Genetic Invariance: A New Type of Genetic
Algorithm

Michael J. Lewchuk

April 1992

Abstract

Genetic algorithms are adaptive search algorithms which generate
and test a population of individuals, where each individual corresponds
to a solution. They then adapt to the information obtained from test-
ing, seeking superior solutions by selecting and combining solutions
of above average value. As the number of superior individuals in the
population increases, the number of inferior individuals decreases. This
thesis introduces Genetic Invariance, a similar family of generate and
test problem solvers which uses a different selection and replacement
strategy. In the best case, it achieves superior solutions without elim-
inating inferior characteristics. Although characteristics may initially
be associated with inferior solutions, they may prove to be superior
when combined with other particular characteristics. Mathematical
analysis of lower bounds of Genetic Invariance on a simple function is
given, and several properties of Genetic Invariance are explained using
this analysis. A comparison and contrast is done to show how the two
selection strategies achieve optimization in different ways. An analysis
of the assumption and strategies of each system explains likely bene-
ficial and detrimental effects of each system, while empirical analysis
is given which demonstrates these effects. Together, they show each
system’s features and drawbacks.
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1 Genetic Algorithms

1.1 Introduction

A Genetic Algorithm is an adaptive search strategy which employs selec-
tion of fitter individuals, similar to Darwinian evolutionary theory. In this
approach, a population of individuals is chosen from the set of possible solu-
tions. A number of (not necessarily distinct) individuals from the population
are chosen based on their relative performance. These individuals are mated,
and the children produced form the next generation. This selection and re-
placement strategy creates several interesting phenomena. Section 2 defines
various terms used in the analysis of Genetic Algorithms. Section 3 explains
the structure of the Genetic Algorithm, while section 4 explains the Schema
Theorem, the fundamental theorem of Genetic Algorithms, and shows that
it states that in an ideal case, a characteristic grows at an exponential rate
based on its quality. While research has shown that this promotes superior
characteristics, Genetic Algorithms also have their flaws. Section 5 explains
various problems that have been noticed in applying the Schema Theorem.
Section 6 summarizes various solutions that have been proposed and their
effects on the Genetic Algorithm.

The remaining part of this thesis is organized as follows: Chapter 3 intro-
duces Genetic Invariance. This generate-and-test problem solver is similar
to Genetic Algorithms except that the selection and replacement strategy
is different. Instead of selecting superior individuals to achieve superior
characteristics in the population, Genetic Invariance simply mates pairs of
closest value. A local separation is achieved, which produces a global sep-
aration, and thus global optimization. Analysis of Genetic Invariance on a
restricted problem is given, which shows several things about the nature of
Genetic Invariance.

Chapter 4 compares and contrasts Genetic Invariance and Genetic Algo-
rithms. It is not the intent of this thesis to show that one is better than the
other. Instead, their optimization methods will be compared, and their per-
formance on several functions will be given. The strengths and weaknesses
of each system will be explored, and an overview of the implementation
details will be given.

1.2 Definitions

A Genetic Algorithm requires a population to operate. A population is a set
of individuals, taken from the set of possible solutions. The population is



denoted as P and P; is an individual in P. An individual can be thought of
as a series of binary digits. More generally, P can be a series of characters,
called alleles. Let the number of alleles in P; be [, and the jth allele in
individual ¢ be P;;,1 <@ < mn,1 < j <I[. Parents are individuals which are
mated in some way to produce children. A new population, the next gener-
ation, is chosen from the original population plus the children. The original
population, randomly chosen from the domain, is 73(0), and the population
after t generations is P Each generation, the Genetic Algorithm generates
P from PO,

With these terms defined, it is now possible to define a schema (plural:
schemata). A schema is a subset of the domain. It can be represented
as a vector of [ symbols from the set {0,1,#}, much like an individual.
The hyperplane is defined as the set of individuals which match the defined
positions (0 or 1) in the schema. The # character matches both 0 and 1.
Thus, the schema 01##114#0 matches both 01101100 and 01001110, but
not 00010110. The notion of a schema is used in analysing the propogation
of superior groups of values from generation to generation. Schemata have
two characteristics. The order of a schema is the number of fixed (non #)
symbols in the schema and the defining length is the length from the first
to last fixed position. Thus, the schema ##01#10#010# has order 7 and
defining length 9.

The Hamming distance between two individuals, Hy4(P;, P;) is the num-
ber of positions in which the two individuals differ in value. Thus, 010010
and 101001 have a Hamming distance of 5. We define the Hamming closure
of 2 individuals P; and P;, H.(P;, P;), to be the schema h with the smallest
order that includes both P; and P;:

0 if Py = ij =0
hp = 1 if Py = Pir=1
# it Py # Pk

We also define the Hamming size of this space, H(P;,P;), to be the size of
the set defined by h. Thus, 010010 and 101001 have a Hamming closure of
#H#H#0## and a Hamming size of 32.

Now that alleles, Hamming space, and schemata have been defined, it
is possible to define crossover. Crossover is a method modeled after sexual
genetic reproduction, which takes 2 individuals as parents and produces 2
children. Thus, crossover is a function X : (P;, P;) — (P, 73;) There are 2
types of crossover used in evolutionary systems: point crossover and uniform



crossover. Point crossover requires a parameter, which is the number of
points at which crossover occurs. This number is usually constant, and is
usually kept at 1 or 2. An @ point crossover divides the 2 individuals at a
random points, and exchanges alternating groups. An example of 2 point
crossover is given in table 1. The dashes indicate where crossover occurs.

P; [ 111 — 11000 — 1100
P; | 101 = 01011 — 0010
P, | 111 — 01011 — 1100
75 | 101 — 11000 — 0010

Table 1: Point Crossover

Uniform crossover swaps each column with some probability, checking
each column independently. Uniform crossover can be done by generating
a bit string of length [, with a 0 indicating no swap and a 1 indicating a
swap. Thus, 001101011100 would indicate that bits 3,4,6,8,9, and 10 are
to be swapped between the parents to obtain the children. An example of
uniform crossover with this string is given in table 2. The swap vector is
denoted as z.

P, [ 110010111000
P; [ 101011101011
x| 001101011100
P, | 111011101000
P | 100010111011

Table 2: Uniform Crossover

Uniform crossover is used in this thesis because it is more general, and
thus more powerful than point crossover in diverse problem solving. Uni-
form crossover can produce all children produceable by all possible point
crossovers, but any particular a-point crossover cannot produce all children
produceable by uniform crossover. This is easily understood: since each po-
sition in uniform crossover has some probability of being swapped or kept, it
is possible to swap or keep any possible subset of the individuals. An a-point
crossover must keep the first few elements, swap the next few, and so on.



This produces 2 restrictions: the number of groups that can be swapped or
kept, and the location of each group that can be swapped or kept. FEach
group must be a contiguous set of bits. The generality of uniform crossover
adds to the exploration power of the genetic algorithm. In tests conducted
by Syswerda [Sys99], Uniform crossover performed better over a wide range
of functions than 1 or 2 point crossover.

1.3 The Structure of the Genetic Algorithm

Genetic Algorithms have several characteristics.

1. Selecting parents is done by allocating each individual a probability
of being selected equal to its value divided by the cumulative value of
the population. This is known as roulette wheel selection [Hol73]. An
example of roulette wheel selection is given in figure 2.

2. Mutation, randomly complementing values in the population, is used
to introduce random alleles at a slow rate. Mutation can be imple-
mented in various ways. The method used in this paper is: For each
bit P;; in P, generate a random number between 0 and 1. Comple-
ment P;; if the random number is less than the chosen mutation rate,
.

3. There is no widely accepted termination condition, although Genetic
Algorithms usually terminate after a certain number of generations or
after the population is made up of individuals which are similar enough
that little useful work can be done. The characteristic of moving from
a varying population to a uniform one is called convergence, and if an
individual dominates the population after it has converged, it is said
that the population has converged on this individual.

A diagram of the Genetic Algorithm is given in figure 1. An informal discus-
sion of the characteristics of Genetic Algorithms can be found in [Gol89b].

1.4 The Schema Theorem

In 1973, Holland published a paper on the optimal allocation of trials to
subsets of a space, based on the perceived relative values of those subsets.
One theorem in [Hol73], expanded upon in [Hol75], became known as the
Schema Theorem, the fundamental theorem of Genetic Algorithms. It stated



DATA FLOW DIAGRAM OF THE STANDARD GENETIC ALGORITHM

END
INITIALIZE 1. RESULTSAND OTHER INFO PRINTED
1. SET P=RANDOM_POP
] - LOOP
2 ST L =t Pt
2.LOOPTO ’
SELECT PARENTS b
Pt
Pt
TERMINATE?
1. CHECK TERMINATION CONDITION:
A) T MAX
SELECT PARENTS B) OPTIMIZED ENOUGH (F(P(max)>OPT)
1. TOTAL_WORTH = SUM OF F(P(}), 1=0.\-1 C) CONVERGENCE: FORALL I,JP{1)=P()
2. PROB OF P(1) BEING CHOSEN = F(P(1)) / TOTAL_WORTH D) ANY OTHER SPECIFIED CONDITION

3. FORI=0.N-1DOPICK PARENT(I) FROM PBY PROBS

Pt
SET OF N PARENTS; t
RESTRUCTURE POPULATION
PAIR OFF PARENTS L FORI=0.N-L
P() = CHILD()

1. PAIR J={PARENT(2) PARENT(23+1)}
WHERE J=0.(N/2)-1

N MUTATED CHILDREN | t
SET OF N/2 PAIRS; t

MUTATE CHILDREN
1 FORE0.N-LDO

CROSSOVER PAIRS SET OF N CHILDREN | FORI=0.LDO

IF RANDOM(01)<PROB_MUT
L FOR :0..(N2-1DO > CHILD(),BIT()=NOT

CHILD(2J),CHILD(2}+1) = X (PAIRJ) t CHILDQ.BIT()

Figure 1: Structure of a Genetic Algorithm



Figure 2: Roulette Wheel Selection

that roulette wheel selection caused an exponential increase in the quantity
of superior schemata.

Consider a schema s. The number of individuals in P) which are
members of s is defined as m4(t). Let the population be of near infi-
nite size, and maintain a relatively constant average value, . Also, as-
sume that the schema s is likely to be unaffected by crossover. Thus,

_ [N | lation. th
ms(t+ 1) = ZP(t)e ——Z— |- In avery large popu ation, the average

values of the individuals in s will approach the average value of schema s.
Let the average value of s be u(s). Thus, ms(t+1) = ZP(t)e %ﬁl Since the

i S
number of individuals of schema s in P() s ms(t), ms(t+1) = ms(t)ﬁ.
Thus, an exponential increase in superior schemata results from assigning
each individual a probability of mating equal to its value.

This theorem makes several unrealistic assumptions. The population
is of finite size and will not maintain a constant average value. In fact,
the increase of the number of superior schemata raises the overall value of
the population. Also, schemata perceived to be superior will increase. The
schemata may not necessarily be superior; all that is required is that the
samples show them to be superior. A schema of high order may not get an
accurate sampling. If the population is not large enough, schemata of high
order may not even be represented in the population. In [Hol75], Holland
states that if schemata have a high variance compared to the difference in
their average values, sampling errors can cause the wrong schema to be
preferred. Assuming that a schema does increase exponentially, it must



survive from generation to generation. Certain crossover schemes, such as
uniform crossover, tend to cause many alleles to swap. Thus, even if a
schema is of high value, it may disappear during crossover. Conversely,
schemata can appear from the crossover of similar parents. Grefenstette
and Baker [GBR9] discussed these and other difficulties with the Schema
Theorem.

1.5 Problems with Proportional Allocation

Although allocating probabilities of mating based on the value of each indi-
vidual relative to the total worth of the population does result in the increase
of superior schemata, there are several problems that can occur due to this
selection system.

If the superior individuals in P do not represent characteristics present in
the optimal value, the Genetic Algorithm will be led away from the optimal
value. This property is called deception. Bethke [Bet80] and Goldberg
[Gol88, Gol89a], used Walsh functions to analyse the deceptiveness of a
function. In this analysis, average values of low order schemata in a function
are examined. The accuracy with which low order schemata predict the value
of higher order schemata determines the deceptiveness of the function. In
particular, if alleles are highly epistatic, that is, the value of the function
depends greatly on patterns among many alleles instead of the values of
single alleles, the function may be very difficult for a Genetic Algorithm
to solve. Note that some epistatic functions, such as f(z) = x?, are quite
predictable and thus are still easily solved.

Another problem Genetic Algorithms have is premature convergence.
When the population converges, little further exploration can be done, since
the genetic algorithm will waste much time generating individuals which
have already been evaluated. Mutation corrects this by introducing some
randomness into the population. This randomness will be kept in future
generations if it is of high worth, while it will be discarded if it causes the
value of the individual to deteriorate.

Interference from mutation can undermine the effectiveness of the se-
lection system. If the difference between average and superior individuals
is small, mutation may change optimized alleles into random alleles at a
faster rate than roulette-wheel selection changes random alleles into opti-
mal alleles. DeJong [Del75] pointed out that a common practice in Genetic
Algorithms research was to increase the mutation rate when the Genetic
Algorithm did not converge to a very high valued individual. This led to



the Genetic Algorithm being stifled by a high mutation rate.

If the ratio between superior and average schemata is low, an effect called
genetic drift will occur. DelJong [Del75] stated that even in a population
where no particular schema is preferred, the population will increasingly de-
viate from the norm, until the population converges. Goldberg and Segrest
[GS87] calculated the time to convergence of a simple 1-bit population (each
individual can be 0 or 1) of size n. The estimated time to convergence (in
number of generations) is ﬁ?l__l;jn Although this case is simplistic, it does
indicate what happens in a large population, if there is no significant dif-
ference between average and superior schemata for many generations. The
population starts to converge to an arbitrary individual. This causes a loss
of schemata from the original population, and thus schemata which have a
higher value later on may not be creatable from the new population. A fur-
ther complication is that an intuitive solution, increasing the mutation rate
in an attempt to re-introduce lost alleles, does not work. DelJong [Del75]
states that this usually does not help the Genetic Algorithm much, and adds
the problem of interference from mutation to genetic drift.

1.6 Modifications to the Genetic Algorithm

As the problems with Genetic Algorithms were explored, modifications de-
signed to correct these faults emerged. This section explores the ways in
which Sharing, Crowding, Elitism, Steady-state Genetic Algorithms, and
Parallel Genetic Algorithms were designed to correct problems with the ge-
netic algorithm.

Sharing was created to allow Genetic Algorithms to explore many pos-
sible peaks, rather than a single peak. Goldberg and Richardson [GR87]
designed sharing to de-emphasize having copies of one superior schema. In-
stead, copies would be kept of many varying relatively superior schema. The
sharing function must have the following characteristics:

e sh(P;,Pi)=1
o sh(P;,P;)— 0as Hy(P;,P;) —
e VP, P;, 0 <sh(P;,P;)<1
Goldberg and Richardson suggested an exponential sharing function

Hy(P: P, " . .
sh(Pi,P;) = { . <M) it Hq(Pi, Pj) < sharemax
0

otherwise



where share,,,, was the Hamming distance at which the sharing value,
sh(P;,P;), dropped to 0, and o was a positive constant. The value of an

individual, f;.,.(P;) is M This way, an individual’s value is
f h ( ) Zﬁl Sh(Pi,P]) Yy

reduced by any individuals with a Hamming distance of . Thus, the number
of copies of a schemata present in the population will be proportional to its
relative value.

DeJong [Del75] suggested crowding as a way to slow down the con-
vergence rate. In this model, the population was not the set of children
produced from the previous population. Instead, each child replaces one
individual in the population, with a higher probability of replacing an indi-
vidual containing similar alleles. DeJong found that this was most effective
when combined with a generation gap, G, 0 < G < 1. The generation gap &G
indicates what fraction of the population is replaced each generation. Thus,
each generation G'n children are generated, and replace individuals in PO 10
form PU+D, DelJong stated that a small generation gap and small amounts
of crowding caused the Genetic Algorithm to perform better.

Note that crowding is similar to sharing, but works on the restructuring
process rather than the selection process. Both accomplish the same goal:
the reduction of duplicate genetic material and thus the diversification of
the population, but operate at different times and in different ways.

Elitism, keeping the best individual seen, is a simple and practical heuris-
tic to improve the performance of Genetic Algorithms. In his thesis [DeJ75],
DeJong commented that elitism is usually beneficial to a Genetic Algorithm.
Elitism maintains the most superior individual in the population, and thus
maintains the most superior schemata. Thus, it is natural that this method
improves the performance of a Genetic Algorithm. In this thesis, Elitism is
implemented by replacing the minimal element in the population with the
maximal element seen. While allowing the best element to be kept, this
method also increases the rate at which the Genetic Algorithm converges.

A Steady State Genetic Algorithm is a genetic algorithm which only
replaces a constant number of individuals in the population during each
generation. As defined in [Sys99], a Steady State Genetic Algorithm has
replaced kt individuals after ¢ generations, while the Genetic Algorithm has
replaced nt. The Steady State Genetic Algorithm is similar to the simple
genetic algorithm, including the use of roulette wheel selection, but the
population is restructured by deleting population members. One member
must be deleted for each child produced, and thus the size of the population
remains constant. The individuals to be deleted are probabilistically selected



based on worth. The lower an individual’s worth, the more likely it is to
be deleted. Syswerda tested Steady State Genetic Algorithms [Sys91] and
stated that “at least for some problems, steady state genetic algorithms
do find as good or better solutions in much less time” than simple genetic
algorithms. In the steady state approach, a schema of excellent fitness is
immediately available for use, while a simple genetic algorithm must wait
until the next generation to take advantage of superior schemata.

A Parallel Genetic Algorithm is an algorithm which performs standard
Genetic Algorithm selection and mating on various subpopulationsto achieve
global optimization in the entire population. In [Mih91], Miihlenbein de-
scribed a Parallel Genetic Algorithm. In this model, a genetic algorithm
is run on each subpopulation, which produces some superior schemata. In-
dividuals have a small probability of migrating between subpopulations.
When this occurs, the schemata of one subpopulation are introduced into
the other subpopulation. When superior schemata from a subpopulation
are introduced into another subpopulation, they dominate the population
if they are superior to the schemata in that subpopulation. In this way,
superior genetic material propogates from one subpopulation to all subpop-
ulations. Eventually, all of the subpopulations contain copies of all superior
schemata, which are combined into one superior individual. Thus, local op-
timization of low order superior schemata plus a propagation of individuals
results in a global optimization of high order superior schemata.

1.7 Conclusion

A Genetic Algorithm is an adaptive search algorithm based on the Schema
Theorem. It uses roulette wheel selection to simulate Darwinian evolution
in the population. This is a result of the Schema Theorem, the fundamental
theorem of Genetic Algorithms. Function optimization has been used to test
the performance of Genetic Algorithms. Although Genetic Algorithms work
well on many of the functions that they were tested on, there have been a
number of problems with optimizing some functions. Deception, premature
convergence, interference from mutation, and genetic drift are all possible
when optimizing with a Genetic Algorithm. Deception and premature con-
vergence cause lower optimal values to be found, while interference from
mutation and genetic drift actually cause the Genetic Algorithm to perform
little useful work whatsoever. Several solutions have been proposed, in-
cluding Sharing, Crowding, Elitism, Steady-State Genetic Algorithms, and
Parallel Genetic Algorithms. Sharing and Crowding reduce the amount of
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duplication of schemata in the population, elitism keeps the most supe-
rior individual (and thus, the most superior schemata) in the population,
Steady-State Genetic Algorithms allow for improvements in schemata to be
taken advantage of immediately, while Parallel Genetic Algorithms use the
convergence of subpopulations to superior schemata of low order and the
propogation of individuals between subpopulations to achieve global opti-
mization of long order superior schemata.
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2 Genetic Invariance

2.1 Introduction

This chapter introduces a new adaptive problem solver, Genetic Invariance,
which has at least two changes from Genetic Algorithms. First, invariance
is enforced by replacing parents by their children. In this manner, the al-
leles in any column of the population never vary; they may be exchanged
between individuals but may not be added or deleted. Second, the selection
system involves choosing the closest valued pair for mating. This causes a
local change of value, which in turn causes a global change of value. This
method is of particular interest to us because it does not specifically select
for optimal value. Instead, side effects of the mating process lead to overall
optimization. Section 2 shows the structure of Genetic Invariance in more
detail. Section 3 shows how Genetic Invariance operates by proving lower
bounds on a restricted case of a simple problem. Section 4 elaborates on the
results in section 3, and show how they can be extended to general function
optimization using Genetic Invariance.

2.2 The Structure of Genetic Invariance

Like Genetic Algorithms, Genetic Invariance uses a population P of n in-
dividuals, each having [ alleles. Unlike Genetic Algorithms, the population
is ranked, with Pgt) being the individual in PO with the lowest f value
and Pg) being the individual with the highest f value. Individuals with the
same value are arbitrarily ranked. P can be thought of as an n by [ matrix
of bits, Pj.

The main steps of the algorithm are:
1. Randomly select an initial population PO Set ¢ = 0.

2. Select two individuals, P;,P;,1 < j, such that the difference in their
function values, f~(P;,P;), is minimal over all pairs. If two have
equal differences, choose the pair in which j is maximized. If two have
equal differences and identical maximal individuals, choose the pair in
which 7 is maximized.

3. Mate these two with a crossover, and insert them back into the pop-
ulation. Although any crossover can be used, it has been stated that
we will use uniform crossover throughout this paper.

12



4. Increment ¢. If the termination condition is not met, goto step 2.

Genetic Invariance is diagrammed in figure 3.

DATA FLOW DIAGRAM OF GENETIC INVARIANCE

END
INITIALIZE 1. RESULTS AND OTHER INFO PRINTED
1. SET P=RANDOM_POP

- - LOOP
2. SETt=0 L T=T+1 Pt
1 2.LOOPTO '
SELECT PARENTS @
Pt
PT
TERMINATE?
1. CHECK TERMINATION CONDITION:

A) 5T _MAX
SELECT PARENTS B) OPTIMIZED ENOUGH (F(P(max))>0PT
1. RANK POPULATION D) ANY OTHER SPECIFIED CONDITION
2. PARENTSP(l), P(J) ARE CLOSEST PAIR.

PT

2 PARENTS P, t

2 CHILDREN | RESTRUCTURE POPULATION

CROSSOVER PAIRS > 1. P(l) = CHILD(1); PJ) = CHILD(2)
1. CHILD(1),CHILD(2) = X(PARENT1,PARENT2) Pt

Figure 3: Structure of Genetic Invariance

Notice that Genetic invariance does not use mutation, and always re-
places the parents with their children. Because of this, the alleles in any
column do not change; only their positions within each column change. This
is known as invariance. A formal definition of invariance is:

n n
Vot t5, 3 P = S p),
=1

=1

We defined a mating cycle to be parents repeatedly producing offspring

which in turn become the parents in the next generation. Thus, Pgt) and

P;t) mate to produce Pgtﬂ) and P;tﬂ), which in turn mate to produce
p(t"‘?) 7D(t-|-2)

; ,P; "7, and so on for some period of time. Each cycle has a definite
(t+1)

7

starting point, namely the first time Pgt) and P;t) mate to produce P

13



and P;tﬂ), but it may not have an endpoint. If the current mating cycle
is of infinite length, we say that Genetic Invariance has stagnated. Ideally
Genetic Invariance should run until stagnation. However, since this is not
generally detectable, Genetic Invariance, like the Genetic Algorithm, is run

for some pre-determined period of time.

2.3 Mathematical Analysis
2.3.1 Introduction

This section gives a worst case performance analysis of Genetic Invariance
on a simple function. Because of the modifications to the selection and
restructuring systems, the Schema Theorem of Genetic Algorithms does not
apply. The analysis proves lower bounds on a restricted case of the function
fo(x), the number of 1s in the binary string . The bounds are the least
possible maximum when stagnation occurs, which we call the LMS point.
The restrictions on the initial population will be lessened, and heuristics will
be added which increase the LMS point. This will lead to a discussion of
the nature of Genetic Invariance in the next section.

2.3.2 A Special Case

Consider a very special population P and evaluation f, where f(p) is func-
tion fg, the number of 1s in p. The initial population is chosen randomly
under the constraint that the number of 1s in any column of P; ; is exactly
one. We assume that n > 2 and [ > 0 since two individuals stagnate by
definition (producing a random search over their Hamming Closure) and an
individual size of zero is meaningless.

We define T'(z) to be the ath triangular number, ﬂxz—-"ll; A(y) to be the
smallest integer & such that T'(z) > y; and the f sum of two individuals
TP, Py) to be f(Pr) + f(Py).

What is the least maximum under stagnation, LMS(n,[), under these
conditions?

It is obvious from the definitions of mating, selection, and ranks that:

Lemma 2.1 If P; and P; mate then j =1+ 1.

Note that the lemma 2.1 implies that stagnation can only occur on ad-
jacent individuals, since the stagnation pair is a mating pair. Later, we will
introduce constraints to the selection strategy which will change this.
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Lemma 2.2 Let fY(P;, Piy1)beaconstanté. If stagnation on P;, Piyy has

occurred, then there exists with probability 1 some time t such that f(Pf?l) =

§ and (PO = 0.

Proof: Consider 2 strings e and b such that a contains all of the 1s in

HC(PEt),PEf_)l). Since a is within the Hamming Closure of P; and P41, the

probability is 1 that P; and P;4q will produce a as one of their descendants.
The complementary child must, by definition, be the string of zeroes. m

Lemma 2.3 If Genetic Invariance stagnates on P;, P11, then either i = 1

or f(Pi) = f(Pi41) = 0.

Proof: Assume ¢ > 1. 0 = f(P;) < f(Pi+1) by lemma 2.2.

f(Po) < f(P;) = 0 because we are ranking our individuals.

f(Py) > 0 by definition of f, hence f(Pg) = 0.

f=(P;,Pg) = 0, but since we are mating the closest pair of highest rank,
J(Piy1,Pi) =0, which contradicts 0 = f(P;) < f(Pit1)-

Therefore, i < 1 or f(P;) > f(Piy1), which reduces to ¢ = 1 or f(P;) =
f(Pi41) = 0 by definition of f and i. m

It is interesting to note that in the case f(P;) = f(Pi41) = 0, the lower
zeroes, Pr,k < ¢ will have a 0 probability of ever being chosen as mates.
Thus, Genetic Invariance is said to implicitly eliminate zero-value individuals
both in this case and in general when f has 0 epistasis.

Consider lemma 2.3. In terms of the evaluation function, we may write

Lemma 2.4 If Genetic Invariance stagnates on P;, P11 then
Vi # i7f+(73i773i+1) < J7(Pj41,Pj). or f(Pi) = f(Piy1) =0

Proof: Consider ¢+ = 1. The algorithm mates the highest ranked pair if
two or more pairs have the same f differences, thus V5 > ¢, f7(P;, Pj41) >
J7(P;,Piy1). But consider lemma 2.2. Py will eventually be f(P;, P;y),
and Py will be 0. Thus, fT(P;,Piy1) < f7(Pj41,P;). By lemma 2.3, we
know that for the stagnant pair, either ¢ = 1 or f(P;) = f(Piy1) = 0,
proving the lemma. m

Lemma 2.5 LMS(n,l) = A(l) is either n > A(l) + 2 if n is a triangular
number, or n > A(l)+ 1 if it is not.
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Proof: [ is nonzero, therefore some individuals must have nonzero val-
ues. Let the stagnation individuals have values 0 and ¢ — 1, where € —
1 = f(P;) 4+ f(Piy1) (by lemma 2.2). The individuals must have val-
ues equal to or greater than 0,0,...,0,e—1,2¢ —1,3¢ — 1,...., ke— 1. The
minimum values possible are achieved when ¢ = 1, giving the sequence
0,0,...,0,0,1,2,3,4, ..., A(l). This sequence, which has at least two lead-
ing Os, sums to [ if [ is a triangular number. Thus, if [ is triangular, and
n > k42 = A(l)+1, this triangle can be constructed. If it is not, eliminate
the integer T(A(l)) — I from the sequence to achieve the correct sum. This
requires n > k4+2—-1=Fk—1= A(l)+ 1, since the triangle is missing one
individual (the one that was deleted). m

Lemma 2.6 If3 <n < A(l)+ 2 then LMS(n,l) = (n—2) + [1_17;_”2_2 1.
Proof: Consider an arithmetic triangle on the highest n — 2 positions. This
accounts for T'(n — 2) bits, leaving us with ({-7'(n-2)) bits to position. The
condition for stagnation is Vj, f~(Pjt1,P;) > fT(Piy1,Pi), but although
this implies an arithmetic triangle is the least possible distribution, each
individual may have any value, provided that any pair differs by at least 1.
Consider adding a value ¢ to some P;. This means that 6 must be added
to all P,k > 7. But how do we distribute the other alleles among the
population for a lowest possible bound? Considering the above statements,
we can only do this by evenly distributing the value among all of the n — 2
individuals above P,.

Note that we cannot add to P; nor to P;y1, because to do so would

necessitate that the value of € be increased by 1 throughout the population.

T(n-1)
n—2

of the nonzero individuals are increased equally, with any partial increase

being added from the top down, resulting in a worst case LMS point of

(n—2)+ (=102

Since < (n — 1) when n > 3, the worst case occurs when each

Lemma 2.7 Ifn =3, then LMS(n,l) =1 - LZ_TIJ

Proof: In this case T7(17”L_—21) > (n—1), so an arithmetic triangle distribution
over the population is worse than distributing the remaining value over the

n—2 = 1 remaining individuals. The lowest stable stateis f(Ps3)— f(P2) >
f(P2) = f(P1) = f(P2) and f(P1)+ f(P2) + f(Ps) = f(P2) + f(Ps) =1,
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which reduces to f(Ps) > %l Note that this is a strict inequality, so when [ is

divisible by 3, we must add 1 to the MAX value. Thus, LMS(n,l) =1— LZ%J

THEOREM 2.1 The least mazimum under stagnation, LM S(n,l), is

(71—2)—|—ﬁl_%%;_nz—fll if3<n<Al)+m
A(l if n > A(l)+m and n > 3
1—[*5] ifn=3

~~

o~

where m = 2 if | is a triangular number, 1 if it is not.

Proof: Theorem 2.1 is proven by lemmas 2.6, and 2.7. m

Thus, an arithmetic triangle is formed, which results in an LMS value
proportional to A(l).

2.3.3 Improving the Algorithm

Consider two individuals P, and P,. If their Hamming Distance is less
than 2, then crossover produces individuals P, and P,, since these are the
only individuals in H.(P,,Py). Since mating two individuals with a Ham-
ming distance of 0 or 1 will cause stagnation, and so is unprofitable in the
Gene Invariance approach, we add the heuristic of never mating individuals
with Hamming Distances of less than 2. How does the new LMS point,
LMS2(n,1), differ from the previous one?

Lemma 2.8 The heuristic has no effect on the choice of parents if both
selected parents have positive values under f.

Proof: Let P, and P, be two individuals with positive values under f. By
the definition of f, each must have at least one 1 in it. But these 1s cannot
be in the same position (since there is only one 1 per column), thus at least
two bit positions in P, and P, are not identical. m

Lemma 2.9 Ifn =3, LMS2(n,l) is

LMS(3,0) | ifl> 6
] fl<6
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Proof: All of the claims of lemma 2.7 hold, except that in 2.7 the bottom
two individuals may have a Hamming distance of less than 2. When does
this occur? When LZ_TIJ < 1,ie [ <6. Thus, [ > 6 = LMS2(3,]) =
LMS(3,1).

Now consider [ < 3. By enumeration of the possible states it is provable
that LMS2(3,1) = .

Consider 4 < [ < 6. By lemma 2.7, it is known that we must satisfy
the same stagnation conditions as before, with the exception that if the
bottom two individuals have Hamming Distance 1, they are not mated.
The stagnation distribution is (0,1,{ — 1). But the lower two will not be
able to mate now that they have Hamming distance 1, so the upper two will
mate, causing the GA to stagnate. Since we assume the uppermost value to
be maximized at stagnation, Genetic Invariance is said to stagnate at the
value [. m

Lemma 2.10 Ifn >3, LMS2(n,l) is

(3n — 4) + =L (—1)-n), U3<n<A(3)+

(1-2)
3Ly -1 ifn>3,n> AL+

Proof: Genetic Invariance cannot stagnate at (f(P;), f(Pi+1)) = (0,0) or
(0,1) since Hy(P;, Piy1) < 2. Thus, consider again lemma 2.5, with ¢
having a minimum value of 2. This will produce an arithmetic sequence
(0,2,5,8,11,...,3m — 1), which is the minimum for stagnation. The sum is

3T (m—1)—m; the highest individual is 3(m—1)—1=3m—4. m = [gl;—ml],

and so
. { Ay 1 i sT(A) - 1> AL
Sl oA( [é] ) otherwise

which is lower bounded by A( [é] ). Asin 2.6, the LMS2 bound is calculated
by distributing any remaining values evenly over the triangle. m

THEOREM 2.2 Thus, LM S2(n,l) is

(30— )+ OLIZD= |y o < n(Bry 40
3Ly -1 ﬁn>3n>AdiQ+1

l— Ll L ifn=3and [ >6

[ ifn=3and 1 <6
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Proof: By lemmas 2.8, 2.9, and 2.10 we can conclude theorem 2.2. m

Thus, by not mating any pair with Hamming distance less than 2, we
have increased the slope of the arithmetic triangle from 1 to 3, thus increas-

ing the LMS value from A(/) to BA(%)

2.3.4 Extending the Special Case

In the previous chapters, we assumed an initial population where there was
only one 1 per column. Consider an initial population P with a total of
b ones that are distributed almost evenly between the [ columns of P (ie.
either L%J or [%1 Let d be the number of columns that have at least 2 bits
set to 1. Also, assume that we are not implementing the feature which mates

individuals only if they have a Hamming Distance of 2 or more. What is
the arbitrary-b LMS point LMS(b, n,1), in comparison to LMS(n,{)?

Lemma 2.11 When b <1, LMS(b,n,l) = LMS(n,b).

Proof: Consider b < [. Some columns will be all zeroes, and others will
only have one 1 per column. This is directly mappable to the case where
[ = b, since the extra zeroes do not affect the method in any way. Thus,
LMS(b,n,l) =LMS(n,b).

LMS(n,!) is defined to be LMS(b, n,l), since in the original case there
are [ 1s in the population, one per column. m

Lemma 2.12 Consider n = 3,b > . Then, for any mating pair, the mazxi-
mal individual will have a value of at least d, d defined above.

Proof: Consider the columns which contain the replicated 1s. Given n = 3,
there are 3 individuals, at least 2 of which contain a 1. Therefore for any
mating pair, at least one of them will have a 1 in that column, therefore
the pair can produce an individual which has a 1 in each of the d columns.

()

Therefore at stagnation the maximal split insures P;,”’ > d. m

Lemma 2.13 [fl < b and n = 3, then LM S(b,n,1) is

-1y ] iri<p<d
b—1 | i <p<
I | ifb>2
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Proof: First of all, consider the case b > 2[. By lemma 2.12, any mating
pair can mate so that the higher individual will have a value of [. Thus, by
our definition of stagnation, when they stagnate the maximum value reached
will be [.

Next, consider 37[ < b < 20. By lemma 2.12, any mating pair can produce
a value of b — [. Genetic Invariance can stagnate at exactly this value, on
the individuals with values: (20 — b,b —1,b —[). The upper individuals can
be identical, and since we give priority to upper individuals upon mating,
Genetic Invariance will stagnate on them.

Now consider [ < b < 37[
when mating the top pair. Assume stagnation occurs on the top pair. Thus,
the population will be:

. First we show that stagnation will not occur

Element | individual 1s | replicate 1s
Ps ? b—1
P 0 x
P 20— b—1 b—1—x

where “individual 1s” refers to 1s in columns with one 1 in them, and
“replicate 1s” refers to 1s in columns with more than one 1 in them. Note
that the position of these columns in the individual is irrelevant; the anal-
ysis only uses the number of 1s in these columns. This matrix of indi-
viduals is called a stagnation matriz.
the top individuals has the maximal value (maximum split), so all of the
duplicate 1s in the top pair will move to the top individual, and all of
the non-duplicate 1s in the top pair will likewise be in the top individ-

At stagnation, it is assumed that

ual. ¢ and x are variables in this example, and can take on any (feasible)
value. Claim: this situation is contradictory. Proof: By definition of stag-
nation: i +b—1—2 <z —(2l—b—1i+b—1[— ) which reduces to b < 3z,

ie. —x < —%. Since the number of 1s can never be less than zero in any
part of this, 0§b—l—$§b—l—%:%— . Since % < [ by the initial
statement b < 371, %—l<l—l:0,thu50<0.

Consider the case | < b < 37[

The lower-pair stagnation matrix becomes:

where stagnation occurs on the bottom.

Element | individual 1s | replicate 1s
7)3 ) T
P 20— b—1 b—1
P 0 b—1—=x
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Thus i+ -2 —-b—i+b—-0)>2l—-b—t+b—-1—(b—1—=x), and so
b+ 3i >3l ie. i>1-b Consider i = Ll—gJ ; ¢ = 0. Substituting into

3
the above array gives the least stagnation point, [ — LgJ [
Lemma 2.14 Ifb> 1 andn > 3, LMS(b,n,l) is
221 b 1> 5

=~

Ry

b—1+ LMS(n,b—n(b—1))| ifb—1< [%1]

i

Proof: let 6 = b—1[ and 7 = [b%] Consider 6 > 7. It is pos-

sible to distribute the bits in the following manner: (P, Pg,...,P,) =

(LQJ s ooy LQJ, [Q] s ooy [Q]) It is possible for Genetic Invariance to stagnate

n ndln n
if the first two identical-valued individuals (individuals whose f difference
is 0) are identical. In order for this to occur, the total number of duplicate

bits (&) must be greater than or equal to the value of either individual (their
values are the same). Consider the breakpoint where values of Lb%lj change

to [b%] If (b modulo n) = 1, there is only one top individual, otherwise
there is more than 1. Thus when (b modulo n) = 1, stagnation can occur at

this point if § > L%J, otherwise § must be at least [%1 If & > 7, this case

holds, and the maximum under stagnation in both cases is 7.

Now consider § < 7. Consider the stagnation pair P; and P;41 to have
all of the duplicates. This is clearly the worst case, since at stagnation the
concern is with the separation they can achieve. All individuals can now
have a value of b — [ without interfering with P; and P;41 mating, except
that all P;,7 > ¢ must differ by at least 1. Thus, the worst case is constructed
by letting all of the individuals have the value b — [, followed by building
an arithmetic triangle from P;15 to P,, inclusive. If the triangle grows to
fill the entire population, except the two bottom individuals, distribute the
remaining value evenly over the top n — 2 individuals. In this case, the
number of duplicates does not affect the maximum value. m
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THEOREM 2.3 The arbitrary-b LM S point , LM S(b,n,l), is

LMS(n,b) iFb<1
l—LgJ z'fb>landn:3andl<b<37l
b1 ifb>1andn=3and %L <b<2l
) fb>landn =3 and b > 2l
1511 ifb>1landn >3 andb—1> [2=1]
b— 1+ LMS(n,b—n(b—1)) | ifb>1andn >3 and b—1 < [2=1]

Proof: This is proven by lemmas 2.11, 2.12, 2.13 and 2.14. m

Thus, the limit has decreased from a triangular distribution to an even
distribution, even though we have increased the total value of the population.

2.3.5 Putting the Heuristics Together

Consider the following heuristic mating system:
1. Any pair with Hamming distance less than 2 is not allowed to mate.
2. Pick the matable pair(s) of smallest f difference.

3. If more than one pair has equal f differences, pick the pair(s) with
largest Hamming distance.

4. If more than one pair has equal Hamming distances, pick the pair of
highest rank.

What happens to the LMS point under this heuristic mating strategy? Let
this be the Heuristic-LMS point, HALMS(b, n,1). We still assume that the
bits are distributed as evenly as possible among the columns.

What does this introduce to the LMS strategy? It re-introduces the
heuristic which prevents mating of pairs with Hamming distance of 0 or
1, thereby not mating pairs which provably stagnate. Also, a check for
individuals with the largest Hamming distance is introduced. This check is
useful, since individuals with larger Hamming distances will tend to separate
easier than individuals with low Hamming distances; mating individuals
with very low Hamming distances usually leads to stagnation. How does
this affect the ALMS point?

Lemma 2.15 [fb <, then HALMS(b,n,l) = LMS2(n,b).
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Proof: The only improvement we introduce beyond the LMS2 heuristics
is that of mating individuals with larger Hamming distances if we have
pairs with identical f differences. But consider the stagnation points: they
all stagnate on the bottom with f differences less than that of the other
individuals, thus the extra Hamming-distance heuristic does not increase
the limit point. Neither does it decrease the limit point, since all of the
arguments in lemmas 2.8, 2.9, and 2.10 still hold. Note that it is impossible
to have data in which the bottom two individuals have equal f differences to
the other individuals but larger Hamming distances, because the Hamming
distance between any two individuals is their f sum in this case (since every
column contains at most one 1), and the f sum of Py with 0 is less than or
equal to the f sum of P; and P;1q where ¢ > 1. Note that the case b < [ is
directly mappable to the case of a smaller [, [ =b. m

Lemma 2.16 [fb > 2l, then HALMS(b,n,l) = 1.

Proof: First of all, note that when b > 2[, the HALMS point must be
no less than [ for the same reasons given in lemma 2.12. The value of [ is
achievable if any two individuals mate. If none mate, then recall that each
column must have at least one 1 in it. Since their Hamming distance is at
most 1, if any individual has a 1 in a column, all of the other individuals
must have a 1 in that column, except for 1 column. So each member of the
population must have a value of at least [ — 1. Then there must be at least 1
individual with its bit set to 1 in one of the remaining columns, which leads
to a value of [. m

Lemma 2.17 Consider n = 3,21l > b > l. It is possible to split the HALMS
value into the following disjoint groups, with the following conditions and
values. HALMS(b,n,l) is

MIN for stagnation on Py and Ps | if 37[ <b< 2l
MIN for stagnation on Py and Py | if I < b< 37[

Proof: Consider splitting up the cases of stagnation into stagnation on the
top two individuals, stagnation on the middle two individuals, and stagna-
tion on the outer two individuals. If we find the restrictions those stagnation
cases imply, we can partition the space into several ranges, which are hope-
fully disjoint. This will be done by exclusion: stagnation cases will be shown
to imply that certain b values are impossible, thus those b values cannot lead
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to that type of stagnation, therefore they must be calculated from the re-
maining type(s).

Consider stagnation on the outer two individuals. Although Py <Py <
Ps, Py is within Hamming distance of 1 of both Py and P3. The Hamming
distance of the outer two individuals must be at least 2, since they mate,
and can be no greater than 2, since Hy(P1,Ps) < Hy(P1,P2)+ Ha(P2,P3).
A 1 must be present in at least one column of one individual, and if it is
present in one column of one individual, it must be present in that column
of the other two individuals, except for two columns. This is because of the
Hamming distance between the individuals. Thus, f(P1) > [—2. As for the
remaining two columns, this situation can only happen if f~(P1,Ps3) = 2,
thus f(Ps) > 2+ 1—2 = 1. Since the limit point this gives is clearly not
the lowest (since it is the highest possible value), it can be ignored for the
purpose of establishing a lower bound, if any other limit can be found.

Next, consider stagnation on the top pair. The stagnation matrix is:

Element | individual 1s | replicate 1s
Ps ? b—1
P 0 x
P 20— b—1 b—1—x

since we assume that the top individual mated has maximum value.
At stagnation, it +b—l—2 <z —(2l—bi+b—1— 2), by mating rule
(2), and b — 1 — z > 0. These inequalities reduce to b < 3z and = + [ < b,

which leads to b < 32 < 3b — 3! thus b > 37[ Thus if b < [37[], the lower

bound cannot be achieved by upper pair stagnation.
Lastly, the lower pair stagnation matrix

Element | individual 1s | replicate 1s
7)3 ) T
P2 20— b—1 b—1
P1 0 b—1—=x

leads to the inequalities: 2l —b—1i+2 < 2i4 2 —[ from mating rule (2), and
2l — b — ¢ > 0, since all matrix entries must be at least 0. These equations
lead to 3¢ > 3l — b and 2l — b > ¢ which imply 3] > 2b, thus b < 37[ Thus

if b > 3
matrix.
Thus, we have proven the lemma, namely that the following limits on

b imply the following stagnation matrices be used to compute the HALMS

the HALMS point cannot be calculated by a lower stagnation
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value:

limit | upper pair | lower pair | outer pair
b > 37[ yes no no
b < 37[ no ves no

Lemma 2.18 Consider n = 3 and Genetic Invariance having stagnated on
Py and Ps . The Heuristic ALMS point, HALMS(b,n,l), is

ALMS(b,3,0) | if |2] +4
I

R
I ifb =2

b< 2] +3) and (b < 20)

Proof: By the arguments in lemma 2.13, stagnation can never happen at a
value of less than b—[. The case (242{—b,b—1—2,b—1) is valid when L?’—ZJ < b.
The uppermost & — [ — 2 bits are duplicates, with the other 2 duplicates in
Py1. This ensures stagnation, resulting in a limit of ALMS(b,3,1) =b—[.

Next, consider the upper pair stagnation matrix from lemma 2.17. The
mating technique described in the introduction allows us to conclude the
following stagnation equations:

1. i+(b-1l—-2)>2

2. i+ (b—l—-a)>2z—-20-b—i4+b—-1—-2)

3. i+(b—Il-2)=2—-(2l-b—i+b—-1—2)and
z—l—(b—l)—x>2[—b—z—|—(b—l)

where equation (1) and either equation (2) or (3) is true. This reduces to (1)
and either (z > g) or (z = g,iZl—g). If 2 = g then f(Pp)=1i1+b—1>

x 4+ 2 > [, which is a contradiction. So consider z > g b—1>z > g,

therefore b > 37[ Interestingly enough, 2 < L%J + 3 implies 7 = L%J +3—2

due to heuristic (1). The only exception is the case b = 37[ where we must

use ¥ = g to get a minimum bound of [. If b — [ is small because [ is
small, heuristic (1) may hamper this solution. When is this the case? By
substitution of the minimum value into the array, it is evident that the top

2 individuals will be far enough apart when [ > 5 for b > 37[ and [ > 4 for
b=2

2..
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Lemma 2.19 Consider the case n = 3, with stagnation on the bottom. The
stagnation point, HALMS(b,n,l), is

_|_

3] 18] -2
| |ifi<o<|

151
-

@lIN

b<[4]-1
[

3

o |

ol

Proof: Consider the stagnation point (b—1,b—1+ L%, |- Lg)J much like
in lemma 2.13. This holds when the Hamming distance of the bottom two
individuals is less than 2, which is when b > L%ZJ — 3. When this case does
not hold, consider the lower pair stagnation matrix from lemma 2.13. From

this and our heuristics, we get the following;:

L 20+a>b+i+2
2. 3l<b+3i

The limit point is obtained by combining f(P3) = i 4 « with (2) and (1),
which produce limits on ¢ and z respectively f(Ps3) =1+ 2 > [g] +2.m

For [ extremely small, some of the stagnation conditions required above
cannot be met. This is when [ < 4. In this case, the formulas produce lower

bound values greater than [, which is clearly not correct. These cases are
accounted for in the analysis of HALMS(b,n,[), [ < 4.

Lemma 2.20 HALMS(b,n,l) =1 for n =3,1 < 4,1 <b.

Proof: Proof is by enumeration of cases. m

Lemma 2.21 Consider Genetic Invariance stagnating on 'P; and P, with b
arbitrary and n > 3. Define function C where C(P,) is the set of columns in
P, which have the value 1. The population can be divided into an (ordered)

list of ¢ groups of individuals gy, ..., 94 such that the following properties
hold:

1. Fach group is contiguous.

2. Let P, be a member of group g,. Then, for any member Py with k > ¢,
we have C(Pr) C C(Py).

3. The groups are mazimal with respect to properties (1) and (2).
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4. The f difference between any 2 (adjacent) groups is at least 3. Since
the list is ranked, a difference of at least 3 between adjacent groups
implies an f difference of at least 3k between group © and group 1 + k,
for any groups 1 and v + k.

Proof: Start with each individual being in its own group. This will validate
properties (1) and (2) (since no two individuals are in the same group yet).
To validate properties (3) and (4), the groups must be merged into larger
groups, such that at the end, each group’s individuals are separated from
another group’s individuals by at least 3. Note that property (3) will usually
eliminate the trivial solution of having each individuals in its own group,
while property (2) will most likely ensure that they do not all merge into
the same group. The partition is unique, since the process to construct it
from the trivial partition ¢ = n, gr = {Pr} does not allow any choices to
be made.

We must now state the partition merge rule. This rule will be proven to
be consistent with properties (1) and (2) (applying them to a consistent set
will give you a consistent set) and will be shown to attain a unique solution
which validates property (3). Finally, the unique solution will be proven to
validate property (4). Note that since the merge is a set merge, the order
in which it is applied is irrelevant.

The first thing we have to find out is when not to merge two groups. This
is rather obvious. In order to merge groups, they must be consecutive groups
in the list of groups (which will result in a consecutive list of individuals
within the group) and they must maintain property (2). Property (2) is
maintained by noticing the properties of the highest individual of the lower
group (P,) and the lowest individual of the higher group (Py41). Property
(2) will be maintained iff C(P,) C C(Py41). This is due to the transitive
nature of subset. If the subset property holds on these two individuals, it
will hold on any within the combined set. If it doesn’t there is at least one
pair in any contiguous set starting at Py, & < x and continuing to Py, z < ¢
which does not follow this property, namely P,,P,11, thus any attempt at
building other partitions will result in smaller groups, clearly violating point

Property (4) can be proven by case analysis on the possibilities of both
the stagnation pair P;,P; and the group boundary individuals P,, P,
such that P, is the highest individual in group g, and P,4 is the highest
individual in group g,4+:. The following table represents this case analysis.
Note that at maximum split of P; and P;, their f difference and Hamming
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distance must be equal.

=P, Pi) | [~ (Py,Pyg1) | Hi(Py, Pry1) | Possible? | Reason
<2 No Rule 1
2 <2 No Rule 2
2 2 > 2 No Rule 3
2 2 <2 No | [ < H,
2 >3 Yes
>3 >3 Yes

The first 3 cases are eliminated by the first 3 mating rules. The fourth
case is eliminated because f~(P., Pyy1) < Hi(Py, Pys1). The last 2 cases
support the lemma in any case, therefore they need not be analysed. Thus,
by case analysis, any two group boundary individuals must have a separation
of at least 3. Note that because of the definition of groups and stagnation,
the stagnation pair must be in the same group. m

Lemma 2.22 Let M, be the value of the mazimal invidual MFE, in the
group g-. Then; Zf:l Mz > l.

Proof: To prove this, it is only necessary to show that each column con-
tributes at least one 1 to the overall sum. Thus the total sum must be greater
than or equal to [. Consider any column z. b > [ therefore 3y|P,, = 1.
To put it another way, « € C(P,). But we know that the maximum
individual in the group is a C-function superset of this individual, thus
3z, Pyl((z € C(Py)) A (C(Py) C C(ME,))), thus « € (C(ME,)), and since
M, = f(ME.), column z contributes its 1 through at least one group,
namely z. Thus, Zle M, >0 =

Lemma 2.23 HALMS(b,n,l) =LMS2(b,n,l) if n > 3.

Proof: Consider lemmas 2.21 and 2.22, and 2.10. Consider each group as if
it was an individual. These groups form a sequence of integers summing to
[, differing by at least 3, Therefore by lemma 2.10, the top group must have
a value at least equal to LMS2(b, ¢,1). Note that in lemma 2.10 we used the
difference of the bottom individuals to prove the property of the sequence,
while in this case the property of the sequence was proven, therefore the
values of the bottom two individuals do not matter. The triangle must be
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at least (0,2,5,8,...), with some value added to the entire series. In the
worst case, an arithmetic triangle will be formed with the remaining value
being distributed evenly over the groups. Since the value of ¢ is generally

not known, the value n may be used as a limit on ¢, which results in the
limit being LMS2(b, n,1). m

One thing of further interest is that if each group has an internal f-
difference of ¢, the triangle will be constructed with an inter-individual dif-
ference of at least 3+, producing a lower bound of (3—|—6)MIN(A(L), N)+

_ 3+6
any remainder
—— .

THEOREM 2.4 Thus, HALMS(b,n,l) is

LMS2(n,b) |if (b<1)or(3<n)
l if (n=3), (b= 371) or (1 <4),(I<b)) or (b>2l))
ALMS(b,3,0) | if (n=3), (b> |2] +4), (5 <1< b<2l)
43 [ifm=3).(F+1<b<[F]+3). G
P53 |ifn=3). (1§ -2<0<[3§1-1). (<D
18 [im=3.(<t<b<[F]-3)
Proof: This theorem is proven by lemmas 2.15, 2.16, 2.18, 2.19, 2.20, 2.23.

Thus, the beneficial effect of the Hamming distance heuristic also applies
to the case where the number of 1s is arbitrary. The population can be
grouped where each group is differs in value from the previous group by at
least 3, achieving a lower bound of A(é)
2.4 Analysis of the Nature of Genetic Invariance

The previous section described lower bounds achievable on a simple function.
Even though this analysis has been done on a very simple function, it shows
several things about the way Genetic Invariance operates.

Genetic Invariance makes several assumptions about the nature of the
function and the nature of the population. Genetic Invariance assumes that
the population contians a fairly broad range of alleles in each column. This
can usually be guaranteed by insuring that each allele is given an equal
proportion of each column in P. So, if there are a alleles in a particular
column, the number of each allele will be [2] or [2]. Genetic Invariance
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also assumes that the function can be ordered in some manner, having a
distinct minimum (even though the number of minimands might be high)
and a distinct maximum. This assumption is true if we are using functions
from finite ranges to finite domains.

To determine the effectiveness of Genetic Invariance, we need to know
both the assumptions about the population, and how Genetic Invariance
operates. Genetic Invariance operates through value propagation. Mating
cycles occur, which cause superior schemata to propagate to the upper indi-
vidual in the mating pair, and inferior schemata to propagate to the lower
individual. This is seen most clearly in lemma 2.2, where all of the value
propagates to the upper individual in the mating pair. It was stated in the
previous section that stagnation occurs when the mating individuals have
a Hamming distance of less than 2. However, notice that the Hamming
distance between the mating pair determines the number of possible indi-
viduals that can be generated. Thus, a mating pair should be chosen so that
it has a large enough Hamming distance to separate. However, note that
a mating cycle is a random walk of the Hamming closure of the parents,
so unless a relatively small increase in value is desired, it is likely that the
cycle will not terminate quickly enough to produce adequate results within
a small period of time. Thus, Genetic Invariance mates the closest pair,
hoping that the Hamming difference is large enough to produce a notice-
able separation. Genetic Invariance assumes that the required improvement
(f7(Pi,P;)— f~(Py,Pq), where individuals k and ¢ have the second small-
est f difference) is small enough so that relatively little random search is
required to attain it.

Thus, the overall effect is that f~(P;,P;41) will increase, and thus
f7(P1,P,) will increase as superior schemata move from lower individu-
als to higher individuals and inferior schemata move from higher individuals
to lower individuals. This is seen in lemma 2.5 where an arithmetic triangle
is constructed in the worst case because of the minimal difference between
individuals. The minimal difference between the mating pair when stagna-
tion occurs thus controls the minimal difference in value between population
members. In the simple function, the stagnant pair was always found at the
bottom, leading to a minimal difference of 0 or 2, depending on whether
individuals with Hamming distance less than 2 were required to mate. The
other individuals provably had f differences greater than this value, leading
to a difference in value of 1 or 3. On more general functions, this observation
about Genetic Invariance should still hold: the lower bound on optimization
is governed by the minimum guaranteeable separation between individuals.
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Although this thesis does not consider the performance of Genetic In-
variance over general functions, there are some characteristics of Genetic
Invariance which would seem to apply to more general functions. The C
function in lemma 2.21 indicates that general lower bounds on local sepa-
ration (which directly affect global performance) can be done by exploring
the relation between the Hamming distances of individuals and the possible
separation of the individuals. The question then becomes “how much op-
timization must occur before the Hamming distances of nearby individuals
converge”. Answering this question will lead to a fundamental theorem of
Genetic Invariance.

2.5 Conclusion

A new adaptive algorithm, Genetic Invariance, is presented. Genetic In-
variance is a system which uses a ranked population, and mates adjacent
pairs of minimal function difference. Mathematical analysis is given which
proves lower bounds on a specific function, fy(z) = the number of ones in z.
This analysis provides a basis for the discussion on the properties of Genetic
Invaraiance. While the mathematical analysis was on a restricted case of
a simple function, it did indicate several properties of Genetic Invariance
which would apply to more general functions. The separation of superior
and inferior schemata causes a separation of value in individuals. Even-
tually, a minimum difference between individuals is reached, resulting in a
minimum difference between each pair of adjacent individuals in the pop-
ulation. Since a function with a finite domain has a defined lower bound,
it is possible to put a lower bound on the value of the maximal individual
in the population at stagnation. Analysis indicates that allele differences
between low valued and high valued schemata may provide clues about the
usefulness of Genetic Invariance on a problem.
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3 A Comparison of Genetic Invariance and Ge-
netic Algorithms

3.1 Introduction

This chapter will compare and contrast genetic algorithms and Genetic In-
variance. The emphasis will be placed on how the two methods work on
similar principles, even though they have different optimization strategies.
It is not the intent of this chapter to claim that either method is better than
the other. This chapter will concentrate on the similarities and differences
of these systems and how these similarities and differences affect function
optimization.

Section 2 will examine the similarities and differences in the structures
of the two systems, and how each structure achieves optimization. The
characteristics of these methods will be compared and contrasted.

Genetic Algorithms are often tested by function optimization. Section
3 will show the results obtained by using the two systems to optimize the
DeJong functions, a set of functions designed to test the performance of
Genetic Algorithms over a variety of function types. Genetic Algorithms
and Genetic Invariance will be compared to each other and to a simple
elitist random search.

Section 4 will discuss an implementation of the two systems, including
data structures for efficient selection of parents. The optimal runtime for
each method will be given in terms of the number of generations elapsed.

3.2 A Comparison of the Two Systems

Genetic Algorithms and Genetic Invariance are both evolutionary systems.
But what are their similarities and differences? A comparison of the two
systems will help understand in what way each system solves problems and
what problems each will work better on.

Recall from chapter 1 that Genetic Algorithms are based on the Schema
Theorem. This theorem assumes that a sampling of the population by pro-
portional selection of fitter individuals is feasible. As the Genetic Algorithm
searches for the optimal solution, the population converges to a particular
individual (or, in the case of mutation, to a set localized around a partic-
ular individual), and so does less and less exploration. At some point, the
algorithm terminates, and produces a solution. Problems such as premature
convergence, interference from mutation and genetic drift occur due to the
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selection system, when inadequate sampling is done or the sampling does
not reveal significantly superior schemata.

Chapter 2 shows that Genetic Invariance assumes that schemata are sep-
arable. Local separation produces global optimization. If schemata are not
separable, stagnation occurs. But both work well on zero epistatic problems
(although Genetic Algorithms sometimes needs a large population compared
to that of Genetic Invariance).

Although both are evolutionary algorithms, the Genetic Algorithm can
be thought of as a more active problem solving system, while Genetic In-
variance is more passive. Genetic Invariance actively promotes superior
individuals. Genetic Invariance simply lets schemata propagate up or down
in the population depending on their relative worth. Thus, the Genetic Al-
gorithm only produces maximands (and, thus, maxima), at the end, while
Genetic Invariance produces both maximands and minimands. Thus, a re-
searcher using Genetic Invariance can simply look at the entire population,
can analyze the similarities and differences in the top, bottom, and middle
of the population to see what did work, what did not, and what was neither
good nor bad.

But Genetic Invariance employs some of the features designed to improve
Genetic Algorithms. Only two individuals are selected and replaced at a
time, similar to Steady-State Genetic Algorithms. Recall from chapter 1 that
this causes any superior or inferior schemata produced to be immediately
available to reproduce in the next generation. Sharing and crowding are not
needed, since genetic diversity is naturally maintained in Genetic Invariance.
Although all alleles (thus, all schemata) may not be producable from any
particular pair, they will be present in the population, and so available for
use. Genetic Invariance is also similar to Parallel Genetic Algorithms in that
local optimization is propagated between subpopulations to achieve global
optimization. In the case of Genetic Invariance, each adjacent pair can be
thought of as a subpopulation. Although these features do not necessarily
make Genetic Invariance better than Genetic Algorithms, they do appear to
add to its potential.

A summary of the characteristics of Genetic Algorithms and Genetic
Invariance is given in table 3. Fach method has its successes and failures.
The next section will explore how these successes and failures are shown by
empirical analysis.
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Genetic Algorithm

Genetic Invariance

Optimization Method Convergence Stagnation

f Evals per Generation | n 2

Diversity Artificial Natural
Endpoint Convergence Stagnation

End Values Maxima Maxima,Minima,

“Simple” Functions

0 Epistatic (7)

0 Epistatic

Table 3: Characteristics of Each Method

3.3 Empirical Analysis

3.3.1 Introduction

This section shows the results of testing Genetic Algorithms, Genetic In-
variance, and random search on the DeJong test suite. These results are
analysed, showing several properties of each system.

3.3.2 The DeJong Test Suite

Function optimization is a common test of Genetic Algorithms. Among the
functions Genetic Algorithms are tested on, the most common is the DeJong
Test Suite. DeJong [Del75] designed 5 functions with varying properties.
Although the properties of the functions, namely modality, convexity, and
continuity, indicate that the functions are of differing natures, this is only
true in Cartesian space (and thus, only true for Cartesian function optimiz-
ers). The notion of modality, continuity, and convexity is much different in
Hamming space.

We added the function f, to the 5 DeJong test functions, f; to fs, to
see how each method would perform on this allegedly simple function. The
functions are listed in table 4.

Functions f; through f; are the 5 DeJong test functions, copied from
[Gol89b]. For f,, the variable x is a binary number of arbitrary length.
No further encoding was required. For f, to fs, each x; was encoded as a
sign-magnitude integer, and divided by an appropriate amount to obtain the
range. For example, f, was encoded as a 24-bit binary number, composed
of 2 12-bit sign-magnitude integers, having 1 sign bit and 11 data bits each.
Function f; was maximized, and functions f; to f; were minimized by

maximizing f, ,.—f. The “noise” in function 4 was created by the following
function: —6 + Y12, RANDOM(0,1), where RANDOM{(0,1) is a random
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f Mathematical Expression Limits s
fo | The number of 1 bits in « 0<z < 2!
f Yooy 2 —5.12 < ; < 5.12 81
fo | 100(2% —22)? + (1 —a1)* | —2.048 < x; < 2.048 | 3700
/3 >t L] 512 < 2; < 5.12 25
Fi |0 iaT + NOISE(—6,6) | —1.28<a; <1.28 | 1030
1 J— .
L oy p— 65.536 < x; < 65.536 | 500
/= J+Zi:1(‘ri_ai])6

Table 4: Table of Test Functions

value from the uniform distribution on (0,1). Function f, was also designed
to test performance on a large number of dimensions. fj’s constants, a;;,
are found in table 5.

First dimension Second Dimension
—32 | —-16 |0 | 16 | 32 -32 (-32 | -32|-32 | -32
—32 | —-16 |0 | 16 | 32 -16 | -16 | -16 | -16 | -16
—32 | —-16 |0 | 16 | 32 16 16 | 16 16 | 16
—32 | —-16 |0 | 16 | 32 32 | 32 | 32 | 32 | 32
—32 | —-16 |0 | 16 | 32 0 0 0 0 0

Table 5: Constants for DeJong function f5

3.3.3 Empirical Results of Genetic Algorithms

Graphs 4 to 26 show how the value of the maximal individual in the Ge-
netic Algorithm’s population varies with the number of function evaluations
performed. One function evaluation is performed for each individual tested.
The Genetic Algorithm is used without any modifications such as Crowd-
ing or Sharing, or the use of Parallel Genetic Algorithms or Steady State
Genetic Algorithms. However, a small mutation rate (0.01), was present
and the Genetic Algorithm was tested both with and without elitism. The
graphs show the averages obtained over 20 test runs.
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The genetic algorithm performs well on most of the functions. Figures
4 to 9 show how the value of the maximal individual in the population
varies over time for all 6 functions. Figure 10 confirms DeJong’s note that
small populations initially optimize faster, but larger populations outper-
form them in the long run [Del75].

Figure 11 shows that Genetic Algorithms perform better with Elitism.
Elitism with mutation keeps improving its maximum value until it has
achieved the maximal value. Even though the population can converge to
n copies of a single individual, mutations are retained if they are beneficial.
Thus an extremely slow growth rate will be noticed even after the population
has converged. This is because mutation, with a very low probability, will
cause some individuals to rise slightly in value. Thus, even though growth
is still possible, it may require hundreds or thousands of generations.

Genetic Algorithms perform poorly without mutation. In the problems
sampled, the maximum value of the population in the simple Genetic Algo-
rithm with no mutation rises in value and then falls in value as the popula-
tion converges. This is the point where the superiority of superior schemata
is balanced, and outweighed, by the quantity of inferior schemata. Genetic
drift starts to occur, slowly decreasing the overall worth of the population
as drift occurs towards the more numerous lower valued schemata. This is
shown in figures 12 and 13.

Elitism, naturally, does not allow for the previous sort of drop in max-
imum value. This method has the effect of distributing the maximal indi-
vidual’s schemata over the inferior individuals. Thus, the current maximal
schemata will replace inferior individuals, resulting in a higher growth rate.
Figure 11 shows the effects of adding elitism to the Genetic Algorithm.

Mutation is a complex issue. While it does allow for greater genetic
diversity, it also has its drawbacks. It increases the growth rate by mutating
inferior schemata, while it decreases the growth rate by mutating superior
schemata. Thus, at the beginning, the mutation rate will allow for greater
diversity at very little expense, since the growth rate will usually be high and
will not be greatly affected by a slight mutation rate. At the end, where the
difference between superior and average schemata is much less, interference
from mutation occurs, resulting in oscillation in a wave-like pattern. This is
shown by the solid and dashed lines in figure 10.
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Figure 4: Performance of the Genetic Algorithm on f
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Figure 5: Performance of the Genetic Algorithm on fy
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Figure 6: Performance of the Genetic Algorithm on f,
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3.3.4 Empirical Results of Genetic Invariance

Genetic Invariance was run as described in chapter 2. As with Genetic
Algorithms, the graphs show how the maximum value in the population
varies with the number of function evaluations performed. The graphs show
averages obtained over 20 runs.

The first function of note is f,. As can be expected for a method that
assumes zero epistasis, Genetic Invariance performed extremely well on this
problem. This is, in fact, one of the easiest non-trivial functions for Genetic
Invariance to solve. All of the population sizes, from 20 to 200, performed
well on all of the string sizes, from 20 to 200. Figure 14 shows that Genetic
Invariance performs well on this problem, even with low population sizes
compared to the number of bits.

Figures 15, 17, and 18 show that Genetic invariance performed well on
functions fy, fs, and f,. However, figure 16 shows that Genetic Invariance
performed poorly on function f, and did not do much on function f5. There
are several possible causes for Genetic Invariance’s poor performance on f.
First of all, the multimodality of the two functions can cause disturbance
in Genetic Invariance, since two conflicting maxima (maxima from different
peaks) will tend to combine and may cause a notable reduction in both val-
ues. Second, the large range that was being optimized by Genetic Invariance
may have adversely affected the precision of the optimization. Both prob-
lems not only required that the tested algorithm search for a point near the
optimal, they also required a close search of the optimal space. Genetic In-
variance concentrates on exploration, and so is not designed to concentrate
search on an area. These problems should be investigated in future papers.

Overall, genetic invariance performed well on functions with a small
range compared to the size of the domain. It performed particularly well
on functions with near-zero epistasis, or functions that can be ranked to
near-zero epistasis. From the way the functions were designed, it can be
said that Genetic Invariance is not highly affected by multidimensionality
(actually, epistasis, not dimensionality, is the primary concern of Genetic
Invariance). Genetic Invariance performed poorly when asked to optimize a
function with a large range and small domain.

3.3.5 Empirical Analysis of Random Search

Random search is simple to understand. It involves randomly generating an
individual, testing it, and keeping the best individual seen.
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Random search is not expected to outperform any other problem solver
on any specific problem. However, it is useful to know in which cases a
problem solver utterly fails at its task. Figures 20 through 25 show the
performance of random search on functions f, through f5.
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n = 50,u = 0.00
Figure 20: A Random Search on Function f,

Random search used an elitist approach: each “generation” 50 individ-
uals were tested and the current maximum individual was replaced if the
population contained a higher individual. This provides yet another search
technique that can be compared with the two evolutionary approaches.

3.3.6 A Comparative Analysis

For function f,, Genetic Invariance clearly outperformed the simple genetic
algorithm, as can be seen from figures 4 and 14. Figure 26 shows what
happens when a small population is used on this function. The result is
genetic drift, causing only small amounts of real optimization and large
amounts of convergence to average valued schemata.

For function f,, Genetic Invariance outperformed both random search
and the simple genetic algorithm. The random search performed poorest,
even doing less than the genetic algorithm with a relatively small population
size (20). Figures 5, 15, and 21 show that Genetic Invariance performed both
more efficiently and more quickly. However a random search, if done long
enough, would outperform either method. The simple genetic algorithm
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fluctuated at high values where the speed of convergence was outweighed
by mutation. At this point, it would have been profitable to decrease the
mutation rate, probably to 0, and let the genetic algorithm converge.

Function f, appears to be an anomaly, since a random search appears
to outperform both the simple genetic algorithm and Genetic Invariance.
However, the “spreading” nature of Genetic Invariance was not designed to
optimize a function with such a high range. This distributive nature in fact
is bad for this function since the maximal value actually drops. The Genetic
Algorithm converges on this function, but not quickly enough to optimize
it. The maximal value can only grow another 1 point in 3700, less than 0.03
percent of the total value. Genetic drift becomes a prominent factor since
the amount of growth is almost meaningless compared to the overall value
of the population. Convergence will be random, and schemata of only mod-
erate worth can be dominant in the converged population. Elitist Genetic
Algorithms would perform better, since superior schemata would be pre-
served. Elitist random search does not have a problem with convergence or
separation size. It slowly and steadily increases in value, making it perform
better than either of the two evolutionary systems.

The step property of function fs makes it an interesting function. The
values of an elitist random search will tend to form a step-like graph similar
to the graph of the function as the random search take longer to reach higher
steps. The graphs show that the maximum value of the 10,000 random
selections does not outperform the simple genetic algorithm. The simple
genetic algorithm reaches fair values in moderate time. Genetic Invariance
reaches excellent values in small amounts of time, clearly outperforming
both other techniques.

For function f,, Genetic Invariance is also the clear winner. The simple
genetic algorithm performed better than a random search, but was still grow-
ing slowly at 10,000 evaluations. However, Genetic Invariance performed
quite well, achieving optimal values in little time. Note that although the
maximum value of the non-random component was 1030, the fluctuation of
the random factor produced results above this value. Thus, a maximum
value of 1036 was achievable, but only through both a superior individual
and a superior value from the random factor.

Function fy was optimized well by both the random search and the sim-
ple genetic algorithm. The genetic algorithm achieved higher results in less
time than the random search. Unfortunately, Genetic Invariance performed
poorly, hardly achieving any improvement over the initial population. This
is most likely the result of stagnation early on, and suggests that methods
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to reduce the probability of early stagnation would be beneficial to Genetic
Invariance.

3.3.7 Conclusion

The three strategies, Genetic Invariance, Genetic Algorithms, and Random
Search, were tested on f; and the DeJong Test Suite. Results showed many
of the characteristics of both systems, including genetic drift and interference
from mutation in Genetic Algorithms, and stagnation in Genetic Invariance.
Genetic Invariance worked well on low-epistatic functions, where schemata
were easily separable, while Genetic Algorithms worked well on problems
where convergence aided optimization. Random search performed better on
one function where the amount of optimization possible was extremely small
compared to the total overall function range.

3.4 Data Structures

How can Genetic Invariance and Genetic Algorithms be implemented effi-
ciently? Recall from figures 1 and 3 that the two methods select individuals
from the population, mate them with crossover, the Genetic Algorithm per-
forms mutation, and then the population is restructured. Each function
evaluation is assumed to take at least O(l) time, since there are [ bits in
each individual. Thus, the rest of the algorithm should optimally take at
least O(!) time per individual evaluated.

In the case of Genetic Algorithms, crossover, mutation, and population
restructuring take O(nl) time. Selection can be implemented efficiently by
assigning each individual a third characteristic: the sum of the values of
previous individuals. In this manner, each parent can be chosen in O(log(n))
time by performing a binary search on the sum of values. Fach generation, n
function evaluations are performed, resulting in O(nl) time per generation.
Thus, Genetic Algorithms require O(nl+nlog(n)) time per generation. Since
log(n) should be smaller than [ (otherwise, the population size would exceed
the function’s domain size, and thus an exhaustive search would be possible),
the runtime is O(nl) per generation.

In Genetic Invariance, only two individuals are selected each generation,
resulting in O(1) time for crossover. Recall that no mutation is performed in
Genetic Invariance. Two function evaluations take O(l) time. Thus, selec-
tion and restructuring should optimally take O(!) time. O(log(n)) selection
can be done using a heap of function differences [AVAUR3]. Consider a mat-
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ing cycle. After it is over, the two individuals will split, separating two other
pairs somewhere in the population. Thus, five function differences need to
be deleted and re-inserted each generation: the differences between the two
mating individuals, the difference between each of them and its non-mating
neighbor, and the difference between the two pairs which will be split. Five
heap insertions take O(log(n)) time, thus O(log(n)) time per individual is
required. Restructuring the population can be accomplished by making it
a binary tree [AVAUS3]. Deletions and insertions can be accomplished in
O(log(n)) time, and the ability to quickly select individuals is maintained by
having pointers from the individuals in the heap to the 2 adjacent individuals
in the tree. Thus, in Genetic Invariance, a constant number of individuals
are updated in O(log(n)) time. Since log(n) < [, Genetic Invariance can be
said to update a constant number of individuals in O(l) time.

3.5 Conclusion

Similarities and differences between the two methods were discussed. Ge-
netic Algorithms were shown to be an active function optimizer in that it
concentrated its effort on finding optimal values. Genetic Algorithms use
roulette wheel selection to implement Darwinian selection, which does per-
form adequate optimization, but can lead to premature convergence, inter-
ference from mutation, and genetic drift.

Genetic Invariance causes local separation, which in turn causes global
separation. Superior schemata are propagated upwards in the population,
to combine with more superior schemata, while inferior schemata propagate
down, to combine with more inferior schemata. The result is optimization
without convergence. While Genetic Invariance does not have problems
with interference from mutation, genetic drift, or premature convergence, it
has the problem of stagnation. If two mating individuals cannot separate,
no more work can be done. Several features used to improve the Genetic
Algorithm are natural to Genetic Invariance. Genetic diversity and the use
of localized mating and mating few individuals at once are all inherent to
Genetic Invariance.

Empirical results of the Genetic Algorithm and Genetic Invariance were
discussed. Random search was also tested, to determine the effectiveness of
each method. Fach was tested on function f, and the five DeJong functions.
The maximal value seen at any given time was graphed against time, rep-
resented by the number of function evaluations done. Genetic Algorithms
showed the features of premature convergence, genetic drift, and interference
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from mutation. Even so, they performed well on several of the functions.
Elitism caused an improvement in the overall performance of the Genetic
Algorithm. Genetic Invariance worked well on three DeJong functions, but
performed poorly on the others. Genetic Algorithms outperformed both
other problem solvers on function f5, while Genetic Invariance worked bet-
ter on functions fg, fy, f3, and f,. Random search performed best on
function f,, where the amount of optimization possible was insignificant
compared to the overall value of the function.

Finally, Data structures suitable for each were discussed. A simple binary
search may be used to make the Genetic Algorithm selection process efficient,
while Genetic Invariance is more complex, requiring a tree and a heap to
run efficiently. Both methods resulted in the minimum runtime of O(!) per
function evaluation, under the assumption that each function evaluation
takes at least O([) time.
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4 Conclusion

An adaptive search algorithm is a system that modifies is search strategy
based on the data it collects. A Genetic Algorithm is an adaptive search
algorithm that uses generate-and-test data collection and employs a popu-
lation of elements. The initial population is randomly generated, and sub-
sequent populations are created by using processes modelled after genetic
sexual and asexual reproduction. Genetic Algorithms use roulette wheel se-
lection based on the Schema Theorem. The Schema Theorem states that
individuals should be assigned a probability of mating proportional to their
relative values, which causes schemata to grow in quantity at a rate expo-
nentially proportional to their quality. Function optimization was noted to
be the standard method for testing Genetic Algorithms. Several problems
occur when using Genetic Algorithms, including deception, premature con-
vergence, interference from mutation, and genetic drift. Sharing, Crowding,
Elitism, Steady-State Genetic Algorithms, and Parallel Genetic Algorithms
have been proposed by other researchers to solve these problems.

We introduced Genetic Invariance, an evolutionary system based on the
separation of value. This method was of particular interest to us because
no where does it specifically select for optimal values. Rather, optimization
is accomplished by side effects of its overall behavior. We have given a
mathematical analysis on a restricted case of a simple function, and various
properties of Genetic Invariance were noted. Implications of the properties
and mathematical analysis were given, showing that in general, Genetic
Invariance separates superior and inferior schemata, causing a separation
between the minimal and maximal individuals in the population. This,
combined with the fact that the functions we are using have defined lower
limits, indicate that it is possible to put a lower bound on the maximal value
achieved by Genetic Invariance.

Similarities and differences between the two methods were discussed. Ge-
netic Algorithms use roulette wheel selection, which causes the population
to converge. Genetic Invariance uses local separation, to indirectly cause
global optimization. Both were tested on the DelJong functions. Genetic
Invariance worked better on four of the functions, but performed poorly
on the other two. Genetic Algorithms worked well on five functions, out-
performing Genetic Invariance on one of the functions. They were tested
against Random search, which performed better on one function where the
amount of optimization possible was considerably smaller than the overall
function value. Data structures were given for both, which indicated that
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an O(!) runtime per function evaluation was possible for each system.

The nature of this thesis was not one of determining which system is
better. Each method is better for a different set of problems. Instead, this
thesis explores the similarities and differences of the two methods. Genetic
Invariance requires separability and produces separation. Genetic Algo-
rithms require separation and produce optimization. An exploration of a
combination of the two methods would be useful, since each can succeed in
cases where the other will fail. Allowing each method to run for a number
of generations is a possibility, as Genetic Algorithms will trim unprofitable
schemata from the population while Genetic Invariance will separate the
population, which will reduce the probability of genetic drift.

Maintaining invariance does not require that adjacent pairs be mated.
Any pair can be chosen as parents as long as they are replaced by their
children. Other methods are more flexible, and are likely to produce better
results. Useful optimization can involve mating any pair, assigning proba-
bilities of mating based on Hamming distance and similarity of value. The
pair would then be mated, and replace the parents if some condition was
met. Two conditions suggest themselves as being feasible. If the children
produced have a higher difference in value, they can replace their parents.
Alternatively, the children could replace their parents if the children’s cu-
mulative or maximal value exceeds the parents’ value.

For parallel computers, Parallel Genetic Invariance is possible. Selecting
a number of closest pairs, then mating them can be done, although steps
would have to be taken to insure that no pair interferes with any other pair.

Genetic Diffusion, adding mutation to Genetic Invariance is possible.
This is not recommended, since the mutation rate should be extremely small
and directed at modifying the values of the lowest ranked individuals. This
may produce a high maximum, but will also cause the minimum to increase.
This is not recommended if an overall view of the function is desired. An-
other method is replacing the lowest individual by a random individual every
few generations. This will have an effect similar to mutation: a higher max-
imum is possible, but at the expense of an overall view of the function.

Genetic Algorithms have the Schema Theorem. A similar fundamental
theorem of Genetic Invariance would allow for more effective research in
Genetic Invariance. This theorem would show what function properties lead
to local separation and which do not. Also, the amount of separation that
can be achieved before stagnation can be mentioned.

This thesis is only a start in exploring the fundamentals of Genetic In-
variance and evolutionary systems. Although some basic explanations about
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the nature of Genetic Invariance were given, further research is necessary
before Genetic Invariance is understood even as well as Genetic Algorithms.
From this, the nature of evolutionary systems can be studied, and the ben-
eficial and unnecessary features of these systems can be explored. This will
lead to more efficient evolutionary systems in particular, and more efficient
problem solvers in general.
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A Glossary

The number of 1 bits in the population.

{wlz,, = 1}.

The number of duplicate columns in the population.
A function.

The number of 1 bits in z, 0 < 2 < ol

S =512 < ;< 5.12

100(2% — 23)2 + (1 — 21)?, —2.048 < x; < 2.048
> lee], =512 < 2y < 5.12

S0 it + NOISE(—6,6), —1.28 < z; < 1.28

e - , —65.536 < x; < 65.536

The f sum: f(P,)+ f(Py).

The f difference: |f(P,) — f(Py)l.

the Hamming distance between z and y.

Length of an individual.

Population size.

A Population of n individuals.

The ith individual of P.

The kth bit of P;.

The population after ¢ restructurings.

The current time step.

The zth triangular number.

The inverse of T'(z).

The mutation rate .

0.0024) "

The crossover of P; and P;.
The number of C-superset groups in P.

Table 6: Definitions of Commonly Used Variables
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Allele The value of a column in an individual.

ALMS point The minimal value achievable by Genetic Invariance when it
stagnates on f,, with the b 1s evenly distributed over the columns.

Convergence The restriction of search to a smaller domain.
Crossover A method of combining 2 parents, which produces 2 children.

Defining Length The defining length of a schema s is the distance between
the first and last fixed alleles of s.

Elitism FEnsuring that the fitness of the population does not drop. If
fmw(P(t)) < fmw(P(tH)), then the fittest individual in P() replaces
the least fit in P+,

Epistasis A function is epistatic if there is a dependence among bits such
that the contribution of one bit to the value of the individual is de-
pendent on the other bits in the individual. A function without bit
dependence has 0 epistasis.

Genetic Algorithm An adaptive search strategy using roulette wheel se-
lection to achieve Darwinistic evolution of superior individuals.

Genetic Drift A problem with Genetic Algorithms which occurs if supe-
rior individuals are of only slightly higher value than average individ-
uals.

Genetic Invariance An adaptive search strategy employing local separa-
tion to achieve global separation, and thus, optimization.

HALMS point The minimal value achievable by Genetic Invariance when
it stagnates on f,, with the b 1s evenly distributed over the columns,
with several heuristics added to Genetic Invariance.

Higher P, is higher than P, in Genetic Invariance if z > y.

Individual An [ bit binary string.
Invariance Viq,t2,7,> 1, plto - S plla),

g g

Initialization A method of creating P(©).
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LMS Point The least maximum under stagnation in the 1 bit per column
case of f.

Lower P, is lower than P, in Genetic Invariance if 2 > y.
Mating Scheme A method of generating PUHD from PO,

Mutation The probability that P;k is replaced by _‘P;’k when children are
generated.

Order The order of a schema s is the number of fixed alleles in s.

Selection The process of choosing parents from PO,
Roulette Wheel Selection: The probability that P; will be selected as

: f(Pi)
a parent Is ———=>5—-
S F(Py)
Stagnation The time at which Genetic Invariance is no longer productive.
Thus, the point at which the value of Py cannot increase.

Value Divergence Increase of f~(Pq,P,) in Genetic Invariance.

Table 7: Definitions of Commonly Used Terms
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