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Abstract

This research investigates radially spreading intrusion created from a forced

plume, when fluid continuously injected vertically from a nozzle entrains uni-

formly stratified ambient as it falls back upon itself. The flow evolution

is determined as it depends upon the ambient buoyancy frequency, N , the

source momentum and buoyancy fluxes, M0 and F0, respectively. A turbu-

lent forced plume falls to maximum depth, Zm, rises back upon itself as a

fountain to its neutral buoyancy depth, Zs, then spreads radially outwards.

Through theory and experiments we determine that Zs = f(σ)Hp, in which

Hp = M0
3/4F0

−1/2, σ = (M0N/F0)
2, and f(σ) ∝ σ−3/8 for σ ! 50 and

f(σ) ∝ σ−1/4 for σ " 50 respectively. In the inertia-buoyancy regime the in-

trusion front advances in time as Rf ∝ t3/4, consistent with models assuming

a constant buoyancy flux into the intrusion where the intrusion first forms

at radius, R1, with thickness, h1, constant in time. The intrusion thickness,

h(r, t), adopted a self-similar shape of the form h/h1 " [(Rf − r)/(Rf −R1)]
p,

with p " 0.55 ± 0.03. From dense descending plumes in uniformly stratified

ambient, we conveniently applied our results to supervolcanoes penetrating

and spreading in the stratosphere.
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Chapter 1

Introduction and Motivation

The continuous injection of buoyant fluid from an effective point or line source

into an unbounded environment creates an unconfined flow that is called

a “plume”. The motion of plumes is created from the density difference

between the source and its environment that generates a continuous supply

of buoyancy in the direction of flow.

These occurrences are observed from smoke stacks or chimneys that release

pollutants such as sulphur dioxide into the atmosphere creating unfavourable

weather and climate conditions. The mean motion of emissions from smoke

stacks and chimneys was studied by Briggs (1969). Morton (1959) studied

the rise height of plumes created from industrial chimneys to predict the

spread of pollutants in the atmosphere as they are affected by the ambient

stratification, the effective decrease in density with height.

The puff from cigarette smoke that creates a well defined plume breaks

up into small eddies far from their source. Volcanic eruptions that release hot

vaporized gases and particles into the atmosphere create both long- and short-

term environmental effects on surrounding agriculture, human health and

global climate (Zielinski, 2002; Robock, 2004). An example of such eruption
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is the most recent Mount Sinabung volcanic eruption in Indonesia on February

3, 2014 and others that include fire plumes are used to design smoke detectors

and sprinklers (Joseph and Vincent, 2003; Heskestad, 2014).

The discharge of fluid such as contaminants into rivers from outfalls

spreads vertically and transversely as it mixes through turbulence created

naturally can behave buoyancy-driven and hence plume-like. Sewage cre-

ated from ocean outfalls has been studied by Brooks and Koh (1965) and

Fan (1967). Brooks and Koh (1965) predicted the behaviour of the efflu-

ent generated by sewage jets from a diffuser into the stratified ocean. From

experiments, Fan (1967) analyzed the dynamics of inclined buoyant jets in

stagnant stratified environments.

In the literature plumes are distinguished based on their source and en-

vironmental conditions. They are further categorized based on the dynamics

and characteristics of their structure such as the magnitude of the volume,

momentum and buoyancy fluxes, Reynolds number of the flow and the di-

rection of buoyancy relative to momentum fluxes. The following section will

discuss the classification of plumes based upon these characteristics.

1.1 Categorizing plumes

Figure 1.1 gives a summary of the classification of plumes used in the fluid

dynamics literature. Plumes are formed from laminar or turbulent flows

at their sources with low or high Reynolds number respectively. Laminar

plumes can grow unstably in time and consequently become turbulent far

from their sources. Beyond it neutral buoyancy level, the vertical velocity of

the plume decreases as moves upwards away from the source. Experiments of

laminar plumes were investigated by Gerbhart et al. (1970) and Mollendorf

2



and Gerbhart (1973). Using the Boussinesq approximation they showed a

simplification of the conservation equations of momentum, mass and energy

in which they obtained the governing partial differential equations that were

further extended and discretized for numerical purposes. Turbulent plumes

are created from the entrainment of ambient fluid across its boundary with

turbulent eddies that enhance mixing. Plumes created from a line or an

effective point source that become turbulent in nature form an intrusion that

results in a planar flow with a straight front or an axisymmetric flow with a

circular front in a stratified ambient fluid (Didden and Maxworthy, 1982).

The flows from a source of excessive initial momentum flux are called

either forced plumes or buoyant jets that become buoyantly driven far from

their sources. Buoyant jets were studied by Robi (1982) and others outlined

in Section 1.2. Pure plumes are only driven by buoyancy forces and have zero

momentum flux (M0=0). The influence of the volume flux, Q0, momentum

flux, M0, and buoyancy flux, F0, when non-zero at the source is expressed

through the non-dimensional parameter, Γ0, defined by Morton (1959) as

Γ0 =
5Q2

0F0

4απ1/2M
5/2
0

, (1.1)

in which α is the entrainment constant (see Appendix A) and Γ0 is a constant

where 0<Γ0<1 for forced turbulent plumes, Γ0=1 for pure plumes with the

same momentum and volume fluxes and Γ0>1 for lazy plume created from a

source of deficiency in momentum flux.

If the momentum and buoyancy fluxes are directed in the same direction

the plume is called a positively buoyant plume. If the momentum and buoy-

ancy fluxes are oriented in opposite direction the plume is called a negatively

buoyant plume or fountain.
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Uniform DensityStratified

Figure 1.1: Diagram shows the categories of plumes.

The environment in which such plumes are created is either stationary

or moving at some horizontal mean speed. In which case the ambient or

environment could be uniform or stratified.

The atmosphere and ocean are stratified due to non-uniform temperature

and/or salinity. In a stably stratified liquid, density decreases with height as

dρ̄

dz
< 0, (1.2)

where ρ̄(z) is the density of the ambient fluid as a function of height, z.

In stably stratified liquid, the square of the buoyancy frequency is given
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by

N2 = − g

ρ00

dρ̄

dz
, (1.3)

which is the frequency of the oscillatory motion of a fluid in a stratified

ambient where g is the gravitational acceleration and ρ00 is the characteristic

density.

In stably stratified gas, the potential temperature increases with height

as

dθ̄

dz
> 0. (1.4)

where θ̄(z) is the ambient potential temperature. Explicitly, the potential

temperature is given by

θ̄ = T (z)

(
P00

P̄ (z)

)κ

(1.5)

where κ = 2/7 is a constant, T (z) and P̄ (z) are the ambient temperature and

pressure, respectively. In stably stratified gases the square of the buoyancy

frequency is given in the Boussinesq approximation by

N2 =
g

θ00

dθ̄

dz
, (1.6)

where θ00 is the characteristic potential temperature.

In uniformly stratified environments N2>0 and is constant. In uniform

environments N2=0. This research will examine well-mixed turbulent forced

plumes with high Reynolds number in stationary and uniformly stratified

environments.
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1.2 Literature Review

The understanding of statistically steady turbulent forced plumes in uniform

and uniformly stratified environments begins with the work of Morton et al.

(1956), who derived equations for the evolution of volume, momentum and

buoyancy fluxes in a plume assuming that the lateral entrainment of the am-

bient into the plume at a particular height was proportional to the vertical

speed of the plume at that height. Although highly successful in predicting

the evolution of forced plumes in a uniform ambient, the predictions failed to

predict the full evolution of a negatively buoyant plume because the entrain-

ment assumption inaccurately captured the dynamics at the fountain top and

the consequent lateral entrainment of the descending fluid surrounding the

plume core (McDougall, 1981; Bloomfield and Kerr, 2000).

From the entrainment interaction between the upward and descending

turbulent flows, Morton (1962) and McDougall (1981) developed a semi-

empirical theoretical model of the evolution for a negative buoyant jet created

from an upward vertical injection of dense fluid into a homogeneous environ-

ment. These equations predicted the width, vertical velocity, final height and

buoyancy for the upward and downward flows of the fountain.

Nonetheless, a scaling analysis reveals how the height of a fountain de-

pends upon the momentum and buoyancy fluxes at the source (Morton, 1962;

Turner, 1966). Turner (1966) conducted a series of experiments to show that

the interaction between the upward and downward flows of a plume acts to

reduce its maximum height. The maximum height of the plume is reduced to

a lower steady state height from turbulent exchange between the upward and

downward flows as buoyancy acts on the heavier collapsing fluid (downward

flow). Using dimensional arguments, Turner (1966) showed that the maxi-

mum height, Zm, was related to the ambient stratification, source momentum
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and buoyancy fluxes as Zm ∝ M
1/4
0 N3/4 and Zm ∝ F

1/4
0 N1/2 respectively.

The work of Morton et al. (1956) was extended to investigate forced

plumes in uniform and stratified environments (Morton, 1959). Through the-

ory he showed that forced plumes created from a source of finite size which

delivers mass, momentum and buoyancy is related to the flow from a virtual

point source of only buoyancy and momentum fluxes.

Through theory and experiments of fountains in uniform stratification,

Bloomfield and Kerr (1998, 2000) examined the maximum and steady state

rise height as well as the height at which the intrusion spreads. The theory

which assumed that momentum dominated over negative buoyancy at the

plume source, provided good semi-empirical predictions of the spread height

in this regime. Theirs was the only experimental study that examined the

spread height of turbulent fountains in a uniformly stratified environment.

Most theoretical and experimental studies of the radial spread of an in-

trusion in stratified fluid neglect the dynamics of the plume and collapsing

fountain. Instead, they assume a constant horizontal flux of volume, momen-

tum and buoyancy from a localized source (Maxworthy, 1972; Huppert and

Simpson, 1980; Didden and Maxworthy, 1982; Ivey and Blake, 1985; Kotsovi-

nos, 2000; Devenish and Rooney, 2014). Assuming that the volume flux and

intrusion height are constant and that the evolution is self-similar, the radius

of the intrusion front is predicted to increase in time as Rf ∝ t2/3 (Huppert

and Simpson, 1980). Taking into account the ambient stratification, Kotso-

vinos (2000) instead predicted Rf ∝ t3/4.

More recently, Ansong and Sutherland (2010) studied internal waves gen-

erated by convective plumes with applications to storm top impinging upon

the stratosphere and deep oceanic convection. Although the study was not

focused on predicting the radial spread of the intrusive gravity current in
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the umbrella region, they found the relationship, Rf ∝ t3/4, for the intrusion

spread in the buoyancy-inertia regime.

From a theoretical perspective, Devenish and Rooney (2014) recently an-

alyzed the plume rise and spread in a stably stratified moving and stationary

environments. They investigated the radial intrusion at its neutral buoyancy

level during and after transition in the buoyancy-inertia regime. This led to

the equations that predicted the radius, speed and thickness of the intrusion

at its neutral buoyancy level.

There are relatively few studies examining the radial advance of an intru-

sion resulting from the collapse of a plume in uniformly stratified fluid some

of which are reviewed and presented by Kaye (2008).

The above theoretical and experimental work on jets, plumes and foun-

tains in stratified and uniform environments have considered the application

of the Boussinesq approximation in which the density difference between

the source and ambient fluid is relatively small with an upper bound of

|∆ρ|/||ρ̄|| ≈ 0.1 (Crapper and Baines, 1976).

This research aims to use experiments to study the dynamics of radial in-

trusions emanating from Boussinesq and non-Boussinesq turbulent plumes at

their neutral buoyancy levels in a stratified ambient fluid for which |∆ρ|/||ρ̄|| "

0.1. We present the experimental results with applications to volcanic ash

cloud created from a forced turbulent volcanic plume spreading at their neu-

tral buoyancy level in the stratosphere and the accidental discharge of oil into

the ocean even though their dynamics maybe different.
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1.3 Motivation

Turbulent plumes in uniformly stratified ambient fluids have three prominent

regions of interest: a convective, a gas-thrust and a radial spreading region.

Plumes are widely studied because of their local environmental impacts in

volcanic eruptions and emissions from industrial chimneys or smoke stacks

(see Section 1).

Although turbulent plumes have been studied for over six decades, their

dynamics are still not well understood as the demand for more sophisticated

analyses and experimental designs are required to make predictions from ex-

perimental observations that sufficiently captures the dynamics of the plume

spread. An example of such is the radial spread of an intrusion emanat-

ing from the plume centerline at its neutral buoyancy level in a uniformly

stratified ambient. Its front position is expected to follow the power law rela-

tionship, Rf ∼ tP where ‘p’ is the theoretically or experimentally determined

exponent. Different values for this exponent have been predicted creating un-

certainty (Kotsovinos, 2000) for which power law correctly predicts the intru-

sion spread particularly in the buoyancy-inertia regime (see Table 3.2). The

correct prediction of the time-dependent radial spreading intrusion emanat-

ing from a forced turbulent plume at its neutral buoyancy level in a stratified

ambient fluid can be extended to understand the dynamics of volcanic ash

cloud spreading at early time shortly after it collapses in the stratosphere.

In addition, the intrusion thickness as a function of radial spread in time

is not well known as there are relatively few studies on this aspect of the

plume. Shallow water theory of an intrusive gravity current in uniformly

stratified ambient fluid predicts that the intrusion thickness evolves only in

time (Ungarish, 2009). Our experiments of radial spreading intrusion created

from a forced turbulent plume in a uniformly stratified fluids will investigate
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the intrusion thickness as a function of time and position to test the validity of

this assumption. This may be used to understand how the height of a volcanic

ash cloud spreading in the stratosphere vary as it is difficult to collect in situ

data in such circumstances (see Section 1.3.1).

Finally, the factors that determine the spread height of the plume in

a stably stratified ambient fluid are not well understood as the plume be-

comes momentum- or buoyancy-dominated. Many researchers have studied

the maximum penetration height of the plume (List, 1979; Morton et al.,

1956; Bloomfield and Kerr, 1998, 1999; Turner, 1966; Caulfield and Woods,

1995; Fox, 1970), but very few have extended their study to the plume spread-

ing height (Caulfield and Woods, 1992). This research aims to examine the

factors that influence the spreading height of a turbulent plume in a stratified

environment.

1.3.1 Supervolcanoes in the stratosphere

Volcanic eruptions cause the discharge of hot volcanic gases and particles that

can penetrate vertically into the atmosphere up to tens of kilometers. Such

eruptions have a convective column of three distinct regimes (Costa et al.,

2010): a gas thrust or jet region, an intermediate convective region and an

upper umbrella region as shown in Figure 1.2. In the jet region, the effluent

from the volcano rises primarily due to momentum. This region occurs over a

small fraction of the total eruption column height. In the ensuing intermediate

convective region, as the flow entrains ambient moisture-laden air it becomes

controlled primarily by buoyancy forces.

In the stratified atmosphere, the momentum and buoyancy fluxes decrease

as the plume becomes relatively more dense until it becomes negatively buoy-

ant and ultimately reaches a terminal point called its maximum height where
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the momentum flux becomes zero. The plume then collapses upon itself as

a fountain falling downward about the central rising plume until it reaches

its neutral buoyancy level where the fluid originating from the plume has

the same density as the surrounding ambient. From there it spreads radially

outwards as an intrusive gravity current forming an umbrella region.

For large volcanic eruptions, the influence of ambient winds can be ignored

during the development of these three regimes as the speed of the initial ris-

ing plume exceeds stratospheric wind speed while at its maximum height

(w(Zm)=0), the buoyancy exceeds the effects of ambient wind speed. The

plume collapse and initial horizontal spread at its neutral buoyancy level re-

mains unaffected by stratospheric winds. Hence, within the first few hours of

spread the umbrella cloud region is approximately symmetric in shape (Baines

and Sparks, 2005; Costa et al., 2013) as it spreads within the buoyancy-inertia

regime. The effects of the Earth rotation during the plume rise and spread

within the buoyancy-inertia regime is also ignored as the time taken for the

plume to rise in the stratosphere (typically 1 hr) is shorter than the Earth’s

inertial period (approximately 10 hr). Because our experiments neglect winds

and rotation and because there are ample observations we have chosen to ap-

ply our results to the large Mount Pinatubo eruption. Beyond the buoyancy-

inertia regime the speed of the spreading umbrella cloud decreases under the

influence of viscosity effects while the cloud is advected away from the plume

origin by ambient stratospheric winds (Helfrich and Batisti, 1991).

Volcanic particles vary in size by several orders of magnitude, ranging

from very fine submicron ash to particles larger than 1m in diameter (Sparks

et al., 1997). Larger particles leave the eruption column at lower levels while

finer ash particles in the umbrella region can remain in the stratosphere for

several days while spreading over the entire atmosphere. The spread of these
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particles can damage airplane engines (Williams and Thomas, 2011) and can

cause short-term but non-local cooling effects on climate (Costa et al., 2006;

Robock, 2004) as relatively small amount of finer ash particles suspended in

the atmosphere are dispersed by high stratospheric winds. The fall out of

these particles from the eruption column has increased the effects of human

respiratory problems and has extensively destroy agriculture and severely

damage many homes (Costa et al., 2006; Robock, 2004).

Although simulations model the passive advection of particles by the syn-

optic scale winds (Holasek et al., 1995), less well understood are the dynamics

of the eruption column and the intrusion that emanates horizontally in its

vicinity. The entrainment of moist air, the release of heat internally by parti-

cles, the rate of supplied volume flux and non-Boussinesq effects applied near

the source of the eruption column are additional sources that provide buoy-

ancy in the plume rise and spread (Wilson et al., 1978; Holasek et al., 1996a;

Sparks et al., 1986). Turbulence, high temperatures and particles make it

difficult to collect in situ data within the rising plume and its radial spread-

ing region (Textor et al., 2006). Likewise, the dynamics are too complex to

be captured by direct numerical simulations. Nonetheless, insights have been

gained through approximate theories (Woods, 2010) guided by the results of

laboratory experiments (Woods, 2010).

1.3.2 Dynamics of Supervolcanoes

To understand the dynamics of large volcanic eruptions in the stratosphere, it

is useful to appreciate the properties of this stratified ambient region that lies

immediately above the tropopause. In the atmosphere temperature varies

with vertical height. Within the first 8−16 km above the Earth’s surface,

temperature decreases with height at approximately 10◦C/ km (temperature
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Figure 1.2: Schematic diagram of a volcanic eruption released from an isolated
hot spot into the atmosphere creating three distinct regions called the gas-

thrust, convective and umbrella cloud regimes.

lapse rate) in this lower region called the troposphere.

Immediately above this region is the tropopause that separates the tropo-

sphere and stratosphere. Above the tropopause, the temperature decreases

less quickly with and even increases with height in a region called the strato-

sphere that extends up to approximately 50 km. The increase in temperature

within the stratosphere is due to the absorption of ultraviolet (UV) solar ra-

diation by the atmospheric ozone.

In the atmosphere, to a close approximation the upward ambient pressure

gradient is balanced by the downward gravitational force acting on surround-
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ing air parcels is given by

dP̄

dz
= −ρ̄g, (1.7)

where P̄ is the atmospheric pressure that changes with altitude z, g is the

gravitational acceleration and ρ̄ is the ambient density. Equation 1.7 is called

the hydrostatic balance equation.

The region of our interest is the stratosphere, which has an approximately

constant stratification. The release of hot volcanic gases and particles into

the atmosphere moves vertically upwards with the entrainment of air and

moisture. The entrainment of ambient air and moisture that gain sufficient

heat energy through the heat transfer from hot pyroclastic materials (such as

hot particles and gases released) inside the plume will expand and increase

in volume (Woods, 1988). As a result, the temperature of the rising volcanic

plume decreases. The continuous entrainment of ambient fluid cause the

temperature of the rising plume column to decrease substantially over large

vertical distances resulting in non-Boussinesq effects. If there is sufficient

internal heat and energy this will create a mixture that becomes buoyant

after sufficient ambient is entrained (Woods, 1988). Such eruptions may rise

vertically over tens of kilometers in the atmosphere as it becomes buoyancy-

driven.

1.3.3 2010 Deepwater Horizon Oil Spill

Other natural occurrences of plumes in stratified fluid include the accidental

discharge of oil from a deep underground reservoir into a large body of water

such as the ocean. In particular, we consider the 2010 Deepwater Horizon oil

spill that has caused ecological, economical, environmental and health damage

(Frias-Torres et al., 2011). The accidental discharge of oil may be as a result
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of damaged pipelines, submerging tankers and/or oil blowouts. The most

difficult, destructive and harmful of the three is oil blowout (Yapa and Chen,

2004). Oil blowout is caused from the drilling of an area of uncontrollable

high pressure fluid (oil, gas or water) that can spread unstoppably in the

ocean where its point of release is from a small crack.

The accidental discharge of oil from such an underground drilling site

creates a mechanism which behaves similar to a jet-like flow that transforms

into a plume-like flow closer to the surface of the ocean. However, there are

other dynamics such as gas bubbles, oil droplets and gas hydrates that may

crucially affect the dynamics of the plume. In stratified environments, gas

bubbles can continuously rise beyond the predicted rise height of a fountain

and spread horizontally (McDougall, 1978; Woods, 2010).

1.4 Thesis Organization

Chapter 2 reviews the theory for the rise and spread of a forced turbulent

plume in a stratified ambient fluid. The prediction for the spread height of

Bloomfield and Kerr (1998) is extended to include the influence of plumes

dominated by buoyancy instead of momentum at their sources as they are in-

fluenced by the ambient stratification. Even though such plumes are initially

driven by momentum. This is followed by presentation of two models that

predict the radial spread of the intrusion emanating from a forced plume in

uniformly stratified ambient fluid. The general scaling analysis used to derive

the model Rf ∼ t3/4 is presented in the Appendix B along with a separate

derivation of the two models given by Devenish and Rooney (2014). (The

governing equations for the momentum, buoyancy and volume fluxes are ex-

plicitly derived from first principles in Appendix A). The experimental set-up
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and analysis are described in Section 3.2.

Chapter 3 presents the qualitative observations, quantitative analysis and

results describing the radial advance and structure of the intrusion as it

spreads at its neutral buoyancy level in a uniformly stratified ambient fluid.

The material presented in this chapter, is published in the Physics of Fluids,

Vol. 26 pp. 036602−1−−17.

Chapter 4 presents the experimental results of the spread and maximum

depths of the plume and the intrusion emanating from the plume centreline

at its neutral buoyancy level in a uniformly stratified ambient fluid.

In Chapter 5 the experimental results are compared to observations of

large volcanic plumes penetrating into and spreading within the stratosphere.

Application to the 2010 Gulf of Mexico Deepwater Horizon oil spill is also

examined. A section of the experimental results presented in this chapter is

also is published in the Physics ofFluids, Vol. 26 pp. 036602−1−−17.

Chapter 6 gives the summary and conclusion of this research work. This

chapter also discusses the possible future work that can be used to extend

this body of work presented on forced turbulent plumes in uniformly stratified

fluids.
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Chapter 2

Theory

2.1 Introduction

This chapter derives the equations associated with the flow of a forced turbu-

lent plume in a uniformly stratified ambient fluid. The dynamics of a forced

plume in uniform and in uniformly stratified fluids is presented in Section

2.2 which also describes the evolution of such plumes. The prediction for

the spread height of Bloomfield and Kerr (1998) is also extended in this sec-

tion to include the influence of forced plumes dominated by buoyancy instead

of momentum at their sources as they are influenced by the ambient strat-

ification. The equations that predict the radial spread of an axisymmetric

intrusion front position in time at its neutral buoyancy level are explicitly

derived in Section 2.3. Other detailed derivations that use scaling analysis

to predict the radial spread in time are given in Appendix B along with a

separate derivation of the two models that predicts the radial spread in time

by Devenish and Rooney (2014).
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2.2 Plumes in a Stratified Environment

Although the motivation for this work is the examination of volcanic plume

rise and spread in the stratosphere, it is convenient in laboratory experiments

to examine a dense descending plume in uniformly stratified fluids. In the

Boussinesq approximation, this circumstance is equivalent to a rising plume of

less dense fluid with positive buoyancy. In reality, the density of the eruption

column near the source can be vastly different from the surrounding ambient

and the column itself propagates over more than one density scale height

(about 8 km) as it passes into the stratosphere. Thus non-Boussinesq effects

would play an important role in determining the plume rise. However, our

focus here is upon the transition of the plume into a collapsing fountain

and the consequent radial spreading intrusion. These dynamics occur over a

relatively small vertical distance within the stratosphere (Sparks et al., 1986;

Baines and Sparks, 2005), so that the Boussinesq approximation is reasonably

applied. For simplicity in this study, we do not include particles within the

plume, focusing instead upon the influence of buoyancy and inertia of the

fluid associated with the plume and the radial intrusion.

The theory presented here is for a turbulent forced plum that initially

moves downward into a uniformly stratified fluid, and is also consistent with

our experimental setup, as illustrated schematically in Figure 2.1 where O

represents the centreline of the rising plume column. Fluid of density, ρ0,

greater than the surrounding ambient density (ρ0>ρ00 = ρ̄(Z=0)) at the

nozzle depth, is injected downward with volume flow rate, Q0, from a source

of radius, b0. This falls to a maximum depth, Zm, then rises as a fountain and

finally spreads radially outwards at its neutral buoyancy level given by the

spreading depth, Zs. The radius of the incident plume at Zs, is denoted by R0.

The radius at which the intrusion is first observed to propagate radially in the
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Figure 2.1: Side-view of a dense plume falling and spreading in a uniformly
stratified environment not drawn to scale.

inertia-buoyancy regime is denoted by R1 estimated by Devenish and Rooney

(2014) to be approximately 3R0. The intrusion front position increases in

time is denoted by Rf (t). Beyond a radius, Rv, the advance of the intrusion

is dominantly influenced by a balance of viscosity and inertia.

Sections 2.2.1-2.2.2 describe the dynamics of forced turbulent plumes in

uniform and uniformly stratified fluids that initially behave jet-like at the

source then become plume-like far above the source. Section 2.2.3 discusses

the evolution of a turbulent forced plume as it transforms into a fountain when

rising in a uniformly stratified ambient. Section 2.2.4 describes the stratifi-

cation associated with the background fluid. The factors that determine and

set the spreading depth, Zs, of a forced plume are outlined in Section 2.2.5.

2.2.1 Forced Plume in Uniform Ambient

Forced plumes are created from a source of both momentum and buoyancy but

having excessive momentum (Morton, 1959). Forced plumes are also referred

to as buoyant jets simply because they exhibit both jet and plume dynamics

as a free turbulent shear flow (Brooks, 1972; Ansong and Sutherland, 2010).

In a stratified ambient, a jet rising from an effective point source is controlled
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by its initial momentum flux near the source with negligible buoyancy then

transforms into a pure plume that is controlled by buoyancy forces far from

the source. The continuous entrainment of ambient fluid into the vertically

rising plume causes its buoyancy flux to decrease towards its neutral buoyancy

level.

The characteristics of a turbulent forced plume created from an effective

point source are determined by the source momentum and buoyancy fluxes,

given respectively by

M0 = πb20w
2
0 =

Q2
0

πb20
(2.1)

and

F0 = πb20w0g
′

0 = Q0g
′

0. (2.2)

Here w0 is the mean vertical velocity at the source,

w0 =
Q0

πb0
2 , (2.3)

and g0
′ is the reduced gravity at the source:

g0
′ = g

ρ0 − ρ00

ρ00
, (2.4)

in which g is gravity and ρ00=ρ̄(Z=0) is the density of the ambient fluid at the

nozzle, as shown in Figure 2.1. The definitions of w0 and g0
′ are such that F0

is always positive, consistent with the understanding that buoyancy initially

acts in the same direction at which the fluid is injected. The dimensions of

the fluxes at the source: Q0, M0 and F0 correspond in cgs units are cm3/s,

cm4/s2 and cm4/s3 respectively.

20



The Froude number at the source is

Fr0 =
w0√
b0g′0

. (2.5)

The Reynolds number at the source is

Re0 =
w0b0
ν

, (2.6)

in which ν is the kinematic viscosity of the fluid. For fresh and salt water,

ν " 0.01 cm2/s. If Re0 is sufficiently large, the plume flow is turbulent and

viscosity plays a negligible role at least insofar as entrainment, momentum

and buoyancy transport are concerned.

2.2.2 Jet Length

A dense fluid injected vertically downwards into a uniformly stratified ambient

fluid will move away from the source as it is initially driven by momentum.

After some time and distance from the source buoyancy will begin to dominate

the flow until it becomes buoyant or plume-like, the vertical distance at which

this occurs being called the “jet length”.

From M0 and F0, dimensional arguments reveal the jet length scale of the

system (Turner, 1966),

Hp = M
3/4
0 |F0|

−1/2. (2.7)

For distances larger than Hp, buoyancy dominates the momentum associated

with the vertical flow at the source (see Figure 2.2) .

The corresponding time for fluid leaving the nozzle to pass through this

transition from a momentum-driven flow to a buoyancy-driven flow is Chen
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Figure 2.2: Side-view of a dense plume falling to a maximum depth where
it then collapses to and spreads at its neutral buoyancy level in a uniformly
stratified environment showing its jet regime (momentum-driven), transition
regime (from jet- to plume-like flow) and plume regime (buoyancy-driven).

(1980)

tp =
M0

|F0|
. (2.8)

2.2.3 Fountain in Uniform Ambient

In a uniform ambient fluid, if F0 and M0 have the same sign, Hp, determines

the transition from jet-like (momentum-driven flow) to plume-like (buoyancy-

driven flow) behaviour in a forced plume. However, if F0 and M0 have oppos-

ing signs, Hp is a measure of the rise height of a “forced fountain” (Turner,

1966; Burridge and Hunt, 2012). Fountains were first studied by Priestley

and Ball (1955), Morton (1959) and Abraham (1967).

A fountain or a negatively buoyant plume is created from the continuous

injection of fluid descending into a more dense ambient. This is equivalent

to the continuous upward injection of fluid into a less dense ambient. In

both cases, the buoyancy opposes the momentum of the flow upon rising to a
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maximum vertical distance where its momentum flux goes to zero. The flow

then collapses and falls back upon itself to its neutral buoyancy level.

In a uniformly stratified fluid, a forced plume injected into a stratified

ambient will eventually overshoot its neutral buoyancy level and so transform

into a fountain which rises to a maximum height where its momentum flux

goes to zero and then collapses, ultimately the returning fluid reaches its

neutral buoyancy level from which it then spreads radially.

Through experiments of a dense fluid injected vertical upwards into an

ambient of fresh water using dimensional arguments Turner (1966) showed

that the maximum penetration height of a fountain is given by

Zm = CfHp, (2.9)

where the empirically determined constant, Cf , was found to be 2.46.

2.2.4 Buoyancy Frequency

The maximum rise height and the consequent height of a radially spreading

intrusion depend not only upon Hp, but also upon the ambient stratification

expressed through the buoyancy frequency, N . In salt-stratified Boussinesq

fluid, N is given by

N =

√
− g

ρ00

dρ̄

dz
, (2.10)

in which ρ̄(z) is the ambient density. If ρ̄ decreases linearly with height then

N is constant and the fluid is said to be uniformly stratified.

Unlike plumes created from salt-stratified and uniformly dense environ-

ments where the density difference between the source and ambient is critical,

for large volcanic eruption columns spreading in the stratosphere, it is the

potential temperature that is important. In the atmosphere the buoyancy
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frequency is given by

N =

√
g

θ̄

dθ̄

dz
, (2.11)

where θ̄(z) is the potential temperature that increases with height in a stably

stratified gas. In the Boussinesq approximation θ̄ ≈ θ00 in the denominator

within the square-root of (2.11).

2.2.5 Maximum and Spreading Depth in Uniformly Strat-

ified Ambient

The relative influence of the ambient stratification is expressed through the

non-dimensional parameter, σ, defined by List (1979); Bloomfield and Kerr

(2000, 1998):

σ ≡ M0
2N2

F0
2 = t2pN

2. (2.12)

The square-root of σ is a measure of the time-scale, tp, for plume rise over

the jet length relative to the buoyancy period. If σ is large, the flow from the

source remains jet-like when stratification becomes important. If σ is small,

the flow is plume-like when stratification becomes important.

Experiments of fountains in uniformly dense and stratified fluids show

that they first reach a maximum height before falling back toward the source.

Thereafter, the fountain top fluctuates about a steady state height, Zm, mod-

erately smaller than the initial maximum height, Zfm as shown in Figure 2.3

(Turner, 1966; Bloomfield and Kerr, 1998; Ansong and Sutherland, 2010).

From Zfm the plume then collapses to its neutral buoyancy level spreading

radially outwards at its spreading depth, Zs. In experiments we have not in-

vestigated the maximum depth, Zfm, but have analyzed the maximum steady

state and spreading depths, Zm and Zs respectively. The steady state maxi-

mum depth was found from the average of the vertical oscillatory motion of
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Figure 2.3: Side-view schematic of plume shows the spreading depth, Zs,
maximum penetration depth, Zfm and the steady state depth, Zm.

the plume top in time.

The spreading height, Zs, of the radial intrusion is expected to scale with

its maximum steady state height, Zm. In their experiments of negatively

buoyant fluid injected upwards into uniformly stratified fluid, Bloomfield and

Kerr (1998) found the scaling, Zs/Zm ∼ 0.51. Here we examine how this

relationship varies if the buoyancy flux, F0, at the source is of the same sign

as the momentum flux, M0.

Just as Zm should depend uponM0, F0 and N (or, equivalently, Hp and σ),

so should the spread height, Zs, of the radial intrusion. Both Zm and Zs can

be estimated through numerical integration of the equations for a turbulent

forced plume with constant entrainment proportional to the vertical speed

at the plume centre (Morton, 1959; Ansong and Sutherland, 2010). Here

we consider the asymptotic limits of buoyancy-dominated and momentum-

dominated sources.

Following Bloomfield and Kerr (1998), we write the formula for the spread

height as

Zs = f(σ)Hp, (2.13)
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for some function, f(σ). If σ ' 1, stratification acts upon a buoyancy-driven

flows. This implies that Zs should be independent of M0. Combining (2.7)

and (2.12) so as to eliminate M0 on the right-hand side of (2.13) gives the

scaling relationship,

f(σ) ∝ σ−3/8 ⇒ Zs ∝ F
1/4
0 N−3/4. (2.14)

Likewise, if σ ) 1, stratification acts upon a momentum-driven flow, and so

Zs should be independent of F0. Eliminating F0 on the right-hand side of

(2.13) gives the scaling relationship,

f(σ) ∝ σ−1/4 ⇒ Zs ∝ M
1/4
0 N−1/2. (2.15)

The second of these limits was derived by Bloomfield and Kerr (1998), who

explicitly found through laboratory experiments that

f(σ) = 1.53 (±0.10) σ−1/4, for σ " 100. (2.16)

Their experiments were designed to study fountains in stratified fluid for

which the source momentum and buoyancy fluxes were opposite signed as

such, they were unable to explore the case of small σ because the fountain

would spread right at the source when the momentum flux was too small

to overcome buoyancy at the source. However, our study of a forced plume

source is designed to access both small and large σ limits.

These limits have been explored previously (List, 1979) in experiments

separately examining jet-like sources (Fan, 1967; Fox, 1970) and plume-like

sources (List, 1979; Morton et al., 1956; Caulfield and Woods, 1995).

A theoretical study supported by a few experiments was conducted by List
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(1979) to determine the factors that set the maximum depth (also referred to

as the terminal depth) of a buoyant jet falling in a linearly stratified ambient.

They found through a small number of experiments (recast in the notation

of this thesis) that Zm " 3.8F
1/4
0 N−3/4 (Zm/Hp=3.8 (±0.2)σ−3/8) for σ ' 1

and Zm " 1.43M
1/4
0 N−1/2 (Zm/Hp=3.8 (±0.2)σ−1/4) for σ)1. This showed

agreement with their corresponding theoretical power law predictions.

A section of the work of Morton et al. (1956) also showed the dependence

of the fluxes at the source on the maximum penetration height of a turbulent

plume in a uniformly stratified ambient fluid. Morton et al. (1956) experi-

ments showed that Zm " 5.75F
1/4
0 N−3/4 (Zm/Hp " 5.75σ−3/8) for σ'1 and

Zm " 1.43M
1/4
0 N−1/2 (Zm/Hp " 1.43σ−1/4) for σ)1 outlined by Scase et al.

(2006).

In particular, Caulfield and Woods (1995) predicted for forced, pure or

disturbed plumes with σ ' 1 that the maximum rise height should be scaled

as

Zm ∝ F
1/4
0 N−3/4 = σ−3/8Hp, (2.17)

consistent with (2.14). Although those studies focused upon the maximum

rise height, Zm, and not the spread height, Zs. By determining the relationship

between Zm and Zs for experiments with wide ranging σ, we are able to draw

a connection between that body of work and our study of intrusions.

2.3 Intrusion spread in the buoyancy-inertia

regime

As well as determining the spread height, we wish to determine the structure

and evolution of the radially spreading intrusion. Most studies of radially
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spreading intrusions ignore the dynamics of the plume and assume a source

of uniform density fluid already at its neutral buoyancy level.

A plume in a uniformly stratified ambient overshoots its neutral buoyancy

level to a maximum height then collapses to spread radially outwards as an

intrusive gravity current at its neutral buoyancy level. The radial spread of

the intrusion front position in time is predicted to follow a power law rela-

tionship in the form Rf(t) ∼ tP , where “p” is dependent upon the spreading

regime of the flow.

In Sections 2.3.1-2.3.3, we derive the theory to analyze the intrusion ra-

dial spread in time at its neutral buoyancy level. We consider the rate of

intrusion spread only in the buoyancy-inertia regime of a uniformly stratified

ambient. For large volcanic eruptions spreading in the stratosphere, the in-

trusion front is first observed by satellite at a radius close to the start of the

model-predicted buoyancy-inertia regime (Baines and Sparks, 2005). Spread-

ing in the stratosphere is observed to be unaffected by stratospheric winds

and Coriolis force during the first few hours of the spread (Baines and Sparks,

2005). Hence, our study could be connected to the spreading umbrella cloud

at early times after the initial explosion.

There are two models to be considered. Each model uses one of two

assumptions about the source conditions at the start of the buoyancy-inertia

regime, where the radius, r=R1. The first model considers a constant radial

volume flux and the other considers a constant buoyancy flux to the radial

spreading intrusion at its neutral buoyancy level. In another assumption

where the supply of volume or buoyancy flux is constant but the structure is

assumed to be self-similar, the radial advance is shown to transition follows

a between two power law relationships.
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2.3.1 Spreading rate assuming constant volume flux

A straightforward application of self-similarity theory takes a box-model ap-

proach (Huppert and Simpson, 1980). The speed, uf, of the intrusion front

with constant height, hf , in a uniformly stratified fluid is given by

uf = Fr Nhf , (2.18)

in which the Froude number, Fr, is assumed to be constant. Shallow water

theory and lock-release experiments of intrusions in uniformly stratified am-

bient fluid predict that Fr " 1/4 (Ungarish, 2006; Sutherland et al., 2007;

Bolster et al., 2008). In its application to the intrusion spreading from the

large volcanic eruptions of Mount Pinatubo (Holasek et al., 1996b), Fr was

observed to be approximately 0.3 not too different from this prediction of

1/4. The velocity of the intruding fluid is also given by

uf = dRf/dt. (2.19)

To close the problem, we can make one of two assumptions about the

source conditions at R1. In one approach, we assume no entrainment into the

intrusion so that the volume of the intrusion should increase in time as

Qi = 2π(Rf −R1)hfuf (2.20)

in which Qi " Q1 (" 2πR1h1u1) is the volume flux of the source emanating

from a radius, R1 with speed, u1 and thickness, h1.

Using this in (2.18) to eliminate hf , the resulting equation for the advance

of the intrusion front becomes (Chen, 1980; Lemckert and Imberger, 1993;
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Devenish and Rooney, 2014)

dRf

dt
= uf =

(
FrNQi

2π

)1/2

(Rf − R1)
−1/2.

Solving with the assumption that the front first forms at time, t1 gives the

front position, RfQ(t), for constant volume flux forcing:

RfQ −R1 "
(
3

2

)2/3 (
Fr

2π

Qi

N

)1/3

[N(t− t1)]
2/3. (2.21)

The characteristic reduced gravity, g′i, between a well-mixed intrusion and the

surrounding ambient over the thickness, h1, of the intrusion at R1 is (Sparks

et al., 1997; Ungarish, 2006)

g′i ≈ N2h1 (2.22)

This expression (2.21) can be written in terms of the buoyancy flux, Fi, at

R1 through the relation

Fi ≡ Qigi
′ ∼ QiN

2h1. (2.23)

In the box-model, h1=hf , the depth of the intrusion over its length from

R1 to Rf. Hence, (2.21) becomes

RfQ "
(
3

2

)2/3 (
Fr

2π h1

Fi

N3

)1/3

[N(t− t1)]
2/3. (2.24)

Substituting (2.21) back into (2.20) gives the intrusion height, which for

t ) t1 and Rf ) R1 satisfies

hfQ ∝ t−1/3 ∝ Rf

−1/2. (2.25)
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2.3.2 Spreading rate assuming constant buoyancy flux

In a separate approach1, we suppose a constant buoyancy flux, Fi, from the

source. We do not need to neglect the effects of entrainment in this case.

While fluid entrained into the current head decreases its relative buoyancy, it

also increases in height. Assuming the density of the entrained ambient fluid

is approximately constant, the two effects conspire to maintain a constant

buoyancy, if not volume flux. Using (2.20) and (2.23), the buoyancy flux at

the source is

Fi ∼ 2πN2(Rf −R1)hf
2uf, (2.26)

As above, we use this expression to eliminate hf in (2.18) to get

dRf

dt
=

(
Fr2 Fi

2π

)1/3

(Rf −R1)
−1/3.

From this it follows that the front position, Rf, for constant buoyancy flux

forcing is given by

Rf −R1 "
(
4

3

)3/4 (
Fr2

2π

Fi

N3

)1/4

[N(t− t1)]
3/4. (2.27)

This power law dependence, in the limit t ) t1 and Rf ) R1, was also

found (Didden and Maxworthy, 1982; Kotsovinos, 2000) by assuming constant

volume flux and balancing inertia and buoyancy forces written in terms of g′,

not N .

From (2.27) and assuming t ) t1 and Rf ) R1, it follows that the intru-

sion height changes with time and front-radius as

hfF ∝ t−1/4 ∝ Rf

−1/3. (2.28)

1Paul F. Linden,private communication,2013
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Figure 2.4: Side-view of a forced plume spreading at its neutral buoyancy
level in uniformly stratified ambient. The radius incident at the spreading
depth is denoted by R0, the radius at the start of the buoyancy-inertia regime
is given by R1 and the position of the intrusion radial front position in time

is given by Rf .

In both (2.25) and (2.28), the intrusion height (constant along its length)

decreases in time. However, one does not expect the intrusion height at its

source to be influenced by its downstream evolution.

2.3.3 Spreading rate for constant volume or buoyancy

flux

Assuming the source conditions are fixed and the height, h1, is constant at

R1, we consider how the shape of the intrusion head influences the supplied

volume and buoyancy fluxes.

We suppose the depth, h(r, t), of the intrusion along its radius adopts a

self-similar shape of the form

h = h1

(
Rf − r

Rf −R1

)Ph

, (2.29)
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in which Rf = Rf(t) and Ph is some constant exponent. Figure 2.4 shows a

schematic of the intrusion thickness with the above labelled parameters. The

volume of the intrusion is

V = 2π

∫ Rf

R1

h r dr

=
2πh1

(Ph + 1)(Ph + 2)
[(Rf −R1)

2 + (Rf −R1)R1(Ph + 2)] ,

(2.30)

which is simplified to give

V =
2πh1

(Ph + 1)(Ph + 2)
[Rf

2 −R2
1 + PhRfR1 − PhR

2
1]. (2.31)

The buoyancy associated with the intrusion is

B = 2πN2

∫ Rf

R1

h2 r dr

=
πh1

2N2

(2Ph + 1)(2Ph + 2)
[(Rf −R1)

2 + (Rf −R1)R1(2Ph + 2)] ,

(2.32)

which is simplified to give

B =
πh1

2N2

(2Ph + 1)(2Ph + 2)
[Rf

2 −R2
1 + 2RfR1Ph − 2PhR

2
1]. (2.33)

The formulae predict that the intrusion volume and buoyancy increase as

Rf −R1 increases in time as

Q0=
dV

dt
(2.34)

and

F0=
dB

dt
(2.35)

respectively. If the volume or buoyancy flux at R1 is constant, then one
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expects

Rf −R1 ∝





t− t1 t " t1

t1/2 t ) t1

, (2.36)

independent of the value of Ph. The transition from early to late occurs when

the front is situated at

Rfc " R1(3 + CPh), (2.37)

with C=1 assuming volume is conserved and C=2, assuming buoyancy is

conserved. This implies that the intrusion front position should first increase

linearly in time and then increase as the square-root of time.

These three different theoretical predictions for the intrusion front position

and its structure as a function of time are used to model the plume spreading

at its neutral buoyancy level. Experiments will be use to test the validity and

consistency of these predictions in (2.24), (2.27) and (2.36) above.

2.4 Intrusion Spread in the viscous-inertia regime

A forced plume collapses and spreads radially as an intrusive gravity current

at its neutral buoyancy level in a uniformly stratified ambient. Beyond the

buoyancy-inertia regime its velocity decreases as turbulent stresses overtake

the spreading intrusion front. While viscous effects become dominant over

the buoyancy effects acting on the flow, the intrusion front reaches the start

of the viscous-inertia regime, Rv, and extends into this regime.

Although this is not the focus of our research, we review predictions for

the intrusion radial advance in time, Rv(t), in the viscous-inertia regime. This

obeys the power law (Lemckert and Imberger, 1993):

Rv ∼
(
Q4

0N
2

ν

)1/10

t1/2 (2.38)
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with a proportional constant of 0.45 (Chen, 1980). From the continuity equa-

tion the intrusion volume changes in time, position and thickness as(Huppert,

1982)

Q0t ∼ h(t)Rf

2. (2.39)

From (2.39), it follows that the intrusion thickness in the viscous-inertia

regime is given by

hV ∼
(
Q0ν

N2

)1/5

(2.40)

which is independent of its position and time. The proportionality constant

for this relationship was found through experiments to be 0.51 (Chen, 1980;

Zatsepin and Shapiro, 1982) and 1.7 (Kotsovinos, 2000). Similarly from (2.21)

for Rf ) R1, the intrusion thickness is given by

hI ∼
(

Q0

NRf

)1/2

(2.41)

which implies that hI increases as Rf

−1/2 from its front position to the plume

centreline at the spreading depth, Zs.

Balancing (2.40) and (2.41) give (Lemckert and Imberger, 1993; Devenish

and Rooney, 2014)

Rv = Cv

(
Q3

0

Nν2

)1/5

, (2.42)

for the radius of the intrusion at the start of the viscous-inertia regime where

Cv is the constant of proportionality.
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Chapter 3

Experiments: Measurement

Methods & Qualitative Results

3.1 Introduction

This chapter presents the experimental work done on investigating the spread

of a radial intrusion created from a forced turbulent plume in a uniformly

stratified fluid. As the plume first hits its neutral buoyancy level, it over-

shoots this level behaving like a negatively buoyant fountain. It then stops at

its maximum penetration depth as its mean momentum flux, hence, its ver-

tical velocity, goes to zero. The fluid then collapses and ultimately spreads

radially at its neutral buoyancy level. In this chapter we seek to extend our

understanding of the dynamics of turbulent plumes in uniform stratification

through measurements of the maximum depth, Zm, the spreading depth, Zs,

and the rate of spread of the radial intrusion front in the buoyancy-inertia

regime. Further analysis on the intrusion thickness as a function of radius

and time, h(r, t) will also be discussed. Besides a detailed explanation on the

experimental design and setup is outlined in the following section.
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One of the earliest studies was performed by Morton et al. (1956), who

conducted a series of laboratory experiments to derive the equations of the

momentum, mass and energy fluxes that predicted the evolution of a buoyant

plume. They also theoretically showed the dependence of the source momen-

tum, volume and buoyancy fluxes on the plume maximum rise height in a

uniformly stratified fluid as stratification becomes important.

Turner (1966) showed the interaction of the upward and downward flows

of the plume such that it reduces the maximum height, Zm, to a smaller value

after some time, t. Using dimensional arguments Zs was used to develop a

relationship between the momentum and buoyancy fluxes at the source.

Maxworthy (1972) also performed one of the earliest studies to investi-

gate the spread of an intrusion emanating from a jet in a stratified ambient

fluid. He theoretically derived the equations to predict the radial spread of

an intrusion as a function of time (see Table 3.2) then conducted a series of

experiments for comparison.

Experimental studies were also conducted on fountains in uniformly strat-

ified ambient fluid by Bloomfield and Kerr (1998). They investigated the

initial height also referred to as the maximum penetration height, the final

height also called the steady state height and spread height of a fountain by

showing their dependence upon the source momentum, volume and buoyancy

fluxes when stratification is critical. This extended the work done by Turner

(1966).

One major concern was to determine the power law relationship in the

form Rf ∼ tP that correctly predicts the intrusion radial spread in time in

the buoyancy-inertia regime created as the plume collapses and spreads. The

power, P, has varied for different studies as shown in Table 3.2 below. Kotso-

vinos (2000) resolved this issue through a series of experiments used to charac-
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terize the radial spread of the intrusion into four distinct regimes: the radial

jet regime, the radial momentum flux regime, the buoyancy-inertia regime

and the viscous-inertia regime. These regimes were distinguished based upon

the magnitude of the forces that act on the intrusion as it propagates and

using different scaling analysis.

In Section 3.2 we explicitly discuss the laboratory experimental set-up

and analysis of the current research. This section outlines the experimental

design and techniques used to qualitatively analysis the experiments. In

Section 3.2.4 we also discuss the qualitative and quantitative observations

and analysis from the experiments.

3.2 Experimental Setup & Analysis Methods

3.2.1 Experimental Setup

Laboratory experiments were conducted to gain insight into the spreading

of an intrusion at its neutral buoyancy level resulting from an axisymmetric

buoyant plume in a uniformly stratified ambient. Experiments were con-

ducted in one of two acrylic tanks: a cubical tank measuring 39.50 cm on

each side and a wider tank measuring 120.00 cm long by 120.00 cm wide by

29.50 cm high. In the cubical tank the radial spreading intrusion created

spread over a short distance but in the wider tank the plume spread over

large vertical distances up to 40 cm from the plume centreline at the neutral

buoyancy level. Hence, for all experiments the intrusion spread within the

buoyancy-inertia regime was observed.

In both cases, the plume was injected downward into the centre of the

tank, and the ambient stratification and source flow rate were established to

ensure the plume did not impact the bottom of the tank. After reaching its
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maximum depth, Zm, it falls back to Zs and intrudes radially outward at its

neutral buoyancy level.
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Figure 3.1: Profiles of a) density with corresponding b) stratification of N "
1.42 s−1 for an experiment conducted in the wide tank.
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3.2.2 Density Measurements

A uniformly stratified ambient fluid was created using the double bucket tech-

nique (Oster, 1965). The total ambient depth was HT " 30 cm and 20 cm in

the cubical and wide tanks respectively. The density profile of the ambient

fluid created in the tank was recorded by taking samples at 5 cm intervals and

measured their densities with an Anton Paar DMA 4500 Densitometer that

measured the salt content of the fluid. In some experiments a traversing con-

ductivity probe (Precision Measurement Engineering MSCTI) mounted onto

a vertical traverse was also used to measure the density profile of the ambi-

ent and the density profile across the spreading intrusion at a fixed radius

far from the plume centerline. The measured background density at corre-

sponding heights confirmed a linear density profile for all experiments. An

example is shown in Figure 3.1(a) with its corresponding stratification pro-

file (b). The buoyancy frequency, N , characterized the uniform stratification

with N ranging from 0.70s−1 to 1.50s−1 in all our experiments.

The density of the plume at the source was established through the ad-

dition of salt to 3−4L of water in a uniformly mixed reservoir. In most

experiments, the reservoir fluid was then dyed with red or blue food coloring.

The dye used did not change the density of the plume fluid but served to

improve the contrast of images recorded from the experiment by the digi-

tal video camera. The resulting density of the source fluid, ρ0, ranged from

1.01±10−5 g/cm3 to 1.14±10−5 g/cm3, as measured by the Anton Paar DMA

4500 Densitometer.

3.2.3 Other Measured Source Conditions

The fluid was injected vertically downwards into the tank through one of two

nozzles with the opening 0.50 cm below the surface of the ambient fluid. The
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Figure 3.2: Experimental set-up and definition of parameters .

small nozzle of radius b0=0.10 cm, was fitted with a 0.05 cm mesh attached

horizontally across the opening. The larger nozzle, of radius, b0=0.28 cm,

was fitted with six cross-wires spanning its opening. The mesh and cross-

wires ensured that the flow leaving the nozzle was turbulent. For all our

experiments, the Reynolds number of such flows at the nozzle depth ranged

from Re0=387 to Re0=1878. Such high Reynolds number flow have vertical

motion that exceeds the effects of viscosity as the fluid falls to a relatively

large vertical distance in the ambient fluid as shown in our experiments.

Figure 3.3 shows an example of a typical experiment conducted in the wide

tank.

Faster flow rates were achieved with the larger nozzle as the smaller nozzle

only produced flow rate, Q0 ! 6 cm3/s. The Froude number ranged from

Fr0=5 to Fr0=156 for all our experiments.

Most experiments injected fluid from the reservoir through a centrifugal

salt-water pump (HYDOR 200) with unimpeded flow rate. The actual flow

rate through the nozzle was controlled by adjusting a clamp. The flow rate

was measured by a flow meter (Muis Controls Ltd., P24/1-044-40C), and the
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Figure 3.3: Side-view snapshot of an experiment performed in the wide tank
with N=1.40 s−1, ρ0=1.020 g/cm3, Q0=7.4 cm3/s and b0=0.28 cm at times,

t=90 s.

desired flow rate through the nozzle was controlled by adjustment of the flow

meter within the first 3−5 s of an experiment. In our experiments, the flow

rate, Qo, through the nozzle opening ranged from 3 cm3/s to 12 cm3/s.

Beside and behind the acrylic tank walls fluorescent light sources were

positioned to illuminate the tank interior. White plastic sheets were placed

onto the outer walls of the tank to diffuse the incoming fluorescent light.

A side-view of the flow evolution was recorded by a digital video camera

(Panasonic HDC HS250) that was positioned at Lc∼3m from the front wall

of the tank with the lens approximately at the vertical level of the radially

spreading intrusion. A still digital camera also recorded snapshots of the flow

and intrusion cross-section seen through the top of the tank, as shown in

Figure 3.6. Each experiment lasted between 80 s to 290 s.

At the end of each experiment a square grid was positioned horizontally

and vertically inside the tank so that the camera could record known lengths

for the subsequent digital processing.

The three important parameters that were controlled in each experiment

giving the source conditions of the plume are the flow rate, Q0, the ambient

density, ρ̄(z), and the source fluid density, ρ0, inside the reservoir as shown in

Figure 3.2. The measured results from our experiments are shown in Table
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3.1. From these we found the source momentum flux, M0 (2.1), buoyancy

flux, F0, (2.2) and buoyancy frequency, N , (2.10) for each corresponding

experiment as shown in Table 3.1. A total of 22 experiments were performed

in both cubical and wide tanks used with one of the three parameters (Q0,

ρ̄(z) or ρ0) varied at a time.

3.2.4 Analysis Methods and Qualitative Results

In this section we present the analysis methods used to examine qualitatively

the laboratory experiments recorded by the digital video camera. Figures 3.5

and 3.6 show snapshots taken at different times and perspectives of a typical

experiment. As the plume initially moved downward away from the source,

it expanded due to turbulent entrainment (Figure 3.5a). As it moved fur-

ther away, it became negatively buoyant due to turbulent mixing, reached a

maximum depth and collapsed back upon itself. This collapsing fluid reached

its neutral buoyancy level (found at Zs where the buoyancy flux vanishes)

and then began to spread radially outwards (Figure 3.5b). The front of the

radially spreading intrusion advanced in time over the duration of the ex-

periment (Figure 3.5c). A top view of this experiment (Figure 3.6) showed

that the spreading was not axisymmetric as azimuthal instabilities developed

along the boundary of the intrusion front. These disturbances grow into

well defined eddies that became more evident as the intrusion front position

increases in time. Azimuthal instabilities occur as a consequence of the inter-

action between the radial spreading intrusion head height and the stratified

interface ahead of the intrusion front. As the vertical extent of the intrusion

head decreases with radial distance traveled it becomes comparable with the

stratified interface. Such lobate structures were also observed to develop in

the umbrella cloud emanating from the June 15, 1991, Mount Pinatubo erup-
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Table 3.1: Summary of the measured and computed data for all our experiments
where expt is the experiment number, ρ̄(0) [ g/cm3] is the ambient density at the
surface or nozzle depth, ρ̄(H) [ g/cm3] is the ambient density at the bottom of the
tank, ρ0 [ g/cm

3] is the source fluid, b0 [ cm] is the radius of either of the two nozzles
used, Q0 [ cm3/s] is the flow rate, M0 [ cm4/s2] the momentum flux, F0 [ cm4/s3]
the buoyancy flux, N [ s−1] the ambient stratification, Hp [ cm] the jet length and

σ the dimensionless parameter.

Measured parameters Calculated parameters

Source Conditions Plume Scales

Expt ρ̄(0) ρ̄(H) ρ0 b0 Q0 M0 F0 N Hp σ

1 1.01 1.05 1.10 0.1 3.4 256 278 1.08 3.83 0.99

2 1.01 1.05 1.14 0.1 3.7 303 477 1.12 3.32 0.51

3 1.01 1.05 1.14 0.1 4.6 468 559 1.14 4.25 0.91

4 1.01 1.05 1.14 0.1 3.7 303 469 1.11 3.35 0.51

5 1.01 1.05 1.14 0.1 3.7 303 469 1.13 3.35 0.53

6 1.01 1.05 1.14 0.1 3.7 303 461 1.11 3.38 0.53

7 1.01 1.05 1.10 0.1 5.9 770 482 1.12 6.66 3.20

8 1.01 1.05 1.07 0.28 7.6 243 408 1.4 3.05 0.69

9 1.01 1.05 1.07 0.28 11.6 566 641 1.5 4.59 1.76

10 1.01 1.05 1.07 0.28 9.20 356 517 1.41 3.61 0.94

11 1.02 1.05 1.07 0.28 9.20 356 459 1.38 3.83 1.15

12 1.02 1.04 1.07 0.28 7.20 218 343 1.34 3.07 0.73

13 1.01 1.05 1.07 0.28 9.80 404 517 1.47 3.97 1.32

14 1.01 1.05 1.07 0.28 8.80 326 10.3 1.44 24.0 2097

15 1.01 1.05 1.14 0.28 8.50 304 1054 1.4 2.24 0.16

16 1.01 1.05 1.03 0.28 8.40 297 158 1.42 5.69 7.12

17 1.01 1.05 1.02 0.28 7.40 231 40 1.4 9.34 64.8

18 1.01 1.03 1.02 0.28 7.40 231 42.4 1.17 9.08 40.4

19 1.00 1.01 1.01 0.28 8.20 283 51.4 0.75 9.63 17.1

20 1.01 1.02 1.01 0.28 8.00 269 38.2 0.89 10.8 39.4

21 1.00 1.01 1.01 0.28 3.40 49 16.3 0.75 4.56 5.01

22 1.01 1.03 1.01 0.1 3.20 43 13.7 0.84 4.54 6.97
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Figure 3.4: shows the virtual spread height, Zsv, and virtual maximum height,
Zmv with virtual origin for all our experiments

tion (Holasek et al., 1996b). The analysis of these instabilities lies beyond

the scope of this research. However, we found that analysis of the intrusion

at its neutral buoyancy level on either side of the central plume as recorded

by the side-view camera was sufficient to characterize the mean speed and

shape of the intrusion when compared with the corresponding top view of the

experiment.

From snapshots taken at times after the intrusion was fully-developed

(Figure 3.5c), we measured the intrusion spreading depth, Zs=5.0 (±0.2) cm,

and maximum plume depth, Zm=9.0 (±0.1) cm for the same experiment

shown in Figure 3.5. Assuming a linear spread with height of the forced

plume near the source with spreading rate (Lee and Chu, 2003) 0.23, its vir-

tual origin is situated zv " 1 cm above the nozzle opening position at Z=0.

Thus, we define the distance from the virtual origin to the intrusion and max-

imum plume depth to be Zsv=6.0 cm and Zmv=10.0 cm, respectively. Figure

3.4 shows the virtual spreading height, Zsv, and virtual maximum height, Zmv,

in our experiments.
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Figure 3.5: Snapshots of an experiment performed in the wide tank with
N=1.40 s−1, ρ0=1.020 g/cm3, Q0=7.4 cm3/s and b0=0.28 cm showing side-

views at times a) t=1 s, b) t=20 s and c) t=90 s.
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Figure 3.6: Snapshot of the same experiment shown in Figure 3.5 with
N=1.40 s−1, ρ0=1.020 g/cm3, Q0=7.4 cm3/s and b0=0.28 cm from top view

at t " 60 s.
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3.2.5 Intrusion Spreading Regimes

In general, the intrusion created from a forced turbulent plume in a uniformly

stratified ambient exhibits four distinct regimes (Chen, 1980; Zatsepin and

Shapiro, 1982; Kotsovinos, 2000; Lister and Kerr, 1989). Kotsovinos (2000)

characterized these regimes as the radial jet regime, the radial momentum flux

regime, the buoyancy-inertia regime and the viscous-inertia regime. These

regimes were distinguished based upon different scaling analysis and the mag-

nitude of the forces acting upon the intrusion as it propagates at its neutral

buoyancy level (Kotsovinos, 2000). In each regime, the radial spread as a

function of time was experimentally determined with evidence of factors that

may or may not contribute to its radial spread.

These flow regimes were observed in our experiments as the plume col-

lapses and spreads radially outwards forming an intrusive gravity current.

However, the focus was upon the intrusion spread in the buoyancy-inertia

regime. The application of our results to real volcanic eruptions spreading

in the stratosphere is particularly useful when the intrusion speed exceeds

stratospheric wind speed, and as the intrusion becomes unaffected by such

winds for spreading in this regime (Baines and Sparks, 2005). Thus the intru-

sion front is assumed to spread symmetrically in the buoyancy-inertia regime

(Baines and Sparks, 2005).

We also found the radius, R0 incident at the spreading depth, Zs, and

the radius at the start of the buoyancy-inertia regime, R1. The radial posi-

tion, R1, was difficult to define. Figure 3.7 illustrates these positions of the

intrusion spread in a uniformly stratified ambient fluid.
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Figure 3.7: Side-view of a forced plume spreading at its neutral buoyancy
level in uniformly stratified ambient. The radius incident at the spreading
depth is denoted by R0, the radius at the start of the buoyancy-inertia regime
is given by R1 and the position of the intrusion radial front position in time

is given by Rf all measured from the plume origin, O.

3.2.6 Radial distance (Rf) as a function of time (t)

This section describes the analysis technique used to obtain the intrusion

radial spread as function of time, Rf(t). The top-view snapshots of the intru-

sion spread were not always axisymmetric (see Figure 3.6), even though the

corresponding side-view snapshots of the intrusion spread seem symmetric as

shown in Figure 3.5. Nonetheless, from side-view snapshots of the intrusion

spread we were able to show the radial intrusion front position in time.

To measure the formation and radial spread of the intrusion over time, we

constructed horizontal time series taken at the spreading depth, Zs, as shown

in Figure 3.8. At early times shortly after the forced plume first passed

the level Zs, we identified the central plume radius, R0. In this experiment,

R0=1.0(±0.3) cm.

At later times the effects of azimuthal instabilities along the intrusion

front (e.g. see Figure 3.6) were evident in the horizontal time series as thin

regions of lower intensity light. The intensity variation was caused by the
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azimuthal instabilities along the intrusion front position. These intensity

variations and the difference between left- and right-propagating fronts were

used to estimate the error of the intrusion front position, Rf(t).
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Figure 3.8: Horizontal time series constructed from the experiment shown in
Figure 3.5 with the time evolution being examined along a horizontal slice

taken at the spreading level of the intrusion, z = Zs = 5 cm.

To aid in the determination of Rf(t), the intensity contrast between the

intrusion and ambient was enhanced. Using the image analysis software pro-

vided by Matlab, an averaging filter was used to smooth along the intrusion

front. By replacing each radial point, Rf, represented by a pixel with the

average of neighbouring pixel points at time, t, along the intrusion radial

spreading front position we obtained Rf(t). This increased the contrast of

the image. Contours were then matched to the enhanced image of the intru-

sion front position and these points were extracted to form Rf(t). The result

is shown in Figure 3.9a. This shows the intrusion front advanced radially

50



outward though at a slower speed at later times (t>15 s).

The advance of the front exhibited two distinct regimes of behaviour as

evident through the log-log plot shown in Figure 3.9b. These regimes are the

buoyancy-inertia regime and the viscous-inertia regime. The viscous-inertia

regime is first seen where the data points deviate from the slope as shown in

Figure 3.9b. As the intrusion front advances in time its head height decreases

and azimuthal instabilities grow, as a result viscosity becomes dominate and

the speed of the front decreases to satisfy the requirement of mass conser-

vation. Here R1 and t1 are the radius and corresponding time, respectively,

when the intrusion front first began to spread radially outward in the inertia-

buoyancy regime.

To determine R1, we assumed that∆Rf ≡ Rf−R1 versus∆t ≡ t−t1 should

follow a power law relationship for Rf " R1. Thus, we constructed a sequence

of log(Rf − R′) versus log(t − t′) plots, in which R′ ranged from R0 to 5R0

and t′ was defined implicitly by R′=Rf(t
′). To each plot the corresponding

best-fit line and corresponding correlation coefficient were computed. R1 was

chosen to be the minimum value of R′ for which the correlation coefficient,

C2
r , was largest, typically C2

r " 98%. That is, R1 and t1 are the smallest

values beyond which power-law behaviour was well-established. For the data

shown in Figure 3.9, we found R1 " 3.1 (±0.2) cm and t1 " 5.0 (±0.1) s.

In this, as in most experiments, we found that the front position obeys

a power law over tens of seconds. Explicitly, for the data in Figure 3.9, we

found Rf −R1 " 0.94 (±0.01) (t− t1)
0.780 (±0.004). The error in the exponent

was determined from the error of the best-fit line. However, azimuthal insta-

bility and differences in the power computed from the leftward and rightward

propagating fronts observed from the side-view of the intrusion resulted in a

larger error on the order of ±0.15 on the exponent.
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Figure 3.9: From the horizontal time series shown in Figure 3.8, plots of a)
the radial distance, Rf, of the intrusion front from the plume centerline as a
function of time, t, with t = 0 corresponding to the start of the experiment.
b) The corresponding log-log plot of the radial distance of the intrusion front
from its starting radius, R1, as a function of the time, t−t1, after the intrusion
first develops in the inertia-buoyancy regime. The best-fit line to the data up
to 10 s is shown on b) with the value and error in its slope given at the upper

left on b).
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In Figure 3.9, for t " 30 s, the front advanced at a slower rate as it spread

in the viscous-inertia regime. Even though we are not concerned here with

the rate of advance of the front in this regime, we do examine the structure

of the intrusion in both the buoyancy-inertia and viscous-inertia regimes.

3.2.7 Intrusion thickness

The aim of this section is to explain how we measured the variation of the

intrusion thickness as function of time, t, and position, r. Figures 3.10 and

3.11 show a snapshot with its corresponding schematic of the rightward prop-

agating intrusion front of the same experiment shown in Figure 3.9. Vertical

time series were constructed from a sequence of vertical slices taken through

successive side-view snapshots of the experiment at some radius, r and time,

t. We used vertical time series at r=R1 to determine the intrusion top-to-

bottom thickness, h1(t), over time at the location where the intrusion first

formed (see Figure 3.11).

The intrusion thickness, h1, at R1 in time is shown in Figure 3.12 as com-

puted for the experiment shown in Figure 3.5c. At early times for a short

period the height of the intrusion rapidly increased then levelled off and re-

mained constant with a mean value, h1 = 4.0(±0.2) cm, even as the intrusion

front advanced in the viscous-inertia regime far beyond the buoyancy-inertia

regime. This near-constant long-time value of h1 was observed in all our

experiments.

Finally, the thickness of the intrusion, h(r, t), as a function of radius, r,

and time, t, was computed by matching contours to side-view snapshots of the

leftward and rightward propagating intrusion front at different time intervals

as shown in Figures 3.5(b)-(c). Using measured values of hf and Rf, we are

able to demonstrate that the intrusion head adopts a self-similar structure
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Figure 3.10: Side-view snapshot of rightward propagating front with
N=1.40 s−1, ρ0=1.020 g/cm3, Q0=7.4 cm3/s and b0=0.28 cm at time t=90 s.

O

r

Rf(t)
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h1(R1, t1) h(r, t)

Figure 3.11: Side-view schematic of rightward propagating front shows intru-
sion thickness, h1 at position, R1 at the start of the buoyancy-inertia regime,
the intrusion thickness, h, measured at radial distance, r in time, t, and the

radial front position advancing in time, Rf(t).

that could follow a simple power law relationship. This will be discussed in

the following chapter.

3.3 Summary

In Section 3.2.6 we found the relationship between the radial distance trav-

elled by the intrusion front position in time as Rf − R1 " 0.94 (±0.01) (t −

t1)
0.780 (±0.004) for spread in the buoyancy-inertia regime. This result is consis-

tent with the experimental observations obtained qualitatively by Kotsovinos
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Figure 3.12: Plot of the intrusion thickness, h1, at radial distance R1 versus
time.

(2000) and Ansong and Sutherland (2010). This was also consistent with

the theory that requires a constant supply of source buoyancy flux instead

of volume flux to an intrusion spreading at its neutral buoyancy level in a

uniformly stratified ambient fluid.

Table 3.2 summarizes the theoretical and experimental power law rela-

tionships of the intrusion radial spread in the buoyancy-inertia regime of

eight different studies. Lemckert and Imberger (1993) argued that their ex-

perimental relationship, Rf ∼ t0.72(±0.01) was consistent with the theoretical

predictions of Chen (1980) disagreed with the predictions of Ivey and Blake

(1985) even though p = 0.72 is closer to the 3/4 power law relationship.

We observed the intrusion thickness, h1, at position, R1, when the intru-

sion is first observed in the buoyancy-inertia regime. Figure 3.12 is consistent

with observations for all our experiments which showed that the thickness, h1,

at R1 is constant in time even as the intrusion spreads in the viscous-inertia
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regime. This implies that the speed, u1 at R1, is constant. We found that

the speed, u1, computed from R1 at t1 ranged from 0.2 cm/s to 1.0 cm/s for

all experiments.
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Table 3.2: Summary of the power law relationships that give the intrusion rate of spread in the buoyancy-inertia regime as
R ∼ tP where p is the power or experimental exponent.

Researchers Assumptions Spreading Rate

Theoretical Prediction Chen (1980) Constant Volume Flux Rf ∼ t2/3

Theoretical Prediction Didden & Maxworthy (1982) Inertia balances Pressure Force Rf ∼ t3/4

Theoretical Prediction Ivey & Blake (1985) Constant Volume Flux Rf ∼ t1/2

Theoretical Prediction Rooney & Devenish (2013) Constant Buoyancy Flux Rf ∼ t3/4

Experimental Observation Lemckert & Imberger (1993) Constant Volume Flux Rf ∼ t0.72(±0.01)

Experimental Observation Kotsovinos (2000) Inertia balances Pressure Force Rf ∼ t0.75(±0.05)

Experimental Observation Ansong & Sutherland (2010) Constant Buoyancy Flux Rf ∼ t0.78(±0.02)

Experimental Observation Richards et al. (2014) Constant Buoyancy Flux Rf ∼ t0.75(±0.07)

Volcano Observation Holasek et al (1996) Constant Volume Flux Rf ∼ t0.65(±0.01)
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Chapter 4

Experiments: Quantitative

Results

4.1 Introduction

This chapter presents the results for the measured spreading depth, Zs, max-

imum depth, Zm, the intrusion radial spread in time, Rf(t) and thickness,

h(r, t). Through theory, experiments and numerical modelling, researchers

have studied the dependence of the source momentum, buoyancy and vol-

ume fluxes upon the maximum rise height of a jet, pure plume and foun-

tain in a uniformly stratified fluid (Morton et al., 1956; Turner, 1966; List,

1979; Bloomfield and Kerr, 1998, 1999; Devenish et al., 2010). But, few have

shown the dependence of these fluxes upon its spreading height (Bloomfield

and Kerr, 1998).

In Section 4.2, we discuss our experimental results obtained quantitatively

for the maximum and spreading depth of a forced plume with comparison to

the experiments of Morton et al. (1956); List (1979); Bloomfield and Kerr

(1998, 1999) and our corresponding theoretical power law relationships. Ad-
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ditional quantitative results are presented in Sections 4.3 and 4.4 on the

intrusion radial spread and thickness in the buoyancy-inertia regime.

4.2 Measured Maximum & Spreading Depths

This section presents the results of the measured maximum depth, Zm, and

spreading depth, Zs, for all our experiments. First, we examine the factors

that determine the maximum depth, Zm, and the spreading depth, Zs, of a

forced plume in a uniformly stratified ambient.

The maximum depth, Zm of a forced turbulent plume depends upon the

plume source conditions (M0 and F0) and the ambient stratification (N).

Hence, we expect the maximum depth, Zm to scale with the jet length, Hp,

and its ratio (Zm/Hp) to depend upon the upper and lower limits of σ as

shown in Figure 4.1.

For the large values of σ, a small number (two data points) of our exper-

iments give the power law relationship

Zm/Hp = [2.20(±0.01)]σ−0.25 (±0.01), for σ>50, (4.1)

consistent with the 1/4 power for momentum-dominated source conditions.

For the smaller values of σ, the best-fit line through our data shows the

power law relationship

Zm/Hp = [4.10(±0.08)]σ−0.37(±0.05), for σ < 50. (4.2)

This is consistent with the 3/8 exponent for buoyancy-dominated source and

the proportionality relationship (2.17) given by Caulfield and Woods (1995).
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Figure 4.1: The ratio of the maximum height, Zm, to the plume jet length, Hp,
plotted against σ for all our experiments. The dashed and solid lines represent
the best-fit lines computed through our experimental data for σ > 50 and

σ < 50, respectively.

From these relationships: (4.2) and (4.1), we found

Zm "





4.1(|F0|/N
3)

1/4
, for σ ! 50

2.2(|M0|/N
2)

1/4
, for σ " 50

, (4.3)

consistent with the results determined from the empirical relationship be-

tween the spreading and maximum depths given by (4.7), and (4.6).

To compare the coefficients of the maximum rise height found from our

experiments shown by (4.3) with those of Morton et al. (1956), their coeffi-

cients were 40% less than the value of Zm found in our experiments for both

upper and lower limits of σ as given by (4.3). Their coefficients differ from

ours because their source was not sufficiently turbulent to enhance mixing be-

tween the rising plume and the surrounding ambient. In their experiments,

this causes the equivalent plume rising to travel further upwards before its
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speed goes to zero, then stops at a maximum height, Zm, and collapses back

upon itself to its spreading depth, Zs.

We may further compare our experimental results with experiments exam-

ining the maximum rise heights of jets and pure plumes in stratified fluid. List

(1979) summarized the results from their experiments giving the respective

empirical predictions (recast in the notation of this thesis): Zm/Hp " 3.8σ−1/4

for σ ) 1 and Zm/Hp " 3.8σ−3/8 for σ ' 1. The constant of propor-

tionality of the maximum steady state, Zm, (3.8) is consistent with the co-

efficient 4.10(±0.08) of the maximum rise height in the lower limit of σ

(buoyancy-dominated) of our experiments but inconsistent with the coeffi-

cient 2.20(±0.01) for upper limit σ > 50. The large value may be attributed

to the relatively small number of experiments, crude measurement methods

and conversion of data to σ and Hp variables done by List (1979).

Because Zm depends upon the plume source conditions (M0 and F0) and

the ambient stratification, N , we expect Zs should likewise be scaled with

these parameters. We examine this dependency by plotting the ratio, Zs/Hp

(with Hp defined by (2.7)) against σ (defined by (2.12)) for all experiments.

The results are shown in Figure 4.2.

For large σ, the results show that Zs/Hp is related to σ through the power

law relationship

Zs/Hp = [1.45(±0.16)]σ−0.25 (±0.02), for σ>50, (4.4)

consistent with the theory for momentum-dominated source conditions. The

empirical result is consistent with the experiments of Bloomfield and Kerr

(1998) shown in Figure 4.2 for σ is large whether F0 is positive or negative.

For smaller σ, the best-fit line through our data gives the power law
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relationship

Zs/Hp = [2.73(±0.04)]σ−0.37(±0.01), for σ < 50. (4.5)

This is consistent with the predicted 3/8 exponent for buoyancy-dominated

source conditions. In Figure 4.2, the fit is remarkably good considering that

this prediction was strictly valid only in the limit, σ'1, in theory.

The experiments of Bloomfield and Kerr (1998, 2000) with σ<50 differ

significantly from ours because their source was negatively buoyant such that

the source fluid collapsed to the same horizontal level of the source. If there

was insufficient source momentum to allow the fountain to mix adequately

with the ambient fluid, then their results would give a relationship in the

lower σ range values.

Explicitly, using the relationships given by (4.4) and (4.5), we found

Zs "





2.73(|F0|/N
3)

1/4
, M0/F0 ! 7N−1

1.45(|M0|/N
2)

1/4
, M0/F0 " 7N−1

. (4.6)

respectively.

In Equations (4.6) and (4.3) the power laws are consistent with expecta-

tions from the theory based upon the asymptotic limits of M0N/F0 ) 1 and

' 1.

Generally, we find that Zs scales with Zm as shown in Figure 4.4 which

plots Zsv vs Zmv (the spreading and maximum depths with respect to its

virtual origin) for a wide range of experiments. The plume virtual origin is

situated zv ≈ 1 cm above the nozzle opening position at Z=0 for a downward

injection. Thus, we define the distance from the virtual origin to the intrusion

and maximum plume depth to be Zsv = Zs+zv and Zmv = Zm+zv, respectively.
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Figure 4.2: The ratio of spread height, Zs, to plume length scale, Hp plotted
against σ for all our experiments and the experiments of Bloomfield and Kerr
(1998), as indicated in the legend. The dashed and solid lines represent the
best-fit lines computed through our experimental data for σ > 50 and σ < 50,

respectively.

The slope of the best-fit line through the data implies that the intrusion

spreads at a depth,

Zsv " [0.66 (±0.01)] Zmv. (4.7)

In a small number of experiments we performed with σ>50 (open triangles

in Figure 4.4), we found a moderately smaller slope of 0.5, consistent with the

observations of Bloomfield and Kerr (1998) in their experiments of fountains

in uniformly stratified ambient fluid.

In Figure 4.3, the ratio of Zsv to Zmv is plotted against the source Froude

number, Fr0, for all σ. The mean of all the points were consistent with the

results shown in Figure 4.4 for both small and large σ values. For all our

experiments 5 ! Fr0 ! 156 with no obvious dependence on the ratio, Zs/Zm.
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Figure 4.3: The ratio of plume virtual spread height, Zsv, to virtual maximum
height, Zmv plotted against the source Froude number, Fr0 for all σ in our

experiments.

4.3 Measured Intrusion Radial Spread

We denote by R0 the radius of the incident plume at Zs. The radial distance

from the centerline of the plume that is identified with the start of the intru-

sion in the buoyancy-inertia regime is called R1. Then beyond a radius, Rv,

the advance of the intrusion is dominantly influenced by a balance of viscosity

and inertia.

In Figure 4.5 we plot the ratio of R1 to R0 for a range of experiments with

different σ. The plot shows no obvious dependence of R1/R0 upon whether

the source flow is buoyancy- or momentum-driven. An average of the data in

all experiments gives

R1 " [3.0 (±1.4)] R0. (4.8)

There is a lot of scatter in the data, in part as a consequence of errors in the
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Figure 4.4: The spread depth, Zsv, plotted against the maximum depth, Zmv,
of the fountain for experiments with σ < 50 (filled triangles) and σ > 50
(open triangles). Both depths are given with respect to the virtual origin of
the forced plume. The best-fit line passing through the origin for values with

σ < 50 is shown.

determination of R0 and the statistical analysis used to determine R1 (see

Section 3.2.6). Nonetheless, our experimental results show consistency with

the theoretical relationship given by Devenish and Rooney (2014).

Figure 4.6 shows the power law exponent, Pr, which determines the slope

of the front position versus time of the intrusion spreading in the inertia-

buoyancy regime. Explicitly, each point was computed from the slope of

the best-fit line through log-log plots of (Rf − R1)/R1 versus N(t − t1) (eg

see Figure 3.9). The value of the resulting power law exponent, Pr, varies

between 0.6 and 0.95, but shows no obvious dependence upon σ. Averaging

the results for all experiments gives Pr " 0.75(±0.07). The large error in the

exponent was dominated by statistical analysis used to determine R1. The

intercept of the best-fit line is used to find the nondimensional coefficient.

This value is found to scale approximately as LF = (F0/N
3)1/4 (= Hpσ

−3/8),
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Figure 4.5: The relative intrusion starting radius, R1/R0 versus σ. The
horizontal line shows the mean value for all σ. Typical error bars are indicated

in the boxed symbol to the upper-right of plot.

consistent with the scaling predicted by (2.27). Explicitly, we find

Rf −R1 " [0.33 (±0.03)]LF [N(t− t1)]
[0.75(±0.07)] (4.9)

In Figure 4.7 we plot the ratio of the measured and theoretical radius,

Rvm/Rvt at the start of the viscous-inertia regime for the range of σ values

obtained from our experiments. The theoretical radius at the start of the

viscous-inertia regime is Rvt = (Q3
0/Nν2)1/5 as shown in Appendix 2.4 follow-

ing the theoretical prediction given by Devenish and Rooney (2014). Figure

4.7 shows no obvious dependence of the ratio, Rvm/Rvt, upon σ and the data

points are scattered. But, the mean of all the data points gives

Rvm " [0.9 (±0.2)] Rvt (4.10)

which shows that the measured radius at the start of the viscous-inertia
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Figure 4.6: The best-fit power law exponent, Pr, for the intrusion front po-
sition versus time plotted versus σ. Explicitly, Pr appears in the relation
∆Rf ∝ ∆tPr with ∆Rf ≡ Rf − R1 and ∆t ≡ t − t1. A typical error bar is
indicated in the lower right-hand corner of the plot. The mean value of all

data is indicated by the horizontal line.

regime is consistent with the theory in (2.42) (Devenish and Rooney, 2014)

used to predict the starting radius, Rv. This theoretical derivation is outlined

in Appendix 2.4.

4.4 Measured Intrusion Thickness

For given R1 in each experiment, we measure the corresponding intrusion

thickness, h1, (h1(t)) at this location found to be constant in time. As in the

case shown in Figure 3.12, we find that h1 is approximately constant in time

shortly after the intrusion becomes established.

The values of h1 computed from a range of experiments are plotted in

Figure 4.8. Here, h1 is normalized by Hp and plotted against σ. The error

associated with h1/Hp is of the order 0.01, much smaller than the measured

values. The log-log plot clearly shows that the intrusion depth gets smaller
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Figure 4.7: The relative intrusion measured and theoretical starting radius,
Rvm/Rvt, in the viscous-inertia regime versus σ. The horizontal line shows the
mean value for all σ. Typical error bars are indicated in the boxed symbol to

the lower-right of plot.

with increasing σ. Explicitly, for σ<50, we find

h1 = Hp[1.36 (±0.06)] σ−0.30 (±0.02). (4.11)

The exponent is −0.30, is found by finding the best-fit line through all the

points. For σ'1, we expect the source momentum flux, M0, should not play a

role, and like Zsv, we expect h1, to scale as Hpσ
−3/8=(F0/N

3)1/4 independent

of M0. It may be that errors associated with the measurement of h1 could

explain the discrepancy. Indeed, the solid line of slope −3/8 in Figure 4.8

indicates that the value of h1 in experiments with low σ are not inconsistent

with the −3/8 power.

We now consider the shape of the intrusion. Figure 4.9a shows profiles of

the intrusion thickness, h(r; t), as a function of radial distance, r, determined

from side-view snapshots of the experiment shown in Figure 3.5. The profiles
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Figure 4.8: The intrusion thickness at R1 relative to Hp versus σ. The best-fit
line through all the points is shown.

are plotted only for times t=16, 24, 38, 48 s. Generally, we found that the

thickness of the intrusion decreased with increasing radius, but the thickness

at R1 changed little over time, consistent with Figure 4.9.

Having computed the values of h1 and R1, and knowing the front position

as a function of time, Rf(t), we define a rescaled nondimensional height by

h̃=h/h1 and a rescaled nondimensional radial coordinate by r̃=(Rf−r)/(Rf−

R1) as shown in Figures 4.9(b) and 4.10. The data shown in Figure 4.9 sug-

gests that the intrusion structure is self-similar, but with constant thickness,

h=h1, at r=R1.

Generally, we find that the rescaled profiles of h̃(r̃; t) computed for a wide

range of times collapse reasonably well onto a single curve. This is illustrated

in Figure 4.10, which shows the rescaled data from Figure 4.9b on a log-log

plot. The data collapses onto an almost straight line. A best-fit line through

the log-log plots of the four curves gives a power law of the form, h̃ ∝ r̃Ph ,

satisfying h̃(0)=0 and h̃(1)=1.
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Figure 4.9: a) Plot of the intrusion thickness, h, as a function of radial dis-
tance, r, for times t = 16, 24, 38, 48 s. b) Corresponding plot of the normalized
height, h̃ = h/h1 versus the normalized radius, r̃ = (Rf−r)/(Rf−R1). Results

are computed for the same experiment shown in Figure 3.5.

Figure 4.11 shows that the power law exponent, Ph, does not vary sig-

nificantly with σ. Its value computed for six different experiments with σ

ranging from 1 to 2100, is Ph " 0.55 (±0.03) with error computed from the
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shown in Figure 4.9(b). The solid diagonal line is the vertically offset best-fit

line through the four collapsed curves.

six data points showing the upper and lower ranges of Ph. These six experi-

ments were chosen based on their relatively small statistical error found from

corresponding data points of h̃ versus r̃ as shown in Figure 4.10.

Explicitly we find the relation

h

h1

∼
(

Rf−r

Rf−R1

)0.55(±0.03)

. (4.12)

This empirical result supports the theoretical assumption that the intru-

sion thickness as a function of radius may be represented by (2.29). However,

a consequence of this assumption, together with assumptions that the vol-

ume or buoyancy flux is constant, is that the intrusion front should advance

linearly in time near the source and as the square root of time in the far field

(2.36). With Ph " 0.55, the transition between these asymptotic regimes is
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Figure 4.11: Power law exponent, Ph, of rescaled intrusion height profile
determined in experiments with six values of σ.

predicted to occur at radius Rfc " 4.1R1 " 12R0 for R1=3R0.

In our experiments, the buoyancy-inertia regime was observed to extend

for R1 ! Rf ! 10Rfc (eg see Figure 3.9). In light of this observation and

the fact that the power law fits resulted in the exponent found in Figure 4.6,

it is still unclear that the intrusion front position truly advances as a 3/4

power of time in the buoyancy-inertia regime. Possibly as given by (2.36),

the intrusion front could advance more quickly at early times and more slowly

in the inertia-buoyancy regime at later times. But from the inherent noise

created from these experiments after analysis, this did not allow us to observe

such transition, if indeed it exists.
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Chapter 5

Applications

Environmental applications of forced turbulent plumes in uniformly strati-

fied ambient fluid include large volcanic eruptions spreading in stratosphere

of such is the June 15, 1991 Mount Pinatubo eruption and deep ocean oil

blowouts such as the April 20, 2010 Gulf of Mexico Deepwater Horizon oil

spill.

5.1 Application to Supervolcanoes

Despite the uncertainties in our experimental results, it is a useful exercise to

consider how our results apply to observed volcanic explosions that extend

well into the stratosphere and are not significantly affected by background

winds and the Earth’s rotational force for the first few hours of its radial

spread. A large volcanic plume can penetrate tens of kilometers into the

stratosphere (Koyaguchi and Tokuno, 1993; Koyaguchi, 1994; Holasek et al.,

1996b; Baines and Sparks, 2005). It then collapses and ultimately spreads

as an intrusion with thickness (Sparks et al., 1986; Baines and Sparks, 2005)

ranging from 1 km to 2 km. The umbrella clouds thickness over such rela-

tively small vertical distance in the stratosphere we can effectively apply the
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Boussinesq approximation.

5.1.1 Mount Pinatubo Eruption

In the extreme case of the June 15, 1991, Mount Pinatubo eruption, satel-

lite observations revealed (Holasek et al., 1996b) that the eruption column

extended upwards to a maximum height of Zm∼40 km. With the radius of

the eruption column at its source taken to be on the order b0=1km, the

virtual origin was estimated to be approximately 4 km below the surface (Ho-

lasek et al., 1996b). Thus, using (4.7), we estimate the intrusion should have

spread around 25 km altitude consistent with the model-predicted neutral

buoyancy height, Zs " 24 km (Baines and Sparks, 2005).

The momentum and buoyancy fluxes across the tropopause provide the

initial conditions for the plume entering the stratosphere (Ansong and Suther-

land, 2010). If we assume that the buoyancy flux dominates over the momen-

tum flux at the tropopause (near 16 km altitude), then taking N = 0.017 s−1

in the stratosphere (Holasek et al., 1996b) and using (4.6), we estimate the

buoyancy flux at the virtual origin to be F0 = 1.2 × 1011 m4/s3. Assum-

ing the stratification of the troposphere is negligible, this would also be the

buoyancy flux at the tropopause. If the momentum flux dominates, we find

M0 = 2.9 × 1013 m4/s2 consistent with predicted flux at the caldera of the

order 1014 m4/s2 (Holasek et al., 1996b). Typically in the stratosphere the

buoyancy frequency varies between an order of 10−2−10−3 s−1 (Holasek et al.,

1995). But during the Mount Pinatubo eruption the stratospheric strat-

ification was found within the ranges of 0.012 s−1 and 0.017 s−1 (Holasek

et al., 1995). Between this variation the momentum flux is still of the order

1013 m4/s2.

Assuming the buoyancy flux is negligible, this would also be the momen-
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tum flux at the tropopause. Below we will see that observations of the intru-

sion speed and thickness, imply that the eruption was, in fact, momentum-

dominated at the tropopause.

5.1.2 Radial Spreading Umbrella Cloud

The umbrella cloud emanating from the Mount Pinatubo eruption was ob-

served to propagate radially away at a speed as fast as u1 " 20 m/s near

the start of the inertia-buoyancy regime (Holasek et al., 1996b). This sur-

passed the local stratospheric wind speeds, so that ambient winds did not

significantly affect the intrusion evolution at least during the early stages of

its propagation in the buoyancy-inertia regime. Indeed, the spread was ob-

served to be symmetrical about the eruption column for the first 4-5 hours

over which time it spreads radially 300 km from the source (Holasek et al.,

1996b).

Taking N = 0.017 s−1 and the speed, uf = 20 m/s, of the intrusion front

in (2.18) (Holasek et al., 1996b), with Fr = 0.3 gives an estimate for the in-

trusion thickness of h1 " 4 km. This is consistent with the observed thickness

(Koyaguchi, 1994) that ranged between 3 km and 6 km.

The first satellite observation of the Pinatubo eruption was estimated to

be made 800 s after the initial explosion at 1341 (Holasek et al., 1996b). At

this time the mean radius of the umbrella cloud was approximately 30 km.

We take this as the value of R1 which, using (4.8), is consistent with the

estimated radius of the central eruption column, R0 " 10 km.

The volume flux at R1 is estimated to be Qi = 2πR1h1u1 " 1.5 ×

1010 m3/s, which is of the order 5×1010 m3/s estimated indirectly by observa-

tions from satellite images (Koyaguchi, 1994). Using (2.23), the radial buoy-

ancy flux associated with the intrusion is Fi = QiN
2h1 " 1.7 × 1010 m4/s3.
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Comparing these results with the above estimated values of F0 and M0 for

plumes dominated buoyancy-flux and momentum-flux respectively, we see

that F0 is only moderately larger than Fi. If the flow was buoyancy domi-

nated at the tropopause, we would expect significantly reduced buoyancy flux

associated with the intrusion: F0 ) Fi. Therefore, we expect that the plume

was momentum-dominated with M0 " 2.9 × 1013 m4/s2 at the tropopause,

situated at z " 16 km.

Observations of the Pinatubo plume spread (Holasek et al., 1996b) indi-

cate that the radius increased as t0.65(±0.01) for distances out to 600 km (see

Table 3.2). The power law is consistent with the box-model prediction (2.21)

assuming a constant volume flux, Qi. But, it differs from our experimen-

tal results that show on average the intrusion radius increases as t0.75(±0.07).

This may be an indication that the scatter in our estimate of the power law

is insufficient to state conclusively that the intrusion advance is closer to a

(buoyancy conserving) 3/4 power law instead of a (volume conserving) 2/3

power law. Given that the entrainment of ambient air into the Pinatubo

umbrella cloud was evident from photographs, it seems unlikely that this in-

trusion could be well-modelled as having a constant volume flux at radius,

R1. One reason for the discrepancy could be that R1 (and t1) were incorrectly

estimated from satellite observations. Alternately, it may be that particles in

the flow subsequently alter the buoyancy flux within the umbrella cloud.

The measured parameters (intrusion speed, radius, thickness) from our

experiments of forced turbulent plumes in uniform stratification are extremely

small when compared with the corresponding measured satellite data of Mount

Pinatubo volcanic eruption spreading in the stratosphere. To scale experi-

ments correctly with such real life occurrences, we used σ given by (2.12).

The experiments discussed explore both large and small values of σ covering
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a wide range of values from 1 to 2100. For the Mount Pinatubo eruption σ

was found to be approximately 18, hence, our experiments were suitable to

apply to the Mount Pinatubo eruption having known that our experiments

have covered this range of σ values.

The results of our experiments may be applicable to other volcanic erup-

tions spreading in the stratosphere upon meeting the following criteria:

• strong volcanic plumes that rise above the tropopause well into the

stratosphere

• collapses and spreads radially as an intrusion in the stratosphere

• eruption column spread within the first few hours is unaffected by Cori-

olis forces

• negligible wind advection during the period of the umbrella cloud spread

5.2 Application to Gulf of Mexico Oil Spill

We also consider the application of our results to the spreading of oil at its

some depth of such is the 2010 Deepwater Horizon blowout in the Gulf of

Mexico. Crudely modelling the source as jet with opening on the scale of

b0 = 0.1 m and volume flux 0.1 m3/s (about 55000 barrels per day), the

source momentum flux is of the order M0 ∼ 1 m4/s2. Further assuming the

stratification of the ocean at depth is of the order N ∼ 103 s−1, (4.6) predicts

a spreading height around Zs = 50 m above the source. In fact, observations

revealed that the oil from the plume spread laterally 200 − 500 m above

the source (Camilli et al., 2010; Adcroft et al., 2010). The discrepancy is

attributed to the multiphase dynamics (example gas bubbles, oil droplets,

gas hydrates) of the plume, which significantly change the buoyancy of deep
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water oil spills throughout the whole evolution of the rising jet, collapsing

fountain and spreading intrusion (Yapa and Zheng, 1997).
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Chapter 6

Summary and Conclusion

This research presented the characteristics of forced turbulent plumes in a

uniformly stratified ambient fluid with constant stratification. We have ex-

amined the spreading depth, Zs, the radial advance, Rf(t), and thickness,

h(r, t), of a radial intrusion resulting from the collapse of a forced plume at

its neutral buoyancy level. The motivation for this study has been to extend

the understanding of the dynamics of turbulent plumes rising and spreading

in the stratosphere. We have applied our results to the Mount Pinatubo vol-

canic eruption and extended this application towards the 2010 Gulf of Mexico

oil spill.

A section of this study was extended to predict the spread and maximum

heights given as a function of the ambient stratification, source momentum

and buoyancy fluxes of a forced turbulent plumes shown by (4.6) and (4.3)

respectively. The power laws of these equations follow the expectations from

the theory based upon the asymptotic limits of M0N/F0 ) 1 and ' 1.

The resulting intrusion thickness, h1, at R1 for all experiments was found

constant in time for spreading up to the viscous-inertia regime. In addition,

the overall thickness of the intrusion evolving in position and time (see Figure
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4.9) followed a self-similar shape predicted by (4.11). This does not follow

the box-model approach of shallow water theory which assumes the intrusion

with uniform thickness, h, that only evolves in time (Ungarish and Zemach,

2012; Ungarish, 2009).

In Chapter 2, Section 2.3.1, the theory predicts the intrusion radial front

position in time as Rf − R1 ∼ (t− t1)
2/3 assuming a constant source volume

flux. This theoretical prediction was not found consisted with the intru-

sion radial spread in time measured in our experiments. Instead, our results

showed consistency with the theory for 3/4 power law. This is also consistent

with other experiments (Didden and Maxworthy, 1982; Kotsovinos, 2000) and

theory that requires constant buoyancy flux instead of the volume flux of an

intrusion spreading in uniformly stratified fluid.

However, the self-similar shape of the intrusion shown by (4.12), together

with the observed restriction that the intrusion thickness is fixed in time at

its source, dictates according to (2.36), that the intrusion speed should first

advance linearly in time and then as the square-root of time. Given the power

law exponent determining the head shape was Ph " 0.55, the transition from

linear to square-root dependence is predicted to take place when the front

position is at Rf " 4R1. This transition position is in the middles of the

range of Rf over which the power law exponent Pr was determined. And so,

it is unclear if the assumption whether the intrusion exhibited self-similar

behaviour resulting from a constant buoyancy flux as in the approximations

leading to (2.27), or whether it exhibited a transition from near-to-far plume

evolution as in (2.36).

Both predictions assumed a constant source buoyancy flux of the intrusion

at r = R1, but this may not be the case. The theories presented here have

ignored the modification of the ambient stratification and opposing velocities
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induced by the radially advancing intrusion. Such radially-inward motions

of enhanced stratification could modify the entrainment associated with the

fountain and so change the source conditions for the intrusion. Much larger

scale experiments and more sophisticated analyses are required to address

these issues.

Measurement of the density variation across the intrusion spread at radial

distance, R1, with corresponding thickness, h1, would provide additional in-

formation on the radial spread of the intrusion in time. Likewise, the density

variation at a point on position, R1 would also make sufficient justification on

what relationship correctly predicts the spread of the intrusion as the density

variation at this position is unknown but assumed to be constant in theory.

In our experiments we measured the density across the radial spreading

intrusion top-to-bottom height at radius, R1, using the traversing conductiv-

ity probe. The vibrations of the probe as it traverses through the spreading

intrusion did not allow us to observe whether the intrusion density at R1 was

the same as the ambient density at this height or there was a slight variation

in its density because of the inherent noise in the data. However, the density

profiles of the stationary ambient measured by the traversing conductivity

probe and densitometer were consistent for corresponding experiments.

6.1 Future Work

The experiments conducted for this research study did not involve many

complications of real volcanic explosion that extend into the stratosphere

such as the pressure of particles, wind shear, and temperature. But the

dynamics of radially spreading intrusions created from turbulent plumes in

stratified ambient fluids were adapted to gain meaningful insights. Further
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studies could be conducted to investigate particle-laden plumes and azimuthal

instability as outlined below.

6.1.1 Particle-Laden Plumes

The effects of particles in the rise and spread of turbulent plumes in stratified

fluid could provide useful information on the spread of volcanic plumes in the

stratosphere.

This has further application to supervolcanoes spreading in the strato-

sphere. Experiments could be done with fresh water fluid mixed with particles

injected vertically upwards into stratified fluid. Different size particles could

be used by analogy with the problem investigated by Carey et al. (1986) who

conducted experiments varying the flow rate, particle size and concentration.

The variation of particle size in each experiment of a forced plume rise

and spread could be conducted with all other parameters constant which

includes the particle concentration. From such experiments the maximum

penetration height, steady state height and spread height could be measured

with the variation of differently sized particles. Additionally, the radial spread

of the intrusion in time could be measured to understand quantitatively how

differently sized particles could affect the spread of such intrusions.

Alternatively, Zarrebini and Cardoso (2000) has conducted particle-laden

experiments from which they used sampling trays positions along the tank

floor to collect the particles falling out of the plume. From this the deposition

of particle fall-out at specific horizontal positions away from the source along

the floor of the tank was measured.

The deposition and concentration of particles as the plume rises and

spreads in a uniformly stratified ambient fluid could be measured at different

radial distances from the source along the tank floor similar to the prob-
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lem of Zarrebini and Cardoso (2000) but without the use of trays positioned

at specific distances away from the source. Such experiments would require

sophisticated laboratory design and equipment.

6.1.2 Azimuthal Instability of Forced Plumes in Strat-

ified Environments

The experimental results in Chapter 3, Figure 3.6 showed that the radial

spread of an intrusion as observed from a top view is not axisymmetric. As

a result, analysis of these experiments were done from side-view to reduce

the influence of thin regions of mixing shown as lighter intensity variations

along the edges of the intrusion front position created from the azimuthal

instabilities. Azimuthal instabilities occur as a consequence of the interaction

between the radial spreading intrusion head height and the stratified interface

ahead of the intrusion front. These disturbances became obvious as they grow

with the intrusion front position in time with spreading beyond the buoyancy-

inertia regime. As the vertical extent of the intrusion head decreases with

radial distance traveled it becomes comparable with the stratified interface.

Further experiments and analyses could be use to observe the growth of these

instabilities as the intrusion evolves in position and time.

Instability created in the radial spread of an intrusion emanating from the

origin of a forced plume at its neutral buoyancy level is not well understood

in this nature and may greatly impact the rate of spread of the intrusion front

position in time.
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Appendix A

Plumes in uniform ambient

fluids

A.1 Entrainment Hypothesis

The entrainment hypothesis Morton et al. (1956) postulates that the speed,

ue, of laterally entrained ambient fluid across the plume interface is propor-

tional to the plume vertical velocity, w(z),

ue = αw(z), (A.1)

where α is the coefficient of entrainment given by a constant value that is dif-

ferent for fountains, jet- and plume-like flows. Theoretical and experimental

studies have predicted that αf = 0.085 for fountains (Bloomfield and Kerr,

1998), αj = 0.076 for jets (List, 1979), αp = 0.12 for plumes with top-hat

profile (List, 1982), but αp could vary between 0.10 (Baines, 1983) and 0.16

(Shabbir and George, 1994) where the 60% variation has been shown to have

an effect on its ability to predict the fluxes at any given height (Kaminski

and Carazzo, 2005).
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Figure A.1: Schematic diagram of fluid entrainment into the plume where b
is the plume radius.

From this hypothesis Morton et al. (1956) derived the equations for the

plume evolution from the laws of mass, momentum and energy conservation

using the top-hat profile. These equations are summarized and discussed in

the following sections.

A.2 Top-Hat Profile

The top-hat profile dictates that the velocity and density inside the plume

across its horizontal level is uniform/constant and zero outside:

w(r, z) =





w̄(z) for r ≤ b

0 for r > b
. (A.2)

g′(r, z) =





ḡ′(z) for r ≤ ıb

0 for r > ıb
. (A.3)

where w̄(z) and ḡ′(z) are the vertical velocity and density (ı ≈ 1) of equal

distribution inside the plume (Morton, 1959) (see Figure A.1).

For the velocity is constant inside the plume, the density is also constant.
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A.3 Volume Flux

A fluid of density, ρ, is injected vertically upwards from an effective point

source into a heavier surrounding ambient fluid, travels vertically upwards in

time, t, as its momentum and buoyancy fluxes decrease to zero. For this flow

the continuity equation is given by

∂ρ

∂t
= −∇ · (ρu), (A.4)

where ∇ is the operator and u = (u, v, w) is the velocity field. From the prod-

uct rule (identity) of a scalar and vector ρ and u, respectively, its divergence

is given by

∇ · (ρu) = ρ(∇ · u) + u · (∇ρ). (A.5)

Assume the flow is incompressible and the plume vertical motion is steady

or statistically independent of time, (A.4) is reduced to the non-divergent

velocity field,

∇ · u = 0. (A.6)

For the plume vertical structure is cylindrical in shape (Figure A.2), we

apply the Gauss’s (also called the Divergence) theorem that converts the

integral of the divergence (∇ ·u) over the plume volume into the flux integral

of u over the surfaces that bound the volume:

∫

V

(∇ · u)dV =

∮

S

u · n̂ds, (A.7)

where n̂ is a unit vector. In Figure A.2, the inward vertical flow and entrain-

ment along the sides are positive and in the opposite direction of n̂. But, the

total outward vertical flow is in the same direction of n̂. It follows that the
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Figure A.2: Schematic diagram of of plume with cylindrical shape.

total flux is given by the amount of fluid passing through all the surfaces that

bound the plume per unit time:

ue(2πb)dz = w(z + dz)(πb2)dz − w(z)(πb2)dz. (A.8)

Given that the rate of entrainment is ue = αw, (A.8) forms the volume flux,

d(wπb2)

dz
= 2παbw. (A.9)

A.4 Momentum Flux

Using the momentum conservation equation as

Du

Dt
=

∂u

∂t
+ u.∇u = − 1

ρ0
∇p+ g

∆ρ

ρ0
ẑ. (A.10)

Assume a steady incompressible flow within the boundary of the plume,

the momentum conservation equation is reduced to

u.∇u = − 1

ρ0
∇p+ g′ẑ (A.11)
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where g′ = g(∆ρ/ρ0) is the reduced gravity. The pressure is negligible given

that the vertical height over which the plume rises is significantly larger than

the plume width with high vertical motion along the plume centreline and

slower motion along the side, hence A.11 is reduced to

u.∇u = g′ẑ. (A.12)

Applying using incompressibility, the left-hand side becomes ∇.(uu) and

the Divergence theorem gives

∫

V

g′ẑdV =

∮

S

((uu) · n̂)ds. (A.13)

Taking the vertical component and integrating over a slab of depth, dz,

gives

d(πb2w2)

dz
= πb2g′. (A.14)

A.5 Buoyancy Flux

Using the conservation of internal energy equation as

Dρ

Dt
=

∂ρ

∂t
+∇ · (ρu) = −w

dρ̄(z)

dz
. (A.15)

where ρ is the total density (mean and perturbation) and ρ̄(z) is the ambient

density change with height. Assuming a steady incompressible flow inside the

plume, (A.15) becomes

∇ · u = −w

ρ

dρ̄(z)

dz
. (A.16)
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For the ambient stratification given by (2.10), we rewrite (A.16) as

∇ · u =
wN2

g′
. (A.17)

Multiple both sides of A.17 by the reduced gravity, g′, we obtained

∇ · (g′u) = wN2, (A.18)

where the density change between the plume and ambient varies position.

From Figure A.2, we apply the Divergence theorem to (A.17) as

∫

V

wN2dV =

∮

S

g′(u · n̂)ds, (A.19)

For the inward flows along the side and bottom surfaces are in the opposite

direction of n̂ and the outward flow is in the same direction as n̂, it follows

that

wN2(πb2dz) = −g′ue(2πbdz) + g′w(z + dz)(πb)− g′w(z)(πb2). (A.20)

where g′ is the reduced gravity. Rearranging (A.20) gives the buoyancy flux,

d(wg′πb2)

dz
= πwb2N2. (A.21)

Equations (A.9), (A.14) and (A.21) can be represented in terms of the

volume flux, Q = πwb2, momentum flux, M = πw2b2 and buoyancy flux,

F = πg′wb2 respectively by

dQ

dz
= 2απ1/2

√
M, (A.22)
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dM

dz
=

FQ

M
(A.23)

and

dF

dz
= QN2. (A.24)

The volume, momentum and buoyancy fluxes that determine the charac-

teristics of a turbulent forced plume are defined respectively by

Q = 2π

∫
∞

0

w̄rdr = πw̄b2, (A.25)

M = 2π

∫
∞

0

w̄2rdr = πw̄2b2 (A.26)

and

F = 2π

∫
∞

0

w̄g′rdr = πw̄g′b2. (A.27)

A.6 Gaussian Profile

The velocity and density profiles across the horizontal level of the plume is

Gaussian in shape and given respectively by

w(r, z) = wg(z)e
−( r

b
)
2

, (A.28)

and

g′(r, z) = g′g(z)e
−( r

λb
)
2

(A.29)

where b is the radius in the velocity and density profiles and λ is a constant

of the order 1 (assuming that plume spreads symmetrically) where λb forms

the characteristic radius in the density profile.
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Substituting (A.28) and (A.29) into (A.22)-(A.24) we obtain

d(πb2wg)

dz
= 2απw, (A.30)

d(1
2
πb2w2

g)

dz
= πg′gλ

2b2 (A.31)

and
d
(
πb2wgg

′

g

(
λ2

1+λ2

))

dz
= πb2wgN

2 (A.32)

which relate the fluxes to the Gaussian velocity and density profiles of the

plume.
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Appendix B

Scaling Analysis: spreading

rate of radial intrusion in

uniform stratification

A turbulent plume of density, ρ0, is created from the injection of a source

fluid with constant volume flux, Q0, into a uniformly stratified ambient fluid

of density, ρ00. The plume fluid will rise to a maximum height then collapses

axisymmetric to its neutral buoyancy level spreading radially outwards as an

intrusive gravity current of thickness, h(t), in time, t.

Assuming no entrainment across the thin interface between the radial

spreading intrusion and surrounding ambient. The conservation of volume

continuity equation becomes (Huppert, 1982)

Q0t ∼ h(t)Rf

2, (B.1)

where Rf is the radial distance travelled by the intrusion front and the intru-

sion thickness, h is constant in position but varies in time (Ungarish, 2009).

From the pressure distribution over the volume of the intrusion, the radial
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pressure gradient force acting on the limits that bound the intrusion in a box

(Didden and Maxworthy, 1982; Huppert, 1982)

∂p

∂r
= ∆ρg

∂h

∂r
, (B.2)

where p is the pressure, g is the gravitational acceleration, ∆ρ is the density

difference between the ambient and source fluids and r ≡ Rf. From this it

follows that the buoyancy force associated with the intrusion radial spread

at its neutral buoyancy level is given by the product of the pressure and cross

sectional area,

FB ∼ ∆ρgh2Rf. (B.3)

The horizontal momentum conservation equation for an intrusion spread in

the buoyancy-inertia regime is given by

∂p

∂r
= ρ00u

∂u

∂r
. (B.4)

where the intrusion front speed, uf = Rf/t. Assuming that the intrusion first

forms at the plume centreline, the inertial force associated with the spreading

intrusion is

FI ∼
ρ00hRf

3

t2
. (B.5)

Balancing Equations (B.3) and (B.5) and using (B.1), we found that

Rf ∼ (g′Q0)
1/4t3/4, (B.6)

gives the power law relationship for the radial spreading intrusion in the

buoyancy-inertia regime.

It follows from (2.18) that the Froude number is (Sutherland et al., 2007;
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Barenblatt, 1978)

Fr =
u

Nh
, (B.7)

where N is the buoyancy frequency, u is the front speed and h is the intrusion

thickness.

The law of volume conservation states that the supplied volume flow rate

to a radial intrusion emanating from the centreline of a plume is

Q = 2πRuh. (B.8)

From the combination of (B.7) and (B.8) (Devenish and Rooney, 2014)

showed that the intrusion front speed is given by

u =
dR

dt
=

(
FrNQ

2π

)
R−1/2, (B.9)

when spreading in the buoyancy-inertia regime where the stratification, vol-

ume flux and Froude number are constant. Assuming that the initial radial

position of the intrusion is first formed at the plume centreline it follows from

(B.9) that the intrusion spreads radially as

R =

(
3

2

)2/3 (
FrNQ

2π

)1/3

t2/3, (B.10)

that predicts the spread as a different power-law in the buoyancy-inertia

regime for R ) R1. From (B.10) the intrusion speed, u, can also be given by

u =

(
3

2

)
−1/3 (

FrNQ

2π

)1/3

t−1/3. (B.11)

The reduce gravity, g′ of a well mixed intrusion spreading in a stably stratified
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ambient is (Ungarish, 2006)

g′ =
Nh

2
. (B.12)

Combine (B.7) and (B.12) rewrites g′ as

g′ =
Nu

2Fr
, (B.13)

Assume a constant supply of buoyancy flux to the radial spreading intrusion

Equations (B.11) and (B.13) produce

R =

(
3

2

)3/4 (
Fr2g′Q

π

)1/4

t3/4, (B.14)

which also shows the power-law relationship of the radial spreading intrusion

in the buoyancy-inertia regime. Equations (B.6) and (B.14) use two different

assumptions, but predict intrusion spread in time as Rf ∼ t3/4.
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