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Abstract

For a pure bulk (unconfined) fluid, phase transition happens at the saturation
pressure. Incontrast, for a fluid inside a confinement of small size (commonly
below micrometers), vapour and liquid coexistence may happen at pressures other
than the saturation pressure; or an expected phase transition might be prevented
due to tight confinement of a specific geometry. Practical examples include fluids

confined in miniaturized systems, catalysts, membranes, and reservoir rocks.

This thesis makes a comparative study, using thermodynamic stability analysis, of
new phase formation out ofa confined fluid, for three different confinement
geometries of conical pit, plate—plate, and sphere—plate. Both the formation of
liquid out of vapour and vapour out of liquid are studied for each geometry.
Effects of different parameters: the equilibrium contact angle, the confinement
solid separation, and the sphere size for the sphere—plate case, are investigated.

The conclusions of this comparative study are extendable to other geometries.
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1. Introduction

For a pure fluid inside a container with walls that are distant from one another
(unconfined fluid), liquid—vapour equilibrium only happens at the saturation
pressure. At saturation pressure, both the liquid and the vapour phases are stable in
the bulk and are separated by a flat interface. At any pressure other than the
saturation pressure only one phase is stable in the bulk phase; i.e. the vapour phase
for pressures below the saturation pressure and the liquid phase for pressures above

the saturation pressure.

In contrast, phase behaviour of a fluid may be affected as a result of confinement.
At small—scale confinements of specific geometry, vapour and liquid phases may
coexist at stable equilibrium even at pressures other than the saturation pressure.
Also in very tight confinements, the predicted phase transition (from liquid to

vapour or vice versa) might not happen.

In this thesis for each geometry of interest, fluid inside a confinement can be placed
in one of four categories based on the initial phase type (liquid / vapour) and the
pressure of the confined fluid (above/below the saturation pressure). Therefore a
confined fluid is among one of these situations: @ confined vapour phase at
pressures below the saturation pressure, @ confined vapour phase at pressures

above the saturation pressure, € confined liquid phase at pressures below the



saturation pressure, or @ confined liquid phase at pressures above the saturation

pressure. Various phenomena are known to be produced by a confining geometry,

in each of the preceding situations.

Situation €): At pressures below the saturation pressure, vapour is the stable
phase in bulk (without confinement). If this vapour phase is confined by
wettable walls, some liquid phase can condense out of and coexist with this vapour
phase at pressures below the saturation pressure (although the liquid phase is not
stable in bulk, i.e. without confinement, at this pressure). Formation of liquid out of
a bulk vapour phase inside a confinement of wettable walls at pressures below the
saturation pressure is well known as capillary condensation *. A sketch of capillary
condensation is shown in Figure 1-1 for three different confining geometries of
interest. It is worth pointing out that wettable walls are made up ofa solid material

that results in the concave meniscus inside any confinement.

Liquic
Vapor

(b)

Figure 1-1 Schematic of a liquid bridge with aconcawe meniscus inside three different
confinement geometries: (a) inside a conical pit, (b) between two flat plates, and (c) between a
sphere and aflat plate.

Situation @: Tightly confined vapour inside a confinement with non-wettable

walls (solid material for which the contact angle is in the range of 90° to 180°)



might not change into liquid even though the vapour pressure is above the

saturation pressure, and the stable phase in bulk is liquid.

Situation @: A liquid phase at pressures below the saturation pressure and
confined with wettable walls, may or may not transform into vapour depending
on how tight the confinement is. This is interesting because at pressures below the

saturation pressure the stable phase in bulk is vapour, and not liquid.

Situation @: Liquid is the stable phase in bulk when the pressure is above the
saturation pressure. If this liquid is confined by non-wettable walls, some
vapour evaporation (with concave meniscus) and hence coexistence of liquid
and vapour may happen, even though the pressure is above the saturation

pressure. This phenomenon is called capillary evaporation *' 2.

These phenomena inside a confinement happen as a result of two factors: i) high
surface—to—volume ratio of the new born phase, ii) different interfacial tension of
solid material with liquid and vapour, which results in curved liquid—vapour

interface and hence in pressure difference across the interface °.

1.1. Confined fluids in applications
Confined fluid phenomena are of great practical importance inoil and gas,
chemical and pharmaceutical industries, many geophysical phenomena, and

increasingly fabrication and function of miniaturized system, among many others.



There are several cases where these phenomena are beneficially employed. Liquid
phase sintering and foam stabilizing with particles are industrial examples of
applying capillary condensation *. Capillary condensation has been employed for
separation purposes such as methanol- hydrogen separation in inorganic
membranes °. Also pore size distribution of porous materials such as mesoporous
molecular sieve (MMS) is primarily assessed based on adsorption isotherms of

capillary condensation ®.

On the other hand, there are many cases where confined fluids have unfavourable
results which are to be prevented. Adhesion problems happen, as a result of
capillary condensation, in miniaturized (<1mm) system components of micro- and
nano- electro- mechanical systems (MEMS and NEMS), telecommunications,
automotive industry, surgery, etc, both during fabrication and operation of the
system components ’. In brittle solids, capillary condensation has a consequence of
crack propagation 8. Both in storage and processing of powdered materials,

capillary condensation of water from relatively humid air cause some problems °.

Understanding the basics of confined fluid behaviour results in better design, either
to employ or prevent these phenomena. The next section reviews some of the

previous studies.

1.2. Models to describe confined fluids

Both applying and preventing these phenomena require a close study of the

phenomena and various parameters that are involved. Lord Kelvin (Thomson) was



the first who explained capillary condensation for the case of vapour—liquid

coexistence 2 /. Since then several studies have been performed.

Many experimental studies have been performed, mostly for capillary
condensation, to achieve a better understanding of confined fluid phenomena. For
example, atomic force microscopy (AFM) has been widely used, in which various
tip shapes and materials (with different wettability), and different separation
distances from the tip can be studied. AFM results showed that the capillary force
is sensitive to ambient humidity (relative vapour pressure, i.e. the ratio of vapour
pressure to the saturation pressure), and tip / particle wettability °. In several other
works, the formation or disappearance of liquid bridges as a result of a decrease or
an increase in separation distance of solid surfaces in the surface force apparatus

(SFA) has been studied experimentally 12,

Many theoretical models of confined fluid behaviour have been developed to
reduce the cost of trial and error (experiments) in design. Various existing models
can be categorized, as presented by Chau in his thesis ’, in three groups based on
the application scale: 1) Macroscopic models that consider phases to be uniform.
These models are valid down to a scale of several nanometres (approximately
5nm). 2) Molecular scale models which consider each particle of the fluid
individually. Molecular dynamics, Monte Carlo simulations, and Lattice models
are different methods under this category. Even with today’s fastest computers,
these models are only applicable to very small geometry problems (for particle

number of less than 10°, or equivalently over a scale of less than approximately 30



nm). 3) Mixed models as a compromise between microscopic and macroscopic
approaches, including Density Functional Theory. Although these methods demand
less computing time, they are still only applicable to small scales (less than 100

nm)’.

Up until now, macroscopic models have been employed more commonly due to the
wide range of size (from above approximately 5nm to several millimetres) they can

predict " at a “much reduced computational cost” °.

Most of such macroscopic modeling efforts investigate the phenomena from a
mechanical point of view. The focus is to develop some relation to calculate the
adhesion force between particles of different geometries as a result of the capillary
bridge (capillary neck) for capillary condensation, or capillary evaporation
phenomena. However most of these models are dedicated to capillary condensation

for various fundamental geometries, such as the gap between plate—plate °,

9,10,13,14 9,10, 13,14 10)
1

sphere—plate , cone—plate (also truncated cone—plate

13,14 9,14,15

cylinder—plate , Sphere—sphere and cone—cone * ** among many others.

Even in studies from the mechanical point of view with the focus on force
calculation, some subtle equilibrium thermodynamic assumptions are made. In
some of these studies, the exact shape of the meniscus of the new phase is
calculated (through the Kelvin equation, equation (2.20)) assuming perfect
thermodynamic equilibrium between the confined phase and the new phase that
forms out of the confined phase °. The results from equilibrium assumptions are in

good agreement with surface—force apparatus results, for example in atomic force

6



microscope (AFM) where the contact is typically between 0.1 to 1 second **. Many
others use the toroidal approximation for the shape of the bridge, as it was in good

agreement with the exact shape calculations °.

Another approach of modeling the confined fluid behaviour is thermodynamic
stability analysis. In this approach, first an appropriate free energy of the system is
determined, then stability of the new phase formation out ofa confined fluid is
investigated through the trend of the free energy vs. size of the new phase. It can be
determined whether the phase transition is possible, and if so whether the whole
initial phase turns into the new phase, or the initial and new phase can coexist at
equilibrium 618 . This approach has also been used to describe other surface
phenomena, such as the ease of heterogeneous nucleation on fluid surfaces,

compared to rigid surfaces °.

Fewer articles can be found using this approach; however the results of such

studies predict several observations and reveal the reason behind many phenomena:

Through such thermodynamic stability analysis, vapour formation and growth from
a liquid —gas solution in a system of constant mass and volume within bone cells
(modeled by a conical pit) is shown to be one potential reason of cell death after

decompression %°.

In some other studies, surface roughness in contact with a liquid—gas solution (with
gas concentration in the liquid being slightly greater than the equilibrium value) at

constant pressure and temperature and with system boundaries closed to mass



transfer was analysed with surface thermodynamic. There surface roughness was
represented by conical pits. It was found from thermodynamic stability analysis
that bubble nuclei (with convex meniscus, or equivalently confined ina wettable

wall) can form in a stable condition *°.

For the sphere—plate geometry, the liquid capillary bridge with concave meniscus
and only for a zero contact angle has been studied using thermodynamic stability
analysis by Elliott and Voitcu®®. The results of such study were able to predict the
diffuse liquid—vapour interface that has been previously observed at some certain
separation distance (breakage distance), above which liquid bridge formation is
thermodynamically impossible. For small separation distance (below the breakage
distance), they found that the free energy as a function of the size of the bridge has
two extrema, where the smaller one is a maximum point, corresponding to a
nucleation barrier and the larger one is a minimum point, corresponding to the
stable bridge. That study also noted the plate—plate case, as the extreme of the

sphere—plate in which the sphere radius is infinity 18 .

Also the equilibrium shape of the bridging bubble between two colloidal spheres of
identical size was found by minimization of the constrained Gibbs free energy
(obtained from statistical methods in some of Attard’s other article 2! ) and a
polynomial expansion describing the shape 2. Attard showed a microscopic
bridging bubble to be stable for hydrophobic spheres at small separation distances
22 He proposed the force as a result of the bridging bubble to be responsible for

the long—range attraction between hydrophobic surfaces in water. From this



thermodynamic analysis, the hysteresis in formation / disappearance of the bridging

bubble on the approach and separation of the spheres is also explained 2.

Capillary bridging with concave meniscus (for the case where a phase inside the
capillary completely wets the surfaces) was also studied from the thermodynamic
point of view with a different free energy than the Elliott and Voitcu article 8, for
either a liquid bridge or a vapour bridge inside the gap in the sphere—plate
geometry. Andrienko et al. considered the free energy of the system as the sum of
the bulk and the surface terms 2. Without further explanation, they then describe
each of these terms: The surface term is a result of the difference in surface
tensions of the interfaces between solid—new phase and solid—initial phase,
assuming the sharp interface limit (interface with no volume). The bulk term is due
to the difference in chemical potentials of the phase—separated components inside
the bridge (new phase) and in the initial bulk phase. Inthe first part of their article,
they considered a cylinder approximation for the bridge volume and surface area.
They got the same number of extrema (two extrema) in the excess free energy as
Elliott and Voitcu '8, and stated that the larger bridge corresponds to the minimum

(stable) point. They had also found that bridging (where the bridge had concave
meniscus) is impossible for distances greater than a certain amount ( % where

¥tV is the liquid—vapour interfacial tension and Ay is the difference in the chemical
potential of the phase—separated components inside the bridge and the bulk). They
also calculated the interaction force from the derivative of free energy with respect

to the separation distance of the sphere and the plate 2.



1.3. Scope of this thesis
This thesis is aimed to theoretically study new fluid phase formation out ofa

confined fluid with the thermodynamic stability analysis 1512

approach. The
problem is investigated under conditions of constant temperature and constant
pressure of the initial confined fluid, and zero gravity (or for negligible
gravitational effects). The systemis closed to mass transfer. The solid of the
confinement is considered to be made up of a non-volatile, non-dissolving
component and is also insoluble to the fluid. Solid surfaces are considered to be

ideal 22

, 1.e. smooth, rigid, homogenous, with no appreciable vapour pressure.
Assuming the fluid to be single component (pure), reduces the complexity of the
problem, for the purpose of making a comparative study for various geometries

with various affecting parameters.

While various confinement geometries have been investigated in literature (as
discussed in section 1.2), only a few works have performed a comparative study of
different geometries (examples of which can be found in references ° **). Such
comparative studies are especially rare for studies with the thermodynamic stability
approach. Inthis thesis confined fluids in three different confinement geometries of
conical pit (in chapter 4), the gap between two flat plates (in chapter 5), and the gap

between a sphere and a flat plate (in chapter 6), are fully investigated.

Each of these geometries is of interest on its own, as it represents some real case.
Conical pits are widely used to model surface roughness °. The plate—plate

geometry is considered representative of a slit 8. The sphere—plate geometry has
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been used in several modeling works such as for nanoscale particles interacting
with a surface in humid ambient conditions °, in an atomic force microscope

(AFM) and a surface force apparatus (SFA) 2 2.

To investigate new phase formation in each geometry, thermodynamic stability
analysis is performed: Initially it is considered that a new phase with a meniscus
shape of interest (concave or convex) is formed out ofa confined phase. Then

using surface thermodynamics, the free energy (thermodynamic potential) of such a
system is developed and analysed for a series of virtual states (sizes) of the system,
to figure out whether such new phase formation is favourable, and the system can

evolve to some stable equilibrium condition *°.

Effects of several different important parameters have been examined for each

geometry and in each chapter. These parameters include:

1) Effect of the equilibrium contact angle: The equilibrium contact angle may
change due to different reasons, such as different solid material, surface
manipulation, and adsorption at the solid—liquid interface 2°. The equilibrium
contact angle affects the thermodynamic stability of the system.

2) Geometrical characteristics of the confinement: Solid surface separation
distance (equivalent to the cone apex angle, and plate—plate or sphere—plate
separation distance) is an important factor to be considered in stability analysis
of the confined fluid.

In the sphere—plate geometry, sphere size is also another factor that has to be
considered.

11



Some pieces of this thesis reproduce the results of previous literature: Liquid
bridge formation with concave meniscus and contact angle equal to zero has been
investigated for sphere—plate and plate—plate geometries * as discussed in section
1.2. Also the effect of the separation distance for both of those geometries, and the

effect of the sphere size for sphere—plate case were explained in that study.

The contribution of this thesis is the comparative thermodynamic stability analysis
of confined fluid for different geometries. A broad picture of the confined fluid
behaviour and effect of important parameters is presented in the conclusion section
of each chapter and in the conclusion chapter (chapter 7). From this comparative
study, the behaviour of different other geometries can be predicted, even before the

full study of the case.

1.4. Outline of chapters

This thesis is organized in 7 chapters:

Chapter 2 provides a review of surface thermodynamics background for analysing
thermodynamic stability of new phase formation out of a confined fluid. The step
by step procedure of this chapter is applicable to a variety of multiphase systems

with any number of bulk phases and interfaces.

Chapter 3 presents the common topics of liquid phase formation out of confined
vapour, and vapour phase formation out of confined liquid, which are applicable to
any confinement, regardless of its geometry. These topics include negligibility of

gravitational effects, conditions for equilibrium (Table 3-4), the appropriate free

12



energy (Table 3-5) and free energy with respect to some reference (Table 3-6),
properties of fluid materials of interest, sign of the Kelvin radius according to
initial confined fluid pressure, and the newly introduced (to the author’s best
knowledge) concept of the transition contact angle. Each of the presented
equations and definitions are then applied through chapters 4 to 6 to find the

equilibrium state of confined fluids in various confinement geometries.

Ineach of chapters 4 to 6, four different possibilities are investigated: liquid
formation with a concave meniscus out of a confined vapour phase, liquid
formation with a convex meniscus out ofa confined vapour phase, vapour
formation with a concave meniscus out of a confined liquid phase, and vapour

formation with a convex meniscus out ofa confined liquid phase.

Chapter 4 develops stability analysis of four possible liquid—vapour systems inside
a conical pit. Effects of the equilibrium contact angle and the cone apex angle are

investigated for each of the four cases.

Chapter 5 studies thermodynamic stability of four possible liquid—vapour systems
inside a gap between two flat plates. Effects of the equilibrium contact angle and

the flat plate separation distance on the stability of each of the cases are presented.

Chapter 6 is about thermodynamic stability of four possible liquid—vapour systems
between a sphere and a flat plate. Effects of the equilibrium contact angle, the

separation distance between the sphere and the plate, and the sphere size are then

13



investigated for each of the four cases. Some of the modeling outputs of this

chapter are validated in comparison with some experimental results.

Chapter 7 summarizes the big picture of different geometries of chapters 4 to 6, and
the effect of different parameters (equilibrium contact angle, solid surface

separation distance, and the sphere size for the sphere—plate geometry).

In the whole thesis, Mathematica is used for computational purposes and graph
production. Through initial efforts using MATLAB, round—off errors brought about
some unexpected trends in the graphs. On the other hand run time of the MATLAB
program increased dramatically when parameters were changed to SYMBOLIC

and Variable precision arithmetic (VPA) was used. | have found Mathematica to be
more efficient (over MATLAB) in the problems of interest of this thesis where
scales are so small. Figures representing different geometries are drawn with
AutoCAD. All section headings, equations, figure numbers, and table numbers are
cross-referenced (and have hyperlink) throughout the text, so that Ctrl+click can be

used on the electronic version to jump to the targets.
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2. Review of Required Surface
Thermodynamics

The basic surface thermodynamics required for description of any new phase
formation is explained in this chapter. The explanations and equations are
presented in such a way as to be applicable to a variety of multiphase systems with
any number of bulk phases and interfaces as the constituent subsystems. However,
the concerns of this thesis are solid — liquid — vapour systems, which will be
discussed in chapter 3. This review follows the steps in Elliott’s class notes 2°
which in turn refer to Callen 2’ and Charles Ward’s class notes ¢, and was basically

introduced by Gibbs %°.

Any multiphase system is considered as a composite system, consisting ofa
number of constituent simple subsystems. A simple system means that it is large
enough for validity of macroscopic thermodynamics, is macroscopically
homogenous, isotropic and uncharged; and is not acted on by electric, magnetic, or

gravitational fields %’

A composite system is in equilibrium if each of its subsystems is internally in
equilibrium (no macroscopic, spontaneous changes happen, and all of the intensive
properties are spatially uniform in that simple subsystem) and there is no net

exchange of energy, mass or volume between the subsystems.
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Thermodynamic stability of the system in equilibrium is analyzed through
different steps in the following sections: Insections 2.1 and 2.2 the conditions for
the systemto be at equilibrium are determined. The procedure for finding the
appropriate free energy of the system through its evolution to equilibrium is
discussed in section 2.3. Section 2.4 is about the number and stability of the

equilibrium states and the size of the new born phase at each equilibrium state.

2.1. Conditions for equilibrium

For any composite system at equilibrium the variation of the extensive entropy of
the system plus reservoir is equal to zero. The composite system of concern is
made up of different simple subsystems, either bulk or interface. The entropy of the

composite system, S€, can therefore be described in terms of its subsystems.

Around each test system (all the phases and interfaces of concern), it is assumed
that a reservoir exists (denoted by superscript R) which by definition has constant
extensive properties, i.e. the reservoir is so large that its extensive parameters are
not altered after contact with the test system. At any equilibrium condition we

have:
dSR + ds€ = dsR+sta+stab ~0 2.1
a ab
where dS? is the variation of entropy for any bulk phase and dS2° for any interface.

For a bulk phase, the fundamental equation of thermodynamics in its differential

form, as mentioned in ?’, is given by:
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k
dU? = T2dS? — PAdV2 + )"y dN? (22)
i=1
Inequation (2.2), U, S, V, and N; are extensive properties of the system
representing internal energy, entropy, volume and number of moles of component
I. T, P, and u are intensive thermodynamic properties indicating temperature,

pressure and chemical potential. k denotes the total number of components in the

phase and the superscript a represents any bulk phase.

Also the fundamental equation in its differential form for the reservoir is:

k
dUR = TRASR — PRAVR+ " iR dNF (23)
i=1

For any interface denoted with superscript ab, the differential form of the

fundamental equation of thermodynamics is given by *8:

k
dyab = Tabgsab yabdAab + z u?b dNiab
=) (2.4)

=2 when ab is aflat interface

j
Where{ j=1 when ab is a curved interface

yrepresents interfacial tension and A denotes area of the interface.

In equation (2.4) the summation starts from j=2 for flat (planar) interfaces
according to “Gibbs dividing surface approximation” 2°. However, for curved

interfaces the summation in equation (2.4) starts from j=1 according to “Gibbs

17



surface of tension approximation”, i.e. all components are to be considered in the

summation 2°

As indicated by equation (2.2), three terms contribute to any differential change in
internal energy of a bulk phase: quasi—static heat flux (TdS), quasi—static expansion
work (—PdV) and quasi-static chemical work (32X, u; dN,). For interfaces as
shown in equation (2.4), the expansion work is replaced by the work of changing

the surface area (+ydA).

Note that equations (2.2) and (2.4) are property equations that are valid whether or
not the variation was caused by a quasi—static process. In other words, the internal
energy is a state function, rather thana path function, and only depends on the
initial and final points. Hence changes in the internal energy can always be

obtained fromequations (2.2) and (2.4).

Rearrangement of equation (2.2) results in equation (2.5) for dS of the bulk phase:

dSa:%dUa —dva Z“‘ dN? (2.5)

For interfaces, rearranging equation (2.4) gives equation (2.6) for dS:

k
1 P W b
dsab = a6 U ab_ Tab —5dA — Tlab dN?
1= (2.6)
{ j=2 when ab isa flat interface
ji=1 when ab isa curved interface
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Replacing the different terms of equation (2.1) by equations of the form of (2.5)

and (2.6) leads to:
—dUR+—dvR Z“l dNR

—dua+ —dva Z M e 2.7)

+2lr

*,
ab

Equation (2.7) gives the conditions for equilibrium when solved for any virtual

1 Yab uab
b b b| _
TEE(HJa _-TEBdAF -—:E:iﬁﬁng? =0

1=)

displacement around equilibrium, subject to constraints of the system. The
procedure to get the equilibrium condition is to substitute constraints on changes in
extensive properties (dU, dV, dN, dA) into equation (2.7) and rearrange the
resulting equation by collecting like terms so that one has an equation of the form
of coefficients multiplying independent variations. Each coefficient may then be set
to zero resulting in specific conditions for equilibrium. These equilibrium

conditions are discussed individually in the proceeding sections.

2.1.1. Thermal equilibrium: Temperature of bulk phases and
interfaces at equilibrium conditions

For a system that can exchange energy with the reservoir,

dUR + ZdUa+ZdUab —0 2.8)
a ab
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Substituting equation (2.8) as one of the constraints in equation (2.7) results in one
of the conditions for equilibrium being equality of temperature of all bulk phases

and interfaces with the reservoir temperature.
In the case of an isolated system,

dUuR =0 (2.9)

Hence the energy balance is:

ZdUa+ZdUab:0 (2.10)
a ab

Substituting equation (2.9) as one of the constraints in equation (2.7), leads to one
of the conditions for equilibrium being equality of temperature of all bulk phases

with all interfaces only, and not with the reservoir.

2.1.2. Chemical equilibrium: Chemical potential of
component i in bulk phases and interfaces at equilibrium
conditions

When component i can transfer between phases, and in the absence ofany chemical

reaction, the mole balance for component i is:

dNP + z dN? + Z dN? = 0 2.11)
a ab

According to equation (2.11) a differential change in the amount of moles of i in
one arbitrary phase (say phase b) is equal to negative changes of that component in
other phases and interfaces. Substituting equation (2.11) as a constraint in equation

(2.7) results in equality of chemical potential of component i in all of the involved

20



bulk phases and interfaces at thermodynamic equilibrium conditions. Inan open
system that can exchange mass with the reservoir, this equality also exists between

phases and interfaces and the reservoir.

For a non—volatile component i existing in a bulk phase b, no transfer of that
component to other bulk phases would happen, although the component can still

adsorb at interfaces in contact with the bulk phase, therefore:
dNb + Z dNEb = 0 2.12)
ab

Substituting equation (2.12) in equation (2.7) results in equality of chemical

potentials of component i in its initial bulk phase and associated interfaces only

(u? = u®).

Equation (2.12) reduces to dN? = 0 when all the involved interfaces are flat, and
component i is chosen as the arbitrary component that is absent at the interface in
the “Gibbs dividing surface approximation”. As a result, no equality of chemical

potential for that component is obtained as a condition for equilibrium.

2.1.3. Mechanical equilibrium: Laplace—Young equation
Both changes in the interfacial area (dA®) and changes in the volumes of the
comprising phases (dV? and dV°) are dependent on curvature of the involved
interface. When all these curvature dependant terms are substituted in equation
(2.7), they result in the famous Laplace—Young equation as one of the conditions

for equilibrium *8:
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Pa_szyab (Ri_l_Ri) (2-13)
1 2

where P? is the pressure of one side of the curvature, and P® is the pressure of the
other side of the curvature. Ry and R are the principal radii of curvature used to
describe a curved surface at any point. As described by Middleman®® and Hunter 3%,
atany point ofan arbitrary surface, there is a pair of orthogonal curves; each of
which can be approximated with the arc ofa circle if the curves are of differential

size. The radii of these two circular arcs are R; and Ro.

Figure 2-1 lllustration of principal radii of curvature for an arbitrary interface

This equation is also obtainable from a balance of the work done in forming the
additional amount of surface, with the work corresponding to the pressure

difference across the surface 2.
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According to equation (2.13), in contrast to flat surfaces, at equilibrium conditions
there is a pressure difference between the bulk phases on either side of a curved

interface.

The mean radius of curvature, Ry, is then defined in terms of the principal radii of

curvature as follows:

1 _ l(l 4 i) (2.14)
Rn 2R, 'R,

and the Laplace—Young equation (2.13) can be described in term of this mean

radius:

(2.15)

The principal radii of curvature can be positive or negative, depending on which
side of the interface the center of the circular arcs lies. Similarly to the presentation
of Middleman®, arbitrarily one side of the interface is chosen as the “inner” side
assuming a positive sign, and the other side is chosen as the “outer” side with a
negative sign. As aresult, AP = +P,,,., — Pouter and the radius of curvature has a
positive sign when the center of the corresponding circular arc is located on the
inner side and a negative sign when the center of the corresponding circular arc is

located on the outer side. The principal radii of curvature then would have the same

signs if both of the centers of their circular arcs are on the same side of the surface.

At equilibrium conditions in the absence of gravitational effects, as mentioned by

Hunter®!, AP (which is equal to P® — PP) must be constant over all parts of the
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interface; otherwise a fluid flow would occur. As a result, since y*? is also

constant, the summation of the reciprocals of the principal radii of curvature

(Ri + Ri) and hence Ry are to be constant according to equations (2.13) and (2.15).
1 2

Therefore the interface would be a surface of constant mean curvature. It should be

emphasized that this is only true in absence of any external fields such as gravity.

A spherical interface is an example of a surface with a constant mean curvature.
For a spherical surface, both of the principal radii of curvature are the same

(R, = R, = R,,) with the same sign. Hence there will be a pressure difference of

a

b ab
2y (= 2’};—) across the interface. Other examples of surfaces of constant
1 2

R

curvature include a cylindrical interface, where one of the radii is infinity. Also it is
worth mentioning that for a planar interface, R, = R, = coand P* — P? =0 in
the Laplace—Young equation. This implies that the pressure is the same on both
sides ofany flat interface and for a given temperature, phase equilibrium occurs at
a single pressure, known as the saturation pressure (P, ) for the case of a

liquid—vapor equilibrium.

2.1.4. Young equation

Depending on the system definition and constraints, some other equilibrium
equation might be obtained after substitution of surface areas and bulk phase
volume in terms of principal radii of curvature into equation (2.7) and solving the
equation. For example, for a three phase solid—liquid—vapour system, the Young

equation is obtained as one of the conditions for equilibrium *8:
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ySV — ySL = yLV co5 9 (2.16)

where 8 is the equilibrium contact angle; the angle that the liquid—vapour interface
makes with the solid surface, being measured from the liquid side, and in this work
will be assumed to be determined when the solid material is specified. The

superscripts SV, SL and LV indicate solid—vapour, solid—liquid, and liquid—vapour

respectively.

2.2.Merging conditions for equilibrium: The Kelvin
equation

Using some equations of state, the chemical potential of a specific component in
each bulk phase can be described with respect to some reference condition.
Equality of temperatures and chemical potentials of phases, as two of the
conditions for equilibrium, might be combined to give a new relation between
properties of the equation of state for each bulk phase, including pressure of each
phase. If then this new relation is combined with the Laplace—Young equation, it
leads to a formula for mean radius of curvature, based on pressure of one of the

phases and the properties of the reference condition.

When the phases of concern are liquid and vapour, the equation is called the Kelvin
equation (when the phases are solid and liquid it is called the Gibbs—Thomson
equation **) and the mean radius of curvature is the Kelvin radius, Rc. The Kelvin
radius is the mean radius of curvature at equilibrium conditions as determined from

the Kelvin equation.
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The Kelvin equation for a curved liquid—vapour interface, where both of the phases

are single component (pure) is developed as follows:

Assuming the vapour phase to be an ideal gas yields as its chemical potential *2:
=y PV 2.17
W (TY,PV) = w¥(TV,P, )+ RTVIn () (217)

where R is the universal gas constant which is equal to 8.314 $ and P is

saturation pressure of the fluid in bulk.

Assuming the liquid phase to be incompressible, yields the following chemical

potential for the liquid phase *8:

ub(TLPL) = uk (T, P,) + vk (PL - Py) (2.18)
where vZ is specific volume of the pure liquid at the saturation pressure. From
equality of temperature and chemical potential at equilibrium conditions, equating
equations (2.17) and (2.18) results in equation (2.19):

_ 124
v (P = P) = RTVIn(5-) (2.19)

The Laplace—Young equation (2.15) is another equilibrium condition, describing
the difference between PY and P" as a function of mean radius of curvature. Either
of PV or P- can be described in terms of the other from equation (2.19) and
combined with the Laplace—Young equation (2.15) to give a new equation for

calculating the mean radius of curvature.
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In the case of liquid formation, where the majority of the system is vapour (vapour
is the initial, i.e. mother phase), P" is described in terms of PV using equation
(2.19). Substituting P"- into equation (2.15) then yields the form of the Kelvin

equation given below 3:

ZYLV
R = Y (2.20)
v )

Rc inequation (2.20) is merely Ry at equilibrium conditions, i.e.:

1
c=1(1—+1) (2.21)
2\Rye " Ry

R

The signs of the principal radii of curvature are determined consistently according
to the discussion in section 2.1.3. Considering the pressure difference as PV — PL,
the radius has a positive sign if the center of the circular arc lies in the vapour

phase and a negative sign if the center lies in the liquid phase.

\4
Rearrangement of equation (2.20) in terms of :— (relative vapour phase pressure)

yields:
ZYLV
RC PV ﬁTV PV (222)
POO TT'—'l —~:;—ln ir

In the case of vapour formation out ofa bulk liquid phase, P" is described in terms

of P- using equation (2.19). After substitution of PY in terms of P" into equation
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(2.15), the Kelvin equation is as follows (similar to the Kelvin equation for the case

of bubble nucleation ina liquid—gas system 17 :

ZYLV

Re= oL (2.23)

PL— P exp (ﬁ (PL— Poo)>

L
Equivalently equation (2.23) may be restated in terms of ::— as:
ZYLV

R = o “Lp. P (2.24)

P, P~ exXp | RV (g- 1)

The Kelvin equation is derived from macroscopic thermodynamic equations.
However it has been shown by Powles * to be valid for microscopic drops above
the size of validity of homogenous thermodynamics. For a clean system with no
accumulation of contaminates, the Kelvin equation is obeyed by menisci with mean
radius as low as eight times the molecular diameters of the material of interest 2*
(for example down to 4 nm for cyclohexane as reported by Fisher and Israelachvili
24). Also bulk thermodynamics and therefore the Kelvin radius are reported to be
valid for mean radius of curvature greater than5 nm for water (equivalent to
relative vapour phase pressure of 0.9 when considering liquid drop formation) and

at least 1 nm for cyclohexane (equivalent to relative vapour phase pressure of0.1

when considering liquid drop formation) 3.

28



2.3. Thermodynamic potential (Free energy)

The next step in thermodynamic analysis of multiphase systems would be to
determine the appropriate thermodynamic potential (free energy) of the system. A
typical system may exchange energy, volume or mass with the reservoir (its

surroundings), which means

AUR = —AU
ANR = —AN; (2.25)
AVR = —AV

where AU, AN; , and AV denote changes in internal energy, number of molecules of

component i, and volume of the system.

Reservoir

TR, PR, u?

System

T

Interaction

Figure 2-2 A typical system having interaction with its surroundings
The Euler relation for the reservoir is °:
k

UR=TR5R_PRvR+Z 1RN1R (226)
i=1
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Both the system and the reservoir evolve to a new equilibrium state as a result of
the interaction between the systemand the reservoir. Acknowledging that by
definition the reservoir intensive properties are constant, in evolution to a new

equilibrium state the Euler relation leads to:

k

AURzTRASR—PRAVR+zuiRANiR (2.27)
i=1

where A denotes the difference of two equilibrium states before and after the

removal of the constraints. Substituting the relationships in (2.25) into equation

(2.27) results in equation (2.28):

k

0 =AU+ TRASR+ PRAV—ZuﬁANi (2.28)
i=1

Since the system plus reservoir are isolated, any spontaneous changes must cause

their combined entropy to increase. Hence as the system plus reservoir evolves to

equilibrium,

AS + ASR > 0 (2.29)

Substitution of equation (2.29) in equation (2.28) results in equation (2.30) *8:

k
02AU—TRAS+PRAV—ZM$ANi (2.30)

1=1

where A indicates a difference between final and initial conditions, and AU, AS,

AV, and AN; show the changes in the system properties (other than the reservoir).
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From the conditions for equilibrium that have been determined in section 2.1, the
reservoir properties of T%, PR, u¥ are to be replaced by subsystem properties
according to equilibrium conditions. According to the nature of the interactions
between the system and the reservoir, some of the A’s in equation (2.30) might be
eliminated. For example to derive the free energy for a simple system which
exchanges only energy and volume with the reservoir, and has a fixed number of
moles, i.e. the system does not exchange mass with the reservoir (AN; = 0),

equation (2.30) becomes:

[U =TS + PV]gpar — [U = TS + PV]ipjia < 0 (2.31)

In equation (2.31), the part that appears inside the brackets is the thermodynamic
potential function (free energy) for a closed simple system with walls that allow
energy transfer and pressure balance through changes in volume. As a result, both
the pressure and temperature are constant and imposed on the system by the
surroundings. This is the free energy for many systems in chemical engineering

where surface effects are negligible and is well known as the Gibbs free energy %'

G=U—-TS+PV (2.32)

Another well known free energy is the Helmholtz free energy, which is the free

energy ofa closed system having constant volume (AV = 0) with walls that allow

energy transport (hence constant temperature), but not mass transport (AN; = 0) %'

F=U-TS (2.33)
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Any spontaneous change in the system is possible only if it results in a negative
difference in the thermodynamic potential (free energy) according to equation
(2.31). Equilibrium states (unstable, metastable, or stable) occur at the conditions
under which equation (2.31) becomes zero. The stable equilibrium state occurs
when increase is the only possible change in the free energy around the equilibrium
state. The system is at its lowest free energy level (most stable) at the stable

equilibrium state.

The potential energy of a system consisting of multiple phases and interfaces can
be a combination of either of the famous free energies (Gibbs or Helmholtz) for
each phase or interface, plus some extra terms. Anexample of this will be

described in detail in chapter 3 for the solid—liquid—vapour systems of interest.

2.4. Equilibrium states and stability analysis

It is desirable to know the equilibrium size of a new phase that is formed. At
equilibrium conditions the extensive properties of the system take on values that
extremize the entropy of that system. As a result, the equilibrium states of the
system can be obtained from the extremum of the curve of the free—energy vs.
new—phase volume. Free energy, in the same way as any other energy, is only
definable with respect to some reference condition. For thermodynamic stability
analysis of new phase formation, it is convenient if the reference is considered to
be an equilibrium condition at which none of the new phase and its resulting

interfaces exist.
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A schematic diagram of a possible free energy vs. new phase volume is presented

in Figure 2-3:

Free
energy

Unstable

Unstable

Meta-Stable

/

Volume of
new phase

Stable

Figure 2-3 Schematic of a possible free energy of the system \s. volume of a new phase:
Equilibrium states are extrema of the plot where maximum points are unstable equilibria,
local minimum points are meta—stable and an absolute minimum is the stable condition.
(Adopted with permission from the Candidacy presentation of Fatemeh Eslami, December
2010)

A maximum in the curve corresponds to an unstable equilibrium condition, while
minimum points are respectively meta—stable or stable for a local or absolute
minimum of the curve. For different systems, the curve might contain all or none of
these types of equilibrium states. Anever—increasing curve indicates that new
phase formation is unfavourable at the conditions of the system. In the case of a
continously descending curve, the new phase will grow forever until all of the

materials are changed to the new phase form.
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Free—energy can also be plotted versus either of the radii of curvature (R; and Ry),
and it will result in a similar format of curve with the same number of equilibrium
states and identical free energy at the equilibrium states. It is worth mentioning that
at any of the equilibrium states the constant mean radius of curvature is equal to the

Kelvin radius, satisfying equation (2.21).

2.5.Summary

Well known surface thermodynamics background has been reviewed in this
chapter. Thermodynamic stability analysis of new phase formation has been
described. The first step is to find the equilibrium conditions of the systemand the
resultant equations, which was fully discussed in sections 2.1 and 2.2. In section
2.3, the second step, finding the appropriate free energy of the system, was
explained. Finally section 2.4 clarified how to determine the number and stability
of the equilibrium states (stable, unstable, or metastable) and the size of the new

born phase at each equilibrium state.

The method being described in this chapter is applicable to a variety of multiphase
systems with an arbitrary number of bulk phases and interfaces as the constituent

subsystems.
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3. Governing Equations and
Common Definitions for a
Liquid—Vapour System inside
a Confined Solid Geometry

3.1. Introduction

Two cases of new phase formation are investigated in this thesis: liquid phase
formation froma bulk vapour phase ina pore ofa solid material, and vapour phase
formation froma bulk liquid phase ina pore ofa solid material. In either case three

bulk phases of solid, liquid and vapour are involved.

Through the whole thesis, the liquid and the vapour phases are assumed to be pure,
consisting of component (1). The solid is also pure and made up ofa different
component (2), which is non—volatile, non—dissolving, and is insoluble to
component (1). The solid is ideal, which as defined by Ward and Neumann® | ie. it
Is smooth, rigid, homogeneous, and has no appreciable vapour pressure. The

reservoir is made up of any arbitrary component represented by res.
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Different solid geometries, which are representative of various so lid shapes in
reality, are shown in Figure 3-1. In panel (a) of this figure, liquid is formed out ofa
vapour phase inside a solid conical pit. Panels (b) and (c) illustrate liquid capillary
bridge formation between two solid particles, for various shapes of the particles.
The moving piston at the top of each figure schematically represents the fact that

the pressure of the bulk phase is constant and imposed by reservoir.

Solid
Liguid
I Wapor

(a) (b) (c)

Figure 3-1 Liquid formation with concavwe meniscus in different solid geometries, each to be
discussedin aseparate chapter: (a) inside a conical pit, (b) between two parallel solid pl ates,
and (c) between aspherical solid particle and a flat plate.

Although the volume of the new phase and the surface areas are functions of solid
geometry, some basic equations are common between all geometries. The focus of
this chapter is to develop general equations applicable for all cases mentioned
above, regardless of the solid geometry. These equations are later used in the

chapters specifically discussing the geometries.

Various details and governing equations common in all geometry types are
discussed in the following sections. In section 3.2 the condition under which
gravitational effects can be neglected are discussed. Section 3.3 explains conditions
for equilibrium, based on the constraints of the system. In section 3.4 the energy

that acts as the thermodynamic potential of the system through its evolution to
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equilibrium is determined. Section 3.5 introduces the reference state, in comparison
to which the thermodynamic potential (free energy) of the system can be
calculated. The properties of the materials of interest in this research are presented
in section 3.6. Section 3.7 clarifies how the sign of the mean radius of curvature of
the liquid—vapour interface at the equilibrium condition (the Kelvin radius)
changes as the bulk phase pressure changes from below the saturation pressure to
above the saturation pressure. At the end, in section 3.8, a definition of the
transition contact angle is introduced for the first time in the research related to

curved menisci (to the best of the writer’s literature review knowledge).

3.2. Negligibility of gravitational effects

In either case of liquid phase formation from a bulk vapour phase or vapour phase
formation froma bulk liquid phase, when the new phase has a relatively small size,
the gravitational force is negligible compared to the surface forces. The Bond
number, Bo, (also called the EGtvos number, Eo) is an indicative dimensionless
number of the relative importance of gravitational forces to surface forces.

_ Apgt? (3.1)
Y

Bo

where Ap is the difference in the density of the two bulk phases on either side of
the interface, g is standard gravity (9.8 ms 2), £ is the characteristic length of the
system and y is the surface tension between the new phase and the mother phase.

The density of the vapour phase is negligible in comparison to the density of the
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liquid phase; therefore it is a good approximation to replace Ap by the liquid

density. 3

The capillary length is then defined as a length at which the Bond number is one,

hence gravity and surface forces are comparable.

;
_ f_ (3.2)
fe Apg

The gravitational effects can be neglected for a new phase of size well below the

capillary length. *®

Table 3-1 shows the capillary length in millimetres for two different materials at

certain temperatures.

Table 3-1 Capillary length of H,O at 20°C and n—dodecane at 24°C

Material T (°C) kg y (MNm™) £ (mm)
p(=
m
H,O 20 998.04 72.75 2.72
n—dodecane |24 746.45 25.03 1.85

All the properties can be obtained from a physical chemistry handbook. The

properties in Table 3-1 were obtained from Perry and Green*’.

3.3. Finding the Conditions for Equilibrium of the
System

For either of liquid phase formation froma bulk vapour phase or vapour phase
formation froma bulk liquid phase, the equations that were developed in chapter 2

can be used if gravitational effects are negligible or under the assumption of no
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gravitational fields. According to equation (2.1) the conditions for equilibrium for a
liquid—vapour system confined to a solid geometry and surrounded by a reservoir

are to be obtained from:

dSR + dSS + dSL + dSV + dSSL + dSSV + dSLV = 0 3.3

where superscripts R, S, L, V, SL, SV, and LV denote reservoir, solid, liquid,

vapour, solid—liquid, solid—vapour, and liquid—vapour respectively.

In equation (3.3), dS for any bulk phase can be substituted by equation (2.5) and for
any interface by equation (2.6). Terms that are to be considered in the summation
in equation (2.6) depend on whether the interface is curved or flat. In both cases of
liquid formation or vapour formation on the solid surface, the liquid—vapour
interface is in general curved. Solid—liquid and solid—vapour interfaces may be

either curved or flat depending on the geometry of the solid.

For the curved solid—liquid and solid—vapour interfaces, all the components are
present at the solid—liquid and solid—vapour interfaces according to the “Gibbs
surface of tension” approximation. After substituting equation (2.5) for each bulk
phase and appropriate forms of equation (2.6) for curved solid—liquid,

solid—vapour, and liquid—vapour interfaces, equation (3.3) becomes:
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(1 . r, PR & Hres 1R 1 g PS o w5 s
_T_RdU +ﬁdV _ZFdNres + EdU +de —T—ngz

[ 1 pL pk 1 pv WY
+ |7z dUt + pdVh - ThdNp ] + [T—VdUV+T—VdVV—T—3,dN{’]

_1 SL

dUSL_Y_dASL_ﬂdNSL_“_ngNSL (3 4)
| TSL TSL TSL 1 TSL 2 :

[ 1 % SV 5%
= 4qusv _Y sv _ M SV _ K2 SV
+|7svdV TvdAY — 2o dNpY — Lo dN

[ 1 ,YLV H%V LV
+ mdULV—TTIdALV—mle ]= 0

Alternatively, for the flat solid—liquid and solid—vapour interfaces, it is assumed
that component (2) is chosen as the component that does not exist at flat
solid—liquid and solid—vapour interfaces according to the “Gibbs dividing surface”
approximation. After substituting equation (2.5) for each bulk phase, and
appropriate forms of equation (2.6) for flat solid—liquid and solid—vapour

interfaces, and for the curved liquid—vapour interface, equation (3.3) becomes:

R R S S
—dUR+ 2 dVR - Z%dNﬁes] + [%dUS + 2 dvS —%ng‘]

_1 PL l,lL 1 PV “’V
+ FdUL +FdVL —T—ileL ] + [T_VdUV+T_VdVV__T\1/ dNY]
[ 1 ySL uSL
+ _ﬁdUSL—ﬁdASL —ﬁdNISL (35)

[ 1 SV MSV
= ATISV Y gASV _ M1 NSV
+ |7 dUSY — [ dA%Y — S5 dN;

(1w Yy Yy
+mdU —TT,dA —mle =0
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3.3.1. Constraints of the system

The constraints of the system are:

e The systemexchanges energy with the reservoir, and the combination of the

system plus reservoir is isolated, hence:

dUR + dUS+ dUL 4 dUV + dUSL + dUSY + dULV = 0 (3.6)

From equation (3.6), one of the dU’s can be described in terms of the others.

e The systemcanexchange volume with the reservoir, due to the free movement

of the piston shown in Figure 3-1.

dVR + dvS + dvl+dvV=0 (3.7)

The solid surface is considered to be rigid (no deformation). The solid surface is

also assumed to be incompressible, i.e. no volume changes happen in the solid:
dvs =0 (3.8)

From equation (3.7), one of the dV’s can be described in terms of the others.

e The systemis closed and there is no mass exchange between the system and the

reservoir.

dNR =0 3.9

Component (1) can transfer between bulk phases and interfaces of the system,

except to the solid phase which is composed purely of component (2).
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dNE + dNY + dNJE + dNSY + dNEV = 0 (3.10)
Due to non—volatility, component (2) can only transfer from the solid phase to the

solid—liquid and solid—vapour interface.

In the case of curved solid interfaces, according to the “Gibbs surface of tension”
approximation, all components including component (2) are present at interface.
Hence:

dNS + dNSE+ dN3V =0 (3.11)

or equivalently

dNS = —dNSt — dNSY 3.12)

When the solid—liquid and the solid—vapour interfaces are flat, component (2) is
assumed not to be present at the interface according to the “Gibbs dividing surface”

approximation, and non—volatility of this component results in:

dNS =0 (3.13)

More convenient rearrangements of the above constraints for liquid phase

formation froma bulk vapour phase are shown in Table 3-2.
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Table 3-2 Constraints of the system for liquid phase formation from a bulk vapour phase.

Constraints of the system

Rearrangement of constraints for liquid phase formation
from a bulk vapour phase

Equation (3.6)

dUY = —dUR - dUS — dU — dUSL — dUSV — dULv

Equations (3.7) & (3.8)

dvV = —dvVR—dveL

Equation (3.10)

dN) = —dNL— dNSE — dNSY — dNLY

Curved solid interface (3.12)
Flat solid interface (3.13)

dN5 = —dN3L — dNSVY
dNS =0

For vapour phase formation froma bulk liquid phase, the convenient

rearrangements are as shown in Table 3-3.

Table 3-3 Constraints of the system for vapour phase formation from a bulk liquid phase.

Constraints of the system

Rearrangement of constraints for vapour phase formation
from a bulk liquid phase

Equation (3.6)

dUL = —dUR — dUS — dUV — dUSL — dUSY — duLv

Equations (3.7) & (3.8)

dvt = —dVR— dvV

Equation (3.10)

dNy = —dNy — dNF" — dN;Y — dN{Y

Curved solid interface (3.12)
Flat solid interface (3.13)

dNS = —dNSL — dNSVY
dNS =0

3.3.2. Conditions for equilibrium

Inorder to find the conditions for equilibrium, the constraints on the reservoir

(equation (3.9)) and on the system (equation (3.8), and either Table 3-2 or Table

3-3) are to be substituted into equation (3.4) or (3.5), depending on whether the

solid interfaces are curved or flat.
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3.3.2.1.Conditions for equilibrium in the case of liquid formation out of
a vapour phase

In the case of liquid formation froma bulk vapour phase, when the solid—liquid and
solid—vapour interfaces are curved, the constraints fromequations (3.8) and (3.9)
and Table 3-2 are inserted into equation (3.4) and the result after rearrangement

would be:

(- ) v+ (- ) v

+ [ - avs)

+ (G- Bt (BT ave— (- E)any]

[/ 1 1 4SL WSL WSL S
+|(5p— oy dUSt = L dast - (;—T—lv dNSt — (f2 — K2 ) angt

TSL TSL TSL

(3.14)

[ SV \% SV S
+| (- qv) dus - 20 A — (“L - “—1) NSV — (“L - %) ngV]

TSV TV TSV

[ LV \'4
+| (5~ 7v) AU = L7 4AY — (h—i—;) leLV] -0

TLV TLV TLV

For equation (3.14) to be true for any virtual displacement around the equilibrium,
the coefficients multiplying each of the independent variations (dUR, dVR, dUS,
dU*, dNE, dUSE, dNSE, dN3SE, dUSY, dNSY, dN5Y , dUY, and dNEV) are to be
zero. Therefore equations (3.15) to (3.18) are obtained as equilibrium conditions

for liquid formation out of a vapour phase:

TR=TS = TL = TV = TSL = TSV = TLV (3.15)
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ul= Y = St = SV = v (3.17)

15 =1k = w3 (3.18)

The remaining terms in equation (3.14) yield the following condition for

equilibrium:
pL PV ySL ,YSV YLV
(ﬁ‘?") dve —ﬁdASL —TT,dASV —TT,dALV =0 (3.19)

Due to equality of temperatures according to equation (3.15), equation (3.19) can

be simplified into:

(PL — PV)dVL — ySLdASL —ySVdASY — yLVdALY = 0 (3.20)

Equation (3.20) results in the Laplace—Young equation (2.14) and the Young
equation (2.16) when dV*, dASt, dASY, and dA™Y (which are interdependant) are
described in terms of the principal radii of curvature of the liquid—vapour interface
and the contact angle. The details of how Equation (3.20) leads to the
Laplace—Young equation (2.14) and the Young equation (2.16) will be shown for
the case of liquid formation with a concave meniscus inside a conical pit in chapter

4.

In the case of liquid formation froma bulk vapour phase with flat solid—liquid and
solid—vapour interfaces, a similar procedure is used. Constraints from equations
(3.8) and (3.9) and the equations from Table 3-2 are inserted into equation (3.5). As

aresult, for flat solid interfaces, equation (3.18) will be omitted as a condition for
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equilibrium, while the other equilibrium conditions are the same as those of the

curved case (Equations (3.15), (3.16), (3.17) and (3.20)).

3.3.2.2.Conditions for equilibrium in the case of vapour formation out
of a liquid phase

The equilibrium conditions for the case of vapour formation out of a liquid phase

with curved solid confinement surfaces, can be obtained from the same method as

in section 3.3.2.1 by substituting equations (3.8) and (3.9) and the equations from

Table 3-3 as constraints into equation (3.4), yielding:

(5 —5e) U™ + (5 = 55) V7|

TR TL

[/1 1 pV plL ook v
+ |G- ) auv+ (F-F)avy - (5 - i) any|
(3.21)
[ SL SL L SL S
+ _(L_L)dUsL_Y_dASL _ (L_%)lesL_ClL_%) ngL]

TSL TSL

i sv sv. L SVoous
+ | (759~ o) dUSY — TpdasV (PL - %) AN~ (“L - %> dNiw]

| TSV TL TSV TSV

[ LV LV L
+ (L_L)dULv_Y_dALV _ (h_h)dN{N]z 0

| TLV TL TLV TLV TL

For equation (3.21) to be true for any virtual displacement around the equilibrium,
the coefficients multiplying each of the independent variations (dUR, dVR, dUS,
duV,dNY, dUst, dN3t, dN3E, dUSY, ANV, dN3Y, dUY, and dNEY) are to be set
to zero. Hence equations (3.22) to (3.25) are obtained as equilibrium conditions for

liquid formation out ofa vapour phase:
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TR=TS = TL = TV = TSL — TSV — TLV (3.22)

PR — PL (323)
b=V = St = SV = Ly (3.24)
uS = st = sV (3.25)

The remaining terms in equation (3.21) yield the following condition for

equilibrium:

(pv _ pL)dVV — ySLAASL — ySVEASY — yLVGALY = (3.26)

If vapour formation out of the liquid phase happens at flat solid interfaces,

equations (3.8) and (3.9) along with the appropriate equations for flat solid

interfaces from Table 3-3 are to be inserted into equation (3.5). As a result, for flat

solid interfaces, equation (3.25) will not be included in the conditions for
equilibrium, while the other equilibrium conditions (equations (3.22), (3.23),

(3.24), and (3.27)) are the same as those of the curved case.

A summary of the conditions for equilibrium in both cases of liquid formation out

ofa bulk vapour phase, and vapour formation out of a bulk liquid phase are

presented in Table 3-4 parts (a) and (b) respectively.
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Table 3-4 Conditions for equilibrium for the cases of (a) liquid formation out of a bulk vapour
phase and (b) vapour formation out of a bulk liquid phase based on type of solid-liquid and
solid—vapour interfaces. Liquid and vapour phases are made up of component (1) and the
solid phase is purely component (2).

(a) Conditions for equilibrium for liquid formation out of a bulk vapour phase

TR=TS=TL=TV=TSL=TSV=TLV (3.15)
PR=pV (3.16)
C d SL and SV
Curved SLandSV. | b — = a8 = ¥ = ¥ @17
15 =1 =15 (3.18)
(PL _ pV)de — ySLAASL —ySVdASY — yLVJALY =0 (3.20)
TR=TS=TL=TV=TSL=TSV=TLV (3.15)
Flat SLand SV PR=PV (3.16)
interfaces === =Y (317
(PL _ PV)dVL _ ySLdASL _ ySVdASV _ yLVdALV =0 (3.20)

(b) Conditions for equilibrium for vapour formation out of a bulk liquid phase

TR=T5=TL =TV=TSL=TSV=TLV (322)
pR=pL (3.23)
Curved SL and SV
nterfaces = ==Y =y (3.24)
15 = 1k = w3 (3.25)

(PV _ PL)dVv _ ySLdASL _ ysvdAsv —yLVdALY = 0 (3.26)

TR=TS=TL =TV =TS =TSV =TLV (3.22)

R _— pL
Flat SLand SV PE=P (3.23)
interfaces === =Y (3.24)

(PV _ pL)dVv —ySLASL — ySVdASY — yLV(ALY = 0 (3.26)
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3.4.Free energy of the system

The next step is to find the thermodynamic potential (also called free energy) of the
system that acts as the motivation in any evolution toward equilibrium. The system
of interest is either liquid or vapour formation inside confined solid geometries
with temperature and outer phase pressure controlled by a reservoir. It should be
noted that while the pressure of the confined fluid is constant (controlled by the
reservoir), the pressure of the new phase being formed out of a confined fluid is
variable dependent onsize of that new phase. Hence Gibbs free energy cannot be a

potential function of such system for which only one pressure is constant.

For the system of our concern, where only components (1) and (2) exist, equation

(2.30) becomes:

0 > AU — TR AS + PRAV — uRAN; — pRAN, (3.27)

Each term of the above equation can be written using the constituent terms for the

system:
AU = AUS 4 AUL + AUV + AUSL 4 AUSY + AULY (3.28)
AS = ASS + ASL+ ASV + ASSL + ASSV + ASLY (3.29)

Considering the incompressibility of the solid phase (AVS = 0), and Gibbs

assumption of interfaces having no volume, then

AV = AVL 4+ AVV (3.30)

Besides the system does not exchange mass with the reservoir, that is:
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AN; =0 and AN,=0 (3.31)

Inserting equations (3.28) to (3.31) into equation (3.27) leads to the following:

0 > AUS + AUL + AUY + AUSL + AUSY 4+ AU
(3.32)

—TR (ASS + ASL + ASY + ASSL + ASSY + ASLV) + PR (AVE + AVY)

The reservoir properties of TR and P® are to be replaced according to the conditions
for equilibrium, which are different depending on whether a vapour phase or a

liquid phase is forming.

3.4.1. Free energy for liquid formation out of a vapor bulk
phase

In the case of liquid formation out of a bulk vapor phase, where P? = PY, equation

(3.32) is rearranged to

0 > [AUS — TS ASS] + [AUL — TL ASL] + [AUYV — TV ASY + PV AVY]

(3.33)
+[AUSL — TSL ASSL] + [AUSY — TSV ASSV] + [AUY — TLV ASLV] + PV AVE
According to the definitions of Helmholtz (F) and Gibbs (G) free energies
(equations (2.33) and (2.32)), equation (3.33) is equivalent to:
A(FS +FL + GV + FSL 4+ FSV 4+ FLV 4 PYVL) < 0 (3.34)
Therefore the free energy of the system in which a liquid phase is being formed out

of a vapor phase is

B = FS+ FL+ GV + FSL + FSV 4 FLV 4 PV VL (3.35)
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While the free energy of the whole system is B, each constituent subsystem has a
specific free energy based on its constraints. For example for the solid phase with
constant volume (dV°=0) and temperature, the Helmholtz free energy is
appropriate. The Gibbs free energy acts as the free energy of the vapor phase which
has imposed temperature and pressure (TV=TR, and PV=P®). For the liquid phase
where neither the volume nor the pressure is constant, some extra terms appear and
the free energy is not in one of those well-known formats. This potential function

in equation (3.35) has been presented previously 8.

The internal energies in equation (3.33) can be replaced with their equivalent forms

from the Euler relation, which for bulk phases (a) is

Ua=Tasa_paya4 Zk=1uia Nia (3.36)

1

and for interfaces (ab) is

yab = Tabgab +YabAab 4+ Zli<=]_ “?b nglb

(3.37)
h { j= when ab denotes a flat interface
where ji=1 when ab denotes a curved interface

As described in the previous section the liquid—vapor interface is curved and the
solid—liquid and the solid—vapor interfaces may be curved or flat depending on the

solid geometry.

Then the equivalent form of free energy for geometries with curved solid interfaces

is:
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B = [—PSVS + uSN5| + [-PLVE + pWENE] + [WWNY]
+ [ySLast + uSL NSL 4 uSL NSL] + [ySVasv + vava + HngZSV] (3.38)
+ [YLVALV+ H{JVN%V] +PpPVyL
Also the equivalent form of free energy for geometries with flat solid interfaces,
assuming that component (2) is chosen as the component not to exist at the solid
interfaces, is:
B = [—PSVS + uSNS|+ [—PLVL + pENE] + [WYNY]
+ [ySLASL 4 pSENSE] 4 [ySVASY 4 pSYNSY] (3.39)

+ [YLVALV_i_ M{JVN{N] + pPVyL

3.4.2. Free energy of vapor formation out of a bulk liquid
phase

When a vapor is formed out of a liquid phase, PR = P" and equation (3.32) is

rearranged to:

0> [AUS — TS ASS] + [AUL — TL ASL + PLAVL] + [AUY — TV ASY]

(3.40)
+[AUSL — TSL ASSL] + [AUSY — TSV ASSV] + [AUY — TV ASLV] + PLAVY
which is equivalent to:
A(FS + G+ FV + FSL 4+ FSV 4+ FLV 4 PLVY) < 0 (3.42)

Therefore the free energy of a system in which a liquid phase is being formed out

of a vapor phase is
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B =FS+ GL 4+ FV 4 FSL 4 FSV 4 FLV 4 pL YV (3.42)

A similar potential function has been obtained by Ward and Levarte*®for the case

of vapour nuclei in solid surfaces contacting a liquid-gas solution.

The internal energies in equation (3.33) can be replaced with their equivalent forms

from the Euler relation, according to equations (3.36) and (3.37).

Then the equivalent form of free energy for vapor phase formation for geometries

with curved solid interfaces is:

B = [—PSVS + iSN5 | + +[piNE] + [-PVVY + WVNY ]
+ [YSLASL + quNISL_l_ ugLNi%L]_,_ [YSVASV + uiVlev_l_ unggv] (3.43)
+ [,YLVALV+ H{JVN%V] +pPLVyV

Also the equivalent form of free energy for vapor formation for geometries with
flat solid interfaces, assuming that component (2) is chosen as the component not

to exist at solid interfaces, is:
B = [-PSVS + N5 |+ + [ NE] + [-PVVY + uiNY]
+ [yStast + NG| + [ySVASY + iV NGY] (3.44)

+ [YLVALV_l_ H%VN%V]+ pLyV
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The free energies for the cases of liquid formation out of a vapor phase and vapor
formation out ofa liquid phase are summarized in Table 3-5 parts (a) and (b)

respectively:
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Table 3-5 Free energy of the system for the cases of (a) liquid formation out of a bulk vapour
phase and (b) vapour formation out of a bulk liquid phase. Liquid and vapour phases are
made up of component (1) and the solid phase is purely component (2).

(a) Liquid formation out of a bulk vapour phase

Free energy B=FS5+Fl+GY +FSL + FSV + FLV 4 pVyL (3.35)

Equivalent form | B = [-PSVS + WSNS] + [-PLVE+ uiNE] + [/ NY]

of free energy for SLnSL ;. SLaSL SVNSY SVn SV
curved SL and SV + [YSLASL N NG ]+ [YSVASV TN+ Ny ]

interfaces +[yLvaLy + H%VN%V] +PVyL (3.38)

Equivalent form | B = [—PSVS + WSNS]+ [-PLVE + pupNE |+ [ NY]

of free energy for SL ASL SL~iSL SV ASV SV SV
flat SLand SV +[y A+ Ny ]+[y AT+ Ny ]

interfaces + [yLVALY 4 pbVNIYV] 4 PV VL (3.39)

(b) Vapour formation out of a bulk liquid phase

Free energy B=FS+Gl+FV+FSL4+FSV4 FLV 4 pLyV (3.42)

Equivalent form | B = [—PSVS + WSNS]+ [ufNF]+ [-PVVY + w/NY]

of free energy for SL ASL 4 , SLpSL 4, SLySL SVASV 4 SVNSV 4 SV SV
curved SL and SV + [yStast + U NFE + NG+ [ySVASY + VNGV + VNGV

interfaces + [yLvALY 4+ u{“VN{‘V] + PLyYV (3.43)

Equivalent form | B = [-PSVS + NS+ [ NE] + [-PYVY + u/NY ]

of free energy for SL ASL SL ~1SL SV ASV SV NSV
flat SLand SV + [yShash + N + [ySVASY + iV NGY ]

interfaces + [yLvALY 4+ “%VN{JV] + PLyV (3.44)

3.5. Reference state for free energy

Free energy can only be evaluated with respect to some reference state. It is
convenient to consider the reference state as a situation in which none of the new
phase has been formed. The reference state is denoted by subscript 0, and is

assumed to be an equilibrium state. °
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In the case of liquid formation out ofa vapor phase, the reference state has only
solid phase, vapor phase and the solid—vapor interface existing. The free energy of
the reference state for the case of a curved solid—vapor interface according to
equation (3.38) is then:

Bo = [-PSVS + 1S NS, | + [WVoNYo| + [y3VasY + uSUNSy +usyNSy|  (349)

Bo is literally the free energy of the equilibrium system when none of the new

phase (liquid) is formed.

The total number of moles of each of the components (1) and (2) are constant

according to constraints of the system, therefore:

Ny +N7§ = Np + Ny + NPV + N3V + NV (3.46)
Ngo Nsv NS + NSL 4+ NSV (3.47)
Also as another constraint, the surface area of the solid is constant:

ASY = ASL 4 ASV (3.48)

The solid is rigid (no deformation) and is incompressible, i.e. its volume is constant

as another constraint of the system:

VOS =VS (349)

Since By is the free energy of an equilibrium condition, for each component there
exists the equality of chemical potential between the involved phase and interface,

ie.
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Wo =1y (3.50)
3o = M3 (3.52)

The system is assumed to be large enough that the intensive properties in the solid
phase, vapor bulk phase and at the solid—vapor interface are not changed after the

formation of a small amount of liquid phase “°. Therefore we assume:

pS— pS (3.52)
Wo =15 o =" (353)
uSo =135 u5h = u3Y (3.54)
ySV = ysv (3.55)

When equations (3.46) to (3.55) are combined with equation (3.45) and the result is
deducted from equation (3.38), the free energy expanded about the reference state
is as follows:
AB=B—B, =
(pv _ PL)vL + (,YSL _ YSV)ASL + ,YLVALV

(3.56)
(g — NG+ (o — i INPY o+ (oY — i ONSY o+ (g — NG

(5 — mNFE + (Y — mS)NEY

Each of the terms of the above equation is essentially the difference between two
intensive properties multiplied by an extensive property. Our interest is to find AB

only in the small neighborhood of the equilibrium state. Each of the differences
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between two intensive properties can be substituted by its Taylor expansion about
the equilibrium state. For small virtual displacements around equilibrium states,
terms that are directly proportional to the size of the virtual displacements can be
neglected. Hence each of the differences between two intensive properties can be
substituted by its quantity at equilibrium conditions “°. Due to equality of chemical
potentials at the equilibrium conditions (refer to Table 3-4 (a)), inequation (3.56)
all the terms other than the first three terms are zero and equation (3.56) reduces

to'8 :

AB=B-B, = (pv _ PL)vL + (YSL _ ,YSV)ASL +yLVALY (3.57)

For the above equation at equilibrium conditions, (PV—P"%) and (5t — ") can be
replaced by the Laplace—Young equation (equation (2.15)) and the Young equation
(equation (2.16)) respectively. These substitutions transform equation (3.57) into
the following equation:

1 1
AB=B—B, =y (R_ + R_)vL + (—y"V cos 0) ASL + yLVALV (3.58)
1 Rz

where all of the Ry, Rz, and 6 are evaluated at the equilibrium conditions.
Equation (3.58) can be written in terms of the Kelvin radius (Rc) 2 :

2yLV
AB=B-B, = lz— VL + (—yLV cos 0) ASL + yLVALY (3.59)
C

Following the same procedure for the flat solid—liquid and solid—vapor interfaces,
the same equation as equation (3.58) represents the thermodynamic potential of the
system of liquid formation out ofa vapor.
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For the case of vapor formation out ofa liquid phase, the reference condition would

be when no vapor is present. The thermodynamic potential is obtained from a

similar procedure.

The free energies expanded about a reference state, for cases of liquid formation

out of a vapor phase and vapor formation out of a liquid phase are summarized in

Table 3-6:

Table 3-6 Forms of free energy with respect to the reference condition, for two cases of liquid
formation out of a bulk vapour phase and vapour formation out of a bulk liquid phase. Liquid
and vapour phases are made up of component (1) and the solid phase is purely component (2).

Liquid formation out of a vapour phase *® | Vapour formation out of a liquid phase
B-B, = B-B, =
(PV _ PL)VL + (YSL _ ySV)ASL +yLVALV (PL _ PV)VV + (ySV _ YSL)ASV + yLVALV
(3.57) (3.60)
B-B, = B-B, =
1 1 L LV SL LV 1 1 Vv NY% LV
(— + —)V + (=YW cos8)A™ + yVA (— + —)V + (YWcos0)AY + yWa
Ri R Ri R
(3.58) (3.61)
B—B, = B—-B, =
i LV i LV
al ! + (=YY cos0)A™ + yva¥ S + (YV cos0)AY +ya
RC RC
(3.59) (3.62)

3.6. Fluid material properties

The equations being developed so far can be applied to any confined fluid system,

regardless of the constituent fluid component. However many experimental
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investigations have been performed on H,O in confining geometries. There are
also some experiments on n—dodecane as the pure confined fluid. In order to
compare our results with literature, throughout this thesis H,O or n—dodecane is
chosen as the pure component of the liquid and vapour phases. The properties of
these two components at the specified temperature are presented in Table 3-7, and

will be used in the following chapters.

Table 3-7 H,O and n—dodecane properties at specified temperature.

Component | Temperature (°C) | vV (Nm™) | P, (Pa) vl (m*kmol™)
H,O 20 0.07275% | 2339 % 0.01805 *
n—dodecane | 24 0.02503 % | 16.43*° 0.2282 %

3.7. Effect of the bulk phase pressure on the sign of
the Kelvin radius (R¢)

The Kelvin radius, which is equal to the mean radius of curvature at equilibrium
states, can be positive or negative; depending on the sign of the principal radii of
curvature (equation (2.21)). The Kelvin radius with each sign is only possible at
specific values of the bulk pressure. This will be discussed in two separate sections

for the cases of liquid formation and vapour formation.

3.7.1. Effect of the bulk phase pressure on the sign of R¢ for
the case of liquid formation out of a bulk vapour phase

In the case of liquid formation, the bulk phase is the vapour phase. With the
pressure difference being arbitrarily defined as PY—P", the Kelvin radius can be

obtained from equation (2.22). With the numerator (2)*) being a positive number
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in equation (2.22), the sign of Rc is determined based on the sign of the

denominator, i.e.:

( ) PV RTV PV
IRc>0 if ——1- In[— >0

L
o Py AR (3.69)
IRe<o if o R (P
k ¢ : Poo POODL " Poo
. RT . . . . RTV .
For an ideal gas L equal to unity. For any material, the denominator of YL

sV
much smaller than that of an ideal gas. Therefore regardless of the material, PRLL is

OOUOO

expected to be much greater than one.

Solving equation (3.63), with

oV
PRTUL much greater than one, shows that R¢ is

o]

.. PV .
positive for o less than one or greater than a very large value. The numerical
(=]

rRTV 14 . .
amount of o1 85 well as the range of = for positive and negative Rc are shown
e

o0 Voo
in Table 3-8, for two components of H,O and n—dodecane, using the properties

stated in Table 3-7.
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TV \%
Table 3-8 Amount of the coefficient PRT and range of :— for positive or negative R¢ for two
0

ooU%o

components: H,O and n—dodecane.

rRTV \% \%
Component RT Lad range for Rc> 0 Lk range for Rc< 0
P o =
A\ \'4 \"4
H,0 5.77x10" F‘f— <1 or 11:— >7.83x10° | 1< P"— < 7.83x10°
A\ \'4 \%
n—dodecane | 6.59x10° E— <1 or PP— > 1.07x107 | 1< PP— < 1.07x10"

Substituting the values for the saturation pressure (P,) from Table 3-7 into the

criteria of Table 3-8 shows that a positive Kelvin radius is possible at bulk vapour

pressures below the saturation pressure or above 1.83x10° Pa for H,0 and

1.76x10°® Pa for n—dodecane (similarly above some extremely high pressures for
RTY

other materials, due to T being much greater than one in equation (3.63)). The

OOUOO

extreme high pressures resulting in positive Kelvin radius are not of interest.
Eliminating those extremely high pressures, the range of bulk vapour pressure for

each of positive or negative Kelvin radius is:

( pV
IRc>0 if <1
{ K (3.64)

According to equation (3.64) the Kelvin radius is positive at bulk vapour pressures
below the saturation pressure, and is negative at bulk vapour pressures above the
saturation pressure. It should be noted that at vapour pressure equal to saturation
pressure, there would be no pressure difference along the interface (PY=P") and the

interface would be flat.
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3.7.2. Effect of the bulk phase pressure on the sign of R¢ for
the case of vapour formation out of a bulk liquid phase

For the case of vapour formation, the bulk phase is the liquid phase. When the
pressure difference is arbitrarily defined as P-—PY, equation (2.24) shows the
Kelvin radius. In equation (2.24) with the positive numerator (2)"), the sign of the

denominator would determine the sign of Rc, hence:

( pL P,vl (PL
IRc>0 if ——exp ——=1]J[>0

nTVv
4 P, RTV\P, (3.65)
R <0 if Pt P.v, (P! 1)l<o0
e : p, “P|RTV\p, ~

14

RT
P

L
o0 Voo

In section 3.7.1 it was explained that is much greater than unity for any

L
material at conditions of intrest. Then it can be concluded that i‘;ﬁ’% is much

L
smaller than one regardless of the material. With P;_"% much less than unity, and

L
after solving equation (3.65), it is found that Rc is negative for :; less than one or

P vk e . pL
@b and the criteria of —
RT Poo

greater than a very large value. Numerical amounts of

for positive and negative R¢ are shown in Table 3-9, for two components of H,O

and n—dodecane, using the properties stated in Table 3-7.
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Poo\’%o

Table 3-9 Amount of the coefficient -5

components: H,O and n—dodecane.

L
and range of :— for positive or negative R¢ for two
0

Component Poo U5, i range forRc>0 i range forRc<0
p RTV P 8] c P o] c
L L L
H,0 1.73x10°° 1<— <7.8310° |—— <1 or —>7.83x10°
n—dodecane 1.52x10°® 1< < 1.07x10’ :—L <1l or ;’—L > 1.07x10’

Substitution of saturation pressures (P.,) from Table 3-7 into the criteria of Table
3-9 shows that negative Kelvin radii are possible at bulk liquid pressures below the

saturation pressure or above 1.83x10° Pa for H,O and 1.76x108 Pa for n—dodecane

L
(similarly above some extremely high pressures for other materials, due to IE’;_"%
being much less than one inequation (3.65)). The extreme high pressures resulting
in negative Kelvin radius are not of interest. Eliminating those extremely high

pressures ranges, the range of bulk liquid pressure for each of positive or negative

Kelvin radius is:

( pL

'R¢>0  if > >1

4' o (3.66)
Re<0 if <1

According to equation (3.66), the Kelvin radius is positive at bulk liquid pressures
above the saturation pressure, and is negative at bulk liquid pressures below the
saturation pressure. It should be noted that at liquid pressure equal to saturation
pressure, there would be no pressure difference along the interface (P'=P") and the

interface would be flat.
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3.8. Transition contact angle

For either case of liquid phase formation out ofa bulk vapour phase or vapour
formation out ofa bulk liquid phase, the liquid—vapour meniscus might be concave
or convex. Obviously there would be some contact angle at which the meniscus
alters from being concave to being convex. This contact angle is called the

transition contact angle, and is denoted by 6.

Defining the transition contact angle allows us to describe the changes in the
contact angle as getting closer to / farther from the transition contact angle, rather
than by increasing / decreasing the contact angle. This is especially helpful since
there is a widely used convention of measuring the contact angle within the denser
phase (liquid phase). The benefit of the transition contact angle is explained in

more detail through the following example.

Anexample of two cases of liquid formation out of a bulk vapour phase and vapour
formation out ofa bulk liquid phase inside a conical pit is illustrated in Figure 3-2,
where contact angles are measured from the liquid side. In part (a) while the shape
of the concave meniscus is the same, the contact angle is 15° for the case of liquid
formation and is 165° for the case of vapour formation. Consider that some surface
manipulation changes the contact angle by 10° in part (b). For the case of liquid
formation the contact angle is increasing to 25°, while for the case of the vapour
formation it is decreasing to 155°. This change can uniquely be described as

getting 10° closer to the transition contact angle.
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(a)

(b)

|:| Liquid
:I apar

Figure 3-2 (a) Contact angle measurement conwention demonstratedin the two cases of liquid
formation out of a vapour phase and vapour formation out of aliquid phase inside a conical
pit. The transition meniscus is shown as a dotted line. (b) Getting 10° closer to the transition
contact angle, equivalent to an increase in the contact angle for the case of liquid formation
and a decrease in the contact angle for the case of vapour formation.

3.9.Summary

This chapter covers all the governing equations, definitions, and material properties
for two cases of liquid formation out of a bulk vapour phase and vapour formation
out of a bulk liquid phase inside a confined geometry. These equations and
definitions span across different geometries to be discussed in the following

chapters.

The length below which the gravitational field can be neglected (capillary length) is

presented for two components of interest at section 3.2. In section 3.3 conditions
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for equilibrium of the system are derived, a summary of which can be found in
Table 3-4. Through section 3.4 the appropriate free energies of the systems are
determined, and summarized in Table 3-5. The reference condition as a basis of
calculating the free energy level is introduced in section 3.5. Also the equations for
the amount of the free energy with respect to the reference condition are presented
in Table 3-6. Some material properties for H,O and n—dodecane are reported in
section 3.6 (Table 3-7). Insection 3.7 the dependence of the sign of the Kelvin
radius on the bulk phase pressure is discussed through two material specific cases
of H,0 and n—dodecane (Table 3-8). The results were proven to be expandable to
other components. Section 3.8 introduces transition contact angle as a helpful term
in unifying the description of the changes in contact angle in either case of liquid or

vapour formation.
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4. Liquid—vapour system inside
a conical pit

The first solid confinement geometry to be discussed is the conical pit. This
geometry is of practical importance in many cases. For the focus of our study, the
single component (pure) fluid being confined inside a cone, thermodynamic
stability analysis is performed using the equations and definitions of chapter 3. The
system is of constant mass and constant bulk phase pressure, imposed by the
reservoir. For the solid shape of a conical pit, both the solid—liquid and the

solid—vapour interfaces are curved.

Two possible liquid—vapour systems are discussed in detail in this chapter: liquid
formation froma bulk vapour phase insection 4.1, and vapour formation froma
bulk liquid phase in section 4.2. In either of these cases the meniscus might be
concave or convex, each of which are discussed in separate sections: sections 4.1.1
and 4.1.2 are about liquid formation with concave and convex menisci respectively,
where as vapour formation with concave and convex menisci are presented in
sections 4.2.1 and 4.2.2 correspondingly. The effect of the equilibrium contact
angle on the thermodynamic stability is discussed in sections 4.1.1.1, 4.1.2.1,
4.2.1.1, and 4.2.2.1 for liquid formation with concave or convex meniscus and

vapour formation with concave or convex meniscus. Sections 4.1.1.2, 4.1.2.2,
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4.2.1.2,4.2.2.2 explain the effect of the cone apex angle in the different cases of
liquid formation with concave or convex meniscus and vapour formation with

concave or convex meniscus respectively. Section 4.3 presents the big picture of
the stability analysis of both liquid and vapour formation inside a conical pit and

the effect of different parameters discussed in the previous sections.

4.1. Liquid phase formation from a bulk vapour
phase inside a conical pit

The constraints of the system are those that are stated in Table 3-2 for the curved
solid interface. Conditions for equilibrium are as presented in Table 3-4 (a)
(equation (3.15) to (3.20)), where the solid interfaces are curved. For this case, we
will show how the Laplace—Young equation (2.13) and the Young equation (2.16)

can be obtained from the conditions for equilibrium as stated in Table 3-4 (a).

Recall equation (3.20),

(PL _ Pv)de — ySLAASL — ySVEASV — yLVAALY = @ (3.20)

where dV', dASY, dASY, and dA™ are to be substituted in terms of the principal radii

of curvature of the liquid—vapour interface and the contact angle.

Neglecting gravity, the pressure inside the liquid phase and the pressure inside the
vapour phase would be constant; where from the Kelvin equation (equation (2.20))
it can be seen that in the liquid—vapour interface must be a surface of constant
curvature. This constant curvature interface should meet the solid, which is in the

formof a conical pit, at the same contact angle at every contact. Hence the
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liquid—vapour interface can be considered to be part ofa sphere, as it was assumed
by Ward et. al.?°. For the liquid—vapour interface to form part of a sphere, the

principal radii of curvature are equal to each other, i.e. R1 = R, = Rc.

The liquid—vapour interface might be either concave or convex. For this solid
geometry (conical pit), and in the case of liquid formation from a bulk vapour
phase the transition contact angle is 90° — S8, where S is half of the cone apex
angle. Therefore the liquid—vapour interface is concave for contact angles

6 <90° —f, and is convex for contact angles 8 > 90° — £. Liquid formation with

concave or convex meniscus is illustrated in Figure 4-1.

It is a matter of geometrical calculations to develop the appropriate equations for

Vvt ASE ASY and A,

(a) (b)

Figure 4-1 Schematic of liquid formation inside a conical pit and definition of cone apex angle
2B, contact angle 0, principal radii of curvature R;=R;, radius of the three—phase contact
circle W, the height of interface h, the distance between the highest and the lowest parts of the
liquid—vapour interface h’, and half—filling angle of the new phase @, for cases of a) concave
(@ < 90° — B) and b) convex (@ > 90° — 8) meniscus.
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Using the formulas for the volume and the surface area of a cone and a spherical
cap froma mathematics handbook such as Harris and Stocker *?, the volume of the

liquid and the surface areas for the case of a concave meniscus (6 < 90° — ) are:

Vi=2W?h-Zh? (3R, ~ ) (4.1)
AL = W/ W2 + h? (4.2)
AMV = 2nR b’ (4.3)
where
p=2—(0

=5;-0+p) (4.4)
W = R;sin@® (4.5)
b= W

" tan® (4.6)
h’=R; —R;cos® 4.7

Combining equations (4.4) to (4.7) with equations (4.1) to (4.3) results in:

Vi=2R? [—Cosiﬁ; D) 4 35in@+B) —sin®(8 + B) (48)
——
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ALY = 21R,%[1 — sin(8 + B)] (4.10)

Moreover the area of the solid—vapor interface can be obtained from:

ASV = whole solid interface — ASt (4.11)

The next step is calculating dV*, dASt, dASY, and dA"Y. When the solid geometry is
specified, the contact angle and the principal radii of the curvature are the only

independent variables. Hence each of the above derivatives can be written in terms
ofdd and dRy, considering R;=R; for the liquid—vapour interface which is part ofa

sphere in this case.

The derivatives are therefore as follows:

3
dvl = nR,? [m — 2+ 3sin(@ + p) —sin®*(6 + B) [dR,
tanf
(4.12)
_ 2 i
+ER13[ il ;fgsm(e *+P) + 3 cos(® + B) — 3sin?(0 + B)cos(® + B)] do
2 .
dASL = 27iR, [w dR, — 2R, 2 [Cos(e +B)sin(®+ B)] do (4.13)
sinf3 sinf3
dASV = —dASt (4.14)
dALY = 4mR,[1 — sin(0 + B)]dR; — 2mR;%[cos(6 + B)]d6 (4.15)

Substituting equations (4.12) to (4.15) into equation (3.20), results in the following

equation after some rearrangements:
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cos3(8 + B)

{(PL - PV)(anz)[ — 2+ 3sin(@ +B) —sin®(6 + B)]

tanf
2
+GSY —ySH) (2nR,) [W] —yW4nR,[1 - sin(0 + B)]} dR,
(4.16)
— 2 1
+{(PL “P)IR,? [ 3057 @ + BIsin® + B) | - 050 + ) — 3sin2(8 + B)cos(@ + B)]
3 tanf3
—GSY — S (2nR,2) [COS(G + [sgi):[;n(e +p) + v (2nR,*)[cos(® + B)]} de =0
For any virtual displacement around equilibrium, equation (4.16) is zero, only
when both of the coefficients of dR; and dé are zero, i.e:
3
(PL — PY)(mR,?) [w — 2+ 3sin(0 + B) — sin3(0 + B)
(4.17)
+(ySV - ySL)(2nR )[w] YLV4mR, [1 - sin(8 + B)] = 0
and,
(Pt —PY) ER13 [_3C°S ©+psin®® + ) + 3cos(® + B) —3sin?(0 + B)cos(0 + )
3 tanf
(4.18)

cos(@ + B) sin(6 + B)

sinf3

+yYV(2nR,?)[cos® + B)] =0

Y =y (2nR )[

Solving these two equations simultaneously to find (PY—PY) and (y°V—»°1) results

in the Laplace—Young equation (2.15) and the Young equation (2.16):

(2.15)
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where in this case a is vapour phase, b is liquid phase, and Ry, isequal to R;.

sv (2.16)

YV — ¢Sk = yVcos0

Ina similar way, for the case of liquid formation with convex liquid—vapour
interface (6 > 90° — (), with the appropriate equations for the volume of the new
phase and surface area of the interfaces, it can be shown that the Laplace—Young
equation (2.15) and the Young equation (2.16) are obtained from the conditions for

equilibrium.

Table 4-1 presents the equations for the liquid volume and the surface areas that are
formed as a result of liquid phase formation from the bulk vapour phase. Although
the formula is the same for both cases of concave and convex meniscus, it should
be noted that Ry must be inserted with a negative sign in the case of convex
meniscus. This is in accordance with our convention that by defining AP as PV—P",
R1 would be negative if the center of the circle is on the liquid side. Also in each
case, the contact angle would automatically account for the concavity of the

liquid—vapour interface.

74



Table 4-1 Liquid volume and the surface areas for liquid phase formation from the bulk
vapour phase in a conical pit.

30+ . .
vi=TR,? [%HBB)— 2+3sin(0 + ) —sin3(6 + B)| 4.8)
SL — 2 [cos’(B+B)
A =R, ? [0 g 4.9
ALV = 2R, *[1 —sin(6 + P)] (4.10)

The next step is to analyse the stability of the liquid phase being formed out of a
vapour phase. From Table 3-6, the equation of the free energy for the liquid

formation frombulk vapour phase is:

2 LV
Rc¢

B =B, + Vi + (=YW cos0)ASt + yvVaWY (3.59)

For either case of concave or convex meniscus, the liquid volume and the surface
areas from Table 4-1 are to be replaced in equation (3.59). For an arbitrary solid
material and the fluid of interest, the equilibrium contact angle is considered to be
known from experiments. Therefore the radius of curvature of the liquid—vapour
interface is the only independent variable in the free energy function, and stability
analysis is determined based on the size of this radius, as described in 2.4. In this
case where R1=Ry, the size of the radius of curvature at the equilibrium condition
(R1¢) can be obtained from solving the following equation:

68)
il ~0 (4.19)
(aR1 6=,

where 6, is the contact angle at equilibrium condition.
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The stability of the liquid—vapour interface (stable, unstable, or metastable), can be

analysed according to the sign of the second derivative of the free energy with

2

respect to the radius of the curvature at equilibrium condition, i.e. (6‘3}?—32)Rl=R1 ,
1 ,e

e

where the free energy is known from equation (3.59).

(™
OR,?JR;=Rc

0=0,
(4.20)
2myLV <2COSZ+B) — 2+ 4sin(0e + B) — 2sin3(8, + B)
— cos(@QM)
sinf3

4.1.1. Stability of the liquid phase being formed from a bulk
vapour phase inside a conical pit: concave meniscus

When the meniscus is concave, the centre of the radius of curvature of the
liquid—vapour interface is located in the vapour phase, as shown in Figure 4-1. This
requires R; (= Rz = Rc¢) to be positive, according to our convention stated in 2.1.3,
where the pressure difference is defined as AP = PV — PL. The positive Ry,
equivalent to positive Kelvin radius, is only possible at vapour pressures below the

saturation pressure (PV < P,,) according to section 3.7.1.

For vapour pressures less than the saturation pressure for which it is possible to
have a concave meniscus, equation (4.20) is always positive. Hence at the
equilibrium state, the free energy is a minimum, and the equilibrium state is stable.

This stable equilibrium state and the corresponding minimum are shown in Figure
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4-2 onthe free energy curve vs. scaled size of the curvature ( %), using
c

Mathematica 8.0 software. This graph is for a solid cone with a half angle of 10°
and the equilibrium contact angle equal to zero. Water is selected as the pure
component of the liquid and vapour phases at 20°C. Fluid properties at this
condition can be obtained from Table 3-7. The vapour pressure is set to be 0.9Poo
(less than the saturation pressure). At these conditions the Kelvin radius of the

system is found from equation (2.20) to be 1.02x10 8 m.
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Figure 4-2 Free energy \s. scaledsize of the liquid phase formed out of a bulk vapour phase
for H,O at 20°C, PY=0.9P.,, contact angle of 8=0° (concave meniscus), and solid half angle of

B=10°.
The liquid bridge forms spontaneously since there is no energy barrier (no

maximum point) to be overcome, and hence the phase transition is not a nucleation

process.
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4.1.1.1.Effect of equilibrium contact angle on the stability of the system
for liquid phase formation out of a bulk vapour phase inside a
conical pit: concave meniscus

This section is dedicated to the impact of the equilibrium contact angle on the
energy level and stability of the liquid formation with concave meniscus. The
specifications of the system, other than the equilibrium contact angle, are the same

as those used for Figure 4-2.
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Figure 4-3 Effect of equilibrium contact angle, 8, on the free energy of the liquid phase formed
out of a bulk vapour phase for H,O at 20°C and PY=0.9P.,, andsolid half angle of p=10°, for
various contact angles that resultin aconcave meniscus: (a) Free energy vs. scaled radius of
curvature, (b) Free energy \s. volume of the liquid phase.

It can be seen from Figure 4-3 that as the equilibrium contact angle increases, the
free energy minimum becomes shallower (less stable). In Figure 4-3 (b) it is shown
that as the equilibrium contact angle increases, a smaller volume of liquid is formed

from the bulk vapour phase.
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It should be noted that for any equilibrium contact angle, the principal radius of the
liquid—vapour interface at the minimum free energy point is Re, since Ri=R; due to

considering the liquid—vapour interface to be part ofa sphere.

Also in Figure 4-3, it can be seen that for the same number of degrees change in
contact angle of 5°, the free energy curves of 6=0° and 6=5° have small relative
differences, in comparison to the free energy curves of 6=5° and 6=10°. Therefore
it is concluded that the effect of a specific number of degrees change in contact
angle (5° for example) is more important when the initial equilibrium contact angle

is closer to the transition contact angle.

The transition contact angle for the cone with a half angle of 10° is equal to 80°

(90°-10°). For a closer look at this issue, compare the two cases in Figure 4-4.

(a) (h)
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Figure 4-4 Comparing the effect of a certain number of degrees (5°) change in the equilibrium
contact angle on the free energy of the system when a liquid phase is formed out of a bulk
vapour phase for H,O at 20°C and PY=0.9P,, and solid half angle of p=10° for various contact
angles that resultin a concave meniscus. (a) Far from the transition contact angle, (b) Close to
the transition contact angle.
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The comparison of cases (a) and (b) of Figure 4-4 can be fulfilled through the
comparison of the relative difference in the energy level of their extrema. The

relative difference is:

Property@ condition 1 — Prol-)ejrty @ condition 2 % 100 (4.21)
Property@ condition 1

In part (a) of Figure 4-4, the equilibrium contact angle is changed by 5° from 0° to
10°, both are far from the transition contact angle. As a result the free energy of
the minimum point is changed from —31.34 aJ (attojoule) to —30.85 aJ. From
equation (4.21) the relative difference in free energy of the minimum point in case

(@) is 1.56%.

In part (b) of Figure 4-4, the equilibrium contact angle is changed 5° from 65° to
70°, which are close to the transition contact angle. In this situation, the free

energy of the minimum point is changed from —0.76 aJ to —0.23 aJ. Although the
absolute change in free energy is less than case (a), the relative difference for this

condition is much higher (69.74%):

This result shows that in the case of 8 < 90° — 8, approximating small contact
angles (far from the transition contact angle) with zero is a good approximation in
understanding and predicting stability behaviour and also in calculating size of the

equilibrium bridge.
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4.1.1.2.Effect of the cone apex angle on the stability of the system for
liquid formation out of a bulk vapour phase inside a conical
pit: concave meniscus

In Figure 4-5, the free energy curve is plotted for three different cone apex angles.
Properties other than the cone apex angle are kept the same as the properties in

Figure 4-2.
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Figure 4-5 Effect of cone apex angle on the free energy of the system when aliquid phase is
formed out of a bulk vapour phase for H,O at 20°C and P¥=0.9P., and 6=0° (concave
meniscus). (a) Free energy \s. scaled radius of curvature, (b) Free energy s. volume.

In Figure 4-5, the free energy minimum is more stable (deeper) for the smaller cone

apex angle. Thus liquid formation out of the bulk vapour in a conical pit with a

solid material suchthat 8 < 90° — 8 becomes more stable as the cone apex angle

decreases. Due to considering the liquid—vapour interface to be part ofa sphere, for

any cone apex angle, the equilibrium radius of curvature is always the same and
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equal to the Kelvin radius (Figure 4-5(a)). On the other hand as shown in Figure
4-5(b), at smaller cone apex angle, a higher volume of the liquid must be formed to

meet the stable equilibrium condition and reach the Kelvin radius (Rc).

4.1.2. Stability of the liquid phase being formed from a bulk
vapour phase inside a conical pit: convex meniscus

From geometrical considerations the convex meniscus is only possible if 6 >
90° — B, and the principal radii of curvature are negative (located on the liquid
side) when the pressure difference is defined as PY—P", as illustrated in Figure
4-1.The negative Ry, equivalent to negative Kelvin radius, is only possible at

vapour pressures above the saturation pressure (PV>P.,) according to section 3.7.1.

To analyse the stability of the liquid being formed, the sign of (%)RFRC is to be
' g=g

e

determined. For 6 > 90° — 3, equation (4.20) is always negative. Therefore the
free energy would be maximum at the equilibrium condition, denoting an unstable
equilibrium. Figure 4-6 represents this unstable equilibrium state. This graph is for
a solid cone with the halfangle of 10°and the equilibrium contact angle equal to
180°. Water is chosen as the pure component at 20°C. Fluid properties at this
condition can be obtained from Table 3-7. The vapour pressure, that should be
higher than saturation pressure, is considered to be 1.1P.. For these conditions, the
Kelvin radius is —1.13x10°® m from equation (2.20) where the negative sign

indicates that the center of the radius is located on the liquid side.
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Figure 4-6 Free energy \s. scaledsize of liquid phase formed out of a bulk vapour phase for
H,O at 20°C and PV=1.1P,,, contact angle of 6=180° (convex meniscus), and solid half angle of

p=10°.

This maximum in the free energy represents the energy barrier that must be
overcome for the new phase to be formed. Therefore the phase transition is a
nucleation phenomenon. Passing the maximum point, the curve is ever decreasing,
and no minimum point exists. This means that all the vapour phase would turn into
liquid, once the barrier is overcome.

4.1.2.1.Effect of equilibrium contact angle on the stability of the system

for liquid phase formation out of a bulk vapour phase inside a
conical pit: convex meniscus

The effect of the equilibrium contact angle on the free energy of the liquid
formation with convex meniscus is investigated in this section. Other than the

equilibrium contact angle, the system has the same specifications as those for

Figure 4-6.

85



# (degrees)
6.x 10777}
- |—— 180
Qf 4.x 10 — L
]
2% ;0—17 .............. 170
- T 165
0=
0.0
0 (degrees)
6.x 10777}
- — 180
S |
= =1
"i 4.x 10 | - 175
)
2.x 10777 170
—-== 165
[/] 3 X ) . ) ) K N

Liguid vafume(mj ) x107%

Figure 4-7 Effect of equilibrium contact angle on the free energy vs. volume of the liquid
phase formed out of a bulk vapour phase for H,O at 20°C and PY=1.1P,,, and solid hal f angle

of p=10°, for various contact angles that resultin aconvex meniscus. (a) Free energy \s. scaled
radius of curvature, (b) Free energy vs. volume of the liquid phase.

As the equilibrium contact angle decreases, the free energy barrier becomes smaller

and the unstable equilibrium is formed with less amount of liquid volume.

Also it can be seen in Figure 4-7 that, similarly to the previous case, the effect of

specific changes in contact angle is less important when the initial equilibrium
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contact angle is far from the transition contact angle. As mentioned in section
4.1.1.1 the transition contact angle for the cone with the half angle of 10° is equal
to 80°. For better clarity, a certain number of degrees change in contact angle for

two conditions of far from, and close to, the transition contact angle is examined

in Figure 4-8:
0 | (b)
. L0
] ]
S Ol L::_: f.8¢
x %
= 4| * 0.6
= f (degrees) 2 041 6 (degrees)
& 20f|— 180 & 0 — 95 | -7~
& fl-- 175 I I S
0 ; : : : ; ; ; f0e== : ; , . . :
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Figure 4-8 Comparing the effect of a certain number of degrees (5°) change in the equilibrium
contact angle on the free energy of the system when a liquid phase is formed out of a bulk
vapour phase for H,O at 20°C and PY=1.1P,, and solid half angle of p=10° for various contact
angles that resultin a convex meniscus. (a) Far from the transition contact angle, (b) Close to
the transition contact angle.

In Figure 4-8 (a) the equilibrium contact angle changes from 180°to 175°, with
both being far from the transition contact angle. The free energy of the maximum
point changes from 77.26 aJ to 76.62 aJ. The relative difference inthe free energy
of the maximum point is 0.83% from equation (4.21). In Figure 4-8 (b) the
equilibrium contact angle changes from 95° to 90°, with both being close to the
transition contact angle. The free energy of the maximum point changes from 0.99

aJ to0 0.30 aJ, with a relative difference 0f69.70% from equation (4.21).

This shows that a certainamount of error in measuring the contact angle has a

greater impact for contact angles close to the transition contact angle. The focus of
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this conclusion is the relative difference of the energy barrier; however in this
particular case of Figure 4-8 both the absolute and relative changes in the free

energy were larger near the transition contact angle.

4.1.2.2 Effect of cone apex angle on the stability of the system for
liquid phase formation out of a bulk vapour phase inside a
conical pit: convex meniscus

In Figure 4-9 the free energy curve is plotted for three different cone apex angles.
Properties other than the cone apex angle are kept the same as for the first case of

section 4.1.2 (Figure 4-6) .
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Figure 4-9 Effect of cone apex angle on the free energy of the system when aliquid phase is
formed out of a bulk vapour phase for H,O at 20°C and P¥=1.1P., and 8=180° (convex
meniscus). (a) Free energy \s. scaled radius of curvature, (b) Free energy \s. volume.

According to Figure 4-9, a higher energy barrier must be overcome for the smaller
cone apex angle. Thus liquid formation out of the bulk vapour phase in the cone of
the solid material that enforces 8 > 90° — S, becomes less favourable as the apex

cone apex angle decreases. Considering the liquid—vapour interface as part of a

sphere, for any cone apex angle the equilibrium radius of curvature is always the
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same and equal to the Kelvin radius, as shown in Figure 4-9 (a). Also as shown in
Figure 4-9 (b), as cone apex angle gets smaller, a higher volume of the liquid must
be formed and fill the cone before getting to the unstable condition (the Kelvin

radius).

4.2.Vapour phase formation from a bulk liquid
phase inside a conical pit

The constraints of the system in which vapour is formed out of a bulk liquid phase
are as shown in Table 3-3. The conditions for equilibrium are as presented in Table

3-4 (b), for the curved solid interfaces (equations (3.22) to (3.26)).

The liquid—vapour interface is considered to be part of a sphere, using the same
justifications as in section 4.1. The notations that are assigned to describe the
geometry of the problem are presented in Figure 4-10. It should be noted that the
contact angle is being measured from the liquid side, as set by convention. By this
convention, the transition contact angle in the case of vapour formation inside a
cone with cone apex angle 2B is equal to 90° + £ . The meniscus is concave if

6 > 90°+ B and isconvexif 8 < 90°+ .
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(a) (b)

Figure 4-10 Schematic of liquid formation inside a conical pit and the definition of cone apex
angle 2B, contact angle 0, principal radii of curvature R;=R,, radius of the three—phase
contact circle W, height of interface h, distance between the highest and the lowest parts of the

liquid—vapour interface h’, and half—filling angle of the new phase @, for cases of a) concawe
(@ > 90° + B) and b) convex (6 < 90° + ) meniscus.

Relations for the volume of the vapour phase and the surface areas are presented in
the following table, having been derived from the formulas of volume and surface
area ofa cone and a spherical cap *?. The radius R; should be inserted with the
appropriate sign in each case, i.e. positive sign for the concave meniscus (6 >

90° + B) and negative for the convex meniscus (6 < 90° 4+ B) when AP is

defined as P-—P".

Table 4-2 Vapour volume and the surface areas for vapour phase for mation from the bulk
liquid phase in aconical pit.

— 39—
VW=IRA[=E0B o 4 3sin(e—p) -sin0—p)| (422

tanf

ASL — R, 2 [w (4.23)
1 sinf

ALY = 2R, [1 — sin(0 — B)] (4.24)
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To analyse the stability of the vapour phase being formed out of the liquid, the
vapour volume and surface areas are to be replaced in the equation for free energy
in Table 3-6. It should be noted that the pressure difference is defined as P-—P"

here.

Once the solid material is known, the equilibrium contact angle is assumed to be
fixed, and free energy is only a function of the principal radii of curvature. The size
of the principal radii of curvature at the equilibrium condition can either be
obtained from the extermum of the curve of free energy vs. size of the new phase,
or by solving equation (4.19), as was stated in part 4.1. Again for this case where
the liquid—vapour interface is considered to be part ofa sphere, R; is equal to Ry,

and both are equal to the Kelvin radius.

The second derivative of free energy with respect to the principal radius of
curvature is derived for this case of vapour formation out of the bulk liquid phase.
The stability of the vapour phase being formed out of the liquid phase canbe

determined based on the sign of this expression.

( 9%B ) B
OR;?JR;=Rc

=Ye

(4.25)

Zn»YLV <—2COS3(ee - B) -2+ 4Sin(6e _ B) _ Zsin3(6e _ B)

tanf

cos? (0, — B))

+ cos(0,) Sinp
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4.2.1. Stability of the vapour phase being formed from a bulk
liquid phase inside a conical pit: concave meniscus

In the case of vapour formation with a concave meniscus 8 > 90° + g, with the
pressure difference being defined as P-—PY, Ry (= R, = R¢) is to be positive due to
its center being located in the liquid phase, as shown in Figure 4-10. Positive Ry,
equivalent to positive Kelvin radius, is only possible at liquid pressures above the

saturation pressure (P->P.,) according to section 3.7.1.

In this case where 6 > 90° + (8, equation (4.25) is always positive. This positive
sign indicates that the extremum in the free energy of the system will be a
minimum, as shown in Figure 4-11. Therefore the equilibrium condition of the
system is stable. Figure 4-11 is for the case where the half angle of the solid cone is
chosen to be 10° and the solid is made up of a material such that the equilibrium
contact angle is 180°. The pure fluid in the system is H,O at 20°C, with the fluid
properties given in Table 3-7. The liquid pressure is set to be 1.1P... The Kelvin

radius of the system is 6.22x10™* m from equation (2.23).
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Figure 4-11 Free energy \s. scaled size of vapour phase formed out of a bulk liquid phase for
H,O at 20°C and P-=1.1P,,, contact angle of =180° (concave meniscus), and solid half angle of
p=10°.

No energy barrier is to be overcome to reach the stable equilibrium condition, as
shown in Figure 4-11. Therefore the vapour phase formation out of the liquid phase

is not a nucleation phenomenon in the case of concave meniscus.
4.2.1.1.Effect of equilibrium contact angle on the stability of the system

for vapour phase formation out of a bulk liquid phase inside a
conical pit: concave meniscus

The impact of the equilibrium contact angle is investigated for systems with the

same properties as those in Figure 4-11, except that the equilibrium contact angle is

changing.
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Figure 4-12 Effect of equilibrium contact angle on the free ener%y \s. volume of the vapour
phase formed out of a bulk liquid phase for H,O at 20°C and P-=1.1P,, andsolid hal f angle of

B=10°, for various contact angles that results in aconcawe meniscus.

As the equilibrium contact angle gets smaller (gets closer to the transition contact
angle), while it is kept above 90° + 3, the stable equilibrium condition becomes

less stable, with less volume of vapour being formed.

Also it can be seen in Figure 4-12 that for the same number of degrees change in
the equilibrium contact angle (5° here) , the changes cause greater relative
difference when the contact angle is closer to the transition contact angle, which is
90° + B.

4.2.1.2 Effect of cone apex angle on the stability of the system for

vapour phase formation out of a bulk liquid phase inside a
conical pit: concave meniscus

The effect of cone apex angle is being investigated for the same system as Figure

4-11, with different cone apex angles.
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Figure 4-13 Effect of cone apex angle on the free energy \s. volume of the vapour phase
formed out of a bulk liquid phase for H,O at 20°C and P-=1.1P,, and 6=180° (concave

meniscus).

The cone with the smaller apex angle results in the more stable equilibrium
condition, with a higher volume of the new phase, i.e. the vapour phase, at

equilibrium.

4.2.2. Stability of the vapour phase being formed from a bulk

liquid phase inside a conical pit: convex meniscus

As shown in Figure 4-10, the principal radius of curvature R; (= Rz = R¢) is
negative for the case of vapour formation out of a bulk liquid phase, with the
pressure difference is defined as P-—PV. For the radius Ry, and equivalently the
Kelvin radius, the bulk liquid pressure must be less than the saturation pressure

(P-<P.;) according to section 3.7.1.

For the meniscus to be convex, the equilibrium contact angle must be in the range
of 6 < 90°+ g, which results in equation (4.25) being always negative. The
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negative sign in the second derivative of the free energy corresponds to a maximum
point indicating an unstable equilibrium state, as presented in Figure 4-14. For
Figure 4-14, the half angle of the solid cone is chosen to be 10° and the solid is
made up ofa material such that the equilibrium contact angle is 0°. The pure fluid
component is H,O at 20°C, with its properties as presented in Table 3-7. The liquid
pressure is chosen to be 0.9P,, for which the Kelvin radius of the system is

—6.22x10* m from equation (2.23).
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Figure 4-14 Free energy \s. scaled size of the vapour phase formed out of a bulk liquid phase
for H,O at 20°C and P~=0.9P,,, contact angle of =0° (convex meniscus), andsolid hal f angle of

p=10°.
The maximum in the free energy represents the barrier to be overcome for the
nucleation of a vapour phase out of a bulk liquid phase. Passing the maximum

point, the ever descending curve shows the spontaneous change of all liquid into

vapour, once the barrier is overcome.
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4.2.2.1.Effect of equilibrium contact angle on the stability of the system
for vapour phase formation out of a bulk liquid phase inside a
conical pit: convex meniscus

The free energy curve is shown for different equilibrium contact angles, in the

system with the same characteristics as the one in Figure 4-14.
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Figure 4-15 Effect of equilibrium contact angle on the free energy vs. volume of the vapour
phase formed out of a bulk liquid phase for H,O at 20°C and P-=0.9P,, and solid half angle of

B=10°, for various contact angles that resultin aconvex meniscus.

It can be seen in the above figure that the smaller the equilibrium contact angle, the
higher would be the barrier to be overcome. Also far from the transition contact
angle 90° + B, the effect of changes in the contact angle is negligible.
4.2.2 .2 Effect of cone apex angle on the stability of the system for

vapour phase formation out of a bulk liquid phase inside a
conical pit: convex meniscus

The same system as the one in Figure 4-14 is chosen, and the free energy for

different cone apex angles is presented in Figure 4-16.
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Figure 4-16 Effect of cone apex angle on the free energy \s. volume of the vapour phase
formed out of a bulk liquid phase for H,O at 20°C and P-=0.9P,, and 8=0° (convex meniscus).

According to the above figure, a higher energy barrier is to be overcome for the
vapour phase to be formed in the cone with the smaller apex angle. Also as the
apex angle gets smaller, a higher volume of the vapour must be formed to meet the

unstable equilibrium condition.

4.3.Conclusion

In this chapter the liquid—vapour system inside a conical pit was studied under the
condition of constant bulk phase pressure and constant mass. Gravitational effects

have been neglected which is reasonable based on the explanations of section 3.2 .

There are two possible systems with a liquid—vapour interface inside a conical pit
(or any other geometry): (1) liquid formation froma bulk vapour phase (section
4.1) and (2) vapour formation from a bulk liquid phase (section 4.2). Each of these

cases might have a concave outward or a convex outward interface.
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Thermodynamic stability analysis was performed on each of these cases. Also the
effects of the solid geometry parameters (cone apex angle) and the contact angle on

the stability of the system were investigated.

The following table is a summary of what has been discussed in sections 4.1 and

4.2
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Fromwhat has been discussed, it can be concluded that for formation of liquid

froma bulk vapour phase, or vapour from a bulk liquid phase inside a conical pit:

1) For any new phase, with the liquid—vapour interface being considered as part of
a sphere, there exists one and only one equilibrium state (either stable or
unstable), and for that equilibrium state Ry e = Rz ¢ = Re.

This is due to the fact that when the liquid—vapour interface is part of a sphere,
then Ry = R, and for these radii to satisfy equation (2.21), the principal radii of
the curvature are to be equal to the Kelvin radius.

2) Ifonly one unstable condition (maximum point) exists in the free energy curve
vs. the size of the new phase, the curve would be ever descending after that
unstable point. In this situation all of the bulk phase would change into the new
phase once the nucleation barrier is overcome.

3) Inthe formation of liquid from a bulk vapour phase inside a conical pit, one of
the following would happen based on the solid material:

e Forwettable solid materials where the meniscus is concave (6 < 90° — p),
liquid formation would be a spontaneous non—nucleating phenomena, filling
the conical pit up to the stable equilibrium size. Such a concave meniscus
canonly exists at PV < P., and this phenomenon is called capillary
condensation .

e For non—wettable solid materials where the meniscus is convex (6 > 90° —
B), liquid formation is a nucleation phenomena, i.e. phase transfer happens

once some energy barrier is overcome. After passing the nucleation barrier,
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all the vapour phase would condense into the liquid. Such a convex

meniscus can only exists at PY > P..

4) Inthe formation of vapour from a bulk liquid phase inside a conical pit, one of

the following would happen based on the solid material:

For non—wettable solid materials where the meniscus is concave (6 >

90° + (), vapour formation would be a spontaneous non—nucleating
phenomena, filling the conical pit up to the stable equilibrium size. Such a
concave meniscus can only exists at P-> P, and this phenomenon is called
capillary evaporation *.

For wettable solid materials where the meniscus is convex (6 < 90° + f),
vapour formation is a nucleation phenomena and would happen only once
the nucleation barrier is overcome. After passing the energy barrier all the
liquid phase would evaporate into the vapour. Such a convex meniscus can

only exists at P- < P..

5) Effect of the contact angle:

When the meniscus is concave, getting farther from the transition contact
angle results in more stability of the stable equilibrium condition. The
meniscus is concave for 6 < 90° — g and PV < P., in the case of liquid
formation froma bulk vapour phase, and for 8 > 90° + 8 and P-> P, in
the case of vapour formation froma bulk liquid phase.

In the case of liquid formation with a concave meniscus froma bulk vapour
phase, decrease of the contact angle results in getting farther from the

transition contact angle. For vapour formation with a concave meniscus
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froma bulk liquid phase, increasing the contact angle is equivalent to getting
farther from the transition contact angle.

Translating the changes in the contact angle into getting farther from the
transition contact angle unifies the description of the liquid formation and
vapour formation cases which otherwise would be different due to the
convention of measuring the contact angle from the liquid side.

e When the meniscus is convex, getting farther from the transition contact
angle increases the amount of the energy barrier. The meniscus is convex for
8> 90°— B and PV> P, inthe case of liquid formation from a bulk vapour
phase, and for 8 < 90° 4+ B and P- < P, in the case of vapour formation
froma bulk liquid phase. Inthe case of liquid formation with a convex
meniscus from a bulk vapour phase, increase of the contact angle results in
getting farther from the transition contact angle. For vapour formation with
a convex meniscus froma bulk liquid phase decreasing the contact angle is
equivalent to getting farther from the transition contact angle.

6) A certain number of degrees change in the equilibrium contact angle has more
effect on the free energy curve and the volume of the new phase, when the
contact angle is close to the transition contact angle.

7) Effect of the cone apex angle:

e Inthe case of a concave meniscus (liquid formation or vapour formation),
the conical solid with greater cone apex angle creates a less stable

equilibrium state.
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e Inthe case of a convex meniscus (liquid formation or vapour formation), the

conical solid with greater cone apex angle results in a smaller energy barrier.
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5. Liquid—vapour system

between two flat plates

In this chapter fluid confined in the gap between two flat plates is investigated. The
focus of this study is a pure fluid system of constant mass and constant pressure
(imposed by the reservoir). For this geometry, the solid—liquid and solid—vapour
interfaces are flat. When the upper and lower plates are both of the same material,
the liquid—vapour interface should meet the solid surfaces at identical contact

angles at any contacts.

Thermodynamic stability analysis is performed for both cases of liquid formation
out of a bulk vapour phase (section 5.1), and vapour formation out of a bulk liquid
phase (section 5.2), using the equations and definitions of chapter 3. For any
vapour—liquid system the meniscus may either be concave or convex. Sections
5.1.1 and 5.1.2 discuss liquid formation with concave and convex menisci
respectively. For vapour formation, concave and convex menisci are explained in
sections 5.2.1 and 5.2.2 respectively. The effects of different parameters on the
stability of these liquid—vapour systems are studied. Sections 5.1.1.1, 5.1.2.1,
5.2.1.1, and 5.2.2.1 are about the impact of the contact angle. How the distance
between the two flat plates affects the stability of the liquid—vapour system is

explained in sections 5.1.1.2,5.1.2.2,5.2.1.2, and 5.2.2.2. In section 5.3 all of these
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investigations are put together and conclusively show the complete picture of
different liquid—vapour systems between two flat plates and the effects of
equilibrium contact angle and plate separation distance on the stability of the

system.

5.1. Liquid phase formation from a bulk vapour
phase between two flat plates

The constraints on the system when liquid is being formed between two flat plates
can be found in Table 3-2. Conditions for equilibrium are to be obtained from
Table 3-4 (a) in which the last stated equation (equation (3.26)) leads to the
Laplace—Young equation (equation (2.13)) and the Young equation (equation

(2.16)).

Due to the small size of the newborn liquid phase compared with the capillary
length (from equation (3.2)), the gravitational force is assumed to be negligible
compared to the surface forces. Ignoring gravitational effects implies constant
pressure in both the liquid and the vapour phases. Then according to the Kelvin
equation (equation (2.20)), the liquid—vapour interface is to be a surface of constant
curvature, i.e. R; and Ry are to be such that Ry, in equation (2.14) is constant at any
point. Through the numerical computation of the shape of the liquid—vapour
interface at equilibrium, the liquid—vapour interface of a liquid bridge has been
shown to be accurately approximated by a toroidal surface when the liquid bridge
half width is equal to or greater than 6.5 times the Kelvin radius (Rc) 18 That

simulation was performed for the case of a liquid bridge between a flat plate and a
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sphere, for various sphere sizes. The case of a liquid bridge between two planar
plates is equivalent to the case of a liquid bridge between a sphere of infinite radius
and a flat plate. Hence the approximation of the liquid—vapour interface as a
toroidal surface (i.e., considering the vertical section of the interface to be anarc of
acircle) is assumed to be valid with the same criteria of the liquid bridge half width
being equal to or greater than 6.5 times the Kelvin radius (Rc) for the case in this
chapter. The toroidal liquid—vapour interfaces being considered are shown

schematically in Figure 5-1.

Liguid

(@) (b)

Figure 5-1 Schematic of a liquid bridge — a) concawe (6 < 90°) and b) convex (6 > 90°) —
between two flat plates, where 0 is the equilibrium contact angle, r is the radius of the circle
approximating the vertical section of the liquid—vapour interface, dis the liquid bridge half
width, H is the distance between the two plates, y; is the three phase contact with the lower
plate and y, is the three phase contact with the upper plate.

Based on the solid material that imposes the equilibrium contact angle, the
liguid—vapour interface is either concave (6 < 90°) or convex (6 > 90°). The
transition contact angle at which the meniscus changes from concave to convex is
90° for this geometry. It is worth noting that the equilibrium contact angle is being

measured through the denser phase (liquid).

When approximating the liquid—vapour interface by a toroidal surface, the
magnitudes of the principal radii of curvature are |R,| = r and |R,| = d. The signs
of the principal radii of curvature are determined based on the definition of AP, and
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according to the concavity of the meniscus. Here AP is defined as PY—P". For the
case of concave meniscus, R; is positive since the centre of the circle is in the
vapour phase (Ri=r) and R; is negative (R,=—d) due to its centre being inside the
liquid phase. In the same way, for the convex case both of the radii are negative

(Ri= —rand Ry= —d).

WV and A are the volume and surface area of revolution of the liquid—vapour
interface curve, F(y), around the y—axis. The volume of revolution can be
computed by adding up a sequence of thin flat washers *3. The appropriate

equations giving V-, AS-and A-Y are presented in Table 5-1%4.

Table 5-1 The liquid volume, the solid—liquid and the liquid—vapour surface areas for a liquid
bridge between two flat plates >

Vi =, F(y)*dy 6.1)
At = [F(y))? + F(y2)?] (5-2)
AW = om [ PRV +F 0)2dy 63)
Concave meniscus (0 <90°) Convex meniscus (6 > 90°)

F(y) =r+d—r2—y? G4) |F@y)=-r+d+rZ—y? (5.5)
y1 = —rcosf (5.6) y1 = rcosf 6.7
y, = rcosd (5.8) y, = —rcosf (5.9)

To analyse the stability of the liquid bridge, the equation for the change in free

energy upon the liquid formation is as stated in Table 3-6:

LV

- VE + (=YW cos @) At + yLVALY (3.59)
C

B—B, =

where V-, AStand A are to be substituted from Table 5-1.
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The equilibrium contact angle is assumed to be known from experiments for the
solid material ofthe plates. The amount of r (= |R,[) is imposed by the distance

between the two plates and the equilibrium contact angle. For the case of concave

meniscus,
H
. (5.10)
2cos0

and for the case of convex meniscus,

— (5.11)
2coso

The dependant variable of the free energy function (equation (3.59)) would be d
(= |R,I). The equilibrium size of the liquid bridge is either obtained from the
extremum of the curve of the free energy vs. liquid bridge half length, d, or from

the roots of the derivative of the free energy with respect to the liquid bridge half

length, d, i.e. (g—s)9=9 =0.

The stability of the liquid bridge can then be found according to the sign of the
derivative at the equilibrium point. A maximum point denotes an unstable
equilibrium, the global minimum of the curve denotes a stable equilibrium, and any

local minimum represents a metastable equilibrium.
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5.1.1. Stability of the liquid phase being formed from a bulk
vapour phase between two flat plates: concave meniscus
(6 <909

For the case of liquid formation with a concave meniscus, with the pressure
difference being defined as AP = PY—P", R; is positive and R; is negative since the
centre of the radius is in the vapour for R; and in the liquid for R,. Hence the mean
radius of curvature fromequation (2.14) is:

=

1
2
where Ry, is identical to Kelvin radius (Rc) at equilibrium conditions, according to

equation (2.21).

For various plate separation distances, and equilibrium contact angles of interest, it
has been observed that at the equilibrium conditions, r is less than d. This would
result in positive Ry, according to equation (5.12), and therefore in positive Rc. For
Rc to be positive, the vapour pressure must be below the saturation pressure

(PV<POO) according to section 3.7.1.

Thermodynamic stability analysis for liquid formation with a concave meniscus is

to be performed through the curve of free energy vs. scaled concave liquid bridge

size (Ri ). A typical example ofsuch a curve is presented in Figure 5-2 for
C

n—dodecane as the pure confined vapour at 24°C (the same condition as in *8).

Fluid properties at this condition are presented in Table 3-7.The vapour pressure is

set to be 0.9Px (less than the saturation pressure), for which the Kelvin radius of
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the system is 4.39x10°® meters from equation (2.20). The contact angle is

considered to be 0°and the separation distance of the two flat plates to be equal to

0.97Rc.
T T T T (a) T T T T
ﬂ_
-2, % 1075}
=A% 107}
)
)
A 6% 10713t
-8 x 1071t .
—1Lx 10772}
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d
Rc
T T T T (b) T T T T
Lx 10715}
0
S
n;.‘ —1.x 10715t
R
-2.% 10755t
=3.x 107"} :
0 5 10 15 20 25 30 35
d
R¢

Figure 5-2 (a) Free energy \s. scaled liquid bridge half width (Ri) between two flat plates, for
C

n—dodecane at 24°C, PV=0.9P,,, 8=0°, and H=0.97Rc, (b) Magnification of the region close to
d=0.
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After passing the maximum point, the curve continuously descends. This means
that once the energy barrier is overcome and the nucleation event has occurred, all

the vapour would change into liquid, filling the space between the plates.

5.1.1.1.Effect of equilibrium contact angle on the stability of the system
for liquid phase formation out of a bulk vapour phase between
two flat plates: concave meniscus

In this section the effect of equilibrium contact angle on the free energy and
stability of liquid formation with a concave meniscus is studied. The properties of
the system other that the equilibrium contact angle are kept the same as those in

Table 5-2.
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Figure 5-3 (a) Effect of the equilibrium contact angle on the curve of free energy vs. liquid
bridge half width between two flat plates, for n—dodecane at 24°C, PV=0.9P,,, for various
contact angles less than 90° (concave meniscus), and H=0.97Rc, (b) Mag nification of the
unstable equilibrium point.

It can be seen in Figure 5-3 for liquid formation with a concave meniscus, that as
the contact angle increases (gets closer to the transition contact angle) the energy
barrier becomes greater; until at some equilibrium contact angle below the

transition contact angle (for example at 6=14.1° for the conditions of Figure 5-3)
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the curve becomes continuously increasing where the formation of the liquid turns
out to be unfavourable. Also from part (b) of Figure 5-3, with the increase of the
equilibrium contact angle, the unstable equilibrium is seen to happen at larger

liquid bridge lengths.

A specific number of degrees changes in contact angle results in larger relative
changes to the energy barrier for contact angles closer to the transition contact

angle. The following figure demonstrates the above statement.

(a) ()
p . . . =TT
- - ﬂ
To-2 1
o =
* - x =1t
S il S
= f (degrees) =S f (degrees)
1 -8 [— ! —
& - 2 = -3 :E
b — . .
0 20 40 &0 80 100 120 ft 20 40 60 80 100 120
i i
Ry R(

Figure 5-4 Comparison of the effect of a s pecific number of degrees change (2°) in the
equilibrium contact angle on the free energy of liquid formation with a concave meniscus (6<
90°) between two flat plates, for n—dodecane at 24°C, PY=0.9P,,, and H=0.97R¢ (a) far from
the transition contact angle, (b) Closer to the transition contact angle

The transition contact angle for this geometry is 90° as mentioned previously. In
part (a) of Figure 5-4 where the contact angle is changing from 0°to 2°, the energy
level of the barrier is changing from 1.46x107'° to 1.49x107'° J, for a relative
difference of 2.05 %, according to equation (4.21). In part (b) for the contact angle
changing from 10° to 12°, which is closer to the transition contact angle (in
comparison to 0° to 2°) , the energy level of the barrier changes from 3.04x107%°)

to 5.59x107*°J, with a relative difference of 83.88%.
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This explanations justifies the approximation of small contact angles with zero,

which has been used in many calculations as a matter of simplification 8.

It should be noted that the above pattern (according to which specific changes in
the contact angle result in more relative difference as one gets closer to the
transition contact angle) is based on the comparison of the level of the energy
barrier at the maximum point (the equilibrium state), only around which the

definition of the energy with respect to the reference point is valid.

Upon further increasing the contact angle (for example above 6=14.1° for the
conditions of Figure 5-3 or Figure 5-4), the energy curve becomes monotonically
increasing. For monotonically increasing curves, the pattern is different. The
relative differences in the energy curves caused by certain changes to the contact
angle get smaller as one gets closer to the transition contact angle. Figure 5-5

demonstrates this phenomenon.
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Figure 5-5 Specific changes (2°) in the contact angle affect the free energy of liquid formation
with a concave meniscus (8 < 90°) between two flat plates, for n—dodecane at 24°C, PV=0.9P,,,
and H=0.97Rc¢. The relatiwve difference in the free energy gets less important far from the
transition contact angle in the case of having an energy barrier (a,b), becomes maximum when
the energy curve changes to monotonically increasing, and gets less important as one gets
closer to the transition contact angle in the case of monotonically increasing curwes (d.e,f).
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5.1.1.2.Effect of the flat plate separation distance on the stability of the
system for liquid phase formation out of a bulk vapour phase
between two flat plates: concave meniscus

The distance between the two flat p lates impacts the stability of the system for

liquid formation with a concave meniscus as illustrated in Figure 5-6.
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Figure 5-6 (a) Effect of the flat plate separation distance on the curve of free energy vs. liquid
bridge half width between two flat plates, for n—dodecane at 24°C, PV=0.9P,., 8=0°, (b)
magnification of the unstable equilibrium point.
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From part (b) of Figure 5-6 it can be seen that as the distance between the two flat
plates increases, the level of the energy barrier increases, and the larger the liquid

bridge has to be to pass the unstable point.

According to part (a), the formation of the liquid phase becomes unfavourable
(monotonically increasing curve) at and above H=R¢ for this case of zero contact
angle. Considering the effect of contact angle that was described in section 5.1.1,
for greater contact angles the liquid formation becomes unfavourable even at some
distance less than Rc. Hence it would be generally true for any contact angle that
liquid formation with concave meniscus is unfavourable for H> Rc. Below R¢
further investigation is required for any specific contact angle to judge whether
liquid formation with concave meniscus is favourable. The separation distance
above which liquid formation with concave meniscus between two flat plates
becomes unfavourable is well predicted by Rc cosé, which is proposed in previous
works 224 for confinement geometry of a flat plate and a sphere. (More

explanation about this is given in chapter 6, at section 6.1.1.2)

5.1.2. Stability of the liquid phase being formed from a bulk
vapour phase between two flat plates: convex meniscus
(6 >90°)

To have contact angle greater than 90° (equivalent to convex meniscus), with the
pressure difference defined by PY—P", both R; and R; are negative with their

centers being located inside the liquid phase.

The mean radius of the curvature fromequation (2.14) is then:
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L=l<_l_l) (5.13)

At the equilibrium condition Ry, is equivalent to the Kelvin radius, Rc, according to

equation (2.21).

According to equation (5.13), Ry, which is identical to Rc, is negative. Negative Rc
is only possible when vapour pressure is greater than the saturation pressure

(PV>P.,), as discussed in section 3.7.1.

Figure 5-7 is a typical free energy curve in this case where the liquid bridge has a
convex meniscus. This demonstration is for n—dodecane at 24°C, with fluid
properties as reported in Table 3-7.The vapour pressure is fixed at 1.1P., (above the
saturation pressure), which results in a Kelvin radius of —4.85x10°® meters from
equation (2.20). Consider a contact angle of 160° and a separation distance of the

two flat plates equal to 0.97 | Rc| .
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Figure 5-7 (a) Free energy \s. scaled liquid bridge half width (Ri) between two flat plates, for
C

n—dodecane at 24°C, P¥=1.1P,,, ® = 160°, and H=O.97| Rc| , (b) Magnification of the region

closetod =0.

The curve is monotonically increasing after passing a maximum which means that

all the vapour would change to liquid after passing the energy barrier.
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5.1.2.1.Effect of equilibrium contact angle on the stability of the system
for liquid phase formation out of a bulk vapour phase between
two flat plates: convex meniscus

The effect of the equilibrium contact angle on the free energy level of the system
for liquid formation between two flat plates is investigated in this section, while the
geometry and other properties are kept the same as introduced in section 5.1.2 and

Figure 5-7 .
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Figure 5-8 (a) Effect of the equilibrium contact angle on the curve of free energy s. liquid
bridge half width between two flat plates, for n—dodecane at 24°C, PV=1.1P.,, for various
contact angles higher than 90° (convex meniscus), and H=0.97 | Rc |, (b) Magnification of the
unstable equilibrium point.

In this case of convex liquid—vapour meniscus formation, an increase in the
equilibrium contact angle is equivalent to getting farther from the transition
contact angle. Any increase in the contact angle makes the energy barrier larger,

until at some equilibrium contact angle the curve becomes monotonically
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increasing indicating that formation of the liquid phase is unfavourable. Also part
(b) of Figure 5-8 shows that with an increase of the equilibrium contact angle, the
unstable equilibrium would happen at larger liquid bridge widths.

5.1.2.2 Effect of the flat plate separation distance on the stability of the

system for liquid phase formation out of a bulk vapour phase
between two flat plates: convex meniscus

Figure 5-9 illustrates the free energy curves for different flat plate separation

distances in the case of liquid formation with a convex meniscus.

124



1 L B A B T T T LA L R B T R
5.x 10”0 - / H
0 —eer |Rcl
‘ T — e
—5x 10°8L ~ T T 1 —— 0.93
L ~ - M-““,_ T . -
S -LxI10 ~ e T 0.95
T _Lsx 10 N
-Lix r e b |
& E N 0.97
—2.x 10713}
: N {l--- 099
—2.5% 107120 N
- - 101
-3.% 10—12- FEETEET T BT S S BT S S BTSSR R S S B S ST ,\I-
0 50 100 150 200 250 300 350
d
[Rel
14 (b)
I'sx }‘0— = T T T T T T T
r ] H
1L.x 10-1E ] IR
5% 1071%F e P L L bbb 11— 093
S or ~ T T - 03
Qf -5.x 10715 ~ h""»_\ E
& - - 1| 0,97
_ 4L ~_ 1
1.x 10" : - 000
—L5x 107"} N ] '
—2.x 107HF N 1= - 1o
0 5 10 15 20 25 30 35
d
R

Figure 5-9 (a) Effect of the flat plate separation distance on the curve of free energy vs. liquid
bridge half width between two flat plates, for n—dodecane at 24°C, PV=1.1P,,, 8=160°, (b)
Magnification of the unstable equilibrium point.

As illustrated in Figure 5-9, the formation of a liquid phase with a convex meniscus
is unfavourable for plates at close distance. As the plate separation gets larger,
liquid formation with a convex liquid—vapour interface becomes favourable at

some large enough plate separation distance. Further increase in the plate
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separation distance makes the energy barrier less, and a smaller liquid bridge needs

to be formed to overcome the unstable equilibrium point.

For contact angle equal to 180°, while other properties are kept the same as for
Figure 5-9, phase transition from vapour confined by non-wettable walls to liquid
is favourable for plate separation distance above Rc. Considering the effect of
contact angle as discussed in section 5.1.2.1 (maximum point happens at smaller
bridge length with less energy as contact angle get closer to the transition contact
angle), liquid phase formation is favourable when plates are separated by a
distance above the Kelvin radius, regardless of the amount of contact angle. Free
energy curves for different contact angles and different separation distances show
that |R. cosB| is the distance below which phase transition from confined vapour
with non-wettable walls into liquid is unfavourable. The primary idea of this

amount came from literature 1> %

, While their concern was to find the separation
distance above which concave liquid formation between a sphere and a flat plate is

unfavourable.

5.2.Vapour phase formation from a bulk liquid
phase between two flat plates

The constraints on the system in which vapour is formed froma liquid phase
between two flat plates are given in Table 3-3. Equilibrium conditions are obtained

through Table 3-4 (b) for the case of flat solid surface.

When gravitational effects are neglected, through the same justifications as in

section 5.1, the liquid—vapour interface is approximated by a toroidal surface as
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long as the liquid bridge half width is equal to or greater than 6.5 times the Kelvin
radius (Rc) 8. The following figure illustrates such liquid—vapour interfaces. The

contact angle () is measured through the liquid phase as per convention.

(a) (b)

Figure 5-10 Schematic of a vapour bridge —a) concawe (0 > 90°) and b) convex (6 < 90°)—
between two flat plates, where 0 is the equilibrium contact angle, r is the radius of the circle
approximating the vertical section of the liquid—vapour interface, dis the vapour bridge half
width, H is the distance between the two plates, y; is the three phase contact with lower plate
and y, is the three phase contact with the upper plate.

The liquid—vapour interface is either concave (6 > 90°) or convex outward
(6 < 90°) for this case of vapour formation. For this geometry, the transition

contact angle at which the meniscus changes from concave to convex is 90°.

The sizes of the principal radii of curvature are |R,| = r and |R,| = d. The sign of
the principal radii of curvature is determined based on the definition of AP, and
according to the concavity of the meniscus. Here AP is defined as P-—P". For the
case of concave meniscus Ry ,with its center located at liquid phase, is positive
(Ry=r) and Ry is negative (R,= — d) due to its centre being inside the vapour phase.
In the same way, for the convex outward case both of the radii are negative (Ri= —

rand R,= —d).

Vapour volume, VY, and surface area, A", of the revolution of the liquid—vapour

interface curve around the y—axis, and ASY can be obtained from Table 5-2 .
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Table 5-2 The vapour volume, the solid-liquid and the solid-vapour surface areas for a
vapour bridge between two flat plates 4344,

VY= [2F(y)2dy (5.14)
AV = [F(y)? +F(y2)?] (5.15)
AW = 2m [P F(y)T+F (3)2dy (5.16)
Concave meniscus (0 > 90°) Convex meniscus (0 <90°)

Fiy)=r+d—r2—y? (.17) | F(y) =-r+d+ r?2—y? (5.18)
y1 = rcoso (6.19) | y; = —rcosb (5.20)
y, = —rcosf (5.21) |y, =rcosb (5.22)

The equation of the free energy for vapour formation is as stated in Table 3-6:

LV

2
B—B, = ;{C VY + (YW cos0)AsY +yLV Al

(3.62)

where VY, ASVand A" are to be substituted from Table 5-2.

For a specific solid material, the equilibrium contact angle is assumed to be known

fromexperiments. The amount of r (= |R, ) is imposed by the distance between

the two flat plates and the equilibrium contact angle. For the case of a concave

meniscus,
—H
o (5.23)
2cos0

and for the case of a convex meniscus,

H
- (5.24)
2c0s0
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Then the free energy function, equation (3.62), is only a function ofd (= |R,|). The
equilibrium size of the vapour bridge is either obtained from the extremum of the
curve of the free energy vs. vapour bridge half length (d) or from the roots of the

derivative of the free energy with respect to the vapour bridge half length,

i.e. (z—z) = 0. The stability of the vapour bridge can then be found according to
0=6,

the sign of the derivative at the equilibrium point.

5.2.1. Stability of the vapour phase being formed from a bulk
liquid phase between two flat plates: concave meniscus
(6 >90°)

For such a concave meniscus, R; is positive and R, is negative when the pressure
difference is defined as AP = P~ — PV, Hence the mean radius of curvature from

equation (2.14) is:
(l _ 1) (5.25)

where Ry, is identical to the Kelvin radius (Rc) at equilibrium conditions, according

to equation (2.21).

For various plate separation distances, and equilibrium contact angles of interest, at
the equilibrium conditions r is less than d. As a result Ry, is positive according to
equation (5.25), which is equivalent to positive Rc. According to section 3.7.1,
positive Rc is only possible if the bulk liquid pressure is above the saturation

pressure (P“>P.,).
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A typical curve of the free energy vs. scaled convex vapour bridge size (Ri) is
c

presented in Figure 5-11 for water at 20°C. Fluid properties at this condition are
presented in Table 3-7.The liquid pressure is set to be 1.1P.. The Kelvinradius of
the system at such conditions is 6.22x10* meters from equation (2.23). The
equilibrium contact angle is 180°, and the separation distance of the two flat plates

is equal to 0.97Rc.
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Figure 5-11 (a) Free energy \s. scaled vapour bridge half width (Ri) between two flat plates,
C

for water at 20°C, P-=1.1P.,, 8=180°, and H=0.97Rc, (b) Magnification of the region close to
d=0

As Figure 5-11 indicates, after passing the energy barrier, all the liquid would

change into vapour and there is no stable size for the vapour.
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5.2.1.1.Effect of equilibrium contact angle on the stability of the system
for vapour phase formation out of a bulk liquid phase between
two flat plates: concave meniscus

The effect of the equilibrium contact angle on the free energy of a vapour phase
with a concave meniscus is investigated in this section. The properties of the
system other than the equilibrium contact angle are kept the same as those in

Figure 5-11.
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Figure 5-12 (a) Effect of the equilibrium contact angle on the curwe of free energy vs. vapour
bridge hal f width between two flat plates, for water at 20°C, P-=1.1P,,, for various contact
angles higher than 90° (concave meniscus), and H=0.97Rc, (b) Magnification of the unstable

equilibrium point.

As contact angle decreases and gets closer to the transition contact angle, the

energy barrier increases and the unstable equilibrium vapour bridge gets larger;

until at some contact angle the curve becomes monotonically increasing where the

formation of the liquid turns out to be unfavourable.
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For the same number of degrees change in the contact angle, higher relative
changes inthe free energy curve occur close to the transition contact angle. This is
similar to the case of concave meniscus liquid formation from the bulk vapour
phase. This fact is valid for contact angles resulting in curves having a maximum

point, as illustrated in Figure 5-13.

(a) _ .
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Figure 5-13 Comparison of the effect of a specific number of degrees (2°) change in the
equilibrium contact angle on the free energy of vapour formation with a concave meniscus (0
>90°) between two flat plates, for water at 20°C, PV=1.1P.,, and H=0.97R¢ (a) far from the
transition contact angle, (b) closer to the transition contact angle.

The transition contact angle for this geometry is 90°. In part (a) of Figure 5-13
where the contact angle is changing from 178°to 1809, the height of the barrier
changes from 8.70x10 7 J to 8.51x10 ' J, for a relative difference of 2.21 %, from
equation (4.21). Inpart (b) for the contact angle changing from 168° to 170°,
which is closer to the transition contact angle, the height of the barrier changes
from 3.26x107° J to 1.77x10°° J, with a relative difference of 83.81%, from

equation (4.21).
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5.2.1.2.Effect of the flat plate separation distance on the stability of the
system for vapour phase formation out of a bulk liquid phase
between two flat plates: concave meniscus

Figure 5-14 shows the free energy of the concave vapour phase for various plates’

separation distances.
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Figure 5-14 (a) Effect of the flat plate separation distance on the free energy \s. vapour
bridge half width between two flat plates, for water at 20°C, 8 =180°, and P-=1.1P,,, (b)
Magnification of the unstable equilibrium point.

As illustrated in Figure 5-14, the energy barrier becomes higher as the plate
separation distance increases, until at some distance the formation of the vapour
phase is no longer favourable. For smaller contact angles (with the effect of contact
angle as described in section 5.2.1.1), vapour formation with concave meniscus

becomes unfavourable even at some distance less than Rc. Therefore it can be
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concluded that for any contact angle, vapour formation with concave meniscus is
unfavourable for H> Rc. Below Rc further investigation is required for any specific
contact angle. Modifying what has been proposed in literature 1 2* for the case of
liquid formation with concave meniscus between a sphere and a flat plate, vapour
formation with concave meniscus between two flat plates becomes unfavourable

for plate separation distance above —Rc cos6.

5.2.2. Stability of the vapour phase being formed from a bulk
liquid phase between two flat plates: convex meniscus (0
< 909)

For the pressure difference being defined as P-—PY and for the convex meniscus (6
<90°), both R; and R, are negative with their centers being located inside the

vapour phase.

With r = |R,| and d = |R, |, the mean radius of the curvature from equation (2.14)

is:
1 _ 1<_1 _l> (5.26)
R, 2\ r d

where Ry, is equal to Kelvin radius (Rc) at equilibrium condition, according to

equation (2.21).

Rm , which is identical to Rc, is negative according to equation (5.26). For Rc to be
negative, bulk liquid pressure must be less than the saturation pressure (P-<P.,) as

discussed in section 3.7.1.
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. . . d . .
A typical free energy curve vs. scaled convex vapour bridge size (R—) is shown in
C

Figure 5-15. The case is water at 20°C, with properties given in Table 3-7. The
liquid pressure is set to be 0.9P,,. The Kelvin radius of the system at these
conditions is —6.22x10* meters from equation (2.23). First let us set the
equilibrium contact angle to 20°, and the separation distance of the two flat plates

t0 0.97 | Re| -
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Figure 5-15 (a) Free energy \s. scaled vapour bridge half width (Ri) between two flat plates,
C

for water at 20°C, P-=0.9P.,, §=20°, and H=0.97| Rc| , (b) Magnification of the region close to
d=0.

After passing a maximum point, the curve is monotonically decreasing which

means all the liquid would turn into vapour after passing the energy barrier.
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5.2.2.1.Effect of equilibrium contact angle on the stability of a vapour
phase being formed from the liquid phase between two flat
plates: convex meniscus

The geometry and other properties are kept the same as presented in Figure 5-15,

and the effect of the equilibrium contact angle is investigated.
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Figure 5-16 (a) Effect of the equilibrium contact angle on the free energy \s. vapour bridge
half width between two flat plates, for water at 20°C, P-=0.9P.., for various contact angles less
than 90° (convex meniscus), and H=0.97 | Rc | , (b) Magnification of the unstable equilibrium
point.

In the formation of the convex vapour phase, any decrease in the equilibrium

contact angle (i.e. getting farther from the transition contact angle), increases the

height of the energy barrier and the unstable condition happens at higher volume of

the vapour phase. At some equilibrium contact angle far enough from the
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transition contact angle, the curve becomes monotonically increasing indicating

that it is not favourable to nucleate a new phase.

5.2.2.2 Effect of the flat plate separation distance on the stability of a
vapour phase being formed from the liquid phase between two
flat plates: convex meniscus

The flat plate separation distance, H, is an important factor that determines whether
the vapour formation with a convex meniscus is favourable in the first place, and
also determines the size of the energy barrier when vapour bridge formation is

possible. Figure 5-17 displays the effect of flat plate separation distance.
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Figure 5-17 (a) Effect of the flat plate separation distance on the free energy \s. vapour
bridge half width between two flat plates, for water at 20°C, 6 =20°, and P-=0.9P,, (b)
Magnification of the unstable equilibrium point.

As shown in Figure 5-17, the formation of the vapour phase with a convex
meniscus is unfavourable at small flat plate separation distances. Vapour formation
with a convex liquid—vapour interface becomes favourable at some large enough

separation distance. Further increase in the distance makes the energy barrier
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smaller, and a smaller vapour bridge needs to be formed to overcome the unstable

equilibrium point.

Closer examinations were performed to find the amount of plate separation
distance below which vapour formation is impossible due to wettable plates that
tightly confine the liquid phase. For contact angle equal to 0°, while other
properties are kept the same as Figure 5-17, phase transition from liquid being
confined by wettable walls to vapour is favourable for plate separation distance
above Rc. Considering the effect of contact angle as discussed in section 5.1.2.1
liquid phase formation is favourable, regardless of the amount of contact angle, for
plate separation distances above the Kelvin radius. Through further examination of
the free energy curve for different contact angles, |R.cos8| is found to be the
distance below which phase transition from confined liquid with wettable walls
into vapour is unfavourable. This amount is inspired by the amount proposed in
literature 1 2 for the separation distance above which concave liquid formation

between a sphere and a flat plate is unfavourable.

5.3.Conclusion

The focus of this chapter has been the liquid—vapour system between two flat
plates under the condition of constant bulk phase pressure and constant mass. Two
possible systems with the liquid—vapour interface were investigated: (1) liquid
formation froma bulk vapour phase and (2) vapour formation froma bulk liquid

phase. Each of these might have a concave outward or a convex outward interface.
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Thermodynamic stability analysis was performed on each of these cases. The
effects of the contact angle and of the flat plate separation distance on the stability

of the system were investigated in separate sections.

The following table, Table 5-3, summarizes the results in sections 5.1 and 5.2.
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Fromwhat has been discussed, it can be concluded that for formation of a liquid
froma bulk vapour phase, or a vapour from a bulk liquid phase, between two flat

plates:

1) Inthe formation ofa liquid from a bulk vapour phase between two flat plates,
one of the following would happen:

e Liquid formation with concave meniscus is possible if and only if bulk
vapour pressure is below the saturation pressure (PV < P.,) as discussed in
section 5.1.1. Also a concave meniscus is only possible for vapour phase
inside a confinement with wettable solid walls, that allows for 6 < 90°.
With all these conditions being satisfied (P¥ < P,, and solid material such
that 8 < 90°) liquid formation with concave meniscus is still unfavourable
for high plate separation distance, and/or for contact angles close to the
transition contact angle. For the cases where liquid formation with
concave meniscus is favourable, after passing the nucleation barrier, all the
vapour phase would condense into liquid. Hence no liquid phase with
concave meniscus can exist in a stable condition. This phenomenon of
phase transition from vapour to liquid at pressure below the satiation
pressure (PY < P.,) is well known as capillary condensation.

e Liquid phase formation with convex meniscus is possible if and only if
bulk vapour pressure is above the saturation pressure (PY > P.,) as
discussed in section 5.1.2. Such a convex meniscus is only achievable

through non-wettable confinement that results in & > 90°. Even when all
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these conditions are met (P > P, and solid material such that @ > 90°), for
some small values of separation distance (H), and/or some contact angle far
from the transition contact angle, the free energy curve turns into a
constantly increasing curve and liquid formation with convex meniscus is
unfavourable. This is interesting that even at bulk vapour pressure above
the saturation pressure confinement with non-wettable walls prevent phase
transition from vapour to liquid, which would occur at saturation pressure
for a non-confined liquid. If the parameters (H and #) are such that liquid
formation with convex meniscus is favourable, some nucleation barrier is
to be overcome. Once this nucleation barrier is overcome, all the vapour
phase turns into the liquid phase (the free energy curve is ever ascending
after the maximum point). It should be highlighted that between two flat
plates, a liquid bridge with convex meniscus can never exist in a stable
condition.

2) Inthe formation of vapour from a bulk liquid phase between two flat plates,

one of the following would occur:

e Vapour formation with concave meniscus is possible if and only if bulk
liquid pressure is above the saturation pressure (P~ >P.,) as discussed in
section 5.2.1. Such a concave meniscus is only achievable through non-
wettable confinement walls for which 6 > 90°. Under these conditions (P"
>P,) and solid such that & > 90°), vapour formation with concave meniscus
is still impossible (the free energy curve is monotonically increasing) for

some contact angle close to the transition contact angle and/or for plates
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with large separation distance. When vapour phase formation with concave
meniscus becomes favourable, it would happen only once the nucleation
barrier is overcome, and after that all the liquid phase would evaporate into
vapour. It should be noted that a vapour phase with concave meniscus
cannot exist ina stable condition. This phenomenon of phase transition
inside a confinement from liquid phase at pressure above the saturation
pressure to vapour phase is called capillary evaporation.

Vapour formation with convex meniscus is possible ifand only if bulk liquid
pressure is below the saturation pressure (P- < P.) as discussed in section
5.2.2. Such a convex meniscus only happens in a confinement with wettable
walls for which 6 < 90°. Even at these condition (P- < P., and wettable solid
that makes 6 < 90°), phase transition from liquid to vapour can be
unfavourable (i.e. monotonically increasing energy curve) for contact angles
far from the transition contact angle, and/or for small plate separation
distances. It is interesting that phase transition from liquid at pressure below
the saturation pressure (P- < P.,) to vapour is prevented by tight confinement
of the liquid phase with wettable walls, while for an unconfined liquid this
phase transition happens at the saturation pressure. If the parameters (H and
) are such that phase transition is possible, vapour formation would happen
once the nucleation barrier is overcome, after which all the liquid phase
would evaporate into vapour. It should be highlighted that no stable vapour

phase with convex meniscus can exist.
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3) For cases where only an unstable condition (maximum point) exists in the free
energy curve vs. the size of the new phase, the curve would decrease
monotonically after that unstable point. In this situation all of the bulk phase
would change into the new phase once the nucleation barrier is overcome.

4) Effect of the contact angle:

e When the meniscus is concave, getting farther from the transition contact
angle results in a smaller energy barrier and advances the nucleation
process. In the case of liquid formation froma bulk vapour phase, the
meniscus is concave for PV < P,, and for a wettable confinement (6 < 90°). In
the case of vapour formation froma bulk liquid phase, a concave meniscus
is possible for P-> P, and for non-wettable confinement (6 > 90°). For
concave liquid formation froma bulk vapour phase, decrease of the contact
angle results in getting farther from the transition contact angle. For
concave vapour formation froma bulk liquid phase, increasing the contact
angle is equivalent to getting farther from the transition contact angle.

e When the meniscus is convex, getting farther from the transition contact
angle increases the amount of the energy barrier; until at some far enough
contact angle the curve becomes ever increasing and the new phase
formation becomes unfavourable. In the case of liquid formation froma bulk
vapour phase, the meniscus is convex for PY> P,, and for a non-wettable
confinement (¢ >90°). In the case of vapour formation froma bulk liquid
phase, a convex meniscus is possible for P~ < P, and for wettable

confinement (¢ < 90°). For convex liquid formation from a bulk vapour
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phase, increase of the contact angle results in getting farther from the
transition contact angle. For convex vapour formation from a bulk liquid
phase decreasing the contact angle is equivalent to getting farther from the
transition contact angle.

5) In new phase formation with a concave meniscus, changing the contact angle
by a specific number of degrees results in larger relative changes of the energy
barrier for contact angles close to the transition contact angle (90°). The focus
of this statement is contact angles for which new phase formation is favourable
(the free energy vs. new phase size curve is not constantly increasing).

6) Effect of the flat plate separation distance:

e Inthe case of concave meniscus (liquid formation or vapour formation)
larger separation distances increase the height of the energy barrier; until at
some large enough separation distance the new phase formation becomes
unfavourable. New phase formation with concave meniscus is certainly
unfavourable for plate separation distance above Rc, regardless of the
amount of the contact angle. The separation distance above which new phase
formation is unfavourable can be more accurately predicted by |R. cosf| ,
which is a modification of what is proposed in literature 2% for liquid
formation with concave meniscus between a sphere and a flat plate.

e When having a convex meniscus (liquid formation or vapour formation) a
larger separation distance promotes the new phase formation by decreasing
the energy barrier. New phase formation with convex meniscus out of a fluid

confined between two flat plats is prevented if the plate separation distance
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is below |R. cos@)|. It shows that while phase transition happens at the
saturation pressure for a fluid without any confinement, confinement may
prevent the phase transition: Vapour being confined by non-wettable plates
separated by a distance less than |R. cos@| does not turn into liquid, even
though P> P... Liquid being confined by wettable plates of distance below

|R. cosB| does not turn into vapour, even though PL< P,
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6. Liquid—vapour system
between a sphere and a flat
plate

The solid geometry of concern is the gap betweena solid sphere and a solid plate.
The sphere—plate geometry is the shape of the confinement in many practical cases.
For the study of this chapter, the liquid—vapour system is considered to be pure
with constant mass and constant bulk phase pressure (imposed by a reservoir). The
solid interfaces (solid—liquid and solid—vapour) are flat for the solid plate, and are
curved for the solid sphere. According to Table 3-4, a solid sphere, being a curved
surface, results in an extra equilibrium condition, which is the equality of the
chemical potential of the solid component in the solid phase with the chemical
potential of the solid component adsorbed at the solid—liquid and the solid—vapour
interfaces. This will affect the surface tensions of the solid-liquid and the solid
solid—vapour interfaces (y>, y>) which in turn affects the equilibrium contact
angle according to the Young equation (equation (2.16)). Therefore this
equilibrium condition may cause the equilibrium contact angle to be different for
the solid sphere and the solid plate, even though both the sphere and the plate are

made of the same solid material.
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Given that for the cases of interest, the distance between the sphere and the plate is
very small compared to the radius of the sphere (for example a sphere of radius of
several millimetres in comparison with a separation distance of less than 100 nm),
we assume that the shape of the upper sphere has a negligible effect on contact
angle. Therefore the contact angle with the upper spherical solid is assumed to be
equal to the contact angle with the lower flat plate, provided both the sphere and

the plate are made from the same solid material.

The assumption of equal upper and lower contact angles has been applied to the
fluid confined between a sphere and a flat plate in many experimental studies ! >
24 1t should be noted that spherical shape of the upper particle is accounted for in

geometry relations, i.e. in calculating the volume of a new phase and the solid

sphere surface area.

Both liquid formation from a bulk vapour phase, and vapour formation froma bulk
liquid phase are investigated from the thermodynamic stability point of view
(following the equations of chapter 3) insections 6.1 and 6.2 respectively. Each of
these sections is divided into two parts based on the concavity of the meniscus.
Sections 6.1.1 and 6.1.2 consider liquid formation with concave and convex
menisci correspondingly, and sections 6.2.1 and 6.2.2 discus vapour formation with
concave and convex menisci. Different parameters have an effect on the stability of
each of these cases. The effect of contact angle is explained in sections 6.1.1.1,
6.1.2.1,6.2.1.1, and 6.2.2.1. The effect of the distance between the sphere and the

flat plate is discussed in sections 6.1.1.2,6.1.2.2, 6.2.1.2, and 6.2.2.2. The effect of
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the solid sphere size on the thermodynamic stability of the system is also explained
in sections 6.1.1.3, 6.1.2.3, 6.2.1.3, and 6.2.2.3. All these pieces are put together in
section 0, and a conclusive picture of a confined fluid between a sphere and a flat

plate is given.

6.1. Liquid phase formation from a bulk vapour
phase between a sphere and a flat plate

The constraints of the system in which liquid forms out of a bulk vapour phase
between a sphere and a flat plate, are presented in Table 3-2. The conditions for

equilibrium of such a system are as presented in Table 3-4 (a).

As illustrated in section 2.4, the gravitational force can be neglected compared to
the surface forces if the characteristic length of the new born phase is much smaller
than the capillary length of the new born phase. This criterion is examined for
n—dodecane at 24°C (same condition as 8, with the properties given in Table 3-7)
and at bulk vapour phase pressure of 0.9P,, as anexample. The Kelvin radius of
the system at such conditions is 4.39x10°® meters from equation (2.20). Also from
Table 3-1, the capillary length of n—dodecane at 24°C is 1.85x10~° meters. The
capillary length is much larger than the Kelvin radius (supposed to be the
characteristic length). Therefore gravitational effects can be ignored, and the
pressure is assumed to be constant throughout the liquid phase as well as the
vapour phase. Constant pressures imply the liquid—vapour interface must be a

surface of constant curvature according to the Kelvin equation (2.20).
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As mentioned in the previous chapter, a toroidal interface can accurately
approximate the liquid—vapour interface for liquid bridge half widths greater than
or equal to 6.5xRc 8. Pakarinen et al. 1% also calculated the exact shape of a liquid
meniscus through the Kelvin radius. They showed, by comparing the capillary
force calculated once for the exact profile and then for the circular approximation,
that the circular profile approximation for the meniscus is justified in the validity
range of continuum modeling (macroscopic physics) *°. Such a liquid—vapour

interface is shown in Figure 6-1.

(a)

Figure 6-1 Schematic of a liquid bridge —a) concave and b) convex— between a flat plate and a
sphere, where 0; and 0, are the equilibrium contact angles for the lower and upper surfaces, r
is the radius of the circle approximating the vertical section of the liquid—vapour interface, d
is the liquid bridge half width, H is the distance between the sphere and the flat plate, a is the
half filling angle of the liquidin the bridge, y; is the three phase contact with the lower
particle, y, is the three phase contact with the upper particle, and Rp is the radius of the
spherical particle.

As presented in Figure 6-1, the interface is either concave or convex depending on

the solid material. For identical contact angles at the upper and lower solid surfaces

180°—« . .
. The meniscus is hence concave

(6L = 6, = 0), the transition contact angle is

180°— . 180°—
- £ and is convex for 8 > =

foro <
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For the liquid—vapour interface of constant curvature being approximated by a
toroidal surface, the principal radii of curvature, R; and R, have the size of

|R,| = rand |R,| = d, as shown in Figure 6-1. The signs of the principal radii of
curvature are determined based on the definition of AP, and according to the
concavity of the meniscus. Here AP is defined as PY—P" for the case of liquid
formation. For a concave meniscus, Ry is positive since the centre ofthe circle is in
the vapour phase (Ri=r) and R; is negative (R;=—d) due to its centre being inside
the liquid phase. In the same way for the convex case, both of the radii are negative

(Ri= —rand R;= —d).

The volume of revolution of a curve, F(y), around the y—axis is equivalent to the
summation of a sequence of thin flat washers *3. To find the liquid volume (V"), the
volume of the part of the solid sphere immersed in the liquid (Vs) should then be
deducted from the calculated volume of revolution. A-Y can be computed from the
surface of revolution around the y—axis **. The appropriate equations giving V-, AS"

and A~ are presented in Table 6-1.
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Table 6-1 Liquid volume, solid-liquid and liquid—vapour surface area for liquid bridge
formation between a flat plate and a s phere.

Vb= [y F(y)2dy = Vs 6.)
Vg = g Rp> (1— cosa)z(Z + cosa) 6.2)
SL 2 2

At =1 [F(yl) + 2Rp* (1 — cosoc)] (6.3)
AW = 2m [J2F(y)T+F (y)%dy (6.4)
Concave meniscus (0 < 18020_“) Convex meniscus (0 > 18(:_“)
F(y)=r+d—r?—y? (6.5 |F(y)=-r+d+r2—y? (6.6)
y1 = —rcosf 6.7) |y, =rcosb (6.8)
y, = rcosd 6.9 |y,= —rcosb (6.10)

To perform the stability analysis of the liquid bridge, the equation of the free

energy for the liquid formation (from Table 3-6) is to be calculated:

LV

B—B, = Y VE + (—yWcos0)ASt + yv A (3.59)

R¢

where Vb, AStand A are to be substituted from Table 6-1. For a defined problem
in which ¥V, Rc, and 6 are known, equation (3.59) after substitution ofall

geometric relations would be in terms of r and d, both of which can be written as a

function of the half filling angle, a. For the case of the concave meniscus,

Rp(1 —
o p(1 —cosa) + H (6.11)
cos(® + o) + cosh

d = Rpsina — r[1 — sin(0 + o] (6.12)

and for the case of the convex meniscus,
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R —
o p(1 —cosa)+H (6.13)
—cos(® + o) — cosO

d = Rpsina + r[1 — sin(6 + )] (6.14)

The equilibrium state of the liquid bridge and its size can be obtained from the

extremum of the curve of the free energy (B—Bo) of the system vs. the liquid bridge

half length (d), or from the roots of (3—2) = 0 alternatively.
=0,

The stability of the liquid bridge is then obtained according to the type of the
extremum point: a maximum point represents an unstable equilibrium, the global
minimum corresponds to the stable equilibrium state, and any local minimum

would be a metastable condition.

6.1.1. Stability of the liquid phase being formed from a bulk
vapour phase between a sphere and a flat plate: concave
meniscus

When the pressure difference is defined to be AP = PY—PY, Ry is positive and R, is
negative since the centre of the radius is in the vapour for R; and in the liquid for
R». Hence the mean radius of curvature fromequation (2.14) is:

t-3

1
2
and Ry, is identical to Kelvin radius (Rc) at the equilibrium condition, according to

equation (2.21).

As explained in the previous chapter, for various sphere—plate separation distances
and equilibrium contact angles, it has been observed that at the equilibrium
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conditions r is less than d. This would result in positive Ry according to equation
(6.15), and therefore in positive Rc. For Rc to be positive, the vapour pressure must

be below the saturation pressure (PY<P.,.) according to section 3.7.1.

The curve of the free energy vs. scaled liquid bridge half width (Ri) is shown in
Cc

Figure 6-2 for n—dodecane at 24°C (the properties of which are reported in Table
3-7) as anexample. The vapour pressure is set to be 0.9 P, for which the Kelvin
radius is 4.39x10°® meters from equation (2.20). The equilibrium contact angle is
set to 0°, the separation distance of the sphere and the flat plate is set equal to
0.97Rc, and the solid sphere is taken to be of a radius of 2.5 cm. This is a
reproduction of the calculations by Elliott and Voitcu '8 and the results are in good

agreement.
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Figure 6-2 (a) Free energy \s. scaled liquid bridge half width (Ri) between a flat plate and a
C

sphere, for n—dodecane at 24°C, PV=0.9P,,, =0°, H=0.97Rc, Rp=2.5 cm, (b) Magnification of
the region close to d=0

There is a maximum point in the free energy curve, demonstrating an energy
barrier to be overcome for the phase transition. The phase transition therefore is a
nucleation phenomenon. Once this barrier is overcome the energy barrier gets to a

minimum point and the liquid bridge stays at its stable equilibrium size.
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6.1.1.1.Effect of equilibrium contact angle on the stability of the system
for liquid phase formation out of a bulk vapour phase between
a flat plate and a sphere: concave meniscus

Thermodynamic stability analysis has been performed by others, while considering
only zero contact angle 8. In this section, the role of the equilibrium contact angle
on the free energy curve will be investigated. The properties of the system other

that the equilibrium contact angle are kept the same as those in Figure 6-2.
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Figure 6-3 (a) Effect of the equilibrium contact angle on the free energy \s. scaled liquid
bridge half width between aflat plate and asphere, for n—dodecane at 24°C, PV=0.9P,,,
H=0.97Rc, Ry=2.5 cm, for various contact angles that resultin concave meniscus (b)
Magnification of the unstable equilibrium point.

For this case of liquid formation with concave meniscus, as contact angle increases
(get closer to the transition contact angle) an increase occurs in the height of the
energy barrier, and the unstable liquid bridge is formed at larger bridge width. The

increase of the contact angle (closer to the transition contact angle) also results in
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a shallower stable equilibrium state with a smaller size of the bridge, i.e. a smaller

amount of liquid would form with less stability.

As the increase of the contact angle continues, at a certain contact angle the curve
becomes monotonically increasing where the formation of the liquid turns out to be

unfavourable.

From further investigations it has been found that a specific number of degrees
change in the contact angle results in larger relative changes in the energy barrier
and the energy level of the minimum point for contact angles closer to the
transition contact angle. This statement only applies to the cases where liquid
formation is possible (and the curve has a maximum point, followed by a minimum
point), and not the cases where liquid formation is unfavourable (the energy curve

is constantly increasing). Figure 6-4 illustrates the above statement.
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Figure 6-4 Comparison of the effect of aspecific number of degrees change (2°) in the
equilibrium contact angle on the free energy of liquid formation with aconcave meniscus
between aflat plate and asphere, for n—dodecane at 24°C, PV=0.9P_,, H=0.97Rc, Rp,=2.5¢cm,
(al) far from the transition contact angle, (bl) closer to the transition contact angle. (a2) and
(b2) are magnifications of (al) and (bl) respectiely.

In (@l) and (a2) of Figure 6-4 where the contact angle is changing from 0° to 2° far

from the transition contact angle, the energy level of the barrier is changed from

1.46x107° J to 1.49x10 *° J, and the energy level of the stable point is changed

from—1.12x1073 J t0 —1.06x10 *2 J. In (b1) and (b2) when the contact angle

changes from 10° to 12°, which is closer to the transition contact angle, the energy

level of the barrier is changed from 2.22x10 7 J to 3.11x10 *°J, and the energy

level of the stable point is changed from —3.61x107** J to —8.88x107*°J. The

relative difference, being calculated from equation (4.21), is presented in Table 6-2

for each case.
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Table 6-2 Relative differences in the free energy lewel of the maximum and minimum points as
aresult of acertain number of degrees (2°) change in the contact angle for the case of liquid

formation with concave meniscus out of a bulk vapour phase.

0, — 0, Relative difference in energy Relative difference in energy
level of the maximum point level of the minimum point

0°—2° (far from 6) 2.22% 5.15%

8°—10° (close to 6) 40.24% 75.41%

6.1.1.2.Effect of the solid surface separation distance on the stability of
the system for liquid phase formation out of a bulk vapour
between a sphere and a flat plate: concave meniscus

Figure 6-5 shows the effect of the solid surface separation distance on the free

energy curve of liquid formation with a concave meniscus.

166




@

T T T T T T
[ H
8.x 1071F /o R¢
| — 097
6. 1073}
) ; - 098
"? 4.x 10-13¢
& [ 0.99
3] s
2.x 10713 -
| R A R | R 1.00
L - e
0r e —— —= 1- - 1.01
0 50 100 150 200 250 300
d
Re
T T T T (b) T T T
1.2x 101} 1 H
o] e
Lx 1071} _ ] R
8.x 1075 - oy 097
-~ T
S 6x1075 - {--- 0098
Y i - T ) cenned]
I 4.x 107} [ 1
n X L 0.99
2.%x 10713 st ——e
- Tl 100
0
-2 % 1075t 1= = 1.01
0 5 10 15 20 25 30 35
d
R

Figure 6-5 (a) Effect of the solidsurface separation distance on the free energy . scaled

liquid bridge half width between a flat plate and a sphere, for n—dodecane at 24°C, PV=0.9P,,,
0=0°, R,=2.5 cm, (b) Magnification of the unstable equilibrium point.

Figure 6-5 is a reproduction of, and is in good agreement with, the study which has
previously been performed 8. A higher energy barrier with a larger liquid bridge
width is to be overcome as the separation distance between a sphere and a flat plate

increases. Larger sphere—plate separation distance also causes less stability
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(shallower minimum) and shorter liquid bridge width for the stable equilibrium

state.

Further increase in the sphere—plate separation distance makes the free energy
curve constantly ascending and the formation of the liquid phase to be
unfavourable. The solid surface separation distance above which the liquid
formation becomes unfavourable (the liquid bridge breaks from its stable

condition) is called the breakage distance (Hgreak) *°.

For liquid formation in this geometry, the breakage distance is approximated by the
critical distance (Hasreak) in terms of the Kelvin radius and the contact angle, for the
cases where Rp >> |d| >> H, and for small contact angles *. Fisher and

Israelachvili used some different notations and definitions in their work, for

example the mean radius of curvature is defined as Ri = (Ri + Ri) , rather than
m 1 2

Ri = %(Ri + Ri) as in our work and many others 8. Translating their notations and
m 1 2

definitions into ours, the critical distance is given by:

( )
3
Hpreak = RCCOSG{ 1- 32Rp cosf 1/3 } (6.16)
L G

as stated in %%,

Equation (6.16) for the critical distance is obtained through geometrical relations
betweend, r, and H, and equation (2.21), which makes it possible to write H in

terms of d, Rp, 0, and Rc. Then with constant Rp and @ for a defined problem, and
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constant Rc at fixed vapour pressure, H and d are the only variables. Therefore the
maximum of H, equivalent to Hgreak, Can be obtained in terms of the constants Rp,
0, and Rc, through the derivative of H with respect to d. The value of Hgreax is Very

insensitive of Rp, and is approximated by Rc cos6 2*. This is a good approximation

for large enough 2—” values. For example for n—dodecane at 24°C, PV=0.9P,,,, and
Cc

0=0°, the breakage distance is approximated to be equal to Rc. However from

equation (6.16), the breakage distance is 0.990xR¢ for a sphere of2.5cm (R—P =

Re

5.7x10°) and is 0.978xRc for a sphere 0f 2.5 mm (R—P = 5.7x10%).

R¢

The breakage distance is less than R¢ for any contact angle according to equation
(6.16) . Thus liquid formation between a sphere and a flat plate is certainly
unfavourable, regardless of the contact angle, for any sphere—plate separation
distance of above Rc (H>Rc). For H< R, further investigation is to be done for
each contact angle of interest to figure out the favourability of liquid formation at H

close to Rc.

A closer look is given to liquid formation with concave meniscus, and 6=0°,

between a sphere and a flat plate, at separation distance near the breakage distance.
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Figure 6-6 Energy lewel of the maximum and minimum points at s phere—plate separation
distance close to the breakage distance for a liquid bridge between a flat plate and a sphere,
for n—dodecane at 24°C, PV=0.9P,,, 0=0°, Rp,=2.5cm.

Figure 6-6 is also a reproduction of previous studies, indicating a breakage distance
0f 0.990xR¢ '8, which is in good agreement with the breakage distance calculated
fromequation (6.16), and slightly smaller than a breakage distance obtained from

Rc cos6 (equal to Re in this case where 0 is 0°).

As the sphere—plate separation distance increases to the breakage distance, the free
energy of the stable equilibrium becomes approximately identical to the free energy
of the unstable equilibrium as illustrated in Figure 6-6. Hence natural fluctuations
large enough to overcome the nucleation barrier are also large enough to allow the
bridge to disappear. This leads to fluctuations of the liquid bridge size between the
unstable and the stable liquid bridge sizes. Elliott and Voitcu explain this as a

thermodynamic understanding of the “diffuse liquid—vapour interface” &,
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In experiments by Maeda et al. on n-hexadecane, two different behaviours have
been observed at sphere—plate separation distance equal to Hgreak (for the case
where contact angle is zero, and Hgreak=Rc ) based on how this separation distance

is approached 12:

1) Ifthe separation distance is initially above Hgreak, and it decreases to Hgyeak, the
bridge that forms at Hgreax has density between the densities of liquid and
vapour, and behaves like a fluid above its critical point 2.

2) Ifthe separation distance is initially below Hgreak, and it increases to Hgyreak, the
reflective index of the bridge remains that of a bulk liquid at Hgreax 2.

This process-based behaviour at Hgreax Can be described as follow:

1) In the first case where the sphere—plate separation distance is initially above and
then decreases to Hgreak , the free energy curve changes from steadily increasing
(no liquid existence) for H> Hgeak, to a curve with an unstable followed by a
stable state at H= Hgreak. Thus in this approach, at H= Hgeak liquid is to be
formed after passing a nucleation barrier, while the possibility of liquid
nucleation did not exist at previous steps where H> Hgreak. LONger time is
required, due to the necessity of passing a nucleation barrier, before the system
can reach its stable equilibrium. Before reaching the stable equilibrium
condition, the energy fluctuates between the maximum and minimum points and
this can potentially described a non-uniform density profile and a diffuse liquid-
vapour interface as previously described *8.

2) Inthe second process, a sphere and a flat plate were initially separated by a

distance below Hgyeax , Which then increases to Hgreak . At H<Hgreak , With the
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free energy curve having an unstable and a fairly more stable state, the liquid
bridge has already been formed. As the separation distance increases, the liquid
bridge which already exists, should only adjust itself to a new (smaller) stable
size. Here since the liquid bridge already exists and no nucleation is necessary,
no fluctuations happen. Hence at H=Hgeak, Simply the size of the bridge shrinks

and gets stable to its new stable size.

It should be mentioned that as the focus is the thermodynamic equilibrium state,
non- equilibrium transitions as a result of mechanical instabilities (coalescence as a
result of van der Waals force when the separation distance is decreasing, and
snapping as a result of Rayleigh instability when the separation distance is

increasing rapidly *?) are not in the perspective of this research.

At the other side when the distance between a sphere and a flat plate decreases to
zero (the sphere and plate are touching), the energy barrier is eliminated and the
phase transition would be a non—nucleating spontaneous process as shown in
Figure 6-7. In fact the contact point of the two solids acts as anagent for the new
phase formation with concave meniscus. Decreasing the separation distance to
zero, also results in the most stable equilibrium with the greatest liquid bridge

width.
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Figure 6-7 (a) Free energy \s. scaled liquid bridge half width between a flat plate and a
sphere, for n—dodecane at24°C, PV=0.9P., 0=0°, H=0, Rp=2.5 cm. (b) Magnification of the
calculation atsmall bridge width.

Another interesting point is that when a flat plate and a sphere are in contact (H=0),
there is always a stable liquid bridge for any contact angle or any sphere size. For
example for a sphere and a plate at H=0.97R¢ (and the conditions of Figure 6-2)

the liquid formation becomes unfavourable for contact angles above 11.5°, whereas
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with H=0 liquid formation is favourable for all the contact angles below the

transition contact angle, for which the meniscus is concave (for example a stable

liquid bridge with a scaled bridge width of Ri =93 is formed when the contact
C

angle is 89.5°).

6.1.1.3.Effect of solid sphere size on the stability of the system for a
liquid phase being formed out of a bulk vapour phase between
a flat plate and a sphere: concave meniscus

The effect of size of the sphere on the stability behaviour of a liquid bridge with a
concave meniscus between a sphere and a flat plate is studied in this section. The
properties of the system other than the radius of the solid sphere are kept the same

as those in Figure 6-2.
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Figure 6-8 (a) Effect of the solidsphere size on the free energy vs. scaled liquid bridge half
width between aflat plate and asphere, for n—dodecane at24°C, PV=0.9P,., 0=0°, H=0.97R¢
and PY=0.9P,,, (b) Magnification of the unstable equilibrium point.

In Figure 6-8, the radius of the solid sphere is changing from millimetres (10°xRc)
to decimetres (5x10°xR¢). Increase in the radius of the solid sphere results in more
stability (deeper minimum) and larger width of the liquid bridge. The extreme as

the sphere gets larger is when the radius of the upper sphere becomes infinity, and

simply the case would change to the liquid bridge between two flat plates. As
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shown in the previous chapter, there would be no minimum point for the liquid
bridge between two flat plates, and all the liquid would change into the vapour

once the barrier is overcome.

For the solid sphere of radius smaller than 2x10°xRc , the separation distance in
Figure 6-8 is above the breakage distance of the system, therefore liquid formation

becomes unfavourable.

As can be seen from part (b) of Figure 6-8, as the upper solid sphere gets bigger,
there occurs only a very small decrease in the level of the energy barrier and the

width of the unstable concave liquid bridge.

The effect of the solid sphere size on the unstable free energy and the unstable
liquid bridge widh is minor. For example in Figure 6-8, while the sphere radius
increases from 10°xR¢ (4.39 mm) to 10°xR¢ (4.39 cm) by an order of magnitude,
the energy level of the maximum point decreases from 1.48x10™° J to 1.46x107° J
and the scaled unstable liquid bridge half width changes from 13.00 to 12.63. Even
for the geometry of the confined space between two flat plates, which is equivalent
to the upper sphere radius being infinite, the energy level of the barrier is 1.46x10
153 and the scaled unstable liquid bridge half width is 12.59. The reason behind this
is the large size of the sphere in comparison to the separation distance of the sphere
and plate. Even for the smallest sphere where Rp is 10°xR¢ (4.39 mm), the sphere
radius is almost 10° times the separation distance. Therefore a sphere of radius
10°xR¢ (4.39 mm) or 10°xRc (4.39 cm) being located at distance equal to 0.97xR¢

froma flat plate, is similar to a sphere of radius 100 or 1000 meters at a distance of
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1 millimetre from a plate. Atsmall liquid bridge width (smalld ’s), the new phase

cannot sense how different the amount of the curvature of these two spheres is.

6.1.2. Stability of the liquid phase being formed from a bulk
vapour phase between a sphere and a flat plate: convex
meniscus

For liquid formation having convex meniscus with pressure difference being
defined as PV—P", both R; and R are negative due to their center being located in

the liquid phase.

Accordingly the mean radius of the curvature from equation (2.14) is as follows:
i=l<_l_1) 6.17)

and Ry, is identical to the Kelvin radius (Rc) at the equilibrium condition based on

equation (2.21).

From Equation (6.17), Ry is negative since both r and d are positive numbers as
they are the magnitudes of the principal radii of curvature. Equivalently Rc is to be
negative, which is only satisfied at vapour phase pressures above the saturation

pressure (P> P.,), according to section 3.7.1.

A typical curve of free energy vs. scaled liquid bridge half width (Ri) is presented
Cc

in Figure 6-9 for n—dodecane at 24°C (the properties of which are reported in Table
3-7) as anexample. The vapour phase pressure is setat 1.1 P,, for which the Kelvin

radius is —4.85x10°® meters from equation (2.20). The equilibrium contact angle is
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set to 160°, the separation distance of the sphere and the flat plate is set to 0.97Rc,

and the solid sphere is assumed to have a radius of 2.5 cm.
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Figure 6-9 (a) Free energy \s. scaledliquid bridge half width (ﬁ) between a flat plate and a
C

sphere, for n—dodecane at 24°C, PV=1.1Pw, 0=160°, H=0.97 |RC|, Ry=2.5 cm, (b) Magnification
of the region close to d=0.

The formation of a convex liquid bridge between a spherical particle and a flat

plate is a nucleation phenomenon for which an energy barrier is to be overcome.
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After passing that maximum point, the curve would be ever descending and all the
vapour would change into liquid.
6.1.2.1.Effect of equilibrium contact angle on the stability of the system

for liquid phase formation out of a bulk vapour phase between
a flat plate and a sphere: convex meniscus

In this section, the free energy curves for various contact angles are presented,
while the properties of the system other than the equilibrium contact angle are kept

the same as those in Figure 6-9.
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Figure 6-10 Effect of the equilibrium contact angle on the free energy vs. scaled liquid bridge
half width between a flat plate and asphere, for n—dodecane at 24°C, PY=1.1P,,, H=0.97 | Rc|,
Rp=2.5cm and, for various contact angles that results in a convex meniscus.

For liquid formation with a convex meniscus between a sphere and a flat plate, any
increase in contact angle (getting farther from the transition contact angle) causes
the barrier to get larger, and the unstable liquid bridge is formed at larger width. In
contradiction to the case of convex liquid bridge formation between two flat plates,

even for the greatest possible contact angle (180°), the curve does not become
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monotonically increasing. However for the specification of Figure 6-10 with the

contact angle equal to 1809, the width of the unstable bridge would be so large
(—| Rdc| =182.53) with the energy of 2.24x10** J, in comparison to the case of

4

=6.46
|RC]|

contact angle of 155° (with other condition kept the same) for which

and the energy barrier is 6.15x10716 J.

6.1.2.2.Effect of the solid surface separation distance on the stability of
the system for liquid phase formation out of a bulk vapour
between a sphere and a flat plate: convex meniscus

Sphere—plate separation distance plays an important role in the stability of the

liquid phase. This effect is illustrated in Figure 6-11.
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Figure 6-11 (a) Effect of the solid surface separation distance on the free energy \s. scaled
liquid bridge half width between a flat plate and a sphere, for n—dodecane at 24°C, PV=1.1P,,,
0=160°, and R,=2.5 cm, (b) Magnification of the unstable equilibrium point.

As the sphere—plate separation distance decreases, a higher energy barrier with a
larger liquid bridge width is to be overcome. In contradiction to the case of convex
liquid bridge between two flat plates, in this case even for a sphere and flat plate at
contact (H=0) formation ofa liquid bridge would be still possible and the curve

does not become constantly increasing. However for a sphere and a flat plate in
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contact, the width of the unstable liquid bridge and the amount of the barrier to be

overcome are both large, as shown in Figure 6-12.
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Figure 6-12 Curwe of free energy \s. scaledliquid bridge half width between aflat plate and a
sphere for n—dodecane at 24°C, PV=1.1P,,, § =180°, H=0, and R,=2.5 cm.

For the convex liquid bridge between two flat plates the vertical distance between
the plates remains constant at different distances from the center line (different d).
In the case of the convex liquid bridge between a flat plate and a sphere, the
vertical distance between the sphere and the plate gets larger as we get farther from
the center line (as d increases). Therefore in sphere—plate geometry, even when
two solid surfaces are touching, somewhere far enough from the centerline the
distance becomes large enough to allow the formation of the unstable convex liquid

bridge.
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6.1.2.3. Effect of solid sphere size on the stability of the system for
liquid phase formation out of a bulk vapour phase between a
flat plate and a sphere: convex meniscus

In Figure 6-13, for different solid sphere sizes, the free energy curve of the convex
liquid bridge is presented. The properties of the system other than the radius of the

solid sphere are kept the same as those in Figure 6-9.
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Figure 6-13 (a) Effect of the solid sphere size on the free energy \s. liquid bridge half width
between aflat plate and asphere, for n—dodecane at 24°C, PV=1.1P.,, 6=160°, and
H=0.97 | Rc|, (b) Magnification of the unstable equilibrium point

In contrast to the case of concave liquid formation here as the upper solid sphere
radius increases, the level of the energy barrier and the width of the unstable
concave liquid bridge would also increase. The highest energy barrier is for the
case of the solid sphere of infinite radius, identical to the convex liquid bridge
formation between two flat plates.
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For any sphere size other than infinity (the case of the two flat plates), the curve of
the free energy never becomes monotonically increasing even at the smallest
separation distance or for the farthest contact angle from the transition contact
angle, i.e. contact angle of 180°. However if the sphere is large enough, the
nucleation happens at a very large liquid width with a relatively high barrier. For
example for a sphere of radius 10°x | Rc | =48 meters touching the flat plate

d
Cc

(H=0), the unstable bridge has a width of —— = 4.3x10* (d~ 2 mm) with an

| RC |

energy barrier of 3.26x10 " J.

For the case of two flat plates (equivalent to an upper sphere of radius of infinity)
the curve might be monotonically increasing if the flat plates’ separation distance is
smaller than a certainamount. In Figure 6-13 where the separation distance is
H=0.97 | Rc|, convex vapour formation is always possible. Evenwhen the case
changes to the case of two flat plates, the convex vapour formation happens after
passing an energy barrier of 1.94x107%° J at vapour bridge half width of

13.23| Re|.

6.2. Vapour phase formation from a bulk liquid
phase between a sphere and a flat plate

In this section, vapour formation out of a bulk liquid phase with constant pressure
will be investigated. Inthe absence of a gravitational field, the vapour phase
pressure is constant throughout and the liquid phase pressure is constant
throughout, though they are not equal. Constant pressures imply constant Kelvin

radius according to equation (2.20). As a result the liquid—vapour interface is to be
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a surface of constant curvature due to the equality of the mean radius of curvature

with the Kelvin radius.

This liquid—vapour interface with constant mean curvature can accurately be
approximated by a toroidal interface for bridge half width greater than or equal to
6.5%Rc 8. The illustration of such liquid—vapour interfaces is presented in Figure

6-14:

(a) (b)

Figure 6-14 Schematic of a vapour bridge — a) concawe and b) conwex — between a flat plate
and asphere, where 0, and 0, are the equilibrium contact angles, r is the radius of the circle
approximating the vertical section of the liquid—vapour interface, dis the vapour bridge half
width, H is the distance between the two plates, a is the half filling angle of the vapour in the
bridge, y; is the three phase contact with the lower solidsurface, y, is the three phase contact
with the upper solidsurface, and Rpis the radius of the spherical particle .

The solid interface is flat for the plate and is curved for the spherical particle. The
constraints of the system in which vapour is being formed between a flat plate and
a sphere are shown in Table 3-2, inflat and curved sections respectively. The
conditions for equilibrium are presented in Table 3-4 (b). As reported in Table 3-4
(b), there is one extra equilibrium condition for curved interfaces, which is the

equality of the chemical potential of the solid material in the solid phase with the
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chemical potential of the same component at the solid—liquid and the solid—vapour
interfaces. This affects the interfacial tension, which in turn influences the amount
of the equilibrium contact angle. Therefore it is possible that the equilibrium

contact angle can have a slightly different value at the sphere than at the flat plate.

When the distance between the sphere and the flat plate is much smaller than the
radius of the spherical particle, we assume that the curved surface of the sphere acts
negligibly on the contact angle, leading to identical equilibrium contact angles for
the upper and lower (sphere and flat plate) solids if both of them are made from the
same solid material. There are two cases of concave or convex liquid—vapour

interface according to Figure 6-14. For identical contact angles for the upper and

. . . 180° . .
the lower solids, the transition contact angle is TJ““ The meniscus is concave

180°+a 180°+a

foro > , and is convex for 8 < —

R; and Ry are the principal radii of curvature of the toroidal surface representing the
liquid—vapour interface of constant curvature. The magnitudes of these principal
radii are described with r and d, where |R,| = r and |R,| = d. With AP being
defined as P-—P", the sign of the principal radius of curvature is positive when its
center is located in the liquid phase, and is negative if its center is in the vapour
phase. For the concave outward meniscus, R; is positive (R1=r) and R; is negative
(Ry=—d). For the convex outward case, both of the radii are negative (Ri= —r and

R2: —d)
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The vapour volume, VY, can be computed from the volume of revolution of the
liquid—vapour interface curve *® and then subtracting the immersed part of the
spherical particle, Vs. A is the surface of revolution around the y—axis . The

appropriate formulas for V¥, ASVand A" are presented in Table 6-3:

Table 6-3 Vapour volume, solid—vapour and liquid—vapour surface areas for vapour bridge
formation between a flat plate and a s phere.

VV = [J2F(y)2dy — Vs (6.18)
Vg = g Rp3 (1 - cosa)®(2 + cosa) (6.19)
AV =1 [F(yl)2 + 2Rp%(1 — cosa)] (6.20)
AW = 2m [J2F(y)T+F (y)%dy (6.21)
Concave meniscus (0 > 180:’“) Convex meniscus (0 < 180:’“)

F(y)=r+d—r?—y? (6.22) | F(y) =-r+d+r2—y? (6.23)
y1 = rcosf (6.24) | yq = —rcosb (6.25)
y, = —rcos(6 — a) (6.26) | y, = rcos(6 —a) (6.27)

Stability analysis of the vapour bridge is achievable through the equation of the

free energy of the system for vapour formation as stated in Table 3-6:

S (3.62)
0 — RC

VY + (YW cos0)ASV + yLvalv

where VY, ASVand A" are to be substituted from Table 6-3. After these substitutions
for a defined problem in which Y, R, and 6 are known, equation (3.62) would be
a function of r and d, both of which can be written as a function of the half filling

angle, a. For the case of the concave meniscus,
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_ Rp(l - COS(X) +H (628)
" —cos(® —a) — cosB

d = Rpsina — r[1 — sin(6 — )] (6.29)

and for the case of the convex meniscus,

R —
o p(1 —cosa) + H (6.30)
cos(®@ — o) + cosO

d = Rpsina + r[1 — sin(6 — o] (6.31)
The equilibrium state of the vapour bridge and its size can be obtained from the

extremum of the curve of the free energy of the system vs. the vapour bridge half

length (d), or alternatively from the roots of (Z—i) =0.
0=6,

The stability of the vapour bridge is then obtained according to the type of the
extremum point: a maximum point represents an unstable equilibrium, the global
minimum corresponds to the stable equilibrium state, and any local minimum

would indicate a metastable condition.

6.2.1. Stability of the vapour phase being formed from a bulk
liquid phase between a sphere and a flat plate: concave
meniscus

With the pressure difference defined as AP = P*—PY, R is positive and R; is
negative since the centre of the radius is in liquid for Ry and in vapour for R,. The
mean radius of curvature from equation (2.14) is as follows:

-3

N -
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and Ry, is identical to the Kelvin radius (Rc) at the equilibrium condition, according

to equation (2.21).

As explained in the previous chapter (section 5.2), for various sphere—plate
separation distances, and equilibrium contact angles, it has been observed that at
the equilibrium conditions r is less than d. Then according to equation (6.32), Ry, is
positive and Rc would be positive. For Rc to be positive the liquid pressure must be

above the saturation pressure (P->P.,) as explained in section 3.7.1.

A typical curve of the free energy vs. the scaled vapour bridge half width (Ri) at
Cc

such a condition is shown in Figure 6-15 for water at 20°C, with its properties as
reported in Table 3-7. The liquid pressure is setat 1.1P,. The Kelvinradius from
equation (2.20) is 6.22x10 * meters. The equilibrium contact angle is set to be
180°, the separation distance of the two flat plates is set at 0.5R¢ (300um), and the

solid sphere is taken to have radius of 10°xRc (62 cm).
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Figure 6-15 (a) Free energy vs. vapour bridge half width between a flat plate and a sphere, for
water at 20°C, P"=1.1P,,, H=0.5Rc (300um), 6=180°, Rp:103><Rc (62 cm), (b) Magnification of
the region close to d=0.

There is a maximum point at a very small vapour bridge width (d much smaller
than 6.5%Rc). Although the value of the energy barrier cannot be trusted because of
the very small vapour bridge width (where the toroidal surface assumption is no

longer valid), the graph gives a good prediction of the behaviour of the system. The
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vapour formation can only happen after passing an energy barrier, i.e. the phase
transition is a nucleation phenomena. After passing the barrier, the vapour phase
grows until it reaches its stable condition, corresponding to the minimum point in
the graph.

6.2.1.1.Effect of the equilibrium contact angle on the stability of the

system for vapour phase formation out of a bulk liquid phase
between a flat plate and a sphere: concave meniscus

The effect of the equilibrium contact angle on the free energy of the concave
vapour formation is studied in this section. The properties of the system other than

the contact angle are the same as those presented in Figure 6-15.
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Figure 6-16 (a) Effect of the equilibrium contact angle on the free energy vs. scaled vapour
bridge half width between aflat plate and asphere, for water at 20°C, P-=1.1P.,, H=05Rc
(300pm), szlosch (62 cm), for various contact angles that resultin concavwe meniscus, (b)
Magnification of the unstable equilibrium point.

Getting closer to the transition contact angle (equivalently a decrease in the
contact angle) results in an increase in the energy barrier and a larger unstable
vapour bridge length. It also causes less stability with shorter vapour bridge width

in the stable equilibrium state. Getting closer to the transition contact angle, at
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some point the curve becomes monotonically increasing, i.e. the formation of the

concave vapour phase would become unfavourable.

In studying the case more closely, it has been found that a specific number of
degrees change in the contact angle results ina large relative change of the energy
barrier and the energy level of the stable state for contact angles closer to the

transition contact angle, as shown in Figure 6-17.
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Figure 6-17 Comparison of the effect of aspecific number of degrees change (2°) in the
equilibrium contact angle on the free energy of vapour formation with a concave meniscus
between aflat plate and asphere, for water at 20°C, P-=1.1P,,, H=0.5R¢ (300um), Rp=103><RC
(62 cm), (al) far from the transition contact angle, (b1) closer to the transition contact angle.
(a2) and (b2) are magnifications of (al) and (b1) respectiely.

In parts (al) and (a2) of Figure 6-17 far from the transition contact angle the

contact angle is changing from 180° to 178°. In (b1) and (b2) the changes in the

194



contact angle happen closer to the transition contact angle and the contact angle is
changing from 130° to 128°. The relative differences in the free energy levels of the
maximum and minimum points calculated from equation (3.5) are presented in the

following table for each case.

Table 6-4 Concave vapour formation between a flat plate and a sphere, relative differences in
the free energy lewels of the maximum and minimum points as a result of a certain number of
degree35 (2°) change in the contact angle, for water at 20°C, P-=1.1P.,, H=0.5R¢ (300um),
Rp=10°xR¢

Relative difference in 180°—178° (far from 6) 130°—128° (close to 6;)

energy level of the 0.37 % 26.28 %
maximum point

scaled bridge length of the 0.26 % 26.65 %
maximum point

energy level of the 0.29 % 51.42%
minimum point

scaled bridge length of the 0.07 % 12.88 %
minimum point

6.2.1.2.Effect of the solid surface separation distance on the stability of
the system for liquid phase formation out of a bulk vapour
between a sphere and a flat plate: concave meniscus

The effect of the sphere—plate separation distance on the free energy curve of the

concave vapour formation is investigated in this section.
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Figure 6-18 Effect of the solidsurface separation distance on the free energy vs. scaled liquid
bridge half width between aflat plate and asphere, for water at20°C, P-=1.1P.,, 6=180°,
Rp:103XRC (62 cm), (b) Magnification of the unstable equilibrium point.

As the separation distance of a sphere and a flat plate increases, the stable
equilibrium state is formed with less stability and at shorter vapour bridge width. A
larger separation distance also causes higher energy barrier with larger vapour

bridge width to be overcome.

196



For separation distances higher than a certain amount, the free energy curve
becomes monotonically increasing and the formation of the vapour phase would be
unfavourable. In the case where the contact angle is 180° (farthest from the
transition contact angle) and the sphere radius is 103xR¢, vapour formation

becomes unfavourable at a sphere—plate separation distance of about 0.92xRc.

Considering the effect of contact angle, for contact angles less than 180° (closer to
the transition contact angle), the vapour formation would be unfavourable even at
separation distances less than 0.92xRc when the spherical sphere radius is 103xRc.
Also the effect of particle size, as will be discussed in the next section, is such that
as the spherical particle gets bigger, the sphere—plate separation distance can be
larger before the concave vapour phase formation becomes unfavourable. Even in
the case where the radius of the spherical particle becomes infinity (the case simply
changes to the case of two flat plates), concave vapour phase formation becomes
unfavourable at H=Rc. Hence it can be concluded that for an arbitrary contact
angle and sphere size, the vapour formation is unfavourable for H> Rc. Below Rc
further investigation is required for any specific contact angle and/or particle size to

judge whether the concave vapour formation is favourable.

Ifany concave vapour phase has already been formed, increasing the separation
distance would make it smaller until it would completely break apart at the critical
distance which is mentioned above. This critical distance is called the breakage

distance as mentioned in section 6.1, which depends on the Kelvin radius, the
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equilibrium contact angle and the particle size. The breakage distance is always

less than R¢ according to the discussion of the previous paragraph.

Modifying equation (6.16) based on the negative sign of the term cosé ( because

180°+a
2

0 >

), the potential equation for the breakage distance for the case of

concave vapour formation out of a bulk liquid phase is:

( )
3
Hpreak = _RCCOSG4 1+ 32Rp cos 0 1/3 } (6.33)

However as stated in section 6.1, this equation works if Rp >> |d| >> H. For water
at 20°C, P- =1.1P.,, 6=180°, R,=10°<Rc (62 cm), the breakage distance from the
graph is 0.92xRc , while from equation (6.33) it is 0.997xRc. That much of
difference is because Rp >> |d| >> H is not satisfied in this case where

Rp=10°xRc.

As discussed in the concave liquid formation section 6.1, the energy level of the
unstable and stable equilibrium points becomes almost equal as the particles’
distance increases to the breakage distance. Due to this almost equal energy level of
the unstable and the stable points, there occurs some fluctuation in the vapour
bridge width, before the system reaches to its stable condition. Therefore some

part of the gap between two particles would have the density between that of the

liquid and vapour.
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Figure 6-19 Energy lewels of the maximum and minimum points at separation distances close
to the breakage distance for a vapour bridge between a flat plate and a s phere, for water at
20°C, P*=1.1P,,, =180°, R,=10°xR¢ (62 cm)

The other side of the story occurs when the distance between the sphere and the flat
plate reduces to zero. For concave vapour formation between a sphere and a flat
plate that are touching, the new phase formation happens through a non—nucleating
phenomenon with no energy barrier to be overcome. Decreasing the separation
distance to zero also results in the most stable equilibrium with the greatest liquid

bridge width.
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Figure 6-20 Free energy vs. vapour bridge half width between a sphere and a flat plate, for
water at 20°C, P-=1.1P,,, §=180°, H=0, Rp:103><Rc (62 cm), (b) Magnification of the curve at

small value of bridge width.
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6.2.1.3.Effect of solid sphere size on the stability of the system for a
vapour phase being formed out of a bulk liquid phase between
a flat plate and a sphere: concave meniscus

The impact of the size of the spherical solid particle on the energy level of the
concave vapour bridge is examined in this section. The properties of the system

other than the radius of the solid sphere are kept the same as those in Figure 6-15.

201



(a)

) Rp
0.0001 ] &r
/ Re
7/
0.00005 K 12
S ,
3 -~
S 00000 — - S0
==} """'-1'-___:5__‘ - b
—0.00005 “ ]| 1%10°
—0.0001} R 5%10°
0 5 10 15 20 25 30 35
d
Rc
Lx107*
~ 9|
< ix 10 [
3
= L
0
—5.x 107

0.0 0.1 0.2 0.3 0.5 0.6 0.7

0.4
d
R

Figure 6-21 Effect of the solidsphere size on the free energy vs. vapour bridge half width
between aflat plate and asphere, for water at 20°C, P-=1.1P,,, 6=180°, H=0.5xR¢ (300um), (b)

Magnification of the unstable equilibrium point.

The radius of the spherical particle is changed from several centimetres (10°xRc) to
several meters (5x10°xRc). As the spherical particle gets larger, at some point the
concave vapour formation becomes possible after passing an energy barrier and the
concave vapour phase becomes stable at some vapour bridge width. For larger

spherical particles, the energy barrier gets smaller and the concave vapour phase
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gets stable at lorger bridge width with deeper energy levels. Inthe case of an upper
sphere of infinite radius (equivalent to the case of two flat plates), the energy
barrier is at its lowest level, and all of the liquid phase would change into vapour

once the energy barrier is overcome.

As illustrated in part (b) of Figure 6-21, the effect of the solid sphere size on the
unstable free energy and the unstable liquid bridge width is minor. The reason
behind this can be explained as follows: The separation distance is much smaller
than the spherical particle’s radius, and the unstable state happens at such a small
bridge width that a concave vapour bridge does not sense the size and changes in
the curvature of the spherical solid, especially when the contact angle is far from
the transition contact angle. As the concave vapour width gets larger and we get
farther from the center line, the curvature of the solid sphere would significantly

affect the energy level of the system, as it does for the stable equilibrium state.

For a solid sphere of radius smaller than 3.2xRc (2 mm), the separation distance
(H=0.5%Rc) in Figure 6-21 is higher than the breakage distance of the system,

therefore liquid formation becomes unfavourable.
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6.2.2. Stability of the vapour phase being formed from a bulk
liquid phase between a sphere and a flat plate: convex
meniscus

Both R; and R, are negative in a case of the convex vapour meniscus, with pressure
difference being defined as P-—P", following the convention and according to

Figure 6-14.

Accordingly the mean radius of curvature fromequation (2.14) is:
L:}<_l_l> (6.34)

From equation (6.34) Ry is negative, since both r and d are magnitudes of the
principal radii of curvature and are positive. Also based on equation (2.21), Ry, is
identical to the Kelvin radius, Rc, at equilibrium condition. Therefore R¢ is
negative, where according to section 3.7.1, this is only satisfied at liquid pressures

below the saturation pressure (P- < P.,).

Figure 6-22 demonstrates a typical free energy vs. scaled vapour bridge half width
(Ri) for water at 20°C with its properties reported in Table 3-7. The liquid phase

C
pressure is set to be 0.9P.,. The Kelvin radius from equation (2.20) is —6.22x10~*
meters at this liquid pressure. The equilibrium contact angle is 0°, the separation

distance between the sphere and the flat plate is O.5| RC| (300um), and the solid

sphere has a radius of 10°x | Rc| (62 cm).
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Figure 6-22 (a) Free energy \s. scaled vapour bridge half width between a flat plate and a
sphere, for water at 20°C, P“=0.9P.,, §=0°, H=0.5 | Rc | (300um), R,=10%x| Rc| (62 cm), (b)
Magnification of the region close to d=0.

There exists an energy barrier to be overcome for convex vapour formation out ofa
bulk liquid phase between a spherical particle and a flat plate, i.e. the phase
transition is the nucleation phenomena. The curve is ever decreasing after that and

all the liquid would change into vapour.
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6.2.2.1.Effect of equilibrium contact angle on the stability of the system
for vapour phase formation out of a bulk liquid phase between
a flat plate and a sphere: convex meniscus

Properties of the system other than the equilibrium contact angle are kept the same
as for Figure 6-22, and the effect of the contact angle on the free energy is

investigated.

0.00005F ——
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Figure 6-23 Effect of the equilibrium contact angle on the free energy s. scaled vapour bridge
half width between a flat plate and asphere, for water at 20°C, P~=0.9P,,,
H=0.5| Rc| (300um), R,=10>%| Rc| (62 cm).

As we get farther from the transition contact angle (equivalent to smaller contact

angle), the energy barrier for the formation of the convex vapour phase becomes

greater.

Although the curve is never monotonically increasing, for very large upper sphere
radii with contact angles far from the transition contact angle (small contact angle
in convex vapour formation), an extremely large vapour bridge with a huge energy

barrier must be formed for nucleation to be possible. For example for Rp =
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10%x | Rc| (62 km) and 6=0°, the vapour bridge width of the maximum point is
10%x | Rc| , with an energy barrier of 4.4 J. At the extreme where the upper sphere
turns into a flat plate (radius of infinity), vapour formation with convex meniscus is
unfavourable (the free energy curve is monotonically increasing) for contact angles
far from the transition contact angle (small contact angle in convex vapour
formation).

6.2.2.2.Effect of the solid surface separation distance on the stability of

the system for vapour phase formation out of a bulk liquid
between a sphere and a flat plate: convex meniscus

The effect of the distance between a sphere and a flat plate on the free energy of the

convex vapour formation is illustrated in Figure 6-24:
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Figure 6-24 Effect of the solidsurface separation distance on the free energy \s. scaled vapour
bridge half width between aflat plate and a sphere, for water at 20°C, P-=0.9P.,, 6=0°
Rp:103X| RC| (6.2 km), concave meniscus, (b) Magnification of the unstable equilibrium
point.

For smaller separation distances, the convex vapour formation is possible after
passing a higher energy barrier. In convex vapour formation between two flat
plates, new phase formation becomes unfavourable below a certain separation

distance, as demonstrated in section 5.2.2.2. In contradiction to the case of a
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convex vapour bridge between two flat plates, in this case of a spherical particle
and a flat plate even for two touching solids, convex vapour formation is still
possible after passing a relatively high energy. This contradiction can be explained
as follows: For convex vapour formation between two flat plates, the vertical
distance of the plates remains constant at different distances from the center line
(different d). In the case of convex vapour formation between a flat plate and a
sphere, the vertical distance between the sphere and flat plate gets larger as we get
farther from the center line (as d increases). Therefore even when the two solids
are touching, somewhere far enough from the centerline the separation distance
becomes large enough to allow the formation of the unstable convex vapour bridge

(Figure 6-25).
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Figure 6-25 Cur\e of free energy vs. scaled liquid bridge half width between aflat plate and a
sphere for water at 20°C, P-=0.9P,,, 0=0°, H=0, and R,=10°x| Rc | (6.2 km).
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6.2.2.3.Effect of solid sphere size on the stability of the system for
vapour phase formation out of a bulk liquid phase between a
flat plate and a sphere: convex meniscus

The impact of the spherical particle’s size is studied in this section. The properties
of the system other than the radius of the solid sphere are kept the same as those in

Figure 6-22.
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Figure 6-26 Effect of the solidsphere size on the free energy vs. vapour bridge half width
between aflat plate and asphere, for water at 20°C, P-=0.9P,,, 6=0°, and H:O.5| RC| (300um),

(b) Magnification of the unstable equilibrium point.

An increase in the upper sphere size results in a higher energy barrier and a larger
unstable convex vapour bridge. In the extreme case, for an upper sphere with radius
of infinity (equivalent to a flat plate), either the highest energy barrier (in
comparison to various cases of sphere with finite size) must be overcome for

vapour formation, or vapour formation would not be possible at all (monotonically
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increasing energy curve), depending on the amount of separation distance and the
contact angle. For any sphere size other than infinity (the case of the two flat
plates), the curve of the free energy never turns into monotonically increasing even
at the smallest separation distance or for the farthest contact angle from the
transition contact angle (0°). However if the sphere is very large, the nucleation
happens at a very large vapour width with a relatively high energy barrier. For

example for a sphere of radius 10%x | Rc | (~ 620 kilometres) touching a flat plate
Y p g Y

(H=0), the unstable bridge has a width of —— =4.4x10* (d~ 28 m) with an energy

|Re|
level of 173 J. Inthis case the energy level of the nucleation barrier is so large that

it might take forever for the nucleation to happen.

6.3. Conclusion

In this chapter bulk fluid confined between a sphere and a flat plate has been
studied, while the temperature, bulk phase pressure, and mass of the system are
constant. There are two cases based on the state of the fluid: (1) liquid formation
froma bulk vapour phase, (2) vapour formation froma bulk liquid phase. Ineach
of these cases, according to the bulk phase pressure (above or below the saturation
pressure) the meniscus is either concave or convex. Thermodynamic stability
analysis was performed on each case, and the effects of different parameters
including equilibrium contact angle, separation distance between the sphere and the
flat plate, and the size of the sphere was investigated. The results of sections 5.1

and 5.2 are summarized in Table 6-5 as follows:
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Several conclusions about new phase formation out ofa bulk fluid phase in

between a sphere and a flat plate are presented here:

1) When vapour is the bulk fluid between a sphere and a flat plate, two possible
cases exist:
e Formation ofa liquid phase with concave meniscus can take place if and
only if the bulk vapour pressure is below the saturation pressure (PV < P.,)

as discussed in the beginning of section 6.1.1. For the meniscus to be

concave the confinement walls should be wettable such that 8 < 1802—_“

Even when the vapour pressure is below the saturation pressure, and the
contact angle is such that the meniscus is concave, liquid phase formation
might or might not be possible depending onthe value of different
parameters including the contact angle (@), separation distance (H), and
sphere size (Rp). If liquid formation is favourable, after passing an energy
barrier, the new liquid phase reaches to and remains at its stable size. This
phenomenon is well known as capillary condensation.

e Liquid phase formation with convex meniscus is possible if and only if
bulk vapour pressure is above the saturation pressure (P¥ > P..). Sucha

convex meniscus is only achievable through non-wettable confinement that

180°—a

results in > . The free energy curve for this case goes through a

maximum point, and is constantly decreasing after passing that maximum.

This indicates that the phase transition is a nucleation phenomenon, and
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once the barrier is passed all the bulk vapour phase turn into liquid phase.

It should be highlighted that between a sphere and a flat plate a liquid
bridge with a convex meniscus can never exist in stable condition.
Depending on the parameters (contact angle (¢), separation distance (H),
and sphere size (Rp), the nucleation energy barrier might be so high that the
nucleation never happens in practice; but the free energy curve never turns

into monotonically increasing.

2) When the bulk fluid between a sphere and a flat plate is liquid, there are two

possible cases of vapour formation out of bulk liquid phase:

Vapour phase formation with concave meniscus may happen if and only if

the bulk liquid pressure is above the saturation pressure (P- > P.,). The
confinement walls should be non—-wettable such that 8 > 1802—” for the

concave meniscus. Even when the liquid phase pressure is above the
saturation pressure, and the contact angle is such that the meniscus is
concave, vapour phase formation might or might not be possible depending
on the value of different parameters including the of contact angle (),
separation distance (H), and sphere size (Rp). If vapour formation is
favourable, after passing an energy barrier, the new vapour phase reaches
to and remains at its stable size. This phenomenon is called capillary
evaporation.

Vapour phase formation with convex meniscus is possible if and only if
bulk liquid pressure is below the saturation pressure (P- < P.,). Sucha
convex meniscus is only possible if the confinement walls are wettable and
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180° +a

result in < . The free energy curve for this case goes througha

maximum point, and is constantly decreasing after passing that maximum.
The phase transition is a nucleation phenomenon and all the bulk liquid
phase turn into vapour phase once the barrier is passed. It should be
highlighted that between a sphere and a flat plate a vapour bridge with a
convex meniscus can never exist in a stable condition. Depending on the
parameters (contact angle (), separation distance (H), and sphere size (Rp),
the nucleation energy barrier might be so high that it takes so long before it
can be overcome that the nucleation will never happen in practice; but the

free energy curve never turns into monotonically increasing.

3) Effect of the contact angle (6):

For any new phase formation with a concave meniscus, getting farther
from the transition contact angle makes the energy barrier smaller, and the

stable point more stable. For liquid formation out ofa bulk vapour phase, a

180° -«

concave meniscus is possible for PV < P, and < , and getting

farther from the transition contact angle happens as the contact angle

decreases. For vapour formation out ofa bulk liquid phase, a concave

180°+a
2

meniscus is possible for P~ > P.,, and > , and getting farther from

the transition contact angle is equivalent to increasing the contact angle.
New phase formation between a sphere and a flat plate at separation
distance H (H#0) with concave meniscus becomes ultimately impossible

for some contact angles close to the transition contact angle.
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e Forany new phase formation with a convex meniscus, getting farther from
the transition contact angle increases the height of the energy barrier.

Liquid formation out of a bulk vapour phase with convex meniscus is only

180°—a

possible for PV > P, and > , and getting farther from the transition

contact angle happens as the contact angle increases. Vapour formation

out of a bulk liquid phase with convex meniscus only happens if P~ > P,

180°+a
2

and > , and getting farther from the transition contact angle is

equivalent to decreasing the contact angle. The free energy curve for the
new phase formation with convex meniscus between a sphere and a flat
plate never gets monotonically increasing, even for the farthest amount of
contact angle fromthe transition contact angle (in contrast to the case of
new phase formation with convex meniscus between two flat plates, for
which the free energy curve gets monotonically increasing at some contact
angle far enough from the transition contact angle). However the energy
level of the nucleation barrier might get so large (also depending on
separation distance (H), and sphere size (Rp)), that it takes so long for the
barrier to be overcome, and nucleation never happens in practice.

4) Effect of the separation distance between a sphere and a flat plate (H):

e For any new phase formation (liquid formation or vapour formation) with a

concave meniscus, an increase in the separation distance results in a higher

energy barrier and less stability of the stable state of the system. New phase
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formation with concave meniscus becomes unfavourable above a certain
distance, called the breakage distance (Hgreax) 2.

For liquid formation with concave meniscus, equation (6.16) is found in the
literature 2*, describing the breakage distance for the condition where

Rp >> |d| >> H. The breakage distance sensitively depends on the Kelvin
radius, and is also a less sensitive function of the sphere radius and contact
angle according to equation (6.16). Equation (6.33) is the analogous
equation for the case of vapour formation with concave meniscus.

From further investigation it is found that new phase formation with
concave meniscus is certainly not possible for separation distance above the
Kelvin radius (H > R¢) for any sphere size and with any contact angle.
Therefore Hareak is always less than Rc, regardless of the amount of contact
angle and size of the sphere.

At the breakage distance, the free energy of the stable equilibrium is
approximately equal to the free energy of the unstable equilibrium. Natural
fluctuations between the unstable and stable points can be considered as a
reason for a “diffuse liquid—vapour interface™ 8. Such a diffuse liquid-
vapour interface is experimentally observed at separation distance equal to
the breakage distance, in the process of reducing H from H > Hgyeax to the
breakage distance 2.

As a sphere and a flat plate come into contact (separation distance of zero),
the most stable bridge with concave meniscus is formed through a

spontaneous non-nucleating phenomenon (zero energy barrier).
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Investigations showed that for a sphere and a flat plate in contact (H=0),
new phase formation with concave meniscus is always possible (never
becomes unfavourable) for any contact angle (even for the closest contact
angle to the transition contact angle) and any sphere size.

For any new phase formation (liquid formation or vapour formation) with
convex meniscus, an increase in the separation distance makes the energy
barrier smaller. Reduction of the separation distance, evento H=0, will not
cause new phase formation with convex meniscus to be unfavourable (in
contrast to new phase formation with convex meniscus in between two flat
plates, for which new phase formation is unfavourable below some
separation distance). However, at small separation distances the energy
barrier might have such a huge value that it takes so long before it can be

overcome, that the nucleation doesn’t happen in practice.

5) Effect of the sphere size (Rp):

For any new phase formation (liquid formation or vapour formation) with
concave meniscus, increase in the radius of the solid sphere results in shorter
energy barrier and more stability (deeper minimum) and larger bridge width at
the stable condition. The extreme as the sphere gets larger occurs when the
radius of the upper sphere becomes infinity, where the geometry would simply
change to that of two flat plates. For two flat plates, all of the bulk phase would
change into the new phase once the energy barrier is overcome.

It is remarkable that the effect of the solid sphere size on the unstable free

energy barrier and the unstable liquid bridge width is minor in comparison to
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6)

its effect on the stable point. This can be described as follows: at small liquid
bridge width (small d’s), the new phase cannot sense the difference of the
amount of the curvature of spheres of various sizes. However, as the bridge
width gets larger the location of the stable size is strongly affected by
curvature.

For any new phase formation (liquid formation or vapour formation) with
convex meniscus, increase in the radius of the solid sphere causes a higher
energy barrier. The new phase formation is still thermodynamically favourable
for any sphere of finite radius, although the barrier might be so large that such a
long time is required before it can be overcome, that the nucleation doesn’t
happen in practice.

It should be noted that for any new phase formation (liquid formation or vapour

formation) with convex meniscus between a sphere and a flat plate, the free

energy curve of the system never (for any value of6, H, and Rp) changes to
monotonically increasing. This is in contradiction with the new phase formation
with convex meniscus between two flat plates, where for some contact angle far
from the transition contact angle, or at some small separation distance the
phase transition will become unfavourable. This contradiction happens as a
result of the geometry of the confinement: As we get farther from the center
line (as bridge width, d, gets larger), while the vertical distance of the solids
between two flat plates remains constant, the vertical distance between a sphere
and a flat plate gets larger and larger. Therefore between a sphere and a flat

plate, even when the two solids are touching or the contact angle is near the
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transition contact angle, at some large enough bridge width (somewhere far
enough from the centerline) the gap becomes large enough to allow the

formation of the unstable new phase with convex bridge.

222



7. Conclusion

Confined fluid behaves in a different way from a bulk fluid, as has been observed
in various natural and industrial cases. In this thesis, the behaviour ofa confined
fluid has been discussed froma surface thermodynamics point of view (the basics
of which were presented mainly in chapter 3), for three different geometries: i)
inside a cone, ii) between two flat plates, and iii) between a sphere and a flat plate.
The fluid was considered to be pure (single component), and the temperature and
bulk phase pressure of the confined fluid assumed to be constant. The system was

closed to any mass exchange.

Thermodynamic stability analysis was performed by examining the curve of free
energy of the system vs. size of the new phase being formed out of the confined
fluid. From that curve it was predicted whether new phase formation is favourable,
and if the new phase can exist in a stable condition. For each of the geometries, the
effect of the equilibrium contact angle, and also geometrical factors (the effect of
cone angle for the cone geometry, the effect of plate separation distance for the
geometry of two flat plates, and effects of solid separation distance and spherical

particle size for the sphere and flat plate geometry) have been studied.
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7.1.New phase formation — two types based on the
curvature shape: concave or convex

7.1.1. New phase formation with concave meniscus

e Liquid formation with a concave meniscus out of a confined vapour phase is
possible only at vapour phase pressures below the saturation pressure (PV <
P.). Inaddition, at vapour phase pressure below the saturation pressure, only a
liquid phase with concave meniscus has the possibility to form. This has been
discussed in section 3.7.1, and the beginning of sections 4.1.1,5.1.1, and 6.1.1
for each of the geometries. Also the solid walls must be wettable to have a
concave meniscus. Wettable walls can equivalently be described as a situation
for whichy™ is lower than y®¥ #°. The free energy of the system in this case
can be obtained from equation (3.59).

e Vapour phase formation with a concave meniscus out ofa confined liquid
phase is possible ifand only if the liquid phase pressure is above the saturation
pressure (P-> P.,), as explained in section 3.7.2, and the beginning of sections
4.2.1,5.2.1,and 6.2.1. The free energy of the system in this case can be
obtained from equation (3.62). For the vapour phase to form with a concave
meniscus, the confinement walls must be non—wettable. There are fewer of
such non—wettable solids (in comparison with the wettable case) in practice.
For example according to Ward and Levart *, only a few of the plastics, such
as polytetra—fluoroethylene, make a contact angle greater than 90° with water.
Many other materials such as a clean metal or glass in contact with water show

the contact angle of zero.
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Typical curves of free energy vs. new phase size are shown for new phase

formation with concave meniscus in the different geometries in Table 7-1.

Table 7-1 Curves of free energy \s. new phase size for new phase formation with concave
meniscus

Geometry Cone Plate—Plate Sphere—Plate

Liquid formation
with concave
meniscus out of a
confined vapour
phase (at PY < P,),
inside confinement

of wettable walls.

Liquid
I:] Vapor 0 S 6 < 9007[3 0 S 9 < 900

Vapour formation
with concave
meniscus out of a
confined Iiciu id
phase (at P> P,),
confinement of
non—wettable walls.

Liquid
I:] Vapor
90°+3 < 6 < 180° 90°< 0 <180° 90°+ g <0<180°
Typical curve of free / N /
energy vs. sizeofa | g s S
new phase with < T 1
concave meniscus | -
0.0 0.5 1.0 1.5 U 50 100 150 ¢ 50 leo 130
R; A L2
R_c Rc Rc
(~for H< | Rceos® |) (for H < H preak)

A stable new phase with a concave meniscus can be formed out of a fluid phase
being confined inside a cone or between a sphere and a flat plate. The stable new

phase with concave meniscus forms spontaneously (without any energy barrier) for
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the cone geometry and the sphere—plate geometry when H=0, and after overcoming
an energy barrier for the sphere—plate geometry when H#0. For fluid being
confined between two flat plates, the whole confined fluid changes into the new
phase once the barrier is overcome, i.e. there is no coexistence of the two phases

(the confined fluid and the new phase) in a stable condition.

It should be noted that while inside a cone, a new phase with concave meniscus can
always form ina stable condition, whereas for the gap between two flat plates or
between a sphere and a flat plate, new phase formation becomes unfavourable
(monotonically increasing free energy curve) above a certain separation distance
and/or for some contact angles close to the transition contact angle (contact angle
at which the meniscus changes from concave to convex). This will be explained in
more detail in sections 7.2 and 7.3 (effects of solid separation distance and

equilibrium contact angle).

Contact angle is measured from inside a denser phase (liquid) according to
convention. That is why the ranges are different for liquid formation or vapour
formation, although both have a concave meniscus. The range of contact angle for
which the meniscus is concave, also depends on the geometry of the confinement.
For example for liquid formation inside a sphere—plate geometry, the meniscus is

concave if 0<6 <90°- % where o is the half-filling angle. For an upper sphere of

comparatively large size, and tiny separation distance, a is small even for large

bridge length (d). That describes why using 6 < 90° as a criterion for having a
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liquid bridge with a concave meniscus is a good assumption, as in literature where

sphere radius is 2.5 cmand separation distance is on the order of nanometres 2.

7.1.2. New phase formation with convex meniscus

Liquid formation with convex meniscus out ofa bulk vapour phase is possible
if and only if the vapour phase pressure is above the saturation pressure (P>
P.).This has been explained in section 3.7.1, and the beginning of sections
4.1.2,5.1.2, and 6.1.2 for each of the geometries. Confinement walls must be
non-wettable for the liquid phase to have a convex meniscus. It should be noted
that for wettable walls, the liquid would have already formed from the vapour
phase below (as discussed in 7.1.1) or at the saturation pressure. The free
energy of the system in this case can be obtained from equation (3.59).

Vapour phase formation with convex meniscus out of a confined liquid phase is
possible if and only if liquid pressure is below the saturation pressure (P- <
P), as explained in section 3.7.2, and the beginning of sections 4.2.2, 5.2.2,
and 6.2.2. For the vapour phase to have a convex meniscus, the confinement
walls must be wettable. It should be noted that for non—wettable walls, the
vapour would have already formed from the liquid phase above (as discussed in
7.1.1) or at the saturation pressure. The free energy of such system can be

calculated fromequation (3.62).

Typical curves of free energy of a system vs. size of the new phase with convex

meniscus are shown for different geometries in Table 7-2.
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Table 7-2 Curves of free energy \s. new phase size for new phase formation with convex

meniscus

Geometry

Cone

Plate—Plate

Sphere—Plate

Liquid formation
with convex
meniscus out of a
confined vapour
phase (at P'> P,),
confinement of
non—wettable walls.

Liquid
I:] Vapor

90°-B < 6 < 180°

90°< 9 <180°

Vapour formation
with convex
meniscus out of a
confined liquid
phase (at P'< P,),
confinement of
wettable walls.

Liquid
I:] Vapor

0<0<90°+B

0<6<90°

ose<900+§

Typical curve of free
energy vs. size of a
new phase with
convex meniscus

B-By(J)

N

\

0.0

0.5

R

Re

Lo

15

B-Bo(J)

0 50 100 150

R;
IRcl

(~for H> | Recos® |)

B—By(J)

0 20 40 60 80 100 i20
d

I1Rc

Free energy curves for new phase formation with convex meniscus go through a

maximum point, and are constantly decreasing after that. The phase transition is a

nucleation phenomena, i.e. a nucleation barrier must be overcome. Once the

nucleation barrier is overcome, all of the confined phase turns into the new phase.

Therefore with a new phase having a convex meniscus, two phases cannot coexist

in a stable condition, i.e. no convex meniscus is stable for the case of a pure fluid.
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Inside a cone, the new phase free energy curves never become ever—ascending and
new phase formation is always possible. For the gap between a sphere and a flat
plate, the free energy curve never becomes monotonically increasing; however for
small separation distances and/or equilibrium contact angles far from the transition
contact angle (6;) the energy barrier might be so high that nucleation never occurs
in practice. Inside the gap between two flat plates, the free energy curve becomes
constantly increasing for small separation distances and/or equilibrium contact
angles far from the transition contact angle (6;). The effects of solid separation

distance and equilibrium contact angle are fully discussed in sections 7.2 and 7.3.

7.2. Effect of equilibrium contact angle on the
stability of the system when a new phase is
formed from a confined fluid

7.2.1. Effect of equilibrium contact angle, for new phase
formation with concave meniscus

For new phase formation with concave meniscus, getting farther from the
transition contact angle (6;) makes the unstable point (maximum point) occur at a
smaller volume with a lower energy level (lower energy barrier) and the stable
point occur with a larger volume and more stability (deeper minimum point, and
lower energy level). The effect of contact angle on the curve of free energy vs. new

phase size is shown for different geometries in Table 7-3.
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Table 7-3 Effect of contact angle on curves of free energy vs. new phase size for new phase
formation with concave meniscus. The solid line shows the free energy as contact angle gets
farther from the transition contact angle.

Geometry

Cone

Plate—Plate

Sphere—Plate

Schematic of new
phase formation with
concave meniscus
out of a confined
phase for different
continent geometries

New Phase
Confined Fluid

......

Effect of contact
angle on the curve of
free energy vs. size
of a new phase with
concave meniscus

B—B,(J)

0.0

B—By(J)

0 50 100 150

Rc

(~for H< | Recos® |)

B—By(J)

(fOI’ H<H Break)

For the geometry of interest, in either case of liquid formation or vapour formation,

the shape of the meniscus alters in the same way when contact angle gets farther

from the transition contact angle. However in terms of increase/decrease in

contact angle, getting farther from the transition contact angle corresponds to

opposite terms for liquid formation and vapour formation. This is due to the

convention of contact angle being measured from inside a denser phase (liquid).

For liquid formation with a concave meniscus out ofa confined vapour phase,

decrease in contact angle results in getting farther from the transition contact

angle. For vapour formation with a concave meniscus out of a confined liquid

phase, increase in contact angle is equivalent to getting farther from the transition

contact angle. This shows how defining the transition contact angle facilitates a
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unique explanation of meniscus changes, regardless of the case being vapour

formation or liquid formation.

Inside the gap between two flat plates, or between a sphere and a flat plate (with
separation distance other than zero, H#0), as equilibrium contact angle gets close to
the transition contact angle, the nucleation barrier increases. Finally at some
contact angle close to the transition contact angle, the free energy curve becomes
monotonically increasing and new phase formation with concave meniscus
becomes unfavourable. For the cone geometry, a stable new phase with a concave

meniscus can always formout of a confined phase.

Changing the contact angle by a specific number of degrees, results in larger
relative changes of the energy level when the contact angle is closer to the
transition contact angle. The validity range of this statement is for contact angles

which do not result in monotonically increasing curves.

7.2.2. Effect of equilibrium contact angle for new phase
formation with convex meniscus

When the meniscus is convex, getting farther from the transition contact angle

increases the level of the energy barrier, and the volume of the unstable bridge.
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Table 7-4 Effect of contact angle on curves of free energy vs. new phase size for new phase
formation with convex meniscus. The solid line shows the free energy as contact angle gets

farther from the transition contact angle.

Geometry

Cone

Plate—Plate

Sphere—Plate

Schematic of new
phase formation with
convex meniscus out
of a confined phase
for different
continent geometries

New Phase
Confined Fluid

Effect of contact
angle on the curve of
free energy vs. size
of a new phase with
convex meniscus

B-Bg(J)

0.0

0.5
Ry
Rc

Lo

B—By(J)

B—By(J)

0\

YA

0 50 100 150
d

IR

(~for H> | Recos® |)

d
IRc|

20 40 60 80 100 120

In liquid formation with convex meniscus, the contact angle gets farther from the

transition contact angle as it increases. In vapour formation with convex meniscus,

the contact angle should decrease to get farther fromthe transition contact angle.

7.3. Effect of solid separation distance

In general, a tighter confinement facilitates new phase formation with concave

meniscus by reducing the energy barrier and/or results in more stability of the

stable condition by lowering the energy level of the minimum point. In contrast for

new phase formation with convex meniscus, the tighter the confinement is, the

higher the energy barrier that has to be overcome.
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For the cone geometry, the apex angle (f) determines how tight the gap is. For the
two plates and the sphere—plate geometries, separation distance (H) is indicative of

how tight the confinement is.

For confinements where walls meet at some point (for example inside a cone or
between a sphere and a flat plate having a contact, i.e. H=0) the free energy curve
never becomes monotonically increasing and new phase formation never becomes
unfavourable. Also in this case the derivative of free energy with respect to size of
new phase is zero at the start point of the curve, i.e. whensize is zero. A
comparison of free energy curves for two cases of zero and nonzero separation
distance for the sphere—plate geometry is illustrated in Table 7-1 for new phase

formation with either concave or convex meniscus.
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Table 7-5 Comparison of free energy \s. size of the new phase at the start point (new phase
size =0) for zero separation distance (H=0), and nonzero separation distance (H#0).

Case H=0 H#0
New phase / iy /
formation — -
with concave f:; ;%
meniscus | i
(sphere—plate = =
geometry)
0 100 200 300 400 0 50 100 150 200
d d
Rc Rc
New phase
formation _ _
with convex 3?5 ;‘%
meniscus | |
(sphere—plate = \ =
geometry) \
0 100 200 300 400 0 50 100 150 200
d d
IRc| [Rcl

The effect of confinement wall separation distance is fully described for new phase
formation with concave meniscus and new phase formation with convex meniscus

in the two following sections.

7.3.1. Effect of solid separation distance for new phase
formation with concave meniscus

As the confinement walls’ separation decreases (decreasing 8 or H), a new phase
with concave meniscus gets more stable, and has higher volume at the stable point.
For two flat plates and completely separated sphere—plate (H#£0) geometries,

decreasing the separation distance also makes the nucleation energy barrier smaller.
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Effect of separation distance on new phase formation with concave meniscus is

schematically shown in Table 7-6.

Table 7-6 Effect of solidseparation on curves of free energy \s. new phase size for new phase
formation with concave meniscus. The dashedcurve is the initial condition. The solid line
shows the free energy as the walls’ separation increases (cone apex (B) or surface distance (H)
increases from that of the dashedline). The dot-dashed curve represents unfavourability of
new phase formation with concave meniscus inside a gap between two flat plates or a
sphere—plate, as Hincreases over acertain distance (approximately by [R.cos8l ).

Geometry

Cone

Plate—Plate

Sphere—Plate

Schematic of new

phase formation with

concave meniscus
out of a confined
phase for different

continent geometries

New Phase
Confined Fluid

.....

- o -

Effect of solid
separation (5 or H)
on the curve of free
energy Vvs. size of a
new phase with
concave meniscus

B—By(J)

B-By(J)

B-By(J)

0.0 0.5 Lo L5
Ry
Re

0 50

100

150

When confinement walls have some common point (inside a cone for any S or

inside a gap between a sphere and a plate when H=0), new phase formation with

concave meniscus is not a nucleation phenomena (no energy barrier has to be

overcome) and it spontaneously reaches to its stable equilibrium. Also for

confinement with walls having a common point, the free energy curve never

becomes constantly increasing. Therefore for a cone geometry new phase

formation with concave meniscus is always favourable regardless of the cone apex

angle.
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For two flat plates and for the sphere—plate geometry, new phase formation with
concave meniscus becomes unfavourable as separation distance increases over a
certain amount. For the two flat plates geometry, it has been shown in sections
5.1.1.2 and 5.2.1.2 that |R. cos8| (a modification of what is proposed in literature
for the maximum distance of sphere—flat plate that allows for capillary
condensation to happen 224 gives a fair value for the distance above which new
phase formation with concave meniscus is unfavourable. For the sphere—plate
geometry, the separation distance above which new phase formation with concave
meniscus is unfavourable is called the breakage distance 8. A new phase with a
concave meniscus forms a stable bridge below this distance and breaks at
separation distance above this distance. If the sphere radius is much greater that the
bridge width, which is in turn much larger than the separation distance (Rp >> |d|
>> H ), the breakage distance can be approximated by |R.cos6| (more precisely
from equation (6.16) for liquid formation with concave meniscus ¢ or from
equation (6.33) for vapour formation with concave meniscus). All in all, for two
flat plates and sphere—plate geometries, new phase formation with concave
meniscus is confidently unfavourable for separation distances above the Kelvin
radius (H>Rc). At separation distances below the Kelvin radius, further
investigation has to be made based on contact angle and radius size for the

sphere—plate case.
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7.3.2. Effect of solid separation distance, for new phase
formation with convex meniscus

An increase in the solid walls’ separation (by increasing cone apeX () in the cone

geometry, or separation distance (H) in the two flat plates or the sphere—plate

geometries), reduces the level of the energy barrier.

Table 7-7 presents the effect of the walls’ separation on the free energy of the

system where new phase formation with convex meniscus happens out ofa

confined fluid.

Table 7-7 Effect of solid separation on curves of free energy \s. new phase size for new phase
formation with convex meniscus. The dashed curve is the initial condition. The solidline
shows the free energy as the walls’ separation increases (cone apex angle (B) or surface
distance (H) increases from that of the dashed line). The dot-dashed curwe represents
unfavourability of new phase formation with convex meniscus between two flat plates as H
decreases ower acertain distance (approximately by|R.cos8| ).

Geometry

Cone

Plate—Plate

Sphere—Plate

Schematic of new
phase formation with
convex meniscus out
of a confined phase
for different
continent geometries

New Phase
Confined Fluid

--------

Effect of solid
separation (5 or H)
on the curve of free
energy Vvs. size of a
new phase with
convex meniscus

B—By(J)

\
\
\

\

B—By(J)

B-By(J)

0.0

0.5 1.0
Ry

Rc

L5

50 100

0 20 40 60 80 100 120
d

IRc|

For new phase formation with convex meniscus, as confinement gets tighter (by

decreasing the cone apex angle or the separation distance), a higher nucleation
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barrier has to be overcome. Inside a cone or a gap between a sphere and a flat plate,
new phase formation with convex meniscus never turns out to be unfavourable
(monotonically increasing). However for the sphere—plate geometry at very small
distance (H), the barrier gets so large that the phase transition might be practically
impossible (as shown for example for liquid phase formation with convex meniscus
in section 6.1.2.2). Between two flat plates, for separation distance below

|R. cos@|, new phase formation with convex meniscus becomes unfavourable due
to constantly increasing free energy curve. |R.cos8| is a modification of what has
been proposed 2% for maximum separation distance above which capillary

condensation, liquid formation with concave meniscus, becomes impossible.

7.4. Effect of sphere size for the geometry of a
sphere and a flat plate

In the sphere—plate geometry, the size of the sphere affects the free energy curve

and volume of the unstable and/or stable conditions.

For new phase formation with concave meniscus, increasing the sphere size results
in a smaller energy barrier (with less volume of the new phase), and in a more
stable minimum point (with higher volume of the new phase). At the extreme case
where the sphere radius becomes infinity, equivalent to the case of two flat plates,
the whole confined fluid transfers into the new phase once the energy barrier is

overcome, i.e. no stable bridge with concave meniscus can be formed.
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For new phase formation with convex meniscus, the energy barrier increases as the
sphere gets bigger. The highest energy barrier has to be overcome for the case of

two flat plates, equivalent to the case of sphere—plate with sphere radius of infinity.

7.5. Results implication
A summary of the comparative investigation of confined fluid for different

geometries is presented in Table 7-8.
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Such a big picture of the stability of confined fluids can improve modeling
techniques, and can describe the reasons behind many intuitive understandings. For
example, it describes (in answer to some surprise in literature *¢) why in most
experimental observations (and therefore theoretical modeling) a concave profile is
considered. As mentioned in section 7.1, stable coexistence of pure liquid and
vapour phases at pressures other than the saturation pressure is only possible for a

new phase with concave meniscus.

As another example, it has been shown that a smaller liquid bridge (capillary
condensation) with less stability forms as the sphere size decreases, or the
equilibrium contact angle increases (gets closer to the transition contact angle).
This smaller bridge width can explain decrease in the capillary force as a result of
the decrease in sphere radius decrease or increase in the equilibrium contact angle,
that has been observed in previous modeling with the focus of capillary force

calculation °.

In practice confined fluid behaviour can be manipulated, employing different
parameters, as shown in Table 7-8. For example, effective surface treatment is
required to prevent capillary condensation in confined humid air (which contains
H,O vapour) at pressures below the saturation pressure that results in a stable
concave liquid bridge. Modifying the surface to become non—wettable (equivalent
to hydrophobic, when the fluid is H,O) is one technique to prevent capillary

condensation *’.
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