INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken orindistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

TOWARDS UNDERSTANDING COLLABORATIVE SOFTWARE DEVELOPMENT

by

Ying Liu

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree ol Master of Science,

Department of Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N+l

Library and
Archives Canada

Published Heritage Direction du

Branch

395 Wellington Street

0-494-09226-2

Bibliotheque et
Archives Canada

Patrimoine de I'édition

395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Volre référence
ISBN:
Our file Notre retérence
ISBN:
NOTICE: AVIS:

The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'lnternet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique

" et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian

Privacy Act some supporting
forms may have been removed

from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
queiques formulaires secondaires
ont &té enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 my husband, parents, and sister,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Abstract

The success of team soltware-development project depends on many factors, such as the
technical competence of the developers, the quality of the tools they use and the project-
management decisions. To successfully complete a project developers need to have an
overall understanding of their project status, to possess sulficient programming expericnee,
to collaborate well with the other team members, and to be able to react promptly to any
unforescen events during the project.

Instructors of project-based software-development courses, and more generally project
managers, who are responsible for overseeing collaborative project development are some-
times overwhelmed by the task of monitoring the progress ol their teams. Sometimes,
problems in a team may go unnoticed until it is too late (o be fixed. This issue, i.c., "how to
support managers (o understand the progress of their teams and to provide timely feedhack”
is the underlying motivation of the work in this thesis.

CVSChecker, is a tool that analyzes the collaborative soltware-development process. It
examines the history of operations that team members perform in their project repository
and the evolution of the software artifacts stored in this repository to discover interesting
patterns and events in the (a) collaboration style among the team members, (b) the devel-
opment contributions of individual tecam members and (¢) the evolution of the soltware
project. It produces reports and visualizations that can help instructors (o notice issucs in
a team’s process that should be addressed in order for the team to succeed in their task.
CVSChecker was cvaluated, with positive results, in two dilferent contexts: (a) academic

team projects of student developers and (b) open-source projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
LT Motivalion v v s e e e e e e e e e e e e e e e 1
1.2 Rescarch Problem and Methodology oo oL 2
1.3 Thesiscontributions e e e 2
1.4 Outincofthethesis e e 3

2 Related work 4
2.1 Related work on the analysis of data from version control systems 4

2.1 CVS . e 4
2.1.2 Relatedworkon CVSdata 5
2.2 Related work on team roles and collaboration 11
2.3 Related work on the empirical studics in universitics on soltware develop-
MENLPIOCESSCS .+ v v v v v ot e e e e e et e e e e e e e 12
2.3.1 Introducing New Methodologices and Processes to Students . L L 13
2.3.2 Hclping Instructors to Improve the Course Quality 14
2.3.3 Evaluating the Ellect of Practices and Mcthodologics in Academic
SCUINGS . . o v o e e e e e e e e e 14
3 Collaboration Analysis 17
3.1 CVSCheckerinthecontextof JRefleX 17
3.1.1 Thedevelopmentenvironment o o0 L. . 17
3.1.2 Thereposilory L 19
3.1.3 Collaboration and evolutionanalysis 19
314 TheWikiserver. o 0 e 19
3.1.5 The project assesSmMEntComponent o v v v v v e L 20
3.2 TheCVSChecker DataModel oo o 21
3.3 The Collaboration-analysis Process oo oo 23
3.3.1 Datacollection and factextraction . . ., 24
3.3.2 Derived-Information inferencing oo Lo 30
3.33 Visualization L L e s e e 37
334 Reporting v oo e e e e e 43
3.4 Further analysis on the CVSCheckerdata 45
340 Datamining e e e e e 46
3.42 Uscr-driven dataexploration 47
343 Heuristics-based analysis o oL 48

4 An Exploratory Case Study on Five Undergraduate Student Teams 51
4.1 ObJectives o o e e e e e e e 51
4.2 SClings e e e e 53
43 BasicResults o 54

4301 TheTeam Aspecl . . . v v o v v oo e s e 35
4.3.2 The Individual-Developeraspeet . . 0 o0 0 00000 oL 58
433 TheFileaspecl o o L 68
434 TheFile-Versionaspeet. . .. o o 00000 oo a3
4.4 Heuristic Generation and Knowledge Extraction . . ., . ..,, 87
4.5 Heuristic-Driven Analysis 0 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 Summarizing pallernso e e e e e 88

4.5.2 Evaluating the summarized patterns, 91

4.5.3 Developing heuristics and querics based on these validated patterns - 91

4.54 Applying the hearistics and queries0 92

4.6 PallCrNS oo e e 92
4.6,1 Factoalpatternso e 92

4.62 Redflags .. . oo o0 93

4.63 Team-roleprofiles Lo o o e 93

5 Three teams in open-source community 95
5.8 Objectives . o oo L e e e e PN
520 SCUINES v e e e e e 96
S2.1 SIEPS Lo e 96

522 ProjectSclection L 0 e e e Y7

53 BasicResults o e e 99
53.1 OSP.A e 99

532 OSPB ... e e e 108

533 OSPLC e e e 117

54 Pallems o e e e e e 125
S4.1 FactmalPallerns o o 00 e 125

542 RedFlags . . .o oo 0 o e e e 126

543 Team-roleprofiles o e 127

6 Conclusions and Future Work 129
Bibliography 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 CVS historical record types with the corresponding CVS operations 28
4.1 3 Project-developmentphases o e 54
4.2 The numbers of CVS operations of five studentteams° 55
5.1 30pensourceprojecliCams . o v v v v v e e e e e 98
52 7phasesof OSPB e e, 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 ThelJRefleX System Architecture oo oo oo (8
3.2 The architecture of CVSCheckerplugin 24
33 Ancxampleof RCSfile. 27
3.4 Ascgmentof HISOry.lXt . . . o o o o e e 30
3.5 Temporal Distribution of CVS Activity, for Each Member/Team, 38
3.6 Distribution of CVS Operations by Type, lor Each Member/Team L L ., . 39
3.7 Distribution of CVS Opcrations by Type, for Each File 39
3.8 Simplified Distribution of CVS Operations by Type, for Each File 40
3.9 Added and Deleted LOC by Each Member, on BEach File 41
3.10 Detailed LOC Change by Date, ona Single File 42
3.11 File Adding and Removing by Date, fora Project 42
3.12 A scgment of DailyOperationreport oo oo 44
3.13 Asegmentol FileVersionreport o 44
3.14 A scgmentol StudentWorkreport . . . Lo Lo 45
3.15 A segment of Summarization ceports e 46
3.16 Work tlows of Bottom-up Hypothesis Generation and Knowledge Extraction 46
3.17 Result view of CVSChecker query function in Eclipse, .. 48
3.18 Top-Down Hypothesis-Driven Analysis in CVSChecker L .. 49
4.1 Distribution of CVS Operations by Type, for Five Teams 56
4.2 Temporal Distribution of CVS Activity, for Each 5 Teams, .. 57
4.3 Temporal Distribution of MR Activity, for Each 3 Teams, .. 58
4.4 Distribution of CVS Opcrations by Type, for Members in TeamA . . . L . . 59
4.5 Temporal Distribution of CVS Activity, for Each Member in TeamA 60
4.6 Distribution ol CVS Operations by Type, tor Members in TeamB 6]
4.7 Temporal Distribution of CVS Activity, for Each Member in TeamB 62
4.8 Distribution of CVS Operations by Type, for Members in TeamC . . ., L 63
4.9 Temporal Distribution of CVS Activitly, for Each Mcember in TeamC 64
4.10 Distribution of CVS Operations by Type, for Members in TeamD . . . L .. 63
4.11 Temporal Distribution of CVS Activity, lor Each Member in TeamD 65
4.12 Distribution of CVS Operations by Type, for Members in TeamE 66
4.13 Temporal Distribution o CVS Activity, lor Each Member in TeamE ., . . 67
4.14 File Adding and Removing by Date, for TeamA 68
4.15 Distribution of CVS Operations by Type, for Each Java Class in TecamA . . 6Y
4.16 Added and Deleted LOC by Each Member, on Each Java Clags in TeamA . 71
4.17 File Adding and Removing by Date, lor TeamB 72
4.18 Distribution ol CVS Operations by Type, for Each Java Class in TcamB . . 73
4.19 Added and Deieted LOC by Bach Member, on Each Java Class in TecamB . 74
4.20 File Adding and Removing by Date, for TeamC 75
4.21 Distribution of CVS Operations by Type, for Each Java Class in TeamC . . 76
4.22 Added and Deleted LOC by Each Member, on Each Java Class in TeamC . 77
4.23 File Adding and Removing by Date, for TeamDo ... 78
4.24 Distribution of CVS Operations by Type, for Each Java Clasgs in TeamD . . 79
4.25 Added and Deleted LOC by Each Member, on Each Java Class in TecamD . 80
4.26 File Adding and Removing by Date, for Teambk 81
4.27 Distribution of CVS Operations by Type, for Hach Java Class in TecamE . . 82
4,28 Added and Deleted LOC by Each Member, on Each Java Class in TeamlE . 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.29 Detailed LOC Change by Date, on File "TeamA/sre/CalendarFrame.java” -, 84
4.30 Detailed LOC Change by Date, on File "TeamA/sre/ICalControllerjava” . . 84

4.31 Detailed LOC Change by Date, on File "TeamB/code/RCal java” 85
4.32 Detailed LOC Change by Date, on File "TeamC/lsource/views/iGorApp.java” 86
4.33 Detailed LOC Change by Date, on File "TeamBE/CalendarModel java™ . . . 87
5.1 The distribution of CVS operation types Tor each member in OSP_A over
WHOle Process o o o e e e 100
5.2 The temporal distribution of CVS operations for each member in QSP_A
over Whole process o o o 101
5.3 File additions and removals in OSP_A over whole process 102
5.4 The temporal distribution of CVS operations lor cach member in OSP_A in
Phase 1 . . o . e 103
5.5 The distribution of CVS operation types for cach member in OSP_A in
Phasel e 103
5.6 The temporal distribution ol CVS operations for cach member in OSP_A
before the releascof vOI2b L .o oo L 0oL Lo 105
5.7 The distribution of CVS operation types [or cach member in OSP_A from
2002-7-10102002-08-11 106
5.8 The file additions and removals in OSP_A from 2002-7-10 10 2002-08-11 . 106
5.9 Distribution of operations by type in OSP.A, on cach file from 2002-7-10
02002-08-11 o e 107
5.10 Added and Deleted LOC of cach member in OSP_A, on cach file from
2002-7-10102002-08-11 107
5.11 The distribution of CVS opcration types tor cach membher in OSP_B over
wholeprocesso oo oo L 108
5.12 The temporal distribution of CVS operations for cach member in OSP_B
overwhole process L e e 109
5.13 File additions and removals in OSP_B aver whole process . .. oo 0 L. 110
5.14 Distribution ol operations by type in OSP_B overall fites 11
5.15 Added and Deleted LOC ol cach member in QOSP_B, on cach file over the
wholeprocess o o 12
5.16 The distribution ol CVS operation types tor cach member in OSP_B in
Phasel (Irom 2002-02-08 10 2003-03-09) 113
5.17 The temporal distribution of CVS operations for ecach member in OSP.B in
Phase3 (from 2003-08-10 10 2003-11-06) 114
5.18 The distribution of CVS operation types lor cach member in OSP_B in
Phase3 (from 2003-08-1010 2003-11-06) 115
5.19 Added and Deleted LOC of ecach member in OSP_B, on cach file in Phase3
('rom 2003-08-10t0 2003-11-06) 115
5.20 The distribution of CVS operation types for cach member in OSP_B in
Phase4 (from 2003-11-07102004-09-26) 116
5.21 The distribution of CVS8 operation types for cach member in OSP_B after
Phasce4 (from 2004-09-27 10 2005-02-04) 116
5.22 The temporal distribution ol CVS aperations for cach member in OSP.C
overwholeprocess L 118
5.23 The distribution ol CVS operation (ypes for cach member in OSP_C over
Whole process . . . o v o o o e e e e e 118
5.24 File additions and removals in OSP.C over whole process 119
5.25 The distribution ol CVS opceration types for cach member in OSP_C in
Phase | (irom 2004-02-13 10 2004-08-10) 120
5.26 The temporal distribution of CVS operations [or cach member in OSP_.C in
Phase!l (from 2004-02-13 10 2004-08-10)) 121
5.27 The temporal distribution of CVS operations for cach member in OSP_C in
Phase 2 (Irom 2004-08-11 10 2005-02-04) 122
5.28 The distribution of CVS operation types for cach member in OSP_C in
Phase 2 (Irom 2004-08-11 10 2005-02-04) 122
5.29 Diswibution of operations by type in OSP_C, on cach file (from 2004-08-11
W0 2005-02-04) . .. e 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.30 Added and Deleted LOC of cach member in OSP.C, on cach file (from
2004-08-11102005-02-04 123
5.31 Detailed LOC Change by Date, on.././es/OSP-C/OSP_CFrame.java” (Filed01) 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A team is a group of people who share a common objective and need 1o work together in
order to achieve it. It is a primary means for developing products in complex situations.

Good teamwork iy an essential factor for effective team performance [74].

1.1 Motivation

The soltwarc-development project success depends on the technical competence of the de-
velopment team, the quality of its tools and the project-management decisions it makes
during the software life-cycle. New or volatile requirements, tight delivery schedules and
team-member turnaround present the team with challenges. To cellectively deal with such
obstacles requires that the developers have an overall understanding of (the current status
ol their project, possess sulficient programming expericnce, collaborate elfectively within
their teams, and are able to react promptly.

Although softwarc-engineering rescarch literature abounds with information on how to
develop high-quality software on time and on budget, book learning alone is not enough
o train competent software professionals. Developers, especially soltwarc-engineering
students, need to practice and apply the knowledge obtained from books and to acquire
“hands-on” experience with realistic software development projects. Like project man-
agers, instructors who teach courses involving collaborative project development are often
overwhelmed by the task of monitoring the progress of multiple teams and problems in the
leam’s process may go unnoticed until it is 1oo late to be fised. They may get mired in the
complexity of the product or the individual components,

Supporting instructors to clfectively monitor their software-development teams so that
they can provide timely feedback was the overall inotivation behind the CVSChecker plu-

gin, The goal of this tool is to implement a methodology for monitoring the collaboration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process of software to aid the manager’s understanding of how the team members work
through the project life-cycle.

More specifically, CVSChiecker is interested in examining and shedding some lights
into several related research questions. With a large varicty of group types — from academic
student teams, traditional industrial groups to the emerging open source communities — are
the natures of teamwork, role performance, and collaboration the same? Can some specific
patterns be abstracted and be representatives of a specific group type or a role? Will these
patterns be affected by dilferent project developing processes? What strong relationship do
these patterns have and how could it consequently affect the whole tcam performance and

the final product quality?

1.2 Research Problem and Methodology

CVSChecker is a component of the JRefleX project [751. JRefleX integrates a set of 10ols,
including CVS, Eclipse platform, PostgreSQL datahase, and uses a browser-aceessible
Wiki-based user interlace as a [ront end to all the analyses results,

CVSChecker examines data collected [rom CVS, including CVS history and log as
well as metrics on the assets stored in CVS. Tt analyzes the collected data from multiple
perspectives. First, it tries to identify interesting patterns in the roles and contributions
of individual developers to the team project. Next, it proceeds to analyze the evolution
of the individual project files, stored in the repository. Finally, it comparatively examines
the development process ol a set ol tcams. CVSChecker produces as output visualizations
of its analyses, and reports summarizing (the team behavior and patterns ol interest to the
instructor monitoring the software-development team,

The process of analyzing a project with CVSChecker involves several steps: data col-
lection, feature extraction, visualization, querying, data analysis, and knowledge extraction,
CVSChecker extracts a substantial amount ol information by ¢xamining the historical data
recorded by source-management systems, presents the trends in these data through visual-
izations and reports, and examines the project-development process from several perspec-

tives, including team collaboration, individual-developer role and source-artifact evolution,

1.3 Thesis contributions
This thesis contributes the following to the state-of-the-art in this rescarch area:

e arcpository-analysis method that examines and analyzes, in addition to the evolution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the software artifacts managed in it, the development behavior of the individual

developers and the team as a whale,

e a scl ol distinet development-process patterns characteristic ol different roles in the

team, relevant in multiple life-cycle processes; and
¢ atool that automates the above analysis and pattern extraction,

We have applicd CVSChecker plugin on five student tcams in our exploratory case study
to examine whether CVSChecker works well on teams in a university environment. At the
same time, we wanted to understand how students working in teams interact and (o find out
if there is any corrclation among the educational environment, roles, their grades and the
nature of their collaboration.

Our second case study involves three teams from the open-source community. The
goals of this casc study were similar o the goals of our student case study.

In addition, by comparing the results of the two case studies, conducted in difterent
cnvironments, with tcams consisting ol developers with difterent levels ol experience moti-
vated by dillerent objectives, we wanted to develop some intuition regarding the impact of

these factors on the software-development process.

1.4 Outline of the thesis

This chapter presented the motivation, thesis statement; and an overview ol our approach,
The remaining chapters of the thesis are organized as follows, Chapter 2 covers related
work. Chapter 3 introduces the architecture o’ JRefleX system and the methodology of
CVSChecker plugin. Chapter 4 presents an exploratory case study with 5 student tcams
while Chaplter 5 provides another case study on 3 open source projects. Finally, Chapier 6

concludes, highlighting the contribution ol our research,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related work

This chapter is divided into three parts:
o Related work on the analysis ol data [rom version control systems;
¢ Related work on team roles and collaboration; and

o Rclated work on the empirical studies in universitics on software development processes.

2.1 Related work on the analysis of data from version control
systems

During the lifetime of a software project, configuration management or version control
Systems (such as Concurrent Version System — CVS [33], Rational ClearCasc [37], and
Microsolt Visual Source Safe [26] are essential tools to allow handling of difTerent versions
of files in a cooperating team.

The analysis of version control system data began in 1990°s; Ball was one ol the first
researchers to analyze the data from version control systems, and his paper "Il your version
control system could talk” [2] was treated as the carliest publication in this topic. Because
Concurrent Version System (CVS) is popularly used in many universities (such as those stu-
dent projects in our case studies) and open source communitics (such as www.sourcelorge.net),

in this thesis, we focus on CVS.

2.1.1 CVS

CVS can store a large amount of historical information about the whole development process
and allow development teams o work together on the same set of source code files. The

main functionalitics are listed as followings:

o Keep track of file version,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureeforge.net

s Moerge changes made on the same files by different developers,
¢ Retricve old versions,
¢ Undo not working modification.

CVS data constitutes a valuable source that describes interesting aspects of a project’s evo-
lutionary changes. But CVS also has some weaknesses as [ollows:

They only store the entire source ol the last revision, Other revisions have to be recov-
ered by means ol deltas, The changes are only stored at the line level in CVS, using a file
difference algorithm. However, new tools, such as Eclipse [30], are capable to display the
entire code of any previous version based on CVS information.

CVS does not keep track ol which files have been changed together in a single commit
operation. Often this information is required for the analysis, ¢.g., lor the determination ol a
logical coupling. Rescarchers propose dilferent solutions. A typical solution is to consider
several changes as a transaction il the same developer made them at the same time, with the
same log message (rationale). Usually commit operations take several seconds or minutes
- especially the ones involving many files. There are two dilterent approaches to defining
the "same time™; using fixed time windows [12] | 153] and using sliding time windows [79].
The Sliding time window can recognize transactions that take longer to complete than the
duration of the first onc.,

CVS does not keep track of which revisions resulted from a merge. Michael Fischer
ctal. [10] proposed a heuristic to deteet these revisions. In addition, they introduced an
approach for populating a release history database that combines version data with bug
tracking data, and other data, such as merge points, missing in version control systems, CVS
does not provide enough mechanisms for tracking the evolution of large software systems.
Therefore, rescarchers usually combine CVS data with other project-related information,

such as bug reports, mailing lists and so on.

2.1.2 Related work on CVS data

Version control system data are freely available now, for example via SourcelForge.ncet. This
kind of data provides lots ol information on the evolution ol a soltware project. Some re-
searchers provided alternative interfaces to CVS and did some work in purpose (o improve
source code navigation, Morcover, such CVS dara enable many new analyses, such as
program analysis, soltware evolution analysis, metrics and quantitative analyses, and visu-

alization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Providing alternative interfaces to CVS

Several researchers provided casy-to-use interfaces for CVS. The two most commonly in-
terfaces o CVS are Bonsai [24] and Irx [16]. They operate by retrieving the revision in-
formation of cach file, which is then stored in a relational database. Both of them allow
connecting to a particular archive in CVS repository via a web-based interface and isolate
the users rom the complexitics of the CVS commands. They allow the users to inspect the
history of any given file in the project. However, neither ol them attempt o enhance the
software trails available in the repository.

ViewCVS [27] is a hrowser interface Tor CVS and Subversion [69] version control
repositorics. It generates HTML emplates to present navigable directory, revision, and
change log listings. It can display specilic versions ol files as well as difTs between those
versions, Basically, ViewCVS provides the bulk of the report-like Tunctionality one ex-
pects out ol a version control tool, but in a more user-friendly way than the average textual
command-line program ou(pul.

TortoiseCVS [35] is another tool with similar functions 10 ViewCVS. It lets you work
with files under CVS directly from Windows Explorer. With TortoiseCVS, users can di-
rectly do the CVS commands by right clicking on files and lolders within Explorer, such
as: check out modules, update, commit and sce differences. In addition, users can see the
state ol a file with overlays on top ol the normal icons within Explorer, perform tagging,
branching, merging and importing, and go directly to a browser web log (using ViewCVS
or CVSWeb [32]) on a particular filc.

Xia [72] is a plugin for Eclipse for the visualization ol CVS repositories based on the
Shrimp Visualization tool [67). Xia recovers relations available in the logs ol a CVS reposi-
tory and allows the user to navigate them. It uses nodes (o represent files, their revisions and
developers, and arcs to represent the relationships between them. Nia has two limitations:
(1) Xia does not extract the CVS (rails; it operates at the revision level instead ol at the
MR (Modification Request) level, (2) Itrelies on the Eclipse’s APHo CVS, which makes it

extremely slow in large projects.

Source code navigation

CVSMonitor [19] is a perl CGI application for monitoring activities in CVS repositorics in
a much more usclul and productive way than the previous tools. 1 is somewhat similar o
CVSWeb, but far more uselul when one wants to keep an eye on current development, or

provide a public view into the source codes. I users use CVSWeb/ViewCVS and want 1o

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

let the public sce the repository, CVSMonitor should be used instead.

Codestriker [217 is an online collaborative code-reviewing tool and open-source web ap-
plication. Traditional document reviews are supported, as well as reviewing difls generated
by an SCM (Source Code Management) system. It integrates CVS, Subversion. Bugzilla,
LXR, ClearCase, Perforee, and Visual SourceSafe. Codestriker aims to minimize paper
work, to ensure that issucs, comments and decisions are recorded in a database, and o pro-
vide a comfortable workspace for performing code inspections. An optional conligurable
metrics subsystem can record code inspection metrics as part ol the process.

Hipikat, a tool developed at UBC [7], supports source code navigation, It aggregates
many sources ol information such as bugzilla, CVS repository, mailing lists, emails, cie.
and provides a scarchable query interface. The purpose of Hipikat is to “recommend soll-
ware artifacts” rather than summarize and visualize them. Thus Hipikatis much like Google
for a software project. One interesting feature is that it correlates soltware trails from dil-
ferent sources, inferring refationships among them,

Hipikat relates two files using the transaction approach discussed previously. It pro-
vides a "What's related” button to suggest which files are closely related o the file un-
der consideration. However, Hipikat determines coarse-grained relationships between files
only. Besides, "relate” in Hipikat is more than evolutionary coupling: two artitacts may
also be related it they refer to the same bug report namber, appear in the same email, or log
message.

To guide programmers, a number of other tools have exploited textual similarity of log
messages or program code (for example: Version Sensitive Editing).

CVSScarch [23] scarches for code fragments using CVS comments. Specilically, it
takes advantage of the fact that a CVS comment describes the lines ol code involved in the
commit and that this description will typically hold for many future versions. The CVS
comment history aids understanding ol what the code does - including its motivation and
history. Therefore, CVSScarch offers a better scarch than just looking at the most recent
version ol the code can,

Version Sensitive Editor [17] is a tool that puts the change history into the editor where it
can be instantly accessed and used to control editing and convey version information. The

purpose is to make the change history casily available to benelit the coding process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program analysis

Evolutionary coupling includes coarse-grained coupling (between files or classes) and line-
grained coupling (between program entities such as functions, methods, or attributes)

To our knowledge, the first work that levesages the product history to detect coupling
within a system and between maodutes is the paper by Gall, Hajek and Jazayeri {11}, The
authors have used their CAESAR system o analyze the coupling within a large telecom-
munication switching system, and found that the history ol 20 releases can indeed reveal
couplings within a complex system,

Later, Gall ct al. proposed a three-tier soltware evolution analysis method (QCR) in-
volving three different types of analysis: Quantitative analysis uses version information for
the assessment of growth and change behavior. Change sequence analysis identifics com-
mon change patterns across all system parts. Finatly, Relation analysis compares classes
based on CVS release history dataand reveals the dependencies within the evolution of par-
ticular entitics. In {12] the authors focused on the Relation Anadysis. They use CVS logs
to expose relationships between classes and files that might not be found by other methods,
such as call graphs. In |9], Fischer and Gall analyze the modification requests (MRs) and
described the difTerent types ol logical coupling among the files included in the MR.

Some rescarchers also analyze dillerent program revisions to detect coupling and inter-
ference between modules, such as the MORA/RECS tool of Snelting [66]. NORA/RECS
use concept analysis to detecet fine-grained coupling between variant conligurations.

In contrast, Zimmermann et al, [78] do notanalyze release histories of the entire systen,
but revision historics of the individual product files. This increases the granularity, allows
examining {inc-grained coupling between individual entities like functions, methods, and
attributes. They chose CVS archives as the base for the investigations and implemented a
prototype called Reengineering of Software Evolution (ROSE) | 78] to analyze the evolution
of CVS archives. ROSE adopts the "Right Way™ method used in CVS2cl 1o detect coupled
changes and calculates the strength of the coupling, In [79] they elaborate four essential
preprocessing tasks necessary for a fine-grained analysis CVS archives. tn |80] they apply
data mining technique and tried (o guide programmers along related sollware changes.

Van Rysselberghe and Demeyer at University ol Antwerp did some work on mining
version control systems for Frequently Applied Changes (FACs) [01]. They combined two
CVS commands, "cvs log” and "cvs difl”, to extract the change information and use clone

detection techniques (Kamiya's clone detection tool CCRinder) [42]) to locate identical and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar code fragments.

Analysis of software evolution

The following lists several typical tools that do some soltware evolution analysis based on
CVS repository data and other related historical data,

SoftChange [15] is a tool that extracts and summarizes information from CVS and bug
tracking databascs. SoltChange retrieves raw data from mailing lists, CVS repositories,
bugzilla, documentation files, and ChangeLog files, identifies the code changes by analyz-
ing the deltas and grouping them into modification requests (MRs) and obtains the related
measures. In addition, it generates problem reports (PRs). The ool was tested on a typical
open source project - Ximian Evolution,

The authors presented a more detailed description of their methodology in | 141, which
tries to rebuild the test project (Ximiany using “software trails” [14] [rom several perspec-
tives: software releases, development activities, MRs, contributors, revisions, file types,
change logs, source code hot spots, and modules. SoftChange rebuilds MRs based on a
sliding window algorithm {13} and classifics them as code MRs, bug MRs, and comment
MRs.

Cvsplot [22], formally known as CVSStat, is a Pert seript which analyses the history
ol'a CVS-managed project. The script execules on a set ol files, analyses their history, and
automatically generates graphs that plot lines of code and number ol files against time. The
tool was created to satisfy management reporting requirements. 1tis revealing to be able o
sec the "growth”™ of a project in terms ol pure line counts, and how they correspond 1o the
project’s history.

StatCVS |28] is an open source project that generates a static suite ol web pages, with
charts and tables, which contain metrics about the evolution history of a soltware project.
Although StatCVS was popular with users, lack of scalability, flexibility and interoperabil-
ity led to the creation of the Blool system.

Draheim and Pekacki, exploit source code repositories to extract information about
project evolution. They proposed a new process-centric perspective that extracts CVS log
data into a databasc and visualizes the software evolution using metrics. The result is the
Bloot system [20] based on StatCVS. Bloof system includes a GU! tool, the Bloof Browser
~which cnables the user to perform data aceess, analysis and visualization — and a Java API
for analyzing CVS data. Data artifacts can be navigated, (iliered and grouped. Additionally,

Bloof provides a set of compound queries, and visualizes the results and enables the user o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

export them into a XML document and web server,

Alberto Sillitti et. al. [65] designed CodeMart (CM) — a tool Tor the acquisition and the
analysis ol data regarding the software development process (rom version control systems,
The information is stored in a data warchouse system that has five dimension tables: author,
branch, module, time, and type of modification. CM includes two subsystems: the data
extractor and the data analyzer, Users can query based on four categories: file, module,
author, and statistics.

Researchers in Osaka University described Empirical Project Monitor (EPM) in [57].
EPM automatically collects and measures data from three kinds ol repositories related to
the evolution of a project: CVS repositories, mailing list managers, and issuc tracking
systems (Bugzilla). EPM provides integrated measurement results graphically, and helps
developer/managers keep projects under control in real time, The goal is o develop an
environment composed ol a variety ol tools Tor supporting measurcment based software
process improvement.

CVSAnalY [60] is another tool that extracts statistical evolution infornution out of CVS
(and most recently Subversion) repository logs and transtorms it to XML or stores it in a
SQL database. It has a web interface where the results can be retrieved and analyzed. Luis
Lopez-Fernandez et al. proposed [46] social network analysis to CVS data, for characteriz-

ing open-source soltware projects, their evolution over time and their internal structure,

Metrics and quantitative analysis

The above works mainly get information about software evolution and code structure from
CVS repositories, and provide this information to users using diflerent ways. It is not
cnough to view and display CVS data and programs through a convenient interface. Other
rescarchers try (o get deeper and higher level knowledge about the source code, process
design, and product, to provide better direction to users. Statistics, metrics, data wmining,
and machine-learning technique have been used for this purpose.

Koch and Schneider [43] studied the evolution ol open-source soltware projects using
publicly available data, They proposed a data model and a set ol inetrics for open source
projects. A Perl-script retrieves the necessary data from CVS repository through a web
interface. A ot of charts were generated 1o show the relationships among person, file,
discussing list, number of checkin, Added LOC, deleted LLOC, time, Irom the perspective
ol software engincering with quantitative data. Cluster analysis was used. The work of

Shirabad and Lethbridge is aimed at supporting software maintenance, In [62] they describe

]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the application of inductive methads o extract relations that indicate which files are relevant
10 cach other in the context of program maintenance (Maintenance Relevance Relation),
They also tried to extract models through mining the software maintenance histories using
data mining and machine learning techniques. I [63], they use classification techniques to
learn relations that can be used (o predict whether a change in one source file may require a
change in another source file.

Annic Ying developed an approach that uses association rule mining on CVS data | 77}
She especially evaluated the uselulness ol the results, considering a recommendation most
valuable or surprising” il it could not be determined by traditional program analysis. She
found several such recommendations in the Mozilla and Felipse projects. Her work is on
file level, not tiner-grained entities,

Michail used data mining technigue on the source code ol progeamming librarices to
detect reuse patterns in the form of associations [49] or gencralized association rules [30].
The latter take inheritance relations into account. Both works lack an evaluation of the
quality of the patterns found.

Rescarchers at University of Toronto also did some work on analyze the CVS data |51).
They conducted case studies on a second year undergraduate computer science course and
analyze a set of course assignments. The also described a system Tor parsing CVS data and
storing the results into SQL database. The system can extract various statistical measures ol
the source code and version histories. Through these measures, they atiempted to correlate

the code measures and repository histories, but the result is negative,

2.2 Related work on team roles and collaboration

Software engineering aims (0 support the building of software on time and within budget,
Many ol them are large-scale systems. In such a situation, no one person can carry all the
details in his head. Teamwork becomes a hallmark, A team is a group ol people who share
a common objective and need to work together in order to achieve it. Itis a primary means
for providing products in complex situations,

There has been some rescarch on analyzing the nature ol (cams and the team-members’
roles. Dickinson ct, al [8] summarized 77 key components of (camwork™, Belbin [4]
ideatified 9 team roles” and developed a theory of which combinations of these roles would
lead to successful teams, and proposed five principles for building a high-performance team.

Pleilfer et. al [76] designed quizzes, inventorics, and personality tests to measure members’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

social and tcamwork aptitude, and to help individuals identily the roles most appropriate for
them.

Although there are some ways to help team members identify their appropriate roles,
understanding the nature of the team’s collaboration including potential problems initis not
obvious. In contrast to the well-studied individual modeling, group modeling is still very
immature. To our knowledge, only Mike Winter |74] did some research work on it. He
worked on developing a group model based on an academic student tcam, and claimed that
teamwork and social skills are the most essential factors that influence group performance
and behavior,

However, all this previous rescarch does not take into account dilferences in team types
and development processes, which is the focus of our research, More specifically, the ques-
tions we want answer through my thesis are: are the nature of teamwark, role-specific be-
havior and perlormance, and collaboration patterns the same, with a large variety of group
types to consider — I'rom academic student teams, to industrial groups to the emerging open
source communities? Or can we extract patterns representative ol a specific group type or
a tcam-member role? How will these patierns be afl'eeted by diflerent project-development
processes? How do these paterns relate and affect the whole team performance and the
final product quality? The above questions constitute the main rescarch problems that [am
addressing in my thesis, In a word, the focus is trying to relate the process and role with a

tcam’s collaboration, performance, even the final product quality.

2.3 Related work on the empirical studies in universities on soft-
ware development processes

As new software development processes become more popular in industry, there is a grow-
ing demand to introduce these development practices in post-sccondary education. Ag-
ile [47] development method values individuals and interactions over processes and (00ls,
working software over comprehensive documentation, customer collaboration over con-
tract negotiation, and responding (o change over tollowing o plan. Compare with classic
lite-cycle development, iteration and Hexibility are the two main keys to the agile approach.
Extreme Programming (XP) [3] is & mature and quite typical agile method. XP was pro-
posed by Kent Beek [3) and a detailed treatment can be found in book [3]. In our case
studics, in order to capture and compare some similar and different patterns among difter-
ent software development processes, instructors taught XP and RUP |44] in a third-year

undergraduate course,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are also some computer scienee educators who are sparked by anecedotal evidence
from industry cxtolling the benelits of these practices and are expressing interestin integrate
XP into formal educational courses, and also (o measure their effect. Some of them have
alrcady introduced these methodologies in soltware engineering undergraduate courscs.

According to our knowledge, their works usually can be classified according 1o the lol-
lowing purposes: (1) inuroduce new methodologies and processes to students and train them
1o experience the associated practices; (2) help instructors 1o teach students and improve the
course quality using the new processes; (3) evaluate the real effect of all/some practices of

a new methodology in academic settings,

2.3.1 Introducing New Methodologies and Processes to Students

Muller and Tichy present their experiences on XP with 12 (6 pairs) CS graduate students
in [53]. The goal is to gather experience with XP in an unbiasced lashion, This case study
is also a fair evaluation of XP. Most students have teamwork experience without pair pro-
gramming cxperience. Project process is composed of three-week training (three small
exercises to familiarize the environment, Junit, XP practices, test practices and refactoring)
and 8-wecek project development. Students change o different partners for each exercise
and project. 5 Questionnaires were filled. The authors gave not positive observations lor
some practices and confirmed that coaching is very important.

Schneider and Johnston thought that this is not a straightforward task the corresponding
practices may run counter to educational goals or may not be adjusted casily 1o a learning
environment. They defined educational objectives for software engineering courses in 1641,
evaluated XP practices with regards o these objectives, and listed a few recommendations
for the curricula, The authors thought that XP should not saitable for typical educational
environments if the instructors do not carelully cralt the curricula. Ttis much more useful
lo cquip students with the capabilities w use and il the available techniques according
to their situations than just teach them to following the steps. Noll [535] provided some
obscrvations from initial experience on applying XP to student projects. They thought that
XP is an excellent aid in fearning, due to its highly iterative nawre, allowing students to
make mistakes and learn from them, Morcover, they thought that the “test first” practice is

dilficult to learn,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Helping Instructors to Improve the Course Quality

Because teaching soltware engineering is dilficult since many ol the practices are motivated
by farge projects and large organizations of which the students have litde or no experience,
some rescarchers in universitics apply XP as a mcethod (o help them teach basic soltware
engineering concepts in undergraduale courses,

Hedin, Bendix and Magnusson adopted XP in their PT (Programming in Teams) course
to help instructors to teach software engineering concepts. Their goal was not to teach
XP, but to use XP as a vehicle for tcaching. The detailed experiment designs are listed in
[18]. The expericnce results are positive and there are two important aspects in their setup:
“team coaching” and “team-in-a-room”. Morcover, they presented many lessons learned
from running the PT course in the new format.

Because the development ol competent to excellent software practitioners remains a
challenge, instructional models were developed 1o prepare students 1o become eliective
practitioners by Williams and Upchurch in [73]. They explore XP practices and provide
some guidance in a soltware engineering educatiomd context, discuss four diffevent strate-
gics in their educational program to improve the number and quality of skilled developers,
re-examine and evaluate the practices ol XP in an educational context where students are
cquipped with software engineering skills.

Holcombe ct. al introduce XP o undergraduate students for real business project cliems.
[38]. The detailed experiment design is listed in [68]. The goal is to emphasis two issucs
for students: how to communicate with a client and capture the real requirements, and how
to deliver a real high quality and bug-free product.

Back and Milovanov think that a university sctting could be the ideal place to perform
practical experiments and test new ideas in software engincering. However, there are still
some problems that hinder the research and improvement of these techniques. In [40], they
discuss how XP features can be applied to help instructors to minimize and circumvent
those problems and difficultics appeared in a university environment. XP was used as the
base soltware process to practice new programming methodologics, such as the Stepwisce

Feature Introduction (SWEI) in the paper.

2.3.3 Evaluating the Effect of Practices and Methodologies in Academic Set-
tings

The work also Jalls into two main categories: the adoption of coding practices (pair pro-

gramming and (est first) or the adoption of all XP practices. In coding practices, pair pro-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gramming is the most popular one that has been evaluated to certain content in introduc-
tory/programming courses.

Experience and empirical studies of the programming practices have generally been
very positive. Lauric Williams ct. al have done much work in this ficld. They found
[70] that pair programming increased many measures of code quality, although at a slight
increase in programming time. A late study found that pair progranuming increased both
grades and retention in a first prograniming course.

Bisant and Lylc [5] investigated the effeet of o two-person inspection method on pro-
grammer productivity. They used a pretest-postiest design with a control group that consti-
wies 29 undergraduate students. The students paired in the experiment group and performed
a design inspection, a code inspection, or both, for 20 minutes and tried to find crrors. The
students in the control group developed the programs on their own. Bisant and Lyle reported
a significant improvement in the experiment group as a result of using the two-person in-
spection method. The time saving was greater than the time lostin the pair inspection steps.
The result may have more to do with the benefits ol inspections than with pairing.

Nosck {56] conducted an experiment to compare the pair programmers and individual
programmers. Five pairs and five individuals solved a challenging problem. The evaluation
of the posttest questionnaire showed that pairs enjoyed the problem-solving process more
and that the pairs were more confident in their solutions. However, on average, a single
individual ook 41% more time than a pair, in another word, this means that two individuals,
working independently, will be 30% morce productive than a pair. Therelore, Nosek argue
that the loss of productivity is made up by betier yuality. Astrachan et, al [45] apply XP
practices in their curricula and courses at Duke University and the University of Northern
lowa. They introduce some ol the ways in which students differ from those real industrial
developers; theretore academic environment can not embrace the XP principles thoroughly
without any changes. Based on these observations, they design their curricula and methods
1o help students practice certain XP aspects, use pair programiming between lecturer and an
cntire class to teach programming, and also the "small releases™ and “refactoring” praciices
1o teach soltware design,

Johnson and Caristi trained 11 students as two teams 1o follow X1 practices in devel-
oping their course projects. The results were listed in [41]. The XP practices were divided
as required, encouraged, and not easily simulated. Both student responses and instructor’s
observation show that this XP-like process resulted in good team communication and a

hroader knowledge of the project as a whole.

A&/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No matter how dillerent the purposes are, all the above rescarchers have a common
feeting: XP can not be applicd as K. Beek claimed without any adaptatioty in an academic
cnvironment. Morcover, none of these rescarchers paid attention to the comparison among

different methodologics.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Collaboration Analysis

In this chapter, we first discuss the overall architecture ol the JRelleX, in the context
of which CVSChecker was developed, then we describe the internal architecture of the

CVSChecker plugin, and finally, we claborate on its process, step by siep.

3.1 CVSChecker in the context of JRefleX

The JRefleX environment, diagrammatically depicted in Fig. 3.1, consists of the following

main parts:

o The development environment (based on Eclipse [30]);

o The repository, in which a sct of facts regarding soltware products is stored;

e The analysis component that processes the repository contents to infer high-level
information about the progress ol the development;

o A browser-accessible wiki-server, WikiDev (291, that delivers and visualizes the
analysis results, and

o A project-assessment component, through which developers and instructors can ex-

plicitly provide their own information regarding the project.

3.1.1 The development environment

The development environment — shown at the myiddle right corner of the diagram of Fig. 3.1
—is based on Eclipse and is tightly integrated with the repository CVS, Iis primary purpose
is to record the soltware-development process unobtrusively, as it occurs within the Eclipse

environment,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FoojetVice]

!
r—e» DataBase: | | !
«—-——-—a_{ A

msment 4

cve N . Cuestionnaie Farms . swikiDey
..... _Repositery | Weh Service |
h} :

i \' Emacs + cvs clignt Browser

‘Davelopment Env:

“Collaboration
i Analysis
Evolution

Analysis

Praject Analysis

C Asseasmant
L Adminisiration Too}
: Project Assessment

Eclipse

With respect to development ols, JRelleX assumes, al the very least, the existence of
CVS, as the repository where all software assets are stored. Information about the contents
and the operations” history of CVS populates its database of “lacts” related to the Projects.
In addition to CVS, IRefleX is tightly integrated with Eclipse as the development environ-
ment: the analysis components are implenented as Eclipse plugins and the visualizations
of the data-analysis results are available as Eclipse views, in addition to being aceessible
through WikiDev.

The architecture of JRelleX relics on Eclipse as the main development tool, to provide ¢
scamless integration of software construction and analysis activities. From a practical point
ol view, however, Eclipse is computationally intensive, and in cases where the hardware
infrastructure is not sufficiently current - such as the case for most ol the students’ home
computers - its adoption may not he immediate, The [RelleX architecture enables, cven
teams that do not adopt Eclipse as their development [DE o gain much of its benelits as
long as they use a web browser and CVS: although the analysis components are developed
as Eclipse pluging, their results are stored in the database and their visualizations are also

served by WikiDev.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2 The repository

The repository was shown in the top left comer of Fig. 3.1, The repository consists ol a
CVS, where all development work products are stored, and a database, where work-product
meta-data, qualitative and quantitative metrics of the software process, and its products are
maintained. The database provides the core underlying structure for storing the JRefleX
products and results, around the following basic concepts: CourseTerm, Project, Team,

Developer, WorkProduct, History, Version, Activily and Asscssiment,
3.1.3 Collahoration and evolution analysis

The analysis component - shown at the bottom left comer of the diagram ol Fig, 3.1 - is
responsible for analyzing the collaboration process ol the development team, as captured in
the history of the repository CVS,

JRefleX has two analysis components. The cottabormion-analysis component aims at
inferring information regarding how the team members collaborate in the context ol their
project development by analyzing the CVS repository history ol member actions and soli-
ware changes. The evolution-analysis component, on the other hand, aims at discovering
interesting patterns in the evolution of the project design and code, by analyzing the dif-
ferences between subscequent versions ol the project class hicrarchies. Both analysis com-
ponents are implemented as Eclipse pluging, Visualizations ol their results are aceessible
through specialized Eclipse perspectives and through the WikiDev. In this thesis, we only
claborate the collaboration analysis component: CVSChecker plugin,

JReileX relies to some extent on Eclipse as the main soltware-development platform,
However, even teams that do not adopt Eclipse Tor development can use it, as long as they
use CVS. The implication for such teams is that the only source ol data regarding the col-
laboration process is the CVS history. This data can be obtained, stored and analyzed by the

analysis component, and the team can aceess the results theough the repository Wiki server,

3.1.4 The Wiki server

WikiDev, the JRefleX Wiki server, leverages open-source sottware, phpwiki, as a {rame-
work for maintaining and exchanging information about the projects in a free-form, flexible
manner. WikiDev is a collection of pluging and modifications to the phpwiki, which extend
the original functionality of the WikiWikiWebh concept as pioneered by Ward Cunningham

(sce hup://www.c2.com for more information),

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.c2.com

The WikiDev extensions are primarily concerned with group based security and CVS
integration. Each team is associated with a specific Wiki. There is also a special Wiki Tor
the instructor team, i.c., the course instructor and the TAs. Each Wiki is accessible only by
members of the team associated with this Wiki, Once logged in, team niembers can view
project information, change passwords, or simply collaborate in a WikiWikiWeb Fashion
hy constructing new pages of their own, to maintain and exchange information about their
work with their tcam members. Through the Project View plugin, tcam members have
access (o all their projects. Specific work products and their versions can be inspected for
cach of these projects through special wiki pages, automatically constructed by the WikiDey
hased on the contents of the CVS repository. This gives users the ability to edit and attach
concepts or documentation o their work products, in a manner that enables change and

refinement through the versioning capabilitics of the Wiki.

3.1.5 The project assessment coimponent

The primary objective of the JRelleX ool is to unobtrusively collect and analyze data from
the tools that students use in their soltware development, in order to infer information that
can help the instructor and the developers themselves o elfectively monitor the develop-
ment process. Currently, the main source ol such input data is CVS with s operation
history and its contents. In the longer run, we intend 1o exploit the upcoming Eclipse instru-
mentation AP to unobtrusively record the fine-grained ool actions ol developers working
upon their code and documentation,

However informative such information, implicitly inferred from tool-usage data, may
be, it is also interesting to compare it with “objective” data, explicily provided by the
developers and the instructor team. The JRefleX assessment component addresses exactly
the need to enable the collection of such “objective” dala,

In the past, students of our project-based software engineering courses were required
o answer a sct of questions at specific points during their project development. The ques-
tionnaire was implemented as a stand-alone web-based application with a specific list of
questions, The answers were collected as HTML documents, which made automatic analy-
sis of this data ditficult, and limited the kinds of information that could be obtained. For
this rcason, the JRelleX assessment component has been designed 1o be conligurable with
respect o the types and amounts of data requested as part ol these questionnaires.

Currently, questionnaires are created inan administration tool puplemented as a sel off

Helipse views. Data, i.c., answers, are collected through a Wikilev plugin, Team membeis

20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

who can log in their team wiki see the questionnaires that require completion, and filf them
out, When a filled questionnaire is submitted, the component validates the provided data
against the expected question-answer types and stores the data in the repository database.
Since the WikiDev is where teams will do most of their collaboration, this is currently the
hest environment in which to inquire about collaboration. Finally, in addition to cnabling
self assessment of team members, questionnaires can also be used by the instructor team to
cvaluate the project deliverables,

In this manner, data regarding the developers” own view of the project progress and
instructor-provided "objective project evaluation” data can become part of the database. and

can provide an external validation instrument for the inferences ol the analysis components.

3.2 The CYSChecker Data Model

In this thesis, we focus on CVSChecker, the cotlaboration-malysis component. The moti-
vation of CVSChecker plugin is to analyze (he nature ol individual developer’s roles and
team collaboration in the context of different soltware-development processes and consti-
wtions. The final goal of this research is to design a process-mentoring tool that can help
managers provide timely and relevant feedback to the teams by recognizing problematic
patterns and events.

This scetion describes the CVSChecker data model, i.c., the schema of the PostgreSQL
[34] database where work-product data and analysis information are maintained. CVSChecker
plugin has two main data sources: file revision-related information and operation-related in-
formation. We collect all these data using two CVS commands: "evs log” and "cvs history”.
The details ol data collection can be found in next section,

The database provides the core underlying structure for storing the JRefleX products

and results, around the following basic concepts:

o CourscTerm: a CourscTerm represents a particular group of Projects that are being
developed for a class project during an academic term. b database, there is a corre-
sponding table = "courseterm”, 1t inclodes two main colurns: “course™ and "team”.
This table was designed originally for student teams and recorded the course pame

and team information.

e Project: a Project represents a particular module or portion of a module within a CVS
arca, and is associated with the Team developing it [RelleX database has a same-

named table "project” with four main columns: “teamid”, courselermid”, "modu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lename”, and “evsroot”. "teamid” references table team” and Ccourseteamid” rel-
crences table "courseteam™. evsroot” records the address ol the CVS repository of

this Project, and "modulename” lists all the subdirectories under the "evsroot™,

o Mcmber: a Member is an individual who joins one or more (caims tor one or more
Projects. Table “member” in database includes two main columns: "uscerid” and
“unixname”, “userid” references table "users” where records all the JRelleX users

and "unixname” shows their unixnames.

e Team: a Team is a group of Members who are working gether on one or more
Projects. Projects, Teams, and Members lay the groundwork for a particular picce of a
Project, referenced to as a WorkProduet. The column "name” in table "tcam” records
the name of cach Team, We get all above information from the project background

collection.

o WorkProduct: a WorkProduct is a part of a Project, i.c., a lile within the Project’s
CVS arca that requires constructive elfort by one or several specific Members, The
actual information regarding what a Member has produced is stored as a set of Ver-
sion of a WorkProduct, JRefleX database has a table muned “workproduct”. 1t in-
cludes 5 main columns: “projectid”, “mimetype”, "ilename™, "iodulepath”, and
“isremoved”. Uprojectid” references table “project”, and Tmimerype” tells us that
what file type this Workproduct belongs (o, "filename” wnd "modulepath” display its
location, and "isremoved” lets us know that whether this Workproduct is still exist in

CVS. The information was collected from CVS repository.

o Version: a Version parallels the notion of 4 CVS file revision and contains much the
same metadata, Table “version™ in database has 9 important columns: “workproduc-
tid”, "memberid”, Trevision”, “revdate”, “linesadded”, linesremoved”, "log”, Mo-
tallines”, and “content”. Each row in this table is a file version, In time “revdate”,
developer "memberid” adds "linesadded” lines and removes linesremoved” lines on
"workproductid”. "revision” is generated, and the total size of this new revision is
"totallines™. The rationale of this modification is explained by "log”, the new. code
version is recorded as a large object, and its oid number is recorded in “content”, All
the data in this table are collected using cvs log” conmand and captured from RCS

files, sce section 3.3.1.

o History: Hssentiatly, The History contains records of all pertormed CVS aperations

to
2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of all types, during the project life cycle. These operations may have heen performed
to a specific WorkProduct or to a Project module. Each CVS operation commitied by
a Member will leave history rail on CVS according (o the development conditions,
I the operation is committed on a WorkProduct/Module, a History_FileLevel/ His-
tory-ModuleLevel record will be added. Table "history_filelevel” in JRefleX database
includes 5 main columns: “date”, "opertype”, revision”, "author”, and "workpro-
ductid”. 1tshows that on "date” “author” does an “opertype” operation on the version
“revision” of "workproductid”, a corresponding history is recorded in CVS repos-
itory. Similarly, table "history_modulelevel™ records all the histories refated 1o a
module instead ol a Workproduct. history_modulelevel™ has "projectid” and nod-
ulepath” columns instead of "workproductid” and “revision”, These data come from

CVS command "cvs history”, Sce sceetion 3.3.1 for details.

e Aclivity: An Activity describes a particular type of work that Developers may do
while working on Projects. In database. we have o table nmned “activity” and it has
columns “name” and "description”. In our lirst case study, we have the [ollowing
activity names: planning, design, coding, (esting, documentation, cte. "description”
column records the detailed explanation for cach of them,

o Assessment Each Member will be asked o fill a set ol Assesstent forms for each
specific Project. Table "assessment” includes four main columas: "userid”, "project”,
“questionnaire”, and "filledout”. Each row means that Member "userid” fitled ”ques-

tionnaire” on time “filledout”, and all these questions are related o project”.

3.3 The Collaboration-analysis Process

The process ol analyzing a project with CVSChecker involves several works as following:
data collection, leature extraction, data storage, visualization, querying, data analysis and
knowledge extraction, and reporting, Fig. 3.2 depicts the detsiled architectures,

In general, CVSChecker plugin has following major functions:

o Unobtrusively captures information along the developing process without interlering

with the developers’ activities;
o Automatically parses the information into the database;
o Provides a simple interface for users o query for multiple aspects of the whole de-

veloping process;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{ Statistical Analysis j

2
Data Parsers and storage \
Database }
Revision J
Related Team Member FE 5y
PRl ¥, Infarmation Level Level \‘.“
3"~-~.....-—" } C lnlnmlm Y
OVE 5"""‘ CVvs Fik . Revision Visualization | Query Report
. ’)‘WY Historical ’ Level Level Trigsers l Interfares Triggers
T E Record I }o
: informatione P < *. ,‘ 4
. Fonlm o Extraction with | Eclipse Wil
) i €5)

Figure 3.2: The architecture of CVSChecker plugin

o Displays those query results using vivid visualization ways;

e Revceals symptoms of bad design and unbalanced task divisions;

o Assists tcam leaders or instructors to have an entire understanding of the project;
e Gets heuristic knowledge based on cach role, module, team, and so on;

e Summarizes Lypical performance patterns that are related o dilTerent roles or envi-

ronments.

We have evaluated the effectivencss of CVSChecker with respect to these functionalities
with a set of case studics, involving teams in educational environments and the open source

community. These case studies will be elaborated in Chapter < and 3.
3.3.1 Data collection and fact extraction

As mentioned in related work, we mainly focus on CVS in this thesis because all the stu-
dents in our case studics use CVS to support their project development and CVS is also
adopted by the biggest open-source project community — www.sonrceforge.net.
CVSChecker examines the development-process trails recorded in the CVS repository
ol a project to be analyzed. This is an information-rich data source, Not only does it contain
a sequence ol versions for cach soltware module, but also it records information regarding
the usage ol each version by cach individual developer. A detailed development history
(including who performed what operation, when, (ton where, on which file, why) is main-

tained by CVS. Based on (his inTormation, a lot of valuable information can be inferred.

’)4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The history information can be traced by appropriate CVS commands, in many dilfcrent
levels of granularity. CVSChecker has a suite ol parsers that extract this information I'rom
the source code repository and store it in a relational database that can be casily queried.
There are three main data sources that collected by CVSChecker plugin: File revision-
related information; CVS historical record information; and Administrative and assessment

information.
File Revision-Related Information

A data-cxtraction command used by CVSChecker is "cvs fog”, The command can retricve
and display a great amount of meta-information about versions for a file under the Revision
Control System (RCS)[71]. The file is ended with extension 7, v”,

RCS saves all old revisions in a space-ellicient way, automatically retrieves multiple re-
visions according to ranges ol revision numbers, symbolic names. dates, authors, and staies.
A complete history ol changes was maintained by RCS. The logging makes it casy o find
out what happened to a module, withouthaving to compare source listings or having to track
down tecammales. Besides, RCS has other Tunctions, such as: (o resolve access conflicts by
giving alerts, (0 maintain a tree of revisions, to merge revisions and resolve conflicts, to
control releascs and configurations, and so on. A parser was created by CVSChiecker to get
the file revision-related information from all RCS files.

Each RCS file basically includes two parts. Sce Fig, 3.3

The first part tists information of cach revision of a file, The larger the revision number
is, the higher the position is. All the lines above "=====" linc in Fig. 3.3 is an cxample.

We colleeted the following main information:

o File name: the name of the sclected lile. This information goces to table ”workprod-

uct” in databasc. In Fig, 3.3, it was "./RCS/myscript.sh,v’;

e Locks status: The login name of the user who locked the revision (empty il not
locked). RCS assumes that users lock a file when they want o tse i, and won’tallow
anyone clse to modily that file. Because the lock status of most files are Vstriet”, we

do not collect this attribute in our database,

o Total revision number: how many revisions does this lile have? In Fig, 3.3, the
number was 2; All below attributes together with this one are saved in table "version”

in database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Sclected revisions: the revision number assigned to this revision
e Description ol cach revision;
= Date: The date and time (GMT) the revision is checked in, In our example, (he
Date of revision [.2 was 72002/11/05 040:01:13™,
= Author: login name ol the user who checked in the revision. He is also the
developer who created this revision, In Fig, 3.3, it was james™;
-~ Added LOC: how many fines were added for this new revision, The number
was 2 in our example,
= Removed LOC: how many lines were removed from this revision; and
= Log: a full rationale to generate the sclected file revision. In Fig, 3.3, the log of

revision 1.2 was "Changed World to SUSER (o give a more personal feeling”,

The sccond half” (lines below "====") uses a space-cliicient way 1o record the real
source code of each revision and to enable users to know the real changed code lines: the
whole code of the final revision was recorded, Tor other previous revision; RCS (ile only
lists the basic modification information as lollowings. All the atwributes listed here have
corresponding columns in table "version” in database. Based on such concise information,
we can regress to the source code of each previous revision as we want,

e Date: The date and time (GMT) the revision was checked in.

o Author: login name ol the user who checked in the revision, He is also the developer

who created this revision,

e State: The state assigned 1o the revision,

o LOC added between two consecutive revisions (where and what are these new lines);

e LOC removed between two consecutive revisions (where and how many lines);

o Rcason log ol this new revision.

Though dilferent files have diflerent contents and sizes, RCS saves them using a fixed
format; the latest revision was recorded on the topmaost, Hach revision section was begun
with its revision number. Log of this revision was appended next, with two "@"s as ter-
minuses. A line of ”text” beging the code arca for cach revision, another pair of ”@" was

adopted. For all non-final revisions, the text area saves the modification information using

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RCS file: ./RCS/myscript.sh,v

Working file: ./myacript.sh

head: 1.2

hranch:

locks: strict

access list:

symbolic names:

kevuord suhstitution: kv

total rewvisions: 2 selected revisiona: 2
description:

revision 1.2

date: 200z/11/05 04:01:13; guthor: Jjaawes: state: Exp; lines: +2 -2
Changed World to {UIER} to give a more personal feeling
rewvigion 1.1

date: 2002/11/04 11:57:51; author: Jsaies; state: Exp:
Initial revision

1.2
log
BChanged Uorld to ${USER} to give & more personal feeling
a
text
f#incinde
voild main (wvoid)
{
printf{"Hello, world!in™)
}
g

1.1

log

@Initial revision

a

text

ds 1

aS 1

printf ("Hello, worlad!\n"):
i

Figure 3.3: An example of RCS file

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a simply way: "d3 8" mcans there are 8 lines were deleted from line 3. For all added line
messages, the new lines will be shown just below the message line, see Fig. 4. There are
two emply lines between two consecutive revision sections, Based on such a strict format
rules, we create a parser for CVSChecker plugin to get information we are interested.

All the file revision-related information was parsed into table "version” in our JRefleX

databasc.

CVS Operations

Possible Record Types

Descriptions/Conditions

cvs release

I (release)

A directory in CVS s released. Indi-
cates that a module is no longer in use.
It has the same clfeet as direet working-
dircctory deletion, but avoids the risk of
losing changes, which users may have
{orgotten,

cvs checkout

O (checkouy)

Checkout sources {rom the CVS reposi-
tory 1o a working directory for editing

commit(Checks
the files into

Vs exporl E (Export) Export sources from CVS, similar 10
P > (ERPOTL checkoul
cvs rlag T(rtag) Added a symbolic tag to the RCS file
A file was added to CVS for the first time.
cvs A (Add)

The first revision tor this file is created.

M (Modily)

A file is modilied and a new revision ap-

update(Bring
work tree in
sync with
repository)

pears
CVvs) - — T T
A lile was removed from the CVS repos-
R(Remove) .
itory
A collision was detected as a result of
.. more than one developer modifying the
cvs C(Colliston) ' S

same code arca in the same file revision;
A manual merge is required

G(Successlul Merge)

A merge was necessary and it succeeded
(this happens when multiple developers
change ditTerent code arcas ol the same
file revision without causing conflicts)

A waorking fife was patched to match the

P (Patch))

repository

A working file was copied from the
U(Copy) ORIE !

repostlory

A working copy ol a file was deleted dur-
W(Dclete) ing update, because it had already been

removed Irom the repository

Table 3.1: CVS historical record types with the corresponding CVS operations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation-related Inforntation

In the related-work chapter, we list the main similar researches that aim at extracting inter-
esting information from the data captured in CVS repositories. No matter on what analysis
levels of granularity, I'rom coarse-grained entitics (system, module, class, and file) 1o line-
grained entities (Tunction, method, attribute), these rescarches mostly start by grouping the
CVS change deltas into transactions (or Maodification Requests) assumed (o represent all
related modilications in response to changes in functionality or bug fixes.

An important distinction of our work with CVSChecker is that we examine not only
file revision information from the command “cvs log”, but also the information from the
command “cvs history”. The latier command records ditferent CVS operation trails in the
repository.

We argue that this information is important because the same operation executed under
different conditions will gencrate different wrails. For example, there are five possible con-
sequences for the command evs update”; C/G/U/P/W. The detiled explanations are listed
in Table 3.1.

Through collecting and analyzing these CVS operations, o lot ol hidden information
of project development, especially related (o students’ coltaboration and soltware design,
can be revealed. Based on them, CVSChecker can help vsers to better understand the
development process.

Table 3.1 lists all CVS historical record types with their corresponding CVS operations
and the detailed explanations. For cach record type, we list the happening condition.

According to the descriptions and conditions ol these types, we classify them into the
following four classes. CVSChecker plugin has several charts to display these classes from
different aspects. Some simplified charts are designed (o mainly show the operations in

constructive types and red-ilag types along the development process.

Constructive types: such as type A (add), M (modily) and P (patch);

Red-Nag types: such as C (collision) and G (merge):

Related types: types that relate to cach other, such as R (remove) and W (Delete);

Rare types: these types happen infrequently or do not have much valuable informa-

tion for our analysis, such as I (export), I° (release), 1 (tag), U (copy).

We asce the command “evs history -ac > History.(xt"” in the roat directory of a project to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R, 2003%03:-22 1123 +800u Stulenty L1 -agrapbk, git Students/svc/img
=g domlod o

(BT E B KRS R ST MY 1 7111 e ’ ~lCaltontroliar java “Gtudenti/sre

P { +A008:BELTpNLY erdgIRs Lenmita

>

;- 2003-6331: 02199 vo0o0. “ICalContinlldr Java “Shaident 1/ave

WAL, 00 0ATEY Bopn Stun FalendacTestd bt Student I/ tnat

deeemled)

0, 2093632311 08:45 ~0000. Stuilhit? Teurd faoufTavalics STnankfioosf dsvatoves Armmteafe

dvlads/dovafdavalloen . . o o o . ’ o

R.2UP3502~18 01355 +eguy Stulent? 1.3 ShEdnsrRanel g ava S¥pantlere,
o ted ’

. YN0ALB-IEIANG2S 40000 Kt . DA CANICATeutarkelg ki Stantenbd (npi/balpant.
= vxevitwilhelpaet) ’

Figure 3.4: A scgment ol History,ixl

”

collectall CVS opceration history records, and the results is saved into a text file-"History.(x
in the same directory automatically. Fig. 3.4 lists an example section of this file

Using this command, we can casily get the following main auributes:

e Opcration record type: what operation record type happened? Table 3.1 lists all

possible types;

o Timestamp: when the operation happened?

o LExccutor ol this history operation: who did it?

¢ Revision number: on which file revision?

e File name: on which file?

e Dircctory of the lile: where was this file?

The CVSChecker plugin parses all these CVS historical record information into tables
“history_filelevel” and "historyomodulelevel” in the JReflex dinabase.
3.3.2 Derived-Information inferencing

Based on the collected data above |, we can extract a rich set ol derived metrics, which can be
valuable indicators for the individual’s performance and the teanm’s collaboration, However,
putting all these data together for any analysis will incur the waste of resource and ilood
the target rules with some unrelated data, Our method advocates different data extraction
and filters for dillerent analysis purposes, Dillerent purposes lead to different focuses. If
we Tocus on the performance ol an individual, all the data related o him/her should be
)

extracted. Il file ownerships were focused, at least "Add”, "Maodify” and "Remove” typed

records are uselul. First of all, users should decide their analysis purpose at the beginning,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although using more attributes may generate more potential results, oo much attributes
will induce dataset overstulfed and hinder the mining speed. Our method proposes a way
to control the data scale without altering the analysis results as fallowing: selecting several
basic direetly collectable attributes based on the rescarch purposes, and then generating
some new concentrated atributes by combining the basic ones.

We organize the parameters into four main categorics:

o Paramelers specific o a leam;

o Paramelers specific to an individual developer;

o Parameclers specilic o a file,

s Paramelters specific to a file version,

In cach level, the parameters can be divided into two classes: direetly collected parame-
ters and derived parameters, Directed collected parameters are those data that exists in the
data sources we listed in above section and can be captured casily and directly, Derived pa-
rameters can not be direetly collected and usually are computed by those directly collected
paramelers to measure underlying relationships between the team members” work habits,
roles, main tasks, the project-design structure, project schedule, and so on, I the following
scction, we enumerate some examples ol these parameters that could shed some light on

the above relationships on cach level.

The Team Level

In university environment, with the same project requirements, comparisons across dilfer-
ent teams are very uselul for instructors to monitor the performance ol the whole class,
and quickly notice unusual trends, lag behind the schedule, and events that might signily
problems. Team leaders in industrial environments also can anatyze diflerent sub-teams in
a large project with the same purposes using these parameters on this level, For each team,
we record the folfowing paramciers:

Directly Collected Parameters:
o Menber#: the otal number of members in this team;
o [Pilegt: the tolal number of files with any extension types,

o Java_l%ilegt: the total nuinber of Java files;

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e evisiong#: the total number ol revisions;

o Java_Revisiongt: the wotal number of revision ol all Java files;

o Day#t: the total days ol the whole development process this team participated;
o BeginDale: the first day when this team began their development;

o [indDale: the last date that recorded in CVS repository of this tean;

o WorkDay#: the total number ol days that at feast one member in this team has CVS

operation; OF course, Work Day#t < Daydt;

o JavaWorkDaydt: the total number of days that at feast one member in this team

has CVS operation on Java files, Java W ork Doyt < WorkDaydt,
o Phase#t: the total project phase number ol this tcam;
o PhaseDalei: the ending date of the i'" phase, i € [I, Phasedt];

The following two parameters are only related to those teams in the Open-Source con-

munity environments:
o RegisteredDate: the date when this team registered in www.sourcelorge.net firstly;

o DevelopmentStatus: www.sourcelorge.com uses seven levels 1o show the devel-
opment status of a project: 1 is Planning, 2 is Pre-Alpha, 3 is Alpha, 4 is Beta, 5 is
Production/Stable, 6 is Mature, and 7 is Inactive;

Derived Parameters:

o AveOperTypei#t: the average CVS operation distributions by type; ¢ € [1. 13],

sce 13 types in Table 1
o Ave_Oper_Datei#: the average CVS operation distributions by date; ¢ € {1, Datedft];

o Ave WorkDay#: the average days that al least one member in this team has CVS

operation,
o AveWorkDays = (5 (WorkDay:))/Menmberdt, ¢ € {1, Memberdt],

o Java_Ave WorkDay+f: the average days that at least one member in this team has

CVS operation on Java file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureelbrge.net
http://www.sourcelbrge.com

o AveWorkDays_Java= (T (Java WorkDayd#t))jMeniberdt i € [1, Membergt];
o Ave M R_Size: theaverage involved file number in a MR, Ave MR _Size=Revision#t /M R##,

o Awve_lile Revisiondt: the average revision number cach file includes in this team:

Ave_[MileRevisiondt = Revisiongt] 17ilc#,

o Java._Ave_l'ileRevision#: the average revision number cach Java lile includes in

this tcam;

o Java_Ave_[PileRevision# = Java_Revision#t/.Java.[iledt;

Individual-Developer Level

Within a particular team, we want to look into cach member's contribution, and suggest ad-
Justments if neeessary. We also ask cach studentdeveloper o complete some questionnaires
to tell us their backgrounds and experiences, describe their team construction and task al-
location, and assess their own contributions and what they perceive as the contributions of
their team mates. For cach member, the following main paranicters are gathered:

Dircctly Collected Parameters:

o OperTypei#: the CVS operation distribution by type; ¢ € [1.13]. See 13 types in

Table 1;
o Oper_Date;gt: the CVS operation distribution by date; ¢ € |1, Date#];

o Addedliledt: the otal number of the files that were added by this member;

o AddedJaval™iledt: the total number of the Java files that were added by this mem-

bher;
o ModifiedIviledt: the total number of the files that were modified by this member;

o ModifiedJavaliledt: the total number of the Java liles that were modified by this

member;

o LastModifiedPéledf: the total number ol the files that were last modified by this

member;

o LastModi[iedJaval™ile#: the tolal number of the Java files that were last modified

by this member;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Removed!Mile#t: the total number of the files that were removed by this member;

o Removed.Javal?iledt: the total number of the Java files that were removed by this

member;
o Added LOC#: the total number of new added Line of Code of this member;
o Removed LOC#: the total number of removed Line of Code of this member;

o VrucAdded,OCH#: the wtal number of new true added LOC (deleted all comment

or empty lines) of this member;

o TrueRemoved LOCH: the total number ol true removed LOC (deleted all comment

or emply lines) of this member;
o WorkDay+#: the total days that this member has CVS operations;

o JavaWorkDay#: the ol days that this member has CVS operations on Java

files;

o ThelMirstDateType;: the first date when this member did the #"* CVS operation

type, ¢ € [1,13];

o TheltirstDate.J aval™ile Type;: the first date when this member did the specilic

" CVS operation type on Java files; s € [1,13];

o TheLastDale Type;: the last date when this member did the specific CVS opera-

tiontype iy € {1, 13];

o ThelLastDale Javal®ile Type;: the last date when this member did the specilic

CVS operation type i on Java fifes, < € [1,13];
o M R#: the total number of MRs ol this member;

o [Revisiondt: the total file revision number this member modificd; The lollowing
parameters are applicd for developers in academic environments:

o PartScore;: the score of this member in the i praject part,

o [MnalScore: the final project score of this member,

o PerformanceScore Sel f ISvaluale: (he score this member gave to himselfZhersell

according to his/her performance;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U {

o PerformanceScorc_PecrlSualuale;: the score his/her < tcammate gave 1o this

member according to his/her performance. « € (O, Mendberdt - 1],

Derived Parameters:
o Avepy Rgize: the average involved file number in a MR ol this member;
o JdleRatio: The proportion of this member’s idle days 10 the whole project duration,

o The proportion of athis member's leading idle days: he days between the start

of the project and this member's first CVS operation to the entire project duration;

o Theproportion of thetailing idle days: the days between this member’s last CVS

operation and the end of the project to the entire project duration, and
o theproportion of various types of CV .S operations on Java [iles Lo all CV S operations.

The File Level

Above paramelters enable the comparative analysis among individuals, To discover potential
problems on the project design and the task division, more data about the project liles
themselves are relevant, For example, three potential problems may be related (o files that
have a high oceurrence of cotliding changes, end up being moditied by muliiple members,
or been relocated frequently. Fora specitic file, the following main parameters are gathered:

Dircetly Collected Parameters:

e Rewvisiondt: the total version number of this file;

o BornDate: the date that this file was created;

o RemoveDate: the date that this file was removed from CVS repository, il applicd;
e Creator: the developer who created the (irst revision ol this file,

e [MinalSize: the LOC of the latest revision of this file;

o Modifierdt: the otal developer number who moditied this file;

o [MinalModi ficr: the developer who linally modificd this file and created its Tatest

revision;

o Oper Typei#t: CVS operation number of the i type, on this file; i & {1, 13]. See

13 types listed in Tablel;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Oper_Date;#: CVS operation number on the i day, on this file; 4 € [, Datet];

o AddedLOC;#: the added LOC number on this file by the 4* developer. j €
[1y Member#],

o Deleled LOC;#: he deleted LOC number on this file by the gt developer, § €
[1, Memberdt],

Derived Parameters:
o IdleRatio: The proportion of this file’s idle days 1o the whole project duration;

o The proportion of a this [iles leading idlc dags: the days between the start of

the project and the BornDale of this file to the entire project duration;
o Theproportion of this [ile tailing idle days: the days between this file’s RemoveDate
and the end ol the project to the entire project duration;
The Revision Level

Through the analysis hased on above parameters, users may notice some interesting or
unusual revisions, such as heavy modification, frequent collision, modifier changing, and

so on. For cach file revision, the following parameters are gathered:
o Author: the developer who created this file revision;
o PimeStamp: the date and time this file revision was created;
o Adde LOCHE: how many lines of code were added in this revision?
o Deleled LOCH#: how many lines ol code were deleted in this revision?

o TrucAdde LOCH#: how many pure lines ol code (delete atl comment and cipty

lines) were added in this revision?

o TrueDeleled LOCH: how many pure lines ol code (defete all comment and empty

lines) were deleted in this revision?
o Log: the change rationale of this new revision,

To summarize, CVSChecker plugin collects the data from those data source we listed
and abstract parameters according to the analysis purpose. Moreover, the parameter ex-

traction is a crucial work lor the following data storage, visualization, and analysis. With

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

them, team managers and developers can become aware of the performance ol an individual
developer: his/her work times, work loads, work habits, main work products, performance

evaluation and some problems that need 1o be addressed.

3.3.3 Visualization

A substantial amount ol information can be extracted by examining the data directly col-
lected by the CVS repository. Trends in these data can be inferred and presented through
diagrams or reports, which leads to meaningful insights regarding the development of the
tcam projects. CVSChecker plugin produces six visualizations bused on the collected CVS

data especially those extracted parameters for cach project:

Temporal distribution of CVS activity, for cach member/team;

¢ Distribution ol CVS operations by type, for cach member/icam;

Distribution ol CVS operations by type, tor cach file;

e Added and Deleted Lines of Code (LOC) by cach member, on cach file;

Detailed LOC change by date, on a single file:

File adding and removing by date, for a project;

Temporal Distribution of CVS Activity, tor Kach Member/Team

The first type of visualization (shown in Fig. 3.5) compares across tcam members in i tcam
(or different teams in a class or a large project) the number of CVS operations over time.
To beuer analyze the frequency and distribution of operations of interest, we have defined
the concept ol the interoperation gap (GAP). 1t refers to the interval between the times off
two operations ol interest. We choose day” to be the unit of this measure: it is fairly casy
and inexpensive to compute GAP in term ol days, although not guite as precise as hour,

It can clearly show the busy (not busy) periods o a member/tcam and help users to grasp
the development trends, have a quick jdea about the typical GAPs, and notice some special
phases for cach member/team along the timelines. The aim of this chart is to compare (he
various work habits within dilTerent members/teams, How fast do they start? How long is
their actual development process? How many idle days do they have? Which dates are iheir
husicst times? In this manner, we can identily when the most important period of activity

is tor the entire praject, or for a particular person, or for afile, or for o particular operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3]

Dates: ium 2003

Figure 3.5: Temporal Distribution of CVS Activity, for Each Member/Team

type. The X-axis presents the whole project development process or a specitic phase, The

Y-axis is the number ol operations,
Distribution of CVS Operations by Type, for Each Member/Team

From Fig. 3.5, users can have a rough idea about the total CVS operation amount ol cach
member/team. However, what kind of work does cach member/icam did? The sceond type
of visualization (Fig. 3.6) compares across members/tcams the nimmbers ol CVS operations
and shows the contribution of CVS operations over different historical record types. From
this chart, we can casily answer the following questions: which member/team did the most
CVS operations? Who added the most files? Who removed the most files? Who had the
most modification work? And who had the most collision and merges? The X-axis lists
all the CVS historical record types with non-zero values, The Y-axis is still the number of
operation. Each bar represents a member/tean.,

We believe that different team roles in the team composition result in dilferent team-
collaboration patterns; Based on all these visualization, especially this one, we can get

support/opposc information,
Distribution of CVS Operations by Type, for Eaclt Kile

The third type of visualization (I1g. 3.7) displays what kinds ol eperations were commitied
on cach files and helps users 1o deteet files with abnormal operations. The heights of the
same-color sections indicate the operation disteibution of all types, All the deleted files
appear below the X-axis, The X-axis lists all files according 1o the modules, Each bar is ¢

file and cach color stack is a CVS historical record type that is listed in Table 3.1,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Baiensiovs B Méniber

Figure 3.6: Distribution of CVS Operations by Type, for Each Member/Team

A%ATHH YY) T
BT

Figure 3.7: Distribution of CVS Operations by Type, for Each File

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ieiontilerge

------ Hodifidation

Figurce 3.8: Simplificd Distribution of CVS Operations hy Type, Tor Bach File

The dark and light-gray are two colors that should be paid much attention o, Dark
color indicates the number of collisions while the light-gray shows the number of merges
happened on this file. When we get this visualization, we can deteet these files with inap-
propriate design casily.

In order to increase the chart readability, we designed some simplified versions lor
Fig. 3.7: These simplified visualization only display some interesting type classes listed
helow Table 3.1. Fig. 3.8 is an example that only compares the constructive and red-flag

CVS operation types (sce Section 3.3.1),
Added and Deleted LOC by Each NMember, on Fach Kile

The fourth type of visualization (Fig. 3.9) provides relevan mformation for cach file ahout
who maodilicd itand what the fimpact ol cach developer was on that tile, “This chart can help
users to know the modilication amount ol cach member. Morcover, Tor those dangerous
files detected in Fig, 3.7/Fig. 3.8, this chart helps us to know who modified them and who
their main developers were.

This chart is also a stack bar chart. The X-axis'is same as it in Fig. 3.7. The Y-axis is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

anuen

RFiLE B

Repinust

RS e

Figure 3.9: Added and Deleted LOC by Each Member, on Each File

the modificd LOC number. All the Removed LOCs appear below the X-axis, Each member
has the same color for his Added- and Removed-LOCs,

The more sub-bars appear in a single column, the more auention should be put on the
corresponding file, since it might be the locus ol increased activity, possibly because it is

ill-designed and ill-understood.
Detailed LOC Change by Date, on o Single File

When we locate a problem file, detailed information about its versions might be interesting.
Fig. 3.10 shows its detailed development history along the time, The X-axis is date. The Y-
axis is still the number of modificd LOCs, and the removed LOCs appear below the X-axis.

This visualization can be understood as the “curriculum vitac” of a specilic file,
File Adding and Removing by Date, for a 'roject

The file adding and removal data contains interesting information, L can help users o better
understand the project development process. We design a chart (see Fig. 3.11) to show the
adding and removing of all files in a project within a defined time phasces.

The X-axis lists all files according to their modules. The Y-axis lists all the dates from
the beginning of the project development process. A dark spot represents a new-added file
and a light spot shows a removed file from the CVS repository, This visualization can
help users 1o detect some interesting and promising phenomenaon, such as a set ol same
birthday/removing-day files, some short-life files, and so on,

All these visualizations can be produced Tor the whole project history, or incrementally

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

860

i | ,]
“ytig L -
w0, i

&

ates: TreniEil-0a-13 1o i

Ll { 2

'

& 5 0 AF Zo -dn A0 85 40 ME. BD ISG 60 68 7000 86 26 0 95 100108110

Files

Figure 3.11: File Adding and Removing by Date, tor a Project

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(o provide a sequence ol views corresponding to smaller periods (such as between releases,
or on a weekly basis.), specific modules, or some noticed developers and files.
CVSChecker has a visualization trigger that enables users to use Eclipse o interactively
explore the first four visualizations through a special CVSChecker perspective. The wrigger
interface in Eclipse contains multiple choice of operations to generate the lirst four visual-
izations we introduced above. An up-to-date set of visualizations rellecting the complete
project history is maintained in the database. They can he selectively queried to Tocus on
particular CVS operations or on individual team members or specific periods ol time 1o
help users instantly grasp the trend and the level of individuals through the comparison
among the lines or columns. Developers also can access them through a special-purpose
wiki-based collaborative environment, WikiWikiDev [80], (o getan up-to-date view of their

progress.

3.3.4 Reporting

Reporting is an alternative means of presenting information, complementary to visualiza-
tion. In our rescarch, our reports can he classified as two main types: consultation report
and summarization report, CVSChecker plugin includes triggers (o generate these reports,
from multiple levels, such as: whole project, a team, an individual, a specific file, a day and
50 on. Of course, new triggers can also be added Tor new reports and visualization as the
analysis goes on. All these reports are saved in Database and all the users can view them in

Wiki pages.
Consultation reports

Consultation reports include the detailed data on the basis ol which the visualizations are
generated, These reports are meant as an auxiliary medimm for representing the visu-
alization data, cnabling (he users interpreting the diagrams to aceess the details hehind
any interesting information they may perceive from the diagrams, The query function of
CVSChecker can provide a similar assistance. However, because it is embedded in Eclipse
platform, the query condition sctting and the result Tayout are still limited. Morcover, it
is-only available for Eclipse users. The reporting function of CVSChecker is a wonderlul
supplement, especial for those non-Eclipse users.

The information in the consultation report includes detailed data by multiple levels, such
as: an operation type, an individual, a role, a day, a module, a specific file, a revision, and so

on, Itis weated as the auxiliary knowledge for visualizadon, ind provides a consulting base

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o dater 200303329

S b IR edision: [P athAedF ihe M arme

TS roupads

Groupsid
S G D?J]JA‘_S A shadwy e gif
L \Graups & i adandaF ram e java

sfmgisha dovefight. gif

conull s B
Pl | Graupdd
Sl JBraupddsrofimylshadow right gif

: A segment of DailyOperation report

e iestam oo s arefonidf finallocl:

1202 R AT

003 0223 200521 [2

GpATALIEIC alen dar
| Gronpsdatlic/Talandar

THIS:

Figure 3.13: A scgment of FileVersion report

for those potential patterns or problems noticed from diagrams. We introduce three typical
consultation reports: DailyOperation report, FileVersion report, and StudentWork report,

In ateam, cach date has a DailyOperation report. It lists all the CVS historical operation
records in repository committed by all the members in this team, happened on that specilic
date. All the records are listed chronologically. Fig, 3.12 is a snapshot ol the DailyOperation
report,

Sach team has a FileVersion report, Itis the corresponding report tor the Visualization
5 (sce section 3.10.3) of all the files in a eam, e can also he understood as a "curricutum
vitac” of files. The detailed modifications on cach file are displaved from revision 1.1 1o the
latest one. Fig, 3.13 is an example.

Zach member in a team has a StudentWork report. T displays all the CVS operations
of cach member since the project development beginning, chronologically, Fig. 3,14 is a

snapshot.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spoit of student Gioupa 3

Srevigion: [pathandflanzme

il |G dpesd

B up AddEditDialig java,

n

s o alendaf rame.java:

dEdi Dialogjava

lengarframe:
; leridaiF camd:
witakalle

Wy C lsndain"

| Grap Ay arc/

Figure 3.14: A scgment of StudentWork report

Summarization reports

Summarization reports contain selected interesting data and the results of the statistics and
data mining analysis phase. The summarization report constitutes o simple overview ol the
tcamwork. It usually picks the interesting attributes out, itemizes them in a meaningflul and
comparable order (see Fig. 3.15). Descriptive annotation is also added lor some important
attribute values. Morcover, we also list the heuristic analysis results Trom the analysis in
Scction 3. 1.4, especially those red-flag patterns.

This report can be viewed as a decent lively team working description instead of a
simple summary. It assisis users o learn a team’s collaboration as well as cach member's

detailed performance, with a condensed textual deseription.

3.4 Further analysis on the CVSChecker data

Version Control Systent accumulates numerous dispersed contextoal information along the
developing process. No matter what perspectives each analysis focuses on, there are es-
sential phascs in common: collecting data, filtering out usclul ones, storing and visual
presenting them, However, il we want to understand o process thoroughly, they are still
far from cnough, Heuristic analysis should be applied. CVSChecker includes two different
mechanisms for interpreting the collected data: data mining analysis, and heuristics-base

analysis.

=
wn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tembiee] Menibiar2: el ¥ Pslembird

0030222 |2003-02-18

PONE-02.220 20030208
00004 (200302
Jar ' [2002.02
1k

|17

8,

11153 12307

875 e

Figure 3.15: A scgment of Summarization reports

.<'l-'“ RS o l._ " vy g
i Diffsent; | Wikl | i
i Turoses. - g
: o Tik 1
.............. —
il filer Iiteg1a Dats Apply
173 . .. o H B I .
7S I : 1 & diser g Y
H Ewlvement »f ol uuu = : .,.M *P I.\m) 1%
0 L . Cha, Teansfo niiea i algeiir
R B ‘ H S
A 4 : | ning: rnatio tinn Pl Juns
i Triggers: Triggers. | L3 I - o :
S -’ 2{ Catching;. :
mapse |

Figure 3.16: Work {lows ol Bottom-up Hypothesis Generation and Knowledge Extraction

3.4.1 Data mining

In this step, CVSChecker plugin supparts users o extract the high-level knowledge hided
along the project development process from the original data. Fig, 3,16 shows the main
work flows of this mechanism,

Although CVSChecker plugin parses all the refuted dara into the database and provides
several visualizations to help users to understand ther, directly accessing tiliered data [rom
the database is still very difficult, Statistical Analysis cominits basic but important statistical
works, and enables users hiave a quick concept about their performance and collaboration,
It plays the role as an agent for users to observe concise and casily understandable statistic

results of some main attributes. Users will decide whether they have to track down to certain

46

Re‘produced with permission of the copyright owner. Further reproduction prohibited without permission.

codes or not.

Belore the knowledge extraction, users should hive specific demands on learning schemes.
Difterent knowledge in different expressions exists for a settled analysis purpose, such as
Association Rules, Sequence Patterns, Classification Rules, Clusters, and so on. Il users
want to analyze a developer’s operation patterns, "associate rufes™ can find some concomi-
tant operation scis of this developer, while “sequence pattern” captures some [requent op-
cration orders. Hach learning scheme has its corresponding algorithms. In our data mining
analysis and knowledge extraction, we want to get some knowledge about individual work-
load, {ile ownership, file evolution, and schedule catching, Apriori | 17], an association-rule
mining algorithm for discovering interesting patterns, is adopted 1o know how (cam mem-
bers use and modify their software assets.

Most heuristic algorithms have special data format requirements. Extended phases were
designed in CVSChecker plugin for applying data-mining techniques on these process- and
performance-related data. All these phases are belonging to data pre-processing, which
impacts the quality of results direetly. The current data in the database is not good enough
to be used directly for these analyses, more preprocessing works are needed (o change
data into non-redundant, discrete, information- centralized datasets in standard tormats lor
heuristic analysis.

Although users wready collected uselful data and extract anributes according (o the
analysis purposce, excessive continuous values with minor differences are inappropriate for
some algorithms, Thus, changing themn into diserete data is a feasible way to eliminate
the gaps and keep all values stay at their original levels. 1is also redundant analysis if an
attribute is highly correlated with another. Data integration [6] can deteet and deal with
it. Data transformation [17] is another way (o change data into appropriate forms withoul
losing its value, We applicd Min-Max Normalization [17] for all large-range attributes with
known minimum and maximum values, and scaled them within a specified range using a

linear transformation,

3.4.2 User-driven data exploration
i

I users notice an abnormal or interesting result from visualization, statistical analysis, or
mined knowledge, they can examine the database through a simple query interface provided
by CVSChecker plugin. Query conditions can be casily set, and results will be displayed
in a neat format. Once CVSChecker plugin is installed, and the perspective is properly set,

uscrs can start exploring the utilities that the CVSChecker provides by clicking the menu

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.17: Result view of CVSChecker query function in Eclipse

bar "Exccute CVS”.

If the valid username and password have already been filled, a window will be popped
out. Otherwise, there will be no any response, and vsers should check the login informa-
tion. There are four combo boxes in this window: "Operation Types”, ”Date From™, "Data
o™, and "Opecrator”, "Operation Types” lists all CVS historical operation types listed in
Table 3.1.

”Date From™ and " To” help users to set the period which ticy want to look into.

And "Operator” enables users to pick out the objects that the users are interested in
their works. It can be a member or a tcam, even the whole class for a project in university
environments.

This window interface to help users make queries about their historical works., By
clicking "Finish”, "CVS Results” view (sce Fig. 3.17) will show the query results according
1o query condition settings.,

Of course, user can use the query function first as they want, if the restrictions are too
loose and its large-size results are hard to read, users can generale an instant view from the
graph point of view on these query results to have @ more vivid understanding, In addition
to diagrams, CVSChecker plugin also includes triggers Tor reports, from multiple levels.
Such as: project, team, individual, package, specilic lile, and so on. We will discuss it in

section 3.3 .4,

3.4.3 Heuristics-based analysis

Visualizations, querying, statistical analysis and KD analysis uncover correlations in the
collected data that may or may not correspond (o interesting development behaviors; we

would have to assess these correlations in terms ol how useful they are as indicators of ¢l-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Naeasescsnras -} Ar.,--
Generake
Visualization [|
Factual Wi Pattern
‘ Patterns: 1 Query
Query N
“}! Apply on Lo] N
Statistics i Collecied B Red-flags {,E\':\Ju:\lc
Data with
Team scle
Data Mining _J collected i
Analysis ""'_l" £ ohjective
profiles ¢ information
E /

Figure 3.18: Top-Down Hypothesis-Driven Analysis in CVSChecker

fective or problematic performance. At the same time, in the academic setting we formulate
our own intuitions as educators about what types of tcams succeed (and what types of tecams
lail) as heuristic patterns in terms ol the collected data and we apply them so that we can
evaluate their empirical validity. With this approach, we plan to collect a suite of patterns
that can be used as "sensors” of when (o intervene in a tcam and how. Fig, 3.18 depicts the
main works of the heuristics-driven analysis based on above parts of CVSChecker plugin,
This analysis can be understood as wraining, evaluating, (csting, diagnosing and predicting.

It can be divided into the following four steps.

e Step I: We randomly select some team projects from difterent eavironments, then ap-
ply visualization, querying, statistical analysis and the knowledge extracted in above

section on the selected data,

e Step 2: For heuristics-driven analysis, we observe and summarize some typical pat-
terns on the sclected data, related o the individual operation, team collaboration, file
cvolution, module design, and so on. We categorized the paterns into three types:
factual patterns, red flags, and team-role profiles. A factual pattern expresses some
characteristic ol the development history ol no obvious negative or positive implica-
tion. A red flag captures a problematic situation whose persistence may warrant a
preventive action. They should ideally he detected early and avoided. A tecam-role
profile focuses on the characteristics of typical (cam roles. We summarize some of
these interesting patterns from the team projects in difterent environments, and com-

pare with cach other.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Step 3¢ Then, we cevaluate these patterns with the collected project/team objective

information, such as project history, questionnaire fillings, ete.

o Step 4: Of course, what we are interested in is not only the past performance, but also
the likely future performance on new team projects. Afterward, we have been work-
ing on developing a sctol heuristics Tor understanding the nature ol the collaboration
among the members of the development team and their roles, and have developed
a sct of queries that correspond to our intuitions about relevant (both desirable and

undesirable) behaviors of tcams and individuals at a high level.

In the long run, our intent is to provide context-specific guidance to team managers
and developers, based on the actual patterns ol behaviors that the team members exhibit as
individuals and as a whole.

The results of the analysis component are also stored in the database and are served
by the Wiki server in the context ol various reports. Some reports are tailored towards
the student developers, and they present information specific to the team and comparisons
against aggregate data {rom the other (cams. Other reports are 1ailored to the instructor and

they present detailed comparative data across multiple (eamns.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

An Exploratory Case Study on Five
Undergraduate Student Teams

In most engincering disciplines, it is assumed that the education of their professionals in-
volves an apprenticeship component, in addition to their tormal wraining, This is why most
undergraduate soflware-cngineering programs involve a capstone project course, where stu-
dents, in preparation for becoming soflware professionals, work in tcams to design, develop
and document a substantial software system. Our experience with such a course has been
that the success of such a team project depends, on one hand, on the technical competency
of the students, the quality of the tools they use, and the project-management decisions they
make during the project life-cycle, and, on the other, the specific and timely feedback of
the instructor is invaluable. However, instructors ol such courses are, more olten than not,
overwhelmed with the task of closely monitoring the progress ol multiple teams, and prob-
lems in a tecam’s process and product may go unnoticed until it is 100 late to be addressed.
This exploratory case study is an evaluation of whether CVSChecker might help instructors

to monitor student teams and detect problematic collaboration and performance carlier,

4.1 Objectives

New or volatile requirements, tight delivery schedules and developer turnaround are com-
mon challenges facing almost every soltware-developing temn today. To elfcctively deal
with such obstacles requires that the developers have an overall understanding of the cur-
rent status of their project, possess sulficient programming experience, collaborate elfee-
tively within their teams, and are able to react prompy. Such capabilitics are dilficult 1o
teach and to acquire in the context ol a university soltwarce-cngineering course. Instructors

are cager o equip their students with the "tools of the trade™ but closely monitoring a large

wn

Reproduced with bermission of the copyright owner. Further reproduction prohibited without permission.

number of soflware teams in the classroom and acting as a "mentor manager” to all the team
members is (oo difficult a task. The number ol teams and developers'is usually large and
there usually are substantial variations among the e projects. which makes the detection
of individual problems too subtle, On the other hand, even with a solid technical back-
ground, students may still get overwhelmed by the complexity ol the soltware-construction
process and may fail (o recognize signs of problems in their own project carly enough so
that they can involve the instructor,

As we claborate in Chapter 3, CVSChecker is a method that can track the progress
of students developing a term project, using the historical information stored in their CVS
repository. This information is analyzed and presented to the instructor in a variety of forms,
In this chapter, we discuss a set of analyses that support monitoring student teams and their
progress, based on the collected information. These analyses infer a multiple-perspective
rail of the project development, and a set of corresponding visualizations presents various
statistics, charts, and reports on this trail. Based on the information produced, instructors
can track the evolution of a team’s work against other teams or compare the performance ol
members within a team. Furtheriore, instructors can inspect the revisions of an individual
file. All the methodologies of CVSChecker are followed in the case studics.

We conducted this case study based on undergraduate stedents’ project data because
they are the representadives ol novices, and university course plans a significant role in the
training of future developers. The main goal ol this case study was:

o To examine whether CVSChecker plugin works well on tcams in a university cnvi-

ronment.

o To enable instructors or TAs to have an overview of the whole development process
ol cach (cam, and detect some leams or students with abnormal phenomena,

o To provide visualization, query, and heuristic analysis on the student historical data,
within the whole development process or a specilic phase.

e To get some initial validation ol whether the data visualizations we developed are
informative to instructor.

o To getinsight on specific "interesting trends and events” in the project life-cycle that
can he discovered through the CVSChecker analyses.

e ‘To reveal correlation ol these trends and events with the eventual outcome of the

tcam’s work, i.c., the quality ol their project, and the correlation of the team roles

‘N
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the development habits. 1 indeed such correlations exist, then discovery ol sim-
ilar trends in the profiles of future teams might be used as evidence in predicting the
likelihood of the team’s success or [ailure to deliver a good project; such evidence
could support the instructor in monitoring the tcams and in discovering quickly po-

tential probiems.

To sum up, the goal of this analysis is to understand how students interact and 1o find out
if there is any corrclaton among the educational environment, roles, their grades and the
nature ol their collaboration, Understanding these Factors will enable instructors to detect
potential problems carly in the course ol the students” projects, so they can concentrate their
help on those tcams who need it the most.

We believe that il the information is suitably presented and highlighted, it could be use-
[ul to students to self=cvatuate their own progress and quickly noticesymptoms, In addition,
teams in educational environment have their specitic patterns on individual performance and

tecam collaboration,

4.2 Settings

This case study was conducted on a third-year soltware engineering course in sollware
engincering. In the context of this course, students work on a project in teams of four
and coordinate their software changes using CVS. The project is common across all teams,
with three delivery dates spanning a two-month development period. Although various
deliverables are required, including unit test cases, UMLU diagrams, and a user manual, we
initially focus our analysis on changes to the source code and the CVS operation records
over time.

Students in this course have a substantial background ol program development in-the-
small, and are knowledgeable in programming with Java in the ohject-oriented design style.
However, for most of them, the course project is their first experience in collaborative soft-
ware development.

The project work is organized in three or tour eyeles, cach culminating in a deliverable,
At the end of the first cycle, a low-({idelity paper prototype and the object-oriented design
of the project, represented in a UML class diagram, are due. At the end ol the second or
the third cycle, a working horizontal prototype is due, exhibiting the interactive functional-
ities of the project but not necessarily the underlying support functions. Finally, the whole

working project is due at the end of the last eycle.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phasc Period Length Comments

Phase!l | Feb.07 —Feb.21 | 15 days | Deadline for Assignment 3
Phase2 | Feh.22 - Mar 17 | 24 days | Deadline for Project part2
Phase3 | Mar 18~ Mar31 § 14 days | Deadline for Project part3

Table 4.1: 3 Project-development phases

On cach due date, a snapshot of cach team’s CVS repository is extracted and cach
team member submits an clectronic evaluation form (o assess the contribution of all eam
members, including themselves,

Putnam ct. al. [58] claims that small size is the key to a successtul project, and Belbin
[4] has a 9 tecam roles” theory. 1t is coincidental that the e size in our course project
is also small. Each student has very busy timetable and has o attend several courses in a
single term, 1t is very difficult to regular much common mecting and working time among
tcam members if the team size is large.

Our case study involved 85 students (Sladent#) organized in 23 (cams (Teamdt).
Most tcams have four members, with some exceptions (three or five) because of some drop
outs and recombination. 51 students (including the team members of 3 whole teams) gave
us permission to use their data, Because one of our analysis cmphases is the team collabo-
ration, we focus on these five whole teams. And reler them as tcam A, B, C, 1) and I in the
following scctions.

Students usually can not spend oo much time on the course project hecause ol the
curriculum design. The total duration of the project was 33 days, which was divided into 3
main phases, as shown in Table 4. 1.

As for the processes, we want to investigate whether ditlerent processes exhibit their
own particular patterns. "Academic case-study” projects in comparable size, length and en-
vironment without explicit process types can be adopted as the shared compare benchmarks

for other projects.

4.3 Basic Results

This scction introduces selected visualizations and heuristic statistics generated in our case
study on five student teams (labeled A to). Diagrams are presented at various levels: by
tcam, by individual, or by file. Such diagrams intuitively show trends, enabling the users

ain a high-level impression ol wewm and individual performance,
g I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CVS Operation | Team A | Team B | Team C | Team 1Y | Team B | All Class
Total 196.5 288.5 | 208.25 2420 132.0 213.35
A#(Add) 37.75 46.75 39.5 66.0 44.75 46,95
C#(Collision) 9.25 7.25 3.75 3.5 2.0 5.15
174t Release) 0.0 0.0 8.5 0.0 0.0 1.7
G#(Merge) b.5 20.5 10.0 4.75 2.25 9.4
M#(Modify) 84.75 [61.0 107.25 149.0 56.0 111.6
O#(Checkout) 20.0 5.25 36.0 12.0 19.5 18.55
R#(Remowve) 11.0 10,75 1.25 3.25 2.0 5.65
WH#(Delete) 23.75 37.0 2.0 3.5 35 14.35
MA/C# 9.162 222 28.6 42,75 28 21.67
Total Files 18 27 42 67 51 49.7
Modiliced Files 17 27 32 41 43 23.3
Versions Per File 199 23.85 3.4 I4.3 32 19.5

Table 4.2: The numbers of CVS operations of five student teams

4.3.1 The Team Aspect

Three visualizations help us to do the analysis [rom the team aspect: the average temporal
distribution ol CVS activity, the average distribution of CVS operation by type, and tem-
poral distribution ol Maodification Request (MR) ol the sclected weams, The aim ol these
tcam-level diagrams is 1o compare the various work habits of the student tcams. How fast
did they start? How long were their actal development processes? How many idle days
did they have? How many files did they work on at a time? What proportion of files were
Java files? What was the distribution of their CVS operations?

Let us now look at the information that can be inlerred by examining all the types of
operations that tcams performed in their CVS repositories. By examining the bar chart as
Fig. 4.1 and checking the data reported in Table 3, the instractor can gain some insights into
the ways the various teams use CVS.

As can be seen from this chart and table, team I exhibits "abnonnal” small numbers of
operations of all types: the members in this (eam performed - on the average - the sinallest
number ol operations in CVS (less than hatl the number of operations ol team B), but it has
many addition and checkout (A and C) operations and the namnber of tiles they developed is
bigger than average. Furthermore, they scem to have used CVS much more like a storage
arca for finished products than as a working repository: both in absolute numbers and on the
average. They modified their CVS files much less frequently than other teams: averagely

every file was modilicd only 5.2 times by the all four tcam members.

N
wn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300
N Ave_Teamh

¥4 Ave_Teanb
8 Ave_Tean
I¥ tve _TeanD
B Ave_Teank

250

8 Ave_tholeClacs

200

1ons

Cperat

T

Nurber o

100
\:‘
N
N
50 N
\
N
0 D2 N P o IE‘Q §

C(Collisien) GQlerze) Wilodify) 0{Cheskout) RiRemove) W(liclete)
Operation Tyres

Figure 4.1: Distribution of CVS Operations by Type, for Five Teams

Such “abnormal” phenomena should not emerge suddenly at the last minute, Instructors
may examine CVSChecker visualizations regularly, recognize sore symptoms at an carlier
stage, and evaluate whether the developers are Gacing iy problems or not. For examiple,
sparse usage o CVS might be due to the fact that the team is simply storing and exchanging
files outside the CVS. Alternatively, it may be due to the Tact that the team is not working
cnough on the project. Basced on the cause analyses, instructors may decide what kinds
of action they should execute. As another example, we notice that TeamA and Team B
have a slightly high number of collisions (C) and merge (G) operations. Collisions and
merges occur when more than one team members attiempt modily a same file at the same
time. A substantially high number of C and G operations could indicate that the design of
the software product and the distribution ol tasks among teamn members are poor, and the
project modularization should be re-considered. We also notice that these two teams have
high number of collisions and merges over a relatively small number of files,

In principle, enabling team members to always have the latest version of each file is a
good collaboration habit. The instructor, in fact, recommended that students commil new
versions back to CVS repository promptly after their modification and do not modify « file
heavily without saving it in CVS so that the other team members can have up-to-date local

copics; i these instructions are followed, the average number olinoditications, A #, should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

~e—Teani

>

~f3---TeanB

—A—TeanC
50 s

weviees TeanD
~¥X-~TeanE

------ Ave_YholeClasy

-
o

Number of Operations
(]
=3

n
o

10

1 3 5 7 9 11 13 15 17 19 21 23 26 27 29 31 35 358 27 =0 41 43 45 47 49 51 4%
Dates: from Feb, 07 te Nar, 31

Figure 4.2; Temporal Distribution of CVS Activity, Tor ach 5 Teams

not be small. However, the M # of TeamE is much smaller than those ol other teams (alinost
is one third value of TeamB). If the design ol the application is not sulficiently detailed and
only high-level classes with substantially complex functionalitics have heen designed, then
it becomes more likely that more than one member will have 1o touch the same file at the
same time thus resulting in a higher number ol collisions.

Integrating the above heuristics, we can say that the higher the ratio ol successlul merges
over collisions (M#/CH##) the more ellective (he team colluboration is, since cither their
design or their inter-personal communication enables them not o step on cach other’s work
products. From Table 3, we can see that the ratio A4 #/C'# of Team 1) is the highest, where
the same metric for TeamA is the lowest. The problem of TeamA seems o be the small
number ol files in which they have divided their work - ie., the sinall number of classes
they have identified in their project designs it they had Turther decomposed their classes
into several, simpler and more independent parts, they might have obiained a much better
task assignment, module design and file-sharing habits,

Fig. 4.2 diagrammatically presents the average workloads Tor the students of the five
tcams through the whole process day by day.

It is casy to see that all teams show peaks ol activity around the same dates in the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deteds frop CDOR=02-07 1o 13=~31

Figure 4.3: Temporal Distribution of MR Activity, for Each 5 Teams

second and third periods (the due day ot the project part 1 is the day 15). However, there
arc some interesting dilferences too. TeamC began carlier than the other tcams, TeamB
usually worked in a single day then stop for next several days, and Teamb exhibits a-much
more consistent work profile than the rest. With this figure, instructors may notice that a
team has notstarted development, when most other teams have and may give them a prompt
reminder,

Fig. 4.3 shows the average Modilication Request (MR) numbers of these 5 teams. The
MR curve trend of cach team is consistent with that in g, 4.2,

Considering all these charts, we observed thae TeamB has the most CVS total opera-
tions, modification operations, with pretty high coltision and merge numbers, Team) has
more regular workload habits than the other teams, and has o medium number ol MRs.
TeamB, C, and E have sharp peaks around each delivery deadline, preceded by long idle
periods, TeamB has the most MRs at the second deadline white TeamC has the smallest
number of MRs. The trends and relative pogitions of the curves in MR chart are coincident

with that of curves in Fig. 4.2, This means that all the teams have similar average MR sizes;

4.3.2 The Individual-Developer aspect

In above section, we examined the aggregate behavior of teams, Inthis seetion, we focus
on analyzing the five tcams Irom individual behavior aspect. The analysis may support the
instructor in assessing the relative contribution of each tcam member to the project and (o

notice quickly imbalances in the workload distribution,

4]
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

350
o

amee?

7 LSHumeZs
8 L3lamed2
00
3 Z 6 LSHameEE
B Ave_Teand
250 i ¥ Aviz_Whol=Class
74
7 %
200 |-
& @
L
(8] 7
1150 %
E ‘i\%f
100 N 2
7
&
, !
60 ; ?; 7"
o 5 : Y. § A pitfhe
All A(Nd4) CCollizicn) G (Merze) Wiredify! OCheckous) R(Romeve) Wiphclcte!
Uperation Types
Figure 4.4: Distribution o CVS Operations by Type, for Members in TeamA
TeamA

A simple, yet potentially telling, metric of the nature of the collaboration among the meni-
bers ol a tcam is the number of their CVS operations according to their type. Fig. 4.4 shows
the operation distribution over all types ol cach member in TeamA while Fig, 4.5 shows
these operations throughout the project-development process.

Fig. 4.4 scems to indicate that:

o Student LSName29 did much more work than the other members of TeamA, hecause
lie performed many operations in CVS (note: We use the male pronoun o refer to
all students, irrespective of the gender ol the actual student discussed). However, the
number of his modification operations is not correspondmgly high, A large part off
the operations he performed were the addition and removal ol files, and he was also

responsible for many collisions,

o FFrom this chart we might infer that LSName2Y is the tean leader who designs the
project classes and initially authors. ihe tiles for other members.. Compared 1o the

other members of TeamA,

o LSNamed2 exhibits a better (more material) operation pattern: high number of modi-

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

——— LSHame27
— LSNane29 i
80 i
~/r~LSllaned? f
i LSNane55 {
70 :
- Ave_TeanA
--+-- Ave_WholeClass
v 60
<} N
el i
© H i
I 50 : _—
& i . |
3 " f
o 40 : !
7} [b
e r'
2 30 s |
| A
‘) ,‘l,x‘
20 i,a\) ‘f#r {
iy / , / o
f_" VI \1 \ ?l’ !"l}: l%
10 = i At
N
oa=T Eh ﬂﬁ'\ /“l i —p
0 e bt *‘&%K\/ k‘i—’i"“!-»., *’“’@4 w}t’\LW Q [1' _'G‘f‘* Ko - i o.vg.a..‘.‘._f.:]‘;pr‘)"; ~¢ —é_‘L

1 3 5 7 9 11 13 15 17 19 21 28 25 27 20 ol 33 35 37 39 41 43 45 47 49 51 &8
Pates: from 2003-02-07 to 2003-03-31

Figure 4.5: Temporal Distribution of CVS Activity, lor Each Member in TeamA

fications, Iew collisions and high ratio of successful merges over collisions —M # /(4
Seems his work is independent and he might be the developer who focuses on a co-

ponent.

e LSName27 had almost the least CVS operation records, He did very few modilica-
tion, but lots checkouts, Based on these symptoms, we can say that this member didd
not have proper CVS usage.

We will support or rejeet these guesses with the other visualizations.

From Fig. 4.5 we notice the followings:

o There are large any-type-operation periods between Day 28 1 Day 39 and from Day
48 1o Day 53.

e The average tcam aclivity is similar o the average of all the teams and [ollows «
similar pattern in time: most operations oceur in phase 2 and at the end of phase 3:
around the two major deliverables of the project.

o All four members of TeamA appear 1o awve similar operation (requency and distrib-

ution except for LSName29, wha was much more active around Day 31 (M ar. 10/

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

350 e
ZiBxtReplacelt
N ExtRaplace28
200 ? f?xtRep?ﬁce:'ZQ
TIlxtReplacel0
% Ave_TeanB
250 B Ave_tholeClass
g .
o 17
o
£ 200 7
@ Pl
c)
k3 2
5150 D
g !{ "
= é ;
100 v
Z
)
50 Z
e N\ ?
0 G N g, AR B
Collizion) GQerze) M (hadi fy) OWheckant) E{Remave) W(helete)
Creration Typles
Figure 4.6: Distribution ol CVS Operations by Type, for Members in TeamB
and Day 52 (M ar. 30",

o This diagram provides counter-cvidence for our carlicr beliel regarding the leader-
ship role of LSName29, which proves that moie accurate analysis results come from
multilevel data, LSName29 did not start carlicr than the other team members al-
though he had several higher spikes comparing with those of his tcammaies, so hie is
not likely to he the designer/leader. At diis point, we can simply assess his operation
profile as "problematic”: in spite ol his big number of operations, it is not clear how
he contributes to the team,

TeamB

Fig. 4.6 and Fig. 4.7 arc two individual-developer agpecet visualizations for TeamB. From

Fig. 4.6, we notice the following facts:

o All the members in TeamB did more CVS operations above the average level of the

whole class;
o No many differences among the operation amounts of niembers;

o Member ExtReplace26 had the most total CVS operations and M-typed operations,

However, he was not the main file adder, and his numbers of collisions and merges

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

~—ExtReplace26
90 -~ EytReplace28
~—&—ExtReplace29
~2t- By tReplace3n
80
= Ave_TeanB
-t Ave _WholeClass
70
n
=]
a
5 60
[¥]
g
(=)
w 90"
2
B4
2 B
30 i
20 H ﬁ
L
10 A [\l i
0 lesooo -?f'"/.“w*-*""m’,\-‘*C"} "a"“o;&'@!"‘g * .l ‘f’\

1 3 5 7 9 11 13 1517 19 21 23 25 27 7% 31 33 85 37 &% 41 43 45 47 49 51 53
Dates: from 2003-02-07 to 2003-02-31

Figure 4.7: Temporal Distribution of CVS Activity, lor Each Member in TeamB

are relatively small,

o Member ExtReplaced0 almost had the Teast ol operations in TeamB. He did the
least modily operations, as much as 172 of the mmount of ExtReplace26. However,
he added the most files to the CVS seposttory. and almost all the tile removing works

were committed by him;

o Member ExtReplace28 had plenty of operations with a Hirde bit high collisions and

merges;

e Member ExtReplace29 had few operations with the least fite adding, collision, and

merge,
From Fig. 4.7, we noticed that:

o All the members had the similar curves and spikes; Al of them started at the same
dates and worked hard at the same small periods; In another word, TeamB has a

uniform and regular work trend, and tie typical work-at-the-last-minute habit;

o BExtReplace26 and ExtReplace30 had active operations at the carlicr stages while Fx-

1Replace28 and ExtReplace2Y did more operations at the tinal stage,

062

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

400
ViLiNamels0

8: LSNane?
8 Lollamey?

i LSHanen0

3

<«
<
o
I EI LTI TSI

350

3 ave_Teand

T Ave_Minlellaws

8 250 | N ——
g N Py
& von - :
- & B
© N N
o,
i 3
2 150 N 5
o

100

50

i

o N,

SR K N N R 2 {

All A(Add) C(Collazaon) F G (Merge) NModity) O(Uheckout) KiKemove) ¥iDelete)
Operation Types

e |

NS GRS SO S I Pl

E//a}// ?%?i/f?l'/]

Figure 4.8: Distribution of CVS Operations by Type, for Members in TeamC

TeamC
Fig. 4.8 and Fig. 4.9 arc two visualizations of TeamC in the same level:
o The average level of TeamC was similar to the average level ol the whole class;,

o Mcember LSname$ did more than double operations comparing with his teammaies,
Most modification operations were committed by him, and almost all the files were
added into CVS repository by him, He did not involved too many collisions and had

the least checkouts;
o All the other three members had similar CVS operation distribution;
o This tecam scldom removed files ronm CVS repository.

o All the members in TeamC are also typical work-at-the-last-minute developers, Not

only those three members with few operations, but also the core developer: LSNames;

o They only had two spikes near the due days at the project pan2 and part 3. tn the st

part, they did not leave niany records in CVS;

03

Reproduced With permission of the copyright owner. Further reproduction prohibited without permission.

140

——LSName50 Lo
-4 LSName8 I
120 —— LENamesT
& LSHame90 i
w3 Ave_Teams I
—+— fAve_WheleClass @)
100 {[:
7 80 ‘ ! ;
O il H
’ |
Y
4 H
4 60 B
] {l
: 5
3
40 l?gx
J
20 5)
" A — P 4 3 A
o W .gﬁmg#:;;’..,,..nu\,,_h.,«.,,h.* °’°/f$\"' :.;:,,,{,r;g,_ff»}?:&;?;;;x'ﬁ?ﬁ# A &5":}&&1

18 65 7 9 11 13 15 17 14 21 23 25 27 20 31 33 35 27 20 41 42 45 47 49 51 &X
Dates: from 2003-02-07 to 2003-03-31

Figure 4.9: Temporal Distribution of CVS Activity, for Bach Member in TeamC

TeamD
From Fig. 4.10, we can notice that:

o The average CVS operations ol TeamD were larger than the average of the entire
class level,

e In this tcam, there was also a core member: LSName38. He had the most CVS
operations, added more than half files into CVS repository, and did almost double

amount of the modifications;

o Member ExtReplace27 had the least operation records in ‘Team D, but removed rela-

tively a large number ol files and checked out frequently;

Fig. 4.11 shows that the work habit of TeamD is much beuer than the previous three

lcams:

o All the members started carlier than the other groups and worked consistently, almost

every day.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500
ViFsReplasel?
450 2 L5 Litane?
e LSt aret
400 | B LiHameTd
1 3 Ave_TearDd
350 i Ave_tholeClass
7]
g, :
;;; o f——
i :
S 250
Hy
o
b
E

Vi
; .
/’ R
7 R fm ™
\ R TR S N W/ N st IS |1
Add) C@ellision) GNerze) Milodify) OCheckoutt R(Reacve) W(Delete)

Oper ation Types

Figure 4.10: Distribution of CVS Operations by Type, for Members in Teaml)

—— ExReplacel? N
80 . - !
~%- L3lame2 !
g Ll anefs !
70 | =t=LSHamef0 :
—8— fve_TeamD J
o Ave WholeClass
60 ' 4
g 4] :
) H :
% 50 :' ; !
2 l | I’
L H
5 5, i !
9 40 T f i
4 H
¥] il
j
5 30)
’é‘l
{ {
20 f ;
i
. U S Y
a\]‘ i % faf
10 ek gt}
’«“) o *}4‘/
3 L Redad -
o kb PRIt ctid : ;ﬁ",‘g,..w'j.wﬁ-—-é' s I'__J
13 % 7 9 11 13 19 17 1w 2 J3 0 4T 48 51 &3

Dites:

Figurc 4.11: Temporal Distribution of CVS Activity, Tor Each Memberin Teamd

05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

220 -— -
kL LSNam222
200 M SHam31
' LSNam=9
180 ¥i LSNam
B LoNam=293
160 3 Ave_Taanl
12} Ave_WnoleClass
140
g
ElQO)
& " i
100 . o]
& D ;
5 R i
5 80 4
60 o -
:
40
20 o —
b 3 1] 1t
0 7 R T I | AN I - i bl

ecleont s R {Remavn) Wilielete)

A{Add) CCallisien) Gllerge) Bitadifry) 00

Op=ration Types

Figure 4.12: Distribution of CVS Operations by Type, for Members in TemmE

¢ Member LSName38 always had much more operations around the due days although
he had persistent works sinee the very beginning, We conjecture that he acted as the

team leader, and always did some mop-ups at the final moments before the deadlines;

Teamld

e The average CVS operation records ol TeamE is much smaller than the class average
level,

o Teamlz added similar number of file into CVS repository as most teams, and did
nearly the same amount of checkouts, However, their modifications (A od7) are
much less; The reasons can be two possibilities: (a) members in Team had normal
developments but only treated CVS as a storage tool more thin a sharable working

platform, (b) members in Team did not have enough works,

o Almost half files were added into CVS by member LSNameYv3, but he only did very

few modifications on these files;

o Member LSNameY had the most CVS operations with the most modifications in his

team;

e Member LSName22 did lots of checkouts and did the most removing operations;

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

e LSllan=22]
-8 LSName31 :
80 |
- LSHame9
"0 ~— LSHame93 j
Ave_TeanB
—ir— Ave_WholeClass
60
g %
Q
o
]
550
g -
b
40 ‘
?h)
=30 1 }
4 7
. . !
20 N 3% /
o bd !;’
o I} E 1 e
P /i
10 x Y o 1'”%
. , A RN AR S e
- o Ao d e g . AR S Fainy I ok] o3
0 LAt S . X SE S S S P Y 3 ity Y TR A s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3]
Dates: from 2003-02-07 to =

LN G0 dl 45 45 47 49 81 63

1

Figure 4.13: Temporal Distribution of CVS Activity, tor Each Member in TeamE

« Member LSName3 | had very few CVS tracks; Over the alimost two-month project

development process, he only modified around 20 file versions.

e The total CVS operation number of member LSNameY3 was not small, Most of the
operations were adding new files: he added more than 100 files into CVS repository

while only modificd less than 30 file revisions;

o Compared with other teams, TeamE had a pretty idle work curve: they almost had

flat lines before day 33,

o Although some of them had spikes belore the second wnd third deadlines, the spikes

are still very short and small;

e Member LSnameY and LSName22 started a little bic earlier than the other two mem-

hers;

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

] i] [ey

& Added) ’ } sof sase eretery
i
}

16 & Reaoved J—

34 - R S P

34 — ~

[CR L]
a0 N

D B
= G

e

A s by R
=0 ON

12

Datcs (from 2003-02-07 to 2003-03-31)

[
O E&EODD

0 10 20 30 40 50 6o 70 f0 a0 11160 1o 120 130 140
File index

Figure 4.14: File Adding and Removing by Date, (or feamA

4.3.3 The File aspect

Let us now examine how the project workload was distributed across the files. CVSChecker
produces three visualizations for cach tcam (o show the fife-related information,

Fig. 4.14 shows the lile additions and removals of TeamA, The X-axis lists all the files

in CVS repository.

o There were 137 files in CVS repasitory at the end ol the project; Only three file (file
1,2, 3, 4) was added before the due day of project partl. They are four Java classes
and all ol them were added to the team root directory.,

o Onday 16, the next day of the deadline of the project partl, All the four above classes
were deleted and re-located to the subdirectory sre/” (file 30, 33, 39, 40);

o Another new class (file50) and “makefile” (filed2) were also added to this place on
that day;

e Some other main classes and configuration tifes (from 1ile30 1o fileSO)were added

into "sre/” directory in succession belore the project part? deadline (day 39);

e Onday 32, 31 files were added to CVS (fileS1 o file& 1), All these files were online

manual files required by project, and all of them existed on directory "sre/helpset”.

08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
%
?54 # R (Remove)
60 g.:%'g #% M (Modi £y)
o)
.
% %i %G {Merge)
%
%
" #C(Collision)
40

©w
o

Mumber of Operations
_ (3%
<o o

File index

~20
Figure 4.15: Distribution of CVS Operations by Type, [or IZach Java Ciass in TecamA

As we noticed, these files were removed again on day 520 all the hunl files were

relocated (file82 1o (i1e90, and (ile 107), and all the htnl files were deleted.

Six files (filel01 to 106) were also added to module “sre/helpset/lavallelpScarch/”
on day32, and removed on day 32;

o All the files between file 108 and file 123 were ".gil™ files. They were saved in diree-
tory src/img”;

On day 53, 14 files (file124 o file 137) were added to "est/” directory. Al ol them are
"axt” files and they were created 1o test the project quality betore the final deadline
arrived.

The following analyses are focusing on the Java files of Teawn A (between filel o (iled,

and [ile30 to file30 in Fig. 4.14),
Fig. 4.15 shows ditferent types of operations performed on cach Java class while Figure

38 shows the detailed modification works of cach member on them;

o TeamA added 22 Java classes to the repository;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Files 1,2,3,4, and 22 (they arc lilel, 2, 3,4, and 30 in Fig. 38 correspondingly) have

alrcady been removed at the date this visualization was generated;,

o From the height of columns, we can have a quick idea abow which files sufTered

many opcrations: Files 8, 15, 10, 5, 16, 18, 22, and so an (in that order).

e They arc also those files that sutTered many M (Maodil'y) operations, Morcover, alimost

all the collisions and merges happened on (hese files.

o Their numbers ol modifications, Mod#, diller but (heir sizes can be comparable,
Consider for example file 10 and 17: file 10 has had many more modifications than

file 17; however, the eventual sizes are almost the same;

With this chart, members of TeamA and instructors can casily detect those files that have
problems in the design and prone (o incur collaboration problems.

In addition to provide an overview of the number ol modilications, Mod#, Fig. 4.16
enables a deeper view into this information, presenting the nambers of LOC added to and
deleted from cach file by cach team member.

Combining the information trom the above figures we notice that the files with the
highest density of modifications. i.c., high ratio of moditicd Tines per wtal fines of code,
such as files 8, 15, 5, 16 and 18 were 1ouched by mualtiple team members,

Itis not always the case that a file modificd many times is also moditicd substantially.
For example: the total number of modified lines of file 17 is much fess than that of fiie 10
although their numbers of modification operations — Mod#£ — are almost same;

Member LSName27 only moditied 4 files: File 7, File 8, File 15, and File 16, and
these files were also modified by other members. Morcover, his modificd LOC number was

small;

e Both members LSName29 and LSName3dS modified atmost hall of the files, How-
ever, most files were also modified by other members, with high collision and merge
numbers; LSName29 was the author of those 4 carty-added-and-removed classes
(filel, 2, 3, 4); He was the only members who did some real coding works on project

partl;

o Member LSNamed2 modified 5 files: Filed, 10, 1013080 Although Filed and
File I8 also modified by other members, LSNamed2 was the core developers ol then.

Morcover, LSNamed42 did not change any line on those two most important files:

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1800 — .
ZiLSHaneth o
1600 g o
fiLSHamed . K
1400 et T
3 1
1200 | WLSHane2o k’j i o
[2 3 /
1000 [®LSHane27 |—™ ; i il v
13 <) 13 7 & 1 V7
5 /'; T A #) Vi
800 S; 4 B k¢ §; &
¥ “ ;f S 1 "
400 2 & o 3 N ¢
: N B - SR
00 M i b 1 s i 7
200 o N i i)
SN . § _WEE B g B w N
~ 0) B / oo TeT ® ¢ [£3] ;‘ b
3 iy 7 o | o1 1 10 ool
-200 o frd % 4 133
= I pE 8 7
-400 i < : 7z ;
= A I: 2
T Fn A
~600 i g
324 3
-800 o &
T File index
-1000 &
-1200

Figure 4.16: Added and Deleted LOC by Each Member, on Each Fava Class in TeamA

File8 and File !5, Ina word, LSNamed2 spent his work on several classes and he was
the only or main developer on them, We can say thar LSNamed?2 Tocused on some

independent components;

Combining the information of Fig. 4.15 and Fig. 4.16, we can notice that almost all the
files with high collisions and merges were modified by multiple developers, such as File§,
Filels, Files, Filel§, and so on. We can say that the design of these files have to be im-
proved.
TeamB

o There were totally 178 files in the CVS repository helonging o TeamBB;

o Belore the deadline ol the project part 1, some files have been added to CVS repos-
itory since day 6, such as tile2, file6, from filel23 1o file 142, All of them were nol

Java classes and were removed at the sime day or aday 20,

e On day 20, 5 gif’ files and T Java class were added o CVS roat divectory (filel, 4,

5,7, 8 and file 3). Later in the same day, these files were deleted from the original

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

62 : = . bl L ol @ Mlidenl
50 * * “Reaoved
48 S s -

46
4

40 -

b
Yo
»
.
.
.

36
34
32
30 - i

26 .

20 P o A

18

16 |
14
12

Dates (from 2003-02-07 to 2003-03-31)
&
L]
-
k §
[

—
SN~ O
>

]

0 10 20 30 40 50 60 70 80 9. 100 110 120 130 140 150 160 170 180
File index

Figure 4.17: File Adding and Removing by Date, for TeamB

locations and removed o a new directory "LEullName 108/, Six new files appeared

(sce file 9 w0 14);

o Also on day 20, those files added on project part] were removed from their original
directory “docs/” o “docs/part]/”. (see the removing ol liles: file 126 w0 142, and

new added files: file143 to 157);

o Some new Java classes and other project files (most of thein are gif files) were also

added on day 20,
e In project part 2, more Java classes were added, together with some other files;

o A group ol files were added on day 27 and removed on day 38 (just before the due

day of project part 2). All of them are gif files (file 28, 61, 62, 66, 67, 76 10 §3);

e Two renamings happened on day 38 (renamed file 20 o file 21, and file 35 1o file 36).

Both of them were created on day 30 originally;

o Files between 84 and 121 were JavalDOC files. Alimost all of them were added into

CVS on day 38 while some of them were added on day 39 and 53.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260
R(Remove)

240
& N (lodify)

220
G (Nerge)

200
PAC(Collision)

—
o0
o

—
<
o

—
s
o

120

!

AN P Lo e e

100

Humber cof Operations

|

§
&ihﬁmﬁg.émmmﬁ. e

1 3 5 7 4 113 15 1 1% 2 e s 27 20 31 a3

File index

Figure 4.18: Distribution ol CVS Operations by Type, for Each Java Class in TeamBB

o TeamB had 34 Java classes in CVS repository. Allof themn scattered belore file 75 or

al'ter filel58 in Figure 4.17,

o Since they created their project modules, they only removed one file from CVS: (lile

1 in Figured. 18 and file 3 in Figured.17);
o Almosthall of the maodilications were committed on File23:

o In addition to File 23, Files 7, 8, 17, 12,9, 14 cte. were other relatively important

files. They were modified many times and had collisions and merges;
o There were also some small classes with very few modifications;

Bascd on above observations, we can say that the structure design ol Team B was not well-
proportioned. This was an important problem to be improved. Fig, 4.1 gives us supportive
facts: TeamB has the largest collision and merge numbers.

From Fig, 4.19 we can notice that:

e Most ol the above listed high-operation files were modified by multiple members;

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6000 -
KiRx tReplaces0

5000
B ExtReplace29

4000
NExtReplace2s

3000
¥ ExtReplace26

2000

1000

S0

]

-1000

~2000

-3000
File index

~4000

Figure 4.19: Added and Deleted LOC by Each Member, on Each Java Class in TeamBB

o Some files were modified heavily (added more then 2000 Hines and removed more
than 1000 lines, the largest file was changed almost 10000 lines) while some others

were almost no touched;

o There were also cases that a file modified many times was not modified substantially

{File17), and a file scldom modified was changed substially (Fileo, 22),

o Member ExtReplace26 modilied 7 (iles, Most al them were cooperative work prad-

ucts shared with other members;

o Most single-author files in TewnB were maintained by I-leliuplz\cc?_x.‘ Besides, he
also joined the developments on some other files with hisiecammates. Figured.o leis
us know that ExtReplace28 had some collisions and merges. Thus, we can say that
all his collisions and merges came from these cooperative file: File7, 14,16, 17, 23,

26.

o ExtReplace29 and ExtReplace30 did few modifications, and they always joined the

files with other members instead ol having own independent files;

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dates (froa 2003-02-07 to 2003-93-31)

el T el N
RN AT ONE DS R

2]

;2 Ll el R e 2 ki S hlide i " #® Added
Eg - 2 Removed
46
44
42
40
g: + ‘“ AO - : L X 217
34 3
32 * > >t

30

n
=]

26

!
!
!
|

Q1300 L0 1500 120

Q 10 20 3N 40 S =] 70 0] a0 w1181
file index

Figure 4.20: File Adding and Removing by Date, for TeamC

TeamC

TeamC had 158 files totally;

There were only 7 files that were added into CVS in project part! (File 1, 2, 3, 4, 5,

7, 8), and in these files only File 3 was a lava class;

Mostimage files required by the project were added into CVS on day 53 while some
sporadic ones were added on day 37, 39 and 49, All these image liles were listed in

Figure 4.20, from file Y 10 29 (except three Java classes: file s, 16, and 17);
All the JavaDOC files (file 30 to 117) have the same situation as those image files,

All e files with index larger than 117 were Java classes, except a nanual doe file
(file 146) and a help huml (file 138),

]

TeamC only had one renaming work: they changed the name ol fite 133 from "Todo.java’

o "ToDo.java” (lile 130).

Only 4 files were removed, and 3 of them were Java classes;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

BR(Renove)
60 g M Oadity)
50 20 (Wevze)
NC{(Collision)
q0
g
i)
¥
H
d 3p
o
Yd
o e
é 20 2
g 3

o
'/S'Al

& § 2 W o
2 27T 29 31 33 35 37T 39 4l

File index

~10

Figure 4.21: Distribution of CVS Opcerations by Type, for Each Java Class in TeamC

o TeamC had 42 Java classes, and 4 of them were removed rom CVS, Actually, one of

the removing was the result of a renaming;

o The CVS operations spread on these Java cliasses much more balanced (located on

file15, 16, 17, and 118 to 158 in Figuredd), comparing with that.in TeamB;

e The following files had many CVS operations with collisions and merges: lile 25, 22,

23,8, 10, 1, 14, 15,7, 18, 16 and so on;

¢ Some files had not been modilied since they were added into CVS, such as files
from 34 to 40. All these files include three removed ones constituted a module

source/wmve/”;

From Fig, 4.22, we have the lollowing observations:

The modification works on most files do not have so many differences as that in TeamB;

Again, those files with high collisions and merges were moditied by multiple members;

Some files with a large number of moditications were only maimained by a single mem-
ber, such as file 28 and file 17,

LSName50 modified 13 files, but none o them was only maintained by hiny,

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1400 -
PALSName90
1200 <
B 21 LSH ameST
1000 . ;
8 3 ; B LSNames
4 ks -
800 i
y ¢ L B L5HianeS0
3
600 ¢
400 :
st
0 S_on
¥ 3 5
-200 ¢
{ TR
~400 ?‘ :
ui File gndex
-600 -

~ Figure 4.22: Added and Deleted LOC by Each Member, on Each lava Class in TeamC

LSName8 modified 19 files. He contributed a tremendous amount of work on most of
the 19 files. Morcover, he was the only developer For some ol them;

LSName87 was a very independent developer. Almost all ol his modification works
were committed on three classes (File20, File28 and File32), no other members touched

them;

LSnameY0 modificd 8 files, Two ol them were only developed by 1L.Snamc90),

TeamD
e The number of files in Team) was exceptionally large: 263 files in total;

o TeamD started the project development carlier than all other teams and -have a large
proportion of working days;
e Although TeamD has a comparatively better habit, the project had an abnormally
high number of Tava classes. After inspecting the file report, two reasons were found:
= All the members moved their individual assignment work into the common
project directory (liles from | to 58), and
— Member LSName58 dumped another 37 Java files (fles rom 62 (0 98) into

directory named "demo/newLayout” on the due day of project part 2 just lor

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5:1 e v
52 A s + # Added

=

48 3 % Reaoved

—
N
L

r-a.-to

—

=S
k-4
3
a2
>

143

}
2
3

0 10 20 30°40 50 60 70 80 D0 10 11 12 13 14 16 (& 17 13 194 Zu 21 22 253 24 25 25 27 28
a 0 0 0 0 0 6 0 0 a0 & 0 0 0 0 0 6 0
File index

Figure 4.23: File Adding and Removing by Date, tor Team

the demo, and never touched them any more. All these files were actually the

copies of those lava files {inished untl Day 39,

o Files 102 to 156 were TavaDOC files, They were added into CVS.on Day39 or Day33,
A group of UML-related files (files 258 (0 263) were added into module "UML-
diagrams/” very carly {on Day 9) while another group ol the simc-named files were
also added in a different module -"docs/UMILS . on the same day. Later, the first

group was removed on Day [

e Files 157 to 172 werce also files that related with UML diagrams. They were added

into dircctory "docs/UML/” on the following days: days 9, 48, 51 or 52,

e The removing of file 169 was the rexult of a renaming on Day 48: its name was

renamed from "iCal-View.dia” (o "iCal-Views.dia” (file 167);

e Most Java classes were located between file 173 10 229, Some of them were added
prety carly (in project part 1);
o All the image files were located between File 230 10 257 in Figure 4.23, Almost all

of them were added in project part2, especially just before the deadline.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
«g-C(Collision) .
40 -
~a- G (Merge) f T
35 -t :
et W (Modi £y) i
30
—v—R (Remove)
26
g
"
ge20
[
&
w16
12]
D1l
'g 10
5
[0 e TR R P R T NNV NI WS R SRR S U TR TR PP ET R R R0 SRSET Sy
I T 13 19 25 31 37 43 4% 55 @1 G
-5
File irdex
-10

Figure 4.24: Distribution of CVS Operations by Type, lor Each Jlava Class in TcamD

Fig. 4.24 shows us the Tollowing facts:
e TeamD added 126 classes to its CVS repository;

o More than half of them were only added without any further moditication. We have

already stated the reasons above;

o 38 classes were modified in the project development process, and 6 of them were

removed from CVS repository;

o More than 10 files had collistons and merges: File78, 79, 80, 84, 88, 89, Y0, 92, 97,
101, 102, 104, 105 cte. This shows us that a team with 2 beter work schedule can

also have collaboration and design problems.

e Most high-collision-and-merge files were modified by multiple members, such as

File78, 79, 88,90, 92, 101, 102, 104,

o Ex(Replace27 did not have his own classes. All the modificitions he committed were

on files that co-developed with other members;

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2600

—#—EzReplace2? "'
2000 ~tmLSHame2
~-#-- LSNan=58
1500
—=——LSNana70
1000
500
g, ,
= A IN
H 7 13 19 26 31 37T 43 48 55 61 67 713 5&! 13
~500
~-1000
~-1600
. L
File indey
-2000

Figure 4.25: Added and Deleted LOC by Fach Member, on Bach Liva Class in TeamD

e LSName2 had 6 shared files and 3 independent files:

o LSNameS8 had many independent files with several shared tiles; Figure 4,10 tells us
that he was the member who had the most CVS operations in“Team D, He also added

the most files and had the most modification works;
o LSName70 changed a great nwmber of fines on several shared files,
TeamE

o TeamE created 178 files totally; The project size is normal compared with most other

teams;
o All the members did not add any file into CVS hefore day 22;,

¢ Most files were added at or just belore the deadline ol praject part 20 Day 39, Same

things happened at the project part 3;

o With the inspection of the java information, we Tound that TeamB did not have rea-
sonable design of the project structure: all the Java chasses and most other files were

dumped under the root directory near the due days, and no any package concepts;

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e e T B T T et e g o g [e s

rerIA * we . A Mrav L » .2 -~ YYAWAAA
62 b #» Added

* e - 4xdaran .

% Removen)

w Y
@ o

-
o
i
|
|
T
i
i
{
|
i
|

-~
-

-
~

28
¥
f
!
H
§
s
§

it

i »

)

)
-
»
-

L5
3
-
¥

o
03

(4]
o

]
@

(]
o
.

b BN
= NI

Dates (from 2003-02-07 to 2003-03-31)

e el o
OMN & DO N CY D

0 10 20 30 40 &0 00 THOOAG 90 1o 110 170 130 140 150 160 170 180
File index

Figure 4.26: File Adding and Removing by Date, for Team 2

o All the JavaDQOC files (files 135 to 178) were put ina dircctory named “hunl/” on
Day 39 (due day of project part 2), insicad ol the popular module name such as

“docs/lavadoe/”;

o 7 files were removed (files 128 to [34), They were some temporary existed files for

lesting.
Fig. 4.27 and Fig. 4.28 show us the following observations:
e TeamE had 51 Java classes in CVS repository totally, and 3 ol them were removed,;
o The numbers of CVS operations on the files are smaller than the first four tcams;

o The following files had collisions and merges: Filel, 7, 8, 4, 22, 32, 33, 36, 37, 38,

48; Also, they had many modifications;

o There are some files that were never been modified after they were added into CVS,

e Almost all the high-collision-and-merge files were modificd by multiple members;

o Member LSNwne22 modified 9 classes. Only two of them (lile36 and 38) were

developed and maintained by himself;

8l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
® R(Remove)
M (Nodi fy)
25
36 Merpe)
£1C(Colligion)
20
g
-§15
by
&
B10
i
5 i
. § Eg g 8 BH g RN R R g SALE, B ;,%, R PR N
0 HE
1 3 6 7 9 11 13 15 17 19 21 23 25 27 24 31 &3 35 37 3% 41 43 45 47 49 !
File index

-5

Figure 4.27: Distribution of CVS Operations by Type, lor Each Java Class in Teaml3

600 ;
3 £11.5Nam=93
500 ‘ I L3Nam=9
“‘ \ B LSlane31
400
: ® Lolame22
300 —F .
200 —3Hg : A
¢ R
100 S S
-] : § 4 -)
§ 11 7 i
p sUY 8ol bos (v f) 2l 26 20 o m TG e ! e s arfian &1
3.] 3 N } $4
-100 :_ i i
! d K L 8 ¢
[54
~200 %
File index
-300

Figure 4.28: Added and Deleted LOC by Fach Member, on Each Java Class in Teamks

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Although member LSName3 1 -had very few CVS operations (see Figure 36). his
modifications spread on 10 classes, and he had 2 independent classes with heavily
changed LOCs;

e Member LSName9 had the most CVS operations. He touched almost all the classes

(17 classes) and also had his own classes;
o Although most files were added by member LSNameY3, he only contributed his mod-
ilication on 3 sharcd classcs.
4.3.4 The File-Version aspcct

In above scction, we detected several files that may have design problems: multiple mem-
bers modificd them together with high collision and merge numbers. In this part, we display
the detailed LOC changes by date of cach ol them,

In TeamA. three visualizations in the File level (figure 4,14, L15, and 4.16) helped us
to detect that File§ and Filels were two major files that may had design problems: three
members joined the developments, and some collisions and meraes happened on them.

Fig. 4.29 displays the detailed LOC changes by date of File8 with whole name as
"TeamA/sre/CalendarFrame.java™ and Figure52 show the same information of I<ile 13, whose

whole name was “TeamA/sre/ICalController java”,
o File "TeamA/sre/Calendartrame.java” had 30 revisions tatally;
e This file was added into CVS repository on Day 16 by LSName33.
o LSName35 also finished the fiest several revisions on Day 26;

¢ Most co-developments happened before project part deadlines, such as on Day34, 38,
39, 52, 53. Of course, they were the days that collisions and merges happened on this

file;

e Mcember LSNamed?2 did not touch this file;

. File”TeamA/sre/ICalControlierjava™ had 44 revisions and was adso added by LSName3s
on Day 16,

e LSName29 finished several first revisions on Day2 1, 22, and 28;

o Member LSNamed2 seldom worked on it

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

320 -
4 VILENaeeSh
7
280 ¥ L Haaedy
v
] L CN s e
240 ? WiLbRueedy
? I UNaan2Y B
200
¢ y
% g
160 2 2
%
4 4
120 g
v ’
0 7 2
¥} 4 i1 .
380 ¥ /
Vi ; ’ s
A ’ 7
40 4 g X
2.
»; g I " ! T C" 5
% B b .é 4 i f
0 s IR/ TSN & 1 |“|‘x i Lol 1 1 n n 5 L 1 1 1 nlx/u:'x
T N 8ad
2 @ 30 82y 36 £2 0 44 46 48 U0 [&P
0
40 a £
g 1
-80 o —
2 Dates: from 2003-03-D3 to 2003-03-31 é
-120

Figure 4.29: Detailed LOC Change by Date, on File " TeamA/see/Calendartrame. java”

140 | EILSKanmeHH f
120 | #LSNamed2 S
100 [LSNane2Y " i
80 B LSNane27 — i 13
60
4 A
40 i __5_ :
} '
20 3
« 3
80 Y S T YA VY S N U WY W T A N PR I,‘lgl ISR RN ! PR uu‘{: Y- 9% T NI (U U TN WO U NN SO W | le
S ol 3 5 7 w1113 19 17 19 8 22 25 o7 oo 31 dsbaelsr B 41 43 45 47 49 s1R!
~20 :
~40 iR
<
~-60
A
-80
=100 it
Dates: from 2003-02-07 to 2003-03~31 it
_120 e s e

Figure 4.30: Detailed LOC Change by Date, on File Team A /see/ICaiControdlerjava”

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2000

fExtReplace30 i
1800 f
IE ¢ ;
1600 KExtReplace2Yy i

1400 BExtReplace2y .

1200 R ExtReplace26
1000
800
600
400
200 .
n

(S PO R S WY SO ST S ST R T .,.L..,.....4'-.“.3.::4.._.

,.
i
PIRTUNS - PUNUYRTNT w13 L 910V)
»

__';00 1 3 5 7 9 11 13 15 17 19 21 23 26 27 29 31 233 ’-‘.‘ﬁg”;’ ’-E 4143 49 4749 01 ¢

~400

=600 J

-800
-1000
-1200
-1400
-1600

Datgs: from 2003-02-07 to 2003-03-31

Figure 4.31: Detailed LOC Change by Date, on File TeamB/code/RCal.java”

e Member LSName29 was the core developer for this file on project part 3;
o Collisions and merges occurred on days 31, 34, 35, 38, 39, 32 and 54,

In TeamB, File 23 was the main cluss in the project that experienced the most CVS oper-

ations and modilicd LOCs (sce Fig. 4. 18 and Fig. 4.19). Lis whole mince is TeamBeodeRCal java”,
o File23 had 177 revision in total; This number is farger than most other classes;

o File23 was created by ExtReplace30 on Day 27, then ExtTepliace29 took over it and

finished 8 revisions on 4 days;

e On the last three days of project part 2, at least three members worked on it, which
was a dangerous sign for the class designs Sune things happened near the end of the

project part3 deadline;

o On the final day ol the whole project, ExtReplace28 was the core developer on this

fle.

Fig. 4.21 and Fig. 4.22 tcll us that File23 was moditied the most frequently in TeamnC.

Although its substantial modifications were not the highest, it had the most collisions and

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

400
PILSNancH0 [‘
3e0 15 LSHamety /)
/,
/]
320 EILSRaned
280 WLSHaneS0
240 - / -
%
200 i §~
4 4 %
" % i z
& 160 S i i
N i)
~ N i
{5 I o
120 £ : -
8o 2 i
& i
40 i £ i H
3 i >
N & A N - 3
0 =N -
34035 36 A B8 B ia0 41l 42 48 44 4B 46 47 48 49 B0 61
LS 33
~40 i
’: Dates: froam 2003-02-13 to 2003-03-3)
-§0 - — o

Figure 4.32: Detailed LOC Change by Date. on File "TeamC/souree/views/iGorApp.juva™

merges, and all the four members in TeamC touched ity Fig, 4.32 shows us a more detailed

history of File25 - "TeamC/source/views/iGorApp. java™.
o File "TeamC/source/views/iGorApp.java” had 44 revisions;

o Member LSName50 added itto CVS on Day36 and created the original four revisions

with member LSName87 on the same day;

« In both main project parts, LSName8 always worked on v cartier, As the deadlines

approached, other members joined the development in succession;
Fig. 4.33 shows File 8 ("TeamE/CalendarModel java”) in Teamls,

o File8 had 28 revisions in total; Tt was added by LSNumet on Day26;

On project part 2, LSName9 was the main developers on this file at early days.
o - Atthe due day, LSName22 and LSNamce93 also contribured some modilication on i,

o DilTerent from other teams, Teamlz had fewer maodilications on project part 3, Mein-

ber LSName3 T only maodified this file on Day 47,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

R LSRanc3 ¥
160 | B!LSHanc9 >
%
Ay
120 [ILSRane31 N
N
MLSHane22 y
80
N
\
40 N
8 NN D
00 i s LoDt i L I " 1 n 1 PR WY L
ha] AR N
32 8¢ 35 36 {0 41 42 43 dd dE 4 19 ') 5
—40 Q\
N
80 Z
- V)
Z
7
0 7
12 g
Es:alatus:: from 2003-02~11 (o 2003-03-31
-160 =

Figure 4.33: Detailed LOC Change by Date, on File "Teamb/CalendarModel java”

4.4 Heuristic Generation and Knowledge Extraction

In this case study, we analyzed the data of 20 students in five teams. We selected all the
directly collectable attributes and generated derived atributes lisied in Chapter 3.3.2 {rom
4 dilferent levels, We transformed all these paramcters as ARFE (3] format. Apriori
algorithm of Weka |36] system is adopted to discover interesting patterns about how eun
members use and modily their software asscets and to exuact the high-level knowledge hided
along the project development process from the original data.

Some results were mined from our dataset, The Tollowing are rules discovered with
minimum support 0.15 and minimum confidence 0.9:

MemberOverTeam AlllypeOper lavalile=1, MenmberOverClass M= 1 = MemberOverOwn-
Team M=1

This rule tells us that it a student’s M-type operition number (M od#£) on Java file is
at the low level over his team, and his totad M-type operation number on all extension files
also takes the low level of the whole class, his 1otal M-type operation over his own 1eam
must be low.

RatiolnClasspileNumbery = 3 =>

RatiolnClass pile NumberpastModi [y = 3,

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RatiolnClasspileNumbery astModi [y yovaliilic = 3

This rule shows that il the number of files maoditied by a student can reach the medinn
level in the whole class, he has high possibility to be the last moditier of médinm amount
files comparing with the whole class, so do Java liles.

StudentOverClassworkingDaysM = 1 => Studend QverClassyyorking Days M javaltile =
1, StudentOuverClass peginDaleA javal®ile = 5, StudcntlOverClass pegin Date ' peOper java File =
5

This rule implics us: il a student only spent few days on modilying files (include Java
files) comparing with other members in the same class, he usually begins his A-type op-
cration on Java files pretty late. Besides, he begins any CVS operations on Java file very
late.

All ol these mined associate rules are not surprising. We did not discover much more
informative or intriguing rules, duc (o the limited size of the dataset. Currently, the datascl
collected from student projects are still too small to mined promising and novel patterns.
However, even with these existing results, we stll got some supportive information: the
performance and development of an individual are hasically consistent in different aspects,
I the workload of a member on Java files is not Large, his tonl workioad on any-extension
files should not be large. 11 a member only worked on several days, his total workload
should not be large also. I such a busy and tight undergraduate swudy periad, with all the
requirements ol a largish project, it is very difficult to get o good score with final gusty
developments. That is why we think that a good work habit is important and CVSChecker

visualization is usciul.

4.5 Heuristic-Driven Analysis

Based on the visualizations, querying, statistical analysis and bottom-up analysis, we had
observations corresponding o individual performance and ream colliboration in the five
student tcams from dilTerent levels. To validate, polish, and better uncover these correla-

tions in future, we exceuted heuristic-driven analysis strictly following the steps listed in

4.5.1 Summarizing patferns
We focus on these five eams because they gave us permission o analyze their data, instead

of sclecting with some special requirements. We observe and summarize the following

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

facts on the § teams, related (o the individual operation, team collaboration, file evolution,

module design, and so on,

CVS Operation-related Summarics

Usually, cach tcam has its own work trends, Although members might have some diversitics
on the carly stages, all of them had simitar spike times and idle periods as the project
progressed;

In ateam, there is usually a member whose number of CVS operations is much larger
then his tcammates. In general, such developers can he divided into two groups: (1) Added
most files into the tcam CVS repository and did medium wnount modilication operations, or
(2) committed the largest number ol modification operations and had mediun amount (ile
adding operations. Most likely, they are team feaders. They act the core roles in their 1eam
and had strong impact on the collaboration and final product quality. Instructors should pay
altention to their performance and give instant divection it necessary; Team leaders usually
started their work carlier than their teammates, and had greater nwmber ol CVS operations
around the due days (they did some mop-ups for their projects betore the deadlines).

Some members had very few CVS operations. There are two possible reasons: in-
correct CVS usage, or deficient contribution; The visualizations of CVSChecker can help
instructors and members (o know the real reason and help them do some corresponding
adjustments;

Some other members do not have many file adding operations, but their numbers of’
modifications and total CVS operations are in medinm-level, Maorcover, they have few
collisions and merges. These members in all probability take charge ol several independent
classes or components;

Teams with better work habits can stitl have unhalanced warkload allocation and proh-
lematic project design; However, they usually have smatler possibility 1o have delicient
development;

Teams with a greal number of CVS operation records in repository and better work
habits usually finish their projects in a bewer guality. “TeamB and Tewnld were two teams
that got hetter assessments (project scores) (rom TAs and instructors and their average CVS
operation amounts were higher than the average class level. In additions, they had com-
paratively more regular and even work schedules, especially in TeambD. This observation
provided supportive information to our thinking: distinet team-collaboration patterns afiect

team performance and the product quality.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File-level Summaries

Tuis not always the case that a file modificd many times is also moditied substantially.

Most files that have been modificd by @ member have less number of collisions and
merges, larger ratio of total LOC per modification number and smaller ratio of modifications
per number of modificd LOC.

When a team member is the "owner” of o file, i.c., he s the file’s only modifier, then he
tends to concentrate on their work mostly outside CVS; updates ol the (ile in CVS are less
frequent and represent more substantial changes;

Both abnormally high frequency of moditication operations and large numbers ol mod-
ified lines may be the evidence of an unstable file (i.c., a file that is cither poorly developed
or a highly coupled file that is affected by changes in many other tiles), Analysis ol the
modification operations correlations might indicate the latter, or records in a bug database
might support the former hypothesis, Inany case, this phenaienon may trigger the instruc-
tor Lo examing the file in question Turther and advise the stidents accordingly, Therelore, it
a team has a large number of collisions, the instructor might suzgest students to inspect the
multiply modified files and see whether they can be re-designed o whether the maintenance
can be assigned (o a single person.

Most teams have some files that have not been moditied since they were added into
CVS repository;

The most possible reason ol the abnormal Large project size is the module copying:

Most file removals happened only because of the renaming ar relocating;

Hardly Java classes were added in the project design phase (project part 1);

Some testing files usually have been added just before cach deadlines, and some ol them
will be deleted soon;

Almost all the added bateh iles were not Java classes. They could be the test files,
image liles, JavaDOC files, and so on.

Most Java classes were added into CVS repository in procession alter the project part
2

Minor refactorings (c.g.: renaming) usuatly happened wound deadlines;

Muost creators of those important files linish the tirst several revisions belore other mem-

bers joined in;

()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 Evaluating the summarized patferns

We cvaluate above summarices with the collected project/team objective information, such
as project history, questionnaire fillings, cte. In our case study, cach member was required
to finish a set ol questionnaires. Their answers are the best subjective information to consull

with,
4.5.3 Developing heuristics and queries based on these validated patterns

Since we are not only interested in the past performance, but also the likely futirre pertor-
mance on new leam projects, repeating the observations on CVSChecker visualization and
data analysis manually is nota wise way when we have the data of a new team. Thus, ta
achieve the above goals, we have been warking on developing a set ol heuristics and have
developed a set ol queries that correspond to our intuitions about relevant (both desirable
and undesirable) behaviors of teams and individuals at a high level, Our current querics

include as following:
o Team leader query;

o Independent developer query;

File management query;

Problematic file query;

We applied these queries on the data of the 5 team again, detected the following results,

and got confirmation from students’ questionnaires:

o Detected team dcaders ol TeamA (LSName29), TeamC (LSName8), and Teaml)

(LSNamce38).

e Mcmbers LSNamed?2 (TeamA), ExtReplace26 (TeamB). and LSName87 (Team()

were members who lfocused on several independent components:

o Members LSName29 (TeamA), ExtReplace30 (TeamB3), and LSName8 (TeamC) were
file managers. They added most new files into their project CVS repository and com-
mitled most removing;

o 438 classes were picked out by the queries as the problematic files of all teams in the

class. All those dangerous files discussed in seetion 4.3 were gathered;

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.4 Applying the heuristics and queries

We extended and applied these heuristics and queries, eenerated new patierns, re-evaluated
the results on these new datasets, and did some adjustiments on the heuristies i1 s needed,
We used the data of those students who gave us permission and gueried the Tollowing re-
sults: 6 team leader candidates were selected automatically and 3 of themn were obviously
proven with the questionnaire results; 5 students were detected as members who mainly
focused on components and a set ol dangerous files ol them were picked out. Those role-

related results were confirmed by CVS reports and questionnaire results,

4.6 Patterns

In this section, we select and list some important patterns sunumarized based on the analysis
of CVSChecker, All these patterns are applicable to small-size wcams in educational envi-
ronments, We will compare them with the patterns summarized from other environments,
such as open source communities in next chapter.

We categorize the patterns into three types: Factual panerns, red flags, and weam-role
profiles. A Tactual pattern expresses some characterisiic of the development history of no
ohvious negative or positive implication. A red flag captures a prohlfematic sitnation whose
persistence may warrant i preventive action, They should be derecied carly and avoided. A

tcam-role profile includes those patterns that are related o some specilic team roles,

4.6.1 [Factual patterns

o Late file additions. Student teams usually do not added files (especially the core
development files, such as Java classes) into CVS repository until their whole design
phase finished.

o Aggregative files. Most test files or image files or configuration files always were
added into CVS at the same day/phase. Usually, the date is near a deadline, and

sometimes the group ol test files would be removed again alter the deadline.

o Adding Java class in succession. Most Java classes were not added i hatches, Their

additions usually scatter from end of the design phase to the tinal deadline.

e Renaming and relocation existed. In this exploratory case sindy, each tean had sev-
cral renaming or relocation cases. [these things happened frequently, it is also an

embodiment of the insufficient planning and design belore they strted works,

02

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.2 Red flags

e Undcruse of CVS. Most members used CVS very litle in the carly phases, and they
exhibited an irregular workload curve - long idle times interleaved with sudden peaks
belore deliverable deadlines. This pattern is problematic because we found that it

often is cither a symptom of under-contribution or a source of [uture collisions.

e Multi-way collisions. Collisions usually involved more than two members. This
pattern may bhe indicative of high coupling, poor modularization, or poor allocation

of the Tabor.

e Walch tor merges. Most files with collisions had carlicr successful merges. This
pattern seems to suggest that when successtul merges of divergent file revisions are
noticed, the team should consider re-design their responsibilities around the attected

files to avoid future collisions.,

e Miscellancous. Several other less pervasive problematic patterns were also identificed,
including excessively large files, frequent collisions/merees, and repeated alternating

file additions and removals.

4.6.3 Team-role profiles

o Leaders vs. component developers. The two niost common roles in these case studies
were leam leader (a core contributor who is de Facto in charge of the overall praject
and steers the development effort for a given period) and component developer (an

exclusive contributor 1o a specific file or module for a given period).

e Leaders are architects. Leaders tended (o add a lot of new files in the beginning
ol the project. Consequently, they had the niost influcnce over the architecture and
evolution ol the system and the division of labor.

o Component developers work on existing artifacts, Unlike feiders, component dewvel-
opers tended o add few files or no tiles aall.,

o Leaders contribute heavily, Leaders usnally also performed a large number ol CVS
operations, modifications in particular, that exceeded by far the number of operations
performed by (heir teammates,

o Leaders contribute steadily. Leader had a better working habit. They started con-

tributing carly in the project and had relatively even work curves.

4y ';

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Component developers have limited focus. Not surprisingly, most of the CVS op-
crations of component developers were madifications (o s small set of tiles, with

relatively few collisions with their tcammales,

All these patterns will be compared with those patterns extracted from our next case

study in the next chapter (leams in open-source communities),

Yd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Three teams in open-source
community

The open-source process model is emerging as a new lightweight paradigim and increas-
ingly popular paradigm for software development, 1thas already praduced several success-
ful products. This process is fundamentally ditterent from wore taditional analysis- and
design-driven processes, which raises a set ol interesting rescarch questions: what activi-
ties arc carried out in open-source projects and by whom? Are there typical or exceptional
patterns? In this chapter, we report a case study conducted using CVSChecker (o examine
three small open-source project teams. We discuss the insights that the CVSChecker analy-
sis produced regarding these teams and compare them with the results from previous case

study with senior student tcams depicted in Chapter 4.

5.1 Objectives

Our first case study with CVSChecker exanined the development process ol senior un-
dergraduate student teams and identified several patterns, Some of these patierns can he
thought ol as indicalive of’ good (camwork and others as symptoms of problematic perlor-
mance. However, that case study was conducted in o controlled environment, in the sense
that the student teams followed a process Largely orchestrated by ihe instructor. Software
teams vary greatly - from small student teams inan academic environment, to (eams of
various sizes in the software industry, (0 the expanding open-source conmunitics. More
recently, our interest has expanded to the open-source context.

The influential "Cathedral and Bazaar” paper | 39] discusses the open-source develop-
ment process as an almost silver-bullet solution: "the open source movement consists off

ideal cooperative people, where conflicts are few and can he resolved within a community.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case study, we try to gain some insights on how this model works in practice. To.that
end, we apply the CVSChecker tool on several typical open-source projects towards a better
understanding of the nature ol tcamwork and collaboration in such projects. As an initial
step, we are interested in the similarities and differences between this style of development
and the more controlled styles observed in controlled academic scttings,

The main goal of this case study was to analyze the teams in open-source environment

with the following questions:

I. Can CVSChecker also be applicd to Open-Source Projects (OSPs) 1o reveal developer
)]

collaboration and file evolution patterns?

2. Can onc casily and intuitively understand the developnient trajectory of an OSP only

with the help of CVSChecker?
3. Can CVSChecker detect healthy and problematic patterns in QOSPs?

4. How similar (or different) are role-specific behaviors and icam-collaboration patierns

in academic and open-source environments, and

5. Whatare the characteristic differences, among dilterent projeci-development processes
(c.g. inexpericneed student teams in academic environment following a design-driven

process and teams in sell=regulating open-source conmunitics)?

To sum up, the goat of this case study was to examine whether the CVSChecker oot s
uselul l'or OSPs and whether its functionality is sulficient to reveal interesting information in
the behavior of teams following this type of process. In addition. this case study is designed
to investigate whether those patterns identified in the initial case study are applicable, and
identily new patterns that are possibly unique to OSPs.

We believe that if the information is suitably presented and highlighted, CVSChecker
ool can help developers (especially newceomers) in OSPs to better understand the project
development process and the code evolution, Morcaver, teams in open source communities
have their specilic patterns together with some other patterns sissilar with those in educa-

tional environments.

5.2 Scttings
5.2.1 Steps

Based on above scopes and goals, this case study was executed with the following steps:

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1t project selection. There are abundant OSPs in open-sonrce communitics, how
to sclect the objects in this case study? We give a Larther explanation in 3.3.2,

Step 20 Inferring development milestones, Open source projects usually last for a long
period, such as more than 2 yewrs. Their code sizes are also very laree: hundreds of (iles
were creited, developed, and maintained, We use CVSChecker visualizations to geta quick
and rough idea about the whole process; We believe that CVSChecker visualizations can
help us to identify important project milestones, specific developers, or suspicious files with
underlying design or collaboration problems,

Step 3: Focusing on the each phase or initial development phase. To further understand
the work of these developers or files, we divide the whole process into several small phases
according to those milestones, and zoom in some specitic ones. Maost OSPs usvally have
an initial release followed by long maintenance periods with several new releases. The
implication is that we had to figure out when the initial development phase ended and when
the maintenance phase began, This information can usually be retrieved by CVSChecker
and proved Irom the supplementary project records, but it is notalways accurately recorded.
Fortunately, locating the various milestones, whether or not they coincide with explicit
releases or documented in project records, hased on CVS data is an important function of
CVSChecker.

Step 4: Zooming in specilic phases and apply the standard CVSChecker methodology.
Once we focus on a specific phase, we analyze it with CVSChecker from difTerent aspects
claborated in Chapter 3.

Step 5: Summarizing observations and extracting patterns, We recapitulate the observa-
tions we had in cach phasc, and extract patterns based on them. The patterns should include

two groups: speciflic to OSP, and common patterns as those in student (¢ams,

5.2.2 Project Selection

Open-source soltware is developed according (o the “hazaar” model ol distributed software
development, as characterized by Eric Raymond [39], where the source code is allowed
to be studicd, modified and redistributed. Tt enjoys considerable patronage as 1the chosen
development model for a number ol well-known and widcly-adopred projects including
the GNU/Linux kernel, Apache and Mozilla {52]. Beyond these long-term, Lirge-scale
projects, the open-source process model is also adopred by thousands of smaller, more
short-term projects. These projects, ereated and managed by several volunteers with limited

experience, are comparable to the student projects that have been analyzed. Therelore we

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Project | Number of Developers | Register Date | Our Checkout Date | Development Status
0OSP_A 6 2002-07-10 2004-12-24 4-Beta
OSpP_B 6 2002-02-08 2005-02-03 S-Production/Stable
OosSp.C 8 2003-12-03 2005-02-04 4-Beta

Tahle 5.1: 3 open source project wems

wanted to investigate to what extent the team behavior was similar or different,

Because we try to analyze the impact ol processes on tean collaboration and member
performance in OSPs, the project selection has a vital influence on the results,

We identified several OSPs comparable to the student projects we had studied. Putnain
etal. [58] claim that small size is the key to a successtul project. We have been 1ollowing
this adage in organizing the student teams, and Tor our OSP case study, we looked (or
several similarly small open-source projects with no more than nine members (according (o
Belbin’s 79 team roles” theory).

Duration is also a good metric for project scale. Most OSPs usually have an initial
release followed by long maintenance periods with several new releases. The student case
studies lasted for approximately two months, with design and coding as the two main ac-
tivities. Students usually can not spend oo much time on the course project because ol
the curriculum design. The project deadline could be considered as equivalent to the {irst
product release date with stable, complete end-to-and functionality, 1Cwould have been im-
practical to constraint the OSP length to be stmifar to the student projects’ length, One-yoar
and more than two year, arc two project fength vardsticks Tor our project selection,

In www.sourceforge.net, the projects development status is divided into the following
7 levels 1: Planning, status 2: Pre-Alpha, stitus 30 Alpha, status 4: Bera, status 3: Produc-
tion/Stable, status 6: Mature, and status 7: Tnactive. An OSE can span several levels at the
same time. To avoid o young or two idle projects, we selected projects from level 4 1o
level 6.

We also decided to constraint ourselves to Java-based projects to be consistent with the
student projects.

Based on above considerations, we selected three OSPs randomly which we will refer
o as OSP.A, QOSP.B, and OSP_C in the rest of the paper, [rom www.sourcelorge.net. Table

4 1ists the basic information of them:

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sourceforge.net
http://www.sourcelbrge.net

5.3 Basic Results

This scction introduces those selected visualizations and observation summaries generated
in our case study on three OSP tcams (labeled OSP_A 1o OSP.C). Diagrams are presented
at various levels: by team, hy individual, and by file. Such diagrams inwitively show trends

enable us (o gain a high-level impression ol tcam and individual performance,

53.1 OSPA

OSP-A is a command-linc Java application that gencrates HTML reports from CVS repos-
itory. There were six members involved in this project totally. Coincidentaily, it appears
that all the members were volunteering university students. There were two sub-modules
under the root node, which we refer 1o as Modulel and Module2. All the six tcam mem-
hers contributed to the development of Module! while Member! was the only developer
for Module2. Because we focus on team collaboration and Module2 only includes images
or htm! files instead of program files, we avoid it in following content.

Fig. 5.1 shows the distribution of CVS operation types tor cach member while Fig. 5.2
shows the temporal distribution of CVS operations for cach member, To enhance the chart
readability, we deleted the columns of showing the total CVS operation number ol cach
member,

From Fig. 5.1, we have following observations:

o The total number of CVS operations of Member! was Tar greater than that ol his
teammates. Similarly, the numbers ol his addition and modification operations were
larger than those of his tcammates; Simvilar to those main developers in student teams,

Mcember! also answered for most file removals;
e Member2 almost had no CVS trail atall (only lew modifications);

o Almost all the operation records of Member3, Memberd and Members were modili-

cation besides very few (ile additions, removils, and local deletions,

e Mcemberd was the major member who involved in collisions and merges, although

his number of modification operation was not larae;
e Most operations of Member6 were patching,

o Anonymous developers lelt only three operation record types: O (checkout), P (patch),

and W (removal of ocal fife copy) because they do not have right 1o modity the liles

99

Reprbduced with permission of the copyright owner. Further reproduction prohibited without permission.

1400
y B anonymonus
E & Memberl
1200 5 & Mcnmber?2
i {3 Member3
E & Memberd
1000 }' # MemberS
g ; 3 Hemberb
po i 3 Ave_0SP_A
« 800 ‘
h 1
g 3
& s
45600 o
5 :
£ 3
E 400 i
E
1.
200 H
£ H
i i F i
£ - o e N o i3
0 2 mdo - |l R 3 |] 5} AE?: o !

A(Add) C(Collision) G(Merge) MQModid) O(Theckow) F(Patch) ERelease) W(Delete)

Figure 5.1: The distribution of CVS operation types for cach member in OSP_A over whole
process
in CVS repository;
o Except anonymous developers, the real members did very lew checkouts;
o Collisions and merges seldom oceurred in OSP_A, comparing with student teams,
From Fig. 3.2, we can have several interesting observations:

There are several spikes. such as near days 40, 50, 2060, 280, 520, 600, 830, cte, ‘These

dates should be examined more closcly:
o Memberl was very active throughout, especially after day 26(;

o Member2 only did 6 modifications on 2003-03-17 (1ay 250) and 2 modifications on

2003-08-11 (Day 397);
o The operations of Member scattered on those dates with spikes;
o Memberd4 was active before day 260, but almost did not do any work later;
e Mostoperations of Member3 congregated belore day 350;
o Member6 almost did not have any traces belore day 260,

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120 -
B e anonymou::
5 T Menber)
100 i i e e e e+ e < Memberd
-8~ Menber3
i Memberd
g T e et - Mewbers
§ T ~4&- MenberG
& H
o i —a— Ave _O5P_A
5 60 ; :
I
Z ; .
40 —-ﬁl : 3 :
2@ it | ® B M i R
5 |45 A IS S £
5 oo, i) B ,. L T ¢ o
0@ SigdstinmSne 2 "4\(‘.‘55&1;%@ dar o O p -%’w WYY in) . C\"?‘E-'A A%

1 51 101 161 01 281 301 351 damb d4¥1 sl BE1 A0 Rt el YR Eol 8RS
Dates: from 2002-07-10 to #00d-12-24

Figure 5.2: The temporal distribution of CVS operations Tor each member in OSP_A over
whole process

o Anonymous developers had a long idle phase atter day 3530, and resumed near the

end of the process;

It scems that Member! and Meniberd could be the two core developers and Day 260,
Day330, and Day8235 could be the most important milestones.

According 1o the project history, Day260 (2003-03-26) was the release date of version
v0.1.3 and Day826 (2004-10-13) was the release dute of v0.2.2,

Fig. 5.3 displays us the file additions and removals within the whole process. We labeled

these two milestones with lines.

o All the file additions and removals assembled on four phases: from day | to day 100,
from day 200 1o day 400, from day 300 to day 600, and aler day 800, All of those
special dates we detected from Fig.3.3 seatiered inthe Tour phasces, instead ol those
idle periods, Different from those charts of the student tcams in Chapler 4, OSP_A has
started their development since very beginning, Many Java classes were added into
CVS at the carly stage, This phenomenon did not happen in student teans hecause
many OSP developers began their projects usually o hitde birshead of the setting up
of the project CVS repository in www,sourcelorge.net. and moved the rudiments into

CVS later;
o Similar to student developers, the OSP devetopers had some bateh processing near

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.soureelbrge.net

L e e e oy i ——
600, - - St
®Addrd
iy .
@ Remaved,
w s - i et
e @ e - ¢ enmenreanns "

i b
B e e R L TP e . o WDy wen S

ESE) D A A NN Vb Maaw o R W en
TITIAETTTEN ¥ B v

‘Dates: Ifron. 2O02TAT100 o HOO-IZITE

g

UL TN VIO 1
Tiir iadex

Figure 5.3: File additions and removals in OSP_A over whole process

the deadlines;

e Most Java classes were located between Files 20 and 210, almost all of them were

added into CVS in the first two phases;

o The files between file210 and 275 were added later than day200. File index enables

us know that all of them are test files existed in "tests-sre/met/siTOSP-A/”,

o Only one file was added between day 100 10 200, Tuwas a conliguration file named as

"sre/net/st/OSP_A/logging-silent.properties”.

o8

o Relocation also can be detected. A typical example is that the main page file “in-
dex.him!” and four log-related image files (1F1¢278 10 282) were added o module
“htdoes/” at the very beginning, then moved (o the root directory on Day330; An-
other example is that several configuration files (file ! 1012y were deleted or removed

from the root dircctory to “ete/”on Day823.

Since we want to focus on the initial development phase, we first separate the history
into two main phases by this release date of v0.1.3: Phase | (from 2002-07-11 to 2003-
03-26) and Phasc 2 (from 2003-03-26 (0 2004-12-24), Zooming in Phase [, we made the

following obscrvations according to Fig, 5.4 and Fig, 5.5:

o Memberl still had the most CVS operations in this phase. Maore specifically, there

were Lo busy periods for hine. The first was from day 25 1o day 30. Remarkably

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~4— Anonysoug
e Reaberl

; -Renher?

s L lexbernd
100 eRrbLY:

0 ¥eaburd

lclb a0 .
N —~& Bénberh &
o e B OSP_K
o
(=3
bt
B
2
[0
B89
R]
-
m
o
B4l 3
S
Lot ? X TR Y »® ce_ t ke ¥ A Ea et
AU SRS () SRS 5 BN VS SRS Vi3 GRS S 113 WY N ¢
Bates ir Phas ¥ 0

1: fren

L2

Figure 5.4: The temporal distribution o' CVS aperations Tor cach member. in OSP.A in
Phase |

ABO

A anonymons
£ Membrrl

500
% Member?
450 R Hember3
I Menberd
100) KemberS
. ap
23s0 1 Ave_QSP_A
"
a
5300
&
1250
EZOO
!
=
150
100 e - ; ’ 1S —
50 R I
,?-:
o k3 SRZHE LN
A1 _Type: AAdd) CCollislon) 3iMerec Ritedgryr Aiih

Figure 5.5: The distribution ol CVS operation types Tor cach member in OSP_A in Phase |

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

around date 48, there was a significant peak. The second peak covers the days just

betore the refease of v0.1.3 (Day260).

o Memberd had an almost cqually large number of operations. There were also (wo
active periods Tor Memberd: one was around day 30 and the other was around the

days approaching the release ol v0.1.3.

o There was a long, relatively idle period rom around day 75 o day 200. Only Mcin-
herd, Members and anonymous developers had w few sporadic actions during this

period.

o During Phasc 1, no P (Patch) operations were perlormed, which is not surprising
since this is the initial release of the system and outside contributors did not have the

opportunity Lo participate the project yel,

e Most merge and collision operations were caused by Members, and almost all of
them happenced in Phase 1. This may indicate that the responsibilities of this devel-
oper are not clear since he appears to be interlering with the development of other

members.

The blown-up CVSChecker charts tor Phase | indicates that spikes just before day 30
could coincide with another project milestone. We consult the project records and tigure out
that day 46 (August 25 2002) was the delivery date o vO, 1.2.b, 1o order o see the details
before this release, we zoomed inon a smaller period. The result is shown in Fig. 5.6,

From the distribution ol operations in this sub-period (not shown), we realize that the
contributions ol each member was not remarkably dilferent than they were in the enclosing
period, Phase 1. However, Fig, 5.6 quickly revealed that the days henween day 25 and 30
constituted another peak period in development activity, Morcover, two core developers
(Memberl and Memberd) had an overlap around this period, could it be that the former was
handing over the project leadership 1o the later?

Records showed that on day 32 (August 112002), a new version, vO.1. L, was released.
Because this date coincided with the only peak belore this release date, we identify the pe-
riod from 2002-07-11 10 2002-08-11 as the initial development phase for the comparison
wilh the student projects in previous section. Alterwards, it is most likely that the mainte-
nance and updates started. Therelore, we think that the team collahoration and individual
performance patterns ol this new period can be compared 1o the student case studics, which

did not involve maintenance and updates. I9g, 5.7, Fig. 3.8, Fig. 5.9, and Fig, 5.10 drill

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“190: |

gl AVG—OSPJ\

S o

17: 19 g1 43 5% 57 90 5f

4 53 t."“. ;
rom 2002-07-11 167200208~

Figure 5.6: The temporal distribution of CVS operations for cach member in OSP_A before
the release of v0.1.2b ‘

down again to illustrate what really happened in the initial development phase, Fig. 5.7
shows the operation type distribution for cach member, Fig, 5.8 displays the file additions
and removals in this phase while Fig. 5.9 and Fig. 5.10 show detailed Java file views in this
period.

Comparing the initial development phase with the visualizations of later phases, Fig. 5.5
and Fig. 5.7 confirmed our hypothesis ol a handover of leadership. [tappears that Member4
was the core developer in the initial development phase, but did not manage the project afier
v.0.1.2.a was released (Day 32). After (his release, Member! ook over the lead role. This
result revealed by the CVSChecker was confirmed by project records.,

All these visualizations displayed the following information: 91 files were added in this
small phase. 77 of them were Java classes, They were added mainly in three time slices:
Day?2, Dayl17, and between Day27 (o Day31, 11 Java classes were modified by at least
three members. The numbers of collisions and merges on these files were higher than that
of other files. Except Member! and Memberd, nobody else independently took charge of

individual files,

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

B anonymous
200 % Bewber!l
180 Member3
) Memberd
160 Menber$
g 21 Ave_0OSP_A
140
o
B
al20
o
Gy
©100
"
4
g 80
=
60 %
\
e 3
R N"-‘l ﬂ&m &;j_ . BageL w':vrmﬂ-__ﬁ:'.?rmﬁaJ

A{Addy C{Collision) O erae) DD Ladifv) OCheckonty R(Release) WiDelete)

Figure 5.7: The distribution of CVS operation types lor each member in OSP_A from 2002-
7-10 to 2002-08-1 1

‘eAdded

Ton 902071
43

=
o

#Removed

‘Datessif

LEOE Do 1§ S e a B5 g0 A ¥ ms W éb R0 78 Bo eE ob o
Fila. Index:

Figure 5.8: The file additions and removals in OSP_A from 2002-7-10 10 2002-08-11

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

M Remove (R)
60 | BiModification (i)
#Collizion (C) +Merge (G)
50
2
£40
=
g
330 o
=) ¥
o
s0320 E
=] " 0
5]
=10 x
LK bl J L 1
0 gﬁg uu:gﬁgn I Eumﬁ’lguﬁag n o B# Egugﬂﬁﬂu

; R Y Wi
1 6 11% 16 21 2 H i!l 36 ‘§1 46 61 fgi (3% 66 71 76

-10 5

§ File index-

-20

Figure 5.9: Distribution of operations by type in OSP_A, on cach file from 2002-7-10 o
2002-08-11

2000
B MemberS

1500 # Membia1r4

¥ Member3
1000

& Memberl
500

E i X

K E'F 3 ﬂ = ¥ 5 & "
80 x...{EL.J wdgs .3.1.!‘2. g gt Bl f doluia .EA.A..A...,L MR WP Iﬁ. I] .ﬁ.?.ll.:. ety
= L M R (A A o 1 LI I

L 6 ¥l 16 21 29 Sl 3 41 46 51 §6 61 6 71 76

-1000

Fila indes

-1500

Figure 5.10: Added and Deleted LOC of cach member in OSP_A, on cach file from 2002-
7-10 10 2002-08-11

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3500 ¥ Anorymons Whenher! A¥enber2
S Renber? Elenberd B KenberS
3000
Hlenkert NAve_QUI°L
2500 I R
g
L
2 !
& 2000 ‘
&
L
°
Y 1500
k)
E]
=
1000
§00
%
w 8
¥ % E
" B 2R q]
0 m oy 2 }ﬁ‘ ® o é‘ A% INI 2 igi_m?%]

A (Add) ClCollision) G {Herge) M(Modify) O(Checkzut) F(Patch) F.{Femove) V(Delete)

Figure 5.11: The distribution ol CVS operation types for cach member in OSP_B over
whole process

532 OSP.B

OSP_B is a unit testing framework written in Java. There are also six developers. Fig, 5.11
shows the distribution of CVS operation types lor cach member in OSP_B while Fig, 5.12

shows the temporal distribution o CV'S operations for cach member over the whole process

(from 2002-02-08 10 2005-02-03).

o Within the whole process, the number of CVS operations conunitted by Member3
was far exceed the number ol other members, not only the all-type total number, but

also file additions and modifications;
e Mcember | and Member 5 almost had no contributions recorded by CVS;

o Except anonymous developers, the real members did very few checkouts; Also, they

removed very few files from CVS;

1t is obvious to divide the whole process into several small phascs basced on those typical
spikes in our visualization. Project history proved that new releases happened on almost all

the spike day. We divided the whole process into 7 phases according some of them:

*
o Inalmost all the phases, Member3 dominated the development. However, the dispar-

ity has been getting smaller since Phases5;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SR

Runber. of Sperations -
R

-y
=S

Figure 5.12: The (cmporal distribution ol CVS operations for cach member in OSP_B over

enbers
Menbers’
v, O5RB

enlierd

erherd’

whole process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start Date

End Date

New Release

Day number

Phasel | 2002-02-08 | 2003-03-09 vi2 375
Phase2 | 2003-03-10 | 2003-08-09 vi.2.3 327
Phase3 | 2003-08-10 1 2003-11-006 v.1.3 Perl 617
Phased | 2003-11-07 | 2004-09-20 v 1.3 Pre2 942
Phase5 | 2004-09-27 | 2004-11-12 v 13 989
Phase6 | 2004-11-13 | 2005-01-09 vi4 1050
Phase7 | 2005-01-10 | 2005-02-03 | Our checkout 1073

Table 5.2: 7 phases of OSP_B

109

e ‘e -® Added.

FRemoved

Figure 5.13: File additions and removals in OSP_B over whole process

o Anonymous developers always had the homochronous spikes as those ol core devel-

opers in team, especially on those important release dates ol new revisions;

o Member2 and Member6 had suddenly high CVS operations benween the birthday of

v1.4 and the day when we checked out;

e Member2 also had a short high-operation period at the late part of Phase3. He deli-

nitely did some special works; we should track deeper to figure it out later.
e The operations ol Member4 mainly occurred alter Phases.

In Fig. 5.13, 1 indicated six minor milestones of project development process using

lines.

¢ No file additions or removals happened until Day 186 (2002-09-02). Using the query
function of CVSChecker, we knew that in this idle period, only some members and

anonymous developers checked out;

o There were still some sparse phases, e.g.: between Day | o Day 186 and Day700 to

Day800. All these phases ure not near the release days;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110
| «3-C(Collision)

AporE ‘

..b‘ ~t= G (Rerpi)

e ;

- co i (Rodify)

" DR
~=1"(Puteh)

File dndey

Figure 5.14: Distribution ol operations by type in QSP_13 over all files

o Testing files or image files always were added or removed bateh by bateh, and the

removals usually happened alter the new release days.

From Fig. 5.14 we noticed that;

o Almostall the Java élnsscs shown above the X-axis experienced patchies while most
removed classes did not, After checking the file index, we found out that the three
major removed groups below the X-axis were temporary testing files, Combining
with Fig. 5.13, we can notice that these removals happened in Phase2 (between the

release dates of vi2 and v1.2.3).

e All (he other sporadic removed classes were outcomes ol renaming or relocation,
FEven the open source community is claimed ay an ideal cooperative paradigm, we

still find that there are some classes experienved collisions and merges,

o Mcember3 was not only exceed his tlcammates on the number ol CVS operations, he
also substantially changed a great deal ol the LOCs on Java classes, and took charge

many small classes independently,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Bewhorl

1000 R oo Kesher?

| oo Bewherd

800 3 i —— fuaherd

§ s Rembier

600 [Reeberb
400

200
g o

~200

=400

-600

~800 P
File index

-1000

Figure 5.15: Added and Deleted LOC ol cach member in OSP_I3, on cach file over the
whole process

e Those classes with collisions and merges shown in Fig, 5,14 usually were modificd

hy more than two members,

e Aninteresting phenomenon was shown in Fig. 5.15: Member? deleted the same num-
ber of LOCs from a large group of classes. This should not be a coincidence, and

there definitely were relationship among those removed code picces.

Now we zoomed in a smaller phase to have a more detatled examination. To save
the space, we only present those promising visualizations. Fig, 5.16 displays the CVS
operation distribution on cach type ol cach member in Phasel: in addition to the anonymous
developers, only Member3 did real contributions in Phascel. No collision, file removal,
patch at all,

In Phase2, Member3 still was the only developers besides the very few modifications
executed by Member2, Several groups of test elasses were removed by Member3. Till now,
there were still very few collisions and merges.

In Phase3, although Memberd continued his domination. Member2 began his substan-
tal contributions, cspecially in the Last 35 days (see FFigo 5.07); Member6 also had Tew

modifications. However, as more developers joined in, collisions and merges emerged also

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

900
3 Anonymous
800 B Menberd
700 B Nenbert
Fl4ve_OSP_E
“ 600
o
ol
%
» 500
&
Y
(=
., 400
a
2
=300
200
(o0
A(Add) C{Collision) G (Merge) NNodify) O {Checkout) RiEemove)

Operation Types

Figure 5.16: The distribution of CVS operation types for cach member in OSP.B in Phascl
(from 2002-02-08 1o 2003-03-09)

as shown in Fig. 5,18,

Fig. 5.19 shows the LOC modifications in Phase3. Although the number ol CVS oper-
ations of Member2 in this phase was less than that of Meimnber3, Member2 did some very
special modifications on some classes: he deleted same LOC sizes rom dozens of classes.
We checked the code and figured out that he did a very important refactoring: on day613,
Member2 "removed a ot ol redundant code from a lot ol classes [and "factored out 1o a

common basc class”.

Fig. 5.20 shows the works in Phased while Fig. 5.21 shows the works in the remainder

phasecs (Phases 5, 6 and 7).
‘o Members began the patch operations, especially those anonymous developers;,
o Member3 still remained on the feading level;
e Mcember6 contributed a lot in this phasc;

¢ Member2 had some operations alter the refactoring works in Phase3,

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a0
N -4 Mephber?
80 ~ 8 Members
70 g Memberd
T e five _QSP_B
60
@ 3
450 t
& |]
“ ‘
90 :
-g +
=30
20 |
i
3
'1 "
10 ¥ A t ¥ —
f/ { # LU / / 1
; B A B @ i &
] P | By LA g h o
0 E ot o e ot B e I B 0 e e T'rv-rr‘v-r#"ﬁ—n—r‘r'ﬁ‘r*.'r—r N2 o i e A e TTT T T T T

1 6 11 16 21 26 31 36 41 46 Bl 86 0] o 71 7% 8l 25
Dated: from 2003-0&-10 to Z003-11-10

Figure 5.17: The temporal distribution of CVS operations for cach member in OSP_B in
Phase3 (Irom 2003-08-10 (0 2003-11-06)

e Memberd exceeded Member3 on the total number of CVS operations in s period.
Although almost all his operations were modifications, he also incurred collisions

and merges;
e Member3, Member6 and Member! continued their contributions;
e Member2 only did patches as those anonymous developers;
Combing all above visualizations and observations, we can summarize that:

o OSPB also had idle gaps and spikes. Although they might not have some strict
deadlines as those students in university, developers in OSPs still had (he similar
work manners that contribute remarkably near the refease dates;

o Member3 should act as the leader/manager role in the team, and he developed and

maintained this project for a long time belore other members joined in;

o Members did not have o keep the workload halwced as we advocied in student
(cams. ‘The operations ol anonymous developers always happened around the re-

leases, and almost all the operations were checkouts and patcehes;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Neaber2
 lember3
300
& Henker6
¥ Ave_DEP_B
250
8
o
‘5200
g
&
[
©180
i
100
/":
50 'g/
[
0 L g B e 77/ e .
c [!
! Operation Ty;:-es” K R

Figure 5.18: The distribution of CVS operation types for each member in OSP_B in Phase3
(from-2003-08-10 t0'2003-11-06)

700 ;
~0-- Memberl ’
600 | e Member3
=K Members
500 —
400
300 = 4 —_
200 ! ;
ﬁ ! ! 1

100 l . H l “ i) jl
8 :ll;.-l ~£;ﬁ ‘J vﬁ&’:&g'mﬂzx 152 ;!qxggmmmqp) Lf{: 11}'} f}* i 4'41 U;
S 0 PRSI —'é R A, ~~] f‘ 'w.v‘f 4 xﬁ f AT ~.yj

-100

i

1 icahmmnuhtd @il &

~200 J |
{l [

=300

File index

=400

Figure 5.19: Added and Deleted LOC of each member in OSP_E, on cach file in Phase3
(from 2003-08-10 10 2003- 1 1-06)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200
3 Arenymous
700 M Nember?
M Kenber3
600 % Member6
4 B Ave _OSP_B
.3500
W
g
400
U
© 5 N
] I ;5
-g:-:on g ¥
2 r [
3 Lt
200 : :
il ZE ;
1 2l
100 —g R
a | &
%E R
o LS B - . R i - -2
All A C G [u] F R W

I
Operaticon Types

Figure 5.20: The distribution of CVS operation types for cach member in QSP_B in Phased
(from 2003-11-07 to 2004-09-26)

600
B Anonymous

M Menberl
4 Menber2
£ Menber3
3 Membeard
&t Menber6
B Ave_QSP_R

lembar of Operations
Y
<
o

sl
[=4
o

s quu. ﬂ P vl ﬂ\m. I .

A c

N 0 P E L
Operation Types

Figure 5.21: The disuibution of CVS operation types lor cach member.in OSP.B alier
Phased (from 2004-09-27 to 2005-02-04)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Developers seldom checkout after their local working directories were set up, How-
cver, almost all the members in student weams commitied “evs checkout” command
constantly. It still had design and collaboration problems: cach time when new mem-
bers began their contribution, new collisions and merges always arose by the maore

or less.,

The project development process can be predigested as such a short story: the rudiment
ol OSP_B was designed and finished before being moved o wwivsonrceforge.net. NMem-
ber3 was the initial developer and contributed on it incessantly with one-up works, As the
project growing up, test files were introduced temporarily and removed shortly after. As
new members joined (he development, structure design problems emerged and were de-
teeted. Some members tried refactoring works. Since the new revisions were releasing, the
number of patches increased.

We got validations from the official website For our analysis results (such as "OSP_B
was originally written by Member3 and released under an apache style license. Since then,
it has received many contributions from other developers), modification logs (such as

labeled as refactoring), and so on.

533 OSP.C

OSP_C is a static analysis tool that examines class or JAR files tooking for bugs. Fig. 5,22
and Fig, 5.23 give us a quick idea about the CVS historical operations along the whole
process. Although this project registered in www.sourcelorge.net on 2003-12-03, the CVS
repository did not have any historical records until 2004-02-13, Therelore, our visualiza-
tions start from 2004-02-13. Compared with OSP_A and OSP_B, OSP_C is still preuwy
young,

There were several important days, such as around days 180, 200,253, and so on. Project
history told us that Day180 was the release date of revision(.8.4. We divided the whole
process into two phases: Phascel started from 2004-02-13 10 2004-08-10 (from dayl to
day180), and Phasc2 started from 2004-08-11 1o 2005-02-04 (Irom day 181 to day 358).
Member2 started early and did most operations while some other developers, such as Mem-
bers 6 and 7, began their contributions lTater.

Combining Fig. 5.22 and Fig, 5.23, we noticed that:

o Almostall thosc operations done by Memberso and Member? in the later phase were

patches;

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xoiiivcjbrge.iiei
http://www.sourceforge.net

700
~4— Anonymous
¢ ~#%— Nenberl
600 : oedeee Hember?
~x~ Nemberd
== Nemberd
500 ; e Nenbert
—i= Nenber?
g ------ Nembers
" e fve_OSP_U
© 400 _QEP_
@
&
L4 » -
) e -
é; 300 i
= i
200 |
.»L :
100 :
3 i &
3 Sy & 4 ey
. hop SAREEG LD IS R
0 AR SRR p DR R TR e ST SBRCH

1 21 41 €1 81 101 121 141 161 181 201 221 241 261 281

Dates: from 2004-02-13 to 2005-02~04

Figure 5.22: The temporal distribution of CVS operations for cach member in OSP_C over
whole process

3000
N Anonymeus

i Merhen1

3 Member2

2500
. B Werbiens
& Merrlerd
2000
vl
5
a
]
&1500
4
o
b
£
:21000
500 R
0 By, L | LG S m tENAEN, A . ﬂ'mﬁtﬂ

AlAdded) C(Cullision) G(Merge) Bodily) OWheckout) P(Patch) R{R=move) W(Delete)
Operation Tyves

Figure 5.23: The distribution of CVS operation types for cach member in QSP.C over
whole process

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

400
375

Checkeat

350

Dates: from 2004-02-13 to 2005-02-04
S
L=]

@ Added
4 1
" | ®Removed ¥
® [
. * T * . . ¢ [
'° 2 Y po000 ot “ .,
lo o * o
- P hd ® hd L
< Y) *
W * * sdabros oy 4 o b ° ¥ LXY'S
° .« ®
. .
L3 &, A
O) 3
* . [
® * .
i 2K e,
e ° . v
+ By v L3 ¥
o0t ™ % @. < suded A
8 v AV) v L W'
. P EYEW ° . e o w ° o o
. P
- 000 Wy 2
N -
s ~ a_ Ko ¥ *
v
" R *
o N » ® o N v ¢ Lxd
ot gse . Y . vhww
) & o + LY
'Y
g
L4 e 0Ly
- ®
2 e °
w3 Lo PRI 1 1 1 A i L
0 50 100 200 280 20 260 400 450

File insdex

Figure 5.24: File additions and removals in OSP_C over whole process

Anonymous developers did not have many operations. The possible reason is that

this project is stitl not mature enough (All the released revision numbers were started

with ?0.);

Although Mcemberl had very few operations, alb of them were modilications;

Almost all the operations of Memberd4, 6, and 7 were patching;

Member5 did not leave any records in CVS repository. Later, we figured out that

Memberd was another username of Member8. "The only difference between these two

uscernames is that Member® included the first fetter of his given name. The developers

did not leave any records in CVS with the username "Members”,

All the members seldom removed files from CVS repository.,

OSP_C hardly had collisions and merges.

Fig. 5.24 displays the file additions and removals in the whole process. 1 labeled the

release date of revision .8.4 and our checkout date using lines.

e Most significant file relocations or renames can be detected casily from this chart;

119

800

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2150 F.__J; 8 Ancnymous D lenberl

BNenber2 N Benbers

1990 |

:ﬁ) Vilirabery S tenhrrh
175Q -1 - - -

’ 23 Reabery B Ave 081 0
15%0 b ¢ !
\ A
Biomo |k . P N R
- I
guao L_‘,

£
L~}
]

|
}

i

Humber of Op
g
|

(5]
©
E=3

2%

w
4
L=
;1L<, e

OGO

g 5
190 —HRE: s : é—::;
B b @ A y 43
“10 5 n fing " B H‘} AL o

Total A(Add) C(Collision) C(lMergs) M(edify) O@heckout) P{Patch) R (Renove)
Dperation Typss

Figure 5.25: The distribution of CVS operation types for cach member in OSP_C in Phase
1 (from 2004-02-13 to 2004-08-10)

— Examplel: 40 files (from Filed 87 (o 127) were removed [rom module
“srefeclipsePlugin/de.tobjecLOSP_C/.classpath/” 1o "sre/de/tohject/OSP.C/” (rom
Filel (0 40) on Day303.

= Bxample 2: 11 Java classes (File232 1o 242) were added on Day 147, All the
original names were started with X", and they were removed 3 days later, New
files were inserted into file index from File206 to 226, Swmc thing happenced on
File353 to 358 at the same day.

-~ Example 3: 6 configuration files (File305 10 310) were added on Day 177, and
then removed from "sre/java/edu/UNIVNAME/es/OSP_Clgui/” 10
“sre/javaledu/UNTIVNAME/cs/OSP_C/gui/bundle/” on the next day - Day 178,

o The file additions and removals of OSP_C were more evenly distributed along the

process than that in OSP_A and OSP_B.

Fig. 5.25 and Fig. 5.26 display the works in Phase! (Irom 2004-02-13 to 2004-08-10)

and Fig. 5.27 and Fig. 5.28 show the works in Phase2 respectively:
o ‘All the operations of Memberl, 6, 7 and anonymous developers only happened. in

Phase2. Actually, almost all the operations of Membert were executed on a single

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150
-3 Nemebrl

~¥-Nember2
130 | —te-Kenbers

120 e Hemberd

b

140

~—— lembersd
e Ave_OSP_C v

110

00
g
o 90

8 8o
3;70

) A

= 50
40

(|
30 J {]
20 I

.l f £ TN % S JL.-’\ v

6K ona 1) L A% Yy ¥ S, a0 T
0" &‘(:m‘}"}’?—‘ﬁf?‘“ 3 X“"’“U t:;' 7,;0]})';\)‘51 ~4‘x~;,.7~,74,5'>'_n_~,‘?j;_,_,_’1' o
1

41 85 61 71 8 91 101 111 121 131 141 151 161 171
Dates in Phase 1: from 2004~02-13 to 2004-08-10

Figure 5.26: The temporal distribution of CVS operations for ¢ach member in OSP_C in
Phascl (from 2004-02-13 1o 2004-08-10))

day - 2004-08-11 (the day after the release date of revision0,8.4), and all these oper-
ations are file modifications. We will figure out what happencd on that day with the
file level visualizations of CVSChecker later;

¢ Memberl, 3, 4, 8 also had lots o CVS operations on or just after 2004-08-11. With
the help of the query function ol CVSChecker, we knew that Memberl modilied
three class revisions, added three new classes, and had 639 patches on 2004-08-11.
On the same day, memberd made 328 patches and Member8 made 321 patches, and

Member3 made 317 patches on 2004-08-12;
o Member3d dominated the development in both phasces;

» Member8, 3 and 6 also had many CVS operations in Phase2, However, only Mem-

ber3 had substantial modifications on Java classes while the other two did many

~ patches.
Fig. 5.29 and Fig, 5.30 arc simplified visualizations to show the CVS operation distri-
hutions and the number of modified LOC committed by cach member on Java classes on

Phase?2:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

700
—— Anotiymous
N ~§- Nenberl
500 wie Nenber2
—+4= Nenberd
—A—Nenberd
500 - Nenbert
i lenber?
] —#—~ Nenbere
3 —— fve_OSP_C
) - -
;400
5
<300 ft
) i
O
2 |
200
100 :

W F o, L
L.‘w)‘nwb},\:'-i;mng\)éii:% i Qo ,. T g M Pt g i s
11 21 31 41 5 61 71 81 91 101 111 121 131 141 161 161

Dates in Phase 2: from 2004-08-11 to 20085-02-04

=
[

—-

Figure 5.27: The temporal distribution of CVS operations for cach member in OSP_C in
Phase 2 (from 2004-08-11 10 2005-02-04)

2500
[% Anonymous & lleaber!
; [Jhenber2 S lenberd
2000 ——T Ellenberd 5 Kenbers
o lenber? 2 lMenbers
a 1 £ Ave O8P_U
S1500
e
«
[
&
&
et
©
leO
£0
8
=
00 k
»

4(2dd) C{Collisicn) GiMexge) H{Kedify) O(Checkout) P(Patch) RiRemove) W{belete)
Operation Types

Figure 5.28: The distribution of CVS operation types for cach member in QSP_C in Phase
2 (from 2004-08-11 to 2005-02-04)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% C(Colligion)

40 - ——G (Rerge)
25 oo B (Hodify)

~ir~R(Release)
30

N
ol

3+
(=2

-
o

[&)]

s}lﬁ.f‘:‘e@‘ﬁ»\\’kv l‘!} ‘w‘ M'Loou:‘} m([mo,r ‘E wwd. O

The number of CVS operations
it
431

0 >'f’{ L I 1.‘\ &
T gl 41 61 81 101 121 141 lbl 181 201 221 241 261 281 84 1@21 341361 881 401 421 441 461451
-5 .
=10
File index
-15

Figure 5.29: Distribution of operations by type in OSP_C, on each file (from 2004-08-11 to
2005-02-04)

-~ Renberl .
4000 | ——Neaber2
—s— Renberd
-i--- Keaberd A

3000 w4 Bemhert
woer Henher?
2000 =z~ Iember8
o
1000 r

o
§ 0 mem}fvw wm«’:‘&vy;ﬁsj, ,_%Mvcd’mvm»»&lg e vaii:{"t}%ﬂ&:lﬁ ﬁrz.‘?,’iimwﬁ ;‘,“.,vﬁszr:ztn-éz‘z"—
21 41 ﬂl 81 101 121 141 161 181 201 221 741 261 281 501 321 341 W6l 381 4 i 421 441 461 481
-1000 L
~2000
~3000
File ind=x
-4000

Figure 5.30: Added and Deleted LOC of cach member in QSP.C, on cach file (from 2004-
08-11 10 2005-02-04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FrDIEE
o
KA

<100 : I

et L

=2008.

Tiatess from 20040515 10 ZO0EEI-D

Figure 5.31: Dectailed LOC Change by Date, on ./ /cs/OSP.C/OSP_CFrame.java”
(Filed01)

o Although there were almost 500 classes, some of them had only 1 or 2 collisions and

mcerges,

o File61 and 401 are two typical files modificd by more than one developer. Although
Member! only modified files on 2004-08-11 and his number of modifications was
much smaller than that of Member2, he maodificd almost same LOCs as Member3
did. We use the query function of CVSChecker and found out that Member! modi-
ficd 316 classes at that time and the reason was "Massive whitespace checkin; refor-
mat code with IDEA, substitute all spaces with tabs, conform to 4-space Sun coding

conventions.”, Tt can be understood as relactoring alter new refease;

Fig. 5.30 helps us to know that Filed01 experienced heavily modification by Memberl,
Because Member! only worked on this day, File4O1 must be a part of that large MR hap-
pened on 2004-08- 11 mentioned above. What is this file? What kinds ol operations it expe-
rienced? Fig. 5.31 displays the detailed history of this Java class: "sre/java/edu/UNIVNAME/es/OSP_C/OSP_CFrame. j:
(Filed01).

¢ This file was created by Member2 and he also finished the first dozens ol revisions;
e Member3 took over the development around Day 160 (2004-07-23);

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o In the Tollowing period, there were four obvious husy dates. Thousands of LOCs
were changed in these days and in some ol them, more than one member modified
it 1 we want to know who fnvolved the collisions and merges in this file, these

visualizations can help us 1o tigure itout;

o On 2004-08-11, Member! made a huge modification on it because he "Massive
whitespace cheeking reformat code with [DEA, substitute all spaces with tabs, con-

form to 4-space Sun coding conventions.”;

o Member3, Member7, and Member2 continued the developments with trivial modifi-

cations;

o With CVSChecker queries and reports, we figured out that around Day250 (2004-10-
13), Member3 added a new menu function to the project. Around Day310 (2004-12-
17), Member2 " Reformatted using tabs for indentation.”” Memberd did similar works
on 2004-12-17 and 2005-01-01. All these dates are just alter the new releases. Their

operations can he understood as relactorings,

Combining all above visualizations and analyses, we can summarize that OSP_C s still
on its immature stage without the formal release of revision v, The hasic functionalitics
have already been developed mainly by Member2, Memberd and Memberl, while alimost

all the members keep patching. Refactoring-like works happened after new releases.

5.4 Patterns

In this scction, we sclect and list some important patterns ol OSPs summarized based on
the analysis ol CVSChecker (We did not analyze the data using KD technique in this
casc study because the data accumulation is still not big cnough). We also compare them
with the patterns summarized from educational environments 1o get common or specific
patterns, The patterns are still categorized into three types: lactual patterns and red flags

and team-role profiles.

5.4.1 Factual Patterns

o Farly file additions. Dilferent from those student teams in our {irst exploratory casc
study, members in OSP teams usually added liles (especially the core development
files, such as Java classes) into CVS repository sinee the early stages. This pattern is

a rellection of the typical history of an OSP project: some interested members work

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on an issuc until they achieve some presentable results before they move the works

1o a publicly available place,

o Aggregative files. Similar 1o student teams, most test files or image files or con-
figuration files in OSP tcams always were added into CVS in the same day/period.
Usually, the day is near a deadline, Some batches ol test files were also removed alter

deadlines.

o Adding Java classes in succession. Similar 1o student teams, most Java classes in
0OSPs were not added in batches. The additions usually scattered the whole process

recorded in CVS until the most recent.

o Renaming and relocation exist. In OSPs, tcams also had renaming or relocation cases,

but they were less frequent than that in student teams,

o Idle and busy phases exist. Although OSP tcams do not have strict deadlines as stu-
dents had in courses, CVSChecker visualizations still revealed idle and busy phascs
in cach OSP development process. Almost all the spikes happened in relcase dates,

and all the members had jagged trends as long as their workloads were not too smalt,

o Fewer file removals. There are three main reasons for file reimovals: removing from
CVS, renaming or relocation, All these instances in OSPs were much fewer compar-

ing with student teams.

o [ewer checkonts. Except anonymous developers, the members in OSP (cams seldom
cheeked out once their focal working directories were set up. Student developers
were dilferent: cach of them in our exploratory case study had checkouts more or

less.

o An important difference between the academic case studies and the OSP case study
is that contribution was mandatory in the former while it was voluntary in the latter,
The absence of certain patterns in the OSE case study could perhaps be explained by

this dilTerence.
54.2 Red Flags

o Multi-way collisions. Similar to student case studics, several members in OSPs were
involved in collisions and some files were modified by multiple members, Comparing

with student teams, the numbers of collision and merge in OSP tecams were much

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smaller. But they are still patterns that may be indicative of high coupling, poor

modularization, or poor division ol labor,

o Warch for merges. We did not observe this pattern in the open-source case study.
The possible reason should be that the project had a small code base already belore it
was moved to www.sourcelorge.net. However, the initial development phase was still
responsible for the files that were overall subjected to the highest number of collisions
and merges. These files were not removed later, and continued to cause collisions in

the later phasces.

e Underuse of CVS. CVSChecker can help up to deteet members with very few CVS
operations in OSPs. Although this patiern is problematic because we found that it
often is cither a symptom ol under-contribution or a source ol future collisions, we
can not treat it as a red flag because there is no workload balance rule in OSPs;
all the members join OSP teams voluntarily and work according to their interests,

capabilitics, timelines, cle.

o Miscellaneons. Several other less pervasive problematic patierns were also identified,
including excessively large files, repeated alternating file additions and removals, and

SO on,

5.4.3 Team-role profiles

o More teani roles in OSPs. There were more common roles in OSPs. Not only team
leader (a core contributor who is de lacto in charge of the overall project and steers
the development cffort for a given period), component developer (an exclusive con-
wributor Lo a specific file or module for a given period), but also patching developer
{members seldom made other CVS operations except palching), inactive developer
(members drop in and out of the project in ditlerent phases), anonymous developers,

and so on.

o Multiple Leaders. In a student (cam, there usually is only one team leader for a
project. However, there always are more than one leader in QOSPs, The main reasons
are the longer development process and (he larger praject seale. Usually, a leader
proposed an idea and took charge it uniil some releasable versions were finished. As
the project getting larger and more mature, another member took over the leading and

maintenance roles .

Reproduced with permission of the cdpyright owner. Further reproduction prohibited without permission.

http://www.soureeforge.uel

o Leaders contribute heavily. Leaders performed a large number of CVS operations
(especially additions and modifications) that exceeded the number of their tcammates
in their respective leading phases. This pattern was also pervasive in the academic

case studics.

o Leaders are architects. Similar to those leaders in student projects, the leaders in
OSPs added a lot of new files and therelore had the largest impact on the overall

structure and evolution of the project,

e Leaders contribute steadily. They started contributions carly in the project. How-
ever, dilferent from the even lines of student leaders, OSP leaders usually had sieeper
spikes around milestones, with idle phases, Perhaps this pattern is unique o the
course projects in an academic setting and is not typical of OSPs. However, Michlmayr
{77 argues that steady contribution is @ factor in an OSP’s suceess. Perhaps the ab-

sence ol this patlern constitutes an carly warning sign,

o Component developers. In OSP (cams, component developers are not easy 1o be
detected. Most leaders were also component developers because most files were

developed by them and very few other members exclusively owned specific files.

o Component developers have limited focns. Not surprisingly, most ol the CVS op-
crations of component developers were modifications (o a small set of files, with

relatively few collisions with their tcammates,

o Component developers work on existing artifacts. Even there were a few non-leader
component developers, they tended to add few files or no files at all, Ususally, tcam

leaders prepared these files already.

o Anonymous developers. Anonymous developers had very few operations unltil the

praject was publicly released. Most operations ol them were patching,

o Parching developers. Although there were some other peoples registered as the team
members in OSPs, they did not join the early developments until the later mainie-

nance phases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

In the context of this thesis, we developed CVSChecker, a tool that analyzes the collabo-
rative softwarc-development process of soltware tcams, CVSChiecker uses as ils primary
input data captured by the repository in which the team stores its software assels: it extracts
lacts regarding the history of operations that team members perform in their project reposi-
tory and the evolution of various soltware-project metrics, Next, it proceeds (o analyze these
facts to infer more complex types of information about the (a) style of the tcam-members’
collaboration, (b) the development contributions of individual tcam members and (¢) the
evolution of the soltware project. CVSChecker presents its analyses results in two ways:
first, it generates a set ol related graphs, visualizing the tean’s activities and the project
progress; second, it produces a set of reports summarizing the analysis results o the team
and the instructor,

The work of this thesis aims a very important general research question: Are there dis-
tinct patterns, trends and events in the collaborative software-development process ol teams
that one can recognize in the trail of the development activities captured by the software
repository in which the team stores their assets? And once recognized, what do these pat-
terns say on the “health”™ of the software project and the tcam’s progress and how can they
inform the project manager’s decisions?

This rescarch question is receiving a lot ol attention recently and a substantial number
ol rescarch projects world-wide evolve around it, CVSChecker contributes to this arca the

following.

e A mecthod for analyzing the development behavior ol the individual developers and
the team as o whole. To our knowledge, the majority of the work on analyzing
CVS repositories Tocuses on understanding the soltware maintained in the reposi-

tory. There has been very littde work focusing on systematically examining and un-

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

derstanding the team dynamics based on their operations” trail in CVS, CVSChecker
implements a methodology for analyzing both at the same time: as a result, the results
ol both types of analyses can cross-fertilize and potentially produce more informative

intuitions tor the instructors.

e A ool that automales the above analysis in support ol sollware-engineering instruc-
tors. Elfcctive project management and student-team mentoring is of eritical impor-
tance in software-cngineering education, Recently, we have noticed an increase in
cducators’ reflections on their teaching methods, However, with lew exceptions, the
analysis of educators” experiences is conducted inan ad-hoc ianner, Morcover, most
tools aimed at supporting software-enginecering instruction focus on the mechanics of
materials delivery and marking. CVSChecker is novel in that it aims at analyzing
the students’ development process in order to help the instructor guide this process.
Furthermore, it doces this in a systematic way that enables the comparative analysis of

multiple case studics.

o A sctol distinct development-process patierns and red flags. Through our experience
using CVSChiecker in the context of a third-year soltware-cngineering course for
over (o years and examining the student-temns’ process with it, we have formulated
a sct ol interesting patterns, characteristic ol ditferent roles in the team, relevant in
multiple lite-cycle processes. CVSChecker can recognize these patterns and report
them to the instructor, who can draw informed inferences about how healthy the icam

dynamics arc and how well the project is progressing.

We have evaluated CVSChecker with two case studices: the first examined collabora-
tive software development of student developers while the sceond Tocused on open-source
projects of similar complexity and Tength, The results of these case studies indicate that
CVSChecker is, indeed, able to discern interesting information about both case studies
which implics that it could be a uselul ool 1w instructors as well as project managers in
general.,

Moveover, CVSChecker also extracted patterns for cach case study, and generated some
patiern queries based on the evaluated ones. Through comparing the results from educa-
tional environment and open-source community, we had the following conclusions:

Student teams usually start their programming fate, all the Java files are created in suc-
cession since the first CVS operation (o the last due day. Batch processing happens on

supportive files, such as test files, image files, configuration files, and so on, They usu-

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ally arc added into CVS repository in groups ahead of the deadlines, and most of them are
removed soon. Because most student developers are not so experienced and professional,
file renaming, relocation, and removing exist atong the process. Some developers have low
CVS usage, comparing with their tecammates. Collisions happen on some files, and most ol
them are touched by at least three members. Fortunately, mcerges usually happen ahead ol
the collisions on these problematic files, instructors can give carly suggestions with the help
ol CVSChecker visualization. In student teams, there are two typical roles: team leader and
component developer. Team leaders usually are those students who start work earlier, create
many files at the carly phase, and have much more consistent contribution along the whole
process. Morcover, they also have heavily contribution near the deadlines. Team leaders
usually dominate the whole process. Component developers are those students who add lew
new Java classes to CVS, and their contributions Tocus on a small group of files. Morcover,
they are the only developers Tor most ol these files. Usually, component developers involve
in few collisions, All these patterns were extracted and listed in section 4.6 (page 82 o 84)
with detailed explanations,

Although open-source projects usually last for a longer process, Java files are added
into CVS repository since the very beginning, Some ol them have already heen developed a
litthe bit. In such a new environment, the teams still have batch processing in supportive files
and the sequential addition of Java classes. Although open-source development process is
advocated as an almost silver-bullet solution, files with high collisions and nierges are still
exist, together with some file renaming and relocation. Same as student cams, merges
still happen ahead of collisions, Because most developers have more experience than those
student novices, lewer files are removed from CVS and most members only check out
once at the beginning (commend “evs updale” is enough (o bring local working directory
in sync with repository later), Because people join in open-source projects voluntarily
according (o their interests, no workload balance has to be kept, some members may have
heavily contribution all time while some others only have a checkout and several minor
modifications. The work trends of them are stll very uneven: small busy phases and spikes
scatter among idle periods. In open-source projects, some new roles appear. Multiple team
leaders exist in many teams, and some ol them are only dominate one or several phases
instead of the whole process. There wre many anonymous developers whao have no right to
modity the codes in CVS. Component developers still existas in student teams, Some team
members can be treated as maintainers or patching developers, hoth ol them do not atend

the carly-phase development. Maintainers usuitlly begin work after several formal releases

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and only have some minor contribution, such as relormat the code, refactoring, and so on.
Patching developers only do some patches instead ol other CVS operations. Section 5.4
(from page 113 to 115) elaborated all these patierns telated o open-source projects.

There are several dimensions along which CVSChecker could be extended and im-

proved.

o More data could be integrated in the CVSChecker data model, such as code mea-
surements, development profiling information captured by the IDE and PSM-style
metrics [48]. A richer set of Tacts would enable more analyses, at the cost, however,

or the unobtrusiveness ol the tool,

e The visualization component could be extended and improved. Design more informa-
tive visualizations (o convey information 1o instructors and possibly with developers

is a short-term future goal.

o More casc studies are necessary. Our long-lerm ohjective is o systematically con-
duct case studies, experimenting with different processes, such as XP and RUP for
example, dillerent project size, and complexity, and diftferent (cam-members’ com-
petencies. Then we can comparative analyze the collected data 1o discover which

patlerns are characteristic of success or lailure in the context ol which process.

o Finally, as the number of case studies increases, more in-depth data comparisons
become possible. We expect that data-mining methods [17] will become viable for
extracling significant correlations between successiul soltware development and typ-

ical behavior patterns of teams and team members.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] D. Atkins. Version Sensitive Editing: Change History as a Programming Tool. Proc,
ol the 8th Conference on Soltware Configuration Management, Brussels, July 1998,

[2] T. Ball, J. M. Kim, A. A. Porter, and H. P. Siy. I your version control system could
talk... Proc, of ICSE Workshop on Process Modceling and Empirical Studies of Soft-
ware Engincering, Boston, Massachusetts, USA, 1997,

[3] K. Beek, Extreme Programming Explained: Embrace Change, Addison Wesley,
1999,

4] M. Belbin. Management Teams = Why they succeed or fail, John Wiley and Sons.
New York, 1981.

[S] D. Bisantand J. Lyle. A two-person inspection method (o improve programming pro-
ductivity. [EEE Transactions on Soltware Engineering, 15(10):1294-1304, Oct. 1989,

[6] W. W. Cohen,). Richman. Learning to March and Cluster Large High-Dimensional
Data Scis For Data Integrationln Eighth ACM SIGK DD International Conference on
Knowledge Discovery and Data Mining (K1), Edmonton, Alberta, Canada 2002,

[7]1 D.Cubranic and G. C. Murphy. Hipikat: Recommending pertinent software devel-
opment artitacts. In Proc. 25th International Conlerence on Saftware Engineering
(ICSE), pages 408 - 418, Portand, Oregon, May 2003,

[8] T. L. Dickinson, M. Robert. A Conceptual Framework Tor Teamwork Mceasurement,
In Team Performance Assessment and Measurement: Theory, Mcethods and Appli-
sations. Michael T. Bramnick, Eduardo Salas, Carolyn Prince, 1995,

[9] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. Proc. of 10th Working Conference on Reverse Engineering (WCRE
2003), Victoria, British Columbia, Canada, Nov, 2003,

[10] M. Fischer, M, Pinzger, and H. Gall. Populating a release history database rom ver-
sion control and bug tracking systems. Proc. ol International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept. 2003,

[11] H. Gall, K. Hajek and M. Jazayceri. Detection of logical coupling based on prod-
uct release history, Proc. ol International Conference on Soltware Maintenance
(ISCM’98), Washington D.C., USA, Nov. [9Y8.

(121 H. Gall, M. Jazayeri, and 1. Krajewski. CVS Release History Data for Detecting Log-

ical CouplingsProc, of International Workshap on Principles ol Soltware Evolution

(IWPSE 2003), pp. 13 -23, Helsinki, Finland, Sept. 2003,

[13] 13, German, An empirical study of fife-grained softwiare modification. Proc. ol the
20th [EEE International Conference on Software Mamicnance ((CSM04) pp. 316-

”

325, Chicago Hlinois, USA, Sept. 2004,

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] D. German, Using software trails to rebuild the evolution of software. Proe. ol the
International Workshop on Evolution of Large-scale Industrial Software Application
(ELISA), Amsterdam, The Netherlands, 2003,

[15] D.German and A, Mockus. Automating the measurement of open source projects, In
Proceedings of ICSE '03 Workshop on Open Source Soltware Engineering, Portland,
Oregon, USA, May 2003.

[16] A. G. Gleditsch and P. K. Gjermshus. Irx Cross-Reterencing Linux.

[17] J. Han and M. Kamber, Data Mining: Concepts and Techniques, The Morgan Kaul-
mann Scries in Data Management Systems, Jim Gray, Scries Editor Morgan Kaul-
mann Publishers, August 2000.

[18] G. Hedin, L. Bendix, B, Magnusson, Introducing software engineering by means of
Extreme Programming, Proceedings ol the 23th International Conlerence on Solt-
ware Engineering, SESSION: Papers on soltware engincering education and train-
ing: extreme programming, Pages: 586 - 593, Portland, Ovegon, 2003.

[19] hup://alias/devel/cvsmonitor/

[2071 hup://bloof.sourcelorge.nct/

[21] hup//codestriker.sourcelorge.net

[22] hup://evsplotsourcelorge.net/

[23] hup://evssearch.sourceforge.net/

[24] hup/fevs.gnome.org/bonsai/eysquerylormy.cgi

[25] hup://lixr.sourcelorgenct/, Visited Feb, 2004

[26] hup://msdn.microsolt.com/vstudio/previous/ssafe/

[27] hup://sourcelorge.net/projects/vieweys/

(28] hup://statevs.sourcetorge.net/

[29] hup://wiki.org/wiki.cgi?WhatlsWiki

[30] hup://www.eclipse.org/

[31] hup://www.es.waikato.ac.nz/ ml/weka/art?.hunl

132] htip://www.dreebsd.org/projects/evsweb.hm!

[33] hup://www.gnu.org/soltware/cvs/manual/

[34] hup:/iwww.postaresgl.org/

{35] hup//www.tortoiseevs.ore/

[36] hup:/wwwavekanet.nz/

[371 hup://www-306.ibm.com/software/awdiools/clearcase/

[38] M. Holcombe, M. Gheorghe, F. Macias: Teaching XIP tor Real; some initial obser-
vations and plans, Sccond International Conference on eXtreme Programming and
Flexible Processes in Software Engineering NP, Sardinia, Italy, 2001,

[39] IMctric:hup://wwvitswin.eduau/projects/imetric/products/jmetric

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ali.as/dcvel/evsmonilor/
http://bloof.sourccforgc.net/
http://evsplot.sotirceforge.net/
http://slalevs.soureeforge.net/
http://wiki.org/wiki.egi7WhatIsWiki
http://www.eelipse.org/
http://www.es.waikato.ac.nz/
http://www.freebsd.0rg/projecl.s/evsweb.ht1nl
http://www.gnu.oig/software/evs/manual/
http://www.postgrestil.org/
http://www.tortoiseevs.org/
http://www.weka.net.nz/
http://www.it.swin.edu.au/prqjeeis/jinetrie/produeis/jmetrie

[40] B. Raiph-Johan, M. Luka, and P, Ivan and P, Viorcl, NP as a Framework for Practical
Soltware Engineering Experiments, Proceedings ol the Aeile Processes in Soltware
Engincering XP2002, Alghero, Sardinia, Ttaly 2002,

[41] 1. Johnson, H. Caristi, J. , Extreme programming and the soltware design course, in
“Extreme Programming Perspectives”, Addison-Wesley, chapter 24, pp. 273 - 285,

2003,

[42} T. Kamiya, S. Kusumoto, and K.Inoue. CCFinder: A nlti-linguistic token-based
code clone detection system Tor large scale source code, HEER Trans, Soltware En-
gincering, 28(7): 654-670, July 2002,

[43] S. Koch and G. Schneider, "Results from Soltware engineering rescarch into Open
source development projects using public dat,” Wirtschaltuniversitat Wien, Austria,
Working Paper 22, 2000. hup://citescer.csail.mit.edu/kochOOresulthunl;

[44] P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley, 2000,

[45] O. Astrachan, R. Duvall, E, Wallinglord. (2003), Bringing extreme programming (o
the classroom, in “Extreme Programming Perspectives”, Addison-Wesley, chapter
21, pp. 237-250.

[46] L. Lopcez-Fernandez, G. Robles, M. lesus, G, Barahona, Applying Social Network
Analysis to the Information in CVS Repository, international Workshop on Mining
Soltware Repositorics (MSR), 25th May, 2004 dinburgh, Scotand, UK;

(471 R.C. Martin. Agile Software Devetlopment Principles. Patterns, and Practices, Pren-
tice Hall, October 2002.

[48] 1. McGarry, D, Card, C. Jones, B. Layman, . Clark, 1. Dean, 1 Tall, "Practical Solt-
ware Measurement - Objective Information for Decision Makers”, Addison-Wesley
Oct. 2001,

(491 A. Michail. Data mining library reuse patterns i user-selected applications, pp.24-
33, Automated Software Engineering. 1 [HEE iternational Conference, Cocoa
Beach, 'L, USA 1999,

[50] A. Michail. Data mining library reuse patlerns using gencralized association rules,
nternational Conlerence on Software Engineering, Proceedings of the 22nd interna-
tional conference on Software engineering, Limcerick, lreland, 2000,

[51] K. B. Micrle, K. Laven, T. Sam, Roweis, G. V. Wilson, CVS Data Extraction and
Analysis: A Case Study, htp://www.cs.toronto.edu/ roweis/papers/cvsanalysis.pdl.
[100] M. Michlmayr, "Managing volunteer Activity in Free Soltware Projects,” in
Proceedings of the FREENIX Track: 2004 USENET Annual Technical Conlerence,
Boston, MA, Junc-luly 2004.

[52] A. Mockus, R. Ficlding,). Herbsleb, "Two Case Studies OF Open Source Soltware
Development: Apache And Movzilla,” ACM Transactions on Software Engincering
and Mcthodology, volume L, number 3, 2002, pp. 309-340.

[53] M. M. Muller, W. 1< Tichy. Case study: Extreme Programming in a University Envi-
ronment, Proceedings ol the 23rd International Conference on Soltware Engineering,
Toronto, Ontario, Canada PP337 - 544, 2001.

[54] A.Mockus, R.T. Fielding, and LD .Herbsleh, Two case studies of open souree solt-
ware developments Apache and Mozilla, ACM Transactions on Software Engineer-
ing and Mcthodology, 11(3): 309-346, 2002,

[55] J.Noll, Some Obscrvations of Extreme Programming Tor student Projects, postlion
paper at the workshop on Empirical Evaluation ol Aile Processes, Chicago, Hlinois,
August 7, 2002,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.toronlo.edu/

[56] T. Nosck, The case for collaborative progranmming. Communications of the ACM,
Volumn 4, Issue 3, pp. 105-108, ACM Press, Mar. 1998,

[57] M. Ohira, R. Yokomori, M. Sakai ct al.. Empirical Project Monitor: A Tool for
Mining Multiple Project Data, Proc. of International Workshop on Mining Software
Repositorics (MSR2004), pp.d2-46. May/25/2004, Edinburgh, Scotland, UK.

[58] L. Putham, W. Myers, Five Core Metrics: The Intelligence behind Succeessful Solt-
ware Management, Dorsct House, 2003,

{591 E. Raymond. The Cathedral and the Bazaar, Musings on Linux and Open Source by
an Accidental Revolutionary, O’Reilly UK 2001.

[60] G. Robies, S. Koch and J. M. Gonzlez-Barahona, Remote analysis and measurement
of libre software systems by means ol the CVSAnalY tool, Proceedings of the 2nd
Remote Analysis of Software Systems (RAMSS) Workshop held at the 26th Interna-
tional Conlerence on Soltware Engincering, Edinburgh, May 2004,

[61] F V. Ryssclberghe and S. Demeyer. Mining Version Contral Systems for FACs (Fre-
quently Applied Changes), Proc, ol International Workshop on Mining: Soltware
Repositories (MSR *04), Edinburgh, Scotland, UK, May 200-.

[62] J. Sayyad, C. Lethbridge, Supporting soltware Maintenance by Mining soltware up-
date records, Proceedings ol the IEEE International Conference on Software Main-
tenance (ICSM°01), PP. 22, 2001,

[63] J. Sayyad Shirabad, C. Timothy. Lethbridge, S. Matwin, Mining the Maintenance
History of a Legacy Software System, 19th 1EEE International Conlerence on Solt-
ware Maintenance (ICSM’03) pp. 95.

[64] 1.-Guy Schneider, L. Johnston, ¢Xtreme Programming at universities: an educational
perspective. Proceedings of the 25th International Conterence on Soltware Engineer-
ing, SESSION: Papers on software engincering education and training: extreme pro-
gramming Pages: 594 - 599, Portland, Oregon, 2003.

[65] A. Silliti, G. Succi, T. Vernazza, Analysis of Source Code Repositorics,
hitpi//wwwaunibz.itiwvebdarchiviobjecis/pdi/es_library/2/anatysis_of source_code_repositories.pdf.

[66] G. Snelting. Reengineering ol configurations based on mathematical concepl analy-
sis. ACM Transactions on Software Engincering and Methodology (TOSEM), 3(2):
146-189, 1996;

{671 M. A. Storey, C. Best, and 1. Michaud. SHriiMP Views: An Interactive and Customiz-
able Environment for Soltware Exploration. In Proc. of International Workshop on
Program Comprehension, May 2001,

[68] A. Stratton, M. Holcombe, P. Croll, Improving the quality of software engineering
courses through university based industrial projects. In Projects in the Computing
Curriculum, (eds.) 1998, 47-69.

[69] Subversion: A compelling replacement for CVS. hup://subversion.tigris.org/

[70] L. Williams, R. Kessler, Pair Programming HHuminated, Addison-Wesley, 2002,

[71] W.Tichy. Design, Implementation, and BEvaluation of a Revision Control System,
Proceedings: 61h International Conlerence on Soltware Engineering pp. 58-67. [12EE
Compuler Socicly Press, 1982,

[72] X. Wu. Visualization of version control information. Master’s thesis, University ol
Vicloria, 2003,

i36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.imibz.it/wcb4arehiv/objcct.s/pdl7cs_library/2/analy
http://subver.sion.tigris.org/

[73]1 L. Williams and Richard Upchurch, Session Ectreme programming for software en-
gincering cduction? Proceedings of 31st ASER/IEER Frontiers in Education Confer-
ence, Oct 2001, Reno, Nevada, USA,

[74] M. Winter, Developing a group model for student software engineering teams. Mas-
ter thesis, Univ. of Saskatchewan, 2004,

[75] K. Wong, W, Blanchet, Y. Liu, C. Schofield. E. Stroutia, 7. Ning, JRefleN: Towards
supporting small student soltware teams, Proc. OF Felipse Technology exchange
workshop, pp.56-60, OOPSLA 2003, Oct. 27 2003, Anaheim CA, USA,

[76] 1. Pleiffer. N William, Instrumentation in Human Relations Training: A Guide to
92 Instruments with Wide Application 1o the Behavioral Sciences Scecond Edition,
University Associates, La Jolla, California. USA, 1976.

{777 AT.T.Ying. Predicting source code changes by mining revision history. Master’s the-
sis, University of British Columbia, Canada, Oct. 2003.

[78] T. Zimmermann, S. Dichl, and A. Zeller. How history justities system architecture (or
not). Proc. of International Workshop on Principles of Soltware Evolution (IWPSE
2003), pp. 73-83, Helsinki, Finland, Scpt. 2003,

[791 T. Zimmermann, P. Weibgerber. Preprocessing CVS data for lile-grained Analysis,
Proc, of Ist International Workshop on Mining Soltware Repositorics (MSR), Edin-
burgh, UK, May 2004.

(801 T. Zimmermann, P Weibgerber, S. Dichl, A, Zeller. Mining Version Histories 10
Guide Software Changes, Proc, of 26th International Conference on Software Engi-
neering (ICSE), Edinburgh, UK, May 2004.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

