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Abstract

Classical wisdom in machine learning advises controlling the complexity of

the hypothesis space for achieving good generalization. Despite this, modern

overparametrized neural networks demonstrate remarkably high generalization

performance, oftentimes with larger and more expressive architectures outper-

forming smaller ones. Motivated by these observations and other studies that

produced similar phenomena in kernel regression, we study generalization in

high-dimensional linear models through the lens of representation alignment,

a measure of how much the labels vary in directions where the data is more

spread out. Understanding when this relationship between the features and the

labels holds and its potential for refining theoretical analyses and algorithms

underlie the contributions in this thesis. We formally describe representation

alignment and show how it connects to optimization and generalization. We

then evaluate neural network hidden representations with this measure and

find that training neural networks increase representation alignment in their

hidden representations under a wide range of architectures and design choices.

Based on these observation, we derive a regularization method for domain

adaptation and find that enforcing alignment between the predictions and the

given representation can help in domain adaptation. Finally, we extend the

insights to policy evaluation and study generalization with temporal-difference

learning.
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Chapter 1

Introduction

Generalization, the ability to perform well on unseen data, is a central goal

in machine learning (Bishop, 2006), and much of theoretical advances in this

field have been dedicated to characterizing generalization (Mohri et al., 2018;

T. Zhang, 2023). A good theoretical framework would provide guarantees

and estimates for generalization and guide the design of new algorithms and

models (Kawaguchi et al., 2017).

Classical frameworks have characterized the generalization gap, the dete-

rioration of performance on unseen data, using a measure of capacity of the

function class. Such theoretical results would guarantee smaller generaliza-

tion gap for more restricted function classes (Vapnik & Chervonenkis, 1971;

Shalev-Shwartz & Ben-David, 2014). The restriction can be inherent in the

model design, implicit in the training algorithm, or explicitly enforced through

a regularizer. These results have shown to be insightful in certain situations

and often tight under their assumptions (Mukherjee et al., 2006; Mohri et al.,

2018), reinforcing old rules of thumb for improving generalization by restricting

the hypothesis class (Popper, 2005).

Modern deep learning practice challenges these guidelines. Large function

classes of neural networks perform well in practice with more recent architec-

tures such as Residual Networks and Transformer generalizing better despite

growing in size and expressivity (Krizhevsky et al., 2009; He et al., 2016;

Dosovitskiy et al., 2020; Kaplan et al., 2020). Empirical studies have shown

that modern neural networks can fit large data with random labels, implying

1



that neither the architecture design, nor the training algorithm, nor moderate

amounts of regularization as commonly applied heavily restrict the function

class capacity (Neyshabur et al., 2014; C. Zhang et al., 2017). While this phe-

nomenon does not contradict the classical theory—the theory does not imply

that large function classes are guaranteed to generalize poorly, the observa-

tion motivates developments that answer when a model can generalize well

regardless of its capacity.

A growing paradigm against this backdrop is benign overfitting whose

premise is providing generalization bounds and estimates that remain under

control as the model capacity grows (Belkin et al., 2019; Bartlett et al., 2020;

Hastie et al., 2022). Since many empirical phenomena in deep learning can

be reproduced with simpler linear models (Belkin et al., 2018; Jacot et al.,

2018), most of benign overfitting results focus on linear models where capacity

is controlled by the number of input dimensions. These results characterize

properties in the input that guarantee good generalization even as the number

of dimensions goes to infinity.

Approach: We are interested in the generalization performance of high-

dimensional linear models. Rather than focusing on the input, we ask what

type of relationship between the input and the target can ensure good general-

ization. One such relationship, representation alignment, is the central theme

of this thesis. In short, representation alignment means that the targets vary

mostly in directions where the data is more spread out. Through this docu-

ment we will define representation alignment rigorously and show its role in

generalization and then go beyond generalization and study how representa-

tion alignment affects optimization, when it emerges, and how it can be used

as prior knowledge.

1.1 Contributions

The following list summarizes the key contributions with the thesis statements

italicized:

• Improved generalization bounds using representation alignment.
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Using a bias-variance decomposition in a regression model and margin

theory in classification, we show that estimators with high generaliza-

tion performance can be obtained from a small sample if representation

alignment is high. We verify this insight on synthetic and practical ex-

periments.

• Empirical study on the connection between representation align-

ment and optimization. Motivated by a simple characterization of the

expected convergence rate of gradient descent, we conduct an empirical

study on different optimizers in regression and classification and observe

that a variety of common optimizers tend to converge faster in practice

when representation alignment is high.

• Empirical study on emergence of representation alignment. We

evaluate neural network hidden representations in a large range of train-

ing setups and find that training neural networks increases representa-

tion alignment in their hidden representations on the training tasks and

in common feature transfer scenarios.

• Label alignment regularization for distribution shift. Using the

observation in the previous contribution, we derive a regularization method

for domain adaptation and find that enforcing alignment between the

predictions and the given representation can help in domain adaptation.

Instead of regularizing representation as done by popular domain adapta-

tion methods, we regularize the classifier to align with the unsupervised

target data based on our prior knowledge about the relationship be-

tween the representation and the labels in each of the source and target

domains. In a linear regression setting, we characterize the relation-

ship between our regularized solution and the optimal solution on the

target domain. We show the efficacy of our method on problems where

classic domain adaptation methods are known to fail. We also report im-

provement over domain adaptation baselines on cross-lingual sentiment

analysis tasks.
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• Empirical study on generalization with temporal-difference learn-

ing. Based on our earlier findings, we hypothesize that, in the context

of policy evaluation, temporal-difference learning can find generalizable

solutions from a small sample of transitions if its expected convergence

rate is high. We verify this hypothesis on four small testbeds.

1.2 Roadmap

The next Chapter will give a precise definition of representation alignment

and discuss its place in the literature. Then, Chapter 3 provides the theoreti-

cal results on generalization along with verification on synthetic experiments.

Chapter 4 provides a simple expected convergence rate for gradient descent

using representation alignment. In Chapter 5 we study when high representa-

tion alignment emerges. Then in the same chapter, having tasks with different

degrees of representation alignment at hand, we empirically study our earlier

insights on the connection between representation alignment and optimization

and generalization. Chapter 6 develops and tests a regularizer to enforce prior

knowledge about representation alignment in domain adaptation. Chapter 7

turns to policy evaluation and asks whether the connections between conver-

gence rate and generalization extend to temporal-difference learning. Finally,

Chapter 8 reviews the findings, discusses the limitations, and concludes the

thesis.
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Chapter 2

Representation Alignment

This chapter formalizes representation alignment, provides basic insights on

the role of representation alignment on performance, and summarizes some

previous work that introduced and benefited from similar concepts.

2.1 Definition

Within the scope of this document we define a task as a pair of random vari-

ables (ϕ, y) where ϕ ∈ R
d,E[ϕ] = 0,E[∥ϕ∥2] ̸= 0 and y ∈ R,E[y] = 0,E[y2] ̸=

0, that is, both ϕ (the representation) and y (the target) are centered but

they are not constantly zero. Define w∗ := limλ→0+ arg minw∈Rd E[(w⊤ϕ −
y)2] + λ ∥w∥2 as the min-norm Mean Squared Error (MSE) minimizer, and

the random variable ϵ := w∗⊤ϕ − y. Note that while it is easy to show that

E[ϵ] = 0, we do not have E[ϵ|ϕ] = 0 in general, permitting model misspecifi-

cation. The covariance matrix is H := E[ϕϕ⊤] which in eigendecomposition

can be written as H =
∑d

i=1 σ
2
i viv

⊤
i where the sequence (σi)

d
i=1 is non-negative

and non-increasing. For a threshold τ ≥ 0 the truncated covariance matrix

is Hτ :=
∑

{i:σi≥τ} σ
2
i viv

⊤
i . For a vector x ∈ R

d and a matrix A ∈ R
d×d the

matrix norm
√
x⊤Ax is denoted by ∥x∥A.

Definition 2.1.1. For a task (ϕ, y) and threshold τ ≥ 0 we define representa-

tion alignment as

Alignment(ϕ, y, τ) := ∥w∗∥2Hτ
/E[y2]
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have an extra parameter like the threshold in representation alignment, and

later we will see that neither KTA nor any other scalar measure can fully

capture the trends in optimization. Regarding generalization, however, KTA

plays an important role, and we will in fact connect representation alignment

and generalization in classification through a connection with KTA.

9



Chapter 3

Representation Alignment and
Generalization

This chapter provides theoretical results that connect representation alignment

and generalization. Using a bias-variance decomposition in the first section

we show that representation alignment helps in a certain regression setting by

reducing the bias term. The next section uses margin theory to show the role

of representation alignment on the performance of a classifier. Both results

are applicable to high dimensions.

3.1 Generalization in Well-Specified Regres-

sion

Consider the task (ϕ, y) where ϕ := H1/2z, H ∈ R
d×d is symmetric and z ∈ R

d

is a random vector whose independent elements (not necessarily identically

distributed) have zero mean and unit variance. Define the min-norm MSE

minimizer w∗ and target noise ϵ similar to Section 2.1. Assume E[∥y∥2] = 1

and that and the distribution of ϵ has mean zero and standard deviation σϵ and

is independent of ϕ, that is, there is no model misspecification and E[y|ϕ] =

w∗⊤ϕ.

The goal is to estimate w∗ using only an independent and identically

distributed (iid) sample in the form of ((ϕi, yi))
n
i=1 arranged into a matrix

Φ ∈ R
n×d and a vector y ∈ R

n. We will first study the performance of min-

norm estimate ŵ := (Φ⊤Φ)†Φ⊤y. Equivalently, ŵ is the estimate with the

10



smallest ℓ2-norm among the set of estimates that minimize the MSE on (Φ,y)

(Bartlett et al., 2020). Then we will give a result for the ridge regression es-

timate ŵλ := (Φ⊤Φ + nλI)−1Φ⊤y for λ > 0. Given a new sample (ϕ0, y0),

the risk of an estimate w ∈ R
d is defined and decomposed into a bias and a

variance term in this way (Hastie et al., 2022).

RΦ(w,w∗) := E[(w⊤ϕ0 − y0)
2|Φ] = E[∥w − w∗∥2H |Φ]

= ∥E[w|Φ] − w∗∥2H︸ ︷︷ ︸
BΦ(w,w∗)

+ Tr[Cov[w|Φ]H]︸ ︷︷ ︸
VΦ(w,w∗)

.

To see the role of representation alignment in the analysis, note that

H is the covariance matrix and can be written in eigendecomposition as
∑d

i=1 σ
2
i viv

⊤
i . In this setting, if w∗ is in directions of eigenvectors of H with

smaller eigenvalues it needs to be larger in ℓ2 norm. This is because E[∥y∥2] =

E[
∥∥ϕ⊤w∗

∥∥2
]+σ2

ϵ = w∗H1/2
E[zz⊤]H1/2w∗+σ2

ϵ = ∥w∗∥2H+σ2
ϵ =

∑d
i=1(σiv

⊤
i w

∗)2+

σ2
ϵ . The term σ2

ϵ does not depend on w∗ and therefore ∥w∗∥H =
√

1 − σ2
ϵ re-

gardless of the direction of w∗. The same does not hold for ∥w∗∥. The later

elements of the sum
∑d

i=1(σiv
⊤
i w

∗)2 are weighted by small eigenvalues and if

w∗ is mostly in these directions, then ∥w∗∥ needs to be large.

3.1.1 A Numerical Result

The relationship between representation alignment and generalization is best

introduced through an example. Therefore, we will first provide the numerical

result in this section and then discuss the theory behind it in the next section.

Consider the case where H = diag([1, 1/22, 1/32, · · · , 1/d2]), zi ∼ N (0, 1) for

all i ∈ [d], ϵ ∼ N (0, 0.01). In other words, the elements of ϕ are mutually

independent and the first elements have a larger scale compared to the later

ones.

The tasks that we will compare have w∗ set to wi := (1/
√

1 − σ2
ϵ )(1/σi)vi

for different values of i. The normalization (1/
√

1 − σ2
ϵ ) ensures that E[∥y∥2] =

1. As we discussed in the previous chapter, wi for smaller values of i results

in higher representation alignment. For each task we will estimate ŵ using a

sample with n = 200, and estimate its risk on an independent sample with

11



n = 1000 and then compare the risks across the tasks to get an idea of the

role of representation alignment in generalization.

The method for obtaining ŵ in this example is gradient descent

ŵ0 := 0, ŵt := ŵt−1 − η∇(
1

n

n∑

i=1

1

2
(ϕ⊤

i ŵ
t−1 − yi)

2).

We will cover gradient descent in more depth later in the thesis and here

we only mention that it finds the min-norm estimate studied in the theorem

above, that is, we have limt→∞ ŵt = ŵ with appropriate value of η (Hastie

et al., 2022).

Figure 3.1 (left) shows the risk for different tasks. All curves start at 1,

since ŵ0 = 0 and E[y2] = 1, and then converge to different risks. Tasks whose

w∗ are in directions with larger eigenvalues will result in lower risk.

Recall that in general there could be more than one estimate that minimizes

the risk on the sample, and the analysis in this chapter will be on a certain

estimate, the min-norm estimate. Other estimates may behave differently.

To demonstrate this important caveat, we can use a preconditioned gradient

descent approach

ŵ0 := 0, ŵt := ŵt−1 − ηH−2∇(
1

n

n∑

i=1

1

2
(ϕ⊤

i ŵ
t−1 − yi)

2)

which, under appropriate conditions on η, finds an estimate with the mini-

mum risk on the sample but not necessarily the min-norm estimate (Amari

et al., 2021). As shown in Figure 3.1 (right), this estimate shows the exact

opposite pattern, with tasks whose w∗ are in directions with larger eigenvalues

resulting in higher risk. We do not pursue this direction further in this work

and keep the analysis of generalization limited to the min-norm estimate and

ridge regression estimate.

3.1.2 Basic Theoretical Insight

To understand the pattern in the previous section, we use a theorem by Hastie

et al. (2022) to illustrate the role of representation alignment in generalization
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The following theorem shows that B,V characterize the bias and variance of

the risk of the ridgeless estimate:

Theorem 3.1.1 (Hastie et al. (2022), Theorem 2). Assume σ2
d > 1/M and

Assumption 1 holds. Then for any constant D > 0 there exist C = C(M,D)

such that with probability at least 1 − Cn−D we have

|BΦ(ŵ, w∗) − B(Ŝ, Ĝ, γ)|≤ C ∥w∗∥2
n1/7

|VΦ(ŵ, w∗) − V (Ŝ, γ)|≤ C

n1/7

We can set w∗ to wi := (1/
√

1 − σ2
ϵ )(1/σi)vi for different values of i. In

the decomposition above, the predicted variance V does not depend on w∗.

The predicted bias B depends on w∗ only through ∥w∗∥2 and Ĝ. Setting w∗

to wi we have B(Ŝ, Ĝ, γ) ∝ 1/(1 + c0γσ
2
i )2. Since c0 and γ are positive, the

predicted bias will be smaller for smaller values of i that correspond to larger

eigenvalues.

3.1.3 The Full Result

More generally the optimal weights do not have to be exactly in the direction

of a certain eigenvector. We characterize this general case by incorporating

representation alignment as an assumption to refine another theorem that

considers ridge regression.

Hastie et al. (2022) characterized the risk of the ridge regression estimate

in the following way. For ζ ∈ C+ (a complex number with positive imaginary

part) define m(ζ) = m(ζ, Ŝ, γ) as the unique solution of

m(ζ) =

∫
1

s[1 − γ − γζm(ζ)] − ζ
dŜ(s)

and define m1(ζ) = m1(ζ, Ŝ, γ) as

m1(ζ) :=

∫ s2[1−γ−γζm(ζ)]
[s[1−γ−γζm(ζ)]−ζ]2

dŜ(s)

1 − γ
∫

ζs
[s[1−γ−γζm(ζ)]−ζ]2

dŜ(s)

The functions are defined for Im(ζ) = 0 using limits when the limit exists.

The predicted bias and variance are defined as

B(λ, Ŝ, Ĝ, γ) := λ2 ∥w∗∥2 (1 + γm1(−λ))

∫
s

[λ + (1 − γ + γλm(−λ))s]2
dĜ(s)
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V (λ, Ŝ, γ) := σ2
ϵγ

∫
s2(1 − γ + γλ2m′(−λ))

[λ + s(1 − γ + γλm(−λ))]2
dŜ(s)

Similar to the previous result, the following theorem characterizes the risk of

the ridge regression estimate in terms of the predicted bias and variance:

Theorem 3.1.2 (Hastie et al. (2022), Theorem 5). Assume max(λ, σ2
d) > 1/M

and Assumption 1 holds. Then for any constants D > 0 and ε > 0 there exist

C = C(M,D) such that with probability at least 1 − Cn−D we have

|BΦ(ŵλ, w∗) − B(λ, Ŝ, Ĝ, γ)|≤ C ∥w∗∥2
λn(1−ε)/2

|VΦ(ŵλ, w∗) − V (λ, Ŝ, γ)|≤ C

λ2n(1−ε)/2

We can improve this result using representation alignment. For a threshold

τ ≥ 0 the covariance matrix can be decomposed into the top subspace Hτ :=
∑

{i:σi≥τ} σ
2
i viv

⊤
i and the bottom subspace Hτ̄ :=

∑
{i:σi<τ} σ

2
i viv

⊤
i . Recall

∥w∗∥2H = 1 − σ2
ϵ and then define δ := ∥w∗∥2Hτ

. A higher value of δ means that

the optimal weights are mostly in the top subspace. By expanding the matrix

norm we get that ∥w∗∥2Hτ̄
= 1 − σ2

ϵ − δ.

The bias term in the theorem above grows with ∥w∗∥2 which in general

can be large if 1/σ2
d is large. Our goal is to give a result that removes this

factor of 1/σ2
d in the bias. That is, we want a bound on the bias to not grow

as much when σ2
d goes to zero while other factors are kept the same. To

do this we bound the bias in the top subspace and the bottom subspace in

two different ways. The bias in the top subspace is controlled similar to the

previous theorem and will depend on the smallest eigenvalue of this subspace

which is at least as large as τ . The bias in the lower subspace is controlled with

a different approach. This part of the bias will shrink to zero if the matrix

norm of the weights in this bottom subspace is small and, importantly, it will

not include the aforementioned factor of 1/σ2
d. For this step we add an extra

assumption that the input noise is subgaussian. We only need this assumption

to control the sample covariance matrix of the input noise. The full proof with

the details is in Appendix A.
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Define w∗
τ and w∗

τ̄ as the projection of w∗ on Hτ and Hτ̄ . Further define

Ĝτ (s) :=
1

∥w∗
τ∥2

d∑

i=1

⟨w∗
τ , vi⟩21{σ2

i ≤ s}

Bτ (λ, Ŝ, Ĝ, γ) := λ2 ∥w∗
τ∥2 (1 + γm1(−λ))

∫
s

[λ + (1 − γ + γλm(−λ))s]2
dĜτ (s)

which are similar to Ĝ and B but depend on w∗
τ instead of w∗. The following

theorem relates the risk to Ĝτ ,Bτ with an extra assumption on z.

Theorem 3.1.3. Assume max(λ, σ2
d) > 1/M and Assumption 1 holds and that

the higher moments are such that z is σz-subgaussian. Then for any constants

D > 0 and ε > 0 there exist C = C(M,D) such that with probability at least

1 − Cn−D we have

RΦ(ŵλ, w∗) = BΦ,τ (ŵλ, w∗) + VΦ(ŵλ, w∗) + ∆

|BΦ,τ (ŵλ, w∗) − Bτ (λ, Ŝ, Ĝ, γ)|≤ C ∥w∗
τ∥2

λn(1−ε)/2

|VΦ(ŵλ, w∗) − V (λ, Ŝ, γ)|≤ C

λ2n(1−ε)/2

∆ ≤ C
√

1 − σ2
ϵ − δ

min(λ, λ2)
(1 + max(σ2

z , σ
4
z) max{

√
d + log n

n
, (
d + log n

n
)2})

Compared to the previous theorem we have replaced ∥w∗∥2 in the bias term

with ∥w∗
τ∥2 by incorporating representation alignment as an assumption. This

can be an improvement since in general ∥w∗∥2 can be O(1/σ2
d) while ∥w∗

τ∥2 is

O(1/τ 2). The extra term ∆ will depend on δ and will be small if δ ≈ 1 − σ2
ϵ ,

that is when ∥w∗∥Hτ̄
≈ 0, regardless of how small the smallest eigenvalue is.

3.2 Generalization in Classification

This section shows the role of representation alignment in generalization in

classification through connections with margin theory. The first part shows a

generalization bound using the fact that high representation alignment results

in lower margin loss. Then we will discuss the connection between represen-

tation alignment and Kernel-Target Alignment. Finally, we provide numerical

results similar to the previous section.
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3.2.1 Generalization Bound

Consider the centered feature mapping ϕ : X → R
d, E[ϕ] = 0, and the as-

sociated kernel function K : X × X → R defined as K(x, x′) := ϕ(x)⊤ϕ(x′)

with K(x, x′) ≤ Ω2 for x, x′ ∈ X . Similarly define a balanced labeling function

y : X → {±1}, E[y] = 0 and the associated kernel function Ky : X×X → {±1}
defined as Ky(x, x

′) := y(x)y(x′) for x, x′ ∈ X . Suppose we have a sample

((ϕi, yi))
n
i=1 where, for i ∈ [n], xi are iid and ϕi and yi are short for ϕ(xi) and

y(xi). The sample can be arranged into a matrix Φ ∈ R
n×d and y ∈ R

n. The

kernels K̂ and K̂y can be defined similar to above but using Φ and y. Our goal

is to use the sample to find a linear classifier wclf ∈ R
d such that the expected

0-1 risk R(wclf) := Pr[y(x)(w⊤
clf
ϕ(x)) < 0] is small.

Step 1: The first step is to lower bound E[KKy] := Ex,x′ [K(x, x′)Ky(x, x
′)]

using representation alignment.

Proposition 3.2.1. Suppose Alignment(ϕ, y, τ) = δ for a τ ≥ 0. Then

E[KKy] ≥ δτ 2.

Proof. Since y ∈ {±1} we have E[y2] = 1. Recall the MSE minimizer in

the definition of representation alignment and let us denote it as wMSE in

the context of classification for clarity, thus having ∥wMSE∥2Hτ
= δ. For an iid

sample of size n arranged into Φ and y, thin singular value decomposition (thin

SVD) gives Φ = ÛΣ̂V̂ where, importantly, Σ̂ ∈ R
d×d and the decomposition

is chosen arbitrarily if it is not unique. Dependence of the matrices on n

is left implicit for conciseness. Eigendecomposition on the covariance matrix

H := E[ϕϕ⊤] gives H = V Σ2V ⊤ where limn→∞ Σ̂ = Σ and limn→∞ V̂ = V .

Define Στ ∈ R
d×d as a diagonal matrix with diagonal elements σi1{σi ≥ τ}.

We can write wMSE as wMSE = H†
E[Φy] = limn→∞ H† 1

n
Φ⊤y. Therefore

δ = ∥wMSE∥2Hτ
= w⊤

MSE
HτwMSE = lim

n→∞

1

n2
y⊤ΦH†HτH

†Φ⊤y

= lim
n→∞

1

n2
y⊤(ÛΣ̂V̂ ⊤)(V Σ2†V ⊤)(V Σ2

τV
⊤)(V Σ2†V ⊤)(V̂ Σ̂Û⊤)y

= lim
n→∞

1

n2
y⊤ÛΣ†Στ Û

⊤y = lim
n→∞

1

n2

∑

σi≥τ

(Û⊤
:i y)2
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We can write E[KKy] similarly to obtain the final result.

E[KKy] = lim
n→∞

1

n2
y⊤ΦΦ⊤y = lim

n→∞

1

n2
y⊤ÛΣ2Û⊤y = lim

n→∞

1

n2

d∑

i=1

(σiÛ
⊤
:i y)2

≥ lim
n→∞

1

n2

∑

σi≥τ

(σiÛ
⊤
:i y)2 ≥ lim

n→∞

1

n2

∑

σi≥τ

τ 2(Û⊤
:i y)2 = τ 2δ

Step 2: Now we turn to the Frobenius dot product 1
n2 ⟨ΦΦ⊤,yy⊤⟩F , the

empirical analogue of E[KKy], and show that these two are related with the

following concentration inequality.

Proposition 3.2.2. For any D > 0 with probability at least 1 −D we have

1

n2
⟨ΦΦ⊤,yy⊤⟩F ≥ E[KKy] − 4Ω2

√
log 1

D

n3

Proof. The kernels are centered and E[KKy] = E[ 1
n2 ⟨ΦΦ⊤,yy⊤⟩F ] per Equa-

tion (11) by Cortes et al. (2012). Changing an element (ϕi, yi) in a sample will

change 1
n2 ⟨ΦΦ⊤,yy⊤⟩F by no greater than (2Ω)2/n2. Therefore, McDiarmid’s

inequality (McDiarmid et al., 1989) gives that for any ε > 0

Pr[
1

n2
⟨ΦΦ⊤,yy⊤⟩F < E[KKy] − ε] ≤ exp

( −2ε2

n((2Ω)2/n2)2

)

Setting D equal to the right-hand side gives the result.

Step 3: We will now show that high 1
n2 ⟨ΦΦ⊤,yy⊤⟩F implies that a weight

vector with low empirical margin loss can be obtained using only the available

sample. For a weight vector w ∈ R
d and margin m > 0 define Ψm(x) :=

min(1,max(0, 1 − x/m)) and define the empirical margin loss as R̂m(w) :=

1
n

∑n
i=1 Ψm(yi(w

⊤ϕi)).

Proposition 3.2.3. Set wclf :=
(1/n)

∑n
i=1 yiϕi√

1

n2 ⟨ΦΦ⊤,yy⊤⟩F
. Then for any 0 < m < Ω

R̂m(wclf) ≤ 1 − 1

Ω

√
1

n2
⟨ΦΦ⊤,yy⊤⟩F
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Proof. First note that ∥wclf∥ =

√
1

n2 ⟨ΦΦ⊤,yy⊤⟩F
1

n2 ⟨ΦΦ⊤,yy⊤⟩F
= 1, therefore |yi(w⊤ϕi)|≤ Ω,

and if the margin is set to Ω the max operator in Ψm will not come into effect.

Secondly, the function Ψ and therefore R̂ is nondecreasing in m, therefore for

all 0 < m < Ω we have R̂m(wclf) ≤ R̂Ω(wclf) which itself can be bounded as

R̂Ω(wclf) ≤
1

n

n∑

i=1

1 − yi(w
⊤
clf
ϕi)/Ω = 1 − 1

Ω
w⊤

clf
(
1

n

n∑

i=1

yiϕi)

=1 − 1

Ω

√
1

n2
⟨ΦΦ⊤,yy⊤⟩F

Step 4: The following generalization bound relates the empirical margin loss

and generalization performance.

Theorem 3.2.4 (Mohri et al. (2018), p98). For all w ∈ R
d, ∥w∥ ≤ 1 and

m ∈ (0,Ω] and for any D > 0, with probability at least 1 −D

R(w) ≤ R̂m(w) + 4

√
Ω2/m2

n
+

√
log log2

2Ω
m

n
+

√
log 2

D

2n

Final Result: Putting steps 1-4 together, setting the margin to Ω, and using

a union bound on the stochastic events in steps 2 and 4 we get our final result

that gives a generalization bound using representation alignment.

Corollary 3.2.5. For any D > 0, if n is large enough such that τ 2δ −
4Ω2

√
log(2/D)

n3 > 0, with probability at least 1 −D

R(wclf) ≤1 −

√

(
τ

Ω
)2δ − 4

√
log(2/D)

n3
+ 4

√
1

n
+

√
log 2

D

2n

Alternatively, we can skip step 1 to give a generalization bound using

E[KKy].

Corollary 3.2.6. For any D > 0, if n is large enough such that E[KKy] −
4Ω2

√
log(2/D)

n3 > 0, with probability at least 1 −D

R(wclf) ≤1 −

√
E[KKy]

Ω2
− 4

√
log(2/D)

n3
+ 4

√
1

n
+

√
log 2

D

2n
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If the goal is obtaining a guarantee on generalization from a sample, the

original theorem 3.2.4 is what one would use anyway since the empirical mar-

gin loss can be computed using only the available sample. Corollary 3.2.5

provides intuition on when the margin loss can be low using the representa-

tion alignment measure in the underlying task. Corollary 3.2.6 gives a similar

insight and has the benefit of depending only on one quantity E[KKy] rather

than two quantities τ and δ simultaneously. The use of τ and δ in Corollary

3.2.5 is to show how the result connects with the rest of the thesis.

3.2.2 Connection to Kernel-Target Alignment

This section will briefly review the connection between representation align-

ment and a popular kernel learning objective. Let us drop the restriction that

the two kernels in the previous section are centered by construction and in-

stead define two centered kernels Kc(x, x
′) := (ϕ(x) − Ex[ϕ])⊤(ϕ(x′) − Ex′ [ϕ])

and Kyc(x, x
′) := (y(x)−Ex[y])⊤(y(x′)−Ex′ [y]). Suppose 0 < E[K2

c ] < ∞ and

0 < E[K2
yc] < ∞. Centered Kernel-Target Alignment (CKTA) is defined as1

CKTA(K,Ky) :=
E[KcKyc]√
E[K2

y ]E[K2
yc]

An empirical analogue of this measure can be defined for kernel matrices.

Recall Φ and y from the previous section. The kernels K̂ and K̂y and the as-

sociated centered kernels K̂c and K̂yc can be defined similar to above but using

Φ and y. Suppose
∥∥∥K̂c

∥∥∥
F
̸= 0 and

∥∥∥K̂yc

∥∥∥
F
̸= 0. Empirical Centered Kernel-

Target Alignment (ECKTA) is defined as (Cortes et al., 2012; Kornblith et al.,

2019a)

ECKTA(K̂, K̂y) :=
1/(n− 1)2⟨K̂c, K̂yc⟩F

1/(n− 1)2
∥∥∥K̂c

∥∥∥
F

∥∥∥K̂yc

∥∥∥
F

CKTA and ECKTA are related by a concentration bound, showing that

high CKTA in the task implies high ECKTA in a sample. Maximizing ECKTA

1The objective is generally called Centered Kernel Alignment when the second kernel
does not necessarily correspond to targets (Cortes et al., 2012). We use the more explicit
name Centered Kernel-Target Alignment for clarity.
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is a popular approach to kernel learning, motivated by high linear separability

of kernels with high CKTA (Cortes et al., 2012).

The normalization factor 1/(n−1)2 in ECKTA is arbitrary because its effect

on the numerator and the denominator will be cancelled out. We used this

certain normalization factor to highlight the connection to earlier work. The

numerator of ECKTA is known as Hilbert-Schmidt Independence Criterion

(HSIC) and is an estimator of E[KcKyc] (Gretton et al., 2005). HSIC is similar

to the quantity that we earlier used to obtain low empirical margin loss. The

main difference is that it uses the normalization factor 1/(n− 1)2 rather than

1/n2. In the setting of our result the kernels K and Ky were centered by

construction and we did not have to center the kernels ΦΦ⊤ and yy⊤, and

the estimator with normalization 1/n2 was unbiased. Obtaining an unbiased

estimator in general is more complicated and both 1/n2 and 1/(n − 1)2 will

result in biased estimators (L. Song et al., 2007).

3.2.3 Numerical Simulation

We define ϕ such that its i-th element is uniformly distributed on [1/i2] for

i ∈ [d]. We compare 5 tasks where the label in each task is set as (21{ϕ⊤vj >

0}−1) for j ∈ {1, 2, 4, 8, 16}, i.e., the labels change in the direction of a certain

eigenvector of the covariance matrix. Figure 3.2 (left) shows the representation

alignment curves for the different tasks.

We used a sample with n = 200 (train sample), obtained estimators using

this sample, and evaluated the estimates using an independent sample with

n = 1000 (test sample). Figure 3.2 (right) shows the expected 0-1 risk of a

common approach, gradient descent on logistic loss defined as

ŵ0 := 0, ŵt := ŵt−1 − η∇(
1

n

n∑

i=1

1

log(2)
log(1 + exp(ϕ⊤

i ŵ
t−1yi)))

in solid curves as well as the performance of wclf in dashed horizontal lines.

The number of iterations was large enough to ensure near-zero risk on the train

sample for all the tasks. As predicted by the theory, wclf achieves lower risk

on tasks with higher representation alignment. The same trend also appears

with the estimators obtained with gradient descent.
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An interesting observation in the regression experiments was that estima-

tors other than the min-norm estimator can behave differently and even show

the opposite pattern. Amari et al. (2021) studied the role of preconditioning

on the risk to understand which preconditioner is better for a certain task. The

transpose of their question, which task is easier for a certain preconditioner,

would be an interesting future direction.
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Chapter 4

Representation Alignment and
Optimization

This brief chapter discusses the connection between representation alignment

and optimization through a well-known convergence rate of gradient descent.

We will then provide a simple numerical simulation to demonstrate this connec-

tion and the need for a threshold in the definition of representation alignment.

These basic theoretical insights will set the stage for an empirical study in the

next chapter.

4.1 Convergence Rate

Consider the setup we introduced in Chapter 2 to define representation align-

ment and suppose E[y2] = 1 for simplicity. Gradient descent on expected MSE

is defined as the sequence ŵ0 := 0 and ŵt := ŵt−1 − η∇E[1
2
(ϕ⊤ŵt−1 − y)2] for

t > 0, where η is the step-size and t is the iteration. We are interested in mini-

mizing the expected risk which for weights w ∈ Rd is defined as E[(ϕ⊤w−y)2].

Define w̃ ∈ R
d as a vector composed of elements w̃i := w∗⊤viσi. The following

theorem shows the expected risk of ŵt:

Theorem 4.1.1. If 0 < η < σ−2
1 , the expected risk at each iteration is

E[(ϕ⊤ŵt − y)2] =
d∑

i=1

(1 − ησ2
i )2tw̃2

i + E[ϵ2]

At the beginning the risk is simply E[y2]. Through the iterations, the terms

in the loss with nonzero eigenvalues will shrink, reducing the overall risk. The
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terms with zero eigenvalues will themselves remain zero throughout, because

the corresponding element of w̃ is zero. In the limit of t → ∞, the overall

sum will become zero and the remaining risk will be E[ϵ2]. The proof is in

Appendix B.

To see how representation alignment comes into play note that represen-

tation alignment is high if the first elements of w̃ are large. This is because

Alignment(ϕ, y, τ) := ∥w∗∥2Hτ
/E[y2] =

∑
{i:σi≥τ} w̃

2
i . In the convergence rate

above, the terms corresponding to the first elements of w̃ will shrink at a faster

rate because the associated eigenvalue is larger. The following proposition cap-

tures this insight:

Proposition 4.1.2. If 0 < η < σ−2
1 and Alignment(ϕ, y, τ) = δ for a threshold

0 < τ < σ1, then gradient descent needs at most O(1/ητ 2) iterations to reduce

the loss by 0.9δ.

In other words, if representation alignment is large for a high threshold,

then gradient descent will reduce a large amount of the risk at a high rate, re-

gardless of how small the other eigenvalues are. The next section will illustrate

these insights. See Appendix B for the proof.

4.2 Numerical Results

Let us return to the set of tasks in Section 3.1.1. Since we are now interested in

the behavior of gradient descent on expected MSE, we will use a large sample

of size 10000 and report the risk on the same sample. Once again we create

different tasks by setting w∗ to wi := (1/
√

1 − σ2
ϵ )(1/σi)vi for different values

of i. Each curve in the Figure 4.1 (left) shows the risk for one the tasks through

the first 50000 iterations. All the curves start at 1 and shrink towards 0.01.

As expected by the theorem above, darker curves drop at a faster rate.

Now we turn to the proposition above that takes representation alignment

directly into account. By varying the threshold, the proposition describes the

amount of risk that can be reduced at a certain rate. We can demonstrate

this by comparing the two tasks with ϵ = 0 and optimal weights v2/σ2 and
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Chapter 5

Representation Alignment in
Feature Transfer

Previous chapters explored the role of representation alignment on optimiza-

tion and generalization and verified the insights on synthetic tasks. This chap-

ter turns to neural network hidden representations and considers a practical

scenario where high representation alignment emerges. Our findings in this

regard are that (1) across a wide range of architectures and hyperparameters,

learned hidden representations of neural networks achieve higher representa-

tion alignment compared to the input representation and the hidden represen-

tation at initialization, (2) in fully-connected neural networks, hidden layers

closer to the output layer tend to have higher representation alignment for

a wide range of thresholds, and (3) in a typical object classification feature

transfer scenario, neural network representations have higher representation

alignment compared to handcrafted features for a wide range of thresholds.

Having tasks with different degrees of representation alignment at hand,

we will then extend our previous synthetic experiments on optimization and

generalization to more practical scenarios. We will verify that (4) we can find

generalizable solutions from a small sample under high representation align-

ment and (5) representation alignment helps optimization with some common

optimizers.
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5.1 Feature Transfer

Let us first give a more rigorous definition of a feature transfer scenario. Sup-

pose we have an upstream task (xU , yU) with xU ∈ X U , yU ∈ YU and a down-

stream task (xD, yD) with xD ∈ XD, yD ∈ YD. A sample SU := ((xU
i , y

U
i ))n

U

i=1

is available from the upstream task, and SD := ((xD
i , y

D
i ))n

D

i=1 from the down-

stream task, the latter being much smaller, i.e. nD ≪ nU . The ultimate goal

is to learn an estimator from the small set SD that performs well on the down-

stream task regardless of whether this estimator performs well on, or is even

applicable to, the upstream task.

We can sometimes benefit from the large available sample SU towards the

aforementioned goal. Feature transfer paradigm proposes to learn a feature

extractor ϕ : X U ∪XD → R
d using the large sample SU . We can then use ϕ to

extract a representation ϕ(xD), abbreviated to ϕD. The premise is that, if the

two tasks are in some sense related, obtaining high performance on (ϕD, yD)

would be easier than on (xD, yD).

A common example is to first learn a neural network on the upstream task

with a large amount of data, then extract features from an intermediate layer

of that network and finally train a subsequent model on the downstream task

using those extracted features. The motivation is that neural networks adapt

their intermediate representations—hidden representations—to the upstream

task and, due to the commonalities between the two tasks, these learned rep-

resentations help training on the downstream task (Y. Bengio et al., 2013).

Availability of large datasets like ImageNet (Russakovsky et al., 2015) and the

News Dataset for Word2Vec (Mikolov et al., 2013) provides suitable upstream

tasks that facilitate using neural networks for feature construction for Com-

puter Vision and Natural Language Processing (NLP) tasks (Kornblith et al.,

2019b; Oquab et al., 2014; Devlin et al., 2018; Pennington et al., 2014).

There is as yet much more to understand about when and why feature

transfer is successful. Understanding the properties of the learned hidden

representations and their benefits for training on similar tasks has remained

a longstanding challenge (Touretzky & Pomerleau, 1989; Zhou et al., 2015;
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Marcus, 2018). One strategy has been to define properties of a good represen-

tation, and try to either measure or enforce those properties. Disentanglement

and invariance are two such properties (Y. Bengio et al., 2013), where the idea

is that disentangling the factors that explain the data and are invariant to

most local changes of the input results in representations that generalize and

transfer well. Although encoding properties for transfer is beneficial, it re-

mains an important question exactly how to evaluate the representations that

do emerge.

One challenge is that even hidden representations of two neural networks

trained on identical tasks appear completely different, and studying the repre-

sentations requires measures that separate recurring properties from irrelevant

artifacts (Morcos et al., 2018). One direction has been to analyze what ab-

stractions the network has learned, agnostic to exactly how it is represented.

Shwartz-Ziv and Tishby (2017) studied neural networks through the lens of

information theory and found that, during training, the network preserves the

information necessary for predicting the output while throwing away unneces-

sary information successively in its intermediate layers. Using representational

similarity matrices, Hermann and Lampinen (2020) found that on synthetic

datasets where task-relevance of features can be controlled, learned hidden

representations suppress task-irrelevant features and enhance task-relevant fea-

tures. Neyshabur et al. (2020) showed that neural networks trained from pre-

trained weights stay in the same basin in the loss landscape. In reinforcement

learning, Zahavy et al. (2016) explained the success of Deep Q-Networks by

visualizing how the learned hidden representations break down the input space

in a way that respects the temporal structure of the task. Analyses of NLP

models have found linguistic information in the hidden representations after

training (Belinkov et al., 2017; Shi et al., 2016; Adi et al., 2017; Qian et al.,

2016).

Other works have focused on individual features in the learned represen-

tations. Saliency maps and Layer-Wise Relevance Propagation (Simonyan et

al., 2014; Zeiler & Fergus, 2014; Bach et al., 2015) that show the sensitivity

of the prediction to each unit in the model are popular in Computer Vision

29



and demonstrate the appearance of useful features like edge or face detectors

in neural network. In NLP, Dalvi et al. (2019) studied the relevance of each

unit to an external task or the model’s own prediction.

5.2 Emergence of Representation Alignment

in Hidden Representations

Our goal is to evaluate neural network hidden representations through the lens

of representation alignment. Unless otherwise stated, by hidden representa-

tion we refer to the representation extracted from the hidden layer closest to

the output layer. Throughout this section we will extract different representa-

tions and compare them by creating representation alignment curves similar

to Figure 2.1.

5.2.1 Experiment Setup

Since our definition requires E[y] = 0, in classification we will focus on bal-

anced binary classification and in regression we will subtract the mean of the

targets before the experiment. In regression we will also scale the targets to

have E[y2] = 1. For each extracted representation we will subtract the mean,

normalize by the square root of the trace of the covariance matrix, and report

representation alignment for a range of thresholds. More rigorously, we will re-

port Alignment(ϕ̄, y, τ) where ϕ̄ := (ϕ−E[ϕ])/
√

Tr(E[(ϕ− E[ϕ])(ϕ− E[ϕ])⊤]).

The subtraction ensures E[ϕ̄] = 0 and this particular normalization ensures all

eigenvalues of E[ϕ̄⊤ϕ̄] are in [0, 1]. We will estimate all the expectations with

large samples since the underlying distribution of (ϕ, y) is inaccessible.

Centering and scaling are common preprocessing steps in training linear

models or neural networks (LeCun et al., 2002) so this methodology will not

deviate us from the overarching goal of understanding the quality of represen-

tations. Meanwhile, as the following proposition shows, the resulting measure

is invariant to isotropic scaling and rotation, a desirable property for a measure

of representation quality (Kornblith et al., 2019a).
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Proposition 5.2.1. For a constant c > 0 and an orthogonal matrix A ∈ R
d,

if ϕ2 = cAϕ1 then Alignment(ϕ̄2, y, τ) = Alignment(ϕ̄1, y, τ).

Proof. Define ϕ̃ := ϕ− E[ϕ] for brevity. First note

ϕ̄2 =
ϕ̃2√

Tr(E[ϕ̃2ϕ̃⊤
2 ])

=
cAϕ̃1√

Tr(c2AE[ϕ̃1ϕ̃⊤
1 ]A⊤)

=
Aϕ̃1√

Tr(E[ϕ̃1ϕ̃⊤
1 ])

= Aϕ̄1

If E[ϕϕ⊤]v = σ2v then AE[ϕϕ⊤]A⊤(Av) = AE[ϕϕ⊤]v = σ2Av and thus Av is an

eigenvector of AE[ϕϕ⊤]A⊤ with eigenvalue σ2. Therefore, E[ϕϕ⊤]τ , defined as

the truncated covariance matrix with threshold τ , is equal to AE[ϕϕ⊤]τA
⊤. Re-

call the min-norm MSE minimizer for a task (ϕ, y) is equal to w∗ = E[ϕϕ⊤]†E[ϕy].

Suppose E[y2] = 1 without loss of generality. Then

Alignment(ϕ̄2, y, τ) =
∥∥E[ϕ̄2ϕ̄

⊤
2 ]†E[ϕ̄2y]

∥∥
E[ϕ̄2ϕ̄⊤

2
]τ

= E[ϕ̄2y]⊤E[ϕ̄2ϕ̄
⊤
2 ]†E[ϕ̄2ϕ̄

⊤
2 ]τE[ϕ̄2ϕ

⊤
2 ]†E[ϕ̄2y]

= E[ϕ̄1y]⊤A⊤AE[ϕ̄1ϕ̄
⊤
1 ]†A⊤AE[ϕ̄1ϕ̄

⊤
1 ]τA

⊤AE[ϕ̄1ϕ
⊤
1 ]†A⊤AE[ϕ̄1y]

= E[ϕ̄1y]⊤E[ϕ̄1ϕ̄
⊤
1 ]†E[ϕ̄1ϕ̄

⊤
1 ]τE[ϕ̄1ϕ

⊤
1 ]†E[ϕ̄1y]

=
∥∥E[ϕ̄1ϕ̄

⊤
1 ]†E[ϕ̄1y]

∥∥
E[ϕ̄1ϕ̄⊤

1
]τ

= Alignment(ϕ̄1, y, τ)

Using the methodology above we will test the following hypotheses.

H1 On the task used in training a neural network, learned hidden represen-

tations have higher representation alignment compared to the input and

the initial hidden representation.

H2 In fully-connected networks (FCNs), layers closer to the output have

higher representation alignment on the training task.

H3 In object classification and on the downstream task, representations

obtained via common neural network feature transfer approaches have

higher representation alignment than handcrafted features.
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5.3 Consequences for Generalization and Op-

timization

In Chapters 3 and 4 we verified the role of representation alignment on opti-

mization and generalization on simple synthetic experiments. In this chapter,

now that we have representations with different degrees of representation align-

ment, we can ask if this measure is correlated with better generalization (H4)

and faster optimization (H5).

H4: We ask whether the relationship between representation alignment and

generalization extends to a realistic scenario. The question is if a typical

approach to classification can learn a better estimator using a small sample if

representation alignment is high.

We use the same sample as the previous experiment. A subset of size

900 is put aside as the test sample. Then we pick a train sample of size

100, train a linear model on it, and report the risk on the test sample. We

use Adam optimizer (Kingma & Ba, 2014) with ℓ2 regularization weight 1e-4,

1000 iterations and step-size 1e-3. This setting ensures that all linear models

achieve a final risk of less than 0.05 on the training sample and therefore

possible differences in optimization rate are not confounding the results. Since

performance with such small training samples can be prone to variance, we

repeat the experiment 10 times, with the train and test subset are picked

randomly each time, and report the average risk.

Since the representation alignment curves intersected in the previous ex-

periment, we opt for the scalar measure E[KKy] as defined in Chapter 3 and

motivated by Corollary 3.2.6. Figure 5.13 shows the results. The horizontal

axis is the measure of representation alignment and the vertical axis is the 0-1

risk on the test sample. There is a clear positive relationship between the mea-

sure of representation alignment and generalization performance. Recall that

the differences can be neither explained by linear separability (since weights

with near-zero risk exist) nor difficulties in optimization (since the risk on the

train sample is near zero). Also, similar to the trend we saw in the repre-
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5.4 Discussion

This chapter studied neural network emergent representations using represen-

tation alignment. The observations can be summarized in this list:

1. With a wide variety of architectures and hyperparameters, neural net-

works learn hidden representation with higher representation alignment

on the training task compared to the input or the initial hidden repre-

sentation.

2. In FCNs, hidden layers close to the output tend to have higher repre-

sentation alignment compared to the ones close to the input for a wide

range of thresholds.

3. The transferred representation in object classification has higher rep-

resentation alignment compared to common handcrafted features for a

wide range of thresholds.

4. The generalization performance from a small sample in a common ap-

proach to classification and regression mirrors the degree of representa-

tion alignment.

5. The rate of convergence of several common optimizers mirrors the degree

of representation alignment.

These observations prepare the ground the next two chapters. In the next

chapter, we use the observation (3) above regarding high representation align-

ment of neural network features as prior knowledge for domain adaptation. In

the chapter following that, we will use observations (5,6) and hypothesize that

a different algorithm (Temporal-Difference learning) will also find generalizable

solutions from a small sample when its convergence is fast in expectation.
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Chapter 6

Label Alignment Regularization
for Distribution Shift

Previously we observed that transferred neural network representations tend

to have high representation alignment. In this chapter we use this prior knowl-

edge and propose a regularizer for domain adaptation and find that enforcing

alignment between the predictions and the given representation can help in

domain adaptation. Unlike conventional domain adaptation approaches that

focus on regularizing representations, we instead regularize the classifier to

align with the unsupervised target data, guided by the label alignment prop-

erty (closely related to representation alignment) in both the source and target

domains. Theoretical analysis demonstrates that, under certain assumptions,

our solution resides within the span of the top right singular vectors of the

target domain data and aligns with the optimal solution. By removing the

reliance on the commonly used optimal joint risk assumption found in classic

domain adaptation theory, we showcase the effectiveness of our method on

addressing problems where traditional domain adaptation methods often fall

short due to high joint error. Additionally, we report improved performance

over domain adaptation baselines in well-known tasks such as MNIST-USPS

domain adaptation and cross-lingual sentiment analysis.
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6.1 Background

Unsupervised domain adaptation studies knowledge transfer from a source

domain with labeled data to a target domain with unlabeled data where the

model will be deployed and evaluated (Ben-David et al., 2010; Mansour et al.,

2009). This difference between the two domains, called domain shift, arises

in many applications. A document classification or sentiment analysis model

for an under-resourced language can benefit from a large corpus for a different

language. A personal healthcare system is often trained on a group of users

different from its target users. A real-world robot’s predictions or decision-

making can improve through safe and less costly interactions with a simulator

(Pires et al., 2019; Ganin et al., 2016; Peng et al., 2018).

There are diverse settings to study domain adaptation problems. In classi-

fication problems, closed set domain adaptation assumes the same categories

between the two domains while open-set domain adaptation assumes that the

two domains only share a subset of their categories (Panareda Busto & Gall,

2017). Unsupervised, semi-supervised, and supervised domain adaptation as-

sume that the data from the target domain is fully unlabeled, partly labeled,

and fully labeled respectively (Ganin et al., 2016). Two related problems to do-

main adaptation are multi-target domain adaptation where there are multiple

target domains (Gholami et al., 2020) and domain generalization where sev-

eral source domains are sampled from a distribution over tasks and the goal is

to generalize to a previously unseen domain from this distribution (Blanchard

et al., 2011; Gulrajani & Lopez-Paz, 2021). Within these diverse settings, our

work specifically addresses unsupervised domain shift problems.

The prevalence of domain shift in machine learning has inspired a large

body of algorithmic and theoretical research on domain adaptation. Ben-

David et al. (2010) and Y. Zhang et al. (2019) formulated the difference be-

tween the source and the target domain with the notion of H-divergence and

Margin Disparity Discrepancy and provided generalization bounds that relate

performance on the two domains. Acuna et al. (2021) extended these results

to a more general notion of f -divergence. Adversarial domain adaptation
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algorithms are motivated by these theoretical findings and aim to learn rep-

resentations that achieve high performance in the source domain while being

invariant to the shift between the source and the target domain (Ganin et al.,

2016; Y. Zhang et al., 2017; Conneau et al., 2018; Long et al., 2015; Pei et al.,

2018).

The aforementioned representation-matching approach assumes that the

optimal joint risk between the source and target is small. This assumption

fails when the conditional distribution of the labels given input is different

between source and target domains. An example occurs when labels in the

source domain are much more imbalanced than in the target domain. For

instance, Zhao et al. (2019) identified that under such label distribution shift,

the optimal joint risk can be quite large and they empirically show the failure

of domain adaptation methods on MNIST-USPS digit datasets. Johansson et

al. (2019) also pointed out the limitation of matching feature representations

by showing its inconsistency, and thus the tendency for high target errors.

In this work, we adopt a novel approach to domain adaptation that fo-

cuses on label alignment, defined as the alignment of labels with the top left

singular vectors of the representation. Instead of striving for an invariant

representation, our proposed algorithm fine-tunes the classifier for the target

domain. It achieves this by removing the influence of label alignment in the

source domain and applying this alignment principle to the target domain.

A critical distinction of our approach from existing methodologies is that we

adjust the classifier’s weight rather than its representation. Consequently, our

method can be applied in settings with linear function approximation and may

complement existing approaches.

We describe the label alignment phenomenon in Section 6.2, and outline

the proposed method in Section 6.3. Section 6.4 formally justifies our regular-

ization method by showing that it projects the solution onto the span of the

top right singular vectors of the target domain. Section 6.5 reviews related

work. In Section 6.6, we first provide a synthetic example where the proposed

regularizer shows a clear advantage. We then experiment with imbalanced

MNIST-USPS binary classification tasks and find that our method, unlike the
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domain-adversarial baseline, is robust to imbalance in one domain. Finally, we

evaluate our algorithm on cross-lingual sentiment analysis tasks and observe

improved F1 score on training with our regularization, compared to adversarial

domain adaptation baselines.

6.2 Label Alignment

In this section, we briefly review the standard linear regression problem and

define relevant notations to explain the label alignment property (LAP, Imani

et al., 2022).

6.2.1 Linear Regression and Notations

We consider a dataset with n samples, (possibly learned and nonlinear) rep-

resentation matrix Φ ∈ R
n×d and label vector y ∈ R

n from a source domain.

Denote the model’s weights as w ∈ R
d, we study the linear regression problem:

min
w

∥Φw − y∥2 (6.1)

Without loss of generality, we replace the bias unit with a constant feature in

the representation matrix to avoid studying the unit separately. The model

will be evaluated on a test set sampled from the target domain.

The singular value decomposition (SVD) of a representation matrix Φ is

Φ = UΣV ⊤ =
∑d

i=1 σiuiv
⊤
i , where

Σ =




σ1

. . .

σd

0


 ∈ R

n×d

is a rectangular diagonal matrix whose main diagonal consists of singular val-

ues σ1, · · · , σd in descending order with the remaining rows set to zero, and

U = [u1, . . . , un] ∈ R
n×n and V = [v1, · · · , vd] ∈ R

d×d

are orthogonal matrices whose columns ui ∈ R
n and vj ∈ R

d are the cor-

responding left and right singular vectors. In principal component analysis
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(Pearson, 1901), v1, · · · , vk are also known as the first k principal components.

For a vector a and orthonormal basis B, aB is a shorthand for B⊤a, the rep-

resentation of a in terms of the row vectors of B. We use r(·) to denote the

rank of a matrix.

6.2.2 Definition of Label Alignment

Label alignment is specified in terms of the singular vectors of Φ and label

vector y. The left singular vectors of Φ, {u1, · · · , un} form an orthonormal

basis that spans the n-dimensional space. The label vector y ∈ R
n can be

decomposed in this basis with:

y = UyU = yU1 u1 + · · · + yUn un, (6.2)

where yUi is the ith component of vector yU ∈ R
n.

Label alignment (Imani et al., 2022) is a relationship between the labels

and the representation where the variation in the labels are mostly along the

top principal components of the representation. For our purpose we give the

following definition and verify that it approximately holds in a number of real-

world tasks. A dataset has label alignment with rank k if for k ≪ r(Φ) we

have yUi = 0, ∀i ∈ {k + 1, ..., d}.

6.2.3 Emergence of Label Alignment in Realistic Tasks

We will investigate this property in binary classification tasks (with ±1 labels)

and regression tasks by reporting k(ϵ), defined as the smallest k where

√√√√
d∑

i=k+1

(yUi )2 < ϵ

√√√√
d∑

i=1

(yUi )2.

If k(ϵ) is small for a small ϵ then the projection of the label vector on the span

of Φ is mostly in the span of the first few singular vectors. The details of the

tasks are as follows:

UCI CT Scan: A random subset of the CT Position dataset on UCI (Graf

et al., 2011). The task is predicting a location of a CT Slice from histogram

features.
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Song Year: A random subset of the training portion of the Million Song

dataset (Bertin-Mahieux et al., 2011). The task is predicting the release year

of a song from audio features.

Bike Sharing: A random subset of the Bike Sharing dataset on UCI (Fanaee-

T & Gama, 2014). The task is predicting the number of rented bikes in an

hour based on information about weather, date, and time.

MNIST: The task is classifying digits 0 and 1 in MNIST. (n = 12665)

USPS: The task is classifying digits 0 and 1 in USPS. (n = 2199)

CIFAR-10: The task is classifying airplane and automobile in CIFAR-10

dataset using features from a ResNet-18 pretrained on ImageNet. (n = 10000)

CIFAR-100: The task is classifying beaver and dolphin in CIFAR-100 dataset

using features from a ResNet-18 pretrained on ImageNet. (n = 1000)

STL-10: The task is classifying airplane and bird in STL-10 dataset using

features from a ResNet-18 pretrained on ImageNet. (n = 1000)

XED (English): The English corpus from XED datsets whose details are

discussed in the main paper. The features are sentence embeddings extracted

from BERT. (n = 6525)

AG News: A random subset of the first two classes (World and Sports)

in AG News document classification dataset. The features are obtained by

feeding the document text to BERT. (n = 10000)

All datasets have an extra constant 1 feature to account for the bias unit.

Rank is computed as the number of singular values larger than σ1 ∗max(n, d)∗
1.19209e− 07. This is the default numerical rank computation method in the

Numpy package.

In Table 6.1 we see that in all the ten tasks less than half the singular

vectors with nonzero singular values already span ≥ 90% of the norm of the

projection of y on the span of Φ. The number k(0.1) is remarkably small, less

than 10, in seven out of the ten tasks.

Similar patterns have been also observed in a deep learning setting. Recent

work in the Neural Tangent Kernel (NTK) literature has observed that in com-
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Task d r(Φ) k(0.1)
CT Scan 385 372 12
Song Year 91 91 6
Bike Sharing 13 13 4
MNIST 785 580 2
USPS 257 257 2

Task d r(Φ) k(0.1)
CIFAR-10 513 513 7
CIFAR-100 513 513 7
STL-10 513 513 2
XED (En) 769 769 231
AG News 769 769 40

Table 6.1: Label alignment in real-world tasks. The table on the left uses
the original features in the dataset and the table on the right uses features
extracted from neural networks. CT Scan, Song Year, and Bike Sharing are
regression tasks and the rest are binary classification. We used the first two
classes of multi-class classification datasets to create a binary classification
task. In all of these tasks, a large portion of the label vector is in the span of
a relatively small set of top singular vectors (compared to the rank).

mon datasets the label vector is largely within the span of the top eigenvectors

of the NTK Gram matrix (Arora et al., 2019). In contrast, a randomized la-

bel vector would be more or less uniformly aligned with all eigenvectors. More

recently, Baratin et al. (2021) and Ortiz-Jiménez et al. (2021) noted that train-

ing a finite-width NN makes the alignment between the network’s kernel and

the task even stronger. Imani et al. (2022) observed a similar behavior in NN

hidden representations, indicating that training the NN aligns the top singular

vectors of the hidden representations to the task.

6.2.4 Emergence of Label Alignment in a Controlled
Setting

We can also easily show emergence of this property in a basic setting where a

large number of features are correlated with the labels. The following lemma

is needed for the proof.

Lemma 6.2.1. If there are k′ < d orthonormal vectors {ν1, · · · , νk′} such that

∥Φνi∥ < ϵ for all i ∈ [k′] then Φn×d has at most d− k′ singular values greater

than or equal to
√
k′ϵ.

Proof. Suppose σ1, · · · , σd are the singular values of Φ sorted in descending

order. The matrix Nd×k′ with orthonormal columns that minimizes ∥ΦN∥2 is

the matrix of the last k′ right singular vectors, and ∥ΦN∥2 =
√∑d

i=d−k′+1 σ
2
i ≥
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σd−k′+1 (This easily follows from Section 12.1.2 by Bishop (2006)). If σd−k′+1 ≥√
k′ϵ then for any N with orthonormal columns we have ∥ΦN∥2 ≥

√
k′ϵ =⇒

∥ΦN∥∞ ≥ ϵ which contradicts the assumption.

The following proposition shows emergence of label alignment when a large

number of features are highly correlated with the labels.

Proposition 6.2.2. Suppose ∥y∥ = 1 and that columns of Φ are normalized.

If Φn×d has k̂ ≤ d columns {ϕ1, · · · , ϕk̂} where |ϕ⊤
i y|> 1− δ for all i ∈ [k̂] and

• 0 < δ < 0.2

• k̂ > 16δ2/(−15δ2 − 2δ + 1)

• d > 16δ2(k̂ − 1)

then the norm of the projection of y on the span of the first k = d− k̂ + 1 left

singular vectors of Φ is greater than

√
k̂(1 − δ)2 − 16δ2(k̂ − 1)

d− 16δ2(k̂ − 1)
.

Proof. First suppose the dot products in the statement are positive.

Note that for all i ∈ k̂ we have ∥ϕi − y∥22 = (ϕi − y)⊤(ϕi − y) = ϕ⊤
i ϕi +

y⊤y − 2ϕ⊤
i y = 2 − 2ϕ⊤

i y < 2δ. Due to triangle inequality, ∥ϕi − ϕj∥22 ≤
∥ϕi − y∥22 + ∥ϕj − y∥22 < 4δ.

The span of ϕk̂, ϕk̂+1, · · ·ϕd has at most d − k̂ + 1 dimensions. Choose

k̂ − 1 orthonormal vectors ν1, · · · , νk̂−1 ∈ R
d that are perpendicular to this

subspace. Then for any i, j ∈ [k̂ − 1] we have ϕ⊤
i νj = (ϕi − ϕk̂ + ϕk̂)⊤νj =

(ϕi − ϕk̂)⊤νj + 0 ≤ ∥ϕi − ϕk̂∥ < 4δ. Therefore ∥Φνj∥ < 4δ
√

k̂ − 1. Putting

this orthonormal basis in the lemma above gives that Φ has at most d− k̂ + 1

singular values greater than or equal to 4δ(k̂ − 1).

Now see that
∥∥Φ⊤y

∥∥2
=

∥∥∥
∑d

i=1 ϕ
⊤
i y

∥∥∥
2

and is also equal to
∑d

i=1(σiy
U
i )2.

Therefore
∑d

i=1(σiy
U
i )2 ≥

∥∥∥
∑k̂

i=1 ϕ
⊤
i y

∥∥∥
2

> k̂(1 − δ)2. Since the columns are

normalized,
∑d

i=1 σ
2
i = ∥Φ∥F = d. In addition, we have shown that the last

k̂ − 1 singular values are smaller than 4δ
√
k̂ − 1. Define ŷ as the projection
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of y on the first d − k̂ + 1 singular vectors of Φ. Then we have k̂(1 − δ)2 <
∑d

i=1(σiy
U
i )2 =

∑d−k̂+1
i=1 (σiy

U
i )2 +

∑d
i=d−k̂+2(σiy

U
i )2 < d ∥ŷ∥2 + 16δ2(k̂− 1)(1−

∥ŷ∥2). Rearranging the terms (with the extra conditions in the proposition

statement) gives

∥ŷ∥ >

√
k̂(1 − δ)2 − 16δ2(k̂ − 1)

d− 16δ2(k̂ − 1)

The inequality is tight in the extreme case where k̂ = d and δ → 0 which

results in the label vector being fully in the direction of the first left singular

vector and all the other singular values tending to zero.

Now suppose some of the dot products in the statement are negative. We

can multiply those columns with −1 and prove the result above for this mod-

ified matrix. The result holds for the original matrix since this operation only

changes the right singular vectors of Φ and does not affect the left singular

vectors or the singular values.

Let us now demonstrate the emergence of alignment and the behavior of the

bound above when multiple features are highly correlated with the output. In

this toy experiment the label vector is sampled from a 1000-dimensional Gaus-

sian distribution N (0d, I) with mean zero and standard deviation 1 and then

normalized to norm one. The matrix Φ has 10 columns. The first 9 columns

are sampled from N (y, s2I) with mean y and a small standard deviation s and

the other column is sampled from N (0d, I). All columns are then normalized

to norm one. Note that the proposition above does not assume Gaussian fea-

tures. Figure 6.1 shows the norm of the projection of the label vector on the

first two singular vectors at different levels of s and its relationship with δ.

6.3 Proposed Method

This section describes our approach to domain adaptation by enforcing the

LAP.
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0, ∀i ∈ k + 1, ..., d. Hence the first term in (6.3) can be further decomposed to

d∑

i=1

(σiw
V
i − yUi )2 =

k∑

i=1

(σiw
V
i − yUi )2 +

d∑

i=k+1

σ2
i (wV

i )2.

Plugging this decomposition into the above objective (6.3) and dropping the

last term, we get

min
w

k∑

i=1

(σiw
V
i − yUi )2 +

d∑

i=k+1

σ2
i (wV

i )2. (6.4)

We can interpret the first term in the rewritten objective (6.4) as linear re-

gression on a smaller subspace and the second term as a regularization term

implicitly enforcing label alignment property on the training data (Φ, y).

The latter is because minimizing the second term has the effect of regular-

izing the predictions so they likely align with the top singular vectors. This is

because:

y = Φw = UΣV ⊤w

and therefore U⊤y = ΣV ⊤w, which can be written as

yU = ΣwV

by using the shorthand notations. For the ith component in vector yU , we

have ui
⊤y = σivi

⊤w. Minimizing wV
i for i ∈ {k + 1, · · · , d} will reduce the

corresponding yUi and leave yUi for those components i < k + 1. We call the

second term
∑d

i=k+1 σ
2
i (wV

i )2 from (6.4) label alignment regularization.

The derivation above shows that when minimizing the original mean squared

error for linear regression, we implicitly use label alignment regularization on

the training data (source domain data). In the next section, we introduce this

regularization into the target domain.

6.3.2 Label Alignment Regularization for Domain Adap-
tation

In unsupervised domain adaptation, we have a labeled dataset (Φ, y) and an

unlabeled dataset Φ̃ with the corresponding label vector ỹ unknown. From
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Equation (6.4), we know that enforcing the LAP does not require knowing

the labels ỹ. This inspires our key idea of improving the generalization on the

target domain: we can use the unlabeled part to enforce the LAP.

Using tilde notation for the SVD of Φ̃ and assuming (Φ̃, ỹ) satisfies the LAP

with rank k̃, we can put together the supervised part of the source domain

and unsupervised part of the target domain to form the objective:

min
w

∥Φw − y∥2+
d∑

i=k̃+1

σ̃2
i (wṼ

i )2. (6.5)

The second term
∑d

i=k̃+1 σ̃
2
i (wṼ

i )2 is the label alignment regularization on the

target domain. As we explained in the previous section, the first term (i.e. the

standard regression part) in the above objective implicitly enforces the LAP

(with rank k) on the source domain. If we expand (6.5) by the reformulated

linear regression objective (6.4), we have:

min
w

k∑

i=1

(σiw
V
i − yUi )2+

d∑

i=k+1

σ2
i (wV

i )2+
d∑

i=k̃+1

σ̃2
i (wṼ

i )2.

Therefore, we have actually done the regularization twice: one with the source
domain and one with the target domain. We explicitly remove the label align-
ment regularization on the source domain and arrive at the final objective
function:

min
w

∥Φw − y∥2−
d∑

i=k+1

σ2
i (w

V
i )

2 + λ

d∑

i=k̃+1

σ̃2
i (w

Ṽ
i )

2. (6.6)

Algorithm 1 shows the pseudo-code. The objective to be minimized has three

terms and the hyperparameter λ controls the relative importance of the regu-

larizer. As we will show in § 6.4, under certain constraints this hyperparameter

does not affect the final solution and only changes the convergence rate. The

first term is the loss that uses the labeled data from the source domain. Fol-

lowing the recent evidence on the viability of the squared error loss for classifi-

cation (Hui & Belkin, 2020), we use the squared error in both regression tasks

and binary classification tasks. We use ±1 labels in binary classification as

these labels showed the label alignment property (LAP) in Table 6.1. The sec-

ond term removes implicit regularization from the source domain. The third
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term is the proposed regularizer that uses the unlabeled data from the target

domain. The second and third terms serve as a projection onto the orthogonal

complement of span(ṽk+1, . . . , ṽd), or namely, span(ṽ1, . . . , ṽk), which we show

in the next section.

Algorithm 1: Label Alignment Regression

Get data Φ, y, Φ̃, and hyperparameters t, α, k, k̃, λ
Compute covariance matrices Φ⊤Φ and Φ̃⊤Φ̃
Perform eigendecomposition of Φ⊤Φ and Φ̃⊤Φ̃ to get σk+1:d, σ̃k̃+1:d, ṽk+1:d

and ṽk̃+1:d

Initialize w to zero
for t iterations do

Perform gradient step with respect to
∥Φw − y∥2−∑d

i=k+1 σ
2
i (wV

i )2 + λ
∑d

i=k̃+1 σ̃
2
i (wṼ

i )2 with step-size α and
update w

end for

6.4 Label Alignment Regularization as Pro-

jection

In this section, we provide theoretical insight into how the solution acquired

by our regularization approach is related to the optimal solution on the target

domain. First, we use a simple rotated Gaussian example to illustrate that our

label alignment can exactly give the optimal target solution (see also Section

6.6). Second, we generalize our conclusion beyond the Gaussian example and

present the main theorem, showing that when k = k̃ and under a weak addi-

tional assumption our solution lies in the span of the top few singular vectors

of the target domain.

For convenience, we rewrite our objective (6.6) as:

min
w

∥Φw − y∥2−w⊤(S − Sk)w + λw⊤(S̃ − S̃k̃)w,

where S = Φ⊤Φ is the covariance matrix of Φ, Sk is the covariance matrix

truncated to rank k and similar notations hold for S̃ and S̃k̃. Then the optimal

solution for this problem is:

ŵ∗ = (Sk + λ(S̃ − S̃k̃))−1Φ⊤y, (6.7)
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if the matrix Sk +λ(S̃− S̃k̃) is full rank, which requires k ≥ k̃. In practice, we

can treat k and k̃ as hyper-parameters and choose them as we wish.

6.4.1 Rotated Gaussian Example

Consider a simple example where the source and target domain data are both

two-dimensional Gaussians, but the target domain is acquired by rotating the

source domain (Figure 1 provides a concrete example). Denote the following

Gaussian distribution as:

N (0, Q) =
1

2π
√

|Q|
exp

(
−1

2
x⊤Q−1x

)
, (6.8)

where Q = P

[
s21 0
0 s22

]
P⊤, and P =

[
p1 p2

]
. Here we consider the spectral

decomposition of the covariance matrix Q ∈ R
2×2 with s1 > 0, s2 > 0. Here

P ∈ R
2×2 is an orthogonal matrix, and p1, p2 are its column vectors. Since

x = PP⊤x = xP
1 p1 + xP

2 p2, we can rewrite the distribution as:

N (0, Q) =
1

2πs1s2
exp

(
− 1

2s21
(xP

1 )2 − 1

2s22
(xP

2 )2
)
.

We further define the conditional distributions as follows:

pS(x|y) = 2N (0, Q)1(yxP
1 > 0), (6.9)

where y ∈ {1,−1}. Similarly, we can define the target distribution by replacing

Q,P, si, pi with Q̃, P̃ , s̃i, p̃i. We now compute different solutions and then

compare them. We assume that there is distribution shift and that p1 is not

parallel to p̃2.

Recall the regression solution on the source domain:

w∗
S = (Φ⊤Φ)−1Φ⊤y = S−1Φ⊤y. (6.10)

Assuming that the sample size is large enough.

1

n
Φ⊤y ≈ Ex,y[xy] =

√
2

π
s1p1, (6.11)

See C for the proof. Combining this equation with

Φ⊤y = V Σ⊤yU = σ1y
U
1 v1 + σ2y

U
2 v2, (6.12)
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we know that yU2 = 0 if we identify v1 = p1. In other words, the label alignment

property holds on the source domain with rank k = 1. The covariance matrix

is:

1

n
Φ⊤Φ ≈ Ex[xx⊤] = s21p1p

⊤
1 + s22p2p

⊤
2 , (6.13)

We can identify vi = pi, s
2
i = σ2

i /n from the SVD of Φ. Plugging (6.12) and
(6.13) back into (6.10) we get the optimal solution on the source domain:

w∗
S =

√
2

π

1

s1
v1, (6.14)

which agrees with our intuition that w∗
S should be in the direction with the

largest singular value. Similarly, the optimal solution on the target domain
is

w∗
T =

√
2

π

1

s̃1
ṽ1, (6.15)

where the tilde notations are the same type of variables used on the target

domain. According to (6.7), the label alignment solution with the removal of

implicit regularization (given that ṽ2 is not parallel to v1) is:

ŵ∗ = (Sk + λ(S̃ − S̃k̃))−1Φ⊤y (6.16)

= (s21v1v
⊤
1 + λs̃22ṽ2ṽ

⊤
2 )−1

√
2

π
s1v1, (6.17)

To better understand the solution ŵ∗, suppose λ = 1. Then if we replace s̃2,

ṽ2 by s2, v2, we obtain w∗
S . If we replace s1, v1 by s̃1, ṽ1, we obtain w∗

T .

In fact in this example the effect of label alignment regularization is some

kind of projection into the space of ṽ1. Regardless of the hyperparameter λ,

we always have the following result:

Proposition 6.4.1. In the example in this section suppose v⊤1 ṽ1 ̸= 0. Then

the label alignment solution is ŵ∗ = cw∗
T /v

⊤
1 ṽ1 with c > 0.

Proof. We rewrite (6.16) as:

(s21v1v
⊤
1 + λs̃22ṽ2ṽ

⊤
2 )ŵ∗ =

√
2

π
s1v1. (6.18)

Suppose ŵ∗ = w1ṽ1 + w2ṽ2 with w1 ∈ R, w2 ∈ R, then the equation above

becomes:

s21v1(v
⊤
1 ŵ

∗) + λs̃22w2ṽ2 =

√
2

π
s1v1. (6.19)
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Apply v⊤2 on both sides we have:

λs̃22w2ṽ
⊤
2 v2 = 0. (6.20)

Since ṽ2 is not parallel to v1, we must have ṽ⊤2 v2 ̸= 0 and thus w2 = 0.

To obtain the exactly value of w1, solve (6.19) by setting w2 = 0, we have:

s21(v
⊤
1 ṽ1)w1 =

√
2
π
s1, w1 =

√
2
π

1
s1v⊤1 ṽ1

.

The proposition shows that given v⊤1 ṽ1 > 0, our solution ŵ∗ is exactly in the

same direction as the optimal solution w∗
T , which is verified in our experiments

(Section 6.6.1). The above discussion also holds in a more generalized setting,

as we show below.

6.4.2 Generalized Setting

This section derives the relation between the solutions ŵ∗ and w∗
T in a more

general setting, where x is high dimensional, and k, k̃ can be larger than one.

We can rewrite

w∗
S =

∑

i≤k

σ−1
i yUi vi, w

∗
T =

∑

i≤k̃

σ̃−1
i ỹŨi ṽi. (6.21)

Hence, w∗
S ∈ span(v1, . . . , vk), w∗

T ∈ span(ṽ1, . . . , ṽk). We show that our solu-

tion is also in the span of the top right singular vectors of the target domain

as w∗
T :

Theorem 6.4.2 (Main Result). Assume k = k̃ and (V ′
d−k)⊤Ṽ ′

d−k is invert-

ible with V ′
d−k =

[
vk+1 . . . vd

]
and Ṽ ′

d−k =
[
ṽk̃+1 . . . ṽd

]
, then ŵ∗ ∈

span(ṽ1, . . . , ṽk) holds and ŵ∗ is independent of λ.

Proof. From the definition of ŵ∗, we see that:

(
∑

i≤k

σ2
i viv

⊤
i + λ

∑

j>k̃

σ̃2
j ṽj ṽ

⊤
j )ŵ∗ =

∑

i≤k

σiy
U
i vi. (6.22)

Decompose ŵ∗ =
∑

i≤d wiṽi. From the equation above we find:

∑

i≤k

σ2
i viv

⊤
i ŵ

∗ + λ
∑

j>k̃

σ̃2
j ṽjwj =

∑

i≤k

σiy
U
i vi. (6.23)
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Applying v⊤m only both sides with m > k, we have:

∑

j>k̃

σ̃2
j v

⊤
mṽjwj = 0, m > k, (6.24)

which can be written as:

(V ′
d−k)⊤ ˜V ′

d−k diag(σ̃2
k̃+1

, . . . , σ̃2
d)



wk̃+1

. . .
wd


 = 0. (6.25)

Note that multiplying by diag(σ̃2
k̃+1

, . . . , σ̃2
d) does not change the invertibility.

By assumption we must have wk+1 = · · · = wd = 0, and (6.23) becomes

independent of λ.

This theorem tells us that after label alignment regularization, ŵ∗ and w∗
T

lie in the same subspace.

We now characterize when our solution can lie in exactly the same di-

rection as the optimal target domain’s solution. Denote Vk = [v1 . . . vk],

Ṽk̃ = [ṽ1 . . . ṽk̃], and

µk = (yU1 /σ1, . . . , y
U
k /σk), µ̃k̃ = (ỹŨ1 /σ̃1, . . . , ỹ

Ũ
k̃
/σ̃k̃).

We have the following theorem:

Theorem 6.4.3. Given invertible V ⊤
k Ṽk, with Vk = [v1 . . . vk], Ṽk̃ = [ṽ1 . . . ṽk̃]

and with the same assumptions of Theorem 6.4.2, there exists c > 0 such that
ŵ∗ = cw∗

T iff:

µk = cV ⊤
k Ṽkµ̃k = cV ⊤

k w∗
T . (6.26)

Proof. With the assumption of Theorem 6.4.2, we have: v⊤i ŵ
∗ = yUi /σi, for

i ≤ k. Then we can write down the optimal solutions as w∗
S = Vkµk, w∗

T =

Ṽk̃µ̃k̃. Since V ⊤
k Ṽk is invertible (and under the assumptions of Theorem 6.4.2),

then we obtain the label alignment regularized result

ŵ∗ = Ṽk(V ⊤
k Ṽk)−1µk. (6.27)

Note that the solution is independent of the hyperparameter λ.

From ŵ∗ = Ṽk(V ⊤
k Ṽk)−1µk, and w∗

T = Ṽk̃µ̃k̃, the equation ŵ∗ = cw∗
T holds

iff:

Ṽk((V ⊤
k Ṽk)−1µk − cµ̃k) = 0, (6.28)

or in other words, (V ⊤
k Ṽk)−1µk = cµ̃k + q, where q ∈ null(Ṽk) = {0}.
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In the special case of k = k̃ = 1, we obtain the following:

Corollary 6.4.4. Given k = k̃ = 1 and ỹŨ1 y
U
1 v

⊤
1 ṽ1 > 0, we have ŵ∗ = cw∗

T .

This corollary tells us that, in this special setting, if for both domains

the labels can be determined by the principal component (or, in other words,

the most significant feature), then our label alignment regularization finds the

optimal target solution.

Next, we show a sufficient condition for our invertibility assumptions in

Theorem 6.4.2 to hold: V and Ṽ are somehow similar to each other.

Proposition 6.4.5. Suppose ϵ < min{ 1
k
, 1
d−k

}, |v⊤i ṽj|≤ ϵ for any i ̸= j, and

v⊤i ṽi ≥ 1 − ϵ for any i, then both V ⊤
k Ṽk and (V ′

d−k)⊤Ṽ ′
d−k are invertible.

Proof. V ⊤
k Ṽk can be written as [v⊤i ṽj] with i, j ∈ [k]. From the assumption,

V ⊤
k Ṽk = I + ϵ∆ where I is the identity matrix and ∆ is a k × k matrix with

each element |∆ij|≤ ϵ. Suppose (I + ϵ∆)x = 0, then x = −ϵ∆x, taking the

norm on both sides we have:

∥x∥ = ϵ∥∆x∥≤ ϵ∥∆∥·∥x∥ (6.29)

≤ ϵ∥∆∥F ·∥x∥≤ ϵk · ∥x∥< ∥x∥, (6.30)

which gives x = 0. Therefore, I + ϵ∆ is invertible. Similarly, (V ′
d−k)⊤Ṽ ′

d−k is

also invertible.

We can give a stronger guarantee for the assumption that V ⊤
k Ṽk is invert-

ible. Note that Sd−1 denotes the (d − 1)-dimensional unit hypersphere in R
d.

Proposition 6.4.6. Suppose the target singular vectors ṽ1, . . . , ṽd satisfies the

following probability distribution:

p(ṽ1, . . . , ṽd) = p(ṽ1)p(ṽ2|ṽ1) . . . p(ṽd|ṽ1, . . . , ṽd−1), (6.31)

where p(ṽ1) is a continuous distribution on Sd−1 and each p(ṽi|ṽ1, . . . , ṽi−1) is

a continuous distribution on the manifold Sd−1 for 2 ≤ i ≤ d. Then V ⊤
k Ṽk is

invertible almost surely.
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Proof. It suffices to show that P (det(V ⊤
k Ṽk) = 0) = 0. Note that det(V ⊤

k Ṽk) =

0 can be rewritten as:

det(ṽVk

1 . . . ṽVk

k ) = 0, (6.32)

and thus

P (det(V ⊤
k Ṽk) = 0) ≤p(ṽVk

1 = 0) + p(ṽVk

2 ∈ span(ṽVk

1 )|ṽ1) + · · ·+ (6.33)

p(ṽVk

k ∈ span(ṽVk

1 , . . . , ṽVk

k−1)|ṽ1, . . . , ṽk−1). (6.34)

Since each condition gives a sub-manifold with a smaller dimension and the

probability distributions are continuous, from Sard’s theorem (e.g. Guillemin &

Pollack, 2010), each probability is zero. Therefore, P (det(V ⊤
k Ṽk) = 0) = 0.

Our result does not depend on any assumption about the optimal joint

error, as is commonly required in the domain adaptation literature (e.g. Ben-

David et al., 2010; Acuna et al., 2021). Moreover, as pointed out by Zhao et al.

(2019), the usual generalization bound would fail in the presence of heavy shift

of label distributions, under which our method is still robust (see Section 6.6).

6.5 Related Work

The result by Ben-David et al. (2010) provides a general theoretical guidance

regarding how to learn the domain-invariant representations. The basic idea

is to make the joint error of the best hypothesis on the two domains on the in-

variant representation small. Low joint error in the domain-adversarial model

is crucial to the model’s performance on the target domain.

The dominant approach to domain adaptation is learning domain-invariant

representations that are “similar” in some sense between source and target

domains (Tzeng et al., 2014; Zhuang et al., 2015; Ghifary et al., 2016; Long

et al., 2016, 2017; Benaim & Wolf, 2017; Bousmalis et al., 2017; Courty et al.,

2017; Motiian et al., 2017; Rebuffi et al., 2017; Saito et al., 2017; Y. Zhang et

al., 2019). Different methods differ in how the invariance property is enforced,

which typically includes how the similarity is defined and implemented. Recent
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work in deep learning encourages this invariance in one or multiple hidden

representations of a neural network.

The popular domain-adversarial methods achieve domain-invariant repre-

sentations based on the idea of adversarial models (Long et al., 2015; Zhuang

et al., 2017; Lee et al., 2019; Damodaran et al., 2018; Acuna et al., 2021).

Specifically, Long et al. (2015) adversarially learn representations to distin-

guish the data points from the source and target domain while minimizing the

supervised loss. Conneau et al. (2018) use a domain-adversarial approach to

align representations of the source and target domains in a shared space. They

transform the source embeddings with a linear mapping that is encouraged to

be orthogonal. The domain-adversarial model then generates pseudo-labels on

the target domain for additional refinement. The shared representation, which

is learned without a parallel corpus, outperforms previous supervised methods

in several cross-lingual tasks.

There are various similarity or distance measures to define a loss function

for enforcing invariant representations. For example, Zhuang et al. (2017)

and Meng et al. (2018) minimize the KL-divergence and Lee et al. (2019) and

Damodaran et al. (2018) minimize the Wasserstein distance. Sun and Saenko

(2016) minimize the ℓ2 distance between the covariance matrices of the source

and target domain representations. Long et al. (2015) minimize Maximum

Mean Discrepancy between source and target domain hidden representations

embedded with a kernel.

Despite the flourishing literature on representation-based domain adapta-

tion methods, they have critical limitations. Zhao et al. (2019) and Johansson

et al. (2019) have presented synthetic examples in which a domain-adversarial

model that minimizes the supervised loss in the source domain, while aiming

for an invariant representation, still fails in the target domain. We will demon-

strate this failure through our experiments in the next section and show that

our proposed algorithm remains robust in such situations.

Domain-adaptation methods that do not rely on representation learning

are less studied and can be applied in highly restricted settings. For example,

importance sampling (Shimodaira, 2000) assumes label conditional distribu-
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tion must be the same and target domain is within the support of the source

domain. Our work supplements this direction.

6.6 Experiments

In this section, we first design a synthetic dataset to verify that our regular-

izer is indeed beneficial in a distribution shift setting by adjusting the classifier

and to perform an ablation study on the role of removing implicit regulariza-

tion. Then, we demonstrate the effectiveness of our method on a well-known

benchmark where classic domain-adversarial methods are known to fail (Zhao

et al., 2019). Last, we show our algorithm’s practical utility in a cross-lingual

sentiment classification task.

6.6.1 Synthetic Data

We create a distribution shift scenario where the alignment property is present

in the labeled data distribution (Figure 6.2), as theoretically discussed in

Section 6.4.1. For the source domain (a), the input is sampled from a two-

dimensional Gaussian distribution. The distribution is more spread out in the

direction of the first principal component (see the black arrows) which corre-

sponds to a larger singular value. In this task, the two classes are separated

along this direction as shown in the figure. The resulting vector of all labels is

mostly in the direction of the first singular vector of the representation matrix.

We rotate the input by 45◦ to create the target distribution in (b).

We then run the proposed algorithm with hyperparameters k = k̃ = 1 and

different values of λ and compared it with the ℓ2 regularizer and a domain-

adversarial baseline DANN (Ganin et al., 2016) with one hidden layer of width

64. Note that the optimal solution should be independent of λ (Proposition

6.4.1), but λ may affect the convergence rate. Figures 6.2 (b) to (c) show the

results. In Figure 6.2 (b) we see that the solution without regularization sep-

arates the classes as they are separated in the source domain. The proposed

algorithm finds a separating hyperplane that matches how the classes are sep-

arated in the target domain. Finally, (c) shows that our regularizer surpasses
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tasks. In the first column, the source domain (fully labeled) is a pair of digits

from MNIST and the target domain (fully unlabeled) is the same pair, but

from USPS. The datasets for the source and target domains are reversed in

the second column. The last three columns are like the second column except

that, in binary classification between two digits, only a certain ratio of the

lower digit in the source domain, as indicated in the header, is used. This

subsampling creates a large degree of imbalance that, as Zhao et al. (2019)

observed, poses a challenge to domain-adversarial methods.

We use the train split of the dataset for the source domain and the test split

of the other dataset for the target domain. A small set of 100 labeled points

from the target domain is used for hyperparameter selection as we have not

developed a fully unsupervised hyperparameter selection strategy. However,

we give the baseline the same validation set to keep the experiment fair.

The domain-adversarial baseline DANN uses a one-layer ReLU neural net-

work. This is the Shallow DANN architecture suggested by the original au-

thors (Ganin et al., 2016). We swept over values of 128, 256, 512, and 1024

for the depth of the hidden layer. The neural network is trained for 10

epochs using SGD with mini-batch size 32, learning rate 0.01, and momen-

tum 0.9. This model already achieves near perfect accuracy on the source

domain. Candidate hyperparameter values for Label Alignment Regularizer

were {1e− 1, 1e+ 1, 1e+ 3} for λ and {8, 16, 32, · · ·} up to the rank of Φ or Φ̃

for k and k̃. Although the number of hyperparameter configurations is greater

for our method, this experiment is in favor of DANN if we take runtime into

account. The linear model is trained using full-batch gradient descent for 5000

epochs with learning rate 1/(2σ1).

The first two rows of Table 6.2 show the performance of the domain-

adversarial method DANN (Ganin et al., 2016) with one hidden layer on these

tasks. (Deeper NNs performed worse on the highly imbalanced tasks in our

preliminary experiments.) The first row is the average target domain accu-

racy of a two-layer ReLU NN trained purely on the source domain. In the

second row, the domain-adversarial objective is added to reduce domain shift

in the hidden representation. DANN improves accuracy in both U→M and
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M→U. In the cases with subsampling, however, DANN consistently hurts per-

formance. The third and fourth row show the performance of a linear method

without and with our regularizer. Using our regularizer improves performance

in all columns and outperforms the models in the other rows in the cases with

subsampling.

U → M M → U .3 → U .2 → U .1 → U
No Adaptation (NN) 77.85 84.88 83.36 72.84 53.58
DANN 83.93 86.69 78.05 64.2 47.27
No Adaptation (Linear) 78.68 83.84 80.99 79.47 75.41
LAR 81.97 88.96 86.99 84.84 82.71

Table 6.2: Accuracies on MNIST-USPS benchmark. LAR is Label Alignment
Regression. Each column is averaged over the 45 binary classification tasks.
M and U indicate MNIST and USPS. Ratios indicate MNIST tasks where one
digit is subsampled. In tasks with severe subsampling the proposed algorithm
improves the accuracy and achieves the highest performance. DANN performs
worse than a regular neural network under subsampling.

We then investigate why DANN hurts performance under subsampling.

A domain-adversarial network like DANN has three components: a domain

classifier (discriminator) that predicts whether a data point is from the source

or the target domain, a generator that learns a shared embedding between the

two domains, and a label predictor that performs classification on the task of

interest using the generator’s embedding. The label predictor uses the labeled

source data to increase source accuracy, i.e. the label predictor’s accuracy on

the source domain. The ultimate goal is to have the label predictor achieve

high accuracy on the target domain. The discriminator’s accuracy on the

other hand shows how successful the discriminator is in recognizing whether a

point is from the source or the target domain. In an ideal case this accuracy

should be close to that of a random classifier since the data points from the

two domains are mapped close to each other in the shared embedding.

Table 6.3 shows the average source domain accuracy and domain classifier

accuracy of DANN. Average source accuracy remains ≥ 95% and average do-

main classifier remains ≈ 50%, indicating that DANN has managed to learn a

representation that is suitable for the source domain and maps the points from
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the source and target domain close to each other. The large drop in DANN’s

performance can be attributed to the fact that the representation maps posi-

tive points in the source domain close to negative points in the target domain

and vice-versa and therefore the joint error of the best hypothesis on the two

domains (as described in Section 6.5) is large. We verify this by training a

nearest neighbour (1-NN) classifier on the learned representation in the sub-

sampled settings. The 1-NN classifier uses the source domain representations

as the training data and the target domain representations as the test data.

The accuracy of this classifier will suffer if in the learned representation the

source domain points from one class are mapped close to the target domain

points from the other class. The third row in the table, which is also averaged

over the 45 tasks, shows a noticeable drop in the performance of the 1-NN

classifier and indicates that this problem is present in the learned embeddings.

U → M M → U .3 → U 0.2 → U .1 → U
Source Accuracy 98.06 98.83 98.3 97.56 95.3
Discriminator Accuracy 46.4 50.63 50.42 50.48 50.44
1-NN Accuracy - - 77.89 73.22 69.75

Table 6.3: Source accuracy and domain classifier accuracy of DANN on
MNIST-USPS. The drop in source accuracy under severe subsampling is min-
imal compared to the drop in target accuracy in the previous table. The
domain classifier accuracy is near random regardless of the amount of sub-
sampling. The performance of a nearest neighbour classifier trained on the
mapped source data points and evaluated on the mapped target data points
degrades to a large extent with more subsampling.

6.6.4 Multi-Class Classification

Although our overall focus is on binary classification, we also try to generalize

the formulation of the label alignment regression to a multiclass setting follow-

ing the derivation in Equation 6.3. Given a dataset comprising n samples, each

characterized by d features, we denote the feature matrix by Φ ∈ R
n×d. In a

classification context involving c distinct classes and employing a one-versus-

all strategy, the target matrix Y , which adopts a ±1 style one-hot encoding

scheme, is of dimension R
n×c. Consequently, the weight matrix W , which
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maps the feature space to the class labels, is represented as R
d×c. Then the

learning objective can be formulated as:

min
W

∥ΦW − Y ∥2 = min
W

∥UΣV TW − Y ∥2

= min
W

∥ΣV TW − UTy∥2

= min
W

∥ΣW V − Y U∥2

= min
W

c∑

j=1

d∑

i=1

(σiW
Y
ij − Y U

ij )2 +
c∑

j=1

n∑

i=d+1

(Y U
ij )2

(6.38)

The notation ∥A∥2 signifies the 2-norm of matrix A, encapsulating the

square root of the sum of the squares of its elements. In this setup, W V

corresponds to a weight matrix with dimensions R
d×c, while Y U denotes a

modified target matrix also of dimension R
n×c. Thus, the expression (ΣW V −

Y U), representing the discrepancy between the projected feature space and

the modified target matrix, retains the dimensionality of R
n×c, highlighting

the alignment or misalignment of the model predictions with the modified

targets in the given multidimensional space.

Assume k is the same for every one vs all setting and k < d, we can obtain:

min
W

∥ΦW − Y ∥2 = min
W

c∑

j=1

d∑

i=1

(σiW
Y
ij − Y U

ij )2 +
c∑

j=1

n∑

i=d+1

(Y U
ij )2

= min
W

c∑

j=1

d∑

i=1

(σiW
V
ij − Y U

ij )2

= min
W

c∑

j=1

k∑

i=1

(σiW
V
ij − Y U

ij )2 +
c∑

j=1

d∑

i=k+1

(σiW
V
ij )2

(6.39)

Therefore the final objective function looks like:

min
W

∥ΦW − Y ∥2−
c∑

j=1

d∑

i=k+1

(σiW
V
ij )2 + λ

c∑

j=1

d∑

i=k̃+1

(σ̃iW
Ṽ
ij )2 (6.40)

We also validated the label alignment property by computing k(0.1) for the

one-versus-all label vector corresponding to each digit similar to the binary

classification case in Table 6.1. The value of k(0.1) for all the digits was 1.

Then, we compare the classification performance of our label alignment

regression to DANN in the multiclass MNIST-USPS classification setting. Our
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6.6.6 Cross-Lingual Sentiment Classification

This section includes cross-lingual sentiment analysis experiments on deep

features. XED (Öhman et al., 2020) is a sentence-level sentiment analysis

dataset consisting of 32 languages. We use English as the source domain

and another language as the target domain and create 9 binary classification

domain adaptation tasks.

There are a total of 1984 language pairs from each of the 32 languages

to another. We chose 9 language pairs before running the experiment. The

sentences in the dataset are labeled with one or more emotions anger, antici-

pation, disgust, fear, joy, sadness, surprise, and trust. Following the authors’

guidelines we turn these multi-label classification tasks to binary classification

by labeling data points positive if their original labels only include anticipa-

tion, joy, and trust, and negative if the original labels only include anger,

disgust, fear, and sadness. (Surprise is discarded.)

We perform 5 runs and in each one 100 points are randomly sampled from

the target domain for validation and the rest are used for evaluation. Simi-

lar to the previous experiment, this validation set is used for all algorithms

with hyperparameter configurations discussed in Appendix B to have a fair

comparison. The representations for the source and target domain are 768-

dimensional sentence embeddings obtained with BERT (Devlin et al., 2019)

models pre-trained on the corresponding languages. The experiment compares

Label Alignment Regression with the following baselines.

Source: This baseline trains a linear regression model with squared error

(MSE) or a logistic regression model with crossentropy loss (CE) directly on

the source domain and evaluates it on the target domain.

Adversarial-Refine (Conneau et al., 2018): This baseline uses a domain-

adversarial approach to learn a linear transformation that maps the source

and target domain into a shared space. A refinement step then encourages

the transformation to be orthogonal. This approach has shown promising

results in several cross-lingual NLP tasks with word embeddings. We train
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a linear regression model with squared error (MSE) or a logistic regression

model with crossentropy loss (CE) on the source data using the learned shared

space and then evaluate it on the target domain. We sweep over values of

{1e − 3, 1e − 2, 1e − 1} for β. The parameter controls the degree of orhtogo-

nality of the transformation that maps the source and target embeddings into

a common space.

CDAN (Long et al., 2017): Recall that a domain-adversarial method con-

sists of a domain classifier (discriminator) that predicts whether a data point is

from the source or the target domain, a generator that learns a shared embed-

ding between the two domains, and a label predictor that performs classifica-

tion on the task of interest using the generator’s embedding. CDAN improves

on DANN by conditioning the domain classifier on the label predictor’s pre-

diction. The motivation is the improvements observed by incorporating this

modification to generative adversarial networks (Goodfellow et al., 2020; Mirza

& Osindero, 2014).

f-DAL (Acuna et al., 2021): This approach modifies DANN to use a

separate domain classifier for each class which allows minimizing a family of

divergence measures between the source and domain embeddings. We use f -

DAL to minimize Pearson χ2 divergence as the authors had observed superior

performance with this divergence in previous vision and NLP benchmarks.

IWDAN and IWCDAN (Tachet et al., 2020): These two methods mod-

ify DANN and CDAN by incorporating importance sampling to reduce dete-

rioration in performance due to class imbalance. Computing the importance

sampling ratios requires access to target domain labels. The authors propose

to estimate the ratios and provide the theoretical requirements for the estima-

tion to be accurate.

The models used in Source, Adversarial-Refine, and Label Alignment Re-

gression are linear regression or logistic regression (on the nonlinear extracted

representations). These models are trained with learning rate 1/(2σ1) (MSE
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loss) and 1e − 2 (CE loss) and momentum 0.9. Candidate hyperparameter

values for Label Alignment Regularizer were {1e − 1, 1e + 1, 1e + 3} for λ

and {8, 16, 32, · · ·} up to the rank of Φ or Φ̃ for k and k̃. The other meth-

ods are neural network based and we sweep over regularization coefficients

{1e−4, 1e−2, 1} with a one-hidden-layer ReLU network. This is the architec-

ture suggested by (Ganin et al., 2016) for domain adaptation with a shallow

network.

Table 6.5 shows F1 scores for the nine tasks and the average score over

the tasks. The first 8 rows are the baselines above and in the last row (LAR)

we employ the Label Alignment Regression algorithm. The proposed algo-

rithm achieves the highest F1 score on seven out of the nine tasks as well as

on average over the tasks. Adv - Refine, CDAN, and f -DAL do not provide

a consistent benefit over No Adaptation. The two methods with importance

weightings, IWDAN and IWCDAN, find better solutions than No Adaptation

as well as the other domain-adversarial methods, suggesting that the reweight-

ing in this algorithm, even if it is an estimate of the true importance weighting,

is beneficial.

6.7 Discussion

In this work, we proposed a domain adaptation regularization method based

on the observation of label alignment property—the label vector of a dataset

usually lies in the top left singular vectors of the feature matrix. We show

that a regression algorithm in a standard supervised learning task actually

contains an implicit regularization method to enforce such a property. Then

we demonstrate how we can adapt such a regularization method in a domain

adaptation setting. A critical difference between our algorithm and the con-

ventional domain adaptation method is that we do not use regularization to

adjust the representation learning. We observe that our algorithm does work

well under high imbalance, where the conventional representation-based do-

main adaptation method fails. We also report improvement over baselines on

cross-lingual sentiment analysis tasks.
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en → bg en → br en → cn en → da en → de
Source (MSE) 55.22 (0.23) 53.51 (0.53) 4.48 (0.27) 64.75 (0.14) 47.95 (0.52)
Source (CE) 51.55 (0.12) 56.94 (0.04) 0.37 (0.00) 64.00 (0.18) 46.55 (0.22)
Adv-R (MSE) 46.88 (0.61) 46.20 (1.56) 53.54 (1.74) 51.98 (1.87) 50.43 (1.07)
Adv-R (CE) 45.12 (0.82) 36.96 (0.95) 49.87 (1.37) 50.99 (1.31) 43.62 (0.66)
CDAN 49.99 (5.43) 31.97 (8.43) 21.93 (12.76) 55.80 (5.12) 33.52 (9.60)
f -DAL 51.95 (0.88) 57.79 (0.50) 15.04 (3.65) 64.23 (0.14) 45.74 (0.82)
IWDAN 56.16 (1.05) 55.95 (0.50) 46.78 (3.55) 63.41 (1.20) 46.30 (5.69)
IWCDAN 57.70 (1.32) 54.96 (1.44) 42.08 (5.85) 63.64 (1.49) 41.86 (6.48)
LAR 59.85 (0.08) 53.42 (0.33) 65.10 (0.24) 65.58 (0.12) 60.46 (0.05)

en → es en → fr en → he en → hu Average
Source (MSE) 39.17 (0.93) 49.89 (0.57) 58.19 (0.23) 59.66 (0.12) 48.09 (0.37)
Source (CE) 47.09 (0.20) 40.90 (0.36) 58.23 (0.10) 55.82 (0.06) 46.83 (0.10)
Adv-R (MSE) 48.37 (1.38) 46.45 (0.88) 48.93 (1.03) 47.15 (1.18) 48.88 (0.69)
Adv-R (CE) 41.30 (1.40) 44.18 (2.16) 46.95 (1.39) 44.06 (1.44) 44.78 (0.40)
CDAN 21.26 (6.97) 36.30 (14.82) 41.29 (9.49) 34.95 (6.14) 36.33 (3.73)
f -DAL 48.25 (12.06) 58.23 (0.62) 60.10 (0.31) 47.42 (1.28) 49.86 (1.53)
IWDAN 36.21 (2.93) 54.04 (1.72) 58.18 (0.97) 56.00 (1.54) 52.56 (0.84)
IWCDAN 37.63 (2.45) 52.14 (2.39) 61.08 (0.56) 55.82 (1.54) 51.88 (1.24)
LAR 43.47 (0.90) 58.11 (0.24) 61.24 (0.09) 59.68 (0.12) 58.55 (0.17)

Table 6.5: F1 score in percents on different XED source-language pairs. The
numbers in parentheses are standard errors. Adv-R refers to Adversarial-
Refine. MSE and CE denote Mean Squared Error and Cross Entropy loss.
LAR (Label Alignment Regression) outperforms the baselines on average and
on most of the tasks. For adversarial baselines we verified that the discrimina-
tor accuracy is near random in this experiment similar to the MNIST-USPS
experiment.

Immediate next steps are providing an unsupervised hyperparameter selec-

tion strategy and extension to multi-class classification. The current method

uses a validation set for choosing the hyperparameters. This validation set is

remarkably small and on the NLP tasks we found little benefit from involving

this set to train a semi-supervised method.

A better hyperparameter selection strategy can also help with applying the

proposed method to multi-class classification problems. In a small experiment

in Section 6.6 we briefly discussed how the regularizer can be extended to

multi-class problems using multiple outputs and one-hot labels. In general,

the multi-class version would require tuning the hyperparameters separately

for each output and the current grid search method would become expensive

with large number of classes or fine grids. Using a fixed set of hyperparameter

values for all the outputs, we showed promising results on the MNIST-USPS

benchmark in the same section and we leave further exploration to future work.

Other future directions are to investigate the combination of our method

and the conventional representation-based domain adaptation method, with
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the hope that the hybrid method has the advantage of both—it can provide a

significant advantage in a broad range of domain-shift settings. It would also

be interesting to have a more rigorous theoretical characterization regarding

when the label alignment property holds and to what extent the label vector

can align with the top singular vectors.
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Chapter 7

Generalization in Temporal
Difference Learning

In the previous chapters we created synthetic tasks that resulted in different

expected convergence rates and different generalization errors in regression. In

particular, we observed that tasks that resulted in faster expected convergence

also resulted in better generalization from a small sample. In this chapter we

turn to the problem of policy evaluation with the aim of better understanding

generalization with Temporal Difference learning. We will introduce a similar

procedure for conducting small synthetic experiments and observe the same

trend in optimization and generalization in this context.

7.1 Background

The goal in Reinforcement Learning (RL) is finding a high performing policy

through interaction with an environment and a common intermediate step

is evaluating a given policy (Sutton & Barto, 2018). Neural networks are

often used in this context either to parametrize the policy itself or to predict

the value of a policy. A popular algorithm for policy evaluation is Temporal

Difference learning (TD) that, instead of fitting a fixed target, bootstraps from

current predictions to obtain better predictions of the value of the policy.

The generalization and transfer abilities of neural networks that we dis-

cussed in Chapters 1 and 5 do not extend to the RL problem. Neural networks

trained with common algorithms are known to largely capture superfluous pat-
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terns in the environment and the resulting networks are hardly usable on a

slightly different problem, even as a starting point for further training (Fare-

brother et al., 2018; X. Song et al., 2020; Packer et al., 2019). In contrast to a

regression problem, in RL the neural network has to learn a sequence of tasks

as the policy is improved, and this non-stationarity is conjectured as a reason

behind the poor generalization and transfer (Lyle et al., 2022a; Nikishin et al.,

2022; Dohare et al., 2021).

Even in the simpler problem of evaluating a fixed policy in a fixed environ-

ment from a given sample, TD is known to often result in undergeneralizing

solutions in practice and requirements for obtaining good generalization in pol-

icy evaluation with TD can be different from regression with gradient descent

(E. Bengio et al., 2020; Lyle et al., 2022b). Such differences have motivated

regularization techniques and theoretical frameworks focused on RL algorithms

(Farahmand, 2011; Amit et al., 2020; Le Lan et al., 2022; François-Lavet et

al., 2019). Since TD bootstraps from current predictions, one approach to

studying policy evaluation with TD is to look at it as solving a sequence of

regression problems with different targets, even when the evaluated policy is

fixed. Using target networks to reduce this form of non-stationarity or enforc-

ing robustness to it has been helpful in policy evaluation and the broader RL

problem (Mnih et al., 2015; Lyle et al., 2023).

The chasm between the behavior of gradient descent and TD is also mani-

fest in the requirements for fast optimization. The difference has led to devel-

oping dedicated acceleration methods for TD and its related algorithms along

with theoretical characterizations of rate of convergence (Meyer et al., 2014;

Pan et al., 2017; Gupta et al., 2019; E. Bengio et al., 2021; Bhandari et al.,

2018; Chen et al., 2020; Patil et al., 2023).

Properties of the representation are consequential to both optimization and

generalization in policy evaluation and RL (Bellemare et al., 2019; Le Lan et

al., 2022; Patil et al., 2023) and learning or constructing a good representation

for RL has been a longstanding area of research (Dayan, 1993; Menache et al.,

2005; Keller et al., 2006; Yu & Bertsekas, 2009; Mahadevan & Maggioni, 2007;

Sutton, 1995; Jaderberg et al., 2017). Despite this, the theoretical formulation
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of the role of representation in generalization in policy evaluation and RL is

still underdeveloped (Le Lan et al., 2022).

In this chapter we focus on policy evaluation with TD and linear models

and ask what relationship between the representation and the environment

makes generalization from a small sample easier. Rather than looking at TD

as solving a sequence of regression problems, we will look at it as a single

dynamical system and juxtapose it with a dynamical system corresponding

to gradient descent. Earlier in Chapter 4 we designed a sequence of tasks

such that gradient descent showed different expected convergence rates. In

Chapter 3 we observed that generalization performance of gradient descent

across these different tasks reflected the trend in expected convergence rates.

In this chapter we will design an analogous sequence of policy evaluation tasks

for TD and empirically find that, across these tasks, TD generalizes well from

a small sample when it converges fast in expectation.

7.2 Policy Evaluation and TD

The environment in an RL problem is modeled as a discounted MDP, a tuple

M := (S,A, P, r, γ, µ) where S and A denote the state space and action space,

P : S × A → P(S) is the transition probability kernel, r : S × A → R is the

immediate reward, γ : S ×A×S → [0, 1) is the transition-dependent discount

factor, and µ ∈ P(S) is the start state distribution. A policy π : S → P(A) in-

duces a probability distribution over actions at each state. We define rπ(s) :=
∑

a∈A π(s, a)r(s, a) and Pπ,γ(s, s′) :=
∑

a∈A π(s, a)P (s, a, s′)γ(s, a, s′). We as-

sume both the state space and the action state are finite. The interaction of a

policy and the MDP induce a trajectory of random variables S0, A0, R0, γ0, S1, · · ·
where S0 ∼ µ,A0 ∼ π(S0), R0 = r(S0, A0), S1 ∼ P (S0, A0), γ0 = γ(S0, A0, S1), · · ·.
The return is G :=

∑
t≥1(Π1≤i<tγi)Rt.

In policy evaluation we are interested in evaluating the state-value function

of a policy defined as vπ(s) := EM,π[G|S0 = s] where M and π must satisfy the

constraint limt→∞ EM,π[Π1≤i<tγi|S0 = s] = 0 for all s ∈ S. It can be shown

that vπ = (I − Pπ,γ)−1rπ. Given a representation function ϕ : S → R
d we
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can arrange the obtained representations into Φ ∈ R
|S|×d and, using weights

w ∈ R
d, state values can be estimated as vw := Φw. We can use gradient

descent (GD) or temporal-difference learning (TD) to predict state values.

GD: Suppose a sample in the form of ((ϕi, gi))
n
i=1 of the representation and

return is available where a state si is sampled independently from a sampling

distribution dS, ϕi := ϕ(si), and gi is a sample of return following from si.

Similar to a regression problem, gradient descent (GD) can be applied on

this sample to find a predictor. In this context, GD updates are ŵ0
GD := 0,

ŵt
GD := ŵt−1

GD − η( 1
n

∑n
i=1(ϕ

⊤
i ŵ

t−1
GD − gi)ϕi).

TD: Now suppose a sample is available in the form of ((ϕi, ri, ϕ
′
i, γi))

n
i=1 where

each tuple in the sample is called a transition and si ∼ dS, ϕi := ϕ(si), ai ∼
π(si), ri := r(si, ai), s

′
i ∼ P (si, ai), ϕ

′(i) := ϕ(s′i), γi := γ(si, ai, s
′
i). TD updates

are ŵ0
TD := 0, ŵt

TD := ŵt−1
TD − η( 1

n

∑n
i=1(ϕ

⊤
i ŵ

t−1
TD − (ri + γiϕ

′
i
⊤ŵt−1

TD ))ϕi).

7.3 Convergence Rate of TD

In this section we use a standard approach similar to Chapter 4 to develop

a convergence rate applicable to both GD and TD. We will then describe

an approach for creating synthetic reward vectors that will result in different

convergence rates for GD and TD.

Define the expected weights wt
GD := E[ŵt

GD] and wt
TD := E[ŵt

TD] where the

expectations are over the draw of the samples. The behavior of the expected

weights is as follows (Sutton & Barto, 2018).

wt+1
GD := wt

GD − ηΦ⊤D(Φwt
GD − vπ)

= (I − ηΦ⊤DΦ)wt
GD + ηΦ⊤Dvπ (7.1)

wt+1
TD := wt

TD − ηΦ⊤D(Φwt
TD − (rπ + Pπ,γΦwt

TD))

= (I − ηΦ⊤D(I − Pπ,γ)Φ)wt
TD + ηΦ⊤Drπ (7.2)

where D := diag(dS). The right-hand side of both Equations (7.1) and (7.2)

can be written as (I − ηA)wt + ηb for a matrix A and a vector b. Assume
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A is diagonalizable. We can then write A = QΣ2Q−1 where Q and Σ can be

complex and columns of Q, denoted as qi, represent the normalized eigenvec-

tors of A and diagonal elements of Σ2, denoted as σ2
i and sorted by magnitude

in non-increasing order, represent the eigenvalues. We also define Σ† as the

pseudo-inverse of the diagonal matrix Σ and C as the operator norm of Q. An

important vector for the analysis is b′ := Σ†Q−1b. For the GD update, A is

the covariance matrix of the representation, b is the correlation vector between

the values and the features, and C = 1.

Theorem 7.3.1. (Adapted from Pan et al. (2017). Proof in Appendix D.) If

A is diagonalizable and 0 < η < 1/|σ2
1| the updates wt+1 := (I − ηA)wt + ηb

starting from w0 := 0 converge to w∗ := limt→∞ wt at the following rate:

∥∥wt+1 − w∗
∥∥ ≤

√√√√C

d∑

j=1

|
(1 − ησ2

j )(t+1)

σj

|2 |b′j|2 (7.3)

∥∥(b− Awt+1) − (b− Aw∗)
∥∥ ≤

√√√√C

d∑

j=1

|(1 − ησ2
j )(t+1)|2 |b′j|2 (7.4)

The main takeaway of the theorem is that convergence is fast if the first

elements of b′ are large. This vector plays a similar role as w̃ in the Chapter

4. In GD b′ is the projection of vπ on the left singular vectors of Φ and the

first elements are the projections of vπ on singular vectors with large singular

values. A large value of these elements means that state values change mostly

along directions of top principal components of the representation. TD results

in a different matrix A and vector b and therefore a different b′ compared to

GD.

Non-diagonalizable matrices: Similar insights on convergence in differ-

ent directions are known for non-diagonalizable matrices using Jordan form.

While Jordan form is a useful theoretical tool, its fundamental numerical in-

stability precludes its use in experiments. In this case a non-diagonlizable

matrix can be approximated arbitrarily closely with a diagonlizable matrix

that can be then used in the analysis (Horn & Johnson, 2012). Although this

approximation, however small, can drastically change the asymptotic behavior
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of an optimization algorithm (Hirsch & Smale, 1974) (Chapter 16), the linear

appearance of A in updates (7.1) and (7.2) along with zero initialization of w

suggests that a good approximation of A can closely reflect the trajectory of w

during practical training times. We have not encountered non-diagonalizable

A in our experiments.

The following proposition allows us to create real-valued reward vectors

that result in convergence rates dictated by certain eigenvalues. Using this

proposition we can create MDPs where the policy evaluation algorithm (either

GD or TD) has a certain convergence rate.

Proposition 7.3.2 (Proof in Appendix D). Assume D is invertible. For all

i such that |σi|> 0, the convergence rate is

∥∥(b− Awt+1) − (b− Aw∗)
∥∥ ≤ C ′|(1 − ησ2

i )(t+1)|

for a C ′ whose value is independent of the reward vector if either

1. the updates have the form of Equation (7.1) and the reward vector is set

to riGD := (I − Pπ,γ)D−1Φ(Φ⊤Φ)†(Re(qi)Re(σi) − Im(qi)Im(σi)), or

2. the updates have the form of Equation (7.2) and the reward vector is set

to riTD := D−1Φ(Φ⊤Φ)†(Re(qi)Re(σi)−Im(qi)Im(σi)) and (Re(qi)Re(σi)−
Im(qi)Im(σi)) is in the column space of Φ.

Reward vectors r1GD, r
2
GD, · · · above result in different MDPs with differ-

ent convergence rates for GD and reward vectors r1TD, r
2
TD, · · · above result

in a different MDPs with different convergence rates for TD. A low index i

corresponds to a larger eigenvalue and thus faster convergence. In the next

section we will verify these convergence rates and study the generalization

performance of GD and TD on these MDPs.

7.4 Experiments on Optimization and Gener-

alization

The previous section introduced a set of reward vectors to determine the con-

vergence rate of GD and TD. The first goal of the current section is to verify
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this numerically. These reward vectors are also analogous to the sequence of

tasks in Chapter 4 that resulted in different convergence rates with GD in

regression. In Chapters 3 and 5 we saw that generalization from a small sam-

ple was easier on tasks where the expected convergence rate was faster. Our

second goal in this section is to see if this trend occurs in policy evaluation

with GD and TD.

7.4.1 Experiment Setup

This section describes the testbed, evaluation criteria, and the hypotheses in

the experiments. Note that we will use synthetic reward vectors through this

chapter to discuss convergence and generalization. Since creating the reward

vector for every experiment requires perfect knowledge of the environment

transitions in matrix form and the computationally expensive eigendecompo-

sition of a possibly asymmetric matrix A, we will restrict the experiments,

along with the claims, to small domains. We will use tile-coding and RBF

features. Our goal is not to reduce the dimensionality of the state space as

the environments are already small but to encode a notion of closeness in the

state space into the representation and to allow updates in one state to affect

predictions in other states.

The first environment is a directional gridworld portrayed in Figure 7.1.

Each position in the 6 by 6 gridworld corresponds to 4 states based on the

agent’s direction except the bottom right corner which is the terminal position.

Thus, excluding the terminal position, we have a (6× 6− 1)× 4 = 140 states,

each of which can be presented with a triplet (i, j, k) to include the current row,

column, and direction where i, j ∈ {0, · · · , 5} and k ∈ {0, · · · , 3}. The starting

distribution is uniform. There are three actions for turning left, turning right,

and going forward. The first two actions change the direction and the third

the position. If the agent attempts to move past the edge of the gridworld it

will remain in place and if it moves to the terminal position it will transition

to a state sampled from the uniform distribution. The discount factor is 0 for

transition into the terminal position and 0.99 otherwise. The evaluated policy

gives equal probability of 0.3̄ to every action in every state. We will create
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Update NEU(w) = ∥(b− Awt+1)∥2, the error that the theoretical convergence

rate studies.1

We will study the following hypotheses:

H1 The sequence of rewards in Proposition 7.3.2 results in non-increasing

order of expected convergence rates for TD.

H2 The sequence of rewards in Proposition 7.3.2 results in non-increasing

order of generalization performance from a small sample for GD and TD.

H3 The reward sequence for GD will not necessarily create the same trends

in convergence and generalization of TD and vice-versa.

H4 The trend in generalization with TD also occurs if the states are sampled

from the policy’s trajectory rather than independently.

7.4.2 Results

We will now present the results for the four hypotheses in the previous section

on the four testbeds and using the two evaluation criteria. For each evaluation

criterion, we scale the reward vectors such that all the compared curves start

at one. Therefore the plots for MSVE and NEU do not correspond to the

same training process. The sampling distribution dS is uniform unless stated

otherwise.

H1: We ask if the sequences of rewards in this chapter show the same pattern

in convergence as we saw in Chapter 4. Specifically, we want to know if

convergence for riTD is faster than for rjTD if σi > σj. Note that, unlike Theorem

4.1.1, the theorem in this chapter is not an equality but a bound in the case of

TD and so needs numerical verification. We trained weight vectors with the

expected updates in Equation (7.2) on the sequence of reward vectors riTD with

different values of i to create the error curves. There is no random sampling in

this experiment. The plots in Figures 7.2 and 7.3 show the NEU and MSVE

1The abbreviation NEU typically refers to the Norm of the Expected TD Update (Sutton
et al., 2009) where b and A are the ones used in Equation (7.2). We use the more general
measure Norm of the Expected Update where the update can be either GD or TD.
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1. The theoretical pattern in expected convergence rates happens in prac-

tice as well.

2. Generalization of GD and TD from a small sample is better when the

expected convergence rate is faster.

3. The trend in generalization is contingent in the training algorithm and

a training algorithm (GD or TD) does not consistently generalize better

if the expected convergence rate of the other algorithm is fast.

4. The trend in generalization of TD also occurs when the states used for

training are not indepdendent but are sampled from a trajectory by

following the evaluated policy.

We reiterate here that our testbeds were small and making claims about larger

environments requires a separate study. Also, the connection between fast con-

vergence and good generalization in this chapter is a correlation, and we do not

claim that the fast expected convergence causes good generalization. Theoreti-

cal results on the reason behind the observed trends in generalization error can

answer whether there is a causal relationship between the two. Finally, note

that in this chapter we considered the best generalization performance through

the training rather than the final performance. The learning curves sometimes

cross each other, suggesting that the observed trends in generalization do not

appear if we consider the final performance.
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Chapter 8

Conclusion

Motivated by recent challenges in the study of generalization we asked

What relationship between the representation and the target makes

generalization from a small sample easier?

Representation alignment was our partial answer to this question. In this

final chapter we will review our findings in this regard and as well as the

limitations and open questions.

8.1 List of Findings

This section recaps the findings on representation alignment throughout this

document.

In regression, gradient descent generalizes well from a small batch

if representation alignment is high. In Chapter 3 we showed this theo-

retically on a well-specified regression model and demonstrated it on synthetic

tasks. Then, in Chapter 5 we verified this in a more practical scenario by

comparing generalization on representations with different degrees of repre-

sentation alignment.

In binary classification, a solution with low generalization error can

be obtained from a small batch if representation alignment is high.

We first showed this in Chapter 3 by first providing a generalization bound
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using margin theory and then through synthetic experiments. Then we com-

pared generalization with different representations in a practical scenario in

Chapter 5 and observed a similar pattern.

In practice, common optimizers tend to converge faster if represen-

tation alignment is high. We showed this for a variety of optimizers by

comparing representations with different level of representation alignment in

Chapter 5.

Neural networks find hidden representations with high representa-

tion alignment on the training task. We showed in Chapter 5 that,

across a wide range of training setups, trained neural networks learn hidden

representations that has higher representation alignment on the training task

compared to the input features and the hidden representation at initialization.

In fully-connected networks, hidden layers closer to the output have

higher representation alignment on the training task. This was shown

in Chapter 5 on multiple regression and binary classification tasks.

In a typical feature transfer scenario in object classification, pre-

trained neural networks have high representation alignment on the

downstream task. We compared pretrained neural network hidden repre-

sentations and several handcrafted features in object classification in Chapter

5 and observed that neural network representations have higher representation

alignment for a wide range of thresholds.

The prior knowledge of high representation alignment can be used

to improve performance in domain adaptation. In Chapter 6 we de-

veloped a regularizer to enforce a prior knowledge related to representation

alignment. We then verified the efficacy of this regularizer in synthetic and

practical experiments.
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In policy evaluation, gradient descent and temporal-difference learn-

ing generalize well from a small sample when their expected conver-

gence rate is high. We verified this in Chapter 7 on experiments on four

small testbeds and with two evaluation criteria.

8.2 Limitations and Future Work

The findings presented in this thesis and their limitations open up several new

directions for further exploration.

The definition of representation alignment is restricted to centered repre-

sentation and targets. Removing this restriction would make both the defini-

tion and the theory for regression and classification more involved and we did

not pursue it here. The theory for regression was based on a model by Hastie

et al. (2022) with centered representation and targets. For the classification

generalization bound we added this restriction to ensure that an unbiased es-

timate of a quantity of interest can be obtained from the empirical kernel.

Without this assumption, one would have to either consider the effect of using

a non-centered kernel or the possible bias introduced by centering an empirical

kernel (Kornblith et al., 2019a).

Representation alignment is defined for vector inputs and the results are for

linear models (on possibly non-linear representation functions). Some direc-

tions for extensions are providing theoretical or empirical results for nonlinear

models or data that is not available in vector form, such as sequential or graph

data. First-order approximations are widely used to approximate generaliza-

tion bounds and estimates and convergence rates to nonlinear models such as

wide neural networks (Jacot et al., 2018).

The generalization estimate in regression requires a well-specified model

and sub-gaussian input noise. Hastie et al. (2022) relaxed the well-specified

assumption in their results with a more elaborate analysis. The sub-gaussian

assumption in our result is only added as a convenient way to ensure the

operator norm of the covariance matrix of input noise is bounded with high

probability. Depending on the context, one can explore whether assumptions
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other that sub-gaussian input noise may guarantee this property. The regres-

sion generalization result is also for ridge estimator while most of the empirical

results in the document are obtained with gradient descent. Ali et al. (2019)

theoretically explored the connection between the performance of ridge estima-

tor with a certain ridge parameter and gradient descent with a certain number

of iterations. A next step is to see if such connection holds in our setup.

We observed that the fast expected convergence of gradient descent in the

case of high representation alignment extends to the practical case of mini-

batch training and some other common optimizers in our experiments. A

theoretical characterization of this behavior is a future direction. Aside from

the expected convergence rate that we already reviewed, we are aware of the

improved convergence rate by Zou et al. (2021b) for tail-averaged stochastic

gradient descent that relies on an assumption similar to representation align-

ment.

A study on when and why representation alignment emerges in neural

network hidden layers and when it transfers to a different task is another

venue for exploration. Starting points for this direction are characterizing

possible connections between representation alignment and the well-studied

weight alignment phenomenon in classification tasks with linear activation (Ji

& Telgarsky, 2019) and the neural collapse phenomenon (Papyan et al., 2020)

and the conditions for emergence and transfer of neural collapse (Zhu et al.,

2021; Galanti et al., 2021).

The chapter on policy evaluation is much limited in scope as there is no the-

oretical characterization on the trends in generalization and the experiments

are on small testbeds due to computational complexity and requirements on

perfect knowledge about environment transitions in matrix form. One possible

approach to study the pattern in generalization on larger environments is to

design a meta-objective to improve the convergence rate of TD in terms of

NEU. One can then test if pre-training with such meta-objective helps with

generalization from a small sample.
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8.3 Summary

This thesis revolved around representation alignment, which we defined as a

measure of variation of the target in directions where the representation is

more elongated. Throughout the document we gave a rigorous definition of

representation alignment and studied its role in optimization and generaliza-

tion in certain classification, regression, and policy evaluation models. We also

studied when high representation alignment emerges and how prior knowledge

of high representation alignment can be used in domain adaptation.
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Appendix A

Representation Alignment and
Generalization (Supplementary)

A.1 Proof for Theorem 3.1.3

Proof. It is easy to show that w∗
τ ⊥ w∗

τ̄ and w∗ = w∗
τ + w∗

τ̄ . Define ŵλ
τ and ŵλ

τ̄

as the ridge regression estimator if the labels were generated using w∗
τ and w∗

τ̄

instead of w∗. Then we have E[ŵλ|Φ] = (Φ⊤Φ + nλI)−1Φ⊤Φw∗, E[ŵλ
τ |Φ] =

(Φ⊤Φ+nλI)−1Φ⊤Φw∗
τ , E[ŵλ

τ̄ |Φ] = (Φ⊤Φ+nλI)−1Φ⊤Φw∗
τ̄ , E[ŵλ|Φ] = E[ŵλ

τ |Φ]+

E[ŵλ
τ̄ |Φ]. Also ∥w∗

τ∥H = ∥w∗∥Hτ
and similarly for w∗

τ̄ . Now let us decompose

the risk

RΦ(ŵλ, w∗) = BΦ(ŵλ, w∗) + VΦ(ŵλ, w∗)

= BΦ(ŵλ
τ , w

∗
τ )︸ ︷︷ ︸

=:BΦ,τ (ŵλ,w∗)

+VΦ(ŵλ, w∗) + BΦ(ŵλ, w∗) − BΦ(ŵλ
τ , w

∗
τ )︸ ︷︷ ︸

=:∆

The first term is the bias of an alternate problem whose optimal weights are

w∗
τ . The previous theorem controls bias and variance independently and the

two terms do not have to correspond to the same problem, so by applying that

theorem we get

RΦ(ŵλ, w∗) = BΦ,τ (ŵλ, w∗) + VΦ(ŵλ, w∗) + ∆

|BΦ,τ (ŵλ, w∗) − Bτ (λ, Ŝ, Ĝ, γ)|≤ C ∥w∗
τ∥2

λn(1−ε)/2

|VΦ(ŵλ, w∗) − V (λ, Ŝ, γ)|≤ C

λ2n(1−ε)/2

It only remains to control ∆.

∆ =
∥∥E[ŵλ|Φ] − w∗

∥∥2

H
−
∥∥E[ŵλ

τ |Φ] − w∗
τ

∥∥2

H
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=
∥∥E[ŵλ

τ |Φ] − w∗
τ + E[ŵλ

τ̄ |Φ] − w∗
τ̄

∥∥2

H
−
∥∥E[ŵλ

τ |Φ] − w∗
τ

∥∥2

H

= 2(E[ŵλ
τ |Φ] − w∗

τ )⊤H(E[ŵλ
τ̄ |Φ] − w∗

τ̄ ) +
∥∥E[ŵλ

τ̄ |Φ] − w∗
τ̄

∥∥2

H

We bound the two terms separately for clarity. Define Z ∈ R
n×d as (zi)

n
i=1

in matrix form. Note that Φ⊤Φ = H1/2⊤Z⊤ZH1/2. Define A := (Φ⊤Φ +

nλI)−1H1/2⊤Z⊤Z, so that (Φ⊤Φ + nλI)−1Φ⊤Φ = AH1/2. The first term is

2(E[ŵλ
τ |Φ] − w∗

τ )⊤H(E[ŵλ
τ̄ |Φ] − w∗

τ̄ )

= 2E[ŵλ
τ |Φ]⊤HE[ŵλ

τ̄ |Φ] − 2E[ŵλ
τ |Φ]⊤Hw∗

τ̄ − 2w∗
τ
⊤HE[ŵλ

τ̄ |Φ] + 0

2w∗⊤
τ H

1/2A⊤HAH1/2w∗
τ̄ − 2(w∗

τ )⊤H1/2A⊤Hw∗
τ̄ − 2(w∗

τ )⊤HAH1/2w∗
τ̄

≤ 2 ∥w∗
τ∥H ∥w∗

τ̄∥H ∥A∥2op ∥H∥op + 4 ∥w∗
τ∥H ∥w∗

τ̄∥H ∥A∥op ∥H∥1/2op (A.1)

The operator norm of H is bounded by M according to the assumption, and

∥A∥op =
∥∥∥(Φ⊤Φ + nλI)−1H1/2⊤Z⊤Z

∥∥∥
op

≤ (1/λ)M1/2
∥∥ 1
n
Z⊤Z

∥∥
op

. Therefore

(A.1) ≤ 2
√
δ
√

1 − σ2
ϵ − δ((1/λ2)M3/2

∥∥∥∥
1

n
Z⊤Z

∥∥∥∥
2

op

+ 2(1/λ)M

∥∥∥∥
1

n
Z⊤Z

∥∥∥∥
op

)

(A.2)

The second term becomes

∥∥E[ŵλ
τ̄ |Φ] − w∗

τ̄

∥∥2

H
≤ 2

∥∥E[ŵλ
τ̄ |Φ]

∥∥2

H
+ 2 ∥w∗

τ̄∥2H
= 2

∥∥E[ŵλ
τ̄ |Φ]

∥∥2

H
+ 2(1 − σ2

ϵ − δ)

≤ 2 ∥H∥op
∥∥E[ŵλ

τ̄ |Φ]
∥∥2

+ 2(1 − σ2
ϵ − δ)

= 2 ∥H∥op
∥∥AH1/2w∗

τ̄

∥∥2
+ 2(1 − σ2

ϵ − δ)

≤ 2/(1/λ)M3/2

∥∥∥∥
1

n
Z⊤Z

∥∥∥∥
op

(1 − σ2
ϵ − δ) + 2(1 − σ2

ϵ − δ)

≤ 2((1/λ)M3/2

∥∥∥∥
1

n
Z⊤Z

∥∥∥∥
op

+ 1)(1 − σ2
ϵ − δ) (A.3)

Both the first and the second term in ∆ will be bounded once
∥∥ 1
n
Z⊤Z

∥∥
op

is

controlled. We use the extra sub-gaussianity assumption here. Since z is zero

mean and unit variance, its covariance matrix is I. Triangle inequality gives
∥∥ 1
n
Z⊤Z

∥∥
op

≤ 1 +
∥∥ 1
n
Z⊤Z − I

∥∥
op

. Also,
∥∥ 1
n
Z⊤Z

∥∥2

op
≤ 2 + 2

∥∥ 1
n
Z⊤Z − I

∥∥2

op
.

Due to a result by Bunea and Xiao (2015), there exists a universal constant
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Cz > 0 such that with probability at least 1 − 2n−1 we have

∥∥∥∥
1

n
Z⊤Z − I

∥∥∥∥
op

≤Czσ
2
z max{

√
d + log n

n
,
d + log n

n
} =: ∆z

Using this high probability bound along with the bounds on the two terms

of ∆ from Eqs. (A.2) and (A.3), we get that with probability at least 1−2n−1

∆ ≤2
√

1 − σ2
ϵ − δ

√
δ(M3/2/λ2)(2 + 2∆2

z)+

4
√

1 − σ2
ϵ − δ

√
δ(M/λ)(1 + ∆z)+

2(1 − σ2
ϵ − δ)(M3/2/λ)(1 + ∆z)+

2(1 − σ2
ϵ − δ)(M3/2/λ)

To simplify the expression note that
√
δ ≤ 1, 1 − σ2

ϵ − δ ≤
√

1 − σ2
ϵ − δ,

max{
√

d+logn
n

, d+logn
n

, (d+logn
n

)2} = max{
√

d+logn
n

, (d+logn
n

)2}. Then with prob-

ability at least 1 − 2n−1 and for a constant C ′ = C ′(M) the expression above

can be bounded with the simpler expression

∆ ≤C ′
√

1 − σ2
ϵ − δ max(

1

λ
,

1

λ2
)(1 + max(σ2

z , σ
4
z)

max{
√

d + log n

n
, (
d + log n

n
)2})
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Appendix B

Representation Alignment and
Optimization (Supplementary)

B.1 Proof for Theorem 4.1.1

Proof. The min-norm MSE minimizer can be easily obtained algebraically and

it satisfies E[ϕϕ⊤]w∗ = E[ϕy] and w∗ = E[ϕϕ⊤]†E[ϕy] and w∗ = limt→∞ ŵt

(Hastie et al., 2022). Then the error can be decomposed as

E[(ϕ⊤ŵt − y)2] =E[(ϕ⊤ŵt − ϕ⊤w∗)2 + (ϕ⊤w∗ − y)2︸ ︷︷ ︸
ϵ2

+ 2(ϕ⊤ŵt − ϕ⊤w∗)(ϕ⊤w∗ − y)]

=E[(ϕ⊤ŵt − ϕ⊤w∗)2] + E[ϵ2]

+ 2(ŵt − w∗)⊤ E[ϕ(ϕ⊤w∗ − y)]︸ ︷︷ ︸
0

=E[(ϕ⊤ŵt − ϕ⊤w∗)2] + E[ϵ2] (B.1)

Define b := E[ϕ⊤y] for brevity and note that b is in the span of H, therefore

for any {j : σj = 0} we have v⊤j b = 0. Now recall w̃ = ΣV ⊤w∗ = ΣV ⊤H†b =

ΣV ⊤V Σ2†V ⊤b = Σ†V ⊤b =⇒ b = V Σw̃. Gradient descent iterates ŵt for

t > 0 can be written and unfolded as

ŵt =(I − ηH)ŵt−1 + ηb = η

t−1∑

i=0

(I − ηH)ib

=η

t−1∑

i=0

(V V ⊤ − ηV Σ2V ⊤)ib = ηV (
t−1∑

i=0

(I − ηΣ2)i)V ⊤b

112



=ηV (
t−1∑

i=0

(I − ηΣ2)i)V ⊤V Σw̃ = ηV (
t−1∑

i=0

(I − ηΣ2)i)Σw̃

Define Λ̃n1→n2
:=

∑n2

i=n1
(I− ηΣ2)iΣ for n1 ∈ N0 and n2 ∈ N∞ and λ̃n1→n2,j

as the j-th diagonal element of this diagonal matrix. With this notation we

have ŵt = ηV Λ̃0→t−1V
⊤b. Geometric sum under the condition 0 < η < 1/σ2

1

gives that for each index {j : σj > 0}

λ̃0→t−1,j =
t−1∑

i=0

(1 − ησ2
j )iσj =

1 − (1 − ησ2
j )t

ησj

λ̃0→∞,j =
∞∑

i=0

(1 − ησ2
j )iσj =

1

ησj

λ̃t→∞,j =
∞∑

i=t

(1 − ησ2
j )iσj =

−(1 − ησ2
j )t

ησj

And for elements {j : σj > 0} we have λ̃0→t−1,j = λ̃0→∞,j = λ̃0→t,j = 0. With

this notation we have ŵt − w∗ = ηV Λ̃t,∞w̃. Therefore

E[(ϕ⊤ŵt − ϕ⊤w∗)2] =(ŵt − w∗)⊤H(ŵt − w∗) =
∥∥ΣV ⊤(ŵt − w∗)

∥∥2

=
∥∥∥ηΛ̃t,∞Σw̃

∥∥∥
2

=
d∑

i=1

(1 − ησ2
i )2tw̃2

i

In the last equality holds because for each {j : σj = 0} we have w̃j = 0.

Putting this in Equation (B.1) proves the result for t > 0. The case of t = 0

is trivial.

B.2 Proof for Proposition 4.1.2

Proof. Define the reduction in loss as 0 ≤ ω < δ which is

ω :=E[(ϕ⊤ŵ0 − y)2] − E[(ϕ⊤ŵt − y)2] =
d∑

i=1

w̃2
i −

d∑

i=1

(1 − ησ2
i )2tw̃2

i

=
d∑

i=1

w̃2
i − (1 − ησ2

i )2tw̃2
i ≥

∑

{i:σj≥τ}

w̃2
i − (1 − ησ2

i )2tw̃2
i ≥ δ − (1 − ητ 2)2tδ

Now due to the condition on η we have 0 < ητ 2 < 1 and thus (1 − ητ 2)2t <

exp(−2tητ 2). Therefore

ω ≥ δ(1 − exp(−2tητ 2)) =⇒ exp(−2tητ 2) ≥ 1 − ω/δ
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=⇒ − 2tητ 2 log(1 − ω/δ)

=⇒ t ≤ − log(1 − ω/δ)/(2ητ 2)
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Appendix C

Label Alignment Regularization
for Distribution Shift
(Supplementary)

Lemma C.0.1. In the rotated Gaussian example in Section 6.4, Ex,y[xy] =√
2
π
s1p1.

Proof.

1

n
Φ⊤y ≈ Ex,y[xy] (C.1)

=

∫

x

∫

y

xypS(x|y)p(y)dydx (C.2)

=

∫

x

xpS(x|y = 1)p(y = 1) − xpS(x|y = −1)p(y = −1)dx (C.3)

=

∫

x

x · 2N (0, Q)(1(xP
1 > 0)p(y = 1) − 1(xP

1 < 0)p(y = −1))dx,

(C.4)

where we plug into the definition (6.9) to get the last equality. Further note

that 1(xP
1 < 0) = 1 − 1(xP

1 > 0) and plug this into above,

(C.4) =

∫

x

x · 2N (0, Q)(1(xP
1 > 0) − p(y = −1))dx (C.5)

=

∫

x

x · 2N (0, Q)1(xP
1 > 0)dx (C.6)

= 2P⊤

∫

z

z · 1

2πs1s2
exp

(
− 1

2s21
z21 −

1

2s22
z22

)
1(z1 > 0)dz (C.7)

where in the last equality we let z = Px, then xP
1 = x⊤p1 = z⊤Pp1 = z1. The

integral above is a vector with two elements because it includes z. The first
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element is

∫

z1

∫

z2

z1 ·
1

2πs1s2
exp

(
− 1

2s21
z21 −

1

2s22
z22

)
1(z1 > 0)dz1dz2 (C.8)

=

∫

z1

z1 ·
1√

2πs1
exp

(
− 1

2s21
z21

)
1(z1 > 0)dz1 (C.9)

=
1

2

∫ +∞

0

z1 ·
√

2√
πs1

exp

(
− 1

2s21
z21

)
dz1 (C.10)

=
1

2
s1

√
2

π
(C.11)

The last equality is because the integration is the mean of half-normal distri-

bution. The second element would become zero as written below and noting

that E[z2] is the mean of a zero-mean Gaussian random variable:

∫

z1

∫

z2

z2 ·
1

2πs1s2
exp

(
− 1

2s21
z21 −

1

2s22
z22

)
1(z1 > 0)dz1dz2 (C.12)

=

∫

z1

1√
2πs1

exp

(
− 1

2s21
z21

)
1(z1 > 0)dz1E[z2] = 0 (C.13)

Then

Ex,y[xy] = 2P⊤

[
1
2
s1

√
2
π

0

]
=

√
2

π
s1p1. (C.14)
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Appendix D

Generalization in
Temporal-Difference Learning
(Supplementary)

D.1 Proof for Theorem 7.3.1

Proof. First note

(I − ηA)i = (QQ−1 − ηQΣ2Q−1)i = (Q(I − ηΣ2)Q−1)i = Q(I − ηΣ2)iQ−1

Now unfolding the recursive update gives

wt+1 = (I − ηA)wt + ηb = η
t∑

i=0

(I − ηA)ib = η
t∑

i=0

Q(I − ηΣ2)iQ−1b

= η
t∑

i=0

Q(I − ηΣ2)iΣb′ = ηQΛ̃tb
′

where Λ̃t
.
=

∑t
i=0(I − ηΣ2)iΣ. Similarly w∗ = ηQΛ̃∗b

′ for Λ̃∗
.
=

∑∞
i=0(I −

ηΣ2)iΣ. Then

∥wt+1 − w∗∥ =
∥∥∥ηQΛ̃tb

′ − ηQΛ̃∗b
′
∥∥∥ =

∥∥∥ηQ(Λ̃t − Λ̃∗)b
′
∥∥∥ ≤ C

∥∥∥η(Λ̃t − Λ̃∗)b
′
∥∥∥

(D.1)

where C is the operator norm of Q. If A is symmetric (as in GD) then Q is

orthonormal and the last step is an equality with C = 1.

Both Λ̃∗, Λ̃t are diagonal matrices and the elements corresponding to zero

eigenvalues are zero since all terms of the series are multiplied by zero. For

other diagonal elements, the geometric sum formula and the condition on
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step-size and eigenvalues in the proposition statement gives each element j of

η(Λ̃t − Λ̃∗)

(
∞∑

i=0

(I − ηΣ2)i)j =
1

ησ2
j

, (
t∑

i=0

(I − ηΣ2)i)j =
1 − (1 − ησ2

j )t+1

ησ2
j

,

(
t∑

i=0

(I − ηΣ2)i −
∞∑

i=0

(I − ηΣ2)i)j =
(1 − ησ2

j )t+1

ησ2
j

=⇒ (η(Λ̃t − Λ̃∗))j =
(1 − ησ2

j )t+1

σj

and we can continue with Eq (D.1) to get

∥wt+1 − w∗∥ ≤

√√√√C

d∑

j=1

|
(1 − ησ2

j )(t+1)

σj

|2 |b′j|2

and prove the first statement. For the second statement we have

∥(b− Awt+1) − (b− Aw∗)∥ = ∥A(wt+1 − w∗)∥ =
∥∥∥ηQΣ2Q−1Q(Λ̃t − Λ̃∗)b

′
∥∥∥

=
∥∥∥ηQΣ2(Λ̃t − Λ̃∗)b

′
∥∥∥ ≤ C

∥∥∥ηΣ2(Λ̃t − Λ̃∗)b
′
∥∥∥

=

√√√√C
d∑

j=1

|(1 − ησ2
j )(t+1)|2 |b′j|2

Again the inequality becomes an equality with C = 1 for the GD update.

D.2 Proof for Proposition 7.3.2

Proof. First note that complex eigenvalues and eigenvectors come in conjugate

pairs, i.e., q̄i is also an eigenvector of A with eigenvalue σ̄2
i with the same

magnitude and also note that σ̄2
i = σ̄i

2. By writing the complex form it is easy

to show that (qiσi + q̄iσ̄i)/2 = (Re(qi)Re(σi) − Im(qi)Im(σi)).

With TD updates and for the reward vector riTD we have b = Φ⊤DriTD =

(Φ⊤Φ)(Φ⊤Φ)†(Re(qi)Re(σi)− Im(qi)Im(σi)) = (qiσi + q̄iσ̄i)/2. This is because

(Φ⊤Φ)(Φ⊤Φ)† is the projection operator on the column space of Φ and has

no effect if the operand is already in this subspace, which we have assumed

to be the case. In the case of GD we have b = Φ⊤D(I − Pπ,γ)−1riGD =

(Φ⊤Φ)(Φ⊤Φ)†(Re(qi)Re(σi)−Im(qi)Im(σi)) = (qiσi+q̄iσ̄i)/2. The requirement

regarding the column space of Φ holds by construction because in this case qi

are the also the right singular vectors of Φ and also we have assumed σi > 0.
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Construct the d-dimensional vector si such that if qi above is real-valued

then the i-th element of si is set to σi and if qi above is complex-valued then

the elements of si corresponding to qi and q̄i are set to σi/2 and σ̄i/2. All

other elements of this vector are zero. Then b can be written as Qsi, and

b′ = Σ†Q−1b = Σ†si has only an element of 1 at index i if qi is real-valued and

only has elements of 1/2 at indices corresponding to qi and q̄i if qi is complex-

valued. Putting this b′ in Theorem 7.3.1 and noting that (1 − ησ2
i )(t+1) and

(1 − ησ̄2
i )(t+1) have the same magnitude proves the result.
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