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Abstract

This thesis presents and applies design models for a teleoperated mobile robot
test platform. Two models are used. The first is applied to hardware design and is de-
rived from a test-bed’s paramount requirement: flexibility. Flexibility manifests itself
through modularity of the electronics. standardized connectors. aad cross-platform
technology selection.

The second design model. applied to software. is referred to as the Robotic
Internet Platform (RIP) design paradigm. As with the hardware design model. mod-
ularity and flexibility are of utmost importance. This is achieved through selection
of a platform-independent workcell software interface implemented using string data
types. Code. modularly written. promotes recycling and thereby minimizes develop-
ment time for research of a selected topic.

The requirements of the test-bed designed here are outlined in terms of active
research areas. The reader is lead through the design process which adheres to the
design models. A complete. functional. flexible. teleoperated mobile-robot system is

presented.
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Chapter 1

Introduction

The objective of the research presented here is to develop a complete. modifiable
teleoperated mobile robot platform for the purpose of control algorithm and interface
testing.

The design is carried out under the guidelines of two models: one which outlines
necessities for a test-bed. and another (the Robotic Internet Platform (RIP) design
paradigm) which dictates the form of software interfaces between the layers of the
system.

A comprehensive library of software routines are developed to minimize system
development time for future researchers. This software implements the robust. exten-
sible interfaces between the abstract lavers of the system in accordance to the second
of the two design models.

As a test of the resulting systems capabilities. a complete, functional system
is developed: from user-interface to remote workcell actuators. The reader is led

through the development of the design models and application of them.



1.1 Organization

The organization of this thesis is as follows. Chapter 2. Teleoperation Systems.
is an overview of existing teleoperation platforms and active research areas in tele-
operation. This chapter is used to derive the design objectives and system design
models of Chapter 3. The next three chapters contain the design of the teleoperation
system resulting from the design models: Chapter 4. System Overview. is a top-level
description of the system. Chapter 5. Modular Workcell Hardware Design. describes
the workcell hardware and the motivation used to achieve it. and Chapter 6. Modu-
lar Software Design. is an overview of the system software and the workcell software
interface. Upon completion of the system design. Chapter 7. Results and Demonstra-
tions. the test-bed’s functionality is demonstrated. Lastly, Chapter 8 evaluates the
success of the design models and the system vielded from them.

A set of appendices describe the modular workcell hardware in detail. These are
presented to aid future researchers in reconfiguration of the platform. An appendix
with software documentation is also presented to aid the discussion in Chapter 6.

These appendices. though verbose. are a necessity for an effective test bed platform.

(S



Chapter 2

Teleoperation Systems

2.1 Introduction

In this chapter. the structure of a typical teleoperated system is presented
along with the definitions of several terms that are encountered in this very active
area of research. There are several specific facets of teleoperation systems that are
of paramount interest. These are discussed using a survey of several existing teleop-
eration systems. There are also many active areas of research in mobile robotics.
These include Artificial Intelligence (AI) topics. such as subsumption architecture
and neural networks. and topics to do with navigation. such as path-planning and
localization techniques. Although it is desirable to create a test-bed that will be able
to research these topics. they are not covered here.

The next chapter utilizes the information derived here to develop two design

models and design objectives for a test-bed system used for research.



2.2 A Typical Teleoperation Platform

Fig. 2.1 shows typical division of a teleoperation system into Control Station
and Remote Workcell blocks. The Control Station is where the user interacts through
a User Interface (UI) to take control over the Remote Workcell. Communication
between the control station and the workcell occurs through a bidirectional channel.
Directives are issued from the control station to the workcell (left-to-right data flow).
and feedback about the state of the workcell and information about its surrounding

environment is related from the workcell back to the control station (right-to-left data

flow).
Control Remote
Station Communication Workcell
Channel -
User Application

Figure 2.1: A top-level block diagram of a typical teleoperation system. The sys-
tem is physically divided into a Control Station and a Workcell. operating remotely.
Communication between the two occurs through some sort of channel.

The following definitions are commonly encountered in this field of study. The

definitions are expressed in terms of a top-level view of the system. shown in Fig. 2.1.

Teleoperation is the process by which control station initiated directives are exe-
cuted on a remote workcell. The amount of feedback that is returned to the
control station from the can vary from nothing (open-loop) to comprehensive
(detailed). This definition is apparently context-sensitive. If used when refer-
ring to a telepresence system, teleoperation may mean that the user actually

performs the task that the workcell is to execute.



Telepresence is the discipline where feedback from the workeell to the control sta-
tion is comprehensive. The feedback is so thorough that the user “feels” that
they are physically located at the remote workcell's location. The actions that

the user takes at the control station are somehow mimicked by the workcell.

Telerobotics has varyving definitions. For instance. [PPA94] states that a telerobot-
ics system is one wherein the user at the control station actually performs the
action taken by the workcell. Other literature. such as [JP94] or [LMR94]
assume that telerobotics is the field of study which is a superset of teleop-
eration. telepresence. and teleprogramming: any syvstem which has a control
station. communication link. and a remote workcell. This second definition

is the one used throughout this document.

Teleprogramming is the act of changing the operation of a workcell from the control
station through transmission of a program. Programming may occur at run-
time. or when the workcell is in an idle mode. However the programming is
performed. the syntax that the program is defined with is referred to as the

teleprogramming language.

Distinction between the terms is difficult and depends upon the specific research

area or system being addressed.

2.3 Telerobotics Research Areas

This section is an overview of telerobotic research areas. The goal is to be able
to design a test-bed that can be used for research in any of these areas. This analysis

of existing work will be used to develop the system design models and functional



objectives presented in the next chapter.
Dividing the research into these areas is synthetic since they are all intertwined.

For instance. the form of a user interface could be classified as control research.

2.3.1 Control

A workcell is often given reflexive behaviours to preserve itself. For instance.
a mobile workcell is typically not given the option to drive over a cliff. even if the
user (via the control station) tells it to do so. This area addresses the topic of where
control-loops are closed: within the workcell itself (local control). or through the
control-station (remote control).

Certain applications may require that control be transferred from the control-
station (remote) to the workcell (local). or vice versa. This type of transfer is not nec-
essarily trivial. Often. cases will arise where the workcell may behave unpredictably
when control is transferred.

If a workcell is performing an application-critical task under control from the
control station and the communication link is lost, some technique needs to be in
place to rationalize the workcell’s actions. Since the control-loop incorporating the
control station is effectively broken. the workcell could become unstable.

Teleautonomous guidance [BK90] is a scheme in which the workeell has collision-
avoidance (or similar) control loops closed on the workcell and an external loop closed
by the user's perception and action at the control station. When activated. the
collision-avoidance loop is closed. otherwise remaining open. This approach can also
be seen in [TBGX94], [HM94a] (approached through a teleprogramming paradigm),
and [BAXTJ96]. “Shared autonomy” [MA94] is a similar method, but assumes that

both control loops are closed simultaneously. The sharing of autonomy with the



workcell makes the system safer. dependable. and reduces interaction required of the

user at the control station [SJ94].

2.3.2 Communication

Research focusing on communication examines the operation of a system when
there is transmission delay between the control station and the workcell.

Communication between the control station and the workcell can be achieved
in several different ways: umbilical. wireless modem. wireless Ethernet. infrared. mi-
crowave. and satellite. among others. Establishing such a link may be simple. or
involve multiple “hops™ as in [Leo95] or [BFKS94].

Control-loops behave poorly under delay. The more accurate the control needs
to be. the higher the required bandwidth. If a control-loop is closed via the control
station. the bandwidth and transmission delay of the communication channel are of
interest.

To compensate for a communication delay. predictive models can be used as

in [HM94b|, [Say96]. [HLF94] and [BBZ98).

2.3.3 Telerobotic System Software

Communication between control station and workcell must follow a protocol.
The structure of the “language” that is used to communicate between the two compo-
nents of the system is referred to as a teleoperation language. This language can
be embedded into an operating system, such as CHIMERA, developed at Carnegie-
Mellon and utilized by [NX94] to control a manipulator used in Space Station Free-
dom. The syntax of the communication may also be implemented in another language.

See, for instance. Steele and Backes [SB94].



It can be argued that a teleoperation language is simply a teleprogramming
language in its most basic form. Teleprogramming typically involves specifving a
task or a mission that the workcell is to complete.

In task-level teleprogramming [PPA94]. in addition to a description of the task
that the workceell is to perform. a program can be written to include information that
the workcell is unable to obtain itself (perhaps a-priori knowledge of the workcell’s
environment).

Programming and Interpreted Languages Of actions for Telerobotics (PILOT)
[LMRO4]. is a high-level interpreted visual language which is able to accommodate
event-driven actions. Its object-oriented design links three software layers (mission.
control-task. and servo-control) using standard language primitives (sequential. iter-
ative. conditional. and parallel). PILOT is not intended to process data from sensors:
operations (other than comparisons) are not supported. This would be a disadvan-
tage for a test bed application since research into areas such as sensor fusion would

not be supported.

2.3.4 System Architecture

Telerobotic system architecture refers to how the software is written. or how
the hardware is designed. Since hardware and software are co-dependent. descriptions
tvpically address both.

Typically, there is a physical distinction between a telerobotic system'’s control
station and workcell. However, from a software perspective a division between the
two is not so obvious. For instance, all of the system software could be implemented
on the workcell; only the UI is displayed on the “empty” control station. perhaps

using a web-browser or X-window display commands. Where the software division is



made depends not only upon the application. but also upon the other technologies
(such as the communication medium) that the system employs.

The NASA/NIST Standard Reference Model (NASREM) [Lum94] suggests that
a telerobot system should have a parallel-processing structure to meet real-time per-
formance requirements. The software architecture consists of six levels which range
from a synchronous servo level to an asynchronous mission-defining level. NASREM
does not provide a methodology for designing the system hardware.

Another architecture project in [JP94] outlines the need for a standard for indus-
trial remanufacturing telerobotic systems. Backes et al. [BBL*94] implement a work-
cell controller system entitled Modular Telerobot Task Execution System (MOTES).
[t is an interpreted language which offers concurrent control over control modules. A
three-layer structure is used in [Cro89]: the top layer is an interpreter which handles
asynchronous commands, the middle layer is a “virtual” workcell. and the bottom
layer is the interface to the actual vehicle. The European Space Agency follows the
guidelines of a unified control architecture for planetary rovers. Two projects which
make use of this system are [RVR98] and [SLMV98].

Regardless of the architectures. there is one undeniable fact: there is movement
towards decoupling and modularizing of telerobotic system hardware and software to

increase flexibility and promote re-use of code and hardware.

2.3.5 User-Interface Functionality and Human Factors

For effective control over the remote workcell. the interface to the user at the
control station will need to be effective. Poor interfaces will lead to poor control.
This research explores the design of effective Uls and the methods used to evaluate

them.



Uls are not only used to provide a means for the user to control the workeell.
but also to provide a medium for the feedback from the workcell to be delivered to the
user. Effectiveness of the UI can be evaluated by the number of successful task com-
pletions [CRKW96] or even through the EMG signals of the system user [RCMT94].

To help a user maintain control of the workcell. the Ul can present the feedback
in varying manners. Llovd et al. [LBPL97] and McMaster et al. [MINBF94] present
the workcell and its environment as a computer-generated graphical image. This
approach is useful in situations where the communication bandwidth is insufficient
to transmit. or the environmental conditions are too poor to capture. quality video
signals. Another approach is to super-impose computer-generated graphics over a
potentially low-quality video stream as in [BFKS94] or [MCC92].

Another possibility is to have the feedback to the Ul completely simulated.
Although this is no longer a telerobotic system. it may be useful for operator train-
ing [VMS94]. To this end. unrealistic worlds could be shown to research perception
and how it applies to teleoperation systems [RKSG94].

Uls can be delivered on different platforms: through a WWW browser. application-
level programs in a Windowing environment. or perhaps even a text-only shell envi-

ronment.

2.3.6 Sensing Techniques

How a workcell senses the environment around it is important for effective
control. In telepresence applications, sensing is important as it is through it that the
remote world is represented to the user at the control station.

Even to implement autonomous behaviours (to close the workcell control loop

on the workcell itself). there is need for sensors to relay information about the envi-
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ronment back to the control architecture. This sensing can be as simple as a bump
switch or as complex as a multi-camera video system.

One may be inclined to think that more sensor information is better. However.
the limitations of the CPU’s speed or the communication channel’s bandwidth will
quickly become apparent. The process of sensor fusion [LK89] [DW87] can help
the system reduce the amount of data to process by by algorithmically isolating
the relevant portions of sensor data by linking together data from more than one (or
more than one type) of sensor. The algorithms may involve simple modeling of sensor

response [WSM96] or involve the operator in the process [YMP*94].

2.4 Summary

There is a lot of activity in the field of telerobotics research. This chapter
has outlined basic terms found in. and examined research directions in the field of
telerobotics. Control techniques. communication. system software (teleprogramming
and teleoperation languages). system (software) architecture. user interfaces. and
sensing techniques are all areas that a test bed should be able to research. The next
chapter presents design models which emphasize the flexibility and modularity that

are required of a system in order to achieve this goal.
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Chapter 3

Objectives and System Design
Models

3.1 Introduction

This chapter provides a “specification™ for the desired operation of the test-bed.
In order to meet these specifications and to obtain a system that can successfully be
used to research the areas outlined in the last chapter. it is necessary to concentrate on
the fact that the system is a test-bed. Since it is impossible to predict with certainty
the areas in which a test-bed will be applied. flexibility becomes the key issue.

Flexibility is required not only in the hardware design but also in the software.
The model used for this design has been coined the Robotic Internet Platform (RIP)

design paradigm and is presented in Section 3.4.



3.2

Functional Specifications

The teleoperated mobile-robot test-bed is to have the ability to research the

areas outlined in Chapter 2. These areas are restated here in terms of high-level

specifications. The resulting system is to have the following features:

(1)

(10)

Ability to implement autonomous or reflexive behaviours on the workcell

(control level research):

Ability to transfer control between the workcell (autonomous control) and

the control station (user-initiated control) (control transfer research):
Interruptable communication channel (communication research):
Delayable communication channel (communication research);
Changeable communication medium (communication research):

Flexible languages for Ul implementation (U functionality and human factors

research):

Multiple UI delivery mechanisms (web- or application-based UI implementa-

tion) (UT interface research);

Support for teleoperation languages of different structures and syntax (tele-

operation language research);
Flexible teleprogramming interface (teleprogramming research):

Ability to move the workcell/control station division easily (system software

research); and

13



(11) Workeell sensors (sensor fusion and sensing technique research).

Two design models. loosely categorized by hardware and software. are used to

achieve these design goals. The remainder of this chapter outlines these models.

3.3 Electronic Hardware Design: The Test-Bed
Model

Telerobotic systems have been developed for use in submarine [LB94a] [LMROA4].
outer space {WL94] [BBL*94]. and hazardous environments [BHW*94]. This thesis
documents the design of a teleoperated mobile robot system intended for research
in the areas outlined in the last section and Chapter 2. Unlike the projects men-
tioned above. the development of a test bed requires a great deal of flexibility to
accommodate future research directions.

In typical modern systems. some flexibility is offered through software modifi-
cations. This concept is pursued in this project. In addition. flexibility with regard to
electronic hardware structure is required. This requirement is approached by design-
ing the electronic systems with a high degree of modularity to accommodate future
changes. Fortunately. modularity also accommodates the most restrictive design con-
straint: financial limitations. Without a modular approach. cost would increase with
the effort to accommodate new research areas.

Therefore. in addition to the features outlined in the last section. the following

test bed features are required: design:
e modularity:
e flexibility; and

14



e safety of operation.

Modularity promotes the reuse of individual software and hardware blocks.
and reduces system set-up time. Wherever possible. each module should be made
as a stand-alone device, which aids in debugging and expands its usefulness. When
designing hardware modules. the technology used should be consistent. For instance.
a single type of microcontroller should be used throughout the svstem. or connector
tvpes should be standardized. Again. this promotes recvcling, not only of code.
but also of schematic libraries. Additionally, when researchers use the test-bed. the
amount of information they need to know to reconfigure the setup is minimized.

The design is to be flexible so that both hardware and software can be recon-
figured to suit an area of research. Reconfiguration may involve leaving a specific
module entirely out of the svstem.

Safe operation requires the system to be reliable. If a CPU crashes the
workcell should not behave unpredictably. In order to achieve this. it is suggested
that a distributed-processor model be used to give the system some redundancy.

Start-up of svstems tvpically present transient operation which needs to be
accounted for. Bus contention needs to be avoided by ensuring that devices are
disabled on power-up.

Since the test-bed is intended for use in a wide range of research applications.

several requirements need to be accommodated:

o Multiple users will need access to the system. perhaps simultaneously:
e Development time of software needs to be minimized:

e Operation needs to be straightforward, as the researchers may receive minimal

training on the test-bed: and
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e Documentation needs to be concise and comprehensive.

In short. the more familiar the technology used in the system. the more effective the

svstem will be from the researchers’ perspective.

3.4 Software Interface Design Model: The RIP

Paradigm

Design of telerobotic system software can be a daunting task. Design approaches
can quickly become cluttered as more detail is established. To make the system
software design process achievable. an alternate view of the system is required. This

view is represented in Fig. 3.1. differing slightly from Fig. 2.1.

{ Workcell
Control Station —>1
User Workcell
Interface -~ - Cont.r ol
Engine

Interface

Figure 3.1: A top-level block diagram of a telerobotic application under the Robotic
Internet Platform design paradigm. The User Interface is the component that the
operator interacts with. The Workcell Control Engine, typically running on the work-
cell itself, is software responsible for control of the workcell movement. The software
interface between the two needs to be well documented. flexible. and based upon the
string data tvpe.

This view is referred to as the “Robotic Internet Platform” (RIP) paradigm.
Under the RIP paradigm. it is assumed that the communication channel (referring

to Fig. 2.1) consists of an Internet connection and both the control station and the
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workcell are Internet machines capable of utilizing this connection. Inherent to the
design paradigm is the ability to develop telerobotic systems that have more than one
user and/or more than one workeell.

Essentially. the remote workcell can be viewed as an Internet server that has
the ability to move. whether in respect to some global coordinate frame, or through
movement of manipulators. etc. The addition of motion to an Internet server (or
conversely. Internet connectivity added to a robot) opens up an area that is just
starting to be explored.

A primary goal of this model is to separate the user interface (UI) from the
workcell control engine. a separation which manifests itself in the telerobotic system
software. The separation of the control station and the workcell is no longer solidly
defined: the bounds of where specific features of the system are implemented depends

upon:
e the method chosen to implement the Ul: and
e the required nature of the workcell control engine.

The workcell control engine is responsible for low-level [/O with sensors and
actuators. Depending upon the application, it may also be responsible for control
algorithms requiring reasonably fast execution speed. It is assumed here that the
workcell control engine will be entirelv implemented on the physical workcell.

The primary goal of the RIP design model is to develop a standardized workcell
control engine that can be utilized by any telerobotic system UI. Conversely. this will
allow any UI developer to access the features of the workcell through a standardized
interface; something which is essential in a multi-user environment. Such a separation

will minimize development time for researchers and developers.
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3.4.1 Selection of the Operating System

The operating system (OS) upon which the user interface is implemented can
be different than that selected for the workstation control engine.

For quick development time it is suggested that the selected operating systems
on the workcell and the control station(s) be identical. This allows direct porting of
code common to the control station and the workcell.! However. depending upon
the application being addressed. common OSs may not be possible. For instance. in
design of a system which is intended to be accessed by a wide range of users. it mayv
not be possible to specify a consistent control station OS.

As time progresses and the difference in capabilities of operating systems be-
comes smaller (reflecting the apparent trend in OS development). this stage of the
design process will become simpler. In essence. the choice of the operating system will
depend upon the selected user interface and workstation control methods. outlined

shortly.

3.4.2 Design Implications

Changing how a telerobotic system is viewed as is suggested under the RIP
paradigm changes the design process. A great deal of the design effort needs to be
spent on creation of the software interface between the UI and the workcell control
engine.

The fact that the Internet is utilized as the communication medium between the
control station and the workcell makes this software interface a necessity. To make

the telerobotic system usable by the widest range of users it will be necessary to

! Code porting can also be addressed by the development language. The selection of the devel-
opment language is addressed in Chapter 6.
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accommodate various Uls written on various development platforms: thus, the need
for a strictly defined (vet Hexible) software interface arises. The fact that multiple
users may be in communication with the robot simultaneously also requires a great
deal of planning in order to maintain system integrity.

The interface should receive and issue nothing but ASCII characters. The
primary reason for this is that strings can encapsulate other data types (by use of
their string representations) and thereby offei a sense of global portability. Almost
all programming languages deal with strings in an identical way.

In essence. the RIP paradigm emphasizes the need for modularity of the two
major system software components - the UI and the workcell control engine. This
decoupling is commonplace in software design. and it is suggested that the lessons
learned there should be applied to telerobotic systems. When decoupled. telerobotic
systems used for research and development may be adopted by institutions with few.

if any, changes to the workcell control engine.

3.4.3 User Interface Development Considerations

Uls can be developed in many different programming languages. Bearing in
mind the telerobotic application and its test-bed nature. the following factors are of

interest in selection of the UI development platform:

e hardware independence/portability:
e ease and speed of development: and

e bandwidth/hardware requirements.

Hardware independence describes the ability to quickly port software to new

workcell configurations as well as the ability to run the same user-end software on mul-
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tiple workstation types. Ease and speed of development is especially important in the
experimental phase when the developer needs to make rapid changes to the software
and quickly simulate various environmental conditions. Bandwidth and hardware re-
quirements may be an issue when power or circuit real estate is at a premium. such

as in small mobile robots.

3.4.4 Workcell Control Engine Design Implications
The workcell control engine has several roles:

(1) to provide access to the robot sensors and actuators (low-level I/0):

(2) to provide feedback control of the actuators (if required by the application):

and
(3) to provide the software interface to the UL

The typical method of providing low-level I/O to the robot sensors and actuators
is through routines written in C or Assembler. The interface to the workcell control
engine needs to conform to one major restriction: the data that is initiated by. and
destined for. the Ul needs to be compatible with data types supported by the control
engine development platform. Since one of the major motivations of the RIP paradigm
is to allow development of a UI on almost any platform. this interface needs to cover
as many bases as possible. This requirement points to the use of ASCII characters
(or sequences of characters) as the data type of choice, outlined earlier.

Certain levels of autonomous operation. survival reflexes, etc.. may be imple-
mented within the workcell control engine. depending upon the application being
addressed. The issue of how complex (how high-level) the workcell control engine

should be is still a topic of discussion (see, for instance, [Lum94| or [LMR94)).
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The manner in which this is addressed indirectly points to the syntax of the
teleoperation language.

The implementation and type of control-loops that are embedded into the work-
cell control engine may place requirements on where it is implemented. For instance.
a servo-loop that requires a fast sampling rate would be best implemented directlv

on the workcell in order to avoid any delay presented by the communication medium.

3.5 Summary

This chapter has outlined two models which should govern the design process
of a teleoperation system. These models are a hardware design model (the test-bed
design model) and a software design model (the RIP paradigm), although there is a
certain amount of interplay between the roles of the models.

The test-bed model dictates that the design process should be modular and
fexible to minimize reconfiguration for research in a specific area of telerobotics.

The RIP paradigm suggests that the workcell. viewed from a software perspec-
tive. be considered an Internet server that has the ability to move. The interface
between the Ul and the workcell control engine should be string-oriented to allow for
development of either component in any language. However, the UI and the workcell
control engine should be written with portability in mind. allowing for implementation

on an arbitrary operating syvstem.



Chapter 4

System Overview

4.1 Introduction

This chapter contains a high-level description of the system. The discussion of
the design is presented in light of the models presented in Chapter 3.

The following components of the design receive attention here:
(1) the control station hardware:
(2) the control station operating system:
(3) the workcell PC hardware (motherboard);
(4) the workcell PC operating system:
(5) the communication technology; and
(6) the client-server relationship.

Chapter 5 details the workcell hardware. Chapter 6 describes the software

(and the development platforms) for the components of the system residing on the



microcontroller (sensor/actuator) laver. the workcell (server) layer. and the control-

station (client) layer.

Client Server
Control Remote
Station Communication Workcell
Channel —
User Serial Umbilical Application
OS: Lml.xx (PPP) OS: Linux
Processor: i586 Processor: 1386

Figure 4.1: A block diagram of the test platform with some details filled in under the
guidance of the two design models described in Chapter 3.

Fig. 4.1 is the typical view of a telerobotic system with some details of the

design filled-in. Fig. 4.2 shows the system at a more detailed level than Fig. 4.1.

4.2 The Control Station

The Control Station is the component of the system upon which the User In-
terface runs. Commands are sent to. and feedback is received from. the workcell PC
motherboard through the communication link.

In the system presented here, the entire workcell control engine is implemented
directly on the workcell. Conversely. the Ul is implemented on a dedicated PC. This
Cyrix 586 motherboard has sufficient computational ability to present Uls to the

different users of the system:

e The programmer.
e The user.

e The builder (designer).
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Figure 4.2: A block diagram of the system layout. Dashed lines indicate serial com-
munication. The system is divided into three “layers™: the control station layer,
consisting of the Control Station PC. the workcell PC layer. consisting of the Work-
cell PC Motherboard. the Serial Level Conversion, Parallel Port Expansion and PC
to MCU Shared Memory blocks. and the microcontroller layer.



The maintainer.

A PC platform was selected due to the wide range of communication peripherals

that are available for it: wireless Ethernet. wireless modems. etc.

In addition to the motherboard, the control station PC contains storage devices.

external Ethernet connection to the Internet. a 17" monitor. and mouse.

4.2.1

Control Station Operating System

The operating system on the Controi Station PC is Linux. a PC derivative of

the UNIX operating system. The Linux (RedHat 6.0) platform was selected for a

number of reasons:

[t is free:
[t is a truly pre-emptive multitasking operating svstem:

The kernel is open-source and modifications can be made to the operating

system:
It is well documented:

There is a large knowledge-base in the Internet community which freely com-

municates regarding Linux issues:

It offers a comprehensive set of development tools. such as C-compilers. de-

buggers, and text editors:

[t offers the X-windows interface. ideal for GUI development and presentation:

and

It has full TCP/IP support.

[\
W



Multitasking is required as the system may have multiple users connected to the
system simultaneously. and the event-driven nature of GUIs needs to be accommo-
dated. Good documentation and a healthy knowledge base are advantages for a good
test-bed system. The development tools, often written by programmers for program-
mers, are very flexible. varied. and thorough. Many programming languages have
been ported to Linux. The X-windows system is not required. but in addition to pro-
viding a nice GUI environment it also offers a novel display technique which allows
applications to display their Uls on other X-window compliant systems connected
through a network. TCP/IP support is required under the RIP paradigm.

As mentioned in the previous chapter. any operating system could have been
selected if it could meet the Ul requirements. This is made possible by the separation
of the control station from the workcell control engine under the RIP paradigm.

The wide range of languages available in Linux meets the design objectives
regarding Ul interface medium research. and Ul functionality and aesthetic research.

outlined in the last chapter.

4.3 The Workcell PC Motherboard

The Workcell PC Motherboard resides on the workcell. It is responsible for
implementing the server-side of the software interface. The Workcell Control Engine,
implemented on this device. has ultimate responsibility over workcell activity.

An Intel 386 motherboard is the major processing element on the workcell.
The selected motherboard, chosen for its compact size and availability, conveniently
offers integral video, disk controller, serial communication, and parallel (printer) port

circuitry.



The computational ability of the i386 system is sufficient to allow autonomous
or reflexive behaviour creation. This meets the control level research. autonomous
control. control transfer, and user-initiated control research design objectives. as out-

lined in the last chapter.

4.3.1 Workcell PC Operating System

Again. the Linux operating system is chosen for the workcell PC. Consistency
of this operating system with that of the control station PC is suggested under the
RIP paradigm. Rationale for selection of Linux is the same as that described in the

last section.

4.4 Communication Technology

The communication link connects the Control Station PC and the Workcell PC
Motherboard. It is through this link that all directives from the control station. and
feedback from the workcell are sent.

The communication channel is an umbilical serial line. The signals are RS-232C
format: the communication protocol used is the Internet Protocol (IP) at 115200
baud. Linux offers pppd. the Point to Point Protocol (PPP) daemon. which controls
the connection.

The serial umbilical can be replaced with a wireless modem pair (one at the
control station. one at the workcell) with little reconfiguration of the PPP connection.
The Linux operating system offers kernel support for wireless Ethernet adaptors.
providing smooth transition into a more robust, faster communication interface.

The communication channel research design objective outlined in the last chap-
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ter is therefore met.

4.5 The Client-Server Model

This section applies the client-server model to the design of a teleoperation
system.

Many telerobotic systems take the perspective that the control station is the
master (server) and the workcell is the slave (client). See. for instance. [LB94b].
[LF94]. [STS*93], {LB94a]. and [BBZ98).

Under the RIP paradigm. a client-server model can be used to describe the
system structure. Since it is likely that several researchers will be utilizing the svstem
simultaneously (although in different capacities). it is necessary that the workcell is
the server. This provides the most flexible platform in order to perform research in

many areas.

4.6 Summary

In this chapter. many of the design objectives outlined in Chapter 3 have been
met. This was conveyed through a top-level abstraction of the system design. At
either end of a flexible communication medium, the Linux operating system is run-
ning on x86 processors. Linux was chosen since it is free. well supported by the
Internet community. is open-source, and contains a suite of development platforms
ideal for telerobotic system development. These choices are guided by the design
models presented in the last chapter. When a client-server model is applied under

the RIP paradigm, it is necessary that the workcell control engine is the server, and
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the control-station is the client.
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Chapter 5

Modular Workcell Hardware

Design

5.1 Introduction

This chapter is a description of the electronic and mechanical hardware devel-
oped for the remote workcell. Additional information. including schematics. part-lists.
and board layouts can be found in the Appendices.

The components referred to here are the result of a design approach whose

generalized goals are to:
(1) achieve a high degree of electronic modularity;
(2) use simple, generalized hardware module interconnection:
(3) keep hardware complexity minimal; and,

(4) where possible, design the modules such that their usefulness outside of the

test-bed design will be maximized.



The next section describes how each of the blocks fit into the system as a whole
includes overviews of the modules. The last section describes the mechanical structure

of the workeell in its current configuration.

5.2 Module Overview

Nine modules were designed for the workcell electronics. As mentioned previ-
ously, each of the modules receives detailed attention in the Appendix.
The nine modules (and their purposes) used in normal workcell operation are

listed here:

(1) Serial level conversion board - converts RS-232C signals to TTL levels. and

vice versa.

(2) Parallel-port expansion board - expands the capabilities of a standard PC
parallel port to interface with the microcontroller boards and the shared

memory interface.

(3) PC-to-MCU Shared-memory/serial network control board - implements a
shared-memory model for communication between the workcell PC mother-

board (through the parallel-port expansion board) and the microcontrollers.

(4) MC68HC11 Microcontroller (MCU) board - implements a single-board em-
bedded system which is used to interface to sensors and actuators. Three are
used. allowing for a distributed-processing architecture: *“SONAR”. “Prox-

imity Detector”. and “Navigation” MCUs.

(3) MCU-to-MCU Shared-memory board — implements inter-microcontroller com-
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munication through a shared-memory model. Again. this is used to imple-

ment a distributed-processing architecture.

(6) SONAR module interface board - interfaces the “SONAR" MCU with Po-

laroid SONAR modules and a stepper motor.

(7) Near-range proximity sensor board (IR pairs) - interfaces the “Proximity

Detector” MCU with up to 32 infrared pairs.

(8) Bump sensor board - interfaces the “Proximity Detector” MCU with up to

16 bump switches.

(9) Navigation hardware board - interfaces the “Navigation™ MCU with the

workcell drive motors and their infrared shaft-encoder feedback.

Fig. 4.2 shows how the system hardware is normally configured. Sufficient detail
is provided in the subsequent subsections and appendices so that a system developer
should be able to see how the hardware can be interconnected for different purposes
(for instance. a simplified setup for testing of MCU software).

The system is intended for a distributed-processing “kernel”. As mentioned in
Chapter 3. selection of this model makes the system robust to. for instance. incorrect
operation of a computational element. As an example. software could be written
such that the workcell would still operate (although with reduced functionality) if the
on-board PC was rendered inoperative. This is necessary for safe operation since the
workcell should remain under control even if a failure occurs-a requirement of the
test-bed design model.

To implement the distributed-processing structure, a shared memory-model was

chosen due to its flexible nature and fast data transfer. Simplicity, however, is also
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an important trait.
Motivation for selection of the technologies and techniques used for the individ-

ual modules is addressed in the corresponding subsections, below.

5.2.1 Serial Level Conversion PCB

Control Station

PC
Communication
Link
Serial Level
Motherboard Conversion PCB
)
Parallel Port !
Expansion PCB :

PC to MCU Shared & - = - - == ===
Memory PCB

Microcontroller Layer

Figure 3.1: Location of the Serial Conversion PCB in the test-bed.

The simplest of all the modules. the Serial Level Conversion PCB is connected
between the workcell PC serial port and the MCU boards (via the PC-to-MCU
Shared-Memory/Serial Network Control PCB). PC RS-232C serial voltage levels
(typically +/-10 V) are converted to TTL-levels (0, 5V') which are used by the micro-
controllers. Conversion is also performed in the opposite direction by this single-IC
board. Fig. 5.1 shows where this hardware module fits into the overall system. A

block diagram of the board electronics are shown in Fig. 5.2. For more information
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on this module. refer to Appendix B.

S .. PCtoMCU Shared
PC Senial Senal Level Memory PCB
(RS-232) . Conversion © (or 68HC11 PCB)
-— ] e ¢
(+3V Serial)

Figure 5.2: A block diagram of the Serial Conversion board electronics. used to
convert Workcell PC Motherboard RS-232C level serial levels to TTL-level serial for
use by the microcontrollers.

5.2.2 Parallel-Port Expansion PCB

This board is used to connect the Workcell PC Motherboard to the memory
shared with each of the MCUs. and to also provide PC-initiated control-signals.

The Parallel-Port Expansion PCB connects to the parallel port of the workcell
PC motherboard. Using a data-latching scheme. the card provides 64-bits of digital
output. or 36-bits of digital output and an 8-bit bidirectional data bus for connecting
to 8-bit peripherals such as shared-memory. A block diagram of board electronics is

shown in Fig. 3.3. For more information on this module. refer to Appendix C.

5.2.3 PC-to-MCU Shared Memory/Serial Network Control PCB

This module serves as the communication medium between the Workcell PC
Motherboard and the microcontrollers.

This PCB performs three specific functions:

(1) to implement 4K of shared memory between the workcell PC and each of the

three MCUs:
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Figure 5.3: A block diagram of the Parallel-Port Expansion board electronics. Dashed
blocks are external to the PCB. Eight digital output ports. controlled through output-
enable and port select circuitry are used to control the system MCUs and provide
address and data bus interfaces to shared memory.

(2) to route TTL-level serial signals between the PC (via the Serial-Level Con-

version PCB) and the MCUs: and

(3) to provide low-power Schottky (LS) to high-density CMOS (HC) TTL level

conversion.

A block diagram of board electronics is shown in Fig. 5.4. For more information

about this module. refer to Appendix D.

5.2.4 MC6HC11 Microcontroller (MCU) PCB

This board consists of a Motorola 68HC11 8-bit microcontroller. 32K external
battery-backed static RAM. chip select circuitry. and various support hardware. The
microcontroller boards are used to interface directly to the system actuators and sen-
sors. Three of these devices are used: SONAR, Proximity Detector. and Navigation

MCUs for specific functional control of the workcell. This structure allows for parallel



Serial Level Serial Network L MCU Bus 6BHCLI MCU
Conversion PCB Control/Multiplexing Connector j PCB
N (Navigation)
LS 10 HCMOS ™ 68HCI1 MCU
PC 1o MCU . MCU Bus :
) - —
Control Ports TTL Level % i Connector PCB
Conversion ¢
! (Proximity Detector)

Parailel Port Digital VO Shared Memory MCU Bus 68HC1I MCU
Expansion PCB Connector Banks (3 of 4Kx8) Connector PCB

(Sanar)

Figure 5.4: A block diagram of the PC-to-MCU Shared Memory /Serial Level Con-
version board. The LS-to-HCMOS TTL Conversion block translates motherboard-
initiated control signals to levels usable by the MCUs. A Serial Network Control block
allows connection of a single serial channel to three microcontrollers. Shared-memory
is used as the run-time communication medium between the Workcell PC (via the
Parallel-port Expansion board) and the MCUs.

processing. redundant computation. and fail-safe operation of the workeell. Fig. 3.5
shows where these hardware modules fit into the overall system.

Fig 5.6 shows a block diagram of the circuitry located on this PCB. Appendix A
gives a complete description of the connector pin-outs and the board operation.

The Motorola 68HC11 was chosen for several reasons:
(1) it is well-supported by the robotics community:
(2) it is inexpensive:
(3) it is very dependable (stable);
(4) there is an abundance of free development products available for it: and

(3) availability.
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Figure 5.5: Location of the HC11 microcontroller PCBs in the test-bed.
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Figure 5.6: A block diagram of the MCU board electronics. The blocks create a fully-
functional single-board computer: address decoding and latching, the microcontroller
itself. and batteryv-backed RAM.

Using three of these devices in the system is overkill for the example application
described later in this document. However. the logical separation of the workcell
sensory/actuator subsystems into three categories (navigation. proximity detector.
and SONAR) has proven to be a definite advantage in that the system developer is
forced to define the nature of the interface to each logical block. Software may be
developed in a tight. modular manner which promotes “recvcling” of code when a
different teleoperation application is addressed.

Another advantage of using three HC11 microcontroller boards is that it pro-
vides resources for future implementation of more complex sensor-fusion algorithms

and autonomous behaviours.

5.2.5 MCU-to-MCU Shared Memory PCB

This board serves as an inter-MCU communication medium, useful for distributed-

processing structure.
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In order to achieve MCU-to-MCU communication without involvement of the
PC. this board provides three banks of 4K dual-port static RAM. This supports the
distributed-processing architecture of the workcell hardware. A block diagram of
board electronics is shown in Fig. 5.7. For more information about this module. refer

to Appendix E.

MCU Bus 68HC11 MCU
Connector PCB
«Navigation)
Shared Memory MCU Bus 68HICT1 MCU
Banks (3 of $Kx8) Connector - PCB
l (Proximity Detector)
i
|
| MCU Bus 68HC11 MCU
Connector PCB
(Sonar)
e |

Figure 5.7: A block diagram of the MCU-to-MCU Shared Memory board electronics.
Inter-MCU communication is achieved through 3 banks of 4k dual-port static RAM.

5.2.6 SONAR Module Interface PCB

This board is used to interface to two Polaroid SONAR modules and a stepper
motor used to rotate the SONAR transducers.

A block diagram of the board electronics is shown in Fig. 5.8. This board
uses the SPI facility and two "HC3595 serial-to-parallel converters to derive digital
outputs. These digital outputs are used to interface with Polaroid SONAR modules
and the stepper motor driver. As with the navigation control hardware. the backbone

of the motor driving circuitry is an SGS Thomson L298N dual H-bridge driver. In
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addition to the SPI-derived digital outputs. four signals from the connected MCU's
Port A are interfaced to the SONAR modules. Port A. associated with the HC11's
timer facilities. was used in order to simplify the software responsible for driving the
modules.

For more information about this module. refer to Appendix I.

—‘J Serial Peripherai .
Interface (SPI) Dual H-Bngc | —— Stepper Motor
! Digital Qutput L Motor Driver |
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MCU 1‘_ L 1
J I
' Polarowd Sonar
Signal Modules
Conditioning }
|

Sund B
i
|

. .
Limut Switch =

Figure 5.8: A block diagram of the SONAR Module Interface board electronics. A
stepper motor is driven by a dual H-bridge motor driver IC. which is in turn controlled
by the SONAR MCU through its Serial Peripheral Interface (SPI). Connections to
two Polaroid SONAR modules are made through the SPI and directly to the MCU.
A limit-switch’s signal. relating information about the position of the SONAR array.
is passed to the MCU after signal conditioning.

5.2.7 Near-Range IR Proximity Sensor PCB

This board is used to interface the Proximity MCU to 32 near-range infrared
pairs.

A block diagram of board electronics is shown in Fig. 5.9. Facility is provided
to apply power to the infrared LEDs. and an analog multiplexing scheme is used

to select which “bank” of infrared phototransistors are connected to the HC11 A/D
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converter. Using this scheme. each IR LED can be individually turned on or off.
necessary for reading ambient-light levels and sensor data fusion.

For more information on this module, refer to Appendix G.

Senal Peripheral IR LED
’——J Interface (SPI) Drivers - IR Emitters
Digital Output 2 ; 2
L | ‘
Proximity Detector .| '\‘[CU Port :
MCU Connector ' Control v
j 4
3 t: Signal N Analog | . .
Conditioning A Multiplexers 51: IR Detectors
|3

Figure 5.9: A block diagram of the Near-Range Proximity Sensor board electronics.
The SPI is used to control the power applied to the infrared emitters through a set
of LED drivers. Feedback from the IR detectors is passed through a set of analog
multiplexers. controlled by the Proximity Detector MCU. After signal conditioning.
the analog levels of the [R detectors are passed back to the MCU analog ports.

5.2.8 Bump Sensor PCB

The purpose of this board is to interface the Proximity Detector MCU to the
many bump-sensors on the robotic workcell.

A block diagram of the board electronics is shown in Fig. 5.10.

The backbone of this board is the use of '"HC165 parallel-to-serial converters.
Interfaced to the Motorola's Serial Peripheral Interface (SPI), two of these devices
allow for 16 digital inputs (8 each). Each bump-switch connector has a single 4.7k
pull-up resistor. allowing connection of more than one device in a wired-or configu-
ration. Although this interconnection scheme is possible, only single bump-switches
are connected to a given input in this project.

For more information about this module, refer to Appendix H.
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Figure 5.10: A block diagram of the Bump Sensor board electronics. Serial Periph-
eral Interface (SPI) inputs are used to read the conditioned state of up to 16 bump
switches.

5.2.9 Navigation Hardware PCB

This board is used to interface the Navigation MCU to the DC servo motors that
drive the robot. This interface consists of driver circuitry (an L298N dual H-bridge
motor driver). and connections to. and signal conditioning for. optical encoders.

A block diagram of board electronics is shown in Fig. 5.11. The main component
of this board is the SGS Thomson L298 dual H-bridge motor driver. This device can
control two motors requiring up to 2 Amps each at 46 Volts.

For more information about this module. refer to Appendix F.

5.3 Mechanical Structure Overview

The workcell consists of an inexpensive. modifiable chassis which incorporates
flexible positioning of the electronics modules and sensors. Changes to the robot’s
chassis structure to accommodate operability in a different environment than that
originally intended would require redesign. However. the modularity of the electronic
systems. as described previously, would smooth this transition. This section describes
the chassis design and sensor placement for the mobile robot system component con-

figured for indoor applications.
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Figure 5.11: A block diagram of the Navigation Hardware PCB electronics. An
H-bridge motor driver. controlled via the SPI and direct connections to the MCU
drives the two workcell motors. Feedback from optical shaft encoders on the motor
is conditioned and sent back to the Navigation MCU.

5.3.1 Structure

The structure of the chassis was inspired by Ron Kube's! design of a mobile
robot used in telepresence research at the University of Alberta [BBZ98] in the De-
partment of Computing Science. Fig. 5.12 shows a side view of the mobile robot. Each
“level” is a 17" diameter circle of 5/8" medium-density fibreboard (MDF). MDF is
inexpensive and easily allows sensor mounting at arbitrary positions. Each level is
held in place by nut and washers on the four 3/8" threaded rods. This method offers
Hexibility in level spacing and provides a surprising amount of rigidity. A photograph
of the workcell is shown in Fig. 5.13.

Two Polaroid SONAR transducers are mounted at the top of the mobile robot

upon a stepping motor with a step resolution of 1.8°. Rotation of the SONAR array

! Ron Kube was at the time a Ph.D. student in the Department of Computing Science at the
University of Alberta.

43



%———— Sonar transducers

[ LI‘ Stepper motor
Il ! Sonar PCB

Level3 B 1
MCU PCBs and
Shared memory PCBs

Hard/Floppy disks

Motherboard
Threaded rod

Batteries (12V)

Level 1
Medium-density fibreboard
Castor

Near-range IR and Navigation

bump sensor PCBs Control PCB

Figure 3.12: Side view of the mobile robot workcell.

in this manner makes it possible to obtain satisfactory results using only two of the
modules.

Two 24 Volt gear-head motors provide locomotion via differentially steered drive
wheels. Encoders with a resolution of 50 pulses per wheel revolution are attached
directly to the output shaft and provide the feedback necessary for closed-loop control
of the mobile robot’s speed. These are also used for dead-reckoning calculation of

position.

5.3.2 Sensor Placement

Fig. 5.14 shows the locations of the many proximity sensors used in the system
(with the exception of the SONAR modules, which are shown in Fig. 5.12). Near-
range proximity sensors include 26 infrared (IR) pairs and 16 bump switches mounted

at multiple levels. The redundancy provided by placing the sensors at equivalent po-
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Figure 5.13: Photograph of the mobile robot workcell.

sitions on multiple levels is intended to assist in accurately sensing situations that will
inevitably be present in unknown environments. Around the drive wheels and castors.
sensors are arranged to detect obstacles in the direction of travel and irregularities in
the traveling surface.

Fig. 5.15 shows the sensing ranges of the three sensor types. The range of bump
sensors is limited. but also of the utmost importance: if a bump is detected. action
needs to be taken immediately due to the proximity of the obstacle and its potential
effects on the workcell. Infrared sensors have a range of up to 1 metre. Their data.
sometimes unreliable due to ambient light levels. does not need to be acted upon
immediately. SONAR. by far the longest range sensor, provides reliable data up to

approximately 10 metres. The continuous nature of a SONAR “sweep”, outlined



in the next few chapters, makes SONAR data ideal for constructing a map of the
environment. Although reconfigurable, the presented system configuration allows for

research in sensor fusion technique, thus meeting another of the design objectives.

Front

Figure 5.14: A top view of the positions of the workcell sensors. B - Bump switches.
IR - Infrared pairs.

5.4 Summary

This chapter has presented the modular structure of the custom-designed work-
cell electronics. Each of the nine modules can operate to some capacity as a stand-
alone device which makes debugging and testing a simpler task: an important trait

of a test bed. Placed in a system together, the modules form a distributed-processing
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Bump Sensors

IR Sensors

SONAR Sensors

Figure 5.15: A graphical depiction of the sensing distances of the three sensor tvpes
present on the chassis: bump. infrared. and SONAR. This configuration allows for
advance warning of approaching obstacles and allows the software to attach priorities
to data from a particular sensor type.

platform which allows development of a robust, reliable system. The mechanical chas-
sis and sensor placement is reconfigurable. allowing for research in different areas. and

operation in varying environments.
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Chapter 6

Modular Software Design

6.1 Introduction

This chapter is a description of the software developed for both the mobile-robot
platform and the control station. The mobile-robot platform has four computational
elements: the Workcell 80386 motherboard (PC). the proximity detector microcon-
troller. the navigation microcontroller. and the SONAR microcontroller. The control
station has one computational element: a Pentium-compatible processor.

Details about specific procedures and functions are located in Appendix J.
Please see this documentation for more information.

To aid in discussion. Fig. 6.1 depicts the languages used for implementing the

various layers of the robotic system.



Client Server Microcontroller Layer
Control Station PC Workcell PC Microcontrollers
(Navigation. Proximity
Sensor. Sonar)

C Mapping Routines TCLTK C Mapping Routines
TCL
C Sh:m:d-\dcmcry Near-ANSI C
Access Routines
Teleoperation Shared Memory
Commmnication Link Interface
(TCP/TP Sockets)

Figure 6.1: A diagram indicating the development languages used for the various
components of the robotic system. The two primary languages are C and TCL/TK.

6.2 Microcontroller Layer Software

This section describes the software (and the development platform upon which
it is developed) that runs on the microcontroller units. These MCUs are connected
directly to the sensors and actuators of the workcell. as well as to the PC on the
workcell.

Discussion begins with a description of Interactive-C. a real-time near ANSI-
compliant C interpreter that runs on the MCUs. A description of how the interface
to the MCU layer is performedis followed by description of the software which runs

on the three MCUs.

6.2.1 Development Platform: Interactive-C

Interactive-C (IC) is a near-ANSI C compliant language that offers certain
benefits to the microcontroller programmer. particularly in the field of robotics. It is
termed “interactive” because it includes a rudimentary operating svstem that allows
immediate processing of C-statements when typed in at a command prompt.

IC will run on any Motorola HC11 microcontroller that has 32K of external
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RAM in the upper-half of its address space, a requirement which influenced the
selection of the hardware memory devices. The user makes connection to the serial
port on the microcontroller. and first downloads a pseudo-code (P-Code) interpreter
into the external RAM. For steps used to send the P-code interpreter (and the
application code) to the microcontrollers. refer to Appendix K.

Once up and running, IC has several advantages that are apparent:

e Floating-point routines are built-in (something that even several commercial

C compilers intended for the HC11 are missing).

e The rudimentary operating system is a truly (time-sliced) multitasking envi-

ronment.

e There are several free libraries of C routines that are specific to the HC11.
and particularly to mobile robotics. For instance. pulse-width modulation

routines are included with the system.

e IC’s source-code is available. making it possible to modify its operation to

better suit the application.

There are also commands for loading and unloading C-programs into memory.
If there is a function called main() resident in the microcontroller memory. then the
operating system takes a back seat to execution of the code contained therein when
a reset is experienced.

Overall, Interactive-C running on the microcontrollers has performed quite well.
However. there are many other platforms that could have been used to achieve the
same functionality. Most notably, traditional assembly with the MCX11 multitasking

kernel [BA89] would have worked well.



6.2.2 Software Operation

An overview of microcontroller software operation is presented here. In order
to understand how the microcontrollers communicate with each other and with the
workcell PC motherboard. the shared memory allocation is first described. Following
this description, overview is provided for the software running on the Navigation.

Proximity Detector. and SONAR microcontrollers.

6.2.2.1 The Shared Memory Allocation

There are four memory banks which are accessible by any one of the microcon-
trollers. There is the 32K RAM bank which it calls its own. two 4K RAM banks which
are shared with the other two microcontrollers. and another 4K that is shared with
the mobile robot PC. Although it would be possible to use the serial connections of
all the microcontrollers (and the PC) to communicate data. it was chosen that these
would be reserved for programming.!

For the sake of simplicity. it was chosen that each 4K block of shared memory
in the workcell would have the exact same memory map. Although a location may
remain unused in a specific memory. 4K has proven to be far more than required.
Several memory locations have been allocated for future expansion. Table 6.1 is

shows the shared-memory allocation.

! This decision is based on the fact that shared-memory is far more flexible and the fact that
debugging Interactive-C programs that use a serial interface is difficult.
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Allocation of Shared Memory

Mnemonic Address (decimal) Purpose
Computer Operating Properly Registers (Unused)

NAV_COP L Computer operating properly
(Navigation MCU).

PROX_COP 2 Computer operating properly
(Proximity MCU).

SON_COP 3 Computer operating properly
(SONAR MCU).

PC_COP 4 Computer operating properly

(Workcell PC).

Command Registers (Unused)

NAV_CMD 5 Command byte with operands
(to Navigation MCU).

PROX_CMD 25 Command byte with operands
(to Proximity MCU).

SON_.CMD 15 Command byte with operands
(to SONAR MCU).

PC_CMD 65 Command byte with operands

(to Workeell PC).

Memory Access Semaphore Registers (Unused)

NAVPROX_SEM 85 Navigation to Proximity MCU
semaphore register.

PROXSON_SEM 87 Proximity to SONAR MCU
semaphore register.

SONNAV_SEM 89 SONAR to Navigation MCU
semaphore register.

PCNAV_SEM 91 Workcell PC to Navigation MCU
semaphore register.

PCPROX_SEM 93 Workceell PC to Proximity MCU
semaphore register.

PCSON_SEM 95 Workcell PC to SONAR MCU

semaphore register.

Messaging Registers (overlapping fields)

NAV_MSG_FLAG 97 Navigation message flag.
NAV_MSG 98 Navigation message.
PROX_MSG_FLAG 97 Proximity message flag.
PROX_MSG 98 Proximity message.
SONMSG_FLAG 97 SONAR message flag.

SON_MSG 98 SONAR message.
MSG_FLAG 97 Generic message flag.
MSG_STRING 98 Generic message offset.
Navigation MCU Interface Registers
(continued)



Allocation of Shared Memory (continued)

Mnemonic Address (decimal) Purpose
NAV_DIRECTIVE 366 Navigation directive.
SPEED_SETPOINT 367 Speed setpoint in metres per sec-
ond.
DISTANCE_SETPOINT 371 Distance setpoint in metres.
ANGLE_SETPOINT 375 Angular (rotational) setpoint in
radians.
COORD_REFRESH 379 Requested coordinate refresh
rate in seconds.
X_LOCATION 397 Workceell current x-coordinate in
metres.
Y_LOCATION 401 Workcell current y-coordinate in
metres.
ORIENTATION 405 Workcell current orientation in
radians.
Sonar MCU Interface
SON_.COMMAND 1537 SONAR sweep command regis-
ter.
SON_LRANGE1 1538 Range to obstacles from SONAR
module 1.
SON_RANGE2 1938 Range to obstacle from SONAR
module 2.
Proximity MCU Interface
BUMP_DATA 3542 Bit-aligned bump sensor data.
[R_DATA 3544 IR sensor levels (A/D levels).
BUMP_FORWARD 3612 Forward bump sensors activated
(Hag).
[R_.FORWARD 3613 IR sensors activated forward
(Hag).
PROX_REFRESH RATE J614 Proximity sensor polling rate
(seconds).

Table 6.1: Allocation of the shared memory.

6.2.2.2 Shared MCU Software

The MCUs make use of shared library routines written in C. This is not only
good practice, but also required under the test bed design model. There are three

specific shared modules:



(1) A messaging system module:
(2) A shared memory access modulc: and
(3) A Serial Peripheral Interface (SPI) module.

The first allows string information to be sent to the Control Station (via the
Workcell PC) from the microcontrollers. This facility is useful for transmission of
debugging information to the system developer.

Although shared memory can be accessed directly by the MCUs without any
intervention. all access is performed through a shared memory access module. This
was done so that shared memory access semaphores could be implemented in software
in the future.

All three of the MCUs make use of the HC11's SPI facility. This module contains

the code to initialize and perform input and output using the SPI.

6.2.2.3 The Navigation MCU Software

The Navigation MCU. responsible for all aspects of the workcell’'s movement

has three processes running concurrently:

Slaved PI control (proportional-integral control) used to control the speed of the
two drive motors. A graphical depiction of this algorithm is shown in Fig. 6.2
and derived from [JF93]. Along with this control-loop. the distance the work-

cell has traveled is updated using the information gathered from the encoders.

Position update uses the information updated in the PI control-loop to update the
global position of the workcell in shared memory. The calculations are based

on the drive motor encoder information.



Navigation Interpreter is a loop that reads navigation directives placed in shared
memory by the Workcell PC. The interpreter acknowledges these commands

and takes control over the PI loop to carry out the directive.

D,“im.d Motor Optical o
A\ cloc.uy - Driver M ™ Encoder Right Velocity
Setpoint

Left
Motor

+
Destred
1 Integral Bias
- * Setpoint

Right
Motor

Motor Optical
Driver ™1 Encoder

Left Velocity

Figure 6.2: This slaved-PI velocity control loop is used to “link” the independent
drive-wheels of the workcell together to. for instance. make them rotate at the same
speed to drive in a straight line. The desired translational velocity and rotational
(bias) velocity setpoints are applied to the control-loop. The common feedback for
both of the motors. implemented using an integral and an integral gain. A, achieve
the link in software. The proportional gain. A, in the feed-forward portions of each
control loop are adjusted for suitable transient response of the corresponding motors.
This control loop is executed 4 times per second.

6.2.2.4 The Proximity Detector MCU Software

The Proximity Detector MCU interfaces to the workcell’s bump and near-range
IR sensors. Both types of sensors are connected to the SPI. In order to avoid a
conflict between concurrent processes accessing the same piece of hardware, a single

process reads the state of both sensor blocks:

Sensor Polling utilizes the SPI to first read the state of all bump switches and
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update the shared memory. Next. individual “banks” of IR sensors are ac-
tivated. and using the analog multiplexing scheme, their levels are read and

related to the workcell PC motherboard.

The location of detected obstacles with respect to the global coordinate frame

are calculated in the server software running on the workcell PC.

6.2.2.5 The SONAR MCU Software

This microcontroller is responsible for moving the SONAR sensor array and
gathering data from the Polaroid SONAR modules. Only one process runs on the

microcontroller:

Sweep Command Interpreter polls the state of the SON_COMMAND shared
memory location to determine when a SONAR sweep is to occur. When
a command is received. the sweep is performed. the shared memory updated.

and the command is acknowledged.

A “sweep” consists of stepping the two SONAR transducers 180 degrees in
steps of 1.8 degrees. At each step. both modules are “pinged” and the time to echo
is captured (using the HC11 timer facility). Using the speed of sound. the distance

to the obstacles is calculated.

6.3 Server (Workcell Control Engine) Software

This section is a summary of the software that runs on the system server: the
workcell PC.

The workcell control engine has several roles:
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(1) to provide access to the robot sensors and actuators (low-level I/0):

(2) to provide feedback control of the actuators (if required by the application);

and
(3) to provide the software interface to the Ul

The method of providing low-level I/O is through routines written in C. The
client-side interface to the workcell control engine needs to use the string data type
as dictated by the RIP paradigm.

First. a discussion of the Tool Command Language (TCL) development plat-
form is presented. TCL proves to be well-suited for implementation of the server
side of the client-server relationship between the workcell and the control station. A
description of the server software is then followed by techniques that can be used to

program the server. perhaps remotely.

6.3.1 Development Platform: Tool Command Language

The server development platform is string-based TCL with C-based mapping
routines and parallel-port [/O routines. TCL is simple to set up as a TCP/IP server.
and has the ability to pass commands received through a communication channel to
its interpreter.

Implementation of the workcell control engine utilizing TCL and low-level C
routines offers a few unique advantages. First. TCL’s primary data type is the string
which allows natural adherence to the primary requirement placed on data-tvpes by
the RIP paradigm. Second, interfacing with TCL’s C Application Program Interface

(API) can be more-or-less automated with the use of the “Simplified Wrapper and
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Interface Generator” (SWIG) [Bea97].2

The interpretive nature of TCL. and the ability to call the interpreter to execute
commands passed across a socket connection in a sense makes TCL a teleoperation
language in its own right.

Other languages. such as Java, are also suitable for system development. See.

for instance [WSFM98|. However, for fast development time. TCL/TK is chosen.

6.3.2 Software Operation

The server (workcell control engine) software and how it operates is presented
here. Some of the information presented here will be referred to in the section de-
scribing the client software. Specifically. the modules to do with mapping are almost

identical on both the workcell and the control station.

6.3.2.1 Mapping Module Software

A mapping module consists of two parts: a C portion. interfaced to TCL's C
API and a TCL portion.

A map of the workcell's environment is represented using a Moravec occupancy
grid [Mor86]. technique. This representation. implemented entirely in C. has re-
configurable resolution and size. For a graphical depiction of the map. see Fig. 6.8.
Each map “cell” has an 8-bit value associated with it that is used to store bit-aligned
obstacle information. The levels are associated with User. Sonar. Bump. Infrared.
and Algorithmic data. Sonar, Bump. and Infrared layers are used to store obstacles

by the corresponding sensor type. The User layer is included to allow the user (at

2 SWIG also has the ability to automate this process with script languages other than TCL /TK,
such as PERL.



the control station) to interactively add their own obstacles. An Algorithmic layer is
included to allow for a pattern-recognition algorithm to place virtual obstacles in the
map.

The TCL portion of the mapping software provides a higher-level interface to
the C map structure. Through the routines provided. maps can be transferred to-

and from- the control-station. cleared. and synchronized.

6.3.2.2 Parallel Port Module Software

Interface with the parallel port expansion module. described in the last chapter.
is achieved through use of low-level ANSI-C code. Also included in this module is
higher-level TCL code which interfaces to the microcontroller layer through the shared
memory.

The C routines are used to control the parallel port expansion board. This
control allows reading from- and writing to- shared memory. and changing the state
of the MCU control lines. As with the C mapping routines. the code is made callable
from TCL through use of SWIG.

The higher level TCL routines are used to:

e Poll the state of the bump and infrared sensors:

e Control SONAR sensor sweeps and read the data returned by a sweep:
e Issue navigation directives to the Navigation MCU: and

e Read the position and orientation of the workcell.

Reading of the state of bump and infrared sensors is performed in a paced-loop.

the period of which is established by the control station. If an obstacle is detected.
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the corresponding layer in the C map is updated (and. if the obstacle is new. the
control-station map is updated). The server-side “volunteers” this information once
the sensor polling routines have been instigated (by opening the appropriate socket.
described below). When a specific sensor has been activated a vector from the center
of the workcell chassis to the obstacle is determined. based upon the specific sensor
detecting the obstacle. and the detection range of the sensor. For instance. a bump
switch on the rear of the chassis has a vector of magnitude equal to the workcell
chassis radius at an angle of 180 degrees. This vector is used to calculate the location
of the obstacle with respect to the global coordinate frame. When the map data is
updated. these coordinates are used. Therefore. when the map resolution is quite
high. it is possible to retain accurate representation of the environment.

SONAR sweeps. initiated by the user at the control station. are achieved by
signalling the SONAR MCU that a sweep has been requested. When a sweep is com-
pleted. the MCU notifies the server software through shared memory. The obstacles.
as detected by the SONAR array. are placed into the map.

Navigation directives. which can be initiated either by the user at the control
station or by other software modules running on the server. are passed to the Naviga-
tion MCU through shared memory. To allow for emergency stopping, the Navigation
MCU code is written so that a new directive will over-ride an older one. Also included
in the server code is a “setpoint navigation™ search scheme which will automatically
drive the workcell to a specified coordinate in the map. This again demonstrates that
the system is able to be used for research in control-level and autonomous behaviour

research.
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6.3.2.3 Server Module Software

This software module contains routines which open and maintain TCP/IP
socket connections for connection to the control station. It is also responsible for
executing commands (and responding to these commands) issued by the client.

It is within this module that TCL's interpretive nature is exploited. Any incom-
ing communication from the control station is passed directly to the TCL interpreter
running the server software. In this way. very flexible control is given over every
facet of the workcell system software. It is even possible to send a new procedure
from the control station to the server. where it will be immediately made available
for execution. In this way. the TCL language effectively becomes the teleoperation
language.

When executed. the server module implements a standard input handler which
treats typed commands the same as incoming socket commands: they are passed to
the TCL interpreter. This technique has proven to be very effective for debugging and
providing an interface to aspects of the workcell operation that mayv not always be of
interest and therefore not receive a dedicated UI component on the control station.

To be passed to the TCL interpreter. received commands pass through event
handlers. Within these procedures. it is possible to implement communication delay
and interruption whereby the design objectives regarding these research areas are
met. [t is also possible to change the syntax of the commands passed between the
control station and the workcell through these handlers. This allows for research to
occur in the area of teleoperation languages: another design objective.

Four TCP/IP sockets are used to make a full connection between the control

station and the server. These sockets are used to transmit information that is logically
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grouped together into the following categories:

(1) A Navigation socket is used to communicate navigation directives (such
as “GO forward”) to the workcell. Feedback such as workeell position and

orientation is transmitted back to the control station.

(2) A Mapping socket is used to relate all information about the map: barrier

information. user-created virtual obstacle creation. etc.

(3) A Sensor socket is used to relate information about the state of individual
sensors. Through this socket. it is possible to determine which specific sensor

has detected an obstacle.

(4) A Message socket is used to transmit strings received by the server from
the microcontroller layer to the control station. It is also used by the server
software itself to display messages to the user. This is useful for debugging

and informing the user in text form what the workeell is doing.

This socket division has allowed the code on the control station to be written
in a modular form. As will be seen. specific Ul components are directly related to an
individual socket. Another advantage of this separation is the fact that it is possible
to terminate control-loops running on one socket, and vet still receive test data back
from the workcell. For instance, if a control-loop is implemented on the Navigation
socket. its operation could still be evaluated through the Mapping socket. This allows
for research in the field of control transfer.

When a socket of a specific type is opened. routines which update the UT are
started and run in a periodic manner. This does not, however, mean that the control-

station cannot explicitly request information from the workcell control engine.
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6.3.3 Programming Interface

To program the workcell. the Linux operating system provides several options:
direct programming. through the use of standard UNIX commands (perhaps through
the X-window system). or through the server software itself.

The most obvious method of programming the workcell is to connect a monitor
and kevboard directly to the workcell PC motherboard. This will provide standard
interaction with the Linux operating system.

Since the workcell is connected to the control station using serial PPP. con-
nection can be made by using standard UNIX commands such as rlogin. telnet.
and ftp. Using a combination of these. new workcell programs can be developed.
Both the control station and the workeell support the X-window environment. [t is
therefore possible to run the development platform on the workcell. but display it on
the control station (or any other Internet machine). This is achieved by setting the
DISPLAY environment variable on the workeell to display on the desired screen.

As mentioned previously. it is also possible to interact with the server as it
is running. Since TCL is an interpreter. it is possible to define new procedures at
run-time. This is a rudimentary form of programming as it expands the capability
of the server. Additionally, since commands are sent from the control station to the
workcell and executed the same way as if they were directly entered at the server.
users at the client end can send new commands through one of the sockets opened
for communication. These programming techniques can be expanded on. Through

this expansion. the teleprogramming research objective is achieved.
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6.4 Client (Control-Station) Software and User
Interface

This section is a summary of the software that runs on the svstem control

station. There are five modules which will be discussed:

(1) A Socket Control module. used to connect and disconnect the workcell-

control station communication link using four different TCP/IP sockets:

(2) A Navigation Console module. used to issue user-instigated control di-

rectives to the workcell so the user can drive the robot:

(3) A Message module. which relates debugging and status information to the

user about the state of the server and microcontroller software.

(4) A Sensor Status Display module. which graphically depicts the state of

the infrared and bump sensors: and

(3) A Mapping module. which provides a graphical display of the workcell's

environment and the workcell's position within it.

Prior to presentation of these modules. a discussion of the Tool Command
Language (TCL) and its window Tool Kit (TK) as it pertains to the client-side
development is presented. As with the workcell (server). TCL proves to be well-

suited for implementation of the client side of the client-server relationship.

6.4.1 Development Platform: TCL/TK and C

TCL/TK is a modified version of the TCL interpreter which includes commands

used for graphical user interfaces. It has proven to be simple to use and ideal for fast
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development. Since che TCL interpreter is integral to TCL/TK all discussion about
TCL in the last section also applies here.

Use of TCL on the server side and TCL/TK on the client side of the teleop-
eration system allows the system software to be written seamlessly. Many routines
which are written for the server are also used on the client. again making for fast
development time.

The TCL/TK code written for each of the modules is divided into two separate
files: one creates the Ul and the other includes procedures used to support the Ul

Each module (except the Socket Control module) receives communication from
the workcell on a specific socket. As described earlier. this was done so that each
module indeed stands alone and allows simulated interruption of control-loops to be
made without cutting off feedback that may be of interest.

A web-browser plugin for TCL/TK exists. The UI components could be mod-
ified to become “tclets”. usable by the browser. This provides another medium for
delivery of the UI. Additionally. this also allows the entire teleoperation svstem (ex-
cept for the browser) to be implemented on the workcell. The workcell would include
a web-server which would deliver the UI to the client browser.

Fig. 6.3 shows the five individual components that form the user interface.

6.4.2 Socket Control Module

The Socket Control module is responsible for giving the user control over which
sockets (Navigation. Message. Mapping, or Sensor) are active. Fig. 6.4 is a screenshot
of the socket control module.

The code behind the UT contains procedures which send commands through the

sockets, and executes commands received from the workcell (again, passing them to
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Figure 6.3: The five components that form the user interface. The arrows indicate
how data flows between the modules. Each of the four lower modules communicate
with the workcell through a dedicated socket.

the TCL interpreter). These routines are similar to their counterparts in the workcell's

server software.

6.4.3 Navigation Console Module

The Navigation Console module provides the user with an interface to drive the
mobile workcell around. Fig. 6.5 is a screenshot of the socket control module.

Movement on the workcell is limited to translational (forward or backward) and
rotational (pivoting left or right). Simplified obstacle feedback is provided so the user
knows when an obstacle has been detected. rather than having to look at the Sensor
Status Display or Map modules.

Movement setpoints are established through this UTI (distance, rotation angle.
and speed setpoints) giving the user control over how the navigation directives are

achieved.
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Figure 6.4: A screenshot of the Socket Control GUI module. The user has the ability
to terminate or engage specific modules which are used to transfer data of a specific
tvpe.

6.4.4 Message Module

The Message module presents debugging and status information from the work-
cell microcontrollers and server software in text form. Fig. 6.6 is a screenshot of the
socket control module.

Four list boxes are used to display information from the following workcell

computational elements:

(1) the Navigation MCU;



l'—— Qurrent X (m):
Current Y (m}):
g_- [— i— Onentaton (deq):
. : : Opo'mlmn Mode:
I——_— Connection 3tatus:
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Autonomous Controi Setpoint Controls
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Figure 6.53: A screenshot of the Navigation Console GUI component. The user has the
ability to drive the workcell and receives position and simplified barrier feedback from
the workcell. Provision is made for execution of autonomous behaviours: Search and
Wander. Movement setpoints (speed, distance. and turn angle) are also established
through this UL
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(2) the Proximity MCU:
(3) the SONAR MCU: and
(4) the workcell PC motherboard.

Status information that does not warrant a dedicated UI component can still

be related to the user in an efficient manner using the Message module.

Havigatian HCT) ' Mear - Range Sensor HCIt

g

! Purge List i Purge List

Sonar HQ11

Figure 6.6: A screenshot of the Message module. Each microcontroller and the work-
cell server itself can display messages to the user. This aids in debugging and allows
information to be displayed that may not warrant a dedicated UI component.

6.4.5 Sensor Status Display Module

The Sensor Status Display module displays a graphical rendition of the workcell

upon which the status of individual infrared and bump sensors is related. Fig. 6.7 is
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a screenshot of the sensor status module.

This type of display has proven to be convenient for obtaining more information
about the location of an obstacle then the Mapper module can relate. For instance. the
approximate height of an obstacle can be determined by determining which specific
sensor has been activated. This module has also proven handy for verification and

calibration of specific sensors.

O Bump Switch 00 IR Detector
@ Actvated Bump Switch @ Activated IR Detector

" Requested refresh rate (sec): 50

Figure 6.7: A screenshot of the Sensor Status Display module UI. The states of
individual bump and infrared sensors is related to the user. If a square is filled. the
corresponding bump sensor on the workcell has detected an obstacle. Correspond-
ingly, a filled circle indicates an activated IR sensor.



6.4.6 Mapper Module

The Mapper module presents the user with a flexible view of the workcell’s map
of the environment. Fig. 6.8 is a screenshot of the Mapper module.

By far the largest module. the Mapper module contains a component in addition
to the Ul .and TCL support. code: thc C mapping routines. As described earlier. these
routines are also used by the workcell server to create and maintain a C representation
of mapped environment.

The map displays the obstacle information using occupancy grids. Each “laver”
of the map, attributed to a specific sensor type. is displayed in its own colour. In-
dividual points of SONAR obstacle data are displaved after a sweep is initiated. In
this way. the user is provided with the information that is necessary to interpret the
data.

Through this Ul the user can perform the following actions:

e Clear the map:

Resize the map:

o Set the map grid resolution (limited only by the accuracy of double-precision
floating-point numbers. and the amount of memory available to store the

resulting map):

Display the map at various scales;

e Upload a map to the workcell:

e Download a map from the workcell;

Load a map from a file;



e Save a map to a file:

e Print a map to an encapsulated postscript file:

e Add. delete. and move text:

e Add -virtual® obstacles to a map:

e Remove obstacles from a map:

e Display the map to show any one of the lavers on top:
e [nitiate a SONAR sweep:

e Clear SONAR ping data: and

e Select a cell as the goal for autonomous searching.

Obstacle data is volunteered by the workcell after the mapping socket has been

opened. SONAR sweeps. however. are instigated by the user.

6.5 Summary

This chapter has outlined the software which runs on the three “layers” of the
test bed: the microcontroller laver, the workcell PC (server). and the control station
(client). The software was written in a modular manner to promote re-use of code
for quick development.

The development platforms include C. the Tool Command Language (TCL)
and its windows tool kit. TK. The C routines are compiled for calling from the

TCL interpreters. Through the modularity of the software and the nature of TCL.
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the rest of the design objectives (not met by hardware design) are achieved. Particu-
larly, research into communication delay and interruption. the syntax of teleoperation
languages. control transfer and software division have been addressed.

Information passed back and forth between the workcell and the control station
is all string-based. meeting the primary requirement of the RIP paradigm. Some data
(such as sensor and workcell coordinate information) is periodically sent to the control
station once the socket dedicated to that data-type has been opened. Although the
workeell is considered the server. commands are sent to it bv the user. When the
user presses a button (to go forward. for instance). a string command is sent to the
workcell PC. The workcell server software passes this string to the TCL interpreter
upon which it. itself. is running. This command then somehow modifies the memory
shared with the microcontrollers. If, for instance. the command was to “go forward”.
the command modifies the memory shared with the microcontroller responsible for

controlling the workcell drive actuators. The MCU acts upon this command.
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Chapter 7

Results and Demonstrations

7.1 Introduction

This chapter demonstrates the effectiveness of the system through use of figures
showing the actual and mapped environments during workcell movement and sensing.

Several tests are used which test specific components of the workcell design.

7.2 Setpoint Movement Test

This section tests the setpoint movement algorithm. The user selects a destina-
tion location on the control station’s map and instigates the “Search” algorithm which
runs on the workcell. This is a functional test of the system’s ability to implement
autonomous behaviour and its ability to determine its position through odometry
data. It is a functional test of the control station Navigation module. the Workcell
PC shared-memory interface, Navigation MCU code and navigation hardware: the

workcell motors, H-bridge driver, and optical encoder feedback.



Fig. 7.1 shows the starting position and goal location. Fig. 7.2 shows the work-

cell enroute to the goal.

Figure 7.1: Actual and mapped environments of the setpoint search algorithm starting
position. The destination, selected by the user, is highlighted on the UI map. The
corresponding location in the actual environment is the grid cell one row down. and
one column to the left from the top right corner.

As can be seen, correlation between the resulting mapped position and the
actual position is high. The search routine successfully located the goal position.

Error is due to the dead-reckoning scheme used to calculate workcell position.
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Figure 7.2: Actual and mapped environments of the setpoint search algorithm during
execution. The workcell first rotates so that it can drive straight to the destination.
It then drives straight until the goal location, or a point close to it is achieved. The
workcell is shown attempting to get to the destination with more accuracy during the
second pass of the algorithm.



7.3 Bump Sensor Test

This test verifies bump sensor operation. These sensors require direct contact
with the obstacle to be activated. This is a functional test of the Proximity Detector
MCU Software, the Bump Sensor board. and the bump switches themselves.

Fig. 7.3 shows the actual and mapped environments after the workcell has been

driven by the user. The obstacles have been detected using only the bump sensors.

7.4 Infrared Sensor Test

This test verifies near-IR sensor data. The primary advantage of IR sensors
over bump sensors is that obstacles do not need to make contact with the workeell to
be detected. This is a functional test of the Proximity Detector MCU software. the
IR Sensor Board. and the IR sensors themselves.

Fig. 7.4 shows the actual and mapped environments after the workcell has been

driven into the *box canyon”.

7.5 SONAR Sensor Test

This test verifies SONAR data. SONAR sensors have the longest detection
range of all the sensors on the workcell. This is a functional test of the SONAR MCU
software, the Polaroid SONAR modules, the interface board, and the transducers.

Fig. 7.5 shows the actual and mapped environments after a sweep is performed
by the SONAR array. Individual data points are related to the user for their inspec-

tion. Map cells are filled in when an obstacle is detected within them.



Figure 7.3: Bump sensor test actual and mapped environments. The user has moved
the workcell around the environment and detected the obstacles using the bump
Sensors.



Figure 7.4: IR sensor test actual and mapped environments. The user has moved the
workcell into the “box canyon”. The obstacles are detected using IR sensors.
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Figure 7.5: SONAR sensor test actual and mapped environments. The user has
initiated a sweep of the SONAR sensor array. The map is updated with individual
points of data collected from the sweep, and the map cells are updated if they contain
an obstacle. The stool and the boxes (ahead and behind) are all successfully detected.
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7.6 Summary

This chapter presented tests that demonstrated the abilities of the test-bed:
from teleoperated navigation, to building of maps of the environment based on data
from the workcell’s sensors. All aspects of the system are functional. The suite of
sensors and the way the data from it is presented to the user has proven to be effective.
Indeed, the user can drive around an environment and build a map that shows the
obstacles within it.

Since the entire system has been developed with modularity and flexibility in
mind. the tests presented here can be expanded with little effort to research other

areas in the field of telerobotics.



Chapter 8

Conclusion

8.1 Summary of Contribution

This project has contributed to the field of telerobotics by presenting the de-
velopment of an entire telerobotic system and the design models with which it was
conceived. From the beginning, the goal has been to provide researchers with the
ability to run experiments that provide insight into almost any of the active research
areas of the field.

Other architecture projects such as NASREM make the wise move of attempt-
ing to decouple a telerobotic system’s hardware from the structure of its software.
The Robotic Internet Platform design model, presented here, also emphasized the
need for decoupling by proclaiming the importance of the workcell-control station in-
terface. Indeed. the system presented here could be made NASREM-compliant with
modification to the existing software layers.

It is hoped that to have an entire thoroughly-documented design within the

covers of this thesis that telerobotic system developers can learn from its faults and



take from it the strengths. It is hoped that researchers will find the design flexible

enough to accommodate their research with speed and efficiency.

8.2 Evaluation of the Design and Design Tech-
nique

The functional specifications outlined in Chapter 3 have been met. The objec-

tive was to be able to perform experiments in:
(1) control research:
(2) communication research:
(3) UI functionality and human factor research:
(4) teleoperobotic software research: and
(5) sensor fusion and sensing technique research.

The test bed does accommodate these research areas. Application of the test
bed design model has resulted in system hardware and software that has modularity.
flexibility. and safe operation. Application of the Robotic Internet Platform design
paradigm ensured that the resulting design is more-or-less platform-independent. that
the control station and workcell are decoupled. and that their string-based interface is
well-documented. It is believed that application of the models in parallel has resulted

in a researcher-friendly system.
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Appendix A
MC68HC11 Microcontroller PCB

A.l Introduction

An outline of the operation. features. and user-settable options of the the
68HC11 Microcontroller (MCU) board is given here. This board is intended to be
connected to the workcell PC via the MCU-to-MCU shared-memory PCBs. although
they are also designed to work as stand-alone devices.

The MCUs are connected directly to the sensor and actuator PCBs and there-
fore allow for software-directed signal conditioning. The HC11 has also proven to
be powerful enough to allow for reasonably complex sensor-fusion algorithms and
implementation of autonomous (and reflexive) behaviours.

A block diagram of the board electronics is shown in Fig. 5.6. The design is a
complete. stand-alone. single-board computer. Once an application is coded. it can
be run on the MCU board with no external interface (an embedded system).

Figs. A.1 through A.7. contained later in this chapter. show the schematic of the
MCU board. Fig. A.8 is a diagram showing the part placement. Figs. A.9 and A.10
show the top and bottom copper foil patterns. respectively.

A.2 Operation

As mentioned previously, the HC11 MCU board is a single-board computer. It
consists of seven logical blocks. each of which are discussed in more detail below:

(1) the HC11 microcontroller IC;
(2) control-line circuitry;

(3) address latching;

(4) static RAM (SRAM);



(3) address decoding;
(6) MCU bus connector; and

(7) MCU port connector.

A.2.1 The HC11 Microcontroller IC

The HC11 microcontroller is the MC68HC11A1FN. which is one of the first
HC11s that entered the market. It utilizes a multiplexed address/data bus if used in
the "expanded multiplexed mode’ (the normal mode of operation for the teleoperation
system). [t contains 512 bytes of EEPROM and 256 byvtes of internal RAM. The
address space of the MCU (once demultiplexed) is 64K. which is more than sufficient
for the example application.

There is a variety of support circuitry required to make the IC operate as
desired. most of which is discussed in the next subsection. The HC11 contains an
on-board oscillator that utilizes an external crystal. The frequency of the crystal is
8.000 MHz. which is the frequency expected by Interactive-C. Interactive-C utilizes
this crystal frequency to set. among other things. the serial communications baudrate.
and the multitasking executive "tick’ time.

The HC11 has many subsystems implemented directly on the IC. some of which
are listed here:

(1) SCI (asynchronous serial interface):
(2) SPI (synchronous serial interface):
(3) Multi-function timer:

(4) Input capture:

(5) Output compare: and

(6) Analog to digital converters.

All of these systems are used in the teleoperation system.

A.2.2 Control-Line Circuitry

The HC11 makes use of several control lines to configure its mode of operation.
The first is a RESET* signal which is driven by a MC34064 Low-Voltage Inhibit
(LVI). This IC is responsible for placing the HC11 in the known ‘reset state’ when
the supply voltage is unstable. This instability occurs during voltage ramp-up during
application of power and also during power-down. This ‘reset state’ is essentially an
inert mode which will not alter the contents of RAM. Since the MC34064 drives the
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RESET* pin with an open-drain output. other sources of reset can be attached in a
wired-or configuration: a push-button switch, or a PC control line.

Maskable and nonmaskable interrupt pins (IRQ* and XIRQ¥*. respectively) are
made available off-board through two connectors (discussed below). Again. these
signals are configured to be driven by open-drain (or open-collector) outputs. and
thus have pull-up resistors connected.

Lastly, one control line. DWNLD*. is used to configure the operating mode of
the HC11. When pulled low. the HC11 is placed in the "Special Bootstrap’ mode
at which point a small program is expected to be uploaded (usually this program
is a more comprehensive downloader). This mode is used to upload the Interactive-
C pseudo-code interpreter. When DWNLD* is high. MODA and MODB are high.
placing the HC11 in ‘Expanded-Multiplexed Mode’ which enables the external multi-
plexed address and data busses (via HC11 ports C and D). As with the other control
signals. the DWNLD* signal may be driven by multiple sources. In the system pre-
sented here, the workcell PC controls the line. although provision is made to allow
connection of a switch.

A.2.3 Address Latching

Address demultiplexing is performed via an "HC373 transparent latch. The
output of this latch forms the least-significant byte of the 16-bit address word. The
HC11. intended for this type of demultiplexing, controls the latch via an address
strobe (AS) signal.

A.24 Static RAM

A 62256 (32Kx8) static RAM is the only memory device required on the board.
The discretely-derived address decoding places it in the upper-half of the memory
map (0x8000-0xFFFF). As the HC11 is not a terribly fast MCU. slow versions of
this IC can be utilized.

The memory IC is backed-up using batterv power. This is apparent in the
power connection to the IC. and to the '"HC10 which performs the address decoding.
For the memory to be selected, all three of the inputs to the 'HC10 gate need to be
high: A15, LVI. and E. The E-clock is used to ‘E-qualify’ the chip-enable signal: a
requirement for the HC11 to successfully use its external address and data bus. The
need arises due to timing requirements placed upon memory devices because of the
dual-purpose address/data lines (AD0-AD7). Half the time (while E is low), AD0-7T
act as the low-byte of the address. and the other half, they form the data bus. The
LVI (low-voltage inhibit) signal originates from the MC34064 IC and goes low when
the logic voltage is low enough that digital devices (the MCU, in particular) do not
operate predictably. Inclusion of this signal in the chip-enable circuitry protects the



RAM against potentially having its memory corrupted as the MCU board is being
powered-down.

A.2)5 Address Decoding

Eight chip-select lines are derived on-board using an 'HC138 decoder. These
outputs evenly divide the lower-half of the HC11's logical address space into 4K
blocks. As with the SRAM. the chip-select lines are E-qualified for successful interface
to devices that may be connected.

The following table outlines the memory ranges decoded by specific "HC138
outputs.

| Output | Mnemonic | Decoded Range |

YO UC.CS0* | 0x0000-0xOFFF
Y1 UC.CS1* | 0x1000-0x1FFF
Y2 UC.CS2* | 0x2000-0x2FFF
Y3 UC.CS3* | 0x3000-0x3FFF
Y4 UC.CS4* | 0x4000-0x4FFF
Y5 UC.CS5* | 0x5000-0xSFFF
Y6 UC.CS6* | 0x6000-0x6FFF
Y7 UC_CS7* | 0x7000-0x7FFF

Table A.1: Address decoding ("HC138) ranges.

A3 User-settable Options

The user has the ability to configure or control the MCU board in the following
capacities:
(1) Reset the HC11 via a push-button switch (SW1):

(2) Set the operating mode or manually interrupt the CPU via J2: and

(3) Select the logic power source via JP1.

Each of these features receives brief attention in a dedicated subsection.

A.3.1 Reset Switch: SW1

When pressed. the reset switch places the HC11 in a known start-up condition.
The CPU fetches a reset vector, the location of which depends upon the selected
operating mode, outlined below. For more information, see [Mot91]. Note that the
RESET?* signal can also be accessed off-board via either the Port or Bus connectors
(J4 and J1. respectively).
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A.3.2 CPU Mode Control: J2

This connector may serve either as a connector to external switches or as a
jumper-block, depending on the application. The following table outlines the purpose

of the connector positions.

| Position | Purpose
1-2 Place MCU into reset when closed.

3-4 Interrupt the MCU via the IRQ* pin when closed.
5-6 Place the HC11 in *download’ mode when closed.

Table A.2: MCU board J2 jumper position definitions.

These signals are all brought to the edge of the board via J1 and J4.

A.3.3 Power Select: JP1

The user has the ability to select where the logic power for the MCU board
originates. This selection. performed via a jumper. was included so that system
power cabling requirements would be less stringent. The following table outlines the

use of JPI1.

| Position | Purpose |

1-2 Utilize power from J1 (off-board power).
3-4 Utilize power from J3 (on-board power).

Table A.3: MCU board JP1 jumper position definitions.

A4 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the microcontroller board.

A.4.1 Bus Connector: J1

Connector J1 is used to interface to other boards which make use of the HC11
external address and data buses. This is also the connector which accepts control
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signals from the workcell PC via the Parrallel Expansion PCB. The following table
uses the mnemonics SPI and SCI, defined here:

SPI Serial Peripheral Interface (synchronous serial system)

SCIT Serial Communications Interface (asynchronous serial system)

Bus Connector — J1
Number | Mnemonic | Direction | Purpose

1 PC5V In +5V logic power (selected via J2).

2 PC5V In +5V logic power (selected via J2).

3 +12V In +12V power (unused).

4 -12V In -12V power (unused).

5 GND Out DC power return.

6 GND Out DC power return.

7 -8V In -5V power (unused).

8 N.C. - No connaction.

9 N.C. - No connection.

10 UC_PA3 Out Output from HCI11 port A3 (Piezo
0C).

11 UCR/W* Out RAM access Read/Write signal.

12 UCE Out HC11 E-clock (muxed bus address tim-
ing).

13 UCRESET* In Connection to HC11 RESET*.

14 UC_DWNLD In HC11 mode control.

15 UCIRQ* In Connection to HC11 IRQ*.

16 UCXIRQ* In Connection to HC11 XIRQ*.

17 UC_PC4 In Unused line from Parallel Expansion
PCB.

18 UC_PC5 In Unused line from Parallel Expansion
PCB.

19 UC_PCé6 In Unused line from Parallel Expansion
PCB.

20 UC_PC7 In Unused line from Parallel Expansion
PCB.

21 UC_PDO I/O Connection to Port DO (SCI).

22 UC_PD1 I/0 Connection to Port D1 (SCI).

23 UC_PD2 I/O0 Connection to Port D2 (SPI).

24 UC_PD3 I/O Connection to Port D3 (SPI).

25 UC_PD4 I/0 Connection to Port D4 (SPI).

26 UC_PD5 I/0 Connection to Port D5 (SPI).

(continued)
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Bus Connector — J1 (continued)

Number | Mnemonic | Direction | Purpose

27 UC_ADO [/0 Multiplexed address/data (LSB).
28 UC_AD1 [/O Multiplexed address/data.

29 UC_AD2 I/0 Multiplexed address/data.

30 UC_.AD3 I/0 Multiplexed address/data.

31 UC_AD4 I/0 Multiplexed address/data.

32 UC_ADS I/0 Multiplexed address/data.

33 UC_AD6 [/O Multiplexed address/data.

34 UC_AD7 I/0 Multiplexed address/data (MSB).
35 N.C. - No connection.

36 N.C. - No connection.

37 UCA7 Out Demultiplexed address.

38 UC_A6 Out Demultiplexed address.

39 UC-A5 Out Demultiplexed address.

40 UC_A4 Out Demultiplexed address.

41 UC_A3 Out Demultiplexed address.

42 UC_A2 Out Demultiplexed address.

43 UC.AlL Out Demultiplexed address.

44 UC_AO Out Demultiplexed address (LSB).
45 UC_AS Out Demultiplexed address.

46 UcC-A9 Out Demultiplexed address.

47 UCAl0 Out Demultiplexed address.

48 UC-AlL Out Demultiplexed address.

49 UC-AL2 Out Demultiplexed address.

50 UCALS Out Demultiplexed address.

31 UC A4 Out Demultiplexed address.

52 UC_A15 Out Demultiplexed address (MSB).
53 N.C. - No connection.

54 N.C. - No connection.

55 UC_CST* Out Chip select (0x7000-0x7FFF).
56 UC.CS6* Out Chip select (0x6000-0x6FFF).
57 UC.CS5* Out Chip select (0x5000-0x5FFF).
58 UC_CS4* Out Chip select (0x4000-0x4FFF).
59 UC.CS3* Out Chip select (0x3000-0x3FFF).
60 UC.Cs2* Out Chip select (0x2000-0x2FFF).

Table A.4: MCU Board bus connector pinouts (J1).
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A.4.2 Power Connector: J3

If JP1 is set accordingly. this screw-terminal connector is used to provide +3V
power to the MCU board.

Power Connector — J3
Number | Mnemonic | Direction | Purpose

1 Vee In +5V logic power.
2 GND In Ground return.
Table A.5: MCU Board power connector pinouts (J3).

A.4.3 Port Connector: J4

This connector is used to connect to peripherals that require interface to the
specialized ports of the HC11. The following table uses the mnemonics IC. OC.
and PA when describing the purpose of signals. Definitions for these mnemonics are
provided here for convenience.

IC Input Capture
OC Output Compare
PA Pulse Accumulator

For more information on these HC11 resources. see [Mot91].

Port Connector — J4
Number | Mnemonic | Direction | Purpese
1 Vee Out +5V logic power.
2 Vce Out +5V logic power.
3 +12V In +12V power (unused).
4 -12V In -12V power (unused).
5 GND Out DC power return.
6 GND Out DC power return.
7 -5V In -5V power (unused).
8 N.C. - No connection.
9 N.C. - No connection.
10 N.C. - No connection.
(continued)
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Port Connector — J4 (continued)
Number | Mnemonic | Direction | Purpose
11 UC_PE7 In Input to HC11 A/D converter.
12 UC_PE6 In Input to HC11 A/D converter.
13 UC_PE5 In Input to HC11 A/D converter.
14 UC_PE4 In Input to HC11 A/D converter.
15 UC_PE3 In Input to HC11 A/D converter.
16 UC_PE2 In Input to HC11 A/D converter.
17 UC_PEl In Input to HC11 A/D converter.
18 UC_PEO In Input to HC11 A/D converter.
19 N.C. - No connection.
20 N.C. - No connection.
21 UC_PAO In Input to HC11 Port AQ (IC).
22 UC_PAL In Input to HC11 Port Al (IC).
23 UC_PA2 In Input to HC11 Port A2 (IC).
24 UC_PA3 Out Output from HC1ll Port A3 (Piezo
0CQC).
25 UC_PA4 Out Output from HC11 Port A4 (OC).
26 UC.PAS Out Output from HC1! Port A5 (OC).
27 UC_PAS6 Out Output from HC11 Port A6 (OC).
28 UC_PA7 [/0 I/O connected to HC11 Port AT (PA).
29 N.C. - No connection.
30 N.C. - No connection.
31 UC_PD5 [/0 Connection to Port D5 (SPI).
32 UC_PD4 I/0 Connection to Port D4 (SPI).
33 UC_PD3 I/0 Connection to Port D3 (SPI).
34 UC_PD2 I/0 Connection to Port D2 (SPI).
35 N.C. - No connection.
36 UCXIRQ* In Connection to HC11 XIRQ*.
37 UC_IRQ* [n Connection to HC11 IRQ*.
38 UCRESET* In Connection to HC11 RESET*.
39 UCR/W* Out RAM access Read/Write signal.
40 UCE Out HC11 E-clock (muxed bus address tim-
ing).

Table A.6: MCU Board port connector pinouts (J4).

A.4.4 Piezo Buzzer Connector: J5

Interactive-C includes libraries for connection of a piezo buzzer to an output
compare pin of the HC11. This connector is provided specifically for this peripheral.
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Piezo Buzzer Connector — J5
Number | Mnemonic | Direction | Purpose

1 UC_PA3 Out Output-compare signal to piezo buzzer.
2 GND Out Ground return.
Table A.7: MCU Board piezo buzzer connector pinouts (J5).

A.4.5 Serial Data Connector: J6

TTL serial signals are sent to. and received from. the Serial-Level Conversion
PCB through this connector.

Serial Data Connector - J6
Number | Mnemonic [ Direction [ Purpose
1 UC_PD1 (UC_RX.DATA) In TTL serial data input.
2 Vee Out +5V to Serial-Level Conver-
sion PCB.
3 GND Out Ground return.
4 UC_PDO (UC_TX_DATA) Out TTL serial data output.

Table A.8: MCU Board serial data connector pinouts (J6).

A.5 Future Improvements

The following are a list of potential future improvements of this microcontroller
board.

e Due to a PCB footprint error. all MCUs are mounted on the wrong side of
the board.

Include a socket for either EPROM or EEPROM.

Include on-board power regulation.

Replace low-voltage inhibit circuitry for the SRAM and reset circuitry with
a Maxim Semiconductor IC, capable of performing both functions.

e Place RS-232 level conversion directly on the PCB, rather than including it
as another module.

Make the board surface-mount to reduce space and power requirements.
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A.6 Schematic Diagrams and Board Layout

Figures A.1 through A.10 comprise the schematic and board lavout of the Mo-
torola 68HC11 microcontroller board.

A.6.1 Part List

Microcontroller Board Parts O
| Number Used | Part Type | Designators
1 1 0.0LuF C2
2 5 0.1uF C6-C10
3 2 IN4004 Diode D1 D2
4 l luF C3
5 1 3.6V Lithium Battery | Bl
6 1 4.7K RP1
7 1 8.000 MHz Crystal XTALIL
8 1 10M R1
9 1 10uF C1
10 2 27pF C4Cs
11 1 47uF C11
12 1 62256-100ns SRAM Us
13 1 2-contact screw terminal | J3
14 1 2-pin Header J5
15 1 3x2-pin Header J2
16 1 4-pin Header JP1
17 1 20x2-pin Header J4
18 1 J0x2-pin Header J1
19 1 MC68HC11A1FN MCU | U2
20 1 MCT74HC10 U6
21 1 MC74HC138A U4
22 1 MCT74HC573 U3
23 1 MC34064 U1
24 1 4-pin Molex header J6
25 1 Push-button switch SW1

Table A.9: Microcontroller board parts list (3 constructed).
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Figure A.1: Microcontroller board schematic (1 of 7).

101



v ' t
jore tees’ R W I RINYOR UEStIMY ol
[,
g w—t [ IR AT A
tawtrcarirsinr '
Nassaivt psay oy JPIINNN) SN proog-fIg) 2apesrenIosnngy
s fo 10" seaam ¢ -}

R <> i lookapi
—rer ki whv vy
———r (790 TUONNY
g {4 ok 01
——— fealw
X rRvan L
5 tov i
![l!l-ll " —thed
S — T ——y
"
W R
o
n
R X
, "
N tae
o
f "
)
”"
Vy
/]
4 /]
“
7
ER)) a0
v

Figure A.2: Microcontroller board schematic (2 of 7).
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Figure A.3: Microcontroller board schematic (3 of 7).
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Figure A.3: Microcontroller board schematic (5 of 7).
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Appendix B

Serial-Level Conversion PCB

B.1 Introduction

An outline of the operation of the Serial-level conversion PCB. is given here.
The purpose of this board is simple: to convert RS-232C signal voltage levels to TTL
levels (usable by the HC11 Microcontroller boards) and vice-versa.

A block diagram of the board electronics is shown in Fig. 5.2.

The functionality of this board lies in the use of a MAN232 IC. In fact. the
only additional components on this PCB are the connectors used to connect to the
RS-232C (PC) serial line. and to the TTL-level serial line (to the HC11 board). For
more information. refer to a MAX232 data sheet.

Figs. B.1. contained later in this chapter. shows the schematic of the serial-
level conversion board. Fig. B.2 is a diagram showing the part placement. Figs. B.3
and B.4 show the top and bottom copper foil patterns. respectively.

B.2 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the serial conversion board.

B.2.1 PC RS-232 Connector: J1

J1 — PC RS-232 Connector
Pin | Mnemonic | Direction | Description

1 T1.0UT Out RS-232 Output (to PC)
2 Vce - +5V D.C. power.
3 GND - Ground (return).

(continued)




J1 — PC RS-232 Connector (continued)
Pin | Mnemonic | Direction | Description
L-l [ RI_IN | In LRS-'232 Input (from Pm
Table B.1: Serial-level Conversion PCB connector J1 pinouts.

B.2.2 HC11 TTL Serial Connector: J2

J2 — HC11 TTL Serial Connector
Pin | Mnemonic | Direction | Description
1 UC_PD1 In UC Tx Data (from HC11)
2 Vee - +5V D.C. power.
3 GND - Ground (return).
4 UC_PDO Out UC Rx Data (to HCI11)

Table B.2: Serial-level Conversion PCB connector J1 pinouts.

B.3 Future Improvements

Future improvements would include
e Changing the RS-232C connector to the PC to a standard DB9 which would
simplify cabling; and

e Including this circuitry directly on the HC11 MCU boards. This change
would require redesign of the serial network multiplexing included on the
PC-to-MCU shared memory PCB to accommodate RS-232 levels.



B.4 Schematic Diagrams and Board Layout

Figures B.1 through B.4 comprise the schematic and board layout of the Serial-
Level Conversion board.

B.4.1 Part List

Serial-Level Conversion Board Parts
| Number Used | Part Type | Designators
1 2 4-pin polarized Molex header | J1 J2
2 1 MAX233 Ut

Table B.3: Serial-Level Conversion board parts list.
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Figure B.1: Serial-Level Conversion schematic (1 of 1).
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Figure B.2: Serial-Level Conversion part placement diagram.

Figure B.3: Serial-Level Conversion top-layer copper foil pattern. Not to scale.
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Appendix C
Parallel Port Expansion PCB

C.1 Introduction

An outline of the operation. features. and user-settable options of the Parallel
Port Expansion PCB (referred to as the “expansion board’) is given here. This board
is connected between the PC and the PC-to-MCU Shared Memory PCB. It provides
digital input/output with the PC in order to achieve the interface to this memory.
In addition. several digital outputs, indirectly routed to the MCUs. are used for
controlling their operating modes.

A block diagram of the board electronics is shown in Fig. 5.3. This PCB
expands the capability of a parallel printer port to give 64 digital outputs (arranged
in 8 banks of 8 bits each) and an 8-bit digital input port. Each bank of digital outputs
has its own output-enable control. a feature which has proven effective in suppressing
undesired transient power-up characteristics.

Since the board is designed to be interfaced to banks of 8-bit SRAMs. one
of the output banks is designated as a "data bus’ and it must be controlled such
that its outputs are not enabled when any SRAM is placing data onto the bus.
The user is given a choice of two different operating modes to achieve this operation:
either an automatic bus control-line implementation. or through explicit programming
of the output enable bit. This jumper-selectable choice was provided to make the
board suitable for a wider range of applications. However, for the purposes of this
application. the control is performed through the ‘Software’ option.

The reasons that the parallel port was chosen as the prime means of communi-
cation with the microcontrollers is two-fold: cross-platform bus-architecture indepen-
dance and simplicity. A good deal of system testing was performed on a notebook
computer which has a vendor-specific internal bus architecture. Interface with the
system bus would have proven inefficient and costly.

One disadvantage of using the parallel port is the communication speed with
the shared memory. primarily due to the roundabout manner in which a specific



memory location needs to be accessed. However. this is a small disadvantage as the
required bandwidth of the telerobotic application is quite small. Future improvements
such as the addition of video cameras to the test-bed would be done through the PC
system bus. and therefore no greater bandwidth requirement would be placed upon
this component.

Figs. C.1 through C.4. contained later in this chapter. show the schematic of
the expansion board. Fig. C.5 is a diagram showing the parts placement. Figs. C.6
and C.7 show the top and bottom copper foil patterns. respectively.

C.2 Operation

The expansion board operates by providing a multiplexing scheme operating
upon the standard ability of a parallel printer port. The usual address range of the
printer port on IBM compatible computers is 0x378-0x37A (hexadecimal) (1pt1:).

| Address | Bits | Description |
0x378 0-7 | Expansion board output data to be latched.
0x379 0-3 | Register select lines (used to latch data).
0x37A | 4-7' | Input data nibble (4 bits).

Table C.1: Parallel port address definitions.

For digital output. the basic operation is to write 8-bits of data to location
0x378. and then to 'strobe’ the destination register’s clock line via the 4 least signif-
icant bits of address 0x379. For digital input. one nibble (4 bits) of the input 8-bit
data bus must be read at a time into the high nibble of location 0x37A. Which nibble
is read in is determined by the register select lines: if register 9 is currently selected.
the low byte is read? . otherwise the high byte is read.

C.2.1 Register Descriptions

The following table outlines the purpose of each register as selected by the value
written to Ox37A.

! Bit 4 (the most significant bit of the nibble) needs to be inverted by software after reading.
? For Revision 1.0 of the board (used in the test-bed hardware), bits 2 and 3 of the low nibble
need to be swapped due to a design bug.
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Register Descriptions — (0x37A)
Number | Mnemonic | IC | Function

0 OEx U6 | Register output enable lines (mandatory).

1 MEM SDx | U5 | External data bus output lines.

2 MEM_SAx | U4 | Address bus (bits 0-7).

3 MEM_SAx | U3 | Address bus (bits 8-15).

4 CTRL U2 | Chip select and control lines.

5 UC1 U7 | Microcontroller 1 control register.

6 UC2 U8 | Microcontroller 2 control register.

7 ucCs3 U9 | Microcontroller 3 control register.

8 PWR U10 | Power routing control register.

9 Nibble Ul | Input data bus nibble select (mandatory).
10-15 - - Unimplemented.

Table C.2: Parallel port expansion PCB register definitions.

Register 0 (OEx) is utilized to enable or disable the 8 output registers. Bit 0 of
this register corresponds to register 1. through to bit 7. corresponding to register 8.
When a "0’ is written to the corresponding bit, the register will be enabled. If a *1" is
the output value. the register will be in a high-impedance state.

The output of register 1 (MEM_SDx) is connected directly to the peripheral
data bus. It should drive the data bus only when there will be no contention for it.
As addressed in the next section. the method by which this register is enabled can be
selected by the user.

Registers 2 and 3 (MEM_SAx) are two general-purpose digital outputs that
may be used as address lines for an 8-bit peripheral (such as externally implemented
memory).

Register 4 is a digital output register that is used to implement peripheral
(memory) select and control lines. The suggested use of the individual bits is as
shown in the following table.
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Register 4 Bit Definitions
Bit Number | Mnemonic | Function

0 IOR* Peripheral read (active low).
1 IOW* Peripheral write (active low).
2 CS_.UC1_MEM* | UC1 shared memory chip select.
3 CS_.UC2.MEM* | UC2 shared memory chip select.
4 CS_UC3_MEM* | UC3 shared memory chip select.

SPARE4 Unused digital output.

SPARES Unused digital output.

| 7 SPAREG6 Unused digital output.
Table C.3: Parallel port expansion PCB CTRL register (reg-
ister 4) bit definitions.

[=2] B4

The user has the option of connecting bit 1 directly to the output enable line
of the data bus output IC (register 1).

Registers 5. 6. and 7 are used as control registers for various aspects of the
three system microcontrollers. UC1. UC2. and UC3. respectively. The following table
outlines the purpose of each bit.

Register 5-7 Bit Definitions
Bit Number | Mnemonic | Function

0 UCx_RESET | MCU reset.
UCx-DWNLD | MCU download mode.
UCxIRQ MCU interrupt request.
UCxXIRQ MCU non-maskable interrupt request.
UCx_PCLS4 | Unused digital output.
UCx_PCLS5 | Unused digital output.
UCx_SER_RX* | MCU serial receive.
UCx_SER_TX* | MCU serial transmit.
Table C.4: Parallel port expansion PCB UCx register (regis-
ters 5-7) bit definitions.

=IO Ut | o] O]

Due to subsequent level-conversion on the PC-to-MCU shared-memory board,
the signals issued by the PC are inverted from those expected by the microcontrollers.
The last two bits (UCx_SER_RX* and UCx_SER_TX¥) are active-low signals which
determine if MCUx is connected to the serial network. To avoid collision of serial data
being transmitted by the MCUs, only one MCU at a time should have UCx_SER_TX
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at a low level.

Register 8 is reserved for interface to power-routing circuitry. Currently, the
Power Conditioning and Routing PCB is not implemented. Future modifications
include further PC-directed control of power routing and regulation.

‘Register 9’ is not really a register. The select line is used to select which nibble
of the data bus is read at address 0x379 as previously mentioned.

C.3 User-settable Options

The user has the ability to configure the expansion board in two capacities:

(1) to select manual or automatic enabling of register 1 which drives the external
data bus: and

(2) to enable (or disable) the input data bus.

C.3.1 Data Bus/Output Port Select: JP1

Via positioning of the jumper on JP1. the user can select whether the register
connected to the external data bus (register 0) is enabled automatically or manually.

'Automatic mode’ is entered by placing the jumper across pins 1 and 2. This
selection connects bit 1 of register 4 (IOW*) directly to the output enable line of
register 1. This function has not been tested. and future modifications should take
steps to ensure that bus contention will not result.

"Manual mode’ implies that the user will manually toggle the output enable
line of register 1 via register 0 (the OEx lines). The mode is selected by placing the
Jjumper across pins 2 and 3. This mode is the recommended configuration as it allows
the user to ensure through software that no contention problems will be encountered.
The test-bed software assumes that the ‘Manual mode’ is used.

C.3.2 Data Bus Input Enable: JP2

This jumper-selectable option allows the user to enable (jumper from pin 1 to
2) or disable (jumper from pin 2 to 3) the ability to read digital data in from the
expansion board.

This feature is offered so that the expansion board can remain in the system
when the printer is used. Although this is not likely in the test-bed, it is a possibility
should the board be used outside the context of this project. There are two DB25
connectors provided. one which can be used as a loop for connection to the printer.
However, nothing other than the PC and printer should be connected to the expansion
PCB when the printer is used (and the data bus input is disabled). It is probable
that the ‘disable’ feature will rarely be used.
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C4 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the expansion board.

C.4.1 Power Connector: J1

J1 - Power Connector '
Pin | Mnemonic | Direction | Description

1 Vee - +5V D.C. power.
2 GND - Ground (return).
Table C.5: Parallel port expansion PCB connector J1 pin-

outs.

C4.2 Digital I/O Connector: J2

J2 - Digital I/O Connector
Pin | Mnemonic | Direction | Description

l MEM._SDO I/0 External data bus bit 0.
2 MEM_SD1 I/O External data bus bit 1.
3 MEM_SD2 I/0 External data bus bit 2.
4 MEM_SD3 [/0 External data bus bit 3.
5 MEM_SD4 I/0 External data bus bit 4.
6 MEM_SD5 I/0 External data bus bit 5.
7 MEM_SDé6 [/0 External data bus bit 6.
8 MEM_SD7 I/0 External data bus bit 7.
9 Vee - +5V D.C. power.

10 Vee

11 MEM_SAQO
12 MEM_SA1
13 MEM_SA2
14 MEM_SA3
15 MEM_SA4
16 MEM_SA5
17 MEM_SA6
18 MEM_SA7
19 MEM_SAS

+5V D.C. power.

External address bus bit 0.
External address bus bit 1.
External address bus bit 2.
External address bus bit 3.
External address bus bit 4.
External address bus bit 5.
External address bus bit 6.
External address bus bit 7.
External address bus bit 8.
(continued)
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J2 — Digital I/O Connector (continued)

Pin | Mnemonic | Direction | Description

20 MEM_SA9 0 External address bus bit 9.

21 MEM_SA10 0 External address bus bit 10.

22 MEM_SAll 0 External address bus bit 11.

23 MEM _SA12 o External address bus bit 12.

24 MEM_SA13 0 External address bus bit 13.

25 MEM_SA14 6] External address bus bit 14.

26 MEM_SA15 0] External address bus bit 15.

27 [OR* 0 Peripheral read control line (active
low).

28 IOW* 0 Peripheral write control line (active
low).

29 | CS.UCI.MEM* 0 UC1 shared memory chip select.

30 | CS_.UC1.MEM* 0 UC2 shared memory chip select.

31 | CS_.UC1.MEM* O UCH4 shared memory chip select.

32 SPARE{ 0 Unused digital output.

33 SPARES 0] Unused digital output.

34 SPAREG6 0 Unused digital output.

35 GND - Ground (return).

36 GND - Ground (return).

37 UC1_RESET 0 MCU 1 reset.

38 UC1_DWNLD 0] MCU | download mode.

39 UC11RQ 0 MCU 1 interrupt request.

40 UC1XIRQ 0 MCU 1 non-maskable IRQ.

41 UC1_PCLS4 6] Unused digital output.

42 UC1.PCLS5 0O Unused digital output.

43 | UC1.SER.RX* 0 MCU 1 serial receive.

44 | UC1.SER_TX* ) MCU 1 serial transmit.

45 UC2_RESET 0] MCU 2 reset.

16 UC2.DWNLD 0 MCU 2 download mode.

47 UC21RQ 0 MCU 2 interrupt request.

48 UC2.XIRQ 0 MCU 2 non-maskable IRQ.

49 UC2_PCLS4 0 Unused digital output.

50 UC2_PCLS5 0 Unused digital output.

51 | UC2_SER_RX* 0) MCU 2 serial receive.

52 | UC2.SER_TX* 0 MCU 2 serial transmit.

33 UC3_RESET 0] MCU 3 reset.

54 UC3_DWNLD o MCU 3 download mode.

35 UC3IRQ 0] MCU 3 interrupt request.

56 UC3.XIRQ 0] MCU 3 non-maskable IRQ.

57 UC3_PCLS4 0) Unused digital output.

(continued)




J2 - Digital I/0 Connector (continued)
Pin | Mnemonic | Direction | Description

58 UC3_PCLS5 0] Unused digital output.

59 | UC3_SER.RX* 0- MCU 3 serial receive.

60 | UC3.SER.TX* 0 MCU 3 serial transmit.
Table C.6: Parallel port expansion PCB connector J2 pin-
outs.

C.4.3 Digital O/P Connector: J3

J3 - Digital O/P Connector
Pin | Mnemonic | Direction | Description

l Vee - +3V D.C. power.
2 GND - Ground (return).
3 PWRO 0 Navigation actuator power control.
4 PWR1 0) Power control register (reserved).
5] PWR2 0 Power control register (reserved).
6 PWR3 O Power control register (reserved).
7 PWR4 0 Power control register (reserved).
8 PWRS 0 Power control register (reserved).
9 PWR6 0 Power control register (reserved).
10 PWR? 0] Power control register (reserved).

Table C.7: Parallel port expansion PCB connector J3 pin-
outs.

C4.4 Parallel Port Connector: J4 and J5

The directions presented here are with respect to the expansion board. For
more information about the parallel port interface. please refer to an IBM technical
reference.

J4 and J5 — Parallel Port Connector
Pin | Mnemonic | Direction | Description
1 SELO* [ Select line 0 (active low).
2 OUTO I Expansion board register data bus bit 0.
3 OuUT1 I Expansion board register data bus bit 1.
(continued)

124



J4 and J5 - Parallel Port Connector (continued)

Pin | Mnemonic | Direction | Description

4 0oUT2 I Expansion board register data bus bit 2.
5 OouT3 I Expansion board register data bus bit 3.
6 OUT4 [ Expansion board register data bus bit 4.
7 OUTS [ Expansion board register data bus bit 5.
8 OUT6 I Expansion board register data bus bit 6.
9 ouT7 I Expansion board register data bus bit 7
10 IN2 0) Data bus nibble bit 2 (PC read).

11 IN3 0 Data bus nibble bit 3 (PC read).

12 IN1 0] Data bus nibble bit | (PC read).

13 INO 0 Data bus nibble bit 0 (PC read).

14 SEL1* [ Select line 1 (active low).

15 N/C - No connection.

16 SEL2 I Select line 2.

17 SEL3* I Select line 3 (active low).

18 GND - Ground (return).

19 GND - Ground (return).

20 GND - Ground (return).

21 GND - Ground (return).

22 GND - Ground (return).

23 GND - Ground (return).

24 GND - Ground (return).

25 GND - Ground (return).

Table C.8: Parallel port expansion PCB connector J4 and J5
pinouts.

The SELx lines are inverted where appropriate in order to accommodate the
inversion that occurs internally to the computer to which the board is connected.
Thus, although some signals are active-low at the connector. the programmer still
initiates active-high signals through software. In other words. to select register 3, a
"3’ is still written to memory location 0x37A.

C.5 Design Limitations

There are two shortcomings of the parallel port expansion PCB. The first is the
fact that the "automatic’ output enable feature of the data bus output register (register
5) has not been fully tested. It is suspected that timing requirements required for
writing to 8-bit peripherals (such as a memory bank) mayv not be met. This potential
shortcoming which could arise in bus contention or failure of data write sequences
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can be overcome by utilizing the ‘manual’ mode of operation in which the software
provides the timing of all control signals. This is done in the test-bed software.

The second shortcoming is with respect to power-up states of the register out-
puts. Typically, the output of an "LS374 is low upon application of power. This will
result in the majority of output signals being enabled (not high-impedance) and low.
This is of particular interest with regard to signals which are active low. such as any
chip select circuitry that the outputs may drive. Thus, the suggested role of some
outputs may need to be inspected. With this knowledge, any circuitry connected to
the expansion board can be designed in order to accommodate the power-up state.
To accommodate this shortcoming, a switch has been added to the OE* line of U6
- the OE register. It can be toggled between +5V and ground which gives control
over all of the digital outputs. When switched to +3V. all registers are placed in a
high-impedance state.

C.6 Future Improvements

Potential future improvements include:

e hardware inversion of the single bit of the input nibble without interfering
with the possible connection (loop) to a printer (when set to this mode); and

e inclusion of power-up reset circuitry to establish appropriate signal levels
(such as having all digital outputs in a high-impedance state). This should
likely include user-selectable settings to accommodate a wide variety of con-
nected equipment.

e swapping of the MEM_SD2 and MEM_SD3 bits on Ul. This would rid the
need for swapping the bits in software.

e the 'L542, used to decode the register select lines. creates data "spikes’ during
its decoding process. To compensate for this, a timing patch was prototyped
but not included on the PCB. The schematic for this patch is included with
the board’s schematics.
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C.7

Figures C.1 through C.7 comprise the schematic and board layout of the parallel

port expansion board.

Schematic Diagrams and Board Layout

C.7.1 Part List
Parallel Port Expansion Board Parts
| Number Used | Part Type | Designators
1 12 0.1uF Cl-C12
2 1 47uF Ci3
3 2 DB25 J4 J5
4 1 DM74LS04 U12
5] 1 DM74LS42 Ul7
6 1 DM74LS157 Ul
7 11 DM74LS374 U2 - U10. U18. U19
8 2 HEADER 3 JP1 .JP2
9 1 HEADER 5X2 J3
10 1 HEADER 30X2 J2
11 1 Molex 2-Pin Header | J1
12 1 12MHz TTL Oscillator | OSC1
13 1 SNT495A U1l
14 1 SNT4LS00 Ul15
15 | SNT4LS85 Ul4
16 1 DIP16 Socket Ull

Table C.9: Parallel port expansion board parts list.
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Appendix D

PC-to-MCU Shared
Memory /Serial Network Control
PCB

D.1 Introduction

An outline of the operation and features of the PC-to-MCU Shared Memory
PCB is given here. This board serves as a medium for communication between three
connected microcontrollers and the workcell PC (via the Parallel Expansion PCB).
This communication is implemented through the use of shared memory. In addition.
this board also contains hardware to control the flow of serial information to. and
from, the PC (serial network control) and performs logic-level conversion.

A block diagram of the board electronics is shown in Fig. 5.4.

Figs. D.1 through D.6. contained later in this chapter. show the schematic of
the PC-to-MCU Shared Memory board. Fig. D.7 is a diagram showing the part place-
ment. Figs. D.8 and D.9 show the top and bottom copper foil patterns. respectively.

D.2 Operation
The PC-to-MCU Shared Memory board serves three specific purposes:
(1) Achieve a shared-memory interface:
(2) Control the RS-232 serial ‘network’: and
(3) Perform logic-level conversion.

Accordingly, each of these facilities is the topic of a dedicated subsection.



D.2.1 Shared Memory Interface

The implementation of the shared-memory interface is similar to that found on
the MCU-to-MCU shared-memory PCB. described in Appendix E.

The shared memory consists of 3 ICs: Cypress Semiconductor CY7C135 4kx8
Dual-Port Static RAMs. These devices are no different than normal static RAM
except for the fact that there are two sets of address and control lines used to access
a common memory array.

The location at which a specific memory device appears in the connected MCU's
logical address space is determined by the chip-select line originating from the "HC138
decoder IC located on the MCU board. The following table outlines the base MCU
memory locations at which the memory appears and the Parallel Expansion PCB
signal mnemonic connected to the active-low chip-enable input. Note that since a
dedicated digital output on the parallel expansion PCB is used to select a memorv
device (along with dedicated active-low read and write signals). to give a PC-side
‘address’ would be meaningless.

Shared Memory Information
Description | IC | MCU Location (Hexadecimal) [ PC Mnemonic

PC to MCU1 | U5 0x4000 CS.UC1.MEM*
PC to MCU2 | U2 0x4000 CS_.UC2_ MEM*
PC to MCU3 | U3 0x4000 CS_UC3_MEM*

Table D.1: PC-to-MCU Shared Memory PCB MCU memory
base locations and PC selection signal mnemonics.

For presentation of the shared-memory usage (and the memory map). see Chap-
ter 6.

D.2.2 Serial Network Control Hardware

The serial-network control hardware connects a single serial port (originating
from, and destined for. the PC) to one of the three system microcontrollers. These
serial signals are at TTL levels and since they are passed through the Serial-Level
Conversion PCB prior to connection to the PC serial port.

To control which of three microcontrollers are connected to the PC receive or
transmit signal, six control lines are used. These signals originate from the Parallel
Expansion PCB. Their mnemonic and function is described in tabular form, below.
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Serial Network Control Signals
Signal Mnemonic | Purpose

UC1.SERRX Connects PC transmit to UC1 receive circuitry.
UC1.SER.TX Connects PC receive to UC1 transmit circuitry.
UC2.SER_RX Connects PC transmit to UC2 receive circuitry.
UC2.SER.TX Connects PC receive to UC2 transmit circuitry.
UC3.SERRX Connects PC transmit to UC3 receive circuitry.
UC3SER.TX Connects PC receive to UC3 transmit circuitry.

Table D.2: PC-to-MCU Shared Memory PCB MCU memory

base locations and PC selection signal mnemonics.

This control is achieved through use of 'HC08 AND gates. An "HCO03 (with
open-drain outputs) is used on the PC receive circuitry to allow the controlled serial
outputs from the microcontrollers to be connected together (wired-OR connection).

Although it is possible to permit flow from all three MCUs to the PC simulta-
neously. data collision will occur. Accordingly. only one UCx_SER_TX signal should
be brought low at a given time.

D.2.3 Logic-Level Conversion

As Low-power Schottky (LS) and High-Density CMOS (HC) series TTL levels
are not compatible, it is necessary to provide circuitry to interface the two. Conver-
sion is not necessary for connection to the Cypress shared-memory ICs as thev are
compatible with both levels. However. MCU control lines which originate from the
PC (via the Parallel Expansion PCB) such as RESET*. DWNLD*. etc.. require the
level-conversion. To achieve this. 'LS05 open-collector inverters are used (U1-U4).
With use of a pull-up resistor, the output of these devices can drive HC-TTL loads.

D.3 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the PC-to-MCU Shared Memory board.

D.3.1 Power Connector: J1

This connector is used provide power to the electronics. However, it is possi-
ble to apply power to this PCB through the Parallel Expansion PCB (described in
Appendix C) via connector J5.



J1 - Power Connector
Pin | Mnemonic | Direction | Description

1 Vee - +3V D.C. power.

2 Vce - +5V D.C. power.

3 - - No connection.

4 -12V - -12V D.C. power.

5] +12V - +12V D.C. power.

6 GND - Ground (return).

7 GND - Ground (return).

8 -5V - -5V D.C. power.
Table D.3: PC-to-MCU Shared Memory PCB connector J1
pinouts.

D.3.2 MCU Bus Connector: J2-J4

For a description of the signals available from the three microcontrollers con-
nected to this board. refer to the MCU Bus Connector description in Appendix A.
Signal directions for this connector are opposite to those described in that table.

D.3.3 Digital I/O Connector: J5

This connector is used to interface to the Parallel Expansion PCB. detailed in
Appendix C. For more information on J5. refer to this appendix. noting that the
signal directions detailed there are opposite to those at this connector.

D.4 Design Limitations

For a discussion of design limitations with respect to the shared-memory portion
of this PCB. please refer to the corresponding section in Appendix E. MCU-to-MCU
Shared Memory PCB.

D.5 Future Improvements

The portion of the serial network control hardware including U11 ('HC03) was
not implemented on the PCB. It is prototyped using a small wire-wrapped board.
connecting to the pins of J6. This portion of the circuitry should be included on the
next revision of the board.

Additionally, for more flexible design, it may be worthwhile examining a form of
communication which utilizes a multi-drop serial approach rather than point-to-point
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RS-232C connection. This would complicate the design and require a specialized
microcontroller programming interface running on the PC workcell, but the gained
modularity would be an advantage.

The requirement for TTL level conversion (the 'LS035 ICs) could be avoided bv
replacing the registered outputs on the Parallel Expansion PCB with technology that
can drive the HC inputs directly. This would save a great deal of space and reduce
power consumption.

For future improvements regarding the shared-memory, please see Appendix E.
a description of the MCU-to-MCU Shared Memory PCB.

D.6 Schematic Diagrams and Board Layout

Figures D.1 through D.9 comprise the schematic and board layout of the PC-
to-MCU Shared Memory board.

D.6.1 Part List

PC-to-MCU Shared Memory Board Parts

| Number Used | Part Type | Designators
1 1 Molex 4-Pin Locking Header | J7
2 10 0.1uF C1-C10
3 2 1.7K R1 RP1
4 1 47uF C11
5 3 CY7B135-35]C Us U6 U7
6 4 DMT4LS05 Ul U2 U3 U4
7 1 HEADER 6X2 J6
8 4 HEADER 30X2 J2J3 J4J5
9 2 MC74HCO8A U9 U10
10 1 Molex 8-pin Locking Header | J1
11 1 SN74HCO03 Ull

Table D.4: PC-to-MCU Shared Memory board parts list.
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layer copper foil pattern. Not to

Figure D.8: PC-to-MCU Shared Memory PCB top-

scale.
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Appendix E

MCU-to-MCU Shared Memory
PCB

E.1 Introduction

An outline of the operation and features of the MCU-to-MCU Shared Memory
PCB is given here. This board serves as a medium for communication between three
connected microcontroller boards. Communication is implemented is through use of
shared-memory (dual port static RAM).

A block diagram of the board electronics is shown in Fig. 5.7.

The board is relatively simple and contains only three integrated circuits: Cy-
press Semiconductor CY7C135 4Kx8 Dual-Port Static RAMs. These devices are quite
expensive (approximately $35.00 per unit. when individual units can be found).

Figs. E.1 through E.4. contained later in this chapter, show the schematics
of the MCU-to-MCU shared memory board. Fig. E.5 is a diagram showing the
part placement. Figs. E.6 and E.7 show the top and bottom copper foil patterns.
respectively.

E.2 Operation

This PCB implements shared memory. Access to the on-board memory is no
different than accessing other memory. The location at which a given memory device
appears in the connected MCU’s logical address space is determined by the chip-
select line originating from the "HC138 decoder IC located on the MCU board. The
following table outlines the base memory locations at which the memory appears:



Base Memory Locations
Connected MCUs | IC | Location (Hexadecimal)

MCU1L to MCU2 Ul | MCU1: 0x2000, MCU2: 0x2000

MCU1 to MCU3 U2 | MCU1: 0x3000, MCU3: 0x2000

MCU2 to MCU3 U3 | MCU2: 0x3000, MCU3: 0x3000
Table E.1: MCU-to-MCU Shared Memory PCB Memory ad-
dress bases.

For presentation of the shared-memory usage (and the memory map). see Chap-
ter 6.

E.3 Connector Descriptions

E.3.1 MCU Bus Connectors: J2-J4

For a description of the signals available from the three microcontrollers con-
nected to this board. refer to the MCU Bus Connector description in Appendix A.
Directions for this board are opposite to those described at that location.

E.4 Design Limitations

A peculiarity of the design is that the address lines to each side of a given shared-
memory IC cannot be the same for successful reads and writes. In other words. a lack
of memory-access semaphore makes itself evident by reading and writing erroneous
data. 1If all address lines of one side of the device are at 0 (addressing memory
location 0). then a read from the other side will read a data value of 0.

To account for this characteristic. it was chosen that addresses on one side of
the device would be made to ‘idle’ at an unused memory location: an address of 0.

E.5 Future Improvements

Although circuitry and access to the memory would be more involved. all shared
memory devices should be replaced with Cypress Semiconductor CY7C1432 4Kx8
Dual-Port Static RAM with Semaphores. These devices include circuitry on-chip
to help with access arbitration to specific memory locations. This would avoid the
design limitation described above.

Another feature which should be added is the ability to change the memory
location at which the SRAMs appear, perhaps via a jumper block.
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E.6 Schematic Diagrams and Board Layout

Figures E.2 through E.7 comprise the schematic and board lavout of the MCU-
to-MCU shared memory board.

E.6.1 Part List

| MCU-to-MCU shared memory Board Parts

[

|| Number Used | Part Type | Designators

1 3 0.1uF ci1Cc2C3
2 1 {7uF C4

) 3 CY7B135-35JC | U1 U2 U3
4 3 HEADER 30X2 | J2 J3 J4

Table E.2: MCU-to-MCU shared memory board parts list.
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Appendix F
Navigation Hardware PCB

F.1 Introduction

An outline of the operation. features. and user-settable options of the Navigation
Control Hardware PCB is given here. This board is used to interface to the DC servo
motors that drive the robot. This interface consists of driver circuitry (an L298N
dual H-bridge motor driver). and connections to. and signal conditioning for. optical
encoders.

A block diagram of the board electronics is shown in Fig. 5.11.

The main component of this board is the SGS Thomson L298 dual H-bridge
motor driver. This device can control two motors requiring up to 2 Amps each at
46 Volts. The only signals required to achieve control over a single motor are a
direction bit (to select the polarity of the voltage applied by the H-bridge). and an
active-high enable signal. Interface to the IR pairs used to read the optical disks on
the drive shafts consists of appropriate selection of LED current-limiting resistor and
phototransistor emitter resistance. The signal-conditioning is passing of the emitter
signal through a Schmitt-trigger inverter ("HCI14A) to reduce noise. The output of
these inverters are passed directly to the HC11 responsible for the motor control
algorithm.

The primary reason that the L298 was chosen for driving the motors is the
simplicity with which they are used (due to on-board circuitry such as generation of
FET-switching voltages). One large disadvantage is the fact that the 2 Amp limit
imposed on current-draw from the H-bridges is constrictive. Many motors which
could be used in a robotics platform would potentially draw more current. For a
solution to this problem, see the section describing future improvements.

Figs. F.1 through F.4. contained later in this chapter. show the schematic of the
Navigation Control Hardware board. Fig. F.5 is a diagram showing the part place-
ment. Figs. F.6 and F.7 show the top and bottom copper foil patterns. respectively.



F.2 Operation

The motor-driver circuitry. as mentioned previously. requires only two bits per
motor for control purposes: a direction bit and an enable bit. The direction bits are
derived from an "HC395A serial-to-parallel converter which is connected to the HC11
SPI (synchronous serial peripheral interface). The enable bits are connected to HC11
output-compare pins on the HC11. The output-compare facility allows for generation
of pulse-width modulated signals using an interrupt approach.

The following table describes the HC11 signals which are used to control the
drive motors:

Motor Control Signals
Purpose | Signal (Motor 1) | Signal (Motor 2)
Direction | SPI Byte 0 Bit 0 SPI Byte 0 Bit 1
Enable PA6 (OC2) PAS5 (OC3)
Current Sense PEO PE1
Encoder Pulses PAT PAO

Table F.1: Motor control signals.

The feedback from the optical encoders connected to the driven shafts of the
motor are fed into either PAT (motor 0) or PAO (motor 1). the first of which is
associated with a pulse accumulator. The pulse accumulator can be used to count the
number of pulses applied. If this is count is read periodically, the rotational velocity
of the output shaft is known. Although there is no pulse accumulator associated
with PAO, the same functionality is implemented using an interrupt-service routine.
This method of determining velocity (and absolute position) is used as the basis for
the motor control-loops and the dead-reckoning to vield the global coordinates and
orientation of the workcell.
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F.3

The following information is a list of connector pin-outs. All signal directions

Connector Descriptions

specified are with respect to the Navigation Control Hardware board.

F.3.1 Encoder Connectors: J1, J2
J1, J2 - Encoder Connectors
Pin | Mnemonic | Direction | Description
1 ENCPWRx Out Current-limited IR LED anode connec-
tion.
2 GND - Ground return (from [R LED cathode).
3 Vee - +3V to IR phototransistor collector.
4 ENCDETx In Analog [R phototransistor emitter
level.
Table F.2: Navigation Control Hardware PCB connector J1.
J2 pinouts.
F.3.2 Battery-level Sensing Connector: J3

This connector is unused in the current implementation of the workcell but
is included for thoroughness. These connections are nothing more than a direct
connection to the A/D facility on the connected HC11 board.

J3 — Battery-level Sensing Connector
Pin | Mnemonic | Direction | Description

1 PE4 In Connection to MCU A/D converter.
2 PES In Connection to MCU A/D converter.
3 PE6 In Connection to MCU A/D converter.
4 PE7 In Connection to MCU A/D converter.
5 NC - Unused.
6 NC - Unused.
7 Vee - +5V
8 GND - Ground.

Table F.3: Navigation Control Hardware PCB connector J3

pinouts.
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F.3.3 Motor Power Connector: J4

J4 — Motor Power Connector
Pin | Mnemonic | Direction | Description

1 VMOT In Motor Power (46V ma.ximum).-l
2 GND - Ground return. j
Table F.4: Navigation Control Hardware PCB connector J4
pinouts.

F.3.4 Port Connector: J5

Details of connector J5. used to interface with an HC11 MCU board. is located
in the Appendix A. Signal directions relative to this board are opposite to those
documented there.

F.4 Future Improvements

Future improvements to this board would include:

e Adding a general-purpose digital output connector for the unused bits on the
'HC595A serial-to-parallel converter (SPI).

e Using discrete H-bridge drivers to allow connection to motors with higher
current demands.

e Addition of opto-isolators to reduce noise and improve resilience to voltage
fluctuations.

e Addition of circuitry to allow for decoding of quadrature signals which are
commonly used as feedback for brushless DC servo motors (perhaps Hewlett
Packard HCTL-20XX quadrature decoders/counters).

F.5 Schematic Diagrams and Board Layout

Figures F.1 through F.7 comprise the schematic and board layout of the Navi-
gation Control Hardware board.



F.5.1

Part List

Navigation Control Hardware Board Parts

| Number Used | Part Type | Designators
1 4 0.1nF C1-C4
2 8 IN914 D1-D8
3 2 9.53K R2 R4
4 2 10 Ohm, 5W R5 R6
5 2 47uF C5 C6
6 2 100 Ohm R1 R3
7 2 100nF C7 C8
8 3 2-pin power connector | J4 M1 M2
9 1 HEADER 20X2 J5
10 1 L298N U2
11 1 MCT74HCI14A Ul
12 1 MCT74HCS595A U3
13 2 Molex 4-Pin Header | J1 .J2
14 1 Molex 8-Pin Header | J3

Table F.5: Navigation Control Hardware board parts list.
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Appendix G

Near-Range IR Proximity Sensor
PCB

G.1 Introduction

An outline of the operation, features. and user-settable options of the Near-
range proximity sensor PCB is given here. This board. also referred to as the near-
range [R. or IR board. is used to control and interface up to 32 near-range infrared
pairs. Facility is provided to apply power to the infrared LED. and an analog mul-
tiplexing scheme is used to select which ‘bank’ of infrared phototransistors are con-
nected to the HC11 A/D converter.

A block diagram of the board electronics is shown in Fig. 3.9.

This board does not necessarily need to be used to interface with [R pairs.
[nstead, it could simply be used for digital output (32 signals) and analog input
(32 signals multiplexed to 8 signals). Four cascaded T4HC395A serial-to-parallel
converters are used to provide the 32 digital outputs. Used in conjunction with
Motorola’s Serial Peripheral Interface (SPI). the use of the "395As in this manner is
simple and efficient. The digital outputs are not able to provide sufficient current to
the IR LEDs directly, and therefore NPN switches are used (2N2222). The collector
resistances are selected to give appropriate current to the Knight Lites KIE-6304 GaAs
IR LEDs. The 32 phototransistor outputs are multiplexed by Motorola 74HC4052
dual 4-to-1 analog multiplexer ICs. Control signals for the multiplexers (to determine
which of the 4 inputs is connected to the output) are taken from the HC11 MCU board
(pins A5 and A6) via the port connector. The output from the multiplexers are
shunted to ground via 6.2V Zener diodes. These devices were experimentally chosen
as appropriate for providing the necessary impedance to ‘drain’ the A/D inputs on the
HC11. Without these diodes (or some other impedance to ground). the Successive-
Approximation A/D converters will not lose charge after a sample has been made,
vielding erroneous results.



As with the bump-sensor PCB (described in Appendix H). the primary advan-
tage of using the SPI is the simplicity with which the interface to digital outputs
can be achieved. There is no address-decoding required since "HC395A devices can
be cascaded. This number of digital outputs is required since the current-draw of a
single IR LED is large (100 mA). To have all devices permanently ‘on’ would drain
the power source quickly. In addition. having control over specific IR pairs allows use
of novel ambient-light filtration algorithms and sensor fusion algorithms in software.

Figs. G.1 through G.6. contained later in this chapter. show the schematic of
the Near-range IR Detector board. Fig. G.7 is a diagram showing the part placement.
Figs. G.8 and G.9 show the top and bottom copper foil patterns. respectively.

G.2 Operation

This section describes operation of the near-range IR PCB.

G.2.1 Digital Output (Emitter Control)

Once the SPI is configured. transfer is initiated by writing a bvte to the SPDR
(SPI Data Register). The SPI operates as a 'ring’ buffer. Whatever the byte placed
in the SPDR. a transfer is initiated. and the byte is pushed out to whatever device is
connected to the serial output: in this case. A T4HC395A serial-to-parallel converter.
Simultaneously, data from any input devices connected to the serial input is shifted
in. In order to ‘latch’ the serial data into the "HC3595A output registers. a register
clock line must be strobed. This could be performed by a memory-mapped chip-
select circuit. but a normal digital output is used (microcontroller signal PD3). In
addition. an active-low output enable pin is connected to another general-purpose
digital output (PA4) to allow another form of control over the digital outputs: when
the enable pin is high. all the digital outputs will remain in high-impedance mode
effectively disabling all IR emitters.

G.2.2 Analog Input (Detector Reading)

Reading of analog levels from the IR phototransistors takes two distinct steps:
(1) Select the "bank’ that the the sensor resides in via PA35 and PAS6.

(2) Sample the voltage presented to the Port E input.

The following table describes the position of the digital outputs and the IR LED
output which they drive. Note that PA4 of the driving HC11 must be low in order
for the level of the bit to be driven. This table also indicates the bank in which they
reside, and the Port E input to which they are connected when the bank is selected.



IR Pair | SPI Output Bit | Connector | Analog I/P |
Bank 0 (PA5 = 0. PA6 = 0)

1 Byte 0 Bit 0 J6 PEOQ
2 Bit 1 J7 PE1
3 Bit 2 J8 PE2
4 Bit 3 J9 PE3
5 Bit 4 J10 PE{
6 Bit 5 J11 PE5
T Bit 6 J12 PE6
8 Bit 7 J13 PE7
Bank I (PA5 = 0. PA6 = 1)
9 Byte 1 Bit 0 J14 PED
10 Bit 1 J15 PE1
11 Bit 2 J16 PE2
12 Bit 3 J17 PE3
13 Bit 4 J18 PE4
14 Bit 5 J19 PE35
15 Bit 6 J20 PE6
16 Bit 7 J21 PET7
Bank 2 (PA5 = 1. PA6 = 0)
17 Byte 2 Bit 0 J22 PEO
18 Bit 1 J23 PE1
19 Bit 2 J24 PE2
20 Bit 3 J25 PE3
21 Bit 4 J26 PE4
22 Bit 5 J27 PES
23 Bit 6 J28 PE6
24 Bit 7 J29 PET
Bank 3 (PA5 = L. PA6 = 1)
25 Byte 2 Bit 0 J30 PEQ
26 Bit L J31 PE1
27 Bit 2 J32 PE2
28 Bit 3 J33 PE3
29 Bit 4 J34 PE4
30 Bit § J35 PE5
31 Bit 6 J36 PE6
32 Bit 7 J37 PE7

Table G.1: IR Pair input connector-to-bit correspondence
and analog input.
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G.3 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the Near-range Proximity PCB.

G.3.1 Port Connector: J1

Details of connector J1, used to interface with an HC11 MCU board. is located
in the Appendix A. Signal directions relative to this board are opposite to those
documented there.

G.3.2 IR Pair Power Connectors: J2-J5

These 2-pin power connectors are used to provide ground return for the In-
frared LEDs and power to the IR phototransistors. Using a daisy-chain approach.
power signals to all the IR pairs is efficient with regard to pin-count. but connection
convenience is compromised. as outlined in the section on future improvements.

J2-J5: IR Pair Power Connectors
Pin | Mnemonic | Direction | Description

1 Vee 0 Power output.
2 GND - Ground return.
Table G.2: Near-Range Proximity PCB connectors J2-J5:
sensor power connections.

G.3.3 J5-J37: IR Pair Signal Connectors

These 2-pin connectors are used to provide the signal interface to specific IR
pairs (power connection is made through connectors J2-J3).

J5-J37: IR Pair Signal Connectors
Pin | Mnemonic | Direction | Description
1 | LEDPWRQx 0 IR LED power output (transistor driven).
2 PTx I IR Phototransistor input.
Table G.3: Near-Range Proximity PCB connectors J5-J37:
sensor signal connections.
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G4 Design Limitations

No performance-hindering limitations are known at this time.

G.5 Future Improvements

Future designs should accommodate {-pin connectors for specific IR pairs.
rather than providing power and ground through daisy-chain connectors. Although
cabling will become bulky. flexibility of sensor positioning will greatly increase.

Interactive-C makes use ot the output-compare circuitry connected to PA4. and
therefore does not allow automatic (interrupt-driven) toggling of the state of PA4.
If Interactive-C is retained for future designs. another output-compare pin should be
used to allow use of this feature to "strobe’ the enable pins of the 'HC595A. This kind
of modulation could be used to aid in ambient light rejection.

G.6 Schematic Diagrams and Board Layout

Figures G.2 through G.9 comprise the schematic and board layout of the Near-
IR Proximity Detector board.

G.6.1 Part List

Near-range Proximity Detector Board Parts
| Number Used | Part Type | Designators
1 8 0.1nF C1-C8
2 32 1K R41-R72
3 8 IN4735ATOR. 6.2V | D33-D40
4 32 2N2222 Q1-Q32
5 32 39 Ohm. 1/2 W R1-R32
6 1 47uF C9
7 L HEADER 20X2 J1
8 4 MC74HC595A U1-U4
9 4 MC74HC4052 Us-U8
10 36 Molex 2-Pin Header | J2-J37

Table G.4: Near-range Proximity Detector board parts list.
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Appendix H
Bump Sensor PCB

H.1 Introduction

An outline of the operation. features. and user-settable options of the Bump
Sensor PCB is given here. The purpose of this board is to interface to the many
bump-sensors on the robotic workcell. It is connected to the Proximity Detector
HCI11 board via the "port’ connector. Connection to individual bump-switches is
made via an array of 2-pin Molex connectors.

A block diagram of the board electronics is shown in Fig. 5.10.

The backbone of this board is the use of "HC165 parallel-to-serial converters.
Interfaced to the Motorola's Serial Peripheral [nterface (SPI). two of these devices
allow for 16 digital inputs (8 each). Each bump-switch connector has a single 4.7k
pull-up resistor. allowing connection of more than one device in a wired-or configura-
tion. Although this interconnection scheme is possible. only single bump-switches are
connected to a given input in this project. Conceivably, this board could be renamed
'16-bit Digital Input PCB’. For particulars of the SPI facility. refer to the Motorola
68HC11 documentation.

The primary advantage of using the SPI is the simplicity with which the inter-
face to digital inputs can be achieved. There is no address-decoding required since
"HC165 devices can be cascaded serially.

Figs. H.1 through H.3. contained later in this chapter. show the schematic of
the Bump Sensor PCB. Fig. H.4 is a diagram showing the part placement. Figs. H.5
and H.6 show the top and bottom copper foil patterns. respectively.

H.2 Operation

Once the SPI is configured, transfer is initiated by writing a byte to the SPDR
(SPI Data Register). A transfer is initiated, and the byte is shifted out of the micro-



controller. Simultaneously, data from input devices is shifted in. Since this PCB has
two "HC165s cascaded. two bytes must be read in to get the data from all 16 digital
inputs. In order to "latch’ the input data into the "HC165 serial shift registers. their
clock pin must be strobed. This could be performed by a memory-mapped chip-select
circuit, but a normal digital output is used (PD3).

The following table describes the two bytes as they relate to the digital inputs
(the bump sensors). Note that due to the pull-up resistors. the switch is open if a
logic -1" is read by the microcontroller at its corresponding bit.

| Bit | Switch Connector |
Byte 0 Bit 0 J2
Bit 1 J3
Bit 2 J4
Bit 3 J5
Bit 4 J6
Bit 5 J7
Bit 6 J8
Bit 7 J9
Byte 1 Bit 0 J10
Bit 1 J11
Bit 2 J12
Bit 3 J13
Bit 4 J14
Bit 5 J15
Bit 6 J16
Bit 7 J17

Table H.1: Digital input connector-to-bit correspondence.

H.3 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the Bump Sensor board.

H.3.1 Port Connector: J1

Details of connector J1, used to interface with the Proximity Detector HC11
board, is located in the Appendix A. Signal directions relative to this board are
opposite to those documented there.
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H.3.2 Bump Sensor Connectors: J2-J17

As mentioned previously, the input from each of these connectors is connected
to a 1.7K pull-up resistor. As such. if a connected switch is open. the corresponding
bit is high.

J2-J17: Bump Sensor Connectors
Pin | Mnemonic | Direction | Description i
1 BUMPx I Bump switch input.
2 GND - Signal ground.
Table H.2: Bump Sensor PCB connectors (J2-J17).

H.4 Design Limitations

None are known at this time.

H.5 Future Improvements

One of the wonderful strengths of SPI-compatible devices is the fact that it is
possible to completely interface using so few signals (in this case three). and power and
ground. Future versions of this board should make use of this strength by replacing
the IDC *Port’ connector (J1) with a connector arrangement that is less expensive
and simpler to work with.
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H.6 Schematic Diagrams and Board Layout

Figures H.2 through H.6 comprise the schematic and board layout of the Bump
Sensor board.

H.6.1 Part List

Bump Sensor Board Parts

| Number Used ] Part Type | Designators
1 2 0.1nF CiC2
2 3 4.7K (Bussed Resistor Pack (7)) | RP1 RP2 RP3
3 1 {7uF C3
4 1 HEADER 20X2 J1
5 2 MC74HC165 U1l U2
6 16 Molex 2-Pin Header J2-J17

Table H.3: Bump Sensor board parts list.
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Figure H.1: Bump Sensor PCB schematic (1 of 3).
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Appendix 1
Sonar Module Interface PCB

I.1 Introduction

An outline of the operation. features. and user-settable options of the Sonar
Module Interface board is given here. This board is used to interface to two Polaroid
sonar modules and a stepping motor which is used to rotate the sonar transducers.

A block diagram of the board electronics is shown in Fig. 5.8. This board makes
use of the connected MCU’s SPI facility and two "HC595 serial-to-parallel converters
to derive digital outputs. These digital outputs are used to interface with Polaroid
sonar modules as well as the stepping-motor driver. As with the navigation control
hardware. the backbone of the motor driving circuitry is an SGS Thomson L298N
dual H-bridge driver. In addition to the SPI-derived digital outputs. four signals from
the connected MCU’s Port A are interfaced to the sonar modules. Port A. associated
with the HC11's timer facilities was used in order to simplify the software responsible
for driving the modules.

Although it would have been possible to create the sonar modules themselves.
Polaroid’s modules are well-documented. reliable. and offer certain features which
would be difficult to duplicate.

Figs. I.1 through I.3. contained later in this chapter. show the schematic of the
Sonar Module Interface board. Fig. 1.4 is a diagram showing the part placement.
Figs. 1.5 and .6 show the top and bottom copper foil patterns. respectively.

1.2 Operation

The following table describes the position of the digital SPI outputs and their
function.



| SPI Output Bit |

Mnemonic | Purpose

]

Byte 0 Bit 0 BLNKO Sonar module 0 Blanking input.
Bit 1 BINHO Sonar module 0 blanking inhibit.
Bit 2 - Unused.
Bit 3 - Unused.
Bit 4 BLNK1 Sonar module 1 Blanking input.
Bit 5 BINH1 Sonar module 1 blanking inhibit.
Bit 6 - Unused.
Bit 7 - Unused.
Byte 1 Bit 0 PHASEA Stepper Phase A.
Bit 1 PHASEB Stepper Phase B.
Bit 2 PHASEC Stepper Phase C.
Bit 3 PHASED Stepper Phase D.
Bit STEP_ENABLE | Stepper enable.
Bit 5 LEDO Indicator LED.
Bit 6 LED1 Indicator LED.
Bit 7 LED2 Indicator LED.

Table I.1: Sonar Module Interface PCB SPI bit definitions.

PHASEA through PHASED provide the stepper driver with the appropriate signals
to initiate rotation. The STEP_ENABLE signal can be used to disable the drivers to
reduce current consumption. For instance. once the motor has been placed at the
desired location. power can be removed by bringing STEP_ENABLE low. No current is
drawn by the motor (up to 2 Amps per phase) when in this state. Both halves of the
L298N dual H-bridge driver need to be used to interface to a stepper in the manner
shown. Fly-back diodes are used to prevent voltage spikes from destroyving the driver
IC. or any other device connected to the supply.

Three general-purpose LED indicators are controlled by the signals LEDO through
LED2. These indicators may be used for whatever purpose the developer desires.

The next byte of digital outputs is used to control the two sonar modules. The
BLNKx signals are used to ‘desensitize’ the sonar modules to received echos while it is
asserted. This is often used when there exist obstacles at a close range that we are not
interested in. By asserting BLNKx at the time when this obstacle would be returning
an echo. we can avoid assertion of a returned ECHO signal. The BINHx signals are
used to stop internal blanking from occurring within the sonar modules. This may
be desired, for instance. if obstacles are very near the module.

Typical use of the sonar modules through this interface board is as follows:

(1) Initiate a ‘ping’ by asserting INIT.

(2) Wait for a response via the module’s assertion of the ECHO signal.
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(3) Deassert INIT until another "ping’ is issued.

See the description of J2 and J3 for connection of the INIT and ECHO signals.

Modification of the Polaroid Sonar modules was required in order to decouple
their supplies from the interface board logic supply. This was achieved by placing
a large capacitance on the Polaroid module between the supply and ground. This
was made necessary due to the large current-drain (up to 2 Amps) when issuing a
series of ultrasonic pulses. For more information. refer to the Polaroid Sonar Module
information.

1.3 Connector Descriptions

The following information is a list of connector pin-outs. All signal directions
specified are with respect to the Sonar Module Interface board.
[.3.1 Stepper Motor Connector: J1

This 6-pin polarized header is used to connect to the stepper used to rotate the
sonar transducers.

J1 - Stepper Motor Connector
Pin | Mnemonic | Direction | Description

1 VMOT Out Motor power supply.

2 PhascA Cut Motor Phase A.

3 PhaseB Out Motor Phase B.

4 PhaseC Out Motor Phase C.

3 PhaseD Out Motor Phase D.

6 GND - Motor power ground return.

Table [.2: Sonar Module Interface PCB stepper motor con-
nector J1 pinouts.

1.3.2 Polaroid Module Connector: J2, J3

These specialized Burndy connectors are used to connect to the Polaroid sonar
modules via propriety flexible cables.



J2 — Polaroid Module 0 Connector

Pin | Mnemonic | Direction | Description
1 GND - DC ground return.
2 BLNKO Out Blanking (echo mask) output.
3 N.C. - Not connected.
4 INITO (UC_PA6) Out Pulse initiate output
5 N.C. - Not connected.
6 N.C. - Not connected.
7 | ECHOO (UC_PA0) In Echo received input.
8 BINHO Out Blanking inhibit output.
9 Vce Out +5V supply.

Table 1.3: Sonar Module Interface PCB Polaroid Module 0

connector J2.

J3 — Polaroid Module 1 Connector

Pin | Mnemonic [ Direction | Description
1 GND - DC ground return.
2 BLNK1 Out Blanking (echo mask) output.
3 N.C. - Not. connected.
4 INIT1 (UC_PAS) Out Pulse initiate output
5] N.C. - Not connected.
6 N.C. - Not connected.
7 | ECHOl (UC_PAl) In Echo received input.
8 BINH1 Out Blanking inhibit output.
9 Vee Out +5V supply.

Table I.4: Sonar Module Interface PCB Polaroid Module 1

connector J3.
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1.3.3 Motor Power Connector: J4

This connector is used to provide a decoupled supply for the stepper motor.

J4 — Motor Power Connector
Pin | Mnemonic | Direction | Description

1 VMOT In Motor power supply.
2 GND - Ground return.
Table I.5: Sonar Module Interface PCB motor power connec-
tor J4 pinouts.

1.3.4 MCU Port Connector: J5

This connector is used to interface to the MCU responsible for the sonar sub-
system. For information regarding the MCU Port Connector, refer to its description
in Appendix A. the MC68HC11 Microcontroller PCB.

1.3.5 Limit-Switch Connector: J6

A Molex 2-pin polarized header is used to connect to a limit switch used for
moving the sonar transducer assembly to a known position. The input signal is
pulled-up through a 4.7K resistor and tied to an A/D converter port on the MCU.

J6 — Limit Switch Connector
Pin | Mnemonic | Direction | Description
1 UC_PEO In Limit switch input. O=closed.
2 GND - Signal ground return.
Table [.6: Sonar Module Interface PCB Limit-Switch con-
nector J6 pinouts.

1.3.6 Photoresistor Connectors: J7-J10

Provision has been made for connection of 4 Cadmium Sulphide (CdS) photo-
cells. These inputs can be used for arbitrary connection to the MCU A/D facility.
The only caveat is that the inputs are pulled-up through 4.7K resistors which may
not be required for some applications.
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The input signals listed here are for J7 through J10. respectively.

J7 to J10 — Photoresistor Connectors
Pin | Mnemonic | Direction | Description
! UC_PE4.5.6.7 In CdS Analog input.
2 GND - Signal ground return.
Table I.7: Sonar Module Interface PCB CdS Cell connector
pinouts: J7-J10.

1.4 Future Improvements

As with other boards in this project that utilize the SPI. future revisions could
make connection to the MCU simpler by using fewer connections. However. since
various Port A and Port E signals are used. the simplicity gained here may be minimal.

I.5 Schematic Diagrams and Board Layout

Figures [.1 through [.6 comprise the schematic and board layout of the Sonar
Module Interface board.

1.5.1 Part List
Sonar Module Interface Board Parts
| Number Used | Part Type | Designators
1 3 0.1nF C3C4Ch
2 3 1K R1 R2 R3
3 8 IN914 D1-D8
4 3 1.7K R4 R5 RP1
5 3 47uF C6 C7 C8
6 2 100nF Cl1 C2
7 2 Burndy SLP9S-2 J2 13
8 1 2-contact terminal block | J4
9 1 HEADER 20X2 J5
10 1 L298N Ul
11 3 LED D9 D10 D11
12 2 MC74HC595A U2 U3
(continued)
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Sonar Module Interface Board Parts (continued)

| Number Used |

Part Type

| Designators

13
14

-

5
1

Molex 2-Pin Header
Molex 6-Pin Header

J6 J7 J8 19 J10
J1

Table I.8: Sonar Module Interface board parts list.
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Figure I.2: Sonar Module Interface board schematic (2 of 3).
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Appendix J

Code Documentation

Many lines of code have been written for the teleoperated mobile-robot test bed.
This appendix provides documentation for the procedures and functions. Actual code
is found on the CDROM distributed with this document.

J.1 Microcontroller Code

The HC11 microcontroller code is written in near-ANSI compliant C. There
are two shared code modules for messaging and shared-memory access. as well as
the code specific to each of the three microcontrollers: Navigation. Proximity and
SONAR. Each of these modules receives attention in a dedicated subsection.

J.1.1 File message.c

This module implements the messaging system allowing the microcontrollers to
display information to the user at the control-station (via the workcell PC).

e void msg2PC(char msg[]) Routine to send a string message to the PC
via the shared memory. Sets the message flag. Transfers the string to the
appropriate location (TO_PC + MSG_STRING in memory.h). Note that the
string should be NULL terminated.

e int digit2char(int number) Convert a decimal digit to its ASCII equiv-
alent.

e void strcpy(char source[], char dest[], int number) Copies number
characters from source to dest. Places a NULL (0) in dest [number].

e int int2str(int number, char dest[], int start) Converts number into
a string placed in dest. The string must have enough room in it for to hold



J.1.2

the number (a maximum of 6 characters). Integer variable start gives the
starting place at which the string equivalent of the integer is to be placed.
The function returns the index of the array just after the last character that
was added.

int float2str(float number, char dest[], int start) Similarto int?str.
but a floating-point number is converted into a string. Scientific notation with
three decimal places is used. Thus. the character array MUST have at least
-x.xxxe-xx (10) characters available.

File memory.c

This suite of routines are ‘wrappers’ to access shared memory. These are written
so that software-implemented access semaphores can be included.

J.1.3

void write_shared mem(int base, int offset, int data) This routine
writes a byte of data to the memory bank defined by base. The memory byte
is stored in the location specified by offset. If a base of 0 is passed. then all
three shared memory banks are written to.

int read-shared mem(int base, int offset) Thisroutine returnsa byte
of data (data) read from the memory bank defined by (base). The specific
location is determined from the (offset) value. This ‘wrapper’ is used to allow
implementation of a shared memory access semaphore.

int write_shared float(int base, int offset, float value) Routine
to write a floating-point value into shared memory. This cannot be achieved
using pointers within Interactive-C.

float read.shared-float(int base, int offset) Routine toread a floating-
point value from shared memory.

void clear_shared_mem(int base) Routine to clear a 4K block of shared
memory starting at base.

File spi.c

This module contains code to initialize and utilize the Serial Peripheral Interface
(SPI) on the Motorola 68HC11. All microcontrollers in the system have this interface.

int spi_size This is a variable which contains the maximum byte-size of all
serially-cascaded devices on the SPI. be they input or output devices.

int spi_input(] This array of size spi_size contains the information read
in from the SPI facility after a call to spi().
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J.1.4

int spi.output[] This array of size spi_size contains the information read
to be output to the SPI output devices. Actual output is performed through
a call to spi().

void init_spi() Routine to prepare the SPI port as Master.

void spi() This writes out the contents of the global array spi_output and
fills the global array spi_input with the values read in. Each array will have
spisize entries. some of which may be garbage. depending on the hardware.

Navigation MCU Code

The Navigation MCU is responsible for controlling the workeell drive motors.
and calculating the global position of the workcell based upon odometry data fed
back from the motors. Three files are used to achieve this.

J.1.4.1 File encoder.asm

This file contains an interrupt service routine (ISR) which utilizes one of the
HC11’s Port A pins to count the number of encoder pulses presented to it. Interface
to the C source. outlined shortly. is through a global variable. left_clicks. Once
the ISR is running, this variable contains the number of encoder pulses read since the
last time it was cleared.

J.1.4.2 File motor.c

float control_interval This variable is the period (in seconds) of the PI
control-loop execution.

float des_vel A variable which contains the desired speed of the workeell
in encoder clicks per interval.

float des_bias Desired bias in encoder clicks per interval.
float integral The integral of the velocity error.

float k_i Control-loop integral (I) gain.

float k_p Control-loop proportional (P) gain.

float power([] Array of motor powers (given as Pulse-Width-Modulation
percentage duty cycle).

float count([] Array of encoder counts of the two motors.



int nav_pid Process identification of the directive currently being executed.
int init.motors() Initialize the HC11 for Port A pulse-width modulation.
void stop() Stop both drive motors.

void motor(int index, float vel) Establishes a speed of vel (-100% to
100%) of the motor given by index (0 is left. 1 is right).

void drive(float trans_vel, float rot_vel) Use drive to control mo-
tion of the robot. A positive rot_vel makes the robot turn left.

void init_velocity(void) Initialize the pulse accumulator. and PAO (In-
put Capture 3) interrupts.

float get.sign(float arg) Routine to return the sign of an argument.
Returns +1.0 if the argument was positive (or zero). -1.0 if negative.

float get right_vel(void) Get and return the number of pulses accumu-
lated by the accumulator (PAT) and return. Clears the count after reading.

float get_left_vel(void) Get and return the number of pulses counted
by the interrupt routine associated with PAQ. Clears the count after reading.

float limit_range(float val, float low, float high) Function to limit
the range of a value.

float integrate(float left.vel, float right_vel, float bias) Sim-
ple rectangular numerical integral technique.

void alter_power(float error, int motor_index) Routine to adjust the
motor powers after control loop calculations have been performed.

void speed_control(void) Procedure to be called as a process. Imple-
ments the PI control algorithm of the drive motors.

void set_velocity(float speed.ms, float bias.ms) Procedure to set
the speed setpoint and the wheel bias. Speed arguments are to be in me-
tres per second.

int start_speed.control(void) Starts the motor control algorithm.

void directive.interp() Procedure to interpret navigation commands
coming from shared memory. This is to be called as a process.



void translate(int direction) Routine to navigate either forward or
backward. This is bang-bang control over the internal slaved-PI velocity
control loop. This function is called as a process and is controlled by direc-
tive_interp().

void rotate(int direction) Routine to navigate either right or left. This
is bang-bang control over the internal slaved-PI velocity control loop. This
function is called as a process and is controlled by directive_interp().

void stop.pi() Routine to stop the workcell while under PI control. The
Pl process is first killed. and the motors are stopped. After a delay. the
coordinates are updated. and the integral is cleared. Then the PI process is
started again so navigation can continue.

J.1.4.3 File nav.c

float Xcoord The global workcell position in the x-direction (metres).

float Ycoord = 0.0 The global workcell position in the v-direction (me-
tres).

float Bearing Bearing of the workcell with respect to the global coordinate
frame (radians).

int pipid PI algorithm process [D.
void main(void) The program which runs out of reset.
void go(voeid) Main calling routine for navigation control.

void update_coords(void) Routine to update the workcell according to
the workcell odometry (dead-reckoning data). This is performed via calls to
update_cartesian(), which updates the X and Y coordinates of the workcell.
and update_bearing(), which updates the workcell’s orientation. Note that
this routine should be called at a reasonably fast rate to avoid errors poten-
tially created by trans-rotational movement. It is assumed here (and made
as true as possible by the navigation directives) that movement is EITHER
translational or rotational: not both. The distance traveled is calculated by
averaging the distance traveled by each wheel. This should help eliminate
transient errors present in the slaved-PI motor speed control algorithm.

void update_coords_periodic() Wrapper routine to call update_coords()
periodically. The update rate is grabbed from shared memory. This routine
is intended to be called as a process.
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J.1.5

void update.cartesian(float distancem) Routine to update the X and
Y location of the workcell (stored in memory shared with the PC).

void update.bearing(float arc_lengthm) Updates the workcells orien-
tation in shared memory based upon the distance traveled by the wheels (in
the opposite direction).

Proximity Detector MCU Code

Two files are used to poll the state of the workcell bump and IR sensors. The
first. sensor.h. contains preprocessor definitions regarding the position and arrav
assignments of individual sensors. The other. prox.c. detailed here. is responsible
for reading sensor states and relating them to the workcell PC via shared memory.

J.1.5.1 File prox.c

J.1.6

int ir_threshold(] An array of 8-bit thresholds for the A/D levels read
from the IR detectors.

int ir_levels([] An array of the 8-bit A/D levels of the IR detectors.

void main(void) The program which runs when the MCU comes out of
reset.

void go(void) Runs the routines. This is the main program.

void poll_sensors(void) Infinite loop to periodically update the bump
sensor data in the spi_input array. and the IR sensor information in shared
memory.

void init_porta(void) Establish Port A as digital-only mode (no timer
functions). Port A is used to implement the analog MUX switching lines.

void init_ir_thresholds(void) Routine to establish the default ir detec-
tor analog level thresholds. The default threshold is 128 of 255.

void set_amux_lines(int bank) Set the port A lines PA5. PA6 to select
which of the four banks of IR sensors are connected to Port E.

SONAR MCU Code

The operation and movement of the SONAR sensor array is done through three
files. the contents of which are detailed here.



J.1.6.1 File son.c

This file is the main file which brings together the contents of stepper.c and
polaroid.c to perform the sensor sweep.

e void main() The program which runs out of reset. This is simply a wrapper
for function go ().

e void go() The main calling routine for the sonar board routines.

e void sweep(void) Routine to step the two SONAR transducers through 180
degrees each. gathering echo data every 1.8 degrees.

J.1.6.2 File polaroid.c

This module contains all the functions necessarv to initialize and use the Po-
laroid sonar modules.

e void init_sonar(void) Initializes the SPI output port to set BLNK and
BINH of both sonar modules to 0.

e float pingO(void) A ping routine which relies on the HC11 internal timer
counter. Pings only sonar unit 0. The distance (in metres) to the obstacle
which provided the echo is returned.

e float pingl(void) A ping routine which relies on the HC11 internal timer
counter. Pings only sonar unit 1. The distance (in metres) to the obstacle
which provided the echo is returned.

J.1.6.3 File stepper.c

This module is used to provide the software interface to the stepper motor atop
which the SONAR array is mounted.

e void stepmotor(int direction) Routine to pulse the motor in the spec-
ified direction. Direction of 1 is clockwise. -1 is counter-clockwise.

e void enable_stepper(int value) If passed a non-zero argument. this rou-
tine uses the SPI port to enable the stepper motor driver circuitry. If passed
a zero argument. the driver circuitry is disabled. This is generally used in
order to reduce current-draw of the stepper actuator.

e void home_stepper() Routine to rotate the motor until the limit switch
(connected to PEO) is closed. The limit switch signal is active-low.



J.2 Server (Workcell Control Engine) Code

The server code is written in the Tool Command Language (TCL). but also
includes C mapping and parallel port I/O routines. The C routines are called from
TCL by compiling them to use TCL’s C AP, a process automated by the Simplified
Wrapper Interface Generator (SWIG).

J.2.1 ANSI C Mapping Code

The mapping routines are written in ANSI-C. The prototypes presented here
are identical to those used for map manipulation in the client side of the system. There
are two files in the ANSI-C portion of the mapping routines: map.h and map.c. The
first contains a definition of the map data type. These files are compiled using the
‘Simplified Wrapper Interface Generator’ (SWIG). and an interface file (map.i) which
defines the functions in map.c that are to be callable from TCL.

J.2.1.1 File map.h

This file contains the definition of the map structure.

typedef struct map {
double resolution; /* Map resolution in metres. s/
double xmin; /* Minimum x coordinate in metres. =/
double xmax; /* Maximum x coordinate in metres. =/
double ymin; /+* Minimum y coordinate in metres. */
double ymax; /* Maximum y coordinate in metres. =/
int x_bytes; /* Number of bytes in the x-direction. =/
int y_bytes; /* Number of bytes in the y-direction. #/
unsigned char *data; /* Actual map data. */

} Map;

This structure is used to encapsulate all information that a map contains. The
individual pieces of map data are unsigned characters (8 bits) and are used to store
8 individual map ‘layers’. as described in Chapter 6.

J.2.1.2 File map.c

This file contains a suite of routines used to create and manipulate the Map
data type.

e Map mapl, map2 Variables of the Map data type. Two are used: mapl is
the "current’ map. and map? is a ‘modified’ map.

e Map current = &mapl A pointer to the ‘current’ map.
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Map modified = &map2 A pointer to the ‘modified’ map.
Map *get_map_current_pointer() Returns the pointer to the current map.

Map *get map modified_pointer() Returns the pointer to the modified
map.

double get xmax(Map *pmap) Wrapper which returns the maximum x-coordinate
of the map.

void set_xmax(double x, Map *pmap) Wrapper which sets the maximum
x-coordinate of the map.

double get_ymax(Map *pmap) Wrapper which returns the maximum v-coordinate
of the map.

void set_ymax(double y, Map *pmap) Wrapper which sets the maximum
v-coordinate of the map.

double get_xmin(Map *pmap) Wrapper which returns the minimum x-coordinate
of the map.

void set_xmin(double x, Map *pmap) Wrapper which sets the minimum
x-coordinate of the map.

double get_ymin(Map *pmap) Wrapper which returns the minimum v-coordinate
of the map.

void set_ymin(double y, Map *pmap) Wrapper which sets the minimum
v-coordinate of the map.

double get_resolution(Map *pmap) Wrapper which returns the resolu-
tion of the map.

void set_resolution(double res, Map *pmap) Wrapper which sets the
resolution of the map.

int allocate_map.data(Map *pmap) Allocates memorv for map data in
the map structure specified by the Map pointer. Data regarding range and
resolution should already be set in the map structure. The size of the arrays
should be set in x_bytes. v_bytes. Returns 1 if the allocation is successful. 0
if not.

int free map_data(Map *pmap) Frees the memory associated with "data’
field in the map structure specified by the Map pointer. This function is no
longer required since implementation of realloc over malloc. Nonetheless, it
is left in for the purpose of debugging.

216



int quantize_x(double x.m, Map *pmap) Returns the array index of the
cell that contains the x coordinate specified by x_m. Returns -1 if the specified
x-m coordinate is out of range of the specified map.

double find x_centre(double xm, Map *pmap) Returns the x coordinate
(metres) of the centre of the cell that contains the coordinate. x_m.

int quantize_y(double y_m, Map *pmap) Returns the arrav index of the
cell that contains the y coordinate specified by v_m. If the v_m coordinate is
out of range of the specified map. then -1 is returned.

double find.y_centre(double y.m, Map *pmap) Returnsthe v coordinate
(metres) of the centre of the cell that contains the coordinate. v_m.

int calculate_size(Map *pmap) Calculates the array size required to store
map data ranging from xmin to Xmax. vmin to vmax at resolution. with the
origin at the centre of a cell. All this information should be previously estab-
lished in the Map structure pointed to. If the origin is not within the range.
then the minimum coordinate is assumed to define the lower EDGE of one
of the grid cells. The ranges are adjusted to coincide with grid cell edges.

int get.index(int x, int y, Map *pmap) A routine to calculate the I-
D array size from the 2-D array coordinates for the map pointed to. Returns
-1 if the specified x and y index coordinates are out of range for the specified
map.

void set_obstacle(double x.m, double y.m, int layer, Map *pmap) Sets
the appropriate layer bit in the map cell which contains the location (specified
in metres). The layer numbering is detailed in the TCL calling script.

void set_obstacle_byte(double x_m, double ym, int value, Map *pmap)
Sets the entire byte in the map cell which contains the location (specified in
metres).

void clear_obstacle(double x.m, double ym, int layer, Map *pmap)
Clears the appropriate layer bit in the map cell which contains the location
(specified in metres).

void clear obstacle_byte(double x.m, double y.m, Map *pmap) Clears
the entire byte in the map cell which contains the location (specified in me-
tres).

unsigned char get_obstacle byte(double x.m, double y.m, Map *pmap)
Returns the entire byte associated with the specified location: 1 is User. 2 is
Sonar, 3 is User and Sonar, etc.
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e unsigned char get_obstacle(double xm, double y.m, int layer, Map
*pmap) Returns 0 if there is no obstacle present at the specified location on
the specified laver.

e int redomap(double xmin, double xmax, double ymin, double ymax,
double resolution) Resizes or changes resolution of the current map ac-
cording to the new information passed to it. No obstacle data is lost in the
transformation. Returns 1 if successful. 0 if not. This function assumes that
the current map is sized correctly (that the function calculate size has already
been called for it).

e int copy-map(Map *source, Map *destination) Copiesa map structure.
and all of its data from source to destination. The source is left untouched.
Returns 1 if successful. 0 if not.

e int new map(double xmin, double xmax, double ymin, double ymax, double
resolution) Deletes the current map and allocates resources that conform
to the newly specified parameters. Returns 1 if successful. 0 if not.

e void clear_map_array(Map *pmap) Function to clear each element of the
specified map.

e int read map_file(char *filename) Readsa map from binary file named
by filename. Returns non-zero if successful. zero if not. Map data is placed
in the current map structure.

e int writemap.file(char *filename) Writes a map to binary file named
by filename. Returns non-zero if successful. zero if not. Map data is taken
from the current map structure.

e void print_map_info(Map *pmap) Debugging routine to print contents of
the map structure pointed to by pmap.

e void print_map.array(Map *pmap) Routine to display a rough outline of
what the map looks like.

J.2.2 TCL Mapping Code

File map.tcl contains code used to interface to the C representation of the map.
The routines shown here are almost identical to those used to control the Mapping
Module UT on the control station.



J.2.2.1 File map.tcl

map (ptr) Pointer to C map structure.

map (resolution) Map resolution in metres.

map (xmin) Minimum map x-coordinate (metres).
map (xmax) Maximum map x-coordinate (metres).
map (ymin) Minimum map y-coordinate (metres).
map(ymax) Maximum map v-coordinate (metres).
map(refresh) Map refresh rate (milliseconds)
map(xintervals) Grid size in the x-direction.
map (yintervals) Grid size in the v-direction.

proc createnewmap { } This procedure is responsible for creating a new
map using settings passed through the global map() array. A default map is
created when the server is started.

proc move_workcell { xm ym bearing } Move the workeell objects to
match the specified coordinates and bearing.

proc synchronize maps { {workcellx 0.0} {workcelly 0.0} } Proce-
dure to synchronize the C and remote (client) maps. The optional workcell
coordinate arguments default to 0.

proc clearmap { } A procedure to clear all obstacles from a map. The
map size and resolution are retained.

proc upload-map { } Routine to receive the map from the client.

proc download.map { } Routine to send all map information to the client:
size, resolution, obstacle information, etc.

proc layer2number { layer } A procedure which converts a named layer
into its laver number used in the C representation of the map.

proc create_obstacle {metre_coordinates tag} Createsan ‘obstacle’ at
the grid specified by the dual-value metre_coordinates argument. Transmits
an update to the workcell if this obstacle on this layer has not been set. The
layer tag specified may any of those described in procedure layer2number.
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J.2.3

ANSI C Parallel Port I/O Code

The routines here are used to interface with the microcontrollers and shared-
memory. The file, ports.c is written in such a way that it can be compiled to simulate
connection to the microcontrollers and shared memory (useful for debugging). run
as a stand-alone application with menu interface (compiled as mcuset), or interfaced
with TCL via SWIG.

J.2.3.1 File ports.c

void main() Main function to loop stand-alone application until done.

void static_screen(void) Display the static command status screen for
the debugging interface.

void reset_mcu() Resets a specific MCU (menu-driven operation).

void dwnld.mcu(void) Places a specific MCU into download mode (menu-
driven operation).

void active.mcu(void) Makes a specific MICU active (menu-driven oper-
ation).

void read mem(void) Reads memory shared with a specific MCU (menu-
driven operation).

void write_mem(void) Writes memory shared with a specific MICU (menu-
driven operation).

void write mem_float(void) Writes a float to memory shared with a spe-
cific MCU (menu-driven operation).

char getcmd(void) Reads a single letter from stdin and returns it.

int gethex(int num_chars) Routine to limit entry to values in the hex
range. It is passed the number of digits to convert before exiting.

void initialize_parallel_card() Sets starting values for all the registers
on the parallel port expansion PCB.

void synchronize_card(void) This routine ensures that the data in the
Port structure. ‘card’, is synchronized with what is actually present in the
hardware. The OE register is the last to be written to minimize transient
data effects.

void open_port() Get access to the printer port. Requires root permission.



void close_port() Terminate access to the printer port.

void write_byte(unsigned char block, unsigned char value) Writea
byte to one of the blocks (registers) on the parallel expansion board.

unsigned char read byte(void) Read a byte from the so-called ‘data
bus’. This must happen in two stages to read individual nibbles. Includes a
patch for the REV'1.0 board out-of order low nibble.

unsigned char read nibble() Function which reads the nibble that is
presently accessible to LPT1:. Returns the nibble in the 4MSBs of the un-
signed char.

unsigned char read.shared_mem(int mcu, unsigned short location) This

function returns the byte read from the dual-port static RAM connected
to microcontroller mcu at the address specified by location. The value is
read several times (as defined in by READ_VERIFICATION_COUNT). If
the number not the same for all these instances. then reading continues until
it is.

void write.shared_mem(int mcu, unsigned short location, unsigned
value) This function writes the byte value to the dual-port static RAM con-
nected to microcontroller mcu at the address specified. Calls itself recursively
until the data is successfully written.

int get_oe(int bit) Routine that returns the value of the OE bit speci-
fied. If bit is 8. then the entire byte value is returned rather than just the
specified bit (0-7).

int get_sd(int bit) Routine that returns the value of the SD bit specified.
[fbit is 8. then the entire byte value is returned rather than just the specified

bit (0-T7).

int get_sa_low(int bit) Routine that returns the value of the SA_LOW
bit specified. If bit is 8. then the entire byte value is returned rather than
just the specified bit (0-7).

int get_sa high(int bit) Routine that returns the value of the SA_HIGH
bit specified. If bit is 8. then the entire byte value is returned rather than
just the specified bit (0-T).

int get_ctrl(int bit) Routine that returns the value of the CTRL bit
specified. If bit is 8. then the entire byte value is returned rather than just
the specified bit (0-7).
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int get_uci(int bit) Routine that returns the value of the UC1 bit spec-
ified. If bit is 8. then the entire byte value is returned rather than just the
specified bit (0-7).

int get_uc2(int bit) Routine that returns the value of the UC2 bit spec-
ified. If bit is 8. then the entire byte value is returned rather than just the
specified bit (0-7).

int get_uc3(int bit) Routine that returns the value of the UC3 bit spec-
ified. If bit is 8. then the entire byte value is returned rather than just the
specified bit (0-7).

int get_pwr(int bit) Routine that returns the value of the PWR bit spec-
ified. If bit is 8. then the entire byte value is returned rather than just the
specified bit (0-7).

void set.uci(int bit, int value) Routine to set the specified bit (0-7)
of the UCI register. If bit is 8. then the entire byte value is assumed to be
passed in value.

void set_uc2(int bit, int value) Routine to set the specified bit (0-7)
of the UC2 register. If bit is 8. then the entire byte value is assumed to be
passed in value.

void set_uc3(int bit, int value) Routine to set the specified bit (0-7)
of the UC3 register. If bit is 8. then the entire byte value is assumed to be
passed in value.

void set_pwr(int bit, int value) Routine to set the specified bit (0-7)
of the PWR register. If bit is 8. then the entire byte value is assumed to be
passed in value.

void write_float{(int mcu, unsigned short location, double value)
Writes a floating point number to the specified location in shared memory.

void read_float(int mcu, unsigned short location) Reads 4 bytesfrom
shared memory and converts them to a floating-point number. Places the
floating-point value in the global float_result which must be read after this
function is called.

void write_string(int mcu, unsigned short location, char *string)
Writes a NULL-terminated string to shared memory starting at the specified
location. It is up to the user to ensure that the string is not too long.

char *read_string(int mcu, unsigned short location) Readsa NULL-
terminated string from shared memory starting at the specified location.
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J.2.4 TCL Shared Memory Interface Code

This file contains the routines which interface with the microcontrollers and the
shared memory. It includes routines used for polling of sensor states. reading messages
originating from the MCUs. and issuing movement directives to the Navigation MCU.

J.2.4.1 File memif.tcl

e proc GO { direction } Procedure to initiate movement in a specific di-
rection. Argument direction can be: forward. backward. right. left. or
stop.

e proc establish_setpoint { type value } Procedure to set setpoint type
speedsetpoint. distancesetpoint. or anglesetpoint to value.

e proc check for message { mcu } Procedure to check for a message from
the specified mcu (nav. prox. son. or all). If a message is waiting, then
receipt is acknowledged (to the MCU) and the message is sent via the message
socket. If all is specified. this procedure runs recursively at a period specified
in the array member scleduler(message).

e proc init_shared memory { } Procedure to initialize shared memory to 0.

e proc bump_update { } Procedure toread the status of the active-low bump
switches. Updates the map with the barrier info. If the status of a specific
switch is different than that previously read. the control base is informed of
the change through the sensor socket so the sensor display update can be set.
This is recursive procedure which calls itself using the after command and
the time specified in scheduler(bump). Note that the active-low nature of the
bump signals is transformed within the microcontroller C routine to be active
high.

e proc Sensor2Coordinates {vector} Procedure to take the vector of the
sensor relative to the workcell coordinate frame and transform them into
global x and y metre coordinates. returned as a list.

e proc position_update { } Procedure to read the coordinates (and bear-
ing) from shared memory and return them to the control station. This
is a recursive procedure that sends the data at a rate specified in sched-
uler(position). Recall that function read float (written in C), returns the
float value through a global variable, float_result. This was the only way that
the routine would work correctly.
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J.2.5

proc Search {searchcoordx searchcoordy} Procedure to search out the
coordinates specified. Takes control over the workcell using the "GO com-
mand. Global variable searchstage is used to determine what “level” the
search algorithm is working in.

proc ir_update { } Procedure to read the status of the near-IR pairs.
apply a threshold to those values. and determines which sensors are activated.
Updates the map with the barrier info. This is recursive procedure which calls
itself using the after command and the time specified in scheduler(bump).

proc sonar_update { } Procedure to read the shared memory from the
Sonar MCU. Reads obstacle information. translates it into global coordinates
and. if necessary. updates the map through the mapper socket. Also sends
a series of 'ping dots’ to the workcell so the user can interpret the map. if
desired.

Server Module Code

This software module contains routines which open and maintain TCP/IP
socket connections for connection to the control station. It is also responsible for
executing commands (and responding to these commands) issued by the client.

J.2.5.1 File server.tcl

start_port(navigation) Starting navigation port.
start_port (mapper) Starting mapper port.
start_port (sensor) Starting sensor port.
start_port(message) Starting messager port.

navmode Workcell mode variable. Possible values are Idle. User. Wander. and
Search.

proc doService {name cmd} The actual (incoming) socket service routine.

proc svcHandler { name } Handles the input from the client and client
shutdown. Passes control (by name of the socket) to doService if the client
has not terminated connection.

proc accept {name wsock addr port} Connection acceptance handler for
the server. Called when the client makes a connection to the server. Passed
the channel we’re to communicate with the client on, the address of the client
and the port we're using, and the name (alias) of the socket.
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e proc startServer { name } Create a server socket on the port specified
by the name. The name can be navigation. mapper. sensor. or message.
Calls accept when a client attempts a connection.

e proc open_sockets { } Routine to open the four sockets for client connec-
tion.

e proc stdinHandler { } Event-handling procedure used to accept entries
from stdin and to pass them to the interpreter. Useful for debugging.

e proc close.socket { name } Closes the named socket. The argument
name can be navigation. mapper. sensor. message. or all. If all is speci-
fied. then this procedure is called recursively.

e proc server_exit { } Procedure to terminate the server.

e proc send_command { name cmd } Procedure tosend a command (or data)
through the named socket (navigation. mapper. sensor. or message. If the
socket is not active. then this procedure simply exits. If a command is to be
sent through all sockets. then the name all can be passed. For a description
of the named sockets and what they are used to transfer. see file memif.tcl.
Interestingly enough. if transmission of commands occurs too quickly. the
socket will be closed on the other end.

J.3 Client (Control Station) Code

Control station consists of five modules:

(1) A Socket Control Module. used to connect and disconnect the workcell-
control station communication link using four different TCP/IP sockets:

(2) A Navigation Console Module. used to issue user-instigated control di-
rectives to the workcell so the user can drive the robot:

(3) A Message Module. which relates debugging and status information to the
user about the state of the server and microcontroller software.

(4) A Sensor Status Display Module. which graphically depicts the state of
the infrared and bump sensors: and

(3) A Mapping Module. which provides a graphical display of the workcell’s
environment and the workcell’s position within it.
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Each module consists of a file specifically used to create the UI. and another
file which contains the TCL support code behind it. The Ul files are lengthy and not
relevant and are not included in the descriptions here. For screen-shots of the Uls.
refer to Chapter 6.

The main program is tr.tcl, a file which starts all the desired modules and
includes a standard input event handler. much as the Server Module in the workcell.

J.3.1 Socket Control Module Code

The Socket Control Module is responsible for giving the user control over which
sockets (Navigation. Message. Mapping. or Sensor) are active.

J.3.1.1 File sock.tcl

e proc open-all_sockets { } Initializes variables. etc. and displays them in
the UL

e proc read.sock {name} Read data from a channel and execute it as a TCL
command. This would be a good place to insert named socket-specific routing
routines. etc. For instance. it may be handy to to dump all commands sent
through the mapper socket to a text widget. Also. some security measures
could be implemented here. Note that there is no corresponding write_sock
routine since the puts command supports direct writing if the socket handle
is passed as the first argument.

e proc terminate {name} Closing (termination) of the named socket and
modification of the socket status UI variables. The name argument can be
one of navigation, mapper. sensor, message. or all. In the last case. this
procedure is called recursively.

e proc engage {name} Procedure to establish socket connections bound to
the specified name.

e proc send-command { name cmd } Procedure tosend a command (or data)
through the named socket (navigation. mapper, sensor. or message. If the
socket is not active, then this procedure simply exits. If a command is to be
sent through all sockets, then the name all can be passed. For a description
of the named sockets and what they are used to transfer. see file memif.tcl.

J.3.2 Navigation Console Module Code

The Navigation Console module provides the user with an interface to drive
the mobile workcell around. This consists of buttons for moving forward and back-
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ward. and pivoting left or right. It also allows instigation of autonomous behaviours.
establishing movement setpoints. and displays simplified obstacle information.

J.3.2.1 File nav.tcl

e proc nav.directive { direction } Issue a navigation directive to the
workcell. The specified direction can be: forward. backward. right. left. or
stop.

e proc send_setpoint { type } This procedure sends the setpoint of the
specified type to the workcell. Argument type can be angle. distance.
or speed. The actual value is grabbed from the global variables which are
attached to the specific widgets.

e proc setmode { mode } A procedure to set the remote workcell operating
mode. This mode can be User. Wander. or Search.

J.3.3 Message Module Code

The Message module presents debugging and status information from the work-
cell microcontrollers and server software in text form. It is a rather simple module
and most of the operation is embedded in the UT itself. As such. only one short file
is required to interface with the Ul.

J.3.3.1 File msg.tcl

e proc purge { list_name } This routine purges all entries out of the named
list.

e proc add_list_entry { list_name entry } Adds the entry to the named
list. Ensures that the listbox focus is on the new entry, which is appended to
the end of the list.

J.3.4 Sensor Status Display Module Code
J.3.4.1 File sen.tcl

e proc init_chassis { w } This procedure loads the bitmap image of the
workcell chassis and creates a bunch of objects to represent sensor states.
Each object (indicator) is given a ‘tag’ or ‘mnemonic’ which uniquely identifies
it. In cases where a viewing angle dictates, the indicator is given multiple
names.
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e proc semnsor_state { state mnemonics } Procedure to turn the sensor
named by the mnemonic (tag) on or off. More than one sensor can be specified
if the mnemonic argument is a list.

e proc find all sensors { mnemonic w } A routine to find all the wid-
get canvas items (the sensor indicators) which correspond to the given tag
(mnemonic).

e proc send_senreqrate { period } Procedure to send an updated sensor
request rate. This is a binding to the requested sensor update rate entry
widget.

J.3.5 Mapper Module Code

The code used for maintaining the maps consists of three components: C map-
ping routines. the UL and TCL/TK procedures used to support the UI and interface
with C code. The C mapping routines are exactly the same as those outlined earlier
for the server code. The UI code. not presented here. results in the UI shown in
Fig. 6.8.

The TCL/TK procedures are contained in file map.tcl. documented here. Sev-
eral of these routines are the same as those run on the server.

J.3.5.1 File map.tcl

J.3.6 Functions

e proc starting.settings { } This procedure is responsible for initializing
widgets and opening the default map settings. Although this is called when
the client is started. the server will update the map when the mapping socket
connection is opened.

e proc DispMsg {message {title Error'}} A generic warning window. User
must enter OK.

e proc GetValue { prompt_text } A generic text entry widget. It returns
the text that was typed in. or nothing if the operation was canceled.

e proc create_workcell { } Create the workcell canvas objects at the origin
with 0 degree bearing.

e proc move_workcell { xm ym bearing } Move the workcell objects to
match the specified coordinates and bearing.
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e proc move workcell._start { } When a new map is loaded. or upon ini-
tialization. this procedure is called to place the workcell at either the origin.
or at the minimum location of the map.

e proc scroll map.canvas {xam ym} Procedure to scroll the map to show
contents of the location at the specified map (metre) coordinates.

e proc animation_test { } A test of the workcell movement routine: ani-
mation.

e proc synchronize maps { {workcellx 0.0} {workcelly 0.0} } Proce-
dure to synchronize the client C and TCL maps. The optional workcell coor-
dinate arguments default to 0.

e proc loadmap { } Function to load a map from a prompt-entered file-
name.

e proc savemap { } Procedure tosave the current map as a binary file. The
user is prompted to enter the name of the file. If the named file already exists.
then it will be overwritten.

e proc clearmap { } A procedure to clear all obstacles from a map. The
settings of size and resolution are retained.

e proc upload-map { } Routine to send the map at the control base (client)
to the workcell (server).

e proc download_map { } Routine to download the map from the workcell.

e proc printmap { } Procedure to print an encapsulated postscript version
of the map to a file. The resulting postscript map is 16 cm wide.

e proc jump.workcell { } This procedure is provided to the user so that
the workcell can be moved around the map without physical movement. It
provides a means for position corrections required. perhaps. due to the inac-
curacy of dead-reckoning.

e proc display_layers { w } Reorder the display order of the map layers
according to the global variable. toplayer. Possible toplayer settings are:
Sonar. Infrared. Bump, Algorithmic. User. Text is always displayed last (on
top). along with the workcell.

e proc workcell layer {level} Procedure to move the workcell up or down
in the display list so that when searching for a cell near the workcell, the
workeell itself will not be found. Argument level may be top or bottom.
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proc configure resolution { {res_value 0} } Configure the map res-
olution. If no value is passed. the resolution defaults to zero indicating that
it is necessary to prompt the user to enter the value.

proc configure size { direction { range {0 0} } } Routine to spec-
ify the size of the map in the x or y direction. If a range of 0 0 is encountered
(i.e. if no range has been specified. then the user is prompted to enter the
range.

proc configure refresh { {refresh_time 0} } Establishes the requested
mapper refresh rate in milliseconds.

proc configure_update { } This procedure is initiated when map attributes
have been edited to the user’s (or server’s) satisfaction.

proc get_canvas2m { w } Get the canvas2m conversion constant in the X
direction. Resulting units: pixels physical m.

proc clear.canvas { w } Delete all objects from the map canvas.

proc set_mode_bindings { modename } Establish the canvas-related mouse
bindings for specific modes.

proc edit.add_point { x_screen y_screen w} Add a user-defined map
barrier to the cell closest to the screen coordinates passed. This is a Button-1
mouse binding for the Edit operating mode.

proc set_obstacle.tcl {xm ym cell.object tag w {editflag 0}} This
procedure is responsible for changing the colour of cell_object in w to reflect
the colour associated with tag. and also to add the corresponding tag to the
cell. Argument editflag needs to be non-zero if this function was called
from a manual edit of the map. This allows the user to. for instance. load

a file (which eventually calls this function) without sending it to the server.
Sending the map to the server should be called by procedure upload_map.

proc delete_obstacle {metre_coordinates tag w} Procedure to delete
an obstacle on the specified level (tag) at the specified x.v coordinates. The
C representation of the map is updated.

proc create_obstacle {metre_coordinates tag w} Creates an ‘obstacle’
at the grid specified by the dual-value metre_coordinates argument. Calls
procedure set_obstacle_tcl which attaches ‘tag’ to the cell and sets the colour
accordingly.



proc layer2number { layer } A procedure which converts a named layer
into its layer number used in the C representation of the map.

proc edit_start_line { x_screen y_screen w} Binding procedure: edit
mode, start (mark) line.

proc edit_draw.line { x_screen y_screen w} Binding procedure: edit
mode. draw line on mouse motion with B2.

proc edit_finish_line { x_screen y_screen w} Binding procedure: edit
mode. drawing of barrier line complete. The bounding box (rectangular) of
the line item is determined. and cells that are found in this region are set
with the User tag.

proc edit_delete_point { x_screen y._screen w} Deletedefined map bar-
rier to the cell closest to the screen coordinates passed. This is a Button-3
mouse binding for the Edit operating mode.

proc clear_obstacle.tcl { cell_object w } Reset cell colour and delete
all tags except "cell’.

proc add_text { x y w } Binding procedure: text mode. add overlay text.

proc delete_text { x y w } Binding procedure: text mode. delete over-
lay text.
proc move_text { x y w } Binding procedure: text mode. move marked

text.

proc mark text { x y w } Binding procedure: text mode. select text for
movement.

proc select_cell { x.screen y.screen w } Procedure to select a map
cell when in Select mode.

proc display_selection { coords } Display the metre coordinates in the
selection status area.

proc cell_to_coordinates { object w } Convert a selected cell into the
coordinates specifying it’s midpoint (in metres).

proc m_to_canvas { metre_coord } Convert from map metres to canvas
coordinates.

proc canvas_to_m { canvas_coord } Convert from canvas coordinates to
metres.



proc screen_tom { x_screen y_screen w } Procedure to convert screen
coordinates to metres.

proc mtocm { coordm } Convert a physical map distance to a canvas
distance in cm. A ¢’ is appended onto the result allowing direct use in
canvas calls.

proc set_grid { xrange yrange w } Display a grid in the given range
specified in map metres. The range is of the grid is adjusted so that the
origin is at the centre of a grid point. Each cell has (by default) a ‘cell tag.

proc set_scroll_region { xrangem yrangem w } Set the map scroll re-
gion (canvas w) based on the range in metres.

proc disp_mouse_coords { x.screen y._screen w } Binding to mouse mo-
tion in map canvas. Displays the mouse position in the status frame after
conversion to metres has occurred.

proc scale.map { ratio } This procedure is called when the user changes
the map scale.

proc nav_workcell_idle { } Routine to place the workcell in idle mode:
motors stopped. sensor update relay. and so on. terminated.

proc add_ping dot { metre_coordinates } Routine to add a dot where
sonar coordinates gave a reading.

proc sonar_sweep { } Routine to initiate a workcell SONAR sweep.

proc clear_ping.dots { } Procedure to remove all the circles placed on
the map by add_ping_dot.
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Appendix K
Power-Up Steps

This appendix is an outline of the steps required to activate the workcell. Dedi-
cated sections are provided which outline the steps needed to start the PPP connection
to the workcell. download the code to the microcontrollers. start the workcell server.
and the control station client.

K.1 PPP Connection to the Workcell

Connection to the workcell using PPP is required. This step does not need
to be implemented every time: only if an Internet connection between the workcell
and the control-station is not already made. To establish a PPP connection. on the
control station. follow these steps:

(1) Start the X-windows system on the control station.

(2) In a shell window. gain root access using the su command. You will be
performing the following steps as root in this window.

(3) Execute minicom -s robot to make normal serial connection to the work-
cell. The workcell is configured to start the getty program on its serial port
connected to the control station when it comes out of the boot process. Exit
the minicom configuration screen and a login prompt for rover.ee.nalberta.ca
should be seen.

(4) Login to the workcell as robot.
(3) On the workcell. gain root access using the su command.

(6) Start PPP on the workcell by executing /home/robot/connect. a PPP con-
figuration script.



(7) Exit minicom (Ctrl-a q) on the control station.

(8) Start PPP on the control station by executing /home/robot/connect.

This should establish a PPP connection between the control station and the
workcell. Test the connection using ping rover. Normally. the PPP connection to
the workcell is left running.

K.2 Downloading the MCU Layer Code

The following steps are used to download and the microcontroller laver code.

(1) On the control station. open two windows. One will be used for sending
information to the microcontroller, the other will will be used to interface
with the parallel port expansion interface to the microcontrollers.

(2) In both windows. login to the workcell using rlogin rover -1 robot.

(3) In one window. gain root access on the workcell using the su command. This
will be referred to as the "control window'.

(4) In the ‘control window'. execute /home/robot/code/mcu/program/mcuset.
This is a program which interfaces to the MCU control lines. and to the
shared memory.

(5) Once mcuset is running, apply power to the parallel expansion board.

(6) Enable the outputs on the parallel expansion PCB by toggling the switch on
the board to ‘On’.

(7) Within the mcuset program. place Microcontroller 1 (the navigation MCU)
into download mode D 1. This will prevent the drive motors from acting
unpredictably when power is applied to the MCU layer.

(8) Apply power to the MCUs. If the SONAR units ‘ping’ at this point. then
place Microcontroller 3 (the SONAR MCU) into download mode through
mcuset D 3.

(9) Download the Interactive-C pseudo-code interpreter to all three of the micro-
controllers. Perform the following steps for each microcontroller:

(a) Using mcuset in the control window, place the microcontroller into down-
load mode by typing D x where x is the microcontroller number (1, 2,
or 3).



(b) In the other window (logged into the workcell as user robot). execute d1
-bs_ignore pcodetel.s19. This sends the pseudo-code interpreter to
the MCU which is in download mode.

(10) Once the pseudo-code interpreter is downloaded to all MCUs, the application
code needs to be sent and executed:

(a) Make MCU 1 (the navigation MCU) active by typing A 1 R 1 (which
also resets the microcontroller).
(b) In the other window. change to directory /home/robot/code/mcu/navigation.

(c) Execute ic navIC.lis to load the Interactive-C list file onto the micro-
controller.

(d) Exit the ic program by typing exit.

(e) Make MCU 2 (the proximity MCU) active by typing A 2 R 2.

(f) In the other window. change to directory /home/robot/code/mcu/proximity.

(g) Execute ic proxIC.c.

(h) Exit the ic program by typing exit.

(i) Make MCU 3 (the SONAR MCU) active by typing A 3 R 3.

(j) Inthe other window. change to directory /home/robot/code/mcu/sonar.

(k)

)

(1) Exit the ic program by typing exit.

Execute ic sonIC.c.

(11) If you are intending on starting the workcell server. leave the mcuset program
running.

K.3 Starting the Workcell Server

With the microcontroller-layer code resident on the MCUs. the server and client
can be started. To start the workcell server. the following steps are used:

(1) Start the program mcuset on the workcell. if it is not already running. See
the steps in the last section to achieve this. The window in which mcuset is
executing will be referred to as the ‘control window'.

(2) In another window, log in to the workcell using the command rlogin rover
-1 robot. This window will be referred to as the ‘server window’.

(3) In the server window, gain root access using the command su.
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(4) Again, in the server window, change to directorv /home/robot/code/workcell.

(5) Execute ./server.tcl to start the workcell server. This program starts by
clearing the memory shared with the microcontrollers which takes a few mo-
ments. When the TCL interpreter shows the prompt Server 0.0%, proceed
to the next step.

(6) In the control window. reset all microcontrollers by tvping R A. This starts
executing the microcontroller- resident code.

Note that if at any time the workcell operates unpredictably. in the control
window (in which mcuset is executing) reset all the MCUs.

K.4 Starting the Control Station Client

With the workcell server and the microcontroller software running, the control
station client can be started. Starting the client requires only a few steps:

(1) Open a window on the control station (the X interface needs to be running).
(2) Change to directory /home/robot/code/base.

(3) Execute ./tr.tcl. This starts the TCL/TK client interpreter and brings up
the user interface.
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Glossary

APIT Application Program Interface. A software interface to an application.
CMOS Complementary Metal Oxide Semiconductor.

HCMOS High-density CMOS

IC Integrated Circuit

IR Infrared.

MCU Microcontroller Unit.

PC Personal Computer. Usually an IBM-compatible machine.

PCB Printed Circuit Board.

SCI Serial Communications Interface. A facility offered on the HC11 microcontroller
which is used for asynchronous serial communication.

SPI Serial Peripheral Interface. A facility offered on the HC11 microcontroller which
is used for synchronous serial communication.

TCL Tool Command Language. An interpreted (script) language.
TK Tool Kit. The window extension for TCL.
TTL Transistor-Transistor Logic. A technology used to implement digital logic.

UI User Interface. The component of a software application with which the user of
the program interacts.
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