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Abstract—This paper details recent advancements made to the 

control architecture of a 1:8 scaled multi-wheeled combat 

vehicle capable of eight-wheel drive and eight-wheel steer. 

The vehicle was previously developed to be used as a platform 

for autonomous navigation research with an autonomous 

parking algorithm being proposed and applied to the vehicle. 

Currently, a hybrid remote control system was developed to 

coexist alongside the existing hardware and autonomous 

software. The enhancements provide additional functionality 

during non-autonomous testing of the vehicle. Furthermore, 

these updates also reflect the networked vehicle architecture of 

next generation combat vehicles as seen in North Atlantic 

Treaty Organization Standardization agreements. 

Keywords-military vehicles, steering configuration, 8x8, 

Ackermann 

I.  INTRODUCTION  

At present, the automotive industry is in a widespread 

transition to designing vehicles with more sophisticated 

electronics and autonomous capabilities. Advances attributed 

to this are responsible for enhanced safety by using sensors 

that automate select tasks involved with driving [1]. Examples 

of this include blind spot detection [2] and automated lane 

change assistance [3] resulting in the bridging together of the 

fields of automotive engineering and mobile robotics. The vast 

majority of the existing literature in this field involves the 

application of algorithms and other control methods towards 

passenger vehicles or similarly constructed mobile robots [4]. 

As such there is a wide array of experimental research 

involving robots composed of four wheels and two axles 

[5,6,7]. To highlight some studies in this field, Blok et al. [8] 

use a four wheel, differential drive robot for navigation within 

an apple orchard and Peterson et al. [9] use a similarly 

constructed robot for exploring environments to find harmful 

radiation. 

However, an area where increased investigation is required 

concerns mobile robots used for military purposes, 

commercial transport and other heavy vehicles. These types of 

vehicles are traditionally used in environments composed of 

rugged or uneven terrain while simultaneously carrying 

substantial loads. In order to satiate these requirements, these 

vehicles are usually constructed with arrangements utilising 6 

or more wheels alongside additional axles which causes 

additional complexity [10]. In order to address this gap in the 

literature a 1:8 Scaled Electric Combat Vehicle (SECV) 

utilising eight-wheels has been constructed which will be used 

for future autonomous testing.  

The SECV is a 1:8 scaled model of an 8x8 combat vehicle. 
The SECV can be seen in Figure 1. The SECV has several 
unique characteristics including complete independent eight-
wheel (8x8) drive due to each wheel being connected to a 
dedicated motor. In addition, each wheel can be assigned its 
own steering angle value and be independently steered 
allowing for eight-wheel steer. As such, several steering 
configurations using various combinations of the axles and 
wheels are possible for varying levels of turn accuracy. The 
steering capabilities of the vehicle conform to the Ackermann 
Steering Criterion [12] which is a relationship between the 
steering angles of the inner and outer wheels of a vehicle when 
navigating a turn 

 

Figure 1.  Side View of SECV 

In addition, in order to facilitate autonomous motion on the 

SECV has been outfitted with several sensors, including: a 



   

RPLIDAR Laser Scanning Sensor [13], AMT10 Rotary 

Encoders [14] and a UM7-LT orientation sensor [15]. Robot 

Operating System (ROS), an open source software 

environment is used to develop autonomous software and will 

be used for future autonomous development of the SECV [16]. 

ROS operates using node-based communication methods. In 

this case different robot components including both hardware 

and software are symbolized as nodes denoting executable 

files. ROS is heavily used in research and industry both for 

practical real-world applications and simulation [17]. Using 

these hardware and software components, a two stage 

autonomous parking algorithm, allowing the vehicle to locate 

a predetermined parking and successfully orient itself in the 

parking location was developed in 2021 and can be seen in 

Hao et al. [18].  

Simultaneously occurring with the shift towards 

autonomous navigation technologies, sophisticated vehicle 

electronics are becoming more prevalent in full sized military 

and heavy vehicles. These electronics can include devices 

such as digital controllers, observation devices or other 

sensors. The continued improvement of digital electronics has 

also allowed a shift away from analog systems to digital 

systems capable of communicating with other electronics. 

These two factors have resulted in the implementation of 

standardization in the design of next generation combat 

vehicles regarding communication of vehicle electronics 

systems. One such organization producing the latest standards 

in this field include: the North American Treaty Organization 

(NATO) who have released the standard, NATO Generical 

Vehicle Architecture (NGVA) for land systems[19]. 

As such the current enhancements to the 8x8 SECV will 
focus on redesigning the remote-control architecture, as well as 
ensuring the architecture will mimic communication 
architecture standards that will appear on the next generation of 
armored vehicles. Thus, the main objectives of this work 
include ensuring communication between all devices 
(controllers, and sensors), addition of a remote-control system 
for non-autonomous use, testing capability of the steering 
configurations of the SECV and finally this work will also 
allow the vehicle to receive steering commands for 
autonomous operation and future autonomous work 

II. BACKGROUND 

Prior to the undertaking of current research on the SECV, 

the vehicle had limited autonomous navigation capability 

through the use of ROS. The SECV was able to perform a 

parking maneuver at low speed in a known environment [18]. 

All low-level control of the vehicle was handled through one 

set of controllers assigned for the steering actuators and one 

set of controllers assigned for the motors. The steering system 

involved using 2 Arduino Mega micro-controllers with each 

micro-controller responsible for 4 steering actuators. The drive 

system involved 4 Roboteq motor controllers with each 

controller responsible for driving two wheels.  

The steering micro-controllers had identical programming 

that received commands from ROS via Universal Serial Bus 

(USB). ROS functions as a network of software “nodes” that 

process and publish data from locations known as “topics”. 

Each node may be thought of as a black box integrated 

controller with its own specific functionality that may be 

modified. Topics may be thought of as a public bulletin board 

that nodes can subscribe to for information, and publish data 

to. Each topic can only contain one type of information. An 

example of how the motor controller operates in ROS can be 

seen in Figure 2. 

 

Figure 2.  ROS Communication Example 

The calculation for required steering angles, involves 

finding the correct steering angles according to Ackerman All 

Wheel Steering equations seen in the following sections of this 

paper. Each Arduino controller had a motor shield attached 

that was used to control the lengths of four actuators after the 

calculations were completed. To achieve direction and speed 

control, the four Roboteq motor controllers were connected  

through serial communication with one acting as a master 

controller. The master controller receives velocity commands 

via a USB connection to the laptop, and transmits these 

commands to other controllers. Each controller is capable of 

controlling two motors under closed loop speed control. 

Finally, a major drawback of the SECV overall is that it could 

not be operated without initializing ROS on the laptop. In 

addition, the vehicle was only able to steer using all four axles 

and no other steering configuration and unable to switch 

between configurations during operation.  

III. IMPLEMENTATION 

To achieve the objectives of: remote control addition, 

device communication and addition of the ability to test all 

steering configurations several major changes were applied to 

the vehicle. The work was completed in two main phases 

detailed in the following sections. 

A. Phase A Modifications 

The primary objective of the first phase was to remove the 

need for an additional outside laptop and re-design the system 

to accept both ROS autonomous input and remote-control 

input from a human user. The major modifications include 

implementation of a Futaba T8J remote control system and 

changes to the steering code to allow for multiple steering 

configurations as seen in the Results section. The modification 



   

used serial communication to receive the Futaba remote 

control systems commands. Code for the Arduino controllers 

allowed them to receive commands from the Futaba system’s 

wireless receiver via serial communication, and steer the axles 

accordingly. In terms of changes to the hardware, the steering 

controller responsible for the first two axles also received a 

connection to a new RS232 shield. The one steering controller 

was also designated as the front side controller in charge of the 

two front axles and the Roboteq motor controllers. While, the 

other steering controller was designated as the rear controller 

in charge of the two rear axles. The RS232 connection also 

allowed the remote control to connect to the motor controllers, 

allowing for speed control of the motors through the remote 

control. This allowed us to implement the independent remote-

control capability requirement.  

B. Phase B Modifications 

After the conclusion of the phase A modifications, testing 
was carried out on the vehicle using the new remote-control 
system. It was found that the Futaba T8J system was not 
capable of sending consistent signals to the vehicle’s 
controllers causing the steering and motor controllers to behave 
erratically without input from the operator. This can be seen in 
Figure 3 where a graph of the output signals of the remote 
control was taken while no operator input was provided. All 
curves for each channel should have no slope or steps 
indicating no change in controller input, but instead they are 
fluctuating rapidly. This was due to a compatibility issue with 
the frequency at which the remote control was transmitting and 
its associated receiver. It was also found that the front Arduino 
steering controller did not have the processing capability to 
perform all required tasks (steering angle calculations) at the 
required speed due to the frequency of its connection to the 
Roboteq motor controllers. These findings necessitated further 
changes to the remote-control system. 

 

Figure 3.  Sample output from Futaba controller 

The current system is a complete redesign of the control 

architecture reusing the four Roboteq SDC 2130 controllers 

for motor control, and three Arduino Mega 2560 controllers 

linked together with serial communication for steering control. 

One steering controller acts as the master controller, and the 

two remaining steering controllers are slaved to it. The slaved 

steering controllers control the steering actuators according to 

serial commands received from the master through Transistor-

Transistor Logic (TTL) communication. It should be noted 

that the Arduino controllers are only responsible for steering 

control under autonomous control, and the Roboteq motor 

controllers are directly plugged into the Nvidia TX2 computer 

to receive commands from ROS. This system has a built-in 

remote-control system that operates the vehicle independently 

from ROS, and also has the capability to communicate with a 

computer running ROS. This architecture is capable of 

achieving all objectives, and the effect of the modifications 

can be seen in detail in the following sections. 

 
Figure 4.  Final Control Architecture 

IV. RESULTS 

The objective of the work was to develop a new control 

architecture for the 8x8 SECV that included an accurate 

remote control system for testing vehicle capabilities, and 

allowed for communication between onboard electronics for 

remote control and autonomous operation. 

A. Remote Control 

The initial use of a Futaba T8J controller resulted in an 

inconsistent signal received that caused random unmitigable 

stutters on the steering actuators and motor controllers. As a 

result, the Futaba T8J controller was replaced with a Logitech 

USB gaming controller connected to the master Arduino 

controller using a USB host shield, and USBHID Arduino 

library. This change has removed the problems exhibited by 

the Futaba T8J, and allows for accurate control of the vehicle. 

The current control scheme allows the user to control the 

vehicle’s movement at multiple speeds, and select between 

crab or Ackerman multi-axle steering modes. The secondary 

benefit of using the Logitech USB controller is that its output 

may be communicated to other devices compatible with USB 

devices such as the computer running ROS.  



   

B. Control of Steering Actuators 

The steering of the vehicle is accomplished through the use 

of three interconnected Arduino controllers. One of the 

Arduino controllers acts as a master controller that receives 

input from either the remote control or a device running ROS, 

and sends commands to two Arduino controllers slaved to it. 

The master Arduino controller receives high level commands 

on the desired angular changes in direction, and calculates the 

desired angle of all eight wheels based on Ackerman steering 

equations or crab steering angles. The required actuator 

extension for each wheel is calculated, and then sent as packet 

data to the two slaved Arduino controllers through the TTL 

serial connection. Each slaved Arduino board acts as a 

Proportional-Integral-Derivative (PID) controller for four 

actuators through the use of a custom shield that interfaces 

with the actuators, and one motor shield that drives the 

actuators. Each actuator contains a wiper that provides 

feedback to the Arduino controller by generating an analog 

signal that increases with extension length. The analog signals 

are used by the PID control code on the Arduino controller to 

set the power output for their respective actuator. 

One example command is <25,25,25,25> which is a sample 

packet of data sent from master controller to slaved controller 

indicating that all actuators should be extended to 25mm. Each 

packet of data is contained within a “<...>” and contains four 

numbers. The abstracted form of each packet would be 

<L1,R1,L2,R2> where L1 and R1 are the left and right 

actuator extensions for the front axle respectively, and L2 and 

R2 are the left and right actuator extensions for the rear axle 

respectively controlled by the Arduino controller. 

 

Figure 5.  Diagram of Ackerman steering configurations for two axle 

steering, also known as front wheel steer [20] 

The front wheel steering layout illustrated in Figure 5 is 

currently in use with the LAV III series of vehicles as well as 

most other four axled military vehicles in the world. The 

steering controllers use the values  shown in Table 1 to 

calculate the appropriate steering actuator extension for each 

wheel based on a given input. This steering layout is able to 

achieve a minimum turn radius of 1.35m . 

 

Figure 6.  Diagram of Ackerman steering configurations for all wheel or four 

axle steering  [20] 

The all wheel steering layout illustrated in Figure 6 uses all 
wheels to steer the vehicle and has the smallest minimum turn 
radius. The values used by the controller for this steering layout 
are shown in Table II. It has a minimum turn radius of 0.87m 
that is the smallest of all the possible steering configurations. 

 

Figure 7.  Diagram of Ackerman steering configurations for fixed third axle 

steering, (3rd axle is unable to steer) [20] 

The fixed third axle steering layout illustrated in Figure 7 

only steers the axles on the first two axles and rear most axle 

using calculations based on the values in Table III. It is able to 

achieve a minimum turn radius of 1.10m. While the minimum 

turn radius achieved with this steering layout is larger than that 

of all wheel steering, it is also less complex from a design 

perspective as fewer wheels need to be steered. 

 

 
(1) 



   

Equation 1 shows the process for calculating Ackerman 

Steering equation for calculating steering angles of inner and 

outer wheel on an axle. The values are calculated based on 𝜙o, 

the angle of the outer wheel, 𝜙i the angle of the inner wheel, 𝑤 

the track width, and 𝑙 the horizontal distance of the wheel from 

the center of rotation. The steering angles calculated in the 

code are proportional to values calculated for the minimum 

turn radius based off of the diagram in Figure 5, and Equation 

1. As the angle of the inside wheel of the first axle is always 

the highest in every steering configuration, it is always set to 

24.79 degrees of angle and 20.00 mm of extension due to 

limitations of the mechanical system. 

 

C. Control of Steering Actuators 

TABLE I.   FRONT WHEEL STEERING CONFIGURATION 

 Angles (degrees) Extension 

(mm) 

Axle1 Length 

(m) 

Inner Outer Average Inner Outer 

1 0.50 24.79 17.98 21.39 20.00 14.06 

2 0.30 15.34 10.91 13.13 11.88 8.35 

1-The Track width is constant for all axles at 0.46m 

TABLE II.  ALL WHEEL STEERING CONFIGURATION 

 Angles (degrees) Extension 

(mm) 

Axle1 Length 

(m) 

Inner Outer Average Inner Outer 

1 0.30 24.79 15.17 19.98 20.00 11.74 

2 0.10 8.54 5.04 6.79 6.50 3.82 

3 0.10 8.54 5.04 6.79 6.50 3.82 

4 0.30 24.79 15.17 19.98  11.74 

1-The Track width is constant for all axles at 0.46m. 

TABLE III.  FIXED THIRD AXLE STEERING CONFIGURATION 

 Angles (degrees) Extension 

(mm) 

Axle1 Length 

(m) 

Inner Outer Average Inner Outer 

1 0.40 24.79 16.79 20.79 20.00 13.07 

2 0.20 12.77 8.42 10.59 9.81 6.41 

4 0.20 13.25 8.74 11.00 10.19 6.66 

1-The Track width is constant for all axles at 0.46m. 

 

D. Motor Drive Control 

The control of all eight driving motors is achieved through 

the use of four Roboteq SBL 2130 motor controllers that are 

linked together through serial communication connections. 

One of these controllers is designated as a master controller, 

and has authority over the other three controllers. The master 

controller receives Roboteq CANBUS language commands 

through a RS232 protocol serial connection from the master 

Arduino controller during remote control operation, or through 

a USB connection to a computer when under ROS control. 

Each motor is controlled individually using CANBUS 

commands. As an example, @00 !G 100 is a sample command 

sent to controllers indicating 100% output for all motors where 

@00 indicates all motors, !G is the command for power 

output, and 100 is the desired power output value. Use of the 

Roboteq CANBUS commands allows for motors to be 

individually controlled, and it is possible to spin individual 

motors at different outputs or velocities if desired. Each 

controller is connected to its own power source, and is capable 

of controlling two motors each through open loop or closed 

loop control. Closed loop speed control is accomplished by the 

use of a rotary encoder connected to the output shaft of a 

pulley gearbox attached to each motor that provides rotational 

velocity feedback to the controller. These two options allow 

for the torque output or velocity of each wheel to be controlled 

if necessary. 

E. ROS Control 

The master Arduino controller may be connected by USB 

connection to a computer running ROS, and is programmed to 

subscribe to the cmd_vel topic. and receives twist geometry 

messages that contain vector values for the desired yaw of the 

vehicle, and forward movement. These two values are then 

used to calculate the required steering angle for the vehicle to 

follow the path generated in ROS when under autonomous 

operation.  

rostopic pub /mobile_base_controller/cmd_vel 

geometry_msgs/Twist "linear: 

x: 0.5 

y: 0.0 

z: 0.0 

Angular: 

x: 0.0 

y: 0.0 

z: 0.0" 

Sample ROS twist geometry message that is published to 

the cmd_vel topic to move the vehicle forwards. Only the 

linear x value and angular z value are required [3]. At present, 

this code has been tested and it is confirmed that it can receive 



   

input from ROS, but there has been no operational testing of 

the vehicle under ROS control yet. 

V. CONCLUSION 

In conclusion, the current architecture allows for the vehicle 
to meet the objectives required for the vehicle to be used for 
future autonomous research. This was accomplished by adding 
hardware such as an additional steering controller, creating a 
network of controllers linked with serial communication, and 
writing new code for the three Arduino steering controllers. 

In comparison, previous versions of the 8x8 SECV’s 
control required additional peripheral devices such as a laptop 
as the initial architecture could only function with a laptop 
running ROS connected. Furthermore, the SECV did not have 
remote control functionality. The second iteration of the 
architecture had remote control functionality that performed 
erratically due to an incompatible remote-control system, and 
could not receive ROS commands. Under the second phase of 
modifications the architecture involved each Arduino controller 
functioned independently, and the front Arduino controller did 
not have the processing capability required to function 
properly. Neither control architectures had the capability for 
serial communication between the Arduino controllers. As a 
result of the control architecture upgrade, the processing and 
steering control tasks are distributed between three Arduino 
controllers resulting in a reduced computing load for each 
controller. The master Arduino controller is now only 
responsible for the reception and processing of high-level 
commands, and transmitting commands to the slaved 
controllers. The serial communication network allows for data 
to be communicated between all of the controllers, and will 
allow for future expansion by allowing the steering controllers 
to be used as input or output ports for additional equipment if 
necessary. 

Future development of the SECV should entail refining the 
control system’s programming and hardware. While testing to 
see if the vehicle is able to receive input from ROS has been 
successful, operational testing has not yet been conducted with 
the vehicle under ROS control. It would also be desirable for 
all of the Arduino microcontrollers to be placed onto a custom 
printed circuit board with all of the shields integrated to reduce 
the wiring complexity in the vehicle. 
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