

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2022

CSME Congress 2022

June 5-8, 2022, Edmonton, AB, Canada

CONTROL ARCHITECTURE DEVELOPMENT OF AN 8X8 SCALED ELECTRIC
COMBAT VEHICLE

Jonathan Tse1, Michael Peiris1*, Moustafa El-Gindy1, Zeinab El-Sayegh
1Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Canada

*michael.peiris@ontariotechu.net

Abstract—This paper details recent advancements made to the

control architecture of a 1:8 scaled multi-wheeled combat

vehicle capable of eight-wheel drive and eight-wheel steer.

The vehicle was previously developed to be used as a platform

for autonomous navigation research with an autonomous

parking algorithm being proposed and applied to the vehicle.

Currently, a hybrid remote control system was developed to

coexist alongside the existing hardware and autonomous

software. The enhancements provide additional functionality

during non-autonomous testing of the vehicle. Furthermore,

these updates also reflect the networked vehicle architecture of

next generation combat vehicles as seen in North Atlantic

Treaty Organization Standardization agreements.

Keywords-military vehicles, steering configuration, 8x8,

Ackermann

I. INTRODUCTION

At present, the automotive industry is in a widespread

transition to designing vehicles with more sophisticated

electronics and autonomous capabilities. Advances attributed

to this are responsible for enhanced safety by using sensors

that automate select tasks involved with driving [1]. Examples

of this include blind spot detection [2] and automated lane

change assistance [3] resulting in the bridging together of the

fields of automotive engineering and mobile robotics. The vast

majority of the existing literature in this field involves the

application of algorithms and other control methods towards

passenger vehicles or similarly constructed mobile robots [4].

As such there is a wide array of experimental research

involving robots composed of four wheels and two axles

[5,6,7]. To highlight some studies in this field, Blok et al. [8]

use a four wheel, differential drive robot for navigation within

an apple orchard and Peterson et al. [9] use a similarly

constructed robot for exploring environments to find harmful

radiation.

However, an area where increased investigation is required

concerns mobile robots used for military purposes,

commercial transport and other heavy vehicles. These types of

vehicles are traditionally used in environments composed of

rugged or uneven terrain while simultaneously carrying

substantial loads. In order to satiate these requirements, these

vehicles are usually constructed with arrangements utilising 6

or more wheels alongside additional axles which causes

additional complexity [10]. In order to address this gap in the

literature a 1:8 Scaled Electric Combat Vehicle (SECV)

utilising eight-wheels has been constructed which will be used

for future autonomous testing.

The SECV is a 1:8 scaled model of an 8x8 combat vehicle.
The SECV can be seen in Figure 1. The SECV has several
unique characteristics including complete independent eight-
wheel (8x8) drive due to each wheel being connected to a
dedicated motor. In addition, each wheel can be assigned its
own steering angle value and be independently steered
allowing for eight-wheel steer. As such, several steering
configurations using various combinations of the axles and
wheels are possible for varying levels of turn accuracy. The
steering capabilities of the vehicle conform to the Ackermann
Steering Criterion [12] which is a relationship between the
steering angles of the inner and outer wheels of a vehicle when
navigating a turn

Figure 1. Side View of SECV

In addition, in order to facilitate autonomous motion on the

SECV has been outfitted with several sensors, including: a

RPLIDAR Laser Scanning Sensor [13], AMT10 Rotary

Encoders [14] and a UM7-LT orientation sensor [15]. Robot

Operating System (ROS), an open source software

environment is used to develop autonomous software and will

be used for future autonomous development of the SECV [16].

ROS operates using node-based communication methods. In

this case different robot components including both hardware

and software are symbolized as nodes denoting executable

files. ROS is heavily used in research and industry both for

practical real-world applications and simulation [17]. Using

these hardware and software components, a two stage

autonomous parking algorithm, allowing the vehicle to locate

a predetermined parking and successfully orient itself in the

parking location was developed in 2021 and can be seen in

Hao et al. [18].

Simultaneously occurring with the shift towards

autonomous navigation technologies, sophisticated vehicle

electronics are becoming more prevalent in full sized military

and heavy vehicles. These electronics can include devices

such as digital controllers, observation devices or other

sensors. The continued improvement of digital electronics has

also allowed a shift away from analog systems to digital

systems capable of communicating with other electronics.

These two factors have resulted in the implementation of

standardization in the design of next generation combat

vehicles regarding communication of vehicle electronics

systems. One such organization producing the latest standards

in this field include: the North American Treaty Organization

(NATO) who have released the standard, NATO Generical

Vehicle Architecture (NGVA) for land systems[19].

As such the current enhancements to the 8x8 SECV will
focus on redesigning the remote-control architecture, as well as
ensuring the architecture will mimic communication
architecture standards that will appear on the next generation of
armored vehicles. Thus, the main objectives of this work
include ensuring communication between all devices
(controllers, and sensors), addition of a remote-control system
for non-autonomous use, testing capability of the steering
configurations of the SECV and finally this work will also
allow the vehicle to receive steering commands for
autonomous operation and future autonomous work

II. BACKGROUND

Prior to the undertaking of current research on the SECV,

the vehicle had limited autonomous navigation capability

through the use of ROS. The SECV was able to perform a

parking maneuver at low speed in a known environment [18].

All low-level control of the vehicle was handled through one

set of controllers assigned for the steering actuators and one

set of controllers assigned for the motors. The steering system

involved using 2 Arduino Mega micro-controllers with each

micro-controller responsible for 4 steering actuators. The drive

system involved 4 Roboteq motor controllers with each

controller responsible for driving two wheels.

The steering micro-controllers had identical programming

that received commands from ROS via Universal Serial Bus

(USB). ROS functions as a network of software “nodes” that

process and publish data from locations known as “topics”.

Each node may be thought of as a black box integrated

controller with its own specific functionality that may be

modified. Topics may be thought of as a public bulletin board

that nodes can subscribe to for information, and publish data

to. Each topic can only contain one type of information. An

example of how the motor controller operates in ROS can be

seen in Figure 2.

Figure 2. ROS Communication Example

The calculation for required steering angles, involves

finding the correct steering angles according to Ackerman All

Wheel Steering equations seen in the following sections of this

paper. Each Arduino controller had a motor shield attached

that was used to control the lengths of four actuators after the

calculations were completed. To achieve direction and speed

control, the four Roboteq motor controllers were connected

through serial communication with one acting as a master

controller. The master controller receives velocity commands

via a USB connection to the laptop, and transmits these

commands to other controllers. Each controller is capable of

controlling two motors under closed loop speed control.

Finally, a major drawback of the SECV overall is that it could

not be operated without initializing ROS on the laptop. In

addition, the vehicle was only able to steer using all four axles

and no other steering configuration and unable to switch

between configurations during operation.

III. IMPLEMENTATION

To achieve the objectives of: remote control addition,

device communication and addition of the ability to test all

steering configurations several major changes were applied to

the vehicle. The work was completed in two main phases

detailed in the following sections.

A. Phase A Modifications

The primary objective of the first phase was to remove the

need for an additional outside laptop and re-design the system

to accept both ROS autonomous input and remote-control

input from a human user. The major modifications include

implementation of a Futaba T8J remote control system and

changes to the steering code to allow for multiple steering

configurations as seen in the Results section. The modification

used serial communication to receive the Futaba remote

control systems commands. Code for the Arduino controllers

allowed them to receive commands from the Futaba system’s

wireless receiver via serial communication, and steer the axles

accordingly. In terms of changes to the hardware, the steering

controller responsible for the first two axles also received a

connection to a new RS232 shield. The one steering controller

was also designated as the front side controller in charge of the

two front axles and the Roboteq motor controllers. While, the

other steering controller was designated as the rear controller

in charge of the two rear axles. The RS232 connection also

allowed the remote control to connect to the motor controllers,

allowing for speed control of the motors through the remote

control. This allowed us to implement the independent remote-

control capability requirement.

B. Phase B Modifications

After the conclusion of the phase A modifications, testing
was carried out on the vehicle using the new remote-control
system. It was found that the Futaba T8J system was not
capable of sending consistent signals to the vehicle’s
controllers causing the steering and motor controllers to behave
erratically without input from the operator. This can be seen in
Figure 3 where a graph of the output signals of the remote
control was taken while no operator input was provided. All
curves for each channel should have no slope or steps
indicating no change in controller input, but instead they are
fluctuating rapidly. This was due to a compatibility issue with
the frequency at which the remote control was transmitting and
its associated receiver. It was also found that the front Arduino
steering controller did not have the processing capability to
perform all required tasks (steering angle calculations) at the
required speed due to the frequency of its connection to the
Roboteq motor controllers. These findings necessitated further
changes to the remote-control system.

Figure 3. Sample output from Futaba controller

The current system is a complete redesign of the control

architecture reusing the four Roboteq SDC 2130 controllers

for motor control, and three Arduino Mega 2560 controllers

linked together with serial communication for steering control.

One steering controller acts as the master controller, and the

two remaining steering controllers are slaved to it. The slaved

steering controllers control the steering actuators according to

serial commands received from the master through Transistor-

Transistor Logic (TTL) communication. It should be noted

that the Arduino controllers are only responsible for steering

control under autonomous control, and the Roboteq motor

controllers are directly plugged into the Nvidia TX2 computer

to receive commands from ROS. This system has a built-in

remote-control system that operates the vehicle independently

from ROS, and also has the capability to communicate with a

computer running ROS. This architecture is capable of

achieving all objectives, and the effect of the modifications

can be seen in detail in the following sections.

Figure 4. Final Control Architecture

IV. RESULTS

The objective of the work was to develop a new control

architecture for the 8x8 SECV that included an accurate

remote control system for testing vehicle capabilities, and

allowed for communication between onboard electronics for

remote control and autonomous operation.

A. Remote Control

The initial use of a Futaba T8J controller resulted in an

inconsistent signal received that caused random unmitigable

stutters on the steering actuators and motor controllers. As a

result, the Futaba T8J controller was replaced with a Logitech

USB gaming controller connected to the master Arduino

controller using a USB host shield, and USBHID Arduino

library. This change has removed the problems exhibited by

the Futaba T8J, and allows for accurate control of the vehicle.

The current control scheme allows the user to control the

vehicle’s movement at multiple speeds, and select between

crab or Ackerman multi-axle steering modes. The secondary

benefit of using the Logitech USB controller is that its output

may be communicated to other devices compatible with USB

devices such as the computer running ROS.

B. Control of Steering Actuators

The steering of the vehicle is accomplished through the use

of three interconnected Arduino controllers. One of the

Arduino controllers acts as a master controller that receives

input from either the remote control or a device running ROS,

and sends commands to two Arduino controllers slaved to it.

The master Arduino controller receives high level commands

on the desired angular changes in direction, and calculates the

desired angle of all eight wheels based on Ackerman steering

equations or crab steering angles. The required actuator

extension for each wheel is calculated, and then sent as packet

data to the two slaved Arduino controllers through the TTL

serial connection. Each slaved Arduino board acts as a

Proportional-Integral-Derivative (PID) controller for four

actuators through the use of a custom shield that interfaces

with the actuators, and one motor shield that drives the

actuators. Each actuator contains a wiper that provides

feedback to the Arduino controller by generating an analog

signal that increases with extension length. The analog signals

are used by the PID control code on the Arduino controller to

set the power output for their respective actuator.

One example command is <25,25,25,25> which is a sample

packet of data sent from master controller to slaved controller

indicating that all actuators should be extended to 25mm. Each

packet of data is contained within a “<...>” and contains four

numbers. The abstracted form of each packet would be

<L1,R1,L2,R2> where L1 and R1 are the left and right

actuator extensions for the front axle respectively, and L2 and

R2 are the left and right actuator extensions for the rear axle

respectively controlled by the Arduino controller.

Figure 5. Diagram of Ackerman steering configurations for two axle

steering, also known as front wheel steer [20]

The front wheel steering layout illustrated in Figure 5 is

currently in use with the LAV III series of vehicles as well as

most other four axled military vehicles in the world. The

steering controllers use the values shown in Table 1 to

calculate the appropriate steering actuator extension for each

wheel based on a given input. This steering layout is able to

achieve a minimum turn radius of 1.35m .

Figure 6. Diagram of Ackerman steering configurations for all wheel or four

axle steering [20]

The all wheel steering layout illustrated in Figure 6 uses all
wheels to steer the vehicle and has the smallest minimum turn
radius. The values used by the controller for this steering layout
are shown in Table II. It has a minimum turn radius of 0.87m
that is the smallest of all the possible steering configurations.

Figure 7. Diagram of Ackerman steering configurations for fixed third axle

steering, (3rd axle is unable to steer) [20]

The fixed third axle steering layout illustrated in Figure 7

only steers the axles on the first two axles and rear most axle

using calculations based on the values in Table III. It is able to

achieve a minimum turn radius of 1.10m. While the minimum

turn radius achieved with this steering layout is larger than that

of all wheel steering, it is also less complex from a design

perspective as fewer wheels need to be steered.

(1)

Equation 1 shows the process for calculating Ackerman

Steering equation for calculating steering angles of inner and

outer wheel on an axle. The values are calculated based on 𝜙o,

the angle of the outer wheel, 𝜙i the angle of the inner wheel, 𝑤

the track width, and 𝑙 the horizontal distance of the wheel from

the center of rotation. The steering angles calculated in the

code are proportional to values calculated for the minimum

turn radius based off of the diagram in Figure 5, and Equation

1. As the angle of the inside wheel of the first axle is always

the highest in every steering configuration, it is always set to

24.79 degrees of angle and 20.00 mm of extension due to

limitations of the mechanical system.

C. Control of Steering Actuators

TABLE I. FRONT WHEEL STEERING CONFIGURATION

 Angles (degrees) Extension

(mm)

Axle1 Length

(m)

Inner Outer Average Inner Outer

1 0.50 24.79 17.98 21.39 20.00 14.06

2 0.30 15.34 10.91 13.13 11.88 8.35

1-The Track width is constant for all axles at 0.46m

TABLE II. ALL WHEEL STEERING CONFIGURATION

 Angles (degrees) Extension

(mm)

Axle1 Length

(m)

Inner Outer Average Inner Outer

1 0.30 24.79 15.17 19.98 20.00 11.74

2 0.10 8.54 5.04 6.79 6.50 3.82

3 0.10 8.54 5.04 6.79 6.50 3.82

4 0.30 24.79 15.17 19.98 11.74

1-The Track width is constant for all axles at 0.46m.

TABLE III. FIXED THIRD AXLE STEERING CONFIGURATION

 Angles (degrees) Extension

(mm)

Axle1 Length

(m)

Inner Outer Average Inner Outer

1 0.40 24.79 16.79 20.79 20.00 13.07

2 0.20 12.77 8.42 10.59 9.81 6.41

4 0.20 13.25 8.74 11.00 10.19 6.66

1-The Track width is constant for all axles at 0.46m.

D. Motor Drive Control

The control of all eight driving motors is achieved through

the use of four Roboteq SBL 2130 motor controllers that are

linked together through serial communication connections.

One of these controllers is designated as a master controller,

and has authority over the other three controllers. The master

controller receives Roboteq CANBUS language commands

through a RS232 protocol serial connection from the master

Arduino controller during remote control operation, or through

a USB connection to a computer when under ROS control.

Each motor is controlled individually using CANBUS

commands. As an example, @00 !G 100 is a sample command

sent to controllers indicating 100% output for all motors where

@00 indicates all motors, !G is the command for power

output, and 100 is the desired power output value. Use of the

Roboteq CANBUS commands allows for motors to be

individually controlled, and it is possible to spin individual

motors at different outputs or velocities if desired. Each

controller is connected to its own power source, and is capable

of controlling two motors each through open loop or closed

loop control. Closed loop speed control is accomplished by the

use of a rotary encoder connected to the output shaft of a

pulley gearbox attached to each motor that provides rotational

velocity feedback to the controller. These two options allow

for the torque output or velocity of each wheel to be controlled

if necessary.

E. ROS Control

The master Arduino controller may be connected by USB

connection to a computer running ROS, and is programmed to

subscribe to the cmd_vel topic. and receives twist geometry

messages that contain vector values for the desired yaw of the

vehicle, and forward movement. These two values are then

used to calculate the required steering angle for the vehicle to

follow the path generated in ROS when under autonomous

operation.

rostopic pub /mobile_base_controller/cmd_vel

geometry_msgs/Twist "linear:

x: 0.5

y: 0.0

z: 0.0

Angular:

x: 0.0

y: 0.0

z: 0.0"

Sample ROS twist geometry message that is published to

the cmd_vel topic to move the vehicle forwards. Only the

linear x value and angular z value are required [3]. At present,

this code has been tested and it is confirmed that it can receive

input from ROS, but there has been no operational testing of

the vehicle under ROS control yet.

V. CONCLUSION

In conclusion, the current architecture allows for the vehicle
to meet the objectives required for the vehicle to be used for
future autonomous research. This was accomplished by adding
hardware such as an additional steering controller, creating a
network of controllers linked with serial communication, and
writing new code for the three Arduino steering controllers.

In comparison, previous versions of the 8x8 SECV’s
control required additional peripheral devices such as a laptop
as the initial architecture could only function with a laptop
running ROS connected. Furthermore, the SECV did not have
remote control functionality. The second iteration of the
architecture had remote control functionality that performed
erratically due to an incompatible remote-control system, and
could not receive ROS commands. Under the second phase of
modifications the architecture involved each Arduino controller
functioned independently, and the front Arduino controller did
not have the processing capability required to function
properly. Neither control architectures had the capability for
serial communication between the Arduino controllers. As a
result of the control architecture upgrade, the processing and
steering control tasks are distributed between three Arduino
controllers resulting in a reduced computing load for each
controller. The master Arduino controller is now only
responsible for the reception and processing of high-level
commands, and transmitting commands to the slaved
controllers. The serial communication network allows for data
to be communicated between all of the controllers, and will
allow for future expansion by allowing the steering controllers
to be used as input or output ports for additional equipment if
necessary.

Future development of the SECV should entail refining the
control system’s programming and hardware. While testing to
see if the vehicle is able to receive input from ROS has been
successful, operational testing has not yet been conducted with
the vehicle under ROS control. It would also be desirable for
all of the Arduino microcontrollers to be placed onto a custom
printed circuit board with all of the shields integrated to reduce
the wiring complexity in the vehicle.

REFERENCES

[1] O. Saeed Asadi Bagloee Madjid Tavana Mohsen Asadi Tracey,

"Autonomous vehicles： challenges, opportunities, and future

implications for transportation policies," Journal of modern

transportation, vol. 24, no. 4, pp. 284-303, 2016.

[2] N. De Raeve, M. de Schepper, J. Verhaevert, P. Van Torre, and H.
Rogier, "A Bluetooth-Low-Energy-Based Detection and Warning

System for Vulnerable Road Users in the Blind Spot of Vehicles,"

Sensors (Basel, Switzerland), vol. 20, no. 9, p. 2727, 2020.

[3] M. Park, S. Lee, M. Kim, J. Lee, and K. Yi, "Integrated differential
braking and electric power steering control for advanced lane-change

assist systems," Proceedings of the Institution of Mechanical Engineers,

Part D: Journal of Automobile Engineering, vol. 229, no. 7, pp. 924-943,

2015.

[4] J. F. Sekaran, H. Kaluvan, and L. Irudhayaraj, "Modeling and Analysis

of GPS–GLONASS Navigation for Car Like Mobile Robot," Journal of

electrical engineering & technology, vol. 15, no. 2, pp. 927-935, 2020.

[5] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal
motion planning," The International Journal of Robotics Research, vol.

30, no. 7, pp. 846-894, 2011.

[6] P. Quillen and K. Subbarao, "Minimum control effort–based path

planning and nonlinear guidance for autonomous mobile robots,"
International journal of advanced robotic systems, vol. 15, no. 6, p.

172988141881263, 2018.

[7] L. Yan and L. Zhao, "AN APPROACH ON ADVANCED

UNSCENTED KALMAN FILTER FROM MOBILE ROBOT-SLAM,"
International archives of the photogrammetry, remote sensing and spatial

information sciences., vol. XLIII-B4-2020, pp. 381-389, 2020.

[8] P. M. Blok, K. van Boheemen, F. K. van Evert, J. Ijsselmuiden, and G.-

H. Kim, "Robot navigation in orchards with localization based on
Particle filter and Kalman filter," Computers and electronics in

agriculture, vol. 157, pp. 261-269, 2019.

[9] J. Peterson, W. Li, B. Cesar‐Tondreau, J. Bird, K. Kochersberger, W.

Czaja, and M. McLean, "Experiments in unmanned aerial
vehicle/unmanned ground vehicle radiation search," Journal of field

robotics, vol. 36, no. 4, pp. 818-845, 2019.

[10] M. El-Gindy and P. D'Urso, "Development of control strategies of a

multi-wheeled combat vehicle," International Journal of Automation and

Control, vol. 12, p. 325, 01/01 2018.

[11] G. D. L. Systems. (2020). Light armoured vehicles (LAV) [Online].

Available: https://www.gdlscanada.com/products.html.

[12] R. F. Carpio, C. Potena, J. Maiolini, G. Ulivi, N. B. Rossello, E. Garone,
and A. Gasparri, "A Navigation Architecture for Ackermann Vehicles in

Precision Farming," IEEE robotics and automation letters, vol. 5, no. 2,

pp. 1102-1109, 2020.

[13] RobotShop. (2020). RPLIDAR A2M8 360° Laser Scanner [Online].
Available: https://www.robotshop.com/ca/en/rplidar-a2m8-360-laser-

scanner.html.

[14] C. Devices. (2020). AMT10 Rotary Encoders [Online]. Available:

https://www.cuidevices.com/product/motion/rotary-

encoders/incremental/modular/amt10-series.

[15] RobotShop. (2020). UM7-LT Orientation Sensor [Online]. Available:

https://www.robotshop.com/ca/en/um7-lt-orientation-sensor.html.

[16] O. S. R. Foundation. (2020, January). ROS, About ROS.

[17] A. Koubaa, Robot Operating Systems (ROS) - The Complete Reference.

Cham: Springer International Publishing AG, 2016.

[18] A. H. Tan, M. Peiris, M. El-Gindy, and H. Lang, "Design and
development of a novel autonomous scaled multiwheeled vehicle,"

Robotica, pp. 1-26, 2021.

[19] NATO GENERIC VEHICLE ARCHITECTURE (NGVA) FOR LAND

SYSTEMS, 2016.

[20] A. Odrigo, El-Gindy, M, "“Application of Optimal Control for Skid
Steering in Future Electric Combat Vehicle," International Journal of

Automation and Control.

