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. o ABSTRACT . -
. ) 4 ‘ . ' LN "

=, J /
The si-ﬁ‘ this thesi( 18 to review the literature

relating to the d‘istﬁbution and independence of quadrdtic
forms In normal random veriables? In Ghapter II, we have
NS

:discussed Crais's th 1

_, u:s generalizations to correlated
" and non-central css& Mht: r r ult for testing the indepen-
dence of non-negative quadtati’ has been discussed -
In Chapter III, several *tesults for testing whether '

a given quadratic form follows a -!c'h.i—sq,usre (central and ‘nou- '
central) distribution have been reviewed/ In this direction,

- Cochran 8 theorem and Crdig 8 theorem and th-eir generalizations :
.‘ have:been discussed These discussions include tﬁ‘e cass when

V (Var.-Cov‘. matrix)"‘is singular. Finally, we have giver& some -

applications of - the results discuased above. r

‘1’

aw



l}&x 3

)‘v,. N

Lo - o - ’ Y v
~" et ACKNOWLEGEMENT : ‘e T
) PYE S
I wou'id like cﬁwexpreas my sincere, app:ectation ;o lny %
euperv:[ao:: Dr. E ‘Nordbrock for his helpfhl advice and encouragement. .
.during. the preparation of this _thesia. < - s \
, I'would also like to thank Miss June. Talpash for typing .
the final drut of this thesis. [ - . S
Finall}{, I wish to expre_sé my. gratitude. to the ‘Unive'tsify
of Alberta for financial assistamce. .
» ' : e
. . ‘ .
- -‘ ’ ‘l
- . "~ . )
<. | o
~
\ |
. ’
v - . . T



Q ] ' . , ' gj - - ‘
. Sy ’ . »
TABLE OF CONTENTS

. L 4
, 3 , . ®
. o a ) o \
\ ) EERY . . ‘\ N _' - '
I+ TUINTRODUCTION . . . « 4 tivw oo s vw s 217
- ’-’ [ )‘u- . .

11 Inusznnsucn OF QUADRATIC FORMS . . . . 3

o o
. - L
"III DISTRIBUTION OF QUADRATIC FORMS . . . .~  32°
- / L N
IV. . APPLICATIONS . . . « « « v s o o o « o . 58

v G c L ’ .
| 'BIBLIOGRAPHYK\): ® e & e e o ¢ e 2 e a . 67

’
~
7
i
. \ . -
w
.-
o . . N
~
.
Y
r” £ 4 b
I .
v -
v, .
N &
. - - o
- .
] ’ R
. L N
o .
e . .
N ]
' ¢ . NN - ~
o : R ¢
~ - ) ’
o .
(vi) :



-_J;_ ‘: . . . .‘ CHAP:I'ER;/

.INTRODUCTION

oot ) /ot
v ’ 'S s e

Bz

l {
’f{pmlly jistiibuted randém variables. Formal analysie of’ (&riancsg o
|

v

{& exaéorgs entirely concerﬁed with stacietics consyfucted $m »
- quadratﬁi forms in random variables representing ori’lzal SBber Jiions

- (ot transformations thereof) . O THe (frequent occufence offquadtbtic
r‘

forms in the’ study of ANOVA RegressionQKnalysis, Econoﬁetricstlnd

Al

many other related fields, makes it necessary to. investigate their ! .
. prOperties. The complete justificm:ion of various results ';l.n such

studies inVolves the independence of quadratic forms and the condi- v

tions unde whi\\a given ,quadrqtic form follows the x - distribution.

The fundamental theorems in ‘this direction are Qraig s iheorem
.’a

(Theorem 1) and Cochran s theorem (Theorem 15). T . )

- ~In this. thesis our studies are confined no quadratic forms
in normal random variables only, and the ‘basic aim is to review the ’

-

literature pertaining to these two theorems and- their Subsequentf

' developments. Basically we have followed a matrix approach in pre~, &

senting the results. ; : o e _ — -

<

In Chap;er‘II, we state .and prove Craig's theorem, which
. gives a criterion for testing the independence of two quadratic.forms Y
“in normal random variables with mean zero. Extensions of this

theorem to the correlated case and non-central case as- given by

* : : ! . - - ' B
Quoted -from Continuous Univariate -Distributions by Norman L.
Johnson and Samuel Kotz. :”New York, Houghton Mifflin, 1970.




' Ea:g,-‘ ‘ = " v ' . . . i - " l 2 '
,v . . ‘ o . ’” L .
. A.C. Altkin [2] and O.HCarpenter [8] respectively are diecueeed. .
W * P
' “.Apart £rom' the Craig's eriterion«for testing the independence of two

AN . . . M

. . quadretic forms (Theorem 1); B. Matern [25]ihae given enother,
criterion for the independence of non-nepative qusdretic forms in

normally correlated v&rieblee. Tﬁis result along with its extension

) to arbitrary qusdrHttc“forms—as—given~by—¥——¥awade—{%#}—ha&—been———————____
diecussed.y The chapter is concluded by proving a criterion which
' deals with the indgpendencghof quadratic forms‘of.the type
. ;Q(XL“XZ”":xn?j where thﬁ .Xifs ifollow a‘multiveriate_normsl .

C e L o .
"distributionf E . ‘ . -

’ - | o1 ChaPter III, Cochran's theorem ‘which gives "a

necessary and

.

ufficient condition for sever quadratic forms to -
be independent y distributed as x? " has/been proved. .The

» extensions of his theorem to the correlated ease.es given in [9],
[Z] and'[22]'h vesteen-disCussed. Also‘various results which
. deal with cond tions under which Q- X'AX Follows a xz—distri-
bution, for, X| multivariate nmormal with variance-covariance matrix N
v (possibly si gular) have been’ disdussedl In ‘these discussions

' various results on idempotent matrices have oeen used. The knowledge

of idempotent‘matrices and - th%%r properties has been assumed.. -



T

INDEPENDENCE OF QUADRATIC FORMS

. '§ .d’ v ) . s .
L] ) ' L 4

‘Ai§2.1. At various plncec in the study. of statisticas we ehcqunter linear,

bilinear and qﬁfﬁratic é_ rmsy ¢fhe t-test, variance ratio test\and

certain other tests of significance are valid only on’ condition that

7 SN

_the linear, quadratic and bilinear forms concerned are statisticali!'x

"ipdepethnt. In the present. chapter we shall éghfine our studies to

the independence of quadratie forms ig,normai~random variables’ oniy. .
. The central theorem of.this chapter is the onevdue to
.A.T.vCraig [ZJ. But eariier W.G..Cochren [5}'obteined‘enother result
which’ is not so easy to.apply as is Craig's result. Because of the-
importance of Creig's'thoeremg H. Hotelling [13] and;A;C. Aitkin (2]
L ) : :
also tried to prove this elegant theorem. Later J. Ogawa [27] gave
an algebraic proof of Craig's theorem after pointing out some mistakes
«i0l the original proofs of Craig and Hotelling | g

- - ‘Craig’ s theorem as stated in [7] deals with independent rv's

'following univariate normal distribution with meen zero. Later

* AC. Aitkin (2] obtained an extension to eorrelated case and

0. Carpenter [8] extended this theorem to the case of noncentral

normal variates with equal variance. s BT S
All these results state&iabone deal with the quadratic forms
Q(xl,.;.;x ) where xi's fzilow univariete_normal distribution; J. Ogawa _
[27]4proved a criterion for testing the independence of two quadratic
forms when the random sample is drawn from multivariate normal population

Apart from the Craig's i'd Cochran's result, B Matern [25]

- 3..



.7. L . '“Lt‘ _ .

extended Maqérn 8 reeult from non-negative case to general case. ‘<.

ﬁinally, it is worth nating that the central theorem of °

the'preseeﬁ chapter, i.e., Theorem l,hae been attributed in

literarur to A.T. Craigs but K. Hatual€21[26] page_82; has claimed
‘that he Had this result in 1943 independenrly'of A.T. Craig and thus
gives a otheriindependent proof 1& [26]. X '

. . v
§2.2. ﬁhe central theorem for the present .chapter is one due to
A.f. Creig.[Z] in which we suppose rhar X, 0~ N(p,l) are independently‘

distrtbuted rv's.. If Ql’ 02 are two huadrat1Cvforms.in

X)X 20" xn with associated matrices (real and symmetric) A and

’

_B respectiv21y, then:

Thegrem 1: (CrEig): A necessary and sufficient condition that Qi
—_—. . i | .

iin‘fhe probability sense is that the product

. and 'Qz are.ipdqpeﬂ»r
AB = 0. : _ . . )
Here we give Ogana s. proof (see [27]) .which makes usé of

- the following lemma for its proofdsee [27] page 89).

Lemma 1l: Let "the non-zero characteristic roots of real symmetric

matrices A, B and C = A+B be ,al,az,L,.,aé§

31,82;...,Br. and yl,yz,...;ys -reepectivelx. 1f the.relations'

s = q+r and

s q r
) s (¢ Yk = I ai I Bj
’ : k=1 i=}1 j=1 -
— o~



. ' . ’ ' i R . -~
. : o ' , ’ . . , '
. ‘ E .
Vo 5"
- ! a "

hold, then we have the relation AB = BA = 0.,

o : o '
Proof of the Theolem: ) . . N

1f M(tl, 2) denotes the joint momgent generating

function of Q1 and Q2 . then 1t can _be-ahcnm_(see [15], p. 385)

o - -2
! _ - M(tg,t)) -VII-ZtlA-ZtZBI

Consequently Q, Q, are independent 1ff’

M(tl,tz) - M(tl’ozu(o’fZ)

- d.e., |1-2:1A-2;23|'- II-ZtlAI . |1-2t23| (1.1)

(C.'f' » [1], page 45) |

" We shall e@;ablish the equtvalence of (1.1) and the

% condition AB = 0. '}
' : .
‘ suppose,ﬂ»&' 0;
g L, S e
g gy‘“ B v
gt BT - ) I-2t.B) = (I-2t A-2t,B)
/ ’gﬂ-)f"' ‘. 2 N I il ’_)-‘ tlA)( - tz B tl ) tz
‘5‘3"‘/

2¢, = 2¢, = %- in (1.2), we have-. '

;‘§42t1A|" |1-2¢,8] = |1-2¢ A-2¢B] . - - (1.2)

S\ 'R\.& ' ’ ' ' o
:&Converse‘ N ppose (1. 1) holds; since it holds for all real values

3 R .
1

--‘of 't and t,, it holds when t, = t:2 = % (sa_y), substituting

'y

|x1-a] - |x1-B| = x" |xI-B-A] . (1.3)
! N _ -

Kl
I

o This relation shows that the non-zero characteristic: values

of A*B are identical with those of A and ‘B as a whole. Let



Y

l’ 2.-‘- q

" term of the ch polynonial lxI-AI 18

-
g
>

20 Brmﬁz"""er and“ Yl,yz,...,vs be non-zero ch..

[ 3
roots of A, B and A+B ° respactively Then the smallest degree

, q .
r GnYen oo X9 e

Similarly ,‘ .
- N ) ' . . '
. . r ‘6\/ 8 ' /
: GDRCT 8D 2" end (DS v a0
! . 3=1 . ‘ k=1
P J * » . \ ) -
are respectively the smallest degree terms of the ch. polynomials
Lot

lxI-ﬂI and IxI-B-4]  respectively. ‘

A

o " Thereforé smallest degree terms on both sides of (1.3)
- . S ' :

- q- . s
-D%na - 18 )xz“‘(“*")L abd “(-1)°( 1y, )«

i=1 ]L-.vj-l’j ' - k=1 | //

_ respectively. . |

s

'lh Now because of the equality in (1.3) these must be the'

same, consequently _ . , ‘ . -

8=qtr and (I a)( M B)™ 1 {,k
E 1=1 =1 3 k.

~ . )

$herefore conditions of Lemma 1 are satisfied andfthus it follows

(from Lemma 1) - AB = 0, / .
. Y ]
Becauée of the importance of this theprem many statieticians

-~
-

tried to reprove this theotem differently, Hotelling [13] gave quite

a rigorous proof of this theorem, but unfortunately both the original

. -

‘ ; . ] . ) - . -~



. o B . ‘
. ’ . . - . Al ' “
pfoo{ of Craig [«; as well as Hotelling's [13) have some }dﬁ

as pointed out lader By Ogawa [27]. For the defect in Hotqi

.

proof #ee [27] page 95. ' P
. . . ¥ ‘08
° Iheorem 1 as stated above deals with unco:(:&gte

~(f————m“~The—foilawiagiis—an—extngﬁbn_due~taftitktn“[éi—af*T

correlated- variates.’ K ‘ e
»

]

Theorem 2:  Let xl,xz,...,xn be normal random variables w

zero and varianc%.iovariance matrix V. If Q1 = X'AX

Q, * X'BX (where X' = 2x1,...,kn) are two quadratic form

] Q, and Q afe independent iff AVB = 07 (V ‘positive
1 @ 2 - ' ; ] . i

V.l

Proof: ‘§£hn§ V is ﬁositive definité it admits a real squ

W o AR
. . ) _(1/2) .
ConsiQer the transformatipn, Y=V X.. Then.]

i.e., Yj"='(yl,...,yn) are uncorrelated ‘variates wi;h unj

Ql becomes Y'Vl/?AVl/ZY

- and Q2 becomes Y'Vl/zBVl/zY .

e
”

Applyiqngheorem 1 now we haye Q1 and Q2‘ independen

0

o

JL/2,,12, 12,172

1/2 1/2 = 0 <==>AVB =0 . /

. f.e.,~ -V 'avBV
. . ~ .

¥ oL Before Craig's result (Theorem 1), Cochran [Sk obt
following' condition for testihg the indqpendénce of two dua

J

-



¢ ' . ) 8~,'

_fOrms in independént _N(0,1)° variates.. However Craig 8 ‘result is

relatively easier to apply.
- L

llTheorem 3:j Let xl,xz,...,xn be normally and independently
distributed with zero mean and unit variance- then the quadratic

fforms Q = (a)x AX and Q2 = (5)x BX' are independent iff

|1-1t

[A-1EB| = II-itlA[ . II?it2B+~“f', BN

:Proof? 1f vyABé'(MA)’ (Mb) denote the chfnacteristic.functions of
Ql’ Q2 S(Ql) and (QZ)_ respectively, then it’'can be shown.

e ,

(cf., [30])

My = |I-it A-it,B] |

" and result follows immediatel ‘on noting that Q, and Q are
4 7 1 2

‘.
. e . . . . : .
.
ol N - o e

=

independenb)iff MAB MA~1 MB;,

§2 3. In this section we shall discuss briefly some of the results
which will be used quite implicitly in the remainder of this chapter
and in the subSequent chapters Because of their importance we shall.

explicitly state these results here and if necessary oroofs willnbev

outlined. . s : » ' : : v



Theorem 5: ' Let X' = (xl;xz,,f.,xn). Suppose X is 'N(u,V)

pege 55) that, . 4

Let Q = X'AX "be a quadratic form in variables (n\t :,'

necessarily random) (xl,xz,...,x ) = XS, with associated (real)

-

. matrix A, Obviously without any loss of generality A can be

aSSumed to be symmetric Then there exists (cf., [14], page 255)

an orthogonal transformation X = T& Such that
"‘a o . 4 o i
> Q sz ' @4

where \AI’AZ""’Am are non-zero eigenvaioes of A} m = rank of A.J
Here we.recall the follewing: o : . -

s

L
w

‘JDefinition° If A 1is the teal symmetric matrix associa&ed with the

quadratic form - Q, then the DEGREES OF FREEDOM of Q is defined to

~

be the:rankfof. A. v
\\._ - ..4.-'.__‘ '

-V non—singular),then-'rth»'oumulant 'of  X'AX is

K%)= 277 (em1) e (A) Srw? vy Ty (1.5)

(where tr(Av) means'trace.of AV) .

Proof: Let MQ(t) ‘&enote tne,monent‘genefeting funetion of

'qud&fhticifonm‘ Q = X'AX. Thén it can be shown (see for example t30]'v

I

Mo (e =g11"2t5vlf(l4g)eXP.{--% ﬁ'[l—(I-ztAv)'ljvflu} :

-

'Since cumulant generating function is the logrithm of the momen t

generating function ‘we have



Z k t /! = iog-[MQ(t)] .

r-l - . . . . - .\ =

~1

: I ) KV SO, I U S —
i TRy Yog| T-2eAv [< 3 W I~ (-2eAn) HvE T T(e)

Using the convention _"Ai of X" to denote. the 1y th

characteristic root of X" then for sufficiently small [t] we

have -
y \
- 3 log|1- 2¢av| = - 1 2 log [\, of (I-2tAV)]
( i=1 ' ey
.. R IR
i . R 2 log [1 -~ 2c(A; of AV)]
l n © . B
= 7 1.1 12ty of anlf/r
=1 r=1 . :

!

of AW}

4§ f'r-l r 2 ff -
= 2{@ Tt Y @
r=1 - - . i=1

C o

-

= Z (Y t"/r) tr(AV)r. .
r=1 .

Also by direct binomial expansion, for 8uf‘ficient19.small. el

I- (1«-2cAv) Z 25 ¢ (AV)

Vr‘ S -

Making these substitutions in (1.6) and comparing the coefficient

of.‘tr we get (1.5).

& 9 .

Theorem 6; Let X be 'N(u,V),,with_ v non—éingular. Then .

(1) t(x'AX) = tr(AV) + Ay | ]



' toow . ¥

(£1) Var (X'AX) = 2 tr(AV)? + 4u'AVAy

(111) Cov (XM ,x"lnX) = 2 tr(AVBV) + 2,'(AVB4BVA)y

(iv) Cov (X,X'AX) = 2VAy .

Proof: (1) Since X'AX 1is a scalar quantity,

.

. | X'AX = tr(X'AX)
woer(AXX') © (tr(ABC) = tr(BCA) = tr(CAB))

"

. E(X'AX) = E(tr(AXX')) = tr E(AXK') = tr(AE(XX')) .

But E(XX') =V + pu' , therefore ' o <

“E(X'AX) .tr‘A(V+vu')'

tr AV 4 tr(App')

= tr AV + tr(u'An)

= tr AV+ p'Aw .

(11) ‘It_folloﬁs_immediatd!y from Theorem:5 on taking

r=2. : S . . -
(iii) Consider the quadratic fo:m )
' ; ’ . "
X'AX + X'BX = X'(A¥B)X . -
. % . . . ' ‘ . -
‘ o ' LT ) ‘ o
€ . Var(X'AX+X'BX) = Var(X'AX). + Var(X'BX) + 2 Cov(X'AX,X'BX) -
"and -,

, Var(x'(A+B)X) =2 tr[,(A+B')V]2.‘+ 4y' (A#-B);V(EHI-B)U
-  (from part (1))
a2 eriavi? #2 erav)? + 4 tr [AVBY] -
+ 4pu'AVAy + 4u:BVB;u-+ 4y’ [-AVB;!jB;VA]u

!



| ! - Var (X AX) + (X BX)

¢ +—4{tr(AVBV)—+ ut (AVB+36%)¥}——1

Hence  Cov(X'AX,X'BX) = 2 tr(AVBV) + Zu'(AVB+BVA)u .

| . .
' : A

" (1v) Cov(X,X'AX) = E {(X-p)(X'AX-E(X'AX))}
= E((X-n) (x'Ax—trAV-u'Au) }

- T e Rew [ A(x—u)+2(x-u) Au-trAv]}

[ '-m{(x-m(x-u) Aul .

\\ ) . .
. 2 b
b

(\: First and third moments of (X-y) are zerc.)

f.el, Cov (X,X'AX) = 2vAy . i

1,Thé fo{loﬁing u efdl ;ésults are corollaries of Theorem 6. . \;:
. . . ) ..bfh' ‘ | . .
Corollary: If X)\is-~ ‘then v
(1) , |
2
(i1) ) = 2 tr(AV)
-, (1) ¢ 0, X'BX) = 2 .tr(AVBV) . s (1:7) -

S R - . )
Now we ‘shall state a theorem which deals with matrices

and will be used ffeqdéntiy_ q:CHapteriIII,.(cf., (7. -

Theorem 7: Let Al A2 ﬁ e a collection of n xn symmetric

matrices where the rank of Ai Py and let A= Z A 3

where the rgnk of A is p. ' Consider ‘the four conditions.

, Cl : " Each Ai iS'an idempotent matnix.'
r ’ . .

Gy AT A



¢ N T v " .
' “ h'-' “ .3\‘
. m
. Cy t Ais an idempotent matrix "
\l ? : !
C,: p= .) p, - - )
4. . i=] 1 ‘
Doy , T
Then the following are true.
1) ‘Cll a‘nd C_3.l imply .C2 % . o
(ii) '02 ﬂamj C3 imply Cl . . “,};,
) ) d:"‘i"‘l"
: i) ¢ and € imply Cy .
. M .'6 .,‘ .
(iv) Any two Cl' C2 and C3. imply all | four Cl, -
CZ’ C3 and C4.
(v) C3 and C4 'imply‘ Ci and 92.
Proof: (i) We have
: m . mn - : _ o
. A A% = ( y Ai)? ) Ai + ) AiAj -~ (1.8)
o A=l i=1 & i$5 7 -
- @ . ‘f:ril . ‘ z . "
= A, + ALA,
=1 b g4y 1
= A+ § A, v
' 145 13
Ihetéfore_, : 7y \
© Tr(A) = Tr(a) + Tr( )- A;Aj)’
B . - 143 N )
- - hence, .
w( ) AA) = o - '
By -
i*j ‘j i \ o/ ~

. - or equivalently



14

14

. *’ Therefore,

) T‘“i 3 7O

i*j . !f

i

. ' ) B 2 .
| but néw ‘ Tr(Ai j) II'::(A:l j) ?r(AdAiAJ)
. . LY
i"‘_ 1 A
gy
. A T
From this in view of (1.9) wé conclude
. ‘ A'iAj =0 for all. i 4 §.
- : L : 3

© Uy since AA, = 0 for all ifj,'

A3

'0'=Tr(A A= Tr(AA) ’Ir(A

J 1 J
v Also lodking at (1.8) we have.
. 2
LA = JA
, i1 o3t
. Write ;g °.
) ’ . ! . o
Ai'-' A = - ) (A§ - A)
S 4 if
r ‘ L .
Since A, are symmetric, we have >
ﬂ TrA

) Tr(A A )

B
i

but.hgéause of Telations in (1.9a) we get

RNV

2 v ial ey w
Tr(Ag-A;) " (A{-A) =0

e

(1.9)

(*)

- v a2 | . ' .2 " 2 i:
-4,) (Ai-Ai) == Tr[(AifAi)W&u

]

. /:?’
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e ‘m{ ) ;
b T a T 15 .
\ . «‘Q.’". ' .
Ak sty fordy 1 (see (M)
LA g ;Mor- atty see
" L % - ’

hence C o ?:" A%J:’ ﬁ%ﬁ ' : S i ,/\
“ :"Az - (3:' Ai)_z'; ) a2 + 1A A

A o
’ i 1|‘ ) : X B ’ : .
(iv). In order to prove this, it is sufficient (by wirtue
. R . . [ . o K . . B
. of (1), (11) and (141)) tg prove that C,, C, and ‘C; .mply C,.
L e g dé e S | ‘
i _Sincéiihe,ragk of anfi&émpotent matrix is equal to its _'
D § .."' . v . c ) ‘A
traces S . .
. ? o . .1 . jg . . @
. : i A ’-:. . T 4% i . " N . . .
DI S ‘Rank A Ty A= ] Tr A, = ] Rank A
VAN M P ‘ i N St -

o equivalently 14 T
s : I ’ Lo ? . ) ‘ . ./
’ » ‘ . . [ ‘ -- ) . - . ' A .
. L | . P=)0p
o R . . § ik
T | : ' | :
B . (v) Consider the, set of equations Ax = x, Agx= 0, ?»"”.’.

.- Am’: "'“0-" Ax = x -can be written as (A-I)x = 0. Since A is 1

kidempqteht of rank p, ‘gyere exists 6rthqgonpl P such that -

P'AP = | " and thus PY(A-I)P=|

erefore rank (A-1). = rank (P'(A-I)P) # n-p.
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' Hence the equations Ax = X, Ayx'= 0, Agx=0,...,Ax =0

-

\ contain at nost n-p+p2 ...+pm - n—pl\\ingggendent equations, and thus

have at least P independent solutions Thus these equations

give ‘at least Py independent.solutionsto Ajx = x . By

¢ . .writing Alx = X ‘as (A -I)x = 0 we see that there are exactly P
in@ependent solutions Xk Now therefore from the characteristic
equntion: Alx.- xl we conelude all the non-fero.characteristic values

SN of A  are +1.andthus A 1is idempotent. Similarly. Ai' is

1 1
‘ \
idempotent for 1= 1 2,...,m. Therefore C1 follows and hence Cl

. together with C3 gives C2 by‘(i)‘and hence ‘the result follows:

§2.4. The criterjg which we discussed in §2.2 were dealing with
general quadratic;forms, If we confine our attention to non-

negative quédratic forms then the following is an easy criterion

" for testing'the independence,

Tatorem 8: (Matern [25]) If two non-negative’quadratic forms in
. normally correlaégd variables with zero means are uncorrelated, then

. the tqo forms are independent.

Proof: Let the two forms be

’ ‘.‘
DT AR A
Q, = S oa,xx, , - Q)= ‘ b, . X X
b oje1aa 1301 R = It R AL
‘where xi's are normally correlated with mean 0. Write. - °
m 2 E L '
Qla.z ciyi , d 2 , ,‘ (1.10)

=1 7 1=1
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“hﬁrLny—&ﬁd-4~J& —are-linear-functions of X' (see §Z.3),

i r)
. and al1® ¢y and d.1 are positive. Ignoring the subscripts 1 and

3, l'e't_ us suppose O; 'and o: denote respectively the variances

of y and 2z, then we show that /.

S
S

cov ((};,z) = g ==> cov (yz,zz.) =- 202 .
For - . ' n IR

Cov (yz,zz) = E(yzzz) - o;oi
- 2 2. 2. 2
=[]y 2"€(y,2)dydz - o - o i

o . \

= [ [ y* e (y/2)E(2) dyda - as02
: , ;2 _ #
= [ e 20D+ P L P - o2 o2 -
, y 02 y 2z
. o, )
(p = correlation (y,z.)_)’
4 2
} 2_ 22 2% 4~
= 0 (1-p )c:z cyqz + p _.02 (302)
z
R ‘
y. 2 :
( ) . /

Therefore

4

o - h 2 .
Cov (Q;,Q,) =2 ] § c;4497 5

All ¢, and dj' being positive, therefore

s ) . a - -n
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=
Cov (Q,,Q,) = 0 => cfj =0 ,

S .

il.e., - Q1 and Q2 . are independent. /

Algo from Section 2.3 we known that if Q; = X'AX and

Q2 -.x'Bx where X 1is N(O,V), then 7
. o~
-~ . ‘
~ Cov aql,Qz) = 2 tr (AVBV)
~ s
B
Thus in th® case of independent normal variates with

mean zero and unit variance, Matern's result ives =
‘ glve

tr (AB) - 0..
But
tr (aB) = er(al/2a1/251/241/2,
i | )
or
. S : tr (aB) = tr(sl/241/2,1/231/2, L1y

; Hence
AB = AI/ZAI/ZB.I/'Z_ B.l/z =0
Thus,‘obviously it foliows that Matern's result

(Theorem 8) .fdr the case V=1 isg 2quivalent to Craig's result.
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AR ~ Y. Kawada [17] generalised Matern's result (Theorem 8) to the

case of arbitrary quadratic forms, but only when #he variance - . oo
. ' )

covariance matrix V = I. We now give Kawada's generalization.

Theorem 9: If two quadratic forms

n - , . n )
Q =. 5 a ,xx , Q = ] . b, .xx (1.12)
S S K I S 2y 5e1 ML '

o

in normally correlated variables ..xi,xz,...,xn. with zero means and '

variance - covariance matrix V = I satisfy the following conditions

RS S5 N 1y poody o . - )
Fiy = E€QQy) - E(QE(Q) 0, 1,3=1,2 | (1.13)

then the relation
N\

m‘i':/'/‘- AB = 0 " (A = (aij

); B = (b3 )
"“holds. | ' o - T
‘\ o ' Before we outline the proof of this, we note the following
simple but nonetheless important c'onse.quences.,
(I) When - Ql- and Q2 are non-negative thén Theorem 8

(.Matex:n's result) follows from Theorem 9 by taking 1 =1, j =1

in' (1.13). For, then, Fll = Cov (Ql’QZ); but

Cov (Ql’v,er) =2 Tr(AB)
i‘r(AB') = 0 ==> AB =

(I1) 'If Q;, Q, in (1.12) satisfy four conditions in (1.13)

then Ql “and ,Q?_ are independent. This follows bec;ause AB % 0

S
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1mp;1e§ ihdepeﬁﬂénﬁe. (Sufficiency of Craig ] Theorem)

) EiII) The'pécessity Pa}t of Craig's theorem follows fromo
‘Theorem 9, li.Ef,~ If Ql- and ‘QZ' aré #hdependéﬂt then Ah “ 0.
It is quite clear thég\;he indepeﬁdspce of Q- and Q, impliés .
(1.13) .and hénce AB = 0. ' T
L
Proof of Theorem 9(“- | ' . s
\It can easily be showﬁ that thelfirst eighf’momenfs of
N L ,n) are E(xlt)' =0, 1=1,3,5,7. E(iﬁ) -1,
1 _E(xk) = 3, E(xk) = 15, E(x:) = 195. hsing_thesg.values'and By a
straightforward calculation we have . |
K S @ Fp =2 Te(aB)
(2) Flz. = 8 Tr(AB%) + 4 Tr(AB)Tr(B)
/( - _’i" (3) in -8 Tr(BA%) + 4 Tr(AB) Tr(4)
. _ - e
(4) F,, =32 Tr(AzBZ) + 16 Telam)’) & 16 Tr(as’)Tr(A).
ST Tr(A B)Tr(E).+ 8. Tr(AB)Tr(A)Tr(B)
: : o ; : L + 8[Tr(AB3
—_— - - PR |
- C (1) foi}qu,immediately from_(l.?);'(Z) and (3)'are

symmettical For the sake ofﬂillustration,vWe outline'ﬁere the proqf
of (2) v .
B, = EQ-0) - EQEQD)
2 1720 1 27 -

On diagonalizihg; o , ,

E(Ql Q2 }é‘EuZ 4y 2 bij 17y ) T

i R U 2 '
| CTEC L BB vy Yy YD)
- . i,k,8,mn ~.



because o .
TE(A) = ) &
3 i -
+ - Tr(B) = ) bii
i .
. 2 12
_ Te(B) = ) L by, ;
. 1.3 J
' [ AR ;
o - ] 4,
and '_ w
‘T (aBY) = ) a’i'ik .
r - ‘. . i,k ) %

Now it is easy to show that

Lot

i




v . S B 1
| 2, . 2 | ~;\ 2., S
E(Ql)E(Qz)‘1:2TrA'Tr§ "+ (TrB)"TrA . © . (1.15)

Bﬁgﬁ@_ (1.14) and (l.lS)Jfogethpr,give~ o L

R ‘,' 'FIZ = BT;(ABZ) + 4Tr£Aﬁ)T!ﬂB) h

'EQQating (1), (2), (3) and (4) to zero and simplifying we have
. A . 4 = : .

2%+t =0 ) T (e
Write C'Q AB, then (1.16) becomes —_ f
2Tr(ce') + Tr[c’] <0 . - - .17

If C = (cij)’  (i,j = L,Z,;..,p). _Tﬁen (1.17) can be written

'in the expanded form as .
(c, .+c ) =0 . : (1.18)
1;jf1 ij 1] ji ji S
In (1.18) if . ij ji > ;; the‘cbrrespon&ing term of the
~ summation is pdsitive,. ' _
: L ¥ '«s
. if _C;jcji <0, ‘wrife .(c j+cij 317 ji) :
L 2 o ’ ' - - ) :
'(Fij+cji)_ - cijcji ‘which is positive_(being sum‘of ;wo positive
. terms).’ o ' - ER

Thus in any case the left hand side of (l 18) i#‘positive

RN

unless every “cij % O; i,3 k:l}Z,...,ﬁ.
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e, .
ToLe

Co.o23

in' (1) above we looked at the.case when A, B wefe both

e

~non-negative. If however only- A is non—negative then F11 = 0 and.

. "

F12_- 0 together 1mp1y AB = q.

—t.s . . e e e e e e e ot e e e e e e

Theorem 10: In the context of Theorem 9, let A be non-negative;

then F11 = Q 'and. Fl2 e 0 imply AB -:0.-

Proof: On solving F11 = 0 and F12 = 0 we have Tr(ABZ)'a 0.

Since A 1is non-negative we can ‘choose a real symmetric matrix A

such that A = Ai, let C _=“AOB, then\\Tr(AB ) = Tr(C c' ) = 0 ; o
< But ‘ .. : ‘ . A i) . . , .,
to- : T - P
L S, o R
') = 0 == Y omQ o :
A 2Tr(CoCo) ,'O.. > >z= (cij+cji), 0 ; (. (¢ j)) .
° . 1,3=1 _ , . A
@ i ' > - . .
. Therefore, o O L S | L

‘m = 2; this theorem can easily be extended to the cese of any .

a .
]

0 or equlvalently AoB =0 ..

Hence AB = A (A B) =
o 0

Now let us suppose that Ql’Qé""’Qm .are m real

* symmetric non-negative (or non—positive) quadratic forms, Write

) ' . Z . . " R ; -
’ : o - Q . _—

-J L : i=1 _i ‘ - %
If Q@ 1is any other quadratic form (or linear form) . then ‘B. R Bhat

[3] investigates independence Of Q and Q'. In. the following theorem

we shall give. a criterionfor the independence of Q and Q' for . {iﬁ

X {?{a

fi—}te m.
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.Theorem 11: If Qi and Q2 are two real symmetric non-neéative
(or non-positive) quadratic forms, then a quadratic form Q is

distributed independently of Q1+Q2 if and only 1f it is distributed

independently of Q, and of Q. (x ~ N(u,V) )

Proof: ,(Neeessity)- Let Q) = X' AX, Q, = X'AX andtQ = X'BX.

Suppose Q is distributed independently of Q1+Q2 Therk- .
fore

U~

(At =0, T aw

~ . . : c . -
N .

wheré\!v is variance'covarianéeU‘matrii of X and
X' = (xl,xz,...,gn)-

: Wricé VB as D, ‘therefore

." ’ - :' v
i B A 2)D =0 -, | S .20)

°

where . L1 “is any”nrdimenSidn column vector.
It is clear that we can'éssume without any loss of
generality - that Ai‘ is diagonal. Let L, be the first column of

D.. Therefore, (1.20) implies
. . ) ' .v A - ‘ : N

' "l ’ ‘- 0
\L‘l (-A'lfAZ)Ll =20

li.e.!, LlAlLl Q aéd L1A2L1 » 0

) A and 5 are both non-negative or-non—posftivej.

. ot o . ey - -
- If we denotg L1 by‘ (21’12”"?&n) and ,AZ ‘bYA
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Diag (dl’dZ?f'f’dn) then L1A2Ll 0 implies

2. o3
I d 25 = 0 ,
but ‘all non-zero di's are positive or negative, . - .

§ 4 by = 0= g dp- &y =0 .
A s

-

i.e_., 4L, =0 .

1° 2"
Ky . e

“implies ‘ S o e

If L ,L.,... Ln» denote n columms of D then (1.19)

'(A1+A2)Li =0,  ({= 1;2,7..,n)

o AL =0 AL =0
Repeating this process by takidg' L2,L3,;..,Ld ~ we finally get
A0 = A;¥B = 0
" and '4 - o Y
.o o ) AlD = AiVB := 0“.

vAgain recalling Theorem 2, we conclude Q. 1is. distributed
'independently of Ql and of . Q- ' ’ '
| Sufficlency of the result is cbvious as AVB =0 and

4,VB = 0 clearly imply (1.19).
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§2.5. So far we have discussed certain criteria for.testing the.

'independence of.two quadratic forms. However, .our discussion ‘was

invariably confined to the central normal _random_ variablesa__ln this-m—~m

section we shall extend Creig 8 theorem to the non-central correlated

case. Finally we shall .give an extension of this theorem which is B
due to. J. Ogawa [27] when the random sample is taken from a multivariate
‘normal diatribution First we give the following extension ‘which is

due to 0. Carpenter [8] "
.Theorem 12: Let X' = (xl,xz,;..,x ) bela.setlof normally and

independently distributed variates with equal variance 02v and means

\

(ul,uz, ..;uh). Let Q —(l/Z)X A;X and Q, —(l/Z)XAX be real

symmetric quadratic forms of rank rl' and r2 respectively. .Then

a necessary and sufficient conditlon that Q and Q ‘be statiStically
\\ 1 2 " retically

independent is- that A1 A2 0.

R

Proof: We assume w.l;o.g' that '02 = 1; Let M(tl,t ) be the joint o

momen t generating function of Ql and QZ’ then

~.,

1

’M(tl’fz)_? exp[—-u (tlAl+t 4,) (1~ ~t 1417t A )" u] lI £,4;-t,A [ (/2

« where t and7 t2 are restricted to those values for which

1

(I tlA1 ) is positive definite (cf s [15}, page 389)..

We shall show that .
| MCept)) = M(e),0)M0,t ),

if and only 1f S .

A A, =0 .
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sssune Aqu - o " then clearly (I -t Al 2A2) (IFtlAl)(i-tzAé)

. and- therefore,

'""‘;’-t—“‘““l"I:‘tl‘ﬁl‘:t_:zA.Z""g"'l‘I'_tIAII""’"H":tikffl""‘"i'_ e : : ‘.(]:21)'.
(; t )(I tzAz)' (I -t AmtA) R -

(I—t 1)+(I-:242)f1 lf

Multiplying on ‘the left by (I-t Al) -1 and on the right side by

(I-t A2)'l we have

LSS [ | N T
I: .(IT-FZAZ) '+(I'-tl (I t A) (I_'t.?._AZ) e T
S (I-t.A ) (I tyA, ) s (I-t A )—l—"I+(I—t A‘)-~1—I (1.22)
171 : 2720 T R R

But  (tA)(I-ta)”! = (I-cA)"l-
S Uéiﬂg fhis,(i.ZZ) giyés,.
’ - - . : . l-“‘.-;"; : .
(t1A1+t2A2)(I -t A c2A2) =-t.":AZ(I—tZAZ);l+t1A1(I~tiA;)Fl“ .;;-'(.'1.‘23_); '

11 .
d Iy
' Thus because of (1 21) and (1. 23) we immediately conclude o

\

- M(tl,t ) = M(t O)M(O,tz} SR

'anvérsely suppose M(tl;tz) M(t O)M(O tz) Then



k)

.ei N (e +t2A2)(I £yA=t,A) "

/ 28
.////A )

I.I-tlAl-t:zA2 l "_'(1/2)'

S Sne -_e B

*_ . -(1/2) o oa (=(1/2)
lItAI.‘lItAl ]

Since u is‘hrbitrary, we can expand the exponential terms as

-t
T

”& ‘power series in u and compare the coefficients. We conclude (from,vf

comparing the.first term of the expansions . ) #

1=~ tlA1 t2A2

I (1/2) II £ A ’ (1/2) ii

1. e.,' -t Al-tZAzl - lI-t ‘ll-lx-c2A2|'

-

_but we have already shown" in the proof of Theorem 1 that this

implies AjA, o.'/.

Now we shall discuss the statistical independence of two

fquadratic forms in. the case of multivariate normal population as
- given by J. Ogawa [27] : R SR nsg '
Consider the krvariate normal populatiOn with means ~0

'and Var.—Cov.matrix V distributed according to (2n) k/Zlv'—l/Z

exp[— —(r v r)]dr where r (rl’rZ"'f’:k) = drl, 2,..J,drk;‘

Y
then
.Theorem?13§f Let X' ;'(XI,X',..,Jxk)”.Be‘a randomfsamble of size
'n from.a Eivariate normal population ' ~ Then the quadratic forms '

.Ql = X AX and Q2 X' Bx are independent in the statistical

;sense if and only if



o 4/}?/1;f/'_ o 29
* ‘ AGB‘f 0; 61 gxi (Kronecker product) -

holds for'coefficient'matrices A an&j.B; where 'V 18 covarian e

_—

A
: ™y A

¢& 

-

‘matrix of normal popglafién; _ .
. \ : ' L4 '

. . . ¢ ’ .>..
. . ‘ . "

Outiine of Proof: '(for details'cf;,'Ogawa [27], p.»99): .onsidering.

x%i a vec:or-ofnk-dimensioﬁ,‘the moment generating fuﬁction of ‘Ql

' xis glven by: '
B 7 .
. '” N=nk/2 ~(n/2 ‘ - . . N
M (e) = (2m) T2y g U (i20)
. . - - . N n .
* exp {_‘E'J z‘ (:;V rv)AZt(X'AX)I] dr'l,...,drn o
N —
. Ny
‘where 'dr§~=‘dxvl,dxvz,;g.,d§k,' v = 1,2,...{n._
Choose ?_‘orthogonaljéuch'that_ 3
. ) \ ,
o Moo 0
. \
: S B S AZ.
o P'V-" P = - < .. | =D
LS I '
R v 0 B AkJ.
P O o
_ and.since Vfl _is . positive definite~hil«»ki -are pbsifive;a
. . . : . 4 c . A
* If we write t¢'='rvP_,‘. v_=fl,2,;..;n'. then. .~ .
o SR S
f x'=.(*Ll’x217"ﬁ’x12f'°f’xnk) .
is transformedvto o ’ . i o
: . i . N .

- % T . - . o
-tg,_Av(x11{x21""’x12”f”xnk)

by the transformation matrix

o



. S R Y (Kronecker."product; ;cf.,’[28]; P. 29)..The

- ..—-Jacobian-of-this- transformation 4 —— - -

a(x*)

-

| ) | .= |det fl‘ = |de§=‘P|“'= 1

. Iﬁteg£a1 (i.Zé)-reduces-to

S

‘\.

RYCE 2m)R/2) g~ A2 gp L e (= 2[(x*"Dx#)

- 2t(X*'P'X¥%) ]} dri ..._dr; s | (1.25)

- where D = DxI.

>

If we make another transformation

" ‘ ’ . . ' ; Yzl‘= x*d ' . ) . .
where (@ = QxI and ) - ‘ :
. . ] o . |
AL, T 0
1 .
Q = . YR
0 {X;
- N J
the Jacobian of. this transformation 15?3

2 2
| i | Idet ) | - |det n| .1<n/ ) . |det V]n/

V_Consequently (1.25) becomes .



o

M () = <2ﬁ)f‘“k’2) [ oo ] -

n

. exp {Y y-Zt(Q y'.f'A§YQ'1)} dy

and this ‘gives

M, (t) = |1-zeax| (M2 -
where A* = (3 Il; Aﬁ(} -1

Similarly Ehe monent generating funct_:ion of

~ V.

My(e) = |1-2eps| (12

where B* = d-lﬁ'Bfé-;.
'i'hen‘ Ql,_' and dz are indepehaent 1£f
A*B*-= 0
.iie., 6'1§'A56'25}B§6'1
But
'PQ P - (Px1><q xx)(é'x1>
- (Pb Lyxt = vr=v . )
S (1. 26) > Q1B Aﬁﬁﬁé . .

<—>,'AVB'= 0./

’is

.31

(1.26)

s



CHAPTER IIT . '

DISI?IBUTION»OF QUADRATIC FORMS ;anrg

53.1( In the previous chapter,.we talked about the independence of
Eyo quadratic forms in normal variates along’with-variOUB other related
" results. Basic and indeed the most practical theorem of that chapter
was the one due to Craig. In the present chapter we shall g0 one
step fﬁrther in the distribution theory of quadratic forms and shall
discuss various conditions under which a given quadratic form in
.normal random variables follows a xz—distribution.' Among various
W,:asultsﬁto follow, our attention will mainly be focused on Cochran s
thegr:%‘(Theorem lS)and various generalizations of it. |
.Theorem 15 is due to W.G. Cochran [5]. Earlier R.A. Fisher
'i([10], pages 96-?8),proved another theorem of this type; and because

of this similaritj,‘Cochran's theorem is'often referred to as Fisher-

,,,,,

Cochran theorem in the 1iterature. Apart from the original proof
4ﬁue to W.G. Cochran [5], J. Ogawa [27] has also given proof of
this theorem which is based on a series of algebraic lemmas.

G w Madow [23] gf%es the algebraic basis of Cochran s theorem and

rcvran 8 theorem to the non—central case. Tater
@I ' t
G.S. James [16] poinqu out by prov1ng three theorems that we do

uses it to exten j

;not need all the hypothes1s ofHCochran 8 theorem for its validity
A G. Franklin and G Marsaglia [9] have extended Cochran's
. theorem to theAcorrelated cases and their proof has subsequently

been simplified by K. 5. Banerjee [4] and R.M. Loynes [22]. These

results involve. the notion of idempotency of matrices. }A,T. Craig

- 32 -
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[7]'has glven a necessary and sufficient condition for two quadratic

forms to be independently distributed as x?;‘ here also the
. . ~ &

- idempotency of the matrix is involved.

If X'-(xl,xz,...,xn) follows a multivariate normal dis-

tribution,. what are thehconditions'under_which the quadratic form

Q = X'AX follows a xz-distribution? This question has been dis- )

cussed by various statisticians viz. B R. Bhat [3] D N. Shanbhag f32],

-féB].and I.J. Good [12]. - Later G.P.H. Styan [31] specializes this
" question and discusses separately the conditions unhder which Q
.follows central and non-central xz-distribution and finally he gives
a generalization of Cochran's theorem, Also in this paper he points
out a mistake in I J. Good s [12] result by giving .a counter example
Finally we remark that G.WL Madow [8] haS'given_various

'generalixations of Cochran's theorem which are applicable in the -
Multivariate Statistical Analysis (cf., Theorems 7, 8 and 9-in
[24])  The derivations of these generalizations;depend upon other

' theorems proved in the paper,

—_—

N
‘ . )

§3.2. Let xl;xz,.,i,xn be normally and independently distributed

-with mean zero and variance ‘1, Consider the quadratic form

'Q = X'"AX, where X' = (xl,xz,...,xn) and rank of A =r. On
writing . . '

o = A .

| Q z j Yj 2 )
where A are the non-zero eigenvalues of - A - (cf., §2.3) ?e

3 |
immediately have the following.

e
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L]

Theorem 14t If xl,xz,...,f'_‘are normaily and independently distributed

. with _mean zero and variance 1. Then the quadratic form _Q é}X AX 1is ,

‘A

. distributed as is the linear: form

-

. o
' A, z
jzl _j k|
~ where zj' are independent and follow xz-distribution with 1 d.f.;
and A, are non-zero eigen-values of A. N\

Corollary 1: Under the hypothesis of Theorem 14, a necessary and

aufficient condition that Q = X*AX follows a xz—distribution‘is
that the non-zero eigenvalues of ‘A ‘are ali, 1.

The following theorem,which is the central_theorem of the
o . _ . o

present-chapter,was published-in 1934 by W.G. Cochran [5]. 'f‘

1v Theorem 15: (Cochranfﬁ. Let l’x2’°"’xn be normally and independently

distributed with mean 0 ‘and variance 1; let qi’qZ""’qk “be k

-quadratic forms inA xi's with td.f.‘ n_l,nz,c..,nk 'resneCtively and

such that -

k

B g . B . ' 7
| P ox{=a v+ +q . @y
. R A B R b,

Then a necessary and Sufficient condition that ql’qZ""’qk

»

are independently distributed as xz-distributions with d.f.

e respectively is

1)“2 LN k

”\\ omp+n,to.., 4 =n . SRR ¢ P) B



can be stated as' "If xl,xz,...,x;b have independent standard

.linear forms in tne in's, then thevquantity A
n h
v 2
12 S S 21 % '
‘ 1 ‘i“. ’l :
Y
) .

'dégrees of freedom." ’ S

L]

-depends.on various algebraic. l¢mmas. Both .the proofs:heve been!

Proof of Theorem 15:‘ (Necessary Part): If ql,qz, sesly arek

< o S 35

Earlier R.A. Fisher [10] obtained a similar result wh

— . - . - o

normal distributions and 1f 2152y, 002 ‘are h (h < n) ortho

is distributed independentlz of as ¥ with (n

zl.z.z’. . ’zh

; o
Apart from tﬂe original proof of Theorem 15, given by~

W.G. Cbehran‘BS],uJ,.Ogawa [27] has.given an algebraic proof, whi

combined and modified here to prove this theorem %y an applicat

L}

ofrTﬁeorem 7. ° . E . S V ST

respectively, then q.¥g. 4. +q is distributed as a xz—distrib
. 1 ko .

‘(Sufficient Part): Let A A

independently distributed as xz—distributions with d.f. ﬁg} ;.

-

2

with d.£f. n.+n +...+n by the additive property of the x%—dis

1 72 k?
tribution. But '7 e : ’ ;
. o . . . ' . N e

X +x +...+x2
n

NN

' g1+qu...+qk =

l—‘N

S\ A : - v
and therefore has a xz-distribution with n d.f.; hence -

n = nlfn2+,;.fnk .

.

1 2’7’{’Ak denote the real symmetrie
. , ™ o : : .
matrices associated with the quadratic torms ql,qz,._..,qk resp



s '\ -

thenvcomdition (3.1) in‘tefme of matricea can be br}tten as

A+%+m+ﬁ-1'ﬁ§;' wm“‘

where I. is the identity matrix.

‘ Now we see that 8eft‘(v) of Theorem 7 implieen
W A-a, =1, 2,0k
@ aea 0L 1435 L3 L2k
Therefore Craig's theorém (Theotem 1) i%plies the.indepemf

’

dence of quadratic forms; and idempotency of . the matrices implies

~that they follow X -distribution (Corollary 1; Theorem 14) /

i

A simple application of Theorem 15 gives us the following

CorollarZHZ; Let 'xi i = 1,2;...,n be indepehdent‘ N(O,l) randpm_-

‘'variables; if Z aij 1 j isidistribUEEd.as .xz with: r degrees

.of freedom, then 2 (aij a )xixj is distributed as x2'.with'
(n-r) degrees of freedom»and both

Ly ad ) (Gij a j)"
LI EER 5

'are ihdependent ﬁhere"\\g
igﬁ.i‘o . 1?‘:i ’ 3
1_‘_.l1f. ; f‘jT

‘ '..Supp°éeef,yd.;,'i' -is- distributed as xz. Let

315%1 j



— . A - (a;;)s we shall show that
o s S

r(A) + r(I-A) = n

o 'Then,'the assertion of ‘the corollary is an immediate eohsequence of7

- Theorem 15.

: Since Q follows sz distribution, the =~ non-zero -

eigenvalues of A are all 1 (Corollary 1). Therefore'
w . ’ . ) r
. ' : o 2!
: ' Q= I Yy
.o . j=l

whefe yj, are new variates obtained by applying an orthogonal

- transformation T Such that’

‘1'IE‘. Also, o ‘ S
' =

n 2\ ' n 2
I x{=X'X=Y'T'TY =Yy = ) vy
1=1 - i=1 -
A
Therefore, '
. T P
n T on r
2 2 :
A Z Yy < Z y, = z x, = X a,.x. X
SR R S R S
- - = 2 (6, )x X, /)
ij i _
. . 97 : ,
i'Cohsequently, -
n ,
2 2.
o y, = 2 (6 -a )x X c
. : - . .' R . o X
thus. r(I-A) = n-r° and hence r(A)+r(I-4) = o e _

. v
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.

G S. James [16] has also discussed this theorem, and he

’

has pointed out some redundancies in the original statement of

Cochran_s theorem. He has claimed that we need only. assume (in

v

"Tﬁéﬁ"fﬁéﬁ-'15)‘"fh’éﬁ""“q-l‘,qz,...,qk hav'e Z-distribution ‘or that ‘they
*have independent distributions' the other property and also the fact

that

then follow.

More precisely James [16] states ‘and proves the following

" three theorems.
Xoyes s sX have independent standard normal.

- Suppose xl,
distributions and ql,Q...,qk are quadratic forms in the Xy s of

ranks ‘ l’n2’*"’nk' respectively satisfying

Then: -
Theorem 16: If Z'QjA= n, then each qj is a XZ variate“nith

nj._degrees\of freedom, and the qu 'are distributed independently.: _ .

e ’ .

Theorem 17: Lf each q is a xz-variate then qj' are’ distributed

independently with nj d.f Z n ='n.

\

Theorem 18: If qj 'are distributed independently, then each qj is-

degrees of freedom, and Z n = n.

o a xz-variate with n
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We notice that Theorem 16 is the aufficiency part of Cochran B8
theorem, whereas Theorem 17 and Theorem 18 both atate differently tHe

‘necessary part of Cochran 8 theorem. Here we: ehall give the proof of

”“these three theorems and consequently we shall have another proof of

" “'Cochran' s theorem.

: St : : ; :
Proof of Theorem 16: Since ql' has, rank ®,, we can find an
orthonomal transformation of the X, to new variates: Ei, such-
R O R DA #.0)
At A S D n, n 178 n '
: 171 : R |
. ahd .

.2 2. 2. - 3
N =g et gl
~ - i . r .
Therefore
Qraghe. g (H e ka2 4D el
2 q3 n,” "n, “n,+1 n
‘ : 1 1 71 :
. o + ) ‘
Bur_sinCe qz,qz, ..,,qk xhaveAranksu‘nz,n3,..x,nkf rhe.rank of -
q2+Q3 +qk cannot exceed

n, +n, + .., +n = n-n

P DY
f\;g.'a.\ 4 = gi + + gi =
A . o
q, * + ;;f £§i+l‘+ o+ g
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‘Thus q; is a positive semi-definite form distributed ‘as X with .
ny degrees of freedom, independently of q2+q3+...+qk Similarly o

- every qj is a positive semi-definite form distributed as .xz, with

e ane - — - O U . n emmres e om 2t b e et i e e e e <o oo e e i o

Inj d. f., independently of

| 4y +lo2 toeee +‘ﬂj‘1 +¥qj+1 + T.L + ok .

Now, it is easy,tO'see_this implies epmplete independence

of qi's. /

Proof of Theorém 17:

" °v_v . .o . .. .
Since di is .a .quadratic”form of ‘rank- nl,’.we can find
'en'orthonormal,transfotmetion to new variates &, such that,.. . '
N S (A"A. C X
R s L L S R R R Wt 2N N

) R |

‘Sinceethe £

. are indepe%gent‘standerd normai variates, it

Y

follows that the moment generating function of ql is

y _ N (1/2)
u = [3(1-lec) e (123 o1

1 e TR o
o > o SRR -(l/2)v
But q; is a X -variate, so that Mq is of the form (1—2t) s ; .
- R T ‘ o
1is the number of degrees of freedom of q1 .

where Yl

- ’ -R—4. . -
' Identifying these_two’experessions ior'QMv * we have



B . ’ L . RS .‘ ) o . » L .
. Hence q is distributed independently of q .;.7+'q - “and the %
1 2 w R

.same 18 true of other q:l T - - ' - ' ﬂ/
. ' ‘ e

_»Therefore we_.conclude. (see _Proof.- of‘_meerem 15) that the e

-

qj are mutually independent xz-variates with nj degrees of freedom
Thua 2 qj iS'dietributed as 'Qz. with Z n. degrees of freedom,
Z qy = _'xi' is also distributed as. x with n degrees ‘of

freedom Therefore Z nj = n. /

]

Eroof of:Theorem 18£:

‘Since gq, - is a quadratic form,of rank 'n., there eiists an
: 1T , ‘ 1° L :

orthonormal transformation to new variates f&i; such “that

MR T Tt My 7O o

| qote.otq - (1-)\ )£2+ +(l-)\ (‘)5-2- +€2 -i-" -i-‘Ez. P '
2ttt Rk 7171 " "n, "™, "n.+1 7" °n :

R . T 211 1:=

° ~

' Therefore the joint moment generating function of q1 and q2 +qk’

'-being the ".pected value of exp [qlt+(q2 +qk)u], is

S R Bt

Hayrg v, (9 SO

..:i{l-zx t-2(1-A )u}{1-2u} LU e

.But"qiv,end.qur,.r+q£ are distributed1independent1y;therefore. .
. . , . . \\;\ ‘ uj\#{ RS

. -v[il—leti..r{l ZAnit}le _ o
L wenp =(L2)
» [{1-2Q1-2Jul.. o{1-2(21-2 Jud{1-2u} 7] :

: T e I bo




‘.doﬁ?ariﬁg (3;9)‘and'(3.10) we have . fﬁ : A ' '; o »

M thmoud... {140t u}l

1»'f71* RS .| _,“_p%»“_fm*__uw;41~$; f~m_MN; ' ’“m;‘
tY(14m . w)Y - - (3.11)
, mpl :

r
m

{(1+z;;)(;+miu)}f.}{(}+zﬁl

' where o o,

For fixed  §5»vcomparing'the éqéfficients,9ﬁ highés;.pbweré ofv't‘.
" on both sides of (3.11), we comclude’

.21-22 . i,;wj = g‘ .
ideqt}caily“ih‘ u,' T .‘ Lo
"’,‘\fTﬁztefore, we get

o

.'3%;’v': . m=m, = ..m =0
g - 1: S22 - By .

" So that - . - . o , Llf T _ ";,l

SRV S g7 fr-‘+5En1,_; q + 1+ q ,Enl+l;+‘...}+ £,
' B A v . Lo s

"and now the Test of the proof.follows on' the same linés as in
'vTheqrem:17./ e T ~ T »'  -

'We,shaLi prove.the follbwing.Theoremvl9;latéf in the section,
but for present, we are just stating it gé'ge:;‘V_

: Theorem 20. k ’ .u. RN o .\‘ ., . - . ,v_.v‘a.

/<v7<
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'Theorem 19: If Y is distributed as. N(u,I ), then a necessary and

sufficient condition that Y AY is distributed as xfz(k A)

© and sufficient for -all the remaining conditions,}-"

i(where ZA‘-“% u'Au) is that A be an idempotent matrix of rank k.

. (\ .
Using Theorems 7 and 19 together with the following result

(which is an extension of Craig 8 result) we' get ‘Theorem 20,

.
’,

""If Y is distributed as’ N(u,I'), then a necessary
and‘sqfficient condition.that v B Y Y Bf#i... Y' BkY be jointly
independent-is that hBiBj'= 0 for.all i # J." o .

Theorem 20: If__Y;@is distributed‘as .N(u,In) and if S

Y'AY Z Y AY .
: =1 =

, R o - . L R
the rank of A ‘equals p and the rank of A equals P>

(l);'Any'two oflthree conditions . 1, 2, C3ﬂ'are necessary..

. -.'"‘

"gb(Z)' Any-two.ofvthe three-conditions 1,'D2, D3 ared'

..necessary”and.sufficient fornall-the.remaining conditions; - v

‘o

- (3) Anybtmo'conditions-'éi. fand-fDj 1 # i are”necessafy -

~ and sufficient for all the remaining conditions,

.(4)._E1’ and’ Cy are necessary and Sufficient for all the'

. remaining conditons,-

(5) »ﬁi‘.and D3 are necessary and sufficient for all the

remaining conditions,



.
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C1 : ¥'AiY is distrihpted as x'z(pi,ki) where
' = (u'A;w)/2 for i -'1,2;...,k. ’

Y'A Y and Y'A, Y arewlndependent for all 1 # j

2t Ay g
035‘ Y'AX"is distributed as ‘x' (p,A) ‘where

A= /2 o L
Dlz Each Ai is an idempotent,matrix.
th Ai°Aj‘é 0 forjall_ i»# j. -
Dsz‘ A is an idempotent matrix;

k- ; ‘

Bj: ) Py =P

In the light 'of the preceeding remark, proof of this theorem
is4inmediate moreover if, in—the above Theorems 19 and 20 we have Y
| dlstrihﬁted as" N(u,c ln), then.again all theee results ‘are valid
exeept eech quadratlcnform and-eaehk A,_end_'ki must be divided |
by‘ 02. -
| Now we are in ‘a position to givebthe generalizations of

'Cochran 's theorem (Theorem 15" G W. Madow [23] has extended

‘ >Cochran s theorem to non-central case as follows. ' ot

Theorem 21: If Y 1is distributed as N(w,I.), and if
Y'Y= ).y’ -

L YAy

=1

(where rank of 'Aie is n; ), then a necessary and 5ufficient condltion

' that Y'Ail"(l =1,2,...,k) are independently distributed as



cas x(o0) where A =g u'Bu ‘_-ze/l -

X'z(ni. i) is  that ) n, = n.

. appeared@in [91, however for an independent proof of a 1ittle

more general version of Theorem 21, readers are referred to ([23],

pages 102f103).‘ .
ol

Theorem 22: « If Y 1s distributed as N(u,v) where V is n xn

positive definite symmetric matrix, and if

Sk
Y'BY = ] Y'BY
i=1 -

1

then anynone‘of the six conditions, Cl’ C2, C 4, 5, C6. is

necessary and sufficient for Y?BiY tq be independently diStributed

. : -k
C.: BV is idempotent and Z p
1 , el i

C,: ﬁV and eaci B

9 V be idempotent.

i

C,: BV be ideﬁpotent and 'BiVBj =0 for all 1 # j.
| / .

X . y o
y'! BY "be distributed as 'z(p,k) .and ‘p = -Z pi.
. o i=1

-

NlH,

(A =3 Bu)
. C.:  Y'BY be distributed as ‘x'z(p,k) and 'BiV be
ideﬁbotent; (where A =i%‘u'Bu).
“C,: Y'BY be distributed as x'z(p,A) and B VBj =0 for

i#j where.'A =-% u'B .

~

'*WﬂE*EEhiI‘dédﬁEEMEBIE EHeEEeﬁ"fiBﬁ‘ﬁTﬁédEéﬁ”éi”&hiEh"“”“"”"’
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" Proof: Since V 1is positive definite, there exists a non-singular

-...matrix. P. such that~_PlﬂP_—_I“_,(aee [28], page 36)._Let..Z = P! Y;_»L,..”L

ﬂ then Z 1is. distributed as N (Pfu,In). Also Y'BY = z2'p” BP' lZ,‘.

1R - vi"l ‘v"l
Y'BY = 2 z”,1 B,P'""Z, . and
, 3@ etz Z 2t (2"l 2 he o R
) 451 _ o -
. . o A
If we let A =P lBP',l and- Ai =P lBiP' 1, then (3.14)
can.be‘written as ‘
2'AZ = Z z'az . ..‘r
- g5 . ' K |

Now our theorem follows‘ipmédiately (indeed remarkably!)

el

'fromeheorem 20, if we show that- BV is ideﬁpoténtﬁif and on}y if
. : ] C : : ‘

' A 1is idempotent, BV is idempotent if and only if A_ - is

i i

idempotent amd B, VB, = 0 for- 1 # j Aiff AjAy =0 for 14 3.

' we prove this.. .
A idempotent iff A+A = A SR
‘ * 1] ' . s =1 -|‘l
iff (P BP !)(P lgpr = (P BE' )

1ff BP 1P 13 =B
- agf BB =3 (v PR hew

<

1£f (BV)(BV) = (BV)
Similarly A is idempotent iff B v‘~1s idempotent.

i
< . . N /

ThErefore : ‘

i

o s Now B VBJ =0 <for 1L #j implies P lB VBJP' -1 = 0.
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. " o= P‘ln,P"lp'va'an'P"l  for 143

= A I A A, . . ' ' ,
E S - B

Also the reverse implications hold and thus the theorem is established./\
Taking B -/ I and V=1 in the, above theorem, we see - \
, : j . . 5 .
.that Theorem 21 falls out'right away. ‘Taking k = 1 in the above

theorem, we have:

‘Corollary: If Y is distributed as N(y,V), where V is n xn
v posftive définite symmetric matrix, then a necessarv‘and sufficient

_condition that Y'AY be distributed as, ) (P,A) “wheré p is rank

i

of A and where A = % u'Au is that AV be idempotent.
. 2

Now we go to another requt die to A.T. Craig 7] (Theorem 239

which affords a simple test as’ Eo whether-the distributions are of

(N4

x? type. Finally we shall conclude this section by giving proof of""

Theorem 19, a generalization of Craig 8 result (Theorem 23)

Theoren 23: Let Q1 X'AX and Q2 X'BX“be'two quadratic forms
in n nprmally and independent1y4distributed'variahle; with mean
'zero and variance one. Then Q1 and Q2 have independent chi-square
distributions if and only if ™ = -,
| AB =0, a%= A, and g2 = B. ’
A very simple and‘straightforward proof‘offthis theorem is

'given in ([7], pages 196- 197) - S ] .,h - " /

We now conclude this 'section by proving Theorem 19

RS . . !

' _Proof of Theorem 19: we>shall first prove the sufficiency. Since’
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' , ' ' v
A 15'1dempoteh:,of rank k, ~'t.'ﬁere exists an.orthogonal matrix P . .
e et T e e i il e u.__,‘: J O e e J.
such that
, ‘ Ik 0
P'AP = . 4
- 0 0
o ’ . -
Let Z = P'Y. Then N
o~ | ' Zl' ve
2= !
| %2 AN
|
x . C
is distributed.as N(u,Iﬁ) where ;
. . N ‘ . \ .
' 4 v. - o al
o =, = p! u o,
- o, .
/
and where zZ, and oy areAbotﬁb k x 1 vectors. - Zl is
distiibuted as. N(a L ). Also | SR N
1AV = 71PA '=~ v. ’ A.
; Y A¥ Z'PAPZ = lel .
. o
Therefo:e’it follows (see [9], Theorgm F, p. 679).
S " - 20 1 1
' = 7! : ' : = 2ot
N Y'AY lel is.qlst;ibute§‘as }‘v(k,k) where } Z'alil:
Thus our reéult will follgw if we show that . aiqi = p'Ap. SO
Write P ='(P1,Pé)’ Whére Pi is n xk. Then - ¢
: " ‘ : _ ° o P1 oo _ /;:‘5. .
u'Ay = .u'"PP'APP'y = u'(Pl,Pz) P'AP Mo : L e
. - ‘ ;. , _ . .
. '
Lo 00 : By
= (u'P yu'R)) |- . ‘ :
1°" "2 0 -0.ln Pl -
N SR A
= ! ' ; .= ! r . ’ . : »
R LR T
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[

(Neceasity) Let us now assume that Y'AY 1is distributed as

'b

and we shall show that this implies A is idem'otent of rank :

Let C be the orthogonal matrix auch that C'AC = D, where ‘D
a diagonal matt;x and_humber of,noh-zero diagonal elemente_ qiig

/kqual to the rank of A. ‘Let Z“-%E'Y. then , l"y'e
L \
YAY-ZCACZ=ZDZ=Zd

R ) . i=1
- . b ]

2.
11%1

Again since 2. 1is distributed as N(Cfu,ln), zi 1§7!
|

distributed, as xig(l,X') where Ai =‘fE(zi)]2/2 (see [9],

Theorem F, page 679).

Since the"zi'iare indepehdent, the moment geheratingi.

v“:function of‘\ Z diizi ‘is"_
n A (1 20,07t '
n(1-2td;,) ‘1’2’
1=1 =

) - L. . 2 i S i .
Also, since Y'AY is distributed as x'"(k,)A), the moment gen
ing function (see Lgll,lpage 49) of . Y'AY $s -

. -::-(1—2t)'k/2- e-)\+)\.(1-2t) L P

; o n ’ 4 :
Since Y'AY = ) 'diizi, these two moment generating functions a
Ci=1 . : ' '
- equal and we have ‘ L .j ) .Y
. ‘ i . ~
1oyl M ' A +A, (1-2d
- - - 2
(1-2¢) K/2 ~MA1-28) n(r-2a,, 0 MR T

o1 . . v K co.i=l - » - . ‘;"
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<4

4

. Both sides of above as’ functions of t are analytic for some

neighborhood of zero. For both eides to have the same‘aingularities _
Iwe nust have k of‘ dii .as '15' n-k._qf ,dii ?s:zer°‘andﬂi§ 1£'w <
o a _ : P
- “Thus 1f Y AY s’ distributed AE“ ' (k‘ 7 then P of -
. dii‘ are equal to unity and n—k ‘of di .are equal to, zero.:'But
'dii‘ are-the eharacterietic roots of .A. ﬁence‘ A must‘be o
~_idempotent of rank k./ . L ll f S '%ﬁ:,.
f§3;4{ Let 'us consider now the quadratic form Q F X Ax,: where,' ﬁ&%ﬁ.r
X' = (x ,x2,...,x ) follows a multivariate normal distribution | ,;§§
wlth\mean-wector~ U -where oy (ul,uz,...,u ) and variance - _.l'.;;( ;
’covariance matrix 5V; 'Variousuresults ‘have been'stated;for ‘Q' to AR
follow a chi—square distribution. B R. Bhat [3] works with )I as;mgll'gli
non-singular. I J. Good [12], D.N. Shanbhag [32], [33] and .
| G.P. H. Styan [31] disccuses those results even when v is singularrw"
: To prove. Theorem 240 we, start with the foblowing lemmas
.

This theorem has quite a few apglications in the analysis of

- variance.as wedshall see~ln the hext cbapter;_ o \";'i L
, , . ‘
Lémma 1: A real symmetric quadratic form X AX is distributed as L
T o—lg. - : o o % b
' ‘iijn) if and only if A=V 1 ST o - _ -
Proof; Ve know (see [81, page 457), X'AX has xldistribufion 1.
;;f and only if L e oy ;,5
: EFCICIN S  AVA = A I o . ~'*[T”$€34l5)'l'fii'
. - T - & . . ) LS N K : . : ‘i v" ',_ -
; o t ' i’ ’ ’ Y . W .
£ }. , :
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Further it has n-degrees of freedom if and only 1f A is

dagﬁnon-singular. Therefore (3. 15) 1mpliea

oo i - : o

' Leﬂma 2: A necessary and sufficient condition that X AX has

a. c xz-distribution (c ; 0) is. ‘that

1

CA = AVA .

Proof's Write X = oy . Therefore- X'AX has a cxz-distribution

if and}oniyyiff'chAff has a cx2 or, equivalently if and only if

]

= ,*YSAY h&éﬂé Xz--distribution{

L} o .
. . -

~ A ' Since'yariance - c0variance matrix of. Y .is -% <V,

'therefore,as-in Lemma I,XfAY _has a chl-square distribution if and

. oniy if - .';r/ I ]
< A=A - P A or * cA=AVA ./ .
oL o e L . «
@ ' '
%

I J. Good [12] has given certain necessary and sufficient
m Co -
N conditionsefor a quadratic form R'AX ) follow chi—square dis-

tribution with k-degrees of freedom where X is aSSUmed to- have 34

-‘”multinormal distribution with mean -0 and variance'- covariance

. % .
matrix.AV3 po$§ib1y;singular. His conditions depend on the follow-
. ing theorem. -~ - - R R e

)

. Theorem 25 A necessary and Sufficient condition for X! AX to”
follow a chi-square distribution with k—degrees of freedom is that
AV (V may be singular) has rk _unit_characteristic~roots, the

‘rest zero.-?51,.‘ o Lo Y

L3

(L8



The proof is immediate (see [12], page 215)
- Zlh" jh R Good has claimed if AV has k unit characteristic roots
and the rest zero, then AV must be idemnotent: Assuming the truth
?of this assertion he gives two results, Corollary (i) and (ii) in [12}.

1fsseL}!,mfw,LmUnfortunately -his- claim 1am-shown o -be - false ‘by- C. G -Khatri- [19] and -

e G.P.H. Styan' [31]; Here 18 a counter-example,from [31].
~ Let - |
2 =10 1.1 0 )
A=1{-1 "0 o , . v=|1 1.0
) L}
0 0 1 0 0 1

Here AV ‘has one'unit‘characteristic root and‘twovzero characteristic

roots, and is not idempotent, for

1..1 0 0 0 0
A=l -1 -1 0| # (aV) 0 0 0 .
0 / 0 1 0 0 1

In Theorem126 below, -C.G. Khatri [19] has given a necessary'
anhd sufficient condition for a quadratic form X' 'AX  to follow a 'x2
distribution where X has a multivariate normal distribution with

zero mean. Later D. N. Shanbhag [32] has shown in Theorem 27 that the.‘

N

.condition stated in Theorem 26 is equivalent to conditions given

in Theorem 27. We shall prove both of these theorems -
L . . e -
, simultaneously. ’ '

SRR

Theorem 26* A set “of necessary - and Sufficient conditions for - X AX

'to follow xz—distribution with k degrees of freedom is

\

+ B

, JAQ?Z
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" VAVAV = VAV ;  r(VAV) = tr(av) =k . | (3.16).
. where V is. covariaﬁqe matri.x of X, ' not necessarily ‘non'-sin'gu.lar.

Theorem 27: Following are two sets of conditions each of which is

B

- equivalent to (3.16)

! . . ‘ 2 ' 3 . ) ‘_ .

c (1) (AT = (AT ; er(AV) = k
(A1) tr[(aV)?] = tr(av) = k 5, r(VAV) = Kk .

To prove these theorems we start w*th thé'follqwingvlemmés.

Lemma 3: If C is a non-negative or non—positive symmetric matrix

o

-

. _andgu and W are matrices such that UW 1s real, then
[y -]

r(U'CU) = £(H'U'CD) = r(CW) = W'UO)

Proof: To.be épecific; let us suppose. C .is non-negative. We have ',

" : f(U'CUW)_i r (CUW)
Write ‘Q =-EE{,. ﬁ:'alrea} matri;.
:r(UfCUﬁ) - f(U;EE’UW)_z f(W‘ﬁ'E;'Uw) ='t[(E'ﬁW)'(E'UW)] g
= r(Ew) > r(tt?UW) = T (CuW)
_Tterefore we get

e (U'CUW) = £(CUW)

A1l the remaining equalities in ‘the lemma now fo],lowb on
notin C'=C and r(B) = ‘r(B'); "B. any matrix.
B g . M . -
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Lemma 4: If C 18’ a non—negativé-of non-poéitive symmetric matfix,"

Al

‘and 1f U and W are‘matrices.%ych that ‘UW dis real, tﬁén

" U'CUW =0 1if and only 1f CUW = O,

'This_isQan immeaiate consequence of Lemma.3;
s . Y . M

Proof of Theorems 26 and 27: Let T ‘be a real matrix such that

TT' = V;, then it can be'shown.(cf.; [28], page_188) thét xrAx .
fdiioﬁs chi-square éistributiod\with, k degrees of freedom if and
" only if T'AT tg 4dempotent of rank k. On diagonélizing-,TYAT' we

can see X'AX foklos chi-square distribution if and only if

p? =D -and () ;'k: ST @

where D 1is diagonal matrix of ‘characteristic roots of T'AT. Let

L ba the\orthogbnal matrix such that - . e
. L'T'ATL = D
(If D is idempdtent, N
#(D). = tr(D) = tr(L'T'ATLY = &r(LL'T'AT)
= tr(T'AT) = tr(ATT') = tr(AV)
feee,” | ko= tr(T'AD) = tr(AV) 3 ’

- therefore (3.17) is equivalent to
CT'AT(T'AT-I) = 0, tr(A®AT).= tr(AV) =k . °  (3.18)
Writing T' = U, C=1 and W =AT(T'AT-I), T'AT(T'AT-I)'=0 -
becomes CUW = 0, cherefofé Lemma g'impl?es'thaé (3;18);15 s

. i . - A . . A

. “.‘:‘;;é’:,'_ .

L
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eqﬁivaleht to .

t

:TT'AT(T'AIeI) =0 and tr(Av) -k

de.,  (TT'A-DTT'AT. =0 and  tr(AV) =k.. - '(3.19)
¢ .7 Now (TT'A-I)IT'AT = 0 1s of the form W'U'C'= 0 where

W' o= (iT'A-I)TT'A.,‘ U=T aid C=1,
theréforeiLgmma 4iimpii;s (3.12)'is'e§uivalenf to -
’(TT'A!I)TT'A?T'.= 0 and. tr(AV);f;k‘
, 1.¢.; ‘ .(QA-i)VA§’=_0f   and._ | ér(A§)'= k .
Hence EX'AX foilé&é‘xz—digtribuﬁion vith:k—dégregs of;?regdom,ifl,

VA(VAV-V) = 0 “and  tr(AV) = k . (3.20)
Writing C =V, U= A, W ='(VAV-V) and ‘applying Lemma 4; (3.20)§ -
'ié equivalent to : ) ‘ @_
_AVA(VAV-V) = 0 and tr(AV) =k _ (A= A')

= !

Cor (an? = (an? amd | er(av) = k.
B If,(3rl75 hoids, we»gét‘

* tr(d?) = tr(D) aﬁ&' (D) = k @3

. Writing C=1, U=T' and W= AT, ve see that T'AT has the form .
* CUW. Therefore Lemma 3 implies



os6 -

rﬂﬁf{é?k.,:,.f:.(??‘AT) .

'_Wy'-TTA

" Thérefore “r(TT'AT) = r(TT'ATT'). Henke

:,'f(D) -vi(T'AT).e r(TT'ATT') = (vav) .

\\ . :'.‘
\

o oL v ' \‘.‘,\ - ,\v -
‘ . A . : . . ,-m. ‘\\ . : 3
tr(DZ) = tr(D) =k valnd : r(i%-= r'(VAV) =‘ .

. Therefore‘(3.21)“becomes

: ot T ok T
'vThue we eee“(3,17)'isvequivalent,to~‘

A

o, g e T |
'th(AV)2]_= tr(AV) .= k - ‘and - T(VAV) =k . (3,22)

. . .
© . o . R ‘J

To establish the equivalence between (ii) Theorem 27 and

*,
(3. 16) we must now prove (3 21) implies (3 17) and. ‘this will complete

the proof
If d; denotes the jlth_ dlagonal'ele@ent of D then -
(3,l7)ﬂimpliee Co “f?. p]ld. P -

- A1s0'we.héve z (d -l) > n—r(D) where . the"equelity eign'holds'

wo if and only ff non—zero d equals unity; :Hencefthis give'(3;l7)7f

@2 =0k and ry ek Lo C(3.23) -

Ceg -



*and we. are done /
: %

Another criteria given by C.P.H. Stysn [31] is as follows;

E TheOrem 28: A necessary and sufficient condition for X'AX to

~——-~l,—--~-”—-»:wfollow xzw—distribution with~—k degrees oﬁuﬁreedommis e 1 =
_if and only 1f r(AV) - tr(AV) =k or r(AV) = r(VAV) = k (where
vV is covariance matrix of X). ' ' '
~ T, ' v . .
Proof'of this theorem depends'on'the following lemma.
“Lemma 5: A square matrix S not necessarily symmetric, satisfying
S2 5'83, is idempotent if and only if r(S) = tr(S) or A _.' P ,‘;’
r(s) = r(S Yoo e ‘ |
For proof of 1t see ([31], page 568)..‘*
Proof . .of Theorem 28: :'_f o s
From Theorem 27 the required necessary and sufficient .
’condition is (3 16) which is equivalent to ‘:;" o "," e e o
; (AV)3:—’-.-{(~AV)2---' ey -
- Since _ SRR P LS R S
= (vav) =.'r(‘VAv\jIAV)‘ < r((AV)'Z) < r('VAV)‘
T By applying Lemma 5 with = S, Cwe get the necessary and -
sufficient condition as stated in Theorem 28 /
We recall in the above discussion we assumed invariably

- that X has multivariate normal distribution with mean u=0 Hand ‘
' fcovariance.matrix ‘V_,_possibly»singular.: C.G. Khatri [19]f’ ;

-, .
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.

".and Rayner and.LiVingétonef[le'havé treated the non-central case in o

v

'Applyiﬂg Lemma 5 to Theorem 29 we obtain

Thebrem 29: A set ~of necessary and. Sufficient conditiona for~ X' AX

to follow a non-central x distribution with k-degrees of freedom-

- and‘non—ceﬁtrality parameter A, is .

. | VAVAV = VAV ;' r(VAV) = tr(av) =
Vs 2 N . : ‘
W (an? = yrav .

A= @2 WAV = (U2 WA L

!

Tﬁeorem 30' A necessary and Sufficient condition for X'AX to

‘ follow a non-central x (k A) ‘discribution'is _

. (an? = AV 2 =(1/2) W' AVAL =/ uTan

if and only if o  ;k
L FAV) = tr(AV) =k or T(AV) = r(VAV)

R

kd




CHAPTER IV

APPLICATIONS

AY

s pointed out before, the results discussed in the previous

chapters have variety of applications in statistics. The complete
o .

- Justification of various results in the study of mixed models (see

>

'[34]), split plot experiments (see [6]) and random"effect models

: ~freedom respectively.'v

and Econometrics which we illustrate by the foliowing

(see [291), involves simultaneous applications of results discussed

in Chapters II and III. Apart from these, quadratic forms- and their

Adistribution properties have.frequent use in ANOVA Regression Analysis S

I. Let -xl,xz,...,xn' be n ‘independent ormal random variables

with ﬁeaj*zero and ‘variance ‘1; then the quadratic forms
©m I B N -
' z (xi—x)2 " . and - nxz.

“are distributed independently as, _xz' with n-1. and 1 degrees of

o

lo show this, we observe -n§2 s clearly,vx2 with 1

"degree‘of freedom. Therefore, by Corollary‘Z,'Theorem 15
s ! . ' A \ )

z x 2 w2 = z (x —x) .‘:. ' h. : -

1=1

o . " ' - ! : . ) - ., ] )
‘is distributed as"§3' with (n-1) degrees of freedom and is \\\__’,’/;f

independent of nfz; ' S o . -

. . . ST [prr :
. . - . ey
) 05

=59 L
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variate. - Such situation occurs in the derivation of

60
I1. In Chapter 1II, ve,talked.aboutvthé\independence'dg two
quadratic formg. If instead,_we have a quadratic form %x'nx ‘\d

‘a linéér form a'X, where X' = {xi;xz,:.L,xn}, X, _being

. normally cofrelatéd_$ariablea~witﬁ“ﬁbﬁﬁ?lﬁﬁéé”ﬁéffiime;”‘fheﬁ"thé§€”“W“””

th forms are ihdepgndent if an 0qu if the quadratic form

a'(V-l-QB)_la 'is,independent of B;. B arbitrary real variable.
For, the;j%int moment generating function dof forms a'X and .

Bl
L

.1/2'xfBX is given by B ‘ », I : »

| 1 . |
M(a,8) = |1-gv| % exp 3 gza'(v‘lfen)fla} ' (4.1)

{cf.,-[1], page 41)

The firs; fa§t¢r'6f (4.1)vinVO1ves' B alone, and is in%eed
thé moment generéting‘ﬁunction M(0,8) ~of % X'?g. The second ° =
.faq;or would be the mamenf generating funcﬁion MG(,O) of ‘an  if
and onl& if it wére'iﬁ&epehdent'of‘ B. ﬁut tﬁé neceésary and

sufficient condition for iddependencéwof éhy two functions with

moment generating fgnction;‘M(d,B) is

A

M(a,B) i= M(a,0)4(0,8)

and so we. get the desired criteria of independence as_stated above.
We apply this.criteria to estimates X .and- s? ‘of méan .

and varianée'in a samﬁle of n indépendent'single valués.bf 1--

. t-distribution s
oo _ : n '-_ IO ) :
x= ] ox/mg ste ) _(xi‘X)QVn—l_,fi o

i=1 . i=1" "

. ” . .
N -
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To avoid unnecessary comple'xi';f 'we may disregard the factor .

" 1/n and 1/(n-1) and »cqn'sider' the indepe'ndence‘ of o L.

v

_."‘:'__'l'_""‘_" e e e 'Z“‘ xi "’”“f'-“and"”’“ “'“‘z’ ‘(xi-X')— T mmer b
‘ ‘ i=1 . i=1. - _ :

Here a' = {1,1,...,1} and

ks ( 1 1 : 1)
L v l____ - - =
n n -n
1 1 -1 _1 .
. n n n
B = ..

_l v _!’. l_l @
i n s n n
\ : J

"+ -7 and 'V ‘here is I..the idéntity matrix.

w:

_Clearly a'(I-gB) 1a 1s in this case the sum of all.the un"
, elemen_t‘s‘ in . (1-8B) -1. ‘ _ - ‘. —_— .(*) "

Write.

(1-8B) = (1-B)I + BM

where M is Ehe’ma\trix havihg all element:s bequal to 1/n. Obviously -
"M is idetﬁpotent. Ty |
Therefore =~ . .

’(1'35)71 = [(1-6)1 + e~ L T
: - .But:‘

a-or + et @ - @)

(see the lemma below). -

',‘ .. *'l ' . Also
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. S » ' N\
1’ - E . - E oo n - -g- ¢ ‘
, : n ., n n '
- g 1 - 'é e s e .
n . n
n""‘. I ‘:_ - BM = e ;' '-' R ' T .' - A"" - - b _;" LT T T -
- -ﬁ . - .ﬁ e ‘d 1 ... §. ]
n n . n
L ' ~

The .sum of all elements in (l¥§M)'is n(l—B); and' therefore -’
- . . ‘., . . .

‘the sumhof‘alltthe elements'in (I-BB)_l_is equal to n, and hence by .

'J(‘). a (I BB) a is equal to n jand thuérlndependentVof B.
'Consequently it follows, X and szf are'independent., ‘
o We conclude the proof‘by establishing the following

'.lemma uged. in (4 2)

—

Lemma: = If- Q is an.idemootent matrix, then

o (blLdQ)fl‘ (I + 5—;— Q efo _1._ (*%)
SR Co ce ' 7ﬁ- .

Y . .
. . . . . -

The lemma can easily be dﬁécked by pre— and post- multiply-=

K\ing the right hand side of, (**) and using ;Q é Q. o

~

”Av ». YA'. . . ‘ ‘, ‘ - . - '“._ " X - l
I1I. In multiple regression models, the observation vector Y is

. - ‘ R o
assumed to be N(XB g I ) where X' ‘is an (nxp) :(p < n) matrix

' with known elements and of rank p, "B is a alpxl)"Vector‘of o

j .
] . ) L e

| 2, o ~
_ unknown parameters, and o' is an: unknown scalar.' In these'model§

it is»often desired'to'test . hypotheses about elements of -the
vector 8. The technique often employed to devise test functions

- 1s the technique of analyeis of variance._ The procedure is to\

partition the totalrsum‘of sqqares Y'y . into 4hadratic forms

. T ..

<.
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- such that : : ' . .
. a . - R
k. . ) . ° *
; 1 ‘
i=1 _ . . "4
. , ' e , . o . ] j
and use Cochran skxheorem (Theorem 14) to ascertain the indepen—
o
dence. - and distribution of the quaptities Y' AiY; Since the B
uae of Cochran s theorem involves ®he knowledge of ranks of Ai
it is sometimeq easy to 1nvoke idempotency of Ai 8 and. o

:’

‘Craig 8 condition for independence of quadratic forms (Theorem 1)

Consider the multiple regression model

. . .’- \/ 2
Y = XBt+ e , " e n N(0,07 )
, v

X;B ~ and Y as above.s . . . L oy

If we partition X and B as
. - ' I .-,
. g
ety oae (%Y
A A SR vy’
N ‘ & S o oo .

1

above model can be written as

. [

where X, 1is of order: nX§1‘ and o is a Py x1 Qector, then>f

s

. ij<xlck+_x2y +.e .

o ] /" o ) ° . ) » -
To test the hypothesis H : a=0, we can form the ra

L]
¢ °

-
.

; ' .Y ap . ;)f
o o ) /

~where u. is\&istributed as- F distribution with Py 'andA-n—p‘ N
'degrees ofvfreedom Q is minimum value of‘ e'-e with respect t

- .
“ L >



- Lt e e e e
. . o o Dl . . . (O

_‘ . . P ,'.‘- .

full model and Ql # Q-Qz, wher.e Q2 ie the minimum Value g_f /

ﬁith respect t:o reduce&.model under H For its justification/we . j'

»ﬂ‘?“é ' - - ‘ '.." .o : i v‘/'
9,;;1),,1: cﬁed as follows' . R -;' w_'.‘.«.‘ﬂ :

e ‘ e

K4

' ;».__,;' i By minimization procedure;Lt can—be-ahown that
. T ) ' 0 . ) .
e T ' U oy g
LT Q= Y (1-XS 1x')Y =Y'AY [ /,* booE

. way
A . . : : ’
» oL . S

'“ﬁandf?;t  t;;t_v. a ' K,'.ﬁ?‘ e P I . .

)

[4

Al - o1 ' - 'pY ‘ o -
Q- ¥ (1‘§zsz‘x2%z . Y'BY r

. P . N
e “ . e RS

where . §'= X'K,;, S, = XIX ‘1Ist Ly () = A and (I-X,S

= b
2 X) ?.v.

.
L4

Ve .
19 4
AT

%‘A

’ 1: is clear that X (I—XS Iye ) :-_.and x (I-XS lx ) = 0. - These . . ‘.
. ¥ ,.' R g R o O ‘
now. imply that c is also idempotent, and AC 0. where . /, AR
® L RS I = A o
. . t. - , . .’ e e
C = B (1-X,5, lx ) - (1 7).
[ d‘ R - . ) o Tl .;,.- " R . .

“e : = ' s

<

- . Since the 'ma-ttices A, B .and - C -are idexppotent Have (A) = n-p,

-5

“£(B) = n-(p-4}) - and O = rB)-r@) = py I ;ijf‘i

e jare in a positdfn‘to_apply eorem 20, ant, thus we C%f?: o
’ oo b LR R T

"y haveyy; ¢ ST

PR
vx
.
3
[y
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 1. .Q/’of'Z - (_Y'AY)/d is distributed as .x (n-p,). )
B N Ql/o - (Y'CY)/c i»s distributed_ a8 x':. (pi.'xi);., :
.'.‘-3.' qQ and Ql are independent. .
| 4, A, -(1/zo ) (B'X"AXB) = 1/20 [8VX" (1= xs Igr yx8] = o |
R ' therefore Q/o 18 dis’tributed as X (n-p) b ‘ . oe
‘ 5. _' '-(1/207)[8 X' {(1- 55, xl;)‘ - (1-xs x-l'-)}xs]: R
-(1/2ox(a'x +y' 2){(I xzszlxi) ~(1-xs~ x! )}(ax +yX )]
o -(1/202)["0 (R -X3%,S7 szl).a]
A | b ':\ CeL T
Since Xﬁ{l Xlxzs?_])('2 l .is stitive, definite,” Ql/a - a‘s‘. . -
B . centraL.-chi-square distribution if and only 1f. a;-‘\b, i.e@, Ho . . ’ :
B S ": Hence = (Q /Q) [(n P)/Pll is distributed as. -7 o
. A 3 -
F (pl,n-p,l ) and reduces to central F distribution if and only ‘
R ﬁif ,Ho is Crue ', ,"3:' o "- L | L e
e . #‘ ) . ‘_ . .. . oo 3 : . ‘ . , B A:‘l;‘f
o * % "IV, | In III we considered, the model ' T 1"
v . T : :»i'.: SR ' ' 5

: -v .: . ’ .- - N . ,- A . k‘ .'IY =x8' + e o

e ' ‘'where e N‘(Obz.é’z.r). and 1‘~X was - of full rank . * ;

‘ / '( ;- ‘Now let us -suppos\; that X is’ not of full r'_“ ’/ N
e, ~ o - v 1 o

o situation we proc?eed by fin iRg a generalized inverse, ' T
o o .- “ . - = ‘a', ) .
ol Suppose our- a.im is to: derive a suitable test statis% z
":., - . ““:2.',:"

' ,: fHo : XB = 0 By2 working with the minimization procé

Kk ’ square method) it can be shown residual error smn of SR

. '- _.-'. : . . . s .‘ o L
s e ’ F - \
. . e L n)
R 8 . . ek, AE .
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:or xequal,ehtly Ql/ct2 " x‘2 vwi,t':h rir-~r»

d;f.,

: where

Also beoause ‘XGX' ' is 1dempotent and

r ;- rank of X..

(XGX 9 (I—‘JQGX.' )

=0, - Theorem 20 together with Craig S . theorem implies

that ,‘Qz/.'dz is distributed independently of Ql/o with —'_

v

-

) - . Mhus . - T R
.~ . ’. \.,h." e 4
O u= —————Qz/r
4 R QI/(n-r)
- PR ’ _ N

follows non—central F-distribution with parameters j‘,r "and  n-r and

‘ non-centrality parameter B'X XB/ZO .

E rF i;fgnd only if ‘X~B =0, ‘i-.é.,';l

o

Hen cer

..; §'62A02~N;x' [rﬁxcx'>a67¥XGX7XB’?9 1.

u follows central -

- - b Ca
. 66.
© 7 ssE A,Y(I-xcx')y...' .
If we denote thr'uadratic form by Ql and Yy by Q, , R
R _.thew regression eum_rof_ aquares_ (S S R)_ia given hy .
¥ . : . . R . \
. . ' ' . AN o L ' ¥ S : SN
R ~ Ss.S.R= 6-Q1>-?Y'qu'y .
. Let 'us-denote ithis qu‘a'dratic forni by - Q2:" Now‘ ’f‘,
X "' 2 . . " 2
Q/g" = Y'(1¢X6GX")¥ /o™
. Since oI(I-XGX')/oc® = (I-XGX') and (I-XGX') is clearly °
idempotent. Therefore: by_ ‘Theorem 20, -we’hawe \
Y SN . I'L/ll 1yy - 2.
Q /0" ~ x'“[r(I-XGK') §8'X" (1-XGX')XB/20" ] )

-

-

.ajldbonly':if wf’HOA “is true.
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