
University of Alberta

Texture Analysis/Synthesis Using Gray Level Aura Matrices

By

Xuejie Qin

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta, Canada
Fall 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-23096-1
Our file Notre reference
ISBN: 978-0-494-23096-1

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Texture modeling plays an im portant role in computer graphics, vision and image

processing. Although various techniques have been developed for the study o f texture

analysis and synthesis, the mathematical definition of texture is still unclear. D ue to the

vague definition of texture, each technique has its own advantages and disadvantages,

and thus fails to model certain types of textures.

This thesis presents a new unified mathematical framework for modeling textures

using BGLAM s (Basic Gray Level Aura Matrices). The new framework will provide

important understanding in texture modeling in both computer vision and com puter

graphics. It is proved that BGLAMs form a basis of GLAMs (Gray Level Aura M atrices),

and that two images are identical if and only if their corresponding BGLAMs are the

same. It is also proved that the number of different BGLAMs of a given image is no more

than the number of pixels in the image. This work clarifies the relationship between

BGLAMs, GLAMs, SGLAMs (Symmetric GLAMs), and GLCMs (Gray Level

Cooccurrence M atrices), and demonstrates that BGLAMs outperform both SGLAMs and

GLCMs in texture modeling.

Based on the theory, new techniques have developed new techniques for 2D and

3D texture synthesis, and a new method for classifying texture images using BGLAMs.

The experimental results show that our new techniques can successfully apply to a wide

range of textures and the results are either better or comparable to existing techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I wish to thank Dr. Herb Yang sincerely for mentoring and supporting me

throughout my graduate education. Herb has been a wonderful supervisor for me. His

devotion, encouragement, wisdom and guidance have been of great help in the

completion of this research project. The high standards Herb holds in both scholarship

and research are an invaluable inspiration that certainly shaped my academic pursuits and

will continually encourage me all my life. I would like to thank the members of my

supervisory and candidacy examination committees, Dr. W alter Bischof (Chair), Dr.

Mario A. Nascimento, Dr. Joerg Sander, Dr. Arturo Sanchez-Azofeifa, and Dr. Xiaobo

Li, for their support, helpful insights and useful suggestions for the progression of my

research. Special thanks go to Dr. David A. Clausi, for being the external examiner of my

thesis defense, and Dr. Eric Donovan and Dr. Mikko Syrjasuo of the Institute for Space

Research at the University of Calgary for collecting and interpreting the ASI (All Sky

Imager) data for the experiments on texture image classification.

I would like to thank the present and past members of the RAMA (Rendering,

Analysis, Modeling and Animation) Group, Hai Mao, Daniel Neilson, Cheng Lei,

Danielle Sauer, Jason Selzer, Nathan Funk, Tong Guan, Jiayuan Zhu, Yi Xu and Dr.

Minglun Gong, for their tremendous help, warm friendship and great fun. I enjoyed

working in this extraordinary laboratory. I would also like to thank the supporting and

academic staff of the Department of Computing Science at the University of Alberta for

supplying a first-class research and education environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Last, but not least, I would like to thank my wife, Jing, for her tireless

encouragement, support and belief that I could count on through these years in Canada. I

would like to extend my gratitude to my parents Guofu Qin and Suming Mi and my

mother-in-law Suhua Huang for their unconditional love and support throughout m y life

and in pursuit of my Ph.D. degree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Jing, my wife, for all your love and support
To Gary, my son, for all your love and support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER 1 INTRODUCTION.. 1

1.1 T e x t u r e s ... 1

1.2 T e x t u r e A n a l y s is a n d S y n t h e s is ..3

1.3 M o t iv a t io n .. 4

1.4 T h e T h esis W o r k ..6

1.5 S u m m a r y o f C o n t r ib u t io n s .. 1 0

1.6 O u t l in e o f t h e T h e s is .. 11

CHAPTER 2 PREVIOUS WORK...12

2.1 2D T e x t u r e M o d e l in g ...1 2

2.1.1 M RF Texture M odels ... 14

2.1 .2 P ixel-B ased Sam pling A p p r o a c h ...2 0

2 .1 .3 P a tch -B ased Sam pling A pproach ...2 1

2 .1 .4 F eature M atch ing A p p ro a ch ..35

2 .1 .5 C ooccurrence M atrix A p p ro a c h .. 38

2 .1 .6 Structural Texture M o d e lin g ..43

2.2 3D T e x t u r e M o d e l in g ..45

2.2.1 Texture M a p p in g .. 4 5

2.2 .2 P rocedural T exturing ...4 9

2 .2 .3 Im age-B ased Surface Texturing ..54

2 .2 .4 Im age-B ased Solid T exturing ..5 6

2.3 D is c u s s io n s ..58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3 MATHEMATICAL FRAMEWORK OF BGLAM...............................59

3.1 B a c k g ro un d K n o w l e d g e ... 5 9

3.2 BGLAM CONCEPTS..6 9

3.2 BGLAM T h e o r y .. 7 2

3.4 B G L A M DISTANCE MEASURE ... 8 3

3.5 S u m m a r y ..8 7

CHAPTER 4 BGLAM 2D TEXTURE SYNTHESIS... 89

4.1 In t r o d u c t io n ...8 9

4 .2 R elated W o r k s .. 9 1

4.3 T h e A p pr o a c h ...9 3

4 .3 .1 C alculating B G L A M s ..94

4 .3 .2 S im ilarity M e a s u re ...9 6

4 .3 .3 B G L A M -B ased Random S a m p lin g ...9 7

4 .3 .4 A lg o r ith m ...9 8

4 .3 .5 C o lor Im a g e ... 102

4 .4 Ex p e r im e n t s ... 1 0 4

4.4 .1 Comparison with SGLAMs and GLCMs.. 104

4 .4 .2 C om parison w ith Existing T ech n iqu es .. 1 0 7

4 .4 .3 Synthesis R e su lts .. 113

4 .4 .4 E valuating Synthesis R esu lts ..114

4 .4 .5 Running Tim e and A ccelera tion ... 115

4.5 L im itations a n d F utur e W o r k ..1 1 5

4 .6 S u m m a r y .. 1 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5 BGLAM 3D TEXTURE SYNTHESIS... 118

5.1 In t r o d u c t io n ...118

5.2 R e l a t e d W o r k s .. 1 2 1

5.3 T h e A p p r o a c h .. 124

5.3.1 BGLAM 3D Sam pling ... 124

5.3 .2 A ura-M atrix D is ta n c e .. 1 2 7

5.3 .3 A lg o r ith m .. 129

5.3 .4 C o lor Input T ex tu re .. 132

5 .4 A c c e l e r a t io n .. 132

5.5 R e s u l t s ..133

5 .6 E v a l u a t io n ...139

5.7 L im it a t io n s a n d F u t u r e W o r k .. 144

5.8 S u m m a r y .. 145

CHAPTER 6 BGLAM TEXTURE CLASSIFICATION...147

6.1 In t r o d u c t io n .. 147

6 .2 R e l a t e d W o r k s ... 149

6.3 T h e A p p r o a c h ..152

6.3.1 C haracterizing Texture I m a g e s ..153

6.3 .2 B G L A M -B ased SVM L ea rn in g ... 154

6.3 .3 C lassifying Texture Im ages ...158

6.3.4 A lg o r ith m ... 158

6.4 E x p e r im e n t s ... 160

6.4.1 G abor F ilters .. 1 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 .4 .2 Brodatz Textures... 163

6 .4 .2 Vistex Textures.. 174

6 .4 .3 ASI T ex tu res .. 178

6.5 S u m m a r y ..181

CHAPTER 7 CONCLUSIONS... 183

7.1 S u m m a ry ...183

7.2 C o n t r i b u t i o n s ...186

7.3 F u t u r e W o r k ..187

REFERENCES...190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 6-1: Class labels of the 20 Brodatz images that are shown in Figure 6-7163

Table 6-2: The comparison results of our algorithm with Guo et al.’s algorithm and the

SGLAM method on the Brodatz textures...166

Table 6-3: The average success rates of our algorithm on the Brodatz texture with

neighborhood systems of different sizes and the corresponding running tim es 169

Table 6-4: The average success rates of our algorithm on the Brodatz texture with

BGLAMs of different sizes and the corresponding running tim es..............................170

Table 6-5: Classes in the Yistex texture database...173

Table 6-6; The comparison results of our algorithm with Guo et al.’s and SGLAM on

Vistex textures.. 175

Table 6-7: Classes in the 3400 ASI auroral texture im ages..179

Table 6-8: The comparison results of our approach with Syrjasuo and Donovan’s, Guo et

al.’s algorithm, and SGLAM on ASI im ages..181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1-1: An example of wood-like textures on the surface of a teapot............................... 1

Figure 1-2: Examples o f textures in im ag es...2

Figure 1-3: An example of texture analysis and synthesis.. 3

Figure 1-4: An overview of the thesis w ork... 7

Figure 2-1: Taxonomy of the various existing techniques in texture modeling...................13

Figure 2-2: An example of a simple patch based approach.. 22

Figure 2-3: An example of synthesis results by selecting a new patch with the smallest

visible difference to the old patches in the overlap region and using a simple

boundary between patches with overlap.. 23

Figure 2-4: An example of synthesis results using the minimum error path........................23

Figure 2-5: An example of visible seams in the output of the image quilting algorithm. 25

Figure 2-6: An example of graph formulation of finding the minimum error path 27

Figure 2-7: The a - expansion graph constructed for graphcut textures.............................. 29

Figure 2-8: An illustration of the patch-based sampling approach for texture synthesis by

Liang et al.’s approach... 34

Figure 2-9: Examples of texture synthesis using Heeger and Bergen’s algorithm............. 36

Figure 2-10: An example of an image and its GLCM ... 39

Figure 2-11: Examples of texture synthesis using Lohm ann’s approach..............................42

Figure 2-12: Examples of structural patterns...43

Figure 2-13: The coordinate systems and transformations in texture mapping...................46

Figure 2-14: A simple example of texture mapping...47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-15: An example of solid texturing generated using a procedure...........................51

Figure 3-1: Examples of neighborhoods..61

Figure 3-2: An example of aura on a binary lattice with the nearest four neighbors........ 63

Figure 3-3: An example of the aura of A with respect to B over neighborhood systems of

different sizes.. 64

Figure 3-4: An example of how the aura measure m(A, B) interprets the relationship

between A and B ...64

Figure 3-5: The structuring element for calculating the GLCM in Figure 2-10.................. 65

Figure 3-6: An explanation of symmetric sites in Definition 3-7..70

Figure 3-7: Examples o f asymmetric, symmetric, and com plement neighborhoods..........71

Figure 3-8: An example of the inefficiency of SGLAMs for differentiating textures....... 72

Figure 3-9: The relationship between the set of all GLCMs, the set of all SGLAMs, the

set of all GLAMs and the set of all BG LA M s... 74

Figure 3-10: An illustration of Lem ma 3-5... 77

Figure 3-11: An example of demonstrating the importance of using BGLAMs in defining

a one-to-one distance function..85

Ligure 4-1: The basic idea of the approach of BGLAM-based 2D texture synthesis.........90

Figure 4-2: An overview of the approach of aura 2D texture synthesis................................ 94

Figure 4-3: The BGLAMs of a 5 x 5 binary im age.. 95

Figure 4-4: The BGLAM-based 2D texture synthesis algorithm..99

Figure 4-5: The algorithm of RGB-color transformation using SVD 103

Figure 4-6: An example of synthesis results with neighborhoods of different sizes 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-7: The comparison results of texture synthesis using BGLAMs, GLCMs and

SG LAM s..106

Figure 4-8: The comparison of results of our approach with Heeger and Bergen’s

algorithm, W ei and Levoy’s algorithm, and Liang et al.’s algorithm 109

Figure 4-9: Examples of BGLAM-based 2D texture synthesis... 110

Figure 4-10: Examples of BGLAM -based 2D texture synthesis... I l l

Figure 4-11: Examples of BGLAM-based 2D texture synthesis...112

Figure 4-12: An exam ple of a synthesized texture with duplicaation effects.....................113

Figure 4-13: An example using BGLAM -based distance measure to evaluate the

synthesized results against the input... 114

Figure 4-14: Exam ple of visible seams in the synthesized textures..................................... 116

Figure 5-1: An overview of BGLAM 3D textures..119

Figure 5-2: The general flow of BGLAM 3D texture synthesis..125

Figure 5-3: The view slices S x , S y, and S z at point P (x , y , z) and its direction angles

a , /? , and y .. 126

Figure 5-4: The pseudo code of the BGLAM -based 3D texture synthesis algorithm 129

Figure 5-5: An example of aura 3D textures using different window sizes133

Figure 5-6: Comparison results of our method with Wei & Levoy’s 134

Figure 5-7: Comparison results of our method with Jagnow et al.’s 135

Figure 5-8: Results of aura 3D tex tures.. 136

Figure 5-9: More results of aura 3D textures... 137

Figure 5-10: More results of aura 3D textures...138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-11: Animation sequences of cross sections of two solid textures that are

generated by our algorithm.. 140

Figure 5-12: The GUI-based user evaluation system of aura 3D textures.......................... 142

Figure 5-13: An example of failure from our algorithm that is identified during the

evaluation... 143

Figure 5-14: An example of inconsistency problems in structural solid textures 144

Figure 6-1: Example of the classes that are learned from training texture samples 148

Figure 6-2: An example of texture-image classification... 148

Figure 6-3: An overview of the BGLAM -based algorithm for texture classification.... 153

Figure 6-4: An example o f a feature vector com puted from B G L A M s..............................155

Figure 6-5: An example of the boundary of a sample class..156

Figure 6-6: The pseudo code of the BGLAM -based texture classification.........................159

Figure 6-7: The 20 Brodatz texture images used for the experiments. 162

Figure 6-8: An example of a Brodatz image with inhomogeneous textures and its disjoint

subsam ples..164

Figure 6-9: The comparison results of our algorithm with SGLAM and Guo et al.’s

algorithm.. 166

Figure 6-10: The classification results of our algorithm on the Brodatz database with

neighbohoods of different sizes..168

Figure 6-11: The running time of our algorithm on the Brodatz textures with different

neighborhood sizes..168

Figure 6-12: The classification results of our algorithm in terms of average success rate

on the Brodatz database with BGLAMs of different sizes.. 169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-13: The running time of our algorithm on the Brodatz textures with BGLAMs of

different sizes.. 170

Figure 6-14: The classification results of SGLAM and Guo et al.’s algorithm in terms of

average success rate on the Brodatz textures with different number of scales 171

Figure 6-15: The classification results of SGLAMs and Guo et al.’s algorithm on the

Brodatz textures with different num ber of orientations..171

Figure 6-16: The comparison results of our algorithm with Guo et al.’s algorithm and

SGLAM with the number of training samples for each class decreased................... 172

Figure 6-17: Examples of Vistex images that contain inhomogeneous textures............... 173

Figure 6-18: The 19 Vistex images used for the experiments..174

Figure 6-19: The comparison results o f our algorithm with SGLAM and Guo et al.’s

algorithm for each class in the Vistex database..175

Figure 6-20: Examples of misclassified subsamples of CloudsOOOO................................... 176

Figure 6-21: Example images of the three classes in ASI database......................................180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations, Symbols and Nomenclature

A The state space of site .v

£2 The configuration space of a random field X

$B (A) The aura of A with respect to B

| A | The total number of elements in set A

2D 2 Dimensional

3D 3 Dimensional

A, A(3) The aura matrix of 3

ACGMRF Anisotropic Circular Gaussian Markov Random Field

ASI All Sky Imager

BGLAM Basic Gray Level Aura Matrix

BTF Bidirectional Texture Functions

CANOPUS Canadian Auroral N etwork for the Open Program Unified Study

d(...) The distance function

E The neighborhood structuring element

FRAME Filters, Random Fields and Maximum Entropy

G The total number o f gray levels for a pixel in the image

GLAM Gray Level Aura Matrix

GLCM Gray Level Cooccurrence Matrix

GPU Graphics Processing Unit

GRF Gibbs Random Field

GUI Graphical User Interface

ICM Iterative Conditional Modes

K (.,.) The kernel function

kNN k-Nearest-Neighbors

LBG Linde, Buzo and Gray

LCPDF Local Conditional Probability Density Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m(A, B) The aura measure of A with respect to B.

M AP M axim um a Posterior

MPM M axim um Posterior Marginal

MRA M ulti-Resolution Analysis

MRF Markov Random Field

MRI M agnetic Resonance Imaging

N The neighborhood system of an image

N, The neighborhood of site s

Ns The complement neighborhood of site s

Ni The neighborhood of radius d at site s

PM RF Parametric Markov Random Field

P (x , y , z) A point in the 3D space with xyz-coordinates

p M The probability of site 5 having pixel value x s

R, G, B The R, G, B channels of a color image

RBF Radial Basis Function

9T The n-dimensional space

S A finite rectangular lattice

SAR Synthetic Aperture Radar

SGLAM Symmetric Gray Level Aura Matrix

s, The set of all sites in S with intensity value i

SVD Singular Value Decomposition

SVM Support Vector Machine

T The color-space transformation based on SVD

TSVQ Tree-Structured Vector Quantization

V A solid texture, or a volume in the 3D space

X A random field

X s A random variable at site s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Textures

Textures appear everywhere. The world would not be so beautiful without the

meticulous presence o f textures. However, what exactly is texture? Although the term

appears to be understood by a layman, there is still no formal mathematical definition of

textures. In computer graphics, vision and image processing, textures are commonly

considered as visual patterns that appear on the surfaces o f objects or in images. In the

real world, textures can be seen as either microstructures or macrostructures on the

surfaces of objects, for example, the fine ripples on the surface o f water in a lake or river,

the arrangement o f bricks on a wall, the field o f grass in a meadow, the fluffiness of

clouds in the sky, and the varying fur on animals. Figure 1-1 gives an example o f wood

like texture on the surface of a teapot.

Figure 1-1: An example o f wood-like textures on the surface o f a teapot.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In image analysis, textures are used as visual cues to differentiate one image

region (or one image) from other regions (or other images). Oftentimes, different parts of

an image, or different images, are recognized by textures rather than by shapes. Some

examples of textures, such as grass, flower, rug, wood, brick, and stone, are given in

Figure 1-2.

Figure 1-2: Examples of textures in images (image source: the Brodatz and the Vistex

textures [124]).

Textures can be very easily recognized in images by a human observer but it is

very difficult to quantify their differences precisely [8, 77, 178]. The difficulty is

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demonstrated by the large number o f ambiguous definitions o f textures (see [178])

proposed by researchers during the last several decades, many of which lead to serious

problems in computational complexity and in imprecision. In computer vision, it is

desirable to define textures with mathematical precision.

Analysis Texture
^ Features

Synthesis

Figure 1-3: An example o f texture analysis and synthesis.

1.2 Texture Analysis and Synthesis

Texture analysis and synthesis, also called texture modeling in this thesis, can be

viewed as a two-phase process: 1) characterization o f textures and 2) regeneration of

textures. In the first phase, textures are analyzed using various techniques and important

information o f textures, called texture features, are characterized using either

mathematical or non-mathematical descriptions [8, 77, 178], Based on the information

obtained in the analysis phase, in the second phase, synthetic 2D or 3D textures are

generated using various sampling techniques such as stochastic relaxation [63], pixel-

based sampling [49, 189], or patch-based sampling [50, 101, 106, 186]. An example of

texture analysis and synthesis is given in Figure 1-3.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the pioneering work done by Julesz [93], texture analysis/synthesis has been

an active research topic in computer graphics, vision and image processing. In com puter

vision, researchers have developed m any techniques for analyzing textures; while in

computer graphics, researchers are more interested in developing techniques to

synthesize textures for generating appealing imagery. Texture analysis and synthesis have

important applications in document processing, automated inspection, bioinformatics,

data compression, animated movies, and computer games [8, 19, 47, 178], For example, a

texture-synthesis technique can be used in computer games for generating interesting

textures, e.g. skin, onto animated figures.

1.3 Motivation
Despite many techniques [3, 6, 32, 35, 49, 81, 101, 129, 190] have been proposed

for texture analysis and synthesis, texture modelling is far from being understood. In fact,

each existing technique has its own advantages and disadvantages, and thus fails to

correctly model certain types of textures. The present thesis work is motivated by the

following challenging problems in texture modeling:

■ Given a texture sample, what can be used to represent the sample with the

necessary and sufficient information? In computer vision, it is desirable to

define textures with mathematical precision. However, this problem is

challenging and has been studied by researchers in the vision area for decades

without much success. Consequently, the advancement of texture synthesis

techniques in computer graphics is limited because of the lack of

understanding in the analysis of textures. In existing approaches, textures are

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

often represented by using some characteristics of input examples, which may

not represent the input texture appropriately. For instance, in feature-matching

approaches [6, 35, 81, 143], a set of filter responses at multiple scales and

orientations are used to characterize an example texture. However,

mathematically it requires an infinite num ber of filters, each of which is as

large as the given texture image, to model a given texture with the necessary

and sufficient information. Hence, a set of predefined filters are used in filter-

based techniques for modelling textures. In general, it is not an easy task to

automatically select filters for different textures. The objective of this thesis

work is to develop a mathematical framework for modelling textures without

using filters and demonstrate that texture analysis and synthesis can be

effectively carried out using BGLAMs (basic gray level aura matrices).

There is a lack of good unified frameworks that work well for both analysis

and synthesis. In exiting texture modeling approaches, a good analysis

technique may not work well for synthesis [178]; while a good synthesis

technique that generates impressive results may not be able to do analysis at

all [178],

It is difficult, if not impossible, to perform 3D texture analysis and synthesis.

Techniques for 2D texture analysis and synthesis [3, 6, 32, 35, 49, 81, 101,

129, 190] cannot be easily extended and applied to 3D texturing. In general,

existing 3D-texture techniques (e.g. [20, 81, 86, 125, 179, 191, 204]) work for

only a limited range of textures.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ How to evaluate the results quantitatively? Due to the imprecise

representation of textures in existing synthesis techniques, none of them is

able to evaluate the results quantitatively. Visual inspection is the only way to

evaluate the results.

The goal of this thesis work is to develop a new vigorous mathematical model to

characterize textures with sufficient and necessary information. Under the unified

mathematical framework, we present new techniques for 2D and 3D texture analysis and

synthesis. W ithin the same framework, we develop a quantitative method for evaluating

texture synthesis results, which can be used to automate the conventional visual

inspection process for determining whether or not the output texture is a successful

synthesis o f the input. For applications, we apply our new framework in texture image

classification on the Brodatz database, the Vistex database, and the ASI (All-Sky Imager)

database.

Our new framework for texture analysis and synthesis will provide important

understanding in texture modeling in both computer vision and computer graphics. M ost

importantly, it is the only approach that uses the same framework for both analysis and

synthesis. In other words, getting better analysis results will help us synthesize more

realistic textures and vice versa.

1.4 The Thesis Work

Figure 1-4 gives an overview of the thesis work. In the work, a new mathematical

framework based on BGLAMs (Basic Gray Level Aura M atrices) for texture modeling is

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presented. The mathematical theory of BGLAMs is formulated and proved using the

concepts of aura sets, aura measures, and aura matrices introduced by Elfadel and Picard

[51]. W e prove in Chapter 3 that BGLAMs form a basis of GLAMs (Gray Level Aura

Matrices) - a powerful tool for texture modeling, and that two images are identical if and

only if their corresponding BGLAMs are the same. W e also prove that the number of

different BGLAMs of a given image is no more than the num ber of pixels in the image.

Introduction
(Chapter 1)

Previous
Works

(Chapter 2)

Conclusions
(Chapter 7)

Thesis Work

BGLAM
2D Texture Synthesis

(Chapter 4)

BGLAM
Texture Modeling

BGLAM
3D Texture Synthesis

(Chapter 5)

Mathematical Framework
of BGLAM
(Chapter 3)

BGLAM
Texture Classification

(Chapter 6)

Figure 1-4: An overview of the thesis work.

Based on the new theory, in Chapter 4, we develop a new 2D texture-synthesis

method, which generates synthetic textures by sampling the BGLAM s of input textures.

We demonstrate that in practice a small set of BGLAMs (e.g. 48 BGLAMs for an image

of size 6 4 x 6 4) calculated from the input texture samples can be used to generate

textures of arbitrary sizes. However, the actual number of BGLAM s (usually 0 { n) for an

input image of size n x n) used for generating textures is much smaller than the number

of pixels in the image and thus the computational cost is significantly reduced.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiments have shown that a broad range of 2D textures can be successfully

synthesized using BGLAM s and the synthesis results are comparable to existing

techniques (e.g. [101, 106, 190]).

In addition to 2D texture analysis and synthesis, in Chapter 5, we demonstrate that

BGLAMs can be used to generate solid textures, also called 3D textures. A solid texture

is considered as a block of colored points in 3D space to represent a real-world material,

for example, a wood trunk. Given one or more input texture samples, our method first

creates the BGLAM representations of the input samples and then generates a solid

texture by sampling the BGLAMs constrained in multiple view directions. Once the solid

texture is available, any given 3D object can be textured by carving the object out of the

volumetric data. Our method is fully automatic, requires no user interaction in the

process, and can generate faithful results over a wide range o f textures. The experimental

results also show that the new method for 3D textures outperforms previous approaches

(e.g. [86,188]).

We also define a new distance function based on BGLAMs for measuring the

similarity between texture images. The distance function satisfies the metric properties

[160] of non-negativity, symmetry, and triangle inequality. Lurthermore, one unique

property of the new distance function, which is proved in the thesis, is that it is one-to-

one. Namely, a zero value of the distance measure will guarantee that the two images are

identical. Since the distance function is continuous, the one-to-one property implies that

if the distance of image Y from image X gradually changes (i.e. converges) to zero, image

Y will gradually get close (i.e. converge) to X. A distance measure without the one-to-one

property cannot guarantee this.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on the well-defined and one-to-one BGLAM distance measure, we present

an original quantitative method to simulate the visual inspection process of determining

whether or not the synthesized texture is a successful synthesis of the input sample.

Extensive user studies have shown that if the distance value is below a threshold value

(0.1 used for the experiments in the thesis), then the output texture is guaranteed to be a

successful synthesis of the input. For existing texture synthesis techniques, human visual

inspection is the only effective way to evaluate the results.

Presented in Chapter 6 of the thesis is a BGLAM -based method for texture image

classification. Given an unseen texture image, our approach classifies it into one of the

pre-leamed classes. There are two stages in our algorithm: a learning stage and a

classification stage. In the first stage, models of texture classes are learned from the

BGLAMs of training examples using the Support Vector M achine (SVM), and in the

second stage, a given texture image is classified into one of the pre-leam ed classes, to

which the input image is most similar. W e compare our approach experimentally with

existing approaches by performing texture classification over the Brodatz textures, the

Vistex textures, and the All Sky Image (ASI) textures. For both the Brodatz database and

the Vistex database, the experimental results show that the proposed new approach

performs better than existing approaches with an average success classification rate o f

99% vs 87% using other approaches. For the ASI database, the results have shown that

our approach significantly outperforms existing approaches with an average successful

rate of 97% vs 66%.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Summary of Contributions

The main contributions of this thesis work are as follows:

1. The mathematical theory for BGLAMs. It is proved that BGLAMs form the

basis of GLAMs, and that two images of the same size are identical if and

only if their corresponding independent BGLAMs are the same. Therefore, an

image can be uniquely represented by its BGLAMs (Chapter 3).

2. A new distance function based on BGLAMs for measuring texture similarity.

In addition to the metric properties, the BGLAM distance function is one-to-

one. This one-to-one property implies that a zero value of the distance

measure between two images guarantees that they are identical. W ith this one-

to-one property, we demonstrate that the new distance function can be used

for evaluating texture synthesis results quantitatively. W e have shown that if

the distance value is below a threshold value, then the output texture is

guaranteed to be a successful synthesis of the input. For existing texture

synthesis techniques, human visual inspection is the only effective way to

evaluate the synthesis results (in Chapter 3 and 4).

3. A new BGLAM-based method for 2D texture analysis and synthesis. For a

given input texture sample, synthetic 2D textures can be generated by

sampling a small set of BGLAMs (e.g. 64 BGLAMs for an image of size

6 4 x 6 4) that are calculated from the input (Chapter 4).

4. An original BGLAM-based algorithm for synthesizing solid (i.e. 3D) textures

from one or more input samples. Our method generates solid textures by

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sampling the BGLAMs of the input samples constrained in multiple view

directions (Chapter 5).

5. A BGLAM -based method for texture image classification. W e test our method

by performing image classification on the Brodatz database and the Vistex

database. For real application, we have successfully applied our method to

classifying ASI (All Sky Imager) texture images (Chapter 6).

1.6 Outline of the Thesis

This thesis is organized as shown in Figure 1-4. Following the Introduction,

Chapter 2 reviews the previous works in the field of texture modeling. Chapter 3 presents

the BGLAM theory and its mathematical proofs. Chapter 4 describes 2D texture

synthesis and the evaluation of synthesis results using BGLAMs; Chapter 5 describes 3D

texture synthesis using BGLAMs and its evaluation. In Chapter 6, we present the

BGLAM-based method for texture classification. Conclusions are given in Chapter 7.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Previous Work

In this chapter, we review various techniques in texture modeling. For the ease of

discussion, we divide existing techniques into two categories: 2D texture modeling and

3D texture modeling. In 2D texture modeling, we describe the M RF (Markov Random

Field) texture models [17, 32, 38, 39, 63, 64], the pixel-based sampling approach [49, 81,

190], the patch-based sampling approach [50, 101, 106], the feature matching approach

[6, 35, 143, 167], the cooccurrence matrix approach [21, 24, 34, 67, 75, 112, 160, 209],

and stmctural texture modeling [74, 75, 92, 104, 110, 206]. In 3D texture modeling, we

discuss techniques in texture mapping [10, 79, 80], procedural texturing [28, 47, 132,

134], image-based surface texturing [179, 191, 201, 204], and image-based solid

texturing [42, 43, 81, 86, 103, 188]. Figure 2-1 gives an overview of the taxonomy of the

existing techniques in texture modeling that are discussed in the rest of this chapter.

2.1 2D Texture Modeling

In 2D texture analysis and synthesis, textures are first analyzed using various

techniques and important information of textures, called texture features, are

characterized [77, 178], Based on the information obtained in the analysis phase,

synthetic 2D textures are then generated using various sampling techniques such as

stochastic relaxation [63], nearest neighborhood searching [49, 189], etc. As shown in

Figure 2-1, techniques in 2D texture analysis and synthesis are classified into six

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

categories: the M RF (Markov Random Field) texture models, the pixel-based sampling

approach, the patch-based sampling approach, the featured-based matching approach, the

cooccurrence matrix approach, and structural texture modeling, which are described in

the following subsections.

MRF Texture
Models

Pixel-Based
Sampling

Patch-Based

2D Texture
Sampling

Modeling Feature matching
Approach

Cooccurrence
Matrix Approach

Structural Texture
Modeling

Texture
Modeling

Texture
Mapping

Procedural

3D Texture
Texturing

Modeling Image-Based
Surface Texturing

Image-Based
Solid Texturing

Figure 2-1: Taxonomy of the various existing techniques in texture modeling.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 MRF Texture Models

The M RF models are important statistical techniques in texture modeling. The

underlying theory of M RF texture models is that the information at a pixel location

depends on the information of its neighboring pixels. Earlier research study on M RF

includes the Ising models [98, 136, 171], the auto models [17, 25, 32], the G RF (Gibbs

Random Field) models [40, 62, 63], etc. Recent work in this area includes the M RF

model for color texture image segmentation [37, 130], the nonparametric multiscale M RF

model [127, 129], the strong M RF model [126], and the advanced Gaussian M RF model

for anisotropic textures [38, 39], There are also variations of MRF texture models

proposed recently [49, 141, 190, 208],

In the M RF models, an image is represented as a random field X defined on a

finite rectangular lattice S. Let X s be a random variable at site s , then the random fie ld X

on S is the set o f all random variables X s , i.e. X = [Z s | s e S } . The set o f all possible

values of X s , denoted by A s , is called the state space of s. In general, a common discrete

state space for all s is assumed, i.e. A s - A - [0,1,...,255} for all s & S . The configuration

space on X , denoted by £ 2 , is defined as £2 -]~ [e5 As , and a particular configuration

(i.e. an observed sample image) x - (xs) seS , denoted by X - x , is called a realization of

the random field X. The jo in t probability on £2 is denoted by p and the local conditional

probability density function (LCPDF) at site s e S , denoted by p (x s) , is given by

p (x s) = p (X s = x^ | X r = x r, r ± s) , which says that the probability of site s having

pixel value ,rv e As depends on the pixel values of its neighboring pixels.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The neighborhood at site s is given by N d = { re 5 | 0 < | r — ^ |2< d) , where d is

an integer, which determines the size of the neighborhood. The set of all neighborhoods

N d is called a neighborhood system on S, which is denoted by N = { N d | s e 5} (or

N - { Ns | s e 5} if the value of d is clear in the context). The neighborhood system has

two important properties: for any s , t e S , (1) s<£ N d , and (2) s e N? if and only if

t e N d , where property (1) says that site s is excluded from its neighborhood and

property (2) implies that the neighborhood is symmetric. In the next chapter, it is shown

that this symmetric condition can be relaxed to include asymmetric neighborhood

systems for modeling anisotropic textures.

M athematically, an MRF, which is defined as a random field X = { X S | s e 5}

with a joint probability function p defined on it, has the following three properties:

(i i i)p(xs) = p (X s - x s \ X r = x r, r e N d) , \ f x e Q .,\/se S

Properties (0 and (ii) ensure that p is a probability distribution with a positive value for

any configuration x e f i , Property (iii) is defined on a neighborhood system, which

ensures that the random field is an MRF, i.e. the LCPDF of a given site s in a given

image x can be calculated using the information of its neighboring pixels.

Based on the equivalence between the M RF and Gibbs distribution established by

the well-known Hammersley-Clifford Theorem [9]: Given any observed image x , the

probability p (x) in Eq. 2.1 can be expressed in terms of Gibbs energy as follows:

(0 p(x) = p (X = x) > 0 ,V x e £2

(2 .1)

1 (1)
p (x) = —e x p E(x) , (2 .2)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where E { x) is the Gibbs energy (simply called energy function), which is model

dependent [98, 127], T is the temperature, and Z is the partition function (i.e. the

normalizing constant).

[Parametric MRF Models] In the parametric M RF (PMRF) models, parameters

must be estimated for characterizing a given input texture. M any PMRF texture models

have been proposed in the literature (see [98, 127] for a complete survey). The simplest

and earliest PM RF models are the auto-models (e.g. the Ising model [136] and the auto

binomial model [32]), in which the energy function E is dependent only on the cliques

(see [32, 62, 63, 78] for the definition of cliques) that contain no more than two sites:

seS seS r e v ,

where V / s and Vjr ’s are the potentials by which model parameters are incorporated. To

estimate model parameters, the maximum likelihood estimator [165] can be used. Once

model parameters are estimated, stochastic relaxation such as the Metropolis algorithm,

the Gibbs sampler, or the ICM (Iterative Conditional Modes) algorithm [63, 127] can be

used to generate a synthesized texture from a given texture sample.

The types of textures that the auto-models can represent are severely limited

because of the following two problems [129, 208]: 1) the cliques are too small to capture

texture general features, and 2) only the first-order and second-order statistics (e.g. mean

and covariance) are specified on the cliques. M any textures have local structures much

larger than three or four pixels, have high-order statistics in addition to low-order

statistics (Julesz [93] hypothesized that third- or higher-order statistics, e.g. skewnesses,

kurtosises, are required to model natural textures), and are strongly non-Gaussian in most

cases. One possible solution is to increase both the size of the cliques and the order of the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statistics. However, even with a m odest neighborhood (e.g. 13 x 13), the number of

parameters will be too large for any practical inference [208].

To address the above problems, Zhu et al. propose the FRAM E (Filters, Random

Fields and M aximum Entropy) model [208], which incorporates filtering theory into the

M RF texture modeling. For a given texture X, the FRAME model assumes that there

exists a true joint probability density f (X) over the image space, which characterizes

the given texture. Therefore, the objective of texture modeling is to make inference about

the joint probability density f { X) . Texture synthesis in the FRAM E model is carried out

as follows. Firstly, a set of filters is selected from a predefined filter database to capture

the texture features, and these filters are applied to the observed im age X to get a set of

filtered images. The histograms o f the filtered images, which estimate the marginal

distributions of the jo int probability density f (X) , are then extracted, and this step is

called feature extraction. Secondly, the maximum entropy principle is used to derive a

probability distribution p (X) that has the same marginal distributions as that calculated

in the feature extraction step, and the derived probability distribution p (X) is taken as an

estimate of the true joint probability f (X) . Finally, the Gibbs sampler [63, 127] is

employed to sample a synthesized texture from the estimated probability distribution

p { X) . The algorithm of the FRAM E model for texture synthesis is summarized below:

1. Input: a texture image X.

2. Select a set of K filters F = { f i 11 < i < K } .

3. Compute the histograms of the filtered images (i.e. the marginal distributions) of

the input X: { H i (X) 11 < i < K } , where H t (X) = {hi} 11 < j < L) is the histogram

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the filtered image obtained by applying the filter f i to the input X, where L is

total number of gray levels (e.g. 256),

4. Let A = {Ai \ l < i < K } , where At. = {Aif \ 1 < j < L) , which are called the

Lagrange multipliers. Initialize Ai } 0 , i - 1,2, . . . ,K and j = l,2 ,. .. ,L .

5. Initialize the output Y as a uniform white noise image with L gray levels.

K L

6. Repeat step a-d until (hij(X) - h ij(Y))2 < £ , where e e (0 , l) is a user
i= i j= i

specified parameter:

a. Compute the histograms of the filtered images of the output Y:

{ H t(Y) 11 < i < AT}.

b. Update A by — L = H i(Y) - H i (X) , 1 < i < K .
dt

c. Calculate the estimated probability distribution using

(K
p(Y , A) = — — exp

V i=i
, where the operator • denotes dot

product of two vectors, and Z (A) is the normalization constant,

d. Use Gibbs sampler to update the output Y according to the estimated

probability distribution p (Y , A) obtained in the previous step.

For a given type of texture, in step 2 of the above algorithm, a set of filters has to

be correctly selected to represent the given texture. Zhu et al. give a greedy algorithm for

filter selection [208], In the FRAM E model, every filter introduces the same number of

parameters regardless of its size. In other words, the number of parameters is independent

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the neighborhood size; while in the auto-models, the number of parameters increases

exponentially with respect to the neighborhood size. Therefore, the FRAME model

makes the parameter estimation feasible for large size (e.g. 33 x 33) filters. However,

because of the Gibbs sampler and the iterative numerical approximation of Lagrange

multipliers in Step 6b, the FRAM E model is still very slow. The expensive computation

cost can be reduced by M onte Carlo Markov Chain methods [207], but the quality of the

synthesis results is not guaranteed.

[Non-Parametric MRF Models] As suggested by Julesz [93], higher-order

statistics are required to model natural textures. However, it is very difficult for the

conventional parametric M RF models (e.g. auto-models) to incorporate higher-order

statistics because of the number of parameters required. As described before, Zhu et al.

[208] have proposed a solution in their FRAM E model by incorporating filter responses

into the MRF models. An alternative solution is to use non-parametric MRF models [129,

142].

In the non-parametric M RF model proposed by Popat and Picard [142], the high-

order statistical information (called the multi-dimensional histogram) of a given texture is

captured by kernel estimation and cluster analysis. The histogram data is clustered by the

LBG (Linde, Buzo and Gray) algorithm [65, 107] for vector quantization, and each

cluster is estimated by a standard multi-dimensional Gaussian density. One limitation of

their method is that it can only model up to 14-dimensional histograms and higher

dimensional histograms cannot be inferred well.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To overcome the problem of Popat and Picard’s model, Paget proposes a

noncausal non-parametric multiscale MRF model [129], in which large m ulti

dimensional histograms (e.g. 81 dimensions) can be used to represent a texture. Instead of

modeling a cluster of points in the space of a multi-dimensional histogram by a Gaussian

density, he models each point in the space with a standard multi-dimensional Gaussian

density using the Parzen density estimation technique [45], Recently, the above Paget’s

texture model is extended to the strong MRF model (non-parametric) [126], which can be

used not only for texture synthesis but also for texture segmentation. Experimental results

have shown that Paget’s models can generate good results for a wide range of textures,

which includes stochastic to structured textures. However, there are two limitations in

Paget’s models. The first is that the Gaussian density by Parzen density estimation has

smoothing effects to the output textures. The second is that the model is computationally

expensive as discussed in Paget’s thesis [127],

2.1.2 Pixel-Based Sampling Approach

In all the M RF models discussed before, the joint conditional probability

distributions of textures are first estimated from the input samples and synthesized

textures are generated by sampling the estimated probability distributions. In general,

these models are very slow because of the long iterative sampling and the expensive

calculation of probability distributions.

To avoid explicit probability construction and sampling, Efros and Leung [49]

propose a pixel-based non-probabilistic sampling technique, in which the estimation of

the conditional probability distribution of a pixel on its neighbors is approximated by the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nearest neighborhood search. Given an input texture image, a new texture image is

synthesized one pixel at a time. To synthesize a pixel p in the output image, Efros and

Leung’s algorithm first finds a candidate set C of all the pixels in the sample image

whose neighborhoods are similar to that of pixel p, and then randomly selects one pixel

from C and copies its color to pixel p.

However, Efros and Leung’s algorithm is still slow for any practical application.

Wei and Levoy [190] propose a fast texture synthesis algorithm using a fixed-size

neighborhood searching and tree-structured vector quantization (TSVQ). Their algorithm

can also perform texture synthesis in a multiresolution fashion. Both Efros & Leung’s

algorithm and W ei & Levoy’s algorithm produce good results for a wide range of

textures.

2.1.3 Patch-Based Sampling Approach

Texture synthesis performed at the pixel level o f images, in general, is slow. Lor

real time applications, the pixel based approaches [49, 81, 208] are impractical unless the

accelerations of the algorithms are available (e.g. [3, 190]). A solution to this problem is

to use patch based approaches [50, 101, 106], The basic idea of patch based approaches is

to synthesize a texture image by copying small patches from the input texture image.

Ligure 2-2 gives an example of a simple patch based approach, in which a small patch is

randomly chosen from the input and copied into the output. The final output texture

image is generated by tiling together the small patches that are randomly chosen from the

input. The problem of this simple method is that there are obvious seams between the

tiled patches (see Ligure 2-2). Therefore, the main goal of the patch based approaches is

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to find techniques to remove or reduce the visible seams between patches when they are

placed into the output. Three recent patch based techniques: image quilting [50], graphcut

textures [101], and Liang’s approach [106], are discussed below.

[Image Quilting] As a patch based approach for texture synthesis, image quilting

[50] uses the overlap constraints between neighboring patches and the minimum error

path in the overlap region of two patches to remove or reduce the visible seams in the

output images. The basic idea o f image quilting works as follows.

Small patch

Random placement
Input texture o f patches Output

Figure 2-2: An example o f a simple patch based approach.

In image quilting [50], neighboring patches, i.e. patches that meet together in the

output, are first placed together with overlap constraints. To insert a new patch into the

output image, instead of choosing the patch randomly from the input, the algorithm first

searches among all the available patches for a patch that will have the smallest visible

difference in the overlap region where the new patch meets with the old patches in the

output. The purpose o f this step is to incorporate the overlap constraints to make sure that

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the inserted patch agrees with its neighboring patches along the overlap region as much

as possible.

Small patch

Overlap constraint and
Input texture simple boundary Output

Figure 2-3: An example o f synthesis results by selecting a new patch (e.g. B2) with the

smallest visible difference to the old patches (e.g. B l) in the overlap region and using a

simple boundary between patches with overlap. The simple boundary is shown as a solid

line between two dashed lines.

Small patch

Input texture
Minimum error path
between the overlap Output

Figure 2-4: An example of synthesis results using the minimum error path (shown as a

solid curve between two dashed lines) as the boundary between B 1 and B2.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once two patches are placed together with overlap, the algorithm then decide a

boundary where the two patches can separate from each other (i.e. the boundary that

determines from which patch a pixel in the overlap region comes from). A simple

solution is to place the boundary in the middle of the overlap region, which unfortunately

will still cause noticeable edges between patches as shown in Figure 2-3. To reduce the

visible edges as much as possible, a minimum error path (see Figure 2-4) in the overlap

region is used as the boundary, which can be efficiently calculated with dynamic

programming [50].

In general, the size of the patch is difficult to be predetermined and may be

different for different types of input textures [50], The criterion is that the patch should be

big enough to capture the relevant structures of the given texture. In the image quilting

paper [50], the patch size is left as a user controlled parameter and the size of the overlap

is 1/6 of the patch size for all o f the experimental results. The image quilting algorithm is

summarized below:

1. Go through the output image in raster scan order step by step. At each step, a new

patch is inserted.

2. At each location where a new patch is inserted, search the input texture for a set

o f candidate patches that satisfy the overlap constraints within some error

tolerance.

3. Randomly choose one patch from the candidate set and perform the following

steps.

1) Use dynamic programming to compute the minimum error path along the

overlap region between the newly chosen patch and the old patches.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) Make the minimum error path as the boundary o f the new patch.

3) Paste the new patch into the output texture.

4. Repeat Step 2 and 3 until the output texture is finished:

[G raphcut Textures] Although the image quilting algorithm [50] can produce

good results for a broad range o f textures, seams between patches in the output texture

may still be quite noticeable for some types o f textures (see Figure 2-5). To solve this

problem, the algorithm can be modified to remember the old seams between the patches

that are already inserted into the output image during the synthesis process, and to further

reduce the old visible seams in the output texture whenever necessary. Since dynamic

programming used in the image quilting algorithm [50] cannot keep track o f the seams

between existing patches in the output, a new optimization technique should be deployed

so that the output results can be refined as required. In graphcut textures [101], Kwatra et

al. use graph cuts [13, 184] to refine the output texture as well as to find the minimum

error paths between patches that have overlaps with each other. The basic idea of

graphcut textures [101] is described as follows.

Input Output

Figure 2-5: An example of visible seams in the output using the image quilting algorithm.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The approach is based on the optimization techniques of graph cuts [13, 184],

which have become popular recently for efficiently solving the labeling problems [184]

in computer vision and computer graphics. In a labeling problem, a set of sites P (e.g. the

set of all pixels in an image) and a set of labels L (e.g. the set of all possible gray levels

for a pixel) are given, the objective is to find the global (or nearly global) optimal

labeling / (i.e. a map from P to L) which minimizes the energy of /. In general, the

labeling problem is intractable. For example, for an image of size 3 2 x 3 2 (i.e. 1024 sites)

with 256 gray levels (i.e. 256 labels) for each pixel, there are 2561024 labelings.

Recent research works have shown that graph cuts can be used to efficiently find

the global or nearly global optimal solutions for the labeling problems with energy

functions that incorporate everywhere smooth, piecewise constant, and piecewise smooth

prior constraints [13, 184], The basic idea o f using graph cuts for solving a labeling

problem is to construct a weighted graph in a way such that there is a one-to-one

correspondence between the set of all cuts of certain type in the graph (e.g. the set o f all

elementary cuts in an a -e x p a n s io n graph [13, 184]) and the set of all labelings. W ith

the one-to-one correspondence established between the set of graph cuts and the set of

labelings, the labeling problem is converted to finding the min-cost cut in the graph [13,

184], In graphcut textures [101], a specific type of a -e x p a n s io n graph, which is

discussed in details in a separate technical report [152], is built to find the minimum error

cut (i.e. path) between the existing patches in the output and the new patch to be inserted

into the output.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The technique of graphcut textures [101] is more general than image quilting [50],

In fact, the image quilting algorithm can be carried out in a different way by replacing the

dynamic programming with the standard graph-cuts techniques. Suppose a new patch B is

inserted into the output that overlaps with an existing patch A, a simple graph as shown in

Figure 2-6 can be constructed as follows. The existing patch in the output is represented

by the source node (i.e. the node with label “Patch A”) in the left, and the new patch is

represented by the sink node (i.e. the node with label “Patch B”) in the right. Both the

source node and the sink node are called terminal nodes. For simplicity reasons, it is

assumed that there are only 9 pixels in the overlap region between the new patch B and

the existing patch A. Suppose that 4-nearest-neighbor interaction is assumed in graphcut

textures [101], then each node has edges connecting its left, right, top, and bottom nodes.

For example, in Figure 2-6, node 5 has edges connecting to node 2, 4, 6, and 8,

respectively.

Overlap region

Patch
A

Patch B

Minimum error path

Patch
A

M in-cost cut

Patch B

Figure 2-6: An example of graph formulation of finding the minimum error path.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each edge e in the overlap region connecting neighboring nodes, p and q , a

weighted cost w (p , q , A , B) of e is defined as:

w (p , q , A , B) =| A (p) - B(p) | + | A(q) - B{q) | , (2.3)

where A (p) is the gray level of pixel p from patch A, and B(p) is the gray level of p

from patch B. If an edge between a terminal node (A or B) and a non-terminal node is

assigned an infinite cost, the non-terminal node will be insisted to come from the patch

represented by the terminal node. For example, in Figure 2-6, if both edges eAl and e8B

have oo costs, then node 1 retains its old patch label (i.e. patch A) and node 8 is assigned

to the new patch B. The minimum error path calculated by dynamic programming in

image quilting [50] is equivalent to the min-cost cut in the graph shown in Figure 2-6,

which can be calculated by standard graph-cuts techniques [163],

For a given input texture image, the objective is to generate an output texture

image by iteratively copying small patches from the input to the output so that the visible

seams are as few or as invisible as possible. The first patch is copied at random into the

output. Now, suppose several patches have already been placed into the output, and a

new patch will be inserted into a region where multiple patches already meet. There are

seams (referred as old seams later) along the border between old patches, and in image

quilting algorithm [50], the old seams are not taken into account as constraints when

laying down a new patch into the output texture. Therefore, the graph shown in Figure

2-6 cannot be used to incorporate old-seam constraints. In other words, once the old

seams are created, they cannot be reduced later in the image quilting algorithm.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To incorporate the old-seam constraints, a -e x p a n s io n graphs [13, 184] are

constructed in graphcut textures. As illustrated in Figure 2-7, the old patches, which are

already placed in the output, are represented by the source node with label “Existing

Patches A,” and the new patch to be inserted is represented by the sink node with label

“New Patch 5 .” For each node p in the overlap region, let A p represent the particular

patch that pixel p comes from. For each pair o f neighboring pixels p and q, if A p = A q

(i.e. p and q have the same initial patch label), then there is no old seam between p and q,

according to the properties of a -e x p a n s io n graphs [13, 184], a weight (i.e. cost) of

w(p, q, A p, B) given by Eq. 2.3 is assigned to edge epq.

Existing
Patches A

Overlap region

Existing V New
Patches A 1 Patch B

Old cut IS ew cut

New
Pak h B
M I B I B M il

New cut Old cut

Figure 2-7: The a - expansion graph constructed for graphcut textures.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each pair of neighboring pixels p and q in the overlap region, if A p ^ A q (i.e.

p and q come from different existing patches), then there is an old seam between p and q

and a seam node 5 is created between p and q. According to the fundamental theory on

a -e x p a n s io n graphs [13, 184], a triple of edges, eps, esq and esB , are created at s each

with an appropriate weight assigned. The weights for edge eps, esq, and esB are

w(p,q, A p, B) , w (p , q , B , A q) , and w(p,q , A p, A q) , respectively.

For example, in Figure 2-7, there is no old seam between node 2 and 5, which

implies that pixel 2 and 5 come from the same old patch A (i.e. A 2 = As = A) , the weight

for edge e25 is w(2,5, A ,B)= \ A(2) - B(2) |+ | A(5) - B(5) | . On the other hand, since there

is an old seam between node 1 and 4, thus a seam node s, is created between 1 and 4. In

addition, the seam node s1 is connected to the sink node B by a weighted edge, whose

weight is the old matching cost [101] when the old seam between node 1 and 4 is created,

which is given by w(l,4, A ,,A4) (see Eq. 2.3). The edge between 1 and s1 is assigned a

weight w(l,4,A{, B) , which measures the matching cost when pixel 4 comes from the

new patch B. Similarly, the edge between sr and 4 is assigned a weight w (l,4,B ,A 4) ,

which measures the matching cost when pixel 1 comes from the new patch B.

Kwatra et al. have argued in their paper [101] that in a graph constructed in such a

way as shown in Figure 2-7, the min-cost cut C can cut at most one of the three edges

created at any seam node and this is true only if the cost measure defined by Eq. 2.3 is

metric [184], If none of the three edges at a seam node is cut by the min-cost cut C, then

the old seam is removed. Otherwise, if the edge between a seam node s and the new patch

node is cut by the min-cost cut, then the old seam at s remains. If the edge between a

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

seam node (e.g. s3 in Figure 2-7) and one of its adjacent nodes (e.g. 5 in Figure 2-7) is

cut by the min-cost cut, then the old seam at seam node is removed and a new seam is

introduced at the same edge position where the old seam passes through (i.e. the old seam

is overwritten by the new seam). Finally, if an edge without a seam node is cut by the

min-cost cut, then a new seam is introduced at that edge.

For example, in the graph shown in Figure 2-7, the new cut in blue color, denoted

by C, is the min-cost cut calculated using graph cuts techniques [13, 184], At seam node

s l , since C cuts edge e B , the old seam at 5; remains. At seam node s2 , the same

situation as at Sj happens, thus the old seam at s2 also remains. At s3, C cuts the edge

between 5 and ,s\, thus the seam at ,v3 is replaced by a new seam at the same location. At

,v4 , the new cut does not cut any of the three edges from it, thus the old seam at s4 is

removed. Finally, new seams are introduced between node 4 and 7, 5 and 6, and 3 and 6

since the new cut passes through the edges between them.

In summary, the discussion on the theoretic side of the graph constructed for the

graphcut textures is very weak, and few information is provided in the original paper

[101] to convince the reader the correctness of the graph’s construction. After carefully

reading the paper, the reader may still not sure how the graph constructed in the paper

(e.g. Figure 3 in [101]) fits into the general framework of a -e x p a n s io n graphs [13,

184], There are, for example, some important theoretical issues on the graph used in the

paper remains unanswered, which are listed below:

1. W hat properties a cut C has? For example, in the graph shown in Figure 2-7, can a

cut C cuts edge en ? W hat edges it can cut and what edges it cannot cut?

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Given a cut C in the graph, how to define the corresponding labeling f c ?

3. Why a min-cost cut C can cut at most one of the three edges at any seam node? Is

this true for any cut C in the graph?

4. In general, an a — expansion graph has a set of elementary cuts, which has a one-

to-one correspondence to the set o f all labelings within one a - expansion of the

initial labeling, and this is the key to solving a labeling problem using

a -e x p a n s io n graphs [13, 184]. How is an elementary cut defined in the graph

used in the graphcut textures paper? How can the one-to-one correspondence be

established?

In a separate technical report [150], we have addressed the above important

theoretic issues under the framework o f a -e x p a n s io n graphs [13, 184]. W e have

developed the concept of complete a - expansion graphs in 2D to give the theory support

and mathematical proofs of the graphcut textures [101].

[Liang e t a l.’s A pproach] Concurrent to the work of image quilting [50], Liang et

al. propose a patch-based sampling technique for real-time texture synthesis [106], The

general algorithm of their approach is similar to that of the image quilting approach. The

only difference is that when handling overlaps between patches, Liang et al.’s approach

uses a blending technique, called feathering [176], to give a smooth transition between

textures in the overlap regions, while Efros and Freem an’s approach uses dynamic

programming to calculate a minimum error boundary cut to reduce the visible seams

between textures in the overlap region as much as possible. Liang et al.’s patch-based

sampling algorithm for texture synthesis is summarized below:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Randomly choose a texture patch B0 from the input texture X. Paste B0 into the

output Y. Set k = 1.

2. For any new patch Bk to be inserted into the output Y, let B = {B0,...,Bk_y} be

the texture patches already inserted into Y, E kout be the boundary zone of B that

will overlap with the boundary zone E B of Bk (see Figure 2-8). Find all texture

patches in the input X whose boundary zones match E kout, and let y/(B) be the set

of all such texture patches, i.e.:

iff(B) = { B \ B isa patch in X such that d (B , E kut) < £ } , (2.4)

3. If y/{B) is empty, set y/(B) = {B^ }, where B ^ a is chosen from X such that its

boundary zone is the closest to E kut.

4. Randomly choose an element from y/{B) as the new patch Bk . Paste Bk into the

output Y. Set k = k +1 .

5. Repeat steps 2, 3, and 4 until the output Y is finished.

6. Perform blending in the boundary zones using the feathering technique [176].

An illustration of the above algorithm is shown in Figure 2-8. The gray area is the

already synthesized region in the output. The areas in dashed lines are the boundary

zones. Figure 2-8 (a) shows that when a new patch E B is inserted, the boundary zones

E kut and E B should match. Figure 2-8 (b) is the configuration for boundary zone

matching in the beginning of texture synthesis. Figure 2-8 (c) is the configuration in the

middle. And, Figure 2-8 (d) is the configuration in the end. The overlapping boundary

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zones are blended together by using the feathering technique [176], In Eq. 2.4, the

param eters is controlled by the user, and d (E B , E kout) is given by:

1/ 2

(2.5)

where M is the number of pixels in the boundary zone, and p { (EB) and p t (Eoul) are the

color values of the i th pixel in the boundary zones E B and E kut, respectively.

'out

\ /T I ,---

(a)

blending

blending

V :

(b)

i 1 B>
e ~-----^ i----------

a*

blending

(c) (d)
Figure 2-8: An illustration of the patch-based sampling approach for texture synthesis by

Liang et al.’s approach.

The calculation of the set ijJ(B) in step 2 of the algorithm is essentially an ANN

(approximate nearest neighbors) search in high-dimensional space, and an efficient

optimization technique called the quadtree pyramid data structure is employed for the

search. To further speed up the algorithm, PCA (Principal Component Analysis) [91] can

be used to reduce the dimension of the search space. This is done by first finding the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eigenvalues and eigenvectors of the covariance matrix of the data points in the search

space. The original data points are then projected into the subspace spanned by the

eigenvectors of the largest eigenvalues that contains the main variations of the data

distribution. The dimension of the subspace, where the search is carried out, is much

smaller than that of the original search space (see [106] for the details).

Before ending this section, we give some comments on patch-based techniques

for texture synthesis. In general, they are much faster than pixel-based techniques and

thus the algorithms can run in real time. However, there are several challenging issues

that need further research. The first is how the size of patches used during synthesis

affects the results and how to determine an optimal patch size for a given input texture

image. Currently, all techniques use a fixed size of patches (e.g. 16x16 or 32x32). The

second is how to choose an optimal size between overlap regions, and this problem is

related to and dependent on the first problem. The last is that sometimes even a m inim um

error path is found between two merging patches, there are still visible seams at the

boundary of the patches. The cause of the problem is due to the inaccurate similarity

measure based on the SSD (sum of square differences) of pixel color values. W u and Yu

[200] have addressed this problem and give a solution based on structural texture feature

matching and deformation. Their approach has achieved some degree of success.

2.1.4 Feature Matching Approach

In this approach, textures are modeled as a set of features, and synthesized

textures are generated by matching the features computed from a given input texture.

Techniques in this approach includes the multiresolution histogram matching [81], the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feature-based pyramid sampling [35], the joint statistics matching o f complex wavelet

coefficients [143, 167], and the statistical learning based method [6]. These algorithms

are usually faster than the MRP models.

In Heeger and Bergen’s method [81], new textures are synthesized by coercing a

white noise image into a given sample texture by matching the histograms o f filter

responses at different spatial scales and orientations. Given a texture image X, their

algorithm first decomposes X into a steerable pyramid P (X) [166]), which is a set of

images (called pyramid subbands) filtered from the input image at different spatial scales

and orientations. Then, starting from a random noise image Y, the algorithm modifies

each pyramid subband in P (Y) so that its histogram matches the histogram o f the

corresponding pyramid subband in P (X) . The above histogram matching process is

repeated several times (e.g. 5 times or so reported in the original paper [81]) until there is

no further improvement in the quality o f the output.

Figure 2-9: Examples of texture synthesis using Heeger and Bergen’s algorithm. In each

pair, the left image is the input and the right image is the synthesized texture. Texture in

(a) is an example o f success, and texture in (b) a failure.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Heeger and Bergen technique [81] works well for highly stochastic textures but

fails on some structural textures such as bricks (see Figure 2-9) since histograms are

insufficient to differentiate textures [143, 144], De Bonet [35] presents an approach to

synthesize new textures by sampling from a given input texture conditioned on the local

feature responses (called local parent structures in the original paper [35]) at different

spatial scales. De Bonet’s algorithm also synthesizes textures in a multiresolution

fashion, which is similar to the Heeger and Bergen algorithm [81]. However, instead of

matching the global histogram at each pyramid subband between the output and the input,

De Bonet’s algorithm tries to match the local features of the corresponding pixels in the

output and input images. As a result, his technique works better than Heeger and

Bergen’s histogram-matching technique [81] on structural textures, and thus on a wider

range of textures. However, if the input texture is not tileable, there will be boundary

artifacts in the output.

Using statistical learning, Bar-Joseph et al. introduce a more general model,

which can be viewed as an extension of De Bonet’s approach [35]. Instead of operating

on a single input texture sample, which is the case of De Bonet’s algorithm, Bar-Joseph’s

algorithm takes multiple texture samples as input and synthesizes a new texture from a

mutual source of input samples. Another significant improvement is that Bar-Joseph’s

model can be used to synthesize time-varying textures (i.e. texture movies) in addition to

static textures.

The general algorithm of Bar-Joseph’s approach is as follows. Given k n-

dimensional signals of input texture samples, the algorithm constructs a hierarchical

multiresolution analysis (MRA) of each signal sample using wavelet transformations [33,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166], Each M RA is represented as a 2" —ary tree. It is assumed that all the paths in a

particular tree are realizations of the same stochastic process. The algorithm generates a

new random M RA tree by statistically merging the M RA trees of the input samples.

Finally, the algorithm transforms the newly generated M RA back into an n-dimensional

signal by applying a process inverse to the MRA. The new n-dimensional signal is used

to produce a synthesized texture that is statistically and perceptually similar to each of the

input samples, but at the same time different from them.

Another research work on texture synthesis using feature matching is done by

Simoncelli and Portilla [143, 167]. Their approach synthesizes new textures by matching

the jo in t statistics of the steerable pyramids of the input and output images. The joint

statistics used in their model include the marginal statistics, the wavelet coefficient

correlations, the magnitude correlations, and the cross-scale phase statistics. The

matching between the joint statistics is done by a greedy entropy-minimization approach

similar to that of Zhu et al.’s approach [208]. Simoncelli and Portilla’s algorithm can also

apply to multiple input samples to generate texture mixtures. In general, Simoncelli and

Portilla’s model can successfully capture global textural structures but fails to preserve

local patterns.

2.1.5 Cooccurrence Matrix Approach

Cooccurrence matrices have been used as a powerful tool for texture analysis,

synthesis, segmentation and classification. Various texture analysis and synthesis

approaches based on cooccurrence matrices have been proposed in the literature [21, 23,

24, 31, 34, 51, 55, 58, 59, 67, 75, 76, 90, 112, 131, 137], Since cooccurrence matrices are

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

normally calculated by considering pixel gray level values, models based on

cooccurrence matrices are generally called the GLCM (Gray Level Cooccurrence M atrix)

models [77]. The basic idea of texture analysis and synthesis using the GLCM models is

described in this subsection. For detailed information on this, the reader is referred to [31,

111

For a given texture image X with m gray levels, consider a displacement vector

d = (dx, d y), the gray level cooccurrence matrix corresponding to d , denoted by

C(d) = (cfj) 0<(.<m_j, is an m x m matrix, where its entry cfj counts the number of pairs of

pixels generated by the displacement d over image X, which have gray level i and j,

respectively. The calculation of cv is given by:

4 = S (x , y)) * S { j - g (x + dx, y + d y)) +
(x , y) e l
(x , y) + d £ l ^ ^

- g(x, y)) * S (j - g (x - dx, y - d y))
{ x , y) e l
(x , y) - d e l

i f x = 0
where o is the Dirac delta function, i.e. d(x) = < , and g(x, y) is the gray

[0, otherwise

level at pixel location (x, y) .

1 0 1 0 1 0 1

0 0 0 0 8 2 0 2/3 1/6
0 0 0 1 2 0 1 1/6 0

(a) (b) (c)

Figure 2-10: An example of an image and its GLCM with d = (1,0) .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-10 gives an exam ple of a binary image in (a) and its corresponding

GLCM in (b) with a displacement of d = (1,0). If the cooccurrence matrix C{ d) is

m - 1

normalized such that cfj =1 (e.g. Figure 2-10 (c)), then a discrete probability
i , j = 0

distribution of c f is obtained, based on which a new texture image can be sampled.

Based on Julesz’s im portant conjecture on the role of high order statistics in

human vision [93], texture features such as contrast, correlation, variance, inertia,

entropy, cluster shade, and local homogeneity (see [77] for definitions) can be computed

from cooccurrence matrices to analyze and characterize textures [77]. It has, however,

been shown that the transformation of cooccurrence matrices into secondary features has

led to a significant loss of information that are originally captured by cooccurrence

matrices [31, 112], Studies on comparing the relative power of various texture analysis

techniques have convinced people that directly using the elements of cooccurrence

matrices as texture features generally outperforms the methods that use secondary

features derived from cooccurrence matrices [26, 27, 76, 122, 193]. As well, it has been

shown that cooccurrence matrices themselves can be directly used in texture analysis and

synthesis [55, 58, 59, 67, 112, 131],

For a given pixel in image X , consider its eight neighboring pixels, which

correspond to four displacements d 0 = (1,0), d 1 = (1,1), d 2 = (0,1), and d 3 = (-1 ,1). Let

C ; = C (d ;) be the cooccurrence matrix generated by displacement d t , which is

calculated using Eq. 2.6. To synthesize a new texture image Y, which has the same (or as

close as possible) cooccurrence distribution (i.e. cooccurrence matrices) as the input

texture X, the following algorithm can be used:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Initialize Y as a random noise image, which has the same histogram as the input

2. Use the M etropolis sampling [32, 63] to iteratively transform the initial im age Y

into a final texture image which has the desired cooccurrence distribution. At each

iteration, the following steps are performed:

■ Randomly choose two pixels p, and p 2 from image Y.

■ Exchange the gray levels of p x and p 2 if the exchange will cause an

improvement (i.e. image Y has a closer cooccurrence distribution to that of

input image X). To measure the closeness of the cooccurrence distribution

between Y and X, the following formula is used:

where C k (X) = [ckjk]0 S i is the cooccurrence matrix of image X

corresponding to displacement d k , k = 0,1,2,3 . The smaller the value E

is, the closer the cooccurrence distributions between X and Y.

■ If the gray level exchange between p x and p 2 failed to cause an

improvement, the exchange is performed with a probability p given as

follows:

where E is given in Eq. 2.7 and T is a temperature that is slowly cooled

down.

3. Step 2 is repeated until the value E reaches zero or does not change any further.

image X.

1 3 G-l 2

(2.7)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above algorithm is essentially the same algorithm used in Lohmann’s work

[112]. Since only four smallest displacements (measured by \d |) are used, Lohm ann’s

approach will fail for structural textures (see Figure 2 -11(b)) although it works well for

some stochastic textures with micro particles (see Figure 2-11 (a)) . To overcome this

problem, large displacements and large number of cooccurrence matrices can be used,

and this can be done by increasing the size of a target pixel’s neighborhood over which

the displacements are considered [31]. However, the number of cooccurrence matrices

will increase drastically when the neighborhood size increases and this drastically

increases the algorithm run-time. The solution to this problem is to use a multiresolution

scheme [81, 158, 166, 190],

• - . • - • • I

■; :! -s ^»• - * * t r 1* ■i «r. v -- _ „

(a) (b)

Figure 2-11: Examples of texture synthesis using Lohm ann’s approach.

Another major problem with cooccurrence matrix approaches is that the distance

function (e.g. Eq. 2.7) for measuring the similarity between the synthesized texture Y and

the input texture X is not well defined in the sense that for a given input texture X, the

algorithm described in the previous subsection could generate a completely dissim ilar

texture Y but still has a zero distance to X (i.e. E = 0 in Eq. 2.7). The cooccurrence

matrix approach [31, 34, 112] has been generalized by Elfadel and Picard under the aura

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A44A

framework [51, 52, 137-139], which is described in the next chapter as background

knowledge of the proposed work.

2.1.6 Structural Texture Modeling

Structural textures [92] are viewed as two dimensional patterns consisting of a set

of micro-structures (i.e. primitives) which are arranged according to certain placement

rules. Examples of structural textures are checker-board patterns, bricks, stones, periodic

regular (or nearly regular) patterns, etc (see Figure 2-12). Correctly characterizing and

synthesizing structural textures are difficult [74, 75, 104, 206],

m i

Figure 2-12: Examples o f structural patterns (image source: the Brodatz and the Vistex

textures [124]).

In general, existing statistical texture models are unsuitable for synthesizing

structural textures. Procedural texturing approaches [47, 103] have been used

successfully for synthesizing some specific types of structural textures such as

checkerboard patterns, bricks, etc. In Zhu et al.’s work [206], a texton-based approach is

used for analyzing and synthesizing structural textures. In their model, a 2D structural

pattern is viewed as a superposition of a set of image bases from an over-complete

dictionary, and a texton is defined as a primitive (i.e. mini-template) consisting of a set of

image bases with some specific geometric configurations and photometric properties. For

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a given structural pattern, it has been shown in their paper that a small number of textons

can be first learned from a set of training samples as repeating micro-structures and then

used to synthesize a similar pattern.

Recently, a mathematical framework [110] based on the theory of

crystallographic groups [70] has been proposed for modeling periodic regular (or nearly

regular) patterns. The underlying mathematical theory for their model is the fact that

there are only a finite number of basic patterns, called symmetry groups, for all possible

periodic patterns in an n-dimensional space [120]. In particular, it is proved that in the 2D

space there are only 7 frieze groups describing monochrome patterns that repeat along

one direction and only 17 wallpaper groups for patterns that repeat along linearly

independent directions to tile a plane.

Based on the above mathematical theory, algorithms are developed for analyzing

and synthesizing 2D periodic patterns [110]. The goal of the analysis process is to

characterize a given 2D periodic pattern by extracting the underlying translational

lattices, classifying the pattern’s symmetry groups, and identifying the representative

motifs that perceptually characterize the pattern. Synthesized patterns are generated by

tiling the representative motifs according to some placement rules (i.e. by centering the

motifs on distinct centers of the highest rotation [110]).

There are two limitations in Liu et al.’s model [110]. The first is that only periodic

patterns with Gaussian noise are assumed in the model, and thus geometric variations and

distortions are not handled well. To solve this problem, the authors suggest an approach

based on the correspondence of geometric visual elements (e.g. points of high boundary

curvature) or an approach based on feature correspondence. The second limitation is that

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the transformation of scaling is not considered in the model during the process of

classification, which implies that all patterns must be taken by a camera perpendicular to

the image plane. The authors suggest that affine and perspective imaging models [109] or

local deformations of approximate periodic patterns can be used to address this problem

[110, 111].

2.2 3D Texture Modeling

3D textures are visual patterns that appear on surfaces of 3D objects (see Figure

1-1). There are four approaches to generating synthetic textures onto 3D surfaces: texture

mapping, procedural texturing, image-based surface texturing, and image-based solid

texturing. In subsequent sections, we review representative techniques in each of the four

approaches.

2.2.1 Texture Mapping

Texture mapping [10, 79, 80, 198] is the earliest technique for generating

synthetic textures on surfaces of com puter generated objects, which was first introduced

by Catmull in 1974 [Catmull, 1974], It is commonly used to add realism to otherwise dull

synthesized images. Recently, research in this area has changed its focus from algorithms

for software-based rendering systems to algorithms for high performance graphics

hardware.

In texture mapping, a 2D texture pattern is mathematically mapped onto the

surface of a 3D model that is used to represent a real world object. Then, the textured 3D

surface is projected onto the output image-viewing plane. Three different coordinate

systems are commonly used in texture mapping: texture space (st-space), object space

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(xyz-space), and image space (uv-space). Two transformations are used to transform

textures from the sf-space to the nv-space. One is between the sf-space and the xyz-space,

which is called texture-object transformation (see Figure 2-13). If the texture is mapped

orthogonally onto a planar quadrilateral, then the texture-object transformation may be as

simple as an affine or bilinear transformation [79]. Otherwise, it may be a parametric

transformation when the texture coordinates are used to represent non-Cartesian

coordinates such as cylindrical or spherical. The other transformation used in texture

mapping is between the xyz-space and the uv-space, which is called object-image

transformation. It is usually either an orthographic projection for orthographic viewing or

perspective projection for perspective viewing. For discussions on various kinds of

texture-object transformations, the reader is referred to [10, 79, 80].

Object Space
(xyz-space)

T exture-O bject
T ran sform ation ,

O bjec t-im age
T ransform ation

Texture Space
(st- space)

C om posite

Inverse F orw ard
Image Space

(wv-space)

Figure 2-13: The coordinate systems and transformations in texture mapping.

Since the transformation from the texture space to the image space is a composite

of the texture-object transformation and object-image transformation, one often

concatenates the two transformations to save computations. The resulting composite

transformation usually can be formulated either as a forward (texture-to-image)

transformation or as an inverse (image-to-texture) transformation. Each method has its

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

own advantages and disadvantages, which have been discussed at length in [79, 198].

Figure 2-13 shows the relationship between the two transformations described before.

Figure 2-14 gives a simple example o f texturing an object’s surface using texture

mapping.

Texture
mapping

Texture Texture-mapped image

Figure 2-14: A simple example of texture mapping.

Various texture mapping techniques have been proposed in the literature.

Following the work done by Catmull [16], Blinn and Newell [12] introduce a popular

mapping technique called reflection mapping to map 2D textures onto the surfaces of

objects. Using their technique, the texture-mapped surface appears to be reflecting an

image of its surroundings. The environment mapping introduced by Greene [69] can be

considered as an extension o f the reflection mapping [12], in which a real 180-degree

fisheye image o f the sky is combined with the computer-generated image of a desert

terrain to create a full-view environment cube. Greene also shows in his paper [69] that

environment mappings can be pre-filtered and indexed with summed-area tables to solve

the aliasing problem, which was first addressed by Williams in 1983 using the mip-

mapping technique [196]. Since then, research on environment mappings has been

carried out extensively. Recent advancements in this area include the extended prefiltered

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment maps [15, 95-97], the efficient irradiance environment maps [157], and the

frequency domain environment maps [156],

Another im portant technique of texture mapping is bump mapping introduced by

Blinn in 1978 [11]. This technique modifies the surface normal rather than the surface

point as in reflection mapping [12] to generate bump-like textures on surfaces of objects.

As an extension to bump mapping, Cook et al. [30] introduce displacement mapping in

which textures are used to modify the surface point, not ju st the surface normal. Since

modifying a surface point does change the surface normal at that point, displacement

mapping often looks like bump mapping except that the bumps created by the form er are

visible on the silhouettes of objects. Recently, in Jagnow and Dorsey’s work [85], the

displacement-mapping technique has been used in virtual sculpting [85]. In W ang et al.’s

work, the displacement mapping has been extended to the view-dependent case [187].

There are other texture mapping techniques such as the texture tiling [46], the

decal mapping [7], the cell texturing [48], and the image-based transformations [119,

159, 194], which are discussed and reviewed in the surveys done by Weinhaus [192] and

by Haeberli [73]. Recent works in this area on efficiently generating textures over an

arbitrary surface using a 2D example include the lapped textures [145], the hierarchical

pattern mapping [170], the jum p maps [203], the triangle mesh texture map [114], the

matchmaker for constraint texture maps [99], and the TextureM ontage technique [205],

Texture mapping suffers several problems. One is the unacceptable artifact

problem. To cover the surface of a large object, the algorithm must replicate the texture.

This can cause either visible seams, or visible repetitions, or both, which are

unacceptable. Another problem is the distortion problem (see the brick texture on the top

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the cylinder in Figure 2-14). This is caused by the fact that there is no natural and well-

defined mapping from 2D texture images to arbitrary 3D surfaces due to the complexities

of textures and 3D models. To solve these problems, procedural texturing [47] can be

used, which is discussed in the next section.

2.2.2 Procedural Texturing

The second important approach for generating textures on the surfaces of objects

is called procedural texturing [47], which was first introduced by Cook in 1984 [28],

W ith the introduction of solid texturing [132, 134] and texture basis function such as the

Perlin’s noise [134], the use of procedural texturing has been widely accepted in the

computer graphics community. In this approach, procedures are used to generate

synthetic textures without requiring input textures. By calling a compact procedure,

textures are generated directly on surfaces of 3D objects without seams and without

discontinuity. Using different procedures, realistic images of brick, marble, wood, stone,

water, cloud, flame, and crumpled wrinkle can be generated efficiently.

Although, recent works on non-procedural texture synthesis [111, 145, 177, 179,

191, 201, 202, 204] have achieved some success in applying textures onto 3D surfaces,

the procedural approach still has some advantages over the non-procedural approach:

1) Some natural phenomena with motions, such as gas, fire, fluid, cloud, etc., are

difficult to synthesize using non-procedural approaches, while it is more

appropriate and relatively straightforward to model using procedural texturing.

2) To generate hypertexture [135] using procedural texturing is easy and efficient,

while it is difficult to do using non-procedural approaches.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Other advantages include compact representation, storage efficiency, no seams,

no repetition, and no discontinuity.

Some of the useful procedural-texturing techniques include the shade tree [28],

the pixel stream editor and solid texturing [132, 134], the hypertexture [135], the

reaction-diffusion systems [56, 180, 197], cellular texture basis functions [154, 199], and

the multiresolution procedural param eter estimator using genetic algorithms [153]. These

techniques are briefly discussed below.

Cook’s shade trees [28] are one of the earliest systems used to generate

procedural textures during rendering. Shade trees enable the use of different tree-

structured shading models for different surfaces such as copper, wood, grass, etc. The

input parameters to the shading models can be manipulated procedurally. In this way,

shade trees make it possible to use textures to control any part of the shading calculation.

Color and transparency textures, reflection mapping, bump mapping, displacement

mapping and solid texturing can all be implemented using shade trees. Cook’s shade trees

have provided the basis for most of the subsequent procedural shading works [123, 140,

147, 181, 187],

As an extension to Cook’s shade trees, Perlin [134] introduces a complete

procedural texture generation language, called Pixel Stream Editor (PSE), and lays the

foundation for the most popular class of procedural textures in use today, in particular

those based on Perlin noise [133, 134], a stochastic texture generation basis function that

produces random numbers with a band-limited frequency spectrum and plays a major role

in many procedural shaders. By using his noise basis function, Perlin has generated very

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convincing representations o f clouds, fire, water, stars, marble, wood, rock, soap films,

crystal, etc.

Before the work done by Peachey [132] and Perlin [134], some researchers

proposed procedural textures over a two-dimensional domain [57, 61, 161]. By extending

their work to three dimensions, Peachey [132] and Perlin [134] independently introduce

the concept of solid texturing in 1985, in which volumetric textures are generated by

calling compact procedures. In general, solid texturing procedures are built on texture

basis functions such as Perlin noise [134], wavelet noise [29], Worley’s cellular texture

basis function [199], the generalized cellular texture basis function [154], and the object

distribution function [102]. A variety of solid textures such as wood, marble, water,

cloud, flame, etc, can be modeled using solid texturing. For example, using a simple

procedure defined in Eq. 2.9, rainbow-like textures can be generated on the surfaces o f an

object, where given a surface point p, the procedure rainbow(p) returns a color at that

point. Figure 2-15 shows an example o f textured images with k = 10,8,6,4,2 in Eq. 2.9.

rainbow(p) = (noise(k * p), noise(k * p), noise(k * p)) (2.9)

A = 10 k = 8 k = 6 k = 4 k = 2

Figure 2-15: An example of solid texturing generated using the procedure defined in Eq.

2.9 with k — 10, 8, 6, 4, and 2, respectively.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Texturing procedures often require the setting of a large number of param eter

values, a process that is time-consuming and non-trivial. This makes it difficult, if not

impossible, to manually estimate the parameters of a given procedural texture. This

problem is addressed in Qin and Y ang’s work [153] using a genetic-based multiresolution

approach for estimating parameters. The key idea of the approach is to use an efficient

search method, called the genetic-based search algorithm, to find appropriate values of

the parameters for a given procedure. During the search process, for each set o f the

parameter values, the algorithm generates a temporary texture image using the given

texturing procedure, then it compares the temporary texture image with the given target

texture image to check if they match. The comparison between two texture images is

done by using a multi-resolution M RF texture model. The search process stops when

there is a match found. The estimated values of the parameters for a given procedure are

the values of the parameters to the procedure to generate a texture image that matches the

target texture image.

In the paper [153], it is also demonstrated that the proposed parameter estimation

approach can be used to procedurally synthesize an input texture onto 3D surfaces. This,

however, assumes that for each type of input textures, the user provides an appropriate

texturing procedure to model them. It would be interesting to have a systematic way to

design texturing procedures automatically based on given texture samples. Lefebvre and

Poulin [103] have done some work in this direction, but their approach only works for

structural textures such as brick and wood patterns. In Chapter 5, we present a new and

general method to generate solid textures from input samples

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The design of solid texture basis functions (i.e. texturing primitives) has also been

studied by some other researchers. In addition to Perlin’s noise [133, 134], W orley [199]

proposes a cellular texture basis function, called W orley’s noise, which can be used as a

solid texturing primitive in procedural texturing for generating cellular textures on the

surfaces of objects. As a generalization of W orley’s noise, Qin and Yang [154] propose a

generalized cellular texture basis function. For procedural texturing, all of the above

texture basis functions can be used in color mappings, bum p mappings, and fractals to

produce visually interesting and impressive effects. By combining color or bump

mapping with fractal technique, a variety of texturing procedures can be implemented

based on them to generate crumpled wrinkle, wood, marble, cloud, water and flame-like

textures. In Lagae and D utre’s work [102], a procedural object distribution function is

used to generate regular-tile patterns that appear on cloth.

Another important technique to generate procedural textures is to use a reaction-

diffusion process, in which two or more chemicals diffuse at unequal rates over a surface

and react with one another to form stable patterns such as spots and strips that appear on

the skins of animals. Earlier work in this area is to design the biological systems to

generate simple patterns [5, 118, 121]. Later, Turk [180], and W itkin and Kass [197]

design more complex reaction-diffusion systems to generate interesting patterns such as

zebra stripes, sand ripples, and the swirling patterns of fingerprints, the rosettes found on

leopards, and the multiple-width stripes found on some fish and snakes. The main

disadvantage of the reaction-diffusion systems is that they are computationally expensive.

Other approaches in the area of procedural texturing include the sine wave

approach [60], W iener interpolation and sparse convolution [105], hypertexture [135],

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spot noise [195], the artificial-evolution system[168], and the cellular particle simulator

[56]. There are also recent works on real-tim e programmable procedural texturing [123,

147, 187], which will not be discussed in this thesis.

The disadvantages of procedural texturing include: (1) only limited types of

textures can be modeled, (2) the design of procedures is based on the experience o f the

designer and is largely a manual process, and (3) the parameters of a texturing procedure

are difficult to tune.

2.2.3 Image-Based Surface Texturing

In image-based surface texturing, a 2D texture sample and a 3D model are given,

then similar textures to the input sample are generated onto the surface o f the 3D model

without visible seams and repetitions. Several techniques have been proposed in this area,

which are briefly described as follows.

Wei and Levoy have extended their 2D texture synthesis algorithm [190] for

generating 3D textures based on input texture samples [191]. In the 2D case, W ei and

Levoy’s approach generates synthetic texture by the nearest neighborhood search over

rectangular lattices. To synthesize a given input texture sample onto 3D surfaces, the

definition of search neighborhoods in 2D is generalized to the 3D case. For each mesh

vertex, their extended algorithm [191] first establishes a local parameterization

surrounding the vertex. Then, the algorithm uses the vertex’s local parameterization to

create a small rectangular neighborhood centered at the vertex and searches the input

texture for similar neighborhood. Since a wide range of textures can be synthesized by

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their 2D texture synthesis algorithm, their extended algorithm [191] performs well in

generating 3D textures.

Concurrently, Turk [179] has also extended Wei and Levoy’s 2D texture synthesis

algorithm for generating 3D textures. The only difference between the two approaches is

that in Turk’s algorithm [179], a global tangent vector for the surface mesh has to be

given by the user for the local parameterization of a vertex on the mesh. Another

concurrent work to extend texture-from-sample methods (e.g. Wei and Levoy’s [190] and

Ashikhmin’s [3] 2D texture synthesis algorithms) to 3D surfaces is done by Ying et al.

[201],

In Zhang et al.’s work [204], progressively-variant textures (i.e. texture mixtures)

are generated over arbitrary 3D surfaces based on texton masks. Recent research works

[108, 177] have been done on generating bidirectional texture functions (BTF) on 3D

mesh surfaces. In Fang’s work [54], existing techniques of shape-from-shading and

texture synthesis from input samples are combined to generate textures onto objects in

photographs. In Chen’s work [20], shell texture functions are used to synthesize realistic

textures with translucency variations on surfaces from either 2D or 3D samples, e.g. a

block of CT scan.

Compared with procedural texturing, image-based surface texturing can

synthesize a wide range of textures. Flowever, the approach may suffer the distortion

problem on surfaces where the curvature is large. Another problem of the approach is that

textures generated for one surface cannot be used for other surfaces. This limitation

makes the techniques difficult to be used in procedural shaders [47],

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 Image-Based Solid Texturing

A solid texture is considered as a block of colored points in 3D space to represent

a real-world material, for example, a wood trunk. Once the solid texture is available, any

given 3D object can be textured by carving the object out of the volumetric data. Since

solid textures define colors for each point in 3D space, they avoid the problems of

distortion and discontinuity. However, solid textures are far more difficult to obtain than

2D textures; there is no easy way to obtain solid textures from real-world materials.

To combine the advantages of the procedural texturing and the image-based 2D

texture analysis and synthesis, a number of researchers have developed techniques for

generating solid textures from input samples, which we call image-based solid texturing.

Different from image-based surface texturing, these techniques first synthesize a

volumetric texture data from input samples, and then generate synthetic textures onto 3D

surfaces by carving a given 3D object out of the volumetric data. W hile in image-based

surface texturing, synthetic textures are directly synthesized onto surfaces of objects

without generating the volumetric texture data first.

Some techniques in 2D texture analysis and synthesis are extended for generating

solid textures based on input samples. As an extension to their 2D histogram-matching-

based texture analysis and synthesis technique, for a given input texture image, Heeger

and Bergen [81] generate solid textures by first initializing a volume of 3D noise and then

coercing the noise so that the histogram of the volume matches that of the input image

from coarse to fine resolutions. Since histograms cannot accurately characterize textures

[143, 144], Heeger and Bergen’s approach can only synthesize certain types of input

textures, e.g. isotropic textures, onto 3D surfaces, and their approach fails for structural

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

textures. By using spectral and histogram analysis, Dischler et al.’s method [42] is able to

synthesize some structural solid textures from input samples. W ei [188] and Paget [125]

have also extended their respective 2D texture synthesis algorithms [129, 190] to

generate structural solid textures as well as stochastic textures. However, both approaches

work for only a limited range of textures.

There are other techniques developed by a number o f researchers in image-based

solid texturing. In Jagnow et al.’s work [86], a stereology-based approach is presented to

successfully generate solid textures on some texture classes, e.g. marble-like textures. In

their approach, in order to generate the correct results, extensive user interactions are

required in creating 3D particles of desired shapes and of required distributions. While

the user interaction provides flexibility, it is nontrivial to design a complex texture. If the

shapes of predesigned 3D particles do not match the profiles of input textures, their

algorithm will likely generate incorrect results. In Lefebvre and Poulin’s work [103],

structural textures representing regular tiles and wood are generated by analyzing and

extracting parameters from input images. In Dischler and Ghazafarpour’s work [42], a

hybrid approach, based on 2D texture analysis and geometric modeling, has been

developed for synthesizing structural solid textures of certain types. Like Jagnow et al.’s

method, both Lefebvre and Poulin’s approach and Dischler and Ghazafarpour’s approach

involve extensive user interactions.

As discussed before, techniques in image-based solid texturing either are not fully

automatic, which involve nontrivial user interactions [42, 86, 103], or may apply to only

limited types of textures [81, 125, 188], In Chapter 5, we present a new technique, called

aura 3D textures, for synthesizing solid textures from input examples. Our method is

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fully automatic and requires no user interaction in the process, and can generate faithful

results over a wide range of textures.

2.3 Discussions

Although various techniques in texture analysis and synthesis have been proposed

in the literature, textures are still far from being well understood. Because there is no

known complete definition of texture, each existing texture model has its own advantages

and disadvantages, and thus fails to model certain types of textures. For the same reason,

existing texture synthesis techniques cannot determine w hether or not the synthesized

texture is a successful synthesis of the input texture; visual inspection is the only method

to evaluate the synthesis results. The lack of accurate understanding in textures has also

caused problems in 3D texture modeling. In fact, existing 3D texture models can apply to

only limited types of textures. Therefore, it is crucial to understand and characterize

textures with mathematical precision.

In this thesis, a new mathematical framework is presented to model textures with

sufficient and necessary information using BGLAMs. The new framework provides

important insight in texture modeling in both computer vision and computer graphics.

Under a unified framework, new algorithms for 2D and 3D texture synthesis using

BGLAMs are developed, respectively, and an original quantitative method for evaluating

texture synthesis results is also presented. It has been shown that a wide range of textures

can be faithfully modeled using BGLAMs. In addition, we demonstrate that BGLAMs

can be used in texture image classification.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Mathematical Framework of BGLAM

This Chapter presents the mathematical theory for BGLAMs (Basic Gray Level

Aura Matrices). It is proved that a given texture image can be uniquely represented and

reconstructed by its independent BGLAMs. A new BGLAM -based distance function is

presented, and it is proved that the distance function is metric and one-to-one. New

algorithms for 2D and 3D texture synthesis using BGLAMs are presented in Chapter 4

and 5, respectively. Chapter 6 presents a BGLAM-based method for texture image

classification.

3.1 Background Knowledge

The concepts of aura sets, aura measures and aura matrices were first introduced

by Elfadel and Picard in their work of analyzing and predicting texture patterns generated

by M RF models in the states of equilibrium [52], Interesting structures in texture images

can be captured by gray level aura matrices (GLAMs) [137]. Research has been done in

studying the behavior of the Gibbs texture models [52, 138, 139] using GLAMs, and the

relationship between GLCMs and the Gibbs/Markov Random Fields [51, 137]. It has

been shown that the aura matrix is a generalization of the cooccurrence matrix [31, 34,

51,75],

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Following the notations used in Section 2.1.1 in Chapter 2, an image X is m odeled

as a finite rectangular lattice of m x n sites S = {s = (/, j) \ 0 < i < m - 1 ,0 < j < n -1} with

a neighborhood system N = {N s \ s e 5 } , where N s is the neighborhood at site 5. In

conventional M RF models, the neighborhood system N has two important properties:

1) Exclusive', for any s e S , s £ N s .

2) Symmetric: for any s, t e S , s e N t if and only if t e N s . (3.1)

Property 1) says that site 5 is excluded from its neighborhood and property 2)

implies that the neighborhood is symmetric. In the next section, we relax the symmetric

condition so that the neighborhood can be of any shape. The neighborhood N s in a

neighborhood system N - { N s \ s e S} can be viewed as a translation of the basic

neighborhood, which is called a neighborhood structuring element [51, 137], and is

denoted by E.

The neighborhood, denoted by N ds , at site s is defined as the set of all nearby

sites within a radius of d (d is a given integer), which is defined mathematically as:

d e f

N d = N lHUJ) = { r = (k , l) e S | 0 <| (k - i) 2 + (l - j) 2 < d) . (3.2)

Examples of the neighborhoods of the first, second, and fifth order are shown in Figure

3-1, where s = '•' is the target site and its neighboring sites are labeled by orders.

Definition 3-1 Aura [51]: Given two subsets A , B c S , the aura (i.e. aura set) of

A with respect to B for neighborhood system N = {N s \ s e S } , denoted by dD (A, N) (or

d B (A) if the neighborhood system N is clear in the context), is a set given by:

0B(A) = 0B(A , N) = u (N s n B) , (3.3)
SE A

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 3-2 Aura Measure [51]: With the same notations as in Definition 3-1,

the aura measure of A with respect to B, denoted by m(A, B) , is given by:

m(A,B) = m (A , B , N) = Y J\ N s n B \ , (3.4)
A

where for a given subset A c S , | A | is the total number of elements in A.

5 4 3 4 5

4 2 1 2 4

3 1 • 1 3

4 2 1 2 4

5 4 3 4 5

2 1 2

1 • 1

2 1 2

(a) (b) (c)

Figure 3-1: Examples of neighborhoods, (a) The first order neighborhood with d = 1, (b)

the second order neighborhood with d = 2 , and (c) the fifth order neighborhood with

d = 8 , where the center site with a solid circle is the target site s, and its neighboring site

are numbered by its order. The order of the neighborhood system is the largest order

number of a neighboring site. For example, since the largest order number in the

neighborhood shown in (c) is five, the order of the neighborhood in (c) is five.

D efinition 3-3 The set {£,. 10 < i < n -1 } is a partition of the lattice S if

n - 1
5, n S , = <p for Vi A j , and 5 = u S.,.1 1 T J i=0

D efinition 3-4 Aura Matrix [51]: Let 3 = [S, | 0 < i < n -1} be a partition of the

lattice S, then the aura matrix of 3 over S, denoted by A (3) (or simply A), is given by:

A = A (3) = [m(Si , Sj)]0<, j<„_i,

where m{Si , S j) is the aura measure o f 5 ; w.r.t. Sj given by Eq. 3 .4 ,0 < i, j < n - 1.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Of various types of partitions of S, the gray level sets are used in this thesis. For

each site s in S, we assume that its gray level x s is an integer between 0 and G - 1 (G is

the total number of gray levels for a pixel in the image), i.e. x s e A = {0,1,..., G - l } , A is

called the state space of s. The gray level sets of S are given by:

S g ={S6 S \ x s = g } , (3.5)

where g = 0 ,1 ,...,G - l . Since S = (J S and S , n S , = 0 , {5 I g e A } is a
ge A *

partition of S.

Definition 3-5: Gray Level Aura Matrix (GLAM) [51]: Given an image with

rectangular lattice S and a neighborhood system N, the aura matrix defined on the gray

level sets | g e A} is called the gray level aura matrix of the im age over N.

The aura of A with respect to B characterizes how the subset B is present in the

neighborhood of A. An example of an aura on a binary lattice with the four-nearest-

neighbor neighborhood system is shown in Figure 3-2. The aura measure m(A, B)

measures the amount of B ’s sites presented in the neighborhood o f A. It is noteworthy

that m{A, B) does not measure the number of elements in the aura of A with respect to B,

i.e. in general, m{A,B) l \ & B{A) \ . In the example shown in Figure 3-2, we have

m(A, B) = 12 ^ 10 =| &B (A) | . The GLAM of an image measures the amount of each gray

level in the neighborhood of each other gray level. The GLAM for the binary image

shown in Figure 3-2 (a) is

A =
48 12

12 8

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is calculated using the structuring elem ent of the four nearest-neighbor

neighborhood system as shown in Figure 3-2 (b).

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 o 0 1 1 1 0
0 0 1 0 0 o • o 0 0 1 0 0
0 0 1 0 0 o 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

(a) (b) (c)

Figure 3-2: An example of aura on a binary lattice with the nearest four neighbors, (a)

The sample binary lattice S, where the subset A is the set of all l ’s and B is the set of all

0 ’s. (b) The neighborhood structuring element of the four nearest neighbors (in circles)

and the target pixel (in solid), (c) The set of shaded sites is the aura of A w.r.t. B.

W hen handling a target pixel on the image boundaries, we only consider its

neighboring pixels inside the image and discard those outside of the image. Definition

3-1 suggests that the aura depends on the size of the neighborhood system. Figure 3-3

gives an example of the auras calculated over neighborhood systems of different sizes.

The aura measure m (A ,B) can be used to characterize the interaction or the

relationship between A and B in an image. Since the aura measure m(A, B) calculates the

amount of mixing sites between subset A and B, a large value (relative to the total number

of sites in S) of m(A, B) implies that subsets A and B are mixed together; while a small

value implies that A and B are separate from each other, i.e. the region represented by

each set is more likely to form its own cluster. Figure 3-4 gives an example to

demonstrate this point.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = grey region d = 1 d - 5 d = 25 d =50
B = black region

Figure 3-3: An example of the aura of A with respect to B over neighborhood systems of

different sizes. The grey pixels in the last four images are the aura of A w. r. t. B

calculated over neighborhood systems of d = 1 , 5 , 25, and 50 (see Eq. 3.2), respectively.

(a) m (A,B) = 16382 (b) m(A, 5) = 1900

Figure 3-4: An example of how the aura measure m (A ,B) interprets the relationship

between A and B, where A is the set of all grey pixels and B the set of all black pixels,

and N the four-nearest-neighbor neighborhood system. The size of both im ages is

128x128 = 16384. Compared with the total number of 16384 sites in S, m (A ,B) = 16382

is large in (a) and m (A ,B) = 1900 in (b) is small, which indicate that A and B mix

together in (a), but separate from each other and form their own clusters in (b).

The GLAM of an image characterizes the probability distribution of each gray

level in the neighborhood of each other gray level, and thus generalizes the GLCM (Gray

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level Cooccurrence M atrix). In fact, if the structuring element of a neighborhood system

contains only two symmetric neighboring sites with respect to the target site, then a

GLAM is a GLCM. For example, the GLCM shown in Figure 2-10 (b) is a special

GLAM that can be calculated using a symmetric structuring element as shown in Figure

3-5. For illustration purpose, the definition of GLCM based on GLAM is given in

Definition 3-6, which is consistent with the definition given in Section 2.1.5 in Chapter 2.

o • o
Figure 3-5: The structuring element used for calculating the GLCM in Figure 2-10 (b).

Definition 3-6: A GLCM is a GLAM com puted from a neighborhood system

whose structuring element contains only two symmetric neighboring sites with respect to

the target site.

Some important mathematical properties of aura sets, aura measures, and aura

matrices are summarized in the following three lemmas, and they are used in the rest of

the chapter. For the proofs, the reader is referred to Elfadel and Picard’s paper [51].

Lemma 3-1 Aura Properties [51]: Let 5 be a rectangular lattice and

N = { N S | s e S] is neighborhood system defined on S. Given subsets A ,B ,C c S , the

following aura properties hold:

1) The aura of any set with respect to the em pty set is empty, i.e. f^(A) = 0 ,

V A c S .

2) The aura of A with respect to B is a subset of B, i.e. &B (A) c B .

3) The aura of A with respect to itself (i.e. the self-aura of A) is a subset of itself, i.e.

$A (A) c A .

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4) The aura of union is equal to the union of auras, i.e. &c (A u B) = # C(A) u #c (B).

5) The aura of intersection is included in the intersection of auras, i.e.

&c (A n B) c $ c (A) n &c (B).

6) If A c B , then z?c (A) c 0c (f l) .

7) 0fluC(A)= 0 B(A) u 0 c (A).

8) j?JnC(A)=t?B(A)nJS>c (A).

9) In general, the aura operation is not symmetric, i.e. i)B (A) A i)A (B) .

As a contribution of this thesis work, several new aura measure properties are

given as properties 6) - 11) in Lem ma 3-2, which are used in developing the BGLAM

theory in the rest of the chapter. To m y best knowledge, these new aura measure

properties have not been discussed in the original aura framework [51] or elsewhere, and

thus their proofs are given at the end of Lem m a 3-2. The proofs of Properties 1) - 5) can

be found in Elfadel and Picard’s paper [51].

Lemma 3-2 Aura Measure Properties'. Using the same notations as in Lemma

3-1, the following aura measure properties hold:

1) The function m(.,.) is nonnegative, i.e. m (A ,B) > 0 , VA,B c S .

2) m(.,B) is monotonic, i.e. At c A2 ^>m{Al , B) < m (A 2, B) .

3) Similarly, m (A ,.) is monotonic, i.e. Bi c B2 =>m(A,B!) < m (A ,B 2) .

f n - 1
4) m (. ,B) is subadditive, i.e. m u A .,5 \ < 'S \m {A i , B) , VA, c S , i = 0,1,. . . ,n - 1 .

V i-0 /

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f n - 1 A n - l

5) m(A, .) is subadditive, i.e. m A , u B i < J > (A ,B , .) , VBi c S , i = 0 , U n - l .
v '=° y ,-=<>

6) m (A u B ,C) = m (A ,C) + m (B ,C) - m (A n B , C) . Moreover, if A n B - 0 , then

m(A u B , C) = m(A, C) + m(B, C) .

7) m (A,B u C) = m (A ,B) + m(A,C) - m (A ,B n C) . Moreover, if B n C = 0 , then

m(A, f i u C) = m(A, B) + m(A, C) .

8) m (A - B , C) = m (A , C) - m (A n B , C) .

9) m(C, A - B) - m(C, A) - m(C, A n B) .

10) If {A,. | 0 < i < n -1} is pair-wise disjoint (i.e. A,. n A j = 0 , Vi ■*- j), then m (.,B)

/ „ - l \ n - l

is additive, i.e. m u A,., 5 J = ^ m (A ,, 5) .

11) If {5, 10 < i < n -1} is pair-wise disjoint (i.e.B (n B j = 0 , Mi A j), then m(A, .)

/ n - l V "“ I

is additive, i.e. ml A, u B, = ^ m(A, B,).

Proof: [Properties 6) - 11)] For the proof of property 6), by the definition o f aura

measure, we have:

m (A u B , C) = X l A f . n C h X l W . n C I + X l J V . n C I - £ | l V , n C |
s g A u B 5 6 /4 56 B s e A n B

- m{A, C) + m(B, C) - m(A n B, C)

In the above equation, the term after the symbol is used to compensate the double

counting effect caused by the two added terms on both sides of the “+” symbol.

Moreover, if A n B = 0 , then m(A n B, C) = m(0, C) = 0 , which implies that

m(A u B , C) = m(A, C) + m(B, C) . The proof of property 7) is similar to that of 6).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To prove property 8), any given set A c S has the following partition:

A = (A - B) u (A n B) with (A - B) n (A n B) = 0 , V B c 5 [82]. By using property 6),

we have:

m(A, C) = m((A - B) u (A n B), C) = m(A - B, C) + m(A n B, C) .

The above equation implies that m(A - B,C) - m{A, C) - m(A c \ B , C) . Using property

7), property 9) can be proved in a similar way.

Based on properties 6) and 7), properties 10) and 11) can be proved by using

Mathematical Induction [68]. ■

L em m a 3-3 Aura Matrix Properties [51]: Let 3 = [S', | 0 < / < n -1} be a

partition of the lattice S, A = [atj]0<,,;<„_i be the aura m atrix of 3 over S as defined in

Definition 3-4, and E be the neighborhood structuring element. Assume periodic

boundary conditions [51] are used for handling pixels on image boundaries, then, the

following aura matrix properties hold:

n - l

1) The sum of each row satisfies =| E \ * | St | , i - 0,1 1.
j= 0

n - l

2) The sum of each column satisfies atj =| E \ * | 5̂ ; | , j = 0,1,..., n - 1.
;=o

n - l n - l

3) If E is symmetric, then A is symmetric, and 2 X = E fl* = l £ | * l s * l .
j =0 1=0

k = 0,1,...,n - l .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 BGLAM Concepts

In the previous studies on GLAMs [51, 52, 137, 138, 152], the neighborhood

system is assumed to be symmetric , i.e. for any s, t e S , s e if and only if 1e N s . To

describe BGLAMs, we need asymmetric neighborhood systems, whose definition is

given below. This section gives the definition of BGLAMs (basic gray level aura

matrices).

D efinition 3-7 Let N = { N s \ s e S} be a neighborhood system on lattice 5. N is

asymmetric if its neighborhood structuring element E is not symmetric (see Eq. 3.1 for

the definition of a symmetric neighborhood).

D efinition 3-8 Using the same notations as in Definition 3-7, let r , r ' , s e S , r

and r' are symmetric to each other w.r.t. s if r - s = - (r ' - s) (i.e. r ' = 2 * s — r).

In the above definition, sites r , r ' , s e S are considered as points of two

coordinates in 2D space, and r - s and r ' - s are vectors in the plane. Figure 3-6 gives an

explanation of the relationship between the two vectors r - s and r ' - s , which are

represented as two arrows in the figure with the same length but pointing in opposite

directions (i.e. r - s = - (r ' - s)).

D efinition 3-9 A neighborhood system N = { N s \ s e S } is completely

asymmetric if N is asymmetric and for any r e N s , its symmetric site r' with respect to s

is not in N s , Vs e S .

D efinition 3-10 For any neighborhood N s (symmetric or asymmetric) at site

s 6 5 , its complement neighborhood with respect to ,v, denoted by N s , is defined as the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set of the symmetric sites of the sites in N s with respect to 5 that are not in N s , i.e. N s is

given as:

N s = {r'e 5 | r'— 2* s - r,r'<£ N r, r e N r } (3.6)

5

r - s

r '—s

Figure 3-6: An explanation of symmetric sites in Definition 3-7.

Definition 3-11 Given an arbitrary neighborhood system N over S with a

structuring element E, its single site neighborhood system decomposition is a set of single

site neighborhood systems defined over E as : { Nr , r e E } , w hereN r = { N rs , s e 5} and

N rs is the single site neighborhood of s that contains r.

Definition 3-12 Basic Gray Level Aura Matrix (BGLAM): Given a lattice system

S, a basic GLAM (BGLAM) on S is a GLAM computed from a single site neighborhood

system, i.e. a neighborhood system whose structuring element contains only a single

neighboring site.

Figure 3-7 gives examples of asymmetric, completely asymmetric and symmetric

neighborhood structures, where (a)-(e) are asymmetric, and (f) is symmetric. The

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neighborhoods in (a)-(d) are completely asymmetric, while the neighborhood in (e) is

asymmetric but not completely asymmetric since the symmetric site r' of r with respect

to 5 is contained in the neighborhood. The neighborhood pairs (a) and (b) as well as (c)

and (d) are complement of each other. The complement of a symmetric neighborhood is

empty, e.g. the complement neighborhood of (f) in Figure 3-7 is empty. The union of a

neighborhood and its complement is a symmetric neighborhood. Neighborhoods (a) and

(b) are single site neighborhoods, the GLAMs computed by them are BGLAMs.

o

o
o •

o

o
• o

© o
• o o • o
©
(e)

o
(f)(a) (b) (c) (d)

Figure 3-7: Exam ples of asymmetric, symmetric, and complement neighborhoods. The

first four, (a) - (d), are completely asymmetric, the neighborhood in (e) is asymmetric but

not completely asymmetric since the symmetric site r 'o f r is in the neighborhood, and

the last, (f), is symmetric, where s =' » ' is the target pixel in N s and r = ' ° ' is a

neighboring pixel of s. The complement neighborhoods o f (a) and (c) are (b) and (d),

respectively, and the complement neighborhood of (f) is empty.

In the rest of the thesis, SGLAM stands for a symmetric GLAM commonly used

in existing techniques [51, 52, 137, 138, 152], GLAM for a gray level aura matrix

computed using arbitrary (i.e. either symmetric or asymmetric) neighborhood systems,

and BGLAM for a basic GLAM.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 BGLAM Theory

Textures cannot be effectively differentiated using SGLAMs. Two images with

different textures may have the same SGLAM s (see Figure 3-8). In this section, we

present the BGLAM theory and prove that BGLAMs can give the necessary and

sufficient information to differentiate between images.

36864 4096

4096 20480

Figure 3-8: An example of the inefficiency o f SGLAMs for differentiating textures. The

right stripe-texture image is a rotation of the left image by 90 degrees, and both images

have the same SGLAM that is shown in the middle. Both images (size 128x128) are

binary, and the four-nearest-neighbor neighborhood system is used to compute the

SGLAM.

Lemma 3-4 Let S be the image lattice, N = { N s \ s e S} be an arbitrary

neighborhood system, and {S,. | 0 < i < n - l } be a partition of S. For any s e S , let

{N's | 0 < i < m - 1 } be a partition of the neighborhood N s , and A and A t be the aura

matrix computed from N and N t = { N ‘S \ s e S}, respectively, i = 0 ,1 ,...,m - 1 . Then, we

m-l
have A = ^ A,. .

1=0

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: By the definition of aura matrix (Definition 3-4), we have

A = [m(S;,S ; , iV)]0<,. j < n _ x . Since {N's | 0 < / < m - l } is a partition of N s for any s e S ,

m - 1
by Definition 3-3 we have N s = U N's with N's r \ N Js = 0 for Vi ^ j , which implies:

i=0

m - 1 ._____________ „__. m - 1
m ' "(5„5J,iV) = X |N ,r ,S , |= X K 1V0^) n S J|= X l1V„<W,‘ n S f)

seS.- se S: seSj

= Z Z K ‘ n S J l = Z Z K ‘ n X
seS; k =0 /:-0 seS;

On the other hand, for any k = 0 , l , . . . ,m - l , we have A k = [m(S , ,S ., A *)](,<,i7-Sn_j, where

m (S,.,S7, ^) = X K ' : n S y | . (3.8)
Sj*

m -l

Plug Eq. 3.8 into Eq. 3.7, we have m(S i9S j9N) = ' ^ m (S i9S j , N k), which implies
k=o

m -l

i=0

m -l m -l

In Eq. 3.7, from step 2 to step 3 the set property: (u A) n B = u (A , n B) for
i=0 (=0

any A,, and B , is used, and from step 3 to step 4 the property of a pair-wise disjoint sets:

m -l m -l

, y A l = Z l A l ’ where A; n A;. = <p, Vi ^ y , is used [82]. ■f=0 • ■ ^

Theorem 3-1 Any GLAM can be represented as a sum of BGLAMs; any GLCM

can be represented as a sum of two BGLAMs.

Proof: Let S be the image lattice, A be a GLAM computed from an arbitrary

neighborhood system N = { N s \ s e S } with a neighborhood structuring element E,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{ N r | r e E} be its single site neighborhood decomposition of N as defined in Definition

3-11, and A r be the gray level aura matrix computed from the neighborhood system N r,

V re E . By Lemma 3-4, we have A = ^T A r . Since N r is a single site neighborhood
r e N

system, each A r is a BGLAM. Therefore, we have proved that each GLAM can be

represented as a sum of BGLAMs. By Definition 3-6, a GLCM is a GLAM defined over

a neighborhood system whose structuring element E contains only two symmetric

neighboring sites w.r.t. the target site. Therefore, a GLCM can be represented a as a sum

of two BGLAMs. ■

GLAM

BGLAMSGLAMGLCMs

Figure 3-9: The relationship between the set of all GLCMs, the set of all SGLAMs, the

set of all GLAMs and the set o f all BGLAMs, where a smaller oval represents a subset of

the bigger oval to which it belongs.

Theorem 3-1 indicates that BGLAMs can serve as a basis of GLAMs. In fact, by

the technique of ICA (Independent Component Analysis) [83], a set of independent

BGLAMs can be efficiently identified, and used as the basis of GLAMs. Although

independent GLCMs form the basis of SGLAMs, they cannot form the basis of GLAMs.

The relationship between the set of all GLCMs, the set of all SGLAMs, the set of

GLAMs, and the set of all BGLAMs is shown in Figure 3-9.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 3-5 As shown in Figure 3-10, let X x be an image defined on lattice S

with a single site neighborhood system N = { N S l ^ e 5} , and p is a given site in S.

Suppose image X 2 is obtained from image X x by changing p ’s intensity value from g x

to g 2 and gj ^ g 2 (all other pixels’ intensity values remain unchanged). Let

A x = [ax {i, ;)] 0<i j < g - \ ar*d A 2 = [a2(i , j)]m j i G _ x be the GLAMs of X, and X 2 over N,

respectively, where G is the total number of gray levels of a pixel in images. Let

N = {r} and N p = {r '} be the neighborhood and the com plement neighborhood at p,

and let g = X x(r) and g'= X x(r') be the gray levels of r and r ' , respectively, in X x.

Then one of the following relationships between Ax and A2 holds:

1) If (g ' , g) = (g i , £ i) (i-e -g'= g x and g = g x), then

a 2(gl , g l) = a l (g x, g x) - 2 ,

a2{g2, g l)^=ax(g 2, g x) + l ,

a 2(g l , g 2) = ax(g x, g 2) + l ,

a 2(i, j) = ax(i, j) , V (i, j) £ {(g j, gx) ,(g2, gx) ,(g ,, g 2) 1 •

2) If (g \ g) = (g i , g 2) or (g ' , g) = (g 2, g 1) , t hen

a 2(g1, g l) = ax(g x, g x) - l ,

a 2(g2, g 2) = ax(g 2, g 2) + l ,

a 2(i , j) = ax(i , j) , V (i , j) £ {(g1, g 1) , (g2, g 2)} ■

3) If (g ' , g) = (g 2, g 2) , t he n

a 2(g2, g 2) = ax(g 2, g 2) + 2,

@2(82-> 8\^ ~ ®\(82-> 8\) ~ I >

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a 2(g l , g 2) = a 1(g l , g 2) - l ,

a 2 (i , j) = a, (i, j) , V(/,;') g {(g2, g 2),(g2, ̂) , (g, , g 2) }

4) If (g ' , g) £ { (g , , g 1) , (g , , g 2) , (g2, g l) , (g2, g 2)}, then

= «2 (^2 . «) = «! (^2 , + 1 ,

a2(g ' , g l) = a1(g ' , g l) - l , a 2(g ' , g 2) = a l (g ' , g 2) + l ,

a 2(*', j) = «iO ',;) , v o , j) £ { (g i , g) , (g 2, g) , (g ' , g t) , (g \ g 2)}•

Therefore, in any of the above four cases, we have A 2 4- Ax.

Proof: W e only give the proof of 1), and the proofs of 2) - 4) are similar to that of

1). It is also easy to check that in any of the four cases 1) - 4), A 2 ^ Al .

W e prove by the definition of aura matrices (Definition 3-4) and the aura measure

properties 8) - 9) proved in Lemma 3-2, which are restated as follows for easy reading:

m(A - B, C) = m(A, C) — m(A n B, C)

m(C, A - B) = m(C, A) — m(C, A r \ B)

Let S *' = { se S \ X t (s) = g } , i = 1,2, and g e A = {0,1,...,G -1 } , by using the above two

properties, if (g ' , g) = (g p g ,) (see Figure 3-10) then we have:

a2(g1, g 1) = m(Sgx; , S gx;) = m(S?i' - { p h S * - { p })

= m{S*' , S* ‘) - m (S*‘ ,{/>}) - m ({ p) , S) + m({p} , {p})

= « i (g p ^ i) - 2

a 2 (8 2 ’ 8 \) = m (s gi ’S gl2) = m (S gl u {p}>5 *' -{ p })

= m (S £ , S *1) - m(S J , {p}) +) - m{{p}, {p})

= m (S*' , S * ') - 0 + 1 - 0

= m (S , S * ') + l = a i (g2, g l) + l

7 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<*2(gi>g2) = m(.Sl2,S£) = m(S*' - { p } > s £ u l P})

= m (S*‘ , S ^) + m (S * ' , { p }) - m ({ p } , S ^) - m ({ p } , { p })

= m (S * ' , S £) + 1 - 0 - 0

= m (S * ' , S j) + l

= « l (g l > g 2) + 1

X. x 2

neighborhood
structuring element

Figure 3-10: An illustration of Lemma 3-5.

To prove a2(i , j) = aY(i , j) , V (i , j) £ { (g 1, g1) , (g2, g l) , (g i , g2)}, we use the

following relationship between S and S * 2:

c %■> _

V
k ’
,X,
k

fc * g 2,& * gj

■{p}, jk = gj , V t e A = { 0 , U G - l } .

5 ^ u { p } , f c=g2

(3.9)

For i, there are two cases: i = g 2 and i l z g 2. W e prove for i = g 2 . The proof for

i * g 2 is similar. Assume the first case, i.e. i = g 2, b y (i , j) £ { (gl , g i) , (g2, g l) , (g l , g 2)},

we have j ^ g y \ otherwise (i , j) = (g 2,g)) , which is a contradiction. For j , we have

either ; = g 2 or j * g 2 .

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If j = g 2, then i = g 2 and j = g 2, applying Eq. 3.9 for k = i, j , respectively, we

have:

a2(i, j) = m (S *2, S f 2) = m(S*' u { p } , S f ' u { p })

= m(S * l , S f ') + m(S? ' , {p}) + m({ p} , S* ') + m{{p} , {p})
. (3 .ID)

= m(S*' , S f ') + 0 + 0 + 0 = m (S , S f 1)

= fli(i,7)

In the proof of Eq. 3.10, since (i , j) = (g 2, g 2) , (g ' , g) = (g, , g j) , g = X 1(r) , and

g'= X x(r') , we have m(S f ' , { p }) = m (S ^ , {p}) = 0 , m { { p } , S f) = m ({ p } , S £) = 0 , and

m({p} , {p}) = 0 .

If j * g 2, then i = g 2, and j * g 2 and j * g x, again applying Eq. 3.9 for

k = i, j , respectively, we have:

a2 (j, j) = m (S f 1, S f 2) = m (S U {p }, S f 1)

= m (S * ' , S f ') + m ({ p) , S f ')

= m(S * ' , S f ') + 0

= m { S * ' , S f ')

= ax(i , j)

Now, we have proved that a2(i , j) = ax(i, j) , V (i , j) g {(g1, g ,) , (g 2^ i) > (^ i ^ 2)} • ■

From the above lemma, we can see that when the gray value of a pixel p in an

image changes, only a few elements of the GLAM of the image will be affected. In fact,

under the conditions of Lemma 3-5, A 2 can be calculated from A, in the following two

steps:

1) Initialize A2 as A x, i.e. A2 <— A x.

2) Update A2:

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«2 (̂ 1» a2 Cgl» S') — 1 > a2(g2’g) ^ « 2(^2^) + 1 p n)
a2(g ' , g i) ^ a 2 (g ’’g i) - 1’ a 2(g ' , g 2) * - a 2(g ' , g 2) + l

There are four cases in Lem m a 3-5 to be analyzed. W e derive the first case, the

other three cases can be derived similarly. The first case states that if (g ' , g) = (g p g j)

(i.e. g ' - g l and g = g,) , then A 2 differs from Ax only by the following three matrix

elements (all other corresponding elements are the same):

a 2(g1, g l) = a l (g1, g l) - 2

a 2(g 2, g l) = a l (g 2, g l) + l ,

a 2(g l , g 2) = a1(g l , g 2) + l

Plug g'= g j and g = gj into Eq 3.11, A 2 can be updated from its previous version by the

following four steps:

a 2 (g i > g i) < - a 2 (g i > S i) - l
a 2(g 2, g l)<r-a2(g 2, g l) + l

a A g i ’g ^ t - a ^ g ^ g ^ - l

« 2(g l ’g 2) < - « 2(Sl><?2) + 1

Since A 2 is set as Ax initially, after the above four update steps (step 1 and 3 are

the same, which implies that a2(g j , g l) = a1(g l , g 1) - 2) , A2 differs from A, only by the

same three matrix elements as those for the first case of Lemma 3-5.

In Lemma 3-5, a single site neighborhood system is assumed. For an arbitrary

neighborhood system, Algorithm 3-1, which is given below, proves that when a pixel’s

gray level changes, the GLAM of the image can be updated by processing only the pixels

in both the neighborhood and the complement neighborhood at pixel p by iteratively

using Eq. 3.11. Precisely, we have the following algorithm to do this.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 3-1 Let X l be an image defined on lattice 5 with an arbitrary

neighborhood system N = {iVs | s e 5 } , a n d p is a given site in S. Suppose image X 2 is

obtained from image X i by only changing p 's intensity value from g x to g 2. Let

Aj = [aj(f, 7)]0<, and A2 = [a2(i, ;)]0<,j<G-i are the GLAMs of X x and X 2 over N,

respectively (G is the total number of gray levels of a pixel in an image). Then A 2 can be

obtained from A, by performing the following steps:

1) Initialize A2 as Ax, i.e. A2 <— Ax.

2) For each r e N p , do

2-1) a 2(g1, g) < - a 2(g1, g) - l

2.2) a2(g 2, g) < - a 2(g 2, g) + 1

where g = A, (r) = X 2(r) is the gray level value of r.

3) For each r 'e N r , do

3-1) a 2(g ' , g 1) < - a 2(g ' , g 1) - l

3-2) a 2(g ' , g 2) < - a 2(g ' , g 2) + l

where N r is the complement neighborhood of N , and g '= Xj (r ') = X 2(r') is

the gray level value of r ' .

L em m a 3-6 Two images are identical if and only if their corresponding GLAMs

on all possible neighborhood systems are the same.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: Suppose that two texture images X, and X 2 are defined on lattice S, and

that they are identical, i.e. X ,(s) = X 2(s) for any s e S . It is obvious that their

corresponding GLAM s on all possible neighborhood systems are the same.

Suppose the corresponding GLAMs of X t and X 2 on all possible neighborhood

systems are the same, we have to show X l = X 2 . This is equivalent to proving that if

X x ^ X 2 then there must exist neighborhood system N such that the corresponding

GLAMs Aj and A2 of X, and X 2 over A are not equal (i.e. A 1 A 2).

Assume that X, ^ X 2. Let S = E kj D be a partition on S, where

E = { se S | X j(s) = X 2 (s)} is the region in which each site has the same gray level in

Xj and X 2 , and D = {se S \ X ^ s) ^ X 2(s)} is the region in which each site has

different gray level in X , and X 2. But X 1 ± X 2, D is not empty, i.e. </>. Let | D |= n

and D = { ? ; e 5 | 0 < i < n - 1 } , and choose a neighborhood system N such that its

neighborhood structuring element E is large enough to contain D, i.e. E □ D . Let A, and

A 2 be the GLAMs of Xj and X 2 over N , respectively. Using Lem m a 3-5 and

mathematical induction, one can prove that Aj ^ A 2 since A2 can be obtained from A x

by iteratively applying the updating process on each site in D as described in Algorithm

3-1. ■

The proof of Lemma 3-6 indicates that two images can be differentiated by their

corresponding GLAMs over a specific neighborhood system (either symmetric or

asymmetric). In the worst case, the structuring element of the neighborhood system could

be as large as 5. It is impractical to test all possible neighborhood systems on S since the

number of possible neighborhood systems is 2 |s' - l . However, by Theorem 1, any

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GLAM can be represented as a sum of BGLAM s. The following theorem indicates that

two images can be differentiated by their corresponding BGLAMs, by which the

computation cost can be significantly reduced from 0 (2 |51) to 0(\ S |) .

Theorem 3-2 Two images are identical if and only if their corresponding

BGLAMs calculated by the largest neighborhood system are the same.

Proof: Suppose A, and X 2 are two images defined on lattice S, we only have to

prove that if A, ^ X 2 then there exists a single site neighborhood system N r such that

Aj -t- A 2 , where Aj and A2 are the GLAMs of X l and X 2 over N r , respectively. Aj

and A 2 are BGLAMs because they are calculated from a single site neighborhood

system.

Suppose A, ^ X 2, then by Lem ma 3-6, there exists a neighborhood system N

such that their corresponding GLAMs A 2(N) and A 2(N) are not equal. Let

{ N r | r e E} (where E is the structuring element of N) be the single site neighborhood

system decomposition of N (see Definition 3-11), then by Lemma 3-4, we have:

Since Aj(iV) A 2(N) , there exist r e N such that BGLAM A j (A r) ^ A 2(N r) because

otherwise we have At(A) = A 2(N) by Eq. 3.12, which contradicts the assumption. ■

From Theorem 3-1 and Theorem 3-2, we conclude that an image can be uniquely

represented by its BGLAMs, but not by SGLAMs nor by GLCMs. In other words, the

information captured in both SGLAMs and GLCMs are less precise. In the next chapter,

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we demonstrate that BGLAMs outperform both SGLAMs and GLCM s in 2D texture

synthesis as well as in evaluating the 2D texture synthesis results.

3.4 BGLAM Distance Measure

Definition 3-13 A distance function d over a pair of images is metric if for any

image X, Y, and Z, d satisfies the following three properties [160]:

1) Non-negativity: d { X , Y) > 0 .

2) Symmetry: d (X , Y) = d (Y , X) .

3) Triangle inequality: d (X , Y) < d (X , Z) + d (Z , Y) .

Definition 3-14 A distance function d over a pair of images is strong metric if it is

metric, and for any images X and Y, d satisfies:

4) One-to-one: d (X , Y) = 0 if and only if X = Y .

Definition 3-15 For a given aura matrix A = [a(i, 7)]0<„;<„_i, it is normalized if

n - 1

^ a(i, /) = 1. In the definition an absolute sign on atj is not necessary because atj is
i j =0

never negative for an aura matrix.

Definition 3-16 Given two images X and Y defined on a rectangular lattice 5.

Let A (X) = {Ak(X) 10 < k < m - l) and A (F) = {Ak(Y) \ 0 < k < m -1} be their

corresponding normalized BGLAMs, then the BGLAM distance measure between X and

Y is given by:

1 m~l
d (X , Y) = d (A (X) , A (Y)) = - X I I A k(X) - A k(Y) | | , (3.13)

m k=0

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where for a matrix A - [a{i , j) \ || A ||= a(i , j)

T heorem 3-3 The distance function defined in Eq. 3.13 is strong metric, i.e. for

any images X, Y, and Z defined on S, d { . , .) satisfies the following four properties:

1) Non-negativity: d (X , Y) > 0 .

2) Symmetry: d (X , Y) = d (Y , X) .

3) Triangle inequality: d (X , Y) < d (X , Z) + d (Z , Y) .

4) One-to-one: d (X , Y) = 0 if and only if X = T .

P roof: It is easy to check that d { . , .) satisfies properties of 1) and 2). For the

proof of 3), by noting that | a + b |< | a \ + 1 b \ for any real numbers a and b, we have:

= d (X , Z) + d (Z , Y)

where A (X) = {Ak(X) \ 0 < k < m - 1 } , A{Y) = {Ak(Y) \ 0 < k < m - l } , and

A(Z) = {A k (Z) 10 < k < m -1} are the normalized BGLAMs of X, Y, and Z, respectively;

and A k(X) = {af (i, j) \ A k(Y) = [aYk (i J) l and A k (Z) = [azk (i, j)],

k = 0 ,1 ,...,m - 1 .

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 3-2 states that two images X and Y are identical (i.e. X = Y) if and only

if their corresponding BGLAMs are the same. By the definition o f BGLAM distance

function (see Definition 3-16), one can check that d (X , Y) = 0 if and only if X = Y . m

The significance of the BGLAM distance function is the one-to-one property. A

zero value of the distance measure guarantees that the two images are identical. Although

many metric distance measures [1, 4, 36, 53, 71, 72, 113, 116, 117, 152, 160, 172, 173]

have been proposed, to our best knowledge, none of them is one-to-one.

X,

Figure 3-11: An example of demonstrating the importance of using BGLAM s in defining

a one-to-one distance function. The right stripe-texture image is a rotation of the left

image (a binary image of size 128x128) by 90 degrees.

In texture modeling, the one-to-one property is crucial in measuring the similarity

between texture samples. Since the distance function is continuous, the one-to-one

property implies that if the distance of Y over X gradually converges to zero, image Y will

gradually converge to X. A distance measure (e.g. [53, 72, 116, 117, 152]) without the

one-to-one property cannot guarantee this. In the next chapter, we demonstrate that if the

distance of two texture images X and Y is below a threshold, X and Y are guaranteed to

look similar to each other.

In the distance function given in Definition 3-16, BGLAMs play an important role

in assuring the one-to-one property. Instead of BGLAMs, if other terms such as SGLAMs

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or GLCMs are used in the definition, the one-to-one property may not hold. Figure 3-11

gives an example to illustrate this point as explained below.

Denote the original BGLAM distance measure (see Eq. 3.13) by d B (., .). Suppose

SGLAMs replace BGLAMs in the definition in Eq. 3.13, and d s (.,.) denotes the

corresponding distance measure. For the two binary texture images X, and X 2 o f size

128x128 as shown in Figure 3-11, assume that the four nearest-neighbor neighborhood

system N is used. Let N 0, A , , N 2, and A 3 be the left-, right-, top-, and bottom-

neighbor neighborhood system decomposition of A, respectively; A, and A2 be the

SGLAMs of X l and X 2 over N, respectively; and Au and A 2k be the BGLAMs o f X l

and X 2 over A, respectively for k = 0 ,1 ,2 ,3 . Then we have the following:

Aj A 2
36864 4096

4096 20480

A o — A i

4 - 4 -20 21

10240 0

0 6144

'8192 2048

2048 4096

4 - 4 —

4 - 4 -
22 23

8192 2048

2048 4096

10240 0

0 6144

d B(X k, X 2) ^ 5 (A j , A 2) (z, j') <z2(/, y)| 0 ,
i j =0

3 1

d B(X 1, X 2) = X IIA ik - A 2k II = X X l a u (*» i) - a 2k O’. J) | = 32768 ^ 0.
/t=0 !J'=0k =0

Although two images X { and X 2 are different, i.e. X { ± X 2 , the SGLAM -based

distance measure between X i and X 2 is zero, i.e. d s (X {, X 2) = 0 . This implies that

SGLAM-based distance is not one-to-one, and thus cannot differentiate the two texture

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

images as shown in Figure 3-11. However, the BGLAM -based distance function can

differentiate the two texture images because d B(X l , X 2) ■£ 0 . In the above distance

calculations, we have used the original aura matrices instead of the normalized ones

because X x and X 2 are defined on the same lattice, and the results will not be affected

whether or not normalized aura matrices are used.

3.5 Summary

In this chapter, we present the BGLAM mathematical framework. By clarifying

the relationship between BGLAMs, SGLAMs, GLAMs, and GLCMs, we show that

BGLAMs form the basis of GLAMs; while GLCMs forms the basis of SGLAMs. W e

prove that two images are identical if and only if their corresponding BGLAM s are the

same. Therefore, an image can be uniquely represented by and faithfully reconstructed

from its BGLAMs. However, the statement does not hold with GLCMs or SGLAMs.

In addition, we propose a BGLAM-based distance function, and prove that the

new distance function is metric and one-to-one. The one-to-one property is not

guaranteed by conventional metric distance functions [53, 72, 116, 117, 152], and its

significance is that a zero value of the distance measure guarantees that the two images

are identical. In the next chapter, we demonstrate that the BGLAM -based distance

function can be used as a quantitative measure in evaluating synthesis results w.r.t. input

textures to determine if the output is a successful synthesis of the input, and that if the

BGLAM distance of two texture images is below a threshold, they are guaranteed to look

similar to each other.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The BGLAM s of an image characterize the cooccurrence probability distributions

of gray levels at all possible displacement configurations and thus estimate the underlying

stochastic process that is used to generate a given texture sample. BGLAMs should not

be confused with GLCMs. It is proved that any GLCM can be represented as a sum of

two BGLAMs. In fact, all of the theorems on BGLAMs described in the chapter do not

hold for GLCMs. To illustrate the representative property of BGLAM, in the next

chapter, we show that BGLAMs outperforms GLCMs as well as other existing

techniques in 2D texture synthesis.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

BGLAM 2D Texture Synthesis

4.1 Introduction

For a given input texture sample, the problem of 2D texture synthesis is to

generate a new texture image that looks similar to the input. One major problem of

existing 2D texture synthesis techniques is that the output textures are often generated by

using some characteristics of input examples, which may not represent the input texture

appropriately. For instance, in existing feature-matching approaches [6, 35, 81, 143, 190],

a set of filter responses at multiple scales and orientations are used to characterize an

example texture. However, as suggested by Zhu et al. in their FRAM E (Filters, Random

Fields and M axim um Entropy) model [208], it requires an infinite number of filters (each

filter is as big as the given texture image) to model a given texture with the necessary and

sufficient information. In addition, it is not an easy task to select the filters or to

determine the number of filters to model a typical texture [208]. Because of using

ambiguous definitions of textures, existing synthesis techniques cannot determine

whether or not the synthesis result is acceptable. Visual inspection is the only way to

evaluate the synthesis results.

To address the above problems, this chapter presents a new technique, called aura

2D textures, for generating 2D synthetic textures from input texture samples using

BGLAMs. The technique is based on the BGLAM mathematical framework developed in

the previous chapter. We demonstrate that the new technique can successfully synthesize

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a wide range of textures using a small set of BGLAMs (e.g. 48 BGLAMs for an input

texture of size 64x64) . In addition, based on the BGLAM distance measure, our new

technique is able to automatically evaluate the results and determine whether or not the

output is a successful synthesis of the input. To our best knowledge, none o f the previous

techniques has the ability to evaluate synthesis results.

(a)

characterizing

3 A set of
BGLAMs

sam pling

(b) (c)

Figure 4-1: The basic idea of the approach of BGLAM-based 2D texture synthesis. The

input example (a) is first characterized by a set of BGLAMs (b), and then the BGLAMs

are used to generate an output texture (c).

The main idea o f our approach is shown in Figure 4-1. Given a texture sample,

our method first characterizes it by a set of BGLAMs. Then, by sampling the BGLAMs

only, our method generates an output texture similar to the input with similar BGLAMs.

This is done by iteratively modifying the gray level of each pixel in the output image,

which is initialized as a random noise image, until the distance between the

corresponding BGLAMs of the output and those of the input is small enough or until

there are no further changes in the gray level values of the output.

The BGLAM distance function defined in Section 3.4 is used to evaluate the

synthesis result quantitatively for determining whether or not the output looks similar to

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the input. Experiments have shown that if the distance value is below a threshold value

(0.1 used in our experiments), then the output is guaranteed as a successful synthesis of

the input. It is noteworthy that the one-to-one property is crucial for measuring the

similarity between textures. W ithout this property, which is the case in existing

techniques [35, 143, 190, 208], a less similar texture image might be given a higher

degree of similarity to the input. Hence, existing techniques only show some synthesized

results without evaluating them.

The advantages of using BGLAMs in texture analysis and synthesis include: (1)

easy to compute, (2) accurate representations of example textures, (3) able to evaluate the

results, and (4) no filters required. By thorough experiments, we show that BGLAMs

outperform both SGLAM s and GLCMs, and can successfully synthesize a broad range of

textures with comparable results to those of existing techniques [81, 106,190].

4.2 Related Works

Being complete on its own, this section gives a brief discussion on related works

in 2D texture analysis and synthesis. For the detailed discussions, the interested readers

are referred to Chapter 2. Since Julesz’s pioneering work in texture analysis [93], various

approaches have been proposed for texture analysis and synthesis. One of the most

influential approaches is the MRF models [32, 63], Only a lim ited range of textures can

be modeled with earlier M RF techniques because of the limited size of the cliques and of

the low-order statistics used in modeling. To address these problems, Zhu et al. propose

the FRAME model, which incorporates filtering theory into the MRF models to

synthesize a wider range of textures [208], and Deng and Clausi propose the ACGMRF

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Anisotropic Circular Gaussian M RF) model to model anisotropic textures [38], The

conventional M RF texture models are also generalized by Popat and Picard to the cluster-

based probability model [141] and by Paget to the strong MRF model [126] for modeling

textures with high order statistics. Different from Zhu et al.’s FRAME model, both

approaches are nonparametric. In general, M RF models are slow because of the

expensive local probability construction (normally based on exponential functions) at

each pixel location during the sampling. To speed up, nonprobabilistic pixel-based

sampling techniques [3, 49, 190] are proposed by a number of researchers, which are

further improved by the patch-based sampling techniques [50, 100, 101, 106, 186],

Techniques are also developed to synthesize textures by matching features in

multiple scales and orientations, pioneered by H eeger and Bergen’s work [81] using a

global histogram-matching strategy. Later, in the work of Portilla and Simoncelli [143],

it is shown that new textures can be synthesized by matching the corresponding joint

statistics of complex wavelet coefficients between the input and output image pyramids.

Rather than using global joint statistics, DeBonet and Viola use joint occurrence of local

features in multiresolutions to model texture images [35]. Their approach has been

generalized by Bar-Joseph et al. to texture mixture and video texture using statistical

learning [6],

Another influential approach called GLCM s (Gray Level Cooccurrence Matrices)

[21, 34, 76] can be used as a powerful tool for texture analysis, segmentation,

classification, and synthesis. The disadvantage of the GLCMs is that they contain

cooccurrence information between two pixels only, and thus cannot capture the spatial

relationship between three or more pixels in the image. This problem can be addressed by

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using GLAMs (Gray Level Aura M atrices) [51, 52, 137, 138], which incorporate

neighborhood systems to model the relationship between the target pixel and its

neighboring pixels, and thus can capture the relationship between any number of pixels.

Recently, GLAMs are successfully applied to texture similarity measure and learning by

Qin and Yang [152], All previous studies on GLAMs assume that the neighborhood

systems are symmetric, which have caused difficulties in modeling anisotropic textures

(see Figure 3-8).

The work in this chapter presents a new technique for 2D texture analysis and

synthesis based on the BGLAM mathematical framework developed in Chapter 3. With

respect to synthesis of textures and evaluation of the results, the performance of our

approach is extensively evaluated and compared with symmetric GLAMs and with

GLCMs.

4.3 The Approach

Figure 4-2 gives an overview of the BGLAM-based texture synthesis approach.

Given an input texture X, its BGLAMs A (X) are computed using an algorithm described

later (Section 4.3.1). Then the ICA (Independent Component Analysis) [83] is used to

identify the independent BGLAMs. For simplicity reasons, we also use A(Y) to

represent the independent BGLAMs of X. The output Y is initialized as a random noise

image, and its BGLAMs A(Y) corresponding to A (X) are computed. Then, a BGLAM-

based random sampling procedure is employed to iteratively update the output until the

BGLAM distance d (A(X) , A(Y)) (see Eq. 3.13) is small enough or until there is no

further change in pixel’s gray level values in the output. During an iteration of the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sampling process, the gray level of a pixel in the output Y is modified such that the newly

assigned gray level to the pixel will decrease or at least do not increase the BGLAM

distance between Y and X.

Input X Output Y

Independent
BGLAMs of A

Yes

M d{A{X),A{Y))<el >

N o

BGLAM-based
random sampling

Initialized output Y
(white noise image)

A(Y)

BGf AM* o f f
corresponding to A{X)r

k

Updated output Y
after sampling

Figure 4-2: An overview o f the approach o f aura 2D texture synthesis.

4.3.1 Calculating BGLAMs

As proved in the previous chapter, two images are identical if and only if their

corresponding BGLAMs are the same, and thus an image can be uniquely represented by

its BGLAMs. In this chapter, a compact set o f BGLAMs defined over a neighborhood

system (e.g. a 9 x 9 square window) is used to characterize input samples. For an m x m

(,m is an odd number and m> 1) neighborhood system, the total number of BGLAMs is

m 2 -1 because there are m 2 -1 neighboring pixels around the central target pixel, and

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each neighboring pixel accounts for a BGLAM. An example of a 5 x 5 binary image and

its BGLAMs calculated over a 3 x 3 square window are shown in Figure 4-3.

0 1 1 1 1

0 0 0 1 1

0 1 1 0 1

0 0 1 0 0

1 0 0 0 1

o OO
o • Or
OOO

s r

O

6
3

6
6
3

8

3

4

3 '

5

3 '

2

6 6
4 4

(a) (b) (c)

6 4

6 4

(d)

3

3

6
3

6

3

8
2
6

5

3'

4

Figure 4-3: The BGLAMs of a 5 x 5 binary image. The binary image, the 3 x 3

neighborhood system, the displacement configuration of neighboring pixel r, and the

corresponding BGLAMs of eight displacement configurations are in (a), (b), (c), and (d),

respectively. For the ease of reference, the BGLAMs in (d) are placed according to their

displacement configurations in (b). For example, the BGLAM in highlighted color in (d)

is for the displacement configuration of the pixel r in (b).

Given an image X on lattice S with a neighborhood system N, we assume that a

common state space A = {0 ,1 ,--,G -1} is used for all sites s e S , where G is the total

num ber of gray levels available in the image. A straightforward way to compute the

BGLAM of a displacement configuration (see Figure 4-3 (c)) is to first compute all the

gray level sets {S | g e A} using Eq 3.5 in Section 3.1. Then, for each pair S g and

S g.where g , g ' e A, one can use Eq. 3.4 to compute the aura measure m(Sg, Sg.) , which

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G - l

takes 0 (| Sj, | * | Sg. |) to calculate. Since ^ | 5 ^ | = | S | , the total time to compute as=0
BGLAM is 0 (| S |2).

The above brute-force algorithm is slow, a simple but fast algorithm with

complexity 0 (| S |) can be achieved for calculating a BGLAM by processing through

each site s of the lattice S only once. To calculate the BGLAM of a specific displacement

configuration, e.g. the one shown Figure 4-3 (c), the fast algorithm works as follows.

Initialize each entry of the BGLAM A = [m(S1,S'y]0<l .SG_, to zero, i.e. = 0 for

0 < i , j < G - 1 . For each site s, let g be its gray level, one checks its neighboring site r in

the displacement configuration and finds its gray level g ' . Then we increment the value

of m (S g, S g.) by 1. After all the sites in the image have been processed, the calculation of

the BGLAM is finished. W hen handling a target site on the im age boundaries, we

consider only its neighboring sites inside the image and discard those outside of the

image. Once the BGLAMs are computed for the input texture, they are stored and used as

the only representation of the input to generate the output during synthesis. In other

words, the input texture itself will not be needed any more once its BGLAMs are

computed.

4.3.2 Similarity Measure

During synthesis, it is important to have an accurate measure to determine how

close the output texture matches the input. In our method, the similarity between two

texture images is measured by the sum of the distances between their corresponding

BGLAMs, where the distance of two matrices is the M anhattan distance of the two

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix vectors. Precisely, given two texture images X and Y defined on S. Let

A(X) = {Ak 10 < k < m -1} and A (Y) = {Bk | 0 < k < m -1} be their corresponding

normalized BGLAMs, then the similarity measure between X and Y is given by:

1 W - l

d (X , Y) = d (A (X) , A (Y)) = - X I I A - B k | | , (4.1)
m k=0

G - 1

where for a given matrix A = [a(i, y)]0<, , its norm is || A ||= X | a(i, j) | , and a aura
i , j =o

G - l

matrix A = [a(S,.,5 ■)] is normalized if y ' ja (S i , S ;) = 1.
i , j = 0

Section 3.4 includes a proof that the distance function defined in Eq. 4.1 is one-to-

one in the sense that a distance measure of zero guarantees that the two images are

identical. Since the distance function is continuous, the one-to-one property implies that

the smaller the distance value, the closer the two texture images look to each other. In

fact, as demonstrated later, this one-to-one property enables our algorithm to evaluate the

synthesis results automatically. As far as we know, none of the existing techniques has

this feature. In the rest of the chapter, we assume that all BGLAMs are normalized.

4.3.3 BGLAM-Based Random Sampling

The BGLAM -based random sampling procedure iteratively modifies the output

such that its BGLAMs match those of the input. In the beginning, the output texture is

initialized as a white noise image (see Figure 4-2). During an iteration of sampling, each

pixel of the output is visited randomly once, and its gray level is modified so that the

BGLAMs of the output get closer to those of the input. More precisely, when visiting a

pixel, the algorithm first finds the candidate set of all gray levels (different from the

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

current pixel value) that decrease or at least do not increase the BGLAM-based distance

(defined in Eq. 4.1) between the output and the input. Then it randomly chooses a gray

level from the candidate set and sets the pixel value to the newly selected gray level. Note

that even when a gray level does not decrease the distance, i.e. at the same distance as the

current gray level, the algorithm also includes it into the candidate set in order to increase

the randomness in the output. It is possible that the candidate set is empty at the end of

search, which implies that any gray level that is different from the current pixel value will

increase the distance. In such a case, the pixel retains its current gray level, and the

algorithm goes to process the next pixel in the output image. W hen the BGLAM -based

distance between the output and the input is below a threshold or there is no change in

gray level values in any pixel of the output, the sampling process returns the output

texture as the final result.

4.3.4 Algorithm

The pseudo code o f the BGLAM -based 2D texture synthesis algorithm is given in

Figure 4-4. Given an input texture image X, the algorithm generates a synthesized texture

image Y that looks similar to the input X. There are four steps in the algorithm. The first

step is to initialize the output texture image as a white noise image using a pseudo

random number generator. The normalized BGLAMs of the input and output texture

images are then computed in the next two steps using the fast algorithm that is described

in Section 4.3.1. After BGLAMs are computed, the independent BGLAMs are computed

using the standard ICA algorithm [83], The last step is the BGLAM-based random

sampling procedure as described in the previous subsection.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BGLAM-Based 2D Texture Synthesis

Input:
X <— sample texture image.
e «— a given small threshold value in (0,1)

Output:
Y +— the synthesized texture image.

Begin
1 Initialize Y as a random noise image.
2 A(X) <— the normalized BGLAMs of X.

A(X) «- Independent BGLAMs of A (A) by ICA.
3 A{Y) <— the normalized BGLAMs of Y.

A{Y) *- Independent BGLAMs of A(Y) by ICA.
4 While d=d(A(X),A(Y))>e do

4.1 While there are unvisited sites in Y, randomly choose an unvisited site 5 do
grayLevel(s) *— bglamBased2DRandomSampling(s, d, A(X), A(Y),Y).

End of while
End of while

End of begin

bglamBased2DRandomSampling(s, d, A(X), A(Y), Y)
b.l C=empty (the candidate set of gray levels for site s).
b.2 For each gray level j = 0 to G - 1 do

b.2.1 A S(Y) <— the normalized BGLAMs of Y when site s has gray level j.
b.2.2 d} <— d(A(X), AjiY)), which is calculated using Eq. 4.1.
b.2.3 if dj 5 d, then C = C u {j }.

b.3 IfC is empty, then g <— the current gray level value of s,
Else g <— a randomly chosen gray level from C.

b.4 Recalculate A(Y).
b.5 Return g.

Figure 4-4: The BGLAM-based 2D texture synthesis algorithm.

The major computation cost of the algorithm is spent in the two while loops in

step 4. In an iteration of step 4 (i.e. one pass of going through step 4.1 by visiting all sites

in Y), a brute force method would perform fresh recalculations each time in computing

the BGLAMs of the output and the BGLAM -based distance in sampling (i.e. in

bglamBased2DRabdomSampling). The time complexity of an iteration of step 4 using the

brute-force calculation is at least 0 [m * n p * G * (n p + G 2)\ (the proof is given below),

where m is the total number of BGLAMs, np the number of pixels in the output, and G

number of gray levels in the image. As proved below, a more efficient way is to perform

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an iterative update based on existing information, which can be done with a computation

cost of 0 (m * n p * G) because when a pixel changes its gray level value, only its

neighboring pixels will be affected. In fact, according to Lemma 3-5, each gray level aura

matrix Aj(Y) in the step b.2.1 of bglamBased2DRabdomSampling in Figure 4-4 can be

efficiently updated from its previous version in four simple arithmetic operations as

described in Algorithm 3-1 in Chapter 3. At the end o f the procedure

bglamBased2DRabdomSampling, one can always keep an updated version of A(Y) for the

selected gray level g at site s for the next update. In addition, using a few simple

arithmetic operations, distance d can be efficiently updated from its previous value and

distance dj can be efficiently calculated from distance d without a complete

recalculation. To achieve the above fast iterative updates, however, the algorithm must

store the BGLAMs of the input and of the output as well as the distance between each

pair of the corresponding BGLAMs of the input and of the output. The detailed proofs of

the above time complexities are given as follows.

[Proof of the brute-force time complexity] W e would like to prove that the time

complexity for one iteration in step 4, i.e. one pass that goes through step 4.1 by visiting

all pixels in image Y, is at least 0 (m * n p * G * (np + G)) , where m is the total num ber of

BGLAMs, np the number of pixels in the output, and G number of gray levels in the

image. Let 7(4.1) and T(b) be the time complexity for step 4.1 and for the procedure

bglamBasedlDRabdomSampling, respectively, then the time for one pass of step 4, is

given by:

T(4A) = np*T(b) . (4.2)

From pseudo code of bglamBasedlDRandomSampling given in Figure 4-4, we have:

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T(b) = T{b. 1) + Tib. 2) + Tib. 3) + Tib A) + Tib. 5)

> 0(1) + G * [Tib.2.1) + 7XA2.2) + Tib.23)] + 0(1) + 0 (m * np) + 0(1)

= G*[Tib . 2.1) + r(Z?.2.2) + r(6.2.3)] + 0(m * np)

= G * \ O i m * np) + 0 (m * G 2) + 0(1)] + 0 (m *np)

= G * 0 [m * i n p + G 2)] + Oim*np)

= O i m * G * i n p + G 2)] + Oim*np) -(4-3)

= 0 [m * G * i n p + G 2) + m*np]

= 0 (m * G* np + m* G 3 + m * np)

= 0 i m * n p * G + m * G 3)

= 0[m * G * (np + G2)]

In the above equation, the time for step b.3 is at least 0 (1). Since there are m BGLAMs

in AiY) and each BGLAM takes time 0 (n p) to compute by the algorithm described in

Section 4.3.1, the time complexity of step b.4 is Tib.4) = 0 (m * n p) . W hen calculating

the time for step b.2.1, there are m BGLAMs in A j i Y) and each BGLAM takes time

0(np) to compute; thus the total time for step b.2.1 is 0 (m * p p) . By Eq. 4.1, the time

for step b.2.2 is 0 (m * G 2) because there are m matrices of size G x G and each matrix

needs a time of 0 (G 2) to compute its norm. By Eq. 4.2 - 4.3, we have:

7X4.1) > np * 0 [m * G * inp + G 2)] = 0 [m * n p * G * i n p + G 2)]. ^

[Proof of the fast-version time complexity] Let A(X) = {Bk(X) 10 < k < m - 1},

A j i Y) - { B jki Y) \ 0 < k < m - l } , and AiY) = {Bk(Y) \ 0 < k < m - l } . Based on Lemma

3-5 and Algorithm 3-1, for each k = 0, l ,—, m - l , matrix BjkiY) can be efficiently

calculated from matrix Bk (7) by changing the values of only four entries as shown in Eq.

3.11 in Chapter 3, which implies that BjkiY) can be updated from BkiY) using constant

time. Thus, the total time for step b.2.1 is m* 0(1) = 0 (m) . Furthermore, since there are

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only four different entries between B jk(Y) and Bk(Y) , the distance d] in step b.2.2 ,

m - 1

which is dj = d (A (X) , A j (Y)) = ^ | | Bk(X) - Bjk(Y) | | , can be efficiently updated from
k = 0

III —I
distance d, which is d = d (A (X) , A (Y)) = ^ | | Bk(X) ~ Bk(Y) | | , using a computation cost

k = 0

of m * 0(1) = 0 (m) . The time for step b.3 is at most 0 (G) , and matrix A(Y) in step b.4

can be updated from its previous version using time 0 (m) . Thus, we have the following:

T(b) = T(b. 1) + T(b. 2) + T(b. 3) + T(b. 4) + T(b. 5)

< 0(1) + G * [T(b.2.1) + T(b.2.2) + T(b.2.2)] + 0 (G) + 0 (m) + 0(1)

= G * [T(b. 2.1) + T (b.2.2) + T(b. 2.3)] + 0 (m)

= G * [0 (m) + 0 (m) + 0(l)] + 0 (m) .(4.4)

= G * 0 (m) + 0(m)

= 0 (m * G + m)

= 0 (m * G)

By Eq. 4.2 and Eq. 4.4, we have T (4.1) < n p * 0[m * G] = 0[m * n p * G]. _

4.3.5 Color Image

For color input texture images, one cannot simply apply the above basic algorithm

to each of the RGB channels separately since the RGB components of a color im age are

dependent on each other. Before applying the basic aura texture synthesis algorithm, a

color-space transformation T based on the singular value decomposition technique

(SVD) [146] is used to transform the R, G, and B components of the color image into

three independent components R ' , G ', and B' in another color space. After this RGB-

color-decorrelation step, the basic synthesis algorithm is applied to each of the

independent color components R' , G ', and B' to generate three output textures in the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transformed color space, which are then transformed back into the RGB color space to

produce the final synthesized color texture image using the inverse transformation o f T.

The pseudo code of the RGB color-space transformation algorithm based on SVD is

given in Figure 4-5.

SVD RGB Color Transform

Input:
X *— the RGB color image.

Output:
Y <— the color image with independent color channels.
T <— the RBG color transformation.
T 1 <—the inverse transformation of T.

Begin
1 Subtract the mean color from each RGB color channel.

1.1 R, G, B <— the red, green, and blue channel of X, respectively.
1.2 r, g,b •*- the mean color of R, G, and B, respectively.
1.3 R' <— R-r (subtract the mean of the red values from the red value at each pixel of R).
1.4 G'<— G-g.
1.5 B' <- B-b.
1.6 X <— the color image of R \ G \ B ' channels.

2 Calculate the 3x3 covariance matrix C of X'.
2.1 n <— the number of pixels in X'.
2.2 D *— the 3xn matrix whose columns are color values of each pixel in X'.
2.3 C <— D D l, where D 1 is the transpose of matrix D.

3 Perform SVD on C by decomposing C into the product of three of matrices.
C = U S 2U l, where U is orthonormal and S is diagonal.

4 Calculate the transformation T and the inverse of T.
T <— S A U, where S is the inverse matrix of S.
T A <—US.

5 TD
Y is a 3xn matrix with each row representing a color channel.

6 Return Y, T and T h
End

Figure 4-5: The algorithm of RGB-color transformation using SVD.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Experiments

In our approach of 2D texture synthesis, the neighborhood size is an im portant

parameter that affects the synthesis results. In general, an image containing large

structural textures (see textures in the 1st column in Figure 4-9) requires a relatively large

neighborhood size. For a given input texture, different synthesis results can be generated

with different neighborhood sizes. Figure 4-6 below gives an example texture and its

synthesized textures generated with different neighborhood sizes. It is an interesting

future research topic to systematically determine the optimal neighborhood size (e.g.

11x11 for the input texture shown in Figure 4-6) for a given input texture image to obtain

the best run-time performance.

input 3x3 5x5 7x7 gx g 11x11

Figure 4-6: An example of the synthesis results using the neighborhoods of different sizes

given under each output.

4.4.1 Comparison with SGLAMs and GLCMs

For simplicity reasons, we only describe the algorithm of comparing BGLAM s

with GLCMs, and the one of comparing BGLAMs with SGLAMs is similar. A fair

comparison scheme is to use the same general algorithm as described in Figure 4-4, but

sampling with BGLAM s and GLCMs, respectively, calculated over the same square

neighborhood structuring element E. In addition, for fairness in comparison, when using

BGLAMs, the step of ICA is omitted, i.e. all BGLAMs calculated over E are used. For

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, if the neighborhood structuring elem ent £ is a square window of size 11x11

with the target pixel at the center, then 11x11-1 = 120 BGLAMs and 1 2 0 /2 = 60

GLCMs will be used for generating synthetic textures because each BGLAM is

calculated over a single site structuring elem ent and each GLCM is calculated over a

symmetric structuring element of two sites.

We generate a database of 848 texture images (with repetitions or very similar

texture images removed using the BGLAM distance measure defined in Eq. 4.1) from

various sources (see [124]), randomly select half of the images from the database, and use

them as input samples. W e generate two outputs for each input by sampling 120

BGLAMs and 60 GLCM s (calculated from the input over a square window of size

11x11), respectively. W e evaluate the synthesis results subjectively. Each output is

evaluated by 10 people. Among the 10 people, 5 of them are researchers in the same

research lab and have the knowledge on texture analysis and synthesis; the other 5 people

are graduate students in the department and have the general knowledge in com puter

vision and image processing. Each subject is asked to determine w hether or not the

output looks similar to the input. If over 50% of the subjects agree that a given output

texture looks similar to its corresponding input texture, then a SUCCESS is assigned to

the output; otherwise a FAILURE is assigned.

Experiments have shown that the average percentages of SUCCESS for

BGLAMs, GLCMs and SGLAMs are 81.4%, 44.7% and 39.7%, respectively, which

indicates that BGLAMs significantly outperform both GLCMs and SGLAMs. Figure 4-7

gives some examples of texture synthesis by sampling BGLAMs, GLCMs, and

SGLAMs, respectively.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ®

Figure 4-7: The comparison results of texture synthesis using BGLAMs, GLCMs and

SGLAMs. Images in the 1st column are the input (size 100x100), the synthesized

images (size 128x128) by sampling BGLAMs, GLCMs and SGLAMs are in the 2nd,

3rd and 4th columns, respectively. The results indicate that BGLAMs outperforms both

GLCMs and SGLAMs.

BGLAMs, GLCMs, and SGLAMs are also evaluated with each other by the

ability of measuring the similarity between textures. We use the distance function defined

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Eq. 4.1, but working with BGLAMs, GLCM s and SGLAM s, respectively. Lor each

synthesized texture, we calculate the distance value to the input. If the value is below 0.1,

then the output is considered similar to the input, and thus a SUCCESS. Otherwise, it is a

LAILURE. On the other hand, each output is evaluated by 10 people. It is considered as a

SUCCESS if over 50% of the subjects answer YES. Otherwise, it is FAILURE. For each

output, the evaluation result from the distance measure is com pared with the subjective

evaluation to determine if it is a MATCH. The average percentage of match among all

output textures is used to determine the ability of a distance measure for measuring the

similarity between textures. The experimental results show that the average percentages

of M ATCH for BGLAMs, GLCMs and SGLAMs are 75.8%, 49.8% and 41.3%,

respectively. This test indicates that the BGLAM distance measure has the ability to

measure the similarity between textures, while none of GLCM and SGLAM distance

measures has.

4.4.2 Comparison with Existing Techniques

Figure 4-8 gives some comparison results of texture synthesis, where images in

column 1 are the input texture samples, and images in the last four columns are the

synthesized results of: our algorithm, the Heeger and Bergen algorithm [81], the Wei and

Levoy algorithm [190], and the Liang et al. algorithm [106]. W e implement both

H eeger’s and W ei’s algorithms, in which H eeger’s algorithm is based on the steerable

pyramid [81] and W ei’s algorithm is based on the Gaussian pyramid [190].

The results of our algorithm are generated using 48 BGLAMs calculated from a

square window of size 7x7 around a target pixel. The results for Heeger’s algorithm are

generated using steerable pyramids with 3 levels and 4 orientations (i.e. 0, 45, 90, and

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135 degrees as used in the Heeger and B ergen’s work [81]). For W ei’s algorithm, a

Gaussian pyramid of 3 levels is used to synthesize from a given input texture. The

neighborhood sizes used for a Gaussian pyram id are {3x3,1}, {5x5,2}, {7x7,2} from the

lowest resolution level to the highest resolution level, where {7x7,2} means a

multiresolution neighborhood of 2 levels (with size 7x7 at the higher resolution level and

3x3 at the lower resolution level) is used to generate the highest resolution level. The

results for the Liang et al.’s algorithm are taken from Paget’s website [124].

As shown in Figure 4-8, H eeger’s algorithm is able to capture the overall

appearance of a given texture sample, but fails to capture the local structures in the

texture because of the global histogram-matching scheme used in the algorithm. W ei’s

algorithm is able to capture the details of a given texture using a pixel-based sampling

scheme, but has a smoothing effect in the output because of the inaccurate SSD (sum of

squares differences) measure used to measure the similarity between the output and the

input and the Gaussian pyramid used to represent a texture image. Although, Liang’s

algorithm can generate good results, our algorithm generates better results for the input

textures in the 1st, 2nd, and 5th rows. For other input textures in the figure, the results for

our algorithm are comparable to those of L iang’s algorithm.

The number under each output texture is the value of the BGLAM-based distance

measure (see Eq. 4.1) of the output compared to the input. The smaller the BGLAM

distance value, the greater the similarity between two texture images. The quantitative

evaluation based on the BGLAM distance function also shows that the synthesis results

from our approach are better than those from Heeger’s and W ei’s algorithm, and are

comparable to those of L iang’s algorithm.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.03 0.63 0.75 0.07

0.06 0.39 0.23 0.02

Figure 4-8: The comparison of results of our approach (column 2) with Heeger and

Bergen’s algorithm (column 3), Wei and Levoy’s algorithm (column 4), and Liang et

al.’s algorithm (column 5), where the input textures are in column 1.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-9: Examples of BGLAM-based 2D texture synthesis. The smaller image in each

pair is the input texture (size 64x64), and the larger image is the synthesized texture. The

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sizes of output texture in column 2, 4, and 6 are 100x100, 128x128, and 156x156,

respectively. Since the textures in the first column contain large structures, 120 BGLAMs

calculated over a neighborhood system o f size 11 are used to generate the output in the

second column. The output textures in the 4th and 6th column are generated using 48

characteristic BGLAMs.

k

r* *

MjfettSMlS *t

m
rIT W jl **r*r *r- 2? *>Vl̂ 'S!sv

Figure 4-10: Examples of BGLAM-based 2D texture synthesis. The smaller images are

the input textures (size 128x128), and the larger images are the synthesized textures

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(size 200 x 200) that are generated using 80 BGLAMs calculated over a neighborhood

system of size 9.

"V >>»!■ ip.

Figure 4-11: Examples of BGLAM-based 2D texture synthesis. The smaller images are

the input textures (size 128x128), and the larger images are the synthesized textures

(size 200x200) that are generated with 80 BGLAMs calculated over a neighborhood

system of size 9.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 Synthesis Results

Examples of texture synthesis using BGLAMs with various input textures are

shown in Figure 4-9, Figure 4-10, and Figure 4-11. The smaller image in each pair is the

input texture, and the larger image is the synthesized texture. More results can be found

at the author’s webpage [149]. The experimental results have shown that a broad range of

textures can be faithfully synthesized using our approach.

Input Output Difference of Difference o f
Input and output the highlighted part

o f input and output

Figure 4-12: An example of a synthesized texture with duplication effects. Both the input

(it is enlarged in the figure) and output have the same size (3 2 x 3 2) . The synthesized

texture is generated by the algorithm described in Figure 4-4 with 120 BGLAM s and a

threshold value 0.001. The difference image of the input and output shows that the input

and output is not identical. In addition, the difference image (enlarged) of parts o f the

input and output in highlighted windows (where the duplication effect occurs) shows that

the two parts are not identical.

Some discussions on the duplicate effect from parts of the input in the synthesized

texture are given as follows. As shown in some examples (e.g. the result for the first input

in Figure 4-7 and the result for the input in row 4 and column 4 in Figure 4-11), it seems

that parts of the output texture are directly duplicated from the input; while in fact it is

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not. This effect is more noticeable when a very small threshold value (e.g. 0.001) is used

in the sampling o f our algorithm. Our method generates a synthesized texture by

iteratively modify the output such that the BGLAMs o f the output match those of the

input, it is possible that parts of the output look like duplicated from the input if the

threshold value is very close to zero. However, those parts are not exactly the same.

Figure 4-12 gives an example o f an input texture, its synthesized texture of the same size

by BGLAMs, the difference image o f the input and output, and the difference image of

the highlighted parts o f the input and output where the duplication effect occurs.

Input 1.90 1.04 0.46 0.08

Figure 4-13: An example using BGLAM-based distance measure to evaluate the

synthesized results against the input.

4.4.4 Evaluating Synthesis Results

One significant advantage of the BGLAM-based approach for 2D texture

synthesis over existing approaches is that the BGLAM-based distance measure defined in

Eq. 4.1 can be used to evaluate the synthesis result to determine whether or not the output

looks similar to the input. By our experimental results, we found that if two texture

images have a distance value greater than 1.0, then they are dissimilar. If the value is

below 0.1, then the output is assured similar to the input. However, if the distance value

is between 0.1 and 1.0, then the similarity between the two textures is difficult to

determine, in this case we consider the output with a distance value below 0.5 a success

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and a failure otherwise. This observation is made by our extensive experiments. Figure

4-13 gives an example to demonstrate this point. Note that in Figure 4-8, each output

texture has a number beside it to show its BGLAM -distance to the input.

4.4.5 Running Time and Acceleration

On the running time, for an input color texture sample of size 6 4 x 6 4 and an

output color texture of size 128x128 , the average running time is about 30 minutes on a

1.4GHz Pentium 4 PC running W indows XP Professional.

For acceleration, we extend our algorithm so that it can perform texture synthesis

in multiresolutions, similar to the non-filter-based multiscale method used in Paget’s

work [129], to build the multiresolution representation of a given image. W ith a

multiresolution scheme of 4 levels and 24 BGLAM s used for each level, the running time

is reduced to about 2-3 minutes. For color images, our algorithm is extended to

synthesize the three independent color channels in parallel after the step of color-space

transformation as described in Section 4.3.5. In this case, the above running tim e can be

further reduced to about 1 minutes.

4.5 Limitations and Future Work

One limitation of the current implementation of the BGLAM-based 2D texture

synthesis algorithm is the gray level update scheme during the sampling as described in

Section 4.3.3. It is quite possible that after a few iterations, the number of candidates of

possible gray levels for a target pixel is less than 3, which may sometimes cause the gray

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level values o f pixels in the output texture to quickly converge to local minima, and thus

generate visible seams in the output textures as shown in Figure 4-14. In this case,

fortunately, the BGLAM-based distance measure between the output and the input cannot

decrease any further, and a large distance value, normally above 0.5, is returned to

indicate a failure (see Figure 4-14). Future research should be carried out to address this

problem. One possible solution is to extend the current single-point search scheme to a

multiple-point search scheme during sampling so that the convergence to the local

minima can be avoided as much as possible. Since genetic algorithms [66, 153] are well

suited for searching in multiple directions, it is an interesting future research topic to

explore using genetic algorithms to address this local minima problem.

visible seams

Figure 4-14: Example of visible seams in the synthesized textures. The visible seams are

located within the areas bounded by the dashed lines. The number beside each output

texture is its distance measure calculated using Eq. 4.1. Since those values are greater

than 0.5, the output textures are considered as failures based on the evaluation criterion

described in Section 4.4.4.

Another interesting future work is the application o f our method to evaluating

synthesized textures from various existing approaches, such as Wei and Levoy’s, Liang et

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al.’s [106] and Kwatra et al.’s [101], and choosing the best one. Other future works

include the comparison of BGLAM distance measure with other existing distance

measures, and the study of the sensitivity of the threshold values used in the BGLAM

distance function for measuring the similarity of texture samples and for evaluating the

synthesis results.

4.6 Summary

In this chapter, a new 2D texture synthesis approach, called aura 2D texture, is

proposed. Given an input texture, our algorithm first calculates a set of independent

BGLAMs to represent the texture, and then generates the synthesized texture by sampling

only the BGLAMs of the input. The experimental results show that the new technique

can successfully synthesize a wide range of textures and is comparable to several existing

techniques. In addition, based on a new distance measure defined by BGLAMs, our

technique is able to automatically evaluate the results and determine whether or not the

output is a successful synthesis of the input. To our best knowledge, none of the existing

techniques has the ability to evaluate their synthesis results. In the next chapter, we

present a new method for synthesizing solid textures using BGLAMs.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

BGLAM 3D Texture Synthesis

5.1 Introduction

In com puter graphics and computer games, 3D texture synthesis has been widely

recognized as an im portant tool in generating realistic textures for rendering complex

graphic scenes. Recent advances in 2D texture synthesis [3, 49, 50, 81, 101, 106, 190]

have ignited the development of many successful techniques for generating surface

textures from input samples [20, 43, 108, 179, 191, 204], Although a wide range of

textures can be synthesized in 2D, there is still a lack of techniques in generating 3D

textures. W hen 2D textures are used in texturing 3D objects, the following disadvantages

are found: (1) the distortion problem on large-curvature surfaces, and (2) non-reusable -

textures generated for one surface cannot be used for other surfaces. The second

limitation makes 2D surface textures difficult, if not impossible, to be used in procedural

shaders [47].

To overcome the above problems, solid textures [132, 134] can be used. A solid

texture is considered as a block of colored points in 3D space to represent a real-world

material, for example, a wood trunk. Once the solid texture is available, any given 3D

object can be textured by carving the object out of the volumetric data. Since solid

textures define colors for each point in 3D space, they avoid the problems of distortion

and discontinuity. However, solid textures are far more difficult to obtain than 2D

textures; there is no easy way to obtain solid textures from real-world materials. Over the

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

last two decades, procedural techniques and image-based techniques have been

developed to generate solid textures. In procedural approaches [47], procedures are

designed and called to generate solid textures with the surface appearance of realistic

objects, such as wood, stone, smoke, fire, fluid, cloud, etc. However, these techniques can

model only a limited range of textures. In addition, the procedures are difficult to

understand and control because there are many parameters in the procedures and these

parameters are not intuitive for a user to determine their appropriate values. To address

these problems, a number of researchers have developed image-based techniques [41, 42,

81, 86, 103, 188] for synthesizing solid textures from input samples, and appealing

results have been obtained. Unfortunately, some of these techniques are not fully

automatic, which involve nontrivial user interactions [41, 86]; while others may apply to

only limited types of textures [42, 81, 86 , 103, 188].

Input Sample I

BGLAM 3D
Sampling

BGLAMs
ofl

Texturing
& Rendering

Figure 5-1: An overview o f BGLAM 3D textures.

In this chapter, we present a new technique, called aura 3D textures, for

synthesizing solid textures from input examples using BGLAMs. Our method is fully

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

automatic and requires no user interaction in the process. In theory, our method can take

any number o f input samples. As shown in Figure 5-1, given one or more input textures,

our method first characterizes each input sample as a set o f special aura matrices called

BGLAMs that are introduced in Chapter 3. Once the BGLAMs are calculated, the input

will not be needed. A solid texture is generated by sampling the BGLAMs o f the input

constrained in multiple view directions. The details o f the aura 3D sampling are described

in Section 5.3.1. After the solid texture is generated, any given object can be textured by

the solid texture using a shader.

We have compared our algorithm w ith two recently proposed algorithms: W ei &

Levoy’s [188]; and Jagnow et al.’s [86]. The experimental results show that our method

outperforms Wei & Levoy’s and is comparable to that o f Jagnow et al.’s. However, the

latter method involves extensive user interactions in designing appropriate 3D shapes as

well as in estimating the correct cross sectional profile; while our method is fully

automatic with no user interactions in generating solid textures. In addition, their method

can take a single input only; while ours can generate solid textures from multiple inputs.

To test the accuracy o f our aura 3D texture approach, we present an evaluation

method based on extensive user studies in Section 5.6. To avoid manual paper work, we

have designed a GUI-based system to collect data and to perform the evaluation

efficiently. The evaluation results show that our algorithm can generate faithful results

for a wide range o f textures, including both stochastic and structural textures, with an

average successful rate o f 76.4%.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Related Works

In 3D texturing, there are four ways to generate synthetic textures onto 3D

surfaces: texture mapping, procedural texturing, image-based surface texturing, and

image-based solid texturing. Texture mapping [79] is the earliest approach to generating

synthetic textures on surfaces o f computer-generated objects. Since Blinn’s work [12],

various techniques [85, 99, 170, 187, 202, 205] have been developed to synthesize high

quality textures efficiently on 3D surfaces. In general, texture mapping suffers the well-

known problems of distortion, discontinuity, and unwanted seams.

The second approach is called procedural texturing [47]. Since the seminal works

of Cook [28], Peachey [132], and Perlin [134], procedural techniques have been widely

accepted in the com puter graphics community. In most existing techniques, storage-

efficient procedures built on basis functions [29, 102, 134, 199] are used to generate high

quality 3D textures with no distortion and no discontinuity. Some techniques use the

reaction-diffusion processes [56, 180] to generate biological patterns, e.g. zebra stripes

and cellular patterns, that are found on animal skins. The disadvantages of procedural

texturing include: (1) only limited types of textures can be modeled, (2) the design of

procedures is based on the experience of the designer and is largely a manual process,

and (3) the parameters of a texturing procedure are difficult to tune or estimate [153],

The third approach is the image-based surface texturing developed by a num ber of

researchers recently. W ei & Levoy [191], Y ing et al. [201], and Turk [179] have

concurrently extended Wei & Levoy’s 2D texture-synthesis algorithm [190] to synthesize

textures onto arbitrary mesh surfaces. Using feature-based warping and texton masks,

Zhang et al. [204] have successfully synthesized progressively-variant textures onto 3D

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

surfaces from multiple input samples. In C hen’s work [20], shell texture functions are

used to synthesize realistic textures with translucency variations on surfaces from either

2D or 3D samples, e.g. a block of CT scan. Recent research works [108, 177] have also

been done in generating bidirectional texture functions (BTF) onto 3D mesh surfaces.

Compared with procedural texturing, image-based surface texturing can synthesize a

wide range of textures. However, the approach may suffer the distortion problem on

surfaces where the curvature is large. Another problem of the approach is that textures

generated for one surface cannot be used for other surfaces. This limitation makes the

techniques difficult to be used in procedural shaders [47].

To combine the advantages of procedural texturing and image-based 2D texture

analysis and synthesis, a number of researchers have developed techniques for generating

solid textures from input samples, which we call image-based solid texturing. D ifferent

from image-based surface texturing, these techniques synthesize a volumetric texture data

from input samples. Once the volumetric data is generated, it can be used to texture

different objects. In Heeger and Bergen’s work [81], homogeneous and stochastic 3D

textures are successfully generated by matching the histogram of a volumetric data with

that of the input sample from coarse to fine resolutions. However, their approach fails for

structural textures. To address this problem, D ischler et al. [42] propose a method based

on spectral and histogram analysis to synthesize a wider range of solid textures from

input samples. Although only a limited range of textures can be modeled, Dischler et al.’s

method [42] is the first approach capable of generating structural solid textures such as

wood and marble. By analyzing and extracting parameters from input images, Lefebvre

and Poulin’s algorithm [103] is able to synthesize some structural textures such as wood

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and regular tiles. Wei [188] and Paget [125] have extended their respective 2D texture

synthesis algorithms [129, 190] to generate structural solid textures as well as stochastic

textures. However, both approaches work for only a limited range of textures. In Jagnow

et al.’s work [86], a stereology-based approach is presented to successfully generate solid

textures on some texture classes, e.g. marble-like textures. In their approach, in order to

generate the correct results, extensive user interactions are required in creating 3D

particles of desired shapes and of required distributions. Dischler and Ghazafarpour [41]

have also developed an interactive image-based framework for synthesizing structural

solid textures of certain types.

Our work belongs to the category of image-based solid texturing. In particular, we

present a BGLAM -based framework for synthesizing solid textures from 2D input

samples. Additionally, we describe how to evaluate the results of our method using

extensive user studies based on a carefully designed GUI-based system. The new

approach is motivated by and extended from the work on 2D texture analysis and

synthesis using BGLAM s as described in the last two chapters. Our work is most related

to Heeger and Bergen’s [81] and Dischler et al.’s methods [42]. However, the texture

analysis process of our method is done using BGLAM s rather than using gray level

histograms [81] or spectrum in the frequency domain [42] (Note: Dischler et al.’s method

also uses histogram-analysis to characterize textures). In the synthesis process, our

method generates solid textures by sampling only the BGLAMs of the inputs. On the

other hand, Heeger and Bergen’s method needs filters to build pyramids for the input and

output, and the synthesis results of their method heavily depend on the selection of filters.

W hile there is no need for filters in Dischler et al.’s approach, it cannot synthesize

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

textures with edges [42], Both Heeger and Bergen’s and Dischler et al.’s methods fail for

large structural textures such as bricks; while our method can generate appealing results

for such structural textures as shown in the experimental section.

5.3 The Approach

The general flow of our BGLAM 3D texture synthesis is given in Figure 5-2. Our

approach can take a single input sample or multiple input samples. Given an input texture

sample, as shown in Figure 5-2, our method first characterize the input so that the given

sample texture can be well represented. As demonstrated in previous chapters, a texture

image can be accurately represented by and faithfully reconstructed from BGLAMs, we

use BGLAMs to characterize and parameterize a texture sample. In BGLAM 3D

sampling, a solid texture is generated by matching the BGLAMs of volumetric data’s

slices with the BGLAMs of the input in multiple view directions, e.g. the positive

directions of the x, y, and z-axes of the 3D coordinate system. Once the solid texture is

generated, a shader can be used to texture different objects. The details of our approach

are described as follows.

5.3.1 BGLAM 3D Sampling

For illustration purposes, we describe the BGLAM 3D sampling in the case of

three input samples. The situation for fewer or more input samples can be handled

similarly. As shown in Figure 5-2, in the beginning, the BGLAMs of input samples are

calculated using the algorithm described in Section 4.3.1 and a volume of white noise is

initialized. The BGLAMs of each input is used to define constraints in a specific view

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

direction during sampling such that the final synthesized volume will have similar texture

to the corresponding input sample when a cross section perpendicular to the view

direction is cut from the volume. In Figure 5-2, for example, the aura matrices o f input I x

are used to constrain the sampling in the direction o f x-axis to make sure the slices of the

output volume in that direction look similar to I x. For the case o f single input sample, the

aura matrices constrained in a view direction is calculated either from the input or from

the rotated version o f the input.

Output Solid Texture

BGLAMs o f L

White noise Is aura-matrix
distance decreased?

BGLAMs o f L

BGLAM 3D
SamplingBGLAMs of I2

Figure 5-2: The general flow of BGLAM 3D texture synthesis.

The view directions for adding constraints can be arbitrary in our algorithm. For

example, to generate a solid texture of a regular octahedron (a polyhedron with eight

equilateral triangles as faces), eight input samples can be placed along the norm

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directions of the octahedron’s eight faces. For the purpose of illustration, the view

directions in Figure 5-2 are demonstrated as in the positive directions of the xyz-axes.

After initialization, the algorithm iteratively modifies the noise such that the aura-

matrix distances defined in Eq.5.1 in Section 5.2 between the xyz-slices of the volum e

and the input samples is decreased as much as possible. The intuition behind this is as

follows: two textures are guaranteed to look similar if their corresponding BGLAM s are

close enough as demonstrated in Chapter 3 (also see [151]). W e use the weighted-sum

distance (see Eq. 5.1) because we want to make sure that the points in the volume closer

to a view direction are more likely synthesized by the input sample constrained in that

direction and that there is a smooth transition between textures of different views. The

calculation of weights, which is discussed later, depends only on points in the volume and

the view directions and thus is automatically done by the algorithm.

z slice S-

y slice S-

O : the volume's center
a , /3 ,y . the direction angles of Px slice S;

Figure 5-3: The view slices S x , S y , and S z at point P (x , y , z) and its direction angles

a , /? , and y .

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During an iteration of sampling, each point in the volume is visited randomly

once, and its color is modified so that the distance defined in Eq.5.1 between the

BGLAMs of the view slices (see Figure 5-3) of the volume and the BGLAMs of the input

samples is decreased. M ore precisely, when visiting a point, the algorithm first finds the

candidate set of all colors different from the current color that decrease or at least do not

increase the aura-matrix distance. Then, it randomly chooses a color from the candidate

set as the color of the point. Note that even when a color does not change the distance, i.e.

at the same distance as the current color, the algorithm still includes it into the candidate

set in order to increase the randomness in the output. It is possible that the candidate set is

empty at the end of search, which implies that any color different from the current color

will increase the distance. In such a case, the point retains its current color and the

algorithm goes to process the next point in the volume. W hen the distance is below a

predefined threshold or there is no change in colors in any point of the volume, the

algorithm returns the volume as the final solid texture.

5.3.2 Aura-Matrix Distance

The aura-matrix distance used in the aura 3D sampling is defined by

t = w - h - h • r) = 2> , (.py* d (s , , / ,)
I V I PeV , (5 . 1)

+wy (P) * d (S y, I y) + wz (/>) * d (S z, I z)]

where | V \ is the total number of points in volume V; wx (P) , wy (P) , and wz (P) are the

weights calculated from the direction cosines of a , /3 , and y of point P in V as shown

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 5-3; and d (S x, I x) is the distance between the BGLAM s of view slice S x and

the BGLAMs of input sample I x. Given two images X and Y, let

A (X) = {Ak | 0 < k < m -1} and A(Y) = {Bk \ 0 < k < m -1} be their corresponding

normalized BGLAMs, then the BGLAM distance d (X , Y) is defined in Eq. 3.13 in

Section 3.4, which is restated below for ease of reference:

i m -1

d (X , Y) = d { A (X) , A (Y)) = - X I I A - B k \ | , (5.2)

G - l

where for a given matrix A = [at] J0£i j£G_ ,, || A ||= X | ai} \ , and an aura matrix
i , j =0

A = [a ;]0£i ;<G_j is normalized if X a i; = 1. Since two images X and Y may have different
' , i

sizes, the aura matrices must be normalized to make sure that there is no bias in the

values of d (S x , I x) , d (S y , I) , and d (S z , I z) when the distance defined by Eq. 5.1 is

calculated.

As shown in the right of Figure 5-3, when a point in the volume is closer to a

view direction, e.g. the v-axis, there is more chance during sampling for the point to be

colored by the input sample constrained in that direction. Since c o s (a) , cos(/3), and

cos(y) are continuous functions, there is a smooth transition in the synthesized textures

from one view direction (e.g. the x-axis) to the other (e.g. the y-axis). For a given point

P (x , y , z) in the volume V, let O(x0,y 0,z 0) be the center of V, then the weights can be

calculated by

d e f

wx (P) = cos (a)2 / ^ _ (* - * o)
2

(x -x0) + (y - y 0) + (z -z oy

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w y{P) = cos2(^) = ----------- , (V y ° \ --- (5.3)
(x - x 0)2 + (y - y 0) 2 + (z - z 0)2

d e f

W,(P) = COS2 (}/)
(Z - Z 0) 2

(x - x 0) + (y - y 0) + (z - z 0)

One can verify that wx (P) + w (P) + w z (P) = 1. W hen P coincides with O, we let

wx(P) = w (P) = w z(P) = 1/3.

BGLAM-Based 3D Texture Synthesis

Input:
7X, Iy, lz <— sample texture images.
e <— a given small positive number in (0,1)

Output:
V *— the synthesized solid texture.

Begin
1 Initialize V as a volume of random noise.
2 While d=d(V, /x, Iy, Iz) > e do

2.1 While there are unvisited points in V, randomly choose an unvisited point P do
grayLevelip) <— bglamBased3DRandomSampling(P, d, 7X, 7y, 1,,V).

End of while
End of while

End of begin

bglamBased3DRandomSampling(P, d, 7X, 7y, IZ,V)
b.l C=empty (the candidate set of gray levels for point P).
b.2 For each gray level j = 0 to G - 1 do

b.2.1 S x(j) , Sy(j), Sz(f) <— the view slices of V at point P when P has gray level j .
b.2.2 dt ^ d(V, 5X(/), S y(j b S z(j)).
b.2.3 if dj < d, then C = C U {j}.

b.3 IfC is empty, then g <— the current gray level value of P,
Else g <— a randomly chosen gray level from C.

b.4 Return g.

Figure 5-4: The pseudo code of the BGLAM -based 3D texture synthesis algorithm.

5.3.3 Algorithm

The pseudo code of the algorithm for aura 3D textures is given in Figure 5-4. The

definition of distance d in the step 2 of the main algorithm is given in Eq. 5.1. In the step

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b.2.1 of bglam3DBasedRandomSampling, the view slices of V at point P are defined as

shown in Figure 5-3.

The major computation cost of the above 3D aura texture synthesis algorithm is in

the two while loops in step 2. In an iteration of step 2 (i.e. step 2.1, which is one pass of

visiting all points in V), a brute force method would perform fresh recalculations each

time computing the aura matrices of the volum e’s view slices and the aura-matrix

distance (see Eq. 5.1) with a cost of at least 0 [m * n p 2 * G * (S + G 2)] , where G is total

number of gray levels in the input image, m the total num ber of BGLAMs used in the

sampling, np the number of points in the volume, and S is the size of the view slices of

volume V. A more efficient way is to perform an iterative update based on existing

information, which can be done with a computation cost of 0 (n p * (m + S) * G) because

when a pixel changes its gray level value, only its neighboring pixels are affected. The

proofs of the above time complexities are given below.

[Proof of the brute-force time complexity] In the following, the time

complexity for one iteration in step 2, i.e. one pass that goes through step 2.1 by visiting

all points in volume V, is proved to be at least 0[m * n p 2 * G * (S + G 2)] , where G is the

total number of gray levels in the input image, m the total number of BGLAM s used in

the sampling, np the number of points in the volume, and S the size of the view slices of

volume V.

Let T (2 . l) , and T(h) be the time complexity for step 2.1 and procedure

bglamBased3DRabdomSampling, respectively, then T(2. l) is given by:

T(2A) = n p* T(b) . (5.4)

From the pseudo code of bglamBased3DRandomSampling given in Figure 5-4, we have:

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T(b) = T(b. 1) + T(b. 2) + T(b. 3) + T(b. 4)

> 0(1) + G * [T(b.2.1) + T(b.2.2) + T(b .23)\ + 0(1) + 0(1)

= G * [T(b.2.1) + T(b .22) + T(b.2.3)]

= G * (0 (5) + 0[m * np* (S + G 2)] + 0(1)} ' (5’5)

= G * 0 [m * np* (S + G 2)]

= 0[m * n p * G * { S + G 2)]

In the above equation, the time for both step b .l and step b.4 is a constant, and the

time for step b.3 is at least 0 (1). Step b.2.1 computes the view slices at a point in volume

V, and takes a computation time of 0 (S) to finish. Based on the definition of aura-matrix

distance (see Eq. 5.1), one can prove that the time for step b.2.2 is 0 [m * n p * (S + G 2)]

because the brute-force time for computing d (S v, I v), v = x, y , z , is 0 [m * (S + G 2)].

Thus, we have:

T (2.1) > n p * T (b)

= np* 0[m * np* G * (S + G 2)].

= 0[m * np2 * G * (S + G 2)]

■
[Proof of th e fast-version tim e com plexity] Based on Lemma 3-5 and Algorithm

3-1, using an analysis method similar to the one used for the BGLAM-based 2D texture

synthesis as described in Section 4.3.4 in Chapter 4, the distance dj in step b.2.2 o f the

algorithm as shown in Figure 5-4 can be efficiently updated from distance d with a

computation cost of 0 (m) . The time for step b.3 is at m ost 0 (G) . The time for step b.2.1

and step b.2.3 is 0 (S) and 0 (1), respectively. Thus, we have the following:

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T(b) = T(b. 1) + Tib. 2) + T(b. 3) + T(bA)

< 0(1) + G * [Tib.2 A) + T(b.2.2) + T(b.2.3)] + 0(G) + 0(1)

= G * [T(b.2 .1) + T(b.2.2) + T(b.2.3)] + 0 (G)

= G *[0(S) + 0(m) + 0(l)] '(5'6)
= G * 0 (m + S)

= 0 [G * (m + S)]

By Eq. 5.4 and Eq. 5.6, we have T(2.1) < np* 0 [G * (m + S)] = 0[np * G * (m + S)] . H

5.3.4 Color Input Texture

For color input texture samples, one cannot simply apply the above basic

algorithm to each of the RGB channels separately since the RGB components o f a color

image are dependent on one another. Before applying the basic aura 3D texture synthesis

algorithm, a color-space transformation T based on the singular value decomposition

technique [146] is used to transform the R, G, and B components of an color image into

three independent components R ' , G ', and B' in another color space. After this RGB-

color-decorrelation step, the basic synthesis algorithm is applied to each of the

independent color components R ’ , G ', and B' to generate three gray-scale solid textures

in the transformed color space. Using the inverse transformation of T, the final

synthesized three gray-scale sold textures are transformed back into the RGB color space

to produce the final synthesized color solid texture. The algorithm of transforming RGB

color channels into independent color channels is given in Figure 4-5 in Chapter 4.

5.4 Acceleration

For acceleration, we extend our algorithm so that it can run texture synthesis in

multiresolutions, similar to the pyramid method used in Heeger and Bergen’s work [81].

However, from our experience, we find that the filtering process only complicates our

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm. Thus we have used a simpler non-filter-based method, called local decimation

[129] to build the multiresolution representations o f the input and output. For an input

color texture sample o f size 6 4 x 6 4 with 80 characteristic BGLAMs and an output

volume o f size 128x128x128 , the average running time in single resolution is about 10

hours on a 1.4GHz Penntium 4 PC running Windows XP Professional. With a

multiresolution scheme o f 4 levels and 24 BGLAM s used for each level, the running time

is reduced to about 3 hours. For color images, our algorithm is further extended to

synthesize the three independent color channels in parallel after the step o f color-space

transformation as described in Section 4.3.5. In this case, the above running time can be

further reduced to about 1 hour. Once the solid texture is generated, a given object can be

textured within seconds. An average runtime o f 6 seconds is recorded in our experiments.

3x3 5x5 7x7 9x9

Figure 5-5: An example o f aura 3D textures using different window sizes given under

each output.

5.5 Results

The window size used to calculate BGLAMs in our algorithm is an important

parameter that affects the synthesis results. In general, an input texture containing large

structures or favorable orientations requires a relatively large neighborhood size. For a

given input texture, different synthesis results can be generated with different window

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sizes. Figure 5-5 gives an example texture and its solid textures generated by using

windows o f different sizes.

Figure 5-6: Comparison results o f our method with Wei & Levoy’s. The inputs (size

64x64) are shown in the first column, and the synthesis results (size 128x128x128) are

displayed in the same row as the corresponding inputs. Images in column 2 are the results

of our algorithm, and images in the last column are the results o f Wei & Levoy’s.

We compare our aura 3D textures with two existing approaches. Figure 5-6 gives

some comparison results of aura 3D textures with Wei & Levoy’s approach [188].

Images in the first column are input samples o f size 64x 6 4 , images in column 2 are

results of our algorithm, and images in the last column are generated by Wei & Levoy’s

algorithm. For each input texture, a solid texture of size 128x128x128 is generated

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using our algorithm and Wei & Levoy’s, respectively. In our algorithm, we use 80

BGLAMs, which are calculated over a 9 x 9 window, to characterize all input textures

and to generate results shown in Figure 5-6 and in the rest o f this section. Figure 5-7

gives some comparison results o f aura 3D textures with Jagnow et al.’s algorithm [86],

where images in column 2 are results o f our algorithm, and images in the last column are

results of Jagnow et al.’s. As shown in Figure 5-6, the results o f our method are better

than those of Wei & Levoy’s algorithm. Compared to Jagnow et al.’s algorithm, although

the result of our algorithm is not as good as theirs for the input in the last row, our

algorithm generates better results for the inputs in row 1 and 2.

tgle conceptual and
t wealth of uutpt*

*n
• if iu eh * rrnntpKoi
* to understand t*
v.. W here** no f* DOGl difference c

Figure 5-7: Comparison results of our method with Jagnow et al.’s. The inputs (size

64x64) are shown in the first column, and the synthesis results (size 128x128x128) are

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

displayed in the same row as the corresponding inputs. Images in column 2 are the results

of our algorithm, and images in the last column are the results o f Jagnow et al.’s.

Figure 5-8: Results o f aura 3D textures. Small patches are input samples and results of

solid textures generated on the surfaces of different objects are displayed beside the

corresponding inputs.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-9: More results of aura 3D textures. Small patches are input samples and results

o f solid textures generated on the surfaces of different objects are displayed beside the

corresponding inputs.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tgl« conreplutl anti
r wwiih a t lunpt*
hyaiolojltally11 an
• i f u td i a ftamimw
* to uadanUnd tt
y. Wham* nog*
DOGV. d tf fm n e t c

Figure 5-10: More results o f aura 3D textures. Small patches are input samples and

results of solid textures generated on the surfaces of different objects are displayed beside

the corresponding inputs. In the last row, three input samples are used to generate the

solid texture.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is noteworthy that Jagnow et al.’s method requires a user to manually design

and to edit 3D particles to match the texture profiles of a given sample. While it provides

flexibility, it is nontrivial to design a complex texture. If the shapes of predesigned 3D

particles do not match the profiles of input textures, the algorithm will likely generate

incorrect results as the one shown in the second row in Figure 5-7. More results o f our

method can be found in Figure 5-8 - Figure 5-10, and at the author’s webpage [149].

5.6 Evaluation

W e present a method based on user studies for evaluating our aura 3D textures

results. W e only describe the algorithm for the case of single input textures. It is

straightforward to extend the algorithm to multiple input textures. To test the accuracy of

our aura 3D textures, it is reasonable to have the following two evaluation goals: (1) we

test whether or not the slices of the solid texture in each constrained direction, i.e. the

direction in which the BGLAMs of the input are used to constrain the aura 3D sampling,

look similar to the corresponding input; and (2) we determine whether or not textures

change smoothly between consecutive slices in any view direction, including view

directions that are not used to constrain the aura 3D sampling.

Suppose a solid texture V of size n x n x n is synthesized from an input texture.

To test the first goal, for each direction in which the BGLAMs of the input are used to

constrain the sampling, we obtain all n slices of V and randomly select m (< n) of them.

We mix the selected m slices with other texture images that are randomly drawn from a

database of texture images (a database of over 2000 images is used in our experiments),

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and display them in random order on the screen. Each display is evaluated by 18 people.

Among them, 6 are researchers in the same research lab as the authors and have the

knowledge in texture analysis and synthesis; the other 6 are graduate students in the same

department and have some general knowledge in computer vision and image processing,

and the remaining 6 are from outside of the department but in the same university and are

in completely unrelated disciplines.

Each subject is asked to select all texture images that look similar to a specified

input image. If all m slices in each o f the constrained directions are selected, we consider

the solid texture as a SUCCESS in terms o f subject’s evaluation. If more than 50% of the

subjects give an evaluation of SUCCESS on a solid texture, the solid texture is

considered as a success for the first goal. Otherwise, it is a failure.

Figure 5-11: Animation sequences of cross sections o f two solid textures that are

generated by our algorithm. The texture in the first row is a cloud-like solid texture, and

the one in the second row is a green-marble-like solid texture.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the second goal, we randomly select v view directions (six are used in our

experiments). For each view direction, we generate an animation of all cross sections of

the solid texture that are cut in order along that direction. A subject is asked to watch the

animation to determine if the texture changes smoothly from frame to frame. We repeat

this test for 18 people. If no sudden change has been identified in all the animations of the

selected views, we consider the synthesized solid texture as a SUCCESS by the subject.

If more than 50% of the subjects assign a SUCCESS to a solid texture, the solid texture is

considered as a success for the second goal. Otherwise, it is a failure. Figure 5-11 shows

example sequences of animation frames of two solid textures that are generated by our

method, one for a cloud-like solid texture and another for a green-marble-like solid

texture.

To avoid the manual data collection process and to make our evaluation efficient,

we have designed a GUI-based evaluation system. Figure 5-12 gives a screen shot of the

system when it is used for evaluating the first goal. The input is displayed as a smaller

image in the top-left com er of the window. The m slices together with other texture

images randomly selected by the system from two texture databases (one for selecting the

m slices and one for selecting the other textures) are displayed on the screen in random

order as larger images below the input. Texture images similar to the input are selected

by just clicking the button labeled “Similar” under them. W hen a user finishes the test,

the system calculates and stores the evaluation results. The user does not know the score

until after the experiment is complete.

In our GUI-based evaluation system, the user does not have any information on

the value of m because otherwise he/she will use the information to guide his/her

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selection, which will cause a biased evaluation. In fact, in our implementation, the value

of m is assigned randomly each time by the system to make sure that the user will not

guess it. Furthermore, we found that the color provides an important cue in user’s

selection that causes bias. For example, in Figure 5-12, the user may make selections by

following the color instead of the textures of the input. To avoid this bias, we converted

all color images into gray scale images when testing the first goal. For testing the second

goal, we used color images because there is no such color-bias problem.

^ U ser Evaluation GUI o f A ura 30 T ex tu re s

Strmar Sim ilar S im ilar S im itar SimilarSim ilar

Similar Sim ilar S lm ilor SimilarSimilar SinnHor

Simitar Sim itar Sim itar SimilarS im ila r S im ila r

N ex t P a g e 0 1 p a g e s left)

Figure 5-12: The GUI-based user evaluation system of aura 3D textures.

For the evaluation of both goals, we have used 126 input textures, which include

stochastic and structural textures. The experimental results show that the average

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percentage of success (for the experiments o f both goals) for our aura 3D textures is

76.4%. The results of the three different groups of subjects are, respectively, 76.8%,

77.2%, and 75.1%. Thus, there is no significant difference between the results of different

groups.

(a) (b) (c) (d) (e)

Figure 5-13: An example o f failure from our algorithm that is identified during the

evaluation. The input is shown in (a), the solid texture and its two cross sections are

shown in (b), (c) and (d), respectively. A textured sphere by the solid texture is shown in

(e). The failure of the solid texture in (b) is identified by viewing its cross sections as

shown in (c) and (d).

Figure 5-13 gives an example of failure of our algorithm that is identified from

the evaluation. This example also demonstrates the importance o f the evaluation process

as discussed below. In the figure, the input and the generated solid texture o f the input are

shown in (a) and (b), respectively. The two cross sections o f the solid texture are shown

in (c) and (d). A textured sphere by the solid texture is shown in (e). By just looking at

the solid texture and the textured sphere, the results look reasonably good. However, by

evaluation, we have actually identified the problems of the solid texture as shown in (c)

and (d), which do not appear in the textured sphere.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 Limitations and Future Work

Similar to the BGLAM-based 2D texture synthesis algorithm as described in the

previous chapter, one limitation o f the current implementation o f the aura 3D texture is

the color update scheme during the sampling as described in Section 5.3.1. It is quite

possible that after a few iterations, the number o f candidates of possible colors for a

target point is less than 3, which may sometimes cause the color values for points in the

output volume to quickly converge to local minima and thus generate visible seams in the

output textures as shown in Figure 5-13. The possible solution to this problem is to use

genetic algorithms [66] as discussed in Chapter 4.

Inconsistency
problem

Synthesized solid texture

Figure 5-14: An example of inconsistency problems in oriented structural solid textures.

The second limitation is that although our method can generate faithful results for

oriented structural textures, such as the brick texture as shown in Figure 5-8, we find one

problem related to the issues o f constraints, which we still have not found a satisfactory

solution. It is relatively easy to see that the orientations o f three adjacent structural

textures at a junction may create an inconsistency problem. An example of such problems

is shown in Figure 5-14, where the input sample is shown in the left and the

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding synthesized solid texture generated by our method is shown in the right.

Although the orientation of the brick at the solid’s com er highlighted by the dashed line

is consistent with the orientation of the bricks on both sides of the solid, it is

inconsistency with that of the bricks at the top. The solution to the inconsistency

problems in oriented structural textures, if it exists, depends on the interpretation of the

given surface textures, which is a very interesting inverse problem for future research.

For example, can we detect inconsistencies? If the textures are consistent, is the solution

unique?

The third limitation is related to the current implementation of the aura 3D

sampling. Although our method is general enough to handle the situation in which input

samples can be placed along non-orthogonal view directions to constrain the aura 3D

sampling, our current implementation only handles orthogonal view directions in 3D

space. We are currently considering a new implementation of our algorithm for handling

non-orthogonal-view constraints. Other future research may include: the extension of our

approach for GPU-based texture synthesis and the evaluation of solid textures generated

by other approaches, e.g. Jagnow et al.’s algorithm [86].

5.8 Summary

In this chapter, a new method for generating solid textures from input samples is

presented. Given one or more input textures, the BGLAMs of input samples are

calculated first; a solid texture is then generated by sampling the BGLAMs of input

samples. W e evaluate the results o f our method based on extensive user studies. The

evaluation results show that our algorithm can generate faithful results over a wide range

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of textures with an average successful rate of 76.4%. The synthesized results show that

our algorithm outperforms W ei & Levoy’s and are comparable to Jagnow et al.’s.

However, the latter method involves extensive user interactions in designing correct 3D

shapes while our method is fully automatic with no user interactions in generating solid

textures.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

BGLAM Texture Classification

6.1 Introduction

The problem of classifying texture images into pre-leam ed classes is a very

demanding task in computer vision and has important applications in automated

inspection, medical image analysis, document processing, and bioinformatics [77, 178].

Given a set of texture classes and a set of training samples for each texture class, the goal

of texture classification is to estimate the class labels o f texture images in a given

database. The success of texture classification depends on whether or not different

textures can be correctly analyzed mathematically. However, analyzing textures with

mathematical precisions is challenging and has been studied by researchers in the vision

area for decades with only limited success.

In existing approaches [4, 36, 57, 72, 113, 116, 143, 167], the statistics of a set of

filter responses are used to characterize an example texture for classification. However,

mathematically, it requires an infinite number of filters to model a given texture with the

necessary and sufficient information, each of which is as big as the given texture sample.

In general, it is a difficult task to automatically design and select appropriate filters for

different textures. As a result, in texture modeling, most filter-based approaches have

used predefined filters, which are usually insufficient to differentiate textures. Portilla

and Simoncelli [143, 144] have shown that two different texture samples may have

identical means, variances, covariances, skewnesses, kurtosises or histograms computed

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from filtered images [143, 144], When those characterization statistics (e.g. means,

variances, skewnesses, and kurtosises) are used in texture classification, they m ay cause

the problem of assigning the same class label to different textures.

* . « » . ■ !

■> VI
*1

c l c2 c3 c4 c5

Figure 6-1: Exam ple of the classes that are learned from training texture samples.

d] ; i l : *■

iiiM m
Figure 6-2: An example of texture images to be classified by the classes shown in Figure

6-1. Images are taken from the Brodatz textures [14].

Therefore, it is crucial that the characterization statistics extracted from a given

texture sample have the necessary and sufficient information to represent the texture

sample. The BGLAM mathematical framework developed in Chapter 3 suggests that

BGLAMs can be used to characterize texture samples with this property. W e have proved

(in Chapter 3) that two images are identical if and only if their corresponding BGLAMs

are the same, and thus an image can be uniquely represented by its BGLAMs.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Based on the BGLAM theory developed in Chapter 3, in this chapter, we present

a new method of classifying texture images using BGLAMs. Given a texture sample (e.g.

the first image in Figure 6-2) from an image database, our goal is to classify it into one of

the pre-leam ed classes (e.g. the class represented by the second im age with label c 2 in

Figure 6-1). Our algorithm consists of two stages: a learning stage and a classification

stage. In the first stage, models of texture classes are learned from the BGLAM s of

training examples using the SVM (Support Vector M achine) [182], and in the second

stage, a given texture image is classified into one of the pre-leam ed classes.

We compare our approach experimentally with existing approaches by

performing texture classification using the Brodatz database, the Vistex database, and the

ASI (All Sky Imager) database. The experimental results show that the proposed

approach has obtained an average successful classification rate of 100%, 97%, and 97%

vs 91%, 83%, and 66% using other approaches over the Brodatz textures, the Vistex

textures, and the ASI textures, respectively. The test results indicate that the proposed

method outperforms both Guo et al.’s algorithm [72] and the SGLAM method [152].

6.2 Related Works

The work in this chapter is closely related to texture discrimination in com puter

vision and image processing. One of the major research areas in texture discrimination is

texture similarity measure and leaning for image classification and image retrieval.

Various techniques have been developed in this area. The conventional approach is based

on Gabor texture features. In M a & M anjunath’s work [113, 116] and Puzicha et al.’s

work [148], the first and second order statistics of Gabor filter responses are used for

measuring and characterizing textures using neural network. They have applied their

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

method to the classification of texture images from the Brodatz database and to the

content-based image data retrieval from large satellite or aerial photographs. As a

superset of Gabor filters, the windowed Fourier filter responses are used for texture

similarity measure and learning in Azencott et al.’s work [4], Based on the Gabor filter

responses, Guo et al. [71, 72] use a SVM algorithm to learn similarities between texture

images. Both Azencott et al.’s approach and Guo et al.’s approach have better

performance in texture classification than that of Ma and M anjunath’s approach.

The second approach in texture discrimination is based on wavelet-type features.

In the work by Simoncelli and Portilla [143, 167], it is shown that texture images can be

faithfully characterized by and reconstructed from a set of global joint statistics of

complex wavelet coefficients at multiple scales and orientations. Rather than using global

joint statistics, DeBonet and Viola use local joint statistics of wavelet distributions in

multiresolutions to measure the similarity between images [36]. In addition to texture

image classification, DeBonet and V iola’s method can perform object detection in SAR

(Synthetic Aperture Radar) images and faithful results have been obtained. In

Arivazhagan and Ganesan’s work [2], texture classification is performed using a

combination of the wavelet statistical features and the wavelet cooccurrence features. As

a variation of the joint statistics of filter responses, a number o f researchers model

textures using probability distributions of textons [206], and learn textons and texture

models from training images. The classification of a given texture image is done by

comparing the texton distribution of the image with the pre-leamed models. The texton-

based approach has been successfully used in classifying texture images under unknown

viewpoint and illumination [104, 162, 183].

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another important approach for texture discrimination is the M arkov/Gibbs

random field (MRF/GRF) texture models [32, 63], Researchers [17, 18, 38-40, 64, 143]

have used M RF/GRF models for supervised classification and segmentation, where the

number of texture classes is known as a prior. In those approaches, texture classification

is performed by using either the M AP (M aximum a Posterior) estimate [64] or the M PM

(Maximum Posterior M arginal) estimate [18]. Supervised texture recognition techniques

have difficulties in classifying images with complex textures, for example SAR images,

because there might be unknown texture types that are not in any of the pre-leam ed

classes. To address the problem, several researchers have proposed M RF/GRF-based

techniques for the unsupervised texture classification or segmentation [94, 115, 128,

155],

Gray level cooccurrence matrices (GLCMs) have also been studied in texture

modeling for discrimination and characterization. Research studies [21, 34, 67, 75, 76,

112, 209] have shown that GLCMs can be used as a powerful tool for texture analysis,

classification, segmentation, and synthesis. The disadvantage of a GLCM is that it only

contains cooccurrence information between two pixels, and thus cannot capture the

spatial relationship between three or more pixels in the image. This problem can be

addressed by using symmetric gray level aura matrices (SGLAMs) [51, 137, 138], which

incorporate neighborhood systems to model the relationship between the target pixel and

its neighboring pixels, and thus are capable of capturing the relationship between any

number of pixels. In the recent work of Qin and Yang [152], SGLAMs combined with

wavelet transforms [166] have been successfully used in learning texture similarity for

texture image classification and retrieval.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The work in this chapter demonstrates that BGLAM s without combining with any

filters can perform better in classification than SGLAMs with wavelet transforms. For

real applications, it is demonstrated that BGLAMs significantly outperforms SGLAM s

and other existing approaches. In our approach, texture features are represented by

BGLAMs calculated directly from images, and texture models are learned using the S VM

technique [182], Since the texture feature vectors in our approach have a very high

dimension (e.g. 1536 used for experiments in our work), we adopt Joachim s’s fast

implementation of the SVM learning algorithm [89], The details of our approach are

described in the next section.

6.3 The Approach

The classification problem addressed in this chapter is the following: Given a

database of texture images of unknown categories, classify each image in the database

into one of the classes that are learned from training samples. Figure 6-3 gives an

overview of the BGLAM-based algorithm for texture classification. In the beginning, two

texture databases are given: one is the training database that is used for learning texture

classes; the other is the query database that needs to be classified and is used for

evaluation. The first step of the algorithm is the characterization of texture images in both

the training database and the query database using BGLAMs. The outputs of this step are

two databases of BGLAMs: one for the training images and one for the images to be

classified. Once this step is finished, the original texture databases are not needed any

more, and the calculated BGLAMs are taken as texture features and used in the rest of the

algorithm for learning and classification.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Training
database T

Charactering
images in T

database Q

1r

BGLAMs of
images in T

r

(Charactering
V. images in Q

BGLAM s of
images in Q

Classified
database Q

t L

H Classifying

BGLAM-based
SVM learning

i i

Models of
texture classes) ”

Figure 6-3: An overview of the BGLAM -based algorithm for texture classification.

In the second step, the models of texture classes are learned from the BGLAMs of

training texture samples using the SVM [182], The model of each texture class learned is

a hyperplane represented by a set of support vectors (SVs) in the texture feature space.

Once the models of texture classes are learned from the BGLAMs of training samples,

they are used to classify all images in the query database in the final step. The three steps

of the algorithm are shown as ovals in Figure 6-3.

6.3.1 Characterizing Texture Images

In our method, before learning the models of texture classes, texture images of

both the training database and the query database are characterized by BGLAMs.

Intuitively, the BGLAMs of an image characterize the cooccurrence probability

distributions of gray levels at all possible displacement configurations and thus estimate

the underlying stochastic process that is used to generate a given texture sample. In fact,

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Chapter 3, we have proved that that BGLAMs form a basis of GLAMs, which is a

superset of GLCMs, and that two images are identical if and only if their corresponding

BGLAMs are the same. Since a given texture sample can be accurately represented by

and faithfully reconstructed from its BGLAMs, we use BGLAMs to characterize a

texture sample. In our work, a compact set of BGLAM s defined over a 5 x 5 square

window is used to characterize texture images. Once the BGLAMs are calculated, the

original texture image is no longer needed and only the BGLAMs are used in the

subsequent processes of learning and classification.

A fast algorithm for computing the BGLAMs of a given texture image is given in

Section 4.3.1 in Chapter 4. An example of the BGLAMs calculated from a binary image

can be found in Figure 4-3. In our algorithm of leaning and classification, the BGLAMs

are normalized (see Definition 3-15) because texture images in the databases may have

different sizes. To achieve the best performance both in the quality of results and in

running time, we have also quantized [8] texture images from 256 gray levels to 8 gray

levels. In the experimental section, we discuss the performances of using different

number of gray levels.

6.3.2 BGLAM-Based SVM Learning

The BGLAMs of texture images in the training database are treated as texture

features for learning the models of texture classes. M ore precisely, for a given training

sample, its BGLAM s are combined together to form a vector in the texture feature space,

and the vector is called a feature vector of the training sample. For each texture sample X

in training database T, let {B i \0 < i < m - l } be its m BGLAMs and x be its feature

vector, then x is given as:

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x = (B0, B l , . . . ,Bm̂) . (6.1)

If each BGLAM in { B j | 0 < i < m -1} has b entries, then the dimension of x is n = m * b .

Figure 6-4 gives an example of a feature vector x computed from four normalized

BGLAMs.

" 6 3 " " 6 6 " " 3 8 " ‘ 6 6 ‘

1 6 1 6 B = 2 0 2 0 B = 1 6 1 6 B , = 2 0 2 0
3 4 " t 4 4 2 3 2 3 3 5

16 16 _ 2 0 2 0 . . 1 6 16_ . 2 0 2 0 _

3 3 1 ^

1 6 4 4 3 8 3 2 6 6 3 f

1 6 1 6 1 6 1 6 2 0 2 0 2 0 2 0 1 6 1 6 1 6 1 6 2 0 2 0 2 0 2 0 y

Figure 6-4: An example of a feature vector x com puted from four BGLAMs B 0, B l , B 2,

and Z?3. The dimension of vector a; is 4 x 4 = 16.

The learning is performed with the feature vectors of training samples. Suppose

we have a set of training vectors of two different classes, (x,., y,.), 0 < i < L - l , where

X,. g 91" is a feature vector calculated from a texture image as described before, and

y(. g { - 1 ,+ 1 } is the class label for x ; , where label + 1 means a positive example (i.e. a

pattern of a target class) and -1 means a negative example (i.e. a pattern not in the target

class). W e assume that during the learning process, all training texture samples o f a

desired category (e.g. all images that contain a specific texture type) are grouped into one

class and labeled as positive examples, while samples not in the desired category (e.g.

images that do not contain the target texture type) are considered as negative examples.

We also assume that an image database consists of disjoint classes. Namely, each texture

image in the database has and only has one class label.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-5: An example of the boundary of a sample class C0 in 912. The boundary of

C0 , which separates C0 from the other three classes C j, C2 , and C3, is shown as a

closed curve around C0 .

The goal of learning is to find the optimal boundary that separates the positive and

negative examples. The boundary is a hyperplane in feature space 91". Figure 6-5 gives

an example of the boundary of a sample class C0 , which separates the class from the

other three classes in space 912.

In fact, finding the boundary leads to the following quadratic optimization

problem [182]:

L - l ^ L_1

I > , + t Z y> y ja ia j K (x i ’ x j)
i=0 ^ 1,7=0

a - arg mm
a

L -l

subject to : or. y, = 0, V / : 0 < or, < C

, (6 .2)

;=o

where the vector <2 = (<̂ ,)0<,<l-i is the parameter to be estimated, K (x , y) is the kernel

function, and C is a constant. There are a number of choices for the kernel function. For

the discussion on how to choose an appropriate kernel function for different applications,

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the reader is referred to V apnik’s book on statistical learning [182]. In our work, we use

the RBF (Radial Basis Function) because it is best suited for classification as discussed in

1 „ ll2
Joachim s’s work [88, 89]. The RBF kernel is given as K (x , y) = exp(|| x - y ||) ,

2(7

where a is a constant given by the user. In all the experimental results shown in this

chapter, we set a = 0.02.

In Eq. 6.2, if all the training samples are used for optimization, then it is very

inefficient for large training sets. It has been shown [182] that a set of SVs (support

vectors), which is a small subset of the training samples, can be used in Eq. 6.2 for

optimization. Once the optimal param eter a * = (« *)0<,<m-i is estim ated in Eq. 6.2 using

m SVs, the optimal boundary B is given by:

m —1

Y , a * y iK (x * ,x) + b* = 0 , (6.3)
i= 0

where {x* 10 < i < m -1} is a set of SVs, b* is a constant. The parameters a *, x *, and

b* are all learned from the SVM. In our work, we have used a fast implementation of the

SVM, called SVMhght, developed by Joachims [88, 89] to learn parameters a * , x *, and

b*, i - 0 , l , . . . ,m - l .

The model of a specific texture class is represented by its boundary B, whose

equation is given as in Eq. 6.3. For an image database o f multiple disjoint classes, the

above SVM learning algorithm is applied to each class to learn its optimal boundary.

Once the boundaries of all classes are learned from the training samples, they will be

used to classify each texture image in the query database.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.3 Classifying Texture Images

For a given texture image Z in query database Q, its feature vector z calculated by

Eq. 6.1 is used to classify it into one of the classes that are learned from the training

database T using the SVM as discussed in the previous section. Suppose there are k pre-

leamed classes {Cy |0 < j < k - 1} with optimal boundaries {Bj |0 < j < k - 1} defined

by Eq. 6.3, then the signed distance of feature vector z to the boundary B- is given by:

ro -1 j m - 1

dj = d (z , B j) = [Y j a jiy jiK (x*i ,z) + b *] / 1| V i II > J = 0 ,1 ,- ,* - 1 .(6.4)
(=0 / i=0

Since a one-against-all strategy is used in learning, for class C . with boundary B ., if the

signed distance d . = d (z , B j) calculated from Eq.6.4 is positive, then texture image

Z e C .; otherwise, it belongs to one of the other classes. For multiple classes, the final

class label I of texture image Z is determined by the boundary of the class to which z has

the largest distance, i.e.

Z = argm ax{d t \ 0 < j < k - l } . (6.5)
j

If a class contains subclasses, the SVM algorithm can be further applied to images in that

class to learn subboundaries.

6.3.4 Algorithm

The pseudocode of the BGLAM-based algorithm for texture classification by

learning is given in Figure 6-6. The inputs are two databases of texture images: one is the

training database, where each image has an assigned class label; the other is the query

database, where texture images are to be classified. The output of the algorithm is a

classified database in which each image has a class label associated with it.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BGLAM-Based Texture Classification

Input:
T <— the training texture database.
Q <— the query texture database to be classified.

Output:
Q <— the classified texture database with each image having an assigned class label.

Begin
1 Calculate BGLAM s of each image in both T and Q, and store them.
2 Learn models of texture classes with BGLAMs of images in T using SVM.

2.1 For each class C j, learn its optimal boundary B j using the SVM, 0<j<k-1.
3 Classify texture images in Q, i.e. for each image Z in Q

3.1 z <— the feature vector of Z calculated by Eq. 6.1.
3.2 For each class Cj, 0<j<k-l

3.2.1 Calculate the signed distance dj using Eq. 6.4.
3.3 I <— maxarg{do, dj, ... , dk-i}
3.4 Assign the class label I to image Z.

End of 3
4 Return Q

End of begin

Figure 6-6: The pseudo code of the BGLAM-based algorithm for texture classification.

There are three major steps in the algorithm. The first step is to calculate the

BGLAMs of texture images in both the training database T and the query database Q.

The BGLAMs of images are used as features to characterize texture images. Once the

BGLAMs are calculated, they are used in the subsequent learning and classification. In

the second step, the optimal boundary of each class is learned with the BGLAM s of

training samples from that class using the SVM based on the one-against-all strategy as

described before. The classification of each texture image in the query database Q is done

in the third step.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Experiments

In this section, we present the experimental results to evaluate our BGLAM -based

approach for texture classification by learning. W e compare our approach with existing

approaches. The Brodatz database, the Vistex database, and the ASI (All Sky Imager)

database are used for testing. Since Gabor filters are used in our experiments for

extracting texture features for existing approaches, they are briefly described first. The

experimental results for each texture database are then followed.

6.4.1 Gabor Filters

Gabor filters [87, 116] are derived from a two dimensional Gabor function

g(x, y) and its Fourier transform G (u ,v) , whose definitions are given below:

where W is constant. The standard deviations a x and a y of the Gaussian function in Eq.

6.6 are usually called the bandwidth parameters because they determine the bandwidth of

the Gabor function g(x, y) .

Gabor filters are obtained by appropriate scales and rotations of g(x, y) using the

generating function:

(6.6)

(6.7)

o.
2 n a

1

x

(6 .8)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

,(x,y) = a~mG(x1,;y1)

n n . n n ̂
= a x co s------ by sin ----

{ T T J (6.9)

y, = a
. n n n n

- x sm b ycos
T T

where a > 1, m = 0 , 1 , vS- 1 , n = 0,1,...,T - 1 , S is the total number of scales, and T is

the total number of orientations.

Let L and U be the lower and upper center frequencies of interest. Given the total

number of scales S and the total number of orientations T, by using a method proposed by

Manjunath and M a [116], the optimal values for the filter parameters a u and a v are

computed as follows:

a = (l /U)1/<s_1) and a„ =
{ a - l) U

“ (a + l)-s/21n 2

cr = tan f r „ (2 In 2) cr 1
U - 21n u 2 In 2 , “

127V [u) U

- 1/2 (6.10)

Once the values of a u and crv are obtained using Eq. 6.10, the bandwidth parameters a x

and o y can be computed using Eq. 6.8. For good performance, Manjunath & M a [116]

and Clausi & Jem igan [22] have suggested that L = 0.05, U - 0 .5 , 5 = 4 , T = 6 , and

W = U . In the experiments described in this chapter, we use L = 0.05, U = 0.5 and

W - U , and show results for different values of S and T. For the general guidance and

detailed discussions on how to choose optimal values for S and T, the interested reader is

referred to Clausi and Jem igan’s work [22],

Given an image 7, the Gabor filter response of a given m and n at pixel location

(x, y) , denoted by f mn (x, y) , is given by:

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fmn y) = j 7 “ V ^ d t] , (6.11)

where m =0,1,...,S - 1 , n = 0,1,...,T - 1 , S is the total number o f scales, T is the total

number of orientations.

^ i . ' i
V -T -V *>

1)1 I

i i B i a i a i ^ m a i a i a i a i

i i i i a i a i i t t i a i a i a l a l
u « (» i B i i i » i B l * i i i a i
i i a i a i B i l . i a i a i a i a i a i
■ laiaiaMiaiaiailfx
t i t i a i i i a i a i a i a i a i a i
■ ■ ■ • i i a i h i t i i i a i i i a i

1)20

»*, . ▼«

v n v -

i ji / '**%* i +*. • . t f t i J
D37 D65 D66 D74

Ig frcU fflr
m S M M wJ 'V S aS i J* ! s . r , r 'JQ) » > » *

iJ

D76 D80 D83 D95 D98

D101 D104 D109 D110 D i l l

Figure 6-7: The 20 images from the Brodatz database used for experiments. The names of

texture images (e.g. D4) are the original names from the Brodatz Album [14].

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.2 Brodatz Textures

The Brodatz texture database contains 112 texture images and each texture is a

256x256 image. Among the 112 images, we select 20 images that are homogenous

textures. Figure 6-7 shows the 20 Brodatz texture images. Each of the 20 texture images

is considered as a texture class. Table 6-1 gives the class labels assigned to the 20 images

shown in Figure 6-7. Those labels are used as references to the images in the rest of this

subsection. For testing, each texture im age is divided into 16 disjoint subsamples of size

64x64. Among the 16 subimages, eight images are randomly selected and used for

training; the remaining 8 subimages are for classification. Therefore, we have a database

of 160 images for learning, and a database of 160 images for testing in classification. At

the end of this subsection, we also present the classification results by varying the

number of learning samples (from 1 to 8) for each class.

Table 6-1: Class labels of the 20 Brodatz images that are shown in Figure 6-7.

Class Name in the Brodatz Database Class Name in the Brodatz Database
1 D4 11 D76
2 D6 12 D80
3 D ll 13 D83
4 D20 14 D95
5 D23 15 D98
6 D37 16 D101
7 D65 17 D104
8 D66 18 D109
9 D74 19 D110
10 D75 20 D i l l

The reason for selecting homogenous texture images from the database is that in

the experiments all subsamples of an image are treated as a single class. If an image

contains inhomogeneous textures, then its disjoint subsamples may contain different

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

textures, thus should belong to different classes. An example is given in Figure 6-8 to

illustrate the problem.

D7 Subsamples

Figure 6-8: An example of a Brodatz image (D72) with inhomogeneous textures and its

disjoint subsamples. The middle subsample contains textures different from those in other

subimages. However, it has the same class label as those used for other subsamples. For

example, if the middle subsample were used for training, then a wrong model would be

learned.

For each texture sample X in the test database, it has a true label, denoted by

/0(X) ; it also has a label assigned by a classification algorithm, denoted by I f X) . If

label I f X) matches label l0(X) , which indicates that image X is correctly classified by

the algorithm, then we record a success', otherwise we record a failure. For each class C ,,

the success rate Rt o f a classification algorithm is given by:

Thetotal number o f sucesses over test images in C .
, i — 0,1,..., N 1 ̂ (o. 12)

The total number o f test images in C,

where N is the total number of classes. The average success rate R over the entire test

database is given by:

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ The total number o f sucesses over images in the test database
The total number o f images in the test database

For example, if there are 700 images correctly classified over a test database of 1000

images, then the average success rate of classification is 700/1000 = 70% .

W e compare the BGLAM algorithm with Guo et al.’s algorithm [72] and the

SGLAM method [152]. W e have implemented both algorithms, which require filters for

extracting texture features. For a fair comparison, the same filters (e.g. Gabor filters [87,

116] as that used in Guo et al.’s original paper [72]) are used to extract texture features

for both Guo et al.’s m ethod and the SGLAM method. Note that our new method does

not need filters.

For Guo et al.’s approach [72], Gabor filters of 4 scales and 6 orientations, i.e. 24

filters in total, are used. To extract texture features of an image, Guo et al.’s algorithm

first applies the Gabor filters to the image to obtain 24 filtered images. Then, it calculates

the mean and standard deviation o f pixels’ gray levels of each filtered image. Finally, it

combines the 24 means and standard deviations to form a feature vector of the image.

The dimension of each feature vector for Guo et al.’s algorithm is 2 x 2 4 = 48 . In the

experiments for Guo et al’s algorithm, an image is not quantized to reduce the total

number gray level in the image because otherwise the performance of the algorithm will

be decreased [22].

For the SGLAM approach [152], Gabor filters of 4 scales and 6 orientations, i.e.

24 filters in total, are used to extract texture features. Each image is quantized evenly

from 256 gray levels into 8 gray-level bins. A SGLAM is calculated for each filtered

image using a 5 x 5 window. Since there are 8 gray levels, the size of each SGLAM is

8 x 8 . We calculate SGLAMs for all the 24 filtered images and combine the 24 SGLAMs

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

together (see Eq. 6.1) to form the feature vector. Thus, the dimension o f each feature

vector for the SGLAM algorithm is 2 4 x 8 x 8 = 1536.

For our approach, we calculate BGLAMs directly from images using a 5x5

neighborhood. The calculated BGLAM s are then combined to form an im age’s feature

vector. Since there are 24 BGLAMs calculated for each image, and each BGLAM has

8 x 8 entities, the dimension o f each feature vector the BGLAM algorithm is

2 4 x 8 x 8 = 1536.

Table 6-2: The comparison results o f our algorithm with Guo et a l.’s algorithm and the

SGLAM method on the Brodatz textures.

Average Success Rate of Classification (R)
Guo et al. 90.0%
SGLAM 91.9%
BGLAM 100%

O Our Algorithm X SGLAM 1 Guo et al.

8 100-&&&<&£><g><&OO(!><&&®OO®®&<&(!)
,g

S 90 X X 1 X X*4-1

S 80-
2 l I x I I I I
tst8 70-O
M x 1oO i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r-*1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Class label
Figure 6-9: The comparison results o f our algorithm with SGLAM and Guo et al.’s

algorithm. The class labels are shown along the horizontal axis, and the success rates (see

Eq. 6.12) o f the three algorithms for the 32 classes are shown along the vertical axis.

Table 6-2 gives the comparison results o f the three algorithms in terms o f the

average success rate over the 20 Brodatz textures. Table 6-2 shows that our algorithm

166

i i x I I I I

X i
T1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Class label
comparison results o f our algorithm with SGLAM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outperforms both SGLAM and Guo et al.’s algorithm. Figure 6-9 gives the comparison

results of the three algorithms in terms of the success rate for each of the 20 classes. In

Figure 6-9, for each class, the success rates of our algorithm, SGLAM , and Guo et al.’s

algorithm are marked by a circle (o), a cross (x) , and a short vertical line (I),

respectively. Table 6-2 and Figure 6-9 have shown that our algorithm outperforms both

SGLAM and Guo et al.’s algorithm. In fact, our algorithm has correctly classified all of

the 160 images in the test database, while SGLAM and Guo et al.’s algorithm have

misclassified, respectively, 8.1% and 10% of the 160 images.

One advantage of our approach is that our algorithm has intuitive user-specified

parameters, while both SGLAM and Guo et al.’s algorithm have nonintuitive ones. Our

algorithm has two parameters that can be tuned by the users: the number of BGLAMs

and the size of BGLAMs. The number of BGLAM s is determined by the size of the

neighborhood system. For an m x m neighborhood system, the total number of BGLAMs

is m 2 - 1 (see Section 4.3.1). In general, the larger the neighborhood size, the better the

results in classification. The computation time is, however, longer for a larger

neighborhood system. In the experiments, we found that when m = 5 , 7, or 9, our

algorithm has good performance in both classification and running time. Figure 6-10

gives the classification performance of our algorithm in terms of the average success rate

on the 20 texture images from the Brodatz database with different values of m. Figure

6-11 shows the corresponding running times. The results of Figure 6-10 and Figure 6-11

are summarized in Table 6-3 for the ease of comparison. To achieve the best performance

in classification’s accuracy, Table 6-3 suggests that the value of m must be at least 5.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 3 5 7 9 11 13 15
Neighborhood size (m)

Figure 6-10: The classification results of our algorithm on the Brodatz database with

m = 1, 3 , 5 , 7 , 9 , 11, 13, 15, respectively. If m = 1, then the BGLAMs of an image are

calculated with the four-nearest neighbors; otherwise, they are calculated with an m x m

square window. The results are obtained with BGLAMs of size 8 x 8 .

^ 1800-
Vi| 1550-
| 1300-
'I' 1050 -
■-* 800-
| 550-
! 300 -

7 9 1 1 13 153 5
Neighborhood size (m)

Figure 6-11: The running time of our algorithm on the Brodatz textures with

neighborhood size m = 1, 3 , 5 , 7 , 9 , 11, 13, 15, respectively. The results of this figure

are obtained with BGLAMs of size 8 x 8 .

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-3: The average success rates of our algorithm on the Brodatz texture with

neighborhood systems of different sizes and the corresponding running times. The results

are obtained with BGLAM s of size 8 x 8 .

Neighborhood size (m) Average success rate (R) Running time (seconds)
1 96.1 61
3 98.3 75
5 100 185
7 100 302
9 100 370
11 100 611
13 100 1057
15 100 1761

1 0 0 -

bD

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Size o f BGLAMs

Figure 6-12: The classification results of our algorithm in terms of average success rate

on the Brodatz images with BGLAMs of different sizes. A number 8 along the jc-axis

means the size of BGLAMs is 8 x 8 . The results are obtained with a 5 x 5 neighborhood.

The second parameter of our algorithm is the size of BGLAMs, which is

determined by the total number of gray levels in images. Similar to the first parameter

discussed before, the larger the parameter, the better the results in classification (see

Figure 6-12), but the more expensive the computation cost (see Figure 6-13). In the

experiments, we found that when the size of BGLAMs is 8 x 8 to 16x16, our algorithm

has good performance in both classification and running time. Table 6-4 shows the

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average success rates of our algorithm on the Brodatz textures with BGLAMs of different

sizes and the corresponding running times. Table 6-4 indicates that when the size of

BGLAMs is greater than 8, our algorithm reaches the optimal performance in

classification’s accuracy with an average success rate of 100%.

« 700-
g 600-
“ 500-Vi<l> 400 -
I 300 -
a 2 0 0 -

a 100 -

8 10 12 14 162 4 6
Size o f BGLAMs

Figure 6-13: The running time of our algorithm on the Brodatz textures with BGLAMs of

different sizes. The results are obtained with a 5 x 5 neighborhood.

Table 6-4: The average success rates of our algorithm on the Brodatz texture with

BGLAMs of different sizes and the corresponding running times.

Size of BGLAMs Average success rate (R) Running time (seconds)
2 89.3 31
4 93.5 40
6 95.7 69
8 100 134
10 100 255
12 100 420
14 100 551
16 100 669

Both SGLAM and Guo et al.’s algorithm use Gabor filters to calculate texture

features. Before applying Gabor filters, two parameters must be specified by the users:

the number of scales and the number of orientations (for the details, see Section 6.4.1).

Figure 6-14 and Figure 6-15 show the classification results of both SGLAM and Guo et

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al.’s algorithm in terms o f the average success rate on the Brodatz textures with different

number of scales and different num ber of orientations, respectively. From the results, we

cannot conclude that the larger the param eter values, the better the results.

100 -

95 -

90 -

85 -

— Guo et al.SGLAM

2 3 4 5 6 7

Humber of scales

Figure 6-14: The classification results of SGLAM and Guo et al.’s algorithm in terms of

average success rate on the Brodatz textures with different number of scales. For all

scales, the number of orientations used is six.

1 0 0 -

<D
t 90-
Ui
Ui(D
8 80-
5iDbH
6
> 60^

70 -
■«- SGLAM Guo et al.

2 3 4 5 6 7 8
Number of orientations

Figure 6-15: The classification results of SGLAMs and Guo et al.’s algorithm on the

Brodatz textures with different number of orientations. The results are obtained with four

image scales.

In the above experiments, the number of training samples for each class is equal

to the number of testing samples. W hen the number of training samples is decreased, the

classification performance of our algorithm decreases only slightly; while the

performance of Guo et al.’s algorithm and of SGLAM decreases significantly. Figure

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6-16 shows the comparison results of our algorithm with Guo et al.’s algorithm and

SGLAM in terms of the average success rate when the number of training subsamples for

each class decreases from 8 to 1 while the num ber of testing subsamples increases from 8

to 15 (Note that the total number of samples of each class in training and testing is 16).

W hen only one training subsample is used, our method has an average success rate of

above 90%; while Guo et al.’s algorithm and the SGLAM algorithm have low average

success rates of about 13% and 44%, respectively.

100
90

t 80
g 70
§ 60
3 50■D
S? 40
g 30
< 20

10
0

Figure 6-16: The comparison results of our algorithm with Guo et al.’s algorithm and

SGLAM with the number of training samples for each class decreased from 8 to 1 while

the number of testing subsamples is increased from 8 to 15.

With respect to running time, our algorithm is faster than SGLAM, but slower

than Guo et al.’s algorithm. In the experiments, our algorithm uses 24 BGLAMs and each

BGLAM ’s size is 8 x 8 ; SGLAM algorithm uses Gabor filters of with 4 scales and 6

orientations, and each SGLAM ’s size is 8 x 8 ; Guo et al.’s algorithm use Gabor filters of

with 6 scales and 4 orientations. For the 20 Brodatz images as shown in Figure 6-7 (160

learning images and 160 testing images of size 64x64) , the running times for our new

172

1----- ----- ■----- ----- ■.......p_—g-----------■-------- —■

□

D D
■ - Our Algorithm
D ■ SGLAM

-+* ■ Guo et al. ' t-

i-----------------1--------------- 1--------------- 1--------------- 1---------------- 1--------------- 1-------------- r
8 7 6 5 4 3 2 1

Number of samples for training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm, SGLAM, and Guo et al.’s algorithm, are 134, 315, and 39 seconds,

respectively.

Table 6-5: Classes in the Vistex texture database. The name of an image, which indicates

the type of textures the image contains, is the original name from the MIT Vistex [185],

Class Name in the Vistex Database Class Name in the Vistex Database

1 Bark 11 Misc

2 Brick 12 Paintings

3 Buildings 13 Sand

4 Clouds 14 Stone

5 Fabric 15 Terrain

6 Flowers 16 Tile

7 Food 17 Water

8 Grass 18 WheresWaldo

9 Leaves 19 Wood

10 Metal

buildings0005 paintingsOOOl

Figure 6-17: Examples of Vistex images that contain inhomogeneous textures.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i j t i i i i i i i i i VP**
I l l l l i l l l l i g *

i l l l l i n i n i
Bark0009 BrickOOOl Buildings0009 CloudsOOOO FabricOOOl

FlowersOOOO FoodOOOO Grass0009 Leaves0003 Metal0004

MiscOOOl PaintingsOOOO Sand0005 Stone0002 Terrain0009

Tile0009 Water0002 WhresWaldoOOOl WoodOOOO

Figure 6-18: The 19 Vistex images used for the experiments. The names of images (e.g.

Bark0009) are the original names from the MIT Vistex [185],

6.4.2 Vistex Textures

The Vistex texture database contains 167 texture images, and each texture is a

256x256 image. They are originally grouped into 19 meaningful classes as shown in

Table 6-5. Vistex images that contain inhomogeneous textures (see Figure 6-17) are not

used in the experiments for the same reason as discussed in the previous subsection.

Therefore, only Vistex images with homogeneous textures are used for experiments.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each of the 19 texture classes (Table 6-5) has different number of samples; for example,

there are 11 Building images but only two Cloud images. To avoid bias in the num ber of

samples for each class in learning, we use one Vistex image for each class. Figure 6-18

shows all the 19 Vistex images with their original names from the M IT Vistex [185].

Following a similar experimental setup to the one used for the Brodatz textures as

described in the previous subsection, we obtain 16 disjoint subimages for each Vistex

image. Eight subimages are randomly selected and used for training; the remaining 8

subimages are used for classification. Thus, we have a learning database of 152 images,

and a testing database of 152 images.

Table 6-6: The comparison results o f our algorithm with Guo et al.’s and SGLAM on

Vistex textures.

Average Success Rate of Classification (R)
Guo et al. 82.2%
SGLAM 84.2%
BGLAM 97.4%

100

I 90-|
1 «H
OS« 70
<d 60
te

20

O Our Algorithm X SGLAM 1 Guo et al.

O & <t> 6 ® <& & & & & 6 O & ® (!)

X

O O 1 X

X X X

X

I

X

l I

I X

I

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19
Class label

Figure 6-19: The comparison results of our algorithm with SGLAM and Guo et al.’s

algorithm for each class in the Vistex database.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We compare our algorithm with Guo et al.’s algorithm [72] and SGLAM [152],

Table 6-6 gives the comparison results of the three algorithms in terms of the average

success rate over the 19 Vistex textures. Figure 6-19 gives the comparison results o f the

three algorithms for each class. Table 6-6 and Figure 6-19 show that our algorithm

outperforms both SGLAM and Guo et al.’s algorithm with an average successful rate of

97% vs 84% and 82% of SGLAM and Guo et al.’s, respectively.

CloudsOOOO Two misclassified samples Water0002
of CloudsOOOO into Water0002

Figure 6-20: Examples of misclassified subsamples of CloudsOOOO.

Some discussions on the results in Figure 6-19 are given as follows. Except for

some subsamples of CloudsOOOO (class 4) and TerrainsOOOO (class 15), our m ethod have

correctly classified all subsamples in other classes. For failed cases, our m ethod has

misclassified two subsamples of CloudsOOOO into W ater0002, and two subsamples of

TerrainOOOO into WheresWaldoOOOl. The misclassification is caused by the similarity

between subsamples of tw o different classes. For example, as shown in Figure 6-20, the

two misclassified subsamples of CloudsOOOO look similar to parts of W ater0002. Since

the classification is done in feature space, the closer the feature vectors of the two

samples, the more likely they will be classified into the same class. Our m ethod uses

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BGLAMs as feature vectors (see Eq. 6.1). It has been shown in Chapter 4 that when the

BGLAMs of two texture samples are close enough, the two samples look similar.

Therefore, our BGLAM -based classification method tends to classify similar texture

samples into the same class.

However, for failed cases, both Guo et al.’s algorithm and the SGLAM method

have classified a Vistex image into a class that has very dissimilar textures. For example,

Guo et al’s algorithm has misclassified five subsamples of CloudsOOO into four classes of

different textures, namely Buildings0009, FlowersOOOO, PaintingsOOOO, and Tile0009 as

shown in Figure 6-18, where the two subsamples in Figure 6-20 are classified as

FlowersOOOO. The SGLAM algorithm has misclassified four subsamples of CloudsOOO

into four different classes: Bark0009, FoodOOOO, Grass0009, and Metal0004, where the

two subsamples in Figure 6-20 are classified as FoodOOOO and Grass0009, respectively.

Since the means and standard deviations of image subbands are inadequate to

differentiate textures [143, 144], Guo et al’s algorithm may classify a texture sample into

a class that has completely different textures. As discussed in Chapter 4, textures cannot

be effectively differentiated by SGLAMs either, thus the SGLAM method suffers the

same problem of classifying an image sample into a class that has dissimilar textures.

W ith respect to running time, similar to the results for Brodatz textures, our

algorithm is faster than SGLAM, but slower than Guo et al.’s algorithm. In the

experiments, we have used 24 BGLAMs of size 8 x 8 for our algorithm, Gabor filters of 4

scales and 6 orientations for both SGLAM algorithm and Guo et al.’s algorithm. For the

Vistex textures of 152 learning images and 152 testing images, the running times for our

new algorithm, SGLAM, and Guo et al.’s, are 119, 279, and 36 seconds, respectively.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.3 ASI Textures

ASI stands for All-Sky Imager. In recent years, the digital ASI has become an

important tool in auroral and magnetospheric physics [174], Images captured from the

ASI play very important roles in studying the environment of the near-Earth space where

auroral phenomena occur. Typical exam ples of auroral phenomena are the northern (or

southern) lights, which are caused by the solar-terrestrial interaction. Auroral phenomena

usually modify atmospheric properties, e.g. those affecting radio wave propagation. The

study of auroras is of great scientific and practical interests. For example, observations of

auroras and their associated effects on radio wave propagation provide a means of testing

scientific models of the precipitation mechanisms, remote sensing, magnetospheric

dynamics, and better understanding the solar-terrestrial interaction [174].

Auroral phenomena are observed and captured through special ground-based

network cameras called all-sky imagers [174], There are tens of millions of ASI images

acquired annually around the world. M anual analysis of the ASI images by subjects (or

researchers) is tedious and impractical. Full utilization of these powerful ASI data sets

demands automated analysis tools. However, one o f the challenges in developing such

tools is that automatically classifying ASI images according to auroral structures is

difficult [174], In the rest of this subsection, we present classification results of our

BGLAMs on ASI images and compare with existing approaches.

The ASI images used for learning and testing are a set of 3400 images (size

128x128), which are randomly taken from a database of 222000 auroral ASI images at

the CANOPUS (Canadian Auroral N etwork for the Open Program Unified Study) [44,

159]. The 3400 texture images are grouped manually by researchers at the Institute for

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Space Research at the University of Calgary [84] into three classes, namely Arcs, Patches

and Omega-bands as shown in Table 6-7 and Figure 6-21. The number of images for Arc,

Patch, and Omega-band is 1200, 1200, and 1000, respectively. For each class, one-third

of the images are randomly selected and used for learning and the rest of them are used

for testing. For example, among the 1200 Arc images, 400 images are randomly selected

and used for learning and the rest of 800 images are used for testing.

Table 6-7: Classes in the 3400 ASI auroral texture images. Example images of each class

are given in Figure 6-21. The number in the bracket beside each class name gives the

total number of images in that class among the 3400 images.

Class Name (number of images) Description

1 Arc (1200) East-west or north-south aligned arc-like stmctures.

They usually occur at nights.

2 Patch (1200) Irregular blob-like structures. They usually occur in

the late morning to dawn.

3 Omega-band (1000) Structures that usually occur either following or

during substorm activity in the midnight.

The ASI data is collected and given to us by Dr. Eric Donovan and Dr. Mikko

Syrjasuo at the Institute for Space Research at the University of Calgary. The data is in

fact a time series. However, to avoid temporal bias, the images in the database are

scrambled; thus, it is very difficult to classify images in the database manually without

deep understanding in auroral and magnetospheric physics. The testing has also been

done in a doubly-blinded manner.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-21: Exam ple images of the three classes in ASI database. Images in the 1st, 2nd,

and 3rd row contain arcs, patches, and omega-bands, respectively. In the 1st row, the first

two images contain east-west aligned arc-like structures, and the last two contain north-

south aligned arc-like structures.

The most recent work on classifying ASI images, which is also the only previous

work to our best knowledge, was done by Syrjasuo and Donovan [175]. In their

approach, simple statistics such as means and histograms from image pyramids are used

to represent texture images in the feature space and the kNN (k-Nearest-Neighbors)

classifier is used to classify a given ASI image based on the training images. Table 6-8

gives the comparison results of our approach with theirs. For ease of reference, the results

of Guo et al.’s algorithm [72] and SGLAM [152] are also given in the table. For an

auroral class, the total number of test images in that class is shown in the bracket beside

the class name. For each class, both the total number of images correctly classified by an

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm and the associated success rate (see Eq. 6.12) are shown in the table. For

example, Table 6-8 shows that there are a total o f 800 arc-class images for testing, and

that BGLAM correctly classifies 795 out o f 800, w ith a success rate o f 99.4%

(795 /800 = 99.4%). Table 6-8 shows that our algorithm has the best performance.

Table 6-8: The comparison results o f our approach with Syrjasuo and D onovan’s, Guo et

al.’s algorithm, and SGLAM on ASI images.

A rcs(800) Patchy (800) Omega (667) Average Success Rate

BGLAM 795 (99.4%) 777 (97.1%) 627 (94.0%) 97.0%

Syr. & Don. 792 (99.0%) 712 (89.0%) 80 (12.0%) 69.9%

Guo et al. 784 (98.0%) 553 (69.1%) 79(11.8%) 52.5%

SGLAM 786 (98.3%) 636 (79.5%) 309 (46.3%) 76.4%

As demonstrated in previous chapters, a texture image can be uniquely

represented by and faithfully reconstructed from BGLAM s, but not by SGLAMs.

Therefore, BGLAMs are able to differentiate Omega images from other classes; while

SGLAMs are not. Portilla and Simoncelli [143, 144] have shown that simple statistics

such as means, variances, histograms from image pyramids are inadequate for

differentiating textures. Thus, both Guo et a l’s method and Syrjasuo and D onovan’s

method have difficulty in separating Omega images from images o f other types.

6.5 Summary

This chapter describes texture image classification using BGLAMs. Given an

unseen texture image, our approach classifies it into one o f the pre-leamed classes. There

are two stages in our algorithm: a learning stage and a classification stage. In the first

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stage, models of texture classes are learned from the BGLAMs of training examples

using the SVM, and in the second stage, a given texture image is classified into one of the

pre-leamed classes, to which the image has the largest signed distance. W e compare our

approach experimentally with existing approaches by performing texture classification

over the Brodatz textures, the Vistex textures, and the ASI textures. The experimental

results show that our approach has better performance than existing approaches.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

7.1 Summary

Texture modeling plays important roles in com puter graphics, vision and image

processing. Although many techniques have been developed for the study of texture

analysis and synthesis, the mathematical definition of texture is still unclear. Due to the

vague definition of texture, each technique has its own advantages and disadvantages,

and thus fails to model certain types of textures. Challenging problems in texture

modeling are as follows:

l . I n computer vision, it is difficult to define textures with mathematical precision.

Given a texture sample, what can be used to represent the sample with the

necessary and sufficient information?

2. In exiting texture modeling approaches, a good analysis technique may not work

well for synthesis; while a good synthesis technique that generates impressive

results may have done the analysis poorly or may not be applicable to analysis at

all. Therefore, there is a lack of good unified frameworks that work well for both

analysis and synthesis.

3 .It is difficult to perform 3D texturing. In general, existing 3D-texture techniques

are complex to understand and work for only a lim ited range of textures.

4. It is a challenging problem to evaluate texture-synthesis results quantitatively.

Visual inspection is the only way for previous approaches to evaluate their

synthesis results.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis presents a new unified mathematical framework for modeling textures

using BGLAMs that has successfully addressed the above issues. Our new framework for

texture analysis and synthesis will provide important understanding in texture modeling

in both computer vision and com puter graphics. W e prove that BGLAMs forms a basis of

GLAMs, and that two images are identical if and only if their corresponding BGLAMs

are the same. W e also proved that the number of different BGLAM s of a given image is

at most equal to the number of pixels in the image. BGLAMs should not be confused

with GLCMs. In fact, we have proved that a GLCM can be represented as a sum of two

BGLAMs, and have shown that BGLAM s significantly outperforms GLCM s in texture

modeling.

Based on the theory, we have developed new techniques for 2D and 3D texture

synthesis, respectively, and a new m ethod for classifying texture images using BGLAMs.

For 2D texture synthesis, given a sample, our method first characterizes it by a set of

BGLAMs. Then, by sampling from the BGLAM s only, our m ethod generates an output

texture similar to the input by iteratively modifying the gray level of each pixel in the

output image until the distance between the corresponding BGLAM s of the output and

those of the input is small enough or until there is no further change in pixel’s gray level

values in the output. The experimental results show that the new 2D texture-synthesis

technique can successfully synthesize a wide range of textures and is comparable to the

existing techniques. In addition, based on the BGLAM-based distance measure, our

technique is able to automatically evaluate the results and determine whether the output is

a successful synthesis of the input. To our best knowledge, none of the previous

techniques has the ability to evaluate their synthesis results.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For 3D texture synthesis, we have developed a new technique, called aura 3D

textures, for synthesizing solid textures from input examples using BGLAMs. Our

method is fully automatic and requires no user interaction in the process. Given one or

more input textures, a solid texture is generated by sampling the BGLAMs of the input(s)

constrained in multiple view directions. Once the solid texture is generated, any given

object can be textured by the solid texture using a shader. The evaluation results have

shown that our algorithm for solid textures can generate faithful results of both stochastic

and structural textures with an average successful rate of 76.4%. As well, the new method

outperforms Wei & Levoy’s method [188] and is comparable to that proposed by

Jagnow, Dorsey, and Rushmeier [86].

In addition to 2D and 3D texture synthesis, we demonstrate that BGLAMS can be

used in classifying texture image databases by learning. In the learning stage, models of

texture classes (i.e. the optimal boundaries of classes in the feature space) are learned

from the BGLAMs of training examples using a SVM algorithm. Given an unknown

texture image, our approach classifies it into one of the pre-determined texture classes, to

which the image has the largest signed distance. W e compare our approach

experimentally with existing approaches by performing texture classification using the

Brodatz database, the Vistex database, and the ASI database (a real application database).

The experimental results show that our classification method has better performance than

previous methods. For both the Brodatz database and the Vistex database, the

experimental results show that the proposed new approach has performance better than

Guo et al.’s algorithm and the SGLAM method. For the ASI database, the results have

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shown that our approach significantly outperforms existing approaches with an average

successful rate of 97% vs 66%.

7.2 Contributions

The main contributions of this thesis work are as follows:

1. The mathematical theory of BGLAMs. It is proved that BGLAMs form the basis

of GLAMs, and that two images are identical if and only if their corresponding

independent BGLAMs are the same. At present, to our best knowledge, this

work clarifies the relationship between BGLAMs, SGLAMs, GLAMs, and

GLCMs. W e demonstrate that an image can be uniquely represented by its

BGLAMs, but not by GLCMs nor by SGLAMs.

2. A new BGLAM-based method for 2D texture analysis and synthesis. For a given

input texture sample, synthetic 2D textures can be generated by sampling a

small set of BGLAMs (e.g. 64 BGLAMs for an image of size 6 4 x 6 4) that are

calculated from the input.

3. An original BGLAM-based algorithm for synthesizing solid (i.e. 3D) textures

from one or more input samples. Our method generates solid textures by

sampling the BGLAMs of the input samples constrained in m ultiple view

directions.

4. A new distance function based on BGLAMs for measuring texture similarity. In

addition to the metric properties, the BGLAM distance function is one-to-one.

This one-to-one property implies that a zero value of the distance measure on

two images will guarantee that they are identical, and that the sm aller the

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distance value, the closer the two texture images look to each other. Based on

the BGLAM distance measure, we present an original method for evaluating

texture synthesis results quantitatively. For previous synthesis techniques,

human visual inspection is the only effective way to evaluate the synthesis

results.

5. A BGLAM -based method for texture image classification. W e test our m ethod by

performing image classification on the Brodatz database, the Vistex database,

and the ASI database.

7.3 Future Work

The work in this thesis encourages future research in several directions. W hen

BGLAMs are used in synthesizing both 2D and 3D textures from input samples, our

sampling methods tend to converge to local minima quickly, and thus generate visible

seams in the synthesized textures. One solution to this problem is to use a genetic-based

search method [66] (a multiple-point search scheme) rather than a single-point search

scheme during sampling (see Chapter 4 and Chapter 5 for more details). Alternatively,

optimization methods based on graph cut techniques [13, 184] can be used to avoid the

problem of local minima. It has been demonstrated [13, 184] that graph cuts can be used

to efficiently find the global or nearly global optimal solutions for labeling problems in

image restoration and stereo and motion analysis. By correctly formulating the labeling

problems and by defining appropriate energy functions for our BGLAM-based 2D and

3D texture synthesis, the problem of visible seams can be well resolved using graph cut

techniques [13, 184],

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another future research is the GPU (Graphics Processing Unit)-based texture

synthesis using BGLAMs. Real-time texture synthesis is in high demand to run in

computer games and computer-generated movies. Existing texture-synthesis techniques

are computationally expensive, and thus difficult to run in real-time. State-of-the-art

graphics hardware makes the GPU available for real-time texture synthesis. The

challenge in GPU-based texture synthesis is to develop new techniques that can fit into

the graphics processing pipeline. This requires not only a compact representation of

textures but also a parallel sampling process in texture synthesis. So far, no technique has

been successfully developed to perform GPU-based texture synthesis on given input

samples. Using independent BGLAMs, textures can be efficiently stored in memory.

Since the BGLAM -based texture synthesis uses a random site-visitation scheme, it is

possible to turn the sampling into a parallel process by segmenting the output texture into

independent and identically distributed regions.

Future work can also be conducted on unsupervised texture image classification

using BGLAMs. The method for texture image classification presented in the thesis is

supervised in the sense that the number of texture classes is known a priori. For some

applications, the number of classes might not be known first. Therefore, it is desirable to

perform unsupervised texture classification by which texture classes are dynamically

detected. By treating BGLAMs as texture features and by using BGLAM-based distance

measure, it is possible to perform unsupervised texture classification.

Other future research may include: the application of BGLAMs to evaluating

synthesized textures from various existing approaches and choosing the best, the study of

the sensitivity of the threshold values used in the BGLAM-based distance function for

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measuring the similarity of texture samples and for evaluating the synthesis results,

dynamic texture [169] synthesis using BGLAMs, texture image segmentation using

BGLAM s and its applications to segmenting M RI (Magnetic Resonance Imaging) scans

in order to identify brain tumors or breast cancers, and the extension of the BGLAM

framework to image or video analysis and synthesis using mathematical morphology

[164],

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

1. Abbadeni, N., A New Similarity M atching Measure: Application to Texture-based

Image Retrieval. The 3rd inti, workshop on texture analysis and synthesis, 2003: p.

1- 6 .

2. Arivazhagan, S. and L. Ganesan, Texture Classification Using Wavelet Transform.

Pattern Recognition Letters, 2003: p. 1513 - 1521.

3. Ashikhmin, M., Synthesizing Natural Textures. The ACM Symposium on

Interactive 3D Graphics, 2001: p. 217-226.

4. Azencott, R., J.P. W ang, and L. Younes, Texture Classification Using Windowed

Fourier Filters. IEEE PAMI, 1997. 19(2): p. 148-153.

5. Bard, J., A Model fo r Generating Aspects o f Zebra and Other Mammalian Coat

Patterns. Journal of Theoretical Biology, 1981. 93(4): p. 363-385.

6. Bar-Joseph, Z., R. El-Yaniv, D. Lischinski, and M. W erman, Texture Mixing and

Texture Movie Synthesis Using Statistical Learning. IEEE TVCG, 2001. 7(2): p.

120-135.

7. Barr, A., Decal Projections, Course 15: M athematics o f Computer Graphics. ACM

SIGGRAPH, 1984: p. 124-133.

8. Barrett, A.N., Computer Vision and Image Processing. New York: Chapman and

Hall, 1991.

9. Besag, J., Spatial Interaction and the Statistical Analysis o f Lattice Systems (with

Discussion). Journal of the Royal Statistical Society, Series B, 1974. 36: p. 192-

326.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10. Bier, E.A. and K.R. Sloan, Two-Part Texture Mappings. IEEE Computer Graphics

and Application, 1986: p. 40-53.

11. Blinn, J.F., Simulation o f Wrinkled Surface. Computer Graphics, 1978. 12(3): p.

286-292.

12. Blinn, J.F. and M.E. Newell, Texture and Reflection in Computer Generated

Images. CACM: Communications of the ACM, 1976. 19(10): p. 542-547.

13. Boykov, Y., O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via

Graph Cuts. IEEE PAM I (also in ICCV 99), 2001. 23: p. 1222-1239.

14. Brodatz, P., Textures: A Photographic Album fo r Artists & Designers. New York:

Dover., 1966.

15. Cabral, B., M. Olano, and P. Nemec, Reflection Space Image Based Rendering.

ACM SIGGRAPH, 1999: p. 165-170.

16. Catmull, E., A Subdivision Algorithm fo r Computer D isplay o f Curved Surfaces. A

Subdivision Algorithm for Computer Display of Curved Surfaces, Ph. D. Thesis,

Dept, of Computer Science, Univ. of Utah, 1974.

17. Chellappa, R. and S. Chatterjee, Classification o f Textures Using Gaussian M arkov

Random Fields. IEEE Transactions on Acoustics, Speech, and Signal Processing,

1985. ASSP-33(4): p. 959-963.

18. Chellappa, R., R.L. Kashyap, and B.S. M anjunath, Model-Based Texture

Segmentation and Classification, in Handbook of Pattern Recognition and

Computer Vision (C. H. Chen, L. F. Pau, and P. S. P. Wang, eds.), Singapore:

W orld Scientific., 1993: p. 277-310.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19. Chen, C.H., L.F. Pau, and P.S.P. W ang, The Handbook o f Pattern Recognition and

Computer Vision (2nd ed). W orld Scientific Publishing Co., 1998.

20. Chen, Y., X. Tong, J. W ang, S. Lin, B. Guo, and H.-Y. Shum, Shell Texture

Functions. Siggraph, 2004: p. 343-353.

21. Clausi, D.A. and H. Deng, Fusion o f Gabor Filter and Co-occurrence Probability

Features fo r Texture Recognition. IEEE Transactions on Image Processing, 2005.

14(7): p. 925-936.

22. Clausi, D.A. and M.E. Jemigan, Designing Gabor Filters fo r Optimal Texture

Separability. Pattern Recognition, 2000. 33(11): p. 1835-1849.

23. Clausi, D.A. and M.E. Jemigan, A Fast M ethod to Determine Co-occurrence

Texture Features. IEEE Transactions on Geosciences and Remote Sensing, 1998.

36(1): p. 298-300.

24. Clausi, D.A. and Y. Zhao, Grey Level Co-occurrence Integrated Algorithm

(GLCIA): A Superior Computational M ethod to Determine Co-occurrence Texture

Features. Computers and Geosciences, 2003. 29(7): p. 837-850.

25. Cohen, F.S. and D.B. Cooper, Simple Parallel Hierarchical and Relaxation

Algorithms fo r Segmenting Noncausal Markovian Random Fields. IEEE PAM I,

1987.9: p. 195-219.

26. Conners, R.W. and C.A. Harlow, A Theoretical Comparison o f Texture Algorithms.

IEEE PAMI, 1980: p. 204-222.

27. Conners, R.W. and C.T. Ng, Developing a Quantitative M odel o f Human

Preattentive Vision. IEEE Trans. Syst. Man Cybem., 1989. 19(6): p. 1384-1407.

28. Cook, R.L., Shade Trees. ACM SIGGRAPH, 1984. 18: p. 223-231.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29. Cook, R.L. andT . DeRose, Wavelet Noise. Siggraph, 2005: p. 803-811.

30. Cook, R.L., T. Porter, and L. Carpenter, D istributed Ray Tracing. ACM

SIGGRAPH, 1984. 18(3): p. 137-145.

31. Copeland, A.C., G. Ravichandran, and M.M. Trivedi, Texture Synthesis Using

Gray-Level Co-occurrence Models: Algorithms, Experimental Analysis, and

Psychophysical Support. Optical Engineering, 2001. 40(11): p. 2655-2673.

32. Cross, G.C. and A.K. Jain, Markov Random Field Texture Models. IEEE PAM I,

1983. 5(2): p. 25-39.

33. Daubechies, I., Orthonormal Bases o f Compactly Supported Wavelets.

Communications on Pure and Applied M athematics, 1988. 41(7): p. 909-996.

34. Davis, L.S., S.A. Johns, and J.K. Aggarwal, Texture Analysis Using Generalized

Cooccurrence Matrices. IEEE PAMI, 1979. PAM I-1(3): p. 251-259.

35. DeBonet, J.S., M ultiresolution Sampling Procedure fo r Analysis and Synthesis o f

Texture Images. ACM SIGGRAPH, 1997: p. 361-368.

36. DeBonet, J.S. and P. Viola, Texture Recognition Using a Non-parametric M ulti-

Scale Statistical Model. IEEE CVPR, 1998: p. 641-647.

37. Deng, H. and D.A. Clausi, Unsupervised Image Segmentation Using a Simple M RF

Model with a New Implementation Scheme. Pattern Recognition, 2004. 37(12): p.

2323-2335.

38. Deng, H. and D.A. Clausi, Gaussian M RF Rotation-Invariant Features fo r SAR Sea

Ice Classification. IEEE PAMI, 2004. 26(7): p. 951-955.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39. Deng, H. and D.A. Clausi, Advanced Gaussian M RF Rotation-Invariant Texture

Features fo r Classification o f Remote Sensing Imagery. IEEE CVPR, 2003: p. 685-

690.

40. Derin, H. and H. Elliott, M odeling and Segmentation o f Noisy Textured Images

Using Gibbs Random Fields. IEEE PAMI, 1987. 9(1): p. 39-55.

41. Dischler, J.-M. and D. Ghazafarpour, Interactive Image Based M odeling o f

M acrostructured Textures. IEEE Computer Graphics and Application, 1999. 19(1):

p. 66-74.

42. Dischler, J.-M., D. Ghazanfarpour, and R. Freydier, Anisotropic Solid Texture

Synthesis Using Orthogonal 2D Views. Special issue of Proceedings of

Eurographics, 1998: p. 87-96.

43. Dischler, J.-M., K. Maritaud, B. Levy, and D. Ghazafarpour, Texture Particles.

Computer Graphics Forum Vol.21(3), Special Issue of Proceedings of

EUROGRAPHICS'02, 2002.

44. Donovan, E.F., T.S. Trondsen, L.L. Cogger, and B.J. Jackel, Auroral Imaging in

Canadian CANOPUS and NORSTAR Programs. Proc. 28th Annual European

Meeting on Atmospheric Studies by Optical Methods, Oulu, Finland, 2002: p. 109-

112.

45. Duda, R.O. and P.E. Hart, Pattern Classification and Scene Analysis. Stanford

Research Institute, Menlo Park, California: John Wiley, 1973.

46. Dungan, W., A. Stenger, and G. Sutty, Texture Tile Considerations fo r Raster

Graphics. ACM SIGGRAPH, 1978. 12(3): p. 130-134.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47. Ebert, D.S., F.K. Musgrave, K.P. Peachey, K. Perlin, and S. Worley, Texturing &

Modeling: A Procedural Approach (3rd Edition). 2002, Academic Press.

48. Economy, R. and M. Bunker, Advanced Video Object Simulation. In Proceedings of

the National Aerospace and Electronics Conference (IEEE, New York, May), 1984:

p. 1065-1071.

49. Efros, A. and T. Leung, Texture Synthesis by Non-Parametric Sampling. IEEE

ICCV, 1999: p. 1033-1038.

50. Efros, A. A. and W.T. Freeman, Image Quilting fo r Texture Synthesis and Transfer.

ACM SIGGRAPH, 2001: p. 341-346.

51. Elfadel, I.M. and R.W. Picard, Gibbs Random Fields, Cooccurrences, and Texture

Modeling. IEEE PAMI, 1994. 16(1): p. 24-37.

52. Elfadel, I.M. and R.W. Picard, Miscibility Matrices Explain the Behavior o f

Grayscale Textures Generated by Gibbs Random Fields. SPIE Conference on

Intelligent Robots and Computer Vision IX, 1990: p. 524-535.

53. Fan, L. and K.K. Sung, A Combined Eeature-Texture Similarity Measure fo r Face

Alignment Under Varying Pose. IEEE CVPR, 2000: p. 1308-1313.

54. Fang, H. and J.C. Hart, Textureshop: Texture Synthesis as a Photograph Editing

Tool. ACM SIGGRAPH, 2004.

55. Figueiras-Vidal, A.R., J.M. Paez-Borrallo, and R. Garcia-Gomez, On Using

Cooccurrence Matrices to D etect Periodicities. IEEE Trans. Acoust., Speech,

Signal Process, 1987. 35(1): p. 114-116.

56. Fleischer, K.W., D.H. Laidlaw, B.L. Currin, and A.H. Barr, Cellular Texture

Generation. ACM SIGGRAPH, 1995: p. 239-248.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57. Fournier, A., D. Fussel, and L. Carpenter, Computer Rendering o f Stochastic

Models. CACM: Communications of the ACM, 1982. 25(6): p. 371-384.

58. Gagalowicz, A., A New M ethod fo r Texture Fields Synthesis: Some Applications to

the Study o f Human Vision. IEEE PAM I, 1981. 3(5): p. 520-533.

59. Gagalowicz, A. and S.D. Ma, Sequential Synthesis o f Natural Textures. Comput.

Vis. Graph. Image Process., 1985: p. 289-315.

60. Gardner, G., Visual Simulation o f Clouds. ACM SIGGRAPH, 1985: p. 297-303.

61. Gardner, G., Simulation o f Natural Scenes Using Textured Quadric Surfaces. ACM

SIGGRAPH, 1984. 18(3): p. 11-20.

62. Geman, D., Random Fields and Inverse Problems in Imaging. Lecture Notes in

Mathematics, 1991. 1427: p. 113-193.

63. Geman, S. and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration o f Images. IEEE PAMI, 1984. 6: p. 721-741.

64. Geman, S. and C. Graffigne, M arkov Random Field Image Models and their

Applications to Computer Vision. Proceedings of the International Congress of

M athematicians, 1986: p. 1496-1517.

65. Gersho, A. and R.M. Gray, Vector Quantization and Signal Compression. Kluwer

Academic Publishers, 1991.

66. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Publishing Company, 1989.

67. Gotlieb, C.C. and H.E. Kreyszig, Texture Descriptors Based on Co-occurrence

Matrices. Comput. Vis. Graph. Image Process., 1990. 51(70-86).

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68. Graham, R., D. Knuth, and O. Patashnik, Concrete M athematics (2nd ed). Addison-

Wesley, 1994.

69. Greene, N., Environment M apping and Other Applications o f World Projection.

IEEE Computer Graphics Application, 1986: p. 21-29.

70. Grunbaum, B. and G.C. Shephard, Tiling and Patterns. New York: W. H. Freeman

and Company, 1987.

71. Guo, G., A.K. Jain, W .MA, and H. Zhang, Learning Similarity Measure fo r Natural

Image Retrieval with Relevance Feedback. IEEE Transactions on Neural Networks,

2002: p. 811-820.

72. Guo, G., S.Z. Li, and K.L. Chan, Learning Similarity fo r Texture Image Retrieval.

ECCV, 2000: p. 178-190.

73. Haeberli, P. and M. Segal, Texture Mapping as a Fundamental Drawing Primitive.

Fourth Eurographics W orkshop on Rendering, 1993: p. 259-266.

74. Haindl, M., Texture Synthesis. CWI Quarterly, 1991. 4(4): p. 305-331.

75. Haralick, R.M., Statistical and Structural Approaches to Texture. In Proc. 4th Int.

Joint Conf. Pattern Recognition, 1978: p. 45-69.

76. Haralick, R.M., K. Shanmugan, and I.H. Dinstein, Textural Features fo r Image

Classification. IEEE Trans. Syst. Man Cybem., 1973: p. 610-621.

77. Haralick, R.M. and L.S. Shapiro, Computer Vision. Addison Wesley, 1992.

78. Hassner, M. and J. Sklansky, The Use o f M arkov Random Fields as M odels o f

Texture. The Journal of Computer Graphics and Image Processing, 1980. 12: p.

357-370.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79. Heckbert, P.S., Fundamentals o f Texture M apping and Image Warping. M aster's

Thesis, in Dept. ofE lec. Eng. and Compt. Sci. 1989, Univ. of California: Berkeley.

80. Heckbert, P.S., Survey o f Texture Mapping. IEEE Computer Graphics and

Applications, 1986: p. 56-67.

81. Heeger, A.J. and J.R. Bergen, Pyramid-Based Texture Analysis/Synthesis. ACM

SIGGRAPH, 1995: p. 229-238.

82. Hrbacek, K. and T. Jech, Introduction to Set Theory (3rd ed). New York : Marcel

Dekker, 1999.

83. Hyvarinen, A., J. Karhunen, and E. Oja, Independent Component Analysis. W iley

Interscience, 2001.

84. ISR, U., Institute fo r Space Research, http://www.phys.ucalgary.ca/, 2006.

85. Jagnow, R. and J. Dorsey, Virtual Sculpting with Haptic Displacement Maps.

Proceedings of Graphics Interface, 2002: p. 125-132.

86. Jagnow, R., J. Dorsey, and H. Rushmeier, Stereological Techniques fo r Solid

Textures. Siggraph, 2004. 23(3): p. 329-335.

87. Jain, A.K. and F. Farrokhnia, Unsupervised Texture Segmentation Using Gabor

Filters. Pattern Recognition, 1991. 24(12): p. 1167-1186.

88. Joachims, T., SVM-Light. www.cs.Cornell.edu/People/tj/svm light. Univ of

Dortmund, Informatik, AI-Unit., 2004.

89. Joachims, T., Chapter 11 in: Making large-Scale SVM Learning Practical.

Advances in Kernel Methods - Support Vector Learning, B. Schdlkopf and C.

Burges and A. Smola (ed.). 1999, MIT Press.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.phys.ucalgary.ca/
http://www.cs.Cornell.edu/People/tj/svm

90. Jobanputra, R. and D.A. Clausi, Preserving Boundaries fo r Image Texture

Segmentation Using Grey Level Co-occurring Probabilities. Pattern Recognition,

2006. 39(2): p. 234-245.

91. Jollife, I.T., Principal Component Analysis. Springer-Verlag, New York, 1986.

92. Julesz, B., Textons, the Elements o f Texture Perception, and Their Interactions.

Nature, 1981. 290: p. 91-97.

93. Julesz, B., Visual Pattern Discrimination. IEEE Transactions on Information

Theory, 1962: p. 84-92.

94. Kato, Z., J. Zerubia, and M. Berthod, Unsupervised Parallel Image Classification

Using a Hierarchical M arkovian Model. IEEE ICCV, 1995: p. 169-174.

95. Kautz, J., K. Daubert, and H.-P. Seidel, Advanced Environment M apping in VR

Applications. Computers & Graphics, 2004. 28(1): p. 99-104.

96. Kautz, J. and M. McCool, Approximation o f Glossy Reflection with Prefiltered

Environment Maps. In Proceedings of Graphics Interface, 2000: p. 119-126.

97. Kautz, J., P.-P. Vazquez, W. Heidrich, and H.-P. Seidel, A Unified Approach to

Prefiltered Environment Maps. In Eleventh Eurographics W orkshop on Rendering,

2000: p. 185-196.

98. Kindermann, R. and J.L. Snell, M arkov Random Fields and Their Applications.

American Mathematical Society, 1980.

99. Kraevoy, V., A. Sheffer, and C. Gotsman, Matchmaker: Constructing Constrained

Texture Maps. ACM SIGGRAPH, 2003. 22(3): p. 326-333.

100. Kwatra, V., I. Essa, A.F. Bobick, and N. Kwatra, Texture Optimization fo r

Example-Based Synthesis. ACM SIGGRAPH, 2005: p. 795-802.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101. Kwatra, V., A. Schodl, I.A. Essa, G. Turk, and A.F. Bobick, Graphcut Textures:

Image and Video Synthesis using Graph Cuts. ACM SIGGRAPH, 2003. 22(3): p.

227-286.

102. Lagae, A. and P. Dutre, A Procedural Object Distribution Function. ACM TOG,

2005. 24(4): p. 1442-1461.

103. Lefebvre, L. and P. Poulin, Analysis and Synthesis o f Structural Textures. Graphics

Interface, 2000: p. 77-86.

104. Leung, T. and J. M alik, Representing and Recognizing the Visual Appearance o f

Materials using Three-dimensional Textons. IJCV, 2001. 43(1): p. 29-44.

105. Lewis, J.P., Algorithms fo r Solid Noise Synthesis. ACM SIGGRAPH, 1989. 23(3):

p. 263-270.

106. Liang, L., C. Liu, Y. Xu, B. Guo, and H. Shum, Real-Time Texture Synthesis by

Patch-Based Sampling. ACM Transactions on Graphics, 2001. 20(3): p. 127-150.

107. Linde, Y., A. Buzo, and R.M. Gray, An Algorithm fo r Vector Quantizer Design.

IEEE Transactions on Communications, 1980(COM-28): p. 702-710.

108. Liu, X., Y. Hu, X. Tong, B. Guo, and H.-Y. Shum, Synthesis and Rendering o f

Bidirectional Texture Functions on Arbitrary Surfaces. IEEE Transactions on

Visualization and Computer Graphics, 2004.10(3): p. 278-289.

109. Liu, Y. and R.T. Collins, Skewed Symmetry Groups. IEEE CVPR, 2001: p. 872-

879.

110. Liu, Y., R.T. Collins, and Y. Tsin, A Computational Model fo r Periodic Pattern

Perception Based on Frieze and Wallpaper Groups. IEEE PAMI, 2004. 26(3): p.

354-371.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111. Liu, Y. and W.C. Lin, Deformable Texture: The Irregular-Regular-Irregular Cycle.

Proc. Third International W orkshop on Texture Analysis and Synthesis, 2003.

112. Lohmann, G., Co-occurrence-Based Analysis and Synthesis o f Textures. The 12th

IAPR Intl. Conf. Patt. Recog. (ICPR), 1994. 1: p. 449-453.

113. Ma, W. and B.S. M anjunath, Texture Features and Learning Similarity. IEEE

CVPR, 1996: p. 425-430.

114. Magda, S. and D. Kriegman, Fast Texture Synthesis on Arbitrary Meshes.

Proceedings of the 14th Eurographics W orkshop on Rendering, 2003: p. 82-89.

115. Manjunath, B.S. and R. Chellappa, Unsupervised Texture Segmentation Using

M arkov Random Field Models. IEEE PAMI, 1991. 13(5): p. 478-482.

116. M anjunath, B.S. and W.Y. Ma, Texture Features fo r Browsing and Retrieval o f

Image Data. IEEE PAM I, 1996. 18(8): p. 837-842.

117. M athiassen, J.R., A. Skavhaug, and K. Bp, Texture Similarity Measure Using

Kullback-Leibler Divergence Between Gamma Distributions. ECCV, 2002: p. 133-

147.

118. M einhardt, H., Models o f Biological Pattern Formation. Academic Press, London,

1982.

119. Miller, G., The Definition and Rendering o f Terrain Maps. ACM SIGGRAPH,

1986. 20(4): p. 39-48.

120. Miller-Jr, W., Symmetry Groups and Their Applications. New York: Academic

Press, 1972.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121. Murray, J.D., On Pattern Formation Mechanism fo r Lepidopteran Wing Patterns

and Mammalian Coat Makings. Philosophical Transactions of the Royal Society B,

1981.295: p. 473-496.

122. Ohanian, P.P. and R.C. Dubes, Performance Evaluation fo r Four Classes o f

Textural Features. Pattern Recognition, 1992: p. 819-833.

123. Olano, M. and A. Lastra, A Shading Language on Graphics Hardware: the

Pixelflow Shading System. ACM SIGGRAPH, 1998: p. 159-168.

124. Paget, R., Texture Im ages' Sources, www.vision.ee.ethz.ch/~rpaget/links.htm, 2005.

125. Paget, R., An Automatic 3D Texturing Framework. Proceedings of the Intl.

W orkshop on Texture Analysis and Synthesis, 2005: p. 1-6.

126. Paget, R., Strong M arkov Random Field Model. IEEE PAMI, 2004: p. 408-413.

127. Paget, R., Non-Parametric M arkov Random Field Models fo r Natural Texture

Images (Ph. D. Thesis), in Dept, o f Computer Science & Electrical Engineering.

1999, The Univ. of Queensland: Queensland.

128. Paget, R. and D. Longstaff, Texture Synthesis and Unsupervised Recognition w ith a

Nonparametric Multiscale M arkov Random Field Model. ICPR, 1998: p. 1068-

1070.

129. Paget, R. and I.D. Longstaff, Texture Synthesis via a Noncausal Nonparametric

M ultiscale Markov Random Field. IEEE Transactions on Image Processing, 1998.

7(6): p. 925-931.

130. Panjwani, D.K. and G. Healey, M arkov Random Field M odels fo r Unsupervised

Segmentation o fTextured Color Images. IEEE PAMI, 1995. 17(10): p. 939-954.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vision.ee.ethz.ch/~rpaget/links.htm

131. Parkinnen, J., K. Selkainaho, and E. Oja, Detecting Texture Periodicity From the

Cooccurrence Matrix. Pattern Recognition Letter, 1990: p. 43-50.

132. Peachey, D.R., Solid Texturing o f Complex Surfaces. ACM SIGGRAPH, 1985.

19(3): p. 279-286.

133. Perlin, K., Improving Noise. ACM SIGGRAPH, 2002. 21(3): p. 681-682.

134. Perlin, K„ An Image Synthesizer. ACM SIGGRAPH, 1985. 19(3): p. 287-296.

135. Perlin, K. and E.M. Hoffert, Hypertexture. ACM SIGGRAPH, 1989: p. 253-262.

136. Picard, D.K., Inference fo r General Ising Models. Journal of Applied Probability,

1982. 19A: p. 345-357.

137. Picard, R.W. and I.M. Elfadel, Structure o f Aura and Co-occurrence M atrices fo r

the Gibbs Texture Model. Journal of M athematical Imaging & Vision, 1992(2): p.

5-25.

138. Picard, R.W ., I.M. Elfadel, and A.P. Pentland, M arkov/Gibbs Texture Modeling:

Aura M atrices and Temperature Effects. IEEE CVPR, 1991: p. 371-377.

139. Picard, R.W . and A.P. Pentland, Temperature and Gibbs Image Modeling. 1995,

MIT, Cambridge, MA.

140. Pixar, The RenderMan Interface: Version 3.1. Pixar, San Rafael, California, 1989.

141. Popat, K. and R.W. Picard, Cluster-Based Probability M odel and its Application to

Image and Texture Processing. IEEE Transactions on Image Processing, 1997.

6(2): p. 268-284.

142. Popat, K. and R.W. Picard, Novel Cluster-based Probability Model fo r Texture

Synthesis, Classification, and Compression, in Proceedings SPIE visual

Communications and Image Processing (Boston), 1993.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143. Portilla, J. and E.P. Simoncelli, A Parametric Texture Model Based on Joint

Statistics o f Complex Wavelet Coefficients. Int'l Journal of Computer Vision, 2000.

40(1): p. 49-71.

144. Portilla, J. and E.P. Simoncelli, Texture Representation and Synthesis Using

Correlation o f Complex Wavelet Coefficient Magnitudes. CSIC (the Consejo

Superior de Investigaciones Cientificas) Technical Report #54. Deposito Legal: M-

10904, 1999.

145. Praun, E., A. Finkelstein, and H. Hoppe, Lapped Textures. ACM SIGGRAPH,

2000: p. 465-470.

146. Press, W .H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical

Recipes in C + + : The A rt o f Scientific Computing (2nd ed). Cambridge University

Press, 2002.

147. Proudfoot, K., W .R. Mark, S. Tzvetkov, and P. Hanrahan, A Real-Time Procedural

Shading System fo r Programmable Graphics Hardware. ACM SIGGRAPH, 2001:

p. 159-170.

148. Puzicha, J., T. Hofmann, and J.M. Buhmann, Non-parametric Similarity M easures

fo r Unsupervised Texture Segmentation and Image Retrieval. IEEE CVPR, 1997: p.

267-272.

149. Qin, X., Texture Synthesis Results using BGLAMs. http://www.cs.ualberta.ca/~xuq,

2005.

150. Qin, X. and Y.H. Yang, Theoretical Analysis o f Graphcut Textures. Dept, of

Computing Science, University of Alberta, Technical Report: TR05-26, 2005.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~xuq

151. Qin, X. and Y.H. Yang, Basic Gray Level Aura Matrices: Theory and its

Application to Texture Synthesis. IEEE ICCV, Beijing, China, 2005: p. 128-135.

152. Qin, X. and Y.H. Yang, Similarity M easure and Learning with Gray Level Aura

Matrices (GLAM) fo r Texture Image Retrieval. IEEE CVPR, W ashington, D .C.,

USA, 2004. 1: p. 326-333.

153. Qin, X. and Y.H. Yang, Estimating Parameters fo r Procedural Texturing by

Genetic Algorithms. Graphical M odels, 2002. 64(1): p. 19-39.

154. Qin, X.J. and Y.H. Yang, A Generalized Cellular Texture Basis Function.

Proceedings of the Twelfth Annual Graduate Symposium on Computer Science.

Dept, of Compt. Sci., Univ. of Saskatchewan, 2000: p. 153-162.

155. Raghu, P.P., R. Poongodi, and B. Yegnanarayana, Unsupervised Texture

Classification using Vector Quantization and Deterministic Relaxation Neural

Network. IEEE PAM I, 1997. 6(10): p. 1376-1387.

156. Ramamoorthi, R. and P. Hanrahan, Frequency Space Environment M ap Rendering.

ACM SIGGRAPH, 2002: p. 517-526.

157. Ramamoorthi, R. and P. Hanrahan, An Efficient Representation fo r Irradiance

Environment Maps. ACM SIGGRAPH, 2001: p. 497-500.

158. Ravichandran, G., E J . King, and M.M. Trivedi, Texture Synthesis: A

Multiresolution Approach, in Proc. Ground Target M odeling and Validation Conf.,

Houghton, 1994.

159. Robertson, P., Spatial Transformations fo r Rapid Scan-Line Surface Shadowing.

ACM SIGGRAPH, 1989: p. 35-42.

160. Santini, S. and R. Jain, Similarity Measures. IEEE PAMI, 1999. 21(9): p. 871-883.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161. Schachter, B.J., Long-Crested Wave Models. CYGIP: Computer Graphics and

Imaging Processing, 1980. 12: p. 32-41.

162. Schmid, C., Constructing M odels fo r Content-Based Im age Retrieval. IEEE CVPR,

2001.2: p. 39-45.

163. Sedgewick, R., Algorithms in C, Part 5: Graph Algorithms. Addison-Wesley,

Reading, M assachusetts, 2001.

164. Serra, J., Image Analysis and M athematical Morphology. Academic Press, London,

England, 1982.

165. Seymour, L., Parameter Estimation and M odel Selection in Image Analysis Using

Gibbs-Markov Random Fields. The University of North Carolina, Chapel Hill (PhD

Thesis), 1993.

166. Simoncelli, E.P., W.T. Freeman, E.H. Adelson, and D.J. Heeger, Shiftable Multi-

Scale Transforms. IEEE Transactions on Information Theory, 1992. 38(Special

Issue on Wavelets): p. 587-607.

167. Simoncelli, E.P. and J. Portilla, Texture Characterization via Joint Statistics o f

Wavelet Coefficient Magnitudes. In 5th IEEE International Conference on Image

Processing, 1998. 1: p. 62-66.

168. Sims, K., Artificial Evolution fo r Computer Graphics. ACM SIGGRAPH, 1991.

25(4): p. 319-328.

169. Soatto, S., G. Doretto, and Y. Wu, Dynamic Textures. IEEE ICCV, 2001: p. 439-

446.

170. Soler, C., M. Cani, and A. Angelidis, Hierarchical Pattern Mapping. ACM

SIGGRAPH, 2002. 21(3): p. 673-680.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171. Spitzer, F., M arkov Random Fields and Gibbs Ensembles. American Mathematical

Monthly, 1971. 78: p. 142-154.

172. Strieker, M. and M. Orengo, Similarity o f Color Images. Proc. SPIE Storage and

Retrieval for Image and Video Databases, 1995: p. 381-392.

173. Swain, M.J. and D.H. Ballard, Color Indexing. Int'l Journal of Computer Vision,

1991.7(1): p. 11-32.

174. Syrjasuo, M .T., Auroral Imaging, http://aurora.phys.ucalgary.ca/, 2006.

175. Syrjasuo, M.T. and E.F. Donovan, Diurnal Auroral Occurrence Statistics Obtained

via Machine Vision. Annales Geophysicae, 2004. 22(4): p. 1103-1113.

176. Szeliski, R. and H.-Y. Shum., Creating Full View Panoramic M osaics and

Environment Maps. ACM SIGGRAPH, 1997: p. 251-258.

177. Tong, X., J. Zhang, L. Liu, X. W ang, B. Guo, and H.Y. Shum, Synthesis o f

Bidirectional Texture Functions on Arbitrary Surfaces. ACM SIGGRAPH, 2002.

21(3): p. 665-672.

178. Tuceryan, M. and A.K. Jain, Texture Analysis, in Handbook of Pattern Recognition

and Computer Vision, C. H. Chen and P. S. P. W ang (eds.), W orld Scientific

Publishing Co., 1998: p. 235-276.

179. Turk, G., Texture Synthesis on Surfaces. ACM SIGGRAPH, 2001: p. 347-354.

180. Turk, G., Generating Textures fo r Arbitrary Surfaces Using Reaction-Diffusion.

ACM SIGGRAPH, 1991. 25(3): p. 289-298.

181. Upstill, S., The'RenderM an Companion: A Programmer's Guide to Realistic

Computer Graphics. Addison-W esley, 1989.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://aurora.phys.ucalgary.ca/

182. Vapnik, V.N., Statistical Learning Theory. 1998: John W iley & Sons, New York,

1998.

183. Varma, M. and A. Zisserman, A Statistical Approach to Texture Classification from

Single Images. IJCV, 2005. 62(1-2): p. 61-81.

184. Veksler, O., Efficient Graph-Based Energy M inimization Methods in Computer

Vision. Ph. D. Thesis, Cornell University, 1999.

185. Vistex, vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html, 2002.

186. Wang, B., W. W ang, H. Yang, and J. Sun, Efficient Example-Based Painting and

Synthesis o f 2D Directional Texture. IEEE Trans. Vis. Comput. Graph., 2004.

10(3): p. 266-277.

187. Wang, L., X. W ang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum, View-

Dependent Displacement Mapping. ACM SIGGRAPH, 2003. 22(3): p. 334-339.

188. Wei, L., Texture Synthesis from Multiple Sources. Siggraph Sketches and

Applications, 2003.

189. Wei, L., Texture Synthesis by Fixed Neighborhood Searching (Ph.D. Thesis), in The

Dept. ofE lec. Eng. 2001, Stanford Univ.: Stanford.

190. Wei, L. and M. Levoy, Fast Texture Synthesis Using Tree-Structured Vector

Quantization. ACM SIGGRAPH, 2000: p. 479-488.

191. Wei, L.Y. and M. Levoy, Texture Synthesis over Arbitrary M anifold Surfaces.

ACM SIGGRAPH, 2001: p. 355-360.

192. Weinhaus, F.M. and V. Devarajan, Texture M apping 3D Models o f Real-W orld

Scenes. ACM Computing Surveys, 1997. 29(4): p. 325-365.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193. Weszka, J.S., C.R. Dyer, and A. Rosenfeld, A Comparative Study o f Texture

Measures fo r Terrain Classification. IEEE Trans. Syst. Man Cybem, 1976: p. 269-

285.

194. Whiteside, A.E., Preparing Data Bases fo r Perspective Scene Generation. In

Proceedings of SPIE, Bellingham, W A, 1989. 1075: p. 230-237.

195. Wijk, J.J., Spot Noise - Texture Synthesis fo r Data Visualization. ACM

SIGGRAPH, 1991. 25(3): p. 309-318.

196. Williams, L., Pyramidal Parametrics. ACM SIGGRAPH, 1983. 17(3): p. 1-11.

197. Witkin, A. and M. Kass, Reaction-Diffusion Textures. ACM SIGGRAPH, 1991.

25(3): p. 299-308.

198. Wolberg, G., D igital Image Warping. IEEE Computer Society Press, Los Alamitos,

CA, 1990.

199. Worley, S., Cellular Texture Basis Function. ACM SIGGRAPH, 1996: p. 291-294.

200. Wu, Q. and Y. Yu, Feature M atching and Deformation fo r Texture Synthesis. ACM

SIGGRAPH, 2004: p. 362-365.

201. Ying, L., A. Hertzmann, H. Biermann, and D. Zorin, Texture and Shape Synthesis

on Surfaces. Eurographics W orkshop on Rendering, 2001: p. 301-312.

202. Zelinka, S. and M. Garland, Interactive Texture Synthesis on Surfaces Using Jump

Maps. Eurographics Symposium on Rendering, 2003: p. 90-96.

203. Zelinka, S. and M. Garland, Towards Real-Time Texture Synthesis with the Jump

Map. Eurographics Symposium on Rendering, 2002: p. 99-104.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204. Zhang, J., K. Zhou, L. Velho, B. Guo, and H. Shum, Synthesis o f Progressively-

Variant Textures on Arbitrary Surfaces. ACM SIGGRAPH, 2003. 22(3): p. 295-

302.

205. Zhou, K., X. W ang, Y. Tong, M. Desbrun, B. Guo, and H.-Y. Shum,

TextureMontage: Seamless Texturing o f Arbitrary Surfaces From Multiple Images.

Siggraph, 2005: p. 1148-1155.

206. Zhu, S.C., C.E. Guo, Y.N. Wu, and Y.Z. W ang, What are Textons? ECCV, 2002: p.

793-807.

207. Zhu, S.C., X. Liu, and Y.N. Wu, Exploring Texture Ensembles by Efficient M arkov

Chain M onte Carlo—Toward a "Trichromacy" Theory o f Texture. IEEE PAM I,

2000. 22(6): p. 554-569.

208. Zhu, S.C., Y. Wu, and D. Mumford, Filters, Random Fields and Maximum Entropy

- Towards a Unified Theory fo r Texture Modeling. Int'l Journal of Computer Vision,

1998. 27(2): p. 1-20.

209. Zucker, S.W ., Finding Structure in Co-occurrence Matrices fo r Texture Analysis.

CVGIP, 1980. 12: p. 286-308.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

