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Abstract

In recent years, autonomous driving systems (ADSs) using deep learning-based

modules have significantly attracted the attention of researchers from differ-

ent communities, such as computer vision. These intelligent systems require

a precise and accurate training process before their deployment to real-life

situations. The performance and reliability of ADSs are dependent on two

important factors, namely, training dataset and model components, each of

which must be carefully taken into consideration. Since in most of the realis-

tic cases, the models of ADSs are released in a black-box form, and access to

their components (e.g., loss functions and hyper-parameters) is not granted,

therefore, ensuring the quality of the samples in the ADSs training datasets is

of paramount importance. In view of these explanations, in this work, we focus

on developing an efficient scheme for cleaning the training datasets of ADSs

that employ deep image object detectors, by identifying the samples in the

dataset with erroneous bounding boxes. In this regard, we leverage the visual

signals associated with the bounding boxes, in addition to their spatial coordi-

nates, for predicting the erroneous status of the bounding boxes in an accurate

manner. Moreover, we incorporate confident learning in the proposed scheme

in order to prune the predictions of the erroneous statuses of the bounding

boxes, and, further contribute to developing secure and reliable ADSs. The

results of the extensive experiments demonstrate the effectiveness of various

ideas employed in the design of the proposed erroneous bounding box detec-

tion scheme for the ADSs datasets. Further, it is shown that the proposed
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scheme could significantly outperform the other state-of-the-art data selection

methods in cleaning the training datasets of ADSs.
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Chapter 1

Introduction

1.1 Motivation

Neural networks have been a crucial and decisive part of modern society in

the past 10-15 years. As these networks continue to progress and scale up

more and more, a critical issue begins to be unveiled. Namely, it is a matter

of the black-box nature of such networks, meaning that the essential learned

representations are, for the most part, completely unknown. Numerous studies

throughout the years have suggested that one major caveat of this black-box

behavior arises when the inputs to the already trained network are carefully

crafted to deliberately fool these intelligent systems. This has been perfected

to such an extent that the inputs can even dictate what the output of the

network shall be. In fact, this area of research has expanded so much that it

received its own name: Adversarial machine learning.

Thus, it is clinical to investigate the functionality of such networks and

identify their misbehaviors. Specifically, in the area of autonomous driving,

such scrutinies become crucial when considering the fact that in this domain,

the cost of failure is virtually insufferable. Each erroneous behavior in the

functioning of these intelligent systems can result in intolerable consequences,

including crashing into other vehicles and objects. Moreover, unlike software-

related products, testing cannot be done as frequently, since each failure results

in a wasted product, that requires going back to the manufacturing pipeline.

Having shed light on these insights, it becomes of paramount importance to

carefully observe the behavior of such intelligent systems with respect to their
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training process. The training process essentially boils down to two important

factors: training dataset and model components. While meticulously

inspecting and analyzing the model components of intelligent systems is in

itself a very interesting topic, our focus is mainly on the training datasets.

Specifically, this work centers around investigating on assuring the quality

of the data in the form of the training samples of the dataset utilized by

ADSs.

1.2 Background

Investigating the functionality of ADSs and identifying their misbehaviors are

fundamental tasks in the community of intelligent vehicles. In recent years,

deep neural networks (DNNs) have revolutionized the design of ADSs [1], [4],

[7], [9], [24], [30], [32], [37], [45], [48], [53], in view of their high performances

and real-time processing capabilities. The safety-critical considerations of

ADSs necessitate a meticulous training process for their DNN modules be-

fore being deployed to real-life scenarios.

Many ADSs utilize cameras for acquiring visual signals and information

from their interacting environments. Hence, employing high-performance im-

age processing tools for extracting important information from the acquired

visual signals is crucial for the proper functioning of ADSs. Deep learning-

based image object detection schemes [40], [29] are important image processing

methods employed by ADSs, which enable these intelligent systems to detect

vital objects, such as vehicles, pedestrians, and cyclists, and help them in

planning safe and secure driving.

As mentioned, each erroneous behavior in the functioning of ADSs can re-

sult in intolerable consequences. For instance, some case studies [11], [34], [35],

[42] illustrate several malfunctions of ADSs, in which despite the huge amount

of funding provided by the big technology companies, such as Tesla, Uber, and

Google, there are still serious concerns regarding their security and reliabil-

ity, part of which can be emanated from the training process and quality of

training samples. It is worth mentioning that since ADSs are considered large-
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scale complex machine learning systems, they suffer from a lack of transparent

troubleshooting. Therefore, it is vital to perform the training process of such

systems reliably by using training samples that possess correct annotations

and labels.

While in recent years, a vast amount of research has been carried out

on designing high-performance models for deep image object detectors [5],

[28], [29], [40], [51], not much attention has been paid to developing methods

for selecting suitable data for the training process of the deep image object

detectors. In view of these explanations, and the importance of designing

secure ADSs, in this work, we aim to develop a high-performance erroneous

label detection scheme for cleaning the training datasets of deep image object

detection blocks employed by ADSs.

1.3 Problem Definition

Existence of erroneous labels in the DNNs’ large-scale training datasets can

frequently occur due to the exhaustive human annotation process. It has been

demonstrated in [33] that even very popular datasets used for training DNNs,

such as MNIST [21], contain some samples with erroneous labels. Since the

value of the loss of DNNs to the training samples with erroneous labels is higher

than that to the samples with clean labels, DNNs are vulnerable to overfit-

ting the erroneously labeled samples in the training process, which negatively

affects their performance and reliability. Therefore, handling the training sam-

ples with erroneous labels is of paramount importance in the training process

of DNNs.

Deep image object detectors employed by ADSs carry out the regression

and classification tasks simultaneously by, respectively, localizing the objects

of the acquired visual signals and detecting their classes. Therefore, the train-

ing datasets of these intelligent systems contain labels for both the classifica-

tion and regression tasks, i.e., the class labels of the objects, as well as their

bounding boxes, which are obtained from the human annotation process. In

view of the fact that for ADSs, the number of object classes is small, and
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the classes are completely distinguishable from one another (for example, one

class is “vehicle” and the other is “cyclist”), it is unlikely that a human an-

notator makes a mistake in determining the classes of the objects. On the

other hand, due to the changes in object sizes and occlusions, determining the

coordinates of the objects bounding boxes is significantly more challenging for

the annotators, and thus, occurring errors in the bounding box annotation

process cannot be ruled out. Therefore, the design of an erroneous bounding

box detection scheme that is able to faithfully discriminate between clean and

erroneous bounding boxes in the training datasets of ADSs is necessary.

The information associated with each bounding box is represented as tabu-

lar data, i.e., a vector containing the spatial coordinates of the bounding box.

In order to detect the erroneously annotated bounding boxes, one could adopt

the existing methods in the literature of data selection (we discuss them in

detail in Chapter 2). However, since these schemes are developed for generic

machine learning systems, they do not exploit the crucial information that is

encoded in the datasets of ADSs. This adversely impacts identifying the erro-

neous bounding boxes and leads to an improper pruning of the object detection

datasets used for training ADSs. In this regard, we aim to develop a novel

scheme for detecting erroneous bounding boxes by exploiting the necessary

information existing in the datasets of ADSs.

In order to exploit the training datasets of ADSs for the task of erroneous

bounding box detection, we propose to extract the useful information from the

visual signals associated with the bounding boxes, and fuse this information

with that obtained from the original representation of the bounding boxes,

i.e., the vector containing their spatial coordinates.

1.4 Contribution

The main contributions of this work can be summarized as follows:

• We develop a novel feature extraction technique for obtaining useful

information from the visual signals associated with the bounding boxes

whose quality and correctness must be assessed.
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• We fuse the features obtained from the original representation of the

bounding boxes, i.e., the spatial coordinates vector, with those extracted

from the corresponding visual signals, in an end-to-end manner, to deter-

mine the erroneous status of the bounding boxes in an accurate fashion.

• We determine the uncertainty of the erroneous status of the bounding

boxes estimated by our proposed scheme using confident learning (CL),

and reduce the risk of not identifying the erroneous bounding boxes in

the datasets of ADSs.

• We investigate the impact of our proposed erroneous bounding box de-

tection scheme on the development of more secure and reliable ADSs

that employ deep image object detectors.

1.5 Outline

The rest of the thesis is organized as follows: In Chapter 2, we review the

existing data selection methods that can be adopted for the task of erroneous

bounding box detection. In Chapter 3, we describe the proposed scheme for

identifying the erroneously annotated bounding boxes of the datasets of ADSs.

In Chapter 4, we carry out extensive experimentations to verify the effective-

ness of the various components of the proposed scheme. Furthermore, in this

Chapter, the performance of the proposed erroneous bounding box detection

scheme for ADSs is compared with those of the other state-of-the-art data

selection methods that exist in the literature. Finally, in Chapter 5, we sum-

marize the concluding remarks on the work carried out in this paper.
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Chapter 2

Related Work

In Chapter 1, we introduced the problem we focus on (erroneous label detec-

tion) and the scope of this work. There are a handful of works focusing on

both identifying erroneous labels and alleviating their influence on the training

process of intelligent systems (e.g., ADSs). In this Chapter, we will review the

related work to locate our problem among similar works.

The techniques used for handling the training samples with erroneous labels

can be broadly categorized into two groups. In the first group, the methods,

such as [14], [17], [19], aim at modifying the training algorithms of DNNs

to reduce the influence of samples with erroneous labels on DNNs training

process, and therefore, making DNNs robust to these types of samples. In the

second category, the schemes, such as [33], [54], perform data selection on the

DNNs training datasets by identifying and eliminating the erroneously labeled

samples.

In many real-life situations, the model components of DNNs, including

their loss functions and their parameter updating algorithms, have already

been optimized after extensive experimentations. Furthermore, access to the

model components of DNNs is not granted in many realistic situations, since

these intelligent systems are released as black-box models. Based on these

points, and the explanations given in the above paragraph, the use of erroneous

label detection schemes that are solely dependent on the training datasets and

do not require any knowledge about the DNN model components, is prefer-

able in the community of intelligent vehicles for developing secure and reliable
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systems.

2.1 Scenarios Engineering

Since ADSs employ various AI-enabled modules, such as deep learning-based

image object detection blocks, the use of scenarios engineering-based methods

is crucial to the development of such systems. Notably, in [27], it has been

mentioned that verification and validation (V&V) are two critical stages in

the development of AI-enabled systems in a trustworthy fashion. In [25], the

authors have developed a novel scenarios engineering-based framework, that

includes six layers, namely, infrastructure, operation, knowledge, intelligence,

management, and interaction layers, in order to develop trustworthy intelligent

systems.

In [26], a new scheme for generating realistic visual signals from synthetic

images based on the image-to-image translation method has been proposed.

Next, the proposed scheme is utilized for generating an abundant amount of

visual signals with their corresponding annotations in order to develop reliable

and high-performance ADSs. Given the importance of scenarios-based engi-

neering, it can be concluded that the design of ADSs that are able to perform

reliably is necessary in realistic situations.

2.2 Robust Training against Erroneous Labels

The existence of samples with erroneous labels in training datasets leads to

deteriorating DNNs performance. In recent years, many schemes have been

developed to improve the robustness of DNNs against training samples with

erroneous labels. These methods focus on identifying the erroneously labeled

samples in the training datasets and reducing their impact on the training

process of deep neural networks, to provide superior performances. In the fol-

lowing, we first review the methods that are developed for the robust training

of DNNs against samples with erroneous labels. We then discuss the schemes

that are specifically developed for training the deep image object detectors

robustly against samples with erroneous labels. It is worth mentioning that in
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this work, we focus solely on the task of erroneous label detection. Therefore,

even though the generalizability of DNNs and improving their out-of-domain

generalization capability is itself an interesting domain of research, we believe

it falls beyond the scope of this work.

In [19], training of a DNN (referred to as the base network) is supervised

by another neural network (referred to as the mentor network), which by pro-

ducing a curriculum, encourages the base DNN to learn only the samples that

are associated with the correct labels. In [17], a novel training scheme, called

cyclical training, has been proposed in order to identify the samples with erro-

neous labels. Specifically, in cyclical training, the status of the training of the

DNN alternates between overfitting and underfitting by changing the learning

rate of the optimization process. It has been shown that by optimizing the

parameters of a DNN with the cyclical training process, its loss to the samples

with erroneous labels becomes significantly larger than that to the samples

with clean labels, which in turn contributes to identifying the erroneously la-

beled samples. In [52], the training of the DNN is first started by the samples

with clean labels and then gradually continued by those whose labels are cor-

rected based on the consistency between the values of the loss in the previous

training iterations. In [14], two DNNs with the same architecture have been

employed to teach each other by using the training samples with small loss

values. In [39], a meta-learning-based method has been proposed to weigh the

loss values of the DNN for different training samples based on their erroneous

label status. By this, the influence of samples with erroneous labels on the

performance of the DNN is decreased, and a stable training process is achieved.

In [36], a new metric, referred to as TracIn, has been developed to measure the

influence of each sample on the training process of DNNs. Specifically, TracIn

is obtained by multiplying the gradient of the DNN with respect to a given

sample by its gradients with respect to the training samples at specific training

checkpoints. It has been shown that the samples with erroneous labels lead to

negative TracIn values.

In addition to the above-mentioned works existing in the literature for

handling the erroneously labeled samples in the training datasets of DNNs,
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there exists several schemes, that focus on improving the robustness of the

DNN-based image object detectors against training images with erroneous

bounding boxes. In [23], a new algorithm has been proposed for correcting the

erroneous bounding boxes in a training dataset of deep image object detectors.

Specifically, the parameters of the deep image object detectors are updated

during the training process in such a way that the discrepancy between the

two detection heads is minimized. Recently, the authors of [47] have proposed

a novel scheme, referred to as Meta-Refine-Net (MRNet), for handling the

erroneous bounding boxes in the training process of the deep image object

detectors, in which two additional low-complexity neural networks have been

employed. The first neural network is responsible for reweighting the loss

of the classification head based on the erroneous status of the labels, and the

second neural network strives to refine the spatial coordinates of the erroneous

bounding boxes.

It is seen that all the above-mentioned schemes focus on reducing the in-

fluence of samples with erroneous labels on the training process of DNNs.

However, the functioning of these schemes relies on the availability of the

DNN model components, such as the loss functions and gradients, which re-

stricts the applicability of such schemes in realistic situations. For example,

in the case of several ADSs, the model components are not accessible for any

adjustment. Hence, for handling the erroneous bounding boxes in the training

datasets of ADSs, the development of methods that are able to identify these

bounding boxes without requiring any knowledge about the ADSs model com-

ponents is crucial. In the next Section, we review the approaches that can be

employed to detect the erroneous bounding boxes in ADSs training datasets

without taking their models into consideration.

2.3 Data Selection Methods

Even though there exists a few schemes in the literature for detecting samples

with erroneous labels in the training datasets of DNNs [33], [54], to the best of

our knowledge, an explicit algorithm for identifying the erroneously labeled
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bounding boxes of ADSs still has not been developed. Given this, one could

adopt the existing data selection methods as the baselines for the task of

erroneous bounding box detection. We summarize all these methods in the

following categories:

2.3.1 Supervised Learning-based Schemes

When the erroneous status of a number of bounding boxes in the dataset is

determined, i.e., they are labeled as clean or erroneous, several supervised

learning-based methods that are devised for processing and classifying tabular

data can be employed. These methods can be broadly categorized into two

groups: learning-centric schemes and data-centric schemes. The algorithms,

ranging from the conventional high-performance classifiers (e.g. SVM and

XGBoost [8]) to the neural networks employing transformers that are specified

for processing tabular data (RTDL) [13], can be considered as the learning-

centric methods. On the other hand, methods such as SimiFeat [54], which use

the neighboring information of each sample for detecting its erroneous status,

are data-centric.

2.3.2 Semi-supervised Learning-based Schemes

When the number of bounding boxes in the dataset whose erroneous statuses

are available is not sufficient, training a high-performance erroneous bounding

box detector is difficult. In this case, semi-supervised learning-based schemes

such as S3VM [3] and VIME [49], could be utilized for increasing the amount

of the labeled data, and hence, improving the accuracy and efficiency of the

erroneous bounding box detection task.

2.3.3 Active Learning-based Schemes

In many realistic situations, the human annotator is available to check the

quality of the bounding boxes and correct those that are annotated erroneously.

However, due to the large cost of this process and the limited available budget,

the process can only be carried out on a portion of the bounding boxes of the
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dataset. Active learning-based methods [6], [22], could be employed to first

obtain a number of the most informative bounding boxes in the dataset, and

then pass them to the human annotators for performing the reannotation

process.

2.3.4 Confident Learning-based Schemes

The scheme of [33], referred to as confident learning (CL), is a recent state-of-

the-art method in the literature of data selection, which aims at determining

the samples with unreliable labels in large-scale datasets by using its statistical

information. It has been shown in [33] that pruning the datasets with confident

learning results in enhancing the performance of the machine learning systems

that employ these datasets for training.

It should be noted that in this work, we assume that the erroneous status of

some bounding boxes in the ADSs training dataset is available. This assump-

tion is valid, since in real-life situations, human annotators could easily assess

the quality of a number of the bounding boxes and determine whether they are

erroneous or not. Hence, in the above categorization, we do not consider the

unsupervised learning-based schemes for detecting erroneous bounding boxes.
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Chapter 3

Methodology

In Chapter 2, we reviewed the literature regarding the task of erroneous bound-

ing box detection. In this Chapter, we will go through the proposed scheme,

explaining in great detail how it is structured, and how it can be employed to

identify the erroneously annotated bounding boxes of the datasets of ADSs.

As mentioned, the main novelty of our proposed scheme can be summed up

into two essential points:

1. Multi-modal information processing: Fusing features from different

domains in order to determine the erroneous status of the bounding boxes

in an accurate fashion.

2. Confident learning: In order to prune the uncertainty of the erroneous

status of the bounding boxes

3.1 Motivation

As mentioned in Section 1.3, the bounding boxes in the training datasets of

ADSs can be represented as vectors containing the spatial coordinates. In

many real-life situations, the spatial coordinates of a clean bounding box and

its erroneous version could be very similar to each other. For example, the

erroneous bounding box can be obtained by applying the translation operation

of only 1 unit (here, pixel) to the original clean bounding box. Therefore, esti-

mating the erroneous status of the bounding box reliably cannot be achieved

by merely considering its spatial coordinates.
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The bounding box is considered as clean, if it precisely encompasses an

object in the image. On the other hand, the bounding box is labeled as

erroneous, if it fails to fit to its corresponding object in the image accurately.

Based on these assumptions, it can be argued that the image, to which a

given bounding box belongs, contains a set of information that could guide the

process of identifying the erroneous bounding boxes accurately. In this regard,

we propose to employ the interaction between the two visual signals, in which

the first one is associated with the image that the bounding box belongs to,

and the second corresponds to the spatial coordinates of the bounding box, as

a discriminative factor between the clean and erroneous bounding boxes for

the task of erroneous bounding box detection. We describe the details of how

to obtain these two visual signals in the next Section.

3.2 Algorithm

Let v = [m0,m1, n0, n1]
T denote a bounding box belonging to the image x[m,n]

(0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. Here, M and N are the width

and height of the image, respectively) from the ADSs training dataset, where

(m0, n0) and (m1, n1), respectively, denote the spatial coordinates of the upper

left corner and the lower right corner of the bounding box. Let also y denote

the erroneous status of the bounding box v. Specifically, if the bounding box

v is clean/erroneous, its corresponding erroneous status becomes y = 1/y = 0.

Our objective in this work is to confidently identify the bounding boxes that

are erroneously labeled in the ADSs training dataset.

Recent advances in developing DNNs have resulted in obtaining promising

performances in many information processing tasks, such as the task of tabu-

lar data classification [13]. In view of the emergence of novel neural network-

based processing techniques, e.g., sophisticated activation functions [31], [16],

dropout [2] and transformers [44], one could design a neural network archi-

tecture to learn a direct end-to-end mapping from the input vector v to its

corresponding erroneous status y. Given these explanations and those given

in the previous Section, we now develop a neural network that employs the
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spatial coordinates information of the bounding boxes encoded in v, as well as

that from their corresponding visual signals, in order to identify the erroneous

bounding boxes in the datasets of ADSs.

Figure 3.1: High-level block representation of the proposed MIPE. (a) Overall
architecture. (b) Details of obtaining the feature vector w corresponding to
the visual signals of the bounding boxes.

Figure 3.1 depicts the overall architecture of the proposed erroneous bound-

ing box detection scheme. It is seen from this figure that the proposed scheme

consists of four main modules, namely, spatial coordinates feature generation

module, visual signals feature generation module, feature fusion module, and

confident learning module. It should be noted that we generate features from

two different modalities, i.e., the spatial coordinates of the bounding boxes,

and the visual signals corresponding to them. Hence, our scheme effectively is

a multi-modal information processing system for detecting erroneously labeled

bounding boxes in an automated fashion. In the following, we describe each

of the four modules utilized in our erroneous bounding box detection scheme

in detail.
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3.2.1 Spatial coordinates feature generation module

We first extract the useful information of the bounding box from the spatial co-

ordinates vector v. In this regard, we apply a cascade of three fully-connected

layers to the vector v to obtain the feature vector f1 (output of the module)

as:

f1 = W1(v) (3.1)

where W1 represents a cascade of three fully-connected layers that employ,

respectively, 16, 32, and 64 hidden units. All these fully-connected layers are

followed by batch normalization [18] and the ReLU activation function.

3.2.2 Visual signals feature generation module

In this module, we aim at producing the visual features, which their fusion

with the feature vector f1 obtained from the spatial coordinates feature gener-

ation module, facilitates finding the erroneous bounding boxes in the training

datasets of ADSs. Since the visual signals associated with the bounding boxes

contain a rich set of semantic and geometrical information, one could consider

using them for the task of erroneous bounding box detection. As seen from Fig-

ure 3.1(b), in order to obtain the visual signals associated with the bounding

box v, we first pass it through the binary signal construction stage to produce

the two-dimensional signal s[m,n] (0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1) as:

s[m,n] =

{
1 m0 ≤ m ≤ m1 and n0 ≤ n ≤ n1

0 O.W.
(3.2)

The two-dimensional signal s[m,n] possesses the geometrical information of

the bounding box v. Hence, it is expected that if v is a clean bounding box,

the corresponding object in the image x[m,n] fits in the area of s[m,n] specified

with the values 1. Next, we feed the image x[m,n] (which the bounding box v

belongs to) to the image instance segmentation stage to estimate all its object

components. Specifically, we pass the image x[m,n] through Mask R-CNN

[15], which is a deep learning-based image instance segmentation scheme, and

obtain the two-dimensional signal r[m,n] as:

r[m,n] = MaskRCNN(x[m,n]) =

{
1 (m,n) ∈ Oi

0 O.W.
(3.3)
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where Oi represents the i-th object of the image x[m,n]. For the network

Mask R-CNN, we employ ResNet50-FPN [28] as the backbone for the feature

extraction process. ResNet50-FPN employs several skip connections in its

network architecture, which facilitates the flow of information in both forward

and backpropagation. Further, it produces features at multiple spatial scales,

which are crucial for segmenting objects and instances with various spatial

sizes. We use 256 hidden units in the classification layer of Mask R-CNN.

The signal r[m,n] produced as the output of Mask R-CNN contains the I

objects of the image x[m,n]. Then, we obtain the IoU (intersection over

union) values between the area of the signal s[m,n] specified with the values 1

and each of the I objects in the signal r[m,n]. We refer to these IoU values as

a1, a2, ..., aI . Next, the maximum value among ai’s, which corresponds to the

most correlated object in the image x[m,n] to the bounding box v, is obtained

for constructing the signal r̆[m,n] as:

r̆[m,n] =

{
1 (m,n) ∈ Oimax

0 O.W.
(3.4)

where imax = arg
i
max(ai),

(
i = 1, ..., I

)
. It is seen from Equation (3.4) that

the signal r̆[m,n] now possesses only one object, that is the one with the

maximum correlation with the bounding box v.

After yielding the two visual signals s[m,n] and r̆[m,n], we can obtain the

vector w, whose entities represent the interactions between these two signals.

Specifically, we form the vector w as:

w = [b1, b2, b3]
T

b1 = Jaccard(s[m,n], r̆[m,n])

b2 = SSIM(s[m,n], r̆[m,n])

b3 = ∥s[m,n]− r̆[m,n]∥2

(3.5)

where Jaccard and SSIM denote, respectively, the Jaccard similarity index

and the structural similarity index measure [46] between the two visual sig-

nals. It should be noted that in addition to these three metrics, we have also

attempted to include some other similarity metrics, such as D2 pinball metric,

D2 Tweedie metric, and cosine similarity metric, in the vector w. However, we
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Algorithm 1 Obtaining Feature Vector w

1: Input: Bounding box v = [m0,m1, n0, n1]
T , Image x[m,n], v belongs to

x[m,n].
2: Output: Feature vector w.
3: Obtain s[m,n] from v using eq. (3.2).
4: Apply Mask R-CNN to x[m,n] in order to obtain r[m,n]

(
eq. (3.3)

)
.

5: for i = 1 : I (total number of objects in x[m,n]) do
6: Obtain ai = IoU(KeepOi

(r[m,n]), s[m,n]).
###KeepOi

(r[m,n]) keeps only the i-th object in r[m,n].
7: end for
8: Obtain imax = arg

i
max(ai).

9: Obtain r̆[m,n] using eq. (3.4).
10: Return w using eq. (3.5).

have observed that the inclusion of other metrics in the vector w not only does

not improve the accuracy of the task of erroneous bounding box detection, but

sometimes even deteriorates it. Hence, we only use the Jaccard, SSIM, and

ℓ2-norm metrics for constructing the vector w, as we empirically observed that

they better exploit the similarity between the two visual signals in our task.

It should be noted that the vector w obtained from the visual signals asso-

ciated with the bounding box now has a rich set of semantic and geometrical

information, which its fusion with the original representation of the bounding

box, v, could further enhance the performance of detecting erroneously labeled

bounding boxes. Finally, we apply a cascade of three fully-connected layers

to the vector w to obtain the feature vector f2 (output of the visual signals

feature generation module) as:

f2 = W2(w) (3.6)

where W2 denotes a cascade of three fully-connected layers that utilize, re-

spectively, 16, 32, and 64 hidden units. All these fully-connected layers are

followed by batch normalization [18] and the ReLU activation function.

The summary of the operations carried out in obtaining feature vector w

is given in Algorithm 1.
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3.2.3 Feature fusion module

In this module, we fuse the information obtained from the above two feature

generation modules, in order to produce a rich set of features for the task of

erroneous bounding box detection. Specifically, the feature vectors f1 and f2

are first concatenated, and the feature vector f3 is yielded. Next, the feature

vector f3 is passed through a cascade of four fully-connected layers to obtain

the estimated erroneous status ŷ of the bounding box as:

ŷ = W3(f3) (3.7)

where W3 represents a cascade of four fully-connected layers that utilize, re-

spectively, 64, 32, 16, and 1 hidden units. All these fully-connected layers,

except the final layer, are followed by batch normalization and the ReLU ac-

tivation function. The final fully-connected layer is only followed by batch

normalization.

3.2.4 Confident learning module

Even though the proposed neural network for the task of erroneous bound-

ing box detection learns a nonlinear end-to-end mapping from the features of

both the bounding boxes and visual signals to their erroneous statuses, it is

still possible that some of the estimated erroneous statuses ŷ obtained by the

proposed neural network would not be precise. To identify the bounding boxes

whose erroneous status ŷ (here, ŷ = 0 and ŷ = 1, respectively, denote the erro-

neous and clean bounding boxes) do not have high confidence, we employ the

confident learning technique. Algorithm 2 summarizes the confident learning

module employed by our proposed erroneous bounding box detection scheme.

Let y denote the true erroneous status of the bounding box v, and V

represent the set of all the bounding boxes in the training dataset of the ADS.

We first obtain the joint confidence statistic cy,ŷ between y and ŷ as:

cy,ŷ[i, j] = Count(Vy=i,ŷ=j)

Vy=i,ŷ=j = {v ∈ V|p̂(ŷ = i|v,θ) ≥ ti} i ∈ {0, 1}, j ∈ {0, 1}
(3.8)

where Count counts the number of bounding boxes with a specific property,

p̂(ŷ = i|v,θ) represents the estimated probability that the bounding box v is
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Algorithm 2 Confident Learning Module

1: Input: List of bounding boxes V of the training dataset of the ADS, List
of erroneous status ŷ estimated by the proposed neural network for the
bounding boxes V.

2: Output: List of reliable bounding boxes Vreliable.
3: for i = 0 : 1 do
4: for j = 0 : 1 do
5: Obtain the joint confidence statistic cy,ŷ[i, j] using eq. (3.8).
6: Obtain the joint probability distribution Qy,ŷ[i, j] using eq. (3.10).
7: end for
8: end for
9: S = Sortcy,ŷ(V).

### Sorts the bounding boxes in V based on their self-confidence values
in a descending order.

10: Return Vreliable by removing the last n
∑

i∈{0,1}:i ̸=j Qy,ŷ[i, j] bounding
boxes from S.

identified with the erroneous status ŷ = i (where i = 0, 1) when the predictor

employs the set of parameters θ, and ti is the expected self-confidence of the

i-th erroneous status and is given by:

ti =
1

Count(Vŷ=i)

∑
v∈Vŷ=i

p̂(ŷ = i|v,θ) (3.9)

We estimate p̂(ŷ = i|v,θ) using the random forest classifier with the set of

parameters θ. Random forest is a fast classification algorithm that by employ-

ing a small complexity, can provide reliable estimations. We set the maximum

depth and the number of trees in the random forest classifier as 7 and 100,

respectively. After obtaining the joint confidence statistics for the erroneous

status ŷ of the bounding boxes using Equation (3.8), we estimate their joint

probability distribution matrix Qy,ŷ[i, j] as:

Qy,ŷ[i, j] =

cy,ŷ [i,j]∑
i∈{0,1} cy,ŷ [i,j]

Count(Vŷ=j)∑
i∈{0,1}

∑
j∈{0,1}

(
cy,ŷ [i,j]∑

i′∈{0,1} cy,ŷ [i
′,j]

Count(Vŷ=j)
) (3.10)

The off-diagonal entities of the joint probability distribution matrix Qy,ŷ ∈

R2×2 demonstrate the probability that the bounding box v identified by our

proposed scheme as clean/erroneous was indeed erroneously/correctly labeled.

Hence, in order to identify the bounding boxes in the training dataset of the
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ADS, whose erroneous status estimated by our neural network is not reliable,

for each erroneous status ŷ = j, we remove the n
∑

i∈{0,1}:i ̸=j Qy,ŷ[i, j] bounding

boxes with the lowest joint confidence values (in this work, n = 4361, which

is 10% of the total number of bounding boxes).

Since the proposed erroneous bounding box detection scheme employs two

modalities (the spatial coordinates of the bounding boxes and the visual signals

corresponding to the bounding boxes) for obtaining the erroneous status of the

bounding boxes, we refer to it as Multi-modal Information Processing network

for Erroneous bounding box detection (MIPE).

After obtaining the erroneous bounding boxes in the dataset, the following

two scenarios can happen. First, the human annotator may not be available

to correct the erroneous bounding boxes. In this case, the identified erroneous

bounding boxes must be removed from the ADSs training dataset to avoid

jeopardizing the training process of these intelligent systems. Second, access

to the reannotation process by human experts is granted. In this case, the

detected erroneous bounding boxes can be passed to the human annotators

to be corrected. Considering that the latter scenario requires more budget

than the former, and that the availability of human annotators is not always

guaranteed in real-life situations, in this work, our main objective is to focus

on the first scenario for cleaning the ADSs training datasets. However, in order

to carry out a comprehensive study, we performed several experiments for the

second scenario as well.

3.3 Training Process

We now describe the details of the training process of the proposed erroneous

bounding box detection scheme.

3.3.1 Erroneous bounding box generation

KITTI [12] is one of the most popular datasets that is utilized for training

ADSs. Specifically, this dataset contains 6373 training images and 1108 vali-

dation images (both of size 370×1224 pixels), all acquired by a vehicle driving
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in and around Karlsruhe, Germany. We extract the 43614 bounding boxes from

the 6373 training images of the KITTI dataset for the training and evaluation

processes of the proposed MIPE. In this regard, and because the proposed

MIPE is employed for cleaning the training datasets of deep image object

detectors, we employ cross-validation, i.e., we first train the proposed MIPE

with half of the bounding boxes in the training set of KITTI (21807 bounding

boxes), and then apply it to the remaining half of the bounding boxes for ob-

taining their erroneous statuses, and vice versa. Finally, the cleaned version

of the KITTI dataset obtained by the proposed MIPE and cross-validation is

employed in the training process of deep image object detectors.

The 43614 bounding boxes of the KITTI training dataset specify objects

from 9 different classes, namely, car, van, truck, pedestrian, person (sitting),

cyclist, tram, misc., and don’t care. The number of bounding boxes for each of

these 9 classes are, respectively, 23861, 2615, 934, 4299, 222, 1445, 410, 952,

and 8876. The sizes of these bounding boxes vary in the range of [3,510] and

[3,374] pixels along the x- and y-axes, respectively.

To synthetically generate erroneous bounding boxes for the KITTI dataset,

we first create a pool of corrupting operations consisting of translation, scal-

ing, and their combinations. Specifically, we use 20 translation operations

(translating the bounding box with 10, 20, 30, 40, and 50 pixels in one of the

four directions of left, right, up, or down), 4 scaling operations (scaling the

bounding box symmetrically by factors of 0.5, 0.75, 1.25, and 1.5), and their

combinations, i.e., scaling followed by the translation operation, mounting to

the total number of 104 operations. It is worth noting that since the spatial

size of the images in the KITTI dataset is 370× 1224 pixels, we observe that

the parameters used for the translation and scaling operations in our pool re-

sult in producing a diverse set of realistic erroneous bounding boxes. We then

randomly select an operation from our corrupting pool thus created and apply

it to a random bounding box chosen from the KITTI dataset. We carry out

this process on the α percentage of the bounding boxes of the KITTI dataset

(in this work, we set α = 25, 50, and 75). We assign the erroneous status y = 0

to the bounding boxes that are changed by the operations of the pool, and
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y = 1 to those that are kept unchanged. Figure 3.2 shows several erroneous

bounding boxes generated by the above process.

3.3.2 Training details of MIPE

As seen from Figure 3.1, the proposed scheme consists of two trainable parts,

i.e., the image instance segmentation stage, which is Mask R-CNN, and the

network used to map the vectors v and w to the erroneous status y of the

bounding box. We first train Mask R-CNN with 200 images of the KITTI

Instance Segmentation dataset [12] and their corresponding instance segmen-

tation maps. Specifically, this dataset consists of two parts, training part and

testing part, each containing 200 images (of size 370×1224 pixels), where only

the images of the training part are associated with the ground truth instance

segmentation maps. The stochastic gradient descent (SGD) optimizer with a

learning rate of 0.005 is utilized for training Mask R-CNN. The batch size in

each training iteration of Mask R-CNN has been chosen as 1. The training

process of Mask R-CNN is continued for 6000 iterations. When training Mask

R-CNN is finished, we employ it as a fixed stage (freeze its parameters) in

the architecture of the proposed MIPE. Finally, we train the proposed MIPE

(a) (b)

(c) (d)

Figure 3.2: Examples of erroneous bounding boxes that are synthetically pro-
duced for our experiments. Corrupting operations are: (a) scaling by a factor
of 1.25, (b) translating up by 10 pixels, (c) scaling by a factor of 0.75, followed
by translating left by 20 pixels, (d) scaling by a factor of 1.25, followed by
translating right by 10 pixels. All operations are applied to 50% of the bound-
ing boxes.
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with the bounding boxes of the KITTI dataset (this dataset is different than

that used for training Mask R-CNN) and their erroneous status y using the

Adam optimizer [20] with an initial learning rate of 0.1. The batch size in each

training iteration of MIPE is 6. The training process of the proposed MIPE

is continued for 191220 iterations. We decrease the learning rate by a factor

of 10 after each 60000 iterations.
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Chapter 4

Experimental Results

In Chapter 3 we proposed a new scheme for erroneous bounding box detec-

tion, and went through the algorithmic procedure. In this Chapter, we will

dive deep into the experimental results conducted, and further demonstrate

the effectiveness and superiority of the proposed erroneous bounding box de-

tection scheme in cleaning the datasets of autonomous driving systems, com-

pared to the state-of-the-art data selection schemes. We will perform several

ablation studies to verify the usefulness of different modules employed in the

proposed erroneous bounding box detection scheme. We will also compare the

performance of the proposed scheme with those of the state-of-the-art data

selection methods for both the tasks of erroneous bounding box detection and

image object detection. Finally, we will examine the effectiveness of MIPE in

domains other than ADSs.

4.1 Effectiveness of Employing Multi-modal In-

formation Processing by MIPE

To investigate whether the processing of both the spatial coordinates of the

bounding boxes and their associated visual signals is effective in identifying

the erroneous bounding boxes accurately, we form the two following variants

of the proposed erroneous bounding box detection scheme:

Proposed scheme without employing spatial coordinates feature gen-

eration module In this variant, we remove the spatial coordinates fea-

ture generation module from the proposed erroneous bounding box detection
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Table 4.1: Effectiveness of employing the multi-modal information processing
technique by the proposed MIPE. All performances are in terms of accuracy
(%).

Method 25% Err. Rate 50% Err. Rate 75% Err. Rate
W/O Spatial Coordinates 90.23 82.15 73.57

W/O Visual Signals 88.56 68.05 64.79
Proposed Scheme 93.66 88.72 82.46

The values in red indicate the best performance.

scheme.

Proposed scheme without employing visual signals feature genera-

tion module In this variant, we remove the visual signals feature generation

module from the proposed scheme.

We train the proposed scheme and its two above-variants with the bound-

ing boxes of the KITTI training dataset with 25%, 50%, and 75% error rates.

Table 4.1 gives the accuracy of the proposed scheme and its two variants ob-

tained using cross-validation. It is seen from the results of this table that

indeed processing both the spatial coordinates of the bounding boxes and the

visual signals associated with them have a positive impact on providing a

superior erroneous bounding box detection performance. Since the features

generated by the visual signals exploit the geometrical and structural infor-

mation associated with each bounding box efficiently, their incorporation with

the features obtained from the spatial coordinates enhances the performance

of the erroneous bounding box detection task.

It is seen from the results of Table 4.1 that the network, which merely pro-

cesses the visual signals associated with the bounding boxes is able to provide

superior performance to the one employing only the spatial coordinates of the

bounding boxes. This shows that the distributions of the features generated

from the visual signals associated with the bounding boxes are more discrim-

inable for a classifier than those produced by the spatial coordinates of the

bounding boxes.
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Table 4.2: Effectiveness of employing the confident learning technique by the
proposed MIPE. All performances are in terms of accuracy (%).

Method 25% Err. Rate 50% Err. Rate 75% Err. Rate
W/O CL Module 89.42 85.12 79.58
Proposed Scheme 93.66 88.72 82.46

The values in red indicate the best performance.

4.2 Effectiveness of Employing Confident Learn-

ing by MIPE

The final module employed by the proposed erroneous bounding box detection

scheme is confident learning, which identifies the bounding boxes that are

unreliably estimated by our neural network as clean/erroneous. To determine

the impact of the confident learning module used in our scheme on enhancing

the accuracy of the task of erroneous bounding box detection, we form a variant

of the proposed scheme by removing the confident learning module. It should

be pointed out that both the proposed scheme and its variant that does not

employ the confident learning module utilize both the features of the spatial

coordinates of the bounding boxes and the visual signals associated with them

for identifying the erroneous status of the bounding boxes. Table 4.2 gives the

accuracy of the proposed scheme and its variant without the confident learning

module.

It is seen from the results of this table that employing the confident learn-

ing module in the proposed scheme indeed contributes to enhancing the per-

formance of the task of erroneous bounding box detection. Specifically, the

accuracy of identifying the erroneous status of the bounding boxes correctly is

improved by 4.24%, 3.60%, and 2.88%, in the cases of the three different error

rates, when the confident learning module is incorporated in the proposed erro-

neous bounding box detection scheme. In fact, the confident learning module

leverages the statistical information associated with the estimated erroneous

statuses of the bounding boxes, and identifies those that are predicted with

low confidence. Hence, by pruning the low-confident estimations, a superior

erroneous bounding box detection performance is yielded.
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Table 4.3: Comparison between different classifiers employed by the confident
learning module of the proposed MIPE. All performances are in terms of ac-
curacy (%).

Method 25% Err. Rate 50% Err. Rate 75% Err. Rate
Base Accuracy (W/O CL) 89.42 85.12 79.58

CL (Näıve Bayes) 91.41 86.29 81.24
CL (Neural Network) 91.57 86.69 80.44

CL (SVM) 93.21 87.73 82.14
CL (Random Forest) 93.66 88.72 82.46

It is mentioned in Section 3.2.4 that we estimated p̂(ŷ = i|v,θ) using the

random forest classifier. To investigate the impact of using the random forest

classifier in the confident learning module on the performance of MIPE, we now

replace random forest with three other fast classification algorithms, namely,

näıve Bayes, SVM, and neural network with 50 hidden units, for estimating

p̂(ŷ = i|v,θ). Table 4.3 gives the results of this experiment.

As seen from this table, the best performance of the proposed MIPE is

achieved when its confident learning module employs the random forest clas-

sifier for estimating the probability p̂(ŷ = i|v,θ).

4.3 Comparison between MIPE and an En-

semble of Deep Image Object Detectors

It has been shown in Section 4.1 that the use of the visual signals associated

with the bounding boxes has a significant impact in assessing their erroneous

statuses correctly. Given this observation, one could argue that there exist

other ways of using the visual signals corresponding to bounding boxes to

determine their erroneous statuses. One such way is to employ an ensemble of

deep learning-based image object detection schemes and take their agreement

with the given bounding box as a metric in order to determine its erroneous

status. Following this, we design an experiment, in which the performance

of the proposed MIPE is compared with that of the ensemble of deep image

object detectors. Specifically, we apply the three deep image object detectors,

Faster R-CNN [40], RetinaNet [29], and FCOS [43], to the image x[m,n] that
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Table 4.4: Effectiveness of the proposed MIPE against an ensemble of deep
image object detectors. All performances are in terms of accuracy (%).

Method 25% Err. Rate 50% Err. Rate 75% Err. Rate
Ensemble of Detectors 73.51 54.97 41.42

Proposed Scheme 93.66 88.72 82.46

The values in red indicate the best performance.

the given bounding box v belongs to. Then, for each of the deep image object

detectors, we obtain the bounding box estimated by it that has the maximum

IoU with the given bounding box v. Next, we calculate the Euclidean distance

between the estimated bounding box thus obtained from each deep image

object detector and the given bounding box v. Finally, we compare the average

Euclidean distances of the three deep image object detectors with a pre-defined

threshold. If the average of the Euclidean distances is above this threshold, it

can be concluded that the given bounding box is erroneous. Otherwise, the

average value lower than the threshold would indicate that the bounding box

v is clean.

Table 4.4 gives the results of the above experiment. It should be pointed

out that the value of the threshold is empirically set to 0.5. It is seen from the

results of this table that the proposed MIPE indeed is a more effective way for

cleaning the datasets of ADSs in comparison to the ensemble method, even

though both of the schemes employ visual signals for carrying out the task

of erroneous bounding box detection. For example, it is seen from Table 4.4

that the performance of MIPE is 20.15%, 33.75%, and 41.04% superior to that

of the ensemble method in the cases of the 25%, 50%, and 75% error rates,

respectively. This superiority of the proposed MIPE can be attributed to mul-

tiple factors, including the end-to-end learning capability between the input

features of the bounding boxes and their erroneous statuses, multi-modal in-

formation processing from both the bounding boxes’ spatial coordinates and

their corresponding visual signals, and the confident learning module for prun-

ing the low-confident estimated erroneous statuses.

28



4.4 Comparative Study of Performance of MIPE

for Erroneous Bounding Box Detection

As mentioned in Chapter 1, the proposed erroneous bounding box detection

scheme is necessarily a data selection method that is designed for cleaning

the training datasets of ADSs. To investigate the effectiveness of the pro-

posed scheme in a comprehensive manner, we compare its performance with

those of XGBoost [8], RTDL (FT-Transformer) [13], SimiFeat [54] (all are

supervised learning-based data selection methods), Ranked Batch AL [6] (ac-

tive learning-based data selection method), S3VM [3] and VIME [49] (semi-

supervised learning-based data selection methods), and CL [33] (confident

learning-based data selection method). Specifically, we compare the accu-

racy of these schemes in identifying the clean and erroneous bounding boxes

correctly.

We also evaluate the impact of the data cleaning process performed by

the proposed scheme on the performance of the deep image object detectors

utilized in ADSs. In this regard, we compare the performances of the two deep

image object detectors, namely, Faster R-CNN [40] and RetinaNet [29], in

different cases that they are trained with the KITTI dataset whose bounding

boxes are cleaned using the proposed scheme and the other data selection

methods.

In order to scrutinize the effectiveness of the proposed MIPE, we compare

its accuracy for the task of erroneous bounding box detection with those of

the other state-of-the-art data selection methods (mentioned in the previous

paragraph). Table 4.5 gives the accuracy of these different methods in identi-

fying the erroneous status of the bounding boxes correctly. We cannot obtain

the accuracy of Ranked Batch AL [6], since this scheme is completely carried

out by accessing annotators (however, we investigate its effectiveness on the

performance of deep image object detectors in the next Section).

It is seen from the results of this table that the proposed erroneous bound-

ing box detection scheme, MIPE, is able to discriminate between the clean

and erroneous bounding boxes more accurately than the other state-of-the-art
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Table 4.5: Comparative study of the proposed MIPE for the task of erroneous
bounding box detection. All performances are in terms of accuracy (%).

Dataset KITTI [12] BDD100K [50] Waymo [41]
Err. Rate 25% 50% 75% 25% 50% 75% 25% 50% 75%

Method

SVM 80.57 53.86 47.41 80.38 53.00 67.26 80.36 55.56 67.00
XGBoost [8] 80.97 57.47 49.16 80.92 55.08 68.12 80.86 56.76 67.53
S3VM [3] 73.67 50.35 61.31 74.62 51.39 61.27 73.91 50.28 60.99
VIME [49] 81.84 59.75 58.26 80.98 55.95 68.38 80.94 57.16 67.90

Ranked Batch AL [6] N/A N/A N/A N/A N/A N/A N/A N/A N/A
RTDL [13] 82.02 59.23 51.77 81.38 56.10 68.53 81.05 57.46 68.39

SimiFeat [54] 84.48 69.99 71.00 82.07 56.32 69.20 81.20 57.54 69.30
CL [33] 84.59 71.26 70.87 82.43 55.34 71.23 81.55 58.12 70.31

Proposed MIPE 93.66 88.72 82.46 84.91 68.88 75.64 84.46 65.73 73.41

The values in red indicate the best performance.

data selection methods do. For example, the accuracy of the proposed MIPE

is 9.07%, 17.46%, and 11.59%, higher than that of the second best-performing

data selection method, CL [33], in the cases of the 25%, 50%, and 75% er-

ror rates of the KITTI dataset. This significant improvement of the accuracy

of MIPE over those of the other data selection methods is achieved in light

of the processing of the visual signals corresponding to the bounding boxes,

since they are more interpretable to the classifier for identifying the clean and

erroneous bounding boxes. Further, the results of Table 4.5 confirm the im-

portance of the objective of this work, i.e., the development of a novel data

selection method that is specified for the task of erroneous bounding box de-

tection, as the performances of the existing data selection methods for such a

task are limited.

By comparing the results of Tables 4.2 and 4.5, it is seen that the perfor-

mance of the variant of the proposed MIPE that does not employ the confident

learning module is still significantly higher than those of the other state-of-the-

art data selection methods. Therefore, it can be concluded that even though

the use of the confident learning module by the proposed MIPE helps enhance

its performance, the proposed scheme without employing the confident learn-

ing module is still able to significantly outperform the existing data selection

methods in cleaning the training datasets of ADSs.

We now investigate the effectiveness of the proposed MIPE in the case of

the training datasets with bounding boxes that are misannotated by different
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levels of severity. In this regard, we consider 5 levels of severity for corrupt-

ing the bounding boxes based on the IoU metric. Specifically, we randomly

select an operation from the corrupting pool and apply it to a bounding box

that is randomly chosen from the KITTI dataset. We next measure the IoU

metric between the new erroneous bounding box generated by the corrupt-

ing operation and its clean version. Since the value of the IoU metric lies

within the range of [0, 1], we divide this range into 5 equally-spaced bins to

determine the level of severity of the erroneous bounding box. We consider

the first bin, i.e., [0.8, 1], as severity level 1, and similarly, the last bin, i.e.,

[0, 0.2), as severity level 5. Therefore, the level of severity of the erroneous

bounding box is considered to be the same as the bin number corresponding

to the IoU value with its clean version. We form a version of the KITTI train-

ing dataset with 50% erroneous bounding box rate for each of the 5 levels of

the misannotation severities. Figure 4.1 shows the accuracy of the proposed

MIPE and the other data selection methods as a function of the severity level

of the misannotation. The following remarks can be made from this figure.

First, it is seen that the accuracy of the proposed MIPE in detecting erroneous

bounding boxes is significantly superior to those of the other data selection

methods in the cases of all the 5 severity levels of the misannotation. Sec-

ond, it is observed that, except for the proposed MIPE, whose performance

degrades consistently by increasing the level of the severity of misannotation,

the performance of the other schemes does not always decrease as a function

of the severity level. Specifically, the performance of the other data selection

methods in the case of severity level 4 is slightly superior to those in the case of

severity level 3. We argue that since the other data selection methods employ

only the spatial coordinates of the bounding boxes, their sensitivity to the

change in distribution of the erroneous bounding boxes is not as high as that

of the proposed scheme, which processes the visual signals in addition to the

spatial coordinates. Therefore, these schemes could provide some potentially

unreliable results when the distribution of the erroneous bounding boxes is

changed in a slight regime.
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4.5 Effectiveness of MIPE in Developing more

Secure and Reliable ADSs

As we have mentioned in Chapter 3, the main objective of this work is to

clean the training datasets of ADSs that employ deep image object detection

blocks, since training these intelligent systems with erroneously labeled train-

ing samples leads to a reduction in both their performance and security in

real-world situations. To investigate the impact of the proposed MIPE in de-

veloping more reliable ADSs, we carry out an experiment, in which the two

deep image object detectors, namely, Faster R-CNN [40] and RetinaNet [29],

are trained by different versions of the KITTI, BDD100K [50], and Waymo

[41] training datasets, each containing different numbers of erroneously la-

beled bounding boxes. The KITTI training dataset consists of 6373 images

and 43614 bounding boxes. These bounding boxes specify objects from 9

Figure 4.1: Accuracy of various data selection methods as a function of the
severity level of misannotation.
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different classes, namely, car, van, truck, pedestrian, person (sitting), cyclist,

tram, misc., and don’t care. The BDD100K training dataset has 70000 images

and 1273707 bounding boxes, where the objects related to the bounding boxes

are from 10 different classes, namely, pedestrian, rider, car, truck, bus, train,

motorcycle, bicycle, traffic light, and traffic sign. Finally, the Waymo training

dataset contains 798 images and 19625 bounding boxes. The bounding boxes

are from classes vehicle, pedestrian, cyclist, and sign. Similar to the task of

erroneous bounding box detection, we use the KITTI [12], BDD100K [50], and

Waymo [41] Object Detection datasets for training and evaluation of the two

deep image object detection networks, Faster R-CNN [40] and RetinaNet [29].

The description of the training set of the KITTI dataset [12] is thoroughly ex-

plained in Section 3.3, and for BDD100K and Waymo is explained above. For

evaluating the performance of the deep image object detectors, we use the val-

idation sets of these datasets (since their test datasets do not consist of ground

truth bounding boxes). The KITTI validation dataset contains 1108 images

and 8251 bounding boxes. Specifically, the validation images of the KITTI

dataset are annotated based on 8 classes, namely, car, van, truck, pedestrian,

cyclist, tram, misc., and don’t care. The number of bounding boxes in each of

these 8 classes are, respectively, 4881, 299, 160, 188, 182, 101, 21, and 2419.

The sizes of these bounding boxes vary in the range of [7,444] and [4,360] pix-

els along the x- and y-axes, respectively. The BDD100K validation dataset

contains 10000 images and 185945 bounding boxes from 10 classes (similar to

its training dataset), where the number of bounding boxes in each of these 10

classes are, respectively, 13425, 658, 102837, 4243, 1660, 15, 460, 1039, 26884,

and 34724. Finally, for the Waymo validation dataset, we have 202 images and

4534 bounding boxes, where each class consists of, respectively, 3463, 1039, 32,

and 0 number of samples (no objects of class sign included). We train the two

image object detectors with each of the training datasets in the following cases:

1) Clean dataset In this case, all the bounding boxes of each training

dataset are clean. This is the ideal case and provides the upper bound of the

performance for the object detectors.

2) Dataset with erroneously labeled samples For this case, we consider
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three versions of each training dataset, namely, dataset with 25%, 50%, and

75% error rates, that correspond to applying the corrupting operations from

the pool to 25%, 50%, and 75% of the bounding boxes of each training dataset,

respectively.

3) Dataset cleaned by different data selection methods In this case,

we first apply the corrupting operations to 25%, 50%, and 75% of the bound-

ing boxes of each training dataset, and then clean them by the various data

selection methods mentioned in Section 4.4. Specifically, in this case, we as-

sume that the annotators are not available to correct the bounding boxes that

are identified as erroneous by each of the data selection methods. Therefore,

we remove these erroneous bounding boxes from the training dataset of the

ADS.

The training process of Faster R-CNN has been carried out using the

stochastic gradient descent optimizer with the learning rate 0.01 for 174000

iterations. We decrease the learning rate by a factor of 10 after each 58000

iterations. The batch size in each training iteration of Faster R-CNN has been

chosen as 1. In the training process of RetinaNet, the stochastic gradient de-

scent optimizer with the learning rate 0.001 has been employed. We decrease

the learning rate by a factor of 10 after each 11600 iterations. The training

process of RetinaNet has been continued for 29000 iterations with batches of

size 1. After training the two deep image object detectors, we evaluate their

performances in terms of the IoU between the estimated and ground truth

bounding boxes of the KITTI, BDD100K, and Waymo validation datasets. It

should be pointed out that as Faster R-CNN is a two-stage deep image ob-

ject detector, while RetinaNet is a one-stage detector, we use two different

threshold values for their IoU metrics at inference time. Specifically, we use

the IoU threshold values of 0.35 and 0.45, respectively, for Faster R-CNN and

RetinaNet. The results of these experiments are given in Table 4.6.

It is seen from this table that cleaning the training datasets of ADSs with

the proposed MIPE leads to providing deep image object detectors with higher

detection performances. For example, it is seen from the results of Table 4.6

that, in the case of the KITTI dataset with 50% error rate, Faster R-CNN and
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RetinaNet trained with the datasets cleaned by MIPE can provide IoU values,

that is, respectively, 5.39% and 3.49% higher than those obtained by clean-

ing the dataset with CL [33] (second best-performing data selection method).

Since our scheme, MIPE, processes the crucial information associated with the

bounding boxes, such as their geometrical interaction with the visual signals,

it is able to provide superior IoU metrics for the deep image object detection

blocks of ADSs. In other words, the cleaning process of the training datasets

of ADSs is performed in a more suitable fashion by the proposed MIPE, com-

pared to that carried out by the other data selection methods, which in turn

better suppresses the bounding boxes with incorrect sizes, whose inclusion in

the training process leads to a reduction in the performance of deep image

object detectors.

Figure 4.2 shows examples of the outputs of Faster R-CNN, when it is

trained with the clean KITTI training dataset, KITTI training dataset with

50% error rate, and KITTI training dataset with 50% error rate that is then

cleaned by the proposed MIPE. It is seen from this figure that training deep

image object detection blocks of ADSs with samples contaminated with erro-

neous labels leads to predicting very imprecise bounding boxes, and therefore,

increases the risk of colliding the vehicle with other objects. On the other

Table 4.6: Comparative study of the proposed MIPE in developing more secure
and reliable ADSs.

Dataset KITTI [12] BDD100K [50] Waymo [41]
Err. Rate 0%∗ 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

Object Detector

Faster R-CNN [40]

No Data Selection 78.11 70.60 62.69 55.12 80.27 77.43 75.14 71.25 75.71 72.31 70.87 68.73
SVM - 72.25 67.47 59.94 - 78.09 75.73 72.19 - 72.61 71.11 69.45

XGBoost [8] - 72.67 68.34 63.47 - 78.39 75.87 74.59 - 72.69 71.28 69.59
S3VM [3] - 71.06 65.03 64.73 - 77.91 76.15 74.64 - 72.47 70.95 70.11
VIME [49] - 73.14 67.71 64.27 - 78.58 76.44 74.72 - 73.11 71.43 70.18

Ranked Batch AL [6] - 71.89 69.94 62.59 - 78.72 76.62 74.81 - 73.34 71.67 70.41
RTDL [13] - 73.77 69.28 64.26 - 78.64 76.53 74.73 - 73.23 71.54 70.24

SimiFeat [54] - 74.47 70.33 69.58 - 78.83 76.69 74.93 - 73.89 71.85 70.63
CL [33] - 74.83 70.79 70.52 - 78.92 76.83 74.96 - 74.52 72.04 70.82

Proposed MIPE - 77.10 76.18 72.37 - 79.41 78.21 77.08 - 75.22 74.20 72.93

RetinaNet [29]

No Data Selection 78.91 68.22 62.29 55.97 79.51 73.79 72.04 70.72 75.82 73.65 71.07 68.70
SVM - 73.50 64.71 59.22 - 74.11 72.81 70.97 - 73.95 72.34 70.65

XGBoost [8] - 73.57 65.14 60.04 - 74.25 72.99 71.02 - 74.12 72.38 70.65
S3VM [3] - 70.03 63.67 61.67 - 73.95 72.44 71.08 - 73.80 71.29 70.70
VIME [49] - 73.38 64.56 62.45 - 74.89 72.55 71.11 - 74.31 73.24 70.87

Ranked Batch AL [6] - 74.67 65.91 58.14 - 75.27 72.78 71.23 - 74.45 73.56 71.23
RTDL [13] - 73.84 65.85 60.53 - 75.13 72.74 71.19 - 74.39 73.41 71.15

SimiFeat [54] - 75.51 66.15 63.25 - 75.42 72.92 71.28 - 74.67 73.62 71.50
CL [33] - 75.77 68.16 63.64 - 76.60 73.04 71.33 - 74.98 73.90 71.88

Proposed MIPE - 76.21 71.65 68.20 - 78.53 75.11 73.54 - 75.26 74.31 72.27

The values in red indicate the best performance.
∗ All Clean.
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Figure 4.2: Bounding boxes predicted by Faster R-CNN in the cases where
the network is trained with different training datasets. Green bounding boxes
denote the ground truth and red bounding boxes represent the predictions
obtained by Faster R-CNN.

hand, applying the proposed MIPE to the training datasets of ADSs, to clean

them from erroneously labeled samples, results in predicting bounding boxes

that are very similar to the ground truth. This could remarkably improve the

safety and reliability of ADSs by helping them navigate more securely.

It should be noted that we have targeted two objectives in order to evaluate

the effectiveness of the proposed MIPE, i.e., evaluating the effectiveness of the

proposed MIPE in identifying the erroneous bounding boxes in the training

dataset of ADSs, and evaluating the impact of cleaning the dataset performed

by MIPE on the performance of the deep image object detection blocks of

ADSs. It can be seen that the former is the task of erroneous bounding box

detection, while the latter is the task of image object detection. Each of these

two tasks has its specific evaluation metrics. Tables 4.1, 4.2, 4.3, 4.4, and 4.5

contain the results of the erroneous bounding box detection task. Since this

task effectively is a binary classification problem, we have used the accuracy

metric (in %) of identifying the correct labels for reporting the results of these

tables. On the other hand, Table 4.6 includes the results of the image object

detection task. In this regard, we have used the intersection over union (IoU)

metric for obtaining the results of these tables. It should be noted that the

IoU metric is a geometrical measurement that evaluates the performance of

the task of image object detection in terms of pixels. Therefore, the perfor-

mance improvement obtained by the cleaning process of the proposed MIPE
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has indeed been reported in terms of pixels. Based on the above explana-

tions, by reporting the performances of the two tasks of erroneous bounding

box detection and image object detection using the accuracy and IoU met-

rics, respectively, we can evaluate both how much overall the proposed MIPE

is successful in identifying the total number of misannotated bounding boxes,

and how much it accomplished in discerning the misannotated bounding boxes

with larger units of corrupting operations. If the proposed MIPE cannot de-

tect the bounding boxes with the larger units of corrupting operations, they

will be kept in the training process of the deep image object detector, and

hence, negatively impact its performance in terms of IoU. In this case, it is le-

gitimate to suppose that the failure of the proposed MIPE in identifying such

misannotated bounding boxes results in making the network proportionally

estimate the bounding boxes with larger geometrical errors. This error can be

effectively measured by the IoU metric, which is itself a metric for measuring

the geometrical information.

As we have mentioned above, in order to perform our experiments realisti-

cally, for obtaining the results of Table 4.6, we assume that access to annotators

is not granted, and therefore, we clean the datasets by removing the erroneous

bounding boxes from them. Hence, the performance of the deep image object

detectors, especially in the case of the 75% error rate, drops significantly, as

in this case, the majority of the bounding boxes are erroneous, and removing

them results in producing a training dataset with a small number of bounding

boxes. To further investigate the merits of the proposed MIPE in cleaning

the training datasets of ADSs, we also carry out an experiment, in which we

suppose that the annotators are available for correcting the bounding boxes

that are identified as erroneous. In this regard, we first apply the proposed

MIPE to the bounding boxes of the dataset and determine their erroneous

statuses. We then keep the bounding boxes that are detected clean as they

are, and replace those that are identified as erroneous by their clean versions.

Table 4.7 gives the performance of Faster R-CNN trained with the KITTI

dataset cleaned by the proposed MIPE, when access to the annotators is also

granted.
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Table 4.7: Effectiveness of cleaning the dataset with the proposed MIPE in
tandem with the annotators. All performances are in terms of accuracy (%).

Access to Annotator 25% Err. Rate 50% Err. Rate 75% Err. Rate
No 77.10 76.18 72.37
Yes 77.41 77.10 76.07

The values in red indicate the best performance.

It is seen from the results of this table that, as expected, the proposed

MIPE in tandem with the annotators results in designing ADSs that are more

secure and reliable, compared to the case where annotators are not available.

The results of this table confirm the fact that correcting the misannotated

bounding boxes by human experts is a better way to clean the training datasets

of ADSs, in comparison to the case of simply discarding such bounding boxes.

However, it should be pointed out that the human annotation process is always

accompanied by increased costs and the need for further budget.

It is also to be noted that the accuracies of the deep image object detection

networks reported in Table 4.6 for the case of the clean (accurate) datasets

are obtained when such networks are trained with the original datasets, in

which no corrupting operation is synthetically applied to the bounding boxes.

For this case, we have not employed our proposed erroneous bounding box

detection scheme, MIPE, to clean the training datasets of the deep image ob-

ject detectors. To investigate the impact of the proposed MIPE in identifying

low-quality bounding boxes, we now perform a new experiment, in which the

proposed MIPE is applied to the original datasets of the deep image object

detectors for identifying the bounding boxes, whose qualities are not as high as

expected. The performances of the two deep image object detection networks,

Faster R-CNN and RetinaNet, trained with the original datasets of KITTI,

BDD100K, and Waymo that are cleaned by the proposed MIPE, are given in

Table 4.8.

It is seen from this table that identifying low-quality bounding boxes in

the original datasets of ADSs and removing them from the training process

undoubtedly has a positive impact on enhancing the performance of the task

of image object detection.
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Table 4.8: Effectiveness of MIPE on cleaning the original training datasets of
ADSs. All performances are in terms of accuracy (%).

Dataset Object Detector No Data Selection (All Clean) Proposed MIPE

KITTI [12]
Faster R-CNN [40] 78.11 79.47
RetinaNet [29] 78.91 79.85

BDD100K [50]
Faster R-CNN [40] 80.27 81.61
RetinaNet [29] 79.51 80.72

Waymo [41]
Faster R-CNN [40] 75.71 77.84
RetinaNet [29] 75.82 77.93

The values in red indicate the best performance.

Table 4.9: Effectiveness of MIPE in cleaning the dataset of domains other than
ADSs. All performances are in terms of accuracy (%).

Object Detector PASCAL VOC Err. Rate No Data Selection Proposed MIPE

Faster R-CNN [40]

0% (All Clean) 70.42 -
25% 67.23 67.71
50% 65.40 66.66
75% 60.89 62.11

RetinaNet [29]

0% (All Clean) 70.84 -
25% 68.73 69.57
50% 66.76 68.53
75% 63.71 64.65

The values in red indicate the best performance.

4.6 Effectiveness of MIPE in Other Domains

The effectiveness of the proposed MIPE in developing secure and reliable ADSs

using deep learning-based image object detection blocks is confirmed in the

previous Section. To investigate whether the proposed MIPE is also effective

for the cleaning process of the datasets of the deep image object detectors

used in domains other than autonomous driving systems, we perform another

experiment. Specifically, we train Faster R-CNN and RetinaNet with the train-

ing images of the PASCAL VOC [10] dataset, which contains visual signals

from generic images (including person, animal, vehicle, etc.), in the follow-

ing 3 cases: training with the clean dataset, training with the dataset with

erroneously labeled samples, and training with the dataset cleaned by the pro-

posed MIPE. The descriptions of these 3 cases are thoroughly explained in the

previous Section. The results of these experiments on the 17125 images with

cross-validation are given in Table 4.9.
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Table 4.10: Execution time of the proposed MIPE for the task of erroneous
bounding detection.

Method Execution time per bounding box
SVM 0.6619 (ms)

XGBoost [8] 0.8462 (ms)
S3VM [3] 190.1983 (ms)
VIME [49] 289.3744 (ms)

Ranked Batch AL [6] N/A
RTDL [13] 37.0182 (ms)

SimiFeat [54] 128.7240 (ms)
CL [33] 0.5683 (ms)

Proposed Scheme 369.6431 (ms)

It is seen from this table that the proposed MIPE is able to enhance the

performance of Faster R-CNN and RetinaNet by 0.48% & 0.84%, 1.26% &

1.77%, and 1.22% & 0.94%, in the cases of the 25%, 50%, and 75% error rates,

respectively. Hence, it can be concluded from the results of Table 4.9 that the

use of the proposed MIPE is not restricted to only ADSs, and our method can

be generally employed for cleaning various image object detection datasets.

4.7 Time Complexity of MIPE

It is seen from the previous sections that the proposed MIPE is indeed a very

effective method for cleaning the training datasets of ADSs employing deep

learning-based image object detection blocks. We now investigate the exe-

cution time of the proposed MIPE to evaluate its complexity. It should be

noted that since the proposed MIPE is a multi-modal information processing

system that is specifically developed for the task of erroneous bounding box

detection, we expect that its time complexity is higher than those of the other

uni-modal data selection methods, which merely process the spatial coordi-

nates of the bounding boxes. Therefore, our main objective in this Section is

to investigate whether the execution time of the proposed MIPE is reasonable

enough for real-life applications. Table 4.10 gives the execution time of the

proposed MIPE and the other data selection methods used in our comparison

for determining the erroneous status of a single bounding box.
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It is seen from the results of this table that even though the proposed

MIPE requires a larger execution time for obtaining the erroneous status of

a given bounding box compared to the other methods, its time complexity is

still acceptable in many real-world situations. Since the proposed MIPE is

only used for cleaning the training datasets of ADSs prior to their training

stages, its time complexity does not have any impact on the execution speed

of ADSs.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

Developing secure and reliable ADSs is one of the crucial tasks in the com-

munity of intelligent vehicles, since these systems must be applied in safety-

critical scenarios. The reliability of ADSs is very much dependent on their

model components and the datasets used for their training process. In several

realistic situations, the models of ADSs are meticulously optimized to work

well under various conditions. However, often not much attention has been

paid to ensure that the training datasets of ADSs contain samples with clean

and correct labels. The existence of training samples that are labeled erro-

neously in the training datasets of ADSs could lead to a serious impact on both

their performance and reliability. Given these points, in this work, we have

developed a high-performance erroneous bounding box detection method for

cleaning the datasets of ADSs employing deep image object detectors. Specifi-

cally, we have focused on identifying the bounding boxes in the dataset that are

erroneously annotated. In this regard, we have incorporated two techniques,

namely, multi-modal information processing and confident learning, in order

to detect the erroneously labeled bounding boxes in the dataset accurately

prior to the training process of ADSs. The results of various experiments

have shown the effectiveness of different ideas used in the development of the

proposed scheme. It has been shown that the proposed scheme significantly

outperforms the other state-of-the-art data selection methods in cleaning the

datasets of ADSs employing deep image object detectors. Finally, it has been

42



shown that this cleaning process, in turn, leads to the development of more

secure and reliable ADSs that employ deep image object detectors.

5.2 Future Work

As mentioned in Section 2.3, even though there exists a few schemes in the

literature for detecting samples with erroneous labels in the training datasets

of DNNs, to the best of our knowledge, an explicit algorithm for identifying

the erroneously labeled bounding boxes of ADSs prior to our work has not

been developed. The following is a list of potential research directions that

can be further investigated succeeding this work:

• Datasets: In this work, we aimed to evaluate our dataset cleaning scheme

on three popular ADS datasets: KITTI [12] , BDD100K [50], and Waymo

[41]. The performance of our scheme can be further assessed under other

ADS datasets, and even extended to domains other than ADSs (e.g.,

PASCAL VOC [10], which has been partly investigated in this work).

• Object detectors: Regarding image object detectors, our primary focus

was on two, namely, Faster R-CNN [40] and RetinaNet [29]. This work

can be further expanded to include other image object detectors, for

example, YOLO [38] architectures.

• Data domain: To tackle the task of erroneous label detection, we focused

our attention on the image data available in the ADS community. How-

ever, ADSs operate in other data domains as well, such as point cloud

data, which is attributed to LiDAR. The work carried out here can be

studied in other data domains.

• Algorithm: As mentioned in Chapter 3, our scheme was centered around

two key parts: multi-modal information processing and confident

learning. Considering the former, fusing can be further extended to

other data domains, enabling a potentially more viable scheme for clean-

ing the datasets of ADSs. Regarding the latter, it can be substituted,
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should there be a more impactful module for estimating the uncertainty

of the erroneous status of the labels in the upcoming future.
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