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Abstract.

The nature of interaction in multivariable control systems is examined The
concept of matrix dominance is introduced as a weeker condtion than diagonal
dominance for the application of the multivariable Nyquast stability theorems. The
Nyquist exact foci desagn technique. which uses the exact transfer function
betwesn the ith input-output pair when the i'th loop is open and sl other
loops are closed, is develo‘ped and ‘applied to the design of constant
compensator/controllers for three chemical plant modeis.

Transmittances in a closed loop muiltivariable control system are shown to
be either direct, paraliel, interaction or disturbance transmittances It is further
shown, that interaction transmittances in an  m-input, m-output multivariable
system can be expressed as a sum of 1st 2nd. up to m-1th order terms A
critical review of published interaction Mmeasures shows, that the relative gain
array and similar indicators do not measure Closed loop interaction. The direct
Nyquist array, which is an integral part of a multivariable control system design
technique, is shown to give information about both open and closed loop
interactions.

The property of matrix dominance, based on the mathematical theory of
M-matrices, is introduced together with simple numerical and graphical tests as
a weaker condition than diagonal dominance for spplication of the multivariabie
Nyquist stability theorems. Row and column dominahce are shown to be dual
withr respect to a diagonal similarity transformation, and an algomhm is
présented for transfering dominance between rows or columns This" algornthm
can be used to calculate minimal Gershgorin radii.

\The exact transfer function hys) between the i'th input and the i'th .output
of a multivarisble system when the ith loop is open and all other bops are
closed is derived The Nyquist exact loci design technique, which: uses polar
plots of kilshhyis), is developed as a8 psrallel to familiar single loop design
techniques. it is shown, that stability can be analysed based on the Nyquist
exact loci provided the return difference matrix is matrix dbmmant he Nyquist:
exact loci give direct information about actual bandwidth, rise tw;:e overshoot



and settiing time.

The Nyquist exact loci (NEL) dpsign technique was used to design
constant compensator/controliers for a' aouble dffect evaporastor, an open loop
unstable chemical reactor, and a distillation column with significant time delgys
The compensator/controliers designed using the NEL procedure are equivalent to

those designed using other techniques.
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1. Introduction snd objectives.

1.1 Introduction.

The last fifteen years have brought extensions of the classicar single va-
riable frequency domain vcontrol system design techniques of Nyquist and Bode
to the design of muitivariable control sy?aems. These developments have been
spawned by practical difficulties in the use of modern control theory, which is
to a large extent based on state variable formulations, in the design of multiva-
riable process control systems, Foss (1973) Horqwitz and Shaked’ (1975), and
Lee and Weekman (1976).

The development of frequency domain methods in multivariable control
system design has been conveniently summarized in a publication edited by
MacFarlane (1979). Two well known multivariable design procedures, the inverse
Nyquist array (INA} method due to Rosenbrock (1969 and the characteristic
locus (CL) method due to MacFarlane and Belletrutti (1973) have been applied to
industrial problems, but their use has been somewhat restricted because the
requirement of diagonal dominance in the former s too strict for many
industrial systems, and the characteristic values or eigenvalues of the latter have
little physical meaning to ‘the industrial designer. Furthermore the non-diagonal
controlier/compensator matrices these techniques often produce may reduce the
integrity of the control system, especially toward actuator failures. Thus there is
a need for a multivariable control system design method, which would be an
exact parallel to single variable frequency domain design, and in a meaningful
way use familiar terms like gain margin, phase margin and crossover frequency
in a multivariable contexﬁ Also ‘the method shouid allow the design. of multiloop
control systems for most chemical processes, thus giving high integrity toward
bath actuator and transducer failures. In the Department of Chemical Engineering
at the University of Alberta research in multivariable frequency domain design
techniques was initiated by Dr. D.G. Fisher after he had worked with Dr. HH
Rosenbrock and Dr. AGJ. MacFarlane during a sabbatical leave. Kuon (1975)
conducted a survey of multivariable frequency domain design methods and

formally developed the direct Nyquist array technique as a straightforward

&
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design method for multivariable. control systems ht to the practitioner/ appesrs
as a direct extension of familiar single variable techﬂ@ques.

In paralilel with the development of multivariable frequency domajn design
techniques a large research effort has gone into the analysis and measurement
of interactions in multivariable systems, Rijnsdorp (1965), Bristol (1966, 1968,
1877. 1978, 1879) and others. The main goal of thi; résearch has been the
development of methods for selecting the best pair‘ing of manipulated and
controlied variables in.the design of a multiloop control system. However, these
methods provide Wtie fundamental insight into the nature of interactioMs and the
way they are transmitted thr'ough a multivariable control system. Also, even
though some of the variable pairing methods have been applied successfully,
they do give incorrect answers for certain systems. Therefore the need exis.ts

B

for "a better practical understanding of. interactions and “methods for reliably

assessing interaction during control system design.

1.2 Objectives of this research.

Based on the above considerations the general area of interest in thjs
investigation is the design of linear, multivariable, time~invariant, control systems
in the frequency domain. The main transfer function elements of the class of
systems considered are shown in figure 1.1. It is assumed the feedback
transfer function matrix (TFM) His) = I, the identity matrix, since this represents
no loss ir ;«iope. .

For the ciass of systems defined by figure 1.1 the specific goals of
this research ars A
i. to invuti'?ﬁ,te the .ature of closed loop signal transmission paths

-with the air of clarifying closed loop transmittances and interac—

tions. '

ii. " to investigate the use of the direct Nyquist array (DNA) of Gpls)
as a tool for pafﬁnq manipulated and controlied variables, and the

DNA of Qis) as an indicator during the design phase” of closed



Figure

1.1

Blockdiagram of main transfer function elements in a multivariable
control system. 'Gpls) is the plant TFM, G (s) is the load TFM, Kql(s)
is 8 compensator TFM, and Kafs) is a diagonal controlier TFM. Qfs)
= Gpls)aK,(s) is the compensated plant. TF .

/
[‘I



loop interactions.

iii. to review published measures of interactions, especially with
respect to their application as design tools.

v, to formally introduce the use of M-matrices, as a TFM property
called matrix dominance, in conditions for multivariable control
system stability analysis using multivariable Nyquist array techniques.

v. to develop graphical displays to test for matrix dominance and to
aid in compensator design for non-matrix dominant systems.

vi. to develop a multivariable control system design technique. which is
a direct extension of the classical single variable techniques of
Nyquist and Bode, and includes meaningful use of gain margin,
phase margin, crossover “frequency etc /n the multivariable context.
This design technique will use the transfer function hi(s), which is
the exact multivariéble equivalent of the single variable transfer
function ). see figure 1.2 hys) is the transfer function between
the i'th input and ‘the i'th output when loop i is open and all other
loops are closed

vii. to apply the NEL design procedure to the design of contol
systems for several linear plant models, and evaluate the resuitant
controllers,. and compare the results with those of other‘- design
techniques. ’

Although it is not included és part of this thesis, this work has also involved

the design specification for an interactive computer aided control system design

package, Jensen (1880). Part of this program system has been implemented, and

. is designed to assist in the use of the proposed design technique and other

multivariable frequency domaiﬁ design techniques, such as the inverse Nyquist

array method, the characteristic locus method, and the direct Nyquist array
method The programs have been written in a user oriented form, and the

internal structure of the package is transparent to the user.
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function ' g(s), and one pair .of a MIMO system as shown by
transfer function hys). .-



1.3 Structure of thesis.

This thesis is divided into six chapters. Chapter two contains an snalysis
of interactions inh closéd loop linear muitivariable control systems. The relaxation
of the diagonal dominance requirement of the multivariable Nyquist array
techniques is discussed in chapter three. Chapter four contains the development
of the Nyquist exact locus (NEL) design procedure. In chapter five the proposed
design procedure is evaluated by application to three different systems.

The treatment of interaction, dominance and the NEL method in chapters
two, three and four are written, so each chapter can be read independently.
This means there is some overlap 6r redundancy between the three chapters.
Cohclusions specific to each topic are stated at the end of each chapter, with
the overall contributions and conclusions given in chapter six .

The application of the NEL method in chapter five is written to
emphasize the practical . aspects of the design procedure in handling

non-dominant, open—ioop -unstable systems, and systems with pure time delays.



N 2. interaction Analysis

2.1 Introduction inq scope.

In recent years a great deal of resesrch has gone into the analysis and
measurement of interactions in multivariable systems. Rijnsdorp (1965), Bristo!
(1966, 1968, 1977, 1978, 1979), Davison (18969, 1970), Suchanti and Fournier
(1973), Witcher and McAvoy (1977 Tung and Edger (1977, 1978) Kominek and
Smith (1979), Gagnepain and Séborg (1979), and Jsaksoo (1979). The main
objective of _this research was to develop methods for choosing the best
pairing of manipulated and controlled variables as tha first step in the _design of
a muitiloop control system. However, the naturé of interactions has not been
clearly defined nor satisfactorily incorporated into an overall control - system
design scheme. Aiso the distinction between interactions and the various‘
input/output transﬁwission paths in a muitivariable system has not been clearly
made. &

in this chapter the term interaction is defined and the nature of interac-
tion is examined with respect to its measuremant, implichtions for variable
pairing. and its use in a multivariable control system design procedure. A
classification of transmittances in closed loop muitivariable control systems into
direct, parallel, interaction and. disfwbance transmittances is in;roduced interaction
fransmittances are further shown to be a combjnation of 1st. 2nd and higher
order terms, and the implications of low intaractions for disturbance attenuation
are discussed. A link between mteractnon transmittances and the return difference
of Bode is established.

The direct Nyquist array [DNA) ,dis'play of the open loop trinsfer function
- matrix is shown to give a measure of the amount of interaction to be
expected in the ciosed loop syste;'n. and hence to be a useful tool for pairing
controlled and manipulated variables.

Finally published tools for measurmg mteractlon are critically reviewed, and
it is shown that several of ‘them do not measure trus interaction. Rijnsdorp's
interaction quotient .is extended to be applicable to systems with m-inputs and
Mm-outputs, and the relation between Bristols relative gain array and the

¥
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muttivariable Nyqu«st srray design techniques is discussed, and demonstrated by
examples.

2.2 The nature of irmerwetion.

In a multivariabie system one output is in general influenced by more
than one input ‘or conversely one reference input {(setpoint)  will }n general
influence more than one output This is normally the situation both in the open
loop and in the closed loop system. The term interaction can then -logica!ly be
defined as follows by an extension of MacFariane's (1972) definition:

Definition: Interactions in a closed loop multivariable system are

determined by the transmmances influencing the way in whu:h a

reference mput r;(s) affects the set of outputs {yJ(sH*l} or

) al_lt\ernatlvely the transmittances influencing the way in  which an

output yi(s) is affected by the set of reference inputs {r (s)j#i}.
Although interaction arlses from the structure of the open loqp system, it is
evident, that the nature of interaction is best analysed by considefing the closed
loop transfer function matrix of a multivariable feedback control system, such
bas is shown in fibure M1.1. As noted below much of the existing literature on
interactions consider the multivariable system with the i'th loop open This doee
not appaar to have much phys:cal justification in interaction analysis. The above
definition means. that any transmittance between a reference input ry(s) and the
corresponding output yi(s) is not an interaction\transmittance. ' '

The ciosed ioop relationship between the output vector y(s) the
reference input .vector r(s) and the disturbance vector § (s) for the system in
figure 1.1 is |
1+GoK 1 KaH™! GpKyKar + (4G K oK HIm! Gt
+QKyH™ QK r, + 1+QKaHIW! G §

Fl0Kyr + F1G, 6 = A+ ARG @.1)
In thé above equation and those following the Laplace argument, s, is omitted

g

-y

for convenience. From equati

2.1 the elements ru(s)' of the closed loop

transfercfunction matrix R(s) are gi by

®
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where c"(s) i8 the (Li'th cofsctor of the return difference matrix, qh(s) is the
(Ljyth element of Qis); and ki(s) is the jth diagonal element of Kafs) A similar
expression can‘be obtained for the elements of the matrix Ryt(s).

~The ith row of the closed loop transfer function matrix Ris) in equation
21 can be viewed as a single loop system with reference input r."(s), other
measurable inputs rj(sh.j=1...m.j#i, disturbances ﬁ(s),k=1....,p and output ys).
Furthermore ‘it ii possible to express the diagonal element sl ofsRis) as a
sum of two terms: one involving only kjsiq;isi/det Fis), and one involving

products of cofactors of the i'th column of Fis) and elements of the ith

column of Qis. These two terms cen be viewed as two signal transmissien -

paths from ry(s) to Yis). one being influenced only by the diagohal element
kjisiqi(s) of Q(é)Kg(s), and one being influenced by two or more 'o'ffdiago‘nal
elements of QisiKy(s). The transm;ttances‘ along the two paths are therefore
isbelled respectively the direct transmittance .énd the parallel transmittance. Thus
the following result is obtained: .
Remark 1: Transrhittancés in a closed loop muitivariable system caﬁ 3
be classified as direct, parallel, interaction and disturbance transmit-
tance. as shown schematically in figure 2.1 and defined mathemati-
cally below. ‘ L
The i'th output -can be oxpresseg as a sum of four different térms _'due to
respectively direct, ;Qmugb mteraction and disturbance transmittances:

kiQy . % Cn~ S "‘lqu.

where gki' l( the k.jyth element of G,(s. Equation 2.3 shows, that paraliel,
interaction and\ disturbance transmittances are all dependent on the propertiss of

‘]gj | 23)
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F_igure 2.1 Blockdiagram representation to show classification of transmittances
between r:s) and y;i{s) in a multivariable system (cf. equation 2.3).
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Jbe return difference matrix F(s) through the cofactors cij(s) of this matrix. The
determinant of F(s) det F(s) is common to all terms and can thus be factored
out Table 2.1 shows the elements of R(s) for a 2x2 and a 3x3 system with
His) = L All elements are given with the determinant of the return difference
matrix as commo% ae}\ominator, and the presence of direct, paraliel and interac-
tion transmittance terms are evident From equation 2.1 it can be seen, that as
the single Iéop gains ki(s), 1I=1,...m of Kyls) appr'oach infinity.  -1s) approaches
His)™*, and Ruls) approachgs 0. This Ieads to the following well known result
Remark 2: Interaction transmittances and disturbance transmittances
approach zero as all controller gains approach infinity.

- The significance and role of these various transmittance terms is best

i3

ébpreciated when the common design objectives of a multivariable comroiﬁ

system are expressed in terms of them: » 9
Design objectives: The compensator Ky(s) and the feedback con-
trollers (k;(s):i=1,...,m} are normally designed to meet the following
objectives: < ‘

i The disturbance transmittances are minimized. (The disturbance trans-
miﬁances will approach zero as the feedback controller gains
approach infinity). .

ii. t The interaction transmittances are minimized. (The inter- tion trans-—
mittances wibll also approach zero as the feedback controlier gains r
approach infinity): | j

iit. ldeally the paralle! transmittances would be designed - to cor:rjplement
the direct transmittances. However, they cannot be designed
independently of each ot;}er_ and of the interaction transmittances.

V. The direct transmittances are designed to achieve fast servo
control. |

Examination .of table 2.1 reveals, that the numerators of the interaction
transmittances rij(s), i#j, for the 3x3 system cbnsist of two terms, which are -
respectively 1x1 and 2x2 minors<lof the open loop transfer function matrix

- QisiK (s).’The ‘[x‘l minor is associated with interaction transmitted directly, from

one loop to another loop. This is refered to as a first order interaction



12

Table 21 The elements of the closed loop transfer function matrix Ri(s) for a
2x2 and a 3x3 system with open loop transfer function matrix
Q(s)Ki(s),

2 x 2 system:

= kyaq + det QK,l/det F

A

14

faa = kaQ4q, /det F
.ra’1 = kgqaq /det F
Faa = K92z * det QK,)/det F

3 x 3 system:

T = Ban ) KikalGu G2 = 920Q13) * KiK3lGgy A3y~ AQpa) *
2

"ia = K&alug * k3kylaea Qg3 = Qy,q45)det F
Fia = k3Qqg * KakylGz3053 — Qe Qaglidet F
Tas = kyqa, + kykalGanGany ~ Qa4 Gaall/det F )

r =(kq'+kk(qq =~ QqaQa¢) *+ Ka(Q22Q ~ QaaGaa) *
2 et &a)/de?l'-‘ ATn 1253 kakalQa393q 32’

M3 © (k;qa + kg kalQ4y Qa3 - Qa9 Gy l)/det F
Fas = kyQgy + kekgldy,Gaa = Gy, Gy, ldet F
Taa = Kadag * keka(degQag - Qa1 Qe I/det F
r‘?‘ B (kﬁq&( Vo (q“q’f T G439a) * KgkalQy3aa, - q;.aqn) *

o)/det

I'4
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transmittance. The 2x2 minor is associated with the transmittance of interaction
from one loop to another via a third This is refered to as a second order
interaction transmittance. For a m'th order multivariable system the interaction
transmuttances will contain minors of the open loop transfer function matrlx of
order up to m-1. This leads to the following

Remark 3: Interaction transmittances in a mxm closed ioop multiva-

riable system can be expressed as a sum of minors of ist -2nd

and Im-1)th order. The ith order interaction transmittances are

associated with ixi minors of the open loop transfer function

matrix. |
The general term ‘associated with' is used deliberately above, since it is not
possible to associate a physical transmission path with just the numerators of
the eiements of R(s) as given in equation 2.2 or table~.21 The physical
transmission paths are revealed by dwudmg the numerators by det F(s) using
rlong division, whnch shows there exist an infinite number of paths. The primary
physical transmission paths can also be established by using combinatorics on a
signal flow graph Table 2.2 gives the transmittances -along the primary
transmission paths for'a 2x2 and a' 3x3 stystem. The term ‘primary’ is meant
to indicate, that no section of the path is traversed more than once The
transmittances given in table 2.1 also show terms, whnch could be classufned 1st
and 2nd order interactions. Compared to the classification introduced above this
would give an infinite number of interaction terms, which would make analysis
of interaction more complicated |

The elements of Ri(s) can be calculated from the the minors of the open

loop transfer function matrix Q(s)Kz(s) using the following general expression:

i get F =1 lg=1 | =l +1
m m il ‘
..... +2 i o Qe e d;; detQ| . (2.4)
ly=1 G T M N
~N .

where |,, I are always .different from i and | ln equation 2.4 Q | denotes the

1x1 minor of Q(s)K (s} formed by deleting all rows except row i and all
!

I
H

——
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Table 2.2 The transmittances along the primary physical transmission paths in a
2x2 and a 3x3 closed loop system with open loop transfer
function matrix QIs)Kq (s).

2 x 2 system:

! -— -
T = KqQyy kekaQ29 dqg

' -
Fia = KaGQyg,
o= k
f2e4 = X4Qay
Faa = K293z = K4k G3¢q42
3 x 3 system:

Mg = k1q1r( ~ kekaQa,q¢y ~ kekaQgzeQq, +
kekaka(d,2924954 * 4239229 ‘

1
-
n

12 = Kalez ~ Kak3Qa,Q4,

13 T K3Qyg ~ kakyGga9as

T = 1924 — KekaGaeQag

faa = k - kakyQy2 Q29 = K3k GaaG2s *

a3 aKyQ43 29 2K39a3923
f’( Q42393294 * qc:ﬂu%ﬂ

k;qu = kekaQa4943

a1 = KeQzy ~ Kekz Qa4 Gy,
32 = K393, ~ KykyQaq %42, . /

aa = k3Qap = kyk(QqaQGgq — kakaGasdsa +
22 3% 19439 a 32
ky "z:a (4292393¢ * dis q;a, A
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columns except column |, 653 is the Kronecker delta, and é,:‘ =1 for i=j,
Q;\" =0 for i#j

Much of the interaction analysis literature is concerned with the transmit-
tances in a multivariable system in which the i'th loop is open and all other
loops are closed In this situation the closed loop relationship between the
. reference input vector r(s), the disturbance vector g(s) and the output vector

yis) is

s

Vo= (+QKgHSIT K + ik HSITY G 8

= Rr o+ RE " (2.5)
where S is a diagonal matrix with the i'th diagonal element zero and all other -
diagonal elemeﬁts unity.- If ki(s) = 1 in equation 2.5, then the element r;(s) of
R's) is the transfer function for which the i'th loop controller kils) should be
designed to take into account the multivariable nature of the system A design
procedure, which use§ these transfer functions, is developed in chapter four
and applied to several systems in cha‘pter five. An expression similar  to
equation 2.3 for the i'th output when all loops except the i'th are ciosed can

be stated as foliows:

-

= , .
y, = Gk * Liksr; + j}=:1 i IE L §j (2.6)
j#i ‘

where Lis) is the parallel transmittance between uis) and yis) and uyls) =
kisir;i(s), when the ith loop is open The parailel transmittance Liis) can be

calculated by the following expression, which is derived in appendix A:

m m '
Nt j#i '

where ¢'J (s) is the rati? of bthe (i,j)’fh cofacfor to the (i,i)’tH cofactor of the
return difference matrix Fi(s). Bdsenbrock (1972) gives an expression for hpls) =
Gmmis) + Lpisl, which is the transfer function with the m'th loop open and all
other loops closed From this an expression »for Lmis) can easily be derived.
!'jowevev", equation ‘2.7 is si.mpler and._more flexible, since any one loop can be

open, wherba_s Rosenbrock's result requires the m'th loop to be open._-
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As discussed later the transmittances h‘(s), i=1,.m in th'eglimit as the

gains in all closed loops approach infinity plays an important part in several:

published measures of interaction However, from the foregoihg treatment it is
evident -these limiting transmittances do not represent interaction transmittances,
but, as defined in figure 2.1,v only the' limiting values of the sum of direct and
paralle! transmittance with one Ioop open and the rest ciosed. In the limit as

the gain of all closed loops approach mfnnuty the ratio of cofactors ¢U

approach a corresponding ratio of cofactors of the compensated plant transfer

function matrix Q(s). This means the p_arallel transmittance L(s) does not in
general approach zero under high gaid ;eedba(:k in all closed loops, ang hence
~should not be used as a measure of true interaction .

Equations 2.3 and 26 also show, that parallél transmittance may prove

helpful by increasing the controlier bandwidth, whereas interaction ‘transmittances

must always be considered harmful. Since ryls) and rj(S) ,‘j#i, can have opposing

effects .on y,sl. and the disturbances are in general arbitrary and unknown it is
not possibie to establish a priori whether a particular interaction t?a‘nsmitfance .is
helpful or harmful. Ideally dne would like to take advantage of the parallel
transmittance and at the same time minimize interaction transmitténées in all
control loops. However these are confllctmg objectlves as evident by mspectmn
of table 22 In practice it will only be possuble to take advantage of the
parallel transmvttance in the design, or ‘tolmumn—uze interaction transmittances in
some loops at the expense of more interaction in other loops.: To'dl_s for
accomplishing these ob\jectives are developed in chapters three and four.

® Aithough the above treatment has neglected disturbance transmittances
they are closely related to interaction transmittances. In the servo problem the
objective is to make a change in one ihpuft variable affect only one output va-
riable, ie. minimize all intéraction " transmittances. In the reguiator pr'oblem the
objective is to minimize 'th”e influehce of a disturbance on all output variables,
ie. minimize all disturbance trahsminances. Equation 2.3 shows, that the cofactors

c;jis) of the return difference matrix influence the interaction and disturbance

transmittances in identical. ways. -Hence the objective of both the servo and the

regulator problém' can be met by minimizing the cofactors of the return
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)

difference matrix. This would also minimize the parallel transmittances, but a

practical procedure for affecting the minimization has not been developed yet

2.3 The direct Nyquist array (DNA)

in the multivariable Nyquist' type design techniques, such as the direct
Nyquist array (DNA) technique and the inverse Nyquist array (INA) technique,
classical single loop control system design approaches,have been extended to
the design of multivariable control systems. The use of the DNA display, which
is an integral part of an established multivariable desigr’ technique, to give
information about closed loop interaction and pairing of variables is discussed

below.

>2.3.1 The DNA disblay and interaction.

- The DNA display in the direct Nyquist array technique is used to design
a'éompensator Kqls). which'reduc'es the interaction. in the open loop system.
The implication is that reducing open loop interaction will ' reduce closed loop
interaction as wlell. In thé previous section it was shown, that interaction trans—
mittances can be classified as 1st, 2nd and higher order, and that ith order
interaction transmittances are associated with ixi minors of the open loop
transfer function matrix. For most practical systems, such as chemical prbcess
systerﬁs, the magnitude of the minors will normally decrease as the order
increases. Hence, | A

Remark 4: In m;)st practical systems the first order interaction
transmittances provide a reasonable approximation to the‘ total in-
e .teraction,‘ ie. the higher order ‘interaction transmittances are
generally negligible.
. Since only. first order interactions are found in 2x2 systems the above remark
is 'clearly vélid for all 2x2 systems. It is however possible to . construct
exampies of 3x3 systems which contradict ihe above statement, ie. have IQ',-;I >
lQ’j,ll for son"ve Gi.j.l, I1#i, 1#j It is nevertheless always possible to compare . direct

transmittance and first order interaction transmittances in thé_ closed loop system
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by comparing a diagonal element and the corresponding offdiagonal elements of
the open loop transfer function matrix Q(siKg (sl The direct Nyquist array
displays the elements of QlsiKy(s) as a function of freguency in the form of
an array of polar plots, hence ’

Remark 5: The DNA display of Qfs) gives an exact measure of

direct and interaction transmittances in the open /oop system, as

well as an indication of the direct transmittance anc ‘he first order

interaction transmittances in the c/osed /oop system.
Thus the DNA display of Qfs) gives an indication of the ci. .. . op interac-—
tions. The DNA plot of Q(s) further has the advantage of being an intagral part
of a\n established multivariable control System design technique. !I» s4ditional
numerical calculations are necessary to get the firsf order interaction infarmation,
and the change in the amount of interaction can be followed as the . r-ol
system design progresses. If desired higher order interactions can be calculated
from the elements of Q(s)K,js) and displayed as part of the DNA design
procedure.

The INA does not offer as sﬂn’gle a physical interpretation of the display
due to the complicated relationsmo/ between the elements of R(s) and of R‘1()
Furthermore Clement (1980) has demonstrated, that the DNA-design procedure is

preferable, when the plant transfer function matrix is experimentally determined.

2.3.2 The DNA dlsplay and variable palring

The first step . in the frequency domain desvgn of a multivariable control
system usually is the pairing of manipulated and controlled variables. The aim is
to find the pairing, which makes it possible to realize the control system
objectives, e.g. minimize interactions and maximize disturbance attenuation, with
the minimum amount of effort Since the DNA display gives a measure of
interaction the pairing objectives can be approached as follows:

Remark 6: Pair manipulated and controlled variables so the largest

elements of the DNA display of Gels) lie on the main diagonal.
This method will maxlmnze the dlrect transmittance and minimize the first order

_interaction transmuttances of the closed loop system. Also the above pairing

i

)
\\
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procedure is consistent with Bristol's (1977 relative dynamic gain array
approach, but requires less numerical calculation. This is the case, because G,(s)
being matrix dominant (cf. chapter 3) implies, that the relat:ve dynamic gain array

IS matrix dominant, Fiedler and Ptak (1966).

2.4 Critical review of published interaction measures.

Most published measures of interaction have shortcomings such as: i) they
are based on a system with one loop open rather than a fully closed loop
system, and ii) they measure paraliel transmittance rather than thé true closed

loop interaction.

2.4.1 The interaction quotient.

One of the first suggested measures of process interaction, was the in-
teraction quotient proposed by Rijnsdorp (1965). Rijnsdorp considered only 2x2
systems with emphasis on distillation column coritrol. For 2x2 systems the inter-
action quot’ient is defined to be

K = 9a4042,/94¢ G2 ' (2.8)
where gijls) is an element of the plant transfer functnon matrix G,.(s) The
quotient is evaluated for s = uwi and plotted as a polar plot The interaction
quotient has the properties, that it is dimensionless and .ir'{(lariant under scaling.
Rijnsdorp conbludes, that when thevstatic value A (0) is close to unity interac—
tion causes poor control. This is also the case when K(s) shows increasing
negative phase with frequency, and a magnitude close to one, eg a purb time
delay. However, when  AC(s) is' approximately constant and has a negative real
part good control can be achieve_d with a multiloop control system. Poor
integrity results if A (s) is approximately constant and- has a real part greater
than one. '

The relationship, as5uming'Kz¢s) = |,

*192994
Qa4 q ., 9 - 1+keq . Le-
O e i = ML L1 I 3 (2.9)
Q1 Qan kg, qy, kb= dza ko= Gar

'k"'-“ .+q" Qa2
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shows the ime_raction Quotient is the limiting value of the ratio of paraliel
transmittance to direct transmittance for a system with one loop open and one
loop closed Hence the interaction quotient is not a measure of interéqtion, but
_”a measure of the significance of parallel transmittance with one loop open.
Rijnsdorp’'s conclusions about the interaction quotient provide an answer to the
question ’Are' problems likely to be encountered in the design of a multiloop
control system for this pla:xit?‘. However,vthe interaction quotient does- not give
a reliable answer to the question ‘Is interaction (as defined in section 2.1} signi-
ficant”. This will be further demonstrated by examples in section 2.5,
The interaction quotient as an indicator of possibie difficulties in multiloop
design can be extended to mxm system by the following definition:
m m |
j§=:1 Wij % ‘FZ’ Vi 9ji
j#i } J#i

K = = (2.10)
~qii R ‘ '

RN

where 'ep‘j(s) is the ratio of the (ij)th cofactor to the (ii'th cofactor of the “
compensated plant transfer function matrix Q(s). The above extended definition
follows from?the expression for Lys) and fact. that as k in Kals) = kl
approaches .ir':ifihity the ratio of cofactors of the return difference matrix
approach the corresponding ratio of cofactors of ‘the compensated plant

transfer function matrix, ie with Kals) = kI
im &.. = W S =2
k*~ ¢|J WlJ ' i
The proof of the above relationship is given in appendix B. It is easily verified,
that the extended interaction quotient defined by equation 210 reduces to
Rijnsdorp's for a 2x2 system. The extended interaction quotient has the same
properties as Rijnsdorp's—measure, and in addition reordering of inputs  or
outputs corresponds to an *equivalent reordering of the set {ic, :i=1.m}. The
extended interaction quotient also is only an indicator of possible difficulties in

multiloop control sy#tem design, ind not a measure of closed loop interaction.
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it 'gi\'/es a measure for each row or column of the compensated plant transfer
function matrix, that is it gives a measure for each control Ioop

Kominek and Smith (1978) gives the first extensive dynamic interpretation
of the interaction quotient. They use polar plots of l{(s) S T iw wuth a
superimposed unit circle. They classify the plots as showmg favourable and
unfavourable interactions. From the preceding treatment it is evident that
Kominek and Smith are actually judging whether or not parallel transmittance will

be advantageous or disadvantsgeous in a muitiloop control system.

2.4.2 The relative gain array,

Bristol (1966,1967) suggested a steady state interaction measure, which is

a relative gain ratio: B
[(Ay, Aoyl Auh

f( AV‘/ AU)' AYK

]

0 for k*J] - *
{2.12)
0 for k;j

The numerator corresponds to the open loop gam between vy and y;, and the

i

denominator is the gain between u j and y; with all other outputs perfectly
controlied M = {"'l',i} is called the relative gain array (RGA). The RGA, as
Rijnsdorp’'s interaction quotuent i$ restricted to plarits or compensated plants
with an equal number of inputs  and outputs. By virtue of the defining equation
the elements of the relative gain  array are dimensionless. This imply they are
invariant* under scaling, and since selectior® of final proportional controller gaing
is a scaling operation, the relative gain array s independent of the final
mul’tiloop controller gains Kalsl The RGA further has the property, that any row
or column sums to one, and that reordering inputs Of outputs implies a similar
reordering of . columns or rows of M. Bristol has shown that only the open
loop gains are necessary to evaluate the RGA, since ]

M = Qo e [Qio']" = {g;0g;01} 2.13)
where the symbol e indicates the Hadamard or 'Schur product of the two
matrices, see Johnson ' (1974). Bristol ( 1968) recommends, that controiled and
manipulated variabies with /u,,,] positive and close to unity be paired. Alse if
any F‘j is much larger than one or less than zero pairing the corresponding
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variables will result in a loop, which is difficult to control Bristol (1877) has
also’ shown, that pairings, which gives negative relative gains on the diagonal
should be avoided, since this would result in a control loop with nonminimum
phase characteristics.

The steady state reiative gain array has been successfully applied by
several authors, eg Stainthorp (1972) Nisenfeld (1973), as a variable pairing
tool in designing muitiioop systems to give minimum closed loop interaction.

The steady state nature of the RGA neglects any high frequency
dynamics. which could be important in certain systems, such as the turbo
alternator considered by Ahgon and Nicholson (1976) and by Taiwo (1978) and
used in example 3 of section 2.5 Witcher and McAvoy (1877) and later Bristol
(1978) therefore suggested an iﬁtuitive dynamic extension by defining a relative
dynamic gain array (RDGA) as follows

Mis) = Qis)s [Qism11T = {q-q(s)*aj'(s)} o (2.14)
which posseses the séme properties as the steady .state equivalent, e.g.
dimensionless. Witcher -and McAvoy (1877) state, that interaction is small if the
magnitude of the diagonal"‘alements of Mis) are close to one and the magnitude
of all other elements are small. This is equivalent o saying Mis} should be a -
diagonally dominant matrix.

The relationship, for a 2x2 system,

- g q q
Hag=—% = lim s lim—2 (2.15)
Qus - A24%s k"; k4G Qs k2 ay, tla
e, 22 Tommm
Q4 1+kq Qqq

shows that the relative dynamic gain array elements are the limiting values of
the ratio of d'u;ect transmittance to the sum of direct and parallel transmittance
for a system with one loop open and the rest closed Therefore the relative
dynamic gains also only indwate ‘whether problems are likely to be exgerienced
in désign of a muiltifioop control system for a particular plant, butl“as the
examples in section 2.5 will demonstrate n? indication of closed loop qinte\faction
is given by the RDGA A relationship samﬁ;r\ to ‘equation 2.15 exist for higher

order systems. -



23

The extended interaction quotient and the diagonal elements of the

relstive dynamic gain array are related as follows

! M=
s B — r K =———— (2.16)
My 1- K, ° l Mii .
since '
! Qi <uQyi Cii
- — =g = e = M
K i > detQ | (2.17)
- [ + .. Q. ++ . .
1 ! q“ 15 1/11 qq Cu Qg ’=Z1 c‘uqu e

j¥i ’ j#i

© where cij(s) are the (ij)th minor or Qis). The information contained in the RDGA
is best seen by plotting it as an array of polar plots similar to the DNA |
display. From the above relationship with the extended interaction quotient, and
the interpretation of the interaction quotient, it is evident, that the RDGA display
should be interpreted as foliows: If the magnitude of the diagon;l elements are
ciose to unity, and the magnitude of all other elements are small it will be

possible to design a multiioop control system to ogive satisfactory control

Pairing of wvariables with magnitudes much different from unity should be -

avoided, and generally elements with negative real jpart should not be placed on

the diagonal, since the correspondmg control loop will show non—-minimum phase

propertnes : _ o » ‘ e
2.4.3 Tung and Edgar’s npproach : N

Tung and Edgar (1977 1 978) suggest basing the, variable pairing upon
open loop step responses wsth a compensstor K,(s) = Gtoy” ' The controlied
and rnampulatad vamblas are to ‘be panred so the dominant coefficients of theg,
time response anse from the dlagonal ‘elements of the transfer function mltnx’
GlsiGlor1. However, this procedure means, that Jm Systems, wrthoup hlgh
frequcncy interaction: the vafiables will be - paired so the first output s
- controlied by the first input and so on, ie. no reordhring of inputs or outputs;.

The resultant pairing can be considersbly different from a similar ar;alysis

performed on the uncorhpensatedpplant ‘fung and 'Edgar do not mention actually -
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implementing the precompensator on the physical system, hence the final con-
|

troller performance could be unsatisfactory for systems with large low

fréquency interactions. This makes Tung and Edgar's approach less desirable than

the RDGA.

2.4.4 The average dynarﬁic gain array.

Gagnepain  and Seborg (1979) also suggest using open loop step
responses to p.;ir variables. They extend the dynamic potential idea of Witcher
and McAvoy (1877) using integrals of open loop step responses to define an
average dynamic gain array. The average dynamic ~gain array {(ADGA} is defined
by

Mt = bt e[oe™" 3" J (2.18)
where each element of Dit) is an integral of @n open loop step respor;se from
time t, to time t, divided by the integratiori interval. ty is choosen as the
smallest time at which the matrix D{t) is not siﬁgular if integration was . from
time zero to time t,, and t, is choosen so the integration interval t = t, -
ty is equal to the largest time constant of the plant transfer function matrix .
Tre definition of the ADGA is .in complete analogy with the definition of the
RDGA, and it therefore ‘has many of the properties of the RDGA. In particular
it provides an answer to the saﬁwe Question as the relative gain array, ie. since
E'ﬁt)‘ is in effectaa matrix of average ;open ioop gains, the ADGA measures the
significépcé of paraliel transmittance in thé same way and for the same situation
as tﬁeRDGA The difference between the RDGA and the ADGA is, that. the
lattef- {»tries to condense the dynamic information into a single constant rﬁatrix.
Gagnep‘ain and Seborg show, that the ADGA, e;/en though it has a higher
success rate than the steady state RGA.  fails in the cnl*ucial situations, where

stability considerations ‘determine the best pairing of variables.

-2.4.5 The relative tran;iem response functions.
Jaaksoo (1979) presented an exact time domain equivalent of the relative
‘dynamic gain array. Based on a discrate staté space model of the form



25

xtk+1) = Ax(k) + Bulk)
{2.19)

ylk) = Cx(k)

relative transient response functions ¢)ij(k) are calculated. These functions are

defined by
k k
= Aty o[ A'] b;
t=1 , t=1
@iy ==-=mmmmmmmmmme- R e e ‘ (2.20)
! K -1 k- £-1
t=z GiMGAI" ™ M C‘EE MA° IMgb;

where c; is the ith row of C by is the jth column of B and M =

-1
'+Bj(ClBJ) C.

; in which Bj is B without the j'th column and C-' is C without the

i'th row. Due to the exact equivalence with Bristol's {1966} approach the relative
transient response functions gives a measure of the significance of parallel
transmiftances witf: one loop open~ and th‘e rest closed, and not an indication of
closed loop interaction. Jaaksoo (1979) suggests using only the arrays obtained
with k=1 and k —»eo in the analysis. This corresponds to using the RDGA with
only s ~»eo and s=0 respectively. Jaaksoo introduces this limitation because of
difficulties in the ana}ytical investigation of a set vof time functions. For example
the matrix powér _series in equation 2.20 will only converge if all eige\nvalues
of A and (M;J-A) ha\/g’absolute values less than one. and fhe denominators can
only be calculated from the numerators for -k=1, cf. relative dynamic gain array.
- Further drawbacks of the relative tn"ansient response functions are: it is not
clear how the function should be displayed or interpreted as functions of the

time parameter k; and they require a significant amon numerical calculations

, to evaluate. ' \S

2.4.6 Other measures of interaction.

None ?f *\the measures or indices discussed so far require any knowlegde
of the control sys;em structure, the type of final controllers or the associated
gains. The resuit is, that the indices so far reviewed- are rhore of warmings
about potential difficulties, than indicators of closed loop interaction Three

measures, which requirer the control system structure and the final controllers
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to be known. will now be reviewed.

Davison (1969) suggests a non—minimum phase index and interaction index
based on a state space model The non-minimum phase index is evaluated from
eigenvalues of two matrices for each input - output pair, so the variable
pairing must be "known, and the only type of controller considered is
proportional feedback. The inter/action index .is the - difference between the
closed loop non-minimum phase index and the open loop non-minimum phase
index. The interaction index is\ interpreted in terms of favourable and
unfavourable interactions. Since as has been shown in section 2.2 interaction
transmittances cannot be classified as gcod or bad for all possible load or
setpoint changes Davison's interpretation is wrong The interaction index can only
be seen as a measure of paraliel transmittance. The non—minimum phase index is
really a measure of the importance of the process deadtime relative to the
dominant time constant, and as such has little to do with interaqtion. Both the
non—minimun; phase index and. the interaction index are of limited vaiue during
control system design, partly due to the calcglational effort involved in
evaluating them. |

Davison and Man (1970) bsuggest an interaction index based on the
difference between a single closed loop response and the multioop closed loop
-response. The index is based on a state space model and is calculated by
solving ‘two matrix equations iterativély and calculating the maximum eigenvalues
of the resulting matrices. for each closed loop. If the value of the index is
smali for a given controi loop interaction is not severe in thét loop. Even
though the index actually measures interactiqn in the closed loop system the

amount of numerical calculation involved in evaluating. it seems prohibitive for

use in control system design. Also since a state space mode! is required and -

A o
the - complete control system must be known, it appears to- be simpler to.

~ conduct some closed loop simulations in order to evaluate the resultant control
system performance before  implementation. '
Suchanti and Fournidr (1973) .suggest the interaction coefficients defined

for each loop as

.
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where (IE)j is the error integral of the jth output for a unit step change in the
jth input with loop j closed and all other loops open. Similagly (TE-)j is the error
integral of. the jth output for a unit step change in all inputs with all loops
closed. All integrals are evaluated with proportional plus integral c'ontrollers tuned
using single loop techniques. There is littble doubt, that the index gives a
measure of closed loop interaction, and it is possible to evaluate thé coefficient
for‘any control system. However, calculation of the index requires m+1 closed
loop simulations for a mxm system, and that amount of cioséd loop simulation
should reveal any interaction problems without the need to calculate error
integrals. Furthermore, a trial and error approach must be adopted to use the

coefficients during control system design, ie. pairing of variables.

4

2.5 The DNA = an alternative to measures of interaction.

In this section the type of results obtained from the use of measures
of interaction, such as the interaction c.;‘uotient of Rijnsdorp, the RGA, the RDGA
and the ADGA, are compared' with the information obtained from the DNA
without calculating these measures.

Example 1:

A simple 2x2 transfer function matrix will show, that interaction transmit—
tances can be ‘severe even when parallel transmittance with one loop open is

small. Consider the plant

1 0.05 .
1s+1 10s+1 —
Gpls) = : , (2.22)

2s+1 1s+7]

and assume Kais) = His) ='| and G, (s} = 0. Then Rijnsdorp’s interaction quotient

and. the (2,2)?element of Bristol's RDGA are respectively }

' 1+2s+1s* . , 1+412s+20s*
K= 0.05———— Man = ! (2.23)

1+12s+20s* 0.95%11.9s+19.95s"
K (s} and the RDGA Mis) are piotted as fdnctionL of \frequency in figures 2.2

"



and 2.3 respectively. The magnitude of - AC(s) is small at all frequencies, and
the magnitude of the diagonal elements of Mis) are close to one at all
frequencies. Thus both measures indicate there should be no difficulty in
designing a multiloop control system, which is expected, since the TFM in
equation 2.22 is almost triangular.

The closed loop equation for the second output with two proportional

controllers is

R [ 1 1 ’ 0.0% 1
Y, = kg=—rg +k_ kI - )r, +k r (2.24)
odetFl Tst1® 2V i)™ 141284208% > ' og+q ! .

it is.evident, that direct transmittance and interaction transmitt,ance have very
similar dynamics and magnitud‘e. Further, the parallel transmittance is helpful and
significant especially at low frequencies. With the second Ioob open the
equation for the second output becomes

1 0.05(f+1) s+1

ya =k“ LY -k ra +k

2 . -(2.25)
s+1 (2s+1)(10s+ 1)s+ 1+ky)

25+ s+ 14ky)
which shows insignificant parallel transmittance under these conditions, but
comparable direct and. interaction transmittances. &
Rijnédorp's interaction quotient and the RDGA suggest that a multiloop
contfpl sysfem ca‘n be designed without difficulty, , but they fail té give a
reliible measure of the closed .loop interaction. For this particular plant the DNA -
of Gpls) gives the same information for multiioop design, since Gpls) have no
right half plane poles or zeros and is almost triangular. In addition the DNA of
G,(s),, shown -in figure 24, indicates there is significant closed loop interaction
i the second Jloop. but almost none in the first, which is expected, since the

TFM is almost lower triangular.

Example /f . A
Gégnepain and Seborg (1979) consider the foliowing 2x2 system
) 2 1.5
T0s+1  Ts+1 \
G,ls) = exp(-s) | . (2.26)

e
is+1  10s+1
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Figure 2.2 Polar plot of Rijnsdorp's interaction quotient for the: TFM gfven in
. equation 2.22. The arrow indicates increasing frequency. '
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Figure 2.3 Polar plots of thes elements of the relative dynamic gain array; for
the TFM in equation 222 Axis are only shown on diagonal

. - elements and the_ origin of off diagonal elements arg indicated y a
) plus sign. ® ' :
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Figure 2.4 The direct Nyquist array for the TFM given in equation 2.22.
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which has thé following RGA and ADGA respectively

[ 2.29 —1.29] [-6.42 1.42] _

(2.27)

-1.29 229 142 -042
The two measures recommend different pairings. Gagnepain and Seborg (1979)
show, the pairing recommended by the ADGA is structurally monotonic unstable
according to a theorem due to Niederiinski (1971). The fai‘lu'r'e of the ADGA is
due to the averaging integration process. The polar plot of the RDGA in figure
25 suggests, that at steady state the first input variable should be paired with
’ the first output variable, but at higher frequencies with the second. The DNA of
Gpls) leads to the same conclusion as seen from figure 2.6. The DNA piot not
only supplies the same information for pairing as the RDGA but also provides a
basis for designing the appropriate controller, é.g. using the 'design

procedure.

Example 3:
Ahson and Nicholson (1876) and later -Taiwo (1978) consider the design

of a compensator/controlier for a turbo-alternator model with two inputs and
two outputs. Simulations by Ahson and Nicholson show a multicop control

system gives very unsatisfactory control However, the steady state relative gain

-
1y J
3

1.0235 -0.0235 , :
(2.28)

array is

-0.0235 1.0235

which indicates: there should be no difficulties in designing a multicop =ontrol
'system. For this system the magnitude of the element. f w.e RDGA change
significantly with frequency, as seen from figure 2.7, ind: sting different variable
pairings at low frequency and at high frequency. The same information is also
evident from the DNA-piot in figure 2.8, which also shows, that the difficulties
are due to the small’ size of the (1,1)-element of the plant transfer function
matrix. The transfer function model used by Taiwo (1978) is slightly different
from the one used by Ahson and ,Nichoison (1976). The RDGA and DNA piots
for the model used by Taiwo are shown in figures 28 and 210 respectively.

" While the DNA displays of figures 2.8 and 2.'1Qm,qare very similar and readily



1-0"
m —
—2-0 3'0

—1-0"

+

Figure 2.5 The relative

dynamic gain

3.0

-1.04 ;

array for the TFM given in equation 2.26.

33



1.0+
r ¥
"1 -0
"2 -UJ
1-0—
+ —
-1.0
-2.04

Figure 2.6 The direct Nyquist array for thé TFM given in equation 2.26.

34



1 -0"

-1 -U-j

l 00‘

"i -0

Figure 2.7 The relstive dynamic gain arra
o Ahson and Nic)l'wolson (1976).

35

J

y for turboalternator using model of



2.0+

[ v r— v
‘“1'0- 4:0

-3.0~

4.0

* ‘ '3-0‘

e

Figure 2.8 The direct Nyquist array for turboaltarr;ator using model of Ahson
and Nicholson (1976). ‘ - ,
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reveal the difference between the two modeis is in the (2,1)-element, the
RDGA displays of figures 2.7 and 29 appear to come from two highty
different models. The DNA displays of figures 28 and 210 further show. a
full, dynamic compensator Kq(s) is probebly required for effective control The
_ complete design of such a compensator is not relevant here, but note that the
classification of transmittances in figure 2.1 provides a convenient means of
comparing some of the design alternatives: |

i. Introduction of a diagonal precompensator to multiply the first column

of Gplsl by a constant, Ny, which increases the direct, paraliel and ..

fy =® ya interaction transmittance by N,.

i. Introduction of a diagonal postcompensator to multiply the first row of
Gpls) by a constant, N,, which increases the direct, parallel ang ro-»y,
interaction transmittance by Ny ‘

iii. For a gtven increase in direct transmittance it is probably best to
combme the above two approaches, which nncreases the direct transmit-
tance by Ng#Ng, the paraliel transmlttance by N,*N‘ but the Te=® Ya
interaction by only Ny, and the r;-p y, mteractnon by only N,.

Flgure 211 shows the DNA resulting from usmg Ng = 2 and Ny = 5 The in-

teractnons could be further reduced through additional design steps. Also the

diagonal postcompensator can be implemented a3 part of the ‘controller and

hence causes no practical difficulties. Thus it is seen, that the DNA provides a

better basis for analysis and design of a compensator than the RL-:®

2.6 Conclusions.

- Transmittances in a closed loop multivariable .control system can

¥

advantageously by Classified as: direct, parallel, interaction and disturbance trans-

‘mittandosﬁ“lntenction transmittances in an. mxm system can further be expressed
8s 2 sum Of 1st. 2nd, amd up to. m-1'th order interaction terms.

Several pubhshed measures of interaction were revoewed The interaction
quotient. the RGA, the RDGA, the ADGA and the relative transtent response
fmqbqns\ have the followmg shortcomings: i) they are based on a system with

R
e o
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Figure 2.11 The DNA. for turboalternator using model of Ahson and.Nicholson
(1976), and diagonal pre-" and postcompensstors. ' )



' 41

one loop open rather than -a fully closed loop system, and ii) they measure the
parallel transmittance with all but one loop closed rather than the true interac-
tion transmittance. They are more of a -warning about p'oten'tial difficulties in
designing a muitiloop control system, than a direct quantitative measure of
system interaction. »

The DNA display gives an indication oi closed Idop interaction and is a
suitable tool for pairiﬁg variables as the first step in a multi'loop control system

design. It is recommended over the other reviewed Tmeasures.



3. Matrix dominance and transfer of dominance.

+)

3.1 Introduction.

Multivariable freauency domain design techniques, such as the inverse
Nyquist array (INA)° method (Rosenbrock (1969)) and the direct Nyquist array
(DNA) method (Kuon (1875)), base the final selection of controlier constants and
the stability analysis. on only the diagonal elements of respectively the inverse
open loop transfer function matrix (TFM) and the open loop TFM. In order to
assess stability based only on the diagonal eiements of a TFM, some condition
.must be put on this TFM. As first proposed the INA method requvred the open
and closed loop inverse TFM's to be diagonally dominant, and the DNA method
required the return " difference matrix to be diagonally dominant, in the sense
defined by Rosenbrock (1969} The application of the multivariable Nyqu}st array
(MNA) techniques to industrial problems has been somewhat limited because the
diagonal dominance requirement .is too strict for many industrial systems, where
integrity is a major concern. Recently several authors, eg. Mee (1976), have
explored ways of relaxing the condition for application of the multivariable
Nyquist array stability theorems. |

In this chapter past work on extending the applicability of the MNA
stability theorems is reviewed. The results of prevnous work on M- matrlces are
formalized by the introduction of the concept of matrix dominance, and a
necessary and sufficient test for a TFM to be . matrix dominant is given. A
graphiéal\ test for matrix dominance is developed, and the use of this test to
aid in the design of a compensator .for systems, which are not matrix

dominant, is discussed.
/

/

(/ The implications of matrix dominance for the MNA design techmques are
demonstrated Further, it is shown, that a row dominant system can be made.
" column  dominant by a diagonal s:mnlanty transformation. Thus duality .is finally
exploited in a selection procedure for final loop gains of matrix dominant

4

systems.

42
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3.2 Definition of and test for matrix dominance.

In the extension “of  the MNA  stability theorems the concept of
M-matrices plays a central role. The next subsection contains a very brief
definition of an M-matrix and some associated mathematical tools. This is
followed by sections reviewing previous work and developing tests for matrix
dominance.

)
3.2.1 Mathematical background and notation.

A real m x m matrix A = '{au} is an M-matrix if and only if the
offdiagonal elements are nonpositive and all the principal minors are positive.
The properties of M-matrices has geen extensively treated by Ostrowski
(1837,1956) and by Fiedler and Ptak (1962, 1966, 1967). who aiso give
élternative criteria for judging whether or not a real square matrix is an
M-matrix. (Fiedler and Ptak use the t&rm 'matrix of class K' to designate -an
‘M-matrix’). For a complex m x m matrix Q = fqﬁ} the companion matrix

{Begleitmatrix (Ostrowski (1956)) B = {b;j} is defined as

bi‘ = lqi" and bi = —Iqu i#) {3.1)
Further, {c.} is a real matrix defined as
c =0 and S = 'QEj i#j | (3.2)

and W = diag{w;} is a real m x m diagonal matrix with w; > 0.
.3.2.2 Previous work on extending MNA stabijlity theorems. o
. The first published work on extending the class of TFM to .which the
MNA stability theorems are applicable is due to Araki and Nwokah (1975)'. Araki
and Nwokah use the concept .of M-matrices in establishing bounds on the
transfer ‘function h-(?s) between the ith input and the i'thl output of a
multivariable system with the i'th loop open and’ all other loop closed. Their
main result is, that for a open ioop TFM Qfs) .

_ thy(s) - Quish < )\(s)w; ' o ‘ (3.3)
where )\ (s is the largest eigenvalue of CW=! with c and W as defined in
section 3.2.1. The authors also point out, that. any one bound can be made

. ¢]
arbitrarily small at the expense of making another bound arbitrarily large. Finally

-

>

l_"»:-_‘
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Araki and Nwokah state without proof, that closed loop stability of an open.
loop stable system Q(s) is guaranteed if the Nyquist loci of g;ls) do not
encircle the critical point and the companion matrix of"/the return difference
matrix F(s) = 1+Q(s) is an M-matrix. Araki and Nwokah do not clarify the
implications of their findings on the MNA design procedures, and give no simple
way of ascertaining whether "F(s)‘ has a companion matrix, which is an M- matrix.

Mee (1976) points out, that a practical dlsadvantage of the INA technique
is. that high frequency response is usually hot well known, giving rise to
difficulties in establishing dominance af high frequencies. This' practical dif ficulty
is also reported by Leininger (1978a) .and Clement (1980). Mee (1976) shows,
that it is possible to test stability by considering the Nyquist loci over a finite
frequency range w > W > -~w, instead of SO > > D> -oo Mee
also introduces the use of diagonal s'imilarity transformations D(s) = diagfd,(s)}
dis) ‘real and positive, to make a nonduagonally dominant system diagonally
dominant during the . design phase Complex matrices with the property of being
diagonally dominant after a diagonal sumularlty transformation are matrices, whose
compamon matrix is an M-matrix. The diagonal similarity transformation shares
dominance among .or transfers dominance to different 'rows or columns. The
concept .of dominance sharing is also discussed, by Leininger (1978,1979b), who
remarks, that applying dominance sharing becomes analytically more difficult as
the order of the transfer function matrix increases. Leininger (1979b) also
restates the‘ finite frequency range result of -Mee (19786), and Leininger (1978a)
develops a function minimization procedure, similar to pseudodiagonalization, to
design a constant compensator, to achieve diagonal domina’hce. The dominance
sharing results of Mee (1976) and Leininger (1978,1979b) - are essentxally
practical apphcatvons of the resuits previously stated by Araki and Nwokah
(1975).

Kantor and Andres (1979) use a method sdentlcal to Araki and Nwokah's
(1975) to calculate normalized Gershgorin bands. Kantor and Andres calculate the
normalized Gershgorin radius, @ (sl as the maximum_’eigenvalue of CW"_ or

™

“wc with w; = Iq;fsll, where

Ee
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m
e"(s) =~m;ax[;:_'1 lqslidyisi/dils) /i 4] (3.4)
ig=1
il
an®® calculate individual radii as @ (sliqysl. The dyis) . i = 1..m, are positive

real functions of s. These functions are the ‘elements of a diagonal similarity
transfdrmation matri:( Dis). Kantor and Andres avoid caiculating this transformation
by transforming the problem of finding minimal Gershgorin radii into an
eigenvaiue problem. The largest‘ sigenvaiue must be choosen, since it is not
possible to associate eigAenv\afues with rows or columns or the TFM Qis). The
main result ofl Kantor and Andres is, that Qfs) is similar to a diagonally
dominant .matrix, ie. the‘companion matrix of Qfs' is an M-matrix, if and only
if @%(s) < 1. This makes it possible to determine from a simple graph of
O" (s) versus f}equenCy whether 'or not the companion matrix of a given TFM
is an M-matrix. However, if the test is negative the graphical display of ©"(s)
gives no guidelines for desighing a suitable co\mpensator.

Nwokah (1980a) formally states the MNA stability- theorems for TM's,
whose companion‘ matrices are M-matrices. Nwokah (1980b) boints out, that the‘
results of Mee (1976) and Kantor and Andres (1979) are simple consequences
of the properties of M-matrices. Nwokah (1980b) also misleadingly labels -
complex matrices, whose companion matrix is an M—matr‘ix as Hadamard
matrices. The term ’'Hadamard matrix' is generally associated with matrices with

all elements ~1 or +1.

3.\2.3 Mitrii dominance.

Since the terms companion matrix and M—-matnx do not clearly show the
extensnon of the diagonal dominance idea of Rosenbrock(1969), and the term
companion matrix in control is often defined differently from Ostrowski's (1956)
definition, which is used here, it is propos’ed to call the extended class of
systems to which the MNA stability theonrems are applicable matrix dominant
systems. l\{latrix dominance is defined as follows |

. Definition: A TFM Qis) is said ® be matrix dominant if and only

if
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m m
P, =k§:1 - lgysi R_i = k}=:1 lqm(!;:)l (3.5)
k#i k#i
and Iq"(s)llq“(s)l > P'PJ or lq"(s)llq“(s)l > R"R-i

for each pair (ij.i#].
The iest contained in this definition is easily programmed on a digital computer
and réquires only a few more calculatiéns than a diagonal dominance test |t
also retains the sums of offaiagonal elements from diagonal dominance test The
above definition, which is adapted from a theorem of Fiedier and Ptak (1962),
implies that the companion matrix of Qfs) must be an M—matrfx for Qis) to be
matrix dominant It is easily seen, that the class of diagonally dominant systems
is contained in the class of matrix dominant systems, ie. any diagonally dominant
matrix Qs ‘satisfie‘s. inequalities 3.5. |

The property. of matrix dominance is ide'ntical‘v to Mee's (1976} concept
of similarity to a dlagonally ‘dominant system. The term matrix dominance is
suggested here, since it shows the relatnonsh:p to diagonal dominance. and
indeed a 2 x 2 system is matrix dominant if the single inequality

1944 (MG 108 > 1G24 (slllq (51 | (3.6)

mvolvmg all elements of the transfer function matrix is satisfied.

3.2.4 Graphical test for matrix dominance.

One .of the majdr advantages of the MNA design techniques is the use
of graphical ‘disp{ays to guide the designer and to test for diagonal dominance.
A graphical test for matrix doﬁwinance, which would also give guidance as to
the design of a compensator for a system, which was not matrix dominant,
would be very desirable. The inequalities of -the definition for matrix dominance
do not immedistely lend themselves to a graphical test However, a slight
rearrangemeﬁt of the inequalities 3.5 gives

- Ng: PiP;igdsiiqgisih < 1 or i}‘— RiR;/liqiisiiqy(sh < 1 . (37)
‘Hence, a system is matrix dominant if the real non—negative numbers N-U- are

less than one for all pairs {i.j), i#j. Therefore a set of plots

. . LY
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of N‘l as a function of frequency, onfd show whether or not a system s
‘matrix dominant For a 2 x 2 system only one graph is invo\{Ved, for 8 3 x 3
system 3 graphs, and for a general m x m system the set of plots contains
mim-1)/2 graphs. This is less than the number of plots in the corresponding
Nyquist array, but more than in a graphical test for diagonal .dominénce for m
>3 |
To illustrate the use of the graphical test for matrix dominance as an aid
in compensator design for non-matrix dominant systems a transfer function
-model of the pilot plant double effect evaporator in the Department of
Chemical Engineering at the University of Alberta is considered The transfer
function model calculated from the continuous ‘fifth order étate space model
givén b); Fisher‘ and Seborg (1976} is shown in "table 3.1. A set of three plots
to graphically test Fis) = I+Gis) for column matrix dominance is shown in figure
3.1, and the similar test for row matrix dominance is shown in figure 3.2 ,In
figure 3.1 Nfa, N'f3 and N::}.,3 are plotted as functions of frequency for
frequencies in the range from 0.0038 to 7.73 rad/min Ny, and N3y are zero
at all frequencies, and N:,, > 1 for frequencies lower than 0.08 rad/min,
hence the return difference matrix is not column matrix dominant at low‘;_‘
frequencies. Figure 3.2 shows, that the return difference matrix is also not row\%i\
matrix dominant at low frequenciés. Since only N:; is different from zero in
figure 3.1, ihis indicates, that the offdiagonal elements of columns 1 and 2
must vbe reduced to achieve matrix dominance of the return difference‘r/natrix at
low frequencies. Figure 32 indicates, that the offdiagonal elements of row 3
should be reduced to attain matfix dominance. The diréct Nyquist array (DNA)
display of the TFM Gis) is shown in figure 3.3 (Note: axis are only drawn on
diagonal elements, and the originfof offdisgonal elements are indicated by a '+).
From figure 3.3 it appears, that the open loop TFM  will become lower
triangular by the following column operation .
- column 2 = coiumn 2 + 0.73%column 1 {38 )
which \;vill tend to cancel the influence of element (1.2) and /at the same time
‘inc;'ease the direct transmittance (cf: chapter 2) in the seco Io;b, and -slightly

decrease the influence of slement (3.2). After the aboye compensatio‘n the

<
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3 ] 1.
T Ottt
10t 100 100

9 00“

figure 3.1 Graphical test of pilot plant evaporator return difference matrix Fis)
= 1+G(s) for column mstrix dominance. Frequency in the range from .
0.0038 to 7.73 rad/min is the ordinate, and the abscissa the

- dimensionless ywbqrs defined. by equation 3.7,

Vi
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Figure 3.2 Graphical test of pilot plant evaporator return difference. matrix for W
‘ rg;v matrix dominance. Frequency range 0.0038 < ¢w &£ 773
rad/min. . ‘
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- Figure 33 Direct Nyquist arra disphy of
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K

Table 3.1 Continuous transfer fuﬁction model Gis) of pilot plant evaporator. Gis)
= Nisl/dis). where Nis) is a polynomial matrix and dis) is the
characteristic polynomial.

dis) = 0.00025s" +0.036s" +0.82¢" +1.05"®

.0.0013¢* +0.032¢*

Negls) =
Nials) = -0.000275*-00325*-0.0415"
Nya (s) = 00 | ) ..
Nagls) = —o;oooon"—o.dmas‘ ~0.028s"
.. Maals) = -0.000025-0.00285-0.063s> -0.077s "

Nggls) = 0.0. | _
My sl = -o.odoo1‘s¥o.oo 1.5§’-o.032s°

*f Ngq (8} = 6.dooo'_zs«*o:ooéss"}o.oess‘ +0.0793",.;,

| i -
-0.000015-000145*-0.031s* ~0.038s"

Naals)
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return difference matrix. is row matrix dominant as shown in figure 34, but the

return difference matrix is -still not diagonally dominant

. ] - t
3.3 “Implications for MNA design techniques.

iy

h-3

EEY

in this section it is shown, how the property of matrix dominance

extends the appligability of the MNA stabili‘ty theorems. The fg_ﬁéwing theorem is

the basis for applying the MNA stability theorems to matrix. dominant systems:

»

Theorem 57 Let the square complex matrix Q be matrix dom‘i‘na:
Then ‘there exist a diagonal matrix D with positive disgonal
elements, such that D-YQD is diagonally dominant.

A proof of this theorem is given in appendix . C.
Since 1+D™'.QDI = ID'(+QDI = D! W+QUDI = K+QIl the return difference

determinants of F £ +Q and F = 1+D~YQD are the xame The _diagonal:.

elements of Q nd D-1 QD are also ndentucal and it is well known, that the

engenvalues are preserved by a doagonal

sumnlarlty trensformation. &igncn

i

follows from theorem 3.1 and existing results for diagonally dominant systems

Theorem 3.2: Let Qis) be an-fpen loop transfer function ' ‘matrix
for a system with m-mputs ard m-outputs Let the return differ—
ence matrix Fisl = 1+Qts) be matrix dominant for all s on the
'closed right half plane Nyquist contour D, and ter the diagonal
elervents of Qis) map p into -V} |, i=1,., Pwhtch respectively

encircle the: (-1 0} point. n; times clockwise. M the ciosed loop

‘system is .asymptotically stable if and only if ' .
J"m.. .

m : SR

_'51 = oepy AR (3.9
= i v

‘V‘

where p, is thc -number of open loOp system polas m the . closed-

ngmmn piane.

&, . 78

Thc proof foliows m\medm.ly from theorem 3.1 and pubhshed theorems for
dngondly dominant systoms , - DY '

v

O

A smhr stbdny thoorom in torms of matrix dominant as =

PR

£

and .

g3

H»Q(s)"' can bo m for N NA désign procedure However Qis) or \F(s)
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being matrix dominant soes ot imply Qi)"Y or 1+Qis)~t s matrix domm

To illustrate the application of theorem 3.2 consider the ioll: i '.2'x 2
transfer function ' %"
1 6 B \
Gis) = = {3.10)
s+1 12 4n
Fis) = 1+G(s) satisfies inequalities 35 for all s so F(s) is matrix dominant for all

s. This is also evidert from the graphioal test shown in figure -3.5, since Ny
<1 8t al frequencies. However, neither Gis) nor F(s) = I+G(s) are diagonally
dominant, as shown by the Nyquist array display in flgure 86 Nevertheless
theorem 32 allows us to count the number of encirclements of the - 10) R
point by q@ iI=1,2, when mapping the closed right half plane Nyquust contour. -
The number of encircleménts of the (—1,0) pomt is zero, and smce Glsl huls n09
poles or zeros in the closed right half plane, the closed loop system is
asymptotically stable actording to. theorem 3.2.

Figure 3.6 also illustrates the trade off between matrix dominance end
diagonal dominance. The final loop gains Wt be selected so the characteristic
loci encircle the (-1,0) point clockwise the appropriate number of times, eg
zero times for a system with no right half plane poles  or zeros. The
characteristic loci are known to lie _lnslde the G%ﬁhgorin circles, and the bigger
the Gershgorin circles the. larger the ™" uncertalnty about the location of the
characteristic loci. Because of this uncertalnty the gain k; of-the i'th loop must
be choosen conservatively, so —1/lq lles to the left of the band swept out by
the - Gershgorln circles of the ith dlagonal element (if the system has no right
half plane poles or zeros). For the system consndered here, thls means, a high
gain could be applled to Ioop 1, but' a very low gain would have to be
choosen for the second loop, ie. a conservative galn ~ would probably be
selected for the second loop Alternatively a trial and error procedure could be
adopteﬂ in vyhtch ~gains are initially selected based on Qilsl. and the stability
test, Le. the matrlx dominance test, repeated. For a diagonally dominant system

“the DNA-dlsplay ‘would have smalier Gershgorin cwcles and hence there would
be less ygpertamty in the locatlon of thé- chara loci, and therefore the

PR .
Y
B R R

b
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chure 35 Graphical test of- return dufference matrix of system in equation 3.10
: ~ for matrix dommance Frequency rangs 0.1 < w £ 100
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probability of ‘choosing, a conservative gain in any loop would be smaller. In
section 35 a procedure based on transfer of dominance is developeds‘t‘é' aid in

the selection of final loop gains for matrix dominant systems.

3.4 Duslity of row and column dorﬁlnanco.
The first theorem of the previous section showed how a matrix
dominant system can be made diagonally ‘dominant by a. diagonal similarity trans—
formation. In this section it is show;\, that the diagonal similarity transformation
© can be designed to make thé matrix dominant system either row diagonally
dominant or column diagonally dominant The. following theorem establishes this,
since row diagonal' ‘dominance and column diagonal dominance are both 'special
cases of the more general matrix dominance.
Theorem 3.3: Row and column diagonal dominance are dual in the
sense, that if a complex ‘-&arg matrix 'Q is column diagonally
-dominant, thenv'there exist é“%iagonal matrix D with pogitwe diago-
nal } elements, such that D-1QD is row diagonally dominant, and
_ vised verfa
The fi?roo‘f“ius given in appendix C. ©
' ’ ‘;I’he results of theorems 3.1 and 3.3 immediately lead to the following
corollary: _
Cora//af;; 3.7: Diagonal similarity transformations to make a matrix ; Y
dominant system either row or column diagonally dominant always *®

exist.
The sirhilaritx transformitiont' "which makes a matrix dominant system .row
d‘iagonally': ;iomin'ant,y will " in general be different from the similarity transforma-
tion, which ma;;qs 'th%-\fame niatrix dominant system column diagonally dominant
The duality of row #d column dominance. can be viewed as further
support. of the idea, that the dominance requirements of the MNA design
techniques are artificial requireménts posed on the system for purely
mathematical reaéons. In general dominance, particularly diagonal dominance, is not

8 necessary requirement for a satisfactory control “systemn design, 'although a



highly dominant system often means a system . with little int‘eractid&,
The use of diagonal similarity transformations as an -aide in controlier

design by transfering dominance is considered in the following section.

3.5 Transfer of dominance.

.The final proportional loop gains of a matrix dominént muitivariable
system could be selected on the basis of the direct Nyquist array display of
such a system with its associated wide Gershgorin bands. However, such a
procedure could as discussed in section '3.3 lead to the selection of
g@nservative gains or loose gontrol in oné or more loops. n order to
Svercome  this deficig@i;’»i'a‘; diagonal similarity transformation could"‘.be used to
make the matrix dor;in'ant system diagonally dominant during the design Thi‘s
approach was first brought forward by Mee (1976), who also.pointed out, that
the similarity transf'brmation need not be -implemented in the field, because it
does not change any transmittances, but only redistributes dqminance, taking’
from highly dominant rows. and/or columns and giving to non-dominant rows
and/or columns. Mee (1976) considered ‘only 2 x 2 systems, where the
redistribution or sharing of dominance was simple,~but gave no procedure for
calculating the necessary similarity transformation for a general m x m system
An algorithm for .calculating the required similarity transformation for a general
m x m system will be outiined below. ..

The similarity transformation of theorern 3.3 car‘t be found as the soluﬁon
to inequalities 8.22 and/or 923 of appendix C. :rhe s,olution. of thtese
inequalities can be cast into a__linear prograrhmiﬁg problem. Consider the m x m
~ transfer function matrix ‘Qis), which is assumed to be matrix dominant The
diagonal similarity t.ransformation to maxir%niée the row diagonal dominance is
found by maximizing the foflbwing .penalty function

J = dpyqls) T @11
subject to the constraints :

gis) > 0 i Lemel - - 1312

and
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m
lqjiishidyls) - J}:'_1 lggishid;isi= B, (sld,,,4(s) > O (3.13)
j#i o,
for i = 1,..m »d
dyts) & 1 | | @14

where  73;(s) are row weighting factors. .These weighting factors allow the

designer to make certain rows sirongly dominant at the expense of other rows,
_i.e. dominance is transfé(ed between rows. An equivalent algorithm for transfer
between columns is easily formulated,l in_ which case ;(s) are column
weighting factors. The optimization problem outlined above can be seen to have

the structure of a general limear programming problem

maximize J = gix) \ B | (3.15)
subject to
A x>0 ) _ j‘y (3.16)

which is easily solved using available standard procedures, such as the simplex

algorithm. The solution is done numerically at a set of discrete frequencies s =

The: algorithm allows certain rows or columns to be made strongly row
or column aiagonally dominant, thus decreasing the uncértainty about the stability
margin -for certain important input/output pairs. This. might be an important

consideration in ‘many practical process control applications. The above algorithm

: 2
also removes any analytical -difficulties in sharing dominance as the order of the

transfer function matrix increases, since the designer simply assigns weighting
factors according to the importance of each output (row) or input (columni.

1;he flexibility of the outliined algorithm as compared to the method of
Kantor and Andres 1879} for calculation of minimal Gershgorin band radii is

-I

demonstrsted by consudermg a constant 2 x 2 matrix. Consnder the matrix

3 6] | h L
[ ] . Z B (3.17)
1 4] '
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Then the eigenvalues of CW =1 with C and W as defined in section 321 are
—+1/¥Z, and the method of Kantor and Andres (1979) gives the following

diagonally dominant matrix

3 2.12
’ (3.18)
283 4

The linear programming scheme developed in this section gives different results
depending on the choice of the weighting factors. For 3, = By, = 1 the

transformed system becomes

3 250 ) : ’
’ (3.19)
240 4
or for By =2ad A, = ] the transformed system becomes
3 214
_ (3.20)
280 4 ‘

which is almost ‘identical to 3.18. The higher weighting /43, gives a smaller
Ger"-shgorin radius for the first row. Hence the example demonstrates, that with
the ﬂ'an!fer of dominance algorithm developed here the designeft¢rhas  the
freedom to make ‘the bands on certain important I0ops small at the expense of
larger bands in other loops, ie. dominance can be arbitrarily transfered from

one row or column to another by the choice of appropriate weighting factors,

a3; (s)

_ 3.6 Conclusions.

The past efforts in extending the class of transfer function Mmatrices to
which the MNA stabohty theorems are applicabie were rewewed and the
sommon property of this class of matrices was definad as matrix dominance.
A graphical test for matnx dominance, that aiso andes in compensator design
was devaloped and |ts applncat'on illustrated.

The implications of matnx dominance for the MNA design techmques

were dnscussad and row and column diagonal dominance shown to be dual with

-

-

p- %
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resRect to a diagonal similaity transformation.

A systematic algorithm for transfering dominance in tranfer function
matrices of any size were developed, and its flexibility illustrated by applying it
‘. to calculation of minimal Gershgorin radii. The transfer of dominance algorithm
developed as part of this ‘study givés the designer more freedom, than other

published procedures for calculating minimal Gershgorin radii.
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4. Nyquist exact loci (NEL) design technique.

4.1 Introduction. R

in  the p-ast ten yéars the classical frequency domain, smgle-—mput
single—output control system design techniques of Nyquist and Bode have been
extended to the design of muiti-input, multi-output control systems. Many
significant contributions to ‘the development of frequency domain control system
design techniques have been collected into a book edited by MacFarlane (" 379).
Kuon (1975) reviews the developments in multivariabie frequency domain design
techniques. The major differences between multnvarlable frequency "domain design

techniques, such as the multivariable quu st array method I\ ..characteristic
loci wthod and" classical single variable techniques aré bcussed in  the
4 , (4

following paragraphe:

The first major e).<ten_sion' of frequency domain design techniques to
multuvanable systems was the development of the inverse Nyquist array (INA)
dQSlgn procedure by Rosenbrock (1968). The inverse dpen loop and inverse
closaq loop TFM must be ddminant before system stability can be evaluated.
Domit\ance can (us.u_ally) be achieved. by performing row or column operations on
the set of Nyquist plots- corresponding to the m x m elements of the open
loop TFM. Once the desired dégree of dominance h;s been achieved; stab?lity
can be determined by counting the encirclements of the ‘c_jrigin and .the crit;cal
point by the Nyquist loci of the m diagonal elements of the open loop TFM
and the corresponding Gershgorin or Ostrowski circles. Because of the inverse
natre of the plots and the uncertainty introduced by the Gershgorin or
Ostrowski vbar;ds, " the frequency and/or time domain relationship between a

specific pair"of input - output variables is not as clear ‘as with the classical

SISO Nyqunst plots.

The second major extension of frequency domain control system design
techmques was the mtroductnon of Lthe charactenstac loci (CL) - design procedure
by MacFarlane and Belletrutﬂ N 19731’ “The Ct technique uses a set of plots of
the eagenvalues of the open loop TFM to assess stabmty and uses both the
eagenvalﬁes and ugénvectors af the open loop: TFM to design a multivariable
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compensator/controller. MacFarlane and Belletrutti avoid p;utting any . conditions,
such as dominance, on the open loop TFM by using theﬁeigensystem of this
matrix in the design procedure. Thé designer, usiné the CL technique, only has
to work with m dia(gr.ams for a rn—‘lnput, rn-output muttiv!ariable_ system.
However, these m-diagrams have no one to one relationship with the simple
input/output relationships & SIS0 systems, since eigenvalues cannot in .general
be associated with . specific input/output  pairs. Furthermore the famol‘ar SISO
control system design terms, such as gain margin, phase margin, barﬂwldth risk
time, overshoot and settling time change meaning or cannot be evaluated dlre?‘tly
~ from the characteristic loci diagrams.

Other significant extensions of classical frequency domain techniques to
the &esign of multivariable control systems include the sequential return
difference (SRD) design procedure proposed by Mayne (1972, 1973, 1974), and
the . direct Nyqunst array (DNA) design procedure propostd by Rosenbrock (1974)
and described in detail by Kuon (1975). The SRD technique, as the name
suggests, constructs the multivariable controller from a sequence of single loop
designs. The i'th stage of this sequence designs a controller for the i'th Ioop
takmg into consideration the aiready completed designs of loops 1 to i-1. The
drawback of the SRD procedure is, that the final desngn depends on which
sequence the loops are closed in, end no general method exnsts for choosing
the best sequence. The DNA technique is similar to the INA technique, but uses
the open loop TFM directly to design a multivariable compensatoncontroller and
requures the return difference matrix to be dominant before system stability can
be evaluated. If the return difference matrix is strongly diagonally -dominant
fammar SISO control system design specifications can be evaluated directly from
the diagonal elements of the direct Nyquist array However, in the general case’
the meamng of terms such as rise time, overshoot and settlmg time, _still
remain fuzzy, since the dnagonal elements of the DNA do_not’ represent the
complete transmittance between mput - output pairs with all other Ioops closed,
~ but only the. dtrec/t'g?part (cf. chapter 2) '

' In this chapter a practical and systematic multtvermble frequency dommnv
design procedure, called the Nyquist exact loci INEL) technique, is outlined. The

.
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NEL design procedure, which is applicable to a large class of industrial systems,
uses the' transfer function_s,i his) i = 1...m cf figure 1.2, which represents the
complete transmittance, direét and parallel. between the i'th input and the i'th
output with the lth loop open and all other loops closed. The transfer
functions hy(s) are direct mult:varlable parallels of the classical SISO transfer
function g(s). The transfer functions hys) are first introduced in the next section
and thew advantages of - working with them dlscussed This is followed by a
general step by step outiine of the ‘ﬂEL desig technique. The different steps
~of the NEL procedure are then discussed in ‘c‘ietail from a theoretical and a
practical viewpoint. Finally the simultaneous gain calculation algorithme, which are

a8 central part of NEL, are described.

4.2 The Nyquist exact loci of hyis).
The central feature of the NEL procedure is the use of the transfer
functions his) . i = 1,..m, tmsamultaneously calculate the constants of m single

Ioop controllers: and to determme closed loop stability. The transfer function —

/,

hyis) reprasents the complete direct and parallel, Ween the i'th

input and the ith output when the the ith-+00p is -open and all other loops are
closed It is thus s _the—exact /smgile—mput single~output system for which the i'th
controuer should be desugned to account for the multwenable nature of the
T /system The ith controller is the i'th diagonal element of K,(s) cf. figure 1.1,
and the transfer function hyis) is the multivariable analogue of the SISO transfer
function gis), cf. figure 1.2. It is therefore clear, that the transfer function' h(s)
has physical meaning, and hence terms familiar from classical single variable
design, such as gain margin, phase margin, bandwidth, rise time, overshoot - and
sattling txme can be evalusted directly and meanmgfully from Nyquist plots of
hyis). ’ ‘ o , - L .

— ¥ ‘
trmsfer functions hyis) are _nonlinear functuons of the eiements of the

ensated pisnt TFM Qis) and the elements of the diagonal- cqgtrolier matrix
K,.(s) The followmg general expressaon for h‘(s) ns&rived in, appendax A - :
gt o
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m om
his) = qus) + ‘E;_’ yj (sik;isiqisikis) = qyfs) + jg ®;i (siqys) (@.1)
J#i j#i ‘

Gyytef = e ‘ 4.2)
.1 | ) | ‘

and Fis) = IH+QisiKgls) = I+G(s»<1_(s)_§ats). The above expression for i = m gives
the - ssme trensfer function as an expression given by Rosenbrock (1972)
However, for” i = m the expression given by Rosenbrock is " the transfer
function with loopér 1...i=1 closed and loops i....m opeh. Such s rfunction has
been used by Mayne ( 1974) in his SRD dns:gn procedum. The advantage of the
above expression for hi(s) is, that nt facmutes slmultmdous desmn of the m‘
controllers in Kyfs) = diagfkiisi}. e .

Equation l'l reautts/ mollowmg expressnon for h afs) for 8 2 x 2
system with loop 1 cIMd cf. figure 1.1 .nd 1.2)

' {8)Qqq(8) . .
Nasl = Gaal + L Ll Qqals) - (4.3)
1+k,(s)q“ (s) . ' :

and similarly "h,(s) with loop 2 closed is glm by <
........ . i . v

R 't (s)q ® e Ty ‘

t‘,(s’ = q"(B) + “‘&-"3""- qM(S} T A ’ . ’ . * (44)
1+k (s)q”(s) o .
| . "’..p" .

\"h ‘, :

_Since the transfer function hy(s) is the oxagt transmittance for which ks should ,
be designed to tske into consndarit’;;n the muitiveriable nature of the phnt, ﬁwe
polar plot of h;(c) for s on the Nyquist D-contoor is céalled 2 Nyquast exact
locus and the design procodure based on those loa‘ is called the Nyquist mct

loci lNEL) technique. The NEL desagn procedure is outlmod in the next sectoon . ;

4.3 The Nyquist exact I0ci (NEL) design procedure.
 The hEL design procedurs for the design of a n-umvanable controler, qf.or

Ky

a general mumm plant m&lvu the foliowing steps, whxch are dcscussed n

*

- greater dctnl in the followmg a.buctvons: -

X



i Obtain+- 8™ transfer function model “descriptionf of the plant orw 3 L
sy,g.m _ . | b -
i CmCu |f the return’ dlffcrance matnx is matnx, *dommant with K, (s)
- = Halsh = L B
/1 yes then continue with the design Of Kafs) leaving K,ka)_ =1 or
' ' design. K (s) to reduce interaction,
| e/se design K, (s} and/or reduce magnitude of ‘weslements of
, Ka(®) 1o make Fis) matrix dominant
i. Choose a set ;af‘init;al gaing, kg, i = 1.~ L
iv. .Piot_the Nyquist exacj loco of h.{s) m ! Tt
- V. . Specify stabnhty _margins for gach loop bnsqd on the Nyqunst exaat' Y
logi. : . ' . S
‘ < Y

"7 Stmuttanoously cglculata conttroller consthnts whid satusfy ’ the _\
- stability marguns of al loo‘ps cf. section 4.4, _ S
* vii, Check if F(s) i matrix dommant o ,';: ' oo

vii., & Determine if the“

fs satnsfactory by' plotting the Nyqulst'

"exnct’loci P 5 i : S ‘ L o ' . ;-

. 11 yes and Fis} is matris dominant, then ? de‘sign. is ;ompleted -

after checking stability using the Nyquist exact’ loci,

o o e/se if- yes and Fis) -is not matrxx dominant, then check
snblllty by methad: whlch does not requnre system

domin‘::.a. eg charact.mtu: loci. ‘ )
al.w relax dnim specification andlor n'nprove desogn of'

: _ compensator t%,(s) ‘to’ meet the dcsugn '

Thoflowchartmﬂoure41 mxusﬂwhﬁtdesmpmcbdn andthe

followngmochondimuchsuphdﬂul

Ad . = C -

-

‘e
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transformed déscrete model Giw). If a system description is avallable in some
other form, eg a2 partlal dafferentlal equation model or a sta‘g space@ model, a
transfer fenctlon model must be calculated from thls form before the NEL
procedure can be v.aed in a practucal computer aided lmplementatlon of the NEL
procedure the TFM mod; s @ Akgged at 8 set 'of “discrete frequency points on
the Nyqunst amcontour and :Il “num’encel calculatlons then proceed from the

resulting set . of ‘corhplex mat

e
‘?n usmg algebrelc manipulations of

polynomials in s,z or w. - D~contawr, along which the transfer

i N
functions* are- evaluated depends on the Vype of TFM mod*A dlS?ISIOﬂ of’
the Agliferent Nﬂ:plst contours: in the s—plane z—éblane "ehd w-plane is given in -
) apﬁndlx D. Theoretlcally t‘l&% tr‘lsfer functlons fhust be- evaluated ‘along the
.;«e

%
gapperrlate ‘complete Nyqulst contour, @wever results bg' Mee (187§) and
Lemmger MQ?Q?) show, that it -is possnble to u‘e.,only a finite frequency range ’

. 0 < m qw& in the Nyqunst analysls provuded the transfeu fun%t‘lon matrlx

ls bounded for all frequencl‘és above w. . The use of fmlte@equency

-
range makes the use of the NEL ‘igeugn procedure end other multlvanable,

2 v

.~ Nyquist erray techmques moie p' smce it is consnderably easier to make

. over

complete Nyqunst ‘D— ontour.

Many controf systems, especially if K,(s) #' Inere lmplemented usmg a.

digital computer Such implementations - normally involve sampling of inputs and
outputs at equldlstant instants of time, and holding the plant mputs constapt

between samplmg lnstants Hence a contmueus plant is controlied by a dnscrete_'

.. .controlier. The deslgn of this dlscrete controller can be approached in several

- ways:

.

¥y
SR 3

i Based on.a contmuous TFM Gis), a compensator/controller K (lez(sl

is deslgned m the s—plene The d«ecrete implementation is - then
‘obtained by mapping the. poles and z6r08 of K,(sKe(s) into the
_z-plane to - obtsin K,%lz) and dmving s éﬁferonce equstiop
from KqytaKytz formdommpum&onm.m.n

| Mlﬁeely irnetrect, ond :_:&W by Frankin ahd ml..

eg. @ retur% dﬁ’ference matrix dommant over a fmlte frequency range, than
e o

o~

. &

)
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" "'proeukn iradcntu;d to W) givcn

. follcyedp/y bilinear transformatnonx» of Glz) to give Giw). .Then a

~Based on a contmuous “TFM G(s)G,Js) a compensator/controller . ‘4

g T ‘ 69

<

oL not give a bontro?‘\systeﬁ\ which

(1980) for SISO system ;
is in agreement with the desngn spacuflcatnons
F#om the continuous TFM Gis} a d:#cfete TFM Gi) is calculated b‘y

—transformatnon of GisIG,(s). where Gunls) is the transfer functnon

- of & zero order hold. Then a compensator/controller K (z)K.,(z) is

dessgned in the z- plane, and th# difference equation obtamed

-

dlrectly This procedure is theoretically correct and ‘the discrete

' controller is as good 85 the model of the system Howaver, ‘the.

z-plane analysis is different from }he s—ptahe analysis, which .most iﬁﬁf"

“des»gner _are more famuluar WI‘R Also the discrete dgransfer ~fix?

functaons are not raf’ onal. functnons (of frequency. y RS o !
From the contmuous TFM G(s) a b)ul‘nearly transformed dai‘crete TFM
Glw) is calglated by , i ~transformation of G(s)Gh(s) to give G(z)

cornpengator/controller K¢ (WiKg (W) is desighéd in the w—plane and

the inverse bilinear transMrmation iged 5" obtaiﬁ_K,(i)K,,(z), from

which the difference equation is derived This procedure is

theoretically correct, and the resuiting. aontroller us as good as the F:

m of .e ‘System The advantage of performmg the exact -

bilinear” transformatson from the z-plane to the w-plane is,/that the

.analysis in th’e/-w—plene is wvery pimi'lar to the analysis in the
'-s-plane eg stable poles and zeros lne |n.the left half plane and

the transfer’ functnons are agam raﬁo;aal functuons of tfrequency, cf.
¢

appendix D. R - R

TN

K,(s)Ka(s) 15 desngned m the s—plane The d:screté lmplementatnon is
then obtained by mapping the poles and zeros of Kq (s)Kz(s) into

‘the z-pisne to get Ky (2Kq (2) from which a dnfference equatuon is .
':dcrivod for ump’lamen::toon Th:s procedure is not theorettcally
fngorous ‘but as discussed below, if the discrets. tran—ar functions .

-
nMﬁomﬁncmﬁmm‘thTMmmmm: '
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be aware of some distortion in mapping from the s to the’!
2-plane (Franklin and Powell (1980)) in using this approach In the
overali sence this approach is a good- practical approximation,
which accounts fdor the majorQ feature of the discrete control

systems implementation, the 2¢ro order hold. An alternative to thisﬁ;
‘ﬁ' approach is the holg equivalence method also de'sgribed by Franklin
and Powell (1980). 'w; : v
The four approaches to design of a discrete controller system for a continuous
plant are sumn‘farized in table 4.1. If a discrete TFM G(z) or Giw) is available ®
the initial transformations af wroaches i or ii are of course omitted..

. .
The variables s, ‘z 3:\9! w are related as follows (Franklin and Powell
(1980))_.~ . ‘h"‘ TR .

-1

W = o= e = —— tanh - & o (45) ~
. S T Y O =

‘where T is the samplmg tnme and the dnscrete frequecy v in the w—plane and

the £¢nt|nuous frequency o in the, s—plane are related by

/ R (4.6)

This means, that for fsmall sT/2*gr-small  @oT/2 the following approximatiie®
‘/ ~: . N
wZs _andg Vv E (4.7)

v '

alcujsted from é(s)/Gh(s), using “the Tustin bilinear

are valid Furthermore if Giz) is-
1'980);\~ o : PR @ :

_ substitution (Franklin ane Powell
N » e

o
ol 2 z-1 !
8 R e / S , (4.8}
_.-* ""&c"* C T .',_.».z’+‘14. DA vs.-we ‘;"N o ‘ : . T

o

R

o and G(w) is calculated from G(z) usmg the bilinear transformatuon given

© " equation 45, then s = -w,

d° hence Giw) = GIsIGuisl- Therefore evaluating’

GisiGs) " for & = iw ., 04 W& W,

*

‘ Nyqutst -loci as avaluatmg Gl

. gives approximately the same

for w ‘ jV‘ »0 £ v £ v,. The approximation
mvolvod is vahd only if w‘l’ -is small whuch in practices means the sampling

tmo shouid be smll rclatm to - the m ‘opcn loop time constant Franklin

B

.0
| . e

iy L
¢ e
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Table 4.1 Summary four different approaches to the design of a d:screte ﬁt ' .
control 7stem for a continuoys piant , O

L Y
3 -
. . o:ﬁﬂ - S
Mode| Design and analysis ~ Quslity. of approach
used . plane :
. '," -~ o @
Gis)  s-plane A bad .
. . - 9 B st . ) . v ‘ >
A Glz) %, ) z-plane o good
L(}" ‘:J .- - . ) : ’
7 - v 1 Y . v
Giw) . . N w-plane ' ' good
. ' ‘\ . . g
L@sIGy(8) T oFw *  s-plane ‘- . fair oy
. . ’ : ! wﬁs >
’ P ' Oy -
and Pou‘/ell} (1980) recommend & sampling frequencl‘:y of 10 - 20 fimes the

closed loop banawiqﬂx,} which will, génerally gi.\'/e a sufficiently small s:ampling

time for the .approximation to ‘be valid So when a continuous model is available

the fourth approach to control system design eutlined above "is recommended.
The design \gxamples of the next chapter will use the third and fourth

above mentioned approaches”to control system design. '\/

4.3.2 AMatr_ix dominance of the return difference matrix.
‘. . The determigation. af  stability gsinSthe Nyqulst exact loci requur;s f.
'm section 434) that the return difference matrix. is matnx dommant (cf. . chapter
‘3)f As an mmal step (in the; 'NEL destgn prpcedure the return dnfference matRx
ﬁsf* = i¥Gls), ie. K,(s) =- Ka(sf ¢:s tested for matrix dommahce as descnbed
in chapter 3. L7 '

lf ,the return dufforence matnx is matrix dominant, the NEL desrgn can
prqceq wrth the cﬁsagn of a dnagonal controller matrux K,,(s) as discussed -in
the follawing wbsbctnons or & compensator Kqls) can 'be des»gned to. furtter “

reduce qmncﬁons or satisfy other design specnfncahom '
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If the return difference matrix is not matrix dominant, the magnitude of
the gains V‘\l;q(s) in K,,(s) = diag{kis)} could be reduced, and/or a compensator
K,(s) could bé designed to make F(s) matrix domunant (Note: In the limit k(s)-;(l\,\\
. i = 1,..m,-F(s) will b matrlx dommant for any plant Gis).
[ Y The design of the compensator K, {s) .is done by applying either the
direct Nyquist array techmque using column operétnons or pseudodlagonahzatlon

9 .
'-3 the inverse Nyqunst array tachmque usvng row operatvon" or pseudodlagonahza-

g

w tvon or the characternshc loci” techmque usmg eigapvector alignment. _These
' techmques areﬁde§cqb9d in. detall by Klen (1975) who alsq applied t?gm to
$om the design of a con‘trol system for m pilot plant evaporator and compared the

. resultung; contro?ley Kum (1975) found the three technuques to give very similar

results if the main. dpSngn crltena was to mlnlmaze closed loop lqteractnd?n '

-
9B

o .
o

e

. 433 Choite oY iﬁltial se} of loop gains. |

k The . mmal‘chonce ofa gains k(s) in Kgls) =~‘ diag{k.‘(s)} can be done in
various ways, eg arbutraruly choose kis) = 1, i :-7;1 ...... m Howev@r one practical

- v~approach is to make Q(s) as columnadommant as possub!i‘ by a diagonal
similarity transformat'on Dis). as' discussed in chapter 3 Then plot the direct
Nyquist _array of Dis)™ Q(s)D(g‘ with Gershgorin circies superimposed on the .
- diagonal elements, and choose a set of initial, gains, which lie outside .the band'
. Swept out by the Gershgorm circles. It should be noted, that the Myquist exact
loci of “hyls) lie inside the Gershgorin band on q,;(s) when Fis) is dominant TI'Q)aV

is the magnitude of hys) is bounded by v ,
2 . o4 ) .
| (iqu(sh =~ Ralsh £ 'W < (igls) 1" + R,(s» 4.9
lwhere, if F(s) is dommant Rgls) could be the Gershqgrm radius: -
R‘(s) = z Il - - (440)
=1 , , i , _ . , ,
o ' | | :
T | . , €
htis possnble to defme eveh narrower bands for h(s) “than the Gershgorin band,
varr the cofactor 4’41‘5’ contains a row or cokmn of zeros. Suoh bands 'y

-called‘ G'-cnrcles aro dascussed by Kuon (1875). These bands of course have i
ﬂnadvmgoofbomgndopendmﬁﬂuﬂmmuofﬁndbgondcontmr"é

! . K I 2 \‘ -
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matrix Ko(s) However, except for determiming " an initial set of loop gains bands
are not used in the NEL design procpge, since the exict loci of h‘is) are

easily calculated on a digital computer. In particular, Ostrowsk! circles are not

used to check the final design becatse the Nyquist exact loci provide a better

means of checking. that design specifications are meet -
i
4.3.4 Nyquist exact locj plots.

The Nyquist éioct loci are the polar‘ plots of t{cé) with s a function of
frequenCy. These plots are usod in th'e NEL procedure to check if the ‘systerﬁ
is stable and if the control is sansfactory The followmg theorem is the basis
for assessing stabvlt -esmg the Nyquist exact loci ‘ o .af;n'

T heore "}' -k:: the return difference  matrix F(s) be matrux

e

dominant shis) map the right half plane Nyquist contour p

into \}., encichr)g the “critical point (-1,00 n,; times -clockwise.
_Then the closed laop system will be stable if and only .if .

m . . '
2 N = P o ~ 4.11) .

i=1

-y

where p, is the number of right half plane poles of the open

loop system. ) ‘,;g# .

Proof of theorem 41 is grven in aggand;x E

Theoretically the transfer functlons ki(sihy(s) should be evaluated along the .

com Nyquist contour, ‘but ln practnce they are evaluated only” along a finite
part of the nmag‘(nary axis (fumte frequency range} and »the “contour completed by
extrapolatcon Also if k(s)h (s) is bounded above a certain frequency ‘the fnmte
freQuency range results of Mee (1976) and Leininger ( 1979b) appiy Y
, .‘ : . ' —_—_— .

435 Specify desired - stability margins.

. ~ Based on the Nyqu:st exact ,“cu‘l’a desared stability margin is specified
for each loop This margm as in classicgl §TSQ design, can be either a gain
‘margon or a phase margm The ' Sasi gner chooses trla stablllty margins ‘according
to the domgn qucmcatoons ie T t»ght forxtrol is desired in a certain loop 'a

- . Q‘s*l" .
""."“_,-a\i"%\

- . (' - A N . > . ‘.';1‘_
A TEE S RO PR

4

. . .. L/ R B v . -
. ) R L . &
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small margin is s'pecifiéd‘and vice versa The specific values of the margins of
. course depend on the individual appwnon but values of 4 - 8 db are typical
for gain margins, and 30 - 45 degkaes for phase margins.

4.3.6 Calculate gains to satisfy stability margins. . -

.Controller constants, which satisfy all  specified stability m Iins, are
calculated simiultaneously using one of the algorithmé described in section 4.4
These algorithms will update the controller; constants, so the location of the
Nyquist exact loci approach the desired locations. This is done by linearizing the
underlying optimization prob‘lgm and solving a set of linear equations.

The updating of the controller constants continues, each time solving a
set of linear equations, until the ‘difference betwen the des:ired Iocations and
the actual locations of the Nyquist exact- Ioc%:z becomes sufficiently small.
Between each updating of the controller constants the desngner can Judge'
whether to continue or not by inspecting the Nyquist exact loci diagrams. The

‘desngner decides when to stop the lterat:ve updating of the controljer constants.

N “

4.3.7 Is the control system sntléfpctory. v

The - final étep of the NEL desién procedure is ta chec- ‘hat the control
system is satisfactory. This involves first of éll cheékin‘g for _stability. If the
final return aifference matrix is matrlx domanant _then stabchty *can be judged
from the Nyqunst exact loc: by counting their enc:rclements of /the crmcal point
{(~1,0). Since matrix dommance of Fis) is a 5uffncuent but not necessary condition
for stability  analysis base/d\on the Nyqucst exact Ioca the system ,can be stable
even though Fis) /l( not matrix- dominant. Therefora uf th> return dufference
matrix is not matrix, dominant, stablllty can- be checked by a method, which
does not require system dommance eg. the charactenstuc loci technique. '

Slnce the Nyqunst exact lom repﬁqsent the actmu transm:ttances between
~ given input \omput pairs  other control system performance criteria, such .as
bandwidth, nse trme overshoot and settling time for ' unit step change in )put.
can be evaluatad from the NEL dlagrams These performance cmerta can be

m either from Nyqum plou‘:f h‘(s) usmg Nichols charts, or from ‘

“.



. response and are useful in comparmg $S|gns s
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plots. of Ihisl/it+hisl. In a computer aided implementation of the NEL design
technique the last approach ls more convenient _ ‘

The transfer function his) in generel involve ratios of polynomials in s of
degree greater than two. For such transfer functions it is not feasible to use
'enalyticalv expressions for rise time, overshoot and sgttling time, but emperical
correlations have been published, eg by Horowitz (1963). The following
expres‘sione are given by Horowitz:

Rise time t,.: .
B  t.= Ko, 27 03 < K& 045 ' (4.12)
Overshoot ) ’ :

§ = 58 wy/ wo M -~ 39 .- 4.13)

-

Settling time tgq:

tst‘(

where = o, is the bé"wn th frequency thet is the freqﬂ_enCy at which

s I/ T +hylsi = 0707 and @O, is the frequency at which lh4s)l/l1+h,ls)l = 05

M is the magnitude of Ihisli/I1+hys)l at the resonance frequency
The dbove expressnons according to Horowitz are only accurate to thhnn
15% - 30%, but they nevertheless give the’ S|gn|flc§nt features of the time
o

If the control system design is unsatrs’factory‘ the designer can either
5 . ) \ N

relax the specification with 'respect to stability margins or other .crite¥ia or

improve the 9esign of the compensator K,(.s) to médBt the d'eeiQn criteria  The

latter will generally mean a more complicated compensator. ¢
[ . o .. ;
\

44 SImultmous controllhr constant" evalu-tlon ) - ? :

The slmultlneous desagn of .m sngle loop controllers k,(sl F=t..,m,

each havmg n controller constants to satlsfy desnreﬂ stabrluty margins for the -

exact loci of kls)h-ls) i = 1.m, s mathematlcally & m x n ‘order nonlmear

optlmlzatloﬁ" proldlem Algorithms to iteratively solve thls problem for n = 1 or

3 7 wb/’%b,‘ M -.3 e @a

vt

2 we outlwnd below. ""l'ﬁese sigorithms use the Nyquist exect foci and a

Inmdmdmhonprocednforedmwmconvouucmuto

-



the designer via spec:fncatuon of stabalnty- ma} §

ler constants are updated using , ,
' = ke + o . wx, B o . ) '(42.},7)",
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give designer specified stability maréins.

The central step in the algorithms is the ‘solution of a set of linear
equations: | ‘

Ax=b o ) . | (4.15)
where A is a Jacobiah matrix containing the derivatives of the ‘ﬁyquist exact
loci wrt " the controller gains, x is a vecitor co}\taihing . the -necessary
adjustments of the controller constants tb satisfy the stability- margins and b is
a vector of distances the loci have to be moved to give the desired stability
margins, ie. b; is the change in Iocatnon-,faq(s)h,(s) The elements of A and’b

PN ) .
are evaluated at the set of frequenmesa.a. Jw; . i = 1.m, at which the

clrrent gam or phase &‘gms are calc%

locations and the des-red locations “of ‘the

dustance%ﬁtween the current
*k

v’?he actual evaluatlon Wf the

elements of A and b depend on whether n =1orn-=2
. . . \ .

~

a-q(s) =9 khyish/dk; ’ é @.

*

These real derivatives are of course evalaated sumerically using a dufference

4 Forn =1, proprotional control, the. elements of A = a (s) wre:

formuia FOr phase margms the distances contained jn the vectdr b become b;

=1 -g wher#, fs the current magritude of kihy(s) at a phase of (180 -

phase margin. For gain margnns expre@ as the factor the .gain should be

mdfltié}ied by for the loop to become u?\stablé, the distances in the vector b :

begome “b- £ (1/gain: marginl — '¢; where c; here ‘is the current "maénitude of

k,hj(s) at a l%atuon closest to the crmcal pomt (=1.0). The proportnonal com(ol~
A

r -
L4

where o« s a _ralbxati_o‘n factor less than one. The relaxation f.avio}:!is L

location becatse the hneanty assumed in calculating the derivatives “3‘6) mlght
for the full change in the controller constants. '

For n =2 proportional plus mtogral P or’ proportional plus denvatwe
PD)control Mmmom:ofA:hh]am

o = Deganaae . e

_ introduced to “avoid going too far, and possibiy oscillating around the' desiged



In~ the above equatlons Re x; and Im x; of é

-and.-imaginary - m« I
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and again these complex derivatives -are evaluated mmerlcally using difference

formula For phase margins O;, . i = 1..m, the elements of the vector b

become by = (-cos 6‘;‘ ~ jwsin ©; )} - ¢, where c; i§ the location in !
complex plane"on the locus kjis)hyls), wh_ich has . a phase of (180 - QJ ).

gain margins the elements of the vector b become b;'= (-1/gain margin + §*0)

- ¢, where c; is the location in the complex 'plane on the Iows ky(siny(s),
which is closest to the critical ponnt “The updating of the controlier constants is,

dependent on whether PI’ or PD controller constants are bemg calculated For a

-

PD-controller of the form P o
Kpll+Kgs) k2 7 X -
the gains are updated as followé;' . : ) o
S , S AT , - :
Koy = kpy + & ®Rex;.. MR P A 14.20)
and ) ] . | - . ) L
kp = kpj + % sl x/Re xp o) T Sal @an
where w;. is the lfrequency at which bi is dalculated. For ' & ’-Pl-controll&'
the form B i 0 - ,
Ke(l+iys) , b . (4.22)
the controller constants sre updated as follows “
kg = kg + % «Re X3 R
. N A P
and e . ) e t-:__‘wj,. ;
| kn = kgt K *(ll'n'x-*‘w; /Rc x) Il : §424)'A

'
_—

hoo

o

{
. v

l

, The magmtudes of the elements of th
the sen;mwty bf the: Nqust exact loci to changes in any of the controller

metnx A prowde measures of

constants Such . sensstlvrty coefflclents can be a helpful gulde in- field- tunmg of

|-
a multlvanable control system These coeffncnents we also an indirect - musure .
of the sensrtmty to the propagatlon of mteractl o

locushaslowsens:bvltytoclwesmd\aj‘m

‘.llkelyalachamlowmlhvityto forexarmle apntpomtchangehmai‘m

‘: , ' . . v;,l -
se denote respectively the ‘real -
v PR k'S

lf ‘the rth Nyqulst exact- :.-

- .
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measure warrants further investigation

" 4.5 Conolusions. .‘ .

¥he Nyquist exact loci and the transfer functions h,ls) were introduced.

Tho trlnsfar functlons ﬁpl were shown to be an exact multwanabla parallel to
m’ single vanable : trmfut functldn gis). The Nyquvst exact loci were
demonstrated to be us.ful in .st.blllty analysis and "to allow. control system
 design' cntena suohl n’nse tlm overshoot and: settlmg M from

SlSO desngn 'to usod mumhqfully in a multwar‘:le cohtext

_ The Nyqulst exact Ioci NELl .design procedure was outllned and its

dlfferent stepé@, dlscussad in detall The NEL procedure allows the dcsmnere “to

] spec:fy stablluty maergins in familiar terms, such as gain .or “phase margtn, and
nmultaneously design m single loop controllers Algonthms for the slmlmmeous_

!

sgl of P PI or PD ?‘ontrollers to. glve Nyquust exact loci, which satlsfy

deslgner speclflod stajslllty margms were devalOped #nd described. ‘
Fmally thé use of the derlvatlves of the . Nyqulst exlct loci as @

sensltlvlty measu¢ was dlscussed S SR — .
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8. Control system design using JNEL.

A3 | .
8

5.1 Introduction. M

The final test of any control systam dungn technique is its use in a
commgrcul env:’orment, such as s chemical plant ﬁowwer before this . can
happen a design tochmques pract:cauty must be demonstrated by applying it to
the dosngn of several control systems for widely different chcmacal ¢lants
comp“rmg e rewnant dongns with control ‘G/stems desagnod using other
toghm S, Und testing the des:gnod systems by simulation and/or appiication - to
. pm\bt ;ﬁm The purpou of this chapter is to cerry out this first part of the
test of the NEL desigri procedure. ’ '

The NEL - desngn tochmque wull be used to ‘design control systefns for
: cesses a double effecé ovaporator a chem:cal reactqr apd ’., |
‘h’wso throe _processes have bcen the subjéet of numoroué

recent years This a!lows the control systpms demgned usmg -

e

ur@. to. be compared with pubhshef: control systems whuch were
arrived at ‘using other desngn tbdmnques such’ as the unverse Nyquust array
method, the charactensttc Ioc: method or the thcct Nyqust a'rray Pmethod

. .
ln tho next sectnon the NEL desam procedure is . used to desugn a.

. The &eslgn is
s TFM G(F)Gk(s) "

dosngns sre alsoﬁ.j |

an . opon ;loop unstabh chomncal rnctor Fu;ally tho NEL ocoduro is uqd to
dosagn\ 'Y com'ol systom for a dustnlhtnon cohmn \vvith s'gruﬂcmt time dolayi

[ 7‘1'
L
)
I

Coeatt [ -
. . o

tvapomor., | ‘ o
cffoct hvapontor p&lot\thrm the D-par!m.nt of am
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These studies involved techriques such as multiloop control. optimal feedback
control time optmal control. model reference adaptive control and multivariable
Smith predictors Frequency domain control studies involving the evaporator have
been reported by Kuon (1975) whc used the INA. DNA and CL techmiques Due
to these past studies the evaporator s a good candidate for applying a new
design technique. such as thg NEL design procedure described in chapter 4 and
comparing the resultant designs with control systems obtaned using other
| methods

Fisher and Seborg (19761 kst several state space models of the
evaporator Among them are a continuous fifth order state space model and a
discrete fifth order state space model using a sampling ntervai of 64 .seconds
The continuous transfer function matrix (TFMi Gis) calculated fron; the continuous
state space model s shown 1n table 31 (Note all coefficients have been
truncated to two significant figures) The discrete TFM Giz) obtaned from the®
discrete state space model s listed in table.5 1. and the corresponding bilinearly
transformed TFM Giw) s given in table 52 The outputs are product
concentration, first effect holdup and second effect holdup. and the nputs or
manipulated variables are steam fiowrate to first effevct, bottoms fiowrate from
first effect and botToms flowrate from second effect

The poles of the TFMs Gis. Giz) and Giw). i.e the roots of the open
loop characteristic polynomials, are tabled in table 53 The evaporator models
are marginally stable, since Gis} and Giw' have two poles located on the
imagmnary axis, and Glz) has the corresponding two poles located on the unit
circle The number of clockwise encirciements required by Nygquist type stability
theorems hence depends on the particular Nygquist contour employed. as
discussed in appendi« C in the following analysis the closed right half plane
Nyquist contour will be used, this means two anticlockwise encirclements of the
critical point. due to the poles at the origin in s—plane or the w-plane.

_ A giraunical test of Fis} = I+Gis) for column matrix dominance is shown
in figure 31 and in figure 32 the corresponding test for row matrix
dominance is shown In figure 3.1 N,cz, N:3 and N:a' as defined by equation

36. are plotted as functions of frequency for frequencies in the range from
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Table 51 Discrete transfer function modet Gi(z) of pilot plant evaporator. Glz) =
N{z)/diz) where N(z} 1s a polynomial matrix and diz) s the

characteristic polynomal

diz) = -0039+2492-6 13:%+7352%-4 327" UL~
N4y (2 = -00093+0017240.0078:2-0C .*
Nyplz) = ~0017+00942-0182%+0 1523 -1 1"
Nylzt = 00

n..(z) = 00080-00152-000682*+0025*-0012z2"

-0032+0 172-03372+02723 -0 08224

N (2 =

Naalzl = 00

N4, (2} = 00093-0017z-000792*+0029:*-004z"
naa(z) = 0033-0 182+0347%-0.287 +0 0852
n..(z) = -0016+0.0852-0 167 +0.132>-004 12"
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Table 52 Bilinear transformed discrete transfer function model Giwl of pilot
plant evaporator Giw) = Niw)diw), where Niw) is a polynomial
matrix and diw) 1s the characteristic polynomal

diwl = 000005w>+00070w>+024w" +10w®

0 00007w>+00023w®~0 0039w -00011w S

NggWh =

NeaW = -000005w"-00026w-00067w" +0022w *
Nggtwr = 00

Nas W = -000007w”-00020w> +0.0034w" +000098w *
Naa Wl = =000015w®-00050w*-0012w*+0041w®
Nga (Wl = 00

Ny W = -0.00008w*-0.0023w *+0 0039w" +0.00 1 1w

no.iwl = 0.00016W*+00051w*+0.012w" -0 042w ®

w) = -000008w?¥-00025w>-00059w"-0020w ©

Table 53 Poles of evaporator TFM's Gis). Giz) and Giw) obtained from fifth
order state models.

s—plane z-plane w-plane
0.0 10 0.0
0.0 1.0 0.0
-0.0380 0.9603 -0.0380
-0.0766 08215 -0.0766
~-0.773 0.4384 -0.732

0.0038 to 7.73 rad/min. Nf, and N:‘ are zero at all frequencies, but N,i >
1 for frequencies less than 008 rad/min. Hence the return difference matrix is

not column matrix dominant at low frequencies. Similarly in figure 3.2 N,rz, N';z
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and NL, as defined by equation 36. are plottad as functions of trequency
N"; Is less than one at all frequencies. but Ny and N;-. are greater than oné
for frequencies less than 0.08 rad/min Therefore the return difference matrix 1S
also not row matrix dominant &t low frequencies The return difference matrix
could be made matrix dominant by selecting gains k, and k, mn diagik, k, k.3
less than one. for example with ky = ky = 033 and kg = 10 the return
difference matrix 1s matrix dominant However. such a scheme would give loose
control over the most important output variable, ie product concentration which
's clearly not desirable The design of a compensator to reduce Interactions Is
thus warrented Figure 31 indicates. that the offdiagonal elements of columns 1
and’or 2 should be reduced. where as figure 3.2 ;nducates, that the offdiagonal
elements of row 3 should be reduced to lower the interaction This combined
with a design objective of tight control over product concentration pomnts to
reducing element (1,2) From the DNA of the TFM Gts). which is shown n
figure 3.3, it appears. that the open loop TFM will become lower triangular by
the foliowing column operation

column 2 = column 2 + 0.73%column 1 51
As discussed in chapter 3 this operation will tend to cancel the influeﬁce of
element (2.1) and at the same time increase the direct transmittance in the
second loop and siightly decrease the influence of element (321 With the
above compensation the return difference matrix IS row matrix dominant, as
shown in figure 34 The lower triangular open loop transfer function matrix,
whose direct Nyquist array is shown in figure 5.1, means the closed loop
transfer  function matrix will also be lower triangular, hence product
concentration is independent of the first and second effect béttoms flows and
only dependent on steam flow to the first effect

The simplest compensator, which decouple the product concefmration from
the bottoms flowrates, and at the same time give a matrix détpinant return

difference matrix, seems to be the following constant compensator
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range 0.0038 < o
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and compensator
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corresponding to

summarizqd in table $.4.
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[10 073 00]
Ke =|00 10 00 (52
00 00 1.0
g -
If  shauld be noted. that -G(sb\u ts neither diagonally dominant nor matrix
dominant \
7
The Nyquist

t loc of{{/&s)K,Gk(s), where Gy(sl i1s a zero order hold

sampling " t

e of

64 seconds

are shown

figure 52

Careful inspection &f figure 5(2 shows. that none of loci contribute any
encirclements of the point. however multiplication of columns anc 3
=1 will give the necessary two anticiockwise encirclements of the critical
point (-1.0). one each by Qa2/8! and qa3fs) Hence the compensator s

[10 -073  00]

Ky =f{00 =~10 00 (5.3)
f

(00 00 -10,
The simultaneous gain calculation aigorithm used to calculate
proportional controller gains to give specified gain margins The results are

In all cases the initial gains were arbitrarily choosen to

be one. and- after five iterations the difference between the actual

and desired

]
locations of the Nyquist exact loci was less than 0.1. Except in the fourth and

fifth calculation of table 54 the return difference matrix was dominant with the
final gains. The two calculations in which Fis) was not gdominant. are the ones

with the largest relative difference between the gain margin in loop 1, the

_concentration loop. and those in loops 2 and 3, the level loops In the fourth
calculation it is evident from the row matrix domimnance plot, wﬁich 1$ shown in
figure 53, that F(s) can be made matrix dominant by a slight increase in (3%
The results of calculations number one and two, due to the lacge ratio kg/ky.

are not in agreement with the objective of tight comtrol of ‘ product
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Figure 52 NEL of continuous évaporator with TFM Gis). zero order hold with
sampling time 64 seconds. compensator K, from 53 and Ka = |
Frequency range 00038 < ¢w < 773 rad/min

86



87

2'0q 2.0-«

0.0 mﬁ -~ 0.0 4 + =

o.o;—f— —

]
I
10 10°

Figure 53 Row matrix dominance test of contnuous evaporator with
compensator K4 from equation 53 zero order hold with 64
second sampiing time and proportional gan from calculation no 4
of table 54
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\
Table 54 Summary of proportional controlier constant calculation for continuous
evapor ator mode! G(s)G, (sK,

Caic no gan margins proportional constants F(s) dommant ?
1 2 2. 2 101 141 405 ‘- _”y;:—h_w‘
2 2 33 99 59 235% ves
3 2 3 4 899 59 165 ves
4 2 4 4 106 34 165 no
5 2 5 5 113 23 126 no
6 3 4 4 56 41 156 yes
7 3 55 58 28 118 yes
! 254 4 72 36 156 yes

concentration. and loose control of the twc levels This leaves the results of

v
_ S

calculattons number six to eight In figure 54 to 56 IisH/IT+he(s)t for + = 123
are plotted as functions of frequency The proportional gans. which best fulfilis
the objective of tght control on product concentration and loose level control
are thogse of calculation number eight The simultaneous gain calculation took
four steps to arrive at the finai gan starting with ky = kg = k3 = 1 Tha
Nyquist exact loci after sach iteration are shown in figures 57 to 510 1t s
evident from these figures. that the shape of the Nyquist exact loci do not
change drastically from iteration to rteration. and figure 510 also shows the
desred gan margins have been realized Rise time overshoot and setthng time
as calculated using equations 412 to 4 14 with the gamns of calculation number
eight are shown in table 55 Loop 1 the product concentration loop. responds
purest to a unit setpoint change However, since all variables are normalized
deviation variables, a unit step n product concentration actually represents 3

doubling of the product concentration. which s physically more difficult to



Figure 54 Piots of sh (s)/1 +ihi(sH  versus frequency for 12123 with
proportional gans from calculation no. 6 of table 54
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Figore 55 Plots of Ihish/I1+kh(sl versus frequency for =123 with
proportional gains from caiculstion no. 7 of tsble 54



2-0q

PN S U S

0-01

Figure

»
107 10°
2.0+ 1]
4 /
4
0'0‘ [] -~
10+ 10
2.0n
i
0.0 % R ] IL 'R
10+ 100
5.6 _Plots of lGhisiN1+ihisH versus frequency for =123 with

* proportionsl gans from csiculation no. 8 of table 54.

a1



, ' N
{ . Y 92
Y
»
” -
1.0 -
| — -] Y
‘1- 2-0 5
o
“5-0 ,”
1.0 \
 E— ] ———
-1, 2.0 ]
* .o
-5.0 e
1.0+
. 4
) | Ty
) .. - ‘I-OL ; \2'0
' o~
- 3 |
M
" 5.0 *.
b
Figre 5.7 Nyquist ‘sxsct loci for ‘continuous evaporator model after one
fteration of gain calculstion . no,8 of wbie 54 :
'1}_‘,:( ) , - \’ "




83

"9-0':
1.0
e I
-1 3.0
"'9-0
| 1.0
f 7{ T )
-1. © 3.0
]

Y

Figure 5.8 Nyquist exact loci for continuous evapérator model after two
iteration in gain caiculation no. 8 of table 54
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Table 55 Rise time. overshoot and setthng tme with proportional gain from
calculation number eight of table 54

V_Ioop 1 ioop 2 loop 3
rise time, min 47 34 18
overshoot.% N 5 3
setthng time. min 125 87 45

accomplish than a doublng of the hold-ups of each effect The recommended
final proportional compensator/controlier hence is
72 -26 00
KyKgy = 00 -36 00 (5 4)
0.0 00 -156
This compensator/controller can be compared with the proportional controllers

FDO320 and FDO330 designed by Kuon (1975)

56 -3.1 0.0]
FD0320 = | -22 -37 00 ' (5.5)
-98 -49 -gs8]
and
83 -47 0.0] ' :
FDO330 =| -33 -55 0.0 (5.6)
-148 -73 -148]

which were designed for gain margins of respectively 5 and 3.3 in all three
loops. The additional non-zero elements below the diagonal in  the
.compensator/controliers FD0320 and FD0330 will reduce level oscillations, but
they will not infiuence the product concentration response to setpoint changes.
Kuon used the discrete evaporator model Giw) in designing FD0320 and
FDO330, and the controllers were found to perform satisfactorily in

experimental test Compared with Kuon's compensator/controllers K,K, seems to
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margins used in calculating K, Ko ae considered This could be due to the use
of the continuous mode! G(sIGyisl In caICulating Ky In order to investigate this
possibility the calculations are repeated using the discrete model Giw)

The DNA of the bilinear transformed dris ’ete evaporator model of table
52 s shown in figure 511 for discrete frequencies from 001 to 280
rad/min, corresponding to continuous frequencies from 001 to 773 rad/min A
compensator identical to the one in equation 52 makes the return difference
matrix dominant with K, = | Proportional controlier gains were caicutated for
the same co'nditions as were used with the continuous model The results of
the eight calculations with the discrete model are summarized in table 56 With
respect to stability tHe results are identical, the gains of loop ' and 2 are
very similar, but the gain in loop 3 is consistently lower when the discrete
model i1s used. This points to an error in either the>d|screte or continuous -
model state space model given by Fisher and Seborg (1976). The results in
table 56 of course agree with the compensator'/controlllers FD0320 and
FDO330 (shown in equations 55 and 5.6) designed by Kuon (1975) using a
discrete evaporator model. \

Comparison of tables 54 and 56 leads to the conclusion, that the
continuous TFM G(s)G,Js) can safely be used in place of the bilinear transformed
discrete TFM G(w) when designing a8 discrete control system for a continuous
plant, even though the approximations of equation 4.7 are invalid The use éf
the continuous TFM GisiGy(s) has the advantage, although not explored in the
above example, that the effect of different sample times can easily be.
investi‘gated ‘\without time consumming transformations.

The \'s‘imulated closed loop responses of the evaporator with the
compensator/controlier of eqﬁation 54 to step changes in setpoint of +10% in
product concentration, y,, and +20% in first effect hold-up, ya. are plotted in
figures 512 and 5.13 respectively. Tﬁe discrete evaporator fifth order state
space model was used in these simulations. It can be seen, that the objective
of minimizing effects of level changes on° product concentration has been

achieved. These results compare favourably with those from other multivariable

proportional controllers designed for the evaporator, Fisher and Seborg (1976).
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Table 56 Summary of

proportional

evaporator model GiwiK,

controlier

constant
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calcuiation for discrete

Calc no gan margins proportional constants Fis} dominant ?

1 - ‘2‘?_:_ 112122 281 _yes

2 Z 3 3 99 78 166 yes

3 2 3 4 99 78 124 yes

4 2 4 a 111 36 124 no

5 2 565 1178 25 99 ‘ no

6 3 4 4 58 45 P! yes

7 3 5% 61 32 99 yes

8 254 4 75 41 124

including those designed using other frequency domain techniques. Kuor (1875)

The rise tme, overshoot

and

setthng time of the

simulation

Qualitatively in agreement with the values given in table 55

responses are
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5.3 Chemical resctor.

A modei of an open Ioop' unstable chemical reactor has been used in
testing control system design techriques by Balletrutt (1872) MacFariane and
Kouvaritakis (1977; and Hung and Anderson (1979) The different authors give
shghtly different continuous TFM models of the reactor However all the modaels
have two inputs two Outputs and two right half plane poles which makes the
reactor an open loop unstable system In this design exercise the model used
by Hung and Anderson (19789 and listed in table 57 will be employed This
mode! has the right half plane poles at 00874 and 177 respectively

The return difference matrix ‘F(si = 1+Gle) 1s matrin dominant as shown in
figure 514 where Nyg(s! 1s plotted as a function of frequency, N (si s less
than one at all frequencies. but the diagonal elements of the DNA of Gs) give
only one anticlockwise encirclement of the critical point. as evident from figure
515 Table 57 and figure 515 also show that the eiements of ‘= first
column of Gis) are two orders of magnitude smaller than the elements - the
second column Mumplyun!; the first column of Gis) by -100 gives the ;A
displayed in  figure 516 Now the diagonal elements give a total of two
anticiockwise encirclements of the critical point. but the return difference matrix

's no longer matrix dominant Figure 5 16 suggests element (2.1) can be reduced

by the column operation

column 1 = column 1 - 16scolumn 2 5.7
The return differsnce matrix F(sl) = [+Gls)K  with
r 20.0 00
“e s L -1 10 =

IS matrix dominant, see figure 517 and the diagonal elements of the DNA
Gis)Ky gives two anticiockwise encirclements of the critical pomnt Hence the
system G(sK, s closed loop asymptotically stable according to theorem 32
GisiKy is matrix dominant. but not diagonally dominant, cf figure 518, but it
can be made diagonally dominant by transfer of dommnance as described In

section 35 The DNA of GisiKy after a diagonal. similarity  transformation
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Figure 514 Matrix dominance test of F(s) = I+G(s) with the chemical reactor

TFM Gis) from table 5.7
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Figore 516 DNA of chemical reactor TFM Gis) from table 57 after
multiplication of column one by -100. Frequency range 0.002 <
w ¢ 305 rad/1000s



. ad
1.0+
L

\A\ - -
) ] * ‘

0.0 ——4—t */jﬁ\%\~ '

10 10 10° 10
/A\‘y\
¢ y

Figre 517 Matrix dominance test of Fis) = I+GisiKy with the chemical reactor
;FSM Gis) from table 57 and the compensator Ky from equstion-

-



107

53.0

40.0

Figure 518 DNA of compensated chemical reactor TFM model with Gershgorin

circles, based on column sums, superimposed on the diagonal
elements. Frequency range 0.002 < w < 0.5 rad/1000s.
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Table 57 TFM model of chemical reactor as gven by Hung and Anderson
(1978) The model G(s) has the form Gis) = Nis)/dis). where dis) is
the characteristic polynomial and Nis) is a polynomial matrix

dis) = 755-79435+1847s +1187s> +10s"

Nyyls) = -263-1111s-2 11s*
N4a (s} = 2335+292s
Naq (8l = 1515409435
Nya(s) = -965-58255+4383s%+5 685>
calculated with column weighting factors of 3 and 1 is presented in figure

5.18. From figure 519 it can be seen, that the system will be stable with

proportional gains in the following ranges

006 € k, L oo 5.9
058 £ k, <= (5.10)
The Nyquist exact loci with kg = 015 and k, = 0.15 are shown in figure

5.20. These gains give gain margins of 23 and 3 respectively. As can be seen
- the corresponding phase margins are 60 and 90 respectively. The gain k, is
outside the range give:: n inequality 510, but the return difference matrix is
dominant, as shown in figure 521, and the Nyquist exact loci ' figure 5.20
give a total of two counterciockwise encirclements of the critical point, so the
system is asymptotically stable according to theorem 4.1. Through examir ation of
plots of Ikhi(si/I1+Kk;hy(s)l  for different Ko = diaglk/d it was found, that
improved control was obtained with higher gains. It was also observed, that the
bandwidth was proportional ¥ the gain This is in agreement with .the
controliers dgsigned by Belletrutti (1972), by MacFariane and Kouvaritakis (1977),
and by Hung and Anderson (1879). The limitations on the proportional gains will
in practice be dependent on the error in the linear model of the* reactor. Plots

of Ik;hyisi/I1 '. | for kg = kg ,=' 1.0 are shown in figure 522, from which

rise time, overshoot am}\(setﬂing time can be calculated using equations 4.12 to
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y transformed compensated chemical reactor TFM
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rad/ 1000s.
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Figure 521 Matrix dominance test of Fis) = +GIslIKy Ky  with the chemical
reactor TFM model from table 3.7, the compensator Kq from
equation 5.8 and K, = diag§0.15,0.15}. :
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4.14. The first loop has a rise time of 2 min, 65% overshoot and a settling
time of 20 min, while the rise time of the second loop is 59 min The high
overshoot could be reduced by introducing integral action into the
compensator/controller. The final proportionai compensator/controlier is

-100.0 o.o] 1'[7
K K, = (5.11)
B -16 1.0

't should be noted, that the low gain limits of the gain gain space with the
constant compensator in equation 511 are somewhat lower, than those reported
by Belletrutti (1972) using the characteristic locus desing technique and a high

integrity diagonal controlier matrix.
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Figure 5.22 Plots of Ikhy(s)i/11+lghyds)l for compensated chemical reactor model
-— k -—

with. ky = k, = 10 Frequency range 0.002 € w < 305
rad/1000s.



5.4 Distillation column.

The binary piot scale distillation column In the Department of Chemical
Engineering at the University of Alberta has also been the subject of numerous
control application studies eg Berry (1973) and Bilec (1979

Berry (1973) obtained a simple transfer function model of the distillation
column by pulse testing This transfer function model Gis) 1s given in table 58
The mode! outputs sre top and bottom composition. and the inputs are reflux
flowrate and flowrate of steam to reboiler As can be seen from figure 523
the re&rn difference matrix Fis} = 1+Gis) is matrix domimant It is not diagonally
dommant at .ow frequencies, but G(s) is both matrix and column diagonally
dominant However, this example iliustrates how the NEL design procedure can
be applied to systems with time delays

The transfer functions his) for systems with time delays become ratios
of polynomials in s with non-constant coefficients. For example, h, (s} is for
the distillation column model in table 5.8

~19463 K, «189%6.66 "% (16754 1)

- - = (512)
1445+ 1 (21.05+1)(10.9s+ 1116 7s+ 14k, #12.8¢~ 1%

hz(s) =

The stability of transfer functions of this form has been studied by Lee (1976),
who used basic direct Nyquist stability analysis Hence, the stability of system
with time delays can be analyzed using the Nyquist exact loci (Note the time
delays are easily handied by the computer aided design package, since the TFM
manipulations of the NEL design procedure are implemented. not algebraically, but
numerically).

Since Gis) is column diagonally dominant initial gain estimates for the
simultaneous calculation of the two proportional gains are best selected using
Gershgorin circles on the diagonal elements g, (s) and dax (s} of the DNA of

Gisl. The DNA of GisiK, with Gershgorin circles superimposed on the diagonal

__/eéecne\nts i1s shown in figure 524 with the precompensator
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Figure 523 Matrix dominance test of Fis) = I+G(s) with the distillation column
TFM Gis) from table 5.8
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Table 58 TFM model of binary piiot scale distillation column as given by Berry
(1973)

Gerlst = 128e Y2116 75+ 1
Gealsh = -189e™ /21054 1)

Gaqls) = 66e /(10954 1)

Uza(s) = -194e7**/(1445+1)
~
10 00
Ky = 513
00 -10

Since the distiliation :olumn TFM Gis) has no poles or zeros in the closed right

half plane. the diagonal eiements of GislK, Ky should give zero encirclements of

the critical pomnt (-1.0) This occurs if k, and Ing of K, = diag ik, ka3 e n

the foliowing ranges <\
00 € k, < 088 5 14)
00 & k, € 025 ‘ (5 15)

The upper hmits were determined from the band swept out by the Gershgorin
.cwcles in figure 524 Proportional controller constants were then calculated for
several gain margin specifications and initial gains of 045 ar;d 0 12 respectively
The results of these calculations are summarized in table 59 Only caiculations
number 2 and 3 of table 59 do not give large dual resonance peaks in the
plots of Tk;h;(s)l/lwk;h-,(s)l versus frequency as seen in figures 525 and 526
The proportional gains of these two calc:ulations‘are comparable to those used
by Wood and Berry (1973) in experimental test on the -distillation column It 1s
not possible to use equations 412 to 4 14 due to the nature of the plots in
figures 525 and 526 A large amount of interaction exist in the system. as
the size of the coefficients of the sensitivity matrix A from calculation number

2 shows:
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Figure 524 DNA of compensated distiliati
circles. based on columi

on column TFM model with Gershgorin

sums,  superimposed on the diagonal
elements. Frequency range 0.005 1.0 rad/s
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Figure 525 Plots of hyhy(s)/1 1 +k; (s versus frequency for compensated
distillation column model with proportional gain from calculation
number 2 of tabie 5.8 .
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Figure 5.26 Plots of Ikhy(sl/i1+khids)l - versus frequency - for com}:ensated

distillation column mode!
' number 3 gf table 5.9

with proportional gain from calculation
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Table 59 Summary of proportional  controlier constant calculation for
° compensated distillstion column model GisiK,

Calc no gan margins proportionsl constn?m’/ - F(s)i domlna;;—7—
1 2 2 089 0.12 yes
2 3 4 056 0085 . yes
3 4 4 043 0068 yes
4 3 2 053 013 yes
5 4 2 040 014 yes
[0.72 o.:és:, '

A = ‘ 516)
0.20 451

The proportional controllers will not give tight composition control. | If tight
control of both compositions are required a dynamic compensator, which
essentially decouples the system, must be designed. ’ .

The . proportional gains of all calculations fall within the ranges of ~
nequalities 514 and 515 and it is hence not necessary to test for stability
using the Nyquist exact loci However the Nyquist exact loci with the gains
from calculation number 2 of table 59 are shown in figure 527. It can be
seen,\ that the Nyquist exact. loci give no encirclements of the critical point. so
trrversyste is asymptotically stable according to theorem‘ 41

An attempt to ‘use the algorithm outlined in section 44 to csiculate the
constants_ of twbd proportional plus integral controliecs failed. This is probably
happening bscause the crossover frequency is not used in ~\;a‘\stirrming the integral
gains. The aigorithms of section 44 for two constant controlier calculation:
should be @dified 1o estimate integral and derivative gains based on crossover
frequency, and then caiculate proportional gains to give desired stability margins.
Such 2 modification would eliminste the use of compiex derivatives and the
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Figure 5.27 Nyquist exact loci for 'compensated distiliation column TFM model
with proportional gain from calculation number 2 of table 5.9
. Frequency range 0005 € w « 1.0 rad/min. .
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mappings of equations 420 and 4.22.

5.5 Conclusions. _

The Nyquist exact loci (NEL) design technique was applied to design of
constant compensator/Controllers for a double effect. evaporator model, an open
loop unstable chemical reactor model. and a binary distillation column model with
time delays. The NEL Procedure was found to be easy to use, and the resultan't
constant compensator7controllers were comparable to compensator/controllers
designed using other techniques. The Nyquist exact loci were found to be
informative n coMParing  design alternatives, ‘a'nd the absense of
Gershgorin/Ostrowski Circies made the displays more comprehendable.

The doubie effect evaporator design exampie showed. that a continuous
transfer function model with a zero order hold is a good approximation to a
bilinear tr;nsformed discrete transfer function modae!. The constant
compensator/cantrolier designed using NEL was simpler, than those designed by
Kuon (1975). due to the less restrictive matrix dominance condition for stability.
Simulations showed the compensator/controlier designed using NEL performed as
well as those designed by Kuon (1975).

The open loop unstable chemical reactor example showed, that a simpie
constant compensator Qave a larger stable gain space, than found by the
characteristic loci desigh procedure. This example also shodved the estimate of
the stable gain space obtained from the DNA with Gershgorin circles after
transfer of dominance is conservative, and it can be enlarged using the NEL
design technique. .

The binary distilation column example showed, that the NEL design
procedure can be applied to systems containing time delays with no difficulty.
The proportional gain Obtained using the NEL technique were comparable to
those used in experimental test on the distillation coiumn by Wood and Berry
(1873). This example glso showed, that the algorithms for calculating proﬁortional
plus integral and proporfional plus derivative controllers described in section 4.4

need to be modified t0 consider the crossover frequency in the estimation of -
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integral and derivative constants.



6. Conclusions and recommendations.

6.1 Contributions of this work.

The main contributions of this work are

i Analysis of interaction in multivariable control systems with the
introduction of a classification of transmittances into: direct, paraliel,
interaction and disturbance transmittances.

i, Critical review of published measures of ‘interaction’ with a
clarification of the difference‘ between interaction and parallel
transmittance.

iii. Definition of matrix dominance as a less restrictive condition for
the application of the muiltivariable Nyquist array stability theorems.

v. Development of a graphical test for matrix dominance, which also
gives guidance in the design of a compensagor for a systém.
which is not matrix dominant. ‘

V. Development of a systematic and fiexible procedure for transfer
of dominance in transfer function matrices of any size.

vi. Development of the Nyquist exact loci (NEL) design techniques: as 8
direct multivariable parallel to classical SISO control system design.

vii. Application' of the NEL design technique to three different systems,
and comparison of the resultant multivariable controiler with oontrol- .
systems designed using other methods.

Althbugh not a major contribution this work has also .involved the specification

and partly implementation of a suite of interactive computer programs for using

the NEL, DNA and INA design procedures. The specification of the package is
contained in Jensen (1980). The programs were used in this work, and
extensively tested during a multivariable control system design exercise in the
course ChE. 644 Students with nb ~previous exposure to the University of
_Alberta computing faciclities used th Vprograms without éfficulty_ after only a

short introduction to the "package.
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6.2 Further research.

Some recommendations for future research in this area include:

The following three recommendations refiects the trend in multivariable
frequency domain design to design compensators to reduce interaction and/or
satisfy an abstract condition, like ) diagonal dominance, and only indirectly consider

time domain specifications such as rise time, overshoot and settling time.

) Development of algorithms for simultaneous calculation of controller
constants in several single loop controliers subject to specified
stability margins and to the condition, that the return difference
matrix is matrix dominant. A linear programming approach combining
the transfer of dominance algorithm of ;ection 35 and the
simultaneous gain calculation of section 4.4 should definitely be
expiored.

i, Further work should be done in the parallelism between the
transfer function hys) and the SISO transfer function g(s), for
example the use of derivatives of the Nyquist exact loci as an
“indicator of interaction propagation should be analyzed further. Any
relationship between these derivatives and the closed loop
sensitivities' should be investigated. &

iii. Development of an algorithm for simultaneous design of several
lead - lag elements to give desired shape of the h; loci.

Qther recommendations in the general area of frequency domain control system

design include:

| Development of a design procedure for the design of multivariable
feedforward controliers for nonlinear piants with large parameter
variationsv. The approach taken by Horowitz (1879;1980) to the
design of feedback controliers for such systems should be
considered for extension

ii. Analysis of connections between the transfer functions his) and



stability criteria for nonlinear systems should be done, cf Blight
and McClamroch (1877)
Development of a graphical representation which will provide

sufficient conditions for the Popov criterion to hold in the

,multiloop case for metr dornar. systems This is an extension to

work recently reported Ly, ./ees and Athe 1980)
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7. Nomenclature.

7.1 Technical abbreviations.

ADGA ‘ Average Dynamic Gain' Array.
CL Characteristic Loci.

DNA Direct Nyquist Array.

INA /nverse Nyquist Array.

NEL Nyquist £xact [oci.

RDGA Relative Dynamic Gain Array.
RGA Relative Gain Array.

SISO Singie—/nput, s.ing‘ -
TFM Transfer Function |,

7.2 Nomenclature for chapter 1,

e vector of error signals. '

g transfer function of single~input, single-output system.

Gy plant ioad transfer function matrix.

Ge plant transfer function matrix.

h. ‘transfer function betWeen the i'th input and the i'th output

when the i'th loop is 6pen and all other loops are closed.
H feedback transfer functidn matrix.
l ~ indentity matrix.
compensator transfe- function matrix.
diagonal controlier transfer function matrix.

vector of manipulated varibles.

0 3. X xR

compensated plant transfer function matrix, Q = GpKy .

vector of reference input variabis.

vector of compensated plant input varialfles.

-

| =

y vector of plant output variables. _
y vector of measured plant output \)ariabllesA

vector of plant load or disturbance variablés. \
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7.3 Nomenclature for chapter 2

A

F = {f'.j}
G, = {gjLi}
G ={g;}

(lE)i
k (E);

H={h iJl
Kq'-‘{kij}

Kp=diag{k.}

L;

M={p;d
Misi={p;gis1}
M= fp; 0

4]

- -1

state matrix of state space model.

the i'th column of the state space model input matrix B
inpu{ matrix of state space model.

input matrix of state space model without the i'th column
the i'th row of state space model output matrix C.
cofactor of element (i,j) of the return di.fference matrix.
output matrix of state space model.

output matrix of state space model without the i'th row.
matrix of average dynamic gains calculated by integrating step
responses over a time interval t = t, - ty.

return difference transfer function matrix

plant load transfer function matrix.

plant transfer function matrix.

and the i'th output

transfer function betwqu the i'th input

when the ith loop is open and all other loops are ciosed.

interaction coefficient as defined by Suchanti and Fournier for
the i'th loop.

the error integral. of the i'th output for a unif step change in
the i'th input with loop i closed and all other joops open.
the error integral of the ith output for unit step changes in
all fnpuis with all loops closed
feedback transfer function matrix.
compensator transfer function matrix
controlier transfer function matrix.
parallel transmittance between the i'th input and the i'th output
when the i'th loop is open and all other loops are closed.
steady state relative. gain array.

relative dynamic gain array.

average dynamic gain array.

used in definition ~ of relative ‘transient

matrix response

functions.
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compensated plant tr;ansfer function matrix

inverse compensated piant transfer function matrix

minor of Qslkg (s) formed by delisting all rows except row
and all columns except column j

vector of reference input variables

closed loop transfer function matrix

closed loop load transfer function matrix

transfer function matrix for system with all but one feedback
loop closed 4

load transfer function matrix for system with all but one
feedback loop closed

feedback TFM with 5,=0 for i=) and 5;=1 for 1#)

vector of compesated plant inputs.

vector of inputs to discrete state space model.

vector of plant output variables.

vector of outputs from discrete state space model.

vector of states of discrete state space model

interaction coefficient as defined by Rijnsdorp (1965).
extended interaction coefficient for the ith input-output pair
of a m x m multivariable system.

vector of load or disturbance variables.

the relative transient reésponse function betweein the Jth input
and the i'th output

the ratio of the cofactor of element i,y o e cotactor of
element (i) of the return difference matrix.

the ratio of the cofactor of elem: :t to the cofactor of
element (il of the compensated plant .« sfer function matrix.

the continuous frequency.
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7.4 Nomenciature for chapter 3.

A={a,J-}

B-’{bu}

" dominance.

real matrix  with positive diagonal elements and nonpositive
offdiagonal elements

coefficients of  contrant equations  of general  linear
programming problem

companion matrix of a complex matrix. b;;=lq;l and bii: ~|qi‘-l
for 1#]

real matrix  with diagonal elements zero, and offdiagonal
elements nonnegative

element of diagonal similarity transformation matrix, which will
make the system row diagonal dominant

diagonal similarity transformation matrix

“eturn difference matrix

f. on ot decision variables in general linear programming
pro e » |
ant t sfer function matrix

transfer function between the ith input and the ith output
when the i'th loop is open and all pther loops are closed.
function to' be maximized in transfer of dominance or general
linear programming problem. ‘

polynomial transfer function matrix.

real numbers, which are indicétors '/of column  matrix
real numbers, which are indicatiors of row matrix dominance.
sum of off-diagonal elements of row i of a matrix.

complex matrix. ‘

sum of off-diagonal elements of column | of a matrix.
vector of decision variables in general linear programming
problem.

diagonal matrix with positive diagonal elements.

weighting factor for ith row or ith column in transfer of



7.5 Nomenclature

Gis).Glz).or Giw)
Gh(s)

h;

K, =diagik;}
M

Mhi
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dominance

function obtained by mapping of the Nyguist D-contour by
Qi

normalized minimal Gershgorin radius as calculated by Kantor
and Andres method

continuous frequency

for chapter 4.

matrix of derivatives of the Nyquist exact loci with respet to
the controlier gains

vector of the distances the Nyquist exact loci are from their
desired locations

plant transfer function matrix.

continuous transfer function of a zero order hold

transfer function between the i'th nput and the i'th output of
a multivariabie system in which the i'th loop is open and all
other loops are closed.

derivative Gain in the i'th loop.

integral gain in the i'th loop.

proportional gaén in the ith loop.

co’fnpensator transfer function matrix.

controller transfer function matrix

'lk;h,l/l1+k‘h,4 at the resonance frequency.
“number of clockwise encirclements of the critical point (-1,0)

’ by the Nyquist exact loci of k;h;.

number of poles of the open looc transfer function matrix

in the closed right half plane.

compensated plant transfer function matrix ‘,/
|

band aroung the Nyquist loci of Q;; within which the Q\oci of

~

the transfer function h; lies. S —

rise time.



7.6 Nomenclature
g

F

FD0320

FDO330

G={g;;

h.
'

Ky
Ky =diagik 3
N= inij}

NS,
i
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settling tme to within 1% of the final value
sampling time
discrete frequency
vector of controlier gan increments.
relaxaton factor used in updating the controlier gains.
overshoot.
function obtained by the mapping of the Nyquist D-contour
by h;

continuous frequency.

0.707, the bandwidth.
0.5

frequency at which Ik;hl/I1+kh;l

frequency at which Ikhil/11 +khyl
cofactor of element (.jj of the return difference matrix
divided by te cofactor of elememt (i of the return

difference matrix

for chapter 5.

characteristic polynomial of transfer function matrix.

return difference métrix.

constant compensator/controlier designed by Kuon (1975) to
give 8 gain margin of 5.

constant compensator/controller designed by Kuon to give gain
margins of 3.3

plant transfer function matrix.

transfer function between the i'th input and the ith output of
a multivariable system in which the ith loop is open and all
other loops are closed

constant compensator .matrix.

proportional controller gains.

polynomial part of a transfer function matrix with a common
denominstor of all slements.

real numbers, which are . indicators of column matrix
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dominance.

real numbers, which are indicstors of row matrix dominance.
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9. Appendices

9.1 Appendix A. Derivation of h (s).

In this appendix expressions for the transfer function h;ls) between the
i'th input and the i'th ou.tput' when the i'th loop is open and all other loops are
closed are derived.

Consider the multivariable system represented by the block diagram in
figure S.1. QisiKg(s) is the open loop transfer function matrix and S is a dia-
gonal feedback matrix, defined by S = diag{s.], k = 1..m with 5;=0 and s =1,
k#i, ie. the ith feedback loop is open The ciosed loop transfer function for

this system is

His) = (+Qisig (s)S1” T QIsIK, (s) = {cis1} QUsIK 4 (s) .1

det(+Q(siK, (s)S)
where det(-) denotes the determinant, and c'u(s) is the |(i,j))th cofactor of
1+Q(siKy (s)S. The sought transfer function h(s) is the (ii'th element of His),

hence

1

2 ' m 1 )
hds) = hyts) = -z ct'.cs)qjl.(s) (9.2 )

det(+Q(sIK,S) j=1 3
The matrices I+Q(s)K,‘(s)S. and I+0(s)K,,(s)~or‘1ly differ in the ith column This
means all cofactors of the ith column of" +Q(s)K, (s)S are the same as the
cofactors of the i'th column of I+Q(s)K, ts). Denoting the cofactors of I'+C(s)K,'(s)
by c;ds) (no prime), then

m m '

j=zi ¢jilsiggs) =’_=}:1 cjitsias) (9.3)
Furthermore, Laplace expansion of the determinant of 1+Q(s)K,(s)S along the i'th
column gives '

detli+Q(skKy (sIS) = cyls) = c;s) (8.4)
since only the ith element of the ith column of +Qis)K, (s)S is different from

zero. This element is one. Hence the expression for hy(s) becomes

139



v 140

Figure 9.1 Biockdiagram of multivariable system with open loop transfer function
‘ marix Q(s)K (s). and feedback matrix S = diag{s,1. s;=0, s,=1, k#i,
(\ ie. all loops except the i'th loop are closed.

/\’- . . ’
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m m
his) = Z Cilslayls) = quls) + ;1:1 ¢J,(s)qj;(s) ~ {9.5)

Cii ds) =1 J=
. j#i
The above expression gives hs) in terms of column sums An equnvalent
expression can be established in terms of row sums. Laplace expansion of the
determinant of I+QisiK,(s) along the ith column and along the i'th row gives
m
det(l+O(s)Kz(§)) = Culs) + Jg C.. (s)k,(s)q“,(s) = Gilsl + J‘_Z_ cij(s)kj(s)qij(s) (9.6)

~The substitution of the relationship

m m
j§ cj'(s)k,(s)qji(s) = j:}__'; c.\i(s)kj(s)qu(s) (9.7
into equation 8.5 gives the following alternative exprassion for hy(sk
1 "m
his) = ——— Z g (s)k (s)q sk, (s) = q.{s) + Z ;i (sk: (s)q i(sV/k;(s) (9.8
' S cpls) =1 v " N Y
J#l

Equations 95 and 9.8 are équivalent to the inductively .erived equations (5.18)
of Kuon (1975) However the normalization of the return difference matrix used
by Kuon is unnecessary and in equation (5.18e) the transpose sign should be.
removed. ) ' : ' .

Note also, the above hils) is different from the hi(s) introduced by
Rosenbrock (1972). Rosenbrock used his) as the transfer function between the

i'th input and the i'th output with loops 1,..i—1 ¢losed and ioops i...m open.
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8.2 Appendix B. Cofactor equivalence.

Cn this appendix it is shown, that the ratio of cofactors of the return
difference matrix Fis) approach the corresponding ratio of cofactors of the
compensated plant transfer function matrix Q(s) in the limit of high feedback
gains.

2 x 2 system: Consider the matrices Q(s) and F(s) for a 2 x 2 system
q q 1 + kqqg k29
1 42] Fis) = 441 K394y Q9]

Q(s) = : .
K4 Qaq 1+ KkaQan

921 9aa

with the foliowing ratios of cofactors respectively

Y12 ~92;/Qaa, Pra = kyQu /1 + kaQaa,) (8.10)
Wa = ~Qna /qw B21 = ~kyG0a /(1 + kyqyy) 8.1

Hence, if k = ky = k,, and kee then :
im  $ =V lim gy = Yay (8.12)

3 x 3 system: Consider the ratios of cofactors of element (1,2) of a 3 x 3

system. These are respectively

_ 921933 ~ 9a3 919

Y, ©.13)
Q22933 ~ Qz;qu-:
and
' b, - Kek3(GayQay - 9239y, ) + kyqy,  ©1a)
u - .
SR kakal@azday = Qa3Qsa) + 1 + KyGap + kaQas
Hence, if k = kg = Ky = ky. and k= then
im @, = Yia : , (9.15)

k ~>eo
and similarly for the other cofactor ratios.

m x m system: Let Ko = ki, and koew then in the ratio of cofactors of | +
kiQ only those elements with k™*' a5 & common factor will not vanish in the

limit, but those elements are exactly the ratio of cofactors of kIQ. However,
*
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the ratio of cofactors of klQ and Q are identical, since the minors of kI

cance! out
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9.3 Appendix C. Proof of theorems 3.1 and 3.3,

In this appendix proofs are given of theorems 3.1 d 33 of chapter 3
Proof of theorem 3.1: Let A = [au} be the companion matrix of Q, then
according to the definition of matrix dominance A is an M-matrix, and
according to theorem 4.3 of Fiedier and Ptak (1962) there exist a diagonal
matrix D = diag{d} with d; > O for al i such that AD is row diagorflly

dominant, i.e for i = 1,.m

m.
laid; > ;51 layid; | 9.16)
i#i

This impiies that

.

m .
Iqh-l > Zlqul(dj/d;) 9.17)

=1

JEd

. The lafe inequality implies D~1QD is row diagonally dominant This proves the

theorem. -

Proof of theorem 3.3: Diagonal dominance of D~YQD implies, that for i =

m .
gl > Z Igylidy/dy) (9.18)
‘ =1 J
j#i

for column diagonal dominance, and
m
lqg > ?_}1 lqﬁl(dj/d‘) L 8.19)
oo ‘ '
for row diagonal dominance. These are equivalent to respectively

' m
lqgi(1/d) - j2=1'1 Igit1/d)) > 0 , . (8.20)

J#H
and
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m
lagid; - j§1 Iquld >0 (8.21)

J#i

Now let x* = fq, . ;...d, ¥ and yt = {1/dy.... 10,1743 Then inequalities

820 and 921 can be rewritten as
' (9.22)

o

(9.23)

amon @atnx of Q Since Q is row (column) diagonally

S

déminant, ‘then . AL . tc\)

is an M-matrix (or a matrix of class K), and a solution y
(x) to inequalities 922 and 9.23 always exist (theorem 4.3 of Fiedier and Ptak
(1962).. The sought matrix D is then the matrix with the elements of y (x) as

diagonal elements and the duality theorem is proven.
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«

9.4 Appendix D. Nyquist contours and sncirciements.

In this appendix the modified Nyquist contours in the s-plane, z-plane
and w-plane are described and the mapping of a pure integrator is described
in the three planes.

The Nyquist contour in the s—plane. shown in figure 92 and consisting
of the imaginary axis and a large semicircle in the right half plane, must be
modified if the system has poles on the imaginary axis. The modified Nyquist
contour in the s—plane consist of a large semicircle in the right haif plane and
the imagina;'y axis with smail semicircles around the poles on the axis. The
small semicircles can be drawn either to the right o to the left of the
imaginary axis, thus giving rise to the two different modified Nyquist contours
shown in figure 9.3 The contour in figure 9.3a with small semicircles to the
right of 'the imaginary axis is known as the open right half plane Nyquist
contour, 'D,, and the contour in figure 9.3b with small semicircles to the left
of the imaginary axis is known as the Closed right half plane Nyquist contour,
Da. The modific:;tion of the Nyquist contour is necessary for the contour to
remain closed and the mapping of the contour to remain conformal, when the
mapping function has poles on the imaginary axis. Conformality of the mappipg
IS necessary to allow counting of encirclements.

The contours in the z~plane, D, and D,:, are shown in figure 94 By
the transformation z = e‘T, whare T is the sample time, the positive imaginary
axis is mapped onto the uppar semicircle, the negative imaginary axis is mapped
onto the lower semicircle, and the large right half‘ plane semicircle is mapped
onto a large circle in the z~plane. The contours are closed by a cut from
(-1.0) to (-==0) along the Hnegative real axis. Mathematically the large semicircie i
‘the s-plane and the cut and the large circle in the z-plane represents the point

at infinity. .

The Nygquist contoursh"‘fh the w-plane , D,' and D;, are shown in figure
95. These contours represent the mapping of Dy and D, by the bilinear trans-

formation z = (1+w)/(1~-w). The unit circle is mapped onto the imaginary axis,

v
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Figure 9.4 Modified Nyquist contours in the z-plane. a)
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)
the (-1,0) point is mapped onto the point at infinity, the cut along the negative
real axis is mapped onty 8 /cut along the positive real axis ‘from («q0) to (1.0).
The contours are closed by two [Quartercircles representing ‘the point at infinity.
'.The use of the different modified Nyquist contours s illustrated by
considering a pure integrator. The mappings of Dy and D=l by the continuous
transfer function Gis) = 1/s are shown in figure 9.6. As expected the mapping
of . Dy gives zero encirclementse and the mapping of D, gives one enCIrclement
of the origin and the point (-1,0) The discrete mtegrator, or the z-transform
of G (sIGls) = (1-e T'>/s", is Glz) = T/(z—l) The mappings of p! and Dy are
shown in figure 9.7. Agam the mapping of D, gives zero encirclements and the
mapping of Da. gives one encirclement of the origin and thé point (-1
However, this re#ult hinges on the careful mapping of the cut aloﬁ‘é the
negative r.eal axis. .Offen G(z) is subjected i~ a biline(‘ transformation 2z =
(1+w)/(1-w) béfore mapping of the Ny.ust . atour. With this transformation
Glz) becomes Giw) = ~T/2 + T/2w. The mappirzgs of D and D; by Giw) are
showh in figure ‘9.8. These are identica to those in figure 9? due to the
mapping of the cut along the positive real axis. This shows it is crucial for

the correct encirclement result to be obtained, that the contours D or D,& be

used, and not D, or D,, when bilinear transformed systems are considered
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Figure 896 Mappings of D, and D, by Gis) = 1/s
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Figure 9.8 Mappings of D and Dy by Gw) = -T/2 + T/2w
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§.5 Appendix E. Proof of theorem 4.1.

In this appendix a proof is given of theorem 4.1 of 'chapter 4
A%

Proof of theorem 4.1: Let cifs) be the cofactor of element (ijl of the return
difference matrix F(s). From equation 95 of appendix A :

IF(sH ”
1+kiishhys) = (9.24)
» c;ls) ®
hence

m “ Fen ™1
T (+klsihyish = f———HF(s)i ; 18.25)
i=1 m C

77 c..{s ~"\‘

’=1 " .;1 <o

Since F(s} is matrix dominant, by theorem 3.1 the “mapping éf the »Ny@ist

D-contour by the determinant IF(s)l gives the same number of encirclements of

the origin as the sum of encirciements in the mapping of O by the diagor:al
elements f.is) of Fi(s) Let the mapp'ing of D by f"; ~encircle the origin n;;
times clockwise, then the mapping of D by lF(s)l""1 ﬂ give rise to Nq,
clockwise encirclements of the origin, with '
’ m .
Nyg = (m-1)i§ N ) (8.26)

Since the minors of the diagonal elements of the matrix Fi(s) and the diagonally
dominant matrix D(s)™F(sD(s) (with Dis) = diag{dysi3. dfs) > 0) are the same,
the mapping of D by c.is) gives the following number of clockwise

(N}
encirclements of the origin

m T
m.= 2 .n.. : 9.27)
d =M : :
i#) v
So the mapping of D by 771 c;(s) will give the following number of
s .

-

encirclements:

1}

\
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m m m
n'fz ~j§1 2"1 N = (m=1) i§l N . {9.28)

Therefore Nyy = Nyy. and by the principle of the argumeni_the net number df
encirclements be the quantity in the square bracket in equation 925 is zero.
Hence the number ofl encirclements of the critical point (-1,0) by the mapping
of D by kilsihs(s) . i = 1,...m is equal to the number of encirclements of the
origin .\by the mapping of p- b’i’?fﬁ(s\’f\’ provided F(s) is matrix dominant This

proves the theorem.



