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ABSTRACT

This study explores the feasibility of using hyperspectral data for lithologic 

mapping in the presence of vegetation and lichens. Three topics relevant to the analysis 

of such data were addressed, namely the impact of vegetation on the extraction of 

geological endmembers, the development of novel spectral mixture models to facilitate 

the retrieval of rock signatures, and the deconvolution of lichen and rock mixtures.

The research first uses a case study to demonstrate the challenges and a proposed 

strategy to conduct lithologic mapping in low outcrop vegetated areas using hyperspectral 

data. The results indicate that the convex-based endmember selection procedure may not 

be optimal to provide useful rock endmembers from the hyperspectral data in vegetated 

areas. Also a traditional image-to-map accuracy assessment methodology may not be 

adequate to perform accuracy checks when map units consist of small dispersed patches. 

The selection of rock endmembers and validation of unmixing results should be guided 

by field observations and spectral measurements. The second part of the thesis reports a 

novel partial unmixing method, Derivative Spectral Unmixing (DSU), incorporating 

derivative analysis into spectral mixture analysis. By focusing the analysis on an 

absorption feature unique to an endmember of interest, the DSU allows estimation of the 

abundance of the endmember without a thorough knowledge of the remaining 

endmembers. The robustness of DSU was demonstrated using a hyperspectral cube 

generated in the laboratory for a rock sample. Lastly, the study focuses on the 

deconvolution of lichen-rock mixtures using the Normalization Linear Mixture Model 

(NLMM). The results suggest that it is feasible to deconvolve lichen-rock mixtures using 

the NLMM with one of any field/laboratory lichen spectra. Thus geologists can group all
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lichens into one endmember and further the analysis of rock and lichen mixtures without 

a detailed knowledge of lichen species occurring in the region of interest.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Imaging spectrometry data or hyperspectral imagery acquired using airborne 

sensors have been used for geological investigations since the early 1980’s. These 

systems acquire image data in hundreds of contiguous spectral bands with high spectral 

resolution (< 20nm), and laboratory quality spectrum can be constructed for each pixel in 

the scene (Clark, 2000). Past research has demonstrated that a key contribution of 

hyperspectral remote sensing to geology is to uniquely identify spectrally distinct 

minerals (e.g. hydroxyl bearing minerals) or lithologic units (Clark et al., 1993; Gaffey et 

al., 1993; Goetz et al., 1985; Mustard and Pieters, 1987; Farrand and Singer, 1991; Kruse 

1993; Farrand and Harsanyi, 1995).

Among various hyperspectral analysis methods (Cloutis, 1996; Mustard and 

Sunshine, 1999), spectral mixture analysis (SMA) (Smith et al., 1990; Settle, 1996; Hu et 

al., 1999; Petrou and Foschi, 1999) deserves particular attention for lithologic mapping 

because the natural spatial variation of surface types (bedrock, vegetation, soil) occurs at 

scales smaller than the spatial resolution of sensors (Settle, 1993). Consequently the 

spectrum acquired by remote sensors is composed of the spectral contributions of 

multiple materials within the instantaneous field of view (IFOV). The basic premise of 

spectral mixture analysis (SMA) is that within a given scene, the surface is dominated by 

a small number of common materials with relatively constant spectral properties. It 

follows that the pixel-to-pixel variability in the scene is a result of varying proportions of

1
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these ground components (usually referred as endmembers). The mixtures of 

endmembers are mathematically linear if the components are arranged in spatially 

distinct patterns, analogous to the squares on a checkerboard (Singer and McCord, 1979). 

Typically this approach involves two steps: to find spectrally unique signatures of 

endmembers and to express individual pixels as a linear combination of endmembers 

(Boardman, 1993). Endmembers needed for the unmixing can be selected in different 

ways. Library spectra can be used to unmix a scene or endmembers can be selected 

directly from the image. One of the new perspectives opened by this approach, together 

with the improved spectral resolution of sensors, is the possibility to quantify the 

abundances or fractions of endmembers within each pixel. Many researchers have 

demonstrated the applicability of SMA for mineral or lithologic mapping under sparse 

vegetation cover using hyperspectral data (Mustard and Pieters, 1987; Gillespie et al., 

1990; Boardman and Huntington, 1996; Neville et al., 1998; Staenz et al., 1999).

1.2 KEY RESEARCH AVENUES

The advent of commercial airborne hyperspectral sensors in recent years has 

resulted in a surge of activity to use this technology for mineral exploration. A particular 

challenge for mineral mapping is the application of conventional analysis techniques to 

areas with substantial vegetation. Unlike sparsely vegetated regions in dry deserts, 

vegetation (including lichen) covers a larger proportion of rock surfaces in high latitude 

environments, complicating the extraction of mineral spectral features required for the 

production of mineral maps using imaging spectrometer data. The following key research 

avenues were identified in this research:

2
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(a) The extraction of geological endmembers in the presence of vegetation 

(including rock-encrusting lichens). The most challenging work in spectral mixture 

analysis is to define a suite of spectral endmembers from the image data. For vegetated 

areas, the rock reflectance spectra that we aim to detect will be influenced by the 

presence of vegetation or lichen in the measured pixel (Murphy, 1995; Ager and Milton, 

1987). Seigal and Goetz (1977) reported that weak mineral absorption features in the 

short-wave infrared (SWIR) could be obscured by as little as 10 percent green vegetation. 

Typically, the selection of image endmembers is achieved through the application of 

convex geometry, which has been shown to be very useful in arid/semiarid environments 

(Boardman, 1993). Principal Component Analysis (PCA; Bateson and Curtiss, 1997) or 

the Minimum Noise Fraction (MNF) transform (Green et al., 1988) are commonly 

required to reduce the data dimensionality for the visual analysis in this selection process. 

Because these dimension reduction methods are fundamentally statistical approaches 

dependent on the specific spectral characteristics of the scene, the variance in each band 

is crucial for the transformed result. In vegetated areas, rock outcrops commonly occupy 

a very low percentage of the land cover. Most of the scene variance will be determined 

by the dominant cover type, i.e. vegetation, which means that the transformed data may 

be optimal for the analysis of vegetation, but not for geological targets. When the data are 

viewed in n-dimensions using visualization tools to determine endmembers, the 

geological units/endmembers identified in the field may be unrecognized in the spectral 

feature space. The evaluation of the impact of vegetation on the extraction of geological 

endmembers will provide some guidelines for geological mapping using SMA in 

vegetated region.

3
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(b) The deconvolution of lichen and rock mixtures. Outcrops in tundra 

environments are typically encrusted with lichens of various species. Lichens reduce the 

effective area of bedrock available for remote observation, potentially hampering the 

discrimination of varying rocks and minerals using spectral observations. Lichen may 

increase or decrease the rock reflectance (Satterwhite et al., 1985) and even mask some 

absorption features of the host rock (Ager and Milton, 1987; Rivard and Arvidson, 1992). 

One study has shown that lithologic mapping is feasible using mixtures of lichen and 

rock as image endmembers (Staenz et. al. 2000), but the identification and abundance 

estimation of minerals using SMA is negatively impacted. The linear spectral mixture 

analysis provides a potential tool to address the complexity introduced by lichens 

(Bechtel et al., 2002), but two basic issues relevant to the selection of a lichen 

endmember remain unresolved: (a) Given that lichen rarely dominates the pixels of 

current hyperspectral data, one must rely on field or laboratory measurements of varying 

lichens to define one or more lichen endmember spectra. Consequently we have to deal 

properly with the differences in viewing and illumination geometry between 

field/laboratory spectra and imagery, (b) Given a lack of a priori knowledge of the lichen 

species occurring in a study area, how many lichen endmembers are required to account 

for the lichen contribution in SMA? Research on this issue will guide the effective 

incorporation of lichen endmembers into the spectral mixture model to perform a more 

accurate geological mapping using hyperspectral data in tundra environments.

(c) The development of novel spectral mixture models to suppress the intra-class 

variation and put a focus on the spectral shape. Defining a set of representative 

endmembers that are relevant to the mapping objectives is a challenge in SMA. This

4
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issue is two fold, (i) SMA requires all endmembers in the scene to be well constrained in 

terms of their spectral magnitude and shape. But the spectral magnitude of the 

endmembers is much more difficult to obtain than their spectral shape in high latitude 

environments because topographic and atmospheric corrections of the image data are 

difficult and access to the field is limited. Typically, constraining the spectral shape is 

more important than the spectral magnitude because the former has a direct relationship 

with the composition of the target. The development of novel mixture models 

emphasizing the spectral shape will increase the sensitivity of the spectral mixture 

analysis to the diagnostic absorption features of geological targets, (ii) SMA uses one 

endmember spectrum for each class, which makes it difficult to incorporate the intra­

class variation in spectral magnitude. It has been reported that the intra-class variation is 

sufficient to cause large errors in fractional estimates computed from spectral mixture 

analysis (Bateson et al., 2000). The minimization of intra-class variation should improve 

the accuracy of the abundance estimate of SMA. Previous studies have demonstrated that 

the spectral variation across different lichen species is mainly limited to the spectral 

magnitude in the SWIR spectral region (Rivard and Arvidson, 1992; Bechtel et al., 2002). 

With the effective suppression of the spectral variation within the lichen class, it will be 

possible for geologists to group all lichens as a single spectral endmember and use SMA 

to perform more detailed geological mapping in high latitude environments. The research 

on this avenue will increase the robustness of spectral mixing analysis and provide some 

new techniques for geological mapping using hyperspectral data.

This thesis will tackle the above issues using both airborne and laboratory 

hyperspectral data. The research is aimed at evaluating the limitations of existing

5
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techniques and developing new methodologies to address the challenges associated with 

the mapping of geological targets in vegetated regions. Though specific problems and 

methodologies were targeted in this thesis, the science contribution of this thesis resides 

in the fundamental research results with broad geological applications.

1.3. THESIS ORGANIZATION AND RESEARCH CONDUCTED IN THIS 

THESIS

This thesis is organized in paper format. Following this introductory chapter, there 

are three chapters as manuscripts followed by a section summarizing conclusions and 

future work.

Chapter 2 is a pilot study to demonstrate the challenges and a proposed strategy to 

conduct lithologic mapping in low outcrop vegetated areas using hyperspectral data. 

Probe-1 data for a greenstone belt exposed north of Rouyn Noranda, an important gold 

mining camp of northern Quebec, Canada, was selected to investigate the impact of 

vegetation on the extraction of geological information. Field spectral observations were 

collected to document the spectral characteristics and diversity of the major lithologic 

units and to guide the analysis of the airborne hyperspectral data. The usefulness of a 

well-established endmember selection procedure based on a MNF transform (Boardman, 

1998; Research Systems, Inc., 2000) was evaluated. The partial unmixing algorithm 

MTMF (Boardman, 1998) was used to discriminate the known broad lithologic units, and 

results were compared with an existing geological map using a conventional method of 

accuracy assessment (Congalton, 1991). This study focused on assessing the applicability 

of existing techniques (e.g. convex-based endmember selection, MTMF, and confusion-
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matrix based accuracy assessment) in low rock outcrop environments. Pitfalls and 

possible modification to these techniques were also outlined. This chapter will be 

submitted to Photogrammetric Engineering and Remote Sensing with the following 

authorship: Rivard, B., Feng, J., Zhang, J., and Sanchez, A. Benoit Rivard and Jilu Feng 

executed the field work, established the premise of the research and the preliminary 

image analysis, and Arturo Sanchez-Azofeifa provided insightful suggestions for the 

accuracy assessment. I am third author on this paper. I redid and strengthened the 

analysis, calibrated the data and wrote much of data analysis, the results and discussions 

sections. This study was the first to be conducted in my PhD.

Chapter3 presents a Derivative Spectral Unmixing (DSU) model, which is an 

extension of the spectral mixture analysis (SMA) (Smith et al., 1990; Settle, 1996) and 

derivative analysis (Tsai and Philpot, 2002). The key strength of the DSU is that the 

abundance estimation of endmembers does not require a thorough knowledge of all 

endmembers at hand as long as the unknowns do not display conflicting absorption 

features with that of the material of interest. It capitalizes on the basic observation that 

many minerals have absorption features distinct from surrounding rock forming minerals 

(Hunt, 1977) and those of non-geological targets (e.g. vegetation). The DSU was assessed 

using spectral data acquired for a lichen covered rock sample, and the estimated fractions 

of lichen and rock are assessed against those obtained from a high spatial resolution 

digital photo. DSU is a partial unmixing algorithm because it does not require as input all 

endmembers present in the scene. It may be of general use as a partial unmixing 

technique applicable to varied hyperspectral remote sensing scenarios. This chapter was 

submitted to IEEE Transactions on Geoscience and Remote Sensing with the following
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authorship: Zhang, J., Rivard, B., and Sanchez, A. I developed the derivative model and 

conducted the data generation and analysis. Benoit Rivard had inputs to the analysis and 

discussion of the results. Arturo Sanchez-Azofeifa provided insightful suggestions for 

the statistic analysis of the results.

Chapter 4 proposes a new unmixing methodology, the NLMM, to deconvolve 

lichen-rock spectral mixtures using a limited number of lichen spectral endmembers. In 

this study, I first investigated the ability of the spectral mean normalization technique to 

minimize the differences in viewing and illumination geometry between field/laboratory 

spectra and imagery. Then, based on the similarity of the SWIR spectral shape between 

different lichen species, the spectral mean normalization was used to suppress these 

across multiple lichen species. In order to incorporate the advantage of the normalization 

into SMA, the normalization linear mixing model (NLMM) was designed and assessed 

using the artificial hyperspectral data cube of one rock sample with lichen coatings. The 

experimental results showed that one normalized lichen endmember could account for the 

contribution to the mixture from different lichen species in the NLMM. The model 

provides a possible method for estimating the relative lichen abundance in sub-pixel 

scale, and would facilitate further mineral/rock mapping without a priori knowledge of 

the lichen species occurring in a study area. This chapter will be submitted to Remote 

Sensing of the Environment with the following authorship: Zhang, J., Rivard, B., and 

Sanchez, A. I conducted the comparative analysis of spectral libraries, developed the 

mathematical model and performed the data analysis.
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Appendix 1 presents results that are closely related to those of Chapter 3. It includes 

a comparison between the 2nd derivative spectra of the entire USGS mineral spectral 

library and the lichen spectra of this thesis. The purpose is to utilize the advantage of the 

derivative spectra to identify spectral regions where lichen can be uniquely distinguished 

from minerals. The findings are also illustrated using n-dimensional views for the 

interpretation of mixture relationships between rock and lichen. This appendix is likely to 

be incorporated in a research note to Remote Sensing of the Environment.

1.4. MAJOR CONTRIBUTIONS TO SCIENCE

The major contributions of this thesis can be summarized as follows:

(a) The current convex-based endmember selection procedures are not optimal for 

spectral mixture analysis of imagery for vegetated areas. The selection of 

endmembers should still be guided by field spectra to perform spectral mixture 

analysis in vegetated areas. The traditional accuracy assessment methodology 

may not be adequate to perform accuracy checks when mappable rock units are 

characterized by small dispersed patches on the image. Field work, rather than 

image to geological map verifications, may still be the most effective means to 

assess the results.

(b) DSU is a promising new concept to map the rock/mineral abundance without 

detailed knowledge of all endmembers.

(c) The 2nd derivative value at 1730nm is a robust indicator of the presence of lichen 

within a pixel. With this finding, the lichen-dominated pixels can be easily 

identified using the 2nd derivative spectra.
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(d) Spectral normalization can suppress within-class variation for a variety of targets 

including lichen, and the Normalization Linear Mixing Model (NLMM) provides 

a novel way to unmix lichen-rock mixtures using one lichen endmember. These 

results suggest that it may be feasible to perform the SMA of airbome/spacebome 

imagery in the SWTR using NLMM and one of any field/laboratory lichen spectra. 

The NLMM provides geologists with an opportunity to group all lichens into one 

endmember and facilitates the analysis of rock and lichen mixtures without 

detailed knowledge of lichen species occurring in the region of interest.
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CHAPTER 2

LITHOLOGIC MAPPING IN VEGETATED AREAS WITH LOW ROCK 

OUTCROP EXPOSURE USING PROBE-1 HYPERSPECTRAL DATA

2.1 INTRODUCTION

High spectral resolution (hyperspectral) imaging provides a rich source of 

compositional information for geological investigations. With the simultaneous 

acquisition of image data in hundreds of contiguous spectral bands, laboratory quality 

spectra can be constructed for each pixel in the image (Goetz et al., 1985). When 

measured as a function of wavelength, the spectra exhibit specific albedo, continuum, and 

absorption features, which are a function of the material properties of the surface. A key 

contribution of hyperspectral imaging to geology is the mapping of mineral assemblages 

or lithologic units. For geological targets, the location of absorption features in the 

spectra are controlled by the chemical composition (mineralogy) of the surface, whereas 

the continuum and overall albedo are a function of non-selective absorption and 

scattering, as well as broad wavelength selective absorptions which can also be 

influenced by the physical properties of the surface (particle size, roughness, texture, etc.; 

Clark et al., 1993; Gaffey et al., 1993).

Typically, the methodology used for analysis of hyperspectral data is optimized 

for the objectives of the local investigation, for example the definition and mapping of 

broad-scale units. In geological terms this is often the identification of the presence of 

specific mineralogical assemblages or lithologic units. Mappable units are defined on the 

basis of shared textural and spectral properties as exhibited in the hyperspectral data.
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Commonly the specific compositional properties of the units cannot be determined 

uniquely from the spectra. In such cases, field investigations can be used to assign field- 

based names to units defined on the basis of remote sensing analyses, which can then be 

extended beyond the investigation site on a regional scale.

Numerous studies have demonstrated the applicability of airborne hyperspectral 

data for mineral mapping in regions of low vegetation cover (Boardman and Huntington, 

1997; Kruse, 1988). The advent of commercial airborne hyperspectral sensors in recent 

years has resulted in a surge of activity by the mining community to use this technology 

for mineral exploration. There is however little information regarding the feasibility of 

using these data to conduct lithologic mapping in areas of relatively low rock outcrop 

partially covered by lichen and surrounded by forest, as is commonly observed in boreal 

ecosystems. Scene-related factors, such as the presence of lichens on bedrock and 

topography, may impact the extraction of geological information for such environments. 

The presence of lichens on rock obscures key spectral features diagnostic of minerals 

(Rivard and Arvidson, 1992; Bechtel et al., 2002). Lichens reduce the effective area of 

bedrock available for observation, thereby potentially hampering the discrimination of 

varying rocks and minerals using spectral observations. The dominance of pixels 

representing forest in a scene can also hamper the extraction of geological information. 

Spectral analysis tools such as mixture analysis have been applied successfully for 

mineral mapping for regions free of vegetation (Kruse, 1997), but their use has yet to be 

demonstrated in vegetated areas, where data for geological targets is commonly sparse 

due to low outcrop abundance.
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The objective of this chapter is to study the feasibility of conducting reconnaissance 

geological mapping in a boreal forest ecosystem, with sparse exposure of rock outcrops, 

using field based and airborne hyperspectral data. The aim is to discriminate the known 

broad lithologic units of a greenstone belt exposed north of Rouyn Noranda, an important 

gold mining camp of northern Quebec, Canada. Field based spectral observations are 

used to document the spectral characteristics and diversity of the main lithologic units 

and to guide the development of a method for the analysis of airborne hyperspectral data 

adapted to this environment. The pitfalls of a more traditional endmember extraction 

approach are discussed. Finally, a traditional accuracy assessment technique was applied 

to our results using a lithologic map.

2.2 STUDY AREA

The study area is located in the Abitibi greenstone belt immediately north of 

Rouyn Noranda, approximately 500 km northwest of Montreal in the province of Quebec, 

Canada (Figure 2.1). The study site occupies 3.3 x 13 km in a terrain characterized by 

subdued topography with variations in elevation rarely exceeding 70 meters. Boreal 

forest and agricultural fields are the dominant land cover types in the study area. 

Bedrock is invariably partially covered by lichen coatings but is largely devoid of other 

forms of vegetation cover (Figure 2.1). The Abitibi greenstone belt is part of the Superior 

geological Province of the Canadian shield (Stockwell, 1964) and contains arcuate and 

complexly deformed metavolcanic belts alternating with metasedimentary belts and 

intruded by granitic rocks. Felsic volcanic rocks, basalt, granite and diorite are the four 

dominant rock types exposed within the study area. The metavolcanic rocks are part of
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the Blake River group which consists of a bimodal suite of basalts and rhyolites 

accompanied by felsic volcaniclastic rocks (Dimroth, et al., 1973; Gelinas et al., 1977; 

Gelinas, 1984). These rocks are intruded by diorite and granite. Minor occurrences of 

argillites, greywackes and conglomerates of the Pontiac group are found, but more 

exposures are observed south of the study area. Of particular interest to mining 

companies is the distribution of felsic volcanic rocks that are closely associated with the 

occurrence of economic minerals. The Bousquet mine, located approximately 50 km east 

of the study area, is one of many large gold producing mines in the Abitibi belt.

2.3 FIELD REFLECTANCE SPECTRA

The spectra of dominant rock types in the study area were acquired using a 

Analytical Spectral Devices FieldSpec FR portable spectroradiometer, which operates in 

the 350-2500 nm spectral range and is characterized by a resolution of 3 nm at 700 nm, 

10 nm at 1500 nm, and 10 nm at 2100 nm (Analytical Spectral Devices, 2001). 

Measurements were collected at 0° emission angle using solar illumination at high zenith 

angle and under clear sky conditions. Each measurement was an average of 15 

consecutive spectra collected for a ground footprint 12 cm in diameter. Radiance 

coefficients (Hapke, 1981), e.g. reflectance, were obtained by determining the ratios of 

data acquired for a sample to data acquired for a spectralon standard panel under the 

same illumination and observation conditions. Measurement of the standard panel took 

place within minutes of the natural targets to minimize changes in illumination conditions 

attributable to atmospheric conditions.
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2.3.1 Calibration sites

Reflectance spectra were acquired from four separate calibration sites for the 

purpose of atmospheric calibration of the Probe-1 airborne data. The sites include a 

paved surface of 30 by 40 m, a gravel lot 10 by 20 m, and two sand pits. These sites span 

a range of reflectance values, lack topography, and are not likely to have been disturbed 

over the one-year period between the ground and airborne surveys. In addition they 

display relatively uniform spectral characteristics over an area of three by three Probe-1 

pixels (21 by 21 m). Linear traverses were conducted at each site, and spectra were 

acquired at spots at every 1.5m interval within the traverse. More than 30 spectra were 

collected from each site. The average field spectrum has a standard deviation which does 

not exceed 4% for all four sites, confirming the compositional and textural homogeneity 

of the calibration sites.

2.3.2 Lithologic units

Reflectance spectra were obtained for ten bedrock sites representative of the 

dominant rock types in the region (granite, diorite, felsic volcanic rocks, basalt, and two 

metasedimentary units). Each site had an exposed surface of one to three Probe-1 pixels 

(7-21m). Spectra were acquired along linear traverses at an interval of 0.5 m. More than 

20 spectra were collected along traverses at each site. In addition an average spectrum 

was determined for the dominant surface type (weathered rock, lichens) to characterize 

the spectral endmembers.

Data acquired in the traverse mode provide a measure of the heterogeneity of the 

natural surface. The variance of these spectra is indicative of the nature of each rock type. 

The mafic volcanic rocks (dominantly basalt) are fine to medium-grained and appear
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relatively homogeneous in the field. This characteristic is evident from the spectral data 

of two traverses, each encompassing twenty spectra, which display average spectra with 

less than 2% difference in reflectance (Figure 2.2a). Lichen cover on these rocks consists 

of two dominant groups (yellow and grey crustose), which were also measured in the 

field (Figure 2.2a). The average traverse spectra for this rock unit display absorption 

features around 680 nm and 2100 nm attributable to lichen (Rivard and Arvidson, 1992) 

and lie closer to the lichen endmembers than that of the weathered rock, indicating that 

the average spectra are a mixture of weathered basalt with an important contribution by 

lichen.

In comparison with the mafic volcanic rocks, the felsic volcanic rocks (e.g. flows, 

lapilli tuffs) are heterogeneous in terms of composition and texture. Variations are 

observed at the scale of meters in the field. Lichens are present but cover is not 

extensive, consistent with the lack of a spectral feature near 680 and 2100 nm. The 

traverse spectra illustrate the variability observed in the field. The average spectra 

calculated for each of two traverses display a maximum standard deviation of 9% and a 

maximum reflectance difference of 12% (Figure 2.2b). The weathered felsic volcanic 

rocks display a set of distinct absorption features at 2200 and 2350 nm (Figure 2.2b), as 

opposed to the single feature displayed by the mafic volcanic rocks around 2328 nm 

(Figure 2.2a).

2.4 INDOOR REFLECTANCE SPECTRA

Because of logistical constraints (e.g. accessibility and weather conditions), spectra 

for granite and diorite were acquired indoors from rock samples. Granite and diorite
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appeared in the field to display relatively uniform textural and compositional properties 

allowing indoor measurement of representative spectra using representative samples with 

natural and freshly broken surfaces. Measurements from samples preclude an assessment 

of reflectance at the scale of Probe-1 pixels and of the role of lichens in modulating the 

reflectance of these rock units. The indoor data were acquired with an incidence angle of 

45°, illuminating a footprint of approximately 4.4 cm viewed at an emission angle of 0°. 

Spectra of weathered granite and weathered diorite (Figure 2.3) display vibration 

absorption features associated with the presence of water (1400 and 1940 nm), hydroxyl 

ions (between 2200 and 2350 nm), and the presence of Fe+2/Fe+3 in the rock forming 

minerals (between 850-1200 nm). For each rock type the spectra of different weathered 

surfaces differ in amplitude, but the observed center wavelength position of the 

absorption features is constant. Variations in amplitude are attributable to micro 

topography and grain size variations. Diorite displays very uniform spectral properties 

consistent with the uniform grain size observed in the field. Diorite is characterized by 

two hydroxyl bands centered around 2263 and 2325 nm (Figure 2.3b). Granite displays 

two hydroxyl bands centered at lower wavelengths (2199 and 2261 nm) in addition to a 

band at 2348 nm (Figure 2.3a). The spectra of weathered granite for two samples display 

variable amplitude possibly indicating that textural variability is more important than 

assessed in the field.
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2.5 VIEW FROM PROBE-1

2.5.1 Data acquisition and calibration

The hyperspectral airborne data were obtained with the Probe-1 sensor on October 4, 

1998. Probe-1 is a commercial imaging spectrometer that operates on a variety of 

platforms. It is a whiskbroom instrument with 128 spectral channels spanning a 

wavelength range of 440-2500 nm with bandwidths ranging from 11 to 18 nm. The 

sensor has a 60° field of view and an instantaneous field of view of about 2.5 mrad along 

track and 2.0 mrad across track. For the flight altitude of this study (3,450 m) the nominal 

nadir ground resolution is 7 m.

In order to compare the image spectra with the library of field and indoor spectra, 

the raw data were converted to reflectance values. Radiative transfer models such as 

MODTRAN (Berk et al., 1989) and ATREM (Gao and Goetz, 1990) could not be used 

for this purpose because the at-sensor radiance values were not accurate. The cause is an 

undocumented opto-mechanical realignment of the sensor between the last calibration 

and its deployment for this study (pers. comm. J.Seeker). The average field spectrum for 

each calibration site was resampled to the Probe-1 bandpass characteristics and regressed 

against the average digital values derived from the Probe-1 data extracted for the 

calibration sites. Average spectra were used to minimize sensor noise and any within- 

target variations. Linear fits were performed for each band; the slope and intercept 

values carry atmospheric and instrumental effects and allow radiance coefficients for the 

surface to be extracted from the Probe-1 data. In using this approach, it is assumed that 

there are no variations in illumination across the image; therefore, changes in radiance 

due to the presence of clouds or topography are ignored. This simple method has been
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extensively used to calibrate hyperspectral data to reflectance (Roberts et al., 1986; Conel 

et al., 1987; Kruse et al., 1990).

Figure 2.4 shows the average Probe-1 uncorrected spectra and corresponding 

average field reflectance spectra for the calibration sites. The uncertainty of the 

calibration was assessed by comparing the calibrated Probe-1 data to field reflectance 

values for additional locations. As shown on Figure 2.4c for a site occupied by mafic 

volcanic rocks the magnitude of the calibrated reflectance is lower than the field 

reflectance, but away from atmospheric bands the spectral shapes are similar. This aspect 

of the calibration results is important for the determination of lithology because the 

spectral shape is directly related with the mineral composition of the rock.

2.5.2 Data analysis

Spectral mixture analysis (SMA) of hyperspectral data has been shown to be an 

effective method for mapping mineralogy in sparsely vegetated terrains (Kruse et al., 

1990; Kruse et al., 1993; Ben-Dor et al., 1995). SMA is a physically based model that 

assumes that within a given scene, the surface is dominated by a small number of 

materials with relatively constant spectral properties. It follows that the pixel-to-pixel 

variability in the scene results from varying proportions of these common components 

(endmembers). The mixtures of endmembers are mathematically linear if the 

components are arranged in spatially distinct patterns, analogous to the squares on a 

checkerboard (Singer and McCord, 1979). Once endmembers are selected the abundance 

of each endmember in a given pixel can be determined using the following equations

m

(2-1)
1=1
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o < / ( =i-o, (2-2)
i=l

where Rb is the reflectance of a pixel at band b, fi is the fractional abundance of

endmember i (from a total of m endmembers), ru, is the reflectance at band b of 

endmember i, and Eb is the error of the fit for band b. The endmember abundances can be 

estimated from Eq. 2-1 and 2-2 through least squares technique (Yosio, 1991) or singular 

value decomposition (Boardman, 1989).

SMA requires that all endmembers in a scene be well identified, a task difficult to 

accomplish in many instances. Partial unmixing methods provide a means of estimating 

the fraction of specific endmembers without a complete knowledge of scene 

endmembers. The Mixture Tuned Matched Filtering (MTMF) algorithm in the ENVI 

commercial software is based on a spectral detection method presented by Harsanyi and 

Chang (Harsanyi and Chang, 1994), which maximizes the response of each endmember 

selected while suppressing the response of the unknown composite background. MTMF 

was used in this study to predict the abundance of felsic volcanic rocks (rhyolite), mafic 

volcanic rocks (basalt), diorite, and granite based on endmember spectra extracted from 

the field and from the scene.

One of the challenges of SMA or MTMF is to define a set of spectral endmembers 

that are relevant to the mapping objectives and which are representative of the physical 

components on the surface. Typically the selection of endmembers is achieved through 

the application of convex geometry, which has been shown to be useful for determining 

the number of endmembers in a data set, and for estimating their spectral properties 

(Boardman, 1993). A simplex is fit to the convex hull of the n-dimensional data cloud
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and the vertices of the simplex define the spectral properties of the endmembers. The 

method is repeatable but has the disadvantage that it is fundamentally a statistical 

approach dependent on the specific spectral characteristics of the scene. The resulting 

endmembers may not have a physical meaning of relevance to the objectives of the study. 

When applied to this study it failed to provide useful geological endmembers due to the 

predominance of non-geological targets (e.g. different vegetation types and water bodies) 

in the scene.

Figure 2.5 provides an illustration of this method applied to the Probe-1 data of 

our study area. Without masking pixels dominated by vegetation, the n-dimensional data 

cloud exhibits several data clusters at the vertices of the simplex (Figure 2.5a), none of 

which are relevant to the objective of geological mapping. After masking vegetated 

pixels, the extremities of the data cloud (Figure 2.5b) include mixtures of rock (e.g. 

rhyolite) and vegetation or lichen identified by the chlorophyll feature around 680nm 

(Frame A) and a lichen-specific feature near 1730nm (Frame B), illustrating that the 

spectral variance in the scene is still largely controlled by vegetation (including lichen) at 

a subpixel scale. In addition, the endmember spectra for important map units (basalt, 

diorite, and granite) cannot be identified. Thus, this traditional approach for endmember 

selection does not seem practical for scenes where vegetation dominates and bedrock 

exposure is minimal. In this study, knowledge of the general geology of the area guided 

the selection of field sites and thus endmembers. Endmember spectra for granite and 

felsic volcanic rocks (rhyolite) were extracted from the Probe-1 data for known field sites 

(Figure 2.6). The variation in amplitude of the field measurements acquired for these 

lithologic units (Figures 2.2b and 2.3a) indicated that an average measurement over

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



several Probe-1 pixels would provide a more representative endmember for each unit 

than could be achieved from the field survey. For diorite we chose a spectrum acquired 

indoors for the sample most representative of the bedrock textural properties observed in 

the field. Based on the textural and compositional homogeneity observed in the field for 

basalt and on the uniformity of average spectra for multiple traverses, an average traverse 

spectrum was used as an endmember.

2.5.3 Unmixing results and accuracy assessment

The primary result of the SMA is fraction images of endmembers that show the 

distribution and sub-pixel abundance of the endmember components in the scene. The 

fraction images can be used to identify lithologic units and map their distribution. In the 

case of the MTMF two output images are generated per endmember. A ‘score’ image 

provides a means of estimating the relative degree of match to the endmember and the 

approximate sub-pixel abundance. The ‘infeasibility’ image is used to reduce the 

number of "false positives" that are sometimes found using matched filters. Pixels with 

high infeasibility are likely to be matched filter false positives. Two dimensional scatter 

plots of the score and infeasibility images were used to select correctly matched pixels 

which should have a high ‘score’ and low ‘infeasiblity’ value. This threshold operation 

was guided by our general geological map knowledge of the area. Then, using the 

Spectral Angle Mapper (SAM) algorithm (Kruse et al., 1993), the eight output images 

were classified into a single image displaying a class per endmember (Figure 2.7b). 

SAM is a vector-based approach that measures the angular distance between two vectors 

as a means for classification. Spectra whose vectors are separated by small angles are 

considered most similar. As an input to SAM we used the score and infeasibility
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signatures of the sites where field spectral measurements and samples were collected to 

determine the endmembers. The maximum angle in radians was set to preserve the areas 

shown on the infeasibility and score images. Throughout the analysis, areas dominantly 

occupied by vegetation were masked from the image in order to reduce the processing 

time and facilitate the interpretation of the classified score/infeasibility maps (Figure 2.7).

To analyze the unmixing result, the geological map was coregistered with the 

endmember map (Figure 2.7). A color composite of bands at 849nm (R), 652nm (G), and 

452nm (B) (Figure 2.7) shows rock outcrops in blue and vegetation in shades of red, 

yellow and green, but the composite provides no information on lithology. A visual 

comparison of the classified unmixing results with the geologic map shows an overall 

good correspondence between predicted occurrences and the map units. Rhyolite 

outcrops dominate and form contiguous strips of bedrock exposures which can be traced 

for hundreds of meters. Basalt is a more recessive unit and as shown by the predicted 

occurrences forms smaller and more sparsely distributed outcrops commonly not 

exceeding a few tens of meters. Detected diorite outcrops are sparse and small, only 

representing a very small fraction of the map unit.

The validity of a mixture model solution using a particular suite of endmembers can 

be tested using three criteria: the infeasibility image, the score image (absolute values of 

the fractions), and the spatial patterns and coherency of the fraction images. Typically 

the absolute values of the fractions are unknown; one relies on the score/infeasibility 

image as a broad measure of quality of the model and on the spatial coherence of each 

lithology. To define the spatial extent of a lithology (e.g. an outcrop) and generate a 

“map”, the method of analysis required that a threshold be applied to retain areas
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characterized by a high score and low infeasibility. While some combination of 

experience with the method and the particular scene can aid in establishing a reasonable 

threshold, determining the threshold value remains an arbitrary decision. To assess the 

accuracy of the map resulting from the MTMF (Figure 2.7b) we utilized a common 

technique for accuracy assessment of land cover map derived from remote sensing 

(Fitzpatrick-Lins, 1981; Congalton, 1991; Fenstermaker, 1994; Ma and Redmond, 1995). 

The final accuracy of the SMA maps was determined using a confusion matrix proposed 

by Congalton (Congalton, 1991). Our results were compared against the lithological map 

shown on Figure 2.7. Total outcrop mapped represented 0.6% of the study area. The 

final accuracy assessment, considering an error limit of 30%, indicates that only the 

rhyolite class was mapped within the acceptable error (77.3% accuracy, 22.7% error). 

The diorite, basalt and granite classes reported accuracies of 12.3% (87.7% error), 45.8% 

(54.2% error) and 35.5% (64.5% error), respectively.

2.6. DISCUSSION AND CONCLUSIONS

2.6.1 Limitations of the SMA method

Granite is found in a single portion of the map (location A on Figure 2.7b) and 

forms pixel-size outcrops (a few tens of meters). Most of the outcrops in the northern 

part of location A appear on the map as felsic volcanic rocks. An average spectrum was 

extracted from the calibrated Probe-1 data for a large outcrop in the northern part of 

location A (rhyolite on the map) and compared with that of the field site visited in the 

southern part of location A (Figure 2.8). Both spectra are similar in amplitude and display 

absorption features similar to that of the granite endmember used for the SMA (Figure
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2.6). The data suggest that the rhyolite in this portion of the map cannot be distinguished 

from the granite on spectral grounds, but this limitation appears to be restricted to 

location A. This limitation is likely the main cause of the poor accuracy results for 

granite.

Location B on Figure 2.7b presents a difficulty with the interpretation of the results. 

The SMA results for the rhyolite appear to fit the available map pattern within reasonable 

limits, but the map displays diorite as the unit interspersed with rhyolite whereas the 

SMA predicts the occurrence of basalt. In this case there is no obvious limitation 

introduced by the spectral characteristics of the diorite and basalt endmembers (Figure

2.6) that display distinct absorption features. The cause of the discrepancy has not yet 

been determined and may rest with the reliability of the geological map.

2.6.2 Limitations of the accuracy assessment method

Many of the diorite and basalt outcrops detected by Probe-1 are small and consist 

of only a few pixels. In addition, outcrops are often dispersed and their overall occurrence 

is very low (0.6% for all rock types). The low outcrop occurrence means that a mismatch 

of a few outcrops will substantially impact the accuracy of the results. In the case of 

diorite, the SMA results are often in close proximity to areas reported on the map. 

However since the reported map areas are typically small, small map errors in the 

location of the contacts or small errors in the coregistration of the image with the 

geological map will substantially impact the accuracy of the results. Both of these 

limitations have likely impacted the results for diorite. The fact that most predicted 

diorite occurrences lie within a few pixels of an equivalent map unit is of use to 

geologists. For basalts we note that the accuracy is higher than that observed for diorite,
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which is likely due to the larger areas reported on the map. As seen from Figure 2.7, 

many basalt outcrops occur in proximity to contacts with rhyolite. In these cases the same 

factors affecting the accuracy for diorite would come into play.

Based on these observations, the accuracy assessment method appears to work well 

for map units with large patches (e.g. rhyolite, basalt) and rock types with substantial 

outcrop exposure (e.g. rhyolite). For map units characterized by small patches (e.g. 

diorite), it may be necessary to implement a buffer around every predicted outcrop during 

the assessment to minimize mapping and registration errors which can substantially 

degrade the accuracy due to the low abundance of outcrops.

Our results indicate that conventional accuracy assessment techniques may not be 

adequate to perform accuracy checks when the data present the limitations outlined 

above. Field work, rather than image to geological map verifications, may still be the 

most effective means to assess the results.

ACKNOW LEDGEMENTS

Field work was funded by grants to B. Rivard by the Geoide National Centre of 

Excellence and NSERC and grant 2041 from the Canadian Foundation for Innovation to 

Arturo Sanchez. We wish to thanks John Gingerich, Mike Peshko, and Jules Riopel from 

Noranda Inc. for field support and access to the Probe-1 hyperspectral data. Greg Lipton 

of EarthScan Ltd provides field support. This is contribution #10 of the Earth 

Observation Systems Laboratory.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Analytical Spectral Devices, 2001, www.asdi.com

Bechtel, R., Rivard, B. and Sanchez, A., 2002, Spectral properties of foliose and crustose 

lichens based on laboratory experiments, Remote Sensing o f Environment, v. 82, p. 

389-396.

Ben-Dor, E. and Kruse, F.A., 1995, Surface mineral mapping of Makhtesh Ramon 

Negev, Israel using GER 63 channel scanner data, International Journal o f Remote 

Sensing, v. 16, p. 3529-3553.

Berk, A., Bernstein, L.S. and Robertson, D.C., 1989, MODTRAN: A moderate resolution 

model for LOWTRAN 7, Final Report, GL-TR-0122, AFGL, Hanscom, AFB, 

Maryland, USA, 37 p.

Boardman, J.W., 1989, Inversion of imaging spectrometer data using singular value 

decomposition, in Proceedings o f IGARSS’89, 12th Canadian Symposium on Remote 

sensing, p. 2069-2072.

Boardman, J.W., 1993, Automating spectral unmixing of AVIRIS data using convex 

geometry concepts, Summaries o f the fourth Annual JPL airborne Geoscience 

Workshop, JPL Publication 93-26, v. 1, p. 11-14.

Boardman, J.W. and Huntington, J.F., 1997, Mineralogical and Geochemical Mapping at 

Virginia City, Nevada using 1995 AVIRIS Data, in Proceedings o f the 12th ERIM  

Conference on Applied Geological Remote Sensing, Denver, p. 1191-1198.

Clark, R.N., Gallagher, A J. and Swayze, G.A., 1990, Material absorption band depth 

mapping of imaging spectrometer data using a complete band shape least-squares fit

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.asdi.com


with library reference spectra, In Proceedings o f  2nd Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, Jet Propulsion 

Laboratory, pp. 176-186.

Clark, R.N., Swayze, G.E., Gallagher, A., King, T.V. and Calvin, W. M„ 1993, The U.S. 

Geological Survey, Digital Spectral Library, Version 1: 0.2-3 um, USGS Open File 

Report 93-592, U.S. Geological Survey, Washington, D.C.

Conel, J. E., Green, R. O., Vane, G., Bruegge, C. J., Alley, R. E. and Curtiss, B. J., 1987, 

Airborne imaging spectrometer-2: radiometric spectral characteristics and comparison 

of ways to compensate for the atmosphere, in Proceedings, SPIE, v. 834, p. 140 - 

157.

Congalton, R. G., 1991, A review of assessing the accuracy of classifications of remotely 

sensed data, Remote Sensing o f Environment, v. 37, p. 35-46.

Dimroth, E., Boivin, P., Goulet, N. and Larouche, M., 1973, Tectonic and volcanological 

studies in the Rouyn-Noranda area, Quebec Dept Nat. Resources, Open File 

manuscript, p. 1-60.

Fenstermaker, L. K., 1994, Remote Sensing Thematic Accuracy Assessment: A 

Compendium, Bethesta, Maryland, American Society for Photogrammetry and 

Remote Sensing.

Fitzpatrick-Lins, K., 1981, Comparison of Sampling Procedures and Data Analysis for a 

Land-Use and Land-Cover Map, Photogrammetric Engineering and Remote Sensing, 

v. 47, p. 343-351.

Gaffey, S. J., Me Fadden, L.A., Nash, D. and Pieters, C.M., 1993, Ultraviolet, visible, 

and near-infrared reflectance spectroscopy: laboratory spectra of geologic materials,

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in Remote geochemical analysis: elemental and mineralogical composition, C.M 

Pieters, and P.A.J. Englert, eds., Cambridge University Press, Cambridge, p. 43-78.

Gao, B.C. and Goetz, A.F.H., 1990, Column atmospheric water vapour and vegetation 

liquid water retrievals from airborne imaging spectrometer data, Journal o f 

Geophysical Research, v. 95, p. 3549-3564.

Gelinas, L., Brooks, C., Perreault, G., Carignan, J., Trudel, P. and Grasso, F., 1977, 

Chemo-stratigraphic division within the Abitibi volcanic belt, Rouyn-Noranda, 

Quebec, in Volcanic regimes in Canada, W.R.A. Baragar, L.C. Coleman, and J.H 

Hall eds. Geological Association of Canada, Special Paper 16, p. 265-295.

Gelinas, L, Trudel, P. and Hubert, C., 1984, Chemo-stratigraphic divisions of the Blake 

River Group, Rouyn-Noranda, Abitibi, Quebec, Canadian Journal o f Earth Sciences, 

v. 21, p. 220-231.

Goetz, A.F., Vane, G., Soloman, J.E. and Rock, B.N., 1985, Imaging spectrometry for 

earth remote sensing. Science, v. 228, p. 1147-1153.

Hapke, B., 1981, Bidirectional Reflectance Spectroscopy 1: Theory, Journal Geophysical 

Research, v. 86, p. 3039-3054.

Harsanyi, J.C. and Chang, C. I., 1994, Detection of low probability subpixel targets in 

hyperspectral image sequences with unknown backgrounds, IEEE Transactions on 

Geoscience and Remote Sensing, v. 32, p. 779-785.

Kruse, F.A., 1988, Use of Airborne Imaging Spectra Data to Map Minerals Associated 

with Hydrothermally Altered Rocks in the Northern Grapevine Mtns., Nevada and 

California, Remote Sensing o f  Environment, v. 24, p. 31-51.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kruse, F. A., 1997, Regional geological mapping along the Colorado Front Range from 

Ft. Collins to Denver using the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), Proceedings o f the 12th ERIM Conference on Applied Geological Remote 

Sensing, Denver, p. II91-II98.

Kruse, F. A., Kierein-Young, K. S. and Boardman, J. W., 1990, Mineral mapping at 

Cuprite, Nevada with a 63 channel imaging spectrometer, Photogrammetric 

Engineering and Remote Sensing, v. 56, p. 83-92.

Kruse, F.A., Lefkoff, A.B. and Dietz, J.B., 1993, Expert system based mineral mapping 

in northern Death Valley, California/Nevada using the airborne visible/infrared 

imaging spectrometer (AVIRIS), Remote Sensing o f Environment, v. 44, p. 309-335.

Ma, Z. and Redmond, R., 1995, Tau Coefficients for Accuracy Assessment of 

Classification of Remote Sensing Data, Photo grammetric Engineering and Remote 

Sensing1 v. 61, p. 435-439.

Rivard, B. and Arvidson, E., 1992, Utility of Imaging Spectrometry for Lithologic 

Mapping in Greenland, Photo grammetric Engineering and Remote Sensing, v. 58, p. 

945-949.

Roberts, D. A., Yamaguchi, Y. and Lyon, R. J. P., 1986, Comparison of various 

techniques for calibration of AIS data, in Proceedings, 2nd A1S workshop, JPL 

Publication 86-35, Jet Propulsion Laboratory, Pasadena, CA, p. 21-30.

Singer. R.B. and McCord, T. B., 1979, Mars: Large Scale Mixing of Bright and Dark 

Surface Materials and Implications for Analysis of Spectral Reflectance, Proceeding 

o f the 10th Lunar and Planetary Science Conference, p .1835-1848.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Stockwell, C. H., 1964, Fourth report on structural province, orogenesis, and time 

classification of rocks of the Canadian Precambrian shield, Geological survey o f 

Canada, Paper 64-17, part II, p. 1-21.

Yosio, E., 1991, The least-square mixing models to generate fraction images derived 

from remote sensing multispectral data, IEEE Transactions on Geoscience and 

Remote Sensing, v. 29, p. 16-20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35



Figure 2.1. Field photograph of a diorite outcrop. Note the presence of rock encrusting 

lichen on the bedrock surface.
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Figure 2.2. Field reflectance spectra of basalt (a) and rhyolite (b). The strong water 

absorption features near 1900nm and 1400nm were discarded because of low signal-to- 

noise ratio.

(a) solid lines: mean spectra for two field traverses, thin dashed line: yellow lichen, thick 

dashed line : grey lichen, thin dotted line: weathered basalt. Main lichen features are 

labeled.

(b) solid lines: mean spectra for two traverses, dashed lines: one standard deviation from 

the mean.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0,6

0.5

0 ,4

o
0J

0 .54-<D
CC

0.2

500 1 0 0 0 „  , 1 5 0 0  . 2 0 0 0
W a v e l e n g t h ( n m )

2 5 0 0

0 ,5 5

0 ,3 0

0 .2 5
O'I 0.20
X>
* 0 .1 54 -aj(r

0,10

0,00 L
500 1000 2000 2 5 0 0

Figure 2.3. Indoor spectra of granite (a) and diorite (b). (a) solid line: broken surface, 

other lines: weathered surfaces; (b) solid line: broken surface, other lines: weathered 

surfaces.
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data for 4 calibration sites; (b) field spectra for corresponding calibration sites; (c) 

comparison between corrected Probe-1 spectrum and corresponding field spectrum for a 

site occupied by mafic volcanic rocks. The calibrated data remain noisy at 440nm, 1304- 

1503nm, 1772-2050nm and 2427-2501nm, thus these bands were excluded from the 

analysis.
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Figure 2.5. Endmember spectra extracted using the vertices of the simplex encompassing 

the data cloud shown in the upper right comer. Each colored cluster of pixels represents a 

potential endmember.
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(a): results including vegetated pixels. Labels for spectra are: a = vegetation 1, b = 

vegetation 2, c = vegetation 3, d = vegetation 4, e = gravel/sand 1, f = lake beach, 

g = shallow water, h= gravel/sand 2.

(b): results after masking vegetated pixels. Frames A and B respectively show 

absorption features for chlorophyll in residual vegetation and lichen and a lichen- 

specific feature. Labels for spectra are: a = rhyolite+vegetation+lichen, b = 

rhyolite+vegetation+lichen , c = soil, d = rhyolite+vegetation+lichen , e = 

rhyolite+vegetation+lichen and f = water. Labeling was conducted using the 

geological map.
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from the calibrated image cube. Diorite and basalt are average indoor or field spectra.
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(a) (b) (c)
Figure 2.7. SMA results compared with geological map. (a) Geological map from

Noranda inc.; (b) SMA results; (c) RGB color composite of bands at 849 nm (R), 652 nm

(G), and 452nm (B). Box A: the single portion that is predicted as granite by SMA; Box
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B: the region where the geological map displays diorite as the unit interspersed with 

rhyolite whereas the SMA predicts the occurrence of basalt.
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Figure 2.8. Spectra extracted from the calibrated Probe-1 data within location A (refer to 

Figure 2-7b). Rock-1 (thin line) was extracted from pixels labeled as granite on 

the geological map. Rock-2 (thick line) is for pixels labeled as rhyolite on the 

geological map.
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CHAPTER 3 

DERIVATIVE SPECTRAL UNMIXING OF HYPERSPECTRAL DATA 

APPLIED TO MIXTURES OF LICHEN AND ROCK

3.1 INTRODUCTION

As an integration of ‘imaging’ and ‘spectroscopy’, hyperspectral remote sensing 

provides researchers with the opportunity to perform the detailed identification and 

mapping of constituents of the earth’s surface through the analysis of spectral absorption 

features. With the simultaneous acquisition of image data in hundreds of contiguous 

spectral bands, laboratory quality spectra can be constructed for each pixel in the 

hyperspectral image (Clark, 1999).

A challenge in the analysis of hyperspectral data is the effective use of the available 

spectral information. Derivative analysis of reflectance spectra has been used in 

hyperspectral remote sensing (Demetriades-Shah et al., 1990; Philpot, 1991; Tsai and 

Philpot, 2002) and in analytical chemistry (Butler and Hopkins, 1970; Huiand and Gratzl, 

1996) for eliminating background signals, resolving overlapping spectral features, and 

enhancing spectral contrast, thereby increasing the estimation accuracy of target 

information. The computation of derivative spectra involves the change in a dependent 

variable (reflectance) relative to an independent variable (wavelength), and is sensitive to 

the shape rather than the magnitude of spectra. It follows that derivatives should be 

relatively insensitive to variations in illumination intensity caused by changes in sun 

angle or topography (Tsai and Philpot, 1998). First and second order derivative spectra 

have been applied to improve the estimation of leaf chemical constituents (Wessman,
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1989; Miller and Wu, 1991), sediment in water, and water constituents (Chen et al., 

1992). Few researchers have pursued the use of derivatives for hyperspectral remote 

mapping of rocks/minerals. Scheinost et al. (1998) used second derivative spectra to 

identify Fe oxide minerals in soils.

Spectral mixture analysis (SMA) has been used extensively in hyperspectral remote 

sensing to quantify the coverage of components at a sub pixel scale (Kruse et al., 1993; 

Ben-Dor and Kruse, 1995). SMA assumes that the pixel-to-pixel variability in a scene 

results from varying proportions of spectral endmembers. Spectral endmembers can be 

derived from the imagery or measurements in the laboratory/field. The spectrum of a 

mixed pixel can then be calculated as a linear combination of the endmember spectra 

weighted by the area coverage of each endmember within the pixel if the scattering and 

absorption of electromagnetic radiation is dominated by a single component on the 

surface (Singer and McCord, 1979). Fractional abundances of endmembers can be 

obtained for each pixel if the amplitude and shape of every endmember are known 

whether or not the complete suite of endmembers is of interest to the user. However, the 

task of defining every endmember can be difficult as evident from the importance 

attributed to the topic in the recent literature (Tompkins et al., 1997; Bateson et al., 2000; 

Okin et al., 2001; Dennison and Roberts, 2003). The effectiveness of SMA can be 

compromised when the required spectral endmembers are not well constrained in terms 

of their spectral magnitude and shape. The spectral magnitude of the endmembers is more 

difficult to obtain than their spectral shape, in part because the effects of the atmosphere 

and topography are difficult to constrain. Typically, constraining the spectral shape is
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more important than the spectral magnitude because the former has a direct relationship 

with the composition of the target.

The integration of derivative analysis and SMA offers a way to address these 

problems for the following reasons.

• The derivative of a spectrum can precisely model changes in the shape of the 

original spectrum and is not sensitive to the spectral magnitude.

•  Low frequency information is removed or reduced using derivatives.

• Computation of the derivative involves a differentiation that is a linear transform; 

therefore SMA can be applied to derivatives of target spectra and spectral 

endmembers.

This chapter presents a Derivative Spectral Unmixing (DSU) model, which is an 

extension of the spectral mixture analysis and derivative analysis. Using a DSU approach, 

it is possible to estimate the fraction of an endmember characterized by one or more 

diagnostic absorption features despite having only a general knowledge of the spectral 

shapes of the remaining endmembers. DSU may be used in many hyperspectral remote 

sensing scenarios as long as the spectral data has a sufficient signal to noise ratio to retain 

key spectral features in the derivative spectra. Section 3.2 describes the mathematical 

foundations of the model including that of derivative and SMA analysis. The DSU 

algorithm is then tested using laboratory spectral data for a natural geological sample 

partially coated with lichens and the estimated endmember fractional abundances (rock 

and lichens) are compared to known surface abundances. Section 3.3 describes the 

experiment conducted to generate the test data set, and Section 3.4 describes the selection
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of spectral endmembers for unmixing. Finally, sections 3.5 and 3.6 present the results of 

the DSU and a discussion of their accuracy.

3.2 DESCRIPTION OF THE MODEL

3.2.1 Calculation of derivatives

Derivatives were estimated using a finite difference approximation (Atkinson, 1989). 

An advantage of the finite difference approximation is that the derivatives can be 

computed according to different finite band resolutions (band separations) to extract 

spectral features of interest at different spectral scales. The spectrum extracted from the 

hyperspectral data is a function of the wavelength (A), which can be represented in 

discrete form as

5 =  [s(Ax) ,s(A2),s(A^), ..........., s(An)] (3-1)

where s is the spectrum, and .sf/l,) is the reflectance value at wavelength At (e.g. the value 

at the ith band). The first derivative can be estimated to the first order accuracy ( 0 (A A )) 

by

ds
dA

s W ~ s ( A j )

AA (3 '2)

, ds where —
dA

is the first derivative at wavelength At , AA is the separation between

adjacent bands, AA = AJ - A i and Aj >Ai . Similarly, the second derivative can be 

approximated to the second order accuracy ( 0(AA2))  by

d 2s

dA2

s(Ai ) -  2s (Aj ) +  s(Ak)

(AA)2 (3"3)
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where
d 2s

is the 2nd derivative value at wavelength A,, A A = A, -  A, = At -  A, and
dA2

Ak > Aj > At . Accordingly, any higher order derivatives can be calculated using an

iteration from the first derivative.

The choice of band separation AA is closely related to the magnitude and resolution of 

the derivative spectrum and can have an important impact not only on the wavelength 

location of inflection points but also on that of zero-crossings. As the band separation 

(AA) increases, the magnitude of the spectral derivative will be depressed because the 

derivative is normalized by a power of AA. A  large band separation can result in the loss 

of spectral detail and the attenuation of key spectral features. Generally, A A should be 

less than the spectral feature of interest to precisely detect the absorption band. The 

spectral resolution of the data must also be taken into consideration. If a band separation 

smaller than the sensor spectral resolution is selected, artifacts may be introduced in the 

result. In this study, the band separation was selected to be close to the spectral resolution 

of the original data (5nm for the visible spectral region; lOnm for the short wave infrared 

spectral region).

Differentiation enhances high frequency noise while suppressing low frequency 

background noise and this effect is compounded as the order of the derivative increases. 

Although some studies have demonstrated the advantages of high order derivative spectra 

for the characterization of absorption features (Huguenin and Jones, 1986; Tsai and 

Philpot, 1998), we found that the noise levels after the second differentiation render the 

results difficult to interpret. Thus we used derivatives of the first and second order.
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3.2.2 Noise and smoothing

The enhancement of noise caused by differentiation is largely related to high- 

frequency noise, the process of differentiation being effectively a form of high-pass filter. 

Thus, some spectral smoothing preprocessing is required prior to derivative analysis. 

Smoothing algorithms used in spectroscopy include the Savitzky-Golay (Savitzky and 

Golay, 1964), the Kawata-Minami’s Linear Least Mean-Square (Kawata and Minami, 

1982) and the Mean Filter (Tsai and Philpot, 1998). When the noise is at a high 

frequency with respect to the spectral features of interest, as is the case in this study, there 

should be little significant differences between the three methods (Tsai and Philpot, 

1998). The Mean Filter smoothing algorithm was used in this study because it is 

straightforward and requires the least computation time. A Mean Filter locally smoothes 

the data within a predetermined moving window by calculating the mean value of 

samples which is then attributed to the middle sampling point of the smoothing window. 

The algorithm can be represented as

= — -------- , (3-4)
n

where n (number of sampling points) is the size of the filter, and j  is the index of the 

midpoint. s(Aj) is the new value of the midpoint in the window. The larger the filter

window, the smoother the result, and the more likely the loss of useful detailed spectral 

information. Excessive smoothing can introduce artifacts in the form of band distortion 

and changes in the location of the center of the absorption feature (Kawata and Minami, 

1982). In this study, the filter size was gradually increased until relatively smooth
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derivative spectra were obtained. A filter size of 7 was selected because larger sizes 

resulted in loss of spectral details in the 2nd derivative spectra.

3.2.3 Derivative Spectral Unmixing (DSU)

A classical approach to solve the mixed pixel problem is the linear unmixing 

model, which assumes that the materials (endmembers) present in a pixel are linearly 

mixed. The mixed pixel spectrum can be described by

s»(^) = E  f iSp M) ,  (3-5)
(=1

0 < / , < 1 . 0 , £ / , = 1 . 0  (3-6)
1=1

where sm (A) is the spectrum of the mixture, spt (A) is the ith endmember spectrum, f] is 

the abundance fraction of ith endmember in the mixture, and k is the total number of 

endmembers needed to model accurately the mixture spectrum.

If the original spectrum can be modeled as a linear combination of all

endmembers, its derivative will also conform to the linear mixing model. In the

derivative spectral domain the linear mixing model can be expressed as

( f d ’sp , ( A)  

dA’ r i  dA’ ’

0 < / ,  <1 .0 ,2 /■  =1-0. (3-8)
1

d n S  (A) . I J  • • r  r i  • j  ■ i d n s P i ( A )  ■w h ere  ------ is the nth derivative of the spectrum of the mixed pixel, ------—---  is the
dAn dA"

nth derivative of the ith endmember spectrum ( spi (A )), j\ is the abundance fraction of 

the ith endmember in the mixture and k is the total number of endmembers. The
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derivative mixing model has the same form as the reflectance/radiance mixing model 

with the distinction that derivatives are used for both the mixture and endmember spectra.

If equation (3-7) is rewritten to isolate the abundance of a single endmember (Mi 

endmember):

d nsm(X) f  f d nsPi{A) 
dAn t t  dAn

)

fk d nspk (A) (3'9)

dAn

cTTH/f d nspi(A)and S U M Non_interesl = £ ( / .  ^ ...  ̂ (3-10)

then

d ' ^ - SUM. i n  N on_m terest

f k = — ^ -------------    . (3-11)
d nspk{A)

dA"

With a good approximation of SUM Non_iaterest, the fraction f k of the endmember of

interest can be derived.

Here we define a key property of derivatives that applies to spectra of a variety of 

natural targets and which enables a simplification of (3-11). As an example we focus our 

discussion on geological targets. The spectra of most minerals are complicated functions 

of the wavelength (X) in the visible (VIS), near infrared (NIR), and short wave infrared 

(SWIR) spectral region, but the spectra can be approximated as a simple linear function 

(Equation (3-12)) within specific spectral region (e.g. [A,i, X2]) free of spectral features

s  = a A  + c , (3-12)
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where a and c are regression coefficients, X is the wavelength, X e  [A.,, ^ 2]- The second 

derivative values for such spectral segment will be

Thus if an endmember spectrum can be characterized by (3-12) in a specific 

wavelength region, the contribution of this endmember to the second derivative spectrum 

of the mixture will be zero in this spectral region. Consequently the mixing model will 

require one less endmember if derivative spectra are analyzed as opposed to reflectance 

spectra.

Many minerals have absorption features distinct from surrounding rock forming 

minerals (Hunt, 1977) and those of non-geological targets (e.g. vegetation). Therefore it 

is commonly feasible to determine a spectral region [A,i, X2] where a mineral endmember 

of interest has a distinct absorption band and where remaining endmembers in the 

mixture have a spectral shape that can be modeled by equation (3-12). In such instance, 

the solution for endmember f k characterized by the unique spectral feature can be 

simplified (compare with equation (3-11)) as

using the second derivatives since SUM Non_iBteresl = 0. The fraction of endmember, f k, is

^  = 0 ,A g [ A v A2\ . (3-13)

(3-14)

dsI2

easily estimated using the 2nd derivative spectra of the mixture and of the endmember of 

interest.
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For a mixture of more than 2 endmembers, it may be necessary to use more than 

one spectral region to calculate the fractions of multiple endmembers of interest. If an 

endmember of interest has a distinct spectral feature that does not overlap with that of the 

remaining endmembers in the mixture, equation (3-14) can be used to calculate the 

fractional abundance of this endmember.

3.3 EXPERIMENT

The DSU algorithm was tested using spectral measurements of a geological surface 

coated with rock encrusting lichens. The rock sample (Figure 3.1) was collected in June 

1999 from the Gog Quartzite Formation in Jasper, Alberta, Canada (52°12’N, 117°15’W). 

The sample comprises three surface types, namely green lichen (R. geographicum), black 

lichen (R. bolanderi) and the rock substrate (quartzite). The quartzite substrate is ideal 

to test the abundance predictions of the DSU because it provides uniformly high 

reflectance and, as discussed in section 3-4, mineral absorption features that are well 

understood and discemable from that of lichen. The spectral measurements were taken in 

the laboratory using a FieldSpec FR spectroradiometer that operates in the 350-2500 nm 

spectral range and is characterized by a spectral resolution of 3 nm at 700 nm, 10 nm at 

1500 nm, and 10 nm at 2100 nm (Analytical Spectral Devices, 2001). Measurements 

were recorded as reflectance (as opposed to radiance) using an average of twenty scans in 

order to minimize instrument noise. A field of view (FOV) of 0.45 cm in diameter was 

achieved by bringing a fiber optic (FOV 25 °) into a position normal to the surface within 

1 cm of the sample. The sample was illuminated with one quartz halogen lamp at an 

incident angle of 30 degrees. Reflectance spectra were obtained by determining the ratios

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of data acquired for a measurement of the sample to data acquired for the 99% 

reflectance Spectral on panel under the same illumination and observation conditions. 

To generate a data set with variable abundance of green lichen, black lichen, and rock, 

the rock sample surface was measured following a constant grid increment of 0.45 cm 

along two orthogonal directions (Figure 3.1b). Finally the spectral measurements were 

arranged as an image cube in accordance to their physical alignment in the grid (Figure 

3.1c).

To assess the accuracy of the predictions from the DSU analysis, a digital photo 

of the sample was registered to the spectral cube and used to estimate the abundances of 

lichen and rock within each spectral pixel. Each spectral pixel is encompassed by 100 

pixels of the digital photo. The spatial resolution of the photo implies that a single surface 

type characterizes most pixels. A supervised maximum likelihood classification was 

used to assign each photo pixel to one of 3 endmember surface types (green lichen, black 

lichen and rock). Grids of 0.45cm by 0.45cm (one grid cell corresponding to one spectral 

measurement) were overlaid on the registered rock photo, and the endmember fraction 

within each spectra pixel was automatically estimated by counting the total number of 

pixels that belong to a given surface type on the photo.

3.4 SELECTION OF ENDMEMBERS

Bechtel et al. (2002) have shown that rock-encrusting lichens transmit very little 

light (<3%) from 350-2500 nm. These findings support the use of linear mixture models 

for the deconvolution of lichen/rock mixtures. Black crustose lichens display a 

reflectance less than 7% in the visible range (Figure 3.2). R. geographicum is a mosaic
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of tiny green ‘tiles’ (areoles) set against a distinctly black background (Johnson et al., 

1985). The green appearance of this lichen comes from the presence of these areoles, not 

from the lichen thallus itself (Bechtel et al., 2002). The reflectance is near 5% at 400 nm 

and quickly rises to approximately 11-17% from 520 nm until the chlorophyll absorption 

near 685 nm (box A on Figure 3.2). R. geographicum shows a green peak at 

approximately 550 nm that is more characteristic of vascular plants than some of the 

darker colored lichens. Both lichens display a gradual increase in reflectance to 1380 nm 

followed by an absorption feature centered near 1445 nm caused by water in the lichen. 

The spectra then display an increase in reflectance reaching a maximum value around 

1860 nm. Beyond the water absorption feature near 1935 nm (masked on figure 2) the 

spectra of both lichens are similar in shape. The same observations were reported by 

Bechtel et al. (2002) for a wider range of lichen species.

Ager and Milton (1987) identified three broad absorption features near 1730, 

2100, and 2300 nm, which are attributable to the presence of cellulose in lichen (Figure 3.

2). A broad feature near 2355 nm is present in lichens (Bechtel et al., 2002); however, 

this feature also appears in the quartzite spectra, so this feature cannot be uniquely 

associated with lichen. The quartzite spectrum is characterized by a distinct absorption 

band at 2195nm (Box B on Figure 3.2) when compared to the lichens. The lichens 

display a similar and nearly linear spectral shape near 2195nm and thus their second 

derivative values are close to zero near this wavelength (Figure 3.3). Green and black 

lichen can be distinguished based on the unique absorption feature of green lichen near 

680nm due to the presence of chlorophyll (Box A in Figure 3.2). In this wavelength 

region rock and black lichen display second derivative values approaching zero (Figure 3.
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3). Based on the observation above, equations (3-15) and (3-16) can provide an 

estimation of the rock and green lichen abundances:

/,rock estimate
2195 nm

d A 2

d  ^  rock

2195 nm
d A 2

(3-15)

/,green _  estimate

d 2sm

d A 2
680nm

d 2s green

d A 2
680nm

(3-16)

The DSU algorithm requires the selection of one spectrum for each class that is 

unmixed, in this case green lichen and quartzite. For this purpose spectral pixels were 

selected from large surface areas identified from the digital photo and containing one 

surface type (pure pixels). Figure 3.4 provides the mean, minimum, maximum and 

standard deviation (STD) of the second derivative values for each class. Black lichen was 

included for comparison. Each of these natural surfaces spans a range of values and the 

two pixels with the maximum 2nd derivative values at 680 nm and 2195 nm were selected 

as endmember spectra for green lichen and rock respectively (also shown on Figs 3-2 and 

3-3).
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3.5 RESULTS

The abundances of green lichen and rock in each pixel were estimated using Eq. (3- 

15) and (3-16) and compared to the “true values” obtained from the analysis of the high- 

resolution digital photo (Figure 3. 5). The correlations between the two data sets were 

examined using ordinary least squares (OLS) at a confidence interval of 95%. Because 

the data are expected to show a linear correlation, a parametric regression test was used 

rather than a non-parametric approach. For green lichen, 

f green_estima,e =0.9672 * f green truth +0.023 and R 2 = 0.9403. For quartzite

0.9377 * / rort_^+ °.0358  and R 2 =0.9260. Although the estimated values

for both surface types are a little smaller than the true values (slope < 1), a significant 

linear correlation exists between the two data sets (p value = 0) (Figure 3.5). The 

distribution of the absolute errors between the estimated and true abundances is 

illustrated in Figure 3.6. For green lichen, 70% of the pixels have an error within -0.01 

and 0.05, and 90% of the pixels have an error between -0.05 and 0.12. For rock, 70% of 

the pixels have an error within -0.08 and 0.07, and 90% of the pixels have an error 

between -0.13 and 0.18. For “true values” approaching 0% or 100%, the estimated 

abundances tend to cluster (Figure 3.5, circles a, b, c and d). The errors illustrate the 

natural spectral variability of the endmember surfaces, a factor that is not accounted for 

by DSU where a single spectrum per endmember is used.

3.6 DISCUSSION

The results of our laboratory experiment suggest that DSU is a promising approach 

to derive sub-pixel abundances. To illustrate the premise of the model we chose to
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calculate abundances of green lichen and rock because they display documented 

absorption features that are not shared by other scene components. The computation of 

rock/mineral abundance is relevant to the analysis of hyperspectral imagery in geology. 

In practice geologists would likely group all lichens as a single spectral endmember. By 

focusing on a spectral region unique to lichens (e.g. 1730 nm) where rock/minerals lack 

spectral contrast (Bechtel et al., 2002), the DSU could be used to determine the total 

lichen coverage within each pixel of a hyperspectral image. (Appendix 1 presents some 

related research results.)

By choosing endmembers with maximum 2nd derivative values, we introduced a 

bias towards the underestimation of true abundances. In addition, an underlying 

assumption of the model is that endmembers other than the one of interest have null 2nd 

derivative values at the wavelength used for the DSU. Figure 3.3 and 3.4 indicate that this 

is not true in this experiment and will likely not be true for other natural targets, thereby 

contributing errors. Future work will apply the DSU to airbome/spacebome 

hyperspectral imagery. The signal to noise ratio (SNR) of imaging hyperspectral data 

(e.g. HYMAP, HYDICE) is lower than that of our laboratory data, thus the separation of 

useful signal from noise will be a very important factor in determining the usefulness of 

the DSU for mineral mapping.

3.7 CONCLUSIONS

This chapter combines spectral mixture analysis and derivative spectra to present 

a new unmixing model termed the “derivative spectral unmixing”. The key strength of 

this concept is that the abundance estimation of endmembers does not require a thorough
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knowledge of all endmembers at hand as long as the unknowns do not display conflicting 

absorptions features with that of the material of interest. The DSU results for our 

laboratory experiment shows that the algorithm is promising for the quantitative analysis 

of hyperspectral data. The experiment in this chapter demonstrates that bias in the 

selection of the endmembers can introduce errors in the final abundance estimation. 

Several improvements and extensions to the algorithm may be the focus of future 

research. The incorporation of the intra-class variation into the DSU model should 

improve the accuracy of the results. The example in this chapter made use of only one 

band per endmember class for the abundance estimation. The use of multiple diagnostic 

bands per endmember may improve the estimated fractions.
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Figure 3.1 Photograph of the lichen encrusted quartzite sample and resulting 

hyperspectral data cube, (a) Digital photo of rock sample showing green lichen (R. 

geographicum) and black lichen (R. bolanderi) and the red cross marks used for 

coregistration with the spectral data; (b) schematic diagram of the spectral measurement 

layout. Each cell (0.45 cm by 0.45cm) is corresponding to one spectral measurement; the 

sample is translated through the field of view of the instrument along two directions 

(showed by the two arrows), that correspond to the image rows and columns in (c); (c) 

Hyperspectral image cube generated according to the measurement layout illustrated in 

(b). This is a three dimensional view of the spectral data. The front face is a color 

composite of bands 430nm (Blue), 550nm (Green) and 710nm (Red). The top and side 

faces of the cube are colored to show the reflectance variation with wavelength of pixels 

in the first row and last column (red means high value).
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Figure 3.2 Endmember spectra for green lichen, black lichen and rock. The selection of 

the spectra is detailed in section 3.4. The strong water absorption feature near 1900 nm 

was discarded because of low signal. Box A marks the 680nm region where green lichen 

has a unique absorption feature. Box B marks the 2195nm region where quartzite has a 

diagnostic absorption feature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67



as 0,006 
SJ
* 0 .004

|  0.002 
+5
I  0,000
k

- 0.002
■oc
^  - D.004

550 600 660 700 . 750 800
wavel eng ih (nm)

0-015
oia
g 0.010
x
>
5  0.005
SBi>-rl

•§ 0.QD0 

«s
-O.OD5

21

Figure 3.3 2nd derivative endmember spectra for quartzite, green lichen and black lichen

at 680 nm (A) and 2195 nm (B). Quartzite has an overwhelming 2nd derivative value

compared to green and black lichen at 2195nm while green lichen has distinct values near

680nm.
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Figure 3.4 Mean, minimum, maximum, and standard deviation (STD) of 2nd derivative 

values at 680 nm (A) and 2195 nm (B) for locations of the sample with green 

lichen, black lichen and quartzite (rock).
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Figure 3.5 Comparison between the abundances of green lichen (A) and quartzite (B)
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estimated using the DSU and “true” abundances observed from the digital photo. In both 

instances, the linear correlation has a slope <1 indicating that the DSU underestimates the 

true abundances. The circled areas show that data points tend to cluster when “true 

values” are approaching 0% or 100%, which reflects the natural variability of endmember 

surfaces that is not accounted for by DSU.
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CHAPTER 4 

SPECTRAL UNMIXING OF NORMALIZED REFLECTANCE DATA 

FOR THE DECONVOLUTION OF LICHEN AND ROCK MIXTURES

4.1. INTRODUCTION

Hyperspectral remote sensing systems are becoming increasingly available for 

regional geological mapping and mineral exploration where cost saving measures are key 

to commercial competitiveness (Kruse, 1999; Staenz et al., 1998). The mixture of several 

materials within individual pixels can complicate the analysis of multispectral and 

hyperspectral information, often masking the diagnostic spectral features of materials of 

interest and hampering their classification. A widespread example of this problem in high 

latitude, subarctic regions is the ubiquitous presence of rock encrusting lichens that may 

compromise the ability to map the reflectance signatures of minerals from imaging 

spectrometer data (Rivard and Arvidson, 1992). In tundra and open woodland habitats, 

lichens and mosses can cover an area by as much as 70% (Solheim et al., 2000), 

complicating comprehensive mapping exercises aimed at resource extraction. 

Fortunately, the use of spectral mixture analysis (SMA; Mustard and Sunshine, 1999; 

Smith et al., 1990) addresses the complexity of target identification within mixed pixels 

and can allow detection of substances exposed at subpixel resolution. Typically this 

approach assumes that mixed spectra result from the linear combination of spectral end­

members (Singer and McCord, 1979).

The determination of lichen transmittance is the key issue in assessing the 

assumption that satellite reflectance measurements of lichen encrusted bedrock represent
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mixtures of lichen and rock reflectance linearly weighted by their respective surface 

cover. Bechtel et al. (2002) estimated lichen transmittance to be <3% throughout the 

350-2500 nm spectral region, using spectra measured from the foliose lichen U. 

torrefacta as a representative sample of a broader class of rock encrusting lichens. These 

findings suggest that the optical thickness of lichen largely prevents the transmission of 

light through the lichen mat to the underlying rock substrate. Using the band ratios 

2132/2198 and 2232/2198 nm for five crustose lichen species (U. torrefacta, R. 

bolanderi, R. geminatum, R. geographicum, A. cinerea), Bechtel et al. (2002) also 

showed the similarity in shape of various lichen spectra in the short wave infrared 

(SWIR) spectral region supporting similar observations by Rivard and Arvidson (1992). 

These results imply that the mixing of lichen and rock spectra within a scene should be 

linear, and that spectral unmixing of rock and crustose/foliose lichens may be 

successfully accomplished using a single lichen end-member for this spectral range.

The incorporation of lichen endmember spectra into SMA presents new 

challenges, which will be addressed in this chapter. In SMA, the spectra of end-members 

are either extracted from the imagery or measured in the laboratory or in the field. Given 

that rock-encrusting lichens rarely fill a pixel (they are usually found in round patches on 

rocks in the field), it is not feasible to determine lichen endmember spectra from imagery. 

One must rely on field or laboratory measurements of varying species of lichens to define 

one or more lichen endmember spectra.

Differences in viewing and illumination geometry between field/laboratory 

spectra and imagery will result in spectral reflectance differences that introduce errors in 

SMA results. This study builds on the conclusions of Bechtel et al. (2002) and examines
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the use of spectral normalization to minimize differences in SWIR reflectance of five 

lichen species and determine an optimal number of lichen endmember spectra for SMA. 

The findings are then applied to the SMA of an image generated in the laboratory for a 

lichen encrusted rock sample. Finally the unmixed abundances are correlated with lichen 

and rock abundances obtained from a high-resolution photograph and the implications of 

the results for the analysis of airbome/spacebome hyperspectral imagery are discussed.

4.2 MATERIAL AND METHODS

4.2.1 Data acquisition

In this chapter we first examine the variability in spectral shape across lichen 

species making use of spectral data collected by Bechtel et al. (2002) for lichen bearing 

rocks sampled from the Gog Quartzite Formation in Jasper, Alberta, Canada (52°12'N, 

117°15'W). Twenty-seven lichen bearing rock samples were collected and measured 

within a 2-week period to ensure a healthy condition of the lichens. Reflectance spectra 

were acquired from five different locations on each of the seventeen lichen patches under 

dry conditions, comprising a total of five different species (U. torrefacta, R. bolanderi, R. 

geminatum, R. geographicum, A. cinerea). The relevant measurement methodology is 

described by Bechtel et al. (2002). The quartzite substrate provides uniformly high 

reflectance and mineral absorption features that are well understood and discemable from 

those of lichen. The quartzite samples are compositionally homogenous and, therefore, 

show little spectral variation within sample and between samples.

To perform the SMA, a hyperspectral image was generated in the laboratory for 

one rock sample that comprises three surface types, namely green lichen (R. geminatum),
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black lichen (R. bolanderi) and the rock substrate (Quartzite) (Figure 4.1a). The spectral 

data were acquired with an ASD FieldSpec FR portable spectroradiometer that operates 

in the spectral region between 350 and 2500nm, with a spectral resolution of 3nm at 

700nm, lOnm at 1500nm, and lOnm at 2100nm (Analytical Spectral Devices, 2001). 

Spectral measurements were collected using a fiber optic (FOV 25°) along the normal 

direction to the surface at a distance of 1 cm, which results in a spatial resolution of 

0.45cm (illuminated footprint on the surface). The sample was illuminated with one 

quartz halogen lamp (50W) at an incident angle of 30 degrees. The reflectance spectrum 

was obtained by calculating the ratio of the radiance of the sample to the radiance of a 

99% reflective reference panel (Spectralon, Labsphere, North Sutton, NH, USA) under 

the same illumination and viewing conditions. The spectrum recorded for each surface 

location is an average of 20 scans, resulting in an increase of 4.5 times in the signal to 

noise ratio (SNR). A flexible sample platform was used to hold and move the rock while 

preserving the viewing geometry for all measurements. The sample surface was scanned 

with a constant grid increment (0.45cm) along two orthogonal directions, thus capturing 

the local abundance variations of three endmembers (surface types) within each 

measurement (Figure 4.1b). The spectra varied significantly from spot to spot because 

some of the grid positions were fully occupied by lichens while some were filled with the 

rock substrate. Finally all spectral measurements were arranged as an image in 

accordance to their physical alignment in the grid (Figure 4.1c).

To assess the SMA results, a high resolution digital photo of the sample was co­

registered to the hyperspectral image cube and used to estimate the abundances of lichen 

and rock within each spectral pixel (Figure 4.1a). Each spectral pixel (corresponding to
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an area of 0.45 cm by 0.45 cm on the rock surface) contains approximately 100 pixels in 

the digital photo. Thus one pixel on the digital photo equals approximately 0.045cm by 

0.045cm, which implies that most pixels will consist of a single surface type. A 

supervised maximum likelihood classification was then performed on the digital photo to 

assign each photo pixel to one of 3 surface types (green lichen, black lichen and rock). 

After grids of 0.45cm by 0.45cm (one grid cell corresponding to one spectral 

measurement) were overlaid on the classified photo, the abundance of each endmember 

within each spectral measurement grid was automatically estimated by counting the total 

number of pixels that belong to a given surface type on the photo.

4.2.2 Spectral features of lichens 

In this section we summarize the key spectral features of rock encrusting lichens 

using typical spectra (Figure 4.2) obtained from the sample shown in Figure 4.1. Dark 

colored crustose and foliose lichens display a reflectance between 3 and 7% in the visible 

range. For green lichens such as R. geographicum the reflectance is near 5% at 400 nm 

and quickly rises to approximately 11-17% from 520 nm until the chlorophyll absorption 

at approximately 685 nm (Bechtel et al. 2002). R. Geographicum shows a green peak at 

approximately 550 nm that is more characteristic of vascular plants than some of the 

darker colored lichens. Based on these observations, Bechtel et al. (2002) devised two 

spectral ratios (400/685 nm against 773/685 nm) to isolate the spectral characteristics of 

different colors, types, and species of lichen. Both lichens display a gradual increase in 

reflectance to 1380 nm followed by an absorption feature centered near 1445 nm caused 

by water in the lichen. All lichens investigated by Bechtel et al. (2002) and Rivard and 

Arvidson (1992) then display an increase in reflectance reaching a maximum value
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around 1860 nm. Beyond the water absorption feature near 1935 nm (masked on Figure 

4.2) the spectra of lichens are similar in shape. A similar pattern was reported by Ager 

and Milton (1986) for a limited number of species. Three broad absorption features near 

1730, 2100, and 2300 nm (Figure 4.2), are attributable to the presence of cellulose in 

lichen (Ager and Milton 1987; Bechtel et al., 2002). These are in turn accompanied by 

more subtle absorptions (e.g. 1690 and 1770 nm) whose amplitude can vary amongst 

species (Bechtel et al., 2002). Based on these observations and a difference of up to 10% 

in overall amplitude between lichen spectra in the short wave infrared, Bechtel et al. 

(2002) devised two spectral ratios (2132/2198 nm and 2232/2198 nm) to outline the 

similarity of lichen spectra in this spectral range.

4.2.3 Spectral mean normalization

Spectral mean normalization can be used to remove wavelength-independent 

magnitude differences between spectra and enhance wavelength-dependent effects 

(Cudahy et al., 1999). Thus it provides a means to suppress the reflectance magnitude 

differences between data sets caused by differing viewing and illumination geometry 

while enhancing differences in spectral shape. The spectral mean normalized spectrum 

can be calculated with the following equation:

Vn =  =  , (4-1)
r

where Fn is the normalized spectrum, r  is the original spectrum, r is the spectral 

mean over the defined spectral region.

Two spectra, y  and y  , differing only in spectral magnitude (e.g. varying

illumination and viewing geometry), can be described by
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n  =  f h  (4 -2 )

where ^ i s  a wavelength-independent multiplicative factor. The spectral means of these 

two spectra therefore will obey

r\ ~ f r2 (4' 3)

where T" and ,7 are spectral means for y  and y  , respectively. The normalized spectra 
'1  ' 2  1 2

have the following relationship:

h f r 2 r2
r^ n =  =  = ~ = = =  = r2_n,  (4-4)

h f r 2 r2

where, ^\_n and ^2 _n are spectral mean normalized spectra for ^ a n d  2̂ » 

respectively.

Given an atmospherically corrected airbome/spacebome data, normalized image 

spectra should be comparable with normalized laboratory/field spectra for the same 

target. For lichen-rock mixtures, it is shown below that the normalized lab/field lichen 

spectra are similar to the normalized lichen endmember spectra estimated from the image 

of the rock sample.

4.2.4 SMA of normalized spectra

SMA uses a linear combination of reference spectra, known as endmembers, to 

approximate endmember abundances in a mixed pixel (Smith et al., 1990; Mustard and 

Sunshine, 1999). Typically the solution is obtained through least squares techniques 

(Shimabukuru et. al., 1991) and is constrained to yield abundances between 0 and 1 

where the sum of the abundances for each pixel equals 1:
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rm = E  EM k * fk  (4-5)

f k > 0  ^
(4-7)

Z / > L O

where Vm is the spectrum of the mixture, is the spectrum for the kth endmember, I is

the number of endmembers, and r  is the weight (abundance) for the kth endmember in
J k

the mixture.

Given a linear mixture of endmembers, the normalized mixture spectrum can be 

written as

rm 'sp / E M  k  ̂ / E M  k * f  N
=  = f k )  (4-8)
rm *=i E M k rm

where 7*m and are the spectral mean for the mixture and the kth endmember, 

respectively.

Let
r

v  — m
m  _  n , (4-9)

r m

EM , n = S L  (4_10)

EM
f k n = ^ L * f k -  (4-H)

rm

Equation 4-8 can be rewritten as
i

rm_n = ' Z E M k- n * /*-»> (4-12)
k  = 1

where ^m _n  is the normalized spectrum for the mixture, is the normalized
k _ n

spectrum for the kth endmember, and f k „ is the weight for the kth endmember. Thus,
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the normalized mixture spectrum can be modeled as the linear weighted sum of the 

normalized endmember spectra. This model is henceforth termed the Normalization 

Linear Mixture Model (NLMM) in this chapter.

The NLM M  can also be constrained to yield weights ( f  ) between 0 and 1
J k _ n

where the sum of the weights for each pixel equals 1:

f  > o <4-13>J k n — V

i i PM 1 1 ____
E  = E  */«)  = = *  Z ( ™ ,  * f k ) =1-0 • (4-14)
k-1 k-1 Li Ln -̂1

The NLMM presents advantages and disadvantages. A key advantage is the lack 

of sensitivity of the solution to errors in the magnitude of the endmember spectra, as is 

seen in SMA applied to reflectance spectra. A disadvantage is that it does not directly 

provide the abundance for each endmember. The relationship between the endmember 

abundance ( r  ) and NLMM weight ( r ) is expressed by Eq. 4-11. In the results section
J k Jk_n

below (Section 4.3), we show that the unmixing weight ( r ) from the NLMM
Jk_n

correlates well with the abundance, and thus provides valuable relative abundance 

information in a scene.

4.3. RESULTS

4.3.1 Impact of the normalization on lichen spectra

Figure 4.3a displays spectra for 5 lichen species (R. geographicum, R. bolanderi, 

R. geminatum, U. torrefacta, and A. cinerea), the last three measured by Bechtel et al. 

(2002). Each spectrum is the mean of five 0.78 cm2 locations. The data on Figure 4.3a
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illustrate findings from previous studies suggesting that different lichen species have 

spectra with similar shapes but different magnitude in the SWIR. If we regard each 

spectrum as a vector in n-dimension space, the largest angle between spectra of this 

lichen group (Table 4-1) is 0.053 radians (approximately 3 degrees) confirming the 

similarity in spectral shape across species. Although differences in reflectance of 

approximately 5-11% are observed across different lichen species (Figure 4.3a), the 

normalization procedure greatly reduces the observed variability to 2- 6.5% (Figure 4.3b) 

and captures the spectral shape common to lichens while retaining their diagnostic 

spectral features (e.g. 2100 and 2300nm).

Using the digital photo (Figure 4-1), we identified thirty pixels (each 0.64 cm2) 

occupied by lichen (green or black lichen) from the hyperspectral image of the quartzite 

sample. The within-class variation was calculated in terms of maximum, minimum, 

standard deviation and mean values prior and after the normalization (Figure 4.3c, d). 

The data cover a larger lichen area than that shown in Figure 4.3a,b and provide a better 

assessment of the spectral variability within lichen species. The largest reflectance 

difference between lichen pixels is 0.32 (Figure 4.3c) whereas the difference for the 

normalized reflectance is less than 0.1 (Figure 4.3d). The standard deviation for the mean 

normalized spectrum is much smaller than that for the mean reflectance spectrum and 

largely encompasses the variability observed across species (Figure 4.3b). The 

normalization significantly suppresses the spectral variability within the lichen class.

4.3.2 Impact of the normalization on the extraction of image endmembers

4.3.2.1 Visual extraction
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The spectral variability within the lichen class impacts the number of lichen spectra 

required for the SMA. Multi-dimensional scatter plots provide an intuitive way to explore 

the spectral variation in an image and interpret the mixture relationship between 

endmembers. For a scene devoid of topography, candidate endmembers should appear 

near the comers of the convex hull in n-dimension space (Boardman, 1993). The image 

data of the quartzite sample (Figure 4.1) were examined using three absorptions 

diagnostic of lichen (2100 and 2300nm) and quartzite (2200 nm) (Figure 4.4) that 

enhance the spectral contrast between lichen and rock. Pixels occupied solely by lichen 

are located along a line of unit slope in reflectance (Figure 4.4 a, b), due to the similarity 

in their spectral shape but varying magnitude. The geometry of the reflectance data cloud 

would require green and black lichen endmembers (circled on Figure 4.4 a, b) to explain 

the lichen rock mixtures. For the normalization data, the distinction between two lichen 

endmembers is removed (Figure 4.4d) or substantially reduced (Figure 4.4c) (0.018 at 

1730nm in Figure 4.4c versus 0.32 in Figure 4.4a). As a result of the normalization, the 

distribution of the mixtures observed for the normalized data would typically be 

explained using the manual selection of one lichen and two rock endmembers as seen in 

Figure 4.4d.

4.3.2.2 Automated extraction

The task of defining all scene endmembers required to solve mixtures of interest 

can be difficult as evident from the importance attributed to the topic in the recent 

literature (Tompkins et al., 1997; Bateson et ah, 2000; Okin et al., 2001; Dennison et al., 

2003). The automatic endmember extraction tool available in the Imaging Spectrometer 

Data Analysis System (Staenz et al., 1998) uses the Iterative Error Analysis (IEA) to find
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endmembers from a hyperspectral scene. IEA is based on the residual error image 

generated when a data set is unmixed using a Weighted Nonnegative Least Squares 

approach (WNNLS) (Haskell et al., 1981). The average spectrum of the scene is used as 

the starting endmember to initialize the unmixing process. The residual error image is 

essentially a distance measurement in n-dimensional space (n = number of bands) 

between the average spectrum and each spectrum of the image, and is used to locate the 

pixels that encompass the largest errors. These pixels, which are the farthest away from 

the average spectrum, then form a new endmember to unmix the data and the initial 

average spectrum is discarded. This process is repeated until the number of endmembers 

specified by the user is reached or until a specified average error tolerance condition is 

met. For this study we used IEA with a predetermined average unmixing error tolerance 

of 0.02 to extract spectral endmembers from our reflectance and normalized reflectance 

images.

Two lichen (green and black lichen) and three rock endmembers (Figure 4.5a) 

were extracted from the reflectance image. In contrast three endmembers (one lichen and 

two rocks; Figure 4.5b) were extracted from the normalized reflectance image. These 

number and type of endmembers are consistent with those determined from the visual 

extraction. From this analysis, a key finding is that the SMA of normalized reflectance 

does not require any a priori knowledge of lichen speciation because any lichen spectrum 

can be used to unmix any mixture of rock and lichen for the 2000-2400 nm range.

4.3.3 Unmixing results

In this section we present the unmixing results of the SMA and NLMM (Figure 4.6) 

conducted respectively on the reflectance and normalized reflectance images using the
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endmembers extracted from the IEA (Figure 4.5). The results are compared to the 

abundances of rock and lichen calculated from the digital photograph (Figure 4.1). The 

ordinary least squares solutions of the mixture model (Eq. 4-5 and 4-12) may yield values 

less than 0 and larger than 1 in the absence of constraints, but these values were set to 0 

and 1 respectively in the constrained unmixing procedure. To minimize the impact of this 

factor on the regression analysis, the pixels which have unmixing results equal to 0 or 1 

were excluded from the following analysis. The coefficient of determination (e.g. R2) for 

the reflectance image is 0.91 (Table 4-2) for lichen and rock (Figure 4.5 a, b). The slope 

of the regression equations is near unity (>0.95), and the intercepts close to 0 (<0.06). 

The standard error of the regression for the reflectance image is 0.09 (Table 4-2) for 

lichen and rock indicating that the image data can be modeled well with the five 

endmembers extracted from the IEA. For the normalized reflectance image the 

coefficient of determination is also above 0.9 for lichen (0.92) and rock (0.91)(Figure 4.5 

c, d). The slope of the regression equations is 0.86 and 0.85, and the intercept is 0.13 and 

0.02 for lichen and rock respectively. The unmixing coefficients from the NLMM are not 

equal to abundances due to the inherent property of the NLMM (Equation 4-11), and thus 

the regression slopes do not approach a value of 1. However the small standard error of 

the regression (0.08 for lichen and rock; Table 4-2) demonstrates that the NLMM fits the 

data well with one normalized lichen endmember.

4.4. DISCUSSION AND CONCLUSIONS

The results of this study have important implications for the geological analysis of 

airbome/spacebome hyperspectral data where rock encrusting lichens partially obscure
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exposed bedrock. Rock encrusting lichens mask their substrate (Bechtel et al., 2002) and 

thus modulate the spectral signature of bedrock complicating the detection and 

quantitative mapping of minerals and rocks from imagery. Studies have shown that 

lithologic mapping is feasible using mixtures of lichen and rock as image endmembers 

(Staenz et al., 2000) but the identification and abundance estimation of minerals is 

negatively impacted. In addition such an approach is not likely to capture a broad range 

of lithologic spectral variability and would fail in instances where lichen exposure on a 

given rock substrate is regionally variable due to local topography or microclimate as is 

observed in regions of high and low latitudes.

We propose that lichen be used as an endmember in SMA to overcome these 

limitations. Because lichens rarely completely occupy image pixels, it is not feasible to 

define a lichen endmember from an image using visual or automated extraction tools. The 

results of this study suggest that this limitation can be surmounted using published 

spectra of rock encrusting lichens combined with the use of a normalization procedure 

applied to image and endmember spectra. Normalized spectra of five lichen species were 

found to be similar in shape and magnitude in the SWIR. This suggests that it may be 

feasible to perform the SMA of airbome/spacebome imagery using a NLMM and one of 

any field/laboratory lichen spectra. The NLMM provides geologists with an opportunity 

to group all lichens into one endmember and further the analysis of rock and lichen 

mixtures without detailed knowledge of lichen species occurring in the region of interest.

The unmixing coefficients of NLMM provide a relative measure of endmember 

abundance as described in Section 4.2.4. Thus, two pixels with identical covers types and 

distribution but differing in local physical surface conditions (e.g. microtopography), will
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result in identical NLMM unmixing coefficients because the albedo variation would be 

minimized by the normalization. In contrast, the unmixing abundances computed from 

SMA applied to the reflectance of the two pixels would not be comparable due to the 

magnitude difference between the selected endmember spectrum for SMA and the 

location-specific required spectrum. When computed for a scene, the NLMM unmixing 

coefficient for lichen will be a uniform indicator of the lichen coverage within the pixels 

of the scene. This feature of NLMM is helpful to label pixels using threshold method 

applied to the unmixing coefficients.

Finally the normalization may subdue the spectral magnitude differences among 

rocks, based on the lower number of rock endmembers predicted by the IEA for the 

normalized data (Figure 4.4, 4.5). Alternately the three rock endmembers extracted for 

the reflectance data may result from microtopography given that they differ principally in 

magnitude. The effect of microtopography on spectral amplitude would be minimized by 

the normalization and is consistent with fewer rock endmembers predicted for the 

normalized data (Figure 4.5b). An analysis of airbome/spacebome imagery using the 

NLMM is required to adequately address this issue and represents the next step in this 

research.
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Table 4-1 Spectral angles (radian) between five lichen species measured from 2000-2400 

nm. (The spectrum for each species for the corresponding spectral region is shown on

Figure 4.3a.)

R. geminatum U. torrefacta R. bolanderi A. cinerea R. geographicum

R. geminatum 0.000 0.021 0.017 0.026 0.038

U. torrefacta 0.021 0.000 0.011 0.014 0.051

R. bolanderi 0.017 0.011 0.000 0.022 0.053

A. cinerea 0.026 0.014 0.022 0.000 0.046

R. geographicum 0.038 0.051 0.053 0.046 0.000
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Table 4-2 Statistics for regressions between the unmixing results and true abundance for 
rock and lichen

Reflectance Normalized
Reflectance

Lichen Rock Lichen Rock
Confidence interval 95% 95% 95% 95%
R squares 0.91 0.91 0.92 0.91
Standard error of the 
regression 0.09 0.09 0.08 0.08

Slope / p-value 0.95 / 0.00 0.96 / 0.00 0.86 / 0.00 0 .85 /0 .00
Intercept / p-value 0.06 / 0.00 0.00 / 0.00 0 .13 /0 .00 0.02 / 0.00
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Digital pliolo si 8 ample [

(a) (b) (c)

Figure 4.1 Photograph of the lichen encrusted quartzite sample and resulting 

hyperspectral data cube, (a) Digital photo of rock sample showing green lichen (R. 

geographicum) and black lichen (R. bolanderi) and the red cross marks used for 

coregistration with the spectral data; (b) schematic diagram of the spectral measurement 

layout. Each cell (0.45 cm by 0.45cm) is corresponding to one spectral measurement; the 

sample is translated through the field of view of the instrument along two directions 

(showed by the two arrows), that correspond to the image rows and columns in (c); (c) 

Hyperspectral image cube generated according to the measurement layout illustrated in 

(b). This is a three dimensional view of the spectral data. The front face is a color 

composite of bands 430nm (Blue), 550nm (Green) and 710nm (Red). The top and side 

faces of the cube are colored to show the reflectance variation with wavelength of pixels 

in the first row and last column (red means high value).
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Figure 4.2 Type spectra obtained for the sample shown in Figure 4.1. The strong water 

absorption feature near 1900 nm was discarded because of low signal. The Box marks the 

short wave infrared (SWIR) spectral region used in figures below (Figure 4.3, 4.4 and 

4.5). Quartzite has a strong hydroxyl (OH') absorption feature near 2194nm distinct from 

the broader absorptions features centered near 2100 nm and 2300 nm displayed by lichen.
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Figure 4.3 Variability in lichen spectra in reflectance and normalized reflectance, a, b: 

Spectra of five lichen species. Each spectrum is the mean of five different 0.78 cm2 

locations; c, d: Minimum, maximum and mean ± one standard deviation value of thirty 

pixels (each 0.64 cm2) occupied by lichen (green or black lichen) from the hyperspectral 

image of the quartzite sample (Figure 4.1).
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Figure 4.4 Data clusters for the image shown on Figure 4.1 prior to (a and b) and 

following the spectral normalization (c and d). Circles mark the location for the visual 

extraction of potential endmembers. Black lines have a unit slope. Pixels occupied solely 

by lichen are located along this line due to the similarity in their spectral shape but 

varying magnitude (a, b). The distinction between two lichen endmembers is removed (d) 

or substantially reduced (c) (0.018 at 1730nm in c versus 0.32 in a).
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lichen-rock mixture of the normalized image.
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Figure 4.6 Comparison between the abundance of lichen and rock estimated from the 

photo and the unmixing results using the endmembers shown in Figure 4.5. (a) and (b) 

for unmixing results from reflectance data; (c) and (d) for unmixing results from 

normalized reflectance data. For the reflectance image, the unmixing results are 

abundances directly comparable with those estimated from the photo. For the normalized 

reflectance image, the unmixing results are weights proportional to the abundances 

estimated from the photo.
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

This study has explored the feasibility of using hyperspectral data for lithologic 

mapping in vegetated areas. Three topics relevant to the analysis of such data were 

addressed, namely the impact of vegetation on the extraction of geological endmembers, 

the deconvolution of lichen and rock mixtures, and the development of novel spectral 

mixture models to facilitate the retrieval of rock signatures from hyperspectral data. The 

recurring theme of the research is the challenge of retrieving valuable lithologic 

information from hyperspectral data in the presence of vegetation and lichens. The major 

achievements of this thesis can be summarized as follows.

(a) Limitation exists in the convex-based endmember selection method when applied 

to the retrieval of rock signatures (in the hyperspectral domain) in vegetated 

regions with a low abundance of rock outcrops. In a case study the method failed 

to provide useful geological endmembers. The convex-based method is 

fundamentally a statistical approach dependent on the spectral variance of the 

scene. In vegetated areas, rock outcrops commonly occupy a very low percentage 

of the land cover. Most of the scene variance is determined by the dominant cover 

type, i.e. vegetation; consequently, the method is optimal for the analysis of 

vegetation. The selection of spectral endmembers should be guided by field 

observations and measurements to perform the spectral mixture analysis.
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(b) The traditional accuracy assessment methodology (e.g. confusion matrix) may not 

be adequate to perform accuracy checks when map units consist of dispersed 

small patches. The analysis of hyperspectral data for a greenstone belt exposed 

north of Rouyn Noranda shows that the accuracy assessment method appears to 

work fairly well for map units with large patches and rock types with substantial 

outcrop exposure (e.g. rhyolite), but may not be suitable to assess the accuracy for 

map units with small patches (e.g. diorite). In such instances a mismatch of a few 

outcrops between image and map or the lack of a precise location for an outcrop 

or map contact will substantially impact the accuracy of results. Fieldwork rather 

than image to map verifications may still be the most effective means to assess the 

unmixing results.

(c) A novel partial spectral unmixing model, the DSU, was developed by 

incorporating the derivative spectra into SMA. The key strength of DSU is that 

the abundance estimation of endmembers does not require a thorough knowledge 

of all endmembers at hand as long as the unknowns do not display conflicting 

absorptions features with that of the material of interest. By using derivative 

spectra instead of reflectance spectra, DSU is relatively insensitive to variations in 

illumination intensity caused by changes in sun angle, cloud cover, or topography. 

In other words, DSU emphasizes the spectral shape of the target that is directly 

relevant to the composition of the target. The DSU results for the laboratory 

experiment show that the algorithm is promising for the quantitative analysis of 

hyperspectral data. The DSU can be used for the direct abundance estimation of 

minerals without a detailed spectral knowledge of non-geological targets because
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many minerals have absorption features distinct from those of non-geological 

targets (e.g. vegetation). In addition, by focusing on a spectral region unique to 

lichens (e.g. 1730 nm) where rock/minerals lack spectral contrast, it may be 

feasible to use the DSU to determine the lichen coverage within each pixel of a 

hyperspectral image and further purify the rock spectra contaminated by the 

signature of lichen.

(d) A spectral mean normalization can suppress intra-class variation for a variety of 

targets including lichen, and the NLMM provides a novel way to deconvolve the 

lichen-rock mixtures using one of any field/laboratory lichen spectra if the 

analysis uses the SWIR spectral region. The normalization can minimize 

amplitude differences in reflectance amongst spectra while retaining the spectral 

shape, which makes it feasible to use field or laboratory spectra as endmembers. 

The normalized spectra of five lichen species were found to be very similar in 

shape and magnitude in the SWIR, which provides geologists with an opportunity 

to group all lichens into one endmember using NLMM and further the analysis of 

rock and lichen mixtures without a detailed knowledge of lichen species occurring 

in the region of interest.

5.2 FUTURE W ORK

The research of this thesis demonstrates the challenges and potential of lithologic 

mapping using hyperspectral data in vegetated regions. The following research avenues 

have been identified for future work.
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Two novel unmixing methods (DSU and NLMM) were proposed in this study, but 

they were tested on spectral measurements conducted in the laboratory using a simple 

scene (a rock sample). Tests on natural scenes are now required to assess their value for 

applied geologic remote sensing. There may also be benefit in an analysis that combines 

both methods.

An absorption feature was observed at 1730nm for all lichen species, which opens 

the possibility to use the DSU to estimate the lichen abundance based on the 2nd 

derivative value at this wavelength. Further research is required to handle the range of 

values observed for lichens at this wavelength during estimation of lichen abundance in 

lichen-rock mixtures and perhaps to remove the lichen contribution from rock 

endmembers extracted from the image data.
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APPENDIX 1 

DISCRIMINATION BETWEEN LICHEN AND ROCK/MINERALS 

USING SECOND ORDER DERIVATIVE SPECTRA

A l.l  BACKGROUND

As evident from the previous Chapters and related literature (Ager and Milton, 

1987; Rivard and Arvidson, 1992; Rollin et al., 1994; Staenz et al., 2000, Bechtel et al., 

2002), the ubiquitous presence of lichen coatings on rock outcrops is a challenge for 

lithologic mapping using imaging spectrometer data collected at high latitudes, because 

lichens affect the overall spectral shape and can mask spectral features of the host rock.

Chapter 3 elaborated a mixing model whereby the abundance of a single spectral 

endmember in a mixture could be calculated if the assumption that the endmember was 

characterized by a unique spectral feature could be met. In nature, lichens are observed in 

the presence of a wide variety of minerals/rocks. For the DSU to be of use in the 

deconvolution of lichen and rock/mineral mixtures, one needs to know if one or many 

spectral features observed in lichens are unique with respect to minerals. Ager and Milton 

(1987) suggested that wavelengths 1730nm and 2100nm may be candidates for this 

purpose. Bechtel et al. (2002) examined the use of the 2200nm band for the 

discrimination of lichens and quartzite. The quartzite displayed a hydroxyl absorption 

feature at 2198nm, and Bechtel et al. (2002) designed a ratio index (2132/2198 vs. 

2232/2198) effective for the separation of lichens from a hydroxyl feature at this 

wavelength. The study failed to examine a wide range of documented hydroxyl features 

that cover other portions of the short wave infrared spectrum. In this appendix the
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spectral properties of an extensive mineral spectral library are contrasted with that of 

lichens at these key wavelengths to assess their uniqueness and usefulness for the 

discrimination of lichens and rocks. The derivative analysis described in Chapter 3 was 

used to: (1) capture the spectral absorption features of lichens; (2) identify an optimal 

wavelength to distinguish lichens from minerals/rocks; (3) explore the benefit of 2nd 

derivative spectra for the interpretation of the rock-lichen mixture.

A1.2 DESCRIPTION OF THE DATA

The publicly available USGS mineral spectral library (Clark, et al., 1993) and the

ndlichen spectral library of Bechtel et al. (2002) were used to explore the variation of 2 

derivative spectra across different minerals and lichen species. The USGS mineral library 

contains spectra of 423 minerals and has been used extensively as a reference for mineral 

identification in hyperspectral remote sensing (Clark, et al., 1993). The lichen spectral 

library consists of 85 spectra collected from five rock encrusting lichen species (R. 

geographicum, R. bolanderi, R. geminatum, U. torrefacta, and A. cinerea). Measurement 

details are described by Bechtel et al. (2002).

The hyperspectral image of a lichen encrusted quartzite sample was used to assess 

the results derived from the analysis of spectral libraries and to demonstrate how the 

derivative spectra facilitate the analysis of mixing relationships between lichen and rock. 

The sample comprises three surface types, namely green lichen (R. geographicum), black 

lichen (R. bolanderi) and the rock substrate (quartzite). The detailed description of the 

experimental setup and spectral features for these surfaces can be found in Chapter 3 and 

4.
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A1.3 RESULTS 

A 1.3.1 Absorption features of lichen

Spectral studies of lichens in the past have revealed that lichens share some 

absorption features at wavelengths 680nm, 1730nm, 2100nm and 2300nm (Ager and 

Milton, 1987; Bechtel et al., 2002). The feature at 680nm is attributed to the presence of 

chlorophyll while features at 1730nm, 2100nm and 2300nm are related to cellulose 

(Ager and Milton, 1987; Rivard and Arvidson, 1992). Generally these spectral features 

are broad and relatively shallow. Using 2nd derivative spectra, the background 

(continuum) can be removed to highlight these spectral features. The calculation of 

derivatives is described in Chapter 3. Figure A l-1 provides an illustration of both 

reflectance and 2nd derivative spectra for two lichen species (R. geographicum and R. 

bolanderi). The broad and shallow absorption features on the reflectance spectra (Figure 

Al-1 a) become distinctive peaks on the 2nd derivative spectra (Figure A l-lb ) and the 

interference of the background has been minimized.

A 1.3.2 Optimal band for discrimination of rock and lichen 

An optimal band for separation of lichens from minerals should be one where 

lichens have a diagnostic absorption feature but most minerals are spectrally flat. In other 

words, minerals should have zero (or near zero) 2nd derivative values at this band while 

lichens have significantly nonzero 2nd derivative values.

Figure A l-2  indicates that lichens have positive 2nd derivative values at both 1730 

and 2100nm while minerals have zero means but the values spans a large range. The 

range of 2nd derivative values for lichens overlaps with that of minerals at both bands.
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The overlap is particularly large at 2100nm where mineral values span a large range from 

-0.093 to 0.149. A further examination of the 2nd derivatives values at 1730nm and 

2100nm as a function of minerals (Figure A 1-3) reveals that a number of minerals have 

non-zero values. The twenty most extreme values include Alunite, Actinolite, Azurite, 

Antigorite, Buddingtonite, Colemanite, Cookeite, Dickite, Halloysite, Howlite, Kaolinite, 

Lizardite, Margarite, Niter, Pinnoite, Pyrophyllite, Scolecite, Sillimarite, Syngenite, and 

Topaz, of which some are common rock forming minerals or minerals of value for remote 

sensing exploration (Figure Al-3a). Consequently the 2100nm band cannot be exploited 

for DSU without compromising the detection of these important minerals. The variation 

of the 2nd derivative values at 1730nm is considerably smaller (Figure Al-3b). Nine 

minerals (Analcime, Azurite, Camallite, Datolite, Gypsum, Jarosite, Mascagnite, 

Natrolite and samarium oxide*) have extreme positive/negative values. And of these only 

gypsum is considered as one of common rock forming minerals. When these nine 

minerals are excluded from the database, the 2nd derivative values for minerals at 1730nm 

span a small range that does not overlap with that of lichens (Figure A 1-4). Thus the 2nd 

derivative values of the lichen rock mixtures at 1730nm are predominantly determined by 

the abundance and type of lichens. Figure A l-5 indicates that green and black lichens 

respectively occupy the upper and lower range of 2nd derivative values at 1730 nm.

Al.3.3 Rock-lichen mixtures for the quartzite sample

Scatter plots are commonly used to visually and intuitively explore the separability 

of, and relationship between, endmember clusters in hyperspectral data. In this section, a

* I regarded Samarium oxide as one mineral in this thesis according to the documentation of USGS spectral library 

(USGS, 2000). But it is a reagent-grade chemical material (Sm203 ) used to study the absorption features due to the 

presence of samarium in the mineral (Rowan et al., 1986).
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scatter plot of data at 680nm and 1730nm was selected to analyze the mixing 

relationships between rock and lichens (Figure A 1-6). The wavelength 680nm was 

utilized because it represents the chlorophyll absorption that varies with different lichen 

species (Ager and Milton, 1987). The 2nd derivative values at this band will represent 

variability in band depth of the chlorophyll absorption. Spectra with greatest band depth 

display the largest 2nd derivatives. The wavelength 1730nm was used because as seen 

above, this band is unique to lichens and thus helps to distinguish lichen from minerals. 

To display the location of pure pixels (endmembers) in the scatter plot (Figure Al-6), the 

digital photo was used to identify three areas for three surface types (green lichen, black 

lichen and rock), respectively. In the scatter plot of reflectance values, clusters for the 

three surface components are relatively broad and poorly defined (Figure Al-6a) 

complicating the selection of endmembers and the visualization of mixing relationship. 

On Figure A l-6b however, the 2nd derivative values for rock pixels are close to zero and 

the data points for pure rock pixels form a smaller and denser cluster. Pixels for black 

lichen have 2nd derivative values close to zero at 680nm and an intermediate positive 

value (around 0.04) at 1730nm because black lichen has a weak chlorophyll absorption 

feature (Figure Al-1). The pixels for green lichen have the largest 2nd derivative values at 

both 680nm and 1730nm because of the stronger chlorophyll absorption feature and 

cellulose absorption feature (1730nm) (Figure A l-1). Based on the geometry of the 

whole data cloud, three endmembers can clearly be identified: rock and two lichens. In 

addition one can infer that most mixed pixels are composed of black lichen + rock.
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A1.4. DISCUSSION AND CONCLUSION

With the aid of the 2nd derivative spectra, the band at 1730nm was found to be 

robust for the separation of lichens from minerals (Figure Al-4). It follows that one can 

quickly distinguish the lichen-dominated pixels from the rock-dominated pixels based on 

the 2nd derivative value at this band. A simple segmentation can thus be used to crop the 

lichen-dominated pixels from further spectral analysis and may facilitate the 

identification of “purer” pixels. This band is also a potential wavelength region where the 

DSU (Chapter 3) could be applied to group all lichen into one class and remove or 

minimize the effect of lichen in rock/lichen mixtures.

The scatter plot of 2nd derivative values at 1730nm and 680nm was found to be 

helpful to interpret the lichen-rock mixtures and identify potential lichen endmembers. 

The starting point of this observation is that rock/mineral are spectrally featureless around 

680nm and 1730nm but different lichen species will tend to have different absorption 

depth at these wavelengths. By removing the background and highlighting the spectral 

shape differences among different surface types, the 2nd derivative values of rock pixels 

cluster near a (0,0) value and the spectral difference across lichen species are 

accentuated. Lichens of different colors, which are a function of the chlorophyll 

pigmentation, will tend to plot in different clusters. In this study, pure green and black 

lichen pixels occupy two comers of the data cloud. By using this scatter plot, we can 

visually examine the mixing relationships between rock and different lichens.

It should be pointed out that mixtures of lichen and rock in this study were 

considered without the interference of other components. Nature is more complex. For 

instance, dry plant materials frequently have absorption features near 1730nm (Elvidge,
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1990), and thus lichens cannot be separated from dry plant materials using only the 2nd 

derivative values at 1730nm. Thus, caution is required when applying the results of this 

study to regions where dry plant material is an important surface component.

The results presented in this appendix are based on spectral libraries with a limited 

number of lichen species. The effectiveness of the method proposed needs to be tested 

with airbome/spacebome hyperspectral data. Because the method is based on derivative 

analysis, the noise level of the derivative spectra calculated from such data will be a key 

consideration to determine its value for applied work.
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Figure A l-1 Comparison between reflectance (a) and 2nd derivative spectra (b) for two 

lichen species. Solid and dashed lines are for R. geographicum and R. bolanderi 

respectively. The dominant lichen spectral features were labeled with vertical blue lines. 

The spectral region near 1900nm was masked because of the high noise level due to the 

strong water absorption.
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Figure A 1-2 Mean, standard deviation, minimum and maximum 2nd derivative values 

observed for the lichen and USGS mineral library at 1730nm and 2100nm. The statistics 

for lichens and minerals were calculated respectively from 85 spectra over 5 lichen 

species 481 spectra for 423minerals. The squares are mean values; the boxes are for 

mean± 1STD; the whiskers for maximum and minimum values.
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Figure A l-3 Second order derivative values at 1730nm (b) and 2100nm (a) for mineral 

spectra of the USGS library. The x-axis is the index # of the minerals in the USGS 

library.
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Figure A 1-4 Mean, standard deviation, minimum and maximum 2nd derivative values 

observed for the lichen and USGS mineral library at 1730nm and 2100nm (9 minerals 

identified in Figure A l-2b excluded). The squares are mean values; the boxes are for 

mean± 1STD; the whiskers for maximum and minimum values.
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Figure A l-6 Scatter plots of reflectance (a) and 2nd derivative values (b) at 680nm and 

1730nm measured from the lichen encrusted quartzite sample. Pure pixels for three 

surface types are marked by circles.
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