
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

_ _<£>

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U nivers ity o f A lhc rta

T o w a r d s u n d e r s t a n d in g c o l l a b o r a t iv e s o f t w a r e d e v e l o p m e n t

by

Y ing L iu

A tliesis submitted to the Faculty ol' Graduate Studies and Research in partial fu lfillm en t o f
the requirements fo r die degree o f M aste r o f Science.

Department o f Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09226-2

Your file Votre reference
ISBN:
Our We Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

■+i

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my husband, parents, and sister.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The success o f team soflware-dcvelopmeni project depends on many factors, such as die

technical competence o f the developers, the quality o f the tools they use and the project-

managemenl decisions. To successfully complete a project developers need to have an

overall understanding o f their project status, to possess sufficient programming experience,

to collaborate well w ith the other team members, and to be able to react promptly to any

unforeseen events during die project.

Instructors o f project-based soflware-dcvelopmeni courses, and more generally project

managers, who are responsible for overseeing collaborative project development are some

times overwhelmed by the task o f monitoring the progress o f their teams. Sometimes,

problems in a team may go unnoticed until it is too late to be fixed. This issue, i.e., ’’how to

support managers to understand the progress o f their teams and to provide timely feedback”

is the underlying motivation o f the work in this thesis.

CVSChecker, is a tool that analyzes the collaborative software-development process. It

examines the history o f operations that team members perform in their project repository

and die evolution o f die software artifacts stored in this repository to discover interesting

patterns and events in die (a) collaboration style among the team members, (b) the devel

opment contributions o f individual team members and (c) the evolution o f die software

project. I t produces reports and visualizations that can help instructors to notice issues in

a team’s process dial should he addressed in order fo r the team to succeed in their task.

CVSChecker was evaluated, w ith positive results, in two different contexts: (a) academic

team projects o f student developers and (b) open-source projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 In trod uc tio n 1
1.1 M o tiva tio n ... 1
1.2 Research Problem and M e th od o lo gy .. 2
1.3 Thesis contributions... 2
1.4 Outline o f the llie s is .. 3

2 Related w ork 4
2.1 Related work on the analysis o f data from version control systems 4

2.1.1 C V S ... 4
2.1.2 Related work on CVS d a ta .. 3

2.2 Related work on team roles and co lla b o ra tio n ... 11
2.3 Related work on the empirical studies in universities on software develop

ment processes ... 12
2.3.1 Introducing New Methodologies and Processes to S tudents 13
2.3.2 Helping Instructors to Improve the Course Q u a l i t y 14
2.3.3 Evaluating the Effect o f Practices and Methodologies in Academic

S e ttin gs .. 14

3 C ollabora tion Analysis 17
3.1 CVSChecker in die context o f J R e lle X .. 17

3.1.1 The development env ironm ent.. 17
3.1.2 The repository .. 19
3.1.3 Collaboration and evolution analysis.. 19
3.1.4 The W ik i server... 19
3.1.5 The project assessment component... 20

3.2 The CVSChecker Data Model ... 21
3.3 The Collaboration-analysis Process... 23

3.3.1 Data collection and fact e x trac tion ... 24
3.3.2 Derivcd-Information in fc renc ing ... 30
3.3.3 V is u a liz a tio n ... 37
3.3.4 R ep ortin g .. 43

3.4 Further analysis on the CVSChecker d a t a 45
3.4.1 Data m in in g ... 46
3.4.2 User-driven data e xp lo ra tio n ... 47
3.4.3 Heuristics-based ana lys is... 48

4 A n E xp lo ra to ry Case Study on Five Undergraduate Student Teams 51
4.1 O b jec tives.. 51
4.2 S e tt in g s .. 53
4.3 Basic R e s u lts .. 54

4.3.1 The Team A s p e c t.. 55
4.3.2 The Individual-Dcveloper aspect... . 58
4.3.3 The File aspect ... 68
4.3.4 The File-Version aspect... 83

4.4 Heuristic Generation and Knowledge E xtraction ... 87
4.5 Heuristic-Driven Analysis .. 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 Summarizing patterns ... 88
4.5.2 Evaluating die summarized p a tte rn s .. 91
4.5.3 Developing heuristics and queries based on these validated patterns 91
4.5.4 Applying die heuristics and q u e r ie s 92

4.6 P a tte rn s ... 92
4.6.1 Factual patte rns... 92
4.6.2 Red (la g s ... 93
4.6.3 Team-role profiles 93

5 Three teams in open-source community 95
5.1 O b jec tives ... 95
5.2 S e tt in g s .. 96

5.2.1 S te p s ... 96
5.2.2 Project S e le c tio n ... 97

5.3 Basic R e su lts . . 99
5.3.1 O S P . A ... 99
5.3.2 OSP.B .. 108
5.3.3 OSP_C .. 117

5.4 P a tte rn s ... 125
5.4.1 Factual Patterns... 125
5.4.2 Red F la g s ... 126
5.4.3 Team-role profiles .. 127

6 Conclusions and Future Work 129

Bibliography 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 CVS historical record types w ith the corresponding CVS operations 28

4.1 3 Projecl-dcvelopmcnl phases 54
4.2 The numbers o f CVS operations o f live student te a m s 55

5.1 3 open source project team s... 98
5.2 7 phases o f OSP_B ... 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 The JRclleX System Architecture ... 18
3.2 The architecture o f CVSChecker p lu g in ... 24
3.3 An example o f RCS f i l e .. 27
3.4 A segment o f H is to ry . tx t ... 30
3.5 Temporal Distribution o f CVS Activity, for Each M em ber/T eam 38
3.6 Distribution o f CVS Operations by Type, for Each Member/Team 39
3.7 Distribution o f CVS Operations by Type, for Each F i l e 39
3.8 Simplified Distribution o f CVS Operations by Type, for Each F i l e 40
3.9 Added and Deleted LOC by Each Member, on Each F i l e 41
3.10 Detailed LOC Change by Dale, on a Single F i l e .. 42
3.11 F ile Adding and Removing by Date, for a Project.. 42
3.12 A segment o f DailyOperation report... 44
3.13 A segment o f File Version r e p o r t .. 44
3.14 A segment o f StudentWork report ... 45
3.15 A segment o f Summarization repo rts .. 46
3.16 Work (lows o f Bottom-up Hypothesis Generation and Knowledge Extraction 46
3.17 Result view o f CVSChecker query function in E clipse 48
3.18 Top-Down Hypothesis-Driven Analysis in CVSChecker............................. 49

4.1 Distribution o f CVS Operations by Type, for Five T e a m s 56
4.2 Temporal D istribution o f CVS Activity, for Each 5 Team s.......................... 57
4.3 Temporal Distribution o f M R Activity, for Each 5 T e a m s 58
4.4 Distribution o f CVS Operations by Type, for Members in Team A 59
4.5 Temporal Distribution o f CVS Activity, for Each Member in TeamA 60
4.6 D istribution o f CVS Operations by Type, for Members in T eam B 61
4.7 Temporal Distribution o f CVS Activity, for Each Member in TeamB 62
4.8 D istribution o f CVS Operations by Type, for Members in Team C 63
4.9 Temporal Distribution o f CVS Activity, for Each Member in TeamC 64
4.10 D istribution o f CVS Operations by Type, for Members in Team D 65
4.11 Temporal Distribution o f CVS Activity, for Each Member in TeamD 65
4.12 Distribution o f CVS Operations by Type, for Members in T eam E 66
4.13 Temporal D istribution o f CVS Activity, for Each Member in TeamE 67
4.14 File Adding and Removing by Date, for T e a m A ... 68
4.15 Distribution o f CVS Operations by Type, for Each Java Class in TeamA . . 69
4.16 Added and Deleted LOC by Each Member, on Each Java Class in TeamA . 71
4.17 File Adding and Removing by Date, for T e a m B ... 72
4.18 Distribution o f CVS Operations by Type, for Each Java Class in TeamB . . 73
4.19 Added and Deleted LOC by Hitch Member, on Each Java Class in TeamB . 74
4.20 File Adding and Removing by Date, for T e a m C ... 75
4.21 D istribution o f CVS Operations by Type, for Each Java Class in TeamC . . 76
4.22 Added and Deleted LOC by Each Member, on Each Java Class in TeamC . 77
4.23 File Adding and Removing by Dale, for T e a m D ... 78
4.24 D istribution o f CVS Operations by Type, for Each Java Class in TeamD . . 79
4.25 Added and Deleted LOC by Each Member, on Each Java Class in TeamD . 80
4.26 File Adding and Removing by Date, for T e a m E ... 81
4.27 Distribution o f CVS Operations by Type, for Each Java Class in TeamE . . 82
4.28 Added and Deleted LOC by Each Member, on Each Java Class in TeamE , 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.29 Detailed LOC Change by Date, oil bile ” TenmA/src/CnlendarFrame.java” . 84
4.30 Detailed LOC Change by Dale, on File ’TeamA/src/ICalControIler.java” . . 84
4.31 Detailed LOC Change by Date, on File "TcamB/code/RCal.java” 83
4.32 Detailed LOC Change by Date, on File ’’TeainC/sonree/views/iGorApp.java” 86
4.33 Detailed LOC Change by Dale, on File ’’TeamH/CalendarModel.java” . . . 87

5.1 The distribution o f CVS operation types for each member in OSP.A over
whole p rocess .. 100

5.2 The temporal distribution o f CVS operations for each member in OSP.A
over whole p ro c e s s ...101

5.3 File additions and removals in OSP.A over whole process...................................102
5.4 The temporal distribution o f CVS operations for each member in OSP.A in

Phase 1 .. 103
5.5 The distribution o f CVS operation types for each member in OSP.A in

Phase 1 .. 103
5.6 The temporal distribution o f CVS operations for each member in OSP.A

before the release o f vO. 1, 2 b .. 105
5.7 The distribution o f CVS operation types lor each member in OSP-A from

2002-7-10 to 2 00 2 -08 -11 ! ..106
5.8 The tile additions and removals in OSP.A from 2002-7-10 to 2002-08-11 . 1 0 6
5.9 Distribution o f operations by type in OSP.A, on each tile from 2002-7-10

to 2002-08 -11 .. 107
5.10 Added and Deleted LOC o f each member in OSP.A, on each File from

2002-7-10 to 2002-08-I I ...107
5.11 The distribution o f CVS operation types for each member in OSP.B over

whole p rocess...108
5.12 The temporal distribution o f CVS operations for each member in OSP.B

over whole p ro c e s s ...109
5.13 File additions and removals in OSP.B over whole process................................. 110
5.14 Distribution o f operations by type in OSP.B over all t i l e s I l l
5.15 Added and Deleted LOC o f each member in OSP.B, on each file over the

whole p rocess.. 112
5.16 The distribution o f CVS operation types for each member in OSP.B in

Phase! (from 2002-02-08 to 2003-03-09) .. 113
5.17 The temporal distribution o f CVS operations for each member in OSP.B in

Phase3 (from 2003-08-10 to 2003-11 -06) .. 114
5.18 The distribution o f CVS operation types for each member in OSP.B in

Phasc3 (from 2003-08-10 to 2003-11 -06) ..115
5.19 Added and Deleted LOC o f each member in OSP.B, on each file in Phasc3

(front 2003-08-10 to 2003-11 -06) ...115
5.20 The distribution o f CVS operation types for each member in OSP.B in

Phaso4 (from 2003-11-07 to 2004-09-26) ... 116
5.21 The distribution o f CVS operation types for each member in OSP.B after

Phase4 (from 2004-09-27 to 2005-02-04) ... 116
5.22 The temporal distribution o f CVS operations for each member in OSP.C

over whole p ro c e s s ...118
5.23 The distribution o f CVS operation types for each member in OSP.C over

whole p rocess.. 118
5.24 File additions and removals in OSP.C over whole process.................................119
5.25 The distribution o f CVS operation types for each member in OSP.C in

Phase I (from 2004-02-13 to 200 4 -08 -1 0)..120
5.26 The temporal distribution o f CVS operations for each member in OSP.C in

Phase I (from 2004-02-13 to 2004-08-1 ())) ..121
5.27 The temporal distribution o f CVS operations for each member in OSP.C in

Phase 2 (from 2004-08-1 1 to 2 00 5 -02 -0 4)... 122
5.28 The distribution o f CVS operation types for each member in OSP.C in

Phase 2 (from 2004-08-1 1 to 2 00 5 -02 -0 4)..122
5.29 Distribution o f operations by type in OSP.C, on each tile (from 2004-08-11

to 2005-02-04) ... 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.30 Added and Deleted LOC o f each member in OSP.C, on each lile (from
2004-08-11 to 2005-02-04 ... 123

5.31 Detailed LO C Change by Date, on ” ../../cs/OSP.C/OSP_CFrame,java” (F ilc401) 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A team is a group o f people who share a common objective and need to work together in

order to achieve it. It is a prim ary means fo r developing products in complex situations.

Good teamwork is an essential fac to r fo r effective team performance [74 f

1.1 Motivation

The sol'lware-developmcnl project success depends on die technical competence o f the de

velopment team, the quality o f its tools and the project-managcment decisions it makes

during the software life-cycle. New or volatile requirements, tight delivery schedules and

tcam-memher turnaround present the team with challenges. To effectively deal w idi such

obstacles requires that the developers have an overall understanding o f the current status

o f dieir project, possess sufficient programming experience, collaborate effectively w ithin

their teams, and me able to react promptly.

Although software-engineering research literature abounds w ith information on how to

develop high-quality software on time and on budget, book learning alone is not enough

to train competent software professionals. Developers, especially software-engineering

students, need to practice and apply the knowledge obtained from books and to acquire

’’hands-on” experience with realistic software development projects. L ike project man

agers, instructors who teach courses involving collaborative project development are often

overwhelmed by the task o f monitoring the progress o f multiple teams and problems in the

team’s process may go unnoticed until it is too late to be lixed. They may get mired in the

complexity o f the product or the individual components.

Supporting instructors to effectively monitor their softwarc-developmcnt teams so that

they can provide timely feedback was the overall motivation behind the CVSChecker plu

gin. The goal o f this tool is to implement a melhouology for monitoring the collaboration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process o f software to aid the manager’s understanding o f how the team members work

through the project life-cycle.

M ore specifically, CVSChecker is interested in examining and shedding some lights

into several related research questions. With a large variety o f group types - from academic

student teams, traditional industrial groups to the emerging open source communities - are

the natures o f teamwork, role performance, and collaboration the same? Can some specific

patterns he abstracted and he representatives o f a specific group type or a role? W ill these

patterns he affected by different project developing processes? What strong relationship do

these patterns have and how could it consequently affect the whole team performance and

die final product quality?

1.2 Research Problem and Methodology

CVSChecker is a component of the JRelleX project [751. JRelleX integrates a set o f tools,

including CVS, Eclipse platform, PoslgreSQL database, and uses a browser-accessible

Wiki-based user interface as a front end to all the analyses rcstdls.

CVSChecker examines data collected from CVS, including CVS history and log as

well as metrics on die assets stored in CVS. It analyzes (he collected data from multiple

perspectives. First, it tries to identify interesting patterns in die roles and contributions

o f individual developers to the team project. Next, it proceeds to analyze the evolution

o f the individual project files, stored in die repository. Finally, it comparatively examines

die development process o f a set o f teams. CVSChecker produces as output visualizations

o f its analyses, and reports summarizing (he team behavior and patterns o f interest to the

instructor monitoring the software-devclopmcnt team.

The process o f analyzing a project w ith CVSChecker involves several steps: data col

lection, feature extraction, visualization, querying, data analysis, and knowledge extraction.

CVSChecker extracts a substantial amount o f information by examining the historical data

recorded by source-managcnicnt systems, presents the trends in these data through visual

izations and reports, and examines the projecl-developmenl process from several perspec

tives, including team collaboration, individunl-devcloper role and source-artifact evolution.

1.3 Thesis contributions

This thesis contributes the follow ing to the state-of-the-art in this research area:

• a repository-analysis method that examines and analyzes, in addition to the evolution

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f (lie software' artifacts managed in it, (lie development behavior o f the individual

developers and the team as a whole;

• a set o f distinct development-process patterns characteristic o f different roles in the

team, relevant in multiple life-cyclc processes; and

• a tool that automates the above analysis and pattern extraction.

We have applied CVSChecker plugin on live student teams in our exploratory case study

to examine whether CVSChecker works well on teams in a university environment. A t the

same time, we wanted to understand how students working in teams interact and to lind out

i f there is any correlation among the educational environment, roles, their grades and the

nature o f their collaboration.

Our second case study involves three teams from the open-source community. The

goals o f this case study were similar to the goals o f our student case study.

In addition, by comparing the results o f the two case studies, conducted in different

environments, with teams consisting o f developers with different levels o f experience m oti

vated by different objectives, we wanted to develop some intuition regarding the impact o f

those factors on the software-dcvelopment process.

1.4 Outline of the thesis

This chapter presented the motivation, thesis statement, and an overview o f our approach.

The remaining chapters o f the thesis tire organized as follows. Chapter 2 covers related

work. Chapter 3 introduces the architecture o f JRelleX system and the methodology o f

CVSChecker plugin. Chapter 4 presents an exploratory case study w ith 5 student teams

while Chapter 5 provides another case study on 3 open source projects. Finally, Chapter 6

concludes, highlighting the contribution o f our research.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related work

This chapter is divided into three parts:

• Related work on the analysis ol'dala from version control systems;

• Related work on team roles and collaboration; and

• Related work on the empirical studies in universities on software development processes.

2.1 Related work on the analysis of data from version control
systems

During the lifetim e o f a software project, configuration management or version control

Systems (such as Concurrent Version System - CVS [33], Rational ClearCase [37], and

M icrosoft Visual Source Safe [261 are essential tools to allow handling o f different versions

o f files in a cooperating team.

The analysis o f version control system data began in ly y fl’s; Hall was one o f the first

researchers to analyze the data from version control systems, and his paper ” l f your version

control system could talk” 12 1 was treated as the earliest publication in this topic. Because

Concurrent Version .System (CVS) is popularly used in many universities (such as those stu

dent projects in our case studies) and open source communities (such as www.soureeforge.net),

in this thesis, we locus on CVS.

2.1.1 CVS

CVS can store a large amount o f historical information about the whole development process

and allow development teams to work together on the same set o f source code files. The

main functionalities arc listed as followings:

• Keep track o f file version.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureeforge.net

• Merge changes made on the same files by different developers.

• Retrieve old versions.

• Undo not working modification.

CVS data constitutes a valuable source that describes interesting aspects o f a project’s evo

lutionary changes. But CVS also has some weaknesses as follows:

They only store the entire source o f the last revision. Other revisions have to he recov

ered by means o f deltas. The changes are only stored at the line level in CVS, using a file

difference algorithm. However, new tools, such as Eclipse 1301, are capable to display the

entire code o f any previous version based on CVS information.

CVS does not keep track o f which tiles have been changed together in a single commit

operation. Often this information is required for the analysis, e.g., for the determination o f a

logical coupling. Researchers propose different solutions. A typical solution is to consider

several changes as a transaction i f the same developer made them at the same time, w ith the

same log message (rationale). " commit operations take several seconds or minutes

- especially the ones involving many files. There arc two different approaches to defining

th e ’’same lim e” : using fixed time windows 112 1 1151 and using sliding time windows 1791.

The Sliding lime window can recognize transactions that take longer to complete than the

duration o f the first one.

CVS does not keep track o f which revisions resulted from a merge. Michael Fischer

et al. [10] proposed a heuristic to detect these revisions. In addition, they introduced an

approach for populating a release history database that combines version data with bug

tracking data, and other data, such as merge points, missing in version control systems. CVS

does not provide enough mechanisms for tracking the evolution o f large software systems.

Therefore, researchers usually combine CVS data w ith other project-related information,

such as hug reports, mailing lists and so on.

2.1.2 Related w o rk on C V S data

Version control system data tire freely available now, for ex: , 'a via SourceForge.net. This

kind o f data provides lots o f information on the evolution o f a software project. Some re

searchers provided alternative interfaces to CVS and did some work in purpose to improve

source code navigation. Moreover, such CVS data enable many new analyses, such its

program analysis, software evolution analysis, metrics and quantitative analyses, and visu

alization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C:C

10

Providing alternative interlaces to CVS

Several researchers provided easy-to-use interlaces for CVS. The two most commonly in

terfaces to CVS are Bonsai [24] and Irx [16]. They operate by retrieving the revision in

formation o f each tile, which is then stored in a relational database. Both o f them allow

connecting to a particular archive in CVS repository via a web-based interface and isolate

the users from the complexities o f the CVS commands. They allow the users to inspect the

history o f any given tile in the project. However, neither o f them attempt to enhance the

software trails available in the repository.

VicwCVS [27] is a browser interface for CVS and Subversion 169] version control

repositories. It generates H TM L templates to present navigable directory, revision, and

change log listings. It can display specific versions o f lilcs as well as dill's between those

versions. Basically, VicwCVS provides the bulk o f the report-like functionality one ex

pects out o f a version control tool, but in a more user-friendly way than the average textual

command-line program output.

TortoiseCVS [35] is another tool with sim ilar functions to VicwCVS. It lets you work

with files under CVS directly from Windows Explorer. With TortoiseCVS, users can d i

rectly do the CVS commands by right clicking on tiles and folders w ithin Explorer, such

as: check out modules, update, comm it and see differences. In addition, users can see the

state o f a file w ith overlays on top o f the normal icons w ithin Explorer, perform tagging,

branching, merging and importing, and go directly to a browser web log (using VicwCVS

or CVSWeb [32]) on a particular tile.

X ia [72] is a plugin for Eclipse for the visualization o f CVS repositories based on the

Shrimp Visualization tool [67]. Xia recovers relations available in the logs o f a CVS reposi

tory and allows the user to navigate them. It uses nodes to represent tiles, their revisions and

developers, and arcs to represent the relationships between them. Xin has two limitations:

(1) X ia does not extract die CVS trails; it operates at the revision level instead o f at the

M R (Modification Request) level. (2) It relies on the Eclipse’s API to CVS, which makes it

extremely slow in huge projects.

Source code navigation

CVSM onitor [19] is a perl CGI application for monitoring activities in CVS repositories in

a much more useful and productive way than the previous tools. It is somewhat sim ilar to

CVSWeb, but far more useful when one wauls to keep an eye on current development, or

provide a public view into the source codes. I f users use CVSWeb/ViewCVS and want to

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Icl the public see the rcposilory, CVSMonitor should he used insleud.

Codestriker 12 11 is an online eollahorative code-reviewing lool and open-source well ap

plication. Traditional document reviews are supported, as well as reviewing dill's generated

by an SCM (Source Code Management) system. It integrates CVS, Subversion. Bugzilla,

LXR , ClcarCase, Perlbree, and Visual Source,Sale. Codestriker aims to m inim ize paper

work, to ensure that issues, comments and decisions are recorded in a database, and to pro

vide a comfortable workspace lor performing code inspections. An optional configurable

metrics subsystem can record code inspection metrics as part o f the process.

Hipikat, a tool developed at UBC [7], supports source code navigation. It aggregates

many sources o f information such as bugzilla, CVS repository, mailing lists, emails, etc.

and provides a searchable query interlace. The purpose o f Hipikat is to ’’recommend soft

ware artifacts” rather titan summarize and visualize them. Thus H ipikat is much like Google

for a software project. One interesting feature is that it correlates software trails from d if

ferent sources, inferring relationships among them.

H ip ikat relates two files using the transaction approach discussed previously. It pro

vides a ’’W hat’s related” button to suggest which lilcs are closely related to the file un

derconsideration. However, H ipikat determines coarse-grained relationships between files

only. Besides, ’’relate” in Hipikat is more than evolutionary coupling: two artifacts may

also be related i f they refer to the same bug report number, appear in the same email, or log

message.

To guide programmers, a number o f other tools have exploited textual sim ilarity o f log

messages or program code (for example: Version Sensitive Hditing).

CVSSeareh [23] searches for code fragments using CVS comments. Specifically, it

takes advantage o f the fact that a CVS comment describes the lines o f code involved in the

commit and dial, this description w ill typically hold for many future versions. The CVS

comment history aids understanding o f what the code docs - including its motivation and

history. Therefore, CVSSeareh offers a better search than just looking tit the most recent

version o f the code can.

Version Sensitive Editor 11] is a tool that puls the change history into the editor where it

can be instantly accessed and used to control editing and convey version information. The

purpose is to make the change history easily available to benefit the coiling process.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program analysis

Evolutionary coupling includes coarse-grained coupling (between lilcs or classes) and line-

grained coupling (between program entities such as functions, methods, or attributes)

To our knowledge, the lirst work that leverages the product history to detect coupling

w ith in a system and between modules is the paper by Gall, Hajek and Ja/ayeri 111]. The

authors have used their CAESAR system to analyze the coupling w ithin a largo telecom

munication switching system, and found that the history o f 20 releases can indeed reveal

couplings w ithin a complex system.

Later, Gall et al. proposed a three-tier software evolution analysis method (QCR) in

volving three different types o f analysis: Quantitative analysis uses version information for

the assessment o f growth and change behavior. Change sct|uence analysis identifies com

mon change patterns across all system parts, fin a lly , Relation analysis compares classes

based on CVS release history data and reveals the dependencies w ithin the evolution o f par

ticular entities. In [12] the authors focused on the Relation Analysis. They use CVS logs

to expose relationships between classes and lilcs that might not be found by other methods,

such as call graphs. In |9], Fischer and Gall analyze the modification requests (MRs) and

described the different types o f logical coupling among the files included in the MR.

Some researchers also analyze different program revisions to detect coupling and inter

ference between modules, such as the MORA/RECS tool o f Snelting 1661. NORA/RECS

use concept analysis to detect fine-grained coupling between variant configurations.

In contrast, Zimmermann el al. [78] do not analyze release histories o f the entire system,

but revision histories o f the individual product lilcs. This increases the granularity, allows

examining fine-grained coupling between individual entities like functions, methods, and

attributes. They chose CVS archives as the base for the investigations and implemented a

prototype called Reengineering o f Software Evolution (ROSE) |78| to analyze the evolution

o f CVS archives. ROSE adopts the ’’Right Way” method used in CVS2cl to detect coupled

changes and calculates the strength o f the coupling. In |79| they elaborate four essential

preprocessing tasks necessary fo ra fine-grained analysis CVS archives. In |8()| they apply

data m ining technique and tried to guide programmeis along related .software changes.

Van Rysselberghe and Dcmcycr al University o f Antwerp did some work on mining

version control systems for Frequently Applied Changes (FACs) |6 I |. They combined two

CVS commands, ” cvs log” and ” cvs d ill” , to extract the change information and use clone

detection techniques (Kamiya’s clone detection tool CCFinder) [42]) to locale identical and

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim ilar code fragments.

Analysis of software evolution

The fo llow ing lists several typical tools that do some software evolution analysis based on

CVS repository data and other related historical data.

SoflChange [I5J is a tool that extracts and .summarizes information from CVS and hug

tracking databases. SoflChange retrieves raw data from mailing lists, CVS repositories,

bugzilla, documentation tiles, and ChangeLog tiles, identities the code changes by analyz

ing the deltas and grouping them into modification rccpiests (MRs) and obtains the related

measures. In addition, it generates problem reports (PRs). The tool was tested on a typical

open source project - X im ian Evolution.

The authors presented a more detailed description o f their methodology in 114], which

tries to rebuild the test project (X im ian) using ’’software trails” 114| from several perspec

tives: software releases, development activities, MRs, contributors, revisions, tile types,

change logs, source code hot spots, and modules. .SoflChange rebuilds MRs based on a

sliding window algorithm 113] and classifies them as code MRs, bug MRs, and comment

MRs.

Cvsplol [22], form ally known as CVSSlat, is a Perl script which analyses the history

o f a CVS-managed project. The script executes on a set o f tiles, analyses their history, and

automatically generates graphs that plot lines o f code and number o f tiles against time. The

tool was created to satisfy management reporting requirements. It is revealing to be able to

see the ’’growth” o f a project in terms o f pure line counts, and how they correspond to the

project’s history.

SlatCVS 1281 is an open source project that generates a sialic suite o f web pages, with

charts and tables, which contain metrics about the evolution history o f a software project.

Although SlatCVS was popular w ith users, lack o f scalability, flex ib ility and interoperabil

ity led to the creation o f the B loof system.

Draheim and Pekacki, exploit source code repositories to extract information about

project evolution. They proposed a new process-centric perspective that extracts CVS log

data into a database and visualizes the software evolution using metrics. The result is the

B loo f system 120] based on SlatCVS. B loof system includes a GUI tool, the B loof Browser

-w h ich enables the user to perform data access, analysis and visualization - and a Java API

for analyzing CVS data. Data artifacts can be navigated, tillered and grouped. Additionally,

B loof provides a set o f com, V queries, and visualizes the results and enables the user to

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

export them into it X M L document and web server.

Alberlo S illit t i el. al. [65] designed CodeMart (CM) - a lool lo r the acquisition and the

analysis o f data regarding the ,software developmenl process from version control systems.

The information is stored in a dala warehouse system that has live dimension tables: author,

branch, module, time, and type o f modification. CM includes two subsystems: the data

extractor and the dala analyzer. Users can query based on four categories: file, module,

author, and statistics.

Researchers in Osaka University described Empirical Project M onitor (EPM) in |57|.

EPM automatically collects and measures dala from three kinds o f repositories related to

die evolution o f a project: CVS repositories, mailing list managers, and issue tracking

systems (Bugzilla). EPM provides integrated measurement results graphically, and helps

developer/managers keep projects under control in real time. The goal is to develop an

environment composed o f a variety o f tools for supporting measurement based software

process improvement.

C V,S Anal Y [60] is another tool that extracts statistical evolution information out o f CVS

(and most recently Subversion) repository logs and transforms it to X M L or stores it in a

SQL database. It has a web interface where the results can be retrieved and analyzed. Luis

Lopez-Fernandez et al. proposed [46] social network analysis to CVS data, for characteriz

ing open-source software projects, their evolution over lime and their internal structure.

Metrics and quantitative analysis

The above works mainly get information about software evolution and code structure from

CVS repositories, and provide this information to users using different ways. It is not

enough to view and display CVS data and programs through a convenient interface. Other

researchers try to get deeper and higher level knowledge about the source code, process

design, and product, to provide better direction to users. Statistics, metrics, data m ining,

and machine-learning technique have been used Ibr this purpose.

Koch and Schneider [43] studied the evolution o f open-source software projects using

publicly available data. They proposed a dala model and a set o f metrics for open source

projects. A Perl-script retrieves the necessary data from CVS repository through a web

interface. A lo t o f charts were generated to show the relationships among person, tile,

discussing list, number o f checkin, Addcd_LOC, dcleted.LOC, lime, from the perspective

o f software engineering with quantitative dala. Cluster analysis was used. The work o f

Shirabad and Lethbridge is aimed at supporting software maintenance. In [62] they describe

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

llic application o f inductive methods to extract relations that indicate which tiles are relevant

to each o ilier in the context o f program maintenance (Maintenance Relevance Relation).

They also tried to extract models through mining the software maintenance histories using

dala m ining and machine learning techniques. In |63J, they use classification techniques to

learn relations that can he used to predict whether a change in one source tile may require a

change in another source tile.

Annie Ying developed an approach that uses association rule mining on CVS dala 1771.

She especially evaluated the usefulness o f the results, considering a recommendation most

valuable or ’’surprising” i f it could not he determined by traditional program analysis. She

found several such recommendations in the M ozilla and l-iclip.se projects. Her work is on

tile level, not liner-grained entities.

M ichail used data m ining technique 011 the source code o f programming libraries to

delect reuse patterns in the form o f associations [49] or generalized association rules [50].

The latter take inheritance relations into account. Both works lack an evaluation o f the

quality o f the patterns found.

Researchers al University of Toronto also did some work on analyze the CVS data 151).

They conducted case studies on a second year undergraduate computer science course and

analyze a set o f course assignments. The also described a system for parsing CVS data and

storing the results into SQL database. The system can extract various statistical measures o f

the source code and version histories. Through these measures, they attempted to correlate

llie code measures and repository histories, but the result is negative.

2.2 Related work 011 team roles and collaboration

Software engineering aims to support the building o f software on lime and w ithin budget.

Many o f them are large-scale systems. I11 such a situation, no one person can carry all the

details in his head. Teamwork becomes a hallmark. A team is a group o f people who share

a common objective and need to work together in order to achieve it. It is a primary means

for providing products in complex situations.

There has been some research 011 analyzing die nature o f teams and the leam-memhers’

roles. Dickinson et. al [8J summarized ” 7 key components o f teamwork” , Belbin [4]

identified ” 9 team roles” and developed a theory o f which combinations o f these roles would

lead to successful teams, and proposed live principles for building a high-performance team.

l-Toill'er et. al [76] designed quizzes, inventories, and personality tests to measure members’

I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

social and teamwork aptitude, and to help individuals identify the roles most appropriate for

them.

Although there are some ways to help team members identify their appropriate roles,

understanding the nature o f the team’s collaboration including potential problems in it is not

obvious. In contrast to the well-studied individual modeling, group modeling is s till very

immature. To our knowledge, only M ike Winter |74| did some research work on it. He

worked on developing a group model based on an academic student team, and claimed llia f

teamwork and social skills are the most essential factors that influence group performance

and behavior.

However, all this previous research does not take into account differences in team types

and development processes, which is the focus o f our research. More specifically, the ques

tions we want answer through my thesis are: arc the nature o f teamwork, role-specilic be

havior and performance, and collaboration patterns the same, with a huge variety o f group

types to consider - from academic student teams, to industrial groups to the emerging open

source communities? Or can we extract patterns representative o f a specific group type or

a leam-member role? How w ill these patterns be affected by different project-development

processes? How do these patterns relate and affect the whole team performance and the

final product quality? The above questions constitute the main research problems that 1 am

addressing in my thesis. In a word, the focus is trying to relate the process and role with a

team’s collaboration, performance, even the final product quality.

2.3 Related work on the empirical studies in universities on soft
ware development processes

As new software development processes become more popular in industry, there is a grow

ing demand to introduce these development practices in post-secondary education. Ag

ile 14 7 1 development method values individuals and interactions over processes and tools,

working, software over comprehensive documentation, customer collaboration over con

tract negotiation, and responding to change over follow ing a plan. Compare with classic

life-cycle development, iteration and flex ib ility are the two main keys to the agile approach.

Extreme Programming (XP) |3 j is a mature and quite typical agile method. XP was pro

posed by Kent Beck |3| and a detailed treatment can be found in book |3|. In our case

studies, in order to capture and compare some sim ilar and different patterns among d iffer

ent software development processes, instructors taught XP and RUP 144] in a third-year

undergraduate course.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are also some computer science educators who are sparked by anecdotal evidence

from industry extolling the benefits o f these practices and are expressing interest in integrate

XP into formal educational courses, and also to measure their effect. Some o f them have

already introduced these methodologies in software engineering undergraduate courses.

According to our knowledge, their works usually can he classified according to the fo l

low ing purposes: (I) introduce new methodologies and processes to students and train them

to experience the associated practices; (2) help instructors to leach students and improve the

course quality using the new processes; (3) evaluate the real effect of all/some practices of

a new methodology in academic settings.

2.3.1 In tro d uc in g New Methodologies and Processes (o Students

M ulle r and Tichy present their experiences on XP with 12 (6 pairs) CS graduate students

in [53]. The goal is to gather experience with XP in an unbiased fashion. This case study

is also a fair evaluation o f XP. Most students have teamwork experience without pair pro

gramming experience. Project process is composed o f three-week training (three small

exercises to familiarize the environment, Junit, XP practices, test practices and refactoring)

and 8-week project development. .Students change to different partners for each exercise

and project. 5 Questionnaires were filled. The authors gave not positive observations for

some practices and confirmed that coaching is very important.

Schneider and Johnston thought that this is not a straightforward task the corresponding

practices may run counter to educational goals or may not be adjusted easily to a learning

environment. They defined educational objectives for software engineering courses in 1641,

evaluated XP practices with regards to these objectives, and listed a few recommendations

for tbe curricula. The authors thought that XP should not suitable for typical educational

environments i f the instructors do not carefully craft the curricula. It is much more useful

to equip students w id i the capabilities to use and tail the available techniques according

to their situations than just leach them to following the steps. Noll [55] provided some

observations from in itia l experience on applying XP to student projects. They thought that

XP is an excellent aid in learning, due to its highly iterative nature, allowing students to

make mistakes and learn from them. Moreover, they thought that the ’’ lest first." practice is

d ifficu lt to learn.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 H elp ing Instructors to Im prove the Course Q uality

Because leaching software engineering is difficult, since many o f the practices tire motivated

by large projects and large organizations o f which the students have little or no experience,

some researchers in universities apply XP as a method to help them teach basic software

engineering concepts in undergraduate courses.

Hedin, Bendix and Magnusson adopted XP in their PT (Programming in Teams) course

to help instructors to teach software engineering concepts. Their goal was not to teach

XP, but to use XP as a vehicle for leaching. The detailed experiment designs are listed in

[18]. The experience results are positive and there are two important aspects in their setup:

’ ’team coaching” and ” lcam-in-a-room” . Moreover, they presented many lessons learned

from running the PT course in the new formal.

Because the development o f competent to excellent software practitioners remains a

challenge, instructional models were developed to prepare students to become effective

practitioners by Williams and Upchurch in 1731. They explore XP practices and provide

some guidance in a software engineering educational context, discuss four different strate

gies in their educational program to improve the number and quality o f skilled developers,

re-examine and evaluate the practices o f XP in an educational context where students are

equipped with software engineering skills.

Holcombe el. al introduce XP to undergraduate students for real business project clients.

[38], The detailed experiment design is listed in [68]. The goal is to emphasis two issues

for students: how to communicate with a client and capture the real requirements, and how

to deliver a real high quality and bug-free product.

Back and Milovanov think that a university setting could be the ideal place to perform

practical experiments and lest new ideas in software engineering. However, there are still

some problems that hinder the research and improvement o f these techniques. In [40], they

discuss how XP features can be applied to help instructors to minimize and circumvent

those problems and difficulties appeared in a university environment. XP was used as the

base software process to practice new programming methodologies, such as the Stepwise

Feature Introduction (SWF1) in the paper.

2.3.3 Evaluating (he Effect o f Practices ami Methodologies in Academ ic Set
tings

The work also falls into two main categories: the i . ' .".ion o f coding practices (pair pro

gramming and test lirst) or the adoption o f all XP practices. In coding practices, pair pro-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

gramming is the mosl , , 'nr one that has been evaluated to certain content in introduc

tory/programming courses.

Experience and empirical studies o f the programming practices have generally been

very positive. Laurie W illiams el. al have done much work in this field. They found

[70] that pair programming increased many measures o f code quality, although at a slight

increase in programming lime. A late study found that pair programming increased both

grades and retention in a first programming course.

Bisant and Lyle |5 j investigated the effect o f a two-person inspection method on pro

grammer productivity. They used a prelest-postlest design with a control group that consti

tutes 29 undergraduate students. The students paired in the experiment group and performed

a design inspection, a code inspection, or both, for 20 minutes and tried to lind errors. The

students in llie control group developed the programs on their own. Bisant and Lyle reported

a significant improvement in the experiment group as a result o f using the two-person in

spection method. The lime saving was greater than the time lost in the pair inspection steps.

The result may have more to do w itli the benefits o f inspections than with pairing.

Nosek |:56] conducted tin experiment to compare the pair programmers and individual

programmers. Five pairs and live individuals solved a challenging problem. The evaluation

o f the posttesl questionnaire showed that pairs enjoyed the problem-solving process more

and that the pairs were more confident in their solutions. However, on average, a single

individual look 41 % more time than a pair, in another word, this means that two individuals,

working independently, w ill be 30% more productive than a pair. Therefore, Nosek argue

that the loss o f productivity is made up by better quality. Aslrachan et. al |45| apply XP

practices in their curricula and courses at Duke University and the University o f Northern

Iowa. They introduce some o f the ways in which .students d iffer from those real industrial

developers; therefore academic environment can not embrace the XP principles thoroughly

without any changes. Based on these observations, they design their curricula and methods

to help students practice certain XP aspects, use pair programming between lecturer and an

entire class to teach programming, and also the ’’small releases” and ’ ’refactoring” practices

to teach software design.

Johnson and Carisli trained 11 students as two teams to fo llow XP practices in devel

oping their course projects. The results were listed in [41]. The XP practices were divided

as required, encouraged, and not easily simulated. Both student responses and instructor’s

observation show that this XP-like process resulted in good team communication and a

broader knowledge o f the project as a whole.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

No n iiitlc r how different the purposes are, all the above researchers have a common

feeling: XP can not be applied as K. Heck claimed without, any adaptation in an academic

environment. Moreover, none o f tJtese researchers paid attention to the comparison among

different methodologies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Collaboration Analysis

In this chapter, \vc first discuss the overall architecture o f the JRclleX, in the context

o f which CVSChecker was developed, then we describe the internal architecture o f the

CVSChecker plugin, and finally, we elaborate on its process, step by step.

3.1 CVSChecker in the context of JRefleX

The JReflcX environment, diagrammatically depicted in Pig. 3.1, consists o f the fo llow ing

main parts:

• The development environment (based on Eclipse [30]);

• The repository, in which a set o f facts regarding software products is stored;

• The analysis component that processes the repository contents to infer high-level

information about the progress o f the development;

• A browser-accessible wiki-server, W ikiDev 1291, that delivers and visualizes the

analysis results, and

• A project-assessmenl component, through which developers and instructors can ex

p lic itly provide their own information regarding the project.

3.1.1 The developm ent environm ent

The development environment - shown al the middle right corner o f the diagram o f Fig. 3 .1

- is based on Eclipse and is lightly integrated with the repository CVS. Its primary purpose

is to record the software-development process unobtrusively, as it occurs w ithin the Eclipse

environment.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assfi.'isinon! <
0 u« f;t if; m vi i (tt For I'CVS

R epository

Emacs + cvs client Browser

Development Env

Project Aiiolysi:

Aaseasinani
i AdministrationTool

Project Assessment

Figure 3 .1: The JRelleX System Architecture

WitJi respect to development tools, JRelleX assumes, at the very least, the existence o f

CVS, as the repository where all software assets are stored. Information about the contents

and the operations’ history o f CVS populates its database o f "facts” related to the Projects.

In addition to CVS, JRelleX is ligh tly integrated with Eclipse as the development environ

ment: the analysis components are implemented as Eclipse plugins and the visualizations

o f the data-analysis results are available as Eclipse views, in addition to being accessible

through WikiDev.

The architecture o f JRelleX relies on Eclipse as the main development tool, to provide a

seamless integration o f software construction and analysis activities. From a practical point

o f view, however, Eclipse is computationally intensive, and in cases where the hardware

infrastructure is not sufficiently current - such as the case for most o f the students’ home

computers - its adoption may not be immediate. The JRelleX architecture enables, even

teams that, do not adopt Eclipse as their development IDE to gain much o f its benefits as

long as they use a web browser and CVS: although the analysis components are developed

as Eclipse plugins, their results are stored in the database and their visualizations are also

served by WikiDev.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2 The repository

The repository was shown in the lop left corner o f log. 3.1. The repository consists o f a

CVS, where all development work products are stored, and a database, where work-producl

meta-data, qualitative and quantitative metrics o f the software process, and its products are

maintained. The database provides the core underlying structure for storing the JRelleX

products and results, around the fo llow ing basic concepts: CourscTcrm, Project, Team,

Developer, WorkProduct, History, Version, Activ ity and Assessment.

3.1.3 C ollaboration and evolution analysis

The analysis component - shown at the bottom left corner o f the diagram o f Pig. 3.1 - is

responsible for analyzing the collaboration process o f the development team, as captured in

the history o f the repository CVS.

JRelleX has two analysis components. The collaboration-analysis component aims at

inferring information regarding how the team members collaborate in the context o f their

project development by analyzing the CVS repository history o f member actions and soft

ware changes. The evolulion-analysis component, on the other hand, aims at discovering

interesting patterns in the evolution o f the project design and code, by analyzing the d if

ferences between subsequent versions o f the project class hierarchies. Both analysis com

ponents me implemented as Eclipse plugins. Visualizations o f their results are accessible

through specialized Eclipse perspectives and through the WikiDev. In this thesis, we only

elaborate the collaboration analysis component: CVSChecker plugin.

JRelleX relies to some extent on Eclipse as the main soflware-developmenl platform.

However, even teams that do not adopt Eclipse for development can use it, as long as they

use CVS. The implication for such teams is that the only source o f data regarding the co l

laboration process is the CVS history. This data can be obtained, stored and analyzed by the

analysis component, and the team can access the results through the repository W iki server.

3.1.4 T h e W ik i server

W ikiDev, the JRelleX W iki server, leverages open-source software, phpwiki, as a frame

work for maintaining and exchanging information about the projects in a free-form, flexible

manner. W ikiDev is a collection o f plugins and modifications to the phpwiki, which extend

the original functionality o f the W ik iW ik i Web concept as pioneered by Ward Cunningham

(see http://www.c2.com for more information).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.c2.com

The W ikiDev extensions are prim arily concerned with croup based security and CVS

integration. Bach team is associated with a specific W iki. There is also a special W iki for

the instructor team, i.e., the course instructor and the TAs. Bach W iki is accessible only by

members o f the team associated with this W iki. Once logged in, team members can view

project information, change passwords, or simply collaborate in a W ikiW ikiW cb fashion

by constructing new pages o f their own, to maintain and exchange information about their

work w ith their team members. Through the Project View plugin, team members have

access to ali their projects. Specific work products and their versions can be inspected for

each o f these projects through special w ik i pages, automatically constructed by the W ikiDev

based on the contents o f the CVS repository. This gives users the ability to edit and attach

concepts or documentation to their work products, in a manner that enables change and

refinement through the versioning capabilities o f the W iki.

3.1.5 The project assessment com ponent

The primary objective o f the JRelleX tool is to unobtrusively collect and analyze data from

tlie tools that students use in their software development, in order to infer information that

can help the instructor and the developers themselves to effectively monitor the develop

ment process. Currently, the main source o f such input data is CVS with its operation

history and its contents. In the longer run, we intend to exploit the upcoming Bclipse instru

mentation API to unobtrusively record the fine-grained tool actions o f developers working

upon their code and documentation.

However informative such information, im p lic itly inferred from tool-usage data, may

be, it is also interesting to compare it with ’’objective” data, explic itly provided by the

developers and the instructor team. The JRelleX assessment component, addresses exactly

the need to enable the collection o f such ’ ’objective” data.

In the past, students o f our project-based software engineering courses were required

to answer a set o f questions at specific points during their project development. The ques

tionnaire was implemented as a stand-alone web-based ;, , ' cation with a specific list o f

questions. The answers were collected as H TM L documents, which made automatic analy

sis o f this data difficult, and limited the kinds o f information that could be obtained. Bor

this reason, the JRelleX assessment component has been designed to be configurable with

respect to the types and amounts o f data requested as part o f these questionnaires.

Currently, questionnaires are created in an administration tool implemented as a set o f

Belipse views. Data, i.e., answers, are collected through a WikiDev plugin. Team members

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01

who can log in their team w iki see the questionnaires that require completion, and fill them

out. When a filled questionnaire is submitted, the component validities the provided data

against the expected qucslion-answer types and stores the data in the repository database.

Since the W ikiDev is where teams w ill do most o f their collaboration, this is currently the

best environment in which to inquire about collaboration. Finally, in addition to enabling

self assessment o f team members, questionnaires can also be used by the instructor team to

evaluate the project deliverables.

In this manner, data regarding the developers’ own view o f the project progress and

instructor-provided ’’objective project evaluation” data can become part o f the database, and

can provide an external validation instrument for the inferences o f the analysis components.

3.2 The CVSChecker Data Model

In this thesis, we focus on CVSChecker, the coilaboraiion-anulysis component. The m oti

vation o f CVSChecker plugin is to analyze the nature o f individual developer’s roles and

team collaboration in the context o f different . software-developmcnt processes and consti

tutions. The final goal o f this research is to design a process-mentoring tool that can help

managers provide timely and relevant feedback to the teams by recognizing problematic

patterns and events.

This section describes the CVSChecker data model, i.e., the schema o f the PostgreSQL

[34] database where work-productdata and analysis information are maintained. CVSChecker

plugin has two main data sources: file revision-related information and operation-related in

formation. We collect all these data using two CVS commands: ” cvs log” and ” cvs history” .

The details o f data collection can be found in next section.

The database provides the core underlying structure for storing the JRelleX products

and results, around the follow ing basic concepts:

• CourscTerm: a CourseTenn represents a particular group of Projects that are being

developed for a class project during an academic term. In rlmaba.se, there is a corre

sponding table - ’’courseterm". It includes two main columns: ''course” and "team” .

This table was designed originally for student teams and recorded the course name

and team information.

• Project: a Project represents a particular module or portion o f a module w ithin a CVS

area, and is associated with the Team developing it. JRelleX database has a same-

named table "project” with four main columns: ’’tenmid” , ’’coursetermid", ” modu-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lenarne” , and ’’cvsrool” . "leam id” references tabic ’’team” and ’’courseleamid” ref-

crenccs table ’’coursclcam” . ’’cvsrool” records the address o f the CVS repository o f

this Project, and ’’modulename” lists all the subdirectories under the ’’cvsrool” .

• Member: a Member is an individual who joins one or more learns lor one or more

Projects. Table ’’member” in database includes two main columns: ’’userid” and

’’tinixname” . ’’userid” references table ’’users” where records all the JRelleX users

and "unixname" shows their unixnamcs.

• Team: a Team is a group o f Members who are working together on one or more

Projects. Projects, Teams, and Mem hers lay die groundwork for a particular piece o f a

Project, referenced to as a WorkProduct. The column ’’name” in table ’’team” records

the name o f each Team. We get all above information from the project background

collection.

• WorkProduct: a WorkProduct is a part o f a Project, i.e., a lile w ithin the Project’s

CVS area dial requires constructive effort by one or several specific Members. The

actual information regarding what a Member has produced is stored as a set o f Ver

sion o f a WorkProduct. JRelleX database has it tabic named ’’workproduct” . It in

cludes 5 main columns: "projectid ” , ’’m im clypc” , "filename” , "modulepalh” , and

’’isremoved” . ’’projectid” references table ’’project” , and ' ’m imetypc" tells us that

what lile type this Workproduct belongs to. ’'filename” and ’’modulepalh” display its

location, and ’’isremoved” lets us know that whether this Workproduct is still exist in

CVS. The information was collected from CVS repository.

• Version: a Version parallels the notion o f a CVS lile revision and contains much the

same metadata. Table ’’version” in database has 9 important columns: ’’workproduc-

tid ” , ’’memherid” , ’’revision” , ’’ revdale” , ’’ linesaddcd” , ’’ lincsretnoved", ’ ’ log” , ” tu-

lallines” , and ’’content” . Each row in this table is a lile version. In time ’’revdale” ,

developer ’’memberid” adds ’’ linesadded” lines and removes ’ ’ linesremoved” lines on

’’workproduclid” . ’’revision” is generated, and the total size o f this new revision is

"tolallines” . The rationale o f this modification is explained by ’’ log” , the new code

version is recorded as a huge object, and its oid number is recorded in ’’content” . A ll

the data in this table are collected using ” cvs log” command and captured from RCS

files, see section 3 .3 .1.

• History: Essentially, The History contains records o f all performed CVS operations

oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f all types, during the project life cycle. These operations may have heen performed

to a specific WorkProducl or to a Project module. Bach CVS operation committed by

a Member w ill leave history trail on CVS according to the development conditions.

I f the operation is committed on a WorkProducl/Module, a H istory.F ilcLcvel/ His

tory -ModuleLevel record w ill lie added. Table ’’history-file-level” in JRelleX database

includes 5 main columns: ’’date” , "opertype” , ’’revision” , ’’author” , and "workpro-

ductid” . It shows that on ’’dale” "author” does an ’’opertype” operation on the version

’ ’revision” o f ’’workproduclid” , a corresponding history is recorded in CVS repos

itory. Sim ilarly, table ” history_modulelevel” records all the histories related to a

module instead o f a Workproduct. ’’history-inodulelevcl” has ’’projectid” and ” mod-

ulepath” columns instead o f ’ ’workproduclid” and ’’revision” . These data come from

CVS command ” cvs history” . See section 3 .3 .1 for details.

• A ctiv ity : An A ctiv ity describes a particular type o f work that Developers may do

while working on Projects. In database, we have a table named "activ ity” and it has

columns ’ ’name” and ’’description” . In our first case study, we have the fo llow ing

activity names: planning, design, coding, testing, documentation, etc. ’’description”

column records the detailed explanation for each o f them.

• Assessment: Each Member w ill be asked to lill a set o f Assessment forms for each

specific Project. Table ’’assessment” includes lour main columns: ’’userid” , ’’project” ,

’’questionnaire” , and ” 11!Icdont” . Each row means that Member "userid” filled ’’ques

tionnaire” on lime "filledout” , and till these questions are related to "project” .

3.3 The Collaboration-analysis Process

The process o f analyzing a project w ith CVSChecker involves several works as follow ing:

data collection, feature extraction, data storage, visualization, querying, data analysis and

knowledge extraction, and reporting. Big. 3.2 depicts the detailed architectures.

In general, CVSChecker plugin has follow ing major functions:

• Unobtrusively captures information along the developing process without interfering

with the developers’ activities;

• Automatically parses the information into the database;

• Provides a simple interface fo r users to query for multiple aspects o f the whole de

veloping process;

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dnt.i Colfcclton SO '.A tka l Analysis

1

D a ily

Update

i

f d U| L \ lS \y

I
File

1 Revision

Related
j In fo rm ation

V;y

Term inals

CVS
H is to rica l

Record

Data Parsers .and storage

I) n(al>n.sc

Ten m

Level

M em ber

I-ovcl

Fi^ .

L e v e l

Revision

Level

V iM iiilr /.a iit in Q u w y

T r i iu ie i* I t i te r fa re s

<?
Kejxn (
T ritfjje is

j Fonluna Extinction with
{ piupuxts

\ i clip.sc W ild

Figure 3.2: The architecture o f CVSChecker plugin

• Displays those query results using vivid visualization ways;

• Reveals symptoms o f had design and unbalanced (ask divisions;

• Assists team leaders or instructors to have an entire understanding o f the project;

• Gels heuristic knowledge based on each role, module, team, and so on;

• Summarizes typical performance patterns that are related to different roles or envi

ronments.

We have evaluated the effectiveness o f CVSChecker with respect to these functionalities

w ith a set o f case studies, involving teams in educational environments and the open source

community. These case studies w ill he elaborated in Chapter-I and 3.

3,3.1 D ata collection and fact extraction

As mentioned in related work, we mainly focus on CVS in this thesis because all the stu

dents in our case studies use CVS to support their project development and CVS is also

adopted by the biggest open-source project community - wu'w.soi trccjbrge. i iel .

CVSChecker examines the development-process trails recorded in the CVS repository

o f a project to be analyzed. This is an information-rich data source. Not only does it contain

a sequence o f versions for each software module, but also it records information regarding

the usage o f each version by each individual developer. A detailed development history

(including who performed what operation, when, from where, on which lile, why) is main

tained by CVS. Based on this information, a lot o f valuable information can be inferred.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The history information can he traced by appropriate CVS commands, in many different

levels o f granularity. CVSChecker has a suite o f parsers that extract this information from

the source code repository and store it in a relational database that can he easily c|uericd.

There are three main data sources that collected by CVSChecker. plugin: Kile revision-

related information; CVS historical record information; and Administrative and assessment

information.

File Revision-Related Information

A data-extraction command used by CVSChecker is ” cvs log” . The command can retrieve

and display a great amount o f meta-information about versions for a tile under the Revision

Control System (RC S)|7I]. The tile is ended with extension ” ,v” .

RCS saves all old revisions in a space-oflicicnt way, automatically retrieves multiple re

visions according to ranges o f revision numbers, symbolic names, dates, authors, and slates.

A complete history o f changes was maintained by RCS. The logging makes it easy to lind

out what happened to a module, without, having to compare source listings or having to track

down teammates. Besides, RCS has other functions, such as: to resolve access conllicts by

giving alerts, to maintain a tree o f revisions, to merge revisions and resolve conllicts, to

control releases and configurations, and so on. A parser was created by CVSChecker to gel

the file revision-related information from all RCS files.

Each RCS lile basically includes two parts. See Fig. 3.3.

The first part lists information o f each revision o f a lile. 'f l ic larger the revision number

is, the higher the position is. A ll the lines above ” =====” line in Fig. 3.3 is an example.

We collected the fo llow ing main information:

• File name: the name o f the selected lile. This information goes to table ’’workprod

uct” in database. In Fig. 3.3, it was ” ./RCS/myscript.sh,v” ;

• Locks status: The login name o f the user who locked the revision (empty i f not

locked). RCS assumes that users lock a lile when they want to use it, and won’ t allow

anyone else to modify that lile. Because the lock status o f most liles tire ’’strict” , we

do not collect this attribute in our database.

• Total revision number: how many revisions docs this lile have? In Fig. 3.3, the

number was 2; A ll below attributes together with this one arc saved in table ’’version”

in database.

' 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Selected revisions: the revision number assigned to ibis revision;

• Description o f each revision;

- Dale: The dale and lime (GMT) the revision is checked in. In our example, the

Dale o f revision 1.2 was ” 2002/11/05 04:01:13” ;

- Author: login name o f I lie user who cheeked in the revision, l-le is also the

developer who created this revision. In fig . 3.3, il was "jamcs” ;

- Added LOG: how many lines were added for ihis new revision. The number

was 2 in our ex; , 'e;

- Removed LOC: how many lines were removed from this revision; and

- Log: a fu ll rationale to generate the selected tile revision. In Fig. 3.3, the log o f

revision 1.2 was ’’Changed World to $USFR to give a more personal feeling” .

The second ha lf (lines below ” ====”) uses a space-eflicieni way to record the real

source code o f each revision and to enable users to know the real changed code lines: the

whole code o f Lhe final revision was recorded, for other previous revision; RCS lile only

lists the basic modification information as followings. A ll the attributes listed here have

corresponding columns in table ’’version” in database. Rased on such concise information,

we can regress to the source code o f each previous revision as we want.

• Dale: The dale and time (GMT) the revision was checked in.

• Author: login name o f the user who checked in the revision. I le is also the developer

who created this revision;

• Slate: The stale assigned to the revision;

• LOC added between two consecutive revisions (where and what are these new lines);

• LOC removed between two consecutive revisions (where and how many lines);

• Reason log o f this new revision.

Though different tiles have different contents and sizes, RCS saves them using a lixed

format: die latest revision was recorded on the topmost. Finch revision section was begun

with its revision number. Log o f Ihis revision was appended next, with two ” ® ” s as ter

minuses. A line o f ’’ text” begins the code area for each revision, another pair o f ” ® ” was

adopted. For all non-final revisions, the text area saves the modification information using

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

RCS f i l e : . / R C S / m y s c r i p t . s h , v
W o r k i n g f i l e : . / m y s c r i p t . s l i
h e a d : 1 . 2
b r a n c h :
l o c k s : s t r i c t
a c c e s s l i s t :
s y m b o l i c n ames:
k e y w o r d s u b s t i t u t i o n : k v
t o t a l r e v i s i o n s : 2 ; s e l e c t e d r e v i s i o n s : 2
d e s c r i p t i o n :

r e v i s i o n 1 . 2
d a t e : 2 0 0 2 / 1 1 / 0 5 0 4 : 0 1 : 1 3 ; a u t h o r : j a m e s ; s t a t e : Exp; l i n e s : +2 - 2
C h a n g e d W o r l d t o {USER} t o g i v e a m o re p e r s o n a l f e e l i n g

r e v i s i o n 1 . 1
d a t e : 2 0 0 2 / 1 1 / 0 4 1 1 : 5 7 : 5 1 ; a u t h o r : j a m e s ; s t a t e : Exp.-
I n i t i a l r e v i s i o n

1 . 2
l o g
0 C h a n g e d W o r l d t o 5 { USER} t o g i v e a mo re p e r s o n a l f e e l i n c :

0
t e x t
0 # i n c l u d e
v o i d m a i n (v o i d)
{

p r i n t f (" H e l l o , w o r l d ! \ n ")
}
0

1.1
l o g
0 I n i t i a l r e v i s i o n
0
t e x t
d 5 1
aS 1
p r i n t f (" H e l l o , w o r l d ! \ n ") ;
0

Figure 3.3: An example o f RCS l i l t

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a simply way: ” d3 8” means there arc 8 lines were deleted from line 3. For all added line

messages, the new lines w ill he shown just below the message line, see Fig. 4. There are

Uvo empty lines between two eonsecutive revision sections. Based on such a strict formal

rules, we create a parser for CVSChecker plugin to gel information we are interested.

A ll the lile revision-related information was parsed into table "version” in our JRelleX

database.

CVS Operations Possible Record Types Descriptions/Condi lions

cvs release F (release)

A directory in CVS is released. Indi
cates that a module is no longer in use.
It has the same effect as direct working-
directory deletion, but avoids the risk of
losing changes, which users may have
forgotten.

cvs checkout 0 (checkout)
Checkout sources from the CVS reposi
tory to a working directory for ediling

cvs export E (Export)
Export sources from CVS, sim ilar to
checkout

cvs rtag T(rlag) Added a symbolic tag to the RCS lile

CVS

commit(Checks
the tiles into
cvs)

A (Add)
A lile wtts lidded to CVS for the first, time.
The first revision for this lile is created.

M (M odify)
A lile is modified and a new revision ap
pears

R(Remove)
A lile was removed from the CVS repos
itory

CVS

updale(Bring
work tree in
sync with
repository)

C(Collision)

A collision was detected as a result o f
more than one developer modifying the
same code area in the same lile revision;
A manual merge is required

G(Suecessl'ul Merge)

A merge was necessary and it succeeded
(this happens when multiple developers
change different code arcus o f the same
lile revision without causing conllicts)

P (Patch)
A working lile was patched to match the
repository

U(Copy)
A working lile was copied from the
repository

W(Delele)
A working copy o f a lile was deleted dur
ing update, because it had already been
removed from the repository

Table 3 .1: CVS historical record types with the corresponding CVS operations

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation-related Information

In the related-work chapter, we list the main sim ilar researches that aim at extracting inter

esting information from the data captured in CVS repositories. No matter on what analysis

levels o f granularity, from coarse-grained entities (system, module, elass, and lile) to line-

grained entities (function, method, attribute), these researches mostly start by grouping the

CVS change deltas into transactions (or Modification Requests) assumed to represent all

related modifications in response to changes in functionality or hug lixes.

An important distinction o f our work with CVSChecker is that we examine not only

file revision information from the command ” cvs log” , hut also the information from the

command ” cvs history” . The latter command records different CVS operation trails in the

repository.

We argue that this information is important because the same operation executed under

different conditions w ill generate different trails, fo r example, there are live possible con

sequences for the command ” cvs update” : C/G/U/F/W. The detailed explanations are listed

in Table 3.1.

Through collecting and analyzing these CVS operations, a lot o f hidden information

o f project development, especially related to students’ collaboration and software design,

can be revealed. Based on them, CVSChecker can help users to belter understand the

development process.

Table 3.1 lists all CVS historical record types with their corresponding CVS operations

and the detailed explanations. For each record type, we list the happening condition.

According to the descriptions and conditions o f these types, we classify them into the

fo llow ing four classes. CVSChecker plugin has several charts to display these classes from

different aspects. Some simplified charts are designed to mainly show the operations in

constructive types and red-llag types along the development process.

• Constructive types: such as type A (add), M (modify) and I ’ (patch);

• Red-llag types: such as C (collision) and G (merge):

• Related types: types that relate to each other, such as K (remove) and W (Delete);

• Rare types: these types happen infrequently or do not have much valuable informa

tion for our analysis, such as H (export), F (release), T (lag), U (copy).

We use the command "cvs history -ae > History.txt” in the root directory o f a project to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R 01:23 +#oou Stud̂ ntj .ii i.
e*<li:rnle!>

V ev '03K 0 '4 ''jl:U U 121 »* 0*110 S tu d a f i t i : :i:; i ' l "
«>.**>•

?Cd.r-fli»: ft(l :>| • Pj4. +«OPrt
>/*......................................

0 2 :^ 9 '•OOOO S tu d K n tl l . o*

tt'ii^cVtlvOJ*6 0oh sturtuhti '1','2

0, 2 0 6J‘-«t-Ji:O3;i0 tOOOO. Stuilmiti
i W lq4> /riov-s/JavMliotv*
R.2l|flŜM2rW: ♦BOUU:Stuti|pnt/ Ivi: >-ji>v«

> r f l . ih 8: i - « ; n n : 2i 4« # o n s t . w d H h U r i n i r . Y i f . i . < i o r H o t j . t «
* * * . / » «.»»»t « > /h f t) j» e « t

.&ci'apbk,cfif

lLMfoiitioli(«rava

;T n a lC b n ti :n l l o . f o v a

.ffaTî ncltrjcToAtjJ •. t >*t

SOKJeM.i/sivc/tmq

2»tudentt/stc

Cf.ikJfcn*, l/mc
S lt id e n i l / t n a b

< l KIB)tW>/C •

• TB *» u tiy fri'C .

St,»«V».l.1 /K c n /b jtlp s fif.

Figure 3.4: A segment o f Hislory.ixt

collect all CVS operation history records, and the results is saved into a text lile -” Mistory.lxi”

in die same directory automatically. Fig. 3.4 lists an example section o f this lile.

Using this command, we can easily get the fo llow ing main attributes:

• Operation record type: what operation record type happened? Table 3 .1 lists all

possible types;

• Timestamp: when the operation happened?

• Executor o f this history operation: who did it?

• Revision number: on which lile revision?

• File name: on which lile?

• Directory o f the lile: where was ihis lile?

The CVSChecker plugin parses all these CVS historical record information into tables

” history_filelevel" and ’’h isloryjnodulclevel” in the JRcllcx database.

3.3.2 D erived -Iu fo rin a tio n infcreiiciiig

Based on the collected dala above , we can extract a rich sel o f derived metrics, which can be

valuable indicators for the individual’s performance and the team’s collaboration. However,

putting all these data together for any analysis w ill incur the waste o f resource and llood

the target rules with some unrelated data. Our method advocates different data extraction

and filters for different analysis purposes, Different purposes lead to different focuses. If

we locus on the performance of an individual, all I he dala related to him/her should be

extracted. I f lile ownerships were focused, al least ’’Add” , ’’M od ify” and ’’Remove” typed

records are useful. First o f all, users should decide their analysis purpose al the beginning.

30

with permission of the copyright owner. Further reproduction prohibited without permission.

Although using more attributes may generate more potential results, loo much attributes

w ill induce dataset ovd'slul'fcd and hinder the mining speed. Our method proposes a way

to control the data scale without altering the analysis results as following: selecting several

basic d irectly collectable attributes based on the research purposes, and then generating

some new concentrated attributes by combining the basic ones.

We organize the parameters into lour main categories:

• Parameters specific to a team;

• Parameters specific to an individual developer;

• Parameters specific to a file;

• Parameters specific to a lile version.

In each level, die parameters can be divided into two classes: directly collected parame

ters and derived parameters. Directed collected parameters are those data that exists in the

dala sources we listed in above section and can be captured easily and directly. Derived pa

rameters can not be directly collected and usually are computed by those directly collected

parameters to measure underlying relationships between the team members’ work habits,

roles, main (asks, the projecl-dcsign structure, project schedule, and so on. In the fo llow ing

section, we enumerate some examples o f these parameters that could shed some light 011

(lie above relationships 011 each level.

The Team Level

In university environment, with the same project requirements, comparisons across d iffer

ent teams are very useful for instructors to monitor the performance o f the whole class,

and quickly notice unusual trends, lag behind the schedule, and events that m ight signify

problems. Team leaders in industrial environments also can analyze different sub-teams in

a large project with the same purposes using these parameters on this level. For each team,

we record the fo llow ing parameters:

Directly Collected Parameters:

• M e m b e r# : the total number o f members in this team;

• / ;’?7e#: the total number olTiles with any extension types;

• .1 a v a j< ' i le # : the total number o f .lava liles;

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Revision#-, (lie total number o f revisions;

• J a v a J ie v is ia n # : (lie total mini her o f revision o f all .lav;i tiles;

• D a y # : Ihe total days o f (he whole development process Ihis leant participated;

• B eg in D a le : the first day when this leant began their development;

• D n d D a le : the last dale that recorded in CVS repository o f this leant;

• W ork,D ay# : ihe total number o f days that al least one member in this learn has CVS

operation; O f course, W a r k D a y # < I) ay--IB,

• J a v a .W o rk D u y #'. the total number o f days that at least one member in this team

has CVS operation on Java tiles, J a v a .W o rk D u y # < Work. D a y # \

• Phase#', the total project phase number o f this team;

• PhaseDate i : the ending date o f the i th phase, i £ [\ .P h a s e #] \

The fo llow ing two parameters are only related to those teams in the Open-Source com

munity environments:

• R.eyistereclDale ; the dale when this team registered in www.soureelbrge.net firstly;

• D e ve lo p m e n ts la tu s : www.sourcelbrge.com uses seven levels to show the devel

opment status o f a project: I is Planning, 2 is Pre-Alpha, 3 is Alpha, 4 is Beta, 5 is

Production/Stable, 6 is Mature, and 7 is Inactive;

Derived Parameters:

• A v e .O p e r l l 'y p e ■,#'. the average CVS operation distributions by type; i £ [I . 1.7],

see 13 types in 3 able I ;

• A v e jO p e rJ J a le i# : the average CVS operation distributions by date; / £ [I , D ole#} ',

• A v e J V o r k D a y # : the average days that al least one member in this team has CVS

operation.

• AveAV ork,Du:ys = (£ (I'Por/.:D a y ,)) (M e m b e r# , i £ [I , M em ber#] ' ,

• J a v a -A v c J V o rk D a y # ' . the average days that at least one member in this team has

CVS operation on Java tile.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureelbrge.net
http://www.sourcelbrge.com

• A vcJY o rkD a y s -J a v a = :('5 2 (J < iv n J 'V o rk l)a ' ! i j l - i)) / i \ ' l t ' . i i t l> i . ’ r # , i € [I , M e m b e r #] :

• A v c .M R J i iz e : the average involved lile number in ;i M K ,Ave.MR_Si/.e= Kevis ion # / M H # \

• A ve .F i le R .c v is io n # : Ihe average revision number each lile. includes in ibis learn;

A v c .F ' i l e R e v is i o n # = R e v is io n # / F i l e # :

• J a v a ^A v e .F i le R ev is ion # : ihe average revision number each Java lile includes in

ibis team;

• J avc i-A ve -F i leR e v is io n# = Java_Rcvision#/.1 ava.JH le# :

Ind iv id tia l-D cvc lopcr Level

W ithin a particular team, we want to look into each member’s contribution, and suggest ad

justments i f necessary. We also ask each student developer to complete some questionnaires

to tell us their backgrounds and experiences, describe their team construction and task al

location, and assess their own contributions and what they perceive as the contributions o f

their leant mates. For each member, die following main parameters are gathered:

D irectly Collected Parameters:

• O p er .T yp e i# : the CVS operation distribution by type; / t [I . Id], See 13 types in

Table 1;

• O p c r .D a te j# : the CVS operation distribution by date; •/ € [I , D a le #] :

• A d d e d F i le # : the total number o f the files that were added by ihis member;

• A d de d .)a va F i ie# : the total number o f the Java files that were added by this mem

ber;

• M o d i f i e d F i le # : the total number olThc lilcs that were modified by this member;

• M o i l i f i e d .1 a v a F i i e # : the total number o f the Java files that were modified by this

member;

• L a s tM o d i f ie d F i le # : the total number o f the lilcs that were last modified by this

member;

• Las tM od i f ied . .] a v a F i ie # : the total number o f the Java liles that were last modified

by this member;

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Removed F i le # : the total number o f the lilcs that were removed by this member;

• Rem oved.]avaF iie# '. ihe total number o f Ihe Java lilcs that were removed by ihis

member;

• A d d e d L O C # : the total number o f new added Line o f Code o f this member;

• Removed L O G # : the total number o f removed Line o f Code o f this member;

• T ru e A d d e d L O C # : the total number o f new true added LOC (deleted all comment

or empty lines) o f this member;

• T ru e Removed. L O G # : the total number o f true removed LOC (deleted all comment

or empty lines) o f this member;

• W o r k D a y # : the total days that this member has CVS operations;

• J a v a J V o r k D a y # : the total days that this member has CVS operations on Java

files;

• T h e F i r s lD a ic - T y p a : the lirs l date when this member did the i lh CVS operation

type, i £ [1,13];

• T h e F i r s lD a ie .J a v a F i le lT y p e i : the lirsl date when this member did the specific

i lh CVS operation type on Java tiles; i 6 [J , Ki];

• TheLas iD a leTType j: the last date when Ihis member did the specific CVS opera

tion type i; i 6 [I , IS];

• The Last. Dale .. I avn F i le J ' 'ype ; : the last dale when this member did the speeilie

CVS operation type i on Java tiles; / € [I . Ki];

• M R .# : the total number o f MRs o f this member;

• R ev is ion# : the total lile revision number this member modified; The fo llow ing

parameters are applied for developers in academic environments;

• PartScorC i: the score o f this member in the i lh project part.

• F in a l Score: the final project score o f this member;

• P e r fo r rn a n c e S c o re .S e l f Fval-aale: the score this member gave to himself/herself

according to his/her performance;

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• P e r f o rm anceScoreJJeer F v a lu a ta : I lie score his/her teammate gave to this

member according to his/her performance. / € (0, i \ lmain r f - - I];

.Derived Parameters:

• A vcm Ryi.ze: the average involved lile number in a MR o f this member;

• I die Ratio: The proportion o f this member’s idle days to the whole project duration;

• T he p roport ion o f a th is member's leading id le days: the days bet ween the start

o f the project and this member’s first CVS operation to the entire project duration;

• The p ropo rt ion o f the ta i l in g id le days : the days between Ihis member’s last CVS

operation and the end o f the project to the entire project duration, and

• the p roport ion o f va r ious types o f C V S operations on Java f i l e s to a ll C V S operations.

The F ile Level

Above parameters enable the comparative analysis among individuals. To discover potential

problems on the project design and the task division, more dala about, the project tiles

themselves are relevant. For example, three potential problems may be related to tiles that

have a high occurrence of colliding changes, end up being modified by multiple members,

or been relocated frequently. For a specific lile, the following main parameters are gathered:

D irectly Collected Parameters:

• R e v i s i o n the total version number o f this lile;

• B o rn Dale : the date that this tile was created;

• RemoveDate: the date that this tile was removed from CVS repository, i f applied;

• C rea to r : the developer who created the fust revision o f this tile;

• F ina lS ize : the LOC o f ihe latest revision o f this lile;

• M o d i f i e r # : the total developer number who modified this lile;

• F in a lM o d i f ie r : the developer who finally modified this lile and created its latest

revision;

• O per .Type CVS operation number o f the Ith type, on this tile; i 6 [I , Id]. See

13 types listed in Table 1;

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• O par.D a iC i# : CVS operation number on the i " ‘ clay, on this lile; i G [I , D a te #) :

• Addec lLO C j# : the added LOC number on this lile by the j 11' developer, j €

[1, M em ber#] ' ,

• D e le tc d L O C j# : the deleted LOC number on this lile by the j Ul developer, j €

[I , M end)e r#)\

Derived Parameters:

• Id leR a l io : The proportion o f this file ’s idle days to the whole project duration;

• The p ropo rt ion o f a th is f i les lea/ling idle daps: the days between the start o f

the project, and the B o rn D a le of this lile to the entire project duration;

• 7 '/re propo rt ion o f t ins f i l e ta i l in g idle dogs: the days between this file ’s ReinoveDuie

and the end o f the project, to the entire project duration;

The Revision Level

Through the analysis based on above parameters, users may notice some interesting or

unusual revisions, such as heavy modification, frequent collision, modifier changing, and

so 011. For each lile revision, Lite fo llow ing parameters tire gathered:

• A u th o r : the developer who created this lile revision;

• T im eS tam p: the date and lime this lile revision was created;

• Adda L O O # : how many lines o f code were added in this revision?

• Deleted,LOC# : how many lines o f code were deleted in this revision?

• T ru e A d d e L O G # : how many pure lines o f code (delete all comment and empty

lines) were added in this revision?

• T ru e Deleted L O C # : how many pure lines o f code (delete till comment and empty

lines) were deleted in this revision?

• Log: the change rationale o f this new revision;

To summarize, CVSChecker plugin collects the data from those data source we listed

and abstract parameters according to the analysis purpose. Moreover, the parameter ex

traction is a crucial work for the fo llow ing data storage, visualization, and analysis. With

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ihcm, team managers and developers can become aware ol die performance o f an individual

developer: his/her work limes, work loads, work habils, main work producls, performance

evaluation and some problems that, need to be addressed.

3.3.3 Visualization

A substantial amount o f information can be extracted by examining the data directly col

lected by die CVS repository. Trends in these data can be inferred and presented through

diagrams or reports, which leads to meaningful insights regarding the development, o f the

team projects. CVSCIiccker plugin produces six visualizations based on the collected CVS

data especially those extracted parameters for each project:

• Temporal distribution o f CVS activity, for each member/team;

• Distribution o f CVS operations by type, for each member/team;

• Distribution o f CVS operations by type, lor each file;

• Added and Deleted Lines o f Code (LOC) by each member, on each lilc;

• Detailed LOC change by date, on a single lile:

• Kile adding and removing by dale, for a project;

Tem poral D is tribu tion o f CVS A ctiv ity , fo r Lacli Member/Team

The first, type o f visualization (shown in Fig. 3.5) compares across team members in a learn

(or different, teams in a class or a large project) the number o f CVS operations over time.

To belter analyze the frequency and distribution o f operations o f interest, we have defined

the concept o f the interoperation gap (GAP). It refers to the interval between the times o f

two operations o f interest. We choose ’’day” to be the unit o f this measure: it is fa irly easy

and inexpensive to compute GAP in term o f days, although not quite as precise as hour.

It can clearly show the busy (not busy) periods o f a inember/team and help users to grasp

the development trends, have a quick idea about the typical GAPs, and notice some special

phases lor each member/team along the timelines. The aim o f this chart is to compare the

various work habils w ithin different members/teams, flow fast do they start? flow long is

their actual development process? flow many idle days do they have? Which dates tire their

busiest times? In this manner, we can identify when the most important period o f activity

is for the entire project, or for a particular person, or for a lile, or for a particular operation

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:j|:2Q,jv ;. . y- :'■ . ': . •> ; ;
’» :hS-* : ::..... ':....................................... ; ■. . .;. .
:;e ; | . ■ i :• ;j
'&'■*} ; •'

 ; r -••••'•...... -.......................... r.... :• I:■ ■ ■ ■ :............. i...............
;.p ': 2 . t _ ;

1-sal* i:- 7 * ’ := - : 7i: '
 i . -■■■-■’ ?

•M I: 4 . 4 i. ■'> . 4 : -i ■: F ̂ r f l - I :
i*J- • : • : If : -

y v,.w.v. .v, ./A.v.,.%vA___
.0.0. 2.5 ?.Q ?.« ' 1U.0 • ifi.O .17,5 CO.tf. 22.3 lTi.0/274* >0*' 5fi‘.3::&Y0 -.07.5 mO.Q fi aS.fi h?A f-0.0:

200̂i-D?*-tO Uv2fi(U.j 1-ufl

Figure 3.5: Temporal Distribution ol’ CVS Activity. I'or Each Member/Team

lype. The X-axis presents the whole project development process or a specific phase. The

Y-axis is the number o f operations.

D is tribu tion o f CVS Operations by Type, fo r Each Member/Team

From Fig. 3.5, users can have a rough idea about the total CVS operation amount, o f each

member/team. However, what kind o f work does each member/team did? The second type

o f visualization (Fig. 3.6) compares across members/teams the numbers o f CVS operations

and shows llte contribution o f CVS operations over different historical record types. From

diis chart, we can easily answer the follow ing questions: which member/team did the most

CVS operations? Who added the most files? Who removed the most files? Who had the

most modification work? And who had the most collision and merges? The X-axis lists

all the CVS historical record types with non-zero values. The Y-axis is still the number o f

operation. Each bar represents a member/team.

We believe that different team roles in the team composition result in different team-

collaboration patterns; Eased on all these visualization, especially this one, we can get

support/oppose information.

D is trib u tio n o f CVS Operations by 'lype, fo r Each File

The third type o f visualization (Fig. 3.7) displays what kinds o f operations were committed

on each liles and helps users to detect tiles with abnormal operations. The heights o f the

same-color sections indicate the operation distribution o f all types. A ll the deleted liles

appear below the X-axis. The X-axis lists all liles according to the modules. Each bar is a

lile and each color stack is a CVS historical record type that is listed in Table 3 .1;

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. A:l<i: "ijltoiiVrt ' ' .y(jY»yi>}jt) ŶOi>*U‘>u>tj. .-fiwoihyy.- U;(wip~i) YytDyttVs)

Figure 3.6: Distribution o f CVS Operalions by Type, for Bach Member/Team

-* rat •......... ■■••■••
 • • • • •—

■n SO.'!-:..........................

! : • ' ' I 1 . • r '
yfV'xW;) Vi.i t î i 2̂2 i ' j ̂ : ,3^33fi?i 7.? 7 7 5T7TV*

:Fm
• ;ir^C îdi.lj*ttf- X̂>3>iIisjhnJ;::i*:fi:f̂ 10 *-*•’; '•:.:y < ' t i : '̂Ĉ1 I ovfti'-. TT.O.T■■•85 i

 i

Figure 3.7: Distribution o f CVS Operalions by 'lype, lor Bach File

3(J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It!

' ft

~ Opl.li'si on IHerge
■{Molififca'iicn-

. J l lJUUOJiVCI’A ’iVlW

'' "" III !:;p J p l"4 ' ' f i l l 4 : . 4 4 4 4 4 4 4
w m i- ■#&? ^ ./

FilfS.

<e
'■ ' X \\ '■

, o

ijtf? : 4 s
4'.. ** '

Figure 3.8: Simplified Distribution o f CVS Operalions by Type, for Each File

The dark and light-gray are two colors that should be paid much attention to. Dark

color indicates the number o f collisions while the light-gray shows the number o f merges

happened on this lile. When we get this visualization, we can detect these liles w ith inap

propriate design easily.

In order to increase the chart readability, we designed some simplified versions lor

Fig. 3.7: These simplified visualization only display some interesting type classes listed

below Table 3.1. Fig. 3.8 is an example that only compares the constructive and red-llag

CVS operation types (see Section 3 .3.1).

Added and Deleted LO C by Each Member, on Each Kile

The fourth type o f visualization (Fig. 3.9) provides relevant information for each lile about

who modified it and what the impact o f each developer was on that lile. This chart can help

users to know the modification amount o f each member. Moreover, for those dangerous

files detected in Fig. 3.7/Fig. 3.8, this chart helps us to know who modified them and who

their main developers were.

This chart is also a stack bar chart. The X-axis is same as it in Fig. 3.7. The Y-axis is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.9: Added and Deleled LOC by Faeli Member, on Each File

die modified LOC number. A ll die Removed LOCs appear below die X-axis. Each member

has die same color for his Added- and Removed-LOCs.

The more sub-bars appear in a single column, die more attention should be put on die

corresponding file, since it might be die locus o f increased activity, possibly because it is

ill-designed and ill-understood.

Detailed LO C Change by Date, 011 a Single File

When we locate a problem lile, detailed information about its versions might be interesting.

Fig. 3.10 shows its detailed development history along die lime. The X-axis is date. The V-

axis is still the number o f modified LOCs, and the removed LOCs appear below the X-axis.

This visualization can be understood as the ’’curriculum vitae” o f a specific file.

File Adding and Removing by Date, for a Project

The file adding and removal data contains interesting information. It can help users to better

understand the project development process. We design a chart (see Fig. 3.11) to show the

adding and removing o f all files in a project w ithin a defined lime phases.

The X-axis lists all files according to their modules. The Y-axis lists all the dates from

the beginning o f the project development process. A dark spot represents a new-added lile

and a light spot shows a removed file from the CVS repository. This visualization can

help users to detect some interesting and promising phenomenon, such as a set o f same

birthday/removing-day files, some short-life liles, and so 011.

A ll these visualizations can be produced for the whole project history, or incrementally

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

;sno«-
;'2D0Q.:.
2400

'2000

16-00.

;i5ou •
bo:);
:4g:J

§' ft:
-400

-800

-riSOO.
-ifioo'
“ 2000 :.

“2400 *
“ 2600

r'320Gr.

88 Maii'iefl
~ ; r ;. f /:n h c r2

“ «“ »i2#bcrS
littnberO

b i;.“Kaeb.er?

■----------------------- S.'4— ----- ^ _ ^ 4 _ C k4-x----
d 41 &i si ios. :::i Mi is; dii .201 izi 2i" 201 sol*i§|!

Figure 3.10: Dclailed LOC Change by Dale, on a .Single File

im
1S5
330
125
120
115
110
105
100

» 95
f 99i 85so
8 75
g 70
1 05
r : 60
2 55
A SO
g -15
& <10
.8 35
?& 30
r 9ci

:u .16
10
c
h

10
P r

Aiicfeii j »
VS- — — ----- ---- ---- <■WCB'

1
1

Ct I 0

1
1
1

O . '® I ' " "

' 'a -

» m u i m *009CKr< -■! . .I..-.-

----- ---- -----ft 1 ----
c

1 _L . | i 1

0 --- Tnssaa<s— 1 — |
| 1 — ----- -----0 1

i 11
i I i 1

09 Y i 1 1 ! I 0

o 5 : io ;i& 20 Sti iso; so .<ib; m - so 55 eo. os ?o. .75 so » 00 95 100405110

F ile s

Figure 3 .11: File Adding and Removing by Dale, lor a Project

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to provide n sequence o f views corresponding to smeller periods (such as between relenses,

or 011 a weekly basis.), specific modules, or some noticed developers and liles.

CVSChecker has a visualization trigger that enables users to use Eclipse to interaelively

explore the first four visualizations through a special CVSChecker perspective. The trigger

interface in Eclipse contains m ultiple choice o f operations to generate the lirst four visual

izations we introduced above. An up-to-date set o f visualizations reflecting the complete

project history is maintained in the database. They can be selectively queried to focus on

particular CVS operations or on individual team members or specilic periods o f lime to

help users instantly grasp the trend and the level o f individuals through the comparison

among the lines or columns. Developers also can access them through a special-purpose

wiki-based collaborative environment, W ik iW ik iD cv [80], to get an up-to-date view o f their

progress.

3.3.4 R eporting

Reporting is an alternative means o f presenting information, complementary to visualiza

tion. In our research, our reports can be classified as two main types: consultation report

and summarization report. CVSChecker plugin includes triggers to generate these reports,

from m ultip le levels, such as: whole project, a team, an individual, a specific tile, a day and

so on. O f course, new triggers can also be added for new reports and visualization as the

analysis goes on. A ll these reports are saved in Database and all tbe users can view them in

W ik i pages.

Consultation reports

Consultation reports include the detailed data on the basis o f which the visualizations tire

generated. These reports are meant as an auxiliary medium for representing die visu

alization data, enabling the users interpreting the diagrams to access the details behind

any interesting information they may perceive from the diagrams. The query function o f

CVSChecker can provide a similar assistance. However, because it is embedded in Eclipse

platform, the query condition setting and the result layout are still limited. Moreover, it

is only available for Eclipse users. The reporting function o f CVSChecker is a wonderful

supplement, especial for those nou-Eclipse users.

The information in the consultation report includes detailed data by m ultiple levels, such

as: an operation type, an individual, a role, a day, a module, a specific lile, a revision, and so

on. It is Lrcated as the auxiliary knowledge for visualization, and provides a consulting base

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TliiS'i

Opeif
o the report
’y.p’elTiriia

oiv;dat;p::20p3-03-2f
■ lApilrpr jRevisi ft IP at hAt i dFi 1 eN <i inm

w ;|01::ie ■ |GidupA2;3 ' l’M ;: '|GioupA/sic/irnq.'Help24.gif
•R !CH :2D : |Gi oupAjB- ■ •:jGroupA/src/img;sh3do'.v...lelf.gif
M p ty . 2 : |GroupAj3: ■ ■ ■ IGiOupA/sic/C al* nci^rF rstn e'.java
w ; 404:140- : IGtOtlpAJ;: rlp.ull i 13 re ij r c;/i rn ci/£ l-<c* do‘yv_\ri y lat. cj 1 f

04:00 |Gt ciijpA_! Ifiull • (GrpupA/
J P !I0 ;2S . • |GioiipA_4- i • jhylt ■ |GiQ!.ip.AA;tc/ina^/shadQVOiight,tiif.

Figure 3.12: A segment o f DailyOperation report

Fileyersiph;':

palliaridf'lenjfns........
: addqdlodl ;■ delete dloc
ThiS'is.fiie:’

isuthci . • I'.ime'clan•ipr -ly jyarsidpidfiityiiiibcH

Gro upAMtt ic/AddBdi! Qiai ld:cjij ava ■: - |G; c u p.A_ 1 •• |20 03.0 ? 18.21.20.42; 1:T|0: ■lQi . l l -. |
. G hi li pA(At 1 id/Ad si E <iit Di aloy-java |GmupA_1 J2003CS 18:2rp8;44:; F2:;igTj247;i25o;r::
GruupAy/dtie/AddEditpialo g.java " . • ■ [Or o dp A r3 i’j20 (33; G 2 22:20.04:57:; T 3 1286'0: JO |

Ttiiei is- (i!d \ .

: l§'r o p 1T cAC a i s n d a r: F r:a rn 9, j a v: a • ; > : 1 G'i6npA;'2; |2 003. D2 20.22 TO.42. ; i io ' |G ;jb : i
G r a j l , j ii(04 (e ri dafF:rairiejjiya;:::--

Ili|:s4s;:(iid:3

; |i3rabpAT3i.l2003 02 22.20:05/21: ;f 2;|:15l]G : |0 |

Figure 3.13: A segment, o f File Version report

for .(hose potential patterns or problems notieed from diagrams. We introduce three typical

consultation reports: DailyOperation report, FileVersion report, and StudcntWork report.

In a team, eaeli dale has a DailyOperation report. It lists all the CVS historical operation

records in repository committed by all the members in this team, happened on that, specific

date. A ll the records are listed chronologically. Fig. 3.12 is a snapshot o f the DailyOperation

report.

Bach team has a FileVersion report. It is the corresponding report for the Visualization

5 (see section 3.1.3) o f all the files in a team. It can also he understood as a ’’curriculum

vitae” o f liles. The detailed modifications on each lile are displayed from revision 1.1 to the

latest, one. Fig. 3.13 is an example.

Bach member in a team has a StudenlWork report. It displays all the CVS operations

o f each member since the project development beginning, chronologically. Fig. 3.14 is a

snapshot.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TliisdS t Ire. St ucl enfWo4; repoit cif student: Gfd 11 pA_3

Type- - • - |Dal.e& ‘ririi? ■■■• ■ ■ ■ Ireyijdcm I pal hand pen mi e
: D:':: ■ v ,12003-02-22- 19:S6- : • |nuif. IGioupAy

; - 12003^02-22-20:02 ■ - “ 11.1 - • IG id u pA/s rc/Ad tIEdil pi a 1 og.ja v a v
• - 12C03-02-22-20:02 ■ il.1- - :|G i o up.A's re /0 alendatF.rame.java:
• |2C03-02-52-2d:C4 • : - if -4 - i | Grbu pAi'Ad d E dt.t.Dislo cj j ay a

R- • 12003-02-22 20 05 • • : jfeiciu pA.-hlistl&n rj'SrFte trie.jsrys.;
: -12003-02-22 20:43 • .IGrduiiAAtre/MyCalehdatFram^jaya

< & .v ^ •' |20O3:O2-22 20:44 • • • l.Gro u p Afe rc/lyl a kali 1 e.
12033-03*4 01:52-. ijGrqupA/sm'/ivIyGale rid afFrarne.jsiya:

-120324)3-04 02:03 F : iflns:-: ■-: ;J(5rd.up /̂sr.c/C 3i. e fi)Jaf Ifrairrit̂ i'ij d y a ■
-12003-03-04 02;:1 1 • - - 1G r o ij p A/s i c /fyl e k e H1 e

Figure 3.14: A segment ol'StudenlWork report

Summarization reports

Summarization reports contain selected interesting data and the results o f the statistics and

data m ining analysis phase. The summarization report constitutes a simple overview o f the

teamwork. It usually picks the interesting attributes out, itemizes them in a meaningful and

comparable order (see Fig. 3.15). Descriptive annotation is also added for some important

attribute values. Moreover, we also list the heuristic analysis results from the analysis in

Section 3.1.4, especially those red-llag patterns.

This report can be viewed as a decent lively team working description instead o f a

simple summary. It assists users to learn a team’s collaboration as well as each member’s

detailed performance, with a condensed textual description.

3.4 Further analysis on the CVSChecker data

Version Control System accumulates numerous dispersed contextual information along the

developing process. No matter what perspectives each analysis focuses on, there arc es

sential phases in common: collecting data, filtering out useful ones, storing and visual

presenting them. However, i f we want to understand a process thoroughly, they are still

far from enough, Heuristic analysis should lie applied. CVSChecker includes two different

mechanisms fo r interpreting the collected data: data mining analysis, and heuristics-base

analysis.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parsitic-fers jlvloiuhbti IMorribyti :|tvle'ml>er3 llvieutLivid ..
The fits ; CHECKOUT Date |200?-02-2rJ ; 12003-02-10 1200 3 02- 2-2 :|2003-0M:8-
Ihfe;fiv;,F AODpfeliate ;j2003;f)2-2Cl 12003-02-20- 12003-02-22. 12003-02-1.13'
Tlip Fust ModificcitiomDa;e: |:':iD3;02;2T 12003 02; 10 12003:03-0 J ; 12003:02-18.;
live LAST-.vie dllicaiVon: 0 ai e ; 12003-03-3 f 12003-03-31 12003) 03-31 12003-03-3:1.
TBb; Total w.o ik Dpyg. ; !2;i 115:- . flS:. 119;
The- tctni JAVA-wo i k-Qai s |1J ■III?!;-
Tlio- TotS11 oucho ri SIe' h uni b ei |49 130 120 ■|S7:
The• Total touche-j.JAVA fienimibe-r:'.! 1 I'? : .113:
f h'B;tothl.vadde:d-dAVA:fiir:'nuirihoi jf p 13 15
T ip1 Total r'i p d i fi•;• d. JA V A to nu• -ib ,ei: | . H? fiA:. ilQ
LAST-rriodifydiowtnaiiy JAVA'at 9 jii I ' is
total! Add erj^LQ&QiTidAVAvfife 1057 ll 15'3 12207
Total Deleted. LOC'-tm .JAVa -IiIo il •178 |;l 90S I2576 |.107&

Figure 3.15: A segment .o f Summarization reports

S ta iiftira l:

Ajialjrsir
' ' W '

| D iP S ’- i c n t .

^•I’ljiitoses

\ M
1)1!

I f . '
;ViJu-3(«at)uit Qimry

■ Titggvz*: ;.rr(«gec.:

: if. K

E v .lilis h :

I'ik*

O m u « is l i i j i

Filr

Iivolve me ill

,Sir.Vdnln

Calfhinsr.

A l ^ o r i t l i i u . | i H . 'tC t

r l i i t o . t h t g I .{

p a t a

fillT
ami

CVa..

tiiit*'.

D ata ; A p p ly

tiiiu . &■. b- Disci —r ► K D J)

Trans fi» p tr/.i a lg n ijf

n n a iiu tiiu i JtJUi

* : Killer's,.

Figure 3.16: Work (lows o f Bottom-up Hypothesis Generation and Knowledge Hx tract ion

3.4.1 D ata m ining

In this step, CVSChecker plugin supports users to extract the high-level knowledge hided

along the project development process from the original data. Fig. 3.16 shows the main

work Hows o f this mechanism.

Although CVSChecker plugin parses till the related data into the database and provides

several visualizations to help users to understand them, directly accessing tillered data from

die database is still very d ifficult. Statistical Analysis commits basic but important statistical

works, and enables users have a quick concept about their performance and collaboration.

It plays the role as an agent for users to observe concise and easily understandable stalislie

results o f some main attributes. Users w ill decide whether they have to track down to certain

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

codes or not.

Before the knowledge extniction, users should luive specific deuuuuls on learning schemes.

Different knowledge in different expressions exists lor a settled analysis purpose, such its

Association Rules, .Sequence Patterns, Classification Rules. Clusters, and so on. I f users

want to analyze a developer's operation patterns, ’’associate rules” can find some concomi

tant operation sets o f this developer, while ’’sequence pattern” captures some frequent op

eration orders. Each learning scheme has its corresponding algorithms. In our data m ining

analysis and knowledge extraction, we want to get some knowledge about individual work

load, file ownership, lile evolution, and schedule catching. A priori 117], an assoeiation-rule

m ining algorithm for discovering interesting patterns, is adopted to know how team mem

bers use and modify their software assets.

Most heuristic algorithms have special data format requirements. Extended phases were

designed in CVSChecker plugin for applying data-mining techniques on these process- and

performance-related data. A ll these phases are belonging to data pre-processing, which

impacts the quality o f results directly. The current data in the database is not good enough

to be used directly for these analyses, more preprocessing works are needed to change

data into non-redundant, discrete, information- centralized datasets in standard formats for

heuristic analysis.

Although users already collected useful data and extract attributes according to the

analysis purpose, excessive continuous values with minor differences are inappropriate for

some algorithms, 'fin is, changing them into discrete data is a feasible way to eliminate

the gaps and keep all values stay at their original levels. It is also redundant analysis i f an

attribute is highly correlated with another. Data integration |6| can detect and deal with

it. Data transformation 1171 is another way to change data into appropriate forms without

losing its value. We applied M in-Max Normalization [17| for all largc-range attributes with

known minimum and maximum values, and scaled them within a specified range using a

linear transformation.

3.4.2 U ser-driven data exploration

I f users notice an abnormal or interesting result from visualization, statistical analysis, or

mined knowledge, they can examine the database through a simple query interface provided

by CVSChecker plugin. Query conditions can be easily set, and results w ill be displayed

in a neat, format. Once CVSChecker plugin is installed, and the perspective is properly set,

users can start exploring the utilities that the CVSChecker provides by clicking the menu

47

with permission of the copyright owner. Further reproduction prohibited without permission.

liiiiliiiiftji
.V.'kW»V.'i1.V»V.*A'.<V.vlYkVA'.>V.,I-.ViViV.S\U

/ M S 'M m w lMVWAwli IM V .m .m « u J l l l i > . « i UK-KJ-. ! .> . J » m . . n m , . . J L u ^ .. , . . , , i•.. . . . ■ .■ . . i .. . ^ , . , . ■■■■ - . ■ ;.. -

$: . : ’20Q3tOZ-0^ DO:00 j StudentJ 36• . null null
O ; '' V ..-V V;]:^003-02 '07^ i 0 2 : 3 0 l] S tuderitlSc.' ' j null .' n u l l
f > V '......... ’ j :2CiQ%t)2V:2p ; :S 2:T6; .=;'^hadferj133& ^ | nuii ^; n ti]|.’7
&•; ;........... |20)p3 j0£-20 ;:S ty d e n ti3 6 : ■: . i ; V ; X j .
$1, j/2O03-ti2-M ' :2'2:2’i ; Studoht;i 36 • : V; 1 [ibalO^ntroil^r-ijava
•0’;’v’ ’ A-'v̂ 2p 03 Ypgsfb' ’:; ?32= V1; ̂ 51 Ode rt 11 3 6 'V V1 rrajJI'/V'' ” ̂ ' T riullV' .V. : ’ 3".'. .v;::': ̂ !
W ?nrrsj"l'?*?-? ?n 4A irt,-r,M ^ r . il l iV-t.-tFrliirvs.tr.n w -s

Figure 3.17: Result view o f CVSChecker query runction in Eclipse

bar ’ ’Execute CVS” .

I f the valid username and password have already been tilled, a window w ill be popped

out. Otherwise, there w ill be no any response, and users should check the login informa

tion. There are four combo boxes in this window: ’’Operation Types” , ’’Date From” , ’’Data

to” , and ’’Operator” . ’’Operation Types” lists all CVS historical operation types listed in

Table 3.1.

’’Dale From” and ” To” help users to set the period which they want to look into.

And ’’Operator” enables users to pick out the objects that the users are interested in

their works. It can be a member or a team, even the whole class for a project in university

environments.

This window interface to help users make queries about their historical works. By

c lic k in g ’’Finish” , ’’CVS Results” view (see Fig. 3.17) w ill show thequery results according

to query condition settings.

O f course, user can use die query function lirst as they want, i f the restrictions are too

loose and its large-size results are hard to read, users can generate an instant view from the

graph point o f view on these query results to have a more v iv id understanding. In addition

to diagrams, CV.SChecker plugin also includes triggers for reports, from m ultiple levels.

Such as: project, team, individual, package, specific lile, and so on. We w ill discuss it in

section 3.3.4.

3.4.3 Heuristics-bused analysis

Visualizations, querying, statistical analysis and KDD analysis uncover correlations in the

collected data that may or may not correspond to interesting development behaviors; we

would have to assess these correlations in terms o f how useful they are as indicators o f el-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i Patterns

Visualiiation

Query
J

Statistics

Data Mining
Analysis

Apply on

Collcctnd
Data

1
Generate

Factual 1,1 Pattern
Patterns li Query

H!
Red-flags

Team
-in le

pinliles

f EvaEvaluate

seith
j co llected j

/ i/ A objective j

! information I

Figure 3.18: Top-Down Hypothesis-Driven Analysis in CVSChecker

feetive or problematic performance. A t the same lime, in the academic setting we formulaic

our own intuitions as educators about, w lia l types o f teams succeed (and what types o f teams

fa il) as heuristic patterns in terms o f the collected data and we apply them so that we can

evaluate their empirical validity. W ith this approach, we plan to collect a suite o f patterns

that can be used as ’’sensors” o f when to intervene in a team and how. Fig. 3.18 depicts the

main works o f the heuristics-driven analysis based on above parts o f CVSChecker plugin.

This analysis can be understood as training, evaluating, testing, diagnosing and predicting.

I t can be divided into the fo llow ing four steps.

• Step 1: We randomly select some team projects from different environments, then ap

ply visualization, querying, statistical analysis and the knowledge extracted in above

section on the selected data.

• Step 2: For heuristics-driven analysis, we observe and summarize some typical pat

terns on the selected data, related to the individual operation, team collaboration, lile

evolution, module design, and so on. We categorized the patterns into three types:

factual patterns, red (lags, and team-role profiles. A factual pattern expresses some

characteristic o f the development history o f no obvious negative or positive ' , ' ! ca

tion. A red llag captures a problematic situation whose persistence may warrant a

preventive action. They should ideally be detected early and avoided. A team-role

profile focuses on the characteristics o f typical team roles. We summarize some o f

these interesting patterns from the team projects in different environments, and com

pare with each other.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

• Step 3: Then, we evaluate these patterns with the collected project/team objective

information, such as project, history, questionnaire fillings, etc.

• Step 4: Ol'course, what we are interested in is not only the past performance, but also

die like ly future performance on new team projects. Afterward, we have been work

ing 011 developing a set o f heuristics for understanding the nature o f the collaboration

among die members o f die development team and their roles, and have developed

a set o f queries that correspond to our intuitions about relevant (both desirable and

undesirable) behaviors o f teams and individuals at a high level.

In die long run, our intent is to provide context-specific guidance to team managers

and developers, based on die actual patterns o f behaviors that the team members exhibit as

individuals and as a whole.

The results o f (he analysis component tire also stored in the database and are served

by the W ik i server in the context o f various reports. Some reports tire tailored towards

die student developers, and they present information specific to the team and comparisons

against aggregate data from die other teams. Other reports are tailored to the instructor and

diey present detailed comparative data across multiple teams.

.i f)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

An Exploratory Case Study on Five
Undergraduate Student Teams

In most engineering disciplines, il is assumed rival the education o f their professionals in

volves an apprenticeship component, in addition to their formal training. This is why most

undergraduate software-engineering programs involve a capstone project course, where stu

dents, in preparation for becoming software professionals, work in teams to design, develop

and document a substantial software system. Our experience with such a course has been

dial the success o f such a team project depends, on one band, on the technical competency

o f Lite students, the quality o f the tools they use, and the project-management decisions they

make during the project life-cyclc, and, on the other, the specific and timely feedback o f

die instructor is invaluable. However, instructors o f such courses are, more often than not,

overwhelmed with the task o f closely monitoring the progress o f multiple teams, and prob

lems in a team’s process and product may go unnoticed until il is loo late to be addressed.

This exploratory case study is an evaluation o f whether CVSChecker might help instructors

to monitor student teams and detect problematic collaboration and performance earlier.

4.1 Objectives

New or volatile requirements, tight delivery schedules and developer turnaround are com

mon challenges lacing almost every software-developing team today. To effectively deal

w ith such obstacles requires that the developers have an overall understanding o f the cur

rent slalus o f their project, possess sufficient programming experience, collaborate effec

tively w ithin their teams, and tire able to react promptly. Such capabilities are d ifficu lt to

teach and to acquire in the context o f a university software-engineering course. Instructors

are eager to equip their students with the ’’tools o f the trade” but closely monitoring a large

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number o f software teams in the classroom and acting as a "menior manager” lo all die learn

members is loo d ifficu lt a lask. The number o f learns and developers is usually large and

there usually are substantial variations among the team projects, which makes the detection

o f individual problems too subtle. On the other hand, even with a solid technical back

ground, students may still get overwhelmed by the complexity o f the software-construction

process and may fail to recognize signs o f problems in their own project early enough so

(hat they can involve the instructor.

As we elaborate in Chapter 3, CVSChecker is a method that can track the progress

o f students developing a term project, using the historical information stored in their CVS

repository. This information is analyzed and presented to the instructor in a variety o f forms.

In this chapter, we discuss a set o f analyses that support monitoring student teams and their

progress, based on the collected information. These analyses infer a multiple-perspective

trail o f the project development, and a set o f corresponding visualizations presents various

statistics, charts, and reports on this trail. Based on the information produced, instructors

can track the evolution o f a team’s work against other teams or compare the performance o f

members w ith in a team. Furthermore, instructors can inspect the revisions o f an individual

file. A ll the methodologies o f CVSChecker are followed in the case studies.

We conducted this case study based on undergraduate students’ project data because

they are the representatives o f novices, and university course plans a significant role in the

training o f future developers. The main goal o f this case study was:

• To examine whether CVSChecker plugin works well on teams in a university envi

ronment.

• To enable instructors or TAs to have an overview o f the whole development process

o f each team, and delect some teams or students w ith abnormal phenomena.

• To provide visualization, query, and heuristic analysis on the student historical data,

w ithin the whole development process or a specific phase.

• To get some in itia l validation o f whether the data visualizations we developed are

informative lo instructor.

• To gel, insight on specific ’’ interesting trends and events” in the project life-cycle that

can be discovered through the CV.SCheeker analyses.

• To reveal correlation o f these trends and events with the eventual outcome o f the

team’s work, i.e., the quality o f their project, and the correlation o f the leant roles

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the development habits. I J' indeed such correlations exist, then discovery o f sim

ilar trends in the profiles o f future teams might be used as evidence in predicting the

likelihood o f (he team’s success or failure to deliver a good project; such evidence

could support the instructor in monitoring the teams and in discovering quickly po

tential problems.

To sum up, the goal o f this analysis is to understand how students interact and lo find out

i f there is any correlation among the educational environment, roles, their grades and the

nature o f their collaboration. Understanding these factors w ill enable instructors to delect

potential problems early in the course o f the students’ pro jects, so they can concentrate their

help on those teams who need it the most.

We believe dial, i f the information is suitably presented and highlighted, il could be use

ful to students to self-evaluate their own progress and quickly notice symptoms. In addition,

teams in educational environment have their specific patterns on individual performance and

team collaboration.

4.2 Settings

This case study was conducted on it third-year software engineering course in software

engineering. In the context o f this course, students work on a project in teams o f four

and coordinate their software changes using CVS. The project is common across all teams,

w ith three delivery dales spanning a two-month development period. Although various

deliverables are required, including unit lest cases, U M L diagrams, and a user manual, we

in itia lly focus our analysis on changes lo the source code and the CVS operation records

over time.

.Students in this course have a substantial background o f program development in-the-

small, and are knowledgeable in programming with Java in the object-oriented design style.

However, for most o f them, the course project is their lirst experience in collaborative soft

ware development.

The project work is organized in three or four cycles, each culminating in a deliverable.

A t the end o f the lirst cycle, a low -fide lity paper prototype and the object-oriented design

o f the project, represented in a U M L class diagram, are due. At the end o f the second or

tlie third cycle, a working horizontal prototype is due, exhibiting the interactive functional

ities o f die project but not necessarily the underlying support functions, fina lly , the whole

working project is due at the end o f the last cycle.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phase Period Length Comments
Phase 1 Feb.07-Eeb.2l 15 days Deadline for Assignment 3
Phasc2 Feb.22 - Mar. 17 24 days Deadline for Project part2
Phase3 Mar. 18 - Mar.3 1 14 days Deadline for Project part3

Tnblc 4 .1: 3 Projecl-development phases

On each due dale, a snapshot ol' each team’s CVS repository is extracted and eaclt

team member submits an electronic evaluation form lo assess the contribution o f all team

members, including themselves.

Putnam et. al. [581 claims that small size is the key to a successful project, and Bclbin

[4] lias a ” 9 team roles” theory. It is coincidental that the team size in our course project

is also small. Each student has very busy timetable and has to attend several courses in a

single term. It is very d ifficu lt to regular much common meeting and working time among

learn members i f the team size is large.

Our ease study involved 85 students (Student .#) organized in 23 teams (Team#) .

Most teams have four members, with some exceptions (three or live) because o f some drop

outs and recombination. 51 students (including the team members o f 5 whole teams) gave

us permission to use their data. Because one o f our analysis emphases is the team collabo

ration, we focus on these live whole teams. And refer them as team A, B, C, I) and H in the

fo llow ing sections.

Students usually can not spend too much lime on the course project because o f the

curriculum design. The total duration o f the project was 53 days, which was divided into 3

main phases, as shown in Table 4.1.

As fo r the processes, we want to investigate whether different processes exhibit their

own particular patterns. ’’Academic case-sludy” projects in comparable size, length and en

vironment without explicit process types can be adopted as the shared compare benchmarks

for other projects.

4.3 Basic Results

This section introduces selected visualizations and heuristic statistics generated in our ease

study on live student teams (labeled A lo E). Diagrams arc presented at various levels: by

team, by individual, or by lile. .Such diagrams intuitively show trends, enabling the users to

gain a high-level impression o f team and individual performance.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CVS Operation Team A Team H Team C Team 1) Team H A ll Class
Total 1%.5 288.5 208.25 242.0 132.0 2)3.35

A # (A tld) 37.75 46.75 39.5 66.0 44.75 46.95
C ̂ [C o l l i s i o n) 9.25 7.25 3.75 3.5 2.0 5.15
F # (Release) ().() 0.0 8.5 0.0 0.0 1.7
G # (M eri/e) 9.5 20.5 10.0 4.75 2.25 9.4

M # (M o d i f y) 84.75 161.0 107.25 149.0 56.0 111.6
0 # { C h e c k o u t) 20.0 5.25 36.0 12.0 19.5 18.55
R # (Remove) 11.0 10.75 1.25 3.25 2.0 5.65
W#(Dele t ,e) 23.75 37.0 2.0 3.5 5.5 14.35

M # / C # 9.162 22.2 28.6 42.75 28 21.67
Total Files 18 27 42 67 51 49.7

Modified Files 17 27 32 41 43 23.3
Versions Per File 19.9 23.85 13.4 14.5 5.2 19.5

Tnhlc 4.2: The numbers o f CVS operations o f live student iciinis

4.3.1 The Team Aspect

Three visualizations help us to do die analysis from die learn aspeei: die average temporal

distribution o f CVS activity, the average distribution o f CVS operation by type, and tem

poral distribution o f Modification Request (MR) o f the selected teams. The aim o f these

team-level diagrams is lo compare the various work habits o f the student teams. How fast

did they shut? How long were their actual development processes? How many idle days

did they have? How many liles did they work on at a lime? What proportion o f files were

Java files? What was the distribution o f their CVS operations?

Let us now look at the information that can be inferred by examining all the types o f

operations that teams performed in their CVS repositories. Hy examining the bar chart as

Fig. 4.1 and cheeking the data reported in Table 3, the instructor can gain some insights into

die ways the various teams use CVS.

As can be seen from this chart and table, team H exhibits ’’abnormal" small numbers o f

operalions o f all types: the members in this team performed - on the average - the smallest

number o f operations in CVS (less than half the number o f operations o f team 13), but it has

many addition and checkout (A and C) operations and the number o f files they developed is

bigger than average. Furthermore, the)' seem to have used CVS much more like a storage

area for finished products dian as a working repository: both in absolute numbers and on the

average. They modified their CVS files much less frequently than other teams: averagely

every file was modified only 5.2 limes by the all four team members.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fS Ave.
BiAvn.

Bf Ave.

H A v t.
121 Ave_

Avc.

.Team A

T^uiiE
.TeatnC

T̂ anD
T>nn£
.V /hokC las

If$m

M * b l L ^ ,
A ll A (Add) C (C o llis ie n) C (llcrsc) K M o d ify)

O peration Types
OiCkcdiout) R(Ecmovc) W (Dclctc)

Figure 4 .1: DisLrihulinn o f CVS Operalions by Type, lor Five Teams

Sueli ’ ’abnormal” phenomena should not emerge suddenly al the Iasi minule. Instructors

may examine CVSChecker visualizations regularly, recognize some symptoms at an earlier

stage, and evaluate whether the developers ace facing any problems or not. For example,

sparse usage o f CVS might be due to the fact that the team is simply storing and exchanging

files outside the CVS. Alternatively, it may he due lo the fact that the team is not working

enough on the project. Based on the cause analyses, instructors may decide what, kinds

o f action they should execute. As another example, we notice that TcamA and TcnmB

have a slightly high number of collisions (C) and merge (Ci) operations. Collisions and

merges occur when more than one team members attempt modify a same lile at the same

time. A substantially high number o f C and G operations could indicate that the design o f

the software product and the distribution o f tasks among team members are poor, and the

project modularization should be re-considered. We also notice that these two teams have

high number o f collisions and merges over a relatively small number o f liles.

In principle, enabling team members to always have the latest version o f each lile is a

good collaboration habit. The instructor, in fact, recommended that students commit new

versions back to CVS repository promptly alter their modification and do not modify a lile

heavily without saving it in CVS so that the oilier team members can have up-to-date local

copies; i f these instructions are followed, the avcraue number of mollifications. A '/# , should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T e a * A

T e a i B

T e a a C

T e a a D

T e a i E

A v e f h o l c C l a s s

n
^ \ L V j i \ \ I \ A~ * ^ r i

i * “ __ las:_it_t . i g & J t _________________________ t___ i t i y ■
5 7 9 11 13 15 17 IS 21 23 25 27 22 31 33 35

Dates: from Feb. 07 te lia r. 31
■11 13 45 47 IS 51 53

3igurc4.2: Temporal Distribution o f CVS Activity, lor Facli 5 Teams

not be small. However, die M # ofTeamE is much smaller Uian those o f other learns (almost

is one third value o f TeamE). I f the design o f the : , , ''calion is 1101 sul'licienlly detailed and

only high-level classes with subsiamially complex functionalities have been designed, then

i l becomes more likely that more than one member w ill have to touch the same lile at the

same time thus resulting in a higher number o f collisions.

Integrating the above heuristics, we can say that the higher the ratio o f successful merges

over collisions the more effective the team collaboration is, since cither their

design or their inter-personal communication enables them not lo step on each other’s work

products. From Table 3, we can see that the ratio y V /# /C # o f Team I) is the highest, where

(lie same metric for TeamA is the lowest, 'f lic problem o f TcamA seems to be the small

number o f liles in which they have divided their work - i.e., the small number o f classes

they have identified in their project design; i f they had further decomposed their classes

into several, simpler and more independent pai ls, they might have obtained a much better

task assignment, module design and file-sharing habils.

Fig. 4.2 diagrammalically presents the average workloads for the students o f the five

teams through the whole process day by day.

It is easy to see that all teams show peaks o f activity around the same dates in the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

' : ' f i r * .*
! ; ^ : r

.■ifg ; ■:•■■■:■>-

'(j y:;:;:"::'-\ v : yy .Sŷ ' ' y - y e y ^ . e e y . X / y . y : y ' ,........V ■ . yy y .;y
' " ' V K : •.?« -e;

DTtijg ryrf-jn;: 2p03-p2-07 i.w;?003ri'3-*31

Figure 4.3: Temporal Distribution o f MR Activity, for Facli 5 Teams

second and third periods (the due day o f tlte project part 1 is the day 13). However, there

arc some interesting differences too. TcamC began earlier than the other teams, Team 13

usually worked in a single day then stop for next several days, and Team I) exhibits a much

more consistent work profile than the rest. With this figure, instructors may notice that a

team has not started development, when most other teams have and may give them a prompt

reminder.

Fig. 4.3 shows the average Modification Request (MR) numbers o f these 5 teams. The

M R curve trend o f each team is consistent with that in Fig. 4.2.

Considering all these charts, we observed that TcamB has the most CVS total opera

tions, modification operations, w ith pretty high collision anil merge numbers. TeamD has

more regular workload habits than the other teams, and has a medium number o f MRs.

TeamB, C, and E have sharp peaks around each delivery deadline, preceded by long idle

periods. TeamB has the most MRs at the second deadline while TcamC has the smallest

number o f MRs. 'f l ic trends and relative positions o f the curves in MR chart are coincident

w ith that o f curves in Fig. 4.2. This means that all the teams have similar average MR sizes;

4 ,3,2 The Iiu liv idu a l-D evc lo p er aspect

In above section, we examined the aggregate behavior o f teams. In this section, we focus

on analyzing the live teams from individual behavior aspect. The analysis may support the

instructor in assessing the relative contribution o f each team member to the project and lo

notice quickly imbalances in tbe workload di.slribulion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3B0
S3 I..SHninr:£7
r/% LSH-ime29
*LSHaiiis42
(SaSNamefe
iS Avft_Tftnrr.A
SSAveJflholeClas:

A ll A(A«:M) C(Col 1 i-*ici'i) G(Mcrne) llif.o .li fy : Ofrhc-ikov,*.; K(Retrieve) Wt'Dclet c)
Ov-c-ration Ivr-sc

Figure 4.4: Distribution o f CVS Operations hy Type, lor Mem hers in Team A

Tea in A

A simple, yet potentially telling, metric o f the nature o f the collaboration among the mem

bers o f a team is the number o f their CVS openilions according lo I heir lype. Fig. 4.4 shows

die operation dislrihulion over all types o f each member in TcamA while Fig. 4.5 shows

these operations throughout the project-development process.

Fig. 4.4 seems to indicate that:

• Student LSName29 did much more work than the oilier members o f TeamA, because

he performed many operalions in CVS (note: We use the male pronoun to refer to

all students, irrespective o f the gender o f die actual student discussed). However, die

number o f his modification openilions is not correspondingly high. A large pari o f

(lie operalions he performed were die addition and removal o f liles, and he was also

responsible for many collisions.

• From this chart we might infer that LSNamc2y is die learn leader who designs die

project classes and in itia lly authors the liles for o ilier members. Compared to die

other members o f TeamA,

• LSNnme42 exhibits a better (more material) operation pattern: high number o f modi-

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ifu
m

be
r

of
O

pe
ra

tio
ns

90

80

70

60

50

40

30

20

10

0

 LSNamc27

-0-LSHa»e29

—ri— LSHame42

LSNameSS

A ve_TeamA

Ave_WholeClass

• : i ; j
t' ;
i j

1 ;■ : f

■ (r : - i

j k 1H
! x l| a t ’”tl

X : - i f , l

iff
x , /

L~ - . m

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Dates: from 2003-02-07 to 2003-03-31

Figure 4.5: Temporal Dislrihulion o f CVS Aciiv ily , lor Facli Member in TeamA

lications, few collisions and high ratio o f successful merges over collisions - M # / (. ! #

Seems his work is independent and he might lie Ihe developer who focuses on a com

ponent.

• LSNamc27 had almost the least CVS operation records. He did very few modilica-

tion, hut lots checkouts. Based on these symptoms, we can say that this member did

not have proper CVS usage.

We w ill support or reject these guesses with the other visualizations.

From Fig. 4.5 we notice the followings:

• There are large any-type-operalion periods between Day 28 to Day 39 and from Day

48 to Day 53.

• The average team activity is sim ilar to the average o f till the teams and follows a

sim ilar pattern in time: most operations occur in phase 2 and til the end o f phase 3:

around the two major deliverables o f the project.

• A ll four members o f TeamA appear to have similar operation frequency and distrib

ution except for LSNnme29, w lio was much more active around Day 3 I (i l l a r . lO^D

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3S0
55ExtRspiac*2C'
S3ExtReplace28
SS ExtRepl ncft29
Cl ExtReplace30
5S Av«_TeaniB
58 Avc_Vilv.il eClass

300

mii

i
i

250

2200

100

A ll A (Add) C ({!nl 1 i ' i nn) (lOtlr.rzr) M (lln d ify) (K C Iird tn m) H(Rrnovr) W (D rlc tc)

Operation Typles

Figure 4.6: Dislrihulion o f CVS Operations by Type, for Members in TeamB

and Day 52 (Mar. 'A0lh).

• This diagram provides counter-evidence lo r our earlier belief regarding the leader

ship role o f LSName29, which proves that more accurate analysis results come from

multilevel data. LSName29 did not start earlier than the other team members al

though he had several higher spikes comparing w ith those o f his teammates, so lie is

not likely to be the designer/leader. At this point, we can simply assess his operation

profile as ’’problematic” : in spile o f his big number o f operalions, il is not clear how

he contributes to the team.

TeamB

Fig. 4.6 and Fig. 4.7 tire two individual-developer aspect visualix.tuions for TeamB. From

Fig. 4.6, we notice the following facts:

• A ll the members in TeamB did more CVS operations above the average level o f the

whole class;

• No many differences among the operation amounts o f members;

• Member FxlReplace26 had the most total CVS operations and M-lyped operations.

However, he was not the main lile adder, and his numbers o f collisions and merges

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hu
ab

er

of
O

pe
ra

tio
ns

100
 ExtReplace26
••»-ExtReplace28
-*-E x tR e p la ce 2 9
••■><--- ExtReplace30
■■■£>■■ Ave_TeaniB

••■*••• Ave.WholeCl a:

90

50

V jfT k * y ' I - r ,?r+ - -

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 -11 43 45 47 49 51 53

0 l+.

1 3 5
Dates: from 2003-02-07 to 2003-03-31

Figure 4.7: Temporal Distribution o f CVS Activ ity, I'or Each Member in TeamB

are relatively small.

• Member ExtRoplace3() almost had the least total operations in TcamB. lie did the

least, m odify operations, as much as 1/2 o f lite amount o f ExtReplacc26. However,

he added the most tiles to the CVS repository, and almost all the tile removing works

were committed by him;

• Member ExtReplace28 had plenty o f operations with a little bit high collisions and

merges;

• Member BxtRcplace29 had few operations with the least tile adding, collision, and

merge.

From Fig. 4.7, we noticed that:

• A ll the members had the sim ilar curves and spikes; A ll o f them started at the same

dales and worked hard at the same small periods; In another word, TeumB has a

uniform and regular work trend, and die typical work-ai-ihe-lasi-minuie habit;

• ExtReplacc26 and ExlRcplace3U had active operations at the earlier stages while Ex-

I.Rcplace28 and ExlReplace,29 did more operations at the linal stage.

(42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

400

ritsetj

300 — fe-
•S3

350 — §■
a

W L S N a m e E O

LSNaiueS

88! L S N a m e U V

(71 t.SHnnewO

fi3 Av* JTeaiiiC

A l l A (A d d) C (C o l l i s i o n) G (M e r e o) II (M o d i f y) 0 (C h s c k o u t) K (K e n o v e) V (D e l e t e)

Operation Types

Figure 4.8: Dislrihution o f CVS Operations by Type, lor Members in TeamC

Tea ni C

Fig. 4.8 and Fig. 4.9 are t wo visualizations o f TeamC in the same level:

• The average level o f TeamC was similar to the average level o f the whole class;

• Member LSname8 did more than double operations comparing with bis teammates.

Most modification operations were committed by him, and almost all the liles were

added into CVS repository by him. He did not involved loo many collisions and had

the least checkouts;

• A ll the other three members had sim ilar CVS operation distribution;

• This team seldom removed files from CVS repository.

• A ll the members in TeamC are also typical work-at-the-lasi-minute developers. Not

only those three members with few operations, Inn also the core developer: LSNameS;

• They only had two spikes near the due days at the project parl2 and part 3. In the first

part, they did not leave many records in CVS;

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LSNamfcoO
- LSMame8

— LSNameS’i
LSNnmeQO

-;K- Ave_Team(
Ave_WholeClass

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 35 41 43 45 47 49 51
Dates: from 2003-02-07 to 2003-03-31

Figure 4.9: Temporal Distribution o f CVS Activity, lo r Each Member in TeamC

TcamD

From Fig. 4.10, we can notice that:

• The average CVS operations o f Team D were larger

class level;

tan the average o f the entire

• In this team, there was also a core ___ ' : : LSNamc.oS. lie had the most CVS

operations, added more than ha lf files into CVS repository, anil did almost double

amount o f the modifications;

• Member ExlReplaco27 had the least operation records in Tcaml), but removed rela

tively a large number o f liles and checked out frequently;

Fig. 4 .1 1 s that the work habit o f TcamD is much better than the previous three

teams:

• A ll the members started earlier than the other groups and worked consistently, almost

every day.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

29

Nu
mb

er

of
O

pe
ra

tio
ns

Hu

mb
er

of
O

pe
ra

ti

KRxR<‘|-.laoe27
:Ci LSHan, e2
n LSNaiMlv.i
S LSIIoraeTO

'□ AveJTeanD
•Ui Av^JVholeClfis

C (Col 1 i si on) G (Her/.c-)
Opel d*.icn Types

J L i& c M .
JHKoiil'v) OCa.ediout' K(Remove) W (Delete)

Figure 4.10: Distribution o f CVS Operations by Type, lor Members in TenmD

 E::Replace27
■s ••• LSflameS

~ k ~ LSHameSo
- x - LSllameTO

Ave_TeaniD
Ave_WholeClass

80

70

60

50

40

30

20

10

0
5 7 9 11 13 15 17 19 21 23 25 27 29 31 :9 41 43 40 47 49 51 5:Or

B ite s : from 2u03-02-07 20e3-"2-3!

Figure 4 .11: Temporal Distribution o f CVS Aes ivity, for Bach Member in TcamD

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220
BLSNann22
■ I SN,ino31

« LSNait*9

t'i' LSNam«93

KS AveJTenuiE

l2Ave_Whole01ass

200

180

L60

100

T ■ i ^ g! ..J i'i .
A(AA1) CCCnll i :5i or.) O d lw j,-) I- (F.’cimvii) W (|:r l n t r.)fy)A ll 'lv0 •i i i t

Figure d. 12: Distribution ol' CVS (Iperalions by Type, lur Mem hers in TcamE

• Member LSName58 always hail much more operations around ilie due days allhough

he had persistent works since the very beginning. We conjecture that he aeied as the

team leader, and always did some mop-ups al the linal moments before the deadlines;

Tea m 15

• The average CVS operation records o f TcamE is much smaller than the class average

level;

• TcamE added sim ilar number o f file into CVS repository as most teams, and did

nearly the same amount o f checkouts. However, their modilicalions (M o d #) are

much less; The reasons can be two possibilities: (a) members in TcamE had normal

developments but only treated CVS as a storage tool more than a sharabic working

platform, (b) members in TcamE did not have enough works;

• Almost half liles were added into CVS by member LSName93, but he only did very

few modifications on these liles;

• Member LSNamc9 had the most CVS operations with the most modifications in his

team;

• Member LSName22 did lots o f checkouts and did the most removing operations;

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nu
mb

er
of

O
pe

ra
ti

on
s

90
—*— LSUame22

LSNameSl
- A — LSNameQ

•—X— LSWame93

— — Ave_TeamE

Figure 4 .13: Temporal D isirihulion o f CVS Activity, I'or Facli Member in TcamE

• Member LSName3l bad very lew CVS tracks; Over the almost two-month project

development process, be only modified around 20 lile versions.

• The total CV.S operation number o f member L.SName93 was not small. Most o f the

operations were adding new liles: he added more than 100 liles into CV.S repository

while only modified less than 30 file revisions;

• Compared w ith other learns, TeamE had a pretty idle work curve: they almost had

Hat lines before day 33.

• Although some o f them had spikes before the second and third deadlines, the spikes

are still very short and small;

• Member LSname9 and L,SName22 started a little bit earlier than the other two mem

bers;

-*■— AveJVholeClass
60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 3? 35 37 39 ‘II S3 <15 ‘17 49 51 53
Dates: .from 2003-02-07 to 2u03-03“ 31

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D4
52
no
48
16

f—t
CO 44

42
©t 40
Mo 30
©
CM 36
0 34

* * 32
t-© 30
CM 2 0
© 26

24
o
© 22
N 20■
© 18

a 16
14

VI
u 12

* *
<0 10

Q 8
6

4
2
0

• Added

Removed

i i ****** *******

— — ------ ------ .:----- •• • ••• H« *Vi

----- ; ------

i
♦ ----- -----

♦
*

------ ---------- ------
• » t*

t —

i

no 40 no no 70 no b()
F i l e intJox

100 n o 120 130 110

Figure 4.14: File Adding and Removing by Dale, I'orTcatnA

4.3.3 The File aspect

Let us now examine how I he project, workload was distributed across the liles. CVSChcckcr

produces three visualizations lor each team to show the lile-related information.

Fig. 4.14 shows the file additions and removals ol'TcamA. The X-axis lists all the liles

in CVS repository.

• There were 137 liles in CVS repository at the end o f the project; Only three File (file

1, 2, 3, 4) was added before the due day o f project part I . They tire four Java classes

and all o f them were added to the team root directory.

• On day 16, the next day o f die deadline o f die project part I , A ll the four above classes

were deleted and re-located to the subdirectory ” src/” (lilc 30, 33, 39, 40);

• Another new class (lile.30) and ’ ’makefile” (Iile42) were also added to this place on

that day;

• Some other main classes and configuration liles (from lilcJO to Iilc5())wcrc added

into ” src/” directory in succession before the project part.? deadline (day 39);

• On day 32, 3 I liles were added to CVS (Iile51 to lilc S I). A ll these liles were online

manual liles required by project, and all of them existed on directory "src/helpsel".

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nu
inb

er

of
O

pe
ra

tio
ns

70

60

50

40

30

20

10

0

-10

-20

Figure 4.15: Distribution o f CVS Operations by Type, Ibr Fach Java Class in TeamA

As we noticed, these files were removed again on day 52: all the bun I liles were

relocated (filc82 to Iile90, and tile 107), and all the "lilm l ” liles were deleted.

• Six tiles (lile lO l to 106) were also added to module "src/helpsct/.lavaHelpScarch/”

on day32, and removed on day 52;

• A ll the (lies between lilelOS and file 123 were ” .g il” tiles. They were saved in direc

tory ” src/img” ;

• On day 53, 14 tiles (tile 124 to tile 137) were added to "test/'’ directory. A ll o f them are

” .txt” liles and they were created to lest the project quality before the final deadline

arrived.

The fo llow ing analyses are focusing on the Java liles o f TeamA (between tile I to tiled,

and lile30 to Iile50 in Fig. 4.14).

Fig. 4.15 shows different types o f operations performed on each Java class while Figure

38 shows the detailed modification works o f each member on them;

• TeamA added 22 Java classes to the repository;

69

1Sx
SI R (Remove)

8
& M (M o d ify)

I IK G (M erge)

S3 C (C o l l i s io n)

.. j§

11

i w.
m
n h>: ¥■m
m ss

I
% 1 1

I f N I I f l
l ! sv. i:5:•y.-i

. . . .
sis $
Ip . f l . V .

: I
, $

>x-:: £•: ;;f:
*|2 |:j f:|

i
, &

... .. 1 $
, §1 , I I . I I .

£3 " " “ *■ "
1 2 3 4 5 6 7 3 a 10 11 12 13 1-1 16 16 17 i t 19 20 21 M

I I

F ile index

.................................■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Files 1, 2, 3, 4, and 22 (they arc life 1, 2, 3, 4, and 30 in Fie. 38 correspondingly) have

already been removed at the date this visualization was generated;

• From the height o f columns, we can have a quick idea about which liles suffered

many operations: Files 8, 15, 10, 5, 16, 18, 22, and so on (in that order).

• They are also those liles that suffered many JVI (M odify) operations. Moreover, almost

all the collisions and merges happened on these liles.

• Their numbers o f modifications, M od # , d iffer but their sizes can be comparable.

Consider for example lilc 10 and 17: lile 10 has had many more modifications than

file 17; however, the eventual sizes are almost the same;

W ith this chart, members o f TeamA and instructors can easily detect those liles that have

problems in the design and prone to incur collaboration problems.

In addition to provide an overview o f the number o f modifications, M od # , Fig. 4.16

enables a deeper view into this information, presenting the numbers o f LOC added to and

deleted from each lile by each team member.

Combining the information from the above figures we notice that the tiles with the

highest density o f modifications, i.e., high ratio of modified lines per total lines of code,

such as liles 8, 15, 5, 16 and 18 were touched by multiple team members.

It is not always the ease that a lile modified many times is also modified substantially.

For example: the total number o f modified lines o f lile 17 is much less than that o f lile It)

although their numbers o f modification operations - M od # - are almost same;

Member LSName27 only modified 4 liles: File 7, File 8, File 15, and File 16, and

these liles were also modified by other members. Moreover, his modified LOC number was

small;

• Both members LSName29 and LSNamc55 modified almost half o f the liles. How

ever, most liles were also modified by other members, with high collision and merge

numbers; LSName2y was the author o f those 4 carly-addcd-and-rcmoved classes

(lile1 , 2, 3, 4); l ie was the only members who did some real coiling works on project

part I ;

• Member LSNamc42 modified 5 liles: F ile# 10, I I . 13. 18. Although File5 and

File 18 also modified by other members. LSName42 was the core developers o f them.

Moreover, L,SName42 did not change any line on those two most important liles:

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1800

iooo

1-100

1200

1000

800

600

<100

200
o
o-J 0

-2 0 0

-6 00

-8 00

-1 0 0 0

-1 2 0 0

Figure 4.16: Added mid Deleted LOC hy Huch Member, on Lacli Java Class in TeamA

File8 and File 15. In a word, LSName42 spent his work on several classes and he was

llie only or main developer on them. We can say lliai L,SName42 focused on some

independent, components;

Combining the information o f Fig. 4.15 and Fig. 4.16, we can notice that almost all the

files with high collisions and merges were modified hy multiple developers, such as File8,

F ile l5 , File5, File 18, and so on. We can say that the design o f these liles have to he im

proved.

Teainli

• There were totally 178 tiles in the CVS repository belonging to Team IT,

• Before the deadline o f the project part I , some liles have been added to CVS repos

itory since day 6, such as Iile2, !ilc6, from lile 123 to lile 142. A ll o f them were not

Java classes and were removed at the same day or at day 20;

• On day 20, 5 g if tiles and I Java class were added to CV.S rooi directory (li le l, 4,

5, 7, 8 and lile 3). Later in the same day, these liles were deleted from the original

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 10 20 30 <10 50 60 70 80 90 100 110 120 130 M O 150 160 170 180

F i l e i n d e x

Figure 4.17: File Adding and Removing hy Date, for TeamB

locations and removed to a new directory ” LFu llN am cl08/” . Six new tiles appeared

(see file 9 to 14);

• Also on day 20, those files added on project pari I were removed from their original

directory ’’docs/” lo ” does/parl.I/” , (see the removing o f liles: file 126 lo 142, and

new added files: tile 143 lo 167);

• Some new Java classes and other projccl files (mosi o f them are g if files) were also

added on day 20;

• In projccl part 2, more Java classes were added, together with some oilier files;

• A group o f files were added on day 27 and removed on day 38 (just before the due

day o f projccl part 2). A ll o f them are g if liles (lile 28, 61, 62, 66, 67, 76 lo 83);

• Two renamings happened on day 38 (renamed file 20 lo file 2 1, and file 36 lo lile 36).

Both o f llicin were created on day 30 originally;

• Files between 84 and 121 were JavaDOC liles. Almost all o f them were added into

CVS on day 38 while some o f lliem were added on day 39 and 63.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260
R(Remove)

220

200

ISO

S 160

120

h 100

-20
F ile index

Figure 4.18: Distribution o f CVS Operations by Type, for Facli Java Class in TeamB

• TeamB had 34 Java classes in CVS repository. A ll o f them scattered before lile 75 or

after file 15B in Figure 4.17;

• Since lliey created their project modules, they only removed one lile from CVS: (lile

1 in Figure4.18 and lile 3 in Figure4.l7);

• A lm ost lu ilf o f the modifications were committed on Filc23;

• In addition lo File 23, Files 7, 8, 17, 12, 9, 14 etc. were other relatively important

files. They were modified many times and had collisions and merges;

• There were also some small classes with very lew modifications;

Based on above observations, we can say that the structure design o f TeamB was not. well-

proportioned. This was an important, problem to he improved. Fig. 4.1 gives us supportive

facts: TeamB has the largest collision and merge numbers.

From Fig. 4.19 we can notice that:

• Most o f the above listed high-operation liles were modified by m ultiple members;

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6000

5000

4000

3000

2000

1000

^ 0

-1000

-2000

-3000

-4000

Figure 4.19: Added ;ind Deleted LOC by Hacli Member, on Fach Java Class in TeamB

• Some files were modified heavily (added more then 2000 lines and removed more

lhan 1000 lines, the largest lile was changed almost 10000 lines) while some others

were almost no touched;

• There were also cases that a lile modified many times was not modified substantially

(File 17), and a file seldom modified was changed substantially (File6, 22);

• Member ExtReplace26 modified 7 files. Most o f them were cooperative work prod

ucts shared w ith other members;

1
• Most single-author files in TeamB were maintained hy ExlRcplaco28. Besides, he

also joined the developments on some other files with his teammates. Figure4.fi lets

us know that F.\lRcplace2X had some collisions ami merges. Thus, we can say that

all his collisions and merges came from these cooperative lile: File7, 14, 16, 17, 23,

26.

• ExlReplace29 and ExtReplace30 did few modifications, and they always joined the

files with other members instead o f having own independent files;

74

EUExtRfrdaoftfO

B E x tR e p la c e 2 9

£SE>:tR’rp lace2S

H E x tR e p la c e 2 6

-y -
11 13 g 15 n 19 21

— B-jjjj " — “ — “ -
25 27 29 31

F ile index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D
at

es

(f
ro

*
20

03
-0

2-
07

to

2
0

0
3

-0
3

-3
1

)

54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
1R
16
14
12
10

8
6
4
2
0

0 10 20 30 40 00 60 70 50 00 100 110 l . :0 130 140 150 160
I ' i l c imlux

Figure 4.20: File Adding and Removing hy Dale, for TeamC

TeamC

• TeamC had 158 liles totally;

• There were only 7 liles that were added into CVS in project parti (File 1, 2, 3, 4, 5,

7, 8), and in these files only File 3 was a Java class;

• Most image liles required hy the project were added into CVS on day 53 while some

sporadic ones were added on day 37, 39 and 49. A ll these image liles were listed in

Figure 4.20, from lile 9 to 29 (except three Java classes: lile 15, 16, and 17);

• A ll the JavaDOC liles (lile 30 to 117) have the same situation as those image liles.

• A ll the liles with index larger than I 17 were Java classes, except a manual doc lile

(lile 146) and a help html (lile 138).

• TeamC only had one renaming work: they changed the name o f lile 133 from "Todo.java"

to ’’ToDo.java” (lile 130).

• Only 4 liles were removed, and 3 of them were Java classes;

* 4M **« ♦ II * 4 4 4 4*m*» • # Added
S? Removed

*
* 44

♦ ♦ ♦ * mil mw 4 4 IWW I *4 4
♦ 4 4 *♦ «

4
♦

O* •»

•tt ♦

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nu
mb

er
of

O
pe

ra
tio

ns

!\:C (C o llis io n)

-1 0

Figure 4.21: Distribution o f CVS Operations by Type, for Hach .lava Class in TeamC

• TeamC had 42 Java classes, and 4 o f them were removed from CVS. Actually, one o f

die removing was the result o f a renaming;

• The CVS operations spread on these Java classes much more balanced (located on

H le l5, 16, 17, and 118 to 168 in Figure44), comparing with that in TeamB;

• The fo llow ing files had many CVS operations with collisions and merges: lile 25, 22,

23 ,8 , 10, I, 14, 15,7, 18, 16 and so on;

• Some liles had not been modified since they were added into CVS, such as liles

from 34 lo 40. A ll these liles include three removed ones constituted a module

” souree/wmve/” ;

From Fig. 4.22, we have the fo llow ing observations:

The modification works on most liles do not have so many differences as that in TeamB;

Again, those liles with high collisions and merges were modified by multiple members;

Some liles with a large number o f modifications were only maintained by a single mem

ber, such as lile 28 and lile 17;

LSName50 modified 13 liles, but none o f them was only maintained by him;

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-100

'1200

1000

800

600

400

:^o

o

-200

-400

-600

Figure 4.22: Added and Deleted LOC by Each Member, on Eacli .lava Class in TeamC

LSNameS modified 19 files. He contributed a tremendous amount o f work oil most o f

die 19 files. Moreover, be was the only developer for some o f them;

LSName87 was a very independent developer. Almost all o f his modification works

were committed on Uiree classes (File20, File28 and File32), no other members touched

them;

LSnamc90 modified 8 liles. Two o f them were only developed by L.Sname9().

Tea in I)

• The number o f files in TeamD was exceptionally large: 263 files in total;

• TeamD started tbe project development earlier than till other teams and have a large

proportion o f working days;

• Although TeamD has a comparatively better habit, the project had an abnormally

high number o f .lava classes. A fter inspecting the file report, two reasons were found:

- A ll the members moved their individual assignment work into the common

project directory (liles from I to 58), and

- Member LSNamc58 dumped another 37 Java files (files from 62 to 98) into it

directory named "domo/nowLayoiu" on the due day o f project part 2 just for

77

p
E8LSHarae90

El LSH ame87

KtLSHair.e8

B LStlamo50

f
Ji

(j...............
•j 1

:

9>
}

i j
1

x
- ft"

a

{
-

>
f__ >>

-4ft - j

: * I
f

|

1
j H a

i —

\ 3 5 I \ 13 15 17 ' 19 i

l | l

\ k h s
! ":___
i
>!

37 39 41

» File iviex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 10 20 30 40 50 60 70 80 00 10 11 12 13 14 15 36 17 13 10 21 22 23 24 25 26 27 28
0 0 0 0 0 0 u 0 0 0 0 6 u 0 0 0 0 0 0

!{ i l e in d e x

Figure 4.23: File Adding and Removing hy Dale, lor TcamD

die demo, and never touched them any more. A ll these liles were actually the

copies o f those .lava liles finished until Day 39.

• Files 102(o 156 were JavaDOC liles. They were added intoCVS.on Day39 or I)ay53.

A group o f UML-relatcd liles (liles 258 to 263) were added into module "ILVIL-

diagrams/" very early (on Day 9) while another group o f the same-named liles were

also added in a different module -"docs/U M L/T an the same day. Later, the lirsl

group was removed on Day I I;

• Files 157 to 172 were also liles that related with UiVIL diagrams. They were added

into directory "docs/UM L/” on the follow ing days: days 9, 48, 51 or 52;

• The removing o f lile 169 was the result o f a renaming on Day 48: its name was

renamed from ” iCal-View.dia” lo ” iCal-Vicws.dia” (lile 167);

• M osl Java classes were located between lile 173 to 229. Some o f them were added

pretty early (in project part I);

• A ll the image liles were located between File 230 to 257 in Figure 4.23. Almost till

o f them were added in project part2, especially just before the deadline.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hu
mb

er

of
O

pe
ra

ti
on

s

45

40

35

30

25

20

15

10

5

0

-5

-1 0

Figure 4.24: Distribution o f CVS Operations hy Type, for Each J;iva Class in TeamD

Fig. 4.24 shows us the fo llow ing facts:

• TeamD added 126 classes lo its CVS repository;

• More than half o f llicm were only added without any further modification. We have

already stated the reasons above;

• 38 classes were modified in the project development process, and 6 o f them were

removed from CVS repository;

• More than 10 liles had collisions and merges: File78, 79, 80. 84, 88, 89, 90, 92, 97,

101, 102, 104, 105 etc. This shows us that a team with a better work schedule can

also have collaboration and design problems.

• M ost high-collision-and-mcrge liles were modified by multiple members, such as

F ile78 ,79, 88,90,92 , 101, 102, 104;

• ExtReplacc27 did not have his own classes. A ll the modifications ho committed were

on files that co-developcd with other members;

79

- ❖ • • C (C o l I i s i o n)

•••«•• G (Merge)

M (Modify)

—* - R (Remove)

h

t

I

*
1
1

i A '
i: 1

i i
:
j ,

(

fai •
f! if
‘’ ii l!i
J H

i i
4

I
M i l
1. if: . :

i i .
; U-

n n i
I M i I :! 1 ’

i j i
...,,, . «$. .fflljfr...............JL.,

l 7 13 19 25 31 37 <13 <19 55 61 67 73 79 85 91 97 10 s 109 115 121
1
1

Fi le index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2500

2000

1500

1000

500

S o

-500

-1000

-1600

- 2 0 0 0

—A— ExReplace27

-:t:~LSHane2

LSHaJue58

------L3Majtie70

’ *

1

1 T
1 ■■ ” ■ ■ jf,------- "

" i * i ‘ “

1 7 13 19 25 31 37 <3 49 55 61 67 73 $ 85

i»
c,j

n
*

10

!a
e

F
—

_

* _
4.

F i le index [

Figure 4.25: Added and Deleted LOC hy Each Member, on Each Java Class in TeamD

• LSName2 had 6 shared liles and 3 independent tiles:

• LSNamc58 had many independent liles with several shared liles; Figure 4.10 tells us

that, he was the member who had the most CVS operations in TeamD. l ie a 1st) atlded

the most liles and had the most modification works;

• LSName70 changed a great number o f lines on several shared liles.

TcamE

• TcamE created 178 liles totally; The project size is normal compared with most other

teams;

• A ll the members did not add any lile into CVS before day 22;

• Most liles were added at or jus! before (he deadline o f project part 2: Day 39. Same

things happened at the project part 3;

• With the inspection o f the java information, we found that TeamH did not have rea

sonable design o f the project structure: all the Java classes and most other liles were

dumped under the root directory near the due days, and no any package concepts;

80

with permission of the copyright owner. Further reproduction prohibited without permission.

0 10 ?.() 30 40 50 00 70 30 90 100 110 130 130 14 0 150 1 f,0 170 130
File index

Figure 4.26: File Adding and Removing hy Dale, for TcamE

• A ll the JavaDOC liles (liles 135 lo 178) were pul in a direeiory named ’’litm l/” on

Day 39 (due day o f project pan 2), insicad o f lhe popular module name such as

” docs/.lavadoc/” ;

• 7 files were removed (liles I28 lo I34). The)' were some temporary existed liles Ibr

testing.

Fig. 4.27 and Fig. 4.28 show us the follow ing observations:

• TeamE had 51 Java classes in CVS reposilory totally, and 3 o f them were removed;

• The numbers o f CV.S operations on the liles are smaller than the first four learns;

• The fo llow ing liles had collisions and merges: File I, 7, 8, 14, 22, 32, 33, 36, 37, 38,

48; Also, they had many modifications;

• There are some liles that were never been modified after they were added into CVS.

• Almost all the high-collision-and-mcrgc liles were modified by multiple members;

• Member LSNamc22 modified 9 classes. Only two o f (hem (IiIe36 and 38) were

developed and maintained by himself;

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B! R (Remove)

C (C o l l i s i o n 1

i— i-

Figure4.27: D islrihulion o f CVS Opcralions hy Type, lor Bach Java Class in TeamB

600

500

300

200

100

-100

-2 0 0

-300

Figure4.28: Added and Deleted LOC hy Hacli Member, on Hacli Java Class in TeamB

S2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Although, member L.SName3l luid very lew CV.S operations (sec Figure 36). his

modifications spread on 10 classes, and lie had 2 independent classes with heavily

changed LOCs;

• Member L,SNamo9 had the most CVS operations. Me touched almost all the classes

(17 classes) and also had his own classes;

• Although most, liles were added by member L.SName93, he only contributed his mod

ification on 5 shared classes.

4.3.4 The File-Version aspect

In above section, we detected several liles that may have design problems: multiple mem

bers modified them together with high collision and merge numbers. In this part, we display

die detailed LOC changes by date o f each o f them.

In TeamA. three visualizations in the i-'ile level (figure 4.1-1. 1.13, and 4.16) helped us

to detect that File8 and l-'ile 13 were two major liles that may had design problems: three

members joined the developments, and some collisions and merges happened on them.

Fig. 4.29 displays the detailed LOC changes by date o f Filed with whole name as

’’TeamA/src/Calendarl-ramo.Java ’ and Figurc32 show the same information o f l-'ilc15, whose

whole name was ’’TeamA/src/ICalConlrollcr.java” .

• File ” TeamA/src/CalendarFrame.java” had 30 revisions totally;

• This file was added into CVS repository on Day 16 by L.SName55.

• LSName33 also finished the first several revisions on Day 26;

• Most co-developments happened before project part deadlines, such as on Day34, 38,

39, 52, 53. O f course, they were the days that collisions and merges happened on this

file;

• Member LSName42 did not touch this file;

• F ilc” TeamA/src7ICnlConlrollcr,java" had -14 revisions and was also added by LSNnmc55

on Day 16;

• LSName29 finished several first revisions on D ay2 l,22 , and 28;

• Member L.SName42 seldom worked on it;

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

320

280

240

200

160

120

0 8 °nJ

40

0

-40

-80

-120

Pil.KHiminfi

K}|.SH.-i»i:42

bS I.KHn»n27

_l 1----

-

24 30 32 36 38 10 42 44 46 48
r:
a:

D a te ;;: f r o a 2003-03- 3 to 2003-03 -31

Figure 4.29: Detailed LOC Clumge hy Dale, on File ’TcaniA/.src/CaleudarFratne.java’'

140

120

100

B Lf;Ha»i:27

40

-20

-40

-60

-80

-100
D a te s : f r o * 2 0 0 3 -0 2 -0 7 to 2003-03 -31

-120

Figure 4.30: Detailed LOC Change by Dale, on File ” TeaiuA/src/iCalContmllcr.java’'

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2000

1800

1600

1400

1200

1000

800

600

400

200

-200

-400

-600

-800

-1000

-1200

-1400

-1600

Figure 4.31: Detailed LOC Change by Date, on File ’’TeamH/code/RCal.Java”

• Member LSName29 was the core developer lor this lile on projcel part 3;

• Collisions and merges occurred on days 3 1, 34, 33, 38. 39, 32 and 34.

In TeamB, File 23 was the main class in the project that experienced the most CV.S oper

ations and modified LOCs (see Fig. 4 .18 and F'ig. 4.19). Its whole name is ’’TcamBcodcRCal.java”

• File23 had 177 revision in total; This number is larger than most other classes;

• Fiie23 was created by FxlReplace3() on Day 27, then KxlTcplace29 took over it and

finished 8 revisions on 4 days;

• On the last three days o f project part 2, at least three members worked on it, which

was a dangerous sign lor the class design; .Same things happened near the end o f the

project p;ui3 deadline;

• On the final day o f the whole project, FxiRcplacc28 was the core developer on this

file.

Fig. 4.21 and Fig. 4.22 tell us that Filc23 was modified the most iVciptcnlly in TeamC.

Although its substantial modifications were not the highest, it had the most collisions and

83

CjEitKcplaceSO

13 ExtReplacc2U
H I!11 Hep 1 acc2tl

13 ExtKcplacc26

1 j

. . . — 1 1
I
1
I

i i ;
j p
i I f
| _ | | j |
1 ii ri ft * s ip . . . J j J l ii ” o

1 3 R 7 Q 11 13 1Fi 17 71- 73 97 ocj 33 SRjSV f s I * th S a *41 4S 46 47g + <S 61 ■

I
Dates: fro« 2003- 02-07 to 2003- 03-31 1

I
j

- I i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

400

360

320

280

240

200

120

- 4 0

f r o i 2003-02-13 lo 2002-03-31
- 8 0

Figure 4.32: Detailed LOC Change hy Dale, tin File ” TenmC7sniiree/vie\vs/iG<irApp.javn"

merges, and all the four members in TeamC touched it; Fig. 4.32 shows us a more detailed

history o f Filc25 - ’’TeamC/source/views/iGorApp.java” .

• File ’’ToamC/sourcc/views/iGorApp.java” had 44 revisions;

• Member LSNameoO added it, to CVS on Dny36 and created the original four revisions

with member LSName87 on the same day;

• In both main project parts, LSNameS always worked on it earlier. As the deadlines

approached, other members joined the development in succession;

Fig. 4.33 shows File 8 ("TeamE/CalendarModel.java”) in TeamB.

• Filc8 had 28 revisions in total; It was added by I.SNamed on Day26;

• On project part 2, LSNamey was the main developers on this lile at early days.

• A t the due day, LSNamc22 and LSNamedd also contributed some modification on it;

• D ifferent from other teams, Team 13 had fewer modifications on project pan 3; Mem

ber L,SNamc31 only modified this lile on Day 47.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

160

120

80

40

-40

-80

-120

-160

Figure 4.33: Detailed LOC Change by Dale, on File "ToamF/CalendarModel.java”

4.4 Heuristic Generation and Knowledge Extraction

In this case study, we analyzed I lie dala o l '20 students in live learns. We sclccled all Ihe

directly collectable attributes and generated derived attributes lisied in Chapter 3.3.2 from

4 different levels. We transformed rill these parameters as AKFF |3 I| format. Apriori

algorithm o f Weka 13(3J system is adopted to discover interesting patterns about how team

members use and modify their.software assets and to extract the high-level knowledge hided

along the project development process from the original data.

Some results were mined from our dataset. The following are titles discovered with

m inimum support!). 15 and minimum confidence D.d:

M einberO verTeaiii-AH Type()perJavaF il(;= I, M cm bcrO vt’rC ia s s jd - I =:• M cn\ber()\'eK)w n-

TeamJA-1

This rule tells us that i f a student’s M-lype operation number I M o d #) on .lava lile is

at the low level over his team, and his total M-lype operation number on till extension (iles

also takes the low level o f the whole class, his mini M-type operation over his own team

must be low.

I la t io ln C la s s fd le N w u b e rM = . ' ! = >

R a t io l nC lass /d lc N umbur p a s lM a d i f y = 3,

X7

E (L S H a « e 9 3

SI I.S H a .L -9

E H .S H a .c 3 1

* IL S H t i . e 2 2

f t .

£

5
!

K
K

$
X
<

1 I

..................... i l I 1 . 1

32 34 35 36 37 is
1

40 41 42 43 44 4 5 4 b 4 7 4 8 4 5 o».i 5 ! 52 f j i

.. 1

I
%

1 a t e : ; : J ' r o . 2 0 0 3 -0 2 -1 1 t o 2 0 0 3 -0 3 - 3 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R a i / i . o J n O U i . s s 1' , ' i l e N a n i b i t r i i i s l l \ i o i l / J y j a a n I 1' i h = ;{

This rule shows (hat i f the number o f files modified by a sliidcni can reaeb tbe medium

level in the whole class, he lias high possibility lo be die Iasi modifier o f medium amount

files comparing with die whole class, so do .lava lilcs.

S l i id e n i tO v e rC la s s w o rk in y D a y s M = 1 = > S,l.-ii.il.ai-lOiH‘.rC I(is .s \yorkh if j lJ t iy is i\ - l juvuF ile —

1, Stiu l.en lO verC lass irj(!.ghiD(il,eAj(i.vo,l‘' i lc = f>, Slu.ih n 1.0vcrCJI.huh/>or/i n l) a la , \ l l ' l 'p c O p e r ja v a F i le

5

This rule implies us: i f a student only spent few days on modifying files (include Java

files) comparing w ith other members in the same class, lie usually begins his A-type op

eration on Java files pretty late. Besides, lie begins any CVS operations on Java file very

late.

A ll o f these mined associate rules are not surprising. We did not discover much more

informative or intriguing rules, due lo the limited size o f the dataset. Currently, the dataset

collected from student projects are still too small to mined promising and novel patterns.

However, even with these existing results, we still got some supportive information: the

performance and development o f an individual are basically consistent in different aspects.

I f the workload o f a member on Java dies is not large, his total workload on any-cxtension

files should not be large. If a member only worked on several days, his total workload

should not be large also. In such a busy and light undergraduate study period, w ith all the

requirements o f a largish project, it is very d ifficult lo get a good score with final gusty

developments. That is why we think that, a good work habit is important and CVSChcckcr

visualization is useful.

4.5 Heuristic-Driven Analysis

Based on the visualizations, querying, statistical analysis and bollom-up analysis, we had

observations corresponding to individual performance and team collaboration in the live

student teams from different levels. To validate, polish, and better uncover these correla

tions in future, we executed heuristic-driven analysis strictly follow ing the steps listed in

section 3.2.5.2.

4.5.1 Sum m ariz ing patterns

We focus on these live teams because they gave us permission to analyze their data, instead

o f selecting with some special requirements. We observe anil summarize the fo llow ing

SS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

facts 011 the 5 teams, related lo the individual operation, team collaboration, lile evolution,

module design, and so on.

CVS Operation-related Summaries

Usually, each team has its own work trends. Although members might have some diversities

on the early stages, all o f them had sim ilar spike limes and idle periods as the project

progressed;

In a team, there is usually a member whose number o f CVS operations is much larger

then his teammates. In general, such developers can be divided into two groups: (I) Added

most files into the team CVS repository and did medium amount modification operations, or

(2) committed the largest number o f modification operations and laid medium amount tile

adding operations. Most likely, they are team leaders. They act the core roles in their team

and had strong impact on the collaboration and final product quality. Instructors should pay

attention to their performance and give instant direction i f necessary; Team leaders usually

started their work earlier than their teammates, and had greater number o f CVS operations

around the due days (they did some mop-ups for their projects before the deadlines).

Some members had very few CVS operations. There tire two possible reasons: in

correct CVS usage, or deficient contribution; The visualizations o f CVSCheekcr can help

instructors and members to know the retd reason mid help them do some corresponding

adjustments;

Some other members do not have many tile adding operations, but their numbers o f

modifications and total CVS operations are in medium-level. Moreover, they have few

collisions and merges. These members in till probability lake charge o f several independent

classes or components;

Teams with better work habits can still have unbalanced workload allocation and prob

lematic project design; However, they usually have smaller possibility to have deficient

development;

Teams with a great number o f CVS operation records in repository and better work

habits usually finish their projects in a belter quality. Team It and Team 13 were two teams

that got better assessments (project scores) from TAs and instructors and their average CVS

operation amounts were higher than the average class level. In additions, they had com

paratively more regular and even work schedules, especially in TcaniD. This observation

provided supportive information to our thinking: distinct team-collaboraiion patterns affect

team performance and the product quality.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File-level Summaries

U is not always the case that a lile modified many times is also modi lied substantially.

Most lilcs that have been modified by a member have less number o f collisions and

merges, larger ratio o f total LOC per modification number and smaller ratio o f modifications

per number o f modified LOC.

When a leant member is the ’’owner” o f a lile, i.e., he is the file's only modifier, then he

tends to concentrate on their work mostly outside CVS; updates o f the tile in CVS are less

frequent and represent more substantial changes;

Both abnormally high frequency o f modification operations and huge numbers o f mod

ified lines may be the evidence o f an unstable lile (i.e., a lile that is either poorly developed

or a h ighly coupled lile that is affected by changes in many other liles). Analysis o f the

modification operations correlations might indicate (he latter, or records in a bug database

m ight support the former hypothesis. In any case, this phenomenon may trigger the instruc

tor lo examine the lile in question further and advise the students accordingly. Therefore, i f

a team has a huge number o f collisions, the instructor might suggest students to inspect the

m ultip ly modified liles and see whether they can be re-designed o r whether the maintenance

can be assigned to a single person.

Most teams have some files that have not been modified since they were added into

CVS repository;

The mosL possible reason o f the abnormal large project si/e is the module copying:

Most file removals happened only because o f the renaming or relocating;

Hardly Java elasses were added in the project design phase (project pari I);

Some testing liles usually have been added just before each deadlines, and some o f them

w ill be deleted soon;

Alm ost all the added batch liles were not Java classes. They could be the test files,

image liles, JavaDOC files, and so on.

'Most Java classes were added into CVS repository in procession after the project part

2;

M inor refactorings (e.g.: renaming) usually happened around deadlines;

Most creators o f those important, liles finish the first several revisions before other mem

bers joined in;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 Evaluating the sum m arized patterns

Wc evaluate above summaries with the collected project/team objective informal ion, .such

as projecl history, questionnaire fillings, etc. In our case study, each member was required

to finish a set o f questionnaires. Their answers are the best subjective information lo consult

with.

4.5.3 Developing heuristics and queries based on these validated patterns

Since we are not only interested in the past performance, but also the likely future perfor

mance on new team projects, repealing the observations on (.’VSCheeker visualization and

data analysis manually is not a wise way when we have the data o f a new team. Thus, to

achieve the above goals, we have been working on developing a set o f heuristics and have

developed a set o f queries that, correspond to our intuitions about relevant (both desirable

and undesirable) behaviors o f teams and individuals at a high level. Our current queries

include as follow ing:

• Team leader query;

• Independent developer query;

• File management query;

• Problematic tile query;

We applied these queries on the data o f the 5 team again, detected the fo llow ing results,

and got. confirmation from students’ questionnaires:

• Detected team leaders of Team A (LSName29), TcamC (LSNamcS), and Team I)

(LSName58).

• Members L.SNamc42 (TeamA), HxtReplacc26 (TeamB). and I.SNamcS? (TcamC)

were members who focused on several independent components:

• Members LSName29 (TeamA), KxiRcplace3() (TeamID, and LSNameS (TcamC) were

tile managers. They added most new liles into their projecl CVS repository and com

mitted most removing;

• 48 classes were picked out by the queries as the problematic liles o f all teams in the

class. A ll those dangerous liles discussed in section 4,3 were gathered;

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.4 A pplying (lie heuristics and (picrics

Wc extended and applied llie.se heuristics and tjnerif.s, generated new patterns, re-evaluated

the results on these new datasets, and did some adjustments on the heuristics iI' it is needed.

We used the data o f those students who gave us permission and queried the follow ing re

sults: 6 team leader candidates were selected automatically and o ol them were obviously

proven witJi the questionnaire results; 5 students were detected as members who mainly

focused on components and a set o f dangerous liles o f them were picked out. Those role-

related results were confirmed by CVS reports and questionnaire results.

4.6 Patterns

In this section, we select and list some important patterns summarized based on the analysis

o f CVSCheeker. A ll these patterns are applicable to small-size teams in educational envi

ronments. We w ill compare them with the patterns summarized from other environments,

such as open source communities in next chapter.

We categorize the patterns into three types: factual patterns, red Hags, and team-role

profiles. A factual pattern expresses some characteristic o f the development history o f no

obvious negative or positive implication. A red Mag captures a problematic situation whose

persistence may warrant a preventive action. They should he detected early and avoided. A

team-role profile includes those patterns that are related to some specific team roles.

4.6.1 Factual patterns

• Late file additions. .Student teams usually do not added tiles (especially the core

development liles, such as Java classes) into CVS repository until their whole design

phase finished.

• Aggregative liles. Most lest liles or image liles or configuration files always were

added into CVS at the same day/phase. Usually, the date is near a deadline, and

sometimes the group o f lest liles would be removed again al ter the deadline.

• Adding Java class in succession. Most Java classes were not added in batches. Their

additions usually scatter from end o f the design phase to the linal deadline.

• Renaming and relocation existed. In this cxplnrnioi\ case study, each team had sev

eral renaming or relocation eases. I f these things happened frequently, it is also an

embodiment o f the insufficient planning and design belore they started works.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .6.2 Red flags

• Uinlcmse o f CVS. M ost members used CVS very little in the early phases, and they

exhibited an irregular workload curve - long idle limes interleaved with sudden peaks

before deliverable deadlines. This pattern is problematic because we found that it

often is either a symptom o f under-contribution or a source o f future collisions.

• M ulti-way collisions. Collisions usually involved more than two members. This

pattern may be indicative o f high coupling, poor modularization, or poor allocation

o f the labor.

• Watch fo r merges. Most files with collisions had earlier successful merges. This

pattern seems lo suggest that when successful merges o f divergent lile revisions are

noticed, the team should consider re-design their responsibilities around the affected

files lo avoid future collisions.

• Miscellaneous. .Several other less pervasive problematic patterns were also identified,

including excessively large files, frequent collisions/merges, and repealed alternating

file additions and removals.

4 .6.3 Team -ro le profiles

• Leaders vs. component developers. The two most common roles in these case studies

were team leader (a core contributor who is dc facto in charge o f the overall project

and steers the development effort for a given period) and component developer (an

exclusive contributor lo a specific file or module for a given period).

• Leaders are architects. Leaders tended to add a lot o f new liles in the beginning

o f the projecl. Consequently, they had the most i n f l ue nc e o v e r the architecture and

evolution o f the system and the division o f labor.

• Component developers work on existing artifacts. Unlike leaders, component, devel

opers tended to add few liles or no liles at all.

• Leaders contribute heavily. Leaders usually also performed a huge number o f CVS

operations, modifications in particular, that exceeded by far the number o f operations

performed by their teammates.

• Leaders contribute steadily. Leader had a better working habit. They started con

tributing early in the project and had relatively even work curves.

‘J3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Component developers have lim ited locus. Not surprisingly, most o f the CVS op

erations o f component developers were modifications to a small set o f liles, with

relatively few collisions with their teammates.

A ll these patterns w ill he compared with those patterns e.\Iraetecl from our next ease

study in the next, chapter (teams in open-source communities).

i>4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Three teams in open-source
community

The open-source process model is emerging as a new lightweight paradigm and increas

ing ly popular paradigm I'or software development. It has already produced several success

ful products. This process is fundamentally different from more traditional analysis- and

design-driven processes, which raises a set o f interesting research questions: what activi

ties tire carried out in open-source projects and hy whom? Are there typical or exceptional

patterns? In this chapter, we report a case study conducted using CVSChccker to examine

three small open-source projecl teams. We discuss the insights that the CVSChecker analy

sis produced regarding these teams and compare them with the results from previous case

study w ith senior student teams depicted in Chapter 4.

5.1 Objectives

Our first case study w ith CVSChccker examined the development process o f senior un

dergraduate student teams and identified several patterns. Some of these patterns can he

thought, o f as indicative o f good teamwork and others as symptoms o f problematic perfor

mance. However, that case study was conducted in a controlled environment, in the sense

dial the student teams followed a process largely orchestrated by the instructor. Software

teams vary greatly - from small student teams in an academic environment, lo teams o f

various sizes in the software industry, lo the expanding open-source communities. More

recently, our interest has expanded lo the open-souice context.

The influential ’’Cathedral and Bazaar” paper |:iy'| discusses the open-source develop-'

ment process as an almost silver-bullel solution: ’’ the open source movement consists o f

ideal cooperative people, where conflicts are few and can be resolved w ithin a community.”

VJ5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case study, we try to gain some insights on how this model works in practice. To.that

end, we apply the CV.SCIiecker tool on several typical open-source projects towards a better

understanding o f the nature of teamwork and collaboration in such projects. As an initial

step, we are interested in the similarities and differences between Ibis style o f development

and the more controlled styles observed in controlled academic sellings.

The main goal o f this case study was to analyze the teams in open-source environment,

with the fo llow ing questions:

1. Can CVSChecker also be applied to Open-Source Projects (OSPs) to reveal developer

collaboration and lile evolution patterns?

2. Can one easily and intuitively understand the development trajectory o f an OSP only

with the help o f CVSChecker?

3. Can CVSChecker detect healthy and problematic patterns in OSPs?

4. How sim ilar (or different) are role-specific behaviors and lenm-collnboralion patterns

in academic and open-source environments, and

5. What are the characteristic differences, among different projoci-devclopmont processes

(e.g. inexperienced student teams in academic environment following a design-driven

process and teams in sell-regulating open-source communities)?

To sum tip, the goal o f this case study was to examine whether the CVSChecker tool is

useful for OSPs and whether its functionality is sufficient to reveal interesting information in

the behavior o f teams follow ing this type o f process. In addition, this case study is designed

lo investigate whether those patterns identified in the initial case study are applicable, and

identify new patterns that are possibly unique to OSPs.

We believe that i f the information is suitably presented and highlighted, CVSChecker

tool can help developers (especially newcomers) in OSPs to better understand the projecl

development process and the code evolution. Moreover, teams in open source communities

have their specific patterns together with some other patterns sim ilar with those in educa

tional environments.

5.2 Settings

5.2.1 Steps

Based on above scopes and goals, this case study was executed with the following steps:

%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1: projecl selection. There nrc abundant OSI's in open-source communities, how

to select the objects in this ease study? We give a farther explanation in 5.3.2.

Step 2: Inferring development milestones. Open .source projects usually last lor a long

period, such as more than 2 years. Their code sizes are also very large: hundreds o f liles

were created, developed, and maintained. We use CVSChecker visualizations to get a quick

and rough idea about the whole process; We believe that CVSChecker visualizations can

help us to identify important project milestones, specific developers, or suspicious liles with

underlying design or collaboration problems.

Step 3: Focusing on the each phase or initia l development phase. To further understand

the work o f these developers or tiles, we divide the whole process into several small phases

according to those milestones, and zoom in some specific ones. Most OSPs usually have

an in itia l release followed by long maintenance periods with several new releases. The

implication is that we had to figure out when the initial development phase ended and when

the maintenance phase began, 'flu's information can usually he retrieved by CVSChecker

and proved from the supplementary project, records, but it is not always accurately recorded.

Fortunately, locating the various milestones, whether or not they coincide with explicit

releases or documented in project records, based on CVS data is an important function o f

CVSChecker.

Step 4: Zooming in specific phases and apply the standard CVSChecker methodology.

Once we focus on a specific phase, we analyze it with CVSChecker from different aspects

elaborated in Chapter 3.

Step 5: Summarizing observations and extracting patterns. We recapitulate the observa

tions we had in each phase, and extract patterns based on them, 'f lic patterns should include

two groups: specific to OSP, and common patterns as those in student teams.

5.2.2 P ro jec t Selection

Open-source software is developed according to the ' ’bazaar" model o f distributed software

development, as characterized by Kric Raymond |59|, where the source code is allowed

to be studied, modified and redistributed. It enjoys considerable patronage as the chosen

development model for a number o f well-known and widely-adopted projects including

the G NU/Linux kernel, Apache and M ozilla |52|. beyond these long-term, large-scale

projects, the open-source process model is also adopted by thousands o f smaller, more

short-term projects. These projects, created and managed by several volunteers with limited

experience, are comparable to the student project:: that have been analyzed. Therefore we

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Projecl Number o f Developers Register Dale Our Checkout Date Development Status
OSP-A 6 2002-07-10 2004-12-24 4-Beta
OSP.B f) 2002-02-08 2005-02-03 5-Production/Stable
O S P X 8 2003-12-03 2005-02-04 4-Beta

Table 5 .1: 3 open source projecl loams

wanted lo investigate lo what cxicnl ihe team behavior was similar or diffcrcm.

Because we try to analyze the impact ol' processes on learn collaboration and member

performance in OSPs, the project selection has a vital influence on the results,

We identified several OSPs comparable to the student projects we had studied. Putnam

e l al. [58] claim that small size is the key to a successful projecl. We have been follow ing

(his adage in organizing the sludenl teams, and Ibr our OSP case study, we looked for

several s im ilarly small open-source projects with no more than nine members (according lo

Belbin ’s ” 9 team roles” theory).

Duration is also a good metric for project, scale. Most OSPs usually have an initia l

release followed by long maintenance periods with several new releases. The student case

studies lasted for approximately two months, with design and coding as the two main ac

tivities. Students usually can not spend loo much lime on the course project because o f

the curriculum design. The projecl deadline could be considered as equivalent to the lirst

product release date with stable, complete cnd-io-and functionality. It would have been im

practical to constraint the OSP length to he similar to the student projects’ length, One-year

and more than two year, are two project length yardsticks for our project selection.

In www.sourceforge.net, the projects development status is divided into the follow ing

7 levels 1: Planning, status 2: Pre-Alpha, status 3: Alpha, status 4: Bent, status 5: Produc

tion/Stable, status 6: Mature, and status 7: Inactive. An OSP can spun several levels at the

same time. To avoid too young or two idle projects, we selected projects from level 4 lo

level 6.

We also decided to constraint ourselves to Java-based projects to he consistent w ith the

student projects.

Based on above considerations, we selected three OSPs randomly which we w ill refer

to as OSP-A, OSP.B, and OSP-C in the rest o f the paper, from www.sourcelbrge.net. Table

4 lists tJie basic information o f them:

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sourceforge.net
http://www.sourcelbrge.net

5.3 Basic Results

This section introduces llio.se selected visualizations and observation stunm;nies generated

in our case study on three OSP teams (labeled OSP.A lo OSP.C). Diagrams are presented

at various levels: by team, by individual, and by lile. Such diagrams intuitively show trends

enable us lo gain a high-level impression o f team and individual performanee.

5.3.1 O S P .A

OSP.A is a command-line Java application that generates H TM L reports from CVS repos

itory. There were six members involved in this project totally. Coincidentally, it appears

that all the members were volunteering university students. There were two sub-modules

under the root node, which we refer to as Module I and Module2. A ll the six team mem

bers contributed to the development o f Module I while Membcrl was the only developer

fo rM odu lc2 . Because we focus on team collaboration and Modeled only includes images

o rlitm l liles instead o f program liles, we avoid it in following content.

Fig. 5 .1 shows the distribution o f CVS operation types for each member while Fig. 5.2

shows the temporal distribution o f CVS operations for each member. To enhance the chart

readability, we deleted the columns o f showing the total CVS operation number o f each

member.

From Fig. 5.1, we have follow ing observations:

• The total number o f CVS operations o f Membcrl was far greater than that o f his

teammates. Sim ilarly, the numbers o f his addition and modification operations were

larger than those o f his teammates; S im ilar to those main developers in student teams,

M embcrl also answered for most lile removals;

• Member2 almost had no CVS trail at all (only few modifications);

• Alm ost all the operation records o f Memberd, Member-1 and Memben were m odifi

cation besides very few lile additions, removals, and local deletions;

• Member5 was the major member who involved in collisions and merges, although

his number o f mollification operation was not large;

• Most operations o f Memberfi were patching;

• Anonymous developers left only three operation record types: () (checkout), P (patch),

and W (removal o f local lile copy) because they do not have right to modify the liles

yy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1400

1200

1000

so
«j 800
03
c,

o

5600
u<u
£
Moo

200

Pt anonymous
E! Member 1
8i Mcmber2
13 Member3
S i Mumbect

Member-5
H MemberG
Fs Ave_0::P_A

-

;

,

I
i j

X ”
X :>

' MIII
f?
5
l:
t1

rs ..

a

J _A
P3

3 e>.
“I i f

A(Add) C(CoUi;ion) G(Merge) M(Modifyl O(Checkcul) P(Patch) R(Retease) Vf(Detete)

Figure 5.1: The distribution ol'CVS operation types for each member in OSP.A over whole
process

in CVS repository;

• Except anonymous developers, the real members did very lew checkouts;

• Collisions and merges seldom occurred in OSP.A, comparing with student teams.

From Fig. 5.2, we can have several interesting observations:

• There tire several spikes, such as near days 40, 50, 260, 2X0. 520, 600, X30, etc, These

dates should he examined more closely;

• M em bcrl was very active throughout, especially after day 260;

• Member2 only did 6 modifications on 2003-03-17 (Day 250) and 2 modifications on

2003-08-11 (Day 397);

• The operations o f Member.? scattered on those dates with spikes;

• Memberd was active before day 260, hut almost did not do any work later;

• Most operations o f Membcr5 congregated before day 350;

• Mcmber6 almost did not have any traces before day 260;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

100

1 s0
5
o

S 60|
z

40

20

- ♦ • - in o n y iiio u ::

■•••• Mninlmr1
M eiiiberX

- B - M cm bcrS

Mf*mbr»H

M em ber!}

- a - MemberG

— Avo OJ»P A

" 1-

I f ^ *
1 bl 101 1 bl 201

f
•S'&

;!51 301 351 401 451 i>01 581 SOI 651
D ates : from 2 0 0 2 0 r - 1 0 to 2 00 4 -1 2 -2 4

SI ST,

Figure 5.2: T lie temporal distri hut ion o f CVS operations for each member in OSP.A over
whole process

• Anonymous developers Imd a long idle phase alter day 350, and resumed near the

end o f the process;

It seems that M embcrl and Mem herd could he the two core developers and Day 260,

Day330, and Day<325 could he the most important, milestones.

According to the projecl, history, Day260 (2003-03-26) was the release dale o f version

vO. 1.3 and Day826 (2004-10-13) was the release date o f vO.2.2.

Fig. 5.3 displays us the lile additions and removals within the whole process. We labeled

these two milestones with lines.

• A ll the lile additions and removals assembled on four phases: from day I today 100,

from day 200 lo day 400, from day 500 lo day 600. and alter day K00. A ll o f those

special dates we detected from Fig.5.3 scattered in the four phases, instead of those

idle periods. Different from those charts o f the .student teams in Chapter 4, ()SP_A has

started their development since very beginning. Many Java classes were added into

CVS at the early stage. This phenomenon did not happen in student teams because

many OSP developers began their projects usually a little bit ahead o f the setting up

o f the project CVS repository in www.soureelbrge.net. and moved the rudiments into

CVS later;

• Sim ilar to student developers, the OSP developers had some batch processing near

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureelbrge.net

.0. ■■•HD v4'i; . .lift:- -MO 100. Vth. IfiO IU0 IJOO d-O: -240 .p-icb ilyo. ,.;j():"
ljj.1 n i nttax

Figure 5.3: File additions and removals in OSP_A over whole process

die deadlines;

• Most Java classes were located between Files 20 and 210, almost all o f them were

added into CVS in the first two phases;

• The files between lile2 I0 and 275 were added later than day200. File index enables

us know that all o f them are test (iles existed in ’’ icsis-src/ncl/sl'/OSP-A/” .

• Only one lile was added between day 100 to 200. It. was a configuration lile mimed as

” src/net/sl70SP_A/logging-silent.properties".

• Relocation also can be detected. A typical ex; , 'c is that the main page lile " in

dex. hl.ml” and four log-related image liles (Filc27X to 2S2) were added to module

"litdocs/” at the very beginning, then moved to the root directory on I)ay330; An

other example is that several configuration lilcs (lile I to 12) were deleted or removed

from the root directory to ” etc/” on Day825.

Since we want to focus on the initia l development phase, we lirst separate the history

into two main phases by this release dale o f v(). 1.3: Phase I (from 2002-07-1 I to 2003-

03-26) and Phase 2 (from 2003-03-26 lo 2004-12-24). Zooming in Phase I, we made the

fo llow ing observations according to Fig. 5.4 and Fig. 5.5:

• M embcrl still had the most CVS operations in this phase. More specifically, there

were two busy periods for him. The lirst was from day 25 to day 50. Remarkably

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

! 20

100

gW.
©
<U\a
S:40i

Anonyjftouc
-•••• S o # b u r).

■ IunhfirX
v • * c i t b u r 3

I c u b t i r * !
:¥■••• - ' I c a b u r b

Suttburfj
»>•• A\uv.asr_A

u

—■:— j L . i t _
■21 St St 101 121 M l 161 181 2'

Dates it ; Phase 1: fr.on 2002-07-n to 2 0 0 :;:-Oo’-tO
221 . 24 l

Figure 5.4: The temporal distribution o f CVS operations Ibr each member.in OSF_A in
FI vase I

,550

500

450

400

U 350

§300
8
o 250

41200

150

100

50

0 I
AllJTypes

4
4

M

l.y nno n y m o u s
v‘:i Moinbn.rl

Hombnr/i
^ Hontbf.r3
f!1 Hoinbnr'l
P3 MemberR
i;i Ave._0r.P_A

.1 . A , .<TOi
A (A d d) C(C.:illlilviO O ltv i- r c ': It f v ' 0 1 ■tli;--: L--.m : IV F .e le S f f !

Figure 5.5: The distribution o f CVS operation types for each member in OSP_A in Phase

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

around dale 48, there was a significant peak. The second peak covers the days just

before the release o f vO. 1.3 (Day260).

• Member4 had an almost equally large number o f opcralions. There were also iwo

aclive periods lor Member4: one was around day 30 and the oilier was around ihe

days approaching the release o f vO. 1.3.

• There was a long, relatively idle period from around day 75 In day 200. Only Mem-

ber4, Membei'5 and anonymous developers had a few sporadic actions during this

period.

• During Phase I, no P (Patch) opcralions were performed, which is not surprising

since this is the initial release o f the system and outside contributors did not have the

opportunity to participate the project yet.

• Most merge and collision operations were caused by Membei'5, and almost all o f

them happened in Phase I. This may indicate that the responsibilities o f this devel

oper are not clear since he appears to be interfering with the development o f other

members.

The blown-up CVSChecker charts for Phase I indicates that spikes jus t before day 50

could coincide with another project milestone. We consult the project records and figure out

that day 46 (August 25 2002) was the delivery dale o f vO. 1.2.b, In order to see the details

before this release, we zoomed in on a smaller period. The result is shown in Pig. 5.6.

From the distribution ol operations in this sub-period (not shown), we realize that the

contributions o f each member was not remarkably different than they were in the enclosing

period, Phase I. However, Pig. 5.6 quickly revealed that the days between day 25 and 30

constituted another peak period in development activity. Moreover, two core developers

(M em bcrl and Membcr4) had an overlap around this period, could it be that the former was

handing over the project leadership to the hitter?

Records showed that on day 32 (August 11 2002), a new version, vO. I . I .a, was released.

Because this date coincided with the only peak before this release elate, we identify the pe

riod from 2002-07-1 I to 2002-08-1 1 as the initial development phase for the comparison

with the student projects in previous section. Afterwards, it is most likely that the mainte

nance and updates started. Therefore, we think that the team collaboration and individual

performance patterns o f this new period can be compared lo the student ease studies, which

did not involve maintenance and updates. Pig. 5.7, Pig. 5.8, Pig. 5.9. and Pig. 5.10 d rill

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 0
anonymous
Member 1

-A r Member3
Mcmbor4

■■■&■■ Memborb
Mi Ave_0SP_A
0 8O --------

f

'.d; : •

tg: 'i-H T :9i; -ii::':!® 15' 17 19: 21 23 25 27 20 '31 '33 35 37 39 « 43 45
Dates: from 2002-07-11.: lo :2002-08-25

Figure 5.6: The lemporal distribution o f CVS opcralions for each member in OSP.A before
the release o f vO. 1.2b

down again to illustrate what really happened in the initia l development phase. Fig. 5.7

shows the operation type distribution for each member, Fig. 5.8 displays the file additions

and removals in this phase while Fig. 5.9 and Fig. 5.10 show detailed Java file views in this

period.

Comparing die initia l developmenipha.se with the visualizations o f later phases, Fig. 5.5

and Fig. 5.7 confirmed our hypothesis o f a handover o f leadership. It appears that Mcmbcr4

was the core developer in die initial development phase, but did not manage the project, after

v.0.1.2.a was released (Day 32). A fter this release, Membcrl took over the lead role. This

result revealed by the CVSChecker was confirmed by project records.

A ll diese visualizations displayed the fo llow ing information: 91 files were added in this

small phase. 77 o f them were Java classes. They were added mainly in three time slices:

Day2, D ay l7 , and between Day27 to Day31, 11 Java classes were modified by at least

diree members. The numbers o f collisions and merges on these files were higher tiian that

o f other files. Except M em bcrl and Member4, nobody else independently look charge o f

individual files.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220
fit anonymous

Si Humbert

B Hcmber3

200

180

160

a l2 0

• ' /

 k = 0 ’2:M ±n_ M £ _ ^ if - -nKfrnseJSsi- _ _ x x » 7 rE ^ a _ _ K S M - i SKl
C‘{On)]ision) Ci(lVIfi'g(f) MnVliitlifv) 0(C’lnw Irnnf) Ftl"Rp|p:isn) \V(Dolf*tfd

Figure 5.7: The distribution o f CVS opemliou types lo r each mem her in OSP-A from 2002-
7-10 to 2002-08-1 I

:i5

m
. i - f
t*4

§
:feS:©©M

0O :
■r-i
' Vt-
o .
.1 .
■ N , -©15
:W

;k ... *710;

;? '5.

0

' • y y f * ; ’ :V ‘
■..• • :.** ‘ -V »

: ; f t « . M i ■ to to- • . * » *.'• * :

".•■Added

#: K CJB.OVCfl

-0: 10 15 20 ;25; •3Ci 25 4.0.-..45' 50 !55 00 65 70 75 .'30 -85 00 05
F i le . In flu x :

Figure 5.8: The tile additions and removals in OSP-A from 2002-7-10 to 2002-08-1 1

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Remove(R)

K3 M o d if ic a t io n (M)

?S1 C o l 1 i s i on (C) +Merge (G)

-10

Figure 5.9: DistrihuLion o f operations by type in (),SP_A, on eaeli lile I'rom 2002-7-10 lo
2002-08-11

2000

1500

Member3
1000

Member1

o
O0

-500

-1000

-1500

Figure 5.10: Added and Deleted LOC o f cadi member in OSILA, on each lile from 2002-
7-10 to 2002-08-1 I

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3500

3000

2500

I•H
I 2000

I 1500

i63
1000

500

0
Total A(Add) C(Collision) G(Merge) M (Modify) 0 (Check :ut> F (Patch) R(P.etiovc) V(Delcte)

Figure 5.11: The distribution o f CVS operation types for each member in OSP.B over
whole process

5.3.2 OSP.B

OSPJ3 is a unit testing framework written in Java. There are also six developers. Fig. 5 .1 I

shows the distribution o f CVS operation types for each member in OSP.B while Fig. 5.12

shows the temporal distribution ol'CVS operations for each member over the whole process

(from 2002-02-08 to 2005-02-03).

• W ith in the whole process, the number o f CVS operations committed by Member3

was far exceed the number o f other members, not only the all-type total number, but

also file additions and modifications;

• Member 1 and Member 5 almost had no contributions recorded by CVS;

• Except anonymous developers, the real members did very few checkouts; Also, they

removed very few liles from CVS;

I t is obvious lo divide the whole process into several small phases based on those typical

spikes in our visualization. Project history proved that new releases happened on almost till

flic spike day. We divided the whole process into 7 phases according some o f them:

• In almost all the phases, Member3 dominated the development. However, the dispar

ity has been gelling smaller since Phasc5;

108

fc‘ Anonymous ■ M nnhorl t? Kctn.bftr2

Mcnlti'S QN?nber4 EJKtitib-rS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•sfee

■•a.tcr

8

Li-lVtV
' J3-.-

S-.

■W

• * *:. M e m b « r S:

Ilcniher4:

r '̂-ttcfiberb
r-iv-Meifiberfi'

: i;.. fr ‘vT ' ^- , v ,— s :\ ^ > v /> > ^ i * _ _ # v H " &
: :'i- bi: vi'Di-:j:cit; 20b: &.t' sor sbi 4Di 4iji goi:! i3*j 1; 601:: (isr ?V:«i vsi stir H5r 901. sea kku t o i

t'.ate.< : f r o th ' 2 b 0 ;!- :b 2 ~ u 8 : t ::'2'0bb-:0 2 - . to

Figure 5.12:
whole process

_!i over

•Start Dale Paid Dale New Release Day number
Phase 1 2002-02-08 2003-03-09 v l.2 375
Phase2 2003-03-10 2003-08-09 v 1.2.3 527
Phase3 2003-08-10 2003-1 1-06 v.1.3 Perl 617
Plvase4 2003-11-07 2004-09-26 v 1.3 Pre2 942
Phase5 2004-09-27 2004-11-12 v 1.3 989
Phase6 2004-11-13 2005-01-09 v 1.4 1050
Phasc7 2005-01-10 2005-02-03 Our checkout 1073

Table 5.2: 7 phases o l’ OSPJ3

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:oe

J -40 tgc i, '!?(' '2'b'iJ
F i le in i le r

':2i Cl' w fr

Figure 5.13: File additions and removals in OSP.B over whole process

• Anonymous developers always had the homochronous spikes as those o f core devel

opers in leant, especially on those important release dales o f new revisions;

• Member2 and Memberfi had suddenly high CVS operations between the birthday o f

v l.4 and the day when we cheeked out;

• Memher2 also had a short high-operalion period at the late part o f Phase3. He defi

n itely did some special works; we should track deeper to figure it out later.

• The operations o f Mcmbcr4 mainly occurred after Phases.

In Fig. 5.13, I indicated six m inor milestones o f project development process using

lines.

• No lile additions or removals happened until Day 186 (2002-09-02). Using the query

function o f CVSChecker, we knew that, in this idle period, only some members and

anonymous developers checked out;

• There were still some sparse phases, e.g.: between Day I to Day 186 and Day700 lo

DaySOO. A ll these phases tire not near the release days;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i t t

IC'O

y.o

30

70

<3 BO
o

•H - •

:«:5p
'

£•10
%
^30

•:fl>£>
|2 0

io

-10

iv20.

••■SO

- * - C (C o l l i s i o n)

-O. (’ (I f ■ ri;, [:)

•• 8 C l o U i f y)

 I’ (P a t c h j

-y » r yc.,>s&\-&-i&— 1»— stfic— j jdj i j i ?■*_,. io.; ̂ _noi.
■si1!:;; -'Vti- :'6i'. :'si' :.i'0i ; i s i i dS-.pT;s:r !Mi ioXOi: 28;t: 301 321.

File Index

Figure 5.14: Distribution o f operations by type in OSPJ-J over nil liles

• Testing liles or imago liles always were added or removed batch by hatch, and the

removals usually happened alter ihe new release days.

From Fig. 5.14 we notieed that:

• Almost all the Java classes shown above Ihe X-axis experienced patches while most,

removed classes did not. A lte r cheeking the lile index, we found out that the three

major removed groups below Ihe X-axis were temporary testing liles. Combining

with Fig. 5.13, we can notice that these removals happened in Phase! (between the

release dates o f v 1.2 and v 1.2.3).

• A ll the other sporadic removed classes were outcomes o f renaming or relocation,

liven the open source community is claimed as an ideal cooperative paradigm, we

still find that there are some classes experienced collisions and merges.

• Ivlcmber3 was not only exceed his teammates on the number o f CVS operations, he

also substantially changed a great deal o f the LOCs on Java classes, and look charge

many small classes independently.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1000 ■ I<.‘ * h n r 2

■■ ■ I i : . l i c r 3
 1 i:n I n : r 4

 » c » h u r ! i
800

600

400

200

521

-2 0 0

- 4 0 0

- 6 0 0

- 8 0 0

-1000

Figure 5.15: Added and Deleted LOC o f eaeli member in OSPJ-I, on each file over the
whole process

• Those classes w ith collisions and merges shown in Fig, 5 .Id usually were modified

by more than two members.

• An interesting phenomenon was shown in Fig. 5.15: Mcmber2 deleted the same num

ber o l'LO C s from a large group o f classes. This should not be a coincidence, and

there definitely were relationship among those removed code pieces.

Now we zoomed in a smaller phase to have a more detailed examination. To save

die space, we only present those promising visualizations. Fig. 5.16 displays the CVS

operation distribution on each type o f each member in Phase I : in addition to the anonymous

developers, only Member3 did real contributions in Phase I. No collision, file removal,

patch at all.

In Phase2, Mcmber3 still was the only developers besides die very few modifications

executed by Memhei'2. Several groups of test classes were removed by Mcmbcr3. 'f i l l now,

there were still very few collisions and merges.

In Phased, although Member.! continued his domination. Member2 began his substan

tial contributions, especially in the last 35 days (see Fig. 5.17); Mcmbci'6 also had few

modifications. However, as more developers joined in, collisions and merges emerged also

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goo

800

700

"600
o •H
<3
S 500
«§•

°400
<u
I
B 300

200

100

0
A(Add) C (C o llis io n) G(Merge) M(Modify) 0 (Checkout) R(Remove)

O peration Typer

Figure 5.16: The disirihution o f CVS operation types for each member in OSPJ3 in Phase I
(from 2002-02-08 to 2003-03-09)

as shown in Fig. 5.18.

Fig. 5.19 shows the LOC modifications in Phasc3. Although the mini her o f CVS oper

ations o f Member2 in this phase was less than that o f Member3, Member2 did some very

special modifications on some classes: he deleted same LOC sizes from dozens o f classes.

We checked the code and figured out that he did a very important refactoring: on day6l3,

M em ber2 ’’removed a lot o f redundant code from a lot o f classes and "factored out to a

common base class” .

Fig. 5.20 shows the works in Phased while Fig. 5.21 shows the works in the remainder

phases (Phases 5, 6 and 7).

• Members began the patch operations, especially those anonymous developers;

• Member3 still remained on the leading level;

• Mcmber6 contributed a lot in this phase;

• Member2 had some operations after the refactoring works in Phase3.

I 13

v.v 0 Anonymous

•y< 0 Members

■ Members

EJ Ave_0SP_E

>Tj
fKS FI

1 $l i Wa...............

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

❖ Member;!

Members

MemberO

Ave_0SP_BT
l
i

*

1
♦

** J\ v\
\ j to * 8# j n

>

L . i‘"i t r-rr i i i t n i i i r rn-r i i i

i" «* x i / /M. .< !/» / \
, * V> k w , 4 r j A

I i i Trrn i i i i *: i t i TrrtriT t i r ,-r~r~r t rt m-t-n rrY i irrrnT m 'nT i n rt t rH

1 6 11 16 21 ' 26 31 36 '11 46 91 56 61 Of. 71 76 81 36
Dated: from 2003-08-10' to 2003-l l - W

Figure 5.17: The temporal distribution o f CVS operations fur each member in OSPJ-i in
Phase3 (from 2003-08-10 lo 2003-11-06)

• Membcr4 exceeded Member3 on die lolal numlier o f CVS operations in lliis period.

A llliough almost all his operations were modifications, he also incurred collisions

and merges;

• Membcr3, Member6 and M embcrl continued their contributions;

• Membcr2 only did patches as those anonymous developers;

Combing all above visualizations and observations, we can summarize that:

• OSP-B also had idle gaps and spikes. Although they might not have some slricL

deadlines as those students in university, developers in OSPs still had the sim ilar

work manners that contribute remarkably near the release dates;

• Mcmber3 should act its the leader/manager role in the team, and he developed and

maintained this project for a long time before other members joined in;

• Members did not have to keep the workload balanced as we advocated in student

teams, 'f l ic operations o f anonymous developers always happened around the re

leases, and almost all the operations were checkouts and patches;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

350

300

250

S3
1 200
b
&
<u
° 150

13 llenibei'2

fO Member3

W MettibcrO

a Ave_OSP_P

100

50

• ,. HOperation Typec

Figure 5.18: T lie distribution o f CVS operation types for each member in OSP_B in Phnse3
(Irom 2003-08-10 to 2003-! 1-06)

700

600

500

too

300

200

100

§ 0

-100

-2 0 0

-300

- to o

-®— Member2

 Member3

Member6

I
L

11 21 | t | 6| lj-|3,l 81^| 'p iy iO jj j j l l ’ -121 -’lS l !fl p 5 1 161 171

n&ntist

i F i l e I n d e x

Figure 5.19: Added and Deleled LOC ol'eaeh member in OSPJ-!, on eaeli lile in Phase3
(from 2003-08-10 to 2003-1 I -06)

I 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

300

TOO

600

3500

•poo
i.

200

100 - f t : -

r tr

M l j i
1

0 It
Operation Types

H Anonymous

■ Member2

E3 MemberS

KMember6

E Ave_OSP_B

Figure 5.20: The distribution o f CVS operation types for each member in OSPJ3 in Phasc4
(from 2003-11 -07 to 2004-09-26)

coo

500

m 400

;,300

"200

100

D Anonymous
■ Member1
Si Member2
t'S MemberS
(3 Member*!
SMember6
OS Ave_OSP_B

A ll G . M
O p e ra t io n Ty jv

Figure 5.21: The distribution o f CVS operation types for each member, in OSPJ3 after
Phasc4 (from 2004-09-27 to 2005-02-04)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Developers seldom checkout, alter their local working directories were set up. How

ever, almost till the members in .student teams committed "cvs checkout” command

constantly. It. still had design and collaboration problems: each time when new mem

bers began their contribution, new collisions and merges always arose by them more

or less.

The project, development process can be predigested as such a short story: the rudiment

o f OSP_B was designed and finished before being moved to www.xoiiivcjbrge.iiei. Mem

bers was the initia l developer and contributed on it incessantly with one-up works. As the

project growing up, test liles were introduced temporarily and removed shortly tiller. As

new members joined the development, structure design problems emerged and were de

lected. Some members tried refactoring works. Since the new revisions were releasing, the

number o f patches increased.

We got validations from the official website for our analysis results (such as ” OSP_B

was originally written by Membcr3 and released under tin apache style license. Since then,

it has received many contributions from other developers ”), modification logs (such as

labeled as refactoring), and so on.

5.3.3 O S P .C

OSP.C is a static analysis tool that examines class or .IAK liles looking for bugs. Pig. 5.22

and Fig. 5.23 give us a quick idea about the CVS historical operations along the whole

process. Although this project registered in www.sourceforge.net on 2003-12-03, the CVS

repository did not have any historical records until 2004-02-13. Therefore, our visualiza

tions start from 2004-02-13. Compared with OSP_A and OSP.lt, OSP.C is still pretty

young.

There were several important days, such as around days 180, 200,255, and so on. Project

history told us that Day 180 was the release date o f rcvision0.8.4. We divided the whole

process into two phases: Phase I started from 2004-02-13 to 2004-08-10 (from day I to

dayl 80), and Phase2 started from 2004-08-11 to 2005-02-04 (from day 181 to day 358).

Member2 started early and did most operations while some other developers, such as Mem

bers 6 and 7, began their contributions later.

Combining Pig. 5.22 and Pig. 5.23, we noticed that:

• Almost till those operations done by Membersfi and Mcmber7 in the later phase were

patches;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xoiiivcjbrge.iiei
http://www.sourceforge.net

700

600

E00

ao
• H

fj 400<u
&
*o
51 300

I
200

100

<■
—♦ — Anonymous
-Ml- H ember 1
•••*••■ Member2

Member?
—'F- Member 4
— Member6
—I— Member?
----- MemberS

Ave.Ub'F.C
1

1

IS
f

*

T •>------1
$.M £ | ;.j

£_As. A . it .< X rb r a fi svj 4 Ji]
$ % a 4 JL | i L

|
...

...
..

“1
r'

h

,
H

£

>&
-

♦

> ^ j, •
!? s T'.:-s-1 -li V

(J A i , f i r i l L . ^

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341
Dates: from 2004-02-13 to 200B-02-04

Figure 5.22:
whole process

in OSP_C over

3000

2500

2000

(§1500
O
b

1 1000

500

m

i l l

■ Anonym ous

i'Vl M oir.barl

E3 Heir.bei*2

R Mcmbcrf-;

CS H e ir.b*r4

G3 MembcrG

1VJ Merr.bei-7

B3 M embers

E3Av-i_0;i:p C

A(Added) C (C u llis iu n) G(Merge) M(Mudli'y) UtChcrdiuut) H(Haic!i) K(Ksiiiyve) W(Deletc)
Operation Types

Figure 5.23: The distribution of CVS operation types for ench member in OSP.C over
whole process

I IK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D
at

es
:

fr
o»

20

04
-0

2-
13

to

20
05

-0
2-

04

400

375
I'hiCKOdl

350

325

300

275

250

225

200

175

150

125

100

75

50

25

0
0 50 100 150 200 250 300 350 400 450 500

F i l e in tiex

Figure 5.24: File additions and removals in OSP.C over whole process

• Anonymous developers did not. have many operations. The possible reason is that

this project is still not mature enough (A ll the released revision numbers were started

w ith ” 0.”);

• Although Member 1 had very lew operations, all o f them were modilicalions;

• A lm ost all the operations o f Mcmbcr4, 6, and 7 were patching;

• Member5 did not leave any records in CVS repository. Later, we figured out that

Members was another username o f McmbcrX. The only difference between these two

usernames is that MemberK included the first letter o f his given name. The developers

did not leave any records in CVS with the username ” Member5” .

• A ll the members seldom removed liles from CVS repository.

• OSP.C hardly had collisions and merges.

Fig. 5.24 displays die lile additions and removals in the whole process. 1 labeled the

release date o f revision 0.8.4 and our checkout dale using lines.

• Most significant lile relocations or renames can be detected easily from tin's chart:

119

Ad tied

• *

* * .
♦ * * * +

* ♦ MM *4* |(,
* * . <

♦
♦ m «v

♦ . * *
<• * * ♦ ♦

♦ ♦

«
t „

♦ ♦
♦

« * * *
- *1

♦
. *

* + *
*

* ♦

■V

« ♦ # *
<tf- 4 +*<** 9 ♦ <*

-------- \> V -

* * ♦ * *

»

*

■vj <y »
*
VM 40 10. 4.

« *

* +
wl» <

♦ ♦ 4> * *
♦ *

* «•
* *

■* ** * ̂ *

A

* * *

«v *;•>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2190

2990

1790

1590

jp l3 9 0
• H
■M
£ 11 90I'
^990M-*O
S) 790

■§
B 590

390

190

-1 0

Figure 5.25: The distribution o f CVS operation types for cadi member in OSP.C in Phase
1 (from 2004-02-13 to 2004-08-10)

- Example 1: 40 liles (from Filed 87 to 127) were removed from module

” src/eclipsePlugin/de.(object.OSP-C/.classputh/” to ’'src/dc/(objccl/OSP_C/” (from

F ile l to 40) on Day305.

- Example 2: I I Java classes (File232 to 242) were added on Day 147. A ll the

original names were started w ith "X ” , and they were removed 5 days later. New

files were inserted into tile index from Filc206 to 226. Same thing happened on

File353 to 358 at the same day.

- Example 3: 6 configuration tiles (File305 to 310) were added on Day 177, and

then removed from ” src/java/edu/UNlVNAME/c.s/OSP_C/gui/” to

” src/java/cdu/UNIVNAME/cs/OSP_C/gui/bundle/” on the next day - Day 178.

• The file additions and removals o f OSP.C were more evenly distributed along the

process Lhan that in OSP.A and OS P.P.

Fig. 5.25 and Fig. 5.26 display the works in Phase I (from 2004-02-13 to 2004-08-10)

and Fig. 5.27 and Fig. 5.28 show the works in Phasc2 respectively:

• A ll the operations o f M cm berl, 6, 7 and anonymous developers only happened in

Phasc2. Actually, almost all the operations o f Member I were executed on a single

120

Atv-nyiieus OMember1

A(Add) C (C o llic io n) G (Merge) M (Modify) 0 (Checkout) P(Patch) P. (Remove)Tota l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memebrl

< - Member2

MeniberS

Hember4

Hember8

o— Ave OSP C

<h 70

i

 :u .i-J U & ____

41 51 51 71 81 91 101 111 121 131 141 151 161 171
Dates in Phase 1: from 2004-02-13 to 2004-08-10

Figure 5.26: The lemporal distribution o f CVS operations for each member in OSP.C in
Phase! (from 2004-02-13 to 2004-08-10))

clay - 2004-08-11 (ihe day aller the release date o f rcvisionO.8.4), and all these oper

ations are file modifications. We w ill figure mil what happened on that day w ith the

lile level visualizations ofCVSCheeker later;

• M em berl, 3, 4, 8 also had lots o f CVS operations on or just alter 2004-08-1 I. With

the help o f the query function of CVSChccker, we knew that Memberl modified

three class revisions, added three new classes, and had 639 patches on 2004-08-11.

On the same day, member4 made 328 patches and Members made 321 patches, and

Mcmber3 made 317 patches on 2004-08-12;

• Member3 dominated the development in both phases;

• MemberS, 3 and 6 also had many CVS operations in Phase2. However, only Mem-

ber3 had substantial modifications on .lava classes while the other two did many

patches.

Fig. 5.29 and Fig. 5.30 are simplified visualizations to show the CVS operation d istri

butions and the number o f modified LOC committed by each member on .lava classes on

Phase2:

1 2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

700

600

500

a
2400

- o - Anonymous
-88- Memberl

"Member2
-•(•-Members
—A— Memberl
—♦—M ember 6

“ Member7
- Members
- Ave.OSP.C

o300
bXI
s

HZ
200

100

<§• k:‘h

i 1

11 21 31 41 51 61 71 81 91 101 111 121 131 141
Dates in Phase 2: from 2004-08-11 to 2005-02-04

151 161 171

Figure 5.27: The temporal distribution o f CVS operations for each member in OSP.C in
Phase 2 (from 2004-08-11 lo 2005-02-04)

W Anonymous E Memberl

D Mr.nbr.r2 S MenbrrH

EMenbeW vf Menbei/6

IT Menber7 f t Members

W AvcJJSFj;

i k . A

$5 i::.

r
I

Ofl I f lPaL

A (Add) C (C oU isicn) G(Mer*e) H(Modify) O(Checkout) P (P atch) R (Remove) W (l'elete)
O p era tio n Types

Figure 5.28: The distribution o f CVS operation types for each member in OSP.C in Phase
2 (from 2004-08-11 to 2005-02-04)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

40

35

» 30Co
S 25 «Mdj
§•20
c/i
o 15

C (Col l i n i on)

-O— C (I c r g c)

 I (l o d l f y)

R (R e le as e)

10

JU
M r

j II ^ i\! r o i l i
. H I . |rf . . jR M b fc ^ IT T is

EE$~ k " O £ ‘ ' *—
W if
ittC

ig C T IM ! iyfeaiSfc a
’m a&z a a a a a a
t ’l 41 01 81 101 121 141 101 181 201 221 241 201 281 3t!dj321 341 :301 381 401 421 441 401 481

-10

-15
I ' i l e in dex

Figure 5.29: D istribution o f operations by type in OSP.C, on each lile (from 2004-08-1 I to
2005-02-04)

4000

3000

2000

1000

8 o

-1000

-2000

-3000

-4000

------ le a b c r l
— I eaher 2
— I c i b o r 3
■••■»••• Ie»ber4

luaberG
Ic ib c r7

—&••• IcabcrQ

>

•>

f

21 41 $1 <81 101 121 141 161 181 201 221 241 261 281 S01 321 341 W 381 4

(

A t f r

A^kX>iiZ552c2>ti2A-1-
'I- 421 441 461 481

F ile index

Figure 5.30: Added and Deleted LOC of each member in OSP.C, on eacli lile (from 2004-
08-11 to 2005-02-04

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■m:
z m

zm
zm
ieoo
izdo
•8U(i:

'•f'-'C.

-‘■ICO

■•aw

- m i
-?.<l CiO
-22C.C
-rSiClO-

fates: fro» '2CO.|rO:̂ lS'.to-20iJE-52*0.f

Figure 5.31: Detailed LOC Change by Date, on ” ../../cs/OSP_C/OSP_CFranie.java”
(F ilc40 l)

• AlLhough there were almost 500 classes, some o f them had only 1 or 2 collisions and

merges;

• File61 and 401 are two typical files modified by more than one developer. Although

Memberl only modified liles on 2004-08-11 and his number o f modifications was

much smaller than that o f Mcmber2, he modified almost same LOCs as Member3

did. We use the query function o f CVSChcckcr and found out that Memberl modi

fied 3 16 classes at. that lime and the reason was ’’Massive whitespace checkin; refor

mat code with IDEA, substitute all spaces w ith tabs, conform to 4-space Sun coding

conventions.” . It can be understood as refactoring after new release;

Fig. 5.30 helps us to know that File401 experienced heavily modification by M em berl.

Because Memberl only worked on this day, File40l must be a part o f that large MR hap

pened on 2004-08-11 mentioned above. What is this lile? What kinds o f operations it expe

rienced? Fig. 5.31 displays the detailed history o f this Java class: "src/java/edu/UNlVNAME/cs/OSP-C/OSP-CFrame.j;

(F ile40 l).

• This lile was created by Mcmbcr2 and he also finished the first dozens o f revisions;

• Memher3 took over the development around Day 160 (2004-07-23);

124

; v:#\-Keft'’o e r i

: I SJkbfcl* 3

::HK“ Keab'e'r8

.. m
1 :

!-: , ■■

tv).
1-

: | •.

1 t

I M -n't 4 i r>i 8 i l o i i 2 i . 'H i . :u u • 201 221 "201 ‘ 231 3o i! ll -'32

.. 1 i il
f A t 1
1

* O

I
i ■

• ;Xt -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• In the fo llow ing period, there were lour obvious busy dates. Thousands o f LOCs

were changed in these days and in some o f them, more than one member modified

it. II' we want to know who involved the collisions and merges in this lile, these

visualizations can help us to figure it out;

• On 2004-08-11, Memberl made a huge modification on it because he ’’Massive

whitespace checkin; reformat code with IDHA, substitute all spaces with labs, con

form to 4-space Sun coding conventions.” ;

• Membei'3, Mcmber7, and M em berl continued the developments w ith trivial m odifi

cations;

• With CVSChecker queries and reports, we figured out that around Day250 (2004-10-

13), Member3 added a new menu function to the project. Around Day310 (2004-12-

17), M em ber! ’’ Reformatted using tabs for indentation.” Member3 did sim ilar works

on 2004-12-17 and 2005-01-01. A ll these dales are just alier the new releases. Their

operations can be understood as refactorings.

Combining all above visualizations and analyses, we can .summarize that OSP.C is still

on its immature stage w ithout the formal release o f revision v 1.0. The basic functionalities

have already been developed mainly by M em berl, Mcmber3 and M em berl, while almost

all llte members keep patching. Refactoring-like works happened after new releases.

5.4 Patterns

In dtis section, we select and list, some important patterns o f OSPs summarized based on

the analysis o f CVSChecker (We did not analyze the data using KDD technique in this

case study because the data accumulation is still not big enough). We also compare them

with the patterns summarized from educational environments to get common or specific

patterns. The patterns are still categorized into three types: factual patterns and red Hags

and (cam-role profiles.

5.4.1 Factual Patterns

• Early f ile additions. Different from those student teams in our first exploratory ease

study, members in DSP teams usually added tiles (especially the core development

liles, such as Java classes) into CVS repository since the early stages. This pattern is

it reflection o f the typical history o f an OSP project: some interested members work

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

011 an issue until they achieve some presentable results before they move the works

to a publicly available place.

• Aggregative files. Similar to student teams, most test liles or image files or con

figuration files in OSP teams always were added into CVS in the same day/period.

Usually, the day is near a deadline. Some batches o f test liles were also removed tiller

deadlines.

• Adding Java classes in succession. S im ilar to student teams, most Java classes in

OSPs were not added in batches. The additions usually scattered the whole process

recorded in CVS until the most recent.

• Renaming and relocation exist. In OSPs, teams also had renam ing or relocation cases,

hut they were less frequent than that in student teams.

• Idle and busy phases exist. Although OSP teams do not have strict deadlines as stu

dents had in courses, CVSChecker visualizations still revealed idle and busy phases

in each OSP development process. Alm ost all the spikes happened in release dales,

and all the members had jagged trends as long as their workloads were not too small.

• Fewer Jile removals. There are three main reasons for file removals: removing from

CVS, renaming or relocation. A ll these instances in OSPs were much fewer compar

ing with student teams.

• Fewer checkouts. Except anonymous developers, the members in OSP teams seldom

checked out once their local working directories were set up. Student developers

were different: each o f them in our exploratory case study had checkouts more or

less.

• An important difference between the academic case studies and the OSP case study

is that contribution was mandatory in the former while it was voluntary in the latter.

The absence o f certain patterns in the OSP case study could perhaps be explained by

this difference.

5.4.2 Red Flags

• M ulti-way collisions. Similar to student case studies, several members in OSPs were

involved in collisions and some liles were modified by multiple members. Comparing

w ith student teams, the numbers o f collision and merge in OSP teams were much

1 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smaller. B ill they arc si i 11 patterns that may he indicative o f high coupling, poor

modulari/.atiou, or poor division o f labor.

• Watch fo r merges. We did not observe this pattern in the open-source case study.

The possible reason should be that the project bad a small code base already before it

was moved to www.soureeforge.uel. However, the initial development phase was still

responsible for the liles that were overall subjected to the highest number o f collisions

and merges. These liles were not, removed later, and continued to cause collisions in

the later phases.

• Underuse o f CVS. CVSChecker can help up to delect members w ith very few CVS

operations in OSPs. Although this pattern is problematic because we found that it

often is cither a symptom o f under-contribution or a source o f future collisions, we

can not treat it as a red Mag because there is no workload balance rule in OSPs:

all the members jo in OSP teams voluntarily and work according to their interests,

capabilities, timelines, etc.

• Miscellaneous. Several other less pervasive problematic patterns were also identified,

including excessively large liles, repealed alternating lile additions and removals, and

so on.

5.4.3 Team -ro le profiles

• More team roles in OSPs. There were more common roles in OSPs. Not only team

leader (a core contributor who is de facto in charge o f the overall project and steers

the development effort for a given period), component developer (an exclusive con

tributor to a specific lile or module for a given period), but also patching developer

(members seldom made other CVS operations except patching), inactive developer

(members drop in and out o f the project in different phases), anonymous developers,

and so on.

• M ultip le Leaders. In a student team, there usually is only one team leader for a

project. However, there always are more than one leader in OSPs. The main reasons

are the longer development process and the larger project scale. Usually, a leader

proposed an idea and look charge it until some releasable versions were finished. As

the project gelling larger and more mature, another member look over the leading and

maintenance roles .

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureeforge.uel

• Leaders contribute heavily. Leaders performed a large number o f CVS operations

(especially additions and modifications) that exceeded the number o f their teammates

in their respective leading phases. This pattern was also pervasive in the academic

case studies.

• Leaders are architects. S im ilar to those leaders in student projects, the leaders in

OSPs added a lot o f new files and therefore had the largest impact on the overall

structure and evolution o f the project.

• Leaders contribute steadily. They started contributions early in the project. How

ever, different from the even lines o f student leaders, OSP leaders usually had sleeper

spikes around milestones, w ith idle phases. Perhaps this pattern is unique to the

course projects in an academic setting and is not typical o f OSPs. However, M ichlmayr

|?] argues that steady contribution is a factor in an OSP’s success. Perhaps the ab

sence o f this pattern constitutes an early warning sign.

• Component developers. In OSP teams, component developers are not easy to be

detected. Most leaders were also component developers because most liles were

developed by them and very few other members exclusively owned specific files.

• Component developers have lim ited focus. Not surprisingly, most o f the CVS op

erations o f component developers were modifications to a small set o f liles, with

relatively few collisions with their teammates.

• Component developers work on existing artifacts. Even there were a few non-leader

eomponeiu developers, they tended to add few liles or no liles at all. Ususally, team

leaders prepared these liles already.

• Anonymous developers. Anonymous developers had very few operations until the

project was publicly released. Mostoperations o f them were patching.

• Patching developers. Although there were some other peoples registered as the team

members in OSPs, they did not jo in the early developments until the later mainte

nance phases.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

In (he context o f this thesis, wc developed CVSChecker, a tool that analyzes die collabo

rative software-dcvelopmcnt process o f software teams. CVSChecker uses as its primary

input data captured by the repository in which die team stores its software assets: it extracts

facts regarding the history o f operations that team members perform in their project reposi

tory and the evolution o f various softwarc-projccl metrics. Next, it proceeds to analyze these

facts to infer more complex types o f information about the (a) style o f the leam-mcmbcrs’

collaboration, (b) the development contributions o f individual team members and (c) the

evolution o f the software project. CVSChecker presents its analyses results in two ways:

first, it generates a set o f related graphs, visualizing the team’s activities and the project

progress; second, it produces a set o f reports summarizing the analysis results to the team

and die instructor.

The work o f this thesis aims a very important general research question: Are there dis

tinct patterns, trends and events in the collaborative software-dcvelopmcnt process o f teams

drat one can recognize in the trail o f the development activities captured by the software

repository in which the team stores their assets? And once recognized, what do these pat

terns say 011 the “ health” o f the software project and die team’s progress and how can they

inform the project manager’s decisions?

This research question is receiving a lot o f attention recently and a substantial number

o f research projects world-wide evolve around it. CVSChecker contributes to this area the

fo llow ing.

• A method for analyzing the development behavior o f the individual developers and

the team as a whole. To our knowledge, the majority o f the work 011 analyzing

CVS repositories focuses on understanding the software maintained in the reposi

tory. There has been very little work focusing on systematically examining and 1111-

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

derstanding the team dynamics based 011 their operations’ trail in CVS. CVSChecker

implements a methodology I'or analyzing both at the same lime: as a result, the results

o f both types ofanalyses can eross-lertilize and potentially produce more informative

intuitions for the instructors.

• A tool that automates the above analysis in support o f software-engineering instruc

tors. Effective project management and sludcnl-lcam mentoring is o f critical impor

tance in software-engineering education. Recently, we have noticed an increase in

educators’ reflections on their leaching methods. However, with few exceptions, the

analysis o f educators’ experiences is conducted in an ad-hoc manner. Moreover, most

tools aimed at supporting software-engineering instruction focus on the mechanics o f

materials delivery and marking. CVSChecker is novel in that it aims at analyzing

the students’ development process in order to help the instructor guide this process.

Furthermore, it does this in a systematic way that enables the comparative analysis o f

m ultiple case studies.

• A set o f distinct development-process patterns and red llags. Through our experience

using CVSChecker in the context o f a third-year software-engineering course for

over two years and examining the student-teams’ process with it, we have formulated

a set o f interesting patterns, characteristic o f different roles in the team, relevant in

multiple life-cycle processes. CVSChecker can recognize these patterns and report

them to the instructor, who can draw informed inferences about how healthy the team

dynamics are and how well the project is progressing.

We have evaluated CVSChecker with two case studies: the first examined collabora

tive software development o f student developers while the second focused 011 open-source

projects o f sim ilar complexity and length. The results o f these ease studies indicate that

CVSChecker is, indeed, able to discern interesting information about both ease studies

which ’ , ' es that it could be a useful tool to instructors as well as project managers in

general.

Moveovcr, CVSChecker also extracted patterns for each ease study, and generated some

pattern queries based on the evaluated ones. Through comparing the results from educa

tional environment and open-souree community, we had the fo llow ing conclusions:

Student teams usually start their programming late, all the Java liles are created in .suc

cession since the first CVS operation to the last due day. Hatch processing happens on

supportive files, such as lest files, image files, configuration files, and so on. They usu-

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

ally arc added into CVS repository in groups ahead o f the deadlines, and most o f them are

removed soon. Because most student developers are not so experienced and professional,

file renaming, relocation, and removing exist along the process. Some developers have low

CVS usage, comparing with their teammates. Collisions happen on some files, and most o f

them are touched by til least three members, fortunately, merges usually happen ahead o f

the collisions on these problematic files, instructors can give early suggestions w ith the help

■of CVSChecker visualization. In student, learns, there are two typical roles: team leader and

component developer. Team leaders usually are those students who start work earlier, create

many files at the early phase, and have much more consistent contribution along the whole

process. Moreover, they also have heavily contribution near the deadlines. Team leaders

usually dominate the whole process. Component developers are those students who add few

new Java classes to CVS, and their contributions locus on a small group o f files. Moreover,

they are the only developers for most o f these liles. Usually, component developers involve

in few collisions. A ll these patients were extracted and listed in section 4.6 (page 82 to 84)

with detailed explanations.

Although open-source projects usually last for a longer process, Java tiles are added

into CVS repository since the very beginning. Some o f them have already been developed a

little bit. In such a new environment, the teams still have hatch processing in supportive tiles

and die sequential addition o f Java classes. Although open-source development process is

advocated as tin almost silver-bn 1 let solution, tiles with high collisions and merges are still

exist, together with some lile renaming and relocation. Same as student teams, merges

still happen ahead o f collisions. Because most developers have more experience than those

student novices, fewer tiles tire removed from CVS and most members only cheek out

once at the beginning (commend ” cvs update” is enough to bring local working directory

in sync w ith repository later). Because people jo in in open-source projects voluntarily

according to their interests, no workload balance has to be kept, some members may have

heavily contribution all lime while some others only have a checkout and several m inor

modifications. The work trends o f them are still very uneven: small busy phases and spikes

scalier among idle periods. In open-source projects, some new roles appear. M ultip le team

leaders exist in many teams, anil some o f them are only dominate one or several phases

instead o f the whole process. There are many anonymous developers who have no right to

m odify the codes in CVS. Component developers still exist as in .student teams. Some team

members can be treated as maintainers or patching developers, both o f them do not attend

the early-phtt.se development. Mninlaincrs usually begin work alter several formal releases

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and only have some minor contribution, such as reformat the code, refactoring, and so on.

Patching developers only do some patches instead o f other CVS operations. Section 5.4

(Irom page 113 to 115) elaborated till these patterns ielated to open-source projects.

There are several dimensions along which CVSChecker could be extended and im

proved.

• More data could be integrated in the CVSChecker data model, such as code mea

surements, development profiling information captured by the IDF and PSM-slyle

metrics |48J. A richer set o f facts would enable more analyses, at die cost, however,

or the unoblrtisiveness o f the tool.

• The visualization component could he extended and improved. Design more informa

tive visualizations to convey information to instructors and possibly with developers

is a short-term future goal.

• More case studies are necessary. Our long-term objective is to systematically con

duct case studies, experimenting w ith different processes, such as XP and RUP for

example, different project size, and complexity, and different leam-members’ com

petencies. Then we can comparative analyze the collected data to discover which

patterns are characteristic o f success or failure in the context o f which process,

• Finally, as the number o f case studies increases, more in-depth data comparisons

become possible. We expect that data-mining methods 117| w ill become viable for

extracting significant correlations between successful software development and typ

ical behavior patterns o f teams and team members.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

f 1] D. Atkins. Version Sensitive Editing: Change History as a Programming Tool. Proc.
o f the 8th Conference on Software Configuration Management, Brussels, July 1998.

[2] T. Ball, J. M. K im , A. A. Porter, and l-l. P. Siy. I f your version control system could
talk... Proc. o f ICSE Workshop on Process Modeling and Empirical Studies o f Soft
ware Engineering, Boston, Massachusetts, USA, 1997.

[3] K. Beck, Extreme Programming Explained: Embrace Change, Addison Wesley,
1999.

[4] M. Bclbin. Manattemenl Teams - Why they succeed or fail, John W iley and Sons.
New York, 1981.

[5] D. Bisant and J. Lyle. A Lwo-pcrson inspection method to improve programming pro
ductivity. IEEE Transactions on Software Engineering, 15(10): 1294-1304, Oct. 1989.

[6] W. W. Cohen, J. Kichman. Learning to Mulch and Cluster Large High-Dimensional
Data Sets For Data Inlegrationln Eighth ACM SICK 1)1) International Conference on
Knowledge Discovery and Data M ining (KDD), Edmonton, Alberta, Canada 2002.

[7] D.Cubranic and G. C. Murphy. Hipikat: Recommending pertinent software devel
opment artifacts. In Proc. 2.5111 International Conleience on Software Engineering
(ICSE), pages 408 - 4 18, Portland, Oregon, May 2003.

[8] T. L. Dickinson, M. Robert. A Conceptual Framework lor Teamwork Measurement.
In Team Performance Assessment and Measurement: Theory, Methods and A p p li
cations. Michael T. Brannick, Eduardo Salas, Carolyn Prince, 1995.

[9] M. Fischer, M. Pinzgcr, and H. Gall. Analyzing and relating bug report data for
feature tracking. Proc. o f 10th Working Conference on Reverse Engineering (WCRE
2003), Victoria, British Columbia, Canada, Nov. 2003.

[10] M. Fischer, M. Pinzgcr, and II. Gall. Populating a release history database from ver
sion control and bug tracking systems. Proc. o f International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept. 2003.

[11] H. Gall, K. l-lajck and M. Jazaycri. Detection o f logical coupling based on prod
uct release history. Proc. o f International Conference on Software Maintenance
(ISC M ’ 98), Washington D.C., USA, Nov. 1998.

[12] H. Gall, M. .la/.ayeri, anil J. Krajewski. CVS Release History Data for Delecting Log
ical CouplingsProc. o f International Workshop on Principles o f Software Evolution
(IWPSE 2003), pp. 13-23, Helsinki, Finland, Sept. 2003.

[13] D. German. An empirical study o f lile-grained software modification. Proc. o f the
20th IEEE International Conference on Software Maintenance (IC SM ’04) pp. 3 lb-
325, Chicago Illinois, USA, Sept. 200-1.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] D. German. Using software Hails to rebuild the evolution o f software. Proc. o f the
International Workshop on Evolution o f Large-scale Industrial Software Application
(ELISA), Amsterdam, The Netherlands, 2003.

[15] D. German and A. Mockus. Automating the measurement o f open source projects. In
Proceedings o f ICSE ’03 Workshop on Open Source Software Eimincering, Portland,
Oregon, USA, May 2003.

[16] A. G. Gledilsch and P. K. Gjcrmshus. Irx Cross-Referencing Linux.

[17] J. Man and M. Kamber, Data M ining: Concepts and Techniques, The Morgan Kauf-
mnnn Series in Data Management Systems, Jim Gray, Scries Editor Morgan Kauf-
mann Publishers, August 2000.

[18] G. Hcdin, L. liendix, IT Magnusson, Introducing .software engineering by means o f
Extreme Programming, Proceedings o f the 25th International Conference on Soft
ware Engineering, SESSION: Papers on software engineering education and train
ing: extreme programming, Pages: 586 - 503, Portland, Oregon, 2003.

[19] http://ali.as/dcvel/evsmonilor/

[20] http://bloof.sourccforgc.net/

[21] hUp://codestrikcr.sourceforge.ncl

[22] http://evsplot.sotirceforge.net/

[23] hllp://cvsscarch.soureeforge.net/

[24] hitp://cvs.gnome.org/bonsai/evsqucryform.egi

[25] hltp.V/lxr.sourccforge.nct/, Visited Feb. 2004

[26] hitp://msdn.microsofl.com/vstudio/prcvious/ssafe/

[27] hUp://sourccforge.nel/prqjocis/viowcvs/

[28] http://slalevs.soureeforge.net/

[29] http://w iki.org/wiki.egi7W hatIsW iki

[30] http://www.eelipse.org/

[31] http://www.es.waikato.ac.nz/ ml/weka/arff.html

[32] http://www.freebsd.0 rg/projecl.s/evsweb.ht1nl

[33] http://www.gnu.oig/software/evs/manual/

[34] http://www.postgrestil.org/

[35'J http://www.tortoiseevs.org/

[36] http://www.weka.net.nz/

[37] hl.lp://www-306.ibm.com/softwarc/awdiools/clearcnsc/

[38] M. Holcombe, M. Ghcorghe, P. Macias: Teaching XP for Real: some initia l obser
vations and plans, Second International Conference on eXtrcmc Programming and
Flexible Processes in Software Engineering XP, .Sardinia. Italy, 2001.

[39] JM ctrie:http://www.it.swin.edu.au/prqjeeis/jinetrie/produeis/jmetrie

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ali.as/dcvel/evsmonilor/
http://bloof.sourccforgc.net/
http://evsplot.sotirceforge.net/
http://slalevs.soureeforge.net/
http://wiki.org/wiki.egi7WhatIsWiki
http://www.eelipse.org/
http://www.es.waikato.ac.nz/
http://www.freebsd.0rg/projecl.s/evsweb.ht1nl
http://www.gnu.oig/software/evs/manual/
http://www.postgrestil.org/
http://www.tortoiseevs.org/
http://www.weka.net.nz/
http://www.it.swin.edu.au/prqjeeis/jinetrie/produeis/jmetrie

[40] B. Ralpli-Joluin, M. Luka, and P. Ivan anil P Viorel. XP as a Framework for Practical
Software Engineering Experiments, Proceedings o f the- Agile Processes in Software
Engineering XP2002, Alghero, Sardinia, I (a I > 200.’ .

[411 D. Johnson, l-l. Carisii, J. , Extreme programming and die software design course, in
’’Extreme Promammine Perspectives” , Addison-Weslev. chapter 24, pp. 273 - 285,
2003.

[42] T. Kamiya, S. Kusmnoto, and K.Inotie. CCP’inder: A m ulli-linguislie loken-hased
code clone detection system for large scale .source code. IEEE Trans. Software En
gineering, 28(7): 654-670, July 2002.

[43] S. Koch and G. Schneider, ’’Results from Software engineering research into Open
source development projects using public data,” Wirtschaftunivcrsital Wien, Austria,
Working Paper 22, 2000. hitp.V/cilcsccr.csail.mit.edu/koch00rcsuli.html;

[44] P. KruclUen, The Rational Unified Process: An Introduction, Addison-Wesley, 2000.

[45] O. Aslrachan, R. Duvall, E. Wallingford. (2003), Bringing extreme programming to
the classroom, in ’’Extreme Programming Perspectives” , Addison-Wesley, chapter
21, pp. 237-250.

[46] L. Lopez-Fernandcz, G. Robles, M. Jesus, G. Barahona, Applying Social Network
Analysis to the Information in CVS Repository, international Workshop on M in ing
Software Repositories (MSR), 251h May, 2004 Edinburgh, Scotland, UK;

[47] R. C. Martin. Agile Software Development Principles. Patterns, and Practices, Pren
tice Hall, October 2002.

[48] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean. E. I Ini I. "Practical Soft
ware Measurement - Objective Information for Decision Makers” , Addison-Wesley
Oct. 2001.

[49] A. Miclvail. Data m ining library reuse patterns in usci-selected applications, pp.24-
33, Automiiled Software Enemc'crine. 14th IEEE International Conference, Cocoa
Beach, EL. USA ,1999.

[50] A. M ichail. Data m ining library reuse patterns using generalized association rules,
nternational Conference on Software Engineering, Proceedings o f the 22nd interna
tional conference on Software engineering, Limerick, Ireland, 2000.

[51] K. B. M ierle, K. Laven, T. Sam, Roweis, G. V. Wilson. CVS Data Extraction and
Analysis: A Case Study, h lip ://www.cs.toronlo.edu/ roweis/papers/cvsanalysis.pdf.
[100] M. M ichlmayr, "Managing volunteer A ctiv ity in Free Software Projects,” in
Proceedings o f the FREEN1X Track: 2004 USENET Annual Technical Conference,
Boston, M A, June-July 2004.

[52] A. Mockus, R. Fielding, J. I lcrbsleb, "Two Case Studies O f Open Source Software
Development.: Apache And M ozilla,” ACM Transactions on Software Engineering
and Methodology, volume I 1, number 3, 2002, pp. 309-346.

[53] M. M. Muller, W. E Tichy. Case study: Extreme Programming in a University Envi
ronment, Proceedings o f the 23rd International Conference on Software Engineering,
Toronto, Ontario, Canada PP537 - 544, 2001.

[54] A.Mockus, R.T. Pickling, and .I.D.I lerbslcb. Two case studies o f open source soft
ware development: Apache and Mozilla. ACM Transactions on Software Engineer
ing and Methodology, I 1(3): 309-346, 2002.

[55] J.Noll, Some Observations o f Extreme Progiamming for student Projects, position
paper at the workshop on Empirical Evaluation o f Anile Pioccsscs, Chicago, Illinois,
August 7, 2002.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.toronlo.edu/

[56] T. Nosek, The ease for collaborative programming. Communications o f the ACM,
Volumn 4, Issue 3, pp. 105-108, ACM Press, Mar. 1998.

[57] M . Ohira, R. Yokomori, M. Sakai et al.. Empirical Project Monitor: A Tool for
M in ing M ultip le Project Data, Proc. o f International Workshop on M in ing Software
Repositories (MSR2004), pp.42-46. May/25/2004, Edinburgh, Scotland, UK.

[58] L . Putnam, W. Myers, Five Core Metrics: The Intelligence behind Successful Soft
ware Management, Dorset House, 2003.

[59] E. Raymond. The Cathedral and the Bazaar, Musings on Linux and Open Source by
an Accidental Revolutionary, O ’ Reilly UK 2001.

[60] G. Robles, S. Koch and J. M. Gonzlcz-Barahona. Remote analysis and measurement
o f libre software systems by means o f the CVSAnalY tool, Proceedings o f the 2nd
Remote Analysis o f Software Systems (RAMSS) Workshop held at the 26th Interna
tional Conference on Software Engineering. Edinburgh. May 2004.

[61] F. V. Rysselberghe and S. Demcyer. M ining Version Control Systems for FACs (Fre
quently Applied Changes), Proc. o f International Workshop on M ining Software
Repositories (MSR ’ 04), Edinburgh, Scotland, UK, May 200-1.

[62] J. Sayyad, C. Lethbridge, Supporting software Maintenance by M ining software up
date records, Proceedings o f the IEEE International Conference on Software Main
tenance (IC SM ’01), PP. 22, 2001;

[63] J. Stiyyad Shirabad, C. Timothy. Lethbridge, S. Matwin, M ining the Maintenance
History o f a Legacy Software System, 19th IEEE International Conference on Soft
ware Maintenance (IC SM ’()3) pp. 95.

[64] .I.-Guy Schneider, L. Johnston. eXtreme Programming al universities: an educational
perspective. Proceedings ol'lhe 25th International Conference on Software Engineer
ing, SESSION: Papers on software engineering education and training: extreme pro
gramming Pages: 594 - 599, Portland, Oregon, 2003.

[65] A. S illilt i, G. Succi, T. Vernazza. Analysis o f Source Code Repositories,
h ltp ://www.imibz.it/wcb4arehiv/objcct.s/pdl7cs_library/2/analy sis_of-sourcc_codc_reposilories.pdf.

[66] G. Snelting. Reengineering o f configurations based on mathematical concept analy
sis. AC M Transactions on Software Engineering and Methodology (TOSEM), 5(2):
146-189, 1996;

[67] M . A. Storey, C. Best, and .1. Michaud. Sl-lriMP Views: An Interactive and Customiz
able Environment for Software Exploration. In Proc. o f International Workshop on
Program Comprehension, May 2001.

[68] A. Stratton, M. Holcombe, P. Croll, Improving the quality o f software engineering
courses through university based industrial projects. In Projects in the Computing
Curriculum, (cds.) 1998,47-69.

[69] Subversion: A compelling replacement for CVS. http://subver.sion.tigris.org/

[70] L. W illiam s, R. Kessler. Pair Programming Illuminated, Addison-Wesley, 2002.

[71] W.Tiehy. Design, Implementation, and Evaluation o f a Revision Control System,
Proceedings: 6lh International Conference on Software Engineering pp. 58-67. IEEE
Computer Society Press, 1982.

[72] X. Wu. Visualization o f version control information. Master’s thesis, University o f
Victoria, 2003.

i 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.imibz.it/wcb4arehiv/objcct.s/pdl7cs_library/2/analy
http://subver.sion.tigris.org/

[73] L. W illiam s and Richard Upchurch, Session Eetrcme programming for software en
gineering eduction? Proceedings o f 3 1st. ASEE/IEEE frontiers in Bducaiion Confer-'
ence, Oct 2001, Reno, Nevada, USA.

[74] M . Winter, Developing a group model for student software engineering teams. Mas
ter thesis, Univ. o f Saskatchewan, 2004.

[75] K. Wong, W. Blanche!, Y. Liu, C. Scliolickl. B. Stroiilia, /.. Xing, JKcllcX: Towards
supporting small student software teams, I ’roe. O f Bclipsc Technolouy exehanee
workshop, pp.56-60, OOPSLA 2003, Oct. 27 2003, Anaheim CA, USA?

176] .1. Pfeiffer. N W illiam , Instrumentation in Human Relations Training: A Guide to
92 Instruments with Wide Application to the Behavioral Sciences Second Bdition.
University Associates, La Jolla, California. USA, 1976.

[77] A.T.T.Ying. Predicting source code changes by mining revision history. Master’s the
sis, University o f British Columbia, Canada, Oct. 2003.

[78] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system architecture (or
not). Proc. o f International Workshop on Principles o f Software Evolution (IWPSE
2003), pp. 73-83, Helsinki, Finland, Sept. 2003.

[79] T, Zimmermann, P. Weibgerbcr. Preprocessing CVS data for tile-grained Analysis.
Proe. o f 1st International Workshop on M ining Software Repositories (MSR), Edin
burgh, UK, May 2004.

[80] T. Zimmermann, P. Weibgerbcr, S. Diehl, A. Zeller. M ining Version Histories to
Guide Software Changes, Proe. o f 26th International Conference on Software Engi
neering (ICSE), Edinburgh, UK, May 2004.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

