SUOD = m.m: _ 8
oo ‘ 7
m...l © 0o o quepsuod = M ‘..lﬂ . 0
o . Kioayy | L
. "N
o g —HGl
o0 °
- —loz
~N
e / -
l N .
N (0]



231

and K = 225 with a uniform wall heat flux (ae/ak = constant) and
an axially uniform wall heat flux (38, /92 = constant, 6, = constant
at any axial position) clearly show the fluctuating phenomenon.
Because of experimental difficulty in simulating the theoretical
boundary condition and the associated exberimental uncertafnties
as indicated by the somewhat random nature of the experimental data,
the results can be subjected to various interpretations and the
fluctuating phenomenon 1s by no means obvious. In this respect many
questions regarding the behavior of the results can be raised._ in
particular, the decrease of local Nusselt number after reaching a
local maximum value cannot be explained physically. If the fluctuating
phenomenon is not a true physical phenomenon, than the question of
determining the asymptotic value also arises.

Dravid et al [82] define the wave length of the first

oscillation X and give the following equation for A 3

0.5 Re

A = 1.75 [ ]
W 16500 + 0.9656 Rel/ 214

(132)

where A= a/Rc

They note that the wavelength predicted seems to be insensitive to
the Prandtl number in the limited range of Pr = 0.5 ~ 15. Following
their definition of wavelength, the results from the present study
for Pr = 0.7, 10 and 500 are shown in Fig. 63 with K = 7.66. It is
seen that the wavelength Ay js a strong function of Prandt1 number

at K = 7.66. The behavior of the local Nusselt number between the
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local minimum value and the subsequent Tocal maximum value is known
- to be caused by a secondary flow effect and it is hard to regard
this part as an oscillating phenomenon. _

Dravid's experimental data [83] on wall temperature
measurements for the case of a uniform wall heat flux are reproduced
in Fig. 64. In the figure, a smooth 1line is drawn through the
experimental data points for each set of Prandtl and Dean numbers.
If the fluctuations as shown in the figure are considered to be an
oscillatory phenomenon, then it appears that the wavelength, Ay o
is a function of the physical coordinate, z = RCQ/a, instead of a

function of Re and A as shown in equation (132).

5.8 CONCLUDING REMARKS

1. The numerical experiments using different finite-difference
approximations (B = 0, 0.5, 1.0) for the convective terms due to
secondary flow in the energy equation seem to suggest that the fluc-
tuating phenomenon exhibited by the Nusselt number is a manifestation
of numerical instability instead of a physical phenomenon. In this
study, the fluctuating phenomenon appears'at high Dean numbers for
Pr = 10 and 500. The numerical results for Pr = 0.1 and 0.7 are
free of such fluctuations.

2. The behavior of the Nusselt number in the Leveque solution
region is characteristically different for large and small Prandtl
number fluids. The behavior can be explained from the roles of the

convective terms due to secondary flow and the axial convective term

in the energy equation.
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3. It should be emphasized that the fluctuating phenomenon
for the Nusselt number observed in tﬁe present numerica]lstudy is
exactly the same as that observed in Dravid's work [82,83]. However,
the present interpretation is completely different from that of
Dravid. Further work is clearly required to clarify the present
uncertain situation. In this study, the development of temperature
fields for Pr = 0.7, K = 123.2 and Pr = 10, K = 27.8 are studied in
detail and are compared with the respective Nusselt number behavior.
The determinatioh of the fuliy developed condition is based on a
study of the temperature fieidbdévelopment in the form of femperature
profiles, isothermals, axial distributions.of average wall temperature .
5;, bulk temperature 8 and mixed mean temperature difference A6 = 5& - -
4, The.aéymptotic Nusselt number.resu]ts obtained in Chapters III,
IV and V are summarized in Fig. 60 for comparison. The convergence
and accuracy of the numerical solution are confirmed also by the good
agréemeﬁt between the values for the two alternative expressions Nu.I

and Nu2 for the Nusselt number. The numerical results for Nusselt

number are listed in Appendix 8.



CHAPTER VI

LAMINAR FLOW IN THE HYDRODYNAMIC ENTRANCE REGION
OF CURVED PARALLEL-PLATE CHANNELS

6.1 INTRODUCTION

The predictions of axial pressure drop, developing velocity
profiles and hydrodynamic entrance length for laminar flow in the inlet
section of tubes and various other non-circular ducts are of practical
interest in design. For the circular straight tube, for example, both
theoretical and experimental investigations have been carried out
rather extensively in the past.' A fluid enters the tube or channel
with a velocity profile which is determined by the upstream conditions.
At some distance downstream of the entrance the fluid velocity in
the central portion of the cross-section increases whereas the velocity
near the wall decreases. Sufficiently far downstream, the fluid
velocity eventually becomes fully developed. The hydrodynamic entrance
length is characterized by the developing velocity profiles. In the
developing flow region, the axial pressure drop is caused by the
wall shear stress and the change of momentum.

The literature on analytical solutions for entrance flows
in straight circular tubes and parallel-plate channels is rather
extensive. In coﬁtrast, the corresponding analytical solutions for
entrance flows in curved circular tubes and parallel-plate channels
do not seem to be available in the 1iterature. An excellent review

of the literature on hydrodynamic entrance region problems in straight

236
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tubes and ducts was given by Sparrow, Lin and Lundgren [111] and
Lundgren, Sparrow and Starr [112] in 1964. It is noted that many
theoretical results on pressure drop in the hydrodynamic entrance
region of various ducts have been reported in recent years; Recent
works on flow in pipe bends by Kawaguti [113] and Hurd and Peters
[114] can also be cited here.

Consideration is now given to the development of steady
laminar flow of an incompressible Newtonian fluid in the entrance
region of a curved parallel-plate channel. An example is shdwn in
Fig. 65 where the channel width is uniform and constant but the
radius of curvature may be variable along the flow direction. In this
connection, many possibilities arise such as 90°% and 180° channel
bends and spiral of corrugated channels. In addition, oné may have
converging or diverging curved parallel-plate channels with the
Jeffery-Hamel type flow in the converging plane-walled channels as
the 1imiting case. Furthermore, Couette type flow in curved parallel-
plate channels is also possible. In practice, the curved parallel-
plate channel may be preceded by a plane parallel-plate channel or
other various inlet configurations. In this respect, if the flow
field upstream of the entrance must be considered, then a great
variety of possible situations may arise. This brings out the question
of the specification of upstream conditions. In the formulation of
the entrance flow problem, if the disturbance effects upstream of the
channel entrance are allowed to propagate within the channel, then

certainly the disturbance propagation in the fluid upstream of the
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tube entrance must be considered. From this viewpoint, the usual
specification of a uniform entrance velocity must be regarded as an
approximate boundary condition. The difficulty of formulating a

well posed problem in terms of proper entrance conditions apparently
has not been overcome so far. In the case of a plane parallel-plate
channel preceding a curved parallel-plate channel, it is known that

at a sufficiently large upstream distance from the entrance the

fully developed parabo]1c velocity profile prevails and.may be used

as a possible boundary condition. One may summarize that a var1ety

of entrance conditions can exist in practical problems. In this

~ work, the conventional approach regarding the entrance boundary
conditions will be employed and the case of uniform, parabolic and
triangular entrance velocity profiles will be studied in detail.

The solution of these three cases serves to demonstrate the applicability
of the numerical method in solving entrance flow probiems in a curved
parallel-plate channel with an arbitrary entrance velocity profile.
Besides presenting flow results such as pressure drop and hydrodynamic
entrance length, the present study can provide a basis for an investigé-
tion of hydrodynamic instability of entrance flow in a curved parallel-
plate channel. It is useful to recall that the present geometrical
configuration in the form of a curved parallel-plate channel may be
approached when the aspect ratio of the curved rectangular channel
exceeds a value of say 10. To the author's knowledge, a theoretical
solution for entry flow in curved pipes or channels is not available

in the literature.
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6.2 DEDUCTIVE ANALYSIS OF THE GENERAL BASIC EQUATIONS FOR ENTRY FLOWS

Referring to the coordinate system shown in Fig. 65, and
noting that the present problem represents the 1imiting case of entry
flow in a curved rectangular channel with an infinfte aspect ratio,
one obtains the following governing equations expressing conservation
of mass, momentum and energy for a steady laminar incompressible

fluid (see Appendix 3).

Continuity equation

3U U 1 oM
¥ wrot T w R 0 (133)
X-momentum‘equation
3U WU W2
TR Ay
X * TR+ X) a0~ TR+ X
N . 2 1 %
R T R+ X )3Xan
-1 (134)
R+ X)

Q-momentum equation

g, W W, UW
X T RFX) 3 R, X)

1 aP 1 2% 1 au

"lR+x A GBI t 739
e ¢ ; (RG+ X)
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+ + = - ] (135)
ax2 (RC+ X) oX (Rc'*' X)2
"Energy equation
A, Moot fTL 1 s, 13Ty (1)
X * TR+ X) o0 7* R X X " o 07 a0

The channel unqer consideration may also be viewed as being
formed by two coaxial cylinders with a two-dimensional flow between
the cylinder walls due to @ circumferential pressure gradient. As
shown in Fig. 65, the central horizontal axis of the channel has a
redjus of curvature Rc and the origin of the cylindrical coordinates
(R, 9,Y) is located at the center of curvature with (R,2) in the
horizontal plane.

It is desirable to study the basic equations using the
deductive procedure of Reference [95] and formulate the problem .in
a somewhat formal manner. Following this deductive procedure all
variables must now be normalized. Considering the physics and geometry
of the problem, the following dimensionless variables will be

introduced.

x = X/a, w= Q/Qc, u U/Uc,

w=HWH, p= P/P, and 0 = (T - Tw)/@c

where a is the half width of the channel, Tw is the wall temperature

and the quantity with subscript c indicates a reference quantity.
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The above relationships are substituted into equations
(133) to (136) to obiain the non-dimensional equations. In order
to determine the order of magnitude for the characteristic or
reference quantities, physical information regarding the problem
must be used. For entry flow in a curved parallel-plate channel,
it is reasonable to assume that the velocity components in - and
X-directions are equally important. Then from the continuity

equation (133), it is found that

(137)

D

n
cl =
O |0
>

where A= a/Rc

Also for the entry flow, the axial inertia terms can be considered
to be as important as the viscous terms in Q-momentum equation. Using

this information, one obtains

WU = %Re (138)

where Rec = —

From equations (137) and (138), it can be shown that

Q =

=1 l1/2
A Re A = 3 KA (139)

c

N) =

In Q-momentum equation, it is obvious that the pressure term must be



243

important because it is the driving force. Consequently, the
pressure term can be equated to the viscous terms to yield the

following characteristic quantity Po for pressure.

2
Po/oll ° = } Rec2 (140)

Using the above relationships (137) to (140), equations (133) to (136)

in terms of the new variables become:

Continuity equation

5 TTFRT Y T - 0 (e
X-momentum equation
4Rec'2(u g%-* 11‘:HX§7'359 T +Axx W’
= - §£-+ ]6Rec'4'(] +]Ax)2 ::2 - 4Rec'2.(] +]Ax) gigw
- 4Re 2 m% (142)

In the above equation, the centrifugal force and pressure terms are

of primary importance. For entry flow problems the inertia terms must

be retained, however, the viscous term involving Rec'4 may be neglected

when the magnitude of the Reynolds number is about 10]/2 or more.
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Q-momentum equation

oW W oW A
U PTTF a0 T+ T T+ W

= - 1__3p
(T + xx) 3w
2 2
W A oW A
+ (5= + - - W)
| axe T+ AX] B 7 (g 502
P T B S S Y (143)
| ¢ (1 + Ax) 9xdw (1 + A,()2 ow _
Energy equation
96 W 1Y) 829 A a6
Pr(u = =) =

ax+!i+7\x§ax ;(’2'+il+kx)$<'

+ ape, 2 —1— R (144)
€ (1+ax) ;7 '
The pressure term may be eliminated by carrying out cross-differentiation
between equations (142) and (143). The following single momentum equa-

tion results after introducing the stream function ¥ and the vorticity z.

1__ (&3 2y 3

(T + ix) Fris

9X X 3w 98X
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2

AL (1 +A>‘x)2 (ajz - a +AAX7 "2 27—115;7?
rac? ey S 23 (15)
vy = ¢ (146)
us=- 17_31i§7'§%' and w = %% (147)

In equation (145) one sees the primary inertia terms and the secondary
inertia terms involving K'z. It is also seen that there is a viscous

term involving K’4. The energy equation becomes

Pr (8‘{’ 9 oy 8)6

T+ 3x) '9x 3w ~ 3w 3x
- 2o+ ax? A > 922 (148)
(1 + ax)° aw
where the Laplacian operator is
R AR T (149)

ax

It is noted that the curvature ratio A, the dimensionless
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parameter K and Prandtl number Pr appear in the governing equations
(145), (146) and (148).

Attention will now be focussed only to the hydrodynamic
entrance flow problem and the energy equation will not be considered
further. The values of X and K are now evaluated for the conditions
of practical interest. Considering the practical limit of a in
comparison to R. one obtains A < O0[1]. It is reasonable to assume
that Rec > 0[10]. It is now found that K > 0[10] for most practical
situations. On this basis the terms involving K2 and K4 in

equation (145) can be neglected in comparison with other terms to

give,

¥ 9 oY 9

1 _ o8
(T + Ax) gt iU (150)

It is significant to note that with the above simp]ifipation;
the flow problem is independent of the parameter K and depends only
on the curvature ratio A.

A remark regarding the importance of the axial viscous term
from another viewpoint for the general entry flow problem may be in
order. It is noted that the normalized equation (143) results by
using relationships (137) and (138). On the other hand, if relation-
ship (137) resulting from the continuity equation alone is used, the
characteristic coefficient of the terms, [1/(1 + Ax)] azu/axaw +
v+ Ax)2] 3u/dw, in the Q-momentum equation becomes [a/Rch]z.

Thus, it may be reasoned that the axial viscous terms may be neglected
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under the restriction

a -1
<0[107'] (151)
Rch ,

The above relationship suggests that the axial viscous terms cannot
be neglected for the entrance region up to a downstream distance of
about 5 x (2a). The present restriction complements the earlier
restriction for the flow regime, Rec_z 0[10], under which the axial
viscous terms may be neglected. It is of interest to note that when
the axial viscous terms and the secondéhy inertia terms in equation
(145) are retained, then the Dean number K appears explicitly in the
curved entry flow problem. This situation is analogous to the
formulation used by Wang and Longwell [115] where the axial viscous
terms in the momentum equations are retained for laminar entry flow
in a parallel-plate channel. For the present study, the solution of
equation (150), valid for most practically important cases, will be

sought subjected to the restrictions mentioned earlier.

6.3 A NOTE ON PRESSURE DROP FOR FULLY DEVELOPED LAMINAR FLOW IN

STRAIGHT AND CURVED PARALLEL-PLATE CHANNELS

Before considering further the effect of curvature ratio A
on flow development in the hydrodynamic entrance region of a curved
parallel-plate channel, it is useful to summarize the known flow

results for the fully developed flow condition.

It is noted that for a fully developed flow in a curved
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parallel-plate channel, the derivatives of the velocity components

in the w-direction vanish and from the continuity equation (141),

one obtains 3[(1+Ax) ul/3x = 0 implying u = 0. For the limiting
case of fully developed flow, the following governing equation results

- from equation (143).

2
azw W A 1
l] + AX; X - (-I + AX)Z W= (] + ).X) ow (]52)

The fully developed velocity w satisfying the boundary condition,

w = 0 at walls, is given by

=_12_( )e, [(1 +2>\Q{]n (1 +x)
A

(1 -2)
_Q ZXAZZ a - (- A) ) n ( +‘4)4] (153)
(1 + Ax)? (1-2)

where the subscript « denotes the fully developed flow and ¢ stands

for a curved parallel plate channel.

The fully developed solution for two-dimensional flow
through curved parallel-plate channels can also be found in a book
edited by Goldstein [5]. For the limiting case of A = 0 representing

plane Poiseuille flow, the velocity profile w becomes

1
wed @) -l (154)

where the subscript s denotes the flow in a straight parallel-plate

channel.
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After integrating equation (153) with respect to x
from x = -1 to x = +1 and setting the mean velocity equal to one,
the following expression for the axial pressure gradient is obtained.
A4

1 (155)
(8% - (1-292 152 (=23

5
(gl%)c -

=-3[l§6-

It can be shown that the quantity inside the square brackets in
equation (155) approaches one when A - 0. Consequently, for a fully

developed plane Poiseuille flow, one obtains

) =-3 for a0 (156)
“s

,oo

For the 1imiting case A = 1, the quantity inside the square brackets

becomes 4/3 and one obtains,

EE S - -> ‘
(am)c’°° 4, for =1 (157)

For fully developed laminar flow in curved péra]]e]-p]ate channels,

the above value represents the maximum value attainable for the pressure
gradient (ap/am)c’w. This fact does not appear to be pointed out
clearly in the literature. By substituting equation (155) into

equation (153), one obtains the expression w for fully developed

velocity profile.
Following the definition for friction factor f, namely,

.2 P _ 41
fe— %= Rl 5D (158)
m (o4
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~ one obtains,

4

12 (16 A
s =127l 159
(fle,» = Re L3 Wl (- 2w (Jl"t—;')}] (159)

The corresponding expression (f)s - for straight parallel-

plate channel is

(g = e (160)

Here the following expression for the ratio of frictibn factors
(f)cm/(f)s . Is of special interest in design

(f)c o _r16 X4

Moo 3 2 - (1-29% 108 (120

] (161)

The numerical results for equation (161) are tabulated in Appendix 9
and the graphical results for equations (155), (159) and (161) are
shown in Fig. 66. It is clearly seen in Fig. 66 that the pressure

loss for fully developed laminar flow in curved parallel-plate channels
increases with the curvature ratio A and the maximum value is reached
at the 1imiting case A = 1. The asymptotic results presented here

are useful for the present study on flow development in curved

parallel-plate channels.

6.4 FORMULATION OF LAMINAR ENTRY FLOW IN CURVED PARALLEL-PLATE CHANNELS

Consideration is given to the development of isothermal laminar
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flow of an imcompressible Newtonian fluid under steady state
condition in a curved parallel-plate channel of semi-infinite length.
Referring to the coordinate system shown in Fig. 65, the flow between
the two curved plates is independent of Y, and the governing equations

in dimensionless form are:

Momentum equation (Vorticity transport equation)

7 ) (ox 30~ 2w 3x

Vorticity equation

r = vy (146)

2 _ 3 A D

The velocity components in terms of the stream function ¥ are given by

= 1__9¥ =
u—-maw and w = X (147)

For convenience the dimensionless variable used are given as x = Xa,
W= 2K—]A']/29, u=a/vel, w= 2a/v-Re']w, and p = P/(pwmz). The
dimensionless variables are identical to those used in Section 6.2
except that the characteristic velocity wc is now replaced by the
average velocity Nm for convenience. It is useful to recall that

the foregoing governing equations are valid for flows with Dean number



253

K > 0[10]. In other words, noting that A < 1, the restriction on

the Reynolds number becomes Re > 0[10]. Furthermore, the above
formulation is not valid within the entrance region when RCQ is of
order 0 to 10a because of the neglect of the axial viscous terms. The
lTimitations of the present formulation are now clear. The boundary
conditions are now considered next.

For the entrance channel flow problem, in general, a
difficulty of specifying the proper entrance boundary conditions
arises. However, in the present study, the entrance velocity will
Be assumed to be knovwin and the5f011owing three entrance velocities

of uniform, parabolic and triangular profiles are employed.

(a) Uniform entrance velocity

The velocity distribution at the entrance is taken to

be uniform.

Y=x at w=0, x=x
(162)

= A = =
CETTFax) ot w=0, x=x

It can be verified readily that the secondary velocity u = 0 and

the axial velocity w = 1 at the entrance.

(b) Parabolic entrance velocity

Yy = - ’—2(-(x2 -3) at w=0, x=x

2 .
z=-3(x +-§{%—;:X%%J at w=0 x=x

(163)
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The above conditions correspond to u = 0 for the secondary velocity

and w = - 3(x2 - 1)/2 for the axial velocity at the entrance.

(c) Triangular entrance velocity

¥ = %-(x2 +2x-1) at w=0, x=x
(164) -

z = — (x+1)+1 at w=0, x=x
(1 + Ax)

In terms of velocity components, the above conditions signify u = 0

and w = x + 1 at the entrance.

The following no-slip conditions at the wall complete the

specification of boundary conditions for the present parabolic-type

momentum equation.

-1

>
"

¥y=-1 at w = w,

U]

+1 (165)

x
]

+1 at w

e
L}

W,

Y _ -
x 0 at w>0, x=4+]
In the above formulation, the vorticity ¢ is not known explicitly

at the walls (w > 0).
It is known that the laminar flow development in the entrance
region does not permit an exact solution even for a straight tube. The

difficulties in obtaining an analytical solution can be traced to the
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nonlinear nature of the inertia terms in the momentum equation. The
various approximate methods of solution which have been devised to
provide needed information relating to the flow development and the
pressure drop in straight ducts or channels are weli summarized by
Lundgren, Sparrow and Starr [112]. In the present work, a finite-
difference method of solution will be employed. The detailed informa-
tion on point valocities for flow development is also required, for
example, for further study on forced convection problems as'wé11 as

hydrodynamic stability problems in the entrahce region.

6.5 NUMERICAL SOLUTION USING THE DIRECT VORTICITY METHOD

Fig. 67 Coordinate System and Numerical Grid for a Curved

Parallel-Plate Channel

The vorticity transport equation (150) is a quasi-linear
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second order partial differential equation of parabolic type

and the vorticity equation (146) is a linear second order ordinary
differential equation. Because of the nature of equation (150),
the Crank-Nicolson scheme [116] of finite-difference approximations
for the parabolic equation is used. Referring to the coordinate
system shown in Fig. 67, and using a three-point central-difference
approximation for X-derivatives, one obtains the following second-
order-correct Crank-Nicolson equation and a finite-difference

equation for equations (150) and (146}, respectively.

1 A 1

[2h2 ~ Bh(T + Ax) ~ dhaw(1

o) Yi,541 7 ¥,5038501, 540

1 1 |
+ [- 7" Thaa(l ¥ %) (¥500,5 = ¥i-1,5 + Yie1,541 ~ Yion,5400 084 500

1 A 1
* [2h2 MY e vy I T e vy B CT IR PU R LI N (S FU R
1 A ]
= [- 2 IR ) ¥ TRE(T ¥ ) (¥5,541 ~ ¥i,503%54-1,5

+ [-h? - ZhALU(] + AX; (‘yi*l'] ,j = ‘y‘i‘] ,j + q’i-{-] ,j-l-] = ‘y.i_] ,j+])]c.i’j

1 A 1
P WA BT TR g T Y e, (166)

and

[- -+ Ay
h2 2hz] + le i-1,3+1
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2
+ [;2-]‘1!1- ,j+]

+ [- 1. A v
h2 Zh(T + Ax)*7i+1,j+1

T 78,54 (167)
It is noted that equations (166) and (167) take special forms at the
points adjacent to the wall boundary after applying the boundary con-

ditions ¥; ;.4 = =15 ¥yuq 54q = 1, and (8%/3x)y 549 = (3¥/3xX)yyq 54y = 0.

In solving equation (166), the vorticity at the boundary
is not known in advance. For the determination of the boundary
vorticity, the direct vorticity method discussed in Appendix § is
applied. The method is based on the observation that a linear relation-
ship exists betﬁeen vorticity and stream function at all points, including
boundary points, through finite-difference equations. Following the
procedure described in Appendix 5, the following expressions for the
vorticities at the boundary grid point (1,j+1) and its neighbouring
grid point (2,j+1) can be obtained.
(4) (m (2) (1)
2,341 = [ 50 = B, 34000 - Yy 5)

(1) (2) (1)
- AY
(501 7 e, 5000 P50 % 500

(4) (3) Mm v (1)
';2,3'+] = [(MMH WJ+1 T MM-H ,;j+])(.I TOMH ,j+'l)
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(3) (1) (1
* (e, 341~ 1,341 8%, 5419/ 5

and
@ () Mm@
%541 T [0y 501 = Yer, 500 (B 541 = Mgy 5e1)
(2) (1) (1)
= (er, 501 = e, 541) Boar a1 - Ddgay 54000 (168)
where Awi,j+1 = h(aw/ax)i,j+] and the superscript (n), n=1,2, 3,4

represents the value obtained at the consecutive step. One notes that

the boundary conditions, wM+1,j+1 = 1 and A?M+1,j+1 = 0 given by

equation (165) are used in deriving the expressions for c](gl] and
]

Zo é:% For a given curvature ratio A, the numerical solution is
s .

effected as follows:

(1) (1)
1. Assign two values C],j+] = Lp,541 " 0 and solve equation (166)
éxplicitly for Zs §1%, (i=3, 4 .... M+1) by using direct successive
(1)

substitution. With z.

1,j+]’(i =1, 2, ....s M+1) known, the stream

function ¥, j4+1 can be found using equation (167) and the values for

(1) (1)
M¥ye1, j+1 39 Tyyq 547 WITT be stored.
(2) (2)
2. By setting Z4 41 = 0 and %o j+1 = 1, the procedure described

in step 1 can be repeated to obtain A?M+](§z] and WMif)j+] and the

values will be stored.

3. By setting c]f?l] = 1 and czfgll = 0, and following the
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procedure described in step 1 again, one obtains the values for

(3) (3)
A?M+L,j+1 and WM+],j+1'
4. Using equation (168), the values for g (4) and ¢ (4)
) ’ 1,3+1 2,j+1

(4)

can be computed. Using the newly obtained values for 4 3+ and

cz(gl], the procedure described in step 1 can be followed to obtain

the value for Ci,j+1’ (i =3,4, .... M#1) and wi,j’ (i=2,3, .... M+1)
which represent the numerical solution at the axial position j+1.

5. With a computational procedure for the numerical determina-
tion of the vorticity established, it suffices to mention that the
usual iterative relaxation metﬁod for the numerical solution of a set
of finite-difference equations with the associated boundary conditions

may be employed. The prescribed error for the dependent variables is

M+] | (m1)  (m) | M+1 | (m+1) | -4
z fo sa-Fs o |/ 2 f. . =e<10
§=1 T,d¢1 i, PROR FRAY
where fi j represents g j or wi j and the superscript m denotes the

number of iterations. It is noted that even close to the inlet section,
the number of iterations required to satisfy the above convergence con-
dition is found to be only 3 to 8 for all cases.
6. Advance the axial step to j+2 and repeat steps 1 to 5.
The numerical solution of equation (168) presents no dif-
ficulty. The marching procedure starting with j = 1 is used for the

numerical solution of equation (166).
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Numerical experiments are made using the mesh sizes of
M =10, 16, 20, 40 and 80 in the transverse direction. Along the

-4 is used for the

main flow direction, the axial step size aw = 10
range w = 0 ~ 0.01 and Aw = ]0'3 is used for the range w = 0.01 ~ 0.5
as a rule. The mesh size of M = 40 is found to be satisfactory after
examining the numerical results for the velocity field and pressure
drop and is used in obtaining all the numerical results. By using

the present direct vorticity method, the value of the stream function
at the boundary is found to deviate by an amount ranging from 0 fo

1 x 10'5 from the known exactvmagnitude of one. The computing time
required for a complete numerical solution for a given curvature

ratio A and entrance velocity profile is about 4 minutes. The computa-

tions are generally continued up to w = 0.4 or 0.5 where the fully

developed condition is confirmed.

6.6 LAMINAR ENTRY FLOW IN A PARALLEL-PLATE CHANNEL (A = 0) WITH A

UNIFORM INLET VELOCITY PROFILE

Flow development in the hydrodynamic entrance region of a
parallel-plate channel with a uniform entrance velocity has been
studied very extensively in the past. The parallel-plate channel
(x = 0) represents a limiting case of curved parallel-plate channels
with various curvature ratios. The main purpose here is to compare
the numerical results for flow development in a parallel-plate channel
with those reported in the literature. This will serve to confirm the

accuracy of the numerical solution.
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The major effect of the entrance region is to give rise
to a pressure drop which is larger than that experienced by a fully

ed flow. The greater pressure drop in the entrance region

Adavealn
v e

develop
can be attributed to both the change in momentum and the larger wall
friction of the developing flow. For many practical applications,

the predictions of the pressure drop and of the hydrodynamic entrance‘
length are of primary importance.

The major effect of the entrance region on the developments
of the axial and transverse velocity distribution are portrayed in
Figs. 68 and 69, respectively, by a sequence of velocity profiles
at various axial positions along the channel. It is noted that the
development of the axial velocity profile agrees with the published
results of Schlichting [117], Bodoia and Osterle [118] and Collins
and Schowalter [119]. It is seen that the axial profiles near the
entrance have a distinct flat portion in the central region indicating
an iviscid core flow. With increasing distance from the entrance, the
flat position eventurally disappears due to the action of viscosity at
the wall. The transverse velocity profiles shown in Fig. 69 are also
of interest. It is seen that the transverse velocities are directed
towards the center line of the channel and the magnitudes decrease
gradually along the axial direction. The locations of the maximum
transverse velocities are seen to shift gradually away from the upper
and Tower walls along the axial direction. The transverse velocities
disappear completely when the flow becomes fully developed.

According to an order of magnitude analysis shown in Section 6.2,
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the axial viscous terms may be neglected when K > 0[10] or
equivalently Re > 0[10] by noting that A < 1. In this respect,
according to Wang and Longwell's results [115] for a Reynolds

number of 300, the axial viscous terms have influence up to an
entrance distance w = 0.016 for the present problem. In terms of

the physical coordinate, the corresponding entrance distance is

Z = 0.625 x (Channel width). Further theoretical results regarding

the effect of Reynolds number on axial viscous terms are not avail-
able. It is obvious that further work is required to bring out more
clearly the 1imitations of the formulation based on a uniform entrance
velocity and neglect of axial viscous terms. Depending on the Reynolds
number, the present formulation is not valid in the immediate neighbour-
hood of the entrance. However, as seen from the example of Re = 300,
the numerical solution is expected to be valid throughout most of

the entrance region of the channel. The present numerical method of
solution is applicable to any arbitrary entrance velocity profile and
the simplified governing equations (146) and (150) may have definite
advantages in some respects. After discussing the developing profiles,
the pressure drop in the entrance region will be considered next.

The pressure drop between the channel inlet (w = 0, p = po)
and any axial location (w = w, p = p) can be determined by integrating
equation (143) neglecting the terms with Rec'2 over the cross-section
and along the length of the channel. Introducing the dimensionless

pressure p = P/(pwmz), one obtains the pressure drop Ap as

Ap =Ppg-p (169)
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On the other hand, the pressure drop which would be sustained by
a flow if it were fully developed right from the channel inlet can

be found from equation (157) as
(ap),_ = 3w (170)

The pressure drops Ap and (Ap)°° defined above along the dimesionless
axial coordinate w are plotted in Fig. 70 together with other theo-
retical results [115,117,118,119] for comparison. It is noted that
the difference Ap - (Ap)°° represent the increment in pressure drop

due to the development of the flow (see Table 4). The present

result is seen to agree very well with that of Bodia and Osterle [118].
Wang and Longwell's prediction [115] is seen to be somewhat higher

than the present result.

Table 4

Comparison of Pressure-drop Results, [ap - (ap)_]

" Work i [ap - (2p),]
Schlichting [117] . 0.301
Bodoia and
Osterle [118] ‘ 0.338
Collins and .

Schowalter [119] 0.370
Wang and

Longwell [115] 0.394*
Sparrow, et al [111] 0.325
Present Work 0.352

* at x = + 0.1
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On the other hand, Schlichting's prediction [117] is somewhat Tower
than the present one. In Fig. 4C of reference [120], the results of
Han [121], Bodoia and Osterle [118], and Sparrow, Lin and Lundgren
[111] are compared against the experimental data of Beavers, Sparrow
and Magnuson [120] for a rectangular channel with aspect ratio
(width/height) 51 with generally satisfactory agreement. The above
comparison in turn confirms that the present result is a reasonable one.
The prediction of hydrodynamic entrance length is also of
interest in design. The hydrodynamic entrance lengths based on the
attainment of 98 and 99 per cent of the center-line velocity for the

fully developed value from this work are compared against other

results in Table 5.

Table 5

Entrance Length for a Parallel-plate Channel (» =0)

With Uniform Entrance Velocity Profile

Yog. “99
Schlichting [117] ' 0.160
Bodoia-Osterle [118] 0.136 0.176
Collins-Schowalter [119] 0.136
Present Work 0.138 0.173

It may be useful to define the friction factor for the

entrance region as
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Py - P
Fel 2 (171)
pwm (o

In diménsionless form, one obtains

Pp =P

m (172)

=4
f= Re

1,-1

where p = P/(pwmz), w=2Re 'A7'Q and Re = W.2a/v. For fully
developed Taminar flow in a para11e1-p1ate channel, one has (f)S -
"= 12/Re from equation (160). Thus, the friction factor ratio (f)_ s

becomes

1Pp-P

It is noted here th&t the pressure drop Ap = Pp - P can be obtained

from Fig. 70.

6.7 LAMINAR FLOW DEVELOPMENT IN A CURVED PARALLEL-PLATE CHANNEL WITH

A UNIFORM INLET VELOCITY PROFILE

The initial and boundary conditions for the present problem
are exactly the same as those for plane Poiseuille flow considered in
Section 6.6. Consequently, a study of the curvature effect on flow
development is of major interest here. The developments of the axial
and transverse velocity profiles along the channel axis are shown in
Figs. 71 to 76 for the curvature ratios A =0.01, 0.1 and 0.5. A
comparison between the velocity profiles for A=0 (straight channel)

and A = 0.01 reveals that the curvature effect on velocity profile
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development is almost negligible for practical purpose at A = 0.01
since the velocity profiles for both cases (A = 0 and 0.01) are
practically identical. With A = 0.1, the curvature effect is notice-
able by observing the deviation of axial velocity profiles from axial
symmetry in the immediate neighbourhood of the entrance and the non-
venishing of the transverse velocity at the center line throughout -
the entrance region. The curvature effect is pronounced at A = 0.5.
Fig.‘73 c]ear1y shows the thickening of the boundary layer at the
outer wall and thé maximum axial velocity is located nearer to the
inner wall. The latter fact is well-known for the fully developed
condition [122] and the maximum velocity is seen to be located at
approximately x = -0.2 with its magnitude decreasing from a value

of 1.5 for plane Poiseuille flow to a value of 1.495. At A = 0.5

the distortion of the transverse velocity profile (see Fig. 76)

from that of A =0 or 0.01 is quite appreciable and the viscosity
effect is seen to be important in the entrance region. A boundary
along the channel where the transverse velocity becomes zero is of
special interest and the region with inward transverse velocity is
seen to be greater than that with outward transverse velocity. In
the entrance region, the boundary layer and centrifugal force effects
coexist and at any cross-section the pressure is highest at outer
wall. In the fully developed region the transverse velocity vanishes
completely and the centrifugal force on a fluid element is balanced
by a pressure gradient inwards.

The pressure drop between the channel inlet (w = 0, p = po)
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and any axial location (w =0, p=p), 4p = Pg - P» s determined

by the method discussed in Section 6.6 using Simpson's rule for
integration is shown in Fig. 77 for the curvature ratio, w = 0, 0.1
and 0.5. The pressure drop (Ap)c,m which would be sustained by a
flow if it were fully developed right from the channel inlet (w = 0)
ijs also included in Fig. 77 for.comparison. It is seen that the
pressure drop Ap at any axial position increases with the curvature
ratio A but for the range A =0=0.1 the increase of the pressure drop
due to curvature effect is not significant and may be negligible for
practical purposes. It is noted that the difference [Ap - (Ap)c’w]
represents the incremental pressure drop due to flow development

in the channel and the numerical results for the fully developed
condition are listed in Table 6 together with the numerical results
for the hydrodynamic entrance length based on the attainment of the
center 1ine velocity corresponding to 98 and 99 per cent, respeééive]y,
of the fully developed value. The hydrodynamic entrance length is

seen to decrease with the increase of the curvature ratio

Table 6

[ap_- p,] and Entrance Lengths wyg and wgg for Curved

Parallel-plate Channel Flow with Uniform Entrance Velocity Profile

A [ap - 2p.] “og Wog
0.0 0.352 0.138 0.173
0.01 0.352 0.137 0.173
0.1 0.356 0.134 0.172

0.5 0.442 0.123 0.158
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Fig. 77 Pressure Drop Result for A = 0, 0.1 and 0.5 with Uniform

Entrance Velocity
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With the pressure drop Ap = P~ P known, the ratio of
the friction coefficients, f/(f)s’m can be readily computed using
equation (173) and the results are shown in Fig. 78.

6.8 LAMINAR FLOW DEVELOPMENT IN A CURVED PARALLEL-PLATE CHANNEL WITH

A PARABOLIC INLET VELOCITY PROFILE
The entry flow in a straight parallel-plate channel with a

parabolic inlet velocity profile becomes a trivial problem. However,
with the curvature effect the sitﬁation is different. The numerical
results are shown in Figs. 79 to 82 in the forms of axial and trans-
verse velocity profile developments for A = 0.1 and 0.5. In contrast
to the case of a uniform entrahce velocity, the boundary layer effect
disappears in the present problem and the flow development is due
solely to centrifugal force effects. Apparently the secondary flow
is caused by an unbalanced transverse pressure gradient across the
channel induced by the centrifugal force effect. The transverse
pressure gradients 3p/3x at the inner and outer walls vanish and the
pressure is highest at the outer wall, and least at the inner wall.
Consequently, the secondary flow is toward the inner wall throughout
the whole entrance region.

At A = 0.1, the curvature effect can be detected from the
gradual shift of the maximum axial velocity away from the center line
toward the inner wall. " The effect is more obvious from the development
of the transverse velocity profiles shown in Fig. 80. The curvature
effect becomes more pronounced at A = 0.5 (see Figs. 81 and 82).

Note the gradual development of the axial velocity from the initial
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Velocity

Fig. 81 Developing Axial Velocity Profiles for A = 0.5 with
Parabolic Entrance
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parabolic profile to the fully developed unsymmetric one.

Pressure drop results in the entrance region with parabolic
entrance velocity are shown in Fig. 83 for A = 0.5 together with the
pressure drop for A = 0 and 0.5, which would result if the flow were
fﬁ]ly developed right from the duct inlet is included for comparison.
It is interesting to note that in spite of the relatively strong flow
near the entrance at A = 0.5, the pressure drop Ap Seems to follow
closely the line for A = 0 with fully developed flow in the immediate
neighbourhood of the entrance and then gradually depart from it. In
the fully developed region the pressure drop curve for A = 0.5 becomes
parallel to that of 0.5 for the fully developed condition. It is seen
that in the developing region, the curve for A = 0.5 1ies between the
two curves A = 0 and 0.5 with fully developed conditions right from
the entrance. It is noted that the pressure drop Ap for A = 0.5 in
the entrance region is always less than that of A = 0.5 with fully
developed conditions right at the entrance. The difference between
Ap and (Ap)a for A = 0.5 is seen to be very small and a constant value,

[ap - (ap)] = -0.007 is approached at the fully developed condition.

The ratio of the friction factors, f/(f)s,m can be computed
readily using equation (173), namely f/(f)s’w = ap/(3w), since Ap is
known. It can be verified that the ratio f/(f)s’w is close to unity.
Lastly, one notes that the entrance lengths are found to be wgg = 0.046

and wgg = 0.099, respectively, for A = 0.5.
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Fig. 83 Pressure Drop Result for A = 0.5 with Parabolic

Entrance Velocity
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6.9 LAMINAR FLOW DEVELOPMENT IN A CURVED PARALLEL-PLATE CHANNEL WITH

A TRIANGULAR INLET VELOCITY PROFILE

The present inlet velocity profile is characterized by an
asymmetrical distribution with respect to the center line x = 0. The
mean inlet velocity for this case is identical with that of uniform
entrance velocity. The developing profiles for axial and transverse
velocities are shown in Figs. 84 to 89 for the curvature ratios
A =0, 01 and 0.5. The case with A = 0 represents a parallel-plate
channel and Fig. 84 shows that the location of the maximum secondary
velocity occurs first near the outer wall, and then gradually shifts
towards the center 1ine along the downstream direction. Because
of the inward transverse velocity throughout the entrance region,
the symmetric parabolic velocity profile representing the fully
developéd condition is eQentua]]y approached. The secondary flow
is strongest at the entrance and vanishes entirely when the flow
becomes fully developed. The curvature effect can be seen by com-
paring the developing profiles for A = 0.1 and 0.5 with those for
A = 0 (straight channel). At A = 0.1 the curvature effect is already
detectable but the effect is rather small. Near the entrance the

intensity of the secondary flow increases with the curvature effect.

At 0.5, the increase of the secondary flow intensity over that

of 0 is seen to be quite appreciable near the entrance. The
development of the axial velacity profile from the initial tri-
angular one to the final asymmetric one with its maximum Tocated

near x = -0.2 is shown in Fig. 88. As pointed out in Section 6.7,



o ;—:Lg
\W. T

v/ .
. l/// ]
ti::" 11 ;fg

‘05

Fig. 84 Developing Axial Velocity Profiles for A = 0 with :

Velocity

Triangular Entrance

287



288

A3100| 9\ @duedju3j sefnbuetua}

YILM O = Y 40j SB[ }J04d A3120| 37 9sudAsueda) Bupdosnag g8 ‘bl

I n_ -

0

o T S L S0- 0
71 71 ! l l | | | ! { 1 _

0o 0 o 0 0 0 O O O O O o0 O

I —

] |

-

]
€~

y= G-

0°0 =



289

£3190|9A ddueajuz sepnbuetua]

YIIM 170 = Y 404 S9LL40ouad A310013A LeLxy Bupdolansg 98 *Bid

8
o
o

3

7o)
Q
Qo

< A 0 X

[//
[/
/




290

£3100197 dduedju3 Jeinbueiul YjM

L°0 = Y 404 S| L4044 A1100|3A dsuaAsuea) Buidoiarag (8 ‘614

8 & st- ™M SO- _ 0

_{
_T

0 o 0 o o O o o o O

/
/

| | ] | -
- ¢- €~ ¥v- S 9=

20



[ ! UL

/A
i

w

‘05

Fig. 88 Developing Axial Velocity Profiles for A = 0.5 with
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the fully developed velocity profile in curved channels is
well-known [122]. ' )

The pressure drop results, in terms of Ap and f/(f)s’m,
are shown in Figs. 90 and 91, respectively. It is noted that the
pressure drop in the entrance region of a curved or plane parallel-
plate channel with triangular entrance velocity is smaller than the
corresponding one with a uniform entrance velocity. This fact is
obvious by comparing the present pressure drop and friction factor
results shown in Figs. 90 and 91 with those of Figs. 77 and 78,
respectively, for uniform entry flow. Fig. 90 shows that at A = 0,
the incremental pressure drop [Ap - (Ap)c,m] becomes negative. The
fully developed values for the incremental pressure drop and the
hydrodynamic entrance lengths are listed in Table 7 for A = 0, 0.01,
0.1 and 0.5. It is noted that with A = 0, the fully developed
incremental pressure drop is -0.017 and even with A = 0.5, the
value is 0.104 which is smaller than the value of 0.442 for the
uniform entrance ve]ocity case. For the range of curvature ratio
A =0 =0.1, the hydrodynamic entrance length w with a triangular
entry flow decreases by about 25 per cent from that with a uniform
entry flow. On the other hand, with A = 0.5, the corresponding value

is about 28 per cent.
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Fig. 91 Friction Factor Results for A = 0, 0.1 and 0.5 with

Triangular Entrance Velocity
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Table 7

[ap - Ap_] and Entrance Lengths wgg and wggq
for Curved Parallel-plate Channel Flow

with Triangular Entrance Velocity Profile

A [ap - ap.] wyg Wgq
0.0 -0.017 0.103 0.122
0.01 -0.017 0.103 0.122
0.1 -0.013 0.101 0.118
0.5 0.104 0.089 0.109

In the analysis of flow development in tubes or channels,
it has been standard to evaluate the static pressure difference Ap
as used in the present study. However, it may be useful to compute
the total pressure drop from the viewpoint of total energy 1055.
The informationoon total pressure drop may be particularly useful
with a non-uniform entrance velocity such as the present triangular
one. For the triangular entry flow in a straight parallel-plate
channel, the dynamic inlet pressure pg,q 1s found to be '

1-2( 2, (1
Pao =3 ¥ J_]u + %) dx/L]dx - 2/3 (174)
On the other hand, the dynamic pressure Pd,» at fully developed

condition is 1
1
Py ‘EJ] 20- xz)zdxlj-]dx - 3/5 (175)
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Thus, the dynamic pressure drop is

By = Py g - Pa = 2/3 - 3/5 = 1/15 (176)
The above dynamic pressure drop APd may now be added to the incremental
static pressure drop [Ap - (Ap)s’;] at fully developed conditions to

obtain an incremental total pressure drop as
Apy * [ap - (Ap)s o] = 1/15 - 0.017 = 0.50- (179)

similarly, the incremental total pressure drop in a parallel-plate

channel (A = 0) with a uniform entrance velocity becomes
Apd + [Ap - (Ap)S “J = (1/2 - 3/5) + 0.352 = 0.252 (178)

By comparing the above two results, it is found that the incremental
total pressure drop at fully developed condition in a parallel-plate
channel (» = 0) with uniform entrance velocity is about five times
greater than that with a triangular entrance velocity. In general
one may conclude that the situation is similar with curvature

effects included.

6.10 CONCLUDING REMARKS

1. Laminar flow development in the entrance region of a curved
parallel-plate channel is studied theoretically for entrance velocities
which are uniform, parabolic and triangular with a curvature ratio
ranging from A = 0 to 0.5. For the 1imiting case of a plane parallel-

plate channel (A = 0) with uniform entrance velocity, the flow results
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are compared with available results reported in the literature. The
remaining results for the curved parallel-plate channel are believed -
to be new.

2. For fully developed laminar flow in curved parallel-plate
channels, useful relationships for pressure drop and friction factor
are der1vedvusing thé known analytical sdlution for velocity profile.-
At the 1imiting curvature ratio A = 1, the pressure drop and friction
factor increase by a factor of 4/3 over those of a.étraight paraliel-
plate channel (A = 0).

3, For a given entrance velocity profile, the curvature effect
~ on pressure drop is generally small up to A = 0.1 and may be negligible
for pra;tica] purposes. However, the curvature effect gradually
increases from A = 0.1 onwards and the effect is found to be Sighi-
ficant at A = 0.5.

4, With a parabolic entrance velocity profile, the pressure
drop is less than that which would result if the flow were fully
developed right from the channel entrance for a given curvature
ratio A.

5. With a triangular entrance velocity profile, the pressure
drop is less than that which would result if the flow were fully
developed right from the channel inlet for a range of curvature
ratios A = 0 = 0.1. For A = 0.5, the pressure drop is much less
than that for a uniform entrance velocity.

6. For a given entrance velocity profile, the hydrodynamic

entrance length decreases with an increase of the curvature ratio A.

|
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For a given curvature ratio A, the entrance length for the uniform
entrance velocity case is longer than that for a parabolic enfrange
velocity 1s seen to be the least.

7. In the formulation of the present problem, the axial'viscqus
terms are neglected. The results presented in this study must be
understood under this Tight. The effects of axial viscous terms
should be investigated in future work.

8. The present numerical method is applicable to entry flow
problems in a curved parallel-plate channel with any arbitrary
entrance velocity profile.

9. The numerical results obtained are listed in Appendix 9

for futuré reference.



CHAPTER VII

HYDRODYNAMIC INSTABILITY OF LAMINAR FLOW
IN CURVED PARALLEL-PLATE CHANNELS

7.1 INTRODUCTION

For a laminar flow between two curved paraliel plates or
two coaxial cylinders, the flow in the boundary layer is known to be
unstable at the concave outer wall and stable at the convex inner
wall. Due to the centrifugal forces acting on a fluid element the
pressure is highest at the outer wall and least at the inner wall
for any cross-section. In contrast to the monotonous increase of
pressure from the inner wall to the outer wall along the transverse .
direction, the centrifugal force increases from zero at the inner
wall and then becomes zero again at the outer wall after reaching a
maximum value at the point of maximum axial velocity. The outer
region with decreasing centrifugal force is clearly seen to be unstable.
The situation is completely analogous to Taylor's problem [123] for
the stability of Couette-type flow of a viscous 1iquid between con-
centric, rotating cylinders and Gortler's problem {124] for the
instability of boundary-layer flows over concave walls. The resulting
secondary flow is commonly referred to as Taylor-Gortler vortices.
The instability of curve flows due to centrifugal forces (centrifugal
instability) is analogous to thermal instability such as that due to
buoyancy forces acting on horizontal fluid layers heated from below.

Several examples of instability due to centrifugal forces

300
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are well reviewed by Stuart [125]. Consideration is now given to a
curved parallel-plate channel along which fluid is flowing under the
action of a pressure gradient. A theoretical investigation of the
stability of flow under pressure in-a curved channel or between con-
centric cylinders was first made by Dean [126] in 1928. His analysis
is based on the assumptions that the distance between the two cylinders
is small in comparison with the inner radius and the fully developed
main flow is ;parabolic. He shows that the motion can become unstable
for a small disturbance of exactly the type found by Taylor [123]

for fiuid motion between two rotating cylinders. Dean [126] gives
the following ciritical value for the characteristic parameter K

which is now known as the Dean number.

K = Re(-,f—)-”2 = 25.4
C

where Re = wm(Za)/v, a = a half channel width and R = éhe radius of
curvature of the channel. Using the result of this analysis, Dean
offered an exp]anétion for the known absence of a marked critical
velocity of flow in a curved pipe.

Apparently unaware of Dean's earlier work [126], Yih and
Sangster [127] studied Dean's problem again in 1957. Subseﬁuent]y,
Reid [128] also studied Dean's instability problem in 1958 using
two methods of approximate analytical solution. Reid's numerical
results for the critical Dean number using two different methods
agree closely with Dean's earlier result [126]. Reid also presents

the radial and tengential velocity perturbations and the cell pattern
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at the onset of instability. In 1958, Hammerlin [129] also presented
theoretical results for Dean's instability problem using Green's func-
tion. Hammerlin shows the distributions for the eigenfunctions, cel-
Tular pattern and axial disturbance at the onset of instability. In
1967, Mori and Uchida [130] presented theoretical and experimental
‘results for forced convective heat transfer in a curved channel ih the
post-critical flow regime.

It is noted that the reborted theoretical results for
hy rodynamic instability in curved parallel-plate channels are for
the case of fully developed laminar flow with a plane Poiseuille
velocity profile only where the curvature effect is completely neg-
lected for the main flow, The experihental confirmation for Dean's
instability problem does not seeh to be available at present.

The purpose of this investigation is to present the
formulation of the general perturbation equations applicable to the
hydrodynamic entrance flow in curved parallel-plate channels and
present numerical results for hydrodynamic instability for the
1imiting case of fully developed laminar flow with curvature effect.
Thus the present problem can be considered to be the extension of
the Dean's instability probiem [126]. The numerical method of
solution is developed for a study of hydrodynamic instability in the
entrance region of curved parallel-plate channels with curvature
effect but the numerical results are obtained only for the asymptotic
case of fully developed flow in order to 1imit the scope of the

present investigation.
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7.2 FORMULATION OF THE STABILITY PROBLEM

3 M-l M+ 1

Inner Wall

‘?"\\\\ [
f 4N =
k.' J ' =
i X (u s U ) s

P
-1 () ]ég

Fig. 92 Coordinate System and Numerical Grid

Consideration is given to a steady incompressible flow

in the entrance region of a curved parallel-plate channel with a
given entrance vé]ocity. The coordinate system is shown in Fig. 92.
It is assumed that the velocity distributions for the primary flow
are available. It is known that the present two-diménsional curved
flow is unstable under the three-dimensional disturbances of Taylor-
Gortler type near the concave outer wall. To investigate the
stability of the steady primary flow, one may superimpose the per-

turbations on the basic flow as,
1 ]
U - Ub(ch,X) + U 3 V - v 9
W= wb(RcQ,X) +W, P Pb(RcQ,x) +P

in which Ub and wb are basic velocity components corresponding to



one obtains the following set of perturbation equations.

Continuity equation

X-momentum equation

P R AN N L
X (R'c"'+"'x'7 Y TR‘C' + X) 389
, Uy W' Y Wy sy

X +(RC+X) an*(Rc+X)ﬁ -

L4
]

O |

2 ' oAy
2 " 3XaY

]
22y 1
+ vf +

a2 (R, + )2 a0

o1 %W 1 M
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transverse and axial directions, respectively, and Pb is the static
pressure. The perturbation quantities U', V', W' are taken to be
sufficiently small for their squares and products to be neg]ectéd.
The continuity and the Navier-Stokes equations expressing the con-
servation of mass and momentum may now be writtén (see equations
(A-16) to (A-19)) and the foregoing perturbations introduced. Noting
that the basic flow is such that the equation of continuity and
Navier-Stokes equa“‘ons are satisfied and that the terms of higher

order than the first in the perturbation quantities miy be neglected,

(180) |

W Hb
Rc + X

(181)
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Y-momentum equation

AP S R | X
b X (ﬁc'-rX)asz p av
22y’ 1 ', oy
sl - 28 A,
axoY ~ (R c‘+"‘xT oY ;x‘i
1 A 1 (182)

1 8V
+ ) A - SN
‘(—""YRc + X) oX (R, + X)2 2g? '(""')'Rc + X) aYoq

Q-momentum equation

' W W ' 3u u'w
P R Y Y S Rty - b
Ubox *U X *TR_+ X 3@ M I ()
I N
o TR.+X) 2

+ vl ] 2, 1 ']
R_+ X) XoR (g 4 )2 0@  (Rg + X) aVam
c

2t ] 1 v 2,0

oUW oM W I W

+ 20 MM .38 (183)
2 R FXIA T oy %

Noting that all the velocity components vanish identically (no slip)

on walls, the boundary conditions to be imposed become:
U, =W, =0 and u'=v' =W =au'sex=0

at X=+a (184)
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At the hydrodynamic entrance, one may impose the following initial

conditions for this study,

U, and W, are given and

v =v =W =0 at =0 (185)

For the three-dimensisnal disturbances of the Taylor-Gortler type,
'~ one may assume the stationary normal modes of the following form

following Smith's work [131]

U' = U*(X) cos a¥ exp JB(ch)d(RCQ)
V' = v*(X) sin a¥ exp JB(RCQ)d(RCQ)
, (186)
W = W*(X) cos aY exp JB(Rcﬂ)d(RcQ)
P' = P*(X) cos aY¥ exp JB(Rca)d(Rcﬂ)

where the amplitudes of U*, V*, P* are small quantities whose squares
and products can be disregarded. The quantities a and B are the wave
number and the amplification factor, respectively. The above distur-
bance modes were first introduced by Smith [131] in his study on the
growth of Taylor-Gortler vortices along highly concave walls. The
vortex is assumed to grow in strength by the factor exp IBd(RCQ);
that is, tb grow with distance, not time [131]. Further detaifs

regarding this growth factor are given by Smith [131].

Introducing equation (186) into disturbance equations (180)
to (183), one obtains the following set of ordinary differential
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equations for the disturbances after 1inearization as noted above.

Continuity equation

1 -
i +-T§:—+—75- U* + aV* + -(R—c—;-)—o' (BR.)w* =0 (187)

X-momentum equation

%
] dU

Lo
“';;" + -y, + (ﬁ“'i'XS

U, (BRIW (BRc)z

V ]U*

e o] 3y 2v(eR.) "
lRC + X) ZRC + X) 93Q (Rg + x)z

%
-%%-=o (188)

Y-momentum equation

2
d-v* dV*
viZ U AR &

(8R.) v(BR )2 W
2 (o 4By«
R o "+ 02 "+ F &



+&pr=9
Q-momentum equation
v dzw*+ [ -u, + Y di*
&Z b (R_“c + X)7 dX
2
2 9  (BR) v(8R,.) v
*[-w" - " +x)2"b+(R PEVY S PO
[+ C C
oMy W 2v(BRc)2}U*
X Roe NS (R *X)
(8R.) .
p R, +X) pr=10

Introducing thg following non-dimensional variables
Ub ='Umu, "b = th,
U* = [v/adu*, V* = [v/alv*, W* = [v/alw*,
P* = Pc*p*, A= a/Rc, X = ax,

RCQ = RCch, B = B/RC, a = A/(2a),
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(189)

(190)

and Reynolds number Re = wm(Za)/v, the perturbation equations (187) to

(190) become
Continuity equation

du* A A . A —
ax T F ) u* + ZV*+B (T + xx) wt =10

(191)
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X-momentum equation

d2u* du*

A
2 vt &

2 7\2 BRe A

2 (1+J\x)w

T+l

u >\2 dB

- —— — u*

(] + )\x)z dw)

~-1,-1 A ou A A
+ (- 2Re" "2 '(T+_Ax7§u'>+Re TF X w-ZBAm)-)w*

*

2
c a4 dp* _
- [-5—32‘] =0 (192)

Y-momentum equation

d2v* dv*

A —
;;-2_ +('U+(]+Ax5)dx

2 A A

B -
* (1 + )2

2
A d;B_v*

d ——

p *a? Ap*
+[=5153-=0 (193)
pv
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Q-momentum equation

2
dw* Ay dw
pw AL (e vy 7
RS G CEREE CRN  S W auy
(] + AX)Z 4 (] + AX)Z 2 (] + AX) oX
‘(2B —A° _Redw Re ) w)u
(1 + Ax)z 2 x - 2 (1T+xx)
P *a?

A
-8 p* = 0 (194)
pvz (1 + ax)
For neutral stability, one may set B = 0 and the perturbation

equations reduce to
Continuity equation

du* =

A A
a;+-“—m)-u*+-2—v*-0 (195)

X-momentum equation

2
d"u* A du*
dx? *ut O+ Axi) dx

2 AZ

—_ - )u*
4 3X (] + AX)Z

+ (- 2Re”]

-1 A u A
A TF 0 e T Re T g W



M

P *a2 dp*
c =
+[E1FE=0 (196)
pv
Y-momentum equation
2 2
d-v* A dv* A
2t et v
A Pc*a2
tgl=lp=0 (197)
pV
Q-momentum equation
2
d"w* A dw*
2T &
2 2
A" au A
+ (-5 - - w*
Re ow _Re A : -
+ (- 2 x "2 {T+xx) wju* = 0 (198)

It is seen that the independent parameters are A, Re, and .
However, for convenience, the wave number A, Dean number K = Re(a/Rc)]/2
and the curvature ratio A = a/RC will be used. For the purpose of
carrying out the numerical solution, the above set of four perturbation
equations will next be reduced to a pair of simultaneous equations.

This can be achieved by eliminating v* from the momentum equation (197)
by using the confinuity equation (195). Eliminating further the
pressure terms betweem the X- and Y-momentum equations (196) and (197),

one obtains a pair of simultaneous equations for the neutral stability as,
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(1+2x)° dx

- 2u

-3 —Tu*
(1 + Ax)3 (1 + Ax)4]u'

A2 L2172 4 au

= [- 7 KA (T +3x) %0

2
A -1/2 A
T R ey e (199)

o du*

A
) tlurgd 04 dx

2 2
+ [_ A ou A

- ——— o ————————

ox (] + AX)Z

—l-1/2 2 1 ,-1/2 aw (200)
- [2 KA T+ ¥ *3 KA ax]“*

The boundary conditions at the wall are

u* = wr = du*/dx = 0
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and u=w=0 at x=2%1 (201)

The initial conditions are

u* =wrk =0 (202)

The above differential system represents an eigenvalue
problem and the solution of which will result in a fundamental relation-
éhip between the Dean number K and the wave number A for a given cur-
vature rétio A. Equation (199) shows that the transverse disturbance
u* is caused by the centrifugal effect as represented by the term
jnvolving ww* and the axial velocity grandient effect of the basic
transverse velocity u through the product (3u/dw)ew*. On the other
hand, the axial disturbance w* is caused by the velocity gradient
(3w/3x) in the transverse direction through the product (3w/3x)-u*
and the Coriolis effect through the product wu*. The latter effect
is seen to be of secondary importance. Of course, the two equations
for perturbation velocities u* and w* are coupled.

The neutral stability for the case of a fully developed
basic flow is of particular interest here since the numerical result
will be sought for this 1imiting case only in this investigation. It
is noted that for the fully developed basic flow, the secondary velocity
u vanishes and consequently, the terms 3u/3x, 5u/3w also vanish. The

neutral stability equations for the fully developed basic flow then

become

dx .o dw
dx

4 (1 + ax) dx3
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A2
e o T R &

4 2 2 4
A A A
+ [y + -3 Ju*
16" 2 1+ Ax)z 1+ Ax)4 ‘

2
A 2
R (A (203)
v, e A a2 g
dx2 (] + AX) dx 4 (-l + )\x)Z
e e 7 K12 By (204)

It is recalled that Dean's instability problem [126]
assumes a small curvature ratio A << 1 and a plane Poiseuille profile
- for the basic flow neglecting altogether the curvature effect. For
reference purposes, the simplified set of perturbation equations

negelecting the curvature effect is given below as,

22 2
(0? - %-) ut = %— K2 %—(] - xP)w (205)
2 2
(02 -8 )w = - 3’ (206)

The boundary conditions are reduced to

ut o= W = du+/dx =yu=w=0 atx=+1 (207)
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where DZ = dz/dxz, ut - KA']/zu*

and the fully developed parabolic velocity profile is w = (3/2)(1 - xz).
In the above formulation following Dean's earlier work [126], the

only parameters are seen to be Dean number K and the wave number A.

It is noted that the above 1inearized disturbance equations éorrespond
to the equations (7) and (8) given by Reid [128]. It is instructive

to note that the term on the right-hand side of equation (205) rep-
resents the centrifugal force effect and is balanced by the viscous
terms. In equation (206), the right-hand side term represents the
inertia force effect u+(aw/ax) which is caused by the coupled effect

of transverse disturbance velocity ut and the transverse gradient of

basic velocity and is seen to be balanced by the viscous terms.

7.3 NUMERICAL METHOD OF SOLUTION

It is apparently not practical to seek an analytical
solution for the pair of disturbance differential equations (199)
and (200) since an analytical solution for the entry flow problem in
a curved parallel-plate channel is not available. In the present
investigation, a finite-difference technique will be employed. By
applying fhe five-point central-difference approximations (see Fig. 92)
and using the dummy variables f and g for the disturbances u* and w*
or w* and u*, respectively, one obtains the following set of algebraic

equations applicable to both equations (199) and (200).
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It is noted that in the case of equation (199), one has fi
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g9; = wi* with the elements of the coefficient matrix given as
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2 2
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On the other hand, for equation (200), one has f; =w* and g; = u.*

with the elements of the coefficient matrix given by,

1

L 1 A
Ay =1L 2 T TR Ty e
-r4 _ 2 A__
B; = [3h2 o T+ - Y4i1/84
Co - (- —22 L2, (24). /g,
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_ l -1/2
where B; =35 K (

ax i i] + Axi w )

It is noted that the e]eménts along the first and the
last rows of the coefficent matrix in equation (208) are obtained after
applying the boundary conditions given by equation (201). The
numerical values for Uss Wi (au/ax)i, (au/aw)i and (aw/ax),i are
available, for example, from the numérica1 solution obtained in
Chapter VI for the developing main flow.

In order to i]fustrate the numerical method of solution
for the present eigenvalue problem, the.two_systems of algebraic
equations arising after applying finite—difference approximations for
a pair of simultaneous differential equations (199) and (200) will be
cast into the following forms by introducing the coefficient matrices

L and N.
Lo =

u*

:

where u* and w* denote the column vectors consisting of ug* and w.*,
respectively, When one eliminates u* from the above equations, one

obtains

(LN - I)w* =Dw* =0 (211)

where I is a (M -1) x (M - 1) unit matrix. It is seen that equation

(211) represents (M - 1) linear, homogeneous algebraic equations for
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(M - 1) unknowns iﬁ* (i =2, 3 ...M). Solution of such an algebraic
system is possible only if the determinant |D] for the coefficient

matrix D vanishes.
jp| =0

The elements of the determinant |D| are denoted by di,j (i=2,3... M,
j=2,3...M). The value of the determinant depends upon three
parameters--the Dean number K, the wave number A, and the curvature
ratio A. When the curvature ratio is heﬁd fixed, then for each and
every value of A which one might select, a Dean number that causes the
determinant of the coefficient‘matrix to be zero can be found. In
particular one is interested in finding a minimum Dean number which
permits a solution of the disturbance equations. Below this Dean
number, a solution cannot be found and this implies that the primary
(or basic) flow is stable. It is then clear that the aforementioned
minimum Dean number corresponds to the onset of instability. This is
generally called the critical Dean number, The numerical computations
which are required to find the critical Dean number are effected by
the following computational procedure:

1. For a given value of curvature ratio A, assign a value for
the wave number A. The main flow field quantities such as Uss Wss
(au/ax)i, (aulaw)i and (aw/ax)i are assumed to be alreacy known.

2. Two initial values for the Dean number K] and K2 are assigned

and the value for the determinant |D(K;)| and ID(K,)| are evaluated



by using Gaussian elimination [132].
3. Compute a successive improved approxiamtion for the
eigenvalue Kn+] using the following iteration formula for the

secant method [133].

K., =K %n ~ K1) ID(K )| (212)
ML nK )] - DK )1 "

4. The above process will be repeated until the following
convergence condition is satisfied.

IKne1 = Xl

<e=107 S (213)
]

It is notgd that the process of finding the critical
eigenvalue Kc can be facilitated_by starting with a pair of initial
“values K], K2 which are higher than the sought critical value Kc
and another pair of initial values K;', and K,' which are lower than
the critical value. In order to obtain a result with high accuracy,
the individual elements of the determinant |D| may be divided by a

constant y in the initial scaling such that

max [di,j/Y] =c

where the constant c can be taken to be unity. However, for the
present problem, the value c is chosen arbitrarily but a fixed
constant value is used throughout the computational steps 1 to 4.

It is found that the values of the determinant consisting of the
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elements (di ./y) are bounded with + 10+3. In carrying out the
Gussian e11m1nat10n, pivotal condensation [134] is applied. According
to w11k1nson [135], and Forsythe and Moler [136], the computational
procedure involving the initial scaling of the elements of the deter-
minant and partial pivoting [137] during Gaussian elimination tends

to suppress the growth of round-off errors. '

It is noted that the present computat1ona1 procedure and
the developed computer program are applicable to the hydrodynamic
instabiiity prob1em in a curved parallel-plate channel. However,
the numerical results are obtained only for the fully developed flow
regime. It is also noted that the disturbance components can be
obtained by using an iteration procedure [137] but no attempt was
made to obtain the disturbance profiles in this study. The.present
study is concerned with the onset of the primary mode of disturbances
but the second and higher modes may be of theoretical interest.:

Since the accuracy of the numerical results depends on
the mesh size, the effect of the mesh size on the accuracy of the
eigenvalue Kc will be examined in some detail. Disregarding the
round-off error, the exact value of the eigenvalue corresponding to
given values of the curvature ratio A and wavenumber A can be
approached only when the mesh size h approaches zero. However, in
practice the mesh size can be chosen small enough to achieve a
reasonable accuracy for practical purposes.

For a given finite-difference approximation, the truncation

error is known. For example, for the present finite-difference
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approximation, the truncation error is of order h2. If it is
assumed that the numerical error is mainly due to the truncation
error, then the effect of truncation error h2 on the computation
of the eigenvalue Kc may be of interest. The results of numerical
experiment are plotted in Fig. 93 where the effects of the mesh size
M, the square of the grid size th and (hM/h20)2 on the numerical
values of the eigenvalue K. and the relative errors [(Kc,M - Kc,ZO)/
Kc’zo] x 100 are clearly shown for A = 0.01. The relationship for
M > 20 is seen to be linear. It is noted that when a mesh size
M = 10 is used, the eigenvalue Kc is found to be well below the value
obtained by a Tinear extrapolation of the result shown in Fig. 93.
On the other hand, when the mesh size h is extrapolated to zero,'
the critical Dean number Kc is found to be 25.03 as compared to the
value of 24.983 for h = 0.025 (or M = 40). Thus if one may allow
for an error of 0.1 per cent, the mesh size M = 40 is seen to be
satisfactory.

Although one may obtain the critical Dean number Kc by
the aforementioned extrapolation method, the corresponding wave-
number A is clearly no longer the pre-assigned value. The above
observation is confirmed by examining the numerical results for the
critical Dean number Kc and the corresponding critical wavenumber
Ac for various mesh sizes with a given curvature ratio. For example,
with A = 0.01, the critical values are Kc = 24.909, AC = 3.96 for
M =20 and KC = 24.974, Ac = 3.90 for M = 40. The difference between

the two values for wavenumber Ac is found to be 1.5 per cent based
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on the value for M = 40. On the other hand, with M = 80 the
difference is found to be 0.2 per cent based on the value for M = 40.
From the viewpoint of computing time, the mesh size M = 40 is clearly
a proper choice. For this reason, most of the numerical results are
obtained using M = 40 but the mesh size M = 80 is also used in |
assessing the curvature effect.

The computing time required in obtaining a critical
value for the Dean number Kc with given A and A is usually 15 to 20

minutes for M = 40. The required time depends on the initial guess

for Kc.

7.4 STABILITY RESULTS AND DISCUSSION

The onset of the hydrodynamic instabi]ity in the form
of Taylor-Gortler vortices is studied for the fully developed laminar
flow in curved parallel-plate channels with the curvature ratios
A = 10719, 1072, 1077, and 0.5. The curvature effect is included
in the formulation for both basic and perturbed flows. The numerical
results for critical Dean number Kc and wavenumber A marking the
onset of instability are presented in Table 8 with A = 10']0for the

perturbation equations and using a parabolic basic flow profile

(» = 0).
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TABLE 8

NEUTRAL STABILITY RESULTS

Wavenumber Critical Dean Number Kc

- Reid [128]
A Present for 23322?3221 Fourier Series H?ngglin
0 - m

0.5 110.78 110.31

1.0 57.198 57.21

1.5 40.953 40.57

2.0 32.090 32.82

2.5 28.276 28.87

3.0 26.010 26.81 26.541
3.5 25.395 25.87

3.9 25.319 25.684 25.234(2)

3.96 25.313 - 25.410

4.0 25.351 25.608 25.413 25.254
4.1 25.386 25.734 25.247(2)

4.5 - 26.09

5.0 26.307 26.88 26.226
5.5 - 28.04

6.0 28.858 29.52

7.0 - 33.21

8.0 33.714 37.83

9.0 - 43.31

10.0 39.951

16.0 70.569

32.0 239.240

- - ©

Note: 1. A= 10']0 for perturbation equations and A = 0 for main flow.

2. 1st approximation [128]
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- Reid's numerical results [128] based on two approximate methods

of solution using an expansion in orthogonal functions and a Fourier
expansion are also listed for comparison. In addition, Himmerlin's
“results [129] are also included. With A = 10719 for the perturbation
equations (203) and (204)and using the parabolic basic velocity profile,
the Dean number K and wavenumber A become the only parameters and

the curvature effect disappgars. This situation corresponds to the
case governed by perturbation equations (205) and (206) and the
"problem reduces to the instability problem solved by Dean [126],

Reid [128] and Hammerlin [129]. The values for critical Dean number

10

Ke and vavenumber Ac from this work (A = 10" for the perturbation

equations and using a parabolic basic velocity profile) agrees véry
well with Reid's results which in turn are known to agree excel-
lently with Dean's results. The agreement may serve to confirm the
accuracy of the present numerical results.

The neufral'stabi1ity curves from this work and Reid's‘
results are shown in Fig. 94 for comparison. The agreement is seen
to be excellent except for the region with larger values of A where
Reid's appro imate solution is believed to be the source of the
discrepancy. The main interest here is the minimum critical Dean
number and the corresponding wavenumber. The numerical results are
compared against those of Dean [126], Reid [128] and Hammerlin [129]

in Table 9. The agreement is again seen to be very good.
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TABLE 9

_ Minimum Critical Dean Number Kc

and Critical Wave Number Ac

Critical Dean Critical
Number K. Wavenumber A

Present Work* - 25.313 3.960
Dean [126] 25.42 3.954
Reid [128]

Orthogonal Functions 25.683 3.889
Fourier Series 25,291 3.963
Hammerlin [129] 25.254 4,00

) = 10']ofor perturbation equations and A = 0 for main flow.

The effects of curvature ratio A on neutral stability
results are of considerable theoretical and practical interest. The
numerical results for A = 0.01, and 0.5 are listed in Table 10 and

are presented graphically in Fig. 95. It is noted here that the

10 for the perturbation equation

and A = 0 for the basic flow almost coincide with those of A = 10'2.

neutral stability results with A = 10



On

Wavenumber

" A

2.0
3.0
3.5
3.8
3.9
3.96
4.0
4.1
4.5
5.0
6.0
8.0
10.0
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TABLE 10

Curvature Ratio Effect

Neutral Stability Results

Critical Dean Number K
Curvature Ratio X

C

0.01 0.1 0.5
31.907 - 18.400
26.083 22.801 17.000

- 22.316 16.646
24.987 22.249 16.650
24.974 22.250 16.682
24.977 22.251 16.731
24.983 22.252 16.743*
25.013 22.253 16.751

- 22.321 16.824
26.051 22.653 16.901
28.448 24.001 17.602
33.302 26.756 20.073
39.214 29.767 23.204

* The critical value based on a parabolic velocity

profile for main flow is 18.50.

It is useful to recall again that the curvature effects in

the basic and disturbance equations and the effects show up in two



-~

331

S0 I T T T T

15

] | I '
6 7 8 910

Fig. 95 Effect of Curvature Ratio A on Critical Dean Number Kc'

N
I X



332

different ways. As shown in Chapter VI, the curvature effect tends
to distort the fully developed main flow profile from the plane
Poiseuille one and shift the location of maximum velocity away from
the centerline towards the inner wall. Considering the transverse
distributions of centrifugal forces and pressure gradient an/BX,
one can readily understand that the curvature effect contributes

to the increase of the unstable region near the concave outer wall.
Another effect of curvature ratio A on the present neutral stability
problem appears in the perturbation equations as can be seen from

equations (203) and (204).

With A = 0.01, the deviation of the numerical results for

the neutral stability from those with A = 10'10

is found to be within
1.5 per cent for Kc. Considering a possible numérica] error due to
the method used, one may conclude that the curvature effect may be
practically neglected when A < 0.01.

At A = 0.1, the curvature effect becomes significant as
shown in Fig. 95. The neutral stability curve for A = 0.1 is seen
to be generally about 10 per cent Tower than that of A = 0.01. With

the curvature ratio A = 0.5, the neutral stability curve is seen to

0.01. In Table 10, the critical

be markedly lower than that of A
value of Dean number K for A = 0.5 and A = 4.0 based on a parabolic
basic veiocity profile is given.as 18.50 which is about 10 per cent
higher than the value of 16.743 obtained considering the curvature
effects for both the basic and perturbed flow. From an inspection

of Table 10, it is seen that as the curvature ratio A increases, the
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value of the wavenumber correéponding to the minimum critical Dean
number decreases.

Finally the question regarding the priority for the onset'
of Taylor - Gortler longitudinal vortices over that of Tollmien-
Schlicting waves in a curved parallel-plate channel is of consider-

1/2

able practical importance. Noting that K. = Re A" ", the numerical

values for the critical Reynolds number ReC may be computed readily
from the neutral stability results for a given curvature ratio A.

The neutral stability results for the Reynolds number are plotted

in Fig. 96 with curvature ratio A as parameter. The critfca1 value
of the Reynolds number based on Tollmien-Schlichting type instability
for the fully developed laminar flow in a straight parallel-plate
channel is also indicated by a dashed line in Fig. 96 for comparison.
The critical values given by Kin [138] and Chen [139] are aléo noted

there. It is noted that the Reynolds number is based on the channel
width and mean velocity i.e. Re = wm(Za)/v.

From an inspection of the figure, it is seen that the
Taylor-Gortler longitudinal vortices have a priority of occurence
err that of Tollmien-Schlichting travelling waves even in a slightly
curved parallel-plate channel such as A = ]0'4 with fully developed
laminar flow. The implication here is that even with a very small
curvature ratio A, the possibility for the occurence of Taylor-
Gortler vortices should be examined. The above conclusion is based
on the assumption that the Tollmien-Schlichting type instability is

not influenced by the curvature effect. Apparently, the extension
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of the stability theory of transverse wave disturbances to the
fully developed laminar flow in a curved parallel-plate channel is
highly desirable. The difficulty for a theoretical investigation
of the stability of laminar flow in a curved pipe was pointed out
by Dean [126] in 1928. In this respect, the possibility for the
curved parallel-plate should be explored as a starting point.

Since the centrifugal instability is somewhat analogous
to thermal instability, some inference from thg'results of thermaT
instability may be useful in speculating the possibilities for
the Tolimien-Schlichting waves in a Curved-para]]e]-p]ate channel.
Experimental investigations on thermal instability of laminar
natural convection flow in inclined isothermal plates were carried
out by Lloyd and Sparrow [140].. They established clearly that when
the inclination angle exceeds 17° from the vertical, the instability
is characterized by longitudinal vorfices, whereas, the mode of
instability is Tolimien-Schlichting waves for inclination angles
of less than 14° relative to the vertical. The range between 14°
and 17° was identified as a zone of continuous transition with
the two modes of instability co-existing. It is noted here that
the effect of inclination angle on the thermal instability is
qualitatively similar to the effect of curvature ratio on centrifugal
instability in a curved channel. For a straight parallel-plate
channel A = 0, TolImien-Schlichting waves have priority and one may
speculate that for some range of curvature ratios, the two modes

of instability may co-exist. This possibility is also suggested
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by the results shown in Fig. 96." Future investigations along this

1ine should prove to be very interesting.

The effect of curvature ratio on minimum critical Dean

number and Reynolds number is shown in Fig. 97.

7.5 CONCLUDING REMARKS

1. A formulation is presented for the hydrodynamic instability

fn the entrance region of a para11e]-p1ate'channe1 by taking curvature
ratio effect into consideration. The numerical stability results

are presented for the fu]iy developed laminar fiow with curvature
ratios A = 10719, 1072, 107! and 0.5.

2. The neutral stability results for A = 10-10 agree very well
with Reid's results [128] and it is found that the curvature ratio
effect can be neglected practicé]]y up to } = 10'2.

3. The curvature effect is clearly seen to be a de-stabilizing
effect ana the curvature ratio effect is already appreciable at .
A= ]0'1. As shown in Fig. 95, the minimum critical Dean number
decreases with the increase of the curvature ratio A and the cor-
responding wavénumber decreases rather slowly with A.

4. 1t appears that a Taylor-Gortler type instability has.
priority of occurrence over a Tolimien-Schlichting type instability
at A = 10'4. However, the Tollmien-Schlichting instability in
a slightly curved parallel-plate channel should be investigated
in fufure.

5. The present analysis and the computer program can be

applied to obtain neutral stability results for entry flow in a
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curved parallel-plate channel. However, the possibility of using
higher order finite-difference approximation [139,141] should also
be considered to increase the numerical accuracy and reduce

computing time.



CHAPTER VIII
SCOPE OF RESULTS, CONCLUSIONS, AND SIGNIFICANCE

With the appearance of secondary flow caused by such
body forces as buoyancy, centrifugal and Coriolis forces in ducts
or channels, the analytical solution of such basic flow and convective
heat transfer prob]ems as hydrodynamic entrance flow, thermal entrance
heat transfer and simultaneous hydrodynamic and thermal entry flow
becomes extremely difficult. Considering only flow and heat transfer
in curved ducts or channels, it becomes clear that certain therﬁa]
entrance region problems (Graetz problem) can be approached by a
numerical method when one notes that unsteady two-dimensional heat
conduction problem can be solved by a numerical technique.

For the solution of complex physical problems, the deductive
analysis [95] is a useful tool in identifying the mathematical models
which are tractable and clarifying the physical par;meters involved.
_For this reason, the basic general equations governing the steady
incompressible laminar flow and heat transfer in curved circular. pipes
and rectangular channels are studied using deductive analysis con-
sidering both the buoyancy and centrifugal forces effects. As a
result of the order of magnitude analysis, the tractable sets of
equations and the related physical parameters are obtained in a some-
what mathematically formal manner. The new characteristic parameters
appearing in the general entrance region problem in curved pipes or

channels are centrifugal Froude number wcz/ch, centrifugal Rayleigh
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2Pr and the parameter denoting the importance of

buoyancy effect in the centrifugal force field GrK'z.

number Rac = K

As a first step toward the numerical soltuion of Graetz
problem (thermal entrance region problem), the fully developed
Taminar flow in curved pipes is solved numerically using boundary
vorticity method. The numerical solutibn fs found to be applicable
up to Dean number of approximately 300. Some numerical experiménts
regafding the relative merits of boundary vorticity method as com-
pared with the conventional stream function vorticity method are
also made. It is noted here that at very low Dean numbers analytical
solution using perturbation method can be used. On the other hand,
an approximate analytical method based on boundary-layer and potentia]-
core model is known to be applicable at high Dean numbers. It is
seen that the numerical technique can bridge tﬁe gap between the two
approximate analytical methods for the fully developed laminar flow
in curved pipes.' In this respect, it is noteworthy that recently
(1973) Austin and Seader [140] presented numerical solution up to
" Dean number of 1000.

Heat transfer results for fully developed laminar forced
convection in curved pipes under the thermal boundary condition of
axially uniform wall heat flux with peripherally uniform wall tem-
perature are also abtained for Prandtl number ranging from 0 to 500.
A correlation equation for Nusselt number is proposed using the

2

parameter K“Pr and the result is compared against the available

results. The correlation equation is believed to be valid for
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Pr > 1 but additional future confirmation is desirable. It is
noted that numerical difficulty arises when the parameter becomes
Iérge. Recently Kalb and Seader [87] also presented numerical
results for Dean numbers from 1 to 1,200 and Prandtl numbers from
0.005 to 1,600.

The numerical solution of Graetz problem in curved pipes
is one of the primary goals of this investigation. By using ADI
method for the energy equation, the numerical solution is obtained
for the two basic thermal boundary conditions of uniform wall tem-

perature and uniform wall heat flux. The Prandtl number effect is

2 4

studied in detail. At higher values of the parameter KPr, say 107,
the local Nusselt number exhibits fluctuating phenomenon before
reaching an asymptotic value. The same phenomenon was also observed
by Dravid, Smith, Merrill and Brian [82] in their numerical solution
of the energy equation using velocity field obtained from approximate
analytical solution for the case of Dean number 225 only. In this
investigation, the fluctuating phenomenon for local Nusselt number

is interp}eted as a manifestation of numerical instability whereas
Dravid et al [82] regard the phenomenon as a true physical solution.
Some numerical experiments concerning a possible numerical instability
are reported using different finite-difference approximations for the
convective terms due to secondary flow in energy equations. Some
physical reasonings are also presented to support the present numerical
instability assertion.

The numerical solution for hydrodynamic entrance region

problem in curved parallel-plate channels is obtained using a newly



342

developed direct vorticity method for the uniform, parabolic and
triangular entrance velocities. It is found that the curvature
effect on pressure drop in the entrance region can be practically
neglected up to the curvature ratio A = 0.1.

The Dean's hydrodynamic instability for the onset of
Taylor-Gortler longitudinal vortices is extended to the hydrodynamic
entrance flow in curved parallel-plate channels and the neutral
stability results are obtained for the fully developed condition. It
is found that the neutral stability results for curvature ratios

]0~ ]0'2 are practically identical with those of Dean's

A =10
instability problem based on parabolic basic velocity profile (A = 0)
and the simplified perturbation équationﬁ. The curvature effect on
neutral stability result is found to be appreciable at A = 0.1. In
other words, the curvature effect on pressure drop in hydrodynamic
entrance region can be neglected up to A = 0.1 but the curvature
effect on neutral stability result is important for curvature ratios
A =0.01 ~ 0.1

After summarizing the main result and indicating the scope
of the investigation, the following specific further remarks may be
in order.

1. The result of the deductive aha]ysis for flow and heat transfer
in horizontal curved pipes or channels reveals that tﬁe importance of
the free convection effect in the centrifugal force field is represented
by.the parameter K'zGr: Specifically, when the magnitude of the para-

meter K‘ZGr/Z is much less than one, the free convection effects may
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be negligible. The inclusion of the free convection effect in
the analysis for the laminar forced convection in curved pipes
or channels will no doubt increase the complexity of the problem.
In this respect, the coupled effects of buoyancy and centrifugal
forces may be studied by a numerical method for thermai]y fully
developed condition in curved pipes or channels as a starting point.
For Graetz problem the large Prandtl number.case may offer some
possibility for numerical solution.

2. When Prandtl number is large, some simplifications result
| and will be noted here. Under the conditions that Pr >> 0[1] and
Ré2 >> 0[1], one may neglect the lateral inertia terms involving u, v
in the momentum equation and the continuity equation can be decomposed
into the one involving main flow w alone and the other one involving
secondary flow for u and v only. The above simplifications may be
useful for hydrodynamic and thermal entrance region problems. Further-
more, under the conditions that Pr >> 0[1] and Pr'zRe2 = Pe2 >> 0[1],
the 1atéra1 and axial inertia terms'in the momentum equations can
be neglected. However, the continuity equation remains three-dimensiona].

With Pr >> O[1] and additionally Re2 >> 0[1] or PrzRe2 >> 0[1],

the Tatera] inertia terms may be neglected for Graetz problem (thermal
_ entrance region problem) with fully developed laminar flow. However,
the centrifugal force term must be retained. The above observatioﬁs
may be useful in dealing with the problem where the centrifugal and

buoyancy forces effects co-exist. For example, for large Prandtl

number fluids, the main flow will be distorted only by the centrifugal
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force effect and the secondary flow caused by buoyancy forces will
not affect the main flow. It is also noteworthy that when Prandtl
number is large and curvature ratio A is small, the parameter KZPr
becomes the sole parameter in the governing equations and the heat
transfer results may be correlated using this parameter.

3. It is well understood that when Dean number is large,
thé flow resistance and heat transfer rate increase. However, when
the magnitude of the centrifugal Froude number is iarge, then the
term involving Froude number acts to intensify the centrifugal force
effect on heat transfer for heating case but tends to supbress the
centrifugal force effect on heat transfer for cooling case.

4. Apparently the thermal entrance region problem in curved
pipes or channels needs further investigations both theoretically
and experimentally. In this respect, the simulation of experimental
thermal boundary conditions should be studied carefully before theo-
retical and experimental results may be compared meaningfully. |
Noting the peripheral heat conduction effect for uniformly heated
wall in experimental investigations, one may have the
problem of heat conduction in pipe wall and convection inside the
pipe. With the appearance of the fluctuating local Nusselt number
before reaching an asymptotic value for numerical solution at high
parameter region for K2Pr, some uncertainty regarding the asymptotic
behavior of Nusselt number also exists. This is another reason
more works are required for Graetz problem in curved pipes or channels.

5. In solving the hydrodynamic entry flow problem in curved
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parallel-plate channels, the axial viscous terms are neglected.

It is also noted that the range of curvature ratios 1 > A 2 0.5 may
be quite limited in practical configurations for curved channels.
However, it is possible that the curved parallel-plate channels may
be preceded and also followed by a straight parallel-plate channel.
This leads to a variety of flat channel bend problems involving
various degrees of bends such as 450, 90° and 180°. Of course, for
these channel bend problems, the axial viscous terms must be included
in the analysis. In view of the difficulty with the theoretical
analysis of the various pipe bends problem, the flat channel bends
problems may offer some possibi]it& for future theoretical work.

6. The limitation of the Dean's hydrodynamic instability for-
mulation for the onset of Taylor-Gortler vortices in curved parallel-
plate channels with respect to curvature effect is clarified by the
present investigation. For the hydrodynamic instability problem, the
curvature effect cannot be neglected in the perturbation equations
for curvature ratio greater than » = 0.01. The experimental facilities
for the present centrifugal instability problem are already available
and it is expected that some experimental results may be obtained
shortly. It is useful to note that the present centrifugal instability
problem may arise in a curved rectangular channel with large aspect
ratio (height/width) say greater than 10.

7. A questiun may arise as to whether the Taylor-Gortler type
instability or the Tollmien-Schlichting type instability will have
priority for fully developed laminar flow in a slightly curved paraliel-

plate channel. To answer this question, one may consider an example
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with curvature ratio A = a/R. = 1074, Assuming that the channel
width 2a is 2 inches, the radius of curvature becomes Rc = 833.3 feet.
In such an almost straight channel, the critical Reynolds number for
the Taylor-Gortler vortices is ReC ~ 2500. On the other hand, the
critical Reynolds number for the Tollmien-Schlichting waves is
known to be Rec ~ 7500 if one neg]ects the curvature effect. The
above example illustrates clearly the importance of Taylor-Gortler
type instability_in even a slightly curved and almost straight
parallel- plate channel.

8. In view of the practical importénce of Dean's instability
problem in a slightly curved parallel-plate channel up to A = 0.01
and the fact that the curvature effect for main flow may be neg]ectéd
up to A = 0.01, one may use the basic flow results in the entrance
region of straight parallel-plate channel for the neutral stabi]iﬁy
analysis in the entrance flow of a curved parallel-plate channel.
Futhermore, in the perturbation equations, some terms may be neglected
using the assumpfion of small curvature ratio A. In this formulation,
the entrance velocity profile can be arbitrary and the numerical
method of solution developed in this investigation can be adapted
readily.

9. A1l the computer programs for this study are Tisted in

Appendix 10.
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APPENDIX 1

GOVERNING EQUATIONS IN
GENERAL ORTHOGONAL COORDINATES

Denoting X{s %o and X3 as the general orthogonal coordinates

and letting h hz and h3 be the corresponding three metric coef-

'l!
ficients,. the governing equations in general orthogonal coordinates

can be written as:
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oT Y11 Y21  YzaT
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The metric coefficients h], h2 and h3 are

Xy 2 X, 2 8X3 21/2

2= L)+ )+ ) ] (A-6)

and X‘, X2 and X3 are the orthogonal cartesian coordinates. (F], F2, F3)
represents the components of the extraneous force F per unit volume.

The derivation of individual terms of the invariant vector

forms can be found, for example , in [94].



APPENDIX 2

DERIVATION OF THE GOVERNING EQUATIONS
IN TOROIDAL COORDINATES FOR FLOW
IN CURVED PIPES

The toroidal geometry shown in Fig. A-1 is characterized
by the radius of curvature of the toroid axis RC and the radius of
the toroid a. The're]étionships among the Cartesian coordinates
(X],4Xé, X3) and the torbida] coordinates (R, &, @) shown in Fig.

A-1 are:
X] = (RC + R cos ¢) cos Q - Rc

X2 =R sin ¢

X3 = (Rc + R cos ¢) sin Q (A-7)

If R, & § are taken as X1, X2, X3, respectively, in equation

(A-6), then LmﬁJf&j

) 3X1 2 BXZ 2 8X3 2 1/2

X, 2 23Xy 21/2

X, 2
1 2 3 -

9
h, = Lizz) + (5

BX] 2 3X2 2 3X3 2 1/2
h3=[(aQ)+(aQ)+(ag)] =RC+RCOS¢ (A—S)
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Fig. A-1 Toroidal Coordinate System

One notes that the toroidal coordinate system reduces to
the two Timiting cases of cylindrical and spherical coordinate systems
as Rc + o and RC -+ 0, respectively. Using equations (A-8), the governing

equations (A-1) - (A-5) become:

Continuity equation

1 )
R(RC + R cos 4) 3R

[R(Rc + R cos o)Uu]

1 3

* R. + R cos ¢ Rao® [(Rc * R cos 9)v]



3N

=

1 oW _
+RC+Rcos @8_'0 (A-9)

R-momentum equation

pydU, Vau, W gl_J__!z_. cos ¢ 2

R TR2¢ R_+Rcos 630 R Rc+Rcos<I>w

_ _123P cos ¢ 2

ST p o +Bg(T-Tw)s1n¢fBR +Rcos<bw(T'TW)
oyl v 1oty sine v, ¥ 13,

R 9d6R R23‘R23¢ Rc+Rcos<l>a_ R R 3¢

2 2
1 1 3" U o W cos & BW)] (A-]O)

- ( - - o
R, +Rcos ¢ R. * R cos ¢ o2 ORI R, + R cos ¢ 2@

¢-momentum equation

oV Vv a8V W a3V . UV sin ¢ 2
Ua_R'+ﬁa—d'>+Rc+Rcos ¢55+T2_+RC+Rcos <I>N

P |
- 112 gg(r - 1y cos 0+ 6 ey T T
C

pR3
JROE SO ) A A B A1
a—Rf R 73 Re R3%R ~ 523
cos ¢ av, Vv _ 13U
*R +Rcos¢(a+R'Ra)

1 (13 - Sin ] L_ 1 32 )] (A-]])
'Rc+Rcos ® ‘R3O0 RC+Rcos 3 20 RC+Rcos ¢392
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(-momentum equation

oW, ValW W N cos ¢ sin ¢
Usr*rR3s" R, + R cos ¢aQ+_RC+Rcos¢Uw'RC+Rcos 5 W
_ 1 1 FL
pR + R cos ¢ 39
+v[32w+ cos ¢ 3w 1
3R2 R +Rcos 939 (R_ + R cos Q)Z
L1oW, 1 2% sine 1aM
R 3 R234)2 R._+Rcos &R 39
2
+ ] z(ag+2cos ¢g§
(R + R cos 9)
- 2 sin d>—)] (A-12)

Energy equation

_+l21 W T
USR TR 3¢ R. * R cos © o0

2

aT cos ¢ T .1 T
542

R + R cos ¢ aR R2

sin ¢ 1 9T 1
- ——m =% ] - (A-13)
RC+Rcos dR 39 (R +Rcos®) 2

It is seen that the governing equations shown above do not



373

accommodate all the effects of the buoyancy forces. In this respect,
it should be pointed out that any acceleration field associated with
density variation will give rise to buoyancy forces. For example,

in equation (A-10) the buoyancy force term in the centrifugal force
field using the Boussinesq approximation is included. On the other
hand, the following terms, representing the buoyancy forces in the

Coriolis acceleration field, are not included in the Q-momentum equation.

cos ¢ sin ¢ "
8L~ R, +Rcos ¢ un * (R, * R cos 3y W (T- Ty

Apparently, the buoyancy forces due to density variation in the
convective acceleration field are usually neglected. The jmportance
of the particular buoyancy force depends on the magnitude of its

acceleration relative to the gravitational acceleration g.



APPENDIX 3

DERIVATION OF THE GOVERNING EQUATIONS
IN RECTANGULAR TOROIDAL COORDINATES
FOR FLOW IN CURVED RECTANGULAR CHANNELS

Referring to the Cartesian Coordinates (X], X2’ X3)
and the rectangular toroidal coordinates (X, Y, Q) shown in Fig. A-Z,

one obtains

X; = (Rc + X) cos Q - R,

X2 =Y
X3 = (Rc + X) sin Q (A-14)

Then the three metric coefficients h1, h2, h3 in the general orthogonal

coordinates become

0K, 2 3aX, 2 3x,21/2
h =[(Tﬁ+(—§)+(—3)1 =1

1° X

_ ax] 2 3X2 2 8X3 21/2

Xy 2 WM, 2 WM, 21/2
- 1 2 3 - (A-15)
h3 . [( aQ) + ( m) + ( 39) ] = RC + X
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Fig. A-2 Rectangular Toroidal Coordinate System

It is seen that the rectangular toroidal coordinate system reduces
to the common rectangular and cylindrical coordinate systems as

Rc -+ o and RC + 0, respectively. With equation (A-15), the governing

equations can be written as:

Continuity equation

S LR+ X) U]+ F (R +X) V]+38=0 (A-16)



X-momentum equation
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2
U U WU W
Ukt VevytR+xon "R+ X
C C
2 2 2 2
1 3P W Pl 1 3°U a4y
= .- (T-Ty) +v[—=+— -
o 3X " PR_+ X) W R¥ R+ N2 aq? 3KV
1 A 2y (A17)
R, + X 3XoQ (R + 2 8
ijomentum equation
v v WV
Ut R ¥xa
1P
po- 2 1 v, 18
aXaY - TR_+ X) oY & 2 ' R_+ X oK
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(Rc + X)2 892 (Rc + X) 3YaQ

Q-momentum equation
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W% (A-19)

Energy equation

2 2 2
T + 3T + 1 ) ;] (A-ZO)



APPENDIX 4

A DEDUCTIVE ANALYSIS OF THE GOVERNING EQUATIONS
FOR CURVED RECTANGULAR CHANNELS

Referring to the coordinate system shown in Fig. A-2,
one may introduce suitable reference quantities and define the fb]lowing

normalized variables:

u-= U/Uc’ v V/Vc, W= w/wc,

x=Xa y=Yb, w= Q/QC,

p=P/P, and 6 = (T - Tw)/CE
where subscript c indicates a reference quantity. In terms of the

dimensionless variables defined above, the continuity equation

(A-16) becomes

U W
b 1
7T Gy + DI vy * D] ey o
+ 3V =0 (A'Z])

where ) = a/RC

By considering secondary flow, one may regard du/3x and 3v/dy be of
equal order of magnitude.

This observation leads to

u u
[va[§] = [y = o] (A-22)
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The continuity equation now becomes

=+ [A] YT—;—X;Y [X][ U 1= Ax) 0
or
ERR LR AxS 3y © l:UC] TF Ax5 (A-24).
where
o =2 /QC = a/(RCQC) (A-25)

A Deductive Analysis Based on the Assumption that the Centrifugal Force

Term is of Order Unity

The following relation results from the X-momentum equation
by considering the centrifugal force term and the viscous terms to be

of equal importance.

Ue

c

(Rex/2) . 3 1/2. 2 (A-26)

1
2
where A= a/Rc, Y= b/a

Using the above relationship, the governing equations become:

Continuity equation

AZ] + xi (T ¥ 2x) 2w
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X-momentum equation

241, du, . du 2 -1/2 1 u
K=y 4(“axJ"’ay)“K‘“’A T+ ax) ¥ %
o P, by 2 v 22 2%
pwcz ox ay2 X3y (T + Ax) oxdw
112 2w
- KA o) tw
2 2
W 1 a2 W
+ m -7 GrK “Fro m (A-28)

Y-momentum equation

2 1 9v

2172 av
A T ) Y uw

2.4 1 v v
Ky g lugg+vgy) * K

P2 2 2%, 1 _a_u__l_YZQZ_v_
pwcz dy  3xay (1 + Ax) 2y axz
2
a2 1w, 22 1 3%
Y ey ax 70 TW+ax) 52
PP T V- R B
Y (T + Ax) 2ydw
+6r 3 Koo (A-29)
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Q-momentum equation

241 ;. oW, W , p2.-1/2 1 W
K7y 1"” ax TV ay) * Ky'oh T+x) " %

= - —-—-—Pc -Yz _a‘?-
prZ w
b Bl 2, 1 2
x) (1 + ax)“sw
2 2
237w 1 oW 2 W o w
422y ey R
a2 TFET X" (702 52
4 uw
- Ky A I+ %) (A-30)

Energy equation

2. 41, 30, . 2 2 .-1/2 W 30
KPry” g (ugx+ v 5y) * KYogh P air 5 x)au

2 2 .
8 1 36 -2 376 2, 2 1 3

+ ) =ty Y+6, Ny ————— —5 (A-31)
X? {1+ Xx) ax ay? 8 (1 + >‘X)Z awz

D

- 2@
9

One notes that the characteristic parameters appearing in the
governing equations are similar to those given in equations (6) to (10)
for curved circular pipes. Because of the geometrical configuration,

the aspect ratio y = b/a appears additionally as a geometrical parameter

for the present problem. Another set of governing eauations can be
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obtained by considering the lateral convective terms to be of the

same order of magnitude as the lateral conduction terms in the energy

equation.

A Deductive Analysis Based on the Assumption that the Lateral Convective

Terms in the Energy Equation are of Order Unity

The results of the analysis are as follows:
au u av . 1 -1/2.2 1 M _q
4yt R Y TR (A-32)
X-momentum equation
Y4PY‘-1 (u ‘g—;‘"‘ v BU) + 1 Ky o’>\ TT—__TW

2 2 2
,.-1/23p , 2% _ 23 ] a/2 1 3%
ro st 2" Y Sxay 2 KProd "7 7% ax) axow

1 oW w2

1 1/2
- ?' KProA ’(’1 T )\X) ’3—(5 + ‘(1 T )\X) (A'33)

'Y-momentum equation

I PO VAR I /21 v
Pr (u <tV y) + % Ky“o) T Y e
/2 ap _ 3% 1w, .23%

Pro KA

[
N el

3y _ oxdy MT+ 3x) 9y Y g;f
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22 1 %

2 1 v Vv
N T TYO TFax) Y

2
1 -1/2_-2 1 oW
+ 7 KProd Y T ) 3yse
+ & GrPro © (A-38)
Q-momentum equation
Y4Pr'](u %¥-+ v %ga + %_KOYZA-]/Z TT'ilXET'w %%
- 1 3P . Yz(azw + 1 w _ 42 W + 2%
Zl + AX; BUJ axZ (1 + )\X) X (-I + )\X)Z 3)’2
s oy —2— 2, 1 2w
1+ )2 1+ )% b
- Pr"1>\y4 -(]_%W_T(T (A-35)
Energy equation
3, ,20,1 2,-1/2 , 38
u sy + v 3y t3 KProey A w awe
2 2 2
2,976 1 96 -2 376 2,.2 1 3 6
=y ( + X —+tvy ) + 0, Ay (A'36)
axz' (T'+ ax) ax ;;? 0 1+ )\x)2 amz

The foregoing two sets of governing equations are equally

applicable to hydro ynamically and thermally developing flow fields.
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However, it is clear that the first set of equations (A-27) to (A-31)'
is preferable when the hydrodynamic entrance region is of primary
interest whereas the latter set of equations (A-32) to (A-36) may

be more suitable if the emphasis is on developing thermal fields such
as the classical Graetz problem. As shown in Sections 2.3 to 2.5,

a simplification of the governing equations is possible by such
assumptions as large Reynolds numbers, large Peclet numbers, large
Prandt]l number fluids and small curvature ratios A . However, these
possibilities will not be discussed further since they are analogous

to those of curved circular pipes.
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APPENDIX 5

A NOTE ON VORTICITY METHODS IN NUMERICAL SOLUTIONS

5.1 INTRODUCTION
In dealing with the steady two dimensional flow problem, the
introduction of a stream fuﬁction leads to a fourth order quasi-linear
elliptic partial differential equation representing the vorticity trans-
.port equation. When oné introduces the vorticity, the fourth order
differential equation can be decomposed into two second order dif-
ferential equations. This use of vorticity is gaining its popularity
in treating many two dimensional flow problems numerically. |
For the purpose of discussing the numerical solution, one

may consider the following set of equations without loss of generality.

2. .2
8y .38V ., (A-37)
ax°  ay »

2 .2

9L+ %-¢ (A-38)

where f is a known function. It is noted that the function f may in-
clude the nonlinear terms in the vorticity transport equation.

For convenience, one may consider the solutions of equations
(A-37) and (A-38) for a square region with the following boundary

conditions:

y=z=0 on AB and OC

=0 on OA and BC

2

w:
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The coordinate system, boundary conditions and nodal points
are shown in Fig. A-3. Note that, physically the lines OA and BC re-
present walls of the channel and the conditions or. AB and OC signify
the line of symmetry. This rather special arrangement of the boundary
conditions is somewhat similar to that applied to the problem written

in cylindrical coordinates seen in Chapter III.

11 3 7 |5
v=Rrz=0Q v=7=20

&—h

10 2 6 4

h
0 9 A_J( 1 5 13 .

Fig. A-3 Coordinate System and Numerical Grid
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Using a five-point finite-difference approximation and con-
sidering the boundary conditions indicated in Fig. A-3 the systems of
linear algebraic equations representing equations (A-37) and (A-38)

become

4 2 001 00 0|y g |
i |
14100100 v %
01410010 gy Ty
002400071 y = w2 iz, (A-39)
: .
10004200 't
| :ws ?5
! - ; 3
01001410 v %
00100 1-41 Y 27
000100 2-4 v, o
401 1.01g, [£,] Irc]
RS e ‘;5‘
01 1-4][% %7 %]

In the above set of equations, the boundary conditions, ¥ = Yy = Vg
ws = 0, have not been applied yet. A total of 12 algebraic equations
for 16 unknowns are obtained at this stage, and the unknown boundary
vorticities Z1s Cgs Zg and Zg have to be determined. The methods of
solving the problem expressed by equations (A-39) and (A-40) with vorticity

may be categorized into two types depending on the usage of the re-

|
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lationship between vorticity and stream function.

The first type may be called the “stream function-vorticity"
method [142] which consists, usually, of an iterative use of the follow-
ing procedure: |

(1) evaluation of the stream function with equation (A-39) using
assigned vorticity values,

(2) calculation of the values of vorticity at the boundary with
the equation for the relationship between stream function
and vorticity at the boundary uging the new values for
stream function obtained in step (1),

(3) calculation of interior vorticities with equation (A-40) using
the stream functions and the boundary vorticity obtained in
step (1) and (2), respectively.

The second type may be called the vorticity method where_a linear re-
lationship Setween vorticity and stream function will directly be applied
thereby avoiding an iteration process in determining the values for
vorticity as well as for the stream function. Particularly, a method

of this type called the "boundary vorticity" method is used in the
combined forced and free convection problem in a horizontal tube by
Hwang and Cheng [96]. A natural extensibn of the above method which

will be referred to as the "direct vorticity method" is also presented
here.

Generally, all three methods mentioned above can be applied
together with the 1ine successive relaxation method in solving the
system of equations (A-39) and (A-40). For example, consider points 1,
2, 3, and 4 along a fixed column in Fig. A-3. The algebraic equations

for this column can be expressed as follows after rearranging equations
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(A-37) and (A-38)

-4 2.0 0] [¥y [haey - |

i ! . ‘ 2 !

141 0 |y 'h°z, - v
| = (A-41)
; ! E 2

00 240 [V Moy - Vg

| ] ? ro. 1

e To i h*f, - ¢, - ¢

i | ,[ 2 . 2°%1 "% (A42)

1 -4 g W f3-5-3%

As noted earlier, in deriving equation (A-37) and (A-38), the boundary
conditions, ¢1 = ws = w4 =Yg = 0, have not been used yet in the above
equations. The values for Zgs G7s ws and Y, are known and taken from
the latest iteration step. Thus, along the line, one has a total of
six equations (A-41) and (A-42) for eight unknowns, v, and ci(i = 1,2,
3, and 4). Now the problem is to determine the unknown vortices Z

and Zg- Since each method has its different features, some explanation

and illustration of the individual methods will be given next.

5.2 STREAM FUNCTION-VORTICITY METHOD

In the stream function-vorticity method, two more algebraic
equations will be directly established by using the boundary conditions
of ¢1 =Yg = by = ¥g = 0. When one substitutes these boundary conditions

into the first and last equations of equation number (A-41), one has

Z = 21;,2/h2 and z, = 21;,3/h2 (A-43)
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Thus, a11‘the unknowns in equation (A-41) and (A-42) can be determined
by applying the above relationships. One notes that the truncation
error in equation (A-43) is of order h.

Instead of equation (A-41) for the relationships between the
vorticities and the stream functions at the boundary points 1 and 4,
higher order appfoximation equations may be desirable. For example,

- Jenson [143] gives the following expressions.

gy = (8u, - ¥3)/(20%) |
(A-44)

and | £q = (805 - ,)/(2h%)

The above equations will now be used in place of the first and second
equations in equation number (A-41). The truncation error in the
above equation is now of order hz, but these require two interior
point values for the stream functions wz and w3,

Using the vorticities adjacent to the boundary point Zo and

£z, one can have another type of approximation [103] as follows:

C] = - C2/2 - 3¢2/h2
(A-45)

_ 4
C4 - < C3/2 + 3¢3/h

The order of truncation error of the above equation is also hz.
The usual computational procedure is as follows: First

calculate ¥, and ¥ using equation (A-41) by assigning suitable values

-
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for Z1s Tp» 53 and Ty and using the boundary conditions ¢] =Y, = g =
Vg = 0. Use equation (A-43), (A-44) or (A-45) to get z, and z,. Then
by using equation (A-42), new values for g, and g4 can be found. The
process will now move to the next line containing points 5, 6, 7 and 8.'
The whb]e procedure will be repeated until the following condition is
satisfied:

nl o q#]

v

max{ | }< e (A-46)

;
L2

where € is a.sma11 prescribed quantity.

Some remarks on the choice of stream function-vorticity re-
lationship at the boundary are in order. Thé first approximation using
equation (A-43) has a large truncation error of O[h], but is a stable
approximation in many cases and most often used. Equation (A-44) is
an approximation having a truncation error of 0[h2], but some numeriéa]
experiments [103] showed greater instability with this equation. The
slightly less accurate approximation of equation (A-45) is recommended
in order to avoid a rather unrealistic discontinuity [103] in vorticity

at the boundary points encountered using equation (A-43).

5.3 THE VORTICITY METHODS

The Boundary Vorticity Method

" After eliminating the unknowns at nodal points 2 and 3, one
obtains the following linear relationship between w], w4'and Zys Ty from

equation (A-41) and (A-42) [96];
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S Coeq
AT LTI PR SR ()

Va2 %2 %4

The procedure of finding the coefficient elements a11> 12 297> k] and
k2 follows next. At the beginning one assumes that gy = c](]) and

Gy = cgl) in equations (A-42). Then equation (A-42) can be solved
simultaneously for %o and Z3 by using the Thomas method [137]. Using
the obtained vorticities g, and Z3 and assumed vorticities g; = c%l)
and Ty = gé]), the righﬁ hand column vector of the matrix eq&ation
(A-41) can be evaluated. Applying the Thomas method to equation
(A-41), the values for the stream function Yy Vps L2 and by can be
found and the boundary values ¥ = w%l) and by = wgl) and Vg = wgl?
will be stored. By assuming again g = €§2), Ty = ;ﬁz) and 5 < §§3),
Z3 = c§3) and following exactly the same procedure, the second and

third boundary values ¥ = w%z), Uy = w£2) and ¥y = w$3), bg = ¢§3)

can be obtained, respectively. Upon substituting the values ;%1),
c£1) and w§1), ¢£1) (i = 1,2,3) into equation (A-47), one has the
following six linear algebraic equations for the six unknowns a, j

and k; (i, §j = 1,2).
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5;1(1) £ 0 o ]Of a]ﬂ [w](])é
: P !
- o N ;1(11) 0 ]’ [ npg”
I
O O 10! | w2
i ; = (A-48)
0 0o (2 ng) 0 11 2y ‘1’:(12)
'gl(s) Cf) o o0 10 ;k]; §w§3)
oo P ol kWY

Provided the matrix is not singular, the values for 3 5 and ki can be

detefmined. Thﬂs using the newly obtained values for a. . and ki

1,
and with equation (A-47) and the boundary conditions Yy = Yy = Vg

by = 0, the boundary vorticities % and Ty which represent the final
solutions on the boundary points can be found. Substituting these
boundary vorticities into equation (A-41) and (A-42) and so]vingufor

z; and wi(i = 1,2,3, and 4), one obtains the numerical solutions along
this particular 1ine. The same computational procedure will be repeated
for succeeding lines. This line iteration procedure will be terminated
when the criteria given by equation (A-46) is satisfied.

In Chapter III, an application of the above boundary vorticity
method is shown together with a numerical experiment of the stream
function-vorticity method. Some observations regarding the efficiency
and convergence of both methods are also presented there.

In the above boundary vorticity method, the boundary conditions
(aw/ay)1 = (81p/8_y)4 = 0 are used in formulating equation (A-41), and

later the boundary conditions, w] = w4 = 0 are applied in equation
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(A-47). Alternatively, one can formulate a equation analogous to
equation (A-45) with Yy = Yy = 0 [96]. In other words the following

equation can be used instead of equation (A-41) [96].

120 0l ay ' heg ]
‘ Einiy ] |
1410, ¥ | hP, - vgi
| T2 | (A-49)
0 1-4 1 luy o hog- iy
‘ L i P2 f

where Aw% = h (aw/ay)i, (i =1,8).
The boundary conditions &y, = My, = 0 now must be used to
determine the boundary vorticities 2 and T4 After eliminating the

values for the interior points in equations (A-42) and (A-49), one has

1
| ! (A-50)
! 131 %220 | %
This equation corresponds to equation (A-47) for the first type of the
boundary vorticity method. The procedure of determining Z and Zy
using equation (A-50) is similar to the previous case.

Direct Vorticity Method

In the boundary vorticity method, the linear relationship
between the vorticity and the stream function is obtained for the
boundary points as one has seen in equation (A-47) or (A-50). It is
pointed out here that a similar linear relationship exists for the

interior points of the domain.
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Combining equations (A-41) and (A-49), one has;

) ) ro [ 2 B
-1 0 2 000 gAw]Q h % i
%0-42000 " 2y - g |
0 1-4 100! |¥ 'Z;Z-wsé
00 1-410 ¥3 hozg - ¥y |
{

000 2-40, |¥ hz, 3
i |

10002 0-1] |8y h24

Now it is possible to eliminate the unknowns from equations (A-42) and
(A-51) and the following relationship between vorticity and stream

function may be obtained:

Ly, ay A, gl (Kl
A7 b L TR 1] (A-52)

H I i : H
| My | 121 22| 2] k2!

where Ay, = h(3y/3y),-

By using the above relationship, one does not require a
simultaneous elimination procedure such as that required in the Thomas
method to solve equations (A-41) and (A-42). Finding z, -
and Zo» with the aid of equation (A-52) one can directly calculate
values for z3, Z4 and Yp» V3o Uy successively using equations (A-42)
and (A-51). By this direct calculation, one can save the computer
time required for the arrangement of the coefficient matrix with

Thomas' method. The present method may be called the "direct vorticity

method".
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The general procedure for determining the unknown coefficients

3; 3 and k; (i = 1,2) in equation {A-52) is similar to the one for the
‘“boundary vorticity" method and need not be repeated here. The resulting

equation is simply,

£ N 0 0 ojlf ra” wf,”‘

o 0 ) e oy )

{2 2 0 0 05 a4 |

0 o P @ o ]!f - 'M?_). (A-53)
£33 0 0 og . §¢g3) .

0 0 C$3) c§3) 0 IJ ky | _Aw£3)4

For illustration and simplicity, here one may assume some speciai vaiiies
for ;§1) and c§1) (i.= 1,2,3) and the procedure of obtaining a final
numerical solution will be explained next.

(1) At first, in equation (A-52), one sets

HORNON

where the superscript (1) indicates the first step. Then using the
first equation of equation (A-42), one can determine ;g]) and successively

using the second equation, ;gl) can be obtained. By the use of all the

obtained vorticities c$1) to cgl) and the boundary condition MYy = 0,
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the left hand column vector of the algebraic equation (A-51) can be
calculated. The boundary values ¢§1) and A¢£1) will be stored since
the values correspond to the values of k] and k2, respectively, in

equation (A-52). That is
= (1) = A1)
(2) Similarly, one may further assume
c%z) =0 and céz) =1

and following exactly the same pkocedure, one can determine the co-
efficients as

R

32 1

(2)
(3) Thirdly, by assuming the vorticities as,

c§3) =1 and ;§3) =0

One obtains

=Y -k
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and ay = (A¢4)(3) - k2 .

By carrying out the same three steps, one obtains all the values for

the coefficients a; and Ki(i and j = 1,2) in equation (A-52).

J
(4) Finally, by assigning the given appropriate boundary condi-

tions for w4 and Ay, and using the values obtained for 3 5 and Ki’

one can now evaluate the values for 5 and Lo- After solving equation

(A-53) for % and';z, one has

a50(0y-ky) - ag,(80,-ky)

7T (e

(A-54)
. 291 (¥gky) - aqq (uy-kp)
2 (a;9251~35527¢)

These newly obtained values of 2 and Zos represent the final
solution for the boundary point 1 and the point 2 adjacent to the
boundary. Substituting these vorticity values into equations (A-42) and
(A-51) successively, one can determine all values for Zs and wi(i = 1,2,
3 and 4) which represent the numerical solution along this particular
line.

Since some of the boundary conditions for w], 8yqy5 Azy, and
w4, Aw4, A;4 may not be given prior to the determination of Z and’z;4
explicitly, the choice of the relationships represented by equation
(A-47), (A-50) and (A-52) and other possible relationships are largely
dictated by the given specific boundary conditions. However, one
must note that a significant difference exists between the "boundary

vorticity" method and the present "direct vorticity" method. It is
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noted that either equation (A-47) or (A-50), for the boundary vorticity
method, expresses the relationship between the vorticity and stream
function or its gradient using the values at the two boundary points
1 and 4. On the other hand, in equation (A-52), one uses the value
for the interior vorticity %y to establish the vorticity-stream function
relationship thereby eliminating any use of simultaneous elimination
procedure to solve equations (A-42) and (A-47) or (A-50).

In Chapter 6, the abpve "direct vorticity" method is applied
for solving the hydrodynamic entrance region problem in curved parallel-

plate channels where the boundary conditions are Yy = 1 and M, = 0.



APPENDIX 6
NUMERICAL RESULTS FOR CHAPTER III

Friction Coefficient Ratio, fRe/(fRe)0

K- fRe/(fRe)0 K fRe/(fRe)0
3.1438 1.0032 37.394 1.1888
5.4435 1.0040 49,613 1.2673
6.2583 1.0077 58.510 1.3164
8.8406 1.0090 62.582 1.3327
9.8563 1.0104 66.133 1.3494

13.867 ‘ 1.0178 69.346 1.3651
16.857 1.0369 72.334 1.3794
19.714 1.0639 94.702 1.4863
23.917 1.0953 111.13 1.5541
25.157 1.1030 123.24 1.6130

27.111 1.1221 196.33 1.8620

Note: fRe/(fRe)0 = [(fRe)] + (fRe)2 ]/Z(fRe)o,

(fRe)0 = 16.000

400
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Nusselt Number Ratio, Nu/(Nu)0

Pr=20

K Nu/(Nu)0 K Nu/(Nu)O
16.030 1.0050 -+ 26.999 1.0255
18.936 1.0110 28.301 1.0289
21.071 1.0144 37.392 1.0524
22.850 1.0152 44,138 1.0785
24.510 1.0186 123.24 1.2000
25.566 1.0220
Pr =0

K Nu/(Nu)0 K Nu/(Nu)0
9.7826 1.0094 72.092 1.1608
13.790 1.0108 94.704 1.2039
19.378 1.0165 111.131 1.2335
22.604 1.0221 123.24 1.2558

68.900 1.1510



Pr

13.
18.
22.
25.
27.

37

49.
58.

Pr

16.
18.
20.
22.
24.
25.
26.
28.
37.
44,

= 0.7
K Nu/(Nu)0

789 1.0130 62.
724 1.0343 66.
476 1.0584 69.
431 1.0896 72.
948 1.1180 94.
.394 1.2068 1.
613  1.3378 123.
510 1.4200

= 1.0

K Nu/ (Nu),

.7829 1.0144 49.
788 1.0268 54.
807 . 1.0518 58.
977 1.0789 62.
864 1.0988 65.
518 1.1352 69

565 1.1517 71

994  1.1745 72.
298 1.1960 9.
392 1.3340 123.
635 1.4246 196.

K

582
133
346
334
702
13

24

635
365
865
303
999

.304
.545

314
721
24
33

Nu/(Nu)0

Nu/ (Nu)

1

1
1

.4578
.4883
.5151
.5391
.7001
.8162
.9254

.4907
.5429
.5913
.6243
.6606
.6918
7167
.7197
.9420
©2.1757

2.7214

402
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Pr=14
K Nu/(Nu)0 K Nu/(Nu)0
6.9769 1.0164 25.708 1.5384
9.8563 1.0657 27.11 1.5713
13.867 1.2022 28.363 1.5999
16.857 1.2768 37.134 1.7924
19.314 1.3593 44.635 1.8952
' 20.887 1.4050 54.365 2.0729
22.775 1.4625
20157 1.4988
Pr = 25
K Nu/(Nu)0 K Nu/ (Nu)0
3.1256 1.0345 8.8406 1.4665
4.4229 1.0764 9.8698 1.5319
6.2593 1.2495 13.367 1.7119

7.6647 1.3774 16.857 1.8514



Pr = 100

1.4039
1.9866
2.4333
2.8110
3.1438

Pr = 500

0.62692
0.76820
0.99255

Note: Nu = [(NU)] + (NU)2 ]/Z(NU)Os

(Nu)0 = 48/11

Nu/(Nu)0

1.0181
1.0677
1.1391
1.19873
1.2529

.\
Nu/(Nu;o

1.0035
1.0291
1.0903

4.4463
5.4435
6. 2859
7.6647

1.4046
2.8109
4.4440

Nu/(Nu)0

1.4707
1.5874
1.6639
1.8073

Nu/(Nu)0

1.2522
1.6624
2.0074



APPENDIX 7
NUMERICAL RESULTS FOR CHAPTER IV

Pr = 0.1, K=123.2

1/Gz Nu 1/Gz Nu
0.19318 x 107! 5.137

0.68228 x 103 13.44 0.20682 5.078
0.13333 x 1072 10.80 0.25494 4.929
0.19856 9.505 0.30364 4.837
0.26384 8.685 0.35292 4.782
0.32928 8.106 0.40281 4.751
0.39481 7.670 0.45332 4.735
0.46043 7.325 0.50847 4.727
0.59203 6.809 0.60121 4.730
0.65792 6.610 0.70030 4.741
0.72401 6.438 0.80187 4.752
0.79020 6.288 0.90606 4.763
0.85647 6.155 0.10046 x 10° 4.771
0.92285 6.037 0.11057 4.778
0.98932 5.932 0.12006 4.783
0.10559 x 107" 5.837 0.13067 4.787
0.11226 5.751 0.14065 4.789
0.11894 5.673 0.15088 4.790
0.12564 5.602 0.16040 4.790
0.13234 5.537 0.17016 4.790
0.13905 5.477 0.18016 4.789
0.14578 5.422 0.19041 4.789
0.15927 5.324 0.20092 4.789
0.17958 5.203 0.21063 4.790
0.21834 4.790
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Pr=0.7, K=123.2

1/Gz Nu 1/Gz Nu
.10070 x 1073 27.35 0.20682 x 107" 7.381
.12199 25.26 0.22363 7.561
.14096 23.99 0.24094 7.752
.16000 23.04 0.25878 7.947
.20068 21.52 0.27532 8.123
.49920 15.32 0.29620 8.333
.60016 13.98 0.31586 8.514
.75237 13.01 0.33621 8.680
.90584 12.26 0.35730 8.829
.10606 x 1072 11.66 0.37918 8.958
.12899 10.99 0.40193 9.063
.23671 9.109 0.42560 9.146
24880 8.974 0.45027 9.206
.3589 8.100 0.50027 9.262
48350 7.522 0.54898 9.259
.61094 7.170 0.60755 9.259
.74126 6.951 0.70033 9.259
87456 6.822 0.80470 9.259
.10110 x 1077 6.760 0.90907 9.259
.11507 6.750 0.10018 x 10° 9.259
.12939 6.781 0.15005 9.260
.14407 6.848 0.20108 9.260
15913 6.945 0.30081 9.260
17460 7.069 0.40055 9.260
.19048 7.216 0.44462 9.260

O O 0O O 0O 0O OO 0O O OO OO O O OO0 OoObOoOoh oo o
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= 10, K = 7.655

1/Gz

.12533 x 1072
24991
.38004
.51623
.65910
.80931
.96766
11351
13127
.15018
.17040
.19213
.21560
.24113

x 107

Nu

9.445

7.510

6.569
5.981
5.569
5.262
5.023
4.833
4.679
4.554
4.454
4.375
4.314
4.27

O O O O O O O O O oo o o o

1/Gz

.26910
.30004
.33465
.37391
.41929
.47303
.53894
.62420
.74511
.95512
.10532
11721
.14236

x 107

x 100

1

Ll T T T - T T~ T R~ S SN S R

Nu

.245
.236
.244
.269
31
.370
.444
.529
.623
717
714
.710
.710

407



Pr = 500, K = 4.444

1/Gz

0.10031 x 10°
0.30528
0.50106
0.60874
0.70236
0.81216
0.90953  _
0.10072 x 10
0.12574
0.14992
0.18677
0.20090
0.23372
0.26607
0.29999
0.33326
0.36820
0.40244
0.45171
0.50175
0.55249

where Nu = [(Nu)] + (Nu)z]/z

Note:

3

2

00 00 0O 00 00 00 00 00 00 00 O O W

.53
.13
.90
.59
.08
72
.42
.813
411
.098
.901
.725
.624
574
.566
.590
.637
.733
.854
.993

(oYfoloYolofofofolfololelefeloalofolalaeloeloo o oo o oo Yo oo o)

1/Gz

.60047
.65117
.71521
.75789
.80058
.84327
.90731
.95000
.10140
. 12488
.15049
.17611
.20172
.22520
.25081 -
.27429

.30204
.32552
.35114
.37461

.40023
.42584
.45146
.47494
.50055
.52616
.55178
.57526
.60087
.70119

.80151

.90183

x 10

-1

\l\I\l\l\l\l\l\I\I\I\I\I\IN\I\I\I\I\I\I\I\I\.OO\O\DDKO\OLOO
-.-o-....-.-.h‘....-o..-.o...
N
w

oot n
oo,
—_ N~ =D

~
.

(3,
(3]
a—d

The first local maximum value of the local Nusselt

number is taken to be the asymptotic value whenever the

fluctuating phenomenon appears in the numerical solution.
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APPENDIX 8

NUMERICAL RESULTS FOR CHAPTER V

[(Nu)] + (Nu)l/2
0.1, K =123.2

1/Gz

.85305 x 1073 15.
.16673 x 1072 12.

—_—
o

.24834
.33009
.41202
.49410
.57639
.65878
.74138
.82416
.90707
.99019
.10734 x 10
.11569
. 12405
.13242
.14082
.14923
.15767
.16611
.17458
.18306

[}
—
O OV OV O OO O O O O O N N N N N 00 0 v w

Nu

002
061
.630
.734
.102
.626
.250
.945
.690
474
.289
127
.985
.860
.748
.648
.558
.476
.401
.333
.27
.214

409

1/Gz

0.20008 x 10~

0.25158
0.30372
0.35653
0.40107
0.45518
0.50082
0.55628
0.60308
0.70799
0.80576
0.90596
0.10086
0.11034
0.12004
0.12997
0.14016
0.15061
0.16013
0.16988
0.17986
0.19010
0.20061

x 10

1

M T Ol Gl Gl 1 01l ¢ G 01 01 1 a1l anal o

Nu

113
.886
737
.637
.579
.530
.503
.481
.470
.460
.460
.465
472
.479
.486
.486
.485
.485
.485
.485
.485
.485
.485



Pr = 0.7,

0.12306 x 10°

0
0

0.

0
0
0
0
0
0.
0
0
0
0

0
0
0
0.
0
0
0

1/Gz

.24275
.36496
.48980
.61739
.74785
.88131
.10179
11578
.13011
. 14481
. 15989
.17538
19129
.20769
.22448
.24182
25969
.27813
.29717
.31686

x 10

K=123.2

-1

Nu
15.35

9.579
8.832
8.392
8.053
7.855
7.736
7.675
7.657
7.673
7.717
7.787
7.880
7.995
8.131
8.286
8.458

8.643
8.837

9.033

0.
0.88061
0.10662
0.11442
0.12342
0.13409

1/Gz
0.33725 x 10

35837

0

0.38030
0.40309
0.42681
0.45154
0.47737
0.
0
0
0
0
0

50441

.53277
.56259
.59402
.62726
.66252

70006

x 10

-1

lD\OlD\DLDlOQOKDl.D\OlO\DlOlOtDKO\O\O

(Vo]

Nu

.225
.404
.563
.695
794
.856
.861
.862
.853
.852
.856 -
.854
.857
.856
.852
.849
.851°
.852
.852

410
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Pr =10, K= 7.655

1/6z Nu 1/Gz Nu
0.30830 x 1073 18.42 0.15435 x 107! 5.599
0.60500 14.72 0.17488 5.471
0.90474 12.89 0.20244 5.342
0.12076 x 102 11.72 0.22711 5.260
0.15136 10.89 0.26076 5.183
0.18228 10.26 0.30703 5.122
0.21354 9.750  0.3324 5.105
0.24513 9.331  0.36203 5.097
0.27707 8.978  0.40546 5.101
0.30936 8.674  0.42986. 5.111
0.34202 8.408  0.47076 5.135
0.37504 8.173  0.50161 5.159
0.40844 7.963  0.53610 5.189
0.44222 7.776  0.57522 - 5.226
0.47640 7.603  0.62039 5.271
0.51099 7.406  0.64591 5.297
0.54599 7.302  0.67386 5.325

0.58141 7.170  0.70478 5.355
0.61727 7.048  0.73936 5.387
0.65358 6.933  0.82392 5.458
0.72757 6.728  0.87760 5.496
0.80349 6.547  0.94341 5.535
0.92120 6.313  0.10285 x 109 5.573
0.10023 x 107! 6.177  0.11490 5.606
0.12604 5.845  0.12521 5.592
0.14097 5.593



Pr = 500, K = 4.444

1/Gz

0.11620 x 10~
0.14518
0.17429
0.20352
0.23287
0.26234
0.29193
0.32164
0.35148
0.38144
0.41153
0.44175
0.47210
0.50257
0.53317
0.56391
0.59478
0.62579
0.65693
0.68821
0.71963

3

Nu

25.12
23.29
21.98
20.92
20.03

19.28

18.62
18.05
17.54
17.08
16.67
16.29
15.95
15.63
15.34
15.07
14.81
14.58
14.35
14.15

13.95

0.
0.
.81471

.84669

.87882

.91109

.94350

97607
.10087 x 10
.10416

.10746

.12421

.15184

.20295

.25394

.30014

.31328

.32217

.33118

.34030

.34491 »
.31975 x 10°
.36582

.41508

.46800

.52518

.58736

.65549

.73085

.81515

91079
.10213 x 10
.11522

13127

.15204

.18149

1/Gz

75118 x 10°
78287

3

Nu

13.76
13.59
13.42
13.26
13.11
12.97
12.83
12.70

.972

412



.|

APPENDIX 9

NUMERICAL RESULTS FOR CHAPTER VI

A (e of (F)g ) (g of (Fg
1.00000 4/5 .70000 1.0875937
.99999 1.3333067 ;60000 1.0587817
.50000 ' 1.0381266
.99995 1.3332004 .40000 1.0231805
.99990 1.3330680 ~.30000 1.0125590
.99950 1.3320233 .20000 1.0054405
.99900 1.3307449 .10000 1.0013399
.99500 1.3212240 .05000 1.0003337
.99000 1.3105091 .01000 1.0000133
.95000 1.2474215 .00000 1
.90000 1.1954808
.80000 1.1293560

Note: (f)_. /(f) is computed from equation (161).
c,co s’m .
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Uniform Inlet Velocity Profile

w e,
0.0 0.1 0.5 0.0 0.1 0.5
.000  0.000 . 0.000 T
.189 0.189 0.192 6.300 6.301 6.400
.270 0.270 0.282 4.500 4.500 ' 4.700
.330 0.330 0.365 3.666 3.667 4.055
.380 0.380 0.413 3.166 3.167 3.441
4237 0.423 0.465 2.820 2.820 3.106
.464 0.465 0.513 2.577 2.583 2.850
.503 0.504 0.558 2.395 2.400 2.657
.539 0.540 0.601 2.246 2.250 2.504
.575 0.576 0.644 2.129 . 2.133 2.385
.610 0.611 0.686 2.033 2.036 2.286
.645 0.656 0.725 1.954 1.957 2.196
.680 0.681 0.764 1.888 1.891 2.122
.715 0.717 0.802 1.833 1.838 2.056
.744 0.747 0.839 1.771 1.778 1.997
.782  0.785 0.876 1.737 1.744 1.946
.815 0.818 0.912 1.697 1.704 1.900
.847 0.850 0.948 1.660 1.666 1.858
.879 0.882 0.984 1.627 1.633 1.822
912 0.915 1.019 1.600 1.605 1.787
.944 0.947 1.053 1.573 1.578 1.755
.250 1.253 1.478 1.388 1.392 1.602
.552 1.557 1.688 ~1.2933 1.297 1.406
.852 1.858 2.000 1.234 1.238 1.334
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0.5

0.000
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0.213
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1.239
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1.00
1.00
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1.00
1.00
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1.00
1.00
1.00
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Triangular Inlet Velocity Profile
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0.438
0.583
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dp

0.1

.000
.027
.055
.083
112
147
171
.200
.229
.259
.289
.318
.348
.378
.408
.438
.588
.888
.188

0.5

0.000
0.056
0.106
0.153
0.195
0.234
0.261
0.304
0.342
0.376
0.410
0.443
0.475
0.507
0.539
0.571
0.727
1,132
1.350

|
]

O O O O O O O O O OO0 OO OO O OO OO

0.0

.833
.866
.900
916
.920
.933
.938
.941
.948
.950
.954
.955
.958
.961
.973
.972
.992
.003

£/(f)g

0.1

0.900
0.916
0.922
0.933

0.940

0.951
0.952

0.954

0.959
0.963
0.963

0.966

0.969
0.971
0.973
0.980
0.986
0.990

— wmd ad  emd d md ewd ed ) emd wed cd eeed ed d mend eud od

0.5

.866
.766
.700
.625
.560
.450
.447
.425
.392
.366
.342
319
.300
.283
.268
211
.157
.125
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APPENDIX 10

COMPUTER PROGRAMS

e I i1 i s 2222 S L L L R B0

% IN THE SIXTH COLUMN INDICATES
CONTINUATICN FRCM PREVIOUS LINE

*********##i#*************k****

N aNaXs)

sk%k¥ LANINAF FORCED CONVENT ION HEAT TRANSFER &k ki

s+k%k&%x IN CURVED CIRCULER CHANNELS EX £ 2 23
*xx%%x (RC IS LARGE) kK
iTTMENSTUK‘Wle.Ib).I(xoolb)-U(lb.lo).V(lb-16)qﬁWVW5llb
* 216)» : . .
1AW(16.16)-CN(16.16)th(16'16)-S(16'16);55(16'16),Vw(16
* 21E)

ZVO(16916)'TT(16.16)’AT(16'16)9CT‘16116)GPT(16116)'AS‘1
* €Es16),

JPHI(IOJQR‘IOJQLA(10)0‘5(10),LQ(IO’th(lbilb"Pbtlb'lb’
COMMON HF'HﬁonpiHPZQCK.CON'PR’STD'TOLEOZA'ZB’ZC’ROPH[
* .BhVTS'U{oT. .
1Vs CMEGM s CMEGS+s CMEGT s U
COMMON MogNsMIsNLsNIeN1,MSTDWND
REAL NUL1eNUZ2 :

“REACTS>IT00 ™M, N»STD» TOLE
PI=3.141593

33 MI=M-1

Mi=M+1
NI=N-1
N1=N+1

NUU=10

DU 12 J=1.N1
DO 10 I=1.M1
W(IsJ)=0a0
VW(I+J)=0.0
T{I+J)=0a0

LREY KR AL CRY
SS{1+J)=0.0
S{I1+J)=0.0
VO(I+3)=0.0
u( 14J)=0e0
V(IsJ)=0.0

U COUONT1INUD

417
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12

CONT INUE . .
READ (54,72)(( W(I,J)+I=1sM1)eJ=1sN1)
READ (Ss72)((VW(IsJ)sI=1eM1)sd=1,4N1)
READ (5+72)(( S(1,4)sI=tsM1)e0=1,N1)

REAL (S 723 CTSSTIHZ I s I=1T oM 1I) »J=1 e NI J
READ (5v72)((V0(IOJ)'I=IQM1)'J=1'N1)
READ (5+72)(( U(IsJlsI=1sM1)sJ=1sN1)
READ (S972)((0 V(TI,sJ)sI=1,M1) 93J=14N1)
REALC (S5+:72)(( TC(IsJ)el=1sM1)sJ=1sN1)
READ (S5¢72)((TT(I4J)eI=1sM1) sJ=14N1)

(<
99

100

2000

FORMAT (20ARSY
REAC{S+100) NMeNLsSTDLTCLE
NO=0

FORNAT (2I442E10.5)
WRITE(6+2000) My NsSTDLTOLE
FORMAT(1Xs2[4+2E15.5)

201

2001

ITF({M.EQeU) GL TU 1IS5T
READ(5+2C1) CCN+PR

FORMAT(2E10.5S)

WRITE(6+2001) CCNLPR

FORMAT(1X42E15.5)

REAC(S+250) CMEGM,OMEGS+OMEGT+MSTDyMTIM

r-4=1%

FORMAT(3FSelds215)
HR=1¢0/M
HR2=HR* %2

FP=PI/N

HP2=HP **2
PHI(1)=0.0

DU G J=ZW»NT
PHI(JI)=PHI{J-1)+HP
R(1)=0.0

DO 8 I[=2.M1
R(I)=R(I-1)+FR
ZA{I)=HR/(2%R(I))

2002

ZBIT = ({ARZ7THP¥RTUTI) VI ¥¥2

ZC(1 )=HR*%2/(2*R (I )*FP)

CONT INUE

WRITE(6+2002) CMEGM,CVNEGS+OMEGT sMSTOSMTIM
FORMAT (1X43E15655215)

DO 11 -J=1eNl1

Co—71=2s Mt
BWVTS(I,J)=(1+ZB(1))*(-2)
AS(IsJ)=1-ZA(I)
CS(1,J)=14ZA(1)

7 CONT INUE

CONT INUE

-

CUNT INUT

DO 26 J=1,.N1

HES-15.3
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AS(M15J)=2.0
AW(2,+J)=1—-ZA(2)+0.5*HR*U(2+J)

CW(2+J)=14ZA(2)—0sS*¥HR*U(2,J)
PW(24,J)=CW(2,J)/BWVTS(2,J)

AT T2 IT=T=ZACZTF U S P R¥ARFULZ+ JJ
CT(2+J)=1+4ZA(2)—0.S*PR¥HR*U(2+J)
PT(2:J)=CT(2+J)/BWVTS (24 J)
PS(2,J)=C5(2+J)/BWVTS(2, )

DO 25 I=3.M

AWCT o J)=1=ZA(1)+0eS*HFR*U(1,J)

CWTTTUTETWLAIIJ—U.SWFF*UTI-JJ
PW(I.J)=CW(loJ)/(BwVTS(I.J)—AH(I.J)*PW(l—l-J))
AT(I 3J)=1-ZA(1)+0+S*PRXHR&U([+J)
CT(I,J)=14+ZA(T1)-CoS*PR*HR*U(T1eJ)

PT(lJ)= CT(I.J)/(BHVT&(IcJ)-AT(I.J)*PT(I-l,J))
PS(!.J)—CS(I.J)/(BWVTC(IoJ)-AS(IoJ)*PS(I —-149d))

e CONT 1INUE
26 CONT INUE
WRITE(6,2101)
2101 FORMAT(' %, 'ENTER TO SUVW®)
CALL SUBW(VW AW sCW PW,ERRW,MTIM)
WRITE(6,2102)

2I02 FORMAT (Y TH'ENIER TO S0BVOT)
CALL SUBVS(S.VO.SS.AS.CS.PS.AN-CW.PWqMTIM'ERRS)
WRITE(€,2103)
2103 FORMAT{' 7.'ENTER TO SUBUV?)
CALL SUBUV(S<ERRLY)
IF(ERRUVLTTOLE ¢ORNCe GT.MSTD) GO 70 60

RNU=NU+]
IF(NO/10%10.NE.NC) GO TO 1
WRITE(6+151) NO.ERRUV
GO TO 1

60 CONTINUE
WRITE(6+,151) NO»ERRUV

IST FORMAT( T S5 T0XS N0 "5 15+0Xy 'ERRUV » T 1%L
NOT=0
NOOT=10

€1 CONT INUE
CALL SUBT(TT,ATsCY+PTSERRT) )
IF(ERRT eLTeTOLE«CR«NOTeGToaMSTD) GO TO 62

NOT=NOT+1
IF(NCT/10%10«NENOT) GO TO 61
WRITE(6,621) NCTLERRT

621 FORMAT (' # 310X, *NCT?,14,SX»*ERRT*,E14.6)
GO 7O 61

62 WRITE(65€20) NOTSERRT

20 FOURMAT{ITIIX *NOTY s IS5y O X " EKRKY S ETR 57
CALL FHR(SWPqSiT.SGT‘SGw.BLKT.FREIvFREZ'NUIoNUZ.RFEl,R

* FE2sRNU1,

wF S8%
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IRNU2+ARNUsSTPsAVENJAVEF,RFE12)

WRITE(6.108)
105 FORMAT('"1' ,*AXIAL VELCCITY?33X,*I FROM 1 TO M, J FRCM

* 1 TO N°T)

WRITE(E»IT3T (WIS J)I»I=ST M) sJ=1,NIT
113 FORMAT(' '47E1846€)
WRITE(65107)
107 FORMAT(*1',*VORTICITY?*)
WRITE(E+113) ((VC(Isd)el= 21M1)'J 1sN1)
WRITE(6,108)

TOB FORMAT (T I 'S *STREAM FURCTION®Y

WRITE(E,113) ((S(I-J)ﬂl—zgﬁl)vJ—lel)
WRITE(6+109)

109 FORMAT (*1*' ,*SECCNDARY VELOCITY IN R-DIRECTION U®)
WRITE(69113) ((U(I+J)sI=1sM)eJ=1,4N1)
WRITE(E,110)

TIU FORMAT (Y1 ¥, *SECORDARY VECOCITY IN PHI=-DIRECT1ION V¥)
WRITE(64+4113) ((V(IsJ)el=1sM) 4J=]14N1) .
WRITE(6,1086)

106 FORMAT('1' ,"TEMPERATURE")

WRITE(6+113) ((TUI+J)sI=19sM)sJ=1,4,N1)
WRITE(6+202)M,N

cU2 FORMAT U I Y3 30X *MESH SIZE'51532X°BY 'S 1I5)
WRITE(6,203) STD,TOLE ’

203 FORMAT(*C'3» 30Xy *ERROR LIMIT',2E20 6)
WRITE(6+204) CON»DK,s PR

204 FORMAT('O'.SOX.'CGN'.Elo-s,lox.'DK'.Elo.s,lox,'PR' €10

¥ «5)

~WRTITE(E-4 00 ERRW

400 FORMAT('0°+SOX+*ERRW *,15X+E1446)
WRITE(64+,401) ERRS

401 FORMAT(*C*+50X, "ERRS ¢,15X+E1446)
WRITE(65116) NO
WRITE(6+101) ERRUV

0T FORMAT (" T3 SUX "ERRUVY S ISXSETY 6

. WRITE(€4+116) NOT

1i6 FORMAT('0%,45Xs *NUMBER OF ITERATIONS',10X,110)
WRITE(64102) ERRT

102 FORMAT(*C*350Xe'ERRT 4 15X,E1446)
WRITE(6+205) CMEGNsCMEGS,OMEGT

cUo T U * Q TeI9ARA T Uedy DR
* » *FOR S*,5X,
1FSe2+SX+'FOR T*'sEXsFSe2)
WRITE(6,210)

210 FORMAT (*1° ,® xxx%x% HEAT TRANSFER RESULTS*****’.///)
WRITE(6+,111) BLKT

T O i : =

*¥  46)

“F B85
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WRITE(6s212) STP

212 FORMAT (" 0*,1CX,*MEAN TEMPERATURE "3F1546)
WRITE(6+,112) SWP

112 FCRMAT ('0° 410X,* AVERAGE VELOCITY IN AXIAL DIRECTION v,

4 FrIT5e 6
WRITE(€+114) FRE1.,FREZ,AVEF
114 FORMAT ('0' 510X+ 'FRE1?*3JE1SeS4+'FRE2®* ,E15¢5y'AVEF* ,E1545)
WRITE(6+121) RFE1LRFEZLRFEL2
121 FORMAT('O'glOX-'FREl/FREO'-EIS.S.'FREZIFREO'.EIS-S.
1*AVERAGE*,E15.5)

WRITECESIID5) RUISNUZ5 AVEN -
115 FORMAT (' C* 410X e *NUL',E1S5459"'NU2?3E15,59 YAVEN? 3E1565)
WRITE(6+122) RNU1+sRNU2, ARNU
122 FORMAT("C* 410X, *NU1/NLO® 4E1S4S5+* NU2/NUO? sE1S5.5+* ARNU?,
* E15.5)
WRITE(6,120) SWT,SGT, SGW

120 FOURMAT{T O s IOXs "SWT VS EISe 5+ ' SGT '3 EIS+ 5y *SGW S EISe 57
WRITE(6,211)
211 FORMAT(*O0t s/ //"%k%%k%%x END %%k%%%%,///)
SGT2=2 ¢«0*SGT
STO=STP/0.1875
SGW2=SGW/2.,0

PRK=DK ¥X¥U, 5¥PR¥XU .25
WRITE(6,301)
301 FORMAT(®* 1% ,6Xs 'CON? 31 X9 *'DK?®* 39Xs TSWP? 39X 92 2&SGT® 98Xy 'F
% RE1° 39X,
1'FRE2Y 99X YAVEF® 4 GXs "RFEL1 'y OXs "RFE2" 39X *RFE12?)
WRITE(65302) CONsDKo SWP ¢ SGT2,FREl +FRE2,AVEF yRFE1 yRFE2,

¥ RFElZ
302 FORMAT{1X,10E13.6)
WRITE(6,303)
303 FORMAT('0" 34X+ *PRK? > 1CXs 'STP? 47X, "STP/STPOT' 37X ' SGWN/2?
* »9Xs *NLL1T,
110X+ *NU2?® 39X+ " AVEN' ¢+ EXe *NUL/NUOT 46X+ *NU2/NUO' 3 7X 4 ARNU

x )
WRITE(6+,302)PRKsSTP+STOy» SGW2 oNU1 4sNU2 ,AVENSRNU1 sRNU2, AR
* NU

WRITE(6,721)INyN
721 FORMAT('1?,10X,215)
WRITE(7+71)(( W(IeJ)sI=1,M1)39J=1,N1)

WRITEC7S 71T VWIS IS5 T M S I=I5NT)
WRITE(7+71({ S(IsJ)sI=1:M1) sJu=1,N1)
WRITE(7+71)((SS(TI9sJ)sI=1:M1)+J=1sN1)
WRITE{7+71)((VC(I5J)sI=1sM1) oJ=1,N1)
WRITE(7+71)(( U(IsJS)sI=1eM1)sJd=14N1)
WRITE(7+71)(( V(IsJ)el=1:M1) yd=1,4N1)

TWRITECTS 71 C T I =t M) S5o=1N1)

WRITE(7+71)C(TT(I+J)sI=1,M1)4J=1,4N1)

“F 388
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71 FORMAT(20A4)

GO TO 99
150 STOP
END
SUBRUOUTINE SWWTVWERWTT 1B ]
DIMENSION w({6.16)o0(16.16).V(16,16).BWVTS(lénlé)oAW(l
* 6916)0

ICW(16;16’.9”(16'16)’0h(16916)OPHI(16)9R(16)vZA(l6)oDW(
* 16+1€) :

228(16’QZC(16)0VW(r6016)oT(16-16)
CﬁﬁﬁUN_HVTFRZTFPTHPZ]DKQCUN'PRQSTD'TULEQZAQZB|ZCvROPHI'
®  JBWVTSeWsTs '
1V,OMEGM s CMEGS s CMEGT» U

COMMON M!N’MIOMI’NI.NI’MSTD.NO

NOW=1

5 CONT INUE
‘VWTTTTT5tT25?TTT:HF?UTTTTT72TfWT2TTT7TT?HF*UTTTTT7ZT1W———__—_—
* (2s-N1) ,
1 +2%W( 2, N/72+1 ) +4%HR2)

DO 9 J=2sN
VW(1,Jd)=VW(l,12
. 9 CONTINUE
— VWIS NTIT=Va(Is 1)
DW(2s 1)=—4%HR2-2%2B(2)*VW(2, 2)—AW(2+1)1%kVH{1+1)
DO 10 J=2,N
DW(2.J)=-#.0tHR2-(ZB(2)+ZC(2)*V(2oJ))*VN(Z-J-I)-(ZB(Z)
* =ZC(2)*
1 V(2+J) ) EVWI(2s JH1)=AW(2+J)%VW(10J)
TO CONTINUE
DW(2 +N1 )=—4%HR2=-2%ZB (2) *VW (2, N)—AW(2,N1)¥VW{1+N1)"
QW(2+1)=DWN(2.1)/B8WVTS(251)
DO 11 J=2sN
QW(2+J)=CW(2,J)/BRVTS(2+4)
‘11 CONTINUE '
OW 2SR ITI=OW T NI )7BWV ISTZ9 N1
DO 12 I=3+M :
OW(Is1)=—4%xHR2-2*ZB(1)*Vw(l,1)
12 CONTINUE :
DO 14 J=2,N
DO 13 I=3,M

Tnﬁﬁ-ay—:twﬁng-ch(LJ*Lu\1:¥V\l.Jr:*VWTT]J—LI-\LU\LJ—L
* C{IY%V(1,J))
1 *VW(IsJ+1)

13 CONTINUE
14 CONTINUE
DO 15 I=3+M
‘ﬁWTTTN17==¢*Hﬁz~chc\xJ¥vwiLoN)
1S CONT INUE

wf 38%
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DO 16 I=3+M
OW(TI+1)=(DW{Is1)-AW(I,1)*QW(I~1s1))/

1(BWVTS(I+1)=-AW(Is1)%Pn(I~-1,1))
16 CONTINUE

CO T8 J=cs N
DO 17 I=3,M
OW(TI+sJ)=(DW(TsJ)—AW(I »J)*QW(I=1+J))/(BWVTS(I,J)-AW(I,J
* )*PWI{I-14J))
17 CONT INUE
18 CONTINUE

DU IS I=3:7 M
OW(I JN1I=LDWLT,N1)—AW(I+NL)*QW(I=-1,N1))/
1(BWVTS{IsN1)—AW(IsN1)$PW(I-15N1))

19 CONTINUE
DO 20 J=1sN1
VNN, JI=CW(NMsJ)

20 CONTINUE
DO 21 J=1sN1
DO 4 IT1=2,MI
I=mM1-11
VW(I2J)=QWIT ,J)=PW{I,J)%VW({I+1sJ)
4 CONTINUE

21 CUONTINUE
wWD=0.0
WSUM=0.0
DO 31 J=1.N1
DO 8 I=14M
DI=CMEGM*(VW (I +J)=W(I,J))

Wl T s JI=W{1l.JJ)¥D1
WO=wD+ABS(DI)
WSUM=WSUM+ABS(W(I+,J))

8 CONTINUE

31 CONTINUE
ERRW=WD/ WSUM

IF{ERRWe LT s TCLESCRNCWGT<MTIM) GO TUO &1

NOW=NOW+1

GO 70 S

41 CONTINUE

RETURN

END

SUBRUOUTINE SUBVSTS3VCE3SSsAS CSPS AW CW P W MTTMERRSY
DIMENS ION W(16:16),U(16,16)sV(16416),,BWVTIS(16+16)sAS(1
*¥ 69186) ] ‘
1CS(16'16),PS(16.16)-Q$(16,16)-AW(16'16)-Cﬂ(lé.lé).Ph(l
* 6916)

20VO(16+16) 3 VO(1€+16)9DS(16416) ¢SM1(3)+VMI(3)sPHI(16)sR

* 1615 ZACTS )
323(16)yDVO(léolé).TCCh(16'16)955(16.16)cS(lbolb)-ZC(l6

* )eT(16,+16)

nF-3895
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COMMCN HRFR24HP sHP2 3 DK+ CONWPRsSTD s TOLE » ZA»ZByZCs Ry PHI
* ' BWVTSaWeTy

1V,CMEGM s CMEGSs CMEGT» U

COMMON MoNsMI oMl sNIsN1sMSTDINO

NUOOS=1
5 CONT INUE
DO 17 J=2.N
DO 10 I=2,M _
TCONCI o J)=CORNEW(E9J) *(COSIPHI(I) I¥( (Lo d+1)=W(leJ—1))%
* ZC(I)%*2.0

1 FSINTPRITIT IS (WCIF I I T=W{I=13JVV¥XAR)
10 CONT INUE

K=0

VM1(1)=0.0
20 K=K+1

VO(M]1,4J)=VML(K)

DO O =2+~
DVO(IeJ)=TCON{IaJ)=(ZE(I)+ZC{L)%XV(I+J))%VO{(TIsJ~-1)-(2Z8(
* [)=2C(1)%

1 VIIJI)RVO(I sJ+1)
IF(I sEQeM) DVO(I9J)=TCCN(I +J)=(ZB(T)+ZC(I)%V{Is+J))xVvO(
%x 1eJd-1)
T < (ZE(T J=ZCT IRV I J)TRVO( I J¥+1]
2 -~CWL1sJ)%VO(MIJ)

9 CONT INUE
QV0O( 2, J)=DV0O{2+J)/BRVTS(2,+J)
DO 8 I=3+M
8 QVO(1+J)=(0VO(I+J)=AW(I+J)*QVO(I-1+J))/ (BWVTS(I,sJ)-AW(

¥ 1,J)
1 *PW(I-1+J))
VO{M,J)=QVO(N,J)
DO 4 T1I=2,MI
I=M1-I1
4 VO(I ,J)=QVO(I:J)-PW(I+J)*VO(I+1,J)

DO 3 [=2»M™
DS(I+J)=—(ZB(I1)%(SS(I,J—1)+SS(I+J+1)))+HR2%VO(I+J)
IF(I £€Qe2) GO TO 2
QS{1+J)=(0S{14J)-AS{I,+J)%QS({I—~1+J))/7(BWVTS{I+sJ)—-AS(IsJ
* JRPS(I-14+J))
2 QS(2+J)=CS(2+J)/7BUVTIS(2+J)

3 CONTINUE
DS{M1,+J)=—(ZB(M1 )*(SS(M1,J—1)+SS(M1+J+1)))I+HR2%XVO(M1+J
* )
QS (M1, J)=(DS{M1,J)-AS(M1,J)*¥QS(M,J) )/
1 (BWVTS(M1,J)=AS(M1,J)*PS(MsJ))
SM1(K)=QS(M1,J)

IF{K=2)Y50+51s 52
SO0 VM1(2)=-100.0C

HFE SKS
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S1

52

GO 70O 20
VM1{3)=100.C*SMI (1) / (SM1(2)-SM1(1))
GO TO 20

SS{M1,J)=SM1(K)

18
17

DO T8 TI=I2M1

I=M3i-I1
SS(I+J)=0S(1+J)=PS(L+J)%SS(I+1,J)
CONT INUE

SD=0.0

SSUM=0.0

DO 79 J=Z2+N

DO 78 I=2.M1
CI=0MEGS*{SS(1+J)-S(1,J))
S(I+J)=S(1,+J)4DI '
SD=SD+ABS(DI)
,SSUM=SSUM+AB$(S(I.J))

70

79

80

CUNTINUE

CONT INUE

IF(SSUMNE «040) GO TC 80
ERRS=040

GO TO 81.

ERRS=SD/SSUM

R=R

83

CONT INUE
IF(ERRS LT «TCLE e CReNGS.GTeMTIM) GO TO 83
NOS=NOS+1

GO TO S

CONT INUE

RETURN

END

SUBROUTINE SUBUV(S.ERRUV)

DIMENSION W(16+1€)sU{16+:16)sV(16+16)+BWVTS(16,16),PHI(
% 16).R(16),

1ZA(16) 2ZB(16)+2ZCI16) s VU(16+16),VV(16416),:5(16,16)+TT(1
£ 6,16) '

Z2TU10+17C)

COMMON HRsHR2,HP yHP 2, CKsCONs PRy STD e TOLE s ZAsZB»ZCoeR s PHI
* +BWVTS sWoeTo

1VsOMEGN  CMEGS+CMEGT» U

CCMMCN MsNeMIo N1 4NIsN1sMSTDWNO

WRITE(6+21 )MasNsMI oMLl o NI N1

<1

TORMAT (5 ¢1IS)

D0 12 I=2.M

RH6=R( 1) ¥HP*6

RH12=R(I )*HP*12

VUCLTI ,1)=(8%5(1+2)-S({(1,+3))/RH6

VU(I 23=(=S(1+2)4+8%S(1+53)-S(I+4))/RHL12

v IS NI =St R I=8*STI NI 7RHE

VULIL +N)=(S(IsN=-2)-8%S{IsNI)+S(I,N)I/RH12

~F-589%
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DO 10 J=3,NI1

VU(I +3)=(S(1+J-2)~8%S(1+J-1)+8%S([+J+1)-S(I1,J+2))/RH12
10 CONTINUE
12 CONTINUE

T WRITE(G,22)
22 FORMAT(* ' ,%K0D1')
HR12=HR*12
DO @ J=24N
VW{(24+J)=(10%E(2+J)-182S(35J)+6%S(4,J)-5(5,J))/HR12
DO 14 I=3,MI

VWIS I =USTIF 2 I =8 SUTF I+ I FBXSTTI=TJ=S([=25 JTI7RARTZ
14 CONT INUE
VV M I)=(S(M=39J)-6%S(M=2+J)+18%S(M—-1,J)-10%S(MyJ)=-3%S
* (M+#1,J))/
1HR 12
9 CONTINUE

WRITETE+23)

23 FORMAT (' *,'K0D2") .
VUL 41)=(8%S(2sN/2+41)=S(34N/2+41))/(6%HR)
DO 8 J=1,N1! )
VUC(15J)=VU(141)

8 VV(14J)=0.0

DO 7 =2+ ™

VVW(I,1)=0.0
7 VW{IsN1)=0.0

SD=0.0

SUM=0.0

DO 13 I=1,M

DU 6 J=IsNI
DU=VU(L+3)~-U(1I,3)
DV=VV(I+Jd)-V(IeJ)

SD=SD+ABS{(DU )+ABS(DV)
SUN=SUM+ABS(VV(IJ))+ABS{VU(ILJ))
U(TsJdI=VU(T14J)

VIiT+Jrr=vvilsJ)
6 CONT INUE
13 CONTINUE
IF(SUMJNE.O.0) GO TO 11
ERRUV=0.0
RETURN

Il ERKUV=0OU//SUW
RETURN
END
SUBROUTINE SUBT(TT,AT +CTPTLERRT)
DIMENSION W(16916)sT(16:16)+U(16516),V(16+16),BWVTS(16
* 0216)

TAT T, 1€ ) CT I e 16 ) DT UG 16 )5 P T LIS 16 AT 1656 > T T (1
* 69216),

~F-339%
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2PHI(16)+sR(16)42A(16),2C(16),28(16)

COMMCN HRIHR29sHP yHP2+s DKy CONsPR+STDs TOLEY ZA3ZB,ZC s R, PHI
* 1 BAVTSeWsT,

1V>sCMEGM s CMEGSs CMEGTH U

COMNMON M3 Ny MIS MT NI NI MSTD RO
TT(141)=0e2S*(TT(2+1)4(1-HR*PR¥U(1+1)/2)42%TT(2,N/241)
*  +TT(2,N1)

1 ¥( 1. 0+HR#PR*¥U(1,1)/2,0) +HR2¥W(1,41))

DO 1 J=2,.N1

TT(1,J)=TT(1,1)

CUNT INUE

CT(2+ 1)==2%2B(2)%TT(Z2,2)—HR2¥W(2, 1)-AT(2y 1)%TT(1,1)
D0 2 J=2,N
CT(2:J)=—(ZB(2)42C(2) #PRAV(2,J) ) XTT(2,0-1)=(ZB(2)-2C(2
*  )XPR¥V(2,J)) '

1 kTT 2+ 1) -HR2¥W(2 s J)=AT(2:J)%TT(1,J)

CTONT INUE : . -
CT(2+N1)=-2%2B(2 ) %TT(2+sN)-HR2¥W(2,N1)-AT(2,N2)%*TT(1,41)
DO 3 J=1eN1 ’

CT(2, J)=DT(2, JI/BWVTS(2,s J)

CONT INUE

DD 4 I=3.M

CT(T, 1)I==2%ZBUIJ¥TT(Is Z2J=RRZ¥W(I: T)
CONT INUE

DO 6 J=2.N

CO S I=3.M

OT(I +J)=(ZCCII*PR¥V(I+J)-ZB(I))}%TT(I,J+1)

1 =(ZB(I)+ZC(I)FPR*V{I+J)I*TT(I+J-1)-HR2*W(I+J)

2 CUNTINUE
6 CONT INUE

CO 7 1I=3.,M

CTCIsN1)}==2%ZB(I)*TT(I, N)-HR2*W(I,N1)
CONT INUE

DO 8 [=3.M

T TS =T (T T I =AT (I I XQT(IT=151))7
1 (BWVTS{I+1)—-AT(I,1)%*PT(I~-1,1))

8 CONTINUE

DO 10 J=2sN
DO 9 I=3.M
QTUI »J)=(DT(TIsJ)~AT(I+J)%XQAT(I-1+J))/7(BWVTS(I,J)-AT(I,J

X JXPT(I=1,,J7)
9 CONTINUE
10 CONTINUE

DO 11 I=3.M
QT (I sN1)=(OT(I+N1)-AT(I,N1)*QT(I-1,N1))/
1 (BWVTS({I+N1)-AT(I+N1)XPT(I-1+N1))

T CONTINUE"

DO 12 J=1,N1

nF 3R%
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TT(MsJI=QT (M J)
12 CONTINUE

DO 14 J=1.N1

CO 13 11=2.MI1

IT=M1=11
TT(:.J)=or(1.J)-pr(1.J)*tT(1+t.4)
13 CONT INUE
14 CONTINUE
TD=0 + 0
TSUM=0.0

DO 78 J=Te N1

DO 77 I=1.M
DTT=CMEGT*(TT([-J)-T(IcJ))
T(Is JI=T(I+J)4DOTT
TD=TD+ABS(DTT)
TSUM=TSUM+ABS(T(1.:J))

77 CUNTINUE

78 CONT INUE
ERRT=TD/TSUM
RETURN
END

SUBROUTINE FHR(SWhoSWT.SGTQSG".ELKT.FREI.FREZ'NUlsNUZ.

—%—RFEISRFEZ»
IRNUIqRNUZoARNUoSTpoAVEN.AVEF.RFEIZ)

DIMENS ION W(16.16)’T(16'16)oU(16016)'V(16‘16),BNVT$(16

%k  41E)+TS(16),

1WT(16)-WP(16)’GT(16)QGW(16)'PHI(16)9R(16)-ZA(163928(16

x )sZ2C(16)

ZoFRETCIBI»UNITIE)

COMMON HF.HRZ.HPvHPZ’DK-CONoPRoSTDqTOLE'ZA.ZB'ZCoR.PHI

* +BUVTS sWeT o
lVoOMEGMoUMEGS-UMEGTQU
CCMMON MqN:“IoMloN[QNl.MSTD,NO
REAL NU1l .NU2

PI=3+181°Yo

DO 10 J=1sN1

GT(J)=—(T(M—39J)/4—4*T(M—20J)/3+3*T(MI,J)-a*T(M.J))/HR

GW(J)=—(W(M—3yJ)/Q—Q*W(M—ZqJ)/3+3*N(M[.J)

10 CONTINUE
SGT=GT(1)+GT(N1)

-a%xW{MyJ))/HR

STW= 17

DO 9 J=2sNs2

ﬁGT=SGT*GT(J)*4

SGW=SGW+CW(J)*4
9 CONTINUE

DO 8 J=3sNIs2

G T1=SGTFGTII*2

8 SGW=SGW+GW( J)*2

HE HAD
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SGT=HP*SGT/( 3%P])

SGW=HP%*SGW/ (3*P1)

DO 7 I=2,M
WTOI)=WOI s 1) *T(Is134+W(IeNI)RT(IsN1)

(SUII=TUT.TIFTUISNT )
WRP(I)=w(I+1)+W(IeN1)

DO 6 J=24Ny2
WT(I)=WT(I)+W(I+J)*T(1,J)%4
TSCII=TSCI)+T(I+J) *4
WRP(IL)I=WP(I)+W(IsJ)*a

DO 5 J=3sNIls2
WTCI)=WT(I)+W( TaJ)%T(I,4)%2
TS(I)=TS(I1)+T(I,J)*2
WP{I)=WP(I)+W(I,J)%2
WT(TI)=HP*WT(1)/3
TS(I)=HPXTS(1)/3

WPTII=FRP¥WPTI)73
CONT INUE

SWT=0.0

STP=0.0

DO 4 [=24sMy2

SWI=SWIFWITT IFRUIT*g
STP=STP+TS(I)*R{1)%4
SWP=SWP+WP(I)*R(I)*x4a
CONT INUE

DO 3 T1=34MI,2
SWT=SWT+WT(I)*R(1)%*2

STP=STPFTISTTIIXRUITXZ
SWP=SWP+WP(I)*R({I)*2
CONT INUE
SWT=HRXSWT*2/(3%P1[)
SWP=HR*SWP*2/(3%F1)
STP=HR¥STP*¥2/(3%HP)

BCR T=SWI/7SWP
DK=CON%X*¥0+5%SWP*2,0
FRE1=4%SGWw/SWwP
FRE2=8/SWwP
NU1=2%SWP*SGT/SWT
NU2=SWP%%2/SwT

FFETIT=-FRLIZ IO
RFE2=FRE2/16
RNU1=NU1%*11/748
RNU2=NU2*11/48
ARNU=(RNU1+RNU2) /2
AVEN=(NU1+NU2) /2

e .
AVEF=C(FRET*FRE2 )72

RFE12=(RFE14RFE2)/2

“F 389
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WRITE(E,21)

21 FORMAT{ %1% SXe%J? 44Xy 'GW(J)?" 415X 'GT(J) 915X *FREI(J)*
* 13X .
1,°NUTICIIY)

DU 23 J=I+N1
FRET{( J)I=4%GW(J )/SWP
UNI(J)=2%SWPXGT(J)/SWT
WRITE(6+22) JeGW(J)+sGT(J)sFREI(JIHWUNI(J)
22 FORMAT (4Xe1234Xe4(E135+7X))
23 CONTINUE

RETURN
END

TETE Y
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22 XIS LS EESELL LS L2 22 2 20 2 2 K0

* IN THE SIXTH COLUMN INDICATES
CONTINUATION FROM PREVIOUS LINE

R E AR ER AR FSRE PR KKK KRR K KKk A

********#***#***;#****4*************************t****
*kxkk LAMINAR FORCED CONVECTION HEAT TRANSFER  *&k%k%%x

¥¥FFX TN CURVED CIRCUCER CHARNELS % %%

*kk%¥% ( A/RC IS SMALL, GRAETZE FLOW PROBLEM *kkEk
3 kA WITH NEUMANN CONDITIGCON ) L2 S 2 2
#xx&%x ( LOG SCALE STEP ) . XXEXE

RRLERXEAKR XK AR R KRRk kKRR R KRRk R REF KRRk Rk kkkk kKRR K X

NAQaOOONOANAOOON

DIMENSION T(2G+29)+W(29+29),U(29+29),5V(29+29)R(29)
121(29)¢Z22(293+23(29)524(29)4+A(29+29)+B(29+29),C(29,429)
24D(29429)+E(29+29)+F (29:29) s TPC(29:29) »TPF(29+29),
3TG(29+29) s TH(2S229)»TQG(29+29) s TAH(29529) +NUI(29),

FGT {2 T sWT (2T ) TS (2GS )» WP(2TTsGOTW(2T )11 29,297
REAL NUIL +NU1 oNUZ2 sNU1 My NU2M
READ(Ss1) NMeN
1 FORMAT(215)
PI=3.141€93
MI=M-1

MIT=M+F1
NI=N-1
N1=N+1
ETA=0.0
CME=0.0
CMEG=0.0

RUT)I=U.0
aONU1=0.0
ONU2=0.0
NU2M=0 .0
CMEO=0.0

UU 37 J=1+NIi

HE SnE
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CO 3 I=1,,M1
W(IseJ)=0e0
U(TIsJ)=0.0
V(I+J)=0.0

TTI5J3)=0.0
TT(I1+J2=0.0

3 CONTINUE
READ(S+S)((W(IsJ)eI=1sM1)sU=1,4N1)
READ(S5¢S3{(U{1sJ)s1I=14sM1)3J=1,4N1)
READ(S+SI{(V{IsJ)sI=1eM1)eJ=1+N1)

S FORMAT(Z20AZ)

6 FORMAT (®1% 4% xkk%k%

WRITE(S+6) MyN

14¢ SIZE®*»1S5S92X+*BY*, 15,
WRITE(6+9) wW(l,1)

WRITE(6:49)(( W(ILlsJ)aI=Z2sM1)sJ=1,N1)

MAIN FLOW DISTRIBUTION.,W WITH MESH®

EXEERT)

7 FORMAT('1°% 4® *kkxkk

WRITE(Bs ) MsN

R=DIRECTION FLOW DISTRIBUTION»U®',

1* WITH MESH SIZE®,IS+2Xs"BY?*4IS5, ¢ xXk¥xk?)

WRITE(64+S) U(1+1)

WRITE(6+49)(( U(LeJ)sI=2sM1)4J=14N1)

WRITE(648) MyN

B FURMAT ("I V¥, " ¥EXE¥ PHI-DIRECTIUN FLOW DISTRIBUTIUN,VY,

1* WITH MESH STZE'+I5+2X,'8BY*415," ¥kkx%%x?)

WRITE(6+9) V(1,1)

WRITE(6+49)(( V{IsJ)+I=2,M1)sJ=1sN1)

FORMAT(*0'+E18.6)
REAC(54+10) PRsRARC

10

11

READ(S» 1 0) CCKRHDK
READ(5+,10) DETALETALIM
FORMAT (2E10.5)
WRITE(6411)

FORMAT (*1°%)

[a el e Nl

SETTING CF CONSTANTS

HR=1.0/M
FR2=HP %2, 0
FR3=HR/2 .0

FP=PT7N
HP2=HP¥*2,0

H1=PR*HR3

H2=PR¥CON%*% ¢ SkRARC*k % ¢ S*2 0 *HR 2

H3=PR¥HR2/2 . 0/HP

PA=ARC77r S
HS=2 « 0%H4
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DO 14 I=2,M1
R(I)=R({I-1)+HR
Z1(I)=HR3/R(I)

14

Z2TI T=R&7RT T IX*XZ
Z3(I)=HS/R(I)%x%*2
Z4a( I )=H3/R(1)
CONT INUE

(sl ala NaNa!

SETTING CF CUEFFICIENTS
CONSTANT COEFFICENTS

DO 16 I=2.M1
A(Ll+1)=—H1*%U(I+1)-1.0+Z1(1I)
C(Is1)= H1%¥U(Is1)—-1.0-Z1(1)

FUILL1)=23017

D0 15 J=2sN

A(T, J)==+1%U(1sJ)=10+Z1{(1)
ClI,J)= H1I¥U(T+J)-1.0-Z1(I)
D(I,J)=2401)%V(I+J)+22(1])
FQI»J)=—Za(1)*V(1IsJ)+22(1)

15

16

CUNT INUE
A{TeN1)=—H1*U{T,N1)=1.0+21(1)
ClISN1)= HI1%U(I,N1)=1,0-2Z1(1)
DCIWN1I=Z3(1)

CONT INUE

CO 17 J=1.N1

17

AIMIS JI=ATMISITFCIMI » J)

CONT INUE

KQUNT=0 p,
KOUNN=0 ’
KTT=0

KOUTT=0

OO0 N

CUNTINUE

INCREMENT OF DISTANCE IN MAIN FLOW DIRECTION

ETA=ET A+DETA

ETAI=T.O-ETA
ETA2=1 «/ETA1

OMEG=ALOG(ETAZ)
MODIFIED PECLET NUMBEFR,PECMOD=RED*PR*2A/ (RC*0OMEG)

PEMOD=2+,0%DK*¥PRX(RARC * ¥ S/OMEG
RPEMD=1 . /PEMCD

PUO=2 0 *RARCZ7CMEG
COMG=0MEG~CMED

HF.38%
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RED=DK/RARC*%¢5

AL TERNATIVE UDIRECTIONAL ME THOD

CALCULATION OF PHI_DIRECTION USING
GAUSSIAN ELINMINATION

ELIMINATION OF T(I»J-1) IN COLUMN

anoonaqooaonnnnonn

DO 34 I=2.M1
B{(Ils1)==H2%¥W({I,1)/DOMG+2.0

ECTS II==AZ2¥W IS T y70CRG=23TT)
TPF(I.1)=F(Is1)/E(I+1)

DU 33 J=24N1

B(I,J)=—H2%W(I4+J3)/DCMG+2.0
E(lesJ)=—H2XW(I+J)/DCMG-23(1)
TPF(IL+J)=SF(I4J)/Z(E{TL«J)=D(I+J)*TPF(I+sJ-1))

33 CUNI INUE
34 CONTINUE
DO 36 [=2.M
DO 36 J=1.N1
TH{I o J)=A( I3 ) *RTT(I-1J)4B(L+J)XTT{I+sJ)+C(I,J)*TT(I+1,

ko J)

SO LUNTYT INUE
DG 40 [=2.+M
TAQH( I +1)=TH(I+1)/E(I,1)
DO 38 J=2,N1
TQHC( I s JI=(THE(TIsJI=D(I4J)*TQH(I ,J-1))
1 /(E(IvJ)-D(Iydl*TPF(le-l))

38 CONTINUE
40 CONTINUE

BACK SUBSTITUTION

0O N0

DO 45 1=2.M

TCISNTI=ToHRTISNT)

DO 43 K=1sN

J=N1-K

TCL W JI=STQH( L W J)=TPF(I+J)%T(IeJ+1l)
43 CONTINUE
45 CONTINUE

IR BB EAL! —ATMIS I T¥T (MY 1)
1 +2.0%C(M141)*¥HR-F (M1 41)%T (M1.,2))

E BHE
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2 /(E(M1,1)-B(M1,+1))

DO 451 J=2,N
T(M1,3)=( A{M1sJI)XT (M,J)

1 +2.0%C (M1 5 J)*¥HR-D{(M1 s J)ET (M1 ,J-1)—F(M1,J)%T (M1

451

X SJ¥I[T)
2 /{E{M1+J)-E(M1,J))

CONTINUE
T(M1.N1)=( A(M14,N1)XT (M,N1)

1 +2.0%C(M1 s N1 )XHR-D{(M1,4NY)*T (M1,N))
2 /Z(E(M1sN1)-B(M1,N1))

N O.0 A

CENTRE PCINT BY PRESENT POINTS AND
1 THE PREVIOUS CENTRE POINT ,T(1l.1)

T(1+41)=(TT(1+1)*{-H2%W(1+1)/DOMG+2,0)
1 + T(2+1)%(H1%xU(151)—10)

46

2 =TT NIT¥THI¥U{T,, 17¥F1.0)

3 ~T(2sN/2+1)%240)/{-H2%W( 1, 1)/DOMG-2.0)
CO 46 J=2,N1 .
T(1,J)=T(1+1)

CONTINUE

sl sl aNeNalaKs)

CALCULATION CF R_DIRECTION USING
GAUSSIAN ELIMINATION

ELIMINATION OF T(I-1,J) IN COLUMN

22

DO 22 I=2+M1

DO 22 J=1,.N1
B(IsJ)=H2*W(I1+J)/DCMG+2.0
E(I»J)=H2*W(I,J)/DIMG-231(1)
CONT INUE

DO 24 J=1sN1

23
24

TPCT s IJT=C 2 I 178124y J7
DO 22 I=3.M1 .
TPClI+J)=ClI+JI/(B(I+J)~A(L+J)XTPC(I-1,J))
CONT INUE

CONT INUE :

CENTRE POINT 8Y PREVICUS POINTS

25

TS =T (1S I tA2xw IS 1Y 700MG=2+07)
1 +T (2eN/72+1)%2,0-T (2+1)%(H1%U(14+1)-1.0)
2 +T (2,N1) #(H1%U{1,1)+1e0))/(H2%W{1,1)/DOMG+2,.,0)

DO 25 JU=2.N1
T{1+,4)=T(1,1)
CONT INUVE

z A A P 3
A\ YR YA Y- X REdl Cles 17

FE 25 )I=F 25 T {2520 +Et251

¥
TG(ML+1)=F(NM1,1)%T (M1,2)+E(M

*
1

»1)%T (M1,1)

AF-568
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1 —2.0%C(M1,1)*HR

DO 26 J=2.N°
TG(2+3)=D(2sI)%T (2+J—1)4E(2+J)%T (24J)+F(2,J)%T (2,I+

* 1)
1 =A (S ITFT (1507

TGIM1+J)=D(M1,J)*T (M1lsJ—1)+E(M1,J)%T (M1,J)
1 FF(MLoJ)RT {M1,J41)=2,0%C(M1,4J)*HR

26 CONTINUE
TG(2+sN1)=D{(2+sN1)}*T (2+N)+E(2.N1)*T (2,N1)

1 ~A{2,N1)*T (1,N1)
TG UM IS NI =CtFISNT YT (MISNIFECMISNT )T (MIyN1J
1 -2 ¢0%C (M1, N1 )XxHK

cO 28 I=3+M

TG(IG1)SF(I41)%T (I,2)4E(I,1)%T (I,1)

DO 27 J=2sN .

TG(Ied)=D(TsJ)%T (IsJ=1)+E(1+J)*T (I»J)4F(I+J)*T (I+J¢

x 1)
27 CONTINUE
TGUIsN1I=D{ IsN1)*T (I+NI+ECISN1I%T (I,N1)
28 CONTINUE
DO 30 J=1.N1
TQAG(2+,J)=TC(2,3)/B8(2+J)

DO 29 1=3+M1
TQG{I+J)=(TG(I+J)-A(I5I)XTOG(I-1+J))
1 /(B{I+sJ)-A(1:5J)*%TPC(I-1+3))
29 CONTINUE
30 CONTINUE

PACK SUBSTITUTIUN

alia!

DD 32 J=1,4N1

T (M1,J4)=TQG(M1,J)
DO 31 K=1,4MI
I=M1-K

T IS I =TOG (I I I=1PC T I 1xXTCIF1I+J7T
31 CONT INUE
32 CONTINUE
[FIKOUNT/20%20NE.KCUNT) GU TO 4901
WRITE(6+47) MsN
47 FORMAT (21" o® fkkk*k TENPERATURE DISTRIBUTION WITH?®,

T NMESH STIZEY s IS5+ 2Xs"BY '+ 15 ¥ FEXFX V)
WRITE(6+448) T(1,1)
48 FORMAT('0',1E18,€)
DO 492 J=1sN1
WRITE{6,421)
491 FORMAT(® )

=

WRITETS 49y T {5 I=27™M)
49 FORMAT(* *,7E18.€)
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492
4901

CONT INUE
CONT INUE
KOUNT=KOUNT+1

[aNaNaNal e Nal

CALCULATICN COF HEAT TRANSFER RELATIONSHIPS

CO S0 I=1,M1

50

S1

WITTI =00
TS(I)Y=0,0
CONT INUE

DO S1 J=1,Ni
GT(J)=1.0
CONT INUE

SGT=T.0

TSS=0.0
TSS=TSS+T(M1,1)+T{MI,N1)
SGT=GT(1)+GT(N1)

DO S2 J=24Ne2
TSS=TSS+T(ML +J) %4+

va

S3

CONTINUC

DO 53 J=3sNIl.2
TSS=TSS+T(M1 ,J) %2,
CONT INUE
TSS=HP%TSS/(3.%P1)
DO 56 I=2.M

GUTWITIT={T{TI+ I )=TT(I5 1)) 700MGXW (TS 1)
F(TCISNL)=TT(IsN1))/DOMGRW(TI4N1)

WTCI)=W(TIa1)X(T(Ie1)=TSS)+W(IN1)X(T(I,N1)-TSS)

TS(I)=T(TI+1)4T(TI.,N1)

WP(I)=W(TIs1)+W(I,N1)

DO 5S4 J=ZeNs2

GUITWIT I=GOT W (I IF (T (I I =T T (1 3 ) 700MGYW (I J 7 *¥a,
WT(II=WT(I)+W(I+J)*(T(I+J)~-TSS)*4,
TS{IN=TS(I)+T(IsJ) %4,

WRP{I)=wWP(I)+W(I,J)*%x4,

54 CONTINUE
DO S5 JU=3sNIe2
GOTW I I =COTW{ T )+ (T IS O r=TT{ 153 ) I7DONMGEW{ I, IV «2>

S5S

WTCI)=WT(L)+W{IsJI)*(T(I+J)~-TSS)*2,
TS(I)=TS{I)+T(I,35%2.
WP(L)=WwP(I1)+w(lsJ)%x2,

CONT INUE
GOTW(I)=HP*GOTW(I)/(3.%*P1)

WITTT I =HP¥WTT T 7C3xP )
TS(ID)=HPXTS(I1)/(3+%P])

“F-58%
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56

WP(I)=HP*WP(I)/(3.%P[)
CONT INUE
SGTwW=0.0
SWT=0.0

STP=0%0

SWP=0.0
GOTW(1)=(T(1+1)-TT(1,1))/DOMG*¥(1,1)
GOTW(M1)=0,0+SINCE W(NM1,J)=0.0
GOTW(M1)=0,0
SGTW‘SGTW+GUTU(H1)+GOTU(l)

S7

DO 57 T=Z3 M2
SGTW=SGTW+GOTW(I )*R(I)*4,
SWT=SWT+WT(I)*R(I)*4,
STP=STP+TS{I)*R{I)*4 .
SWP=SWP+WP (I )*R( 1) %4,
CONT INUE

58

DU S8 T=37M1+2
SGTW‘SGTH+GOTW(I)*R(l)*Z.
SWT=SWT+WT(I)%RR(1)*2,
STP=STP+TS(I)*R(I)%2,
SWP=SWP+WP (I)%*R(1)*2,
CONT INUE

SGTW=RRXSGTW¥273,
SWT=HR*SWT*2/3.
SWP=HR*SWP%2/3,
STP=HRXSTP*2+/3,

BULK TEMFARETURE +BLKT
BLKT=SWT/SWP

— NUI= SWPXSGI/7SWT

NU2= PR*xCON%**,5%¥RARC**, S*SGTW*SUP/SWT
AVERAGE NUSSELT NUMBERJAVEN

AVEN=( NUl1#NUZ2)/2.

NUSSELT NUMBER RATICS TO THEFULLY DEVELOPED

IN STRAIGHT PIPE

FLOW

59

RNUIT=NUT7%360
RNU2=NU2/4,360
ARNU=(RNU1 +RNU2) /2.

DO 59 J=1,N1
NUT(J)=2%SWPXGT(J)/SwT
CONT INVUE

5901

ITFIRKOUNKN720%¥ 20+ NESKCURNI— GO TO 5902
WRITE(655901) NI

FORMAT (*0',* *% k%% NUSSELT NUMBER DISTRiBUTION FROM®,

¢ U= 1 TO%913+% kxk%x%')
WRITE(6+48) NUI(1)
WRITE(6649) (NUI(J)J=2,N1)

C

f= )=V -4

RUUNN=RUUNNFTTL

«F 58%



439

SGT2=2 « *SGT

ETO0=STP/.1875

PRK=DK ¥k ¢ S¥PR%* ¥ 4,25

NUIM={ NUIMXCMEG+(CNU1+NU1)/2.*¥DOMG) /OMEG

NUZM=({NUZMFOMEOUF (UNUZFNUZ) 72+ *DUNG) 7UMEG
AVENM=(NULM+NU2M) /2.

RNU1M=NU1M/4.360

RNU2M=NUZM/ 4,360

ARNUM= (RNU1M+RNU2M)/ 2,
IF(KTT/20%20eNEKTT) GO TO 5909

WRITE(SESEOY
60 FORMAT (" O0'/6X e *CCN® 410X, 'DK? 39Xy 'SWP?* ,9X,*2%SGT* +8Xs
1 SETA® +8Xs*POSITION®* 6 X,y *OMEGA P2 8Xs* A/RC 97Xy
*PEMODIF® ,6X, *COMG?)
WRITE(6,61) CDN.DK,SNF.SGTZ'ETA.PD.OMEG.RARC.PEMOD

1 +DOMG

51 FORMAT(TX, TOET3SE)
WRITE(6s+€2) )
62 FORMAT (' ?,4Xs'PRK®5 10X, 'STP",7Xs"* TSS * 38X *RED"
1 10Xs*NUL'510Xe*NU2T 39X * AVENT®,,8X 3 " NU1/NUO? 26X,
ENU2/NUOY ¢ 7Xe *ARNU?Y )
WRITE(6:+61) PRKsSTPsTSSsRED+NUL1sNU24,AVENRNUI sRNUZ2¢ ARN

® U
WRITE(6+€201)

6201 FORMAT(* 'oSX-'PR',lOX-'NUIM'.llx.'NUZM'o9Xs'AVENM'

17X.'NU1M/NUO'.SX"NUZN/NLO'oSX.'ARNUM'o6Xv‘RPEMD'
CEX s *BLKT 36X+ *RMPRK ")
WRITE(6461) PR,NUIMohUZMoAVENMoRNUlMoRNUZMqARNUM

TsRPEMD s BLK T3 FMFRK

5909 KTT=KTT+1

OMEO=0MEG
ONU1=NU1
ONU2=NU2

D0 63 I=1,M1

D063~ IJ=15N1
TT(I+3)=T(1,3)
63 CONTINUE
IF(PEMOD.LT.200.) GO TO €5
64 CONTINUE
IF(ETALLTLETALIM) GO TO 20

STOP
65 CONTINUE

IF(KOUTT.NE«O) GO TO €4

WRITE(7+66)((TT(1sJ)sI=1eM1)eJ=1sN1)
66 FORMAT{(20A4)

WRITE(7+67) GMEC

WRITECT?SET ) UM
WRITE(7+,67) NU2M

1+ SRS
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67 FORMAT(E1346)
KOUTT=KOUTT+1
GO TO 64
END

HF.568
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*****t*******#***#***#**#******

* IN THE SIXTH COLUMN INDICATES
CONTINUATICN FEOM PREVIOUS LINE

FEEREKEREKRREEEERESEE R RERKKE ¥ -

*#*#t**‘***#*****#*#***********#t*##*****#*******##**

C

c

C FEEAFEX RS XX KRRRERXKERRRERE R ERRRE R R AKX ERRRKK KRR KR KKKk
C *¥%¥%&% LANMINAR FORCED CCNVECTION HEAT TERANSFER #*#x%*
C **%** IN CURVED CIRCULER CBANNELS ' *kkkk
C *¥¥%%x ( A/BC IS SMALL, GRAETZE PLOW ERCBLEN LEE L 2
C *kxEkx WITH DIRICBLET COBDITION ) . bbbl
C  *%%%% ( 106G SCALE STEP ) : XkEk
c

C

[

C

DIMENSION T(29,29),W(29,29),0(29,29),V(29,29),R(29),
121(29),22(29),23(29),24(29),A(29,29),8(29,29),C(29,29)
2,b(29,29),E(29,29) ,F(29,29),1TPC(29,29) ,TPF (29,29),
3TG(29,29),TH(29,29),TQG(29,29),TQH(29,29),NUI(ZQ),

4GT (29),WT (29) ,T5(29) ,WP (29) ,GOTW (29) ,IT (29,29)
REAL BUI,NU1,N02,8018,N02M ‘
READ(5,1) HM,N
FORNAT (215)

PI=3.141593
HI=M-1

H1=M+1
NI=N-1
N1=N+1
ETA=0.0
OME=0.0
OMEG=0.0

R(1)=0.0
ONU1=C.0
0NU2=0.0
NU1M=0.0
NU2M4=0.0
OMEO=C. 0

DO 3 J=1,N1

+F-38S



442

DO 3 I=1,M1
W(I,J)=0.0
U(I,J)=C.0
V{1,3)=0.0

T(I,d)=1.0

TT (1,3)=1.0
3 CONTIRUE

DO 4 J=1,N1

T(M1,3) =0.0

TT (81,3)=0.0

4 CONTINUE
READ (5, 5) ((W(I,J),I=1,41),3=1,N1)
READ (5, 5) ((U(I,d),I=1,41) ,d=1,N1)
READ (5, 5) ((V(I,J),I=1,M1),3=1,N1)

S FORMAT (20A4)

WRITE (6,6) M,N

6 FORMAT(*1',V***** MAIN FLOW DISTRIBUTICN,W WITH MESH'
1,* SI2E',15,2X,'BY',I5,! *¥#kx1)
WRITE(6,9) W(1,1)
WRITE (6,49) (( R(I,J),I=2,M41),3=1,K1)
WRITE (6,7) M,N
7 FORMAT('1','#****x R-DIRECTION PLOW DISTRIBUTION,D!,

1" WITH MESH SIZE',15,2X,'BY',15,' *%x*%x%1)
WRITE(6,9) U(1,1)
WRITE (6,49) (( U(I,J),I=2,M41),d=1,N1)
WRITE(6,8) N,N
8 FORMAT(*1','*%%+x PHI-DIRECTION FLOW DISTRIBUTION,V',
1* §ITBE MESH SIZE',I5,2K,'BY',I5,' #*x%x1)

WRITE (6,9) V(1,1)

WRITE {6,49) (( V(I,J),I=2,M1),3=1,N1)
9 FORMAT(*0',E18.6)

READ (5, 10) PR,RARC

READ (5, 10) CON,DK

READ (5, 10) DETA,ETALIM

10 FORMAT (2E10.5)
WRITE(6,11)
11 FORMAT (*1')

SETTING OF CONSTARTS

allsNaXa

HR=1.C/M
HR2=HEF*%*2.0
HR3=HE/Z.C
AP=PI/N
HP2=HP*#*2.0

H1=PR*HR3
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H2=PR¥CON**_5%RARC**_.5%2, 0%¥BR2
H3=PR#HR2,/2.0/BP

H4=HRZ/HE2

H5=2.(*HY4

DO 14 I=2,M1

R (I)=B(I-1)+HR
71 (I) =HR3/R (1)
22 (I) =HU4/R (I) #*2
23 (I)=HS/R (I) **2

14

24 (1) =H3/R(I)
CONTINUE

SETTING OF COEFFICIENTS
COKNSTART COEPFICENTS

(2llsNeNeXal

DO 16 I=2,M1
A(I,1)=-H1%0(I,1)~-1.0+21(I)
C(I,1)= H1*U(I,1)-1.0-21(I)
F(I,1)=23(I)

DO 15 J=2,N

15

A(I,J)=-B1%*0(1,J)-1.0+21(I)
C(I,Jd)= H1*U(I,J)-1.0-21(I)
D(I,J)=24(I)*V(I,J)+22(I)
F(I,J)==-24 (I)*V (I,J) +22 (I)
CONTINUE

A(I,N1)=-H1*%0 (I,N1)-1.0+21 (1)

16

C(I,N1)= H1*0(1,81)-1.0-21(I)
D(I,N1)=23(I)

CONTINDE

KOUNT=0
KOUTT=0
KTT=0

[eNeNaNal

20

CONTIRUE

INCREMENT OF DISTANCE IN MAIFN FLOW DIRECTION

ETA=ETA+DETA

ETA1=1.0-ETA
ETA2=1./ETA1
OMEG=ALCG (ETA2)

MODIFIED PECLET NUMBER,FECMOD=RED*PR*2A/ (RC*OMEG)

PEMOD=2.0%LK*PR*RARC**.5/CMEG
RPEMD=1./PENOD

P0=2.0*RARC/OMNEG
DOMG=CMEG-CMEO
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RED=DK/BARC**.5

ALTERNATIVE DIRECTIONAL METHOD

CALCULATION OF R_DIRECTICN USING
GAUSSIAN ELIMINATICN

oonanOoNnOnOon

ELIMIPATION OF T (I-1,J) IN COLUMN

DO 22 I=2,M

po 22 J=1,KN1
B(I,J)=H2*W#(I,J)/DONG+2.0
E(I,J)=H2+*W (I,J)/DCHG-23(I)

22

23

CONTINUE

po 24 J=1,K1

TBC (2,3)=C (2,3) /B (2,J)

po 23 I=3,M .

TPC (I,J)=C (I,J)/ (B (I,J)=A(I,J)*TEC(I-1,J))
CONTINUE

24

CONTINDE
CENTRE POINT BY PREVIOUS FOINTIS
T(1,1)=(TT(1,1)*(EZ*W(1,1)/DCHG-2.0)

' *TT(2,!/2+1)*2.0-TI(2,1)*(H1*U(1,1)-1.0)

1
2 +TT (2, K1) % (B1%U (1,1) +1.0) ) / (H2#4 (1, 1) /DONG+2.0)

DO 25 J=2,81

25

T(1,3)=1(1,1)

CONTIRUE
TG(2,1)=F(2,1)*TT(2,2)+B(2,1)*TT(2,1)-A(2,1)*TT(1,1)‘
DO 26 J=2,N

TG (2,J) =D (2,J) #TT (2,J-1) +E (2,3) #TT (2,J) +F (2,J) *TT (2,3+
t 3 1)

26

1 -3(2,J)*TT(1,J)

CONTINUE ,
TG(Z,N1)=D(2,N1)*TT(2,N)*E(2,N1)*TT(2,N1)
1 -A(2,N1)*TT(1,N1)

pO 28 I=3,M
TG(I,1)=F(I,1)*TT(I,2)+E(I,1)*TT(I,1)

DO 27 J=2,N
TG (I,J) =D (I,J) #TT(I,Jd-1) +E (I,J) #TT(I,J) +F (I,I) *TT (I, I+

* 1)

27 CONTINUE

TG(I,N1)=D(I,N1)*TT(I,N)*E(I,N1)*TT(I,N1)

28 CONTIRUE

DO 30 J=1,81
TQG (2,J)=TG(2,J) /B (2,3)

S
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29

po 29 I=3,M

TOG (I,d) = (16 (I,J)-A(I,J) *TQG (I-1,J))
1 /(B (I,d)-A(I,J)*TEC(I-1,J))
CONTINUE

(aNeNg!

30

CONRTIKNUE
BACK SUBSTITUTION

Do 32 J=1,81
T(#1,3) =0.0

31

T (M,J)=TQG (M,J)

pO 31 K=2,MI

I=M1-K

T (I,3)=TQG (I,J)-TBC(I,J)*T(I+1,J)
CONTINUE

CONTINUE

CALCUIATION OF PHI_DIRECTIION USING
GAUSSIAN ELIMINATION

OO0 0O0n

ELIMINATION OF T(I,J-1) IN COLUBMN

DO 34 I=2,H
B(I,1)=-B2%¥(I,1)/DONG+2.0
E(I,1)=-H2*W(I,1)/DOKG-23(I)

33

TPF(I,1) =F(L,1) /E(I,1)

po 33 J=2,N1

B (I,J)=-H2*W (I,J)/DOMG+2.0
E(I,J)=-H2%¥(I,Jd) /DCHG-23 (I)

TPF (1,J)=F(I,J)/(E(I,J)-D(I,J)*TPF(I,J-1))
CONTINUE

34

36

CONTINOE

DO 36 I=2,M

DO 36 J=1,K1 .

TH(I,J) =A (I,3) #T (I-1,J) +E (I,J) *T(I,J) +C (1,3) *T (I+1,J)
CONTINUE

DO 40 I=2,M

38
40

TQH(I, ) =TH(I,N) /E(1, 1)

po 38 J=2,N1

TQH (I,J)=(TH(I,J) -D(I,J) *TQE (I,3-1))
1 /(E(I,J)=D(I,Jd)*TPF(I,J-1))
CONTINUE

CONTINUE

BACK SUBSTITUTION
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DO 45 I=2,M-
T(I,N1)=TQH(I, K1)
DO 43 K=1,N

J=N1-K }
T (I,J)=TQH (I,J)-TPF (I,J)*T(I,J+1)
43 CONTINUE
45 CONTINUE

CENTRE POINT BY PRESENT POINIS AND

[aNallaNe)

1 THE PREVIOUS CENTRE PCINT ,T(1,17)

T(1,1)=(T(1,1) * (~H2*R (1, 1) /DONG+2. 0)
1 + T(2,1)*(B1*0{1,1)=1.0)

2 —T(2,N1) % (H1*U (1,1)+1.0) «

3

-T(2,N/2+1) *2.0) / (-H2*W (1,1) /DOMG-2.

0)

" DO 46 J=2,N1
T(1,3)=T(1,1)
46 CONTINUE
IP (KOONT/20%20.NE.KOUNT) GO TO 4901
WRITE(6,47) H,N

47 PORMAT('1*,****x**x TEMPERATURE DISTRIBUTION WITH',

1¢ MESH SI2B',15,2X,'BY',I5,7 **x#%1)
WRITE(6,48) T(1,1)
48 FORNAT('0',1E18.6)
DO 492 J=1,N1
WRITE(6,491)
491 FORMAT(® ')

WRITE(6,49) (T(I,d),I=2,M1)
49 FORMAT(® *,7E18.6) :
492 CONTINUE
4901 CONTIKUE
KOUNT=KOUNT+1

c
C
c .
c CALCULATION OF HEAT TRANSPER RELATIONSHIES
c
c
DO 50 I=1,M1 )
WT (1) =0.0
TS (1)=0.0

€0 CONTINUE
DO 51 J=1,K1
GT (J) == (T (M-3,J3) /4-4*T (M=2,J) /3. +3.%T (MI,J)
1 -4.%T (M,J) ) /HR

"1 CONTINUE

SGT=GT (1) +GT (N1)
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DO 52 J=2,N,2
SGT=SGT+GT (J) *4.
CONTINUE

DO 53 J=3,NI,2

SGT=SGT+GT (J) *2.

CONTINUE

SGT=HE*SGT/ (3.*PI)

DO 56 I=2,M

GOTW (I) =(T(I,1)-TT(I,1))/DONG*¥ (I, 1)
+(T(I,N1)-TT(I,N1))/DONG*W (I,N1)

WT(I) =W (I,1) *T(1,1)+W(L,N1) *¥T(L,N1)
TS(I)=T(I,1) +T(I,N1)

WP (I)=W(I,1) +W(I,81)

DO S4 J=2,K,2

GOTW (1) =GOTW (I)+(T(I,J)~-TT(I,J})/DOMG*W (I,J)*4.

WT (I)=9T(I)+N(I,J)*T(I,J) *4.

TS (1) =TS (I) +T (I,J) *b.
§P (I)=HE(I) +¥ (I,J) *4.
CONTINUE

Do 55 J=3,KI,2

GOTH (I) =GOTW(I) +(T (1,J)~-TT{(I,J))/COMG*N (I,J)*2.

RT (I)=WT(I)+¥(I,J)*T(I,J)*2.

55

TS (1) =TS (1) +T (I,9) *2.
WP (I) =WE(I)+W(I,J)*2.
CONTISUE

"GOTW (I) =HP*GOTW (I) /3.

WT (I)=HP*RT(I)/3.
TS (I) =BP*IS(I) /3.

WP (I)=HE*WP(I) /3.
CONTIKUE
SGT#=0.0

SWT=0.0

STP=0.0

S¥P=0.0

57

DO 57 I=2,M,2
SGTW=SGTW+GOTW (I) *R (I) *4.
SHT=SAT+WT (I) *R (I) *4.
STP=STP+TS (I) *RB (I) *4.
SWP=SWP +¥P (I) *R (I) *4.
CONTINUER

58

DO 58 I=3,81,2
SGTH=SGTH+GOTW (I) *R (I) *2.
SHT=SHT+WT (I) *R (I) *2.
STP=STP+TS (I) *R (I) *2.
SWP=SHP+WP (I) *R (I) *2.
CONTINUE

SGTW=HR¥SGTW*2/ (3%P1)
SWT=HE*SHT*2/ (3*PI)
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(ol gl

SWP=HR*SWP*2/ (3*PI) .
STP=HRE*STP*2./ (3.*HP)
BULK TENMPARETURE ,BLKT

NU1=2.*SWHP*SGT/SWT
NU2=-PR#CON**_ 5%RARC** 5*SGTW*SWP/SHT
AVERAGE NUSSELT NOMBER,AVEN

AVEN=( RO1+NU2) /2.

NUSSELT NUMBER RATIOS TC TREFULIY DEVELCPED FLOW
IN STRAIGHT PIPE , - o

BLKI=SWI/SWP ___ __ e e

59

RNU1=NU1/3.657
RNU2=N0U2/3.657

ARNU= (RNU1+RND2) /2.

DO 59 J=1,N1
NUI(J)=2.%SHP#*GT (J) /SWT
CONTINUE

5901
1

IF (KOONT/10*¥10.NE.KOUNT) GO TO 5902

WRITE (6,5901) N1

PORMAT (10", '#**** KUSSELT NUMBER DISTRIBUTION FRCHN',
¢ J= 1 TQ',I3,U *****')

WRITE(6,48) NUI(1)

WRITE (6,49) (NUI(J),J=2,N1)

C

5902

CONTINUE

SGT2=2. *SGT

ST0=STP/. 1875

PRK=DK**,5*PR**,25

NU1M= (NU1M*ONEQ+ (ONU1+NU1) /2.*DCMG) /CMEG o

NU2M= (NU2ZN*OMEO+ (OND2+NU2) /2.*DOMG) /OMEG
AVENM= (NUTM+NU2N) /2.

RNU1M=NU1M/3.657

RNU2M=NU2M/3.657

ARNUN= (RNU1M+RNU2MN) /2.

IF (KTT/20*20.NE.KTT) GO TC 5909

60
1
2

1

WRITE (6,60)

FORMAT('0*/6X, 'CON',10X,*DK",9X,*SRP*,9X, ' 2¥SGT*, 8X,
*ETA',8X, 'POSITICN',6X,'CMEGA  *',8X,'A/RC*',7X,
*PEMODIF' ,6X,'DCMG*)

WRITE (6,61) CON,DK,SWP,SGT2,ETA,PO,OMEG,RARC,PEMOD

.DONG — et - ——

61

62
1
2

FORMAT (1X, 10E13. 6)

WRITE (6,62)

FORMAT (* *,4X,'PBK',10%,'STP',7X,*STP/STPO',8X, 'RED',
10X, 'NB1*,10X,'NO2',9X, *AVEN',8X, 'NO1/NUO", 6X,
*NU2/NUO',7X, ! AEND®)

WRITE (6,61) PRK,STP,ST0,RED,NU1,NU2,AVEN,RNO1,BNU2,ARN

*

7] _
WRITE(6,6201)

“F 535
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6201

FORMAT(' ',5X,'PR*,10X,*'NUTM*, 11X, NU2M",9X,'AVENN",
17X, 'NU1M/NUO' ,5X,"NU2M/NUO? ,5X, *ARNUM® , 6X, 'RPEMD?,

C6X,'BIKT',6X, 'EMPRK?)

WRITE(6,61) PR,NU1N,NU2M, AVENN,RNU1M,RNO2M,ARNUM

5909

1,RPEND,BLKT,RMPRK
KTT=KTIT +1
OMEO=CMEG
ONU1=NU1

ONU2=KU2

DO 63 I=1,M1

63

64

DO 63 J=1,K81
TT(I,Jd)=T(I,J)

CONTIKUE

IF (RPEND.GT.0.8E-2) GO TO 65
CONTINUE

IF(ETA.LT.ETALIN) GO TO 20

65

66

STOP
CONTINUE

IF (KOUTT.NE.0) GO TO 64

WRITE (7,66) ((TT(I,J) ,I=1,M1),3=1, n1)
FORMAT (20A4)

WRITE (7,67) OMEO

67

WRITE {7,67) NO1M
WRITE (7,67) NU2M
PORMAT (E13.6)
KOUTT=KOUTT+1

GO TO 64

ERD

“wF BA%
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ok ke ok dk e o ok ook ek Aok Kk ok kR K Rk kR ok kdk kK

* IN THE SIXTH CCLUMN INDICATES
CONTINUATICN FROM PREVIOUS LINE

o ok ok ok Rk ok ok Ok Kok ok ok R Rk ok k ko ok kK

*%%x%x% LAMINAR FLOW IN CURVED PARALLEL *¥*¥¥x*

xxxxx CHANNELS KKK
*#%x***x ( DEAN NUMBER IS LARGE, MAIN *kEkEE

*«*%x% FLOW , ENTRANCE ) _

[elloNaNeXe!l

***%+% TRIANGLE VELOCITY AT ENTRANCE  **¥*x

DOUBLE PRECISION ®(41,61),U(41,61),S(41,61),SS(41,61),
1v0o(41,61) ,X(41) ,XR (41) ,XRL (41),SG (41,61) .
2HH,HX ,HX4,HX2,HX22,LAM,OMEG,
3B1,82,A%1,412,A21,A22,U3,¥a,
4DpI,SD,SSUM,ERRS,TOLE

5,P0SI(61),P0,T
6,0

COMMON BH,HX,HX4 ,HX2,HX22,XR,XRL,LAN,X,CHEG

COMMON M,M1,M2,M3,MI,HJ,MK,N,NI,NJ,NK,N1,NOST,NO,J
READ (5,5) M,N,T,NOST,TOLE,OMEG
FOBMAT (2I10,D10.5,110,2010.5)

READ (5,6) LAM

FORMAT (L10.5)

READ (5,6) ©Q

SETTING CF CONSTANTS
M1=M+1

M2=M+2

M3=M+3
MI=M-1
MJ=M-2
MK=M-3
N1=N+1
NI=N-1 o e e

" "THY4=HX/4.0

NJ=N-2
NK=N-3
HE=1.000/ (N*T)
HH=1.0/BH
HX=2.C/M
HX2=HX/2.0__




451

AX22=BX**2.0
po 8 I=1,M1

X (I) =BI#*(I-1)-1.0D00

XR (I)=1.0/ (1. 0+LAN*X (I))

XRL (I)=LAM*XR (I)
CONTINDE

po 1 J=1,N1
po 1 I=1,H41

1

VO (I,J) =XR (1) * (LAM+Q+2. OD+0*LAN*Q*X (1))
W(I,J)=1.0D+0+Q%X(I) ,

S (I,J)=X(I) +0.5D+0%X (I) *X (I) ¥Q-0.5D+0%Q
o (I,d)=0.0

CONTINUE

WRITE(6,461) LAM,M,N,T,TCLE,OMEG

461

FORMAT (/5X, 'LAN=',010.3,2X, 'H,N,L=",
1214,010.3,2X, TOLE=",

1 D10.3,2X,'OMEG=",D10.3)

Do 2 J=1,N1

S(1,3)=-1.0

ss {1,J)==1.0 ] B

10

S(M1,3)=+1.0

CONTIRUE

DO 45 J=2,N1

NO=0

CONTINUE

CALL SUBVOS(¥,U0,S,SS,V0,ERRS) .

15
45

IF(ERRS.LT.TOLE.OR.NO.GT.NOST) GO TO 15
NO=NO+1

GO TO 10

CONTINUE

CONTINUE

DO 451 J=2,N81 .

CALCULATICN OF VELOCITIES,W AND ©
W(1,3)=C.0

¥(2,J)= (S (2,J) -8.0%S (1,J) +8.0%5 (3,3) -5 (4,3) ) / (12. 0*HX)
po 30 I=3,MI

W(I,J)=(S(I~2,J) -8.0%S(I-1,J)+8.0#S(I+1,J)

30

1 =S(1+2,J))/(12.0*HX)
CONTINUE

W (M,J)=(S(8J,J)-8.0%S (MI,J) +8.0%S (41,J)
1 -S(M,J))/(12.0%HX)

W(M1,J)=0.0

U({1,J)=0.0 .

TF (J-EQ.2) GO TO 35
IF(J.EQ.N ) GO TO 37
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IF(J.EQ.N1) GO TO 39
DO 31 I=2,M

U(I,J)==(S(I,3-2)-8.0%S (I,J-1)+8.0%S(I,J+1)
1

-S(I,J+2))/12.0*%HHE*XR (1)

31
35

36

CONTINGE
GO TO 41

CONTINGE

DO 36 I=2,M :
U(I,2)==(~7.0%S(I,1)+8.0%S(I,3)-S(I,4))/12.0%HH*XR (I)
CONTINUE

37

38

GO TO 41
CONTINUE
DO 38 I=2,M :
U(I,N)==(S(I,NJ)~8.0*%S(I,RI)+7.0%S(I,N1))/12.0%*BH*XR(I
)
CONTINUE

39

40

GO TO 41

CONTINUE

DO 40 I=2,M

U(I,N1)==-(3.0%S(I,N1)~3.0%S(I,N)~2.0%S(I,NI)
+3.0%S(I,NJ)-S (I,NK))/2.0%HH

CONTINUE

41
451

47

CONTINUE
U(M1,3)=0.0

CONTINUE

WRITE (6,47)
FORMAT (/5X, ' VORTICITY VO')

DO 471 J=1,N1 . e

471
48

49

WRITE (6,48) (VO(I,d),1=1,81)
CONTINUE

PORMAT(* ',10D13.5)

WRITE (6,49)

FORMAT (/5X,*STREAM FUNCTION,S')
DO 491 J=1,N1

491

S0

WRITE (6,48) (S(L,J) ,I=1,H81)
CONTINUE

WRITE (6,50)

FORMAT (/5X, ! VELOCITY,W')
DO 501 J=1,N1

WRITE(6,48) (W(I,J),I=1,41)

511

CONTINUE
WRITE (6,51)

PORMAT (/5X, ' VELOCITY,U?)
DO 511 J=1,N1

WRITE (6,48) (U(I,J) ,I=1,M1)
CONTINUE

CALL FLOW (W,U)
DO 512 J=1,N1
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s12

POSI (J)=0.D00
CONTINDE
PO=0.T00
Do 513 J=2,N1

513

€14

PO=P0+1.D00/HH

POSI (J) =BC

CONTINUE

WRITE (6,514)

PORMAT (/5X, 'POSITION IN CMEGER-DIRECTION,POSI(J)")
WRITE (6 ,048) (POSI(J),I=1,N1)

STOP

END

SUBROUTINE SUBVOS(W,U,S,SS,V0,ERRS) .
DOUBLE PRECISION W (41,61),0(41,61),5(41,61),55(41,6%),
1v0 (41,61) ,X(41) ,XR (41) ,XBL(41),5SG (41,61),
2HH, HX ,HX4,HX2,HX22,LAM, OMEG,

381 'BZ'A11;&12'A21'A22'0A'HA’

4DpI,SD,SSUM,ERRS,TOLE -

CONMON BH;HI,HXQ,HIZ,HXZZ,XR,XRL,LAH,X,OHEG,
COMMON H,B1,HZ,H3,HI,HJ,HK,N,NI,KJ,RK,N1,NOST,NO,J
K=0 '

B1=0.0

B2=0.0

. A11=0.0

A12=0.0
A21=0.0
222=0.0
UA=0.C L

WA=0.0

SETTING OF VORTICITY,VO,BY DIRECT_VORTICITY METHOD
CONTIFUE

K=K+1

V0 (1,J)=0.0

v0(2,J)=0.0

GO TO 9
CONTINUE
R=K+1
vo(1,d)=1.0
v0{2,d)=0.0
GO TO 9

CORTINOE
K=K+1

V0 (1,3)=0.0
v0(2,J)=1.0
GO TO 9
CONTINUE

K=K+1
V0(1,J)=(A12*BZ-A22*(1.0+B1))/(A12*521-A22*A11)

wE ARG
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V0 (2,3)=(A11*B2-A21% (1.04B1) )/ (A11%A22-221%212)
CONTINUE ‘

po 10 I=3,M1

UA=(S{I-1,J)-S(I~-1,J-1))*HHE

WA=.25/BX* (S (I,0-1)-5 (I-2,d-1) +5(1,3)-S (I-2,J))
Y0 {I,Jd)=((-0.5+XRL (I-1) *AX4-UA*HX4) *VO(I-2,J-1)

1 +(1.0-XR (I-1) *WA*HX22*HH) *VO0 (I-1,J-1)

2 + (~0.5-XRBL (I-1) *HX4+DA*HX4Y) *VO (I,J-1)

3 +(-0.5+XRL (I-1) *HX4-UA*HX4) *VO (I-2,J)

4 +(1.04XB (I-1) *WA*HX22*HH) *V0(I-1,J)) /

5 (0.5+XRL (I-1) *AX4-UA*HIH) :
10 CONTINUE

CALCULATICN OF STREAM FUNCTIGN
SS(2,3) =-1.0+0.5*HX22%V0 (1,J)

po 11 I=3,M2

SS(I,d)=( HX22*V0 (I-1,J) +2.0#*SS (I-1,J)

+(=1.0+BX2*XRL (I-1)) *SS (I-2,J)) /

2 (1.0+4HX2#XRL (I-1))

i1

CONTINUE
IF (K.EQ.4) GO TO 20
SG(M1,J)=(SS (M2,J) =SS (M,J) )/ (2. 0%HX)

15

16

CONTINUE
B1=-SS(M1,J)
B2=-5G(#1,J)

GO TO 6
CONTINUE
211=S5(M1,J) +B1

17

A21=SG(81,J) +B2
GO TO 7

CONTINUE

A12=SS(N1,J) +B1
A22=SG(%1,J) +B2

GO TO 8

COXTIRGE

k=9

Sp=0.C

SsuM=0.0

DO 25 I=1,M1
DI=OMEG*(SS(I,Jd)-S(I,d)})

25

S(I,J)=S(1,J)+DI
SD=SD+DAES (DI)
SSOUM=SSUM+DABS (S (I,J))

CONTINUE

ERRS=SD/SSOUM

WRITE (6,46) NO,ERRS

46

FORMAT(* ',5%,'NO=',15,5X, 'ERRS=',E15.6)
S (2,J) =S5(2,J)




455

DO 47 I=3,M1
S (I,J)=SS{1,d)

47 CONTINUE

RETURK

END
SUBRCUTINE FLOW (W, U)
DOUBLE PRECISION W(41,61),U(41,61),S(41,61),SS(41,61),
1Vo (41,61) ,X(41) ,XR(41) ,XRL (41),SG (41,61),
CPHI(61) ,DPHI(61) ,DEX (41,61) ,LPPH(41,61),
CAVDPH(61) ,P(41,61) ,AVP (61) ,FRICC (61) ,RFRIC (61),

2HH,HX ,HX4,HX2,HX22,LAM,08EG, EHIO,ETA, ETA2,
381,B2,A11,A12,A21,A22,UA, WA,
4DI,SD,SSUM,ERRS, TCLE

COMMON HH,HX,HXY4,HX2,HX22,XR,XRL,LAM,X,OMEG
COMMON M,M1,M2,M3,MI,MJ,HK,N,NI,NJ,NK,N1,NOST,NO
HE=HHE*2.0

DO 4J=1,N1

DO 4 I=1,M1 .

DPX (I,J)=XRL(I)*%(I,J)*W(I,d)

CONTINUE

DPPH(1,1)=(11.0%R(5,1)-56.0%¥ (4,1) +114. 0% (3, 1)
-104,0%W (2,1)) /(12.0%AX**2,0)

&

+XRL (1) *(-6.0%W (5,1) +32.0%W (4, 1

~72.0%H (3, 1) +96.0%W (2, 1) ) / (26. 0*HX)
DPPH (2,1)=(~W (5, 1) +4.0%d (4, 1) +6.0%i (3, 1)

=20.0%¥(2,1) )/ (12.0%HX**2,0)

+XRL (2) * (W (5,1) -6.0%¥ (4,1) +18. 0%W (3, 1)

-10.0%W (2, 1)) /(12.0%HX)

-XRL (2) **2.0%W (2, 1) -XR (2) *W (2, 1) * (W (2,2) <W (2, )
*«HH
DO 5 I=3,MI
DPPH (I, 1)= (=% (I+2,1) +16.0%¥ (I+1,1) -30.0%% (I, 1)
+16.0%H(I-1,1)-¥ (I-2,1)) /(12.0%HX**2.0)
+XRL (I)* (=W (I+2,1)+8.0%W (I+1,1)-8.0%i (I-1,1)

a0 0o0n

+W(I-2,1))/(12.0%EBX)

~XRL (I) #%2.0%8 (I, 1) -XR(I) *W (I, 1) * (¥ (I,2) -¥ (L, 1))
*HH

5 CONTINUE

DPPH (M, 1) = (~20. 0%W (4, 1) +6..0%W (NI, 1) +4. 0%W (MJ, 1)

aaonan

+XRL (M) *(-10.0%W (M, 1) +18.0%W (MI, 1)

-6.0%W (NI, 1) +W (MK, 1)) / (=12.0%HX)

~XRL (M) **2.0%W (M, 1) —XR (M) *W (M, 1) * (W (M,2) -W (Y4, 1))

*HE
DPPH(M1,1)=(-104.0*A (M, 1) +114.0%W (NI, 1) -56.0%W (MJ, 1)

+11.0%W (MK, 1))/ (12.0%HX**2,0)

l

(2Ee e NN e Re N Neile!

+XRL (H1) * (96.0%W (K, 1) - 72. 0%W (¥I, 1)
+32.0%W (MJ,1)-6.0%W (KK, 1) ) / (-24. 0 *HX)
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DO 10 J=2,N

DPPH (1,3)=(11.0%W (5,J)-56.0%W (4,J) +114. 0%*W (3,J)

-104.0%W(2,J))/(12.0%HX**2,0)

 #XRL(1)*(-6.0%R(5,J) +32.0%¥ (4,J)-72.0%*¥ (3,J)

nloa

+96.0%W (2,3} ) / (24 . 0*HX)

DPPH (2,3)=(~-¥W (5, J)+Q O*W (4,J)+6.0%*¥ (3,d) - -20. 0*W (2, J))

/(12.0%HX#*%2,0)
+(-U(2,3) +XRL(2) ) * (¥ (5,J) =6.0%W (4,J)
+18.0%W (3,3) -10.0%W (2,J) ) / (12. 0*HX)

-XRL (2) **2.0%W (2,J) -XRL (2) *U-(2,J) *¥ (2,J)

<XRL (2) *%2.0%W (2,J) -XRL (2) *U (2,J) *W (2,J)
-XR (2) *¥ (2,J) *0.5*%HH* (W (2,J+1) =¥ (2,3-1))
DO 8 I=3,MI
DPPH(I,J)= (=W (I+2,J) +16.0%% (I+1,J)~30.0%% (I,J)
+16.0%¥ (I-1,3) -0 (I-2,J3) )/ (12. 0*HX**2.0)

(e NellisNeNeXs]

+(-U(T,J) +XRL(I) ) *(-W(I+2,J) +8. O*W (I+1, J)

-8.0%§ (I~1,d) +¥(I-2,d))/(12. O*HX)
-XRI (I) **2.0%% (I,J)

-XRL (I) *U (I,J)*W(I,Jd)
~XR(I)*W(I,Jd)*0.5*HH* (R(I,J+1)-W(I,d~1))
8 CONTINUE

DPPH (¥,J) = (~20.0%W (M,J) +6.0%§ (MI,J)

eNeNoKellsNg!

+U4.0*W(MJ,JT) W (MK,J))/(12.0%HX**2.0)

-6.0%W (MJ,J) +H (MK, J) ) / (= 12. 0*HY)

~XRL (M) #%2.0*W (M,J) -XRL (M) *U (M, J) *¥ (M,J)

-XR (M) *¥ (M, J) *0.5S*HH* (W (4,J+1) -W(H,d-1))
DPPH (M1,J) =(=104.0%W (M,J) +114. 0*W (NI, J)

+{-0(M,J) +XRL(M) ) *(-10.0*R (M,J) +18. 0% (MI, J)

+XRL(M1) * (96.0%% (M,J)

OO0 0000

(=24.0%HX)
10 CONTINDE
DPPH (1,N1)=(11.0%¥ (5,N1) =56.0%W (4 ,N1)

-56.0%W (MJ,J)+11.0*%W (MK,J) )/ (12. 0%HX*%*2..0)

~72.0%% (MI,J) +32. 0% {¥J,J) =6 .0*R (K, J) )/

+11G.0%W (3,81)) /(12.0%AX*#2.0)
+XRL (1) *(~=6.0%¥ (5,N1) +32.0%W (4 ,N1)
-72.0%W (3,N1) +96.0%W (2,N1)) / (24. 0*HX)
DPPH (2, N1)=(-W(5,N1) +4.0%W (4,N1) +6.0%% (3,N1)
-20.0%W (2,N1)) / (12.0%HX**2,0)
+XRL (2) * (W (5,N1) -6.0%R (4,N1) 5
+18.0%W (3,N1)=-10.0*%W (2,8 1))/ (12
-XRL (2) **2.0#*W (2,N1)

DO 12 I=3,MI
DPPH(I,N1)=(-W(2+2,N1) +16.0%4 (I+1,N1)
-30.0%W(I,N1)+16.0%W (I-1,N1)
-W(I-2,N1))/(12.0%HX**2.0)
#XRL (I) * (W (1+2,N1) +8.C*W (L+1,N1)
~-8.0%W (I-1,N1) +W (I~-2,N1) )/ (12.0*HX)

0*HX)

a0 000

C
€.
c
c
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c -XRL (I) **2.0%W (I,N1)

12

CONTINUE
DPPH (M,N1) = (~20. 0*¥ (M, N1) +6. 0%¥ (MI, N 1)
+4.C*W(MJ, N1)-W(MR,N1))/(12.0%HX**2 . 0)

+XRL (M) * (=10, 0% (4,N1) +18.0%W (NI, §1)
=6, 0%W (MJ, N1) +¥ (MK, N1) ) / (-12. 0*HX)
-XRL (M) **2.0%% (M, N1)

DPPH (B1,N1)=(=104. 0%F (M,N1) + 114, 0%4 (MI,N1)
=56.0%W (M3, N1) +11.0%F (MK, ¥1)) / (12. 0%HX*#2,0)
+XRL (M1) * (96.0%W (N, N1)~72.0*F (MI,N1) -

OO0 0o0anln

+32.0%W (MJ,N1) -6.0*W (MK,N1) ) / (~24. 0*HX)
DO 20 J=1,N1
RFRIC{J)=0.0D0
FRICC (J)=C.0DO
DO 20 I=1,M1
P(I,J)=0.0

20

26

CONTINUE

DO 30 J=1,N1 .
AVDPB(J) =LPPH(1,J) +DPPH (M1,J)
DO 26 I=2,HM,2

AVDPH (J) =AVDPH(J) +DPPH (I,J) *4.0
CONTINUE

27

DO 27 1=3,MI,2

AVDPH (J) =AVDPH (J) +DPPH (I,J) *2.0
CONTINUE

AVDPH (J) = (HX/2.0) *AVDPH (J) /3.0
PRICC (J)=2.0*AVDPH (J) *4.0

RFRIC (J) =FRICC (J) /24.0

30

31

CONTINUE
DO 31 J=2,N

D031 I=1,M1
P(I,J)=P(I,J-1)+.5% (DPPH(I,J) +DPPH(I,J-1)) /HH
AVP (J)=AVP (J-1) +.5% (AVDPH (J) +AVDEE (J-1) ) /HH
CONTINUE

32

35
36

WRITE (6,32)
FORMAT (/5X, ' PRESSUR GRADIENT IN X_DIRECTICS,DPX (I,J)°*)
DO 36 J=1,N1 ,

WRITE(6,35) (DPX(I,J),I=1,M1)

FORMAT (' *,10D13.5)

CONTIKUE

37

38

WRITE (6,37)
FORMAT (/5X, ' PRESSURE GRADIANT IN
1 PHI-DIRECTICN,DPPH (I,J) ')
DO 38 J=1,N1

WRITE(6,35) (DPPH(I,J),I=1,41)
CONTINOE

39

WRITE (6,35)
FOEMAT(/5X,*AVERAGE PRESSURE GRADIENT IN




458

1 PHI-DIRECTICON,AVDEH(J) *)
WRITE(6,35) (AVDPH(J),3=1,N1)
WRITE (6,40)

DO 41 J=1,N1
WRITE (6,35) (B(I,d),I=1,81)
41 CONTINUE

WRITE (6,42)
42 FORMAT(/5X,'AVERAGE PRESSRE DEVELOPMENT,AVP (J)"')
WRITE(6,35) (AVP(J),J=1,N1) . L

40 FORMAT(/5X,'PRESSURE DEVELOEMENT,P(I,J)')  _ _____

WRITE {6,43)

43 PORMAT (/5X, 'PRICTICN,F*RE=FRICC (J)=2.*AVDPH(J) ')
WRITE(6,35) (FRICC(J),J=1,N1)
WRITE (6,44)

44 FORMAT(/5X,'RATIO OF FRICTIONCOEFF.,RFRIC (J)=FRICC(J)/

* 24.7) o

WRITE (6,35) (RFRIC (J),J=1,N1)
RETURN :
END
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sttt L LIS T T2 2 ET FHE 2N

* IN THE SIXTH COLUMN INDICATES
CONTINUATION FROM PREVIOUS LINE

REERREREE TR R KK KRR KRRk TRk

***********************************ﬂ******************

C

C *%x** STABILITY PROBLEM IN CURVED PARALLEL *hxkk
C *%x%xkkx CHANNELS *kkkk
C HEEEXXKEEERER KSR RERREXRKRE KR IR ERE R KKK KRR KRR KKK RKE KK
C **%%x RFDUCED SINGLE MATRIX METHOD *EkAE -
C **%** POR ARBITRARY LAMDER S R bt
C REXERAEFEXRKEEARRARRKRERE XX KRR AR KRR RER KRR R ok kR R KRR
C . .

c

c :

: DOUBLE PRECISION X(81),RCX (81),RAX (81),DEAX (81), ,
1TRAX(81),TETRAX(81),H(81),U(81),DU(81),DUP(81),DW(81),
2Cc1(81),c2(81) ,C3(81) ,C4(81),cC1(81),CC2(81), -
3CA(81),CB(81) ,cC(81) ,CD(81),CE(81),
4cca(sm ,ccB(81) ,cCcC(81) ,CCD(81) ,CCE(81) ,CCF {81),
5AA (81,81),BB(81,81),C(81,81), ' ,
6DK (3) ,F(3), - COEF (81) ,CCOEFP (81) ,A,A2,DLAN,
74,H2,H3,84,8H ,HB2,HH3 ,HHY ,AMAX, TMPA '
8,RE(3)

9,0 .
- COMMON DK,A2,DLAM,%,DWR,DUP,RAX,COEF,CCOEF,
ica,c8,cc,cp,CE,CCa,CCB,CCC,CCD, CCE,CCF
COMMON N,N1,NI,NJ,NK, M ‘
READ (5,1) N
FORMAT(I5)
N1=N+1
NI=N-1
NJ=N=-2 . = o
NR=N-3
C
. C SETTING OF CONSTANTS
C
H=2D0O/N
H2=H**2D00 ~ .

" "H3=H*BH2

W A%
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H4=H2%H2
HH=1D0O0/H
HH2=1D00/H2
HH3=1C00/H3

HH4=1D0O0/H4

READ (5,2) DLAM
2 FORMAT(D10.5)
READ (5,2) A

A2=A%*2L00 _
DO 3 I=1,N1 _ ,
X (I) ==1D00+H* (I-1)
RCX(I)=1D00+DIAN*X(I)

RAX (I)=CLAM/RCX (I)

* DRAX (I) =RAX (I) #*2D00

TRAX (I) =RAX (I) #*DRAX (I)

TETRAX(I) =DRAX (I) **2D00
3 CONTINUE -

CALCUIATION FO CONSTANT COEFFICIENTS FOR MATRIX

sNeNaNgl

DO 15 I=1,N1
C1(I)=-0(I)+2D00*RAX (I)
C2(I)=+A2%2D00+DU (I) -0 (I) *RAX (I) ~3DO0*DRAX (I)
C3(I)=-DU(I)*RAX (I) +A2*2DO0#*RAX (I) +2D00*DRAX (I) *U (I)

1 +3D00*TRAX (I) -A2%U (I)/4D00
C4 (I) ==3DOO*TETRAX (I) -2D00%*U (I) *TRAX (I) o
1 <A2*2D00*DRAX (I) +DU (I) *DRAX (I) -A2*DU (1) /4D00
2 +A2%A2/16D00 ‘
CC1(I)=RAX(I)-U(I)
CC2 (1)=-DRAX (I)-A2 +DU (I)
15 CONTINUE
DO 16 I=2,N

CA(I)=RB4-HH3/2D00*C1 (1) -BH2/12D00*C2 (1) +HH/12D00*C3 (L
* ) ' o
CB(I)=-4D00*BH4+HH3%C1 (I) +16D00*HH2*C2 (I)/12D00

-8D00*HH/12D00*C3 (I)
€C (I)=6D00*HH4~30D00,/12D00*HH2*C2 (I) +Ch (I)

CD(I) =-4D00*HH4-HH3*C1 (I) +16D00/12D00*HH2*C2 (1) o
1 " ¥€DO0O0*HH/12D00*C3 (1)

CE (I)=HHU+HH3/2D00*C1 (I)-HH2/12D00*C2 (I)

1 -HH/12D00*C3 (I)

16 CONTINUE
Do 17 I=3,NI
CCA (I)=-HH2/12D00+HH/12D00*CC1(I) e

- CCB (I)=16D00/12D00*HH2-8D00/12D00*HH*CC 1 (I)
CCC (1)=-30D00/12D00*HH2+CC2 (I)
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CCD (1) =16L00,/12D00*HA2 +8D00,/12D00*HH*CCA (I)
CCE (I)=-HH2/12D00~HH,/12D00*CC1 (I)
17 CONTINUE

CD (2) =CD (2) -2D00*CA (2)
CE(2)=CE(2) +1D00/3D00*CA (2)
CA (N).=CA (N) +1D00/3DO0*CE (N)
CB (N) =CB (N) -2D00*CE (N)

CC (N)=CC (N) +6D00*CE (N)

.€C(2)=CC(2) +6D00*CA(2) _ _ e

ccc;z)=—2onoo/12000*ﬁaz-1onoo/12noo*cc1(2)*asg;;gjg)_m,h L

- . CCD(2)=5D~1*HH2+18D00,/12D00*HH*CC 1 (2)
: ' CCE (2) =4D00/12D00*HH2-5D- 1*HH*CC1 (2)
CCF(2)=-HH2/12D00+HH/12D00*CC1(2)
- CCF (N)=-HH2/12D00~HH/12D00*CC1 (N)
CCA (N)=4D00/12D00*HH2+ 5D~ 1*HH*CC1 (N)
S CCB (N)=5D-1*HH2- 18D00/12D00*HH*CC1(N) ST
- CCC(N)=-20D00/12D00*HA2+10D00/12D00*HE*CC1 (N) +CC2 (N)

CALCULATION OF THE VELOCITY GRADIENTS, DW=DH/DX.

anon

__READ (5,20) (W(T) ,I=9,80)
20 FORMAT(10A8)
WRITE (6,21) (W(I),I=1,N1)
21 FORMAT(10D13.4)
DW (1) =(-6C00*W (5) +32D00*W (4) -72D00*W (3)
1 +S6DCO*W (2)) /24DOC*HH . ~
___DW(2)=(H(5)-6D00*W(“)+1§D00*“£1):19999f512))wh.
1 / 12D00*EH '
DO 22 I=3,NI ‘
DW(I)=(-W(I+2)+8D00*W (I+1)-8DO0*W (I-1)+W (I-2))
1 /12D00*HH
22 CONTINUE ' :
DW (N)=(10D00*W (N) -18DO0*W (N~1) +6D00*W (N-2)
[ | -W{N-3))/12D00%*HH ' '
D# (N1)=(-96D00*W (N) +72D00*W (N~ 1) -32D00*W (N-2)
1 +6DCO*W (N-3) ) /24DO0*HH
DO 23 I=1,M1 '
DU (I)=0D00 ‘
DUP (I)=0D00
U (I)=CDCO
23 CONTINUE .
READ (5,25) (DK(M),M=1,2)
25 FORMAT (2D20.10)
RE (1) =DK (1) / (DLAM**0.5D+0)
RE (2) =DK(2) / (DLAM*%0.5D+0)
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H=1
NO=0

CALL COEFCT(C)
CALL DETMT(C,P)
M=M+1

CALL CCEFCT(C)

CALL DETMT(C,F)
WRITE (6,29) A,DLAN,N

29

30

FORMAT(*1',5X,'CRITICAL DEAN NUMBER , DK'//
15X, 'A=',F8.5,3X, *LAMDER=" ,F7.4, 3X, 'N=",12)

WRITE (6,30) DK(1),RE(1),F(1),N0,DK(2),RE(2),F(2)
PORMAT(¢0!,7X,'NO.*,3X, 'DEAN NUMBER ',5X,'RE.NO.', 10X,
1 'DETERMIKANT'//11X,D15.8,2X,D515.8,2X,D15.8/ /7%,
2 I13,1%x,015.8,2%X,D15.8,2X,D015.8)

31
3n

F{2)=F(2) /DABS (R (2))
NOO=1
CONTIKUE
NNO=1
CONTINUE
DK (3) =2.D00*DK (2) -DK (1)

RE (3)=DK(3)/(DLAM*%*0,5D+0)
M=M+1 ‘
CALL COEFCT(C)

CALL DETNMT(C,F)

NO=NO+1

WRITEB(6,32) NO,DK(3),RE (3),F (3)

32

FORMAT (/7X,13,1X,D15.8,2X,D15.8,2X,D15. 8)
DK (1) =DK(2)

DK (2) =DK (3)

N=2

F(3)=F(3) /DABS (F (3))

Q=P (3) *F (2)

3111

F(2)=F (3)
IF(Q.GT.0.D00) GO TO 3111
GO0 T0 31

CONTINUE

NEO=KNO +1

IP(NNOC.NE.25) 60 TO 311

40

NOO=NOO+1
IF(NOO.NE.2) GO TO 40
GO TO 31 '
STOP

END

SUBROUTINE COEFCT (C)

DOUBLE PRECISION X {81) ,RCX(81),RAX(81) ,DRAX(81),
1TRAX (81) ,TBTRAX (81) ,W (81) ,U (81) ,DU{81) ,DUP(81),D¥W (81},
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2Cc1(81),€2(81) ,C3(81) ,C4(81) ,CCT(81),CC2(81),
3cA(81),CB(81) ,CC (81) ,CD (81) ,CE(81), -
4cca (81) ,CCB(81) ,CCC(81),CCD (81) ,CCE(81) ,CCF (81) ,
5AA(81,81) ,BB(81,81),C(81,81),

6DK (3) ,F (3) , COEF (81) ,CCOEF (81) ,A,A2,DLAN,
78,H2,83,84,88, BH2,BH3, A4 ,AMAX, THPA '
COMMON DK,A2,DLAN,W,D¥,DUP,RAX,CGEF,CCOEF,
1Ca,CB,cC,CD,CB,CCA,CCB, CCC, CCD, CCE,CCF

COMMON W,N1,NI,NJ,BK,N

[N eNeNella)

CALCULATICN OF VARIABLE COEFFICIENTS AND
THE FINAL MATRIX PORM ,C (I,d)

Do 2 J=2,N
DO 1 I=2,N

Ak (I,J) =000
BB (I,J)=0.D00
¢ (I,J)=0D00
1 CONTINUE
2 CONTINUE
DO 3 I=2,N

COEF (I) =A2#RBAX (I) *2D00*DLAN** (~5D-1)
1 *(+DUP(I)/DK(M)-W (I)*DK (N)/2D00)
CCOEF (I) =DK (M) *DLAM** (-5D~-1) /2D00
1 * (D¥ (I) +¥ (I) *RAX (1))
3 CONTINUE
DO 4 J=4,N

Al (J,J-2) =CA (J) /COEP (J)
4 CONTINUEB

DO 5 J=3,N8

AA (J,J-1) =CB (J) /COQEF (J)
5 CONTINUR

DO 6 J=2,N

Ak (J,J) =CC (J) /COEF (J)
6 CONTINUE
DO 7 J=2,NI .
AA (J,J+1) =CD (J) /COEP (J)
7 CONTINUE
DO 8 J=2,NJ

A1 (J,J+2) =CE (J) /COEF (J)
8 CONTINUE

DO 9 J=4.N

BB (J,J~2) =CCA (J) /CCOEF (J)
9 CONTINUE

DO 10 J=3,N

BB(J,J~1) =CCB(J) /CCOEF (J)

10 CONTINUE

F.5RS
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11

DO 11 3=2,N

BB (J ,J) =CCC (J) /CCOEF (J)
CONTINUE

DO 12 J=2,NX

12

13

BB (J, d+ 1) =CCD (J) /CCOEF (J)
CONTINGE

DO 13 J=2,NJ

BB (J,J+2) =CCE (J) /CCOEF (J)
CONTINUE

BB (2,5) =CCF (2) /CCOEF (2)

BB({N,N-1) =CCF (N) /CCOEF (N)

DO 16 J:
DO 15 I
DO 14 K=

W
NN

14
15
16

N
N
'N
C(I,J)=3A(I,
CONTINUE
CONTINOE
CONTINUE
DO 17 J=2,8

K) *BB (K, J) +C (1,d)

. ¢ (J,d)=C(3,J)~1D00

17

20
21

CONTINRUE

DO 21 J=2,H

DO 20 I=2,N
c(1,3)=C(1,J)/5.0D+6
CONTINUE

CONTINUE

RETURN
END

SUBROUTINE DETNT (C,F)

DOUBLE PRECISION X (81),RCX(81),RAX(81),DRAX(81),
1TRAX (81) ,TETRAX (81),W(81),0 (81),DU(81),DUP (81) ,D¥ (81),
2c1(81),c2(81) ,c3(81) ,C4(81) ,CC1(81),CC2(81),

3CA(81),CB(81),CC(81),CD (81) ,CE (81),
4ccA(81) ,CCB(81) ,CCC(81) ,CCD (81) ,CCE (81) ,CCF (81),
5AA(81,81) ,BB(81,81),C(81,81),

6DK (3) ,F(3), COEF (81) ,CCOBF (81) ,A,A2,DLAN,
74,82,H3,H4,HH, HE2 ,HH3 ,HAY ,ANAX, THPA

COMMON DK,A2,DLAM,W,DW,DUP,RAX,COEF,CCOEF,

ica,cs,cc,cpb,CE,CCA,CCB,CCC,CCD,CCE,CCF
COMMON N,N1,NI,NJ,8K,N

DETAMIXANT SOLVER

OoOOa6o

f %A%
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NN=1 '
FINDING OF THE PIVOTING ROW

DO 15 K=2,N _

AMAX=0D00
DO 5 L=K,N
IFP (AMAX.GE.DABS (C(L,K))) GO T0 5
AMAX=DABS(C(L,K))
MAX=L
5 CONTINUE

OO0 N

CHECKING OF SINGULARITY

IP (AMAX.GE.0.1D-60) GO TC 7
WRITE (6,6)

6 PORMAT(,/'0',2X,'THE MATFIX IS A SINGULAR ONE',
1 ! OR NEARY SINGULER?)
GO TO 20 '

7 CONTINUE

OoOno

INTERCHANGING OF ROWS

DO 8 J=K,N
TMPA=C (MAX,J)

C (MAX,J)=C (K,J)
C (K,J)=TMPA

OO0 N

8 CONTINUE
NN=NN+MAX-K

ELIMINATICN PROCEDURE

IF(K.EQ.N) GO TO 17

K1=K+1

DO 12 I=K1,N

C (I,K)=C (I,K) /C (K,K)

Do 10 J=K1,N

€ (1,d)=C(I,3)~C (I,K) *C (K,J)

2 ¥sHaKs)

10 CONTINUE
12 CONTINUE
15 CONTINUE
17 CONTINUE

'DETAMINANT

Y
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TMPA=1D00

DO 18 I=2,N

TMPA=C (I,I)*TMPA
18 CONTINUE

IF(NN/10%10.NE.NN) GO TO 19

F (M) =-TMPA
19 CONTINUE

F (M) =TMPA

RETURN

S == 2D et e -

|
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