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ABSTRACT: Body size is an important determinant of fitness in many
organisms. While size will typically change over the lifetime of an
individual, heritable components of phenotypic variance may also
show ontogenetic variation. We estimated genetic (additive and ma-
ternal) and environmental covariance structures for a size trait (June
weight) measured over the first 5 years of life in a natural population
of bighorn sheep Ovis canadensis. We also assessed the utility of
random regression models for estimating these structures. Additive
genetic variance was found for June weight, with heritability increas-
ing over ontogeny because of declining environmental variance. This
pattern, mirrored at the phenotypic level, likely reflects viability se-
lection acting on early size traits. Maternal genetic effects were sig-
nificant at ages 0 and 1, having important evolutionary implications
for early weight, but declined with age being negligible by age 2.
Strong positive genetic correlations between age-specific traits suggest
that selection on June weight at any age will likely induce positively
correlated responses across ontogeny. Random regression modeling
yielded similar results to traditional methods. However, by facilitating
more efficient data use where phenotypic sampling is incomplete,
random regression should allow better estimation of genetic
(co)variances for size and growth traits in natural populations.

Keywords: ontogeny, random regression, heritability, genetic corre-
lation, Ovis canadensis, maternal effect.

Body size is considered to be a fitness-related trait in many
taxa and is frequently a key determinant of both mortality
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and reproductive processes (Roff 2002). However, the co-
variance between size and fitness may differ among com-
ponents of fitness defined at particular ages or ontogenetic
stages (e.g., juvenile vs. adult viability) such that the se-
lective pressure changes over the lifetime of an organism.
While this has long been recognized, an evolutionary re-
sponse to selection also depends on the presence of her-
itable variation. In this context, it is perhaps less obvious
that genetic components of phenotypic variance may also
change with an organism’s age, particularly for those traits,
including size, that are not static components of phenotype
(Cheverud et al. 1983; Riska et al. 1984). Thus, to un-
derstand the evolution of body size and its ontogenetic
trajectory (i.e., growth), it is therefore necessary to con-
sider the levels of heritable phenotypic variance at different
ages and also the nature of covariance between age-specific
size traits. In this study, we examine this genetic
(co)variance structure for body size in a natural population
of bighorn sheep (Ovis canadensis).

The potential for a trait to evolve is usually expressed
as the heritability (#*), defined as the ratio of additive
genetic variance to phenotypic variance (Falconer and
Mackay 1996). Ontogenetic variation in heritability (and
the components of phenotypic variance that determine it)
might result from several hypothesized mechanisms. For
example, variance compounding may occur with a trait
expressed later in life “inheriting” variation from earlier
ontogenetic stages, as well as being influenced by any new
sources of variation. This compounding could occur in
genetic variation, with allelic variants having cumulative
effects over an individual’s life (Atchley and Zhu 1997;
Houle 1998), or in environmental variation (because ad-
ditional sources of environmental variation may occur
throughout life).

Components of phenotypic variance may also be re-
duced with age, for example, through viability selection
(directional or stabilizing) or canalization. While differ-
ential mortality will certainly alter the distribution of a
trait over time within a generation, many studies of growth
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in domestic animals have found reduced phenotypic var-
iance for adult size traits in populations where juvenile
mortality is negligible (e.g., Wilson and Réale 2005). Thus,
declining variance is commonly attributed to “compen-
satory” or “targeted” growth (Monteiro and Falconer
1966), a form of canalization in which variable growth
trajectories converge on a limited set of adult phenotypes.
It is commonly assumed that compensatory growth occurs
as a plastic response to environmental conditions (e.g.,
increased growth after a period of temporary starvation;
Therkildsen et al. 2002) and will thus be reflected in re-
duced environmental variation for adult traits.

Estimating variance components and associated quan-
titative genetic parameters has historically been difficult in
natural populations. However, recently it has become in-
creasingly feasible through the use of molecular tools to
infer pedigree structure (Garant and Kruuk 2005) and the
application of restricted maximum likelihood approaches
(notably the animal model; see Kruuk 2004 for a review).
Nevertheless, determining ontogenetic patterns in
(co)variance components is complicated by the need to
assess phenotype at multiple ontogenetic points. In par-
ticular, while #* for age-specific size traits can be estimated
from a single set of measurements made on individuals
of different ages, genetic correlations (r;) between these
traits will also limit their potential to evolve independently
of each other and thus constrain the evolution of growth
trajectories (Kirkpatrick and Lofsvold 1992).

Determining the genetic covariance structure among
ages requires knowledge of each individual’s multivariate
phenotype. Although it may sometimes be possible to infer
past growth history from a single sampling event (e.g.,
through hard part analysis in fish; Wilson et al. 2003),
repeated measurement of individuals over time (i.e., lon-
gitudinal data) will normally be required. In natural sys-
tems, these data requirements may best be met where in-
dividuals are relatively sessile, at least over the period of
ontogeny examined (e.g., avian studies of fledgling growth;
Badyaev and Martin 2000). In more dispersive organisms
(or over longer time periods), recapture probabilities for
individuals may be low, even with a high sampling effort.
As a consequence, knowledge of multivariate phenotypes
for individuals is likely to be incomplete, and estimating
covariances between any age-specific size traits becomes
limited by available sample sizes.

A partial solution to this problem may lie in the use of
random regression models, which have been widely ap-
plied to genetic analyses of growth in animal breeding (e.g.,
Fischer et al. 2004b; Schaeffer 2004) but have received
comparatively little attention in evolutionary studies to
date (but see, e.g., Bjorkland 1993; Ragland and Carter
2004). Here we apply random regression methodology in
an extension of the animal model. The animal model is a

particular form of mixed model that utilizes pedigree in-
formation and includes an individual’s additive genetic
value for a trait as a random effect. The application of
random regression in this situation is based on the premise
that this individual genetic value will depend on when (in
ontogeny) the trait is expressed and can itself be modeled
as a function of time.

Growth trajectories can be viewed as “infinite dimen-
sional traits” (Kirkpatrick et al. 1990) in that they represent
an infinite number of size traits determined along the
temporal axis of age. Size can therefore be treated as func-
tion of age such that, within a population, the variation
in individual growth trajectories can be described using a
covariance function (CF). For example, for any individual
i, the additive genetic value (a, the deviation from the
population mean phenotype caused by additive effects) at
any observed age can be treated as a function of time,
typically by using a regression on orthogonal polynomials
(Kirkpatrick et al. 1990). By fitting this regression as a
random effect, the coefficients associated with each term
in the polynomial function are free to vary across indi-
viduals (allowing trajectories to differ), and it is the
(co)variance associated with these coefficients that is
estimated.

Polynomial functions of different orders can be used to
model random effects with different functional relation-
ships to time assumed. For example, a zero-order poly-
nomial would describe a population of additive effect tra-
jectories a; (for individual i at time T) that are constant
with time but free to vary among individuals (such that
some individuals are consistently genetically large or small
across ontogeny). The random regression would then es-
timate a single parameter, this being the variance in the
intercepts of individual trajectories a;,. Added complexity
can be incorporated using a first-order polynomial such
that any trajectory a,; is characterized by both an intercept
and a slope (that may differ from 0). Thus, individual
additive effects a; change with time (assuming slope #
0), and the variance for these effects (the additive genetic
variance) is also expected to show variation with time.
When using polynomials of order >1, the covariances be-
tween parameters (e.g., between slopes and intercepts) are
also modeled and the full variance-covariance structure
characterizes the CF. By fitting a separate CF for each
source of phenotypic variation (e.g., additive, maternal
genetic), the covariance attributed to that source between
any two ontogenetic points can subsequently be expressed
as a function of time (Meyer 1998).

Random regression models of growth can be seen as an
intermediate between the more traditional approaches of
either treating size as a single trait with repeated measures,
under the simplifying and likely erroneous assumption
that variance components are constant with age, or treating



size as a series of age-specific traits linked by a covariance
structure (Meyer 1998). For example, for five age-specific
size assessments, the additive genetic variance-covariance
matrix contains 15 parameters to estimate (five variances
and 10 covariances). However, if a; can be adequately mod-
eled as a first-order linear function of time using random
regression, then this number of parameters is reduced to
three (corresponding to the variances in intercept and
slope and the covariance between). Reducing the number
of parameters to estimate similarly reduces the data re-
quirements for model parameterization. An additional ad-
vantage of the random regression methodology is that it
allows interpolation between ages at which the phenotype
was assessed (Kirkpatrick et al. 1990). This may be par-
ticularly useful in situations where not all individuals are
assessed at the same set of ages, a likely feature of data
sets from natural populations.

Here we determine the genetic (co)variance structure
for size (body weight) over the first 5 years of life in a
population of bighorn sheep (O. canadensis) resident on
Ram Mountain, Alberta, Canada. This population has
been the subject of long-term study, and it is known that
weight traits are positively associated with multiple com-
ponents of fitness including first-year survival (Festa-Bian-
chet et al. 1997) and reproductive success (Festa-Bianchet
et al. 2000; Coltman et al. 2002). Size as a young adult is
also positively correlated with female longevity (Bérubé et
al. 1999). Previous studies have demonstrated heritable
variation for weight traits in this population (Réale et al.
1999; Coltman 2005; Coltman et al. 2005). Variance com-
ponents describing genetic and environmental effects on
weight in domestic sheep are known to vary over ontogeny
in domestic sheep (Wilson and Réale 2005), and prior
work on this system has suggested an increasing herita-
bility of weight with age (Réale et al. 1999). This trend
was attributed, at least in part, to a decline in maternal
effects on weight with increasing offspring age. However,
this earlier study did not explicitly test for or estimate
maternal effects.

Maternal effects occur when the phenotype of an in-
dividual is influenced by that of its mother, independently
of the direct effect of inherited genes (Mousseau and Fox
1998). Maternal effects on weight traits have been exten-
sively documented in domestic sheep, Ovis aries (e.g., Tosh
and Kemp 1994), and may arise through both intrauterine
effects and differential levels of postnatal provisioning
among mothers. It has increasingly been recognized that
maternal effects may themselves have a genetic basis and
can thus represent an indirect genetic effect that will re-
spond to selection (Wolf et al. 1998). Such maternal genetic
effects have been demonstrated on birth weight in a feral
population of domestic sheep (Wilson et al. 20054) but
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have not otherwise been explicitly estimated in free-living
vertebrate populations.

Thus, the objectives of this study are twofold. First, we
estimate the phenotypic, genetic, and environmental
(co)variance structures for age-specific weight traits in the
Ram Mountain population of bighorn sheep. In this way,
we determine the patterns of genetic (co)variance across
ages that will shape the evolution of size and growth. We
extend earlier work (Réale et al. 1999) by the use of a
considerably larger data set and by using a pedigree com-
prised of both maternal and paternal links (the latter re-
solved using molecular pedigree analysis). Furthermore,
in addition to modeling additive genetic (co)variance, we
also test for maternal genetic effects as an additional source
of heritable variation in weight, and we test the specific
hypothesis that maternal effects on weight decline with
offspring age. Second, we examine alternate methodolog-
ical approaches to estimating these (co)variance structures.
In particular, we present the first application of the random
regression model for estimation of genetic (co)variances
in a natural population and assess its utility by comparison
to more conventional multiple-trait analyses.

Material and Methods
Data and Pedigree Structure

The study system is a population of bighorn sheep Ovis
canadensis resident on Ram Mountain, Alberta, Canada
(52°N, 115°W). Ram Mountain is separated from the main
species range by approximately 30 km of forest, and this
isolated population has been the subject of intensive
individual-level monitoring since 1971. Background in-
formation on the system and more detailed description of
data collection protocols are presented elsewhere (e.g., Jor-
genson et al. 1993; Festa-Bianchet et al. 1996), so we limit
the following description. In brief, between late May and
early October of each year since 1971, sheep have been
captured using a corral trap and weighed using a Detecto
spring scale (+0.125 kg). Multiple captures (between two
and six per individual within a season) were used in a
linear regression of weight on time to estimate individual
rates of mass gain and hence allow estimation of a stan-
dardized June weight (JW; see Réale et al. 1999). For all
yearlings and older sheep, JW is defined as the estimated
live body mass on June 5. Because lambs were rarely caught
before this date (and some animals were even born as late
as the beginning of June), JW was defined as the estimated
body mass on June 15 for lambs.

In order to allow estimation of maternal effects, any
animals with unknown maternities were excluded from all
analyses. Furthermore, we restricted our attention to JW
estimated for sheep aged between 0 (lambs born that year)
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and 5 years old. The reasons for this are twofold. First,
average growth curves reveal that there is only limited
phenotypic change after 5 years, with growth diminishing
as sheep reach a comparatively stable adult weight (fig. 1).
Second, although JW has been estimated for individuals
as old as 18, the number of records available declines with
age, and by restricting the portion of ontogeny analyzed,
we therefore maximize sample sizes. In total, the data set
therefore contains 590 phenotypically informative indi-
viduals born between 1972 and 2002. However, it should
be noted that few individuals contribute a complete record
such that at each age the number of known phenotypes
is less (with n being equal to 411, 382, 335, 295, 247, and
214 for ages 0, 1, 2, 3, 4, and 5 years, respectively).

The pedigree structure of the Ram Mountain population
has been reconstructed on the basis of maternal identities
determined through observation of suckling behavior and
paternities assigned using molecular pedigree reconstruc-
tion. Blood, hair, or ear tissue samples were collected from
all individuals captured either between 1988 and 1993 or
since 1997. All animals were genotyped at a panel of 32
microsatellite markers (full details of the microsatellite

methodology are presented in Coltman et al. 2003, 2005).
Paternity assignment was subsequently performed using
the likelihood-based methodology implemented in CER-
VUS (Marshall et al. 1998), with those paternities assigned
with greater than 95% confidence being accepted. Addi-
tional pedigree information was then recovered by iden-
tifying paternal half-sibships in the set of individuals for
which no sire was assigned (see Coltman 2005 for full
details) using COLONY software (Wang 2004). Members
of paternal half-sibships identified in this way were as-
signed a common sire with unknown identity. The resul-
tant pedigree structure contains 974 individuals (born be-
tween 1962 and 2002), with 717 maternal links and 402
paternal links (from 213 distinct dams and 90 distinct sires,
respectively). While some of these animals were therefore
born before the regular collection of phenotypic data, they
are nevertheless included because the animal model uses
all available pedigree information (i.e., including links to
those individuals with unmeasured phenotype). Thus,
their inclusion ensures that the relationship structure
among measured individuals is correctly determined.
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Figure 1: Mean June weight by age for male (filled circles) and female (open circles) bighorn sheep. Error bars indicate =1 SD around the mean.
In this study, we examine phenotypic expression up to 5 years of age, thus focusing on those portions of the growth curves to the left of the dotted

line.



Quantitative Genetic Analysis

Covariance components were estimated using three alter-
nate approaches. First, we took the simplest approach of
treating JW as a single trait with repeated measures; sec-
ond, we treated JW as six age-specific traits JW, (where
X is the age in years taking values from 0 to 5), with each
trait measured once; and third, we used a random re-
gression methodology in which genetic and maternal in-
fluences on JW are modeled as polynomial functions of
time. For each of the three approaches, variance compo-
nents were estimated from animal models using restricted
maximum likelihood implemented in the program AS-
Reml (Gilmour et al. 2002). Variance was partitioned into
additive genetic variance (07), maternal genetic variance
(04), permanent environment variance (o fitted in
model 1 only), and residual variance (0;). Details of the
variance component estimation for each approach are pro-
vided below. The phenotypic variance (o7) was then es-
timated as the sum of these variance components, and the
direct heritability (4*), permanent environment effect
(pe®), maternal genetic effect (m°), and ratio of residual
variance (r*) were then calculated as the ratio of the rel-
evant variance component to o;.

Under the second and third approaches, variance com-
ponents and associated ratios were estimated separately
for age-specific traits JW, (X taking integer values from 0
to 5). Because weight increases with age as a consequence
of growth, scale effects may prevent direct comparison of
the magnitude of variance components across ages. There-
fore, we also calculated phenotypic (CV,), additive (CV,),
maternal genetic (CV,,), and residual (CV,) coefficients of
variation at each age X (where the coefficient of variation
[CV] is found as 100 x (variance®’)/sample mean). These
parameters are expected to be less sensitive to scale effects
than are the unstandardized variance components (Houle
1992). Covariances between JW  traits were also evaluated
such that additive genetic, maternal genetic, and residual
variance-covariance matrices (G, M, and R) were
determined.

Finally, we performed a principal components analysis
(PCA) of the variance-covariance matrices derived under
the second and third approaches. This was done in order
to summarize the major patterns of variation (both genetic
and environmental) present for individual growth trajec-
tories (following, e.g., Cheverud et al. 1983). If age-specific
loadings associated with the most important major axes
of variation (principal components) are consistent in sign,
this is indicative of an integrated ontogeny (in which var-
iation at one age affects all subsequent ages). In contrast,
highly distinct and variable loadings, especially with
changes in sign between ages, are associated with less con-
strained ontogenies and may result from genetic or en-
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vironmental compensatory processes (Cheverud et al.
1983; Riska et al. 1984).

Single Trait with Repeated Measures. To account for the
expected increase in an individual’s mass over time, we
included a fixed effect of age (as a six-level factor, with
levels corresponding to years from 0 to 5) in the animal
model. In this way, variation in size is modeled relative to
the population average. Sex was also fitted (as a two-level
factor), and because the difference in average JW between
males and females varies with age (fig. 1), we also included
an age by sex interaction term. Note that our decision to
analyze both sexes together is supported by strong positive
genetic correlations between weight in males and females
(Coltman et al. 2005). Environmental conditions are
known to affect body weight traits in this system (e.g.,
resource availability; Festa-Bianchet et al. 2004). To remove
these sources of nongenetic variation as far as possible,
birth year was included in the model (as a 29-level factor),
as well as the interaction of this variable with age.

Random effects were then included in the animal model
to partition the remaining variance for JW into additive,
maternal genetic, and permanent environment compo-
nents. Because each animal contributes multiple records,
the latter effect is fitted to account for environmental ef-
fects that influence an individual’s phenotype at all ages.
In matrix notation, the model is therefore specified as

y=Xb+Za+Z, pe+Z m+e  (modell)
where y is the vector of phenotypic observations for all
individuals and b is the vector of fixed effects to be fitted.
The random effects are related to individual phenotypic
records with the corresponding incidence matrices X,, Z,,
Z,,and Z,,.

The vector a contains the additive genetic effects for
each individual (g;) having mean of 0 and a variance of
o7, the additive genetic variance. This is estimated from
the variance-covariance matrix of additive genetic effects,
which is equal to Ao?, where A is the additive numerator
relationship matrix containing the individual elements
A; = 20, and O, is the coefficient of coancestry between
individuals 7 and j obtained from the pedigree structure.
Similarly, permanent environment variance (o) and ma-
ternal genetic variance (o) were estimated by including
pe and m, the vectors of permanent environment and
maternal genetic effects, respectively. In all models, e was
fitted as the vector of residual errors (corresponding to
temporary environment effects) with variance of o..

The variance-covariance matrix of maternal genetic ef-
fects is specified as Ao, such that estimating o, uses the
additive relationship matrix (i.e., the pedigree structure)
in the same way as estimating ¢”. Permanent environment
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effects and residual errors were assumed to be normal with
means of 0 and variance-covariance matrices of Io,, and
Io?, where o, and o are the permanent environment
variance and residual (temporary environmental) vari-
ances and I is an identity matrix with order equal to the
number of maternal individuals or number of individual
records as appropriate. We therefore assume that environ-
mental errors are uncorrelated across individuals. The sta-
tistical significance of the maternal effect on JW was as-
sessed using a likelihood ratio test (Meyer 1992) to
compare model 1 with a simpler model in which the ma-
ternal genetic effect was omitted. The difference in log-
likelihood scores, multiplied by —2, is distributed as x’
with one degree of freedom.

Multiple Traits with Single Measures. Separate analyses
were then performed for each age-specific trait JW using
the animal model, specified in matrix form as

y=Xb+Za+Z mte, (model 2)

where y is the vector of phenotypic observations for all
individuals at a given age X and all other terms are as
described above. Note that because each animal contrib-
utes only a single record for each trait, a permanent en-
vironment effect is not fitted. The fixed effect structure
for model 2 was also simplified accordingly to include only
the main effects of sex and birth year. For each age X,
variance components were estimated, and their associated
ratios and coefficients of variation were calculated. The
significance of the maternal genetic effect was assessed at
each age (as described above). Bivariate models were used
to estimate genetic and maternal covariances and the cor-
responding correlations (rg and r, respectively) between
each pair of age-specific traits. To reduce complexity and
facilitate model convergence, the maternal genetic effect
was included only for those age-specific traits where it was
found to be statistically significant (o« = 0.05) in the uni-
variate model.

Random Regression Method. JW records from all ages were
then analyzed simultaneously using a random regression
model in which the additive and maternal genetic effects
on the phenotype of individual i are modeled by regressing
on orthogonal polynomials of standardized time (7). Time
is defined as the age of evaluating JW, measured in days
since June 15 in the year of birth and standardized to the
interval —1 < T<1. Fixed effects were also included
(identical to those described for model 1) such that, at the
individual level, JW for individual i with mother j at time
T is given as

JW;; = (age + sex + birth year + age : sex + age : birth year),,
+ fl(“n ny, T) +f;(m,, n,, T) + e

(model 3)

where f, (a, n,, T) is the random regression function, on
orthogonal polynomials of T with order #,, of additive
genetic values of individuals; and f,(m;, n,, T) is a random
regression function with order n, of maternal genetic val-
ues of individuals on T; and e;, is the residual error for
individual i at time T. The latter term was modeled using
a6 x 6 unstructured matrix to permit a multivariate error
structure, with e; separately estimated at values of T cor-
responding to ages 0, 1, 2, 3, 4, and 5. An unstructured
matrix was used to allow residual errors to be correlated
across ages within individuals.

We first fitted model 3 with the random regression terms
f, (a, n, T) and f, (mj, n,, T) omitted (model 3.0; table
1) such that all phenotypic variance is allocated to the
error structure. The resultant 6 x 6 matrix is therefore a
description of the phenotypic variance-covariance surface
for JW for —1 < T< 1 (i.e., ages 0-5). Subsequently, using
a forward model selection procedure, we fitted and com-
pared a series of successively more complex models (mod-
els 3.1-3.9; see table 1). Models were compared using like-
lihood-ratio tests, with —2 times the difference in
log-likelihood scores being distributed as x* with one de-
gree of freedom for each additional (co)variance com-
ponent in the more complex model (Meyer 1992). Because
JW is assessed at six time points (corresponding to ages
0-5), the order of each orthogonal polynomial function
randomly regressed on T can, by definition, take values
from 0 to 5. Here we fitted values of n, = 0 (a, as constant

Table 1: Random regression models fitted showing the
order of the polynomial function used to model ad-
ditive (n,) and maternal genetic (n,) effects

Polynomial
order

Model n, n, Parameters In LK

3.0 NF NF 21 —3,194.30
3.1 0 NF 22 —3,188.24
3.2 0 0 23 —3,182.61
3.3 1 NF 24 —3,183.26
3.4 1 0 25 —3,177.93
3.5 1 1 27 —3,177.40
3.6 2 NF 27 —3,178.68
3.7 2 0 28 —3,173.72
3.8 2 1 30 —3,172.87
3.9 2 2 33 —3,169.93

Note: Table also shows the number of (co)variance parameters
estimated and log-likelihood score (In LK) associated with each
model. NF = effect not fitted.



with T), n, = 1 (a; as a linear function of T), and n, =
2 (a; as a quadratic function of T). Models were fitted
omitting the maternal effect (i.e., the random regression
of m; on T) as well as with n, taking values 0, 1, and 2.
Use of n, and n, equal to 5 should provide a “full fit” to
the data (i.e., a fifth-order polynomial function can be
fitted through any six values of a;; for an individual), but
in practice, model solutions largely failed to converge with
values of n, and n, > 2 used (results not shown).

Following selection of the most appropriate model, the
variance-covariance matrices of random regression param-
eters obtained for the additive genetic effect (matrix Q
with dimensions [n, + 1] x [n, + 1]) and maternal genetic
effect (a matrix with dimensions [n, + 1] % [n, + 1]) were
used to obtain age-specific genetic parameters for com-
parison with those estimated under model 2. Specifically,
the additive genetic variance-covariance matrix, G, for JWy
(at X from 0 to 5) was obtained as G = zQz/, where z is
the vector of orthogonal polynomials evaluated at values
of standardized time T that correspond to ages 0, 1, 2, 3,
4, and 5 (and 7' is the transpose of z). An analogous
procedure was used to obtain the maternal genetic
variance-covariance matrix M, while the multivariate re-
sidual error structure derived from solving the random
regression model represents the environmental variance-
covariance matrix R. In this way, variance components
were estimated and their associated ratios and coefficients
of variation were calculated for each age, as were values
of r; and r, between each pair of ages. Note that when
using the random regression methodology, standard errors
are estimated for the elements of Q (and the analogous
variance-covariance matrix of random regression coeffi-
cients for the maternal effect), not for age-specific variance
components. From these, we determined approximate
standard errors for the elements of the derived G and M
matrices according to the procedure recently presented by
Fischer et al. (2004a).

Results
Model 1: Single Trait with Repeated Measures

Analysis as a single trait with repeated measures provided
evidence of genetic variance for JW, with a significant her-
itability (h*> = SE of 0.126 = 0.061; table 2). However,
a2 was low and accounted for <5% of the total variance
(m* = SE of 0.047 *+ 0.033). Comparison of the full and
reduced version of model 1 (with maternal effect omitted)
revealed that the full model did not perform significantly
better (x7 = 2.66, P = .103). On this basis, there was little
evidence for a significant maternal genetic effect on JW.
Under the reduced model, heritability (+SE) was esti-
mated as 0.164 = 0.055 (table 2), while most of the phe-
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Table 2: Quantitative genetic parameters for June
weight as a single trait with repeated measures

(model 1)

Maternal effect Maternal effect

fitted omitted

o, 21.25 (.948) 21.16 (.629)
o 2.77 (1.324) 3.465 (1.213)
o, 988 (.713) NF
o 5.81 (1.135) 5.93 (1.111)
o2 11.76 (.473) 11.77 (.473)
/ 126 (.061) .164 (.055)
n? 047 (.033) NF
pe? 273 (.053) 280 (.052)
r .554 (.027) .556 (.026)
In LK —3,452.61 —3,453.94

Note: Table shows phenotypic variance (o3) as well as the
additive (0?), maternal genetic (02,), permanent environment
(0%.), and residual (07) components and their associated ra-
tios to o3 (denoted 12, m?, pe?, and r’, respectively). Param-
eters were estimated with and without a maternal genetic
effect fitted, and log-likelihood scores associated with each
model are shown. Standard errors are shown in parentheses.

notypic variance was attributable to permanent and tem-
porary environmental effects (pe* = 0.280 * 0.052,
r* = 0.556 + 0.026).

Model 2: Multiple Traits with Single Measures

The multiple-trait analyses revealed variation in quanti-
tative genetic parameters with age (table 3). Notably, there
is little support for the presence of significant additive
genetic variance for JW in lambs (JW,), although heritable
variation for this trait is present in the form of a large
maternal genetic effect (m* = 0.197 = 0.064). This ma-
ternal effect (although reduced both in magnitude as mea-
sured by CV, and as a proportion of phenotypic variance)
persists for JW,. Comparison of full and reduced models
for each trait showed that these maternal genetic effects
are significant for JW, (x = 12.66, P<.001) and JW,
(x; = 4.31, P = .038) but not for other traits (all P>
.10). Parameters for JW,-JW. were therefore estimated
from reduced models with the maternal genetic effect
omitted (table 3). While estimated heritability of JW is
effectively 0 in the year of birth, it increased subsequently,
being highest for yearlings (JW,, h* = 0.447 * 0.139) and
ranging from 0.251 to 0.113 in older animals (table 3). In
all cases, associated standard errors are relatively large, and
based on estimate standard errors, additive effects (as mea-
sured by both o] and #*) were only significant at age 1.
As a proportion of phenotypic variance, residual (envi-
ronmental) effects were similar for all traits (r* ranging
from 0.749 to 0.888) with the exception of JW, (r* =
0.418 * 0.125). The coefficients of variation show that,
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Table 3: Age-specific estimates of quantitative genetic parameters for June weight

Methodology and trait o o o w m r Cv, CV, CV, CV,
Multiple-trait analyses
(model 2):
JW, 8.6 x 107 (=) .99 (.36)* 4.06 (.36)* 1.7 x 107> (—) .197 (.064)* .804 (.064)* 25.52 .10 11.31 22.88
W, 7.64 (2.70)* 231 (1.31)  7.14 (1.89)* 447 (139)* 135 (.073) 418 (.125)* 13.72 9.17 505 8.87
TW, 5.97 (3.17) NF 20.75 (3.08)* 224 (.113) NF 777 (113)* 1158 547 NF 10.20
JW, 7.79 (3.99) NF 23.28 (3.80)* .251 (.121) NF 749 (.121)* 10.15 5.08 NF 8.79
TW, 4.00 (4.65) NF 31.26 (5.14)* 113 (.130) NEF 887 (130)* 978 327 NF  9.14
TW, 6.65 (5.24) NF 29.09 (5.40)* .186 (.142) NF 814 (.142)* 9.17 395 NF 827
Random regression
analysis (model 3.7):
TW, 35 (1.78) 88 (35)%  3.80 (54)*  .070 175 755 25.48 6.73 10.66 22.14
JW, 3.61 (1.24)* .88 (.35)* 11.01 (1.39)*  .233 .057 710 13.06 6.30 3.12 11.01
TW, 7.75 (2.10)* 88 (.35)* 19.37 (2.56)* 277 031 692 11.85 623 2.0 9.86
JW, 10.50 (2.34)* .88 (.35)* 21.49 (3.25)* .319 .027 .654 10.44 590 1.71 8.44
JW, 11.19 (3.55)* .88 (.35)* 27.44 (4.12)* 283 .022 .694 10.28 5.47 1.54 8.57
TW, 10.77 (7.09) 88 (.35)% 25.94 (4.87)* 287 023 690 940 503 144 7.81

Note: Table shows heritability (/*), maternal effect (#7°), and residual variance as a proportion of phenotypic variance (*), as well as coefficients of phenotypic,
additive, maternal genetic, and residual variance (CV,, CV,, CV,, and CV,, respectively). For the multiple-trait analyses, maternal effects that were not
significant at P <.05 were dropped and not fitted for that trait (denoted NF). Associated (approximate) standard errors are shown in parentheses where
estimated. A minus sign in parentheses denotes that the standard error could not be estimated.

* Denotes significantly different from 0 at P <.05 based on estimated standard errors.

once scale effects are controlled for, there is a declining
trend in levels of phenotypic variance from birth to age 5
(table 3). This decline is mirrored by additive, maternal,
genetic, and, most notably, residual components of vari-
ance (although for CV, this decline follows an initial in-
crease from age 0 to 1).

Bivariate versions of model 2 indicate that age-specific
JW traits generally show positive genetic covariance (table
4). The corresponding genetic correlations are strongest
(close to 1) between those traits whose expression is sep-
arated by the least time (i.e., a period of 1 year) and tend
to decrease with increasing time between traits. Negative
values of 7, (*SE) were estimated between JW, and JW,
(rg = —0.229 = 1.254) and between JW, and JW,
(rg = —0.756 = 1.302) though neither is significantly <0.
In many cases, standard errors are large (table 4) such that
even when very strong genetic correlations were measured,
1 does not necessarily differ significantly from 0 (e.g.,
between JW, and JW,; r, = +1.046 = 0.925). Further-
more, in several cases, reliable estimates of standard errors
could not be obtained. Given that the maternal genetic
effect was significant only for the traits of JW, and JW,,
the maternal genetic correlation was estimated only be-
tween these traits and was found to be strongly positive
and significantly >0 with r (=SE) = 0.916 % 0.216.

Model 3: Random Regression Method

On the basis of the use of log-likelihood tests to compare
specific models, model 3.7 (table 1) was selected as the

best model. Model 3.7 performed significantly better than
models 3.0-3.6, while neither model 3.8 nor 3.9 provided
a significant improvement (comparing models 3.7 and 3.8,
x> = 1.70, P = 427; comparing models 3.7 and 3.9,
X2 = 7.58, P = .181). Thus, we estimated genetic param-
eters for JW from model 3.7 in which the additive effect
was modeled using a second-order polynomial regression
(i.e., n, = 2; a, the additive genetic effect on individual
i, is a quadratic function of standardized time T), and the
maternal genetic effect was modeled using a zero-order
polynomial (i.e., n, = 0; m;, the maternal genetic effect
of mother j, is constant over T).

The phenotypic variance-covariance surface estimated
from model 3.0 shows an increase in of with age and
positive phenotypic covariance between ages that declines
with time between measurements (fig. 2). By comparison,
visual representation of the G, M, and R (residual) matrices
for traits JW,—JW, derived from model 3.7 (fig. 3) illus-
trates that the shape of the phenotypic variance-covariance
surface is largely determined by the R matrix (fig. 3¢).
Note that the maternal genetic surface is constrained to
be flat by the choice of model 3.7 (because modeling m;
as a constant with T for each mother j necessarily implies
that o2 is also constant with time), while the additive
genetic surface shows some increase in g, with age.

Estimates of age-specific variance components, ratios,
and coefficients of variation estimated for ages 0-5 from
model 3.7 are largely similar to those from the multiple-
trait analyses (model 2) and show similar patterns across
ontogeny (table 3). Thus, for example, maternal effect is
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Table 4: Estimates of genetic covariances (above diagonal) and correlations (below diagonal) between age-specific June
weight traits (JW,) based on bivariate model 2 and random regression model 3.7 analyses

Methodology and trait TW, TW, W, JW, TW, JTW,
Multiple-trait analyses
(model 2):
W, 692 (934) 1395 (1.008)  1.632 (1.103)  —.216 (1.109)  —.756 (1.302)
W, 643 (.964) 8.270 (2.392)*  8.126 (2.486)*  6.776 (2.690)*  4.799 (2.874)
JW, .698 (.153) 1.101 (.098)* 6.194 (—) 4.665 (2.958) 4.803 (3.163)
W, 809 (.547)  1.046 (.925) 990 (—) 7.839 (—) 8.858 (—)
W, —229 (1.254) 925 (266)*  .957 (.410)* 990 (—) 4.893 (4.137)
JW, —.756 (1.302) .543 (.248)* 727 (.282)% 990 (—) 995 (.304)*
Random regression
analysis (model 3.7):
JW, 1.055 (.907) 1.352 (.981) 1.214 (1.365) .643 (2.627) —.361 (4.976)
W, 937 5196 (1.625)* 5738 (1.691)*  5.233 (2.284)*  3.682 (4.129)
W, 819 983 8.880 (2.161)*  8.593 (2.468)*  6.890 (3.960)
JW, .632 933 985 10.581 (2.789)* 9.144 (4.272)%
JW, 324 .824 923 976 10.434 (5.216)*
JW, —.186 591 754 .860 950

Note: Associated (approximate) standard errors are shown in parentheses where estimated. A minus sign in parentheses denotes that the

standard error could not be estimated.

* Denotes significantly different from 0 at P < 0.05 based on estimated standard errors

greatest for JW, (with m’ estimated at 0.175 as compared
with 0.197 under model 2) and declines with age, while
r* (the residual variance as a proportion of ¢;) is again
found to be relatively constant across time. Similarly, her-
itability is lowest in the year of birth (h* = 0.07), showing
a subsequent increase. However, in contrast to model 2,
I is greatest for JW,, and there is no evidence of the peak
in i* at JW, estimated under model 2. With the exception
of the yearling weight JW,, age-specific heritability esti-
mates were higher under model 3.7 than with the multiple-
trait analyses. This result reflects higher estimates of the
additive genetic variance obtained from random regression
(except at age 1; table 3). Standard errors for variance
components estimated under model 3.7 were generally
smaller than the corresponding values determined from
multiple-trait analyses (note that standard errors for ad-
ditive genetic variances are actually approximate standard
errors following Fischer et al. 2004a). As a consequence
of these differences, estimates of g were significantly >0
at ages 1-4 using the random regression method (based
on 95% confidence limits determined from approximate
standard errors). Coefficients of variation again provide
evidence of declining levels of maternal and residual var-
iance with age. A slight decline is also seen in CV,, which
is highest for JW,,.

Genetic covariances and correlations between traits were
qualitatively and quantitatively similar to those obtained
from bivariate formulations of model 2 in most instances
(table 4). Ninety-five-percent confidence intervals based
on the standard errors of genetic covariance estimates
show no significant differences between the methods.

Similarly, strong positive values of r; were estimated
under both methods, with the strength of the correlation
declining as the time between trait assessment increases.
The genetic correlation between JW, and JW, was again
negative, though of lesser magnitude (rg, = —0.186).
However, that between JW, and JW, was positive (15 =
+0.324). Comparison of standard errors associated with
additive covariance components between age-specific traits
shows that, where comparison is possible, values were
smaller in most (but not all) cases than under model 2.

Principal Components Analyses

Because estimated o, is only >0 at ages 0 and 1 using
model 2 and was constant using model 3.7, we performed
PCA only on the G and R matrices for age-specific traits.
Results were qualitatively and quantitatively similar for
analysis of matrices estimated under each model (fig. 4;
table 5). For the G matrices of JW,, the first PC explained
91% of the variance using the multiple-trait approach and
88% using the random regression method (fig. 4). Load-
ings were positive for all age-specific traits, indicating pos-
itive genetic covariation between all traits. The increasing
loading coefficient across ages mirrors the increasing trend
in o} (fig. 3a). This variation described by PC1 therefore
corresponds to additive variation for growth trajectories
in which individual JWs tend to be either above or below
the population mean at all ages. Nevertheless, a substantial
proportion of additive variance for weight was also ex-
plained by PC2 (9% and 11% based on models 2 and 3.7,
respectively; fig. 4). Loading coefficients for PC2 show a
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Figure 2: Phenotypic (co)variance surface for age-specific June weight in bighorn sheep (estimated using model 3.0).

switch from strong negative values at early ages to a strong
positive value for weight at age 5. This pattern indicates
the presence of negative additive genetic covariance be-
tween early-age and later JW traits, suggesting that some
allelic variants cause individual growth trajectories to be
below the average at early ages and above by age 5 (or
vice versa). A generally similar pattern was seen for the R
matrices, although the first two principal components ex-
plained less of the residual variation (58% and 16% for
PC1 and PC2, respectively, under both models; fig. 4).
Loadings for PC1 were consistently positive, while a sign
switch was again seen between early and later ages in the
coefficients for PC2. Loadings for subsequent principal
components were variable in both magnitude and sign
across ages (results not shown).

Discussion

Our analyses revealed that additive and maternal genetic
effects contribute to heritable variation for weight traits
in the Ram Mountain population of bighorn sheep. On-

togenetic changes in genetic and environmental variance
components were such that estimates of heritability ranged
from 0 to 0.447 across age-specific traits. Consequently,
treating JW as a single trait and assuming constancy of
genetic parameters across ontogeny are clearly inadequate
for understanding the heritable basis of phenotypic vari-
ation. Ontogenetic patterns were similar using the two
analytical approaches for estimating (co)variance struc-
tures, namely the multiple-trait and random regression
methodologies. In the following discussion, we first ad-
dress these patterns and their implications to the evolution
of size and growth in this system. Subsequently, we discuss
the alternate approaches used to estimate the covariance
structures in order to consider the relative merits of the
random regression method.

Evolution of Size and Growth

We found a general (though imperfect) trend of increasing
I for JW with age, concordant with the results of Réale
et al. (1999). Additive genetic variation may increase with
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Figure 3: (Co)variance surfaces for age-specific June weight in bighorn sheep, showing additive genetic (a), maternal genetic (b), and residual (c)
(co)variance surfaces estimated from random regression (model 3.7).
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Figure 4: Percentage of total variance explained by principal components (ordered from largest to smallest) determined under model 2 (open bars)

and model 3.7 (gray bars).

age through variance compounding (Houle 1998), with a
trait expressed later in life inheriting variation from earlier
stages as well as being influenced by any new episodes of
gene expression (Atchley and Zhu 1997). However, here
changes in #* are primarily attributable to declining levels
of residual variation (measured by CV,) as opposed to
increasing additive variation (measured by CV,). It was
notable that heritability of JW, was low (effectively 0 under
model 2), suggesting that this trait could not evolve in
direct response to selection on it. On Ram Mountain, lamb
weight is positively associated with survival (Festa-Bian-
chet et al. 1997), an effect that may largely drive the ob-
served ontogenetic changes in variance components. Thus,
the low heritability of JW, is consistent with expectations
for fitness-related traits (Roff and Mousseau 1987; see also
Coltman et al. 2005 for additional heritability estimates
from this population). However, estimates of 1’ show the
large influence of maternal genotype on early weight traits
(e.g., 0.197 and 0.175 for JW, under models 2 and 3.7,
respectively).

While comparable estimates are scarce, a large maternal
genetic effect has also been estimated for birth weight in
a feral population of Soay sheep from St. Kilda (m* +
SE of 0.119 = 0.045; Wilson et al. 2005a). Where maternal

genetic effects are present, the potential response to se-
lection might better be expressed by total heritability
(h%), defined as the ratio of the sum (¢ + 0.5072 +
1.50,,,) to phenotypic variance (Willham 1972). Assuming
that the direct maternal genetic covariance (g,,) is 0, this
yields estimates of total heritability that are considerably
larger than the direct estimates (e.g., with estimated h7. for
traits JW, and JW,, respectively, of 0.157 and 0.261 under
model 3.7). Note that expanding model 2 to explicitly test
the assumption of ¢,,, = 0 indicates that this is an ac-
ceptable simplification (results not shown). Maternal ge-
netic effects may thus facilitate a response of early weight
traits to selection, although the influence of maternal ge-
notype clearly declines with age as previously hypothesized
(Réale et al.1999).

Failure to model maternal effects when they are actually
present is known to cause upward bias in estimates of
heritability (Clément et al. 2001), and this contributes to
the finding that current estimates of #* for JW, and JW,
are lower than previously reported (Réale et al. 1999). In
fact, maternal effects may have both environmental and
genetic aspects (e.g., Wilson et al. 20054), while here we
have fitted only the latter. Here maternal environment
effects should be accounted for by the permanent envi-



Table 5: Loading coefficients for the first two
principal components (PC1 and PC2) of G and
R variance-covariance matrices for age-specific
traits (JWy)

Model G matrix R matrix
and trait PC1 PC2 PC1 PC2
Model 2:
JW, +.013 —.425 +.091 —.050
W, +.271 —.456 +.199 —.335
JW, +.410 —.429 +.380 —.667
JW, +.512 —.129 +.446 —.289
JW, +.521 +.145 +.547 +.505
JW, +.472 +.624 +.557 +.317
Model 3.7:
JW, +.041 —.360 +.055 —.114
TW, +.262 —.452  +.184 —.409
JW, +.419 —.398 +.369 —.658
JW, +.507 —.193 +.456 —.254
JW, +.524 +.161 +.566  +.459
JW, +.471 +.666 +.546 +.330

Note: Coefficients are shown for matrices estimated us-
ing model 2 and model 3.7.

ronment effect under model 1 and by the unstructured
multivariate residual error under model 3. Furthermore,
additional analyses failed to support the presence of sig-
nificant maternal environment variance for JW (results not
shown), and this is therefore an unlikely source of bias
for additive variances estimated herein.

The residual environmental variance represents the ma-
jor component of phenotypic variance for all age-specific
weight traits (with the single exception of JW, with analysis
under model 2). Consequently, the ontogenetic decline in
residual variance is also associated with a reduction in total
phenotypic variation (as measured by the CV,,) across on-
togeny. It should be noted that although o; for JW actually
increases with age, this is likely a scale effect that results
from dependence of the variance on the mean, which is
itself increasing (Lynch and Walsh 1998). In general, re-
duced phenotypic variation over ontogeny may result from
canalization or selection (stabilizing or directional) acting
through size-selective mortality within each cohort. Heav-
ier lambs have lower mortality in many ungulate systems
(e.g., Kruuk et al. 1999; Wilson et al. 2005b), including
this population (Festa-Bianchet et al. 1997), and the major
decline in CV; between ages 0 and 1 may therefore reflect
strong viability selection for increased JW over this period.
The major decline in CV,; also occurs over this period,
although interestingly there is comparatively little change
in CV,. This may indicate that size-selective mortality of
lambs is largely responsible for reducing variation asso-
ciated with early environmental effects (and the maternal
genotype). Nevertheless, this interpretation should be
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made cautiously because compensatory growth is common
in ungulates populations (including domestic sheep; Wil-
son and Réale 2005) where juvenile mortality (and hence
viability selection) is minimal. It is difficult to separate the
potential effects of this form of phenotypic canalization
from those of size-selective mortality in the current
instance.

Strong genetic correlations were found between weights
expressed at different ages, and selection acting on size at
any age will therefore affect weight across ontogeny (i.e.,
the growth trajectory) as a whole. Genetic correlations
were generally positive, consistent with other studies of
mammalian growth (e.g., Cheverud et al. 1983; Al-Shorepy
et al. 2002) such that any increase (or decrease) of weight
at one age will likely result in correlated responses of the
same direction at other ages. This conclusion is supported
by the PCA in which consistently positive signs of the PC1
loading coefficients for the G matrix indicate a compar-
atively integrated ontogeny (Cheverud et al. 1983; Riska
et al. 1984). Nevertheless, there was some evidence for
antagonism of genetic effects on early versus late weight
traits, a finding consistent with previous studies of do-
mestic sheep (e.g., Fischer et al. 2004b). Negative genetic
correlations were estimated between JW, and both JW,
and JW, (multiple-trait approach only), and the second
principal component of the G matrix, characterized by a
sign change in the loading coefficients, explained about
10% of the additive variance. This may reflect the presence
of genes having antagonistically pleiotropic effects such
that, under an appropriate selection regime, a genetic re-
sponse might allow contrasting directions of phenotypic
change at different ages. However, size is believed to be
positively associated with fitness throughout the lives of
sheep in this population (Jorgenson et al. 1993; Festa-
Bianchet et al. 1997, 1998; Coltman et al. 2002), and such
a response is therefore unlikely.

Although we have focused primarily on the genetic as-
pects, similar conclusions can be made with respect to the
environmental covariance structure of age-specific weight
traits. Residual covariances between age-specific traits were
positive, and PC1 loadings also indicated that environ-
mental effects at one age tended to influence other (sub-
sequent) ages in the same direction. However, PCA also
suggests that some environmental influences have oppos-
ing effects on early and late weights (shown by the loading
coefficients for PC2). This adds some support to the idea
that compensatory growth occurs in this population, with
some individuals able to attain large size by age 5 despite
poor growth associated with environmental conditions ex-
perienced early in life.
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Comparison of Methodologies

Analyses of age-specific traits yielded results and conclu-
sions that were qualitatively and quantitatively similar us-
ing both the traditional multiple-trait approach and the
random regression methodology. To the extent that cor-
respondence with the more traditional methodology can
be deemed a measure of success, the random regression
methodology therefore performed well in this case. We
found that while an inability to assess the precision of age-
specific parameter estimates has been a drawback of ran-
dom regression methods to date, here we found that (ap-
proximate) standard errors for estimated (co)variance
components tended to be smaller using random regression
(consistent with Fischer et al. 20044). Although not per-
formed in this case, it should also be possible to generate
approximate standard errors for age-specific functions of
variance components (e.g., 1%, 7, CV) using a Taylor series
expansion (Fischer et al. 2004a). Reduced standard errors
can be attributed to the fact that sample sizes are less
limiting than under the multiple-trait approach because
phenotypic assessments at any age will contribute to pa-
rameter estimation at age X. This is a particularly useful
feature of random regression for the analysis of incomplete
data sets typical of natural populations. Here difficulties
were encountered estimating standard errors under the
multiple-trait approach, particularly for the genetic co-
variances. Because estimating genetic covariances (and
correlations) with reasonable precision often requires large
sample sizes (Lynch and Walsh 1998), random regression
should offer a useful way forward for temporally related
traits such as size.

However, the benefits of random regression do come at
the cost of assuming a particular form of functional re-
lationship between an individual’s additive (or maternal)
genetic effect and time. The accuracy of the parameter
estimates will depend on the validity of this assumed re-
lationship. A useful feature of the random regression
framework is the ability to easily fit and compare models
using different orders of orthogonal polynomials (e.g.,
Lewis and Brotherstone 2002). In theory, this allows model
structures to range from a single-trait repeated-measures
model (using zero-order polynomial functions and a uni-
variate error structure) to a “full-fit model” in which the
order of polynomial used is equal to the number of ages
at which phenotype was assessed minus 1. A full-fit model
becomes conceptually equivalent to the traditional
multiple-trait approach but with all age-specific traits an-
alyzed simultaneously (as opposed to the univariate and
bivariate formulations of model 2 used herein).

In practice, parameterizing a full-fit random regression
model will often be impossible in data sets typical of evo-
lutionary studies (including this one). Here we used a

forward model selection procedure (sequentially increas-
ing the order of polynomials used) rather than the stepwise
reduction from a full-fit model that is more typical of
animal breeding studies where much larger data sets are
the norm (e.g., Albuquerque and Meyer 2001). Confidence
in our results is increased by the fact that fitting a third-
order polynomial function for the additive genetic effect
was not a significant improvement on model 3.7 (results
not shown). Nevertheless, it is worth noting that without
sufficient data to parameterize and compare more complex
models, acceptance of a given model structure should be
done cautiously.

It should also be noted that both approaches rely on a
pedigree structure that likely contains errors. While ped-
igree errors will cause downward bias in estimated genetic
variances, here paternities are assigned with high confi-
dence such that error rates are expected to be low. Given
the depth of pedigree, estimated levels of /’, and the high
confidence with which paternities and half-sibships are
assigned, the limited simulation work to date would sug-
gest that bias will be minimal in this system (Charmantier
and Réale 2005).

Conclusions

In summary, we found evidence for important additive
genetic effects on the covariance structure of weight traits
expressed across ontogeny in the Ram Mountain popu-
lation of bighorn sheep. Heritabilities for JW show on-
togenetic variation, with a general increase over the first
5 years of life, a trend caused primarily by declining levels
of environmental variance over the same period. This latter
effect, and an associated decrease in total phenotypic var-
iance, is consistent with compensatory growth occurring
in this population. However, because the major reduction
in variation occurs between ages 0 and 1, it seems likely
that viability selection, known to operate on lamb weight,
is a more important mechanism. We also found evidence
for maternal genetic effects influencing weight in the year
of birth and weight of yearlings. Thus, there is heritable
variation for early weight despite the finding of low direct
heritabilities. The genetic covariance structure suggests
that age-specific JWs are integrated across ontogeny such
that a response to selection at any age is likely to produce
a positively correlated response across all ages. Finally, we
found that analyses based on the use of random regression
yielded results and conclusions similar to those of tradi-
tional methods of estimating genetic covariance structures.
While further empirical testing is warranted, the use of
random regression models seems likely to offer consid-
erable advantages for estimating genetic covariance struc-
tures of size and growth traits in natural populations. In
particular, random regression models should facilitate
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