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Abstract

Genetic algorithms are adaptive search algorithms which generate

and test a population of individuals� where each individual corresponds

to a solution� They then adapt to the information obtained from test�

ing� seeking superior solutions by selecting and combining solutions

of above average value� As the number of superior individuals in the

population increases� the number of inferior individuals decreases� This

thesis introduces Genetic Invariance� a similar family of generate and

test problem solvers which uses a di�erent selection and replacement

strategy� In the best case� it achieves superior solutions without elim�

inating inferior characteristics� Although characteristics may initially

be associated with inferior solutions� they may prove to be superior

when combined with other particular characteristics� Mathematical

analysis of lower bounds of Genetic Invariance on a simple function is

given� and several properties of Genetic Invariance are explained using

this analysis� A comparison and contrast is done to show how the two

selection strategies achieve optimization in di�erent ways� An analysis

of the assumption and strategies of each system explains likely bene�

�cial and detrimental e�ects of each system� while empirical analysis

is given which demonstrates these e�ects� Together� they show each

system�s features and drawbacks�
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� Genetic Algorithms

��� Introduction

A Genetic Algorithm is an adaptive search strategy which employs selec�
tion of �tter individuals� similar to Darwinian evolutionary theory� In this
approach� a population of individuals is chosen from the set of possible solu�
tions� A number of �not necessarily distinct� individuals from the population
are chosen based on their relative performance� These individuals are mated�
and the children produced form the next generation� This selection and re�
placement strategy creates several interesting phenomena� Section � de�nes
various terms used in the analysis of Genetic Algorithms� Section � explains
the structure of the Genetic Algorithm� while section � explains the Schema
Theorem� the fundamental theorem of Genetic Algorithms� and shows that
it states that in an ideal case� a characteristic grows at an exponential rate
based on its quality� While research has shown that this promotes superior
characteristics� Genetic Algorithms also have their �aws� Section � explains
various problems that have been noticed in applying the Schema Theorem�
Section � summarizes various solutions that have been proposed and their
e�ects on the Genetic Algorithm�

The remaining part of this thesis is organized as follows� Chapter � intro�
duces Genetic Invariance� This generate�and�test problem solver is similar
to Genetic Algorithms except that the selection and replacement strategy
is di�erent� Instead of selecting superior individuals to achieve superior
characteristics in the population� Genetic Invariance simply mates pairs of
closest value� A local separation is achieved� which produces a global sep�
aration� and thus global optimization� Analysis of Genetic Invariance on a
restricted problem is given� which shows several things about the nature of
Genetic Invariance�

Chapter � compares and contrasts Genetic Invariance and Genetic Algo�
rithms� It is not the intent of this thesis to show that one is better than the
other� Instead� their optimization methods will be compared� and their per�
formance on several functions will be given� The strengths and weaknesses
of each system will be explored� and an overview of the implementation
details will be given�

��� De�nitions

A Genetic Algorithm requires a population to operate� A population is a set
of individuals� taken from the set of possible solutions� The population is
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denoted as P and Pi is an individual in P� An individual can be thought of
as a series of binary digits� More generally� P can be a series of characters�
called alleles� Let the number of alleles in Pi be l� and the jth allele in
individual i be Pij � � � i � n� � � j � l� Parents are individuals which are
mated in some way to produce children� A new population� the next gener�
ation� is chosen from the original population plus the children� The original
population� randomly chosen from the domain� is P���� and the population
after t generations is P�t�� Each generation� the Genetic Algorithm generates
P�t��� from P�t��

With these terms de�ned� it is now possible to de�ne a schema �plural�
schemata�� A schema is a subset of the domain� It can be represented
as a vector of l symbols from the set f
� ���g� much like an individual�
The hyperplane is de�ned as the set of individuals which match the de�ned
positions �
 or �� in the schema� The � character matches both 
 and ��
Thus� the schema 
������
 matches both 
��
��

 and 
�

���
� but
not 


�
��
� The notion of a schema is used in analysing the propogation
of superior groups of values from generation to generation� Schemata have
two characteristics� The order of a schema is the number of �xed �non ��
symbols in the schema and the de�ning length is the length from the �rst
to last �xed position� Thus� the schema ��
���
�
�
� has order � and
de�ning length ��

The Hamming distance between two individuals� Hd�Pi�Pj� is the num�
ber of positions in which the two individuals di�er in value� Thus� 
�

�

and �
�

� have a Hamming distance of �� We de�ne the Hamming closure
of � individuals Pi and Pj � Hc�Pi�Pj�� to be the schema h with the smallest
order that includes both P i and Pj �

hk �

���
��


 if Pik � Pjk � 

� if Pik � Pjk � �
� if Pik �� Pjk

We also de�ne the Hamming size of this space� Hs�Pi�Pj�� to be the size of
the set de�ned by h� Thus� 
�

�
 and �
�

� have a Hamming closure of
���
�� and a Hamming size of ���

Now that alleles� Hamming space� and schemata have been de�ned� it
is possible to de�ne crossover� Crossover is a method modeled after sexual
genetic reproduction� which takes � individuals as parents and produces �
children� Thus� crossover is a function X � �Pi�Pj�� �P

�

i�P
�

j�� There are �
types of crossover used in evolutionary systems� point crossover and uniform
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crossover� Point crossover requires a parameter� which is the number of
points at which crossover occurs� This number is usually constant� and is
usually kept at � or �� An a point crossover divides the � individuals at a
random points� and exchanges alternating groups� An example of � point
crossover is given in table �� The dashes indicate where crossover occurs�

Pi ���� ��


� ��



Pj �
�� 
�
��� 

�


P
�

i ���� 
�
��� ��



P
�

j �
�� ��


� 

�


Table �� Point Crossover

Uniform crossover swaps each column with some probability� checking
each column independently� Uniform crossover can be done by generating
a bit string of length l� with a 
 indicating no swap and a � indicating a
swap� Thus� 

��
�
���

 would indicate that bits ������	��� and �
 are
to be swapped between the parents to obtain the children� An example of
uniform crossover with this string is given in table �� The swap vector is
denoted as x�

Pi ��

�
���




Pj �
�
���
�
��

x 

��
�
���



P
�

i ���
���
�




P
�

j �


�
���
��

Table �� Uniform Crossover

Uniform crossover is used in this thesis because it is more general� and
thus more powerful than point crossover in diverse problem solving� Uni�
form crossover can produce all children produceable by all possible point
crossovers� but any particular a�point crossover cannot produce all children
produceable by uniform crossover� This is easily understood� since each po�
sition in uniform crossover has some probability of being swapped or kept� it
is possible to swap or keep any possible subset of the individuals� An a�point
crossover must keep the �rst few elements� swap the next few� and so on�
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This produces � restrictions� the number of groups that can be swapped or
kept� and the location of each group that can be swapped or kept� Each
group must be a contiguous set of bits� The generality of uniform crossover
adds to the exploration power of the genetic algorithm� In tests conducted
by Syswerda �Sys���� Uniform crossover performed better over a wide range
of functions than � or � point crossover�

��� The Structure of the Genetic Algorithm

Genetic Algorithms have several characteristics�

�� Selecting parents is done by allocating each individual a probability
of being selected equal to its value divided by the cumulative value of
the population� This is known as roulette wheel selection �Hol���� An
example of roulette wheel selection is given in �gure ��

�� Mutation� randomly complementing values in the population� is used
to introduce random alleles at a slow rate� Mutation can be imple�
mented in various ways� The method used in this paper is� For each
bit Pij in P� generate a random number between 
 and �� Comple�
ment Pij if the random number is less than the chosen mutation rate�
u�

�� There is no widely accepted termination condition� although Genetic
Algorithms usually terminate after a certain number of generations or
after the population is made up of individuals which are similar enough
that little useful work can be done� The characteristic of moving from
a varying population to a uniform one is called convergence� and if an
individual dominates the population after it has converged� it is said
that the population has converged on this individual�

A diagram of the Genetic Algorithm is given in �gure �� An informal discus�
sion of the characteristics of Genetic Algorithms can be found in �Gol	�b��

��� The Schema Theorem

In ����� Holland published a paper on the optimal allocation of trials to
subsets of a space� based on the perceived relative values of those subsets�
One theorem in �Hol���� expanded upon in �Hol���� became known as the
Schema Theorem� the fundamental theorem of Genetic Algorithms� It stated
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P,t

P,t

1.  RESULTS AND OTHER INFO PRINTED
END

D) ANY OTHER SPECIFIED CONDITION
C)  CONVERGENCE: FORALL I,J P(I)=P(J)
B)  OPTIMIZED ENOUGH (F(P(max)>OPT)
A) t>T_MAX

1.  CHECK TERMINATION CONDITION:

P,t

t

t

N MUTATED CHILDREN

SET OF N CHILDREN

TERMINATE?

CHILD(J),BIT(I)
CHILD(J),BIT(I) = NOT

SET OF N/2 PAIRS, t

CHILD(2J),CHILD(2J+1) = X(PAIR J)
1.  FOR J=0...(N/2)-1 DO

CROSSOVER PAIRS

WHERE J=0..(N/2)-1
1.  PAIR J = {PARENT(2J),PARENT(2J+1)}

SET OF N PARENTS, t

PAIR OFF PARENTS

DATA FLOW DIAGRAM OF THE STANDARD GENETIC ALGORITHM

P, t

2.  SET t=0

1.  SET P=RANDOM_POP

INITIALIZE

MUTATE CHILDREN
1.  FOR J=0..N-1 DO 

FOR I=0...L DO
IF RANDOM(0,1)<PROB_MUT

RESTRUCTURE POPULATION
1.  FOR I=0..N-1

P(I) = CHILD(I)

SELECT PARENTS
1.    TOTAL_WORTH = SUM OF F(P(I)), I=0..N-1
2.    PROB OF P(I) BEING CHOSEN = F(P(I)) / TOTAL_WORTH
3.    FOR I=0..N-1 DO PICK PARENT(I) FROM P BY PROBS

LOOP
1.  t=t+1
2. LOOP TO

SELECT PARENTS

Figure �� Structure of a Genetic Algorithm
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Figure �� Roulette Wheel Selection

that roulette wheel selection caused an exponential increase in the quantity
of superior schemata�

Consider a schema s� The number of individuals in P�t� which are
members of s is de�ned as ms�t�� Let the population be of near in��
nite size� and maintain a relatively constant average value� ��� Also� as�
sume that the schema s is likely to be una�ected by crossover� Thus�

ms�t � �� �
P
P �t�

i �s

�
f �P �t�

i �
	�

�
� In a very large population� the average

values of the individuals in s will approach the average value of schema s�
Let the average value of s be ��s�� Thus�ms�t��� �

P
P�t�

i �s

��s�
	� � Since the

number of individuals of schema s in P�t� is ms�t�� ms�t � �� � ms�t�
��s�
	� �

Thus� an exponential increase in superior schemata results from assigning
each individual a probability of mating equal to its value�

This theorem makes several unrealistic assumptions� The population
is of �nite size and will not maintain a constant average value� In fact�
the increase of the number of superior schemata raises the overall value of
the population� Also� schemata perceived to be superior will increase� The
schemata may not necessarily be superior� all that is required is that the
samples show them to be superior� A schema of high order may not get an
accurate sampling� If the population is not large enough� schemata of high
order may not even be represented in the population� In �Hol���� Holland
states that if schemata have a high variance compared to the di�erence in
their average values� sampling errors can cause the wrong schema to be
preferred� Assuming that a schema does increase exponentially� it must
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survive from generation to generation� Certain crossover schemes� such as
uniform crossover� tend to cause many alleles to swap� Thus� even if a
schema is of high value� it may disappear during crossover� Conversely�
schemata can appear from the crossover of similar parents� Grefenstette
and Baker �GB	�� discussed these and other di�culties with the Schema
Theorem�

��� Problems with Proportional Allocation

Although allocating probabilities of mating based on the value of each indi�
vidual relative to the total worth of the population does result in the increase
of superior schemata� there are several problems that can occur due to this
selection system�

If the superior individuals in P do not represent characteristics present in
the optimal value� the Genetic Algorithm will be led away from the optimal
value� This property is called deception� Bethke �Bet	
� and Goldberg
�Gol		� Gol	�a�� used Walsh functions to analyse the deceptiveness of a
function� In this analysis� average values of low order schemata in a function
are examined� The accuracy with which low order schemata predict the value
of higher order schemata determines the deceptiveness of the function� In
particular� if alleles are highly epistatic� that is� the value of the function
depends greatly on patterns among many alleles instead of the values of
single alleles� the function may be very di�cult for a Genetic Algorithm
to solve� Note that some epistatic functions� such as f�x� � x�� are quite
predictable and thus are still easily solved�

Another problem Genetic Algorithms have is premature convergence�
When the population converges� little further exploration can be done� since
the genetic algorithm will waste much time generating individuals which
have already been evaluated� Mutation corrects this by introducing some
randomness into the population� This randomness will be kept in future
generations if it is of high worth� while it will be discarded if it causes the
value of the individual to deteriorate�

Interference from mutation can undermine the e�ectiveness of the se�
lection system� If the di�erence between average and superior individuals
is small� mutation may change optimized alleles into random alleles at a
faster rate than roulette�wheel selection changes random alleles into opti�
mal alleles� DeJong �DeJ��� pointed out that a common practice in Genetic
Algorithms research was to increase the mutation rate when the Genetic
Algorithm did not converge to a very high valued individual� This led to
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the Genetic Algorithm being sti�ed by a high mutation rate�
If the ratio between superior and average schemata is low� an e�ect called

genetic drift will occur� DeJong �DeJ��� stated that even in a population
where no particular schema is preferred� the population will increasingly de�
viate from the norm� until the population converges� Goldberg and Segrest
�GS	�� calculated the time to convergence of a simple ��bit population �each
individual can be 
 or �� of size n� The estimated time to convergence �in

number of generations� is ��r����

�r���r�n� Although this case is simplistic� it does
indicate what happens in a large population� if there is no signi�cant dif�
ference between average and superior schemata for many generations� The
population starts to converge to an arbitrary individual� This causes a loss
of schemata from the original population� and thus schemata which have a
higher value later on may not be creatable from the new population� A fur�
ther complication is that an intuitive solution� increasing the mutation rate
in an attempt to re�introduce lost alleles� does not work� DeJong �DeJ���
states that this usually does not help the Genetic Algorithm much� and adds
the problem of interference from mutation to genetic drift�

��� Modi�cations to the Genetic Algorithm

As the problems with Genetic Algorithms were explored� modi�cations de�
signed to correct these faults emerged� This section explores the ways in
which Sharing� Crowding� Elitism� Steady�state Genetic Algorithms� and
Parallel Genetic Algorithms were designed to correct problems with the ge�
netic algorithm�

Sharing was created to allow Genetic Algorithms to explore many pos�
sible peaks� rather than a single peak� Goldberg and Richardson �GR	��
designed sharing to de�emphasize having copies of one superior schema� In�
stead� copies would be kept of many varying relatively superior schema� The
sharing function must have the following characteristics�

� sh�Pi�Pi� � �

� sh�Pi�Pj�� 
 as Hd�Pi�Pj���

� �Pi�Pj � 
 � sh�P i�Pj� � �

Goldberg and Richardson suggested an exponential sharing function

sh�P i�Pj� �

��
� ��

�
Hd�Pi�Pj

sharemax

��
if Hd�Pi�Pj� � sharemax


 otherwise

	



where sharemax was the Hamming distance at which the sharing value�
sh�P i�Pj�� dropped to 
� and � was a positive constant� The value of an

individual� f share�Pi� is f �Pi�Pn
j��

sh�P i�Pj�
� This way� an individual
s value is

reduced by any individuals with a Hamming distance of �� Thus� the number
of copies of a schemata present in the population will be proportional to its
relative value�

DeJong �DeJ��� suggested crowding as a way to slow down the con�
vergence rate� In this model� the population was not the set of children
produced from the previous population� Instead� each child replaces one
individual in the population� with a higher probability of replacing an indi�
vidual containing similar alleles� DeJong found that this was most e�ective
when combined with a generation gap� G� 
 � G � �� The generation gap G
indicates what fraction of the population is replaced each generation� Thus�
each generation Gn children are generated� and replace individuals in P�t� to
form P�t���� DeJong stated that a small generation gap and small amounts
of crowding caused the Genetic Algorithm to perform better�

Note that crowding is similar to sharing� but works on the restructuring
process rather than the selection process� Both accomplish the same goal�
the reduction of duplicate genetic material and thus the diversi�cation of
the population� but operate at di�erent times and in di�erent ways�

Elitism� keeping the best individual seen� is a simple and practical heuris�
tic to improve the performance of Genetic Algorithms� In his thesis �DeJ����
DeJong commented that elitism is usually bene�cial to a Genetic Algorithm�
Elitism maintains the most superior individual in the population� and thus
maintains the most superior schemata� Thus� it is natural that this method
improves the performance of a Genetic Algorithm� In this thesis� Elitism is
implemented by replacing the minimal element in the population with the
maximal element seen� While allowing the best element to be kept� this
method also increases the rate at which the Genetic Algorithm converges�

A Steady State Genetic Algorithm is a genetic algorithm which only
replaces a constant number of individuals in the population during each
generation� As de�ned in �Sys���� a Steady State Genetic Algorithm has
replaced kt individuals after t generations� while the Genetic Algorithm has
replaced nt� The Steady State Genetic Algorithm is similar to the simple
genetic algorithm� including the use of roulette wheel selection� but the
population is restructured by deleting population members� One member
must be deleted for each child produced� and thus the size of the population
remains constant� The individuals to be deleted are probabilistically selected

�



based on worth� The lower an individual
s worth� the more likely it is to
be deleted� Syswerda tested Steady State Genetic Algorithms �Sys��� and
stated that �at least for some problems� steady state genetic algorithms
do �nd as good or better solutions in much less time� than simple genetic
algorithms� In the steady state approach� a schema of excellent �tness is
immediately available for use� while a simple genetic algorithm must wait
until the next generation to take advantage of superior schemata�

A Parallel Genetic Algorithm is an algorithm which performs standard
Genetic Algorithm selection and mating on various subpopulations to achieve
global optimization in the entire population� In �M�uh���� M�uhlenbein de�
scribed a Parallel Genetic Algorithm� In this model� a genetic algorithm
is run on each subpopulation� which produces some superior schemata� In�
dividuals have a small probability of migrating between subpopulations�
When this occurs� the schemata of one subpopulation are introduced into
the other subpopulation� When superior schemata from a subpopulation
are introduced into another subpopulation� they dominate the population
if they are superior to the schemata in that subpopulation� In this way�
superior genetic material propogates from one subpopulation to all subpop�
ulations� Eventually� all of the subpopulations contain copies of all superior
schemata� which are combined into one superior individual� Thus� local op�
timization of low order superior schemata plus a propagation of individuals
results in a global optimization of high order superior schemata�

��� Conclusion

A Genetic Algorithm is an adaptive search algorithm based on the Schema
Theorem� It uses roulette wheel selection to simulate Darwinian evolution
in the population� This is a result of the Schema Theorem� the fundamental
theorem of Genetic Algorithms� Function optimization has been used to test
the performance of Genetic Algorithms� Although Genetic Algorithms work
well on many of the functions that they were tested on� there have been a
number of problems with optimizing some functions� Deception� premature
convergence� interference from mutation� and genetic drift are all possible
when optimizing with a Genetic Algorithm� Deception and premature con�
vergence cause lower optimal values to be found� while interference from
mutation and genetic drift actually cause the Genetic Algorithm to perform
little useful work whatsoever� Several solutions have been proposed� in�
cluding Sharing� Crowding� Elitism� Steady�State Genetic Algorithms� and
Parallel Genetic Algorithms� Sharing and Crowding reduce the amount of
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duplication of schemata in the population� elitism keeps the most supe�
rior individual �and thus� the most superior schemata� in the population�
Steady�State Genetic Algorithms allow for improvements in schemata to be
taken advantage of immediately� while Parallel Genetic Algorithms use the
convergence of subpopulations to superior schemata of low order and the
propogation of individuals between subpopulations to achieve global opti�
mization of long order superior schemata�

��



� Genetic Invariance

��� Introduction

This chapter introduces a new adaptive problem solver� Genetic Invariance�
which has at least two changes from Genetic Algorithms� First� invariance
is enforced by replacing parents by their children� In this manner� the al�
leles in any column of the population never vary� they may be exchanged
between individuals but may not be added or deleted� Second� the selection
system involves choosing the closest valued pair for mating� This causes a
local change of value� which in turn causes a global change of value� This
method is of particular interest to us because it does not speci�cally select
for optimal value� Instead� side e�ects of the mating process lead to overall
optimization� Section � shows the structure of Genetic Invariance in more
detail� Section � shows how Genetic Invariance operates by proving lower
bounds on a restricted case of a simple problem� Section � elaborates on the
results in section �� and show how they can be extended to general function
optimization using Genetic Invariance�

��� The Structure of Genetic Invariance

Like Genetic Algorithms� Genetic Invariance uses a population P of n in�
dividuals� each having l alleles� Unlike Genetic Algorithms� the population

is ranked� with P
�t�
� being the individual in P�t� with the lowest f value

and P
�t�
n being the individual with the highest f value� Individuals with the

same value are arbitrarily ranked� P can be thought of as an n by l matrix
of bits� P ik�

The main steps of the algorithm are�

�� Randomly select an initial population P���� Set t � 
�

�� Select two individuals� P i�Pj � i � j� such that the di�erence in their
function values� f��Pi�Pj�� is minimal over all pairs� If two have
equal di�erences� choose the pair in which j is maximized� If two have
equal di�erences and identical maximal individuals� choose the pair in
which i is maximized�

�� Mate these two with a crossover� and insert them back into the pop�
ulation� Although any crossover can be used� it has been stated that
we will use uniform crossover throughout this paper�
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�� Increment t� If the termination condition is not met� goto step ��

Genetic Invariance is diagrammed in �gure ��

P,t

2 CHILDREN

P,T

P,t

1.  RESULTS AND OTHER INFO PRINTED
END

D) ANY OTHER SPECIFIED CONDITION
B)  OPTIMIZED ENOUGH (F(P(max))>OPT
A) t>T_MAX

1.  CHECK TERMINATION CONDITION:

P,T

TERMINATE?

2 PARENTS, P, t

DATA FLOW DIAGRAM OF GENETIC INVARIANCE

P, t

2.  SET t=0

1.  SET P=RANDOM_POP

INITIALIZE

RESTRUCTURE POPULATION
1.  P(I) = CHILD(1); P(J) = CHILD(2)

SELECT PARENTS
1.    RANK POPULATION
2.    PARENTS P(I), P(J) ARE CLOSEST PAIR.

LOOP
1.  T=T+1
2. LOOP TO

SELECT PARENTS

CROSSOVER PAIRS
1.  CHILD(1),CHILD(2) = X(PARENT1,PARENT2)

Figure �� Structure of Genetic Invariance

Notice that Genetic invariance does not use mutation� and always re�
places the parents with their children� Because of this� the alleles in any
column do not change� only their positions within each column change� This
is known as invariance� A formal de�nition of invariance is�

�k� t�� t��
nX
i
�

P
�t��
ik �

nX
i
�

P
�t��
ik �

We de�ned a mating cycle to be parents repeatedly producing o�spring

which in turn become the parents in the next generation� Thus� P
�t�
i and

P
�t�
j mate to produce P

�t���
i and P

�t���
j � which in turn mate to produce

P
�t���
i �P

�t���
j � and so on for some period of time� Each cycle has a de�nite

starting point� namely the �rst time P
�t�
i and P

�t�
j mate to produce P

�t���
i
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and P
�t���
j � but it may not have an endpoint� If the current mating cycle

is of in�nite length� we say that Genetic Invariance has stagnated� Ideally
Genetic Invariance should run until stagnation� However� since this is not
generally detectable� Genetic Invariance� like the Genetic Algorithm� is run
for some pre�determined period of time�

��� Mathematical Analysis

����� Introduction

This section gives a worst case performance analysis of Genetic Invariance
on a simple function� Because of the modi�cations to the selection and
restructuring systems� the Schema Theorem of Genetic Algorithms does not
apply� The analysis proves lower bounds on a restricted case of the function
f��x�� the number of �s in the binary string x� The bounds are the least
possible maximum when stagnation occurs� which we call the LMS point�
The restrictions on the initial population will be lessened� and heuristics will
be added which increase the LMS point� This will lead to a discussion of
the nature of Genetic Invariance in the next section�

����� A Special Case

Consider a very special population P and evaluation f � where f �p� is func�
tion f�� the number of �s in p� The initial population is chosen randomly
under the constraint that the number of �s in any column of P i�j is exactly
one� We assume that n � � and l � 
 since two individuals stagnate by
de�nition �producing a random search over their Hamming Closure� and an
individual size of zero is meaningless�

We de�ne T�x� to be the xth triangular number� x�x���
� � ��y� to be the

smallest integer x such that T �x� � y� and the f sum of two individuals
f��Px�Py� to be f�Px� � f�Py��

What is the least maximum under stagnation� LMS�n� l�� under these
conditions�

It is obvious from the de�nitions of mating� selection� and ranks that�

Lemma ��� If Pi and Pj mate then j � i� ��

Note that the lemma ��� implies that stagnation can only occur on ad�
jacent individuals� since the stagnation pair is a mating pair� Later� we will
introduce constraints to the selection strategy which will change this�
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Lemma ��� Let f��Pi�Pi���beaconstant�� If stagnation on Pi�Pi�� has

occurred� then there exists with probability � some time t such that f�P
�t�
i��� �

� and f�P
�t�
i � � 
�

Proof� Consider � strings a and b such that a contains all of the �s in

Hc�P
�t�
i �P

�t�
i���� Since a is within the Hamming Closure of P i and P i��� the

probability is � that P i and P i�� will produce a as one of their descendants�
The complementary child must� by de�nition� be the string of zeroes�

Lemma ��� If Genetic Invariance stagnates on Pi�Pi��� then either i � �
or f�Pi� � f�Pi��� � 
�

Proof� Assume i � �� 
 � f�Pi� � f�Pi��� by lemma ����
f �P�� � f�Pi� � 
 because we are ranking our individuals�
f �P�� � 
 by de�nition of f � hence f�P�� � 
�
f��Pi�P�� � 
� but since we are mating the closest pair of highest rank�
f��Pi���Pi� � 
� which contradicts 
 � f�Pi� � f�Pi����
Therefore� i � � or f�Pi� � f�Pi���� which reduces to i � � or f�Pi� �
f �Pi��� � 
 by de�nition of f and i�

It is interesting to note that in the case f�Pi� � f�Pi��� � 
� the lower
zeroes� Pk� k � i will have a 
 probability of ever being chosen as mates�
Thus� Genetic Invariance is said to implicitly eliminate zero�value individuals
both in this case and in general when f has 
 epistasis�

Consider lemma ���� In terms of the evaluation function� we may write

Lemma ��� If Genetic Invariance stagnates on P i�Pi�� then

�j �� i� f��Pi�Pi��� � f��Pj���Pj�� or f�Pi� � f�Pi��� � 


Proof� Consider i � �� The algorithm mates the highest ranked pair if
two or more pairs have the same f di�erences� thus �j � i� f��Pj �Pj��� �
f��Pi�Pi���� But consider lemma ���� P� will eventually be f��Pi�Pi����
and P� will be 
� Thus� f��Pi�Pi��� � f��Pj���Pj�� By lemma ���� we
know that for the stagnant pair� either i � � or f�Pi� � f�Pi��� � 
�
proving the lemma�

Lemma ��� LMS�n� l� � ��l� is either n � ��l� � � if n is a triangular
number� or n � ��l� � � if it is not�
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Proof� l is nonzero� therefore some individuals must have nonzero val�
ues� Let the stagnation individuals have values 
 and � � �� where � �
� � f�Pi� � f�Pi��� �by lemma ����� The individuals must have val�
ues equal to or greater than 
� 
� ���� 
� �� �� ��� �� ��� �� ���� k�� �� The
minimum values possible are achieved when � � �� giving the sequence

� 
� ���� 
� 
� �� �� �� �� ������l�� This sequence� which has at least two lead�
ing 
s� sums to l if l is a triangular number� Thus� if l is triangular� and
n � k�� � ��l���� this triangle can be constructed� If it is not� eliminate
the integer T ���l��� l from the sequence to achieve the correct sum� This
requires n � k � �� � � k � � � ��l� � �� since the triangle is missing one
individual �the one that was deleted��

Lemma ��� If � � n � ��l� � � then LMS�n� l� � �n� �� � d l�T �n���
n�� e�

Proof� Consider an arithmetic triangle on the highest n�� positions� This
accounts for T �n � �� bits� leaving us with �l�T �n���� bits to position� The
condition for stagnation is �j� f��Pj���Pj� � f��Pi���Pi�� but although
this implies an arithmetic triangle is the least possible distribution� each
individual may have any value� provided that any pair di�ers by at least ��
Consider adding a value � to some Pj � This means that � must be added
to all Pk � k � j� But how do we distribute the other alleles among the
population for a lowest possible bound� Considering the above statements�
we can only do this by evenly distributing the value among all of the n� �
individuals above P��

Note that we cannot add to P i nor to Pi��� because to do so would
necessitate that the value of � be increased by � throughout the population�

Since T �n���
n�� � �n � �� when n � �� the worst case occurs when each

of the nonzero individuals are increased equally� with any partial increase
being added from the top down� resulting in a worst case LMS point of

�n� �� � d l�T �n���
n�� e�

Lemma ��	 If n � �� then LMS�n� l� � l � b l��� c�

Proof� In this case T �n���
n�� � �n� ��� so an arithmetic triangle distribution

over the population is worse than distributing the remaining value over the
n�� � � remaining individuals� The lowest stable state is f�P���f �P�� �
f�P�� � f�P�� � f�P�� and f�P�� � f�P�� � f�P�� � f�P�� � f�P�� � l�

��



which reduces to f�P�� �
�l
� � Note that this is a strict inequality� so when l is

divisible by �� we must add � to the MAX value� Thus� LMS�n� l� � l�b l��� c�

Theorem ��� The least maximum under stagnation� LMS�n� l�� is

�n� �� � �l�T �n����
�n��� if � � n � ��l� �m

��l� if n � ��l� �m and n � �

l � b l��� c if n � �

where m � � if l is a triangular number� � if it is not�

Proof� Theorem ��� is proven by lemmas ���� and ����

Thus� an arithmetic triangle is formed� which results in an LMS value
proportional to ��l��

����� Improving the Algorithm

Consider two individuals Px and Py � If their Hamming Distance is less
than �� then crossover produces individuals Px and Py � since these are the
only individuals in Hc�Px�Py�� Since mating two individuals with a Ham�
ming distance of 
 or � will cause stagnation� and so is unpro�table in the
Gene Invariance approach� we add the heuristic of never mating individuals
with Hamming Distances of less than �� How does the new LMS point�
LMS��n� l�� di�er from the previous one�

Lemma ��
 The heuristic has no e�ect on the choice of parents if both
selected parents have positive values under f �

Proof� Let Px and Py be two individuals with positive values under f � By
the de�nition of f � each must have at least one � in it� But these �s cannot
be in the same position �since there is only one � per column�� thus at least
two bit positions in Px and Py are not identical�

Lemma ��� If n � �� LMS��n� l� is

LMS��� l� if l � �

l if l � �
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Proof� All of the claims of lemma ��� hold� except that in ��� the bottom
two individuals may have a Hamming distance of less than �� When does

this occur� When b l��� c � �� i�e� l � �� Thus� l � � �	 LMS���� l� �
LMS��� l��

Now consider l � �� By enumeration of the possible states it is provable
that LMS���� l� � l�

Consider � � l � �� By lemma ���� it is known that we must satisfy
the same stagnation conditions as before� with the exception that if the
bottom two individuals have Hamming Distance �� they are not mated�
The stagnation distribution is �
� �� l � ��� But the lower two will not be
able to mate now that they have Hamming distance �� so the upper two will
mate� causing the GA to stagnate� Since we assume the uppermost value to
be maximized at stagnation� Genetic Invariance is said to stagnate at the
value l�

Lemma ���� If n � �� LMS��n� l� is

��n� �� � d l���T �n����n�
�n��� e if � � n � �� l�n� � � �

��� l��� � if n � �� n � �� l�n� � � �

Proof� Genetic Invariance cannot stagnate at �f�Pi�� f�Pi���� � �
� 
� or
�
� �� since Hd�Pi� Pi��� � � � Thus� consider again lemma ���� with �

having a minimum value of �� This will produce an arithmetic sequence
�
� �� �� 	� ��� ���� �m� ��� which is the minimum for stagnation� The sum is

�T �m����m� the highest individual is ��m����� � �m��� m � d��l�m�
� e�

and so

m �

�
�� l�� � � if �T ��� l���� l � ��d l�e�

��d l�e� otherwise

which is lower bounded by ��d l�e�� As in ���� the LMS� bound is calculated
by distributing any remaining values evenly over the triangle�

Theorem ��� Thus� LMS��n� l� is

��n� �� � l���T �n����n�
�n��� if � � n � �� l�n� � � �

��� l��� � if n � �� n � �� l�n� � � �

l� b l��� c if n � � and l � �

l if n � � and l � �

�	



Proof� By lemmas ��	� ���� and ���
 we can conclude theorem ����

Thus� by not mating any pair with Hamming distance less than �� we
have increased the slope of the arithmetic triangle from � to �� thus increas�

ing the LMS value from ��l� to ��� l���

����� Extending the Special Case

In the previous chapters� we assumed an initial population where there was
only one � per column� Consider an initial population P with a total of
b ones that are distributed almost evenly between the l columns of P �ie�

either bb
l
c or db

l
e� Let d be the number of columns that have at least � bits

set to �� Also� assume that we are not implementing the feature which mates
individuals only if they have a Hamming Distance of � or more� What is
the arbitrary�b LMS point LMS�b� n� l�� in comparison to LMS�n� l��

Lemma ���� When b � l� LMS�b� n� l� � LMS�n� b��

Proof� Consider b � l� Some columns will be all zeroes� and others will
only have one � per column� This is directly mappable to the case where
l � b� since the extra zeroes do not a�ect the method in any way� Thus�
LMS�b� n� l� �LMS�n� b��

LMS�n� l� is de�ned to be LMS�b� n� l�� since in the original case there
are l �s in the population� one per column�

Lemma ���� Consider n � �� b � l� Then� for any mating pair� the maxi�
mal individual will have a value of at least d� d de�ned above�

Proof� Consider the columns which contain the replicated �s� Given n � ��
there are � individuals� at least � of which contain a �� Therefore for any
mating pair� at least one of them will have a � in that column� therefore
the pair can produce an individual which has a � in each of the d columns�

Therefore at stagnation the maximal split insures P
�t�
n � d�

Lemma ���� If l � b and n � �� then LMS�b� n� l� is

l� bb�c if l � b � �l
�

b� l if �l
� � b � �l

l if b � �l
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Proof� First of all� consider the case b � �l� By lemma ����� any mating
pair can mate so that the higher individual will have a value of l� Thus� by
our de�nition of stagnation� when they stagnate the maximum value reached
will be l�

Next� consider �l
� � b � �l� By lemma ����� any mating pair can produce

a value of b � l� Genetic Invariance can stagnate at exactly this value� on
the individuals with values� ��l� b� b� l� b� l�� The upper individuals can
be identical� and since we give priority to upper individuals upon mating�
Genetic Invariance will stagnate on them�

Now consider l � b � �l
� � First we show that stagnation will not occur

when mating the top pair� Assume stagnation occurs on the top pair� Thus�
the population will be�

Element individual �s replicate �s

P� i b� l

P� 
 x

P� �l� b� i b� l � x

where �individual �s� refers to �s in columns with one � in them� and
�replicate �s� refers to �s in columns with more than one � in them� Note
that the position of these columns in the individual is irrelevant� the anal�
ysis only uses the number of �s in these columns� This matrix of indi�
viduals is called a stagnation matrix� At stagnation� it is assumed that
the top individuals has the maximal value �maximum split�� so all of the
duplicate �s in the top pair will move to the top individual� and all of
the non�duplicate �s in the top pair will likewise be in the top individ�
ual� i and x are variables in this example� and can take on any �feasible�
value� Claim� this situation is contradictory� Proof� By de�nition of stag�
nation� i� b� l � x � x� ��l� b� i� b� l� x� which reduces to b � �x�

i�e� �x � �b
� � Since the number of �s can never be less than zero in any

part of this� 
 � b� l� x � b� l � b
� � �b

� � l� Since �b
� � l by the initial

statement b � �l
� �

�b
� � l � l � l � 
� thus 
 � 
�

Consider the case l � b � �l
� where stagnation occurs on the bottom�

The lower�pair stagnation matrix becomes�

Element individual �s replicate �s

P� i x

P� �l� b� i b� l

P� 
 b� l � x

�




Thus i� x� ��l� b� i� b� l� � �l� b� i� b� l � �b� l� x�� and so

b� �i � �l� i�e� i � l� b
� � Consider i � bl � b

�c � x � 
� Substituting into

the above array gives the least stagnation point� l � bb�c�

Lemma ���� If b � l and n � �� LMS�b� n� l� is

db��n e if b� l � db��n e

b� l � LMS�n� b� n�b� l�� if b� l � db��n e

Proof� Let � � b � l and � � db��n e� Consider � � � � It is pos�
sible to distribute the bits in the following manner� �P��P�� ����Pn� �

�b bn c� ���� b
b
nc� d

b
ne� ���� d

b
ne�� It is possible for Genetic Invariance to stagnate

if the �rst two identical�valued individuals �individuals whose f di�erence
is 
� are identical� In order for this to occur� the total number of duplicate
bits ��� must be greater than or equal to the value of either individual �their

values are the same�� Consider the breakpoint where values of bb��n c change

to db��n e� If �b modulo n� � �� there is only one top individual� otherwise
there is more than �� Thus when �b modulo n� � �� stagnation can occur at

this point if � � b bnc� otherwise � must be at least d bne� If � � � � this case
holds� and the maximum under stagnation in both cases is � �

Now consider � � � � Consider the stagnation pair P i and Pi�� to have
all of the duplicates� This is clearly the worst case� since at stagnation the
concern is with the separation they can achieve� All individuals can now
have a value of b � l without interfering with Pi and P i�� mating� except
that all Pj � j � imust di�er by at least �� Thus� the worst case is constructed
by letting all of the individuals have the value b � l� followed by building
an arithmetic triangle from P i�� to Pn� inclusive� If the triangle grows to
�ll the entire population� except the two bottom individuals� distribute the
remaining value evenly over the top n � � individuals� In this case� the
number of duplicates does not a�ect the maximum value�
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Theorem ��� The arbitrary�b LMS point � LMS�b� n� l�� is

LMS�n� b� if b � l

l� bb�c if b � l and n � � and l � b � �l
�

b� l if b � l and n � � and �l
� � b � �l

l if b � l and n � � and b � �l

db��n e if b � l and n � � and b� l � db��n e

b� l� LMS�n� b� n�b� l�� if b � l and n � � and b� l � db��n e

Proof� This is proven by lemmas ����� ����� ���� and �����

Thus� the limit has decreased from a triangular distribution to an even
distribution� even though we have increased the total value of the population�

����� Putting the Heuristics Together

Consider the following heuristic mating system�

�� Any pair with Hamming distance less than � is not allowed to mate�

�� Pick the matable pair�s� of smallest f di�erence�

�� If more than one pair has equal f di�erences� pick the pair�s� with
largest Hamming distance�

�� If more than one pair has equal Hamming distances� pick the pair of
highest rank�

What happens to the LMS point under this heuristic mating strategy� Let
this be the Heuristic�LMS point� HALMS�b� n� l�� We still assume that the
bits are distributed as evenly as possible among the columns�

What does this introduce to the LMS strategy� It re�introduces the
heuristic which prevents mating of pairs with Hamming distance of 
 or
�� thereby not mating pairs which provably stagnate� Also� a check for
individuals with the largest Hamming distance is introduced� This check is
useful� since individuals with larger Hamming distances will tend to separate
easier than individuals with low Hamming distances� mating individuals
with very low Hamming distances usually leads to stagnation� How does
this a�ect the ALMS point�

Lemma ���� If b � l� then HALMS�b� n� l� � LMS	�n� b��
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Proof� The only improvement we introduce beyond the LMS� heuristics
is that of mating individuals with larger Hamming distances if we have
pairs with identical f di�erences� But consider the stagnation points� they
all stagnate on the bottom with f di�erences less than that of the other
individuals� thus the extra Hamming�distance heuristic does not increase
the limit point� Neither does it decrease the limit point� since all of the
arguments in lemmas ��	� ���� and ���
 still hold� Note that it is impossible
to have data in which the bottom two individuals have equal f di�erences to
the other individuals but larger Hamming distances� because the Hamming
distance between any two individuals is their f sum in this case �since every
column contains at most one ��� and the f sum of P� with 
 is less than or
equal to the f sum of Pi and Pi�� where i � �� Note that the case b � l is
directly mappable to the case of a smaller l� l � b�

Lemma ���� If b � �l� then HALMS�b� n� l� � l�

Proof� First of all� note that when b � �l� the HALMS point must be
no less than l for the same reasons given in lemma ����� The value of l is
achievable if any two individuals mate� If none mate� then recall that each
column must have at least one � in it� Since their Hamming distance is at
most �� if any individual has a � in a column� all of the other individuals
must have a � in that column� except for � column� So each member of the
population must have a value of at least l��� Then there must be at least �
individual with its bit set to � in one of the remaining columns� which leads
to a value of l�

Lemma ���	 Consider n � �� �l � b � l� It is possible to split the HALMS
value into the following disjoint groups� with the following conditions and
values� HALMS�b� n� l� is

MIN for stagnation on P� and P� if �l
� � b � �l

MIN for stagnation on P� and P� if l � b � �l
�

Proof� Consider splitting up the cases of stagnation into stagnation on the
top two individuals� stagnation on the middle two individuals� and stagna�
tion on the outer two individuals� If we �nd the restrictions those stagnation
cases imply� we can partition the space into several ranges� which are hope�
fully disjoint� This will be done by exclusion� stagnation cases will be shown
to imply that certain b values are impossible� thus those b values cannot lead
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to that type of stagnation� therefore they must be calculated from the re�
maining type�s��

Consider stagnation on the outer two individuals� Although P� � P� �
P�� P� is within Hamming distance of � of both P� and P�� The Hamming
distance of the outer two individuals must be at least �� since they mate�
and can be no greater than �� since Hd�P��P�� � Hd�P��P���Hd�P��P���
A � must be present in at least one column of one individual� and if it is
present in one column of one individual� it must be present in that column
of the other two individuals� except for two columns� This is because of the
Hamming distance between the individuals� Thus� f�P�� � l��� As for the
remaining two columns� this situation can only happen if f��P��P�� � ��
thus f�P�� � � � l � � � l� Since the limit point this gives is clearly not
the lowest �since it is the highest possible value�� it can be ignored for the
purpose of establishing a lower bound� if any other limit can be found�

Next� consider stagnation on the top pair� The stagnation matrix is�

Element individual �s replicate �s

P� i b� l

P� 
 x

P� �l� b� i b� l � x

since we assume that the top individual mated has maximum value�
At stagnation� i� b� l � x � x � ��l� b i� b� l � x�� by mating rule

���� and b � l � x � 
� These inequalities reduce to b � �x and x � l � b�

which leads to b � �x � �b � �l thus b � �l
� � Thus if b � d�l� e� the lower

bound cannot be achieved by upper pair stagnation�
Lastly� the lower pair stagnation matrix

Element individual �s replicate �s

P� i x

P� �l� b� i b� l

P� 
 b� l � x

leads to the inequalities� �l�b� i�x � �i�x� l from mating rule ���� and
�l � b � i � 
� since all matrix entries must be at least 
� These equations

lead to �i � �l � b and �l � b � i which imply �l � �b� thus b � �l
� � Thus

if b � �l
� � the HALMS point cannot be calculated by a lower stagnation

matrix�
Thus� we have proven the lemma� namely that the following limits on

b imply the following stagnation matrices be used to compute the HALMS
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value�
limit upper pair lower pair outer pair

b � �l
� yes no no

b � �l
� no yes no

Lemma ���
 Consider n � � and Genetic Invariance having stagnated on
P� and P� � The Heuristic ALMS point� HALMS�b� n� l�� is

ALMS�b� �� l� if b�l� c� � � b � �l

b l�c� � if �b�l� c� � � b � b�l� c� �� and �b � �l�

l if b � �l
�

Proof� By the arguments in lemma ����� stagnation can never happen at a

value of less than b�l� The case ����l�b� b�l��� b�l� is valid when b�l� c � b�
The uppermost b� l � � bits are duplicates� with the other � duplicates in
P�� This ensures stagnation� resulting in a limit of ALMS�b� �� l� � b� l�

Next� consider the upper pair stagnation matrix from lemma ����� The
mating technique described in the introduction allows us to conclude the
following stagnation equations�

�� i� �b� l� x� � �
�� i� �b� l� x� � x� ��l� b� i� b� l � x�
�� i� �b� l� x� � x� ��l� b� i� b� l � x� and

i� �b� l�� x � �l� b� i� �b� l�

where equation ��� and either equation ��� or ��� is true� This reduces to ���

and either �x � b
�� or �x � b

� � i � l� b
� �� If x � b

� then f�Pn� � i� b� l �

x � � � l� which is a contradiction� So consider x � b
� � b � l � x � b

� �

therefore b � �l
� � Interestingly enough� x � b l�c� � implies i � b l�c� �� x�

due to heuristic ���� The only exception is the case b � �l
� where we must

use x � b
� to get a minimum bound of l� If b � l is small because l is

small� heuristic ��� may hamper this solution� When is this the case� By
substitution of the minimum value into the array� it is evident that the top

� individuals will be far enough apart when l � � for b � �l
� and l � � for

b � �l
� �
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Lemma ���� Consider the case n � �� with stagnation on the bottom� The
stagnation point� HALMS�b� n� l�� is

db��� e � � if b�l� c � � � b � d�l� e � �

l � bb�c if l � b � b�l� c � �

Proof� Consider the stagnation point �b� l� b� l�bb�l� � bl�bb� �c much like
in lemma ����� This holds when the Hamming distance of the bottom two

individuals is less than �� which is when b � b�l� c � �� When this case does
not hold� consider the lower pair stagnation matrix from lemma ����� From
this and our heuristics� we get the following�

�� �l� x � b� i� �
�� �l � b� �i

The limit point is obtained by combining f�P�� � i � x with ��� and ����

which produce limits on i and x respectively f�P�� � i� x � db�e� ��

For l extremely small� some of the stagnation conditions required above
cannot be met� This is when l � �� In this case� the formulas produce lower
bound values greater than l� which is clearly not correct� These cases are
accounted for in the analysis of HALMS�b� n� l�� l � ��

Lemma ���� HALMS�b� n� l� � l for n � �� l � �� l � b�

Proof� Proof is by enumeration of cases�

Lemma ���� Consider Genetic Invariance stagnating on Pi and Pj� with b
arbitrary and n � �� De�ne function C where C�Px� is the set of columns in
Px which have the value �� The population can be divided into an �ordered�
list of 	 groups of individuals g�� ���� g� such that the following properties
hold


�� Each group is contiguous�

	� Let Pq be a member of group gr� Then� for any member Pk with k � q�
we have C�Pk� 
 C�Pq��

�� The groups are maximal with respect to properties ��� and �	��
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�� The f di�erence between any � �adjacent� groups is at least �� Since
the list is ranked� a di�erence of at least � between adjacent groups
implies an f di�erence of at least �k between group i and group i� k�
for any groups i and i� k�

Proof� Start with each individual being in its own group� This will validate
properties ��� and ��� �since no two individuals are in the same group yet��
To validate properties ��� and ���� the groups must be merged into larger
groups� such that at the end� each group
s individuals are separated from
another group
s individuals by at least �� Note that property ��� will usually
eliminate the trivial solution of having each individuals in its own group�
while property ��� will most likely ensure that they do not all merge into
the same group� The partition is unique� since the process to construct it
from the trivial partition 	 � n� gk � fPkg does not allow any choices to
be made�

We must now state the partition merge rule� This rule will be proven to
be consistent with properties ��� and ��� �applying them to a consistent set
will give you a consistent set� and will be shown to attain a unique solution
which validates property ���� Finally� the unique solution will be proven to
validate property ���� Note that since the merge is a set merge� the order
in which it is applied is irrelevant�

The �rst thing we have to �nd out is when not to merge two groups� This
is rather obvious� In order to merge groups� they must be consecutive groups
in the list of groups �which will result in a consecutive list of individuals
within the group� and they must maintain property ���� Property ��� is
maintained by noticing the properties of the highest individual of the lower
group �Px� and the lowest individual of the higher group �Px���� Property
��� will be maintained i� C�Px� 
 C�Px���� This is due to the transitive
nature of subset� If the subset property holds on these two individuals� it
will hold on any within the combined set� If it doesn
t there is at least one
pair in any contiguous set starting at Pk� k � x and continuing to Pq� x � q

which does not follow this property� namely Px�Px��� thus any attempt at
building other partitions will result in smaller groups� clearly violating point
����

Property ��� can be proven by case analysis on the possibilities of both
the stagnation pair Pi�Pj and the group boundary individuals Px� Px��

such that Px is the highest individual in group gy and Px�� is the highest
individual in group gy��� The following table represents this case analysis�
Note that at maximum split of Pi and Pj � their f di�erence and Hamming
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distance must be equal�

f��Pi�Pj� f��Px�Px��� Hd�Px�Px��� Possible� Reason

� � No Rule �

� � � No Rule �

� � � � No Rule �

� � � � No f� � Hd

� � � Yes

� � � � Yes

The �rst � cases are eliminated by the �rst � mating rules� The fourth
case is eliminated because f��Px�Px��� � Hd�Px�Px���� The last � cases
support the lemma in any case� therefore they need not be analysed� Thus�
by case analysis� any two group boundary individuals must have a separation
of at least �� Note that because of the de�nition of groups and stagnation�
the stagnation pair must be in the same group�

Lemma ���� Let Mz be the value of the maximal invidual MEz in the
group gz� Then�

P�
z
�Mz � l�

Proof� To prove this� it is only necessary to show that each column con�
tributes at least one � to the overall sum� Thus the total sum must be greater
than or equal to l� Consider any column x� b � l therefore �yjPy�x � ��
To put it another way� x � C�Py�� But we know that the maximum
individual in the group is a C�function superset of this individual� thus
�z�Py j��x � C�Py��
 �C�Py� � C�MEz���� thus x � �C�MEz��� and since
Mz � f�MEz�� column x contributes its � through at least one group�

namely z� Thus�
P�

z
�Mz � l�

Lemma ���� HALMS�b� n� l� �LMS	�b� n� l� if n � ��

Proof� Consider lemmas ���� and ����� and ���
� Consider each group as if
it was an individual� These groups form a sequence of integers summing to
l� di�ering by at least �� Therefore by lemma ���
� the top group must have
a value at least equal to LMS��b� 	� l�� Note that in lemma ���
 we used the
di�erence of the bottom individuals to prove the property of the sequence�
while in this case the property of the sequence was proven� therefore the
values of the bottom two individuals do not matter� The triangle must be
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at least �
� �� �� 	� ����� with some value added to the entire series� In the
worst case� an arithmetic triangle will be formed with the remaining value
being distributed evenly over the groups� Since the value of 	 is generally
not known� the value n may be used as a limit on 	� which results in the
limit being LMS��b� n� l��

One thing of further interest is that if each group has an internal f �
di�erence of �� the triangle will be constructed with an inter�individual dif�

ference of at least ���� producing a lower bound of �����MIN��� l
����� N��

any remainder
n �

Theorem ��� Thus� HALMS�b� n� l� is

LMS	�n� b� if �b � l� or �� � n�

l if �n � ��� ��b � �l
� � or ��l � ��� �l � b�� or �b � �l��

ALMS�b� �� l� if �n � ��� �b � b�l� c� ��� �� � l � b � �l�

b l�c � � if �n � ��� �b�l� c� � � b � b�l� c � ��� �� � l�

db��� e� � if �n � ��� �b�l� c � � � b � d�l� e � ��� �� � l�

l� bb�c if �n � ��� �� � l � b � b�l� c � ��

Proof� This theorem is proven by lemmas ����� ����� ���	� ����� ���
� �����

Thus� the bene�cial e�ect of the Hamming distance heuristic also applies
to the case where the number of �s is arbitrary� The population can be
grouped where each group is di�ers in value from the previous group by at

least �� achieving a lower bound of �� l���

��� Analysis of the Nature of Genetic Invariance

The previous section described lower bounds achievable on a simple function�
Even though this analysis has been done on a very simple function� it shows
several things about the way Genetic Invariance operates�

Genetic Invariance makes several assumptions about the nature of the
function and the nature of the population� Genetic Invariance assumes that
the population contians a fairly broad range of alleles in each column� This
can usually be guaranteed by insuring that each allele is given an equal
proportion of each column in P� So� if there are a alleles in a particular
column� the number of each allele will be dn

a
e or bn

a
c� Genetic Invariance
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also assumes that the function can be ordered in some manner� having a
distinct minimum �even though the number of minimands might be high�
and a distinct maximum� This assumption is true if we are using functions
from �nite ranges to �nite domains�

To determine the e�ectiveness of Genetic Invariance� we need to know
both the assumptions about the population� and how Genetic Invariance
operates� Genetic Invariance operates through value propagation� Mating
cycles occur� which cause superior schemata to propagate to the upper indi�
vidual in the mating pair� and inferior schemata to propagate to the lower
individual� This is seen most clearly in lemma ���� where all of the value
propagates to the upper individual in the mating pair� It was stated in the
previous section that stagnation occurs when the mating individuals have
a Hamming distance of less than �� However� notice that the Hamming
distance between the mating pair determines the number of possible indi�
viduals that can be generated� Thus� a mating pair should be chosen so that
it has a large enough Hamming distance to separate� However� note that
a mating cycle is a random walk of the Hamming closure of the parents�
so unless a relatively small increase in value is desired� it is likely that the
cycle will not terminate quickly enough to produce adequate results within
a small period of time� Thus� Genetic Invariance mates the closest pair�
hoping that the Hamming di�erence is large enough to produce a notice�
able separation� Genetic Invariance assumes that the required improvement
�f��Pi�Pj��f��Pk �Pq�� where individuals k and q have the second small�
est f di�erence� is small enough so that relatively little random search is
required to attain it�

Thus� the overall e�ect is that f��Pi�Pi��� will increase� and thus
f��P��Pn� will increase as superior schemata move from lower individu�
als to higher individuals and inferior schemata move from higher individuals
to lower individuals� This is seen in lemma ��� where an arithmetic triangle
is constructed in the worst case because of the minimal di�erence between
individuals� The minimal di�erence between the mating pair when stagna�
tion occurs thus controls the minimal di�erence in value between population
members� In the simple function� the stagnant pair was always found at the
bottom� leading to a minimal di�erence of 
 or �� depending on whether
individuals with Hamming distance less than � were required to mate� The
other individuals provably had f di�erences greater than this value� leading
to a di�erence in value of � or �� On more general functions� this observation
about Genetic Invariance should still hold� the lower bound on optimization
is governed by the minimum guaranteeable separation between individuals�
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Although this thesis does not consider the performance of Genetic In�
variance over general functions� there are some characteristics of Genetic
Invariance which would seem to apply to more general functions� The C

function in lemma ���� indicates that general lower bounds on local sepa�
ration �which directly a�ect global performance� can be done by exploring
the relation between the Hamming distances of individuals and the possible
separation of the individuals� The question then becomes �how much op�
timization must occur before the Hamming distances of nearby individuals
converge�� Answering this question will lead to a fundamental theorem of
Genetic Invariance�

��� Conclusion

A new adaptive algorithm� Genetic Invariance� is presented� Genetic In�
variance is a system which uses a ranked population� and mates adjacent
pairs of minimal function di�erence� Mathematical analysis is given which
proves lower bounds on a speci�c function� f��x� � the number of ones in x�
This analysis provides a basis for the discussion on the properties of Genetic
Invaraiance� While the mathematical analysis was on a restricted case of
a simple function� it did indicate several properties of Genetic Invariance
which would apply to more general functions� The separation of superior
and inferior schemata causes a separation of value in individuals� Even�
tually� a minimum di�erence between individuals is reached� resulting in a
minimum di�erence between each pair of adjacent individuals in the pop�
ulation� Since a function with a �nite domain has a de�ned lower bound�
it is possible to put a lower bound on the value of the maximal individual
in the population at stagnation� Analysis indicates that allele di�erences
between low valued and high valued schemata may provide clues about the
usefulness of Genetic Invariance on a problem�
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� A Comparison of Genetic Invariance and Ge�

netic Algorithms

��� Introduction

This chapter will compare and contrast genetic algorithms and Genetic In�
variance� The emphasis will be placed on how the two methods work on
similar principles� even though they have di�erent optimization strategies�
It is not the intent of this chapter to claim that either method is better than
the other� This chapter will concentrate on the similarities and di�erences
of these systems and how these similarities and di�erences a�ect function
optimization�

Section � will examine the similarities and di�erences in the structures
of the two systems� and how each structure achieves optimization� The
characteristics of these methods will be compared and contrasted�

Genetic Algorithms are often tested by function optimization� Section
� will show the results obtained by using the two systems to optimize the
DeJong functions� a set of functions designed to test the performance of
Genetic Algorithms over a variety of function types� Genetic Algorithms
and Genetic Invariance will be compared to each other and to a simple
elitist random search�

Section � will discuss an implementation of the two systems� including
data structures for e�cient selection of parents� The optimal runtime for
each method will be given in terms of the number of generations elapsed�

��� A Comparison of the Two Systems

Genetic Algorithms and Genetic Invariance are both evolutionary systems�
But what are their similarities and di�erences� A comparison of the two
systems will help understand in what way each system solves problems and
what problems each will work better on�

Recall from chapter � that Genetic Algorithms are based on the Schema
Theorem� This theorem assumes that a sampling of the population by pro�
portional selection of �tter individuals is feasible� As the Genetic Algorithm
searches for the optimal solution� the population converges to a particular
individual �or� in the case of mutation� to a set localized around a partic�
ular individual�� and so does less and less exploration� At some point� the
algorithm terminates� and produces a solution� Problems such as premature
convergence� interference from mutation and genetic drift occur due to the
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selection system� when inadequate sampling is done or the sampling does
not reveal signi�cantly superior schemata�

Chapter � shows that Genetic Invariance assumes that schemata are sep�
arable� Local separation produces global optimization� If schemata are not
separable� stagnation occurs� But both work well on zero epistatic problems
�although Genetic Algorithms sometimes needs a large population compared
to that of Genetic Invariance��

Although both are evolutionary algorithms� the Genetic Algorithm can
be thought of as a more active problem solving system� while Genetic In�
variance is more passive� Genetic Invariance actively promotes superior
individuals� Genetic Invariance simply lets schemata propagate up or down
in the population depending on their relative worth� Thus� the Genetic Al�
gorithm only produces maximands �and� thus� maxima�� at the end� while
Genetic Invariance produces both maximands and minimands� Thus� a re�
searcher using Genetic Invariance can simply look at the entire population�
can analyze the similarities and di�erences in the top� bottom� and middle
of the population to see what did work� what did not� and what was neither
good nor bad�

But Genetic Invariance employs some of the features designed to improve
Genetic Algorithms� Only two individuals are selected and replaced at a
time� similar to Steady�State Genetic Algorithms� Recall from chapter � that
this causes any superior or inferior schemata produced to be immediately
available to reproduce in the next generation� Sharing and crowding are not
needed� since genetic diversity is naturally maintained in Genetic Invariance�
Although all alleles �thus� all schemata� may not be producable from any
particular pair� they will be present in the population� and so available for
use� Genetic Invariance is also similar to Parallel Genetic Algorithms in that
local optimization is propagated between subpopulations to achieve global
optimization� In the case of Genetic Invariance� each adjacent pair can be
thought of as a subpopulation� Although these features do not necessarily
make Genetic Invariance better than Genetic Algorithms� they do appear to
add to its potential�

A summary of the characteristics of Genetic Algorithms and Genetic
Invariance is given in table �� Each method has its successes and failures�
The next section will explore how these successes and failures are shown by
empirical analysis�
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Genetic Algorithm Genetic Invariance

Optimization Method Convergence Stagnation

f Evals per Generation n �

Diversity Arti�cial Natural

Endpoint Convergence Stagnation

End Values Maxima Maxima�Minima

�Simple� Functions 
 Epistatic ��� 
 Epistatic

Table �� Characteristics of Each Method

��� Empirical Analysis

����� Introduction

This section shows the results of testing Genetic Algorithms� Genetic In�
variance� and random search on the DeJong test suite� These results are
analysed� showing several properties of each system�

����� The DeJong Test Suite

Function optimization is a common test of Genetic Algorithms� Among the
functions Genetic Algorithms are tested on� the most common is the DeJong
Test Suite� DeJong �DeJ��� designed � functions with varying properties�
Although the properties of the functions� namely modality� convexity� and
continuity� indicate that the functions are of di�ering natures� this is only
true in Cartesian space �and thus� only true for Cartesian function optimiz�
ers�� The notion of modality� continuity� and convexity is much di�erent in
Hamming space�

We added the function f� to the � DeJong test functions� f� to f�� to
see how each method would perform on this allegedly simple function� The
functions are listed in table ��

Functions f� through f� are the � DeJong test functions� copied from
�Gol	�b�� For f�� the variable x is a binary number of arbitrary length�
No further encoding was required� For f� to f�� each xi was encoded as a
sign�magnitude integer� and divided by an appropriate amount to obtain the
range� For example� f� was encoded as a ���bit binary number� composed
of � ���bit sign�magnitude integers� having � sign bit and �� data bits each�
Function f� was maximized� and functions f� to f� were minimized by
maximizing fmax�f � The �noise� in function � was created by the following
function� �� �

P��
i
� RANDOM�
���� where RANDOM�
��� is a random
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f Mathematical Expression Limits fmax

f� The number of � bits in x 
 � x � �l

f�
P�

i
� x
�
i ����� � xi � ���� 	�

f� �

�x��� x���
� � ��� x��

� ���
�	 � xi � ��
�	 ��



f�
P�

i
�bxic ����� � xi � ���� ��

f�
P��

i
� ix
�
i �NOISE���� �� ����	 � xi � ���	 �
�


f�
�

������
P��

j��
�

j�
P�

i��
�xi�aij�

�

������� � xi � ������ �



Table �� Table of Test Functions

value from the uniform distribution on �
���� Function f� was also designed
to test performance on a large number of dimensions� f�
s constants� aij �
are found in table ��

First dimension Second Dimension

��� ��� 
 �� ��

��� ��� 
 �� ��

��� ��� 
 �� ��

��� ��� 
 �� ��

��� ��� 
 �� ��

��� ��� ��� ��� ���

��� ��� ��� ��� ���

�� �� �� �� ��

�� �� �� �� ��


 
 
 
 


Table �� Constants for DeJong function f�

����� Empirical Results of Genetic Algorithms

Graphs � to �� show how the value of the maximal individual in the Ge�
netic Algorithm
s population varies with the number of function evaluations
performed� One function evaluation is performed for each individual tested�
The Genetic Algorithm is used without any modi�cations such as Crowd�
ing or Sharing� or the use of Parallel Genetic Algorithms or Steady State
Genetic Algorithms� However� a small mutation rate �
�
��� was present
and the Genetic Algorithm was tested both with and without elitism� The
graphs show the averages obtained over �
 test runs�
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The genetic algorithm performs well on most of the functions� Figures
� to � show how the value of the maximal individual in the population
varies over time for all � functions� Figure �
 con�rms DeJong
s note that
small populations initially optimize faster� but larger populations outper�
form them in the long run �DeJ����

Figure �� shows that Genetic Algorithms perform better with Elitism�
Elitism with mutation keeps improving its maximum value until it has
achieved the maximal value� Even though the population can converge to
n copies of a single individual� mutations are retained if they are bene�cial�
Thus an extremely slow growth rate will be noticed even after the population
has converged� This is because mutation� with a very low probability� will
cause some individuals to rise slightly in value� Thus� even though growth
is still possible� it may require hundreds or thousands of generations�

Genetic Algorithms perform poorly without mutation� In the problems
sampled� the maximum value of the population in the simple Genetic Algo�
rithm with no mutation rises in value and then falls in value as the popula�
tion converges� This is the point where the superiority of superior schemata
is balanced� and outweighed� by the quantity of inferior schemata� Genetic
drift starts to occur� slowly decreasing the overall worth of the population
as drift occurs towards the more numerous lower valued schemata� This is
shown in �gures �� and ���

Elitism� naturally� does not allow for the previous sort of drop in max�
imum value� This method has the e�ect of distributing the maximal indi�
vidual
s schemata over the inferior individuals� Thus� the current maximal
schemata will replace inferior individuals� resulting in a higher growth rate�
Figure �� shows the e�ects of adding elitism to the Genetic Algorithm�

Mutation is a complex issue� While it does allow for greater genetic
diversity� it also has its drawbacks� It increases the growth rate by mutating
inferior schemata� while it decreases the growth rate by mutating superior
schemata� Thus� at the beginning� the mutation rate will allow for greater
diversity at very little expense� since the growth rate will usually be high and
will not be greatly a�ected by a slight mutation rate� At the end� where the
di�erence between superior and average schemata is much less� interference
from mutation occurs� resulting in oscillation in a wave�like pattern� This is
shown by the solid and dashed lines in �gure �
�

��



F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




��


���

���

���

���

���

��	

���

n � �
� u � 
�

 �lower line�
n � �

� u � 
�


n � ��
� u � 
�



n � �

� u � 
�

 �upper line�

Figure �� Performance of the Genetic Algorithm on f�

F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




�	�


�	��

���


����

	
�


	
��

	��


n � �
� u � 
�
� �lower line�
n � �

� u � 
�
�
n � ��
� u � 
�
�

n � �

� u � 
�
� �upper line�

Figure �� Performance of the Genetic Algorithm on f�

��



F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




�����


������

���	�


���	��

�����


������

��

�


n � �
� u � 
�
� �lower line�
n � �

� u � 
�
�
n � ��
� u � 
�
�

n � �

� u � 
�
� �upper line�

Figure �� Performance of the Genetic Algorithm on f�

F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




���


�	��

�
�


����

���


����

���


n � �
� u � 
�
� �lower line�
n � �

� u � 
�
�
n � ��
� u � 
�
�

n � �

� u � 
�
� �upper line�

Figure �� Performance of the Genetic Algorithm on f�

�	



F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




���

���

���

���

���

���

���

�	�

n � �
� u � 
�
� �lower line�
n � �

� u � 
�
�
n � ��
� u � 
�
�

n � �

� u � 
�
� �upper line�

Figure 	� Performance of the Genetic Algorithm on f�

F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




��


��


��


��


��


�	


��


�



n � �
� u � 
�
� �lower line�
n � �

� u � 
�
�
n � ��
� u � 
�
�

n � �

� u � 
�
� �upper line�

Figure �� Performance of the Genetic Algorithm on f�

��



F��Pmax�

Function Evaluations

��

 ��

 ��

 ��

 ��

 ��

 ��

 	�

 ��


��

��

��

��

n � �
� u � 
�
�
n � �

� u � 
�
�
n � ��
� u � 
�
�

Figure �
� Small and Large Populations� with Mutation

F��Pmax�

Function Evaluations

��

 ��

 ��

 ��

 ��

 ��

 ��

 	�

 ��


��

��

��

��

��

�	

��

n � �

� u � 
�
�� No Elitism
n � ��
� u � 
�
�� No Elitism
n � �

� u � 
�
�� Elitism
n � ��
� u � 
�
�� Elitism

Figure ��� The Simple GA and GA with Elitism� Both with Mutation

�




F��Pmax�

Function Evaluations


 �

 �


 ��

 �


 ��

 �


 ��

 �


 ��


��

��

��

�	

��

�


��

��

��

n � �
� u � 
�


n � �
� u � 
�
�

Figure ��� Genetic Algorithm at Zero and Nonzero Mutation

F��Pmax�

Function Evaluations

�


 	


 ��


 ��


 ��


 �




���


����

����

����

����

����

���	

n � �

� u � 
�



Figure ��� Genetic Algorithm
s Maximum Falls as it Converges

��



����� Empirical Results of Genetic Invariance

Genetic Invariance was run as described in chapter �� As with Genetic
Algorithms� the graphs show how the maximum value in the population
varies with the number of function evaluations performed� The graphs show
averages obtained over �
 runs�

The �rst function of note is f�� As can be expected for a method that
assumes zero epistasis� Genetic Invariance performed extremely well on this
problem� This is� in fact� one of the easiest non�trivial functions for Genetic
Invariance to solve� All of the population sizes� from �
 to �

� performed
well on all of the string sizes� from �
 to �

� Figure �� shows that Genetic
Invariance performs well on this problem� even with low population sizes
compared to the number of bits�

Figures ��� ��� and �	 show that Genetic invariance performed well on
functions f�� f�� and f �� However� �gure �� shows that Genetic Invariance
performed poorly on function f� and did not do much on function f�� There
are several possible causes for Genetic Invariance
s poor performance on f��
First of all� the multimodality of the two functions can cause disturbance
in Genetic Invariance� since two con�icting maxima �maxima from di�erent
peaks� will tend to combine and may cause a notable reduction in both val�
ues� Second� the large range that was being optimized by Genetic Invariance
may have adversely a�ected the precision of the optimization� Both prob�
lems not only required that the tested algorithm search for a point near the
optimal� they also required a close search of the optimal space� Genetic In�
variance concentrates on exploration� and so is not designed to concentrate
search on an area� These problems should be investigated in future papers�

Overall� genetic invariance performed well on functions with a small
range compared to the size of the domain� It performed particularly well
on functions with near�zero epistasis� or functions that can be ranked to
near�zero epistasis� From the way the functions were designed� it can be
said that Genetic Invariance is not highly a�ected by multidimensionality
�actually� epistasis� not dimensionality� is the primary concern of Genetic
Invariance�� Genetic Invariance performed poorly when asked to optimize a
function with a large range and small domain�

����� Empirical Analysis of Random Search

Random search is simple to understand� It involves randomly generating an
individual� testing it� and keeping the best individual seen�
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Random search is not expected to outperform any other problem solver
on any speci�c problem� However� it is useful to know in which cases a
problem solver utterly fails at its task� Figures �
 through �� show the
performance of random search on functions f� through f��

F��Pmax�

Function Evaluations


 ��

 �


 ��

 �




���

���

��	

��


���

���

���

��	

n � �
� u � 
�



Figure �
� A Random Search on Function f�

Random search used an elitist approach� each �generation� �
 individ�
uals were tested and the current maximum individual was replaced if the
population contained a higher individual� This provides yet another search
technique that can be compared with the two evolutionary approaches�

����� A Comparative Analysis

For function f�� Genetic Invariance clearly outperformed the simple genetic
algorithm� as can be seen from �gures � and ��� Figure �� shows what
happens when a small population is used on this function� The result is
genetic drift� causing only small amounts of real optimization and large
amounts of convergence to average valued schemata�

For function f�� Genetic Invariance outperformed both random search
and the simple genetic algorithm� The random search performed poorest�
even doing less than the genetic algorithm with a relatively small population
size ��
�� Figures �� ��� and �� show that Genetic Invariance performed both
more e�ciently and more quickly� However a random search� if done long
enough� would outperform either method� The simple genetic algorithm
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Figure ��� A Random Search on Function f�
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Figure ��� A Random Search on Function f�
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Figure ��� A Random Search on Function f�
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Figure ��� A Random Search on Function f�
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�uctuated at high values where the speed of convergence was outweighed
by mutation� At this point� it would have been pro�table to decrease the
mutation rate� probably to 
� and let the genetic algorithm converge�

Function f� appears to be an anomaly� since a random search appears
to outperform both the simple genetic algorithm and Genetic Invariance�
However� the �spreading� nature of Genetic Invariance was not designed to
optimize a function with such a high range� This distributive nature in fact
is bad for this function since the maximal value actually drops� The Genetic
Algorithm converges on this function� but not quickly enough to optimize
it� The maximal value can only grow another � point in ��

� less than 
�
�
percent of the total value� Genetic drift becomes a prominent factor since
the amount of growth is almost meaningless compared to the overall value
of the population� Convergence will be random� and schemata of only mod�
erate worth can be dominant in the converged population� Elitist Genetic
Algorithms would perform better� since superior schemata would be pre�
served� Elitist random search does not have a problem with convergence or
separation size� It slowly and steadily increases in value� making it perform
better than either of the two evolutionary systems�

The step property of function f� makes it an interesting function� The
values of an elitist random search will tend to form a step�like graph similar
to the graph of the function as the random search take longer to reach higher
steps� The graphs show that the maximum value of the �
� 


 random
selections does not outperform the simple genetic algorithm� The simple
genetic algorithm reaches fair values in moderate time� Genetic Invariance
reaches excellent values in small amounts of time� clearly outperforming
both other techniques�

For function f�� Genetic Invariance is also the clear winner� The simple
genetic algorithm performed better than a random search� but was still grow�
ing slowly at �
� 


 evaluations� However� Genetic Invariance performed
quite well� achieving optimal values in little time� Note that although the
maximum value of the non�random component was �
�
� the �uctuation of
the random factor produced results above this value� Thus� a maximum
value of �
�� was achievable� but only through both a superior individual
and a superior value from the random factor�

Function f� was optimized well by both the random search and the sim�
ple genetic algorithm� The genetic algorithm achieved higher results in less
time than the random search� Unfortunately� Genetic Invariance performed
poorly� hardly achieving any improvement over the initial population� This
is most likely the result of stagnation early on� and suggests that methods

�




to reduce the probability of early stagnation would be bene�cial to Genetic
Invariance�

����	 Conclusion

The three strategies� Genetic Invariance� Genetic Algorithms� and Random
Search� were tested on f � and the DeJong Test Suite� Results showed many
of the characteristics of both systems� including genetic drift and interference
from mutation in Genetic Algorithms� and stagnation in Genetic Invariance�
Genetic Invariance worked well on low�epistatic functions� where schemata
were easily separable� while Genetic Algorithms worked well on problems
where convergence aided optimization� Random search performed better on
one function where the amount of optimization possible was extremely small
compared to the total overall function range�

��� Data Structures

How can Genetic Invariance and Genetic Algorithms be implemented e��
ciently� Recall from �gures � and � that the two methods select individuals
from the population� mate them with crossover� the Genetic Algorithm per�
forms mutation� and then the population is restructured� Each function
evaluation is assumed to take at least O�l� time� since there are l bits in
each individual� Thus� the rest of the algorithm should optimally take at
least O�l� time per individual evaluated�

In the case of Genetic Algorithms� crossover� mutation� and population
restructuring take O�nl� time� Selection can be implemented e�ciently by
assigning each individual a third characteristic� the sum of the values of
previous individuals� In this manner� each parent can be chosen in O�log�n��
time by performing a binary search on the sum of values� Each generation� n
function evaluations are performed� resulting in O�nl� time per generation�
Thus� Genetic Algorithms require O�nl�nlog�n�� time per generation� Since
log�n� should be smaller than l �otherwise� the population size would exceed
the function
s domain size� and thus an exhaustive search would be possible��
the runtime is O�nl� per generation�

In Genetic Invariance� only two individuals are selected each generation�
resulting in O�l� time for crossover� Recall that no mutation is performed in
Genetic Invariance� Two function evaluations take O�l� time� Thus� selec�
tion and restructuring should optimally take O�l� time� O�log�n�� selection
can be done using a heap of function di�erences �AVAU	��� Consider a mat�
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ing cycle� After it is over� the two individuals will split� separating two other
pairs somewhere in the population� Thus� �ve function di�erences need to
be deleted and re�inserted each generation� the di�erences between the two
mating individuals� the di�erence between each of them and its non�mating
neighbor� and the di�erence between the two pairs which will be split� Five
heap insertions take O�log�n�� time� thus O�log�n�� time per individual is
required� Restructuring the population can be accomplished by making it
a binary tree �AVAU	��� Deletions and insertions can be accomplished in
O�log�n�� time� and the ability to quickly select individuals is maintained by
having pointers from the individuals in the heap to the � adjacent individuals
in the tree� Thus� in Genetic Invariance� a constant number of individuals
are updated in O�log�n�� time� Since log�n� � l� Genetic Invariance can be
said to update a constant number of individuals in O�l� time�

��� Conclusion

Similarities and di�erences between the two methods were discussed� Ge�
netic Algorithms were shown to be an active function optimizer in that it
concentrated its e�ort on �nding optimal values� Genetic Algorithms use
roulette wheel selection to implement Darwinian selection� which does per�
form adequate optimization� but can lead to premature convergence� inter�
ference from mutation� and genetic drift�

Genetic Invariance causes local separation� which in turn causes global
separation� Superior schemata are propagated upwards in the population�
to combine with more superior schemata� while inferior schemata propagate
down� to combine with more inferior schemata� The result is optimization
without convergence� While Genetic Invariance does not have problems
with interference from mutation� genetic drift� or premature convergence� it
has the problem of stagnation� If two mating individuals cannot separate�
no more work can be done� Several features used to improve the Genetic
Algorithm are natural to Genetic Invariance� Genetic diversity and the use
of localized mating and mating few individuals at once are all inherent to
Genetic Invariance�

Empirical results of the Genetic Algorithm and Genetic Invariance were
discussed� Random search was also tested� to determine the e�ectiveness of
each method� Each was tested on function f� and the �ve DeJong functions�
The maximal value seen at any given time was graphed against time� rep�
resented by the number of function evaluations done� Genetic Algorithms
showed the features of premature convergence� genetic drift� and interference
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from mutation� Even so� they performed well on several of the functions�
Elitism caused an improvement in the overall performance of the Genetic
Algorithm� Genetic Invariance worked well on three DeJong functions� but
performed poorly on the others� Genetic Algorithms outperformed both
other problem solvers on function f�� while Genetic Invariance worked bet�
ter on functions f �� f�� f�� and f�� Random search performed best on
function f�� where the amount of optimization possible was insigni�cant
compared to the overall value of the function�

Finally� Data structures suitable for each were discussed� A simple binary
search may be used to make the Genetic Algorithm selection process e�cient�
while Genetic Invariance is more complex� requiring a tree and a heap to
run e�ciently� Both methods resulted in the minimum runtime of O�l� per
function evaluation� under the assumption that each function evaluation
takes at least O�l� time�
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� Conclusion

An adaptive search algorithm is a system that modi�es is search strategy
based on the data it collects� A Genetic Algorithm is an adaptive search
algorithm that uses generate�and�test data collection and employs a popu�
lation of elements� The initial population is randomly generated� and sub�
sequent populations are created by using processes modelled after genetic
sexual and asexual reproduction� Genetic Algorithms use roulette wheel se�
lection based on the Schema Theorem� The Schema Theorem states that
individuals should be assigned a probability of mating proportional to their
relative values� which causes schemata to grow in quantity at a rate expo�
nentially proportional to their quality� Function optimization was noted to
be the standard method for testing Genetic Algorithms� Several problems
occur when using Genetic Algorithms� including deception� premature con�
vergence� interference from mutation� and genetic drift� Sharing� Crowding�
Elitism� Steady�State Genetic Algorithms� and Parallel Genetic Algorithms
have been proposed by other researchers to solve these problems�

We introduced Genetic Invariance� an evolutionary system based on the
separation of value� This method was of particular interest to us because
no where does it speci�cally select for optimal values� Rather� optimization
is accomplished by side e�ects of its overall behavior� We have given a
mathematical analysis on a restricted case of a simple function� and various
properties of Genetic Invariance were noted� Implications of the properties
and mathematical analysis were given� showing that in general� Genetic
Invariance separates superior and inferior schemata� causing a separation
between the minimal and maximal individuals in the population� This�
combined with the fact that the functions we are using have de�ned lower
limits� indicate that it is possible to put a lower bound on the maximal value
achieved by Genetic Invariance�

Similarities and di�erences between the two methods were discussed� Ge�
netic Algorithms use roulette wheel selection� which causes the population
to converge� Genetic Invariance uses local separation� to indirectly cause
global optimization� Both were tested on the DeJong functions� Genetic
Invariance worked better on four of the functions� but performed poorly
on the other two� Genetic Algorithms worked well on �ve functions� out�
performing Genetic Invariance on one of the functions� They were tested
against Random search� which performed better on one function where the
amount of optimization possible was considerably smaller than the overall
function value� Data structures were given for both� which indicated that
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an O�l� runtime per function evaluation was possible for each system�
The nature of this thesis was not one of determining which system is

better� Each method is better for a di�erent set of problems� Instead� this
thesis explores the similarities and di�erences of the two methods� Genetic
Invariance requires separability and produces separation� Genetic Algo�
rithms require separation and produce optimization� An exploration of a
combination of the two methods would be useful� since each can succeed in
cases where the other will fail� Allowing each method to run for a number
of generations is a possibility� as Genetic Algorithms will trim unpro�table
schemata from the population while Genetic Invariance will separate the
population� which will reduce the probability of genetic drift�

Maintaining invariance does not require that adjacent pairs be mated�
Any pair can be chosen as parents as long as they are replaced by their
children� Other methods are more �exible� and are likely to produce better
results� Useful optimization can involve mating any pair� assigning proba�
bilities of mating based on Hamming distance and similarity of value� The
pair would then be mated� and replace the parents if some condition was
met� Two conditions suggest themselves as being feasible� If the children
produced have a higher di�erence in value� they can replace their parents�
Alternatively� the children could replace their parents if the children
s cu�
mulative or maximal value exceeds the parents
 value�

For parallel computers� Parallel Genetic Invariance is possible� Selecting
a number of closest pairs� then mating them can be done� although steps
would have to be taken to insure that no pair interferes with any other pair�

Genetic Di�usion� adding mutation to Genetic Invariance is possible�
This is not recommended� since the mutation rate should be extremely small
and directed at modifying the values of the lowest ranked individuals� This
may produce a high maximum� but will also cause the minimum to increase�
This is not recommended if an overall view of the function is desired� An�
other method is replacing the lowest individual by a random individual every
few generations� This will have an e�ect similar to mutation� a higher max�
imum is possible� but at the expense of an overall view of the function�

Genetic Algorithms have the Schema Theorem� A similar fundamental
theorem of Genetic Invariance would allow for more e�ective research in
Genetic Invariance� This theorem would show what function properties lead
to local separation and which do not� Also� the amount of separation that
can be achieved before stagnation can be mentioned�

This thesis is only a start in exploring the fundamentals of Genetic In�
variance and evolutionary systems� Although some basic explanations about
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the nature of Genetic Invariance were given� further research is necessary
before Genetic Invariance is understood even as well as Genetic Algorithms�
From this� the nature of evolutionary systems can be studied� and the ben�
e�cial and unnecessary features of these systems can be explored� This will
lead to more e�cient evolutionary systems in particular� and more e�cient
problem solvers in general�
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A Glossary

b The number of � bits in the population�
C�x� fwjxw � �g�
d The number of duplicate columns in the population�
f A function�

f� The number of � bits in x� 
 � x � �l

f�
P�

i
� x
�
i � ����� � xi � ����

f� �

�x�� � x���
� � ��� x��

�� ���
�	 � xi � ��
�	

f�
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i
�bxic� ����� � xi � ����
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P��
i
� ix

�
i �NOISE���� ��� ����	 � xi � ���	

f�
�

������
P��

j��
�

j�
P�

i��
�xi�aij�

�

� ������� � xi � ������

f��Px�Py� The f sum� f�Px� � f�Py��
f��Px�Py� The f di�erence� jf�Px�� f�Py�j�
Hd�x� y� the Hamming distance between x and y�
l Length of an individual�
n Population size�
P A Population of n individuals�
P i The ith individual of P �
P ik The kth bit of Pi�

P�t� The population after t restructurings�
t The current time step�
T �x� The xth triangular number�
��x� The inverse of T �x��
u The mutation rate �
X�Pi�Pj� The crossover of Pi and Pj �
	 The number of C�superset groups in P�

Table �� De�nitions of Commonly Used Variables

��



Allele The value of a column in an individual�

ALMS point The minimal value achievable by Genetic Invariance when it
stagnates on f�� with the b �s evenly distributed over the columns�

Convergence The restriction of search to a smaller domain�

Crossover A method of combining � parents� which produces � children�

De�ning Length The de�ning length of a schema s is the distance between
the �rst and last �xed alleles of s�

Elitism Ensuring that the �tness of the population does not drop� If
fmax�P

�t�� � fmax�P
�t����� then the �ttest individual in P�t� replaces

the least �t in P�t����

Epistasis A function is epistatic if there is a dependence among bits such
that the contribution of one bit to the value of the individual is de�
pendent on the other bits in the individual� A function without bit
dependence has 
 epistasis�

Genetic Algorithm An adaptive search strategy using roulette wheel se�
lection to achieve Darwinistic evolution of superior individuals�

Genetic Drift A problem with Genetic Algorithms which occurs if supe�
rior individuals are of only slightly higher value than average individ�
uals�

Genetic Invariance An adaptive search strategy employing local separa�
tion to achieve global separation� and thus� optimization�

HALMS point The minimal value achievable by Genetic Invariance when
it stagnates on f�� with the b �s evenly distributed over the columns�
with several heuristics added to Genetic Invariance�

Higher Py is higher than Px in Genetic Invariance if x � y�

Individual An l bit binary string�

Invariance �t�� t�� j�
Pn

i
� P
�t��
ij �

Pn
i
�P

�t��
ij �

Initialization A method of creating P����

�




LMS Point The least maximum under stagnation in the � bit per column
case of f��

Lower Px is lower than Py in Genetic Invariance if x � y�

Mating Scheme A method of generating P�t��� from P�t��

Mutation The probability that P
�

ik is replaced by �P
�

ik when children are
generated�

Order The order of a schema s is the number of �xed alleles in s�

Selection The process of choosing parents from P�t��
Roulette Wheel Selection� The probability that P i will be selected as

a parent is f �Pi�Pn
j��

f �Pj�
�

Stagnation The time at which Genetic Invariance is no longer productive�
Thus� the point at which the value of Pn cannot increase�

Value Divergence Increase of f��P��Pn� in Genetic Invariance�

Table �� De�nitions of Commonly Used Terms
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