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Abstract

Texture modeling plays an im portant role in computer graphics, vision and image 

processing. Although various techniques have been developed for the study o f texture 

analysis and synthesis, the mathematical definition of texture is still unclear. D ue to the 

vague definition of texture, each technique has its own advantages and disadvantages, 

and thus fails to model certain types of textures.

This thesis presents a new unified mathematical framework for modeling textures 

using BGLAM s (Basic Gray Level Aura Matrices). The new framework will provide 

important understanding in texture modeling in both computer vision and com puter 

graphics. It is proved that BGLAMs form  a basis of GLAMs (Gray Level Aura M atrices), 

and that two images are identical if and only if  their corresponding BGLAMs are the 

same. It is also proved that the number of different BGLAMs of a given image is no more 

than the number of pixels in the image. This work clarifies the relationship between 

BGLAMs, GLAMs, SGLAMs (Symmetric GLAMs), and GLCMs (Gray Level 

Cooccurrence M atrices), and demonstrates that BGLAMs outperform both SGLAMs and 

GLCMs in texture modeling.

Based on the theory, new techniques have developed new techniques for 2D and 

3D texture synthesis, and a new method for classifying texture images using BGLAMs. 

The experimental results show that our new techniques can successfully apply to a wide 

range of textures and the results are either better or comparable to existing techniques.
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Chapter 1 

Introduction

1.1 Textures

Textures appear everywhere. The world would not be so beautiful without the 

meticulous presence o f textures. However, what exactly is texture? Although the term 

appears to be understood by a layman, there is still no formal mathematical definition of 

textures. In computer graphics, vision and image processing, textures are commonly 

considered as visual patterns that appear on the surfaces o f objects or in images. In the 

real world, textures can be seen as either microstructures or macrostructures on the 

surfaces of objects, for example, the fine ripples on the surface o f water in a lake or river, 

the arrangement o f bricks on a wall, the field o f grass in a meadow, the fluffiness of 

clouds in the sky, and the varying fur on animals. Figure 1-1 gives an example o f wood­

like texture on the surface of a teapot.

Figure 1-1: An example o f wood-like textures on the surface o f a teapot.

1
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In image analysis, textures are used as visual cues to differentiate one image 

region (or one image) from  other regions (or other images). Oftentimes, different parts of 

an image, or different images, are recognized by textures rather than by shapes. Some 

examples of textures, such as grass, flower, rug, wood, brick, and stone, are given in 

Figure 1-2.

Figure 1-2: Examples of textures in images (image source: the Brodatz and the Vistex 

textures [124]).

Textures can be very easily recognized in images by a human observer but it is 

very difficult to quantify their differences precisely [8, 77, 178]. The difficulty is

2
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demonstrated by the large number o f ambiguous definitions o f textures (see [178]) 

proposed by researchers during the last several decades, many of which lead to serious 

problems in computational complexity and in imprecision. In computer vision, it is 

desirable to define textures with mathematical precision.

Analysis Texture 
^  Features

Synthesis

Figure 1-3: An example o f texture analysis and synthesis.

1.2 Texture Analysis and Synthesis

Texture analysis and synthesis, also called texture modeling in this thesis, can be 

viewed as a two-phase process: 1) characterization o f textures and 2) regeneration of 

textures. In the first phase, textures are analyzed using various techniques and important 

information o f textures, called texture features, are characterized using either 

mathematical or non-mathematical descriptions [8, 77, 178], Based on the information 

obtained in the analysis phase, in the second phase, synthetic 2D or 3D textures are 

generated using various sampling techniques such as stochastic relaxation [63], pixel- 

based sampling [49, 189], or patch-based sampling [50, 101, 106, 186]. An example of

texture analysis and synthesis is given in Figure 1-3.

3
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Since the pioneering work done by Julesz [93], texture analysis/synthesis has been 

an active research topic in computer graphics, vision and image processing. In com puter 

vision, researchers have developed m any techniques for analyzing textures; while in 

computer graphics, researchers are more interested in developing techniques to 

synthesize textures for generating appealing imagery. Texture analysis and synthesis have 

important applications in document processing, automated inspection, bioinformatics, 

data compression, animated movies, and computer games [8, 19, 47, 178], For example, a 

texture-synthesis technique can be used in computer games for generating interesting 

textures, e.g. skin, onto animated figures.

1.3 Motivation
Despite many techniques [3, 6, 32, 35, 49, 81, 101, 129, 190] have been proposed 

for texture analysis and synthesis, texture modelling is far from being understood. In fact, 

each existing technique has its own advantages and disadvantages, and thus fails to 

correctly model certain types of textures. The present thesis work is motivated by the 

following challenging problems in texture modeling:

■ Given a texture sample, what can be used to represent the sample with the 

necessary and sufficient information? In computer vision, it is desirable to 

define textures with mathematical precision. However, this problem  is 

challenging and has been studied by researchers in the vision area for decades 

without much success. Consequently, the advancement of texture synthesis 

techniques in computer graphics is limited because of the lack of 

understanding in the analysis of textures. In existing approaches, textures are

4
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often represented by using some characteristics of input examples, which may 

not represent the input texture appropriately. For instance, in feature-matching 

approaches [6, 35, 81, 143], a set of filter responses at multiple scales and 

orientations are used to characterize an example texture. However, 

mathematically it requires an infinite num ber of filters, each of which is as 

large as the given texture image, to model a given texture with the necessary 

and sufficient information. Hence, a set of predefined filters are used in filter- 

based techniques for modelling textures. In general, it is not an easy task to 

automatically select filters for different textures. The objective of this thesis 

work is to develop a mathematical framework for modelling textures without 

using filters and demonstrate that texture analysis and synthesis can be 

effectively carried out using BGLAMs (basic gray level aura matrices).

There is a lack of good unified frameworks that work well for both analysis 

and synthesis. In exiting texture modeling approaches, a good analysis 

technique may not work well for synthesis [178]; while a good synthesis 

technique that generates impressive results may not be able to do analysis at 

all [178],

It is difficult, if not impossible, to perform 3D texture analysis and synthesis. 

Techniques for 2D texture analysis and synthesis [3, 6, 32, 35, 49, 81, 101, 

129, 190] cannot be easily extended and applied to 3D texturing. In general, 

existing 3D-texture techniques (e.g. [20, 81, 86, 125, 179, 191, 204]) work for 

only a limited range of textures.

5
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■ How to evaluate the results quantitatively? Due to the imprecise 

representation of textures in existing synthesis techniques, none of them is 

able to evaluate the results quantitatively. Visual inspection is the only way to 

evaluate the results.

The goal of this thesis work is to develop a new vigorous mathematical model to 

characterize textures with sufficient and necessary information. Under the unified 

mathematical framework, we present new techniques for 2D and 3D texture analysis and 

synthesis. W ithin the same framework, we develop a quantitative method for evaluating 

texture synthesis results, which can be used to automate the conventional visual 

inspection process for determining whether or not the output texture is a successful 

synthesis o f the input. For applications, we apply our new framework in texture image 

classification on the Brodatz database, the Vistex database, and the ASI (All-Sky Imager) 

database.

Our new framework for texture analysis and synthesis will provide important 

understanding in texture modeling in both computer vision and computer graphics. M ost 

importantly, it is the only approach that uses the same framework for both analysis and 

synthesis. In other words, getting better analysis results will help us synthesize more 

realistic textures and vice versa.

1.4 The Thesis Work

Figure 1-4 gives an overview of the thesis work. In the work, a new mathematical 

framework based on BGLAMs (Basic Gray Level Aura M atrices) for texture modeling is

6
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presented. The mathematical theory of BGLAMs is formulated and proved using the 

concepts of aura sets, aura measures, and aura matrices introduced by Elfadel and Picard 

[51]. W e prove in Chapter 3 that BGLAMs form a basis of GLAMs (Gray Level Aura 

Matrices) -  a powerful tool for texture modeling, and that two images are identical if and 

only if their corresponding BGLAMs are the same. W e also prove that the number of 

different BGLAMs of a given image is no more than the num ber of pixels in the image.

Introduction 
(Chapter 1)

Previous 
Works 

(Chapter 2)

Conclusions 
(Chapter 7)

Thesis Work

BGLAM  
2D Texture Synthesis 

(Chapter 4)

BGLAM 
Texture Modeling

BGLAM  
3D Texture Synthesis 

(Chapter 5)

Mathematical Framework 
of BGLAM 
(Chapter 3)

BGLAM  
Texture Classification 

(Chapter 6)

Figure 1-4: An overview of the thesis work.

Based on the new theory, in Chapter 4, we develop a new 2D texture-synthesis 

method, which generates synthetic textures by sampling the BGLAM s of input textures. 

We demonstrate that in practice a small set of BGLAMs (e.g. 48 BGLAMs for an image 

of size 6 4 x 6 4 ) calculated from the input texture samples can be used to generate 

textures of arbitrary sizes. However, the actual number of BGLAM s (usually 0 { n ) for an 

input image of size n x n )  used for generating textures is much smaller than the number 

of pixels in the image and thus the computational cost is significantly reduced.

7
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Experiments have shown that a broad range of 2D textures can be successfully 

synthesized using BGLAM s and the synthesis results are comparable to existing 

techniques (e.g. [101, 106, 190]).

In addition to 2D texture analysis and synthesis, in Chapter 5, we demonstrate that 

BGLAMs can be used to generate solid textures, also called 3D textures. A solid texture 

is considered as a block of colored points in 3D space to represent a real-world material, 

for example, a wood trunk. Given one or more input texture samples, our method first 

creates the BGLAM  representations of the input samples and then generates a solid 

texture by sampling the BGLAMs constrained in multiple view directions. Once the solid 

texture is available, any given 3D object can be textured by carving the object out of the 

volumetric data. Our method is fully automatic, requires no user interaction in the 

process, and can generate faithful results over a wide range o f textures. The experimental 

results also show that the new method for 3D textures outperforms previous approaches 

(e.g. [86,188]).

We also define a new distance function based on BGLAMs for measuring the 

similarity between texture images. The distance function satisfies the metric properties 

[160] of non-negativity, symmetry, and triangle inequality. Lurthermore, one unique 

property of the new distance function, which is proved in the thesis, is that it is one-to- 

one. Namely, a zero value of the distance measure will guarantee that the two images are 

identical. Since the distance function is continuous, the one-to-one property implies that 

if the distance of image Y  from image X  gradually changes (i.e. converges) to zero, image 

Y  will gradually get close (i.e. converge) to X.  A distance measure without the one-to-one 

property cannot guarantee this.

8
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Based on the well-defined and one-to-one BGLAM  distance measure, we present 

an original quantitative method to simulate the visual inspection process of determining 

whether or not the synthesized texture is a successful synthesis of the input sample. 

Extensive user studies have shown that if the distance value is below a threshold value 

(0.1 used for the experiments in the thesis), then the output texture is guaranteed to be a 

successful synthesis of the input. For existing texture synthesis techniques, human visual 

inspection is the only effective way to evaluate the results.

Presented in Chapter 6 of the thesis is a BGLAM -based method for texture image 

classification. Given an unseen texture image, our approach classifies it into one of the 

pre-leamed classes. There are two stages in our algorithm: a learning stage and a 

classification stage. In the first stage, models of texture classes are learned from the 

BGLAMs of training examples using the Support Vector M achine (SVM), and in the 

second stage, a given texture image is classified into one of the pre-leam ed classes, to 

which the input image is most similar. W e compare our approach experimentally with 

existing approaches by performing texture classification over the Brodatz textures, the 

Vistex textures, and the All Sky Image (ASI) textures. For both the Brodatz database and 

the Vistex database, the experimental results show that the proposed new approach 

performs better than existing approaches with an average success classification rate o f 

99% vs 87% using other approaches. For the ASI database, the results have shown that 

our approach significantly outperforms existing approaches with an average successful 

rate of 97% vs 66%.

9
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1.5 Summary of Contributions

The main contributions of this thesis work are as follows:

1. The mathematical theory for BGLAMs. It is proved that BGLAMs form the 

basis of GLAMs, and that two images of the same size are identical if and 

only if their corresponding independent BGLAMs are the same. Therefore, an 

image can be uniquely represented by its BGLAMs (Chapter 3).

2. A new distance function based on BGLAMs for measuring texture similarity. 

In addition to the metric properties, the BGLAM distance function is one-to- 

one. This one-to-one property implies that a zero value of the distance 

measure between two images guarantees that they are identical. W ith this one- 

to-one property, we demonstrate that the new distance function can be used 

for evaluating texture synthesis results quantitatively. W e have shown that if 

the distance value is below a threshold value, then the output texture is 

guaranteed to be a successful synthesis of the input. For existing texture 

synthesis techniques, human visual inspection is the only effective way to 

evaluate the synthesis results (in Chapter 3 and 4).

3. A new BGLAM-based method for 2D texture analysis and synthesis. For a 

given input texture sample, synthetic 2D textures can be generated by 

sampling a small set of BGLAMs (e.g. 64 BGLAMs for an image of size 

6 4 x 6 4 )  that are calculated from the input (Chapter 4).

4. An original BGLAM-based algorithm for synthesizing solid (i.e. 3D) textures 

from one or more input samples. Our method generates solid textures by

10
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sampling the BGLAMs of the input samples constrained in multiple view 

directions (Chapter 5).

5. A BGLAM -based method for texture image classification. W e test our method 

by performing image classification on the Brodatz database and the Vistex 

database. For real application, we have successfully applied our method to 

classifying ASI (All Sky Imager) texture images (Chapter 6).

1.6 Outline of the Thesis

This thesis is organized as shown in Figure 1-4. Following the Introduction, 

Chapter 2 reviews the previous works in the field of texture modeling. Chapter 3 presents 

the BGLAM  theory and its mathematical proofs. Chapter 4 describes 2D texture 

synthesis and the evaluation of synthesis results using BGLAMs; Chapter 5 describes 3D 

texture synthesis using BGLAMs and its evaluation. In Chapter 6, we present the 

BGLAM-based method for texture classification. Conclusions are given in Chapter 7.

11
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Chapter 2 

Previous Work

In this chapter, we review various techniques in texture modeling. For the ease of 

discussion, we divide existing techniques into two categories: 2D texture modeling and 

3D texture modeling. In 2D texture modeling, we describe the M RF (Markov Random 

Field) texture models [17, 32, 38, 39, 63, 64], the pixel-based sampling approach [49, 81, 

190], the patch-based sampling approach [50, 101, 106], the feature matching approach 

[6, 35, 143, 167], the cooccurrence matrix approach [21, 24, 34, 67, 75, 112, 160, 209], 

and stmctural texture modeling [74, 75, 92, 104, 110, 206]. In 3D texture modeling, we 

discuss techniques in texture mapping [10, 79, 80], procedural texturing [28, 47, 132, 

134], image-based surface texturing [179, 191, 201, 204], and image-based solid 

texturing [42, 43, 81, 86, 103, 188]. Figure 2-1 gives an overview of the taxonomy of the 

existing techniques in texture modeling that are discussed in the rest of this chapter.

2.1 2D Texture Modeling

In 2D texture analysis and synthesis, textures are first analyzed using various 

techniques and important information of textures, called texture features, are 

characterized [77, 178], Based on the information obtained in the analysis phase, 

synthetic 2D textures are then generated using various sampling techniques such as 

stochastic relaxation [63], nearest neighborhood searching [49, 189], etc. As shown in 

Figure 2-1, techniques in 2D texture analysis and synthesis are classified into six
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categories: the M RF (Markov Random Field) texture models, the pixel-based sampling 

approach, the patch-based sampling approach, the featured-based matching approach, the 

cooccurrence matrix approach, and structural texture modeling, which are described in 

the following subsections.

MRF Texture
Models

Pixel-Based
Sampling

Patch-Based

2D Texture
Sampling

Modeling Feature matching
Approach

Cooccurrence
Matrix Approach

Structural Texture
Modeling

Texture
Modeling

Texture
Mapping

Procedural

3D Texture
Texturing

Modeling Image-Based
Surface Texturing

Image-Based
Solid Texturing

Figure 2-1: Taxonomy of the various existing techniques in texture modeling.
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2.1.1 MRF Texture Models

The M RF models are important statistical techniques in texture modeling. The 

underlying theory of M RF texture models is that the information at a pixel location 

depends on the information of its neighboring pixels. Earlier research study on M RF 

includes the Ising models [98, 136, 171], the auto models [17, 25, 32], the G RF (Gibbs 

Random Field) models [40, 62, 63], etc. Recent work in this area includes the M RF 

model for color texture image segmentation [37, 130], the nonparametric multiscale M RF 

model [127, 129], the strong M RF model [126], and the advanced Gaussian M RF model 

for anisotropic textures [38, 39], There are also variations of MRF texture models 

proposed recently [49, 141, 190, 208],

In the M RF models, an image is represented as a random field X  defined on a 

finite rectangular lattice S. Let X s be a random variable at site s , then the random fie ld  X

on S is the set o f all random variables X s , i.e. X  = [ Z s | s e  S } . The set o f all possible 

values of X s , denoted by A s , is called the state space of s. In general, a common discrete 

state space for all s is assumed, i.e. A s -  A -  [0,1,...,255} for all s & S . The configuration  

space on X , denoted by £ 2 , is defined as £2 -  ]~ [ e5 As , and a particular configuration 

(i.e. an observed sample image) x  -  (xs) seS , denoted by X  -  x  , is called a realization of 

the random field X.  The jo in t probability on £2 is denoted by p  and the local conditional 

probability density function  (LCPDF) at site s e  S , denoted by p (x s) , is given by 

p (x s) = p ( X s = x^ | X r = x r, r  ± s ) , which says that the probability of site s having 

pixel value ,rv e  As depends on the pixel values of its neighboring pixels.

14
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The neighborhood  at site s is given by N d = { re  5 |  0 < | r  — ^ |2< d ) , where d  is 

an integer, which determines the size of the neighborhood. The set of all neighborhoods 

N d is called a neighborhood system  on S, which is denoted by N  = { N d | s e  5} (or 

N  -  { Ns | s e  5} if the value of d  is clear in the context). The neighborhood system has 

two important properties: for any s , t e  S , (1) s<£ N d , and (2) s e  N?  if and only if 

t e  N d , where property (1) says that site s is excluded from its neighborhood and 

property (2) implies that the neighborhood is symmetric. In the next chapter, it is shown 

that this symmetric condition can be relaxed to include asymmetric neighborhood 

systems for modeling anisotropic textures.

M athematically, an MRF, which is defined as a random field X  = { X S | s e  5} 

with a joint probability function p  defined on it, has the following three properties:

( i i i )p(xs) = p ( X s - x s \ X r = x r, r e  N d) , \ f x e  Q .,\/se  S 

Properties (0  and (ii) ensure that p  is a probability distribution with a positive value for 

any configuration x e f i ,  Property (iii) is defined on a neighborhood system, which 

ensures that the random field is an MRF, i.e. the LCPDF of a given site s in a given 

image x  can be calculated using the information of its neighboring pixels.

Based on the equivalence between the M RF and Gibbs distribution established by 

the well-known Hammersley-Clifford Theorem [9]: Given any observed image x , the 

probability p ( x )  in Eq. 2.1 can be expressed in terms of Gibbs energy as follows:

(0  p(x)  = p ( X  = x) > 0 ,V x e  £2

(2 .1)

1 ( 1  ) 
p ( x )  = —e x p  E(x )  , ( 2 .2 )
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where E { x ) is the Gibbs energy (simply called energy function), which is model 

dependent [98, 127], T  is the temperature, and Z is the partition function (i.e. the 

normalizing constant).

[Parametric MRF Models] In the parametric M RF (PMRF) models, parameters 

must be estimated for characterizing a given input texture. M any PMRF texture models 

have been proposed in the literature (see [98, 127] for a complete survey). The simplest 

and earliest PM RF models are the auto-models (e.g. the Ising model [136] and the auto­

binomial model [32]), in which the energy function E  is dependent only on the cliques 

(see [32, 62, 63, 78] for the definition of cliques) that contain no more than two sites:

seS  seS r e v ,

where V / s  and Vjr ’s are the potentials by which model parameters are incorporated. To

estimate model parameters, the maximum likelihood estimator [165] can be used. Once 

model parameters are estimated, stochastic relaxation such as the Metropolis algorithm, 

the Gibbs sampler, or the ICM  (Iterative Conditional Modes) algorithm [63, 127] can be 

used to generate a synthesized texture from  a given texture sample.

The types of textures that the auto-models can represent are severely limited

because of the following two problems [129, 208]: 1) the cliques are too small to capture

texture general features, and 2) only the first-order and second-order statistics (e.g. mean

and covariance) are specified on the cliques. M any textures have local structures much

larger than three or four pixels, have high-order statistics in addition to low-order

statistics (Julesz [93] hypothesized that third- or higher-order statistics, e.g. skewnesses,

kurtosises, are required to model natural textures), and are strongly non-Gaussian in most

cases. One possible solution is to increase both the size of the cliques and the order of the
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statistics. However, even with a m odest neighborhood (e.g. 13 x 13), the number of 

parameters will be too large for any practical inference [208].

To address the above problems, Zhu et al. propose the FRAM E (Filters, Random 

Fields and M aximum Entropy) model [208], which incorporates filtering theory into the 

M RF texture modeling. For a given texture X,  the FRAME model assumes that there 

exists a true joint probability density f ( X )  over the image space, which characterizes 

the given texture. Therefore, the objective of texture modeling is to make inference about 

the joint probability density f { X ) . Texture synthesis in the FRAM E model is carried out 

as follows. Firstly, a set of filters is selected from a predefined filter database to capture 

the texture features, and these filters are applied to the observed im age X  to get a set of 

filtered images. The histograms o f the filtered images, which estimate the marginal 

distributions of the jo int probability density f ( X ) ,  are then extracted, and this step is 

called feature extraction. Secondly, the maximum entropy principle is used to derive a 

probability distribution p ( X )  that has the same marginal distributions as that calculated 

in the feature extraction step, and the derived probability distribution p ( X )  is taken as an 

estimate of the true joint probability f ( X ) .  Finally, the Gibbs sampler [63, 127] is 

employed to sample a synthesized texture from the estimated probability distribution 

p { X ) . The algorithm of the FRAM E model for texture synthesis is summarized below:

1. Input: a texture image X.

2. Select a set of K  filters F  = { f i 11 < i < K } .

3. Compute the histograms of the filtered images (i.e. the marginal distributions) of 

the input X: { H i (X ) 11 < i < K } , where H t ( X )  = {hi} 11 < j  < L) is the histogram
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of the filtered image obtained by applying the filter f i to the input X, where L  is 

total number of gray levels (e.g. 256),

4. Let A = {Ai \ l < i < K } ,  where At. = {Aif \ 1 < j  < L ) , which are called the

Lagrange multipliers. Initialize Ai } 0 , i -  1,2, . . . ,K  and j  = l,2 ,. .. ,L .

5. Initialize the output Y  as a uniform white noise image with L  gray levels.

K L

6. Repeat step a-d until (hij( X ) - h ij(Y) )2 < £ , where e e ( 0 , l )  is a user
i= i j= i

specified parameter:

a. Compute the histograms of the filtered images of the output Y: 

{ H t(Y)  11 < i < AT}.

b. Update A by — L = H i( Y ) - H i ( X ) , 1 < i < K .
dt

c. Calculate the estimated probability distribution using

(  K
p( Y , A )  = — — exp

V i=i
, where the operator •  denotes dot

product of two vectors, and Z ( A ) is the normalization constant,

d. Use Gibbs sampler to update the output Y according to the estimated 

probability distribution p ( Y , A ) obtained in the previous step.

For a given type of texture, in step 2 of the above algorithm, a set of filters has to 

be correctly selected to represent the given texture. Zhu et al. give a greedy algorithm for 

filter selection [208], In the FRAM E model, every filter introduces the same number of 

parameters regardless of its size. In other words, the number of parameters is independent
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of the neighborhood size; while in the auto-models, the number of parameters increases 

exponentially with respect to the neighborhood size. Therefore, the FRAME model 

makes the parameter estimation feasible for large size (e.g. 33 x 33) filters. However, 

because of the Gibbs sampler and the iterative numerical approximation of Lagrange 

multipliers in Step 6b, the FRAM E model is still very slow. The expensive computation 

cost can be reduced by M onte Carlo Markov Chain methods [207], but the quality of the 

synthesis results is not guaranteed.

[Non-Parametric MRF Models] As suggested by Julesz [93], higher-order 

statistics are required to model natural textures. However, it is very difficult for the 

conventional parametric M RF models (e.g. auto-models) to incorporate higher-order 

statistics because of the number of parameters required. As described before, Zhu et al. 

[208] have proposed a solution in their FRAM E model by incorporating filter responses 

into the MRF models. An alternative solution is to use non-parametric MRF models [129, 

142].

In the non-parametric M RF model proposed by Popat and Picard [142], the high- 

order statistical information (called the multi-dimensional histogram) of a given texture is 

captured by kernel estimation and cluster analysis. The histogram data is clustered by the 

LBG (Linde, Buzo and Gray) algorithm [65, 107] for vector quantization, and each 

cluster is estimated by a standard multi-dimensional Gaussian density. One limitation of 

their method is that it can only model up to 14-dimensional histograms and higher 

dimensional histograms cannot be inferred well.
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To overcome the problem of Popat and Picard’s model, Paget proposes a 

noncausal non-parametric multiscale MRF model [129], in which large m ulti­

dimensional histograms (e.g. 81 dimensions) can be used to represent a texture. Instead of 

modeling a cluster of points in the space of a multi-dimensional histogram by a Gaussian 

density, he models each point in the space with a standard multi-dimensional Gaussian 

density using the Parzen density estimation technique [45], Recently, the above Paget’s 

texture model is extended to the strong MRF model (non-parametric) [126], which can be 

used not only for texture synthesis but also for texture segmentation. Experimental results 

have shown that Paget’s models can generate good results for a wide range of textures, 

which includes stochastic to structured textures. However, there are two limitations in 

Paget’s models. The first is that the Gaussian density by Parzen density estimation has 

smoothing effects to the output textures. The second is that the model is computationally 

expensive as discussed in Paget’s thesis [127],

2.1.2 Pixel-Based Sampling Approach

In all the M RF models discussed before, the joint conditional probability 

distributions of textures are first estimated from the input samples and synthesized 

textures are generated by sampling the estimated probability distributions. In general, 

these models are very slow because of the long iterative sampling and the expensive 

calculation of probability distributions.

To avoid explicit probability construction and sampling, Efros and Leung [49] 

propose a pixel-based non-probabilistic sampling technique, in which the estimation of 

the conditional probability distribution of a pixel on its neighbors is approximated by the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nearest neighborhood search. Given an input texture image, a new texture image is 

synthesized one pixel at a time. To synthesize a pixel p  in the output image, Efros and 

Leung’s algorithm first finds a candidate set C of all the pixels in the sample image 

whose neighborhoods are similar to that of pixel p,  and then randomly selects one pixel 

from C and copies its color to pixel p.

However, Efros and Leung’s algorithm is still slow for any practical application. 

Wei and Levoy [190] propose a fast texture synthesis algorithm using a fixed-size 

neighborhood searching and tree-structured vector quantization (TSVQ). Their algorithm 

can also perform texture synthesis in a multiresolution fashion. Both Efros & Leung’s 

algorithm and W ei & Levoy’s algorithm produce good results for a wide range of 

textures.

2.1.3 Patch-Based Sampling Approach

Texture synthesis performed at the pixel level o f images, in general, is slow. Lor 

real time applications, the pixel based approaches [49, 81, 208] are impractical unless the 

accelerations of the algorithms are available (e.g. [3, 190]). A solution to this problem is 

to use patch based approaches [50, 101, 106], The basic idea of patch based approaches is 

to synthesize a texture image by copying small patches from the input texture image. 

Ligure 2-2 gives an example of a simple patch based approach, in which a small patch is 

randomly chosen from the input and copied into the output. The final output texture 

image is generated by tiling together the small patches that are randomly chosen from the 

input. The problem of this simple method is that there are obvious seams between the 

tiled patches (see Ligure 2-2). Therefore, the main goal of the patch based approaches is
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to find techniques to remove or reduce the visible seams between patches when they are 

placed into the output. Three recent patch based techniques: image quilting [50], graphcut 

textures [101], and Liang’s approach [106], are discussed below.

[Image Quilting] As a patch based approach for texture synthesis, image quilting 

[50] uses the overlap constraints between neighboring patches and the minimum error 

path in the overlap region of two patches to remove or reduce the visible seams in the 

output images. The basic idea o f image quilting works as follows.

Small patch

Random placement
Input texture o f patches Output

Figure 2-2: An example o f a simple patch based approach.

In image quilting [50], neighboring patches, i.e. patches that meet together in the 

output, are first placed together with overlap constraints. To insert a new patch into the 

output image, instead of choosing the patch randomly from the input, the algorithm first 

searches among all the available patches for a patch that will have the smallest visible 

difference in the overlap region where the new patch meets with the old patches in the 

output. The purpose o f this step is to incorporate the overlap constraints to make sure that
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the inserted patch agrees with its neighboring patches along the overlap region as much 

as possible.

Small patch

Overlap constraint and
Input texture simple boundary Output

Figure 2-3: An example o f synthesis results by selecting a new patch (e.g. B2) with the 

smallest visible difference to the old patches (e.g. B l) in the overlap region and using a 

simple boundary between patches with overlap. The simple boundary is shown as a solid 

line between two dashed lines.

Small patch

Input texture
Minimum error path 
between the overlap Output

Figure 2-4: An example of synthesis results using the minimum error path (shown as a 

solid curve between two dashed lines) as the boundary between B 1 and B2.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Once two patches are placed together with overlap, the algorithm then decide a 

boundary where the two patches can separate from each other (i.e. the boundary that 

determines from which patch a pixel in the overlap region comes from). A simple 

solution is to place the boundary in the middle of the overlap region, which unfortunately 

will still cause noticeable edges between patches as shown in Figure 2-3. To reduce the 

visible edges as much as possible, a minimum error path (see Figure 2-4) in the overlap 

region is used as the boundary, which can be efficiently calculated with dynamic 

programming [50].

In general, the size of the patch is difficult to be predetermined and may be 

different for different types of input textures [50], The criterion is that the patch should be 

big enough to capture the relevant structures of the given texture. In the image quilting 

paper [50], the patch size is left as a user controlled parameter and the size of the overlap 

is 1/6 of the patch size for all o f the experimental results. The image quilting algorithm is 

summarized below:

1. Go through the output image in raster scan order step by step. At each step, a new 

patch is inserted.

2. At each location where a new patch is inserted, search the input texture for a set 

o f candidate patches that satisfy the overlap constraints within some error 

tolerance.

3. Randomly choose one patch from the candidate set and perform the following 

steps.

1) Use dynamic programming to compute the minimum error path along the 

overlap region between the newly chosen patch and the old patches.
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2) Make the minimum error path as the boundary o f the new patch.

3) Paste the new patch into the output texture.

4. Repeat Step 2 and 3 until the output texture is finished:

[G raphcut Textures] Although the image quilting algorithm [50] can produce 

good results for a broad range o f textures, seams between patches in the output texture 

may still be quite noticeable for some types o f textures (see Figure 2-5). To solve this

problem, the algorithm can be modified to remember the old seams between the patches 

that are already inserted into the output image during the synthesis process, and to further 

reduce the old visible seams in the output texture whenever necessary. Since dynamic 

programming used in the image quilting algorithm [50] cannot keep track o f the seams 

between existing patches in the output, a new optimization technique should be deployed 

so that the output results can be refined as required. In graphcut textures [101], Kwatra et 

al. use graph cuts [13, 184] to refine the output texture as well as to find the minimum 

error paths between patches that have overlaps with each other. The basic idea of 

graphcut textures [101] is described as follows.

Input Output

Figure 2-5: An example of visible seams in the output using the image quilting algorithm.
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The approach is based on the optimization techniques of graph cuts [13, 184], 

which have become popular recently for efficiently solving the labeling problems [184] 

in computer vision and computer graphics. In a labeling problem, a set of sites P  (e.g. the 

set of all pixels in an image) and a set of labels L  (e.g. the set of all possible gray levels 

for a pixel) are given, the objective is to find the global (or nearly global) optimal 

labeling /  (i.e. a map from P  to L ) which minimizes the energy of /. In general, the 

labeling problem is intractable. For example, for an image of size 3 2 x 3 2  (i.e. 1024 sites) 

with 256 gray levels (i.e. 256 labels) for each pixel, there are 2561024 labelings.

Recent research works have shown that graph cuts can be used to efficiently find 

the global or nearly global optimal solutions for the labeling problems with energy 

functions that incorporate everywhere smooth, piecewise constant, and piecewise smooth 

prior constraints [13, 184], The basic idea o f using graph cuts for solving a labeling 

problem is to construct a weighted graph in a way such that there is a one-to-one 

correspondence between the set of all cuts of certain type in the graph (e.g. the set o f all 

elementary cuts in an a -e x p a n s io n  graph [13, 184]) and the set of all labelings. W ith 

the one-to-one correspondence established between the set of graph cuts and the set of 

labelings, the labeling problem is converted to finding the min-cost cut in the graph [13, 

184], In graphcut textures [101], a specific type of a -e x p a n s io n  graph, which is 

discussed in details in a separate technical report [152], is built to find the minimum error 

cut (i.e. path) between the existing patches in the output and the new patch to be inserted 

into the output.
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The technique of graphcut textures [101] is more general than image quilting [50], 

In fact, the image quilting algorithm can be carried out in a different way by replacing the 

dynamic programming with the standard graph-cuts techniques. Suppose a new patch B  is 

inserted into the output that overlaps with an existing patch A, a simple graph as shown in 

Figure 2-6 can be constructed as follows. The existing patch in the output is represented 

by the source node (i.e. the node with label “Patch A”) in the left, and the new patch is 

represented by the sink node (i.e. the node with label “Patch B”) in the right. Both the 

source node and the sink node are called terminal nodes. For simplicity reasons, it is 

assumed that there are only 9 pixels in the overlap region between the new patch B  and 

the existing patch A. Suppose that 4-nearest-neighbor interaction is assumed in graphcut 

textures [101], then each node has edges connecting its left, right, top, and bottom nodes. 

For example, in Figure 2-6, node 5 has edges connecting to node 2, 4, 6, and 8, 

respectively.

Overlap region

Patch
A

Patch B

Minimum error path

Patch
A

M in-cost cut

Patch B

Figure 2-6: An example of graph formulation of finding the minimum error path.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For each edge e in the overlap region connecting neighboring nodes, p  and q , a 

weighted cost w ( p , q , A , B ) of e is defined as:

w ( p , q , A , B )  =| A (p) -  B(p)  | + | A(q) -  B{q) | , (2.3)

where A (p) is the gray level of pixel p  from patch A, and B(p)  is the gray level of p  

from patch B.  If an edge between a terminal node (A or B ) and a non-terminal node is 

assigned an infinite cost, the non-terminal node will be insisted to come from the patch 

represented by the terminal node. For example, in Figure 2-6, if  both edges eAl and e8B

have oo costs, then node 1 retains its old patch label (i.e. patch A) and node 8 is assigned 

to the new patch B. The minimum error path calculated by dynamic programming in 

image quilting [50] is equivalent to the min-cost cut in the graph shown in Figure 2-6, 

which can be calculated by standard graph-cuts techniques [163],

For a given input texture image, the objective is to generate an output texture 

image by iteratively copying small patches from the input to the output so that the visible 

seams are as few or as invisible as possible. The first patch is copied at random into the 

output. Now, suppose several patches have already been placed into the output, and a 

new patch will be inserted into a region where multiple patches already meet. There are 

seams (referred as old seams later) along the border between old patches, and in image 

quilting algorithm [50], the old seams are not taken into account as constraints when 

laying down a new patch into the output texture. Therefore, the graph shown in Figure 

2-6 cannot be used to incorporate old-seam constraints. In other words, once the old 

seams are created, they cannot be reduced later in the image quilting algorithm.
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To incorporate the old-seam constraints, a -e x p a n s io n  graphs [13, 184] are 

constructed in graphcut textures. As illustrated in Figure 2-7, the old patches, which are 

already placed in the output, are represented by the source node with label “Existing 

Patches A,” and the new patch to be inserted is represented by the sink node with label 

“New Patch 5 .” For each node p  in the overlap region, let A p represent the particular

patch that pixel p  comes from. For each pair o f neighboring pixels p  and q, if A p = A q

(i.e. p  and q have the same initial patch label), then there is no old seam between p  and q, 

according to the properties of a -e x p a n s io n  graphs [13, 184], a weight (i.e. cost) of 

w(p,  q, A p, B ) given by Eq. 2.3 is assigned to edge epq.

Existing 
Patches A

Overlap region

Existing V New  
Patches A  1 Patch B

Old cut IS ew cut

New
Pak h B
M I B I B M il

New cut Old cut

Figure 2-7: The a  -  expansion graph constructed for graphcut textures.
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For each pair of neighboring pixels p  and q in the overlap region, if A p ^  A q (i.e.

p  and q come from different existing patches), then there is an old seam between p  and q 

and a seam node 5 is created between p  and q. According to the fundamental theory on 

a -e x p a n s io n  graphs [13, 184], a triple of edges, eps, esq and esB , are created at s each

with an appropriate weight assigned. The weights for edge eps, esq, and esB are

w(p,q,  A p, B ) ,  w ( p , q , B , A q) , and w(p,q ,  A p, A q) ,  respectively.

For example, in Figure 2-7, there is no old seam between node 2 and 5, which 

implies that pixel 2 and 5 come from  the same old patch A  (i.e. A 2 = As = A ) , the weight

for edge e25 is w(2,5, A ,B )= \ A(2) -  B( 2) |+ | A(5) -  B(5) | . On the other hand, since there 

is an old seam between node 1 and 4, thus a seam node s, is created between 1 and 4. In 

addition, the seam node s1 is connected to the sink node B  by a weighted edge, whose 

weight is the old matching cost [101] when the old seam between node 1 and 4 is created, 

which is given by w(l,4, A ,,A4) (see Eq. 2.3). The edge between 1 and s1 is assigned a 

weight w(l,4,A{, B) ,  which measures the matching cost when pixel 4 comes from the 

new patch B. Similarly, the edge between sr and 4 is assigned a weight w (l,4,B ,A 4) ,  

which measures the matching cost when pixel 1 comes from the new patch B.

Kwatra et al. have argued in their paper [101] that in a graph constructed in such a 

way as shown in Figure 2-7, the min-cost cut C can cut at most one of the three edges 

created at any seam node and this is true only if the cost measure defined by Eq. 2.3 is 

metric [184], If none of the three edges at a seam node is cut by the min-cost cut C, then 

the old seam is removed. Otherwise, if the edge between a seam node s and the new patch 

node is cut by the min-cost cut, then the old seam at s remains. If the edge between a
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seam node (e.g. s3 in Figure 2-7) and one of its adjacent nodes (e.g. 5 in Figure 2-7) is 

cut by the min-cost cut, then the old seam at seam node is removed and a new seam is 

introduced at the same edge position where the old seam passes through (i.e. the old seam 

is overwritten by the new seam). Finally, if an edge without a seam node is cut by the 

min-cost cut, then a new seam is introduced at that edge.

For example, in the graph shown in Figure 2-7, the new cut in blue color, denoted 

by C, is the min-cost cut calculated using graph cuts techniques [13, 184], At seam node 

s l , since C cuts edge e B , the old seam at 5; remains. At seam node s2 , the same

situation as at Sj happens, thus the old seam at s2 also remains. At s3, C cuts the edge 

between 5 and ,s\, thus the seam at ,v3 is replaced by a new seam at the same location. At 

,v4 , the new cut does not cut any of the three edges from it, thus the old seam at s4 is 

removed. Finally, new seams are introduced between node 4 and 7, 5 and 6, and 3 and 6 

since the new cut passes through the edges between them.

In summary, the discussion on the theoretic side of the graph constructed for the 

graphcut textures is very weak, and few information is provided in the original paper 

[101] to convince the reader the correctness of the graph’s construction. After carefully 

reading the paper, the reader may still not sure how the graph constructed in the paper 

(e.g. Figure 3 in [101]) fits into the general framework of a -e x p a n s io n  graphs [13, 

184], There are, for example, some important theoretical issues on the graph used in the 

paper remains unanswered, which are listed below:

1. W hat properties a cut C has? For example, in the graph shown in Figure 2-7, can a 

cut C cuts edge en  ? W hat edges it can cut and what edges it cannot cut?
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2. Given a cut C in the graph, how to define the corresponding labeling f c ?

3. Why a min-cost cut C can cut at most one of the three edges at any seam node? Is 

this true for any cut C in the graph?

4. In general, an a  — expansion graph has a set of elementary cuts, which has a one- 

to-one correspondence to the set o f all labelings within one a  -  expansion of the 

initial labeling, and this is the key to solving a labeling problem using 

a -e x p a n s io n  graphs [13, 184]. How is an elementary cut defined in the graph 

used in the graphcut textures paper? How can the one-to-one correspondence be 

established?

In a separate technical report [150], we have addressed the above important 

theoretic issues under the framework o f a -e x p a n s io n  graphs [13, 184]. W e have 

developed the concept of complete a  -  expansion  graphs in 2D to give the theory support 

and mathematical proofs of the graphcut textures [101].

[Liang e t a l.’s A pproach] Concurrent to the work of image quilting [50], Liang et 

al. propose a patch-based sampling technique for real-time texture synthesis [106], The 

general algorithm of their approach is similar to that of the image quilting approach. The 

only difference is that when handling overlaps between patches, Liang et al.’s approach 

uses a blending technique, called feathering [176], to give a smooth transition between 

textures in the overlap regions, while Efros and Freem an’s approach uses dynamic 

programming to calculate a minimum error boundary cut to reduce the visible seams 

between textures in the overlap region as much as possible. Liang et al.’s patch-based 

sampling algorithm for texture synthesis is summarized below:
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1. Randomly choose a texture patch B0 from the input texture X. Paste B0 into the 

output Y. Set k = 1.

2. For any new patch Bk to be inserted into the output Y, let B  = {B0,...,Bk_y} be 

the texture patches already inserted into Y, E kout be the boundary zone of B  that 

will overlap with the boundary zone E B of Bk (see Figure 2-8). Find all texture 

patches in the input X  whose boundary zones match E kout, and let y/(B)  be the set 

of all such texture patches, i.e.:

iff(B) = { B \ B  isa  patch in X  such that d  (B , E kut) < £ } , (2.4)

3. If y/{B) is empty, set y/(B)  = {B^ }, where B ^ a is chosen from X  such that its 

boundary zone is the closest to E kut.

4. Randomly choose an element from y/{B)  as the new patch Bk . Paste Bk into the

output Y. Set k  = k  +1 .

5. Repeat steps 2, 3, and 4 until the output Y  is finished.

6. Perform blending in the boundary zones using the feathering technique [176].

An illustration of the above algorithm is shown in Figure 2-8. The gray area is the 

already synthesized region in the output. The areas in dashed lines are the boundary 

zones. Figure 2-8 (a) shows that when a new patch E B is inserted, the boundary zones

E kut and E B should match. Figure 2-8 (b) is the configuration for boundary zone

matching in the beginning of texture synthesis. Figure 2-8 (c) is the configuration in the 

middle. And, Figure 2-8 (d) is the configuration in the end. The overlapping boundary
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zones are blended together by using the feathering technique [176], In Eq. 2.4, the

param eters is controlled by the user, and d ( E B , E kout) is given by:

1/ 2

(2.5)

where M  is the number of pixels in the boundary zone, and p { (EB ) and p t (Eoul) are the 

color values of the i th pixel in the boundary zones E B and E kut, respectively.

'out

\  /T I ,---

(a)

blending

blending

V :

(b)

i 1 B>
e ~-----^  i----------

a*

blending

(c) (d)
Figure 2-8: An illustration of the patch-based sampling approach for texture synthesis by 

Liang et al.’s approach.

The calculation of the set ijJ(B) in step 2 of the algorithm is essentially an ANN 

(approximate nearest neighbors) search in high-dimensional space, and an efficient 

optimization technique called the quadtree pyramid data structure is employed for the 

search. To further speed up the algorithm, PCA (Principal Component Analysis) [91] can 

be used to reduce the dimension of the search space. This is done by first finding the
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eigenvalues and eigenvectors of the covariance matrix of the data points in the search 

space. The original data points are then projected into the subspace spanned by the 

eigenvectors of the largest eigenvalues that contains the main variations of the data 

distribution. The dimension of the subspace, where the search is carried out, is much 

smaller than that of the original search space (see [106] for the details).

Before ending this section, we give some comments on patch-based techniques 

for texture synthesis. In general, they are much faster than pixel-based techniques and 

thus the algorithms can run in real time. However, there are several challenging issues 

that need further research. The first is how the size of patches used during synthesis 

affects the results and how to determine an optimal patch size for a given input texture 

image. Currently, all techniques use a fixed size of patches (e.g. 16x16 or 32x32). The 

second is how to choose an optimal size between overlap regions, and this problem is 

related to and dependent on the first problem. The last is that sometimes even a m inim um 

error path is found between two merging patches, there are still visible seams at the 

boundary of the patches. The cause of the problem is due to the inaccurate similarity 

measure based on the SSD (sum of square differences) of pixel color values. W u and Yu 

[200] have addressed this problem and give a solution based on structural texture feature 

matching and deformation. Their approach has achieved some degree of success.

2.1.4 Feature Matching Approach

In this approach, textures are modeled as a set of features, and synthesized 

textures are generated by matching the features computed from a given input texture. 

Techniques in this approach includes the multiresolution histogram matching [81], the
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feature-based pyramid sampling [35], the joint statistics matching o f complex wavelet 

coefficients [143, 167], and the statistical learning based method [6]. These algorithms 

are usually faster than the MRP models.

In Heeger and Bergen’s method [81], new textures are synthesized by coercing a 

white noise image into a given sample texture by matching the histograms o f filter 

responses at different spatial scales and orientations. Given a texture image X,  their 

algorithm first decomposes X  into a steerable pyramid P ( X )  [166]), which is a set of 

images (called pyramid subbands) filtered from the input image at different spatial scales 

and orientations. Then, starting from a random noise image Y, the algorithm modifies 

each pyramid subband in P (Y ) so that its histogram matches the histogram o f the 

corresponding pyramid subband in P ( X ) . The above histogram matching process is 

repeated several times (e.g. 5 times or so reported in the original paper [81]) until there is 

no further improvement in the quality o f the output.

Figure 2-9: Examples of texture synthesis using Heeger and Bergen’s algorithm. In each 

pair, the left image is the input and the right image is the synthesized texture. Texture in 

(a) is an example o f success, and texture in (b) a failure.
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Heeger and Bergen technique [81] works well for highly stochastic textures but 

fails on some structural textures such as bricks (see Figure 2-9) since histograms are 

insufficient to differentiate textures [143, 144], De Bonet [35] presents an approach to 

synthesize new textures by sampling from a given input texture conditioned on the local 

feature responses (called local parent structures in the original paper [35]) at different 

spatial scales. De Bonet’s algorithm also synthesizes textures in a multiresolution 

fashion, which is similar to the Heeger and Bergen algorithm [81]. However, instead of 

matching the global histogram at each pyramid subband between the output and the input, 

De Bonet’s algorithm tries to match the local features of the corresponding pixels in the 

output and input images. As a result, his technique works better than Heeger and 

Bergen’s histogram-matching technique [81] on structural textures, and thus on a wider 

range of textures. However, if the input texture is not tileable, there will be boundary 

artifacts in the output.

Using statistical learning, Bar-Joseph et al. introduce a more general model, 

which can be viewed as an extension of De Bonet’s approach [35]. Instead of operating 

on a single input texture sample, which is the case of De Bonet’s algorithm, Bar-Joseph’s 

algorithm takes multiple texture samples as input and synthesizes a new texture from a 

mutual source of input samples. Another significant improvement is that Bar-Joseph’s 

model can be used to synthesize time-varying textures (i.e. texture movies) in addition to 

static textures.

The general algorithm of Bar-Joseph’s approach is as follows. Given k n- 

dimensional signals of input texture samples, the algorithm constructs a hierarchical 

multiresolution analysis (MRA) of each signal sample using wavelet transformations [33,
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166], Each M RA is represented as a 2" —ary tree. It is assumed that all the paths in a 

particular tree are realizations of the same stochastic process. The algorithm generates a 

new random M RA tree by statistically merging the M RA trees of the input samples. 

Finally, the algorithm transforms the newly generated M RA back into an n-dimensional 

signal by applying a process inverse to the MRA. The new n-dimensional signal is used 

to produce a synthesized texture that is statistically and perceptually similar to each of the 

input samples, but at the same time different from them.

Another research work on texture synthesis using feature matching is done by 

Simoncelli and Portilla [143, 167]. Their approach synthesizes new textures by matching 

the jo in t statistics of the steerable pyramids of the input and output images. The joint 

statistics used in their model include the marginal statistics, the wavelet coefficient 

correlations, the magnitude correlations, and the cross-scale phase statistics. The 

matching between the joint statistics is done by a greedy entropy-minimization approach 

similar to that of Zhu et al.’s approach [208]. Simoncelli and Portilla’s algorithm can also 

apply to multiple input samples to generate texture mixtures. In general, Simoncelli and 

Portilla’s model can successfully capture global textural structures but fails to preserve 

local patterns.

2.1.5 Cooccurrence Matrix Approach

Cooccurrence matrices have been used as a powerful tool for texture analysis, 

synthesis, segmentation and classification. Various texture analysis and synthesis 

approaches based on cooccurrence matrices have been proposed in the literature [21, 23, 

24, 31, 34, 51, 55, 58, 59, 67, 75, 76, 90, 112, 131, 137], Since cooccurrence matrices are
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normally calculated by considering pixel gray level values, models based on 

cooccurrence matrices are generally called the GLCM (Gray Level Cooccurrence M atrix) 

models [77]. The basic idea of texture analysis and synthesis using the GLCM models is 

described in this subsection. For detailed information on this, the reader is referred to [31, 

111

For a given texture image X  with m  gray levels, consider a displacement vector 

d  = (dx, d y),  the gray level cooccurrence matrix corresponding  to d  , denoted by

C(d)  = (cfj ) 0<( .<m_j, is an m x m  matrix, where its entry cfj counts the number of pairs of 

pixels generated by the displacement d  over image X,  which have gray level i and j,  

respectively. The calculation of cv is given by:

4 = S ( x , y ) ) * S { j  -  g ( x  + dx, y  + d y)) +
( x , y ) e l
( x , y ) + d £ l  ^  ^

-  g(x,  y))  * S ( j  -  g ( x  -  dx, y  -  d y))
{ x , y ) e l
( x , y ) - d e l

i f  x  = 0
where o is the Dirac delta function, i.e. d(x) = < , and g(x,  y)  is the gray

[0, otherwise

level at pixel location (x, y ) .

1 0 1 0 1 0 1

0 0 0 0 8 2 0 2/3  1/6
0 0 0 1 2 0 1 1/6 0

(a) (b) (c)

Figure 2-10: An example of an image and its GLCM  with d  = (1,0) .
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Figure 2-10 gives an exam ple of a binary image in (a) and its corresponding 

GLCM in (b) with a displacement of d  = (1,0). If the cooccurrence matrix C{ d ) is

m - 1

normalized such that cfj =1 (e.g. Figure 2-10 (c)), then a discrete probability
i , j = 0

distribution of c f  is obtained, based on which a new texture image can be sampled.

Based on Julesz’s im portant conjecture on the role of high order statistics in 

human vision [93], texture features such as contrast, correlation, variance, inertia, 

entropy, cluster shade, and local homogeneity (see [77] for definitions) can be computed 

from cooccurrence matrices to analyze and characterize textures [77]. It has, however, 

been shown that the transformation of cooccurrence matrices into secondary features has 

led to a significant loss of information that are originally captured by cooccurrence 

matrices [31, 112], Studies on comparing the relative power of various texture analysis 

techniques have convinced people that directly using the elements of cooccurrence 

matrices as texture features generally outperforms the methods that use secondary 

features derived from cooccurrence matrices [26, 27, 76, 122, 193]. As well, it has been 

shown that cooccurrence matrices themselves can be directly used in texture analysis and 

synthesis [55, 58, 59, 67, 112, 131],

For a given pixel in image X , consider its eight neighboring pixels, which 

correspond to four displacements d 0 = (1,0), d 1 = (1,1), d 2 = (0,1), and d 3 = (-1 ,1 ). Let

C ; = C (d ; ) be the cooccurrence matrix generated by displacement d t , which is

calculated using Eq. 2.6. To synthesize a new texture image Y, which has the same (or as 

close as possible) cooccurrence distribution (i.e. cooccurrence matrices) as the input 

texture X, the following algorithm can be used:
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1. Initialize Y  as a random noise image, which has the same histogram as the input

2. Use the M etropolis sampling [32, 63] to iteratively transform the initial im age Y  

into a final texture image which has the desired cooccurrence distribution. At each 

iteration, the following steps are performed:

■ Randomly choose two pixels p, and p 2 from image Y.

■ Exchange the gray levels of p x and p 2 if the exchange will cause an 

improvement (i.e. image Y  has a closer cooccurrence distribution to that of 

input image X). To measure the closeness of the cooccurrence distribution 

between Y  and X,  the following formula is used:

where C k ( X )  = [ckjk]0 S i is the cooccurrence matrix of image X  

corresponding to displacement d k , k  = 0,1,2,3 . The smaller the value E  

is, the closer the cooccurrence distributions between X  and Y.

■ If the gray level exchange between p x and p 2 failed to cause an 

improvement, the exchange is performed with a probability p  given as 

follows:

where E  is given in Eq. 2.7 and T  is a temperature that is slowly cooled 

down.

3. Step 2 is repeated until the value E  reaches zero or does not change any further.

image X.

1 3 G-l 2

(2.7)
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The above algorithm is essentially the same algorithm used in Lohmann’s work

[112]. Since only four smallest displacements (measured by \d  |) are used, Lohm ann’s 

approach will fail for structural textures (see Figure 2 -11(b) ) although it works well for 

some stochastic textures with micro particles (see Figure 2-11 (a)) . To overcome this 

problem, large displacements and large number of cooccurrence matrices can be used, 

and this can be done by increasing the size of a target pixel’s neighborhood over which 

the displacements are considered [31]. However, the number of cooccurrence matrices 

will increase drastically when the neighborhood size increases and this drastically 

increases the algorithm run-time. The solution to this problem is to use a multiresolution 

scheme [81, 158, 166, 190],

• - . • - • • I

■; :! -s ^»• - * * t r  1* ■ ... .i «r. . . . . . . .  v -- _ „

(a) (b)

Figure 2-11: Examples of texture synthesis using Lohm ann’s approach.

Another major problem with cooccurrence matrix approaches is that the distance 

function (e.g. Eq. 2.7) for measuring the similarity between the synthesized texture Y  and 

the input texture X  is not well defined in the sense that for a given input texture X,  the 

algorithm described in the previous subsection could generate a completely dissim ilar 

texture Y  but still has a zero distance to X  (i.e. E  = 0 in Eq. 2.7). The cooccurrence 

matrix approach [31, 34, 112] has been generalized by Elfadel and Picard under the aura
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framework [51, 52, 137-139], which is described in the next chapter as background 

knowledge of the proposed work.

2.1.6 Structural Texture Modeling

Structural textures [92] are viewed as two dimensional patterns consisting of a set 

of micro-structures (i.e. primitives) which are arranged according to certain placement 

rules. Examples of structural textures are checker-board patterns, bricks, stones, periodic 

regular (or nearly regular) patterns, etc (see Figure 2-12). Correctly characterizing and 

synthesizing structural textures are difficult [74, 75, 104, 206],

m i

Figure 2-12: Examples o f structural patterns (image source: the Brodatz and the Vistex 

textures [124]).

In general, existing statistical texture models are unsuitable for synthesizing 

structural textures. Procedural texturing approaches [47, 103] have been used 

successfully for synthesizing some specific types of structural textures such as 

checkerboard patterns, bricks, etc. In Zhu et al.’s work [206], a texton-based approach is 

used for analyzing and synthesizing structural textures. In their model, a 2D structural 

pattern is viewed as a superposition of a set of image bases from an over-complete 

dictionary, and a texton is defined as a primitive (i.e. mini-template) consisting of a set of 

image bases with some specific geometric configurations and photometric properties. For
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a given structural pattern, it has been shown in their paper that a small number of textons 

can be first learned from  a set of training samples as repeating micro-structures and then 

used to synthesize a similar pattern.

Recently, a mathematical framework [110] based on the theory of 

crystallographic groups [70] has been proposed for modeling periodic regular (or nearly 

regular) patterns. The underlying mathematical theory for their model is the fact that 

there are only a finite number of basic patterns, called symmetry groups, for all possible 

periodic patterns in an n-dimensional space [120]. In particular, it is proved that in the 2D 

space there are only 7 frieze groups describing monochrome patterns that repeat along 

one direction and only 17 wallpaper groups for patterns that repeat along linearly 

independent directions to tile a plane.

Based on the above mathematical theory, algorithms are developed for analyzing 

and synthesizing 2D periodic patterns [110]. The goal of the analysis process is to 

characterize a given 2D periodic pattern by extracting the underlying translational 

lattices, classifying the pattern’s symmetry groups, and identifying the representative 

motifs that perceptually characterize the pattern. Synthesized patterns are generated by 

tiling the representative motifs according to some placement rules (i.e. by centering the 

motifs on distinct centers of the highest rotation [110]).

There are two limitations in Liu et al.’s model [110]. The first is that only periodic 

patterns with Gaussian noise are assumed in the model, and thus geometric variations and 

distortions are not handled well. To solve this problem, the authors suggest an approach 

based on the correspondence of geometric visual elements (e.g. points of high boundary 

curvature) or an approach based on feature correspondence. The second limitation is that
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the transformation of scaling is not considered in the model during the process of 

classification, which implies that all patterns must be taken by a camera perpendicular to 

the image plane. The authors suggest that affine and perspective imaging models [109] or 

local deformations of approximate periodic patterns can be used to address this problem 

[110, 111].

2.2 3D Texture Modeling

3D textures are visual patterns that appear on surfaces of 3D objects (see Figure 

1-1). There are four approaches to generating synthetic textures onto 3D surfaces: texture 

mapping, procedural texturing, image-based surface texturing, and image-based solid 

texturing. In subsequent sections, we review representative techniques in each of the four 

approaches.

2.2.1 Texture Mapping

Texture mapping [10, 79, 80, 198] is the earliest technique for generating 

synthetic textures on surfaces of com puter generated objects, which was first introduced 

by Catmull in 1974 [Catmull, 1974], It is commonly used to add realism to otherwise dull 

synthesized images. Recently, research in this area has changed its focus from  algorithms 

for software-based rendering systems to algorithms for high performance graphics 

hardware.

In texture mapping, a 2D texture pattern is mathematically mapped onto the

surface of a 3D model that is used to represent a real world object. Then, the textured 3D

surface is projected onto the output image-viewing plane. Three different coordinate

systems are commonly used in texture mapping: texture space (st-space), object space
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(xyz-space), and image space (uv-space). Two transformations are used to transform 

textures from the sf-space to the nv-space. One is between the sf-space and the xyz-space, 

which is called texture-object transformation (see Figure 2-13). If the texture is mapped 

orthogonally onto a planar quadrilateral, then the texture-object transformation may be as 

simple as an affine or bilinear transformation [79]. Otherwise, it may be a parametric 

transformation when the texture coordinates are used to represent non-Cartesian 

coordinates such as cylindrical or spherical. The other transformation used in texture 

mapping is between the xyz-space and the uv-space, which is called object-image 

transformation. It is usually either an orthographic projection for orthographic viewing or 

perspective projection for perspective viewing. For discussions on various kinds of 

texture-object transformations, the reader is referred to [10, 79, 80].

Object Space 
(xyz-space)

T exture-O bject 
T ran sform ation ,

O bjec t-im age
T ransform ation

Texture Space 
(st- space)

C om posite

Inverse F orw ard
Image Space 

(wv-space)

Figure 2-13: The coordinate systems and transformations in texture mapping.

Since the transformation from the texture space to the image space is a composite 

of the texture-object transformation and object-image transformation, one often 

concatenates the two transformations to save computations. The resulting composite 

transformation usually can be formulated either as a forward (texture-to-image) 

transformation or as an inverse (image-to-texture) transformation. Each method has its
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own advantages and disadvantages, which have been discussed at length in [79, 198]. 

Figure 2-13 shows the relationship between the two transformations described before. 

Figure 2-14 gives a simple example o f texturing an object’s surface using texture 

mapping.

Texture
mapping

Texture Texture-mapped image

Figure 2-14: A simple example of texture mapping.

Various texture mapping techniques have been proposed in the literature. 

Following the work done by Catmull [16], Blinn and Newell [12] introduce a popular 

mapping technique called reflection mapping to map 2D textures onto the surfaces of 

objects. Using their technique, the texture-mapped surface appears to be reflecting an 

image of its surroundings. The environment mapping introduced by Greene [69] can be 

considered as an extension o f the reflection mapping [12], in which a real 180-degree 

fisheye image o f the sky is combined with the computer-generated image of a desert 

terrain to create a full-view environment cube. Greene also shows in his paper [69] that 

environment mappings can be pre-filtered and indexed with summed-area tables to solve 

the aliasing problem, which was first addressed by Williams in 1983 using the mip- 

mapping technique [196]. Since then, research on environment mappings has been 

carried out extensively. Recent advancements in this area include the extended prefiltered
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environment maps [15, 95-97], the efficient irradiance environment maps [157], and the 

frequency domain environment maps [156],

Another im portant technique of texture mapping is bump mapping introduced by 

Blinn in 1978 [11]. This technique modifies the surface normal rather than the surface 

point as in reflection mapping [12] to generate bump-like textures on surfaces of objects. 

As an extension to bump mapping, Cook et al. [30] introduce displacement mapping in 

which textures are used to modify the surface point, not ju st the surface normal. Since 

modifying a surface point does change the surface normal at that point, displacement 

mapping often looks like bump mapping except that the bumps created by the form er are 

visible on the silhouettes of objects. Recently, in Jagnow and Dorsey’s work [85], the 

displacement-mapping technique has been used in virtual sculpting [85]. In W ang et al.’s 

work, the displacement mapping has been extended to the view-dependent case [187].

There are other texture mapping techniques such as the texture tiling [46], the 

decal mapping [7], the cell texturing [48], and the image-based transformations [119, 

159, 194], which are discussed and reviewed in the surveys done by Weinhaus [192] and 

by Haeberli [73]. Recent works in this area on efficiently generating textures over an 

arbitrary surface using a 2D example include the lapped textures [145], the hierarchical 

pattern mapping [170], the jum p maps [203], the triangle mesh texture map [114], the 

matchmaker for constraint texture maps [99], and the TextureM ontage technique [205],

Texture mapping suffers several problems. One is the unacceptable artifact 

problem. To cover the surface of a large object, the algorithm must replicate the texture. 

This can cause either visible seams, or visible repetitions, or both, which are 

unacceptable. Another problem is the distortion problem (see the brick texture on the top
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of the cylinder in Figure 2-14). This is caused by the fact that there is no natural and well- 

defined mapping from  2D texture images to arbitrary 3D surfaces due to the complexities 

of textures and 3D models. To solve these problems, procedural texturing [47] can be 

used, which is discussed in the next section.

2.2.2 Procedural Texturing

The second important approach for generating textures on the surfaces of objects 

is called procedural texturing [47], which was first introduced by Cook in 1984 [28], 

W ith the introduction of solid texturing [132, 134] and texture basis function such as the 

Perlin’s noise [134], the use of procedural texturing has been widely accepted in the 

computer graphics community. In this approach, procedures are used to generate 

synthetic textures without requiring input textures. By calling a compact procedure, 

textures are generated directly on surfaces of 3D objects without seams and without 

discontinuity. Using different procedures, realistic images of brick, marble, wood, stone, 

water, cloud, flame, and crumpled wrinkle can be generated efficiently.

Although, recent works on non-procedural texture synthesis [111, 145, 177, 179, 

191, 201, 202, 204] have achieved some success in applying textures onto 3D surfaces, 

the procedural approach still has some advantages over the non-procedural approach:

1) Some natural phenomena with motions, such as gas, fire, fluid, cloud, etc., are 

difficult to synthesize using non-procedural approaches, while it is more 

appropriate and relatively straightforward to model using procedural texturing.

2) To generate hypertexture [135] using procedural texturing is easy and efficient, 

while it is difficult to do using non-procedural approaches.
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3) Other advantages include compact representation, storage efficiency, no seams,

no repetition, and no discontinuity.

Some of the useful procedural-texturing techniques include the shade tree [28], 

the pixel stream editor and solid texturing [132, 134], the hypertexture [135], the 

reaction-diffusion systems [56, 180, 197], cellular texture basis functions [154, 199], and 

the multiresolution procedural param eter estimator using genetic algorithms [153]. These 

techniques are briefly discussed below.

Cook’s shade trees [28] are one of the earliest systems used to generate 

procedural textures during rendering. Shade trees enable the use of different tree- 

structured shading models for different surfaces such as copper, wood, grass, etc. The 

input parameters to the shading models can be manipulated procedurally. In this way, 

shade trees make it possible to use textures to control any part of the shading calculation. 

Color and transparency textures, reflection mapping, bump mapping, displacement 

mapping and solid texturing can all be implemented using shade trees. Cook’s shade trees 

have provided the basis for most of the subsequent procedural shading works [123, 140, 

147, 181, 187],

As an extension to Cook’s shade trees, Perlin [134] introduces a complete 

procedural texture generation language, called Pixel Stream Editor (PSE), and lays the 

foundation for the most popular class of procedural textures in use today, in particular 

those based on Perlin noise [133, 134], a stochastic texture generation basis function that 

produces random numbers with a band-limited frequency spectrum and plays a major role 

in many procedural shaders. By using his noise basis function, Perlin has generated very
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convincing representations o f clouds, fire, water, stars, marble, wood, rock, soap films, 

crystal, etc.

Before the work done by Peachey [132] and Perlin [134], some researchers 

proposed procedural textures over a two-dimensional domain [57, 61, 161]. By extending 

their work to three dimensions, Peachey [132] and Perlin [134] independently introduce 

the concept of solid texturing in 1985, in which volumetric textures are generated by 

calling compact procedures. In general, solid texturing procedures are built on texture 

basis functions such as Perlin noise [134], wavelet noise [29], Worley’s cellular texture 

basis function [199], the generalized cellular texture basis function [154], and the object 

distribution function [102]. A variety of solid textures such as wood, marble, water, 

cloud, flame, etc, can be modeled using solid texturing. For example, using a simple 

procedure defined in Eq. 2.9, rainbow-like textures can be generated on the surfaces o f an 

object, where given a surface point p,  the procedure rainbow(p) returns a color at that 

point. Figure 2-15 shows an example o f textured images with k = 10,8,6,4,2 in Eq. 2.9. 

rainbow(p) = (noise(k * p), noise(k * p),  noise(k * p))  (2.9)

A = 10 k  =  8 k  =  6 k  =  4 k  =  2

Figure 2-15: An example of solid texturing generated using the procedure defined in Eq. 

2.9 with k — 10, 8, 6, 4, and 2, respectively.
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Texturing procedures often require the setting of a large number of param eter 

values, a process that is time-consuming and non-trivial. This makes it difficult, if not 

impossible, to manually estimate the parameters of a given procedural texture. This 

problem is addressed in Qin and Y ang’s work [153] using a genetic-based multiresolution 

approach for estimating parameters. The key idea of the approach is to use an efficient 

search method, called the genetic-based search algorithm, to find appropriate values of 

the parameters for a given procedure. During the search process, for each set o f the 

parameter values, the algorithm generates a temporary texture image using the given 

texturing procedure, then it compares the temporary texture image with the given target 

texture image to check if they match. The comparison between two texture images is 

done by using a multi-resolution M RF texture model. The search process stops when 

there is a match found. The estimated values of the parameters for a given procedure are 

the values of the parameters to the procedure to generate a texture image that matches the 

target texture image.

In the paper [153], it is also demonstrated that the proposed parameter estimation 

approach can be used to procedurally synthesize an input texture onto 3D surfaces. This, 

however, assumes that for each type of input textures, the user provides an appropriate 

texturing procedure to model them. It would be interesting to have a systematic way to 

design texturing procedures automatically based on given texture samples. Lefebvre and 

Poulin [103] have done some work in this direction, but their approach only works for 

structural textures such as brick and wood patterns. In Chapter 5, we present a new and 

general method to generate solid textures from input samples
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The design of solid texture basis functions (i.e. texturing primitives) has also been 

studied by some other researchers. In addition to Perlin’s noise [133, 134], W orley [199] 

proposes a cellular texture basis function, called W orley’s noise, which can be used as a 

solid texturing primitive in procedural texturing for generating cellular textures on the 

surfaces of objects. As a generalization of W orley’s noise, Qin and Yang [154] propose a 

generalized cellular texture basis function. For procedural texturing, all of the above 

texture basis functions can be used in color mappings, bum p mappings, and fractals to 

produce visually interesting and impressive effects. By combining color or bump 

mapping with fractal technique, a variety of texturing procedures can be implemented 

based on them to generate crumpled wrinkle, wood, marble, cloud, water and flame-like 

textures. In Lagae and D utre’s work [102], a procedural object distribution function is 

used to generate regular-tile patterns that appear on cloth.

Another important technique to generate procedural textures is to use a reaction- 

diffusion process, in which two or more chemicals diffuse at unequal rates over a surface 

and react with one another to form stable patterns such as spots and strips that appear on 

the skins of animals. Earlier work in this area is to design the biological systems to 

generate simple patterns [5, 118, 121]. Later, Turk [180], and W itkin and Kass [197] 

design more complex reaction-diffusion systems to generate interesting patterns such as 

zebra stripes, sand ripples, and the swirling patterns of fingerprints, the rosettes found on 

leopards, and the multiple-width stripes found on some fish and snakes. The main 

disadvantage of the reaction-diffusion systems is that they are computationally expensive.

Other approaches in the area of procedural texturing include the sine wave 

approach [60], W iener interpolation and sparse convolution [105], hypertexture [135],
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spot noise [195], the artificial-evolution system[168], and the cellular particle simulator 

[56]. There are also recent works on real-tim e programmable procedural texturing [123, 

147, 187], which will not be discussed in this thesis.

The disadvantages of procedural texturing include: (1) only limited types of 

textures can be modeled, (2) the design of procedures is based on the experience o f the 

designer and is largely a manual process, and (3) the parameters of a texturing procedure 

are difficult to tune.

2.2.3 Image-Based Surface Texturing

In image-based surface texturing, a 2D texture sample and a 3D model are given, 

then similar textures to the input sample are generated onto the surface o f the 3D model 

without visible seams and repetitions. Several techniques have been proposed in this area, 

which are briefly described as follows.

Wei and Levoy have extended their 2D texture synthesis algorithm [190] for 

generating 3D textures based on input texture samples [191]. In the 2D case, W ei and 

Levoy’s approach generates synthetic texture by the nearest neighborhood search over 

rectangular lattices. To synthesize a given input texture sample onto 3D surfaces, the 

definition of search neighborhoods in 2D is generalized to the 3D case. For each mesh 

vertex, their extended algorithm [191] first establishes a local parameterization 

surrounding the vertex. Then, the algorithm uses the vertex’s local parameterization to 

create a small rectangular neighborhood centered at the vertex and searches the input 

texture for similar neighborhood. Since a wide range of textures can be synthesized by
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their 2D texture synthesis algorithm, their extended algorithm [191] performs well in 

generating 3D textures.

Concurrently, Turk [179] has also extended Wei and Levoy’s 2D texture synthesis 

algorithm for generating 3D textures. The only difference between the two approaches is 

that in Turk’s algorithm [179], a global tangent vector for the surface mesh has to be 

given by the user for the local parameterization of a vertex on the mesh. Another 

concurrent work to extend texture-from-sample methods (e.g. Wei and Levoy’s [190] and 

Ashikhmin’s [3] 2D texture synthesis algorithms) to 3D surfaces is done by Ying et al. 

[201],

In Zhang et al.’s work [204], progressively-variant textures (i.e. texture mixtures) 

are generated over arbitrary 3D surfaces based on texton masks. Recent research works 

[108, 177] have been done on generating bidirectional texture functions (BTF) on 3D 

mesh surfaces. In Fang’s work [54], existing techniques of shape-from-shading and 

texture synthesis from input samples are combined to generate textures onto objects in 

photographs. In Chen’s work [20], shell texture functions are used to synthesize realistic 

textures with translucency variations on surfaces from either 2D or 3D samples, e.g. a 

block of CT scan.

Compared with procedural texturing, image-based surface texturing can 

synthesize a wide range of textures. Flowever, the approach may suffer the distortion 

problem on surfaces where the curvature is large. Another problem of the approach is that 

textures generated for one surface cannot be used for other surfaces. This limitation 

makes the techniques difficult to be used in procedural shaders [47],
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2.2.4 Image-Based Solid Texturing

A solid texture is considered as a block of colored points in 3D space to represent 

a real-world material, for example, a wood trunk. Once the solid texture is available, any 

given 3D object can be textured by carving the object out of the volumetric data. Since 

solid textures define colors for each point in 3D space, they avoid the problems of 

distortion and discontinuity. However, solid textures are far more difficult to obtain than 

2D textures; there is no easy way to obtain solid textures from  real-world materials.

To combine the advantages of the procedural texturing and the image-based 2D 

texture analysis and synthesis, a number of researchers have developed techniques for 

generating solid textures from input samples, which we call image-based solid texturing. 

Different from image-based surface texturing, these techniques first synthesize a 

volumetric texture data from input samples, and then generate synthetic textures onto 3D 

surfaces by carving a given 3D object out of the volumetric data. W hile in image-based 

surface texturing, synthetic textures are directly synthesized onto surfaces of objects 

without generating the volumetric texture data first.

Some techniques in 2D texture analysis and synthesis are extended for generating 

solid textures based on input samples. As an extension to their 2D histogram-matching- 

based texture analysis and synthesis technique, for a given input texture image, Heeger 

and Bergen [81] generate solid textures by first initializing a volume of 3D noise and then 

coercing the noise so that the histogram of the volume matches that of the input image 

from coarse to fine resolutions. Since histograms cannot accurately characterize textures 

[143, 144], Heeger and Bergen’s approach can only synthesize certain types of input 

textures, e.g. isotropic textures, onto 3D surfaces, and their approach fails for structural
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textures. By using spectral and histogram analysis, Dischler et al.’s method [42] is able to 

synthesize some structural solid textures from input samples. W ei [188] and Paget [125] 

have also extended their respective 2D texture synthesis algorithms [129, 190] to 

generate structural solid textures as well as stochastic textures. However, both approaches 

work for only a limited range of textures.

There are other techniques developed by a number o f researchers in image-based 

solid texturing. In Jagnow et al.’s work [86], a stereology-based approach is presented to 

successfully generate solid textures on some texture classes, e.g. marble-like textures. In 

their approach, in order to generate the correct results, extensive user interactions are 

required in creating 3D particles of desired shapes and of required distributions. While 

the user interaction provides flexibility, it is nontrivial to design a complex texture. If the 

shapes of predesigned 3D particles do not match the profiles of input textures, their 

algorithm will likely generate incorrect results. In Lefebvre and Poulin’s work [103], 

structural textures representing regular tiles and wood are generated by analyzing and 

extracting parameters from input images. In Dischler and Ghazafarpour’s work [42], a 

hybrid approach, based on 2D texture analysis and geometric modeling, has been 

developed for synthesizing structural solid textures of certain types. Like Jagnow et al.’s 

method, both Lefebvre and Poulin’s approach and Dischler and Ghazafarpour’s approach 

involve extensive user interactions.

As discussed before, techniques in image-based solid texturing either are not fully 

automatic, which involve nontrivial user interactions [42, 86, 103], or may apply to only 

limited types of textures [81, 125, 188], In Chapter 5, we present a new technique, called 

aura 3D textures, for synthesizing solid textures from input examples. Our method is
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fully automatic and requires no user interaction in the process, and can generate faithful 

results over a wide range of textures.

2.3 Discussions

Although various techniques in texture analysis and synthesis have been proposed 

in the literature, textures are still far from being well understood. Because there is no 

known complete definition of texture, each existing texture model has its own advantages 

and disadvantages, and thus fails to model certain types of textures. For the same reason, 

existing texture synthesis techniques cannot determine w hether or not the synthesized 

texture is a successful synthesis of the input texture; visual inspection is the only method 

to evaluate the synthesis results. The lack of accurate understanding in textures has also 

caused problems in 3D texture modeling. In fact, existing 3D texture models can apply to 

only limited types of textures. Therefore, it is crucial to understand and characterize 

textures with mathematical precision.

In this thesis, a new mathematical framework is presented to model textures with 

sufficient and necessary information using BGLAMs. The new framework provides 

important insight in texture modeling in both computer vision and computer graphics. 

Under a unified framework, new algorithms for 2D and 3D texture synthesis using 

BGLAMs are developed, respectively, and an original quantitative method for evaluating 

texture synthesis results is also presented. It has been shown that a wide range of textures 

can be faithfully modeled using BGLAMs. In addition, we demonstrate that BGLAMs 

can be used in texture image classification.
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Chapter 3 

Mathematical Framework of BGLAM

This Chapter presents the mathematical theory for BGLAMs (Basic Gray Level 

Aura Matrices). It is proved that a given texture image can be uniquely represented and 

reconstructed by its independent BGLAMs. A new BGLAM -based distance function is 

presented, and it is proved that the distance function is metric and one-to-one. New 

algorithms for 2D and 3D texture synthesis using BGLAMs are presented in Chapter 4 

and 5, respectively. Chapter 6 presents a BGLAM-based method for texture image 

classification.

3.1 Background Knowledge

The concepts of aura sets, aura measures and aura matrices were first introduced 

by Elfadel and Picard in their work of analyzing and predicting texture patterns generated 

by M RF models in the states of equilibrium [52], Interesting structures in texture images 

can be captured by gray level aura matrices (GLAMs) [137]. Research has been done in 

studying the behavior of the Gibbs texture models [52, 138, 139] using GLAMs, and the 

relationship between GLCMs and the Gibbs/Markov Random Fields [51, 137]. It has 

been shown that the aura matrix is a generalization of the cooccurrence matrix [31, 34, 

51,75],
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Following the notations used in Section 2.1.1 in Chapter 2, an image X  is m odeled 

as a finite rectangular lattice of m x n  sites S = {s = (/, j )  \ 0 < i < m  - 1 ,0  < j  < n -1} with 

a neighborhood system N  = {N s \ s e  5 } , where N s is the neighborhood at site 5. In 

conventional M RF models, the neighborhood system N  has two important properties:

1) Exclusive', for any s e  S , s £  N s .

2) Symmetric: for any s, t e  S , s e  N t if and only if t e  N s . (3.1)

Property 1) says that site 5 is excluded from its neighborhood and property 2) 

implies that the neighborhood is symmetric. In the next section, we relax the symmetric 

condition so that the neighborhood can be of any shape. The neighborhood N s in a 

neighborhood system N  -  { N s \ s e  S} can be viewed as a translation of the basic

neighborhood, which is called a neighborhood structuring element [51, 137], and is 

denoted by E.

The neighborhood, denoted by N ds , at site s is defined as the set of all nearby 

sites within a radius of d  (d is a given integer), which is defined mathematically as:

d e f

N d = N lHUJ) = { r  = ( k , l ) e S  | 0 <| ( k - i ) 2 + ( l -  j ) 2 < d ) . (3.2)

Examples of the neighborhoods of the first, second, and fifth order are shown in Figure 

3-1, where s = '•' is the target site and its neighboring sites are labeled by orders.

Definition 3-1 Aura [51]: Given two subsets A , B c S ,  the aura (i.e. aura set) of 

A with respect to B for neighborhood system N  = {N s \ s e  S } , denoted by dD (A, N ) (or 

d B (A) if the neighborhood system N  is clear in the context), is a set given by:

0B(A) = 0B( A , N ) = u ( N s n B ) ,  (3.3)
SE A
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Definition 3-2 Aura Measure  [51]: With the same notations as in Definition 3-1, 

the aura measure of A  with respect to B, denoted by m(A, B ) ,  is given by:

m(A,B ) = m ( A , B , N )  = Y J\ N s n B \ ,  (3.4)
A

where for a given subset A c  S , | A | is the total number of elements in A.

5 4 3 4 5

4 2 1 2 4

3 1 • 1 3

4 2 1 2 4

5 4 3 4 5

2 1 2

1 • 1

2 1 2

(a) (b) (c)

Figure 3-1: Examples of neighborhoods, (a) The first order neighborhood with d  = 1, (b)

the second order neighborhood with d  = 2 , and (c) the fifth order neighborhood with

d  = 8 , where the center site with a solid circle is the target site s, and its neighboring site

are numbered by its order. The order of the neighborhood system is the largest order

number of a neighboring site. For example, since the largest order number in the

neighborhood shown in (c) is five, the order of the neighborhood in (c) is five.

D efinition 3-3 The set {£,. 10 < i  < n -1 }  is a partition of the lattice S if

n - 1
5, n  S , = <p for Vi A j  , and 5 = u  S.,.1 1 T J i=0

D efinition 3-4 Aura Matrix [51]: Let 3  = [S, | 0 < i < n -1}  be a partition of the 

lattice S, then the aura matrix of 3  over S, denoted by A (3) (or simply A), is given by:

A = A (3 ) = [m(Si , Sj  )]0<, j<„_i, 

where m{Si , S j ) is the aura measure o f 5 ; w.r.t. Sj  given by Eq. 3 .4 ,0  < i, j  < n - 1.
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Of various types of partitions of S, the gray level sets are used in this thesis. For 

each site s in S, we assume that its gray level x s is an integer between 0 and G - 1  (G is

the total number of gray levels for a pixel in the image), i.e. x s e A  = {0,1,..., G - l } , A is 

called the state space of s. The gray level sets of S are given by:

S g ={S6 S \ x s = g } ,  (3.5)

where g = 0 ,1 ,...,G - l .  Since S = (J S  and S , n S , = 0 ,  {5 I g e A }  is a
ge  A *

partition of S.

Definition 3-5: Gray Level Aura Matrix (GLAM)  [51]: Given an image with 

rectangular lattice S and a neighborhood system N,  the aura matrix defined on the gray 

level sets | g e  A} is called the gray level aura matrix of the im age over N.

The aura of A with respect to B  characterizes how the subset B  is present in the 

neighborhood of A. An example of an aura on a binary lattice with the four-nearest- 

neighbor neighborhood system is shown in Figure 3-2. The aura measure m(A, B) 

measures the amount of B ’s sites presented in the neighborhood o f A. It is noteworthy 

that m{A, B)  does not measure the number of elements in the aura of A with respect to B, 

i.e. in general, m{A,B) l \ & B{A) \ .  In the example shown in Figure 3-2, we have 

m(A,  B) = 12 ^  10 =| &B (A) | . The GLAM  of an image measures the amount of each gray 

level in the neighborhood of each other gray level. The GLAM for the binary image 

shown in Figure 3-2 (a) is

A =
48 12 

12 8

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is calculated using the structuring elem ent of the four nearest-neighbor 

neighborhood system as shown in Figure 3-2 (b).

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 o 0 1 1 1 0
0 0 1 0 0 o • o 0 0 1 0 0
0 0 1 0 0 o 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

(a) (b) (c)

Figure 3-2: An example of aura on a binary lattice with the nearest four neighbors, (a) 

The sample binary lattice S, where the subset A  is the set of all l ’s and B is the set of all 

0 ’s. (b) The neighborhood structuring element of the four nearest neighbors (in circles) 

and the target pixel (in solid), (c) The set of shaded sites is the aura of A  w.r.t. B.

W hen handling a target pixel on the image boundaries, we only consider its 

neighboring pixels inside the image and discard those outside of the image. Definition 

3-1 suggests that the aura depends on the size of the neighborhood system. Figure 3-3 

gives an example of the auras calculated over neighborhood systems of different sizes.

The aura measure m (A ,B ) can be used to characterize the interaction or the 

relationship between A  and B in an image. Since the aura measure m(A, B ) calculates the 

amount of mixing sites between subset A  and B, a large value (relative to the total number 

of sites in S) of m(A, B)  implies that subsets A  and B  are mixed together; while a small 

value implies that A  and B  are separate from each other, i.e. the region represented by 

each set is more likely to form its own cluster. Figure 3-4 gives an example to 

demonstrate this point.
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A  = grey region d =  1 d -  5 d = 25 d  =50
B = black region

Figure 3-3: An example of the aura of A  with respect to B  over neighborhood systems of 

different sizes. The grey pixels in the last four images are the aura of A  w. r. t. B 

calculated over neighborhood systems of d  = 1 , 5 ,  25, and 50 (see Eq. 3.2), respectively.

(a) m (A,B) = 16382 (b) m(A, 5 )  = 1900

Figure 3-4: An example of how the aura measure m ( A ,B ) interprets the relationship 

between A and B, where A is the set of all grey pixels and B the set of all black pixels, 

and N  the four-nearest-neighbor neighborhood system. The size of both im ages is 

128x128 = 16384. Compared with the total number of 16384 sites in S, m ( A ,B ) = 16382 

is large in (a) and m (A ,B )  = 1900 in (b) is small, which indicate that A and B  mix 

together in (a), but separate from each other and form their own clusters in (b).

The GLAM of an image characterizes the probability distribution of each gray 

level in the neighborhood of each other gray level, and thus generalizes the GLCM (Gray
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Level Cooccurrence M atrix). In fact, if the structuring element of a neighborhood system 

contains only two symmetric neighboring sites with respect to the target site, then a 

GLAM is a GLCM. For example, the GLCM shown in Figure 2-10 (b) is a special 

GLAM that can be calculated using a symmetric structuring element as shown in Figure 

3-5. For illustration purpose, the definition of GLCM based on GLAM  is given in 

Definition 3-6, which is consistent with the definition given in Section 2.1.5 in Chapter 2.

o •  o
Figure 3-5: The structuring element used for calculating the GLCM in Figure 2-10 (b).

Definition 3-6: A GLCM  is a GLAM com puted from a neighborhood system 

whose structuring element contains only two symmetric neighboring sites with respect to 

the target site.

Some important mathematical properties of aura sets, aura measures, and aura 

matrices are summarized in the following three lemmas, and they are used in the rest of 

the chapter. For the proofs, the reader is referred to Elfadel and Picard’s paper [51].

Lemma 3-1 Aura Properties [51]: Let 5 be a rectangular lattice and 

N  = { N S | s e  S] is neighborhood system defined on S. Given subsets A ,B ,C c  S , the 

following aura properties hold:

1) The aura of any set with respect to the em pty set is empty, i.e. f^(A ) = 0 , 

V A c S .

2) The aura of A with respect to B is a subset of B, i.e. &B (A) c  B .

3) The aura of A with respect to itself (i.e. the self-aura of A) is a subset of itself, i.e.

$A (A) c  A .
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4) The aura of union is equal to the union of auras, i.e. &c (A u  B ) = # C(A) u  #c (B ).

5) The aura of intersection is included in the intersection of auras, i.e.

&c (A  n  B ) c $ c (A) n  &c (B ).

6) If A c  B , then z?c (A) c  0c ( f l ) .

7) 0fluC(A )= 0 B( A ) u 0 c (A).

8) j?JnC(A)=t?B(A)nJS>c (A).

9) In general, the aura operation is not symmetric, i.e. i)B (A) A i)A (B ) .

As a contribution of this thesis work, several new aura measure properties are 

given as properties 6) -  11) in Lem ma 3-2, which are used in developing the BGLAM  

theory in the rest of the chapter. To m y best knowledge, these new aura measure 

properties have not been discussed in the original aura framework [51] or elsewhere, and 

thus their proofs are given at the end of Lem m a 3-2. The proofs of Properties 1) -  5) can 

be found in Elfadel and Picard’s paper [51].

Lemma 3-2 Aura Measure Properties'. Using the same notations as in Lemma 

3-1, the following aura measure properties hold:

1) The function m(.,.) is nonnegative, i.e. m (A ,B ) > 0 ,  VA,B c  S .

2) m(.,B)  is monotonic, i.e. At c  A2 ^>m{Al , B ) < m ( A 2, B ) .

3) Similarly, m (A ,.) is monotonic, i.e. Bi c  B2 =>m(A,B!) < m (A ,B 2) .

f n - 1
4) m (. ,B ) is subadditive, i.e. m u  A .,5  \ < 'S \m {A i , B ) , VA, c S ,  i = 0,1,. . . ,n - 1 .

V i-0  /
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f  n - 1 A n - l

5) m(A, . )  is subadditive, i.e. m A , u  B i < J > ( A ,B , . ) ,  VBi c S , i = 0 , U n - l .
v '=° y ,-=<>

6) m ( A u  B ,C)  = m (A ,C)  + m (B ,C)  -  m ( A n  B , C ) . Moreover, if  A n B - 0 ,  then 

m(A  u B , C )  = m(A, C) + m(B, C ) .

7) m (A,B  u  C) = m (A ,B )  + m(A,C )  -  m (A ,B  n C ) . Moreover, if B n C  = 0 ,  then 

m(A, f i u C )  = m(A, B) + m(A, C ) .

8) m ( A - B , C )  = m ( A , C ) - m ( A n B , C ) .

9) m(C, A -  B) -  m(C, A) -  m(C,  A n  B ) .

10) If {A,. | 0 < i < n -1}  is pair-wise disjoint (i.e. A,. n A j = 0 ,  Vi ■*- j  ), then m (.,B )

/  „ - l  \  n - l

is additive, i.e. m u  A,., 5 J = ^  m (A ,, 5 ) .

11) If {5, 10 < i < n -1}  is pair-wise disjoint (i.e.B ( n B j  = 0 ,  Mi A j ), then m(A, . )

/  n - l  V "“ I

is additive, i.e. ml A, u  B, = ^  m(A, B, ).

Proof: [Properties 6) -  11)] For the proof of property 6), by the definition o f aura 

measure, we have:

m ( A u B , C )  = X l A f . n C h X l W . n C I  + X l J V . n C I -  £ | l V , n C |
s g A u B  5 6 /4  56  B s e A n B

-  m{A,  C) + m(B, C) -  m(A n  B, C)

In the above equation, the term  after the symbol is used to compensate the double 

counting effect caused by the two added terms on both sides of the “+” symbol. 

Moreover, if A n  B = 0 ,  then m(A n  B, C) = m(0,  C) = 0 , which implies that 

m(A  u B , C )  = m(A, C) + m(B, C) . The proof of property 7) is similar to that of 6).
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To prove property 8), any given set A c S  has the following partition: 

A = (A -  B) u  (A n  B)  with (A -  B)  n  (A n  B) = 0 , V B c 5  [82]. By using property 6), 

we have:

m(A, C) = m((A - B ) u ( A n  B), C ) = m(A -  B, C) + m(A  n  B, C ) .

The above equation implies that m(A -  B,C)  -  m{A, C ) -  m(A c \ B , C ) . Using property

7), property 9) can be proved in a similar way.

Based on properties 6) and 7), properties 10) and 11) can be proved by using 

Mathematical Induction [68]. ■

L em m a 3-3 Aura Matrix Properties [51]: Let 3  = [S', | 0 < / < n -1} be a

partition of the lattice S, A  = [atj ]0<,,;<„_i be the aura m atrix of 3  over S as defined in

Definition 3-4, and E  be the neighborhood structuring element. Assume periodic 

boundary conditions [51] are used for handling pixels on image boundaries, then, the 

following aura matrix properties hold:

n - l

1) The sum of each row satisfies =| E  \ * | St | , i -  0,1 1.
j= 0

n - l

2) The sum of each column satisfies atj =| E  \ * | 5̂ ; | , j  = 0,1,..., n - 1.
;=o

n - l  n - l

3) If E  is symmetric, then A is symmetric, and 2 X = E fl* = l £ | * l s * l .
j =0 1=0

k = 0,1,...,n - l .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 BGLAM Concepts

In the previous studies on GLAMs [51, 52, 137, 138, 152], the neighborhood 

system is assumed to be symmetric , i.e. for any s, t e  S  , s e  if and only if 1e N s . To

describe BGLAMs, we need asymmetric neighborhood systems, whose definition is 

given below. This section gives the definition of BGLAMs (basic gray level aura 

matrices).

D efinition 3-7 Let N  = { N s \ s e  S}  be a neighborhood system on lattice 5. N  is 

asymmetric if its neighborhood structuring element E  is not symmetric (see Eq. 3.1 for 

the definition of a symmetric neighborhood).

D efinition 3-8 Using the same notations as in Definition 3-7, let r , r ' , s e  S , r 

and r' are symmetric to each other w.r.t. s if r - s  = - ( r ' - s )  (i.e. r ' = 2 * s  — r).

In the above definition, sites r , r ' , s e S  are considered as points of two 

coordinates in 2D space, and r - s  and r ' - s  are vectors in the plane. Figure 3-6 gives an 

explanation of the relationship between the two vectors r - s  and r ' - s , which are 

represented as two arrows in the figure with the same length but pointing in opposite 

directions (i.e. r - s  = - ( r ' - s ) ).

D efinition 3-9 A neighborhood system N = { N s \ s e S }  is completely 

asymmetric if N  is asymmetric and for any r e  N s , its symmetric site r' with respect to s 

is not in N s , Vs e  S .

D efinition 3-10 For any neighborhood N s (symmetric or asymmetric) at site

s 6 5 ,  its complement neighborhood with respect to ,v, denoted by N s , is defined as the
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set of the symmetric sites of the sites in N s with respect to 5 that are not in N s , i.e. N s is 

given as:

N s = {r'e 5 | r'— 2* s -  r,r'<£ N r, r e  N r } (3.6)

5

r - s

r '—s

Figure 3-6: An explanation of symmetric sites in Definition 3-7.

Definition 3-11 Given an arbitrary neighborhood system N  over S with a 

structuring element E, its single site neighborhood system decomposition is a set of single 

site neighborhood systems defined over E as : { Nr , r e  E } , w hereN r = { N rs , s e  5} and 

N rs is the single site neighborhood of s that contains r.

Definition 3-12 Basic Gray Level Aura Matrix (BGLAM): Given a lattice system 

S, a basic GLAM (BGLAM) on S is a GLAM computed from a single site neighborhood 

system, i.e. a neighborhood system whose structuring element contains only a single 

neighboring site.

Figure 3-7 gives examples of asymmetric, completely asymmetric and symmetric 

neighborhood structures, where (a)-(e) are asymmetric, and (f) is symmetric. The
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neighborhoods in (a)-(d) are completely asymmetric, while the neighborhood in (e) is 

asymmetric but not completely asymmetric since the symmetric site r' of r with respect 

to 5 is contained in the neighborhood. The neighborhood pairs (a) and (b) as well as (c) 

and (d) are complement of each other. The complement of a symmetric neighborhood is 

empty, e.g. the complement neighborhood of (f) in Figure 3-7 is empty. The union of a 

neighborhood and its complement is a symmetric neighborhood. Neighborhoods (a) and

(b) are single site neighborhoods, the GLAMs computed by them are BGLAMs.

o

o
o •

o

o
• o

© o
• o o • o
©
(e)

o
(f)(a) (b) (c) (d)

Figure 3-7: Exam ples of asymmetric, symmetric, and complement neighborhoods. The 

first four, (a) -  (d), are completely asymmetric, the neighborhood in (e) is asymmetric but 

not completely asymmetric since the symmetric site r 'o f  r  is in the neighborhood, and 

the last, (f), is symmetric, where s =' » '  is the target pixel in N s and r = ' ° '  is a

neighboring pixel of s. The complement neighborhoods o f (a) and (c) are (b) and (d), 

respectively, and the complement neighborhood of (f) is empty.

In the rest of the thesis, SGLAM stands for a symmetric GLAM commonly used 

in existing techniques [51, 52, 137, 138, 152], GLAM for a gray level aura matrix 

computed using arbitrary (i.e. either symmetric or asymmetric) neighborhood systems, 

and BGLAM for a basic GLAM.
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3.2 BGLAM Theory

Textures cannot be effectively differentiated using SGLAMs. Two images with 

different textures may have the same SGLAM s (see Figure 3-8). In this section, we 

present the BGLAM  theory and prove that BGLAMs can give the necessary and 

sufficient information to differentiate between images.

36864 4096

4096 20480

Figure 3-8: An example of the inefficiency o f SGLAMs for differentiating textures. The 

right stripe-texture image is a rotation of the left image by 90 degrees, and both images 

have the same SGLAM  that is shown in the middle. Both images (size 128x128) are 

binary, and the four-nearest-neighbor neighborhood system is used to compute the 

SGLAM.

Lemma 3-4 Let S be the image lattice, N  = { N s \ s e  S}  be an arbitrary 

neighborhood system, and {S,. | 0 < i < n - l }  be a partition of S. For any s e  S ,  let 

{N's | 0 < i < m - 1 }  be a partition of the neighborhood N s , and A  and A t be the aura 

matrix computed from N  and N t = { N ‘S \ s e  S}, respectively, i = 0 ,1 ,...,m - 1 .  Then, we

m-l
have A  = ^  A,. .

1=0
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Proof: By the definition of aura matrix (Definition 3-4), we have 

A  = [m(S;,S ; , iV)]0<,. j < n _ x . Since {N's | 0 < / < m - l }  is a partition of N s for any s e  S ,

m - 1
by Definition 3-3 we have N s = U N's with N's r \ N Js = 0  for Vi ^  j  , which implies:

i=0

m - 1 ._____________ „__. m - 1
m ' "(5„5J,iV) = X |N ,r ,S , |= X K 1V0^ ) n S J|= X l1V„<W,‘ n S f)

seS.- se  S: seSj

= Z Z K ‘ n S J l = Z Z K ‘ n X
seS; k =0 /:-0  seS;

On the other hand, for any k = 0 , l , . . . ,m - l ,  we have A k = [m(S , ,S ., A *)](,<,i7-Sn_j, where 

m (S,.,S7, ^ )  = X K ' : n S y | .  (3.8)
Sj*

m -l

Plug Eq. 3.8 into Eq. 3.7, we have m( S i9S j9N ) = ' ^ m ( S i9S j , N k),  which implies
k=o

m -l

i=0

m -l m -l

In Eq. 3.7, from step 2 to step 3 the set property: ( u A ) n B  = u (A , n B )  for
i=0 (=0

any A,, and B  , is used, and from step 3 to step 4 the property of a pair-wise disjoint sets:

m -l m -l

, y A l = Z l A l ’ where A; n  A;. = <p, Vi ^  y , is used [82]. ■f=0 • ■ ^

Theorem 3-1 Any GLAM can be represented as a sum of BGLAMs; any GLCM 

can be represented as a sum of two BGLAMs.

Proof: Let S be the image lattice, A be a GLAM computed from an arbitrary 

neighborhood system N = { N s \ s e S }  with a neighborhood structuring element E,
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{ N  r | r e  E}  be its single site neighborhood decomposition of N  as defined in Definition 

3-11, and A r be the gray level aura matrix computed from the neighborhood system N r, 

V re  E . By Lemma 3-4, we have A  = ^T A r . Since N r is a single site neighborhood
r e N

system, each A r is a BGLAM. Therefore, we have proved that each GLAM can be 

represented as a sum of BGLAMs. By Definition 3-6, a GLCM is a GLAM defined over 

a neighborhood system whose structuring element E  contains only two symmetric 

neighboring sites w.r.t. the target site. Therefore, a GLCM can be represented a as a sum 

of two BGLAMs. ■

GLAM

BGLAMSGLAMGLCMs

Figure 3-9: The relationship between the set of all GLCMs, the set of all SGLAMs, the 

set of all GLAMs and the set o f all BGLAMs, where a smaller oval represents a subset of 

the bigger oval to which it belongs.

Theorem 3-1 indicates that BGLAMs can serve as a basis of GLAMs. In fact, by 

the technique of ICA (Independent Component Analysis) [83], a set of independent 

BGLAMs can be efficiently identified, and used as the basis of GLAMs. Although 

independent GLCMs form the basis of SGLAMs, they cannot form the basis of GLAMs. 

The relationship between the set of all GLCMs, the set of all SGLAMs, the set of 

GLAMs, and the set of all BGLAMs is shown in Figure 3-9.
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Lemma 3-5 As shown in Figure 3-10, let X x be an image defined on lattice S 

with a single site neighborhood system N  = { N S l ^ e  5} , and p  is a given site in S. 

Suppose image X 2 is obtained from image X x by changing p ’s intensity value from g x 

to g 2 and gj ^  g 2 (all other pixels’ intensity values remain unchanged). Let 

A x = [ax {i, ; ) ] 0<i j < g - \  ar*d A 2 = [a2( i , j )]m  j i G _ x be the GLAMs of X, and X 2 over N,

respectively, where G is the total number of gray levels of a pixel in images. Let

N  = {r} and N p = {r '} be the neighborhood and the com plement neighborhood at p,  

and let g = X x(r) and g'= X x(r') be the gray levels of r and r ' ,  respectively, in X x.

Then one of the following relationships between Ax and A2 holds:

1) If (g ' , g )  = ( g i , £ i )  (i-e -g'= g x and g = g x), then

a 2(gl , g l ) = a l ( g x, g x) - 2 ,  

a2{g2, g l )^=ax( g 2, g x) + l ,  

a 2( g l , g 2) = ax( g x, g 2) + l ,

a 2(i, j ) = ax(i, j ) ,  V (i, j ) £ {(g j, gx) ,(g2, gx) ,(g ,, g 2) 1 •

2) If ( g \ g )  = ( g i , g 2) or (g ' , g )  = ( g 2, g 1) , t hen  

a 2( g1, g l ) = ax( g x, g x) - l ,

a 2( g2, g 2) = ax( g 2, g 2) + l ,

a 2( i , j )  = ax( i , j ) ,  V ( i , j ) £  {(g1, g 1) , (g2, g 2)} ■

3) If (g ' , g )  = ( g 2, g 2) , t he n  

a 2( g2, g 2) = ax( g 2, g 2) + 2,

@2( 82-> 8\^ ~ ®\(82-> 8\ )  ~  I >
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a 2( g l , g 2) = a 1( g l , g 2) - l ,  

a 2 (i , j ) = a, (i, j ) , V(/,;') g {(g2, g 2),(g2, ̂ ) , (g, , g 2) }

4) If ( g ' , g ) £  { ( g , , g 1) , ( g , , g 2) , ( g2, g l) , ( g2, g 2)}, then 

= «2 (^2 . « )  = «! (^2 , + 1 ,

a2( g ' , g l ) = a1( g ' , g l) - l ,  a 2( g ' , g 2) = a l ( g ' , g 2) + l ,

a 2(*', j ) = «iO ',; ) ,  v o ,  j ) £ { ( g i , g ) , ( g 2, g ) , ( g ' , g t ) , ( g \ g 2)}•

Therefore, in any of the above four cases, we have A 2 4- Ax.

Proof: W e only give the proof of 1), and the proofs of 2) - 4) are similar to that of

1). It is also easy to check that in any of the four cases 1) - 4), A 2 ^  Al .

W e prove by the definition of aura matrices (Definition 3-4) and the aura measure

properties 8) - 9) proved in Lemma 3-2, which are restated as follows for easy reading:

m(A  -  B, C)  = m(A,  C ) — m( A  n  B, C)  

m(C,  A -  B)  = m(C,  A)  — m(C,  A r \ B )

Let S *' = { se  S \ X t (s) = g } , i = 1,2,  and g e  A = {0,1,...,G -1 } , by using the above two

properties, if (g ' , g ) = ( g p g , )  (see Figure 3-10) then we have:

a2( g1, g 1) = m( Sgx; , S gx; )  = m(S?i' - { p h S *  - { p } )

= m{S*'  , S* ‘) -  m (S*‘ ,{/>}) -  m ( { p ) , S ) + m({p} , {p})

= « i ( g p ^ i ) - 2  

a 2 ( 8 2 ’ 8 \) = m (s gi ’S gl2) = m (S gl u {p}>5 *' -{ p } )

= m ( S £  , S *1) -  m(S  J  , {p})  + ) -  m{{p}, {p})

= m (S*'  , S * ') - 0  + 1 - 0  

= m ( S , S * ' )  + l = a i ( g2, g l ) + l

7 6
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<*2(gi>g2) = m(.Sl2,S£) = m(S*' - { p } > s £  u l P})

= m (S*‘ , S ^ )  + m ( S * ' , { p } ) - m ( { p } , S ^ ) - m ( { p } , { p } )

= m ( S * ' , S £ )  + 1 - 0 - 0  

= m ( S * ' , S j )  + l

= « l ( g l > g 2) +  1

X. x 2

neighborhood 
structuring element

Figure 3-10: An illustration of Lemma 3-5.

To prove a2( i , j )  = aY( i , j ) , V ( i , j ) £ { ( g 1, g1) , (g2, g l) , ( g i , g2)},  we use the 

following relationship between S and S * 2:

c %■> _

V
k ’
,X,
k

fc *  g 2,& *  gj

■{p}, jk = gj , V t e A  = { 0 , U G - l } .

5 ^  u { p } ,  f c=g2

(3.9)

For i, there are two cases: i = g 2 and i l z g 2. W e prove for i = g 2 . The proof for 

i * g 2 is similar. Assume the first case, i.e. i = g 2, b y  ( i , j ) £  { (gl , g i ) , ( g2, g l ) , ( g l , g 2)},  

we have j  ^  g y \ otherwise ( i , j )  = ( g 2,g))  , which is a contradiction. For j ,  we have 

either ;  = g 2 or j  *  g 2 .
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If j  = g 2, then i = g 2 and j  = g 2, applying Eq. 3.9 for k = i, j  , respectively, we

have:

a2(i, j ) = m ( S *2, S f 2) = m(S*'  u { p } , S f '  u { p } )

= m( S * l , S f ' )  + m( S? ' , {p} )  + m( { p} , S* ' )  + m{{p} , {p} )
. (3 .ID)

= m(S*'  , S f ' )  + 0 + 0 + 0 = m ( S , S f 1)

= fli(i,7)

In the proof of Eq. 3.10, since ( i , j )  = ( g 2, g 2) ,  ( g ' , g)  = (g, ,  g j ) , g = X 1(r) ,  and 

g'= X x(r' ) ,  we have m( S f ' , { p } )  = m ( S ^  , {p})  = 0 ,  m { { p } , S f )  = m ( { p } , S £  ) = 0 ,  and 

m({p} , {p} )  = 0 .

If j * g 2, then i = g 2, and j  *  g 2 and j * g x, again applying Eq. 3.9 for 

k = i, j  , respectively, we have:

a2 (j, j )  = m ( S f 1, S f 2) = m ( S U  {p }, S f 1)

= m ( S * ' , S f ' )  + m ( { p ) , S f ' )

= m( S * ' , S f ' )  + 0 

= m { S * ' , S f ' )

= ax(i , j )

Now, we have proved that a2(i , j )  = ax(i, j ) , V ( i , j ) g  {(g1, g , ) , ( g 2^ i ) > ( ^ i ^ 2 )} • ■

From the above lemma, we can see that when the gray value of a pixel p in an 

image changes, only a few elements of the GLAM of the image will be affected. In fact, 

under the conditions of Lemma 3-5, A 2 can be calculated from A, in the following two 

steps:

1) Initialize A2 as A x, i.e. A2 <— A x.

2) Update A2:
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«2 (̂ 1» a2 Cgl» S') — 1 > a2(g2’g) ^ « 2(^2^) + 1 p  n )
a2( g ' , g i ) ^ a 2 ( g ’’g i ) - 1’ a 2( g ' , g 2) * - a 2( g ' , g 2) + l

There are four cases in Lem m a 3-5 to be analyzed. W e derive the first case, the

other three cases can be derived similarly. The first case states that if (g ' , g ) = ( g p g j )

(i.e. g ' - g l and g  = g, ) ,  then A 2 differs from Ax only by the following three matrix

elements (all other corresponding elements are the same):

a 2( g1, g l ) = a l ( g1, g l ) - 2  

a 2( g 2, g l ) = a l ( g 2, g l ) + l ,  

a 2(g l , g 2) = a1( g l , g 2) + l

Plug g'= g j  and g = gj into Eq 3.11, A 2 can be updated from its previous version by the

following four steps:

a 2 ( g i > g i ) < - a 2 ( g i > S i ) - l
a 2( g 2, g l )<r-a2( g 2, g l ) + l 

a A g i ’g ^ t - a ^ g ^ g ^ - l  

« 2( g l ’g 2) < - « 2(Sl><?2) + 1

Since A 2 is set as Ax initially, after the above four update steps (step 1 and 3 are 

the same, which implies that a2(g j , g l ) = a1( g l , g 1) - 2 ) ,  A2 differs from A, only by the 

same three matrix elements as those for the first case of Lemma 3-5.

In Lemma 3-5, a single site neighborhood system is assumed. For an arbitrary 

neighborhood system, Algorithm 3-1, which is given below, proves that when a pixel’s 

gray level changes, the GLAM of the image can be updated by processing only the pixels 

in both the neighborhood and the complement neighborhood at pixel p  by iteratively 

using Eq. 3.11. Precisely, we have the following algorithm to do this.
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A lgorithm  3-1 Let X l be an image defined on lattice 5 with an arbitrary 

neighborhood system N  = {iVs | s e  5 } , a n d p  is a given site in S. Suppose image X 2 is 

obtained from image X i by only changing p 's  intensity value from g x to g 2. Let 

Aj = [aj(f, 7)]0<, and A2 = [a2(i, ; ) ]0<,j<G-i are the GLAMs of X x and X 2 over N,  

respectively (G is the total number of gray levels of a pixel in an image). Then A 2 can be 

obtained from A, by performing the following steps:

1) Initialize A2 as Ax, i.e. A2 <— Ax.

2) For each r  e  N p , do

2-1) a 2(g1, g ) < - a 2( g1, g ) - l

2.2) a2( g 2, g ) < - a 2( g 2, g)  + 1

where g = A, ( r )  = X 2(r) is the gray level value of r.

3) For each r 'e  N r , do

3-1) a 2( g ' , g 1) < - a 2( g ' , g 1) - l  

3-2) a 2( g ' , g 2) < - a 2( g ' , g 2) + l

where N r is the complement neighborhood of N  , and g '=  Xj ( r ' )  = X 2(r') is

the gray level value of r ' .

L em m a 3-6 Two images are identical if and only if their corresponding GLAMs 

on all possible neighborhood systems are the same.
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Proof: Suppose that two texture images X, and X 2 are defined on lattice S, and 

that they are identical, i.e. X ,(s) = X 2(s) for any s e  S . It is obvious that their 

corresponding GLAM s on all possible neighborhood systems are the same.

Suppose the corresponding GLAMs of X t and X 2 on all possible neighborhood 

systems are the same, we have to show X l = X 2 . This is equivalent to proving that if 

X x ^  X 2 then there must exist neighborhood system N  such that the corresponding 

GLAMs Aj and A2 of X, and X 2 over A  are not equal (i.e. A 1 A 2).

Assume that X, ^  X 2. Let S = E kj D  be a partition on S, where 

E  = { se  S | X j(s) = X 2 (s )} is the region in which each site has the same gray level in 

Xj and X 2 , and D  = {se  S \ X ^ s ) ^  X 2(s)} is the region in which each site has 

different gray level in X , and X 2. But X 1 ± X 2, D  is not empty, i.e. </>. Let | D  |= n 

and D  = { ? ; e 5 | 0 < i < n - 1 } ,  and choose a neighborhood system N  such that its 

neighborhood structuring element E  is large enough to contain D, i.e. E  □  D . Let A, and 

A 2 be the GLAMs of Xj and X 2 over N , respectively. Using Lem m a 3-5 and 

mathematical induction, one can prove that Aj ^  A 2 since A2 can be obtained from  A x 

by iteratively applying the updating process on each site in D  as described in Algorithm

3-1. ■

The proof of Lemma 3-6 indicates that two images can be differentiated by their 

corresponding GLAMs over a specific neighborhood system (either symmetric or 

asymmetric). In the worst case, the structuring element of the neighborhood system could 

be as large as 5. It is impractical to test all possible neighborhood systems on S since the

number of possible neighborhood systems is 2 |s' - l .  However, by Theorem 1, any
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GLAM can be represented as a sum of BGLAM s. The following theorem indicates that 

two images can be differentiated by their corresponding BGLAMs, by which the 

computation cost can be significantly reduced from  0 ( 2 |51) to 0(\ S | ) .

Theorem 3-2 Two images are identical if and only if their corresponding 

BGLAMs calculated by the largest neighborhood system are the same.

Proof: Suppose A, and X 2 are two images defined on lattice S, we only have to 

prove that if A, ^  X 2 then there exists a single site neighborhood system N r such that 

Aj -t- A 2 , where Aj and A2 are the GLAMs of X l and X 2 over N  r , respectively. Aj 

and A 2 are BGLAMs because they are calculated from a single site neighborhood 

system.

Suppose A, ^  X 2, then by Lem ma 3-6, there exists a neighborhood system N  

such that their corresponding GLAMs A 2( N )  and A 2( N)  are not equal. Let 

{ N r | r e  E}  (where E is the structuring element of N)  be the single site neighborhood 

system decomposition of N  (see Definition 3-11), then by Lemma 3-4, we have:

Since Aj(iV) A 2( N ) , there exist r e  N  such that BGLAM A j ( A r ) ^  A 2( N r) because 

otherwise we have At( A)  = A 2( N)  by Eq. 3.12, which contradicts the assumption. ■

From Theorem 3-1 and Theorem 3-2, we conclude that an image can be uniquely 

represented by its BGLAMs, but not by SGLAMs nor by GLCMs. In other words, the 

information captured in both SGLAMs and GLCMs are less precise. In the next chapter,
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we demonstrate that BGLAMs outperform both SGLAMs and GLCM s in 2D texture 

synthesis as well as in evaluating the 2D texture synthesis results.

3.4 BGLAM Distance Measure

Definition 3-13 A distance function d  over a pair of images is metric if for any 

image X, Y, and Z, d  satisfies the following three properties [160]:

1) Non-negativity: d { X , Y )  > 0 .

2) Symmetry: d ( X , Y )  = d ( Y , X ) .

3) Triangle inequality: d ( X , Y )  < d ( X , Z )  + d ( Z , Y ) .

Definition 3-14 A distance function d  over a pair of images is strong metric if  it is 

metric, and for any images X  and Y, d  satisfies:

4) One-to-one: d ( X , Y )  = 0 if and only if X  = Y .

Definition 3-15 For a given aura matrix A  = [a(i, 7)]0<„;<„_i, it is normalized if

n - 1

^  a(i, /) = 1. In the definition an absolute sign on atj is not necessary because atj is
i j =0

never negative for an aura matrix.

Definition 3-16 Given two images X  and Y  defined on a rectangular lattice 5. 

Let A ( X )  = {Ak( X )  10 < k < m - l )  and A (F) = {Ak(Y) \ 0 < k < m  -1} be their 

corresponding normalized BGLAMs, then the BGLAM distance measure between X  and 

Y  is given by:

1 m~l
d ( X , Y )  = d ( A ( X ) , A ( Y ) )  = - X I I  A k( X)  -  A k(Y)  | | , (3.13)

m k=0
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where for a matrix A -  [a{i , j ) \ || A  ||= a( i , j )

T heorem  3-3 The distance function defined in Eq. 3.13 is strong metric, i.e. for 

any images X,  Y, and Z defined on S, d { . , .)  satisfies the following four properties:

1) Non-negativity: d ( X , Y )  > 0 .

2) Symmetry: d ( X , Y )  = d ( Y , X )  .

3) Triangle inequality: d ( X , Y ) < d ( X , Z )  + d ( Z , Y ) .

4) One-to-one: d ( X , Y )  = 0 if and only if X  = T .

P roof: It is easy to check that d { . , .)  satisfies properties of 1) and 2). For the 

proof of 3), by noting that | a + b |< | a \ + 1 b \ for any real numbers a and b, we have:

= d ( X , Z )  + d ( Z , Y )

where A ( X )  = {Ak( X)  \ 0 < k < m - 1 } , A{Y)  = {Ak(Y) \ 0 < k < m - l } , and 

A( Z)  = {A k (Z) 10 < k < m  -1} are the normalized BGLAMs of X, Y, and Z, respectively;

and A k( X)  = {af  (i, j ) \ A k(Y) = [aYk ( i J ) l and A k (Z) = [azk (i, j)],

k = 0 ,1 ,...,m  - 1 .
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Theorem 3-2 states that two images X  and Y  are identical (i.e. X  = Y )  if and only 

if their corresponding BGLAMs are the same. By the definition o f BGLAM distance 

function (see Definition 3-16), one can check that d ( X , Y ) = 0 if and only if X  = Y . m

The significance of the BGLAM  distance function is the one-to-one property. A 

zero value of the distance measure guarantees that the two images are identical. Although 

many metric distance measures [1, 4, 36, 53, 71, 72, 113, 116, 117, 152, 160, 172, 173] 

have been proposed, to our best knowledge, none of them is one-to-one.

X,

Figure 3-11: An example of demonstrating the importance of using BGLAM s in defining 

a one-to-one distance function. The right stripe-texture image is a rotation of the left 

image (a binary image of size 128x128) by 90 degrees.

In texture modeling, the one-to-one property is crucial in measuring the similarity 

between texture samples. Since the distance function is continuous, the one-to-one 

property implies that if the distance of Y  over X  gradually converges to zero, image Y  will 

gradually converge to X.  A distance measure (e.g. [53, 72, 116, 117, 152]) without the 

one-to-one property cannot guarantee this. In the next chapter, we demonstrate that if the 

distance of two texture images X  and Y  is below a threshold, X  and Y  are guaranteed to 

look similar to each other.

In the distance function given in Definition 3-16, BGLAMs play an important role 

in assuring the one-to-one property. Instead of BGLAMs, if other terms such as SGLAMs
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or GLCMs are used in the definition, the one-to-one property may not hold. Figure 3-11 

gives an example to illustrate this point as explained below.

Denote the original BGLAM  distance measure (see Eq. 3.13) by d B (., .).  Suppose 

SGLAMs replace BGLAMs in the definition in Eq. 3.13, and d s (.,.) denotes the 

corresponding distance measure. For the two binary texture images X, and X 2 o f size 

128x128 as shown in Figure 3-11, assume that the four nearest-neighbor neighborhood 

system N  is used. Let N 0, A , , N 2, and A 3 be the left-, right-, top-, and bottom- 

neighbor neighborhood system decomposition of A, respectively; A, and A2 be the 

SGLAMs of X l and X 2 over N,  respectively; and Au and A 2k be the BGLAMs o f X l 

and X 2 over A, respectively for k  = 0 ,1 ,2 ,3 . Then we have the following:

Aj A 2
36864 4096

4096 20480

A o — A i

4  -  4  -20 21

10240 0

0 6144

'8192 2048 

2048 4096

4  -  4  —

4  -  4  -
22 23

8192 2048 

2048 4096

10240 0

0 6144

d B( X k, X 2) ^ 5 ( A j , A 2) (z, j') <z2(/, y)| 0 ,
i j =0

3 1

d B( X  1, X 2) = X IIA ik -  A 2k II = X  X l  a u (*» i )  -  a 2k O’. J) | = 32768 ^  0.
/t=0 !J'=0k =0

Although two images X { and X 2 are different, i.e. X { ± X 2 , the SGLAM -based 

distance measure between X i and X 2 is zero, i.e. d s ( X {, X 2) = 0 . This implies that 

SGLAM-based distance is not one-to-one, and thus cannot differentiate the two texture
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images as shown in Figure 3-11. However, the BGLAM -based distance function can 

differentiate the two texture images because d B( X l , X 2) ■£ 0 . In the above distance 

calculations, we have used the original aura matrices instead of the normalized ones 

because X x and X 2 are defined on the same lattice, and the results will not be affected 

whether or not normalized aura matrices are used.

3.5 Summary

In this chapter, we present the BGLAM  mathematical framework. By clarifying 

the relationship between BGLAMs, SGLAMs, GLAMs, and GLCMs, we show that 

BGLAMs form the basis of GLAMs; while GLCMs forms the basis of SGLAMs. W e 

prove that two images are identical if and only if  their corresponding BGLAM s are the 

same. Therefore, an image can be uniquely represented by and faithfully reconstructed 

from its BGLAMs. However, the statement does not hold with GLCMs or SGLAMs.

In addition, we propose a BGLAM-based distance function, and prove that the 

new distance function is metric and one-to-one. The one-to-one property is not 

guaranteed by conventional metric distance functions [53, 72, 116, 117, 152], and its 

significance is that a zero value of the distance measure guarantees that the two images 

are identical. In the next chapter, we demonstrate that the BGLAM -based distance 

function can be used as a quantitative measure in evaluating synthesis results w.r.t. input 

textures to determine if the output is a successful synthesis of the input, and that if the 

BGLAM distance of two texture images is below a threshold, they are guaranteed to look 

similar to each other.
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The BGLAM s of an image characterize the cooccurrence probability distributions 

of gray levels at all possible displacement configurations and thus estimate the underlying 

stochastic process that is used to generate a given texture sample. BGLAMs should not 

be confused with GLCMs. It is proved that any GLCM  can be represented as a sum of 

two BGLAMs. In fact, all of the theorems on BGLAMs described in the chapter do not 

hold for GLCMs. To illustrate the representative property of BGLAM, in the next 

chapter, we show that BGLAMs outperforms GLCMs as well as other existing 

techniques in 2D texture synthesis.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

BGLAM 2D Texture Synthesis

4.1 Introduction

For a given input texture sample, the problem of 2D texture synthesis is to 

generate a new texture image that looks similar to the input. One major problem of 

existing 2D texture synthesis techniques is that the output textures are often generated by 

using some characteristics of input examples, which may not represent the input texture 

appropriately. For instance, in existing feature-matching approaches [6, 35, 81, 143, 190], 

a set of filter responses at multiple scales and orientations are used to characterize an 

example texture. However, as suggested by Zhu et al. in their FRAM E (Filters, Random 

Fields and M axim um Entropy) model [208], it requires an infinite number of filters (each 

filter is as big as the given texture image) to model a given texture with the necessary and 

sufficient information. In addition, it is not an easy task to select the filters or to 

determine the number of filters to model a typical texture [208]. Because of using 

ambiguous definitions of textures, existing synthesis techniques cannot determine 

whether or not the synthesis result is acceptable. Visual inspection is the only way to 

evaluate the synthesis results.

To address the above problems, this chapter presents a new technique, called aura 

2D textures, for generating 2D synthetic textures from input texture samples using 

BGLAMs. The technique is based on the BGLAM  mathematical framework developed in 

the previous chapter. We demonstrate that the new technique can successfully synthesize
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a wide range of textures using a small set of BGLAMs (e.g. 48 BGLAMs for an input 

texture of size 64x64) .  In addition, based on the BGLAM distance measure, our new 

technique is able to automatically evaluate the results and determine whether or not the 

output is a successful synthesis of the input. To our best knowledge, none o f the previous 

techniques has the ability to evaluate synthesis results.

(a)

characterizing

3 A set of 
BGLAMs

sam pling

(b) (c)

Figure 4-1: The basic idea of the approach of BGLAM-based 2D texture synthesis. The 

input example (a) is first characterized by a set of BGLAMs (b), and then the BGLAMs 

are used to generate an output texture (c).

The main idea o f our approach is shown in Figure 4-1. Given a texture sample, 

our method first characterizes it by a set of BGLAMs. Then, by sampling the BGLAMs 

only, our method generates an output texture similar to the input with similar BGLAMs. 

This is done by iteratively modifying the gray level of each pixel in the output image, 

which is initialized as a random noise image, until the distance between the 

corresponding BGLAMs of the output and those of the input is small enough or until 

there are no further changes in the gray level values of the output.

The BGLAM distance function defined in Section 3.4 is used to evaluate the 

synthesis result quantitatively for determining whether or not the output looks similar to
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the input. Experiments have shown that if the distance value is below a threshold value 

(0.1 used in our experiments), then the output is guaranteed as a successful synthesis of 

the input. It is noteworthy that the one-to-one property is crucial for measuring the 

similarity between textures. W ithout this property, which is the case in existing 

techniques [35, 143, 190, 208], a less similar texture image might be given a higher 

degree of similarity to the input. Hence, existing techniques only show some synthesized 

results without evaluating them.

The advantages of using BGLAMs in texture analysis and synthesis include: (1) 

easy to compute, (2) accurate representations of example textures, (3) able to evaluate the 

results, and (4) no filters required. By thorough experiments, we show that BGLAMs 

outperform both SGLAM s and GLCMs, and can successfully synthesize a broad range of 

textures with comparable results to those of existing techniques [81, 106,190].

4.2 Related Works

Being complete on its own, this section gives a brief discussion on related works 

in 2D texture analysis and synthesis. For the detailed discussions, the interested readers 

are referred to Chapter 2. Since Julesz’s pioneering work in texture analysis [93], various 

approaches have been proposed for texture analysis and synthesis. One of the most 

influential approaches is the MRF models [32, 63], Only a lim ited range of textures can 

be modeled with earlier M RF techniques because of the limited size of the cliques and of 

the low-order statistics used in modeling. To address these problems, Zhu et al. propose 

the FRAME model, which incorporates filtering theory into the MRF models to 

synthesize a wider range of textures [208], and Deng and Clausi propose the ACGMRF
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(Anisotropic Circular Gaussian M RF) model to model anisotropic textures [38], The 

conventional M RF texture models are also generalized by Popat and Picard to the cluster- 

based probability model [141] and by Paget to the strong MRF model [126] for modeling 

textures with high order statistics. Different from Zhu et al.’s FRAME model, both 

approaches are nonparametric. In general, M RF models are slow because of the 

expensive local probability construction (normally based on exponential functions) at 

each pixel location during the sampling. To speed up, nonprobabilistic pixel-based 

sampling techniques [3, 49, 190] are proposed by a number of researchers, which are 

further improved by the patch-based sampling techniques [50, 100, 101, 106, 186],

Techniques are also developed to synthesize textures by matching features in 

multiple scales and orientations, pioneered by H eeger and Bergen’s work [81] using a 

global histogram-matching strategy. Later, in the work of Portilla and Simoncelli [143], 

it is shown that new textures can be synthesized by matching the corresponding joint 

statistics of complex wavelet coefficients between the input and output image pyramids. 

Rather than using global joint statistics, DeBonet and Viola use joint occurrence of local 

features in multiresolutions to model texture images [35]. Their approach has been 

generalized by Bar-Joseph et al. to texture mixture and video texture using statistical 

learning [6],

Another influential approach called GLCM s (Gray Level Cooccurrence Matrices) 

[21, 34, 76] can be used as a powerful tool for texture analysis, segmentation, 

classification, and synthesis. The disadvantage of the GLCMs is that they contain 

cooccurrence information between two pixels only, and thus cannot capture the spatial 

relationship between three or more pixels in the image. This problem can be addressed by
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using GLAMs (Gray Level Aura M atrices) [51, 52, 137, 138], which incorporate 

neighborhood systems to model the relationship between the target pixel and its 

neighboring pixels, and thus can capture the relationship between any number of pixels. 

Recently, GLAMs are successfully applied to texture similarity measure and learning by 

Qin and Yang [152], All previous studies on GLAMs assume that the neighborhood 

systems are symmetric, which have caused difficulties in modeling anisotropic textures 

(see Figure 3-8).

The work in this chapter presents a new technique for 2D texture analysis and 

synthesis based on the BGLAM  mathematical framework developed in Chapter 3. With 

respect to synthesis of textures and evaluation of the results, the performance of our 

approach is extensively evaluated and compared with symmetric GLAMs and with 

GLCMs.

4.3 The Approach

Figure 4-2 gives an overview of the BGLAM-based texture synthesis approach.

Given an input texture X,  its BGLAMs A ( X )  are computed using an algorithm described

later (Section 4.3.1). Then the ICA (Independent Component Analysis) [83] is used to

identify the independent BGLAMs. For simplicity reasons, we also use A(Y)  to

represent the independent BGLAMs of X.  The output Y  is initialized as a random noise

image, and its BGLAMs A( Y)  corresponding to A ( X )  are computed. Then, a BGLAM-

based random sampling procedure is employed to iteratively update the output until the

BGLAM distance d ( A( X) , A( Y ) )  (see Eq. 3.13) is small enough or until there is no

further change in pixel’s gray level values in the output. During an iteration of the
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sampling process, the gray level of a pixel in the output Y  is modified such that the newly 

assigned gray level to the pixel will decrease or at least do not increase the BGLAM 

distance between Y  and X.

Input X Output Y

Independent 
BGLAMs of A

Yes

M  d{A{X),A{Y))<el  >

N o

BGLAM-based 
random sampling

Initialized output Y 
(white noise image)

A(Y)

BGf AM* o f f  
corresponding to A{X)r

k

Updated output Y 
after sampling

Figure 4-2: An overview o f the approach o f aura 2D texture synthesis.

4.3.1 Calculating BGLAMs

As proved in the previous chapter, two images are identical if and only if their 

corresponding BGLAMs are the same, and thus an image can be uniquely represented by 

its BGLAMs. In this chapter, a compact set o f BGLAMs defined over a neighborhood 

system (e.g. a 9 x 9  square window) is used to characterize input samples. For an m x m  

(,m is an odd number and m>  1) neighborhood system, the total number of BGLAMs is 

m 2 -1  because there are m 2 -1  neighboring pixels around the central target pixel, and
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each neighboring pixel accounts for a BGLAM. An example of a 5 x 5  binary image and 

its BGLAMs calculated over a 3 x 3  square window are shown in Figure 4-3.
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Figure 4-3: The BGLAMs of a 5 x 5  binary image. The binary image, the 3 x 3  

neighborhood system, the displacement configuration of neighboring pixel r, and the 

corresponding BGLAMs of eight displacement configurations are in (a), (b), (c), and (d), 

respectively. For the ease of reference, the BGLAMs in (d) are placed according to their 

displacement configurations in (b). For example, the BGLAM in highlighted color in (d) 

is for the displacement configuration of the pixel r in (b).

Given an image X  on lattice S with a neighborhood system N,  we assume that a 

common state space A = {0 ,1 ,--,G -1} is used for all sites s e  S , where G  is the total 

num ber of gray levels available in the image. A straightforward way to compute the 

BGLAM  of a displacement configuration (see Figure 4-3 (c)) is to first compute all the 

gray level sets {S | g e  A} using Eq 3.5 in Section 3.1. Then, for each pair S g and

S g.where g , g ' e  A,  one can use Eq. 3.4 to compute the aura measure m( Sg, Sg. ) , which
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G - l

takes 0 ( | Sj, | * | Sg. |) to calculate. Since ^ | 5 ^ | = | S | ,  the total time to compute as=0
BGLAM  is 0 ( | S |2).

The above brute-force algorithm is slow, a simple but fast algorithm with 

complexity 0 ( | S |) can be achieved for calculating a BGLAM  by processing through 

each site s of the lattice S only once. To calculate the BGLAM  of a specific displacement 

configuration, e.g. the one shown Figure 4-3 (c), the fast algorithm works as follows. 

Initialize each entry of the BGLAM A  = [m(S1,S'y]0<l .SG_, to zero, i.e. = 0 for

0 < i , j < G  - 1 .  For each site s, let g be its gray level, one checks its neighboring site r in

the displacement configuration and finds its gray level g ' . Then we increment the value

of m ( S g, S g.) by 1. After all the sites in the image have been processed, the calculation of

the BGLAM is finished. W hen handling a target site on the im age boundaries, we 

consider only its neighboring sites inside the image and discard those outside of the 

image. Once the BGLAMs are computed for the input texture, they are stored and used as 

the only representation of the input to generate the output during synthesis. In other 

words, the input texture itself will not be needed any more once its BGLAMs are 

computed.

4.3.2 Similarity Measure

During synthesis, it is important to have an accurate measure to determine how

close the output texture matches the input. In our method, the similarity between two

texture images is measured by the sum of the distances between their corresponding

BGLAMs, where the distance of two matrices is the M anhattan distance of the two
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matrix vectors. Precisely, given two texture images X  and Y  defined on S. Let 

A(X)  = {Ak 10 < k < m  -1}  and A (Y ) = {Bk | 0 < k < m  -1} be their corresponding 

normalized BGLAMs, then the similarity measure between X  and Y  is given by:

1 W - l

d ( X , Y )  = d ( A ( X ) , A ( Y ) )  = - X I I  A  -  B k | | , (4.1)
m k=0

G - 1

where for a given matrix A  = [a(i, y)]0<, , its norm is || A  ||= X |  a(i, j ) | , and a aura
i , j =o

G - l

matrix A = [a(S,.,5 ■)] is normalized  if y ' ja (S i , S ; ) = 1.
i , j = 0

Section 3.4 includes a proof that the distance function defined in Eq. 4.1 is one-to- 

one in the sense that a distance measure of zero guarantees that the two images are 

identical. Since the distance function is continuous, the one-to-one property implies that 

the smaller the distance value, the closer the two texture images look to each other. In 

fact, as demonstrated later, this one-to-one property enables our algorithm to evaluate the 

synthesis results automatically. As far as we know, none of the existing techniques has 

this feature. In the rest of the chapter, we assume that all BGLAMs are normalized.

4.3.3 BGLAM-Based Random Sampling

The BGLAM -based random sampling procedure iteratively modifies the output

such that its BGLAMs match those of the input. In the beginning, the output texture is

initialized as a white noise image (see Figure 4-2). During an iteration of sampling, each

pixel of the output is visited randomly once, and its gray level is modified so that the

BGLAMs of the output get closer to those of the input. More precisely, when visiting a

pixel, the algorithm first finds the candidate set of all gray levels (different from  the
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current pixel value) that decrease or at least do not increase the BGLAM-based distance 

(defined in Eq. 4.1) between the output and the input. Then it randomly chooses a gray 

level from the candidate set and sets the pixel value to the newly selected gray level. Note 

that even when a gray level does not decrease the distance, i.e. at the same distance as the 

current gray level, the algorithm also includes it into the candidate set in order to increase 

the randomness in the output. It is possible that the candidate set is empty at the end of 

search, which implies that any gray level that is different from the current pixel value will 

increase the distance. In such a case, the pixel retains its current gray level, and the 

algorithm goes to process the next pixel in the output image. W hen the BGLAM -based 

distance between the output and the input is below a threshold or there is no change in 

gray level values in any pixel of the output, the sampling process returns the output 

texture as the final result.

4.3.4 Algorithm

The pseudo code o f the BGLAM -based 2D texture synthesis algorithm is given in 

Figure 4-4. Given an input texture image X, the algorithm generates a synthesized texture 

image Y  that looks similar to the input X. There are four steps in the algorithm. The first 

step is to initialize the output texture image as a white noise image using a pseudo 

random number generator. The normalized BGLAMs of the input and output texture 

images are then computed in the next two steps using the fast algorithm that is described 

in Section 4.3.1. After BGLAMs are computed, the independent BGLAMs are computed 

using the standard ICA algorithm [83], The last step is the BGLAM-based random 

sampling procedure as described in the previous subsection.
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BGLAM-Based 2D Texture Synthesis 

Input:
X <— sample texture image. 
e «— a given small threshold value in (0,1)

Output:
Y +— the synthesized texture image.

Begin
1 Initialize Y as a random noise image.
2 A(X) <— the normalized BGLAMs of X.

A(X) «- Independent BGLAMs of A (A) by ICA.
3 A{Y) <— the normalized BGLAMs of Y.

A{Y) *-  Independent BGLAMs of A(Y) by ICA.
4 While d=d(A(X),A(Y))>e  do

4.1 While there are unvisited sites in Y, randomly choose an unvisited site 5 do 
grayLevel(s) *— bglamBased2DRandomSampling(s, d, A(X), A(Y),Y). 

End of while 
End of while 

End of begin

bglamBased2DRandomSampling(s, d, A(X), A(Y), Y)
b.l C=empty (the candidate set of gray levels for site s). 
b.2 For each gray level j  = 0 to G - 1 do

b.2.1 A S( Y) <— the normalized BGLAMs of Y when site s has gray level j. 
b.2.2 d} <— d(A(X), AjiY)), which is calculated using Eq. 4.1. 
b.2.3 if dj 5 d, then C = C u  {j }. 

b.3 IfC is empty, then g <— the current gray level value of s,
Else g <— a randomly chosen gray level from C. 

b.4 Recalculate A(Y). 
b.5 Return g.

Figure 4-4: The BGLAM-based 2D texture synthesis algorithm.

The major computation cost of the algorithm is spent in the two while loops in 

step 4. In an iteration of step 4 (i.e. one pass of going through step 4.1 by visiting all sites 

in Y), a brute force method would perform fresh recalculations each time in computing 

the BGLAMs of the output and the BGLAM -based distance in sampling (i.e. in 

bglamBased2DRabdomSampling). The time complexity of an iteration of step 4 using the 

brute-force calculation is at least 0 [ m * n p * G * ( n p  + G 2)\ (the proof is given below), 

where m  is the total number of BGLAMs, np the number of pixels in the output, and G 

number of gray levels in the image. As proved below, a more efficient way is to perform
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an iterative update based on existing information, which can be done with a computation 

cost of 0 ( m * n p * G )  because when a pixel changes its gray level value, only its 

neighboring pixels will be affected. In fact, according to Lemma 3-5, each gray level aura 

matrix Aj(Y)  in the step b.2.1 of bglamBased2DRabdomSampling in Figure 4-4 can be

efficiently updated from its previous version in four simple arithmetic operations as 

described in Algorithm 3-1 in Chapter 3. At the end o f the procedure 

bglamBased2DRabdomSampling, one can always keep an updated version of A(Y)  for the 

selected gray level g at site s for the next update. In addition, using a few simple 

arithmetic operations, distance d  can be efficiently updated from its previous value and 

distance dj  can be efficiently calculated from distance d  without a complete

recalculation. To achieve the above fast iterative updates, however, the algorithm must 

store the BGLAMs of the input and of the output as well as the distance between each 

pair of the corresponding BGLAMs of the input and of the output. The detailed proofs of 

the above time complexities are given as follows.

[Proof of the brute-force time complexity] W e would like to prove that the time 

complexity for one iteration in step 4, i.e. one pass that goes through step 4.1 by visiting 

all pixels in image Y, is at least 0 ( m * n p * G *  (np + G)) , where m is the total num ber of 

BGLAMs, np the number of pixels in the output, and G number of gray levels in the 

image. Let 7(4.1) and T(b) be the time complexity for step 4.1 and for the procedure 

bglamBasedlDRabdomSampling, respectively, then the time for one pass of step 4, is 

given by:

T(4A) = np*T(b) .  (4.2)

From pseudo code of bglamBasedlDRandomSampling given in Figure 4-4, we have:
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T(b) = T{b. 1) + Tib.  2) + Tib. 3) + Tib A)  + Tib. 5)

> 0(1) + G * [Tib.2.1) + 7XA2.2) + Tib.23)]  + 0(1) + 0 (m  * np) + 0(1)

= G*[Tib . 2.1) + r(Z?.2.2) + r(6.2.3)] + 0(m * np)

= G * \ O i m *  np) + 0 (m *  G 2) + 0(1)] + 0 (m  *np)

= G * 0 [ m * i n p  + G 2)] + Oim*np)

= O i m * G * i n p  + G 2)] + Oim*np)  -(4-3)

= 0 [ m * G * i n p  + G 2) + m*np]

= 0 (m  * G*  np + m* G 3 + m *  np)

= 0 i m * n p * G  + m * G 3)

= 0[m * G * (np + G2)]

In the above equation, the time for step b.3 is at least 0 (1 ). Since there are m BGLAMs 

in AiY)  and each BGLAM  takes time 0 (n p ) to compute by the algorithm described in 

Section 4.3.1, the time complexity of step b.4 is Tib.4) = 0 (m * n p ) .  W hen calculating 

the time for step b.2.1, there are m BGLAMs in A j i Y)  and each BGLAM  takes time

0(np ) to compute; thus the total time for step b.2.1 is 0 (m * p p ) .  By Eq. 4.1, the time

for step b.2.2 is 0 (m * G 2) because there are m matrices of size G x G  and each matrix 

needs a time of 0 ( G 2) to compute its norm. By Eq. 4.2 -  4.3, we have:

7X4.1) > np * 0 [ m * G  * inp + G 2)] = 0 [ m * n p * G * i n p  + G 2)]. ^

[Proof of the fast-version time complexity] Let A(X) = {Bk(X) 10 < k < m - 1}, 

A j i Y ) - { B jki Y ) \ 0 < k < m - l } , and AiY)  = {Bk( Y ) \ 0 < k  < m - l } . Based on Lemma

3-5 and Algorithm 3-1, for each k = 0, l ,—, m - l  , matrix BjkiY) can be efficiently 

calculated from matrix Bk (7) by changing the values of only four entries as shown in Eq. 

3.11 in Chapter 3, which implies that BjkiY) can be updated from BkiY) using constant 

time. Thus, the total time for step b.2.1 is m*  0(1) = 0 ( m ) . Furthermore, since there are
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only four different entries between B jk(Y) and Bk( Y ) , the distance d ] in step b.2.2 ,

m - 1

which is dj = d ( A ( X ) , A j ( Y ) )  = ^ | |  Bk( X )  -  Bjk(Y) | | , can be efficiently updated from
k = 0

III —I
distance d, which is d = d ( A ( X ) , A ( Y ) )  = ^ | |  Bk( X ) ~  Bk(Y)  | | , using a computation cost

k =  0

of m * 0(1) = 0 ( m ) . The time for step b.3 is at most 0 ( G ) , and matrix A(Y)  in step b.4

can be updated from its previous version using time 0 ( m ) . Thus, we have the following:

T(b)  = T(b. 1) + T(b. 2) + T(b. 3) + T(b.  4) + T(b. 5)

< 0(1) + G * [T(b.2.1) + T(b.2.2) + T(b.2.2)] + 0 (G ) + 0 ( m )  + 0(1)

= G *  [T(b. 2.1) + T  (b.2.2) + T(b. 2.3)] + 0 (m )

= G * [ 0 (m )  + 0 (m )  + 0(l)]  + 0 ( m )  .(4.4)

= G *  0 (m )  + 0(m )

= 0 ( m  * G + m)

= 0 ( m * G )

By Eq. 4.2 and Eq. 4.4, we have T (4.1 ) < n p *  0[m * G] = 0[m * n p * G ]. _

4.3.5 Color Image

For color input texture images, one cannot simply apply the above basic algorithm 

to each of the RGB channels separately since the RGB components of a color im age are 

dependent on each other. Before applying the basic aura texture synthesis algorithm, a 

color-space transformation T  based on the singular value decomposition technique 

(SVD) [146] is used to transform the R, G, and B  components of the color image into 

three independent components R ' , G ', and B' in another color space. After this RGB- 

color-decorrelation step, the basic synthesis algorithm is applied to each of the 

independent color components R' , G ', and B' to generate three output textures in the
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transformed color space, which are then transformed back into the RGB color space to 

produce the final synthesized color texture image using the inverse transformation o f T. 

The pseudo code of the RGB color-space transformation algorithm based on SVD is 

given in Figure 4-5.

SVD RGB Color Transform 

Input:
X *— the RGB color image.

Output:
Y <— the color image with independent color channels.
T  <— the RBG color transformation.
T  1 <—the inverse transformation of T.

Begin
1 Subtract the mean color from each RGB color channel.

1.1 R, G, B <— the red, green, and blue channel of X, respectively.
1.2 r, g,b •*- the mean color of R, G, and B, respectively.
1.3 R' <— R-r (subtract the mean of the red values from the red value at each pixel of R).
1.4 G'<— G-g.
1.5 B' <- B-b.
1.6 X  <— the color image of R \ G \ B '  channels.

2 Calculate the 3x3 covariance matrix C of X'.
2.1 n <— the number of pixels in X'.
2.2 D *— the 3xn matrix whose columns are color values of each pixel in X'.
2.3 C <— D D l, where D 1 is the transpose of matrix D.

3 Perform SVD on C by decomposing C into the product of three of matrices.
C = U S 2U l, where U is orthonormal and S is diagonal.

4 Calculate the transformation T  and the inverse of T.
T  <— S A U, where S is the inverse matrix of S.
T A <—US.

5 TD
Y is a 3xn matrix with each row representing a color channel.

6 Return Y, T  and T  h 
End

Figure 4-5: The algorithm of RGB-color transformation using SVD.
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4.4 Experiments

In our approach of 2D texture synthesis, the neighborhood size is an im portant 

parameter that affects the synthesis results. In general, an image containing large 

structural textures (see textures in the 1st column in Figure 4-9) requires a relatively large 

neighborhood size. For a given input texture, different synthesis results can be generated 

with different neighborhood sizes. Figure 4-6 below gives an example texture and its 

synthesized textures generated with different neighborhood sizes. It is an interesting 

future research topic to systematically determine the optimal neighborhood size (e.g. 

11x11 for the input texture shown in Figure 4-6) for a given input texture image to obtain 

the best run-time performance.

input 3x3 5x5 7x7 gx g 11x11

Figure 4-6: An example of the synthesis results using the neighborhoods of different sizes 

given under each output.

4.4.1 Comparison with SGLAMs and GLCMs

For simplicity reasons, we only describe the algorithm of comparing BGLAM s

with GLCMs, and the one of comparing BGLAMs with SGLAMs is similar. A fair

comparison scheme is to use the same general algorithm as described in Figure 4-4, but

sampling with BGLAM s and GLCMs, respectively, calculated over the same square

neighborhood structuring element E. In addition, for fairness in comparison, when using

BGLAMs, the step of ICA is omitted, i.e. all BGLAMs calculated over E  are used. For

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



example, if the neighborhood structuring elem ent £  is a square window of size 11x11 

with the target pixel at the center, then 11x11-1  = 120 BGLAMs and 1 2 0 /2  = 60 

GLCMs will be used for generating synthetic textures because each BGLAM  is 

calculated over a single site structuring elem ent and each GLCM is calculated over a 

symmetric structuring element of two sites.

We generate a database of 848 texture images (with repetitions or very similar 

texture images removed using the BGLAM  distance measure defined in Eq. 4.1) from 

various sources (see [124]), randomly select half of the images from the database, and use 

them as input samples. W e generate two outputs for each input by sampling 120 

BGLAMs and 60 GLCM s (calculated from the input over a square window of size 

11x11), respectively. W e evaluate the synthesis results subjectively. Each output is 

evaluated by 10 people. Among the 10 people, 5 of them are researchers in the same 

research lab and have the knowledge on texture analysis and synthesis; the other 5 people 

are graduate students in the department and have the general knowledge in com puter 

vision and image processing. Each subject is asked to determine w hether or not the 

output looks similar to the input. If over 50% of the subjects agree that a given output 

texture looks similar to its corresponding input texture, then a SUCCESS is assigned to 

the output; otherwise a FAILURE is assigned.

Experiments have shown that the average percentages of SUCCESS for 

BGLAMs, GLCMs and SGLAMs are 81.4%, 44.7% and 39.7%, respectively, which 

indicates that BGLAMs significantly outperform both GLCMs and SGLAMs. Figure 4-7 

gives some examples of texture synthesis by sampling BGLAMs, GLCMs, and 

SGLAMs, respectively.
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m ®

Figure 4-7: The comparison results of texture synthesis using BGLAMs, GLCMs and 

SGLAMs. Images in the 1st column are the input (size 100x100), the synthesized 

images (size 128x128) by sampling BGLAMs, GLCMs and SGLAMs are in the 2nd, 

3rd and 4th columns, respectively. The results indicate that BGLAMs outperforms both 

GLCMs and SGLAMs.

BGLAMs, GLCMs, and SGLAMs are also evaluated with each other by the 

ability of measuring the similarity between textures. We use the distance function defined
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in Eq. 4.1, but working with BGLAMs, GLCM s and SGLAM s, respectively. Lor each 

synthesized texture, we calculate the distance value to the input. If the value is below 0.1, 

then the output is considered similar to the input, and thus a SUCCESS. Otherwise, it is a 

LAILURE. On the other hand, each output is evaluated by 10 people. It is considered as a 

SUCCESS if over 50% of the subjects answer YES. Otherwise, it is FAILURE. For each 

output, the evaluation result from the distance measure is com pared with the subjective 

evaluation to determine if it is a MATCH. The average percentage of match among all 

output textures is used to determine the ability of a distance measure for measuring the 

similarity between textures. The experimental results show that the average percentages 

of M ATCH for BGLAMs, GLCMs and SGLAMs are 75.8%, 49.8% and 41.3%, 

respectively. This test indicates that the BGLAM  distance measure has the ability to 

measure the similarity between textures, while none of GLCM  and SGLAM distance 

measures has.

4.4.2 Comparison with Existing Techniques

Figure 4-8 gives some comparison results of texture synthesis, where images in 

column 1 are the input texture samples, and images in the last four columns are the 

synthesized results of: our algorithm, the Heeger and Bergen algorithm [81], the Wei and 

Levoy algorithm [190], and the Liang et al. algorithm [106]. W e implement both 

H eeger’s and W ei’s algorithms, in which H eeger’s algorithm is based on the steerable 

pyramid [81] and W ei’s algorithm is based on the Gaussian pyramid [190].

The results of our algorithm are generated using 48 BGLAMs calculated from a 

square window of size 7x7 around a target pixel. The results for Heeger’s algorithm are 

generated using steerable pyramids with 3 levels and 4 orientations (i.e. 0, 45, 90, and
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135 degrees as used in the Heeger and B ergen’s work [81]). For W ei’s algorithm, a 

Gaussian pyramid of 3 levels is used to synthesize from a given input texture. The 

neighborhood sizes used for a Gaussian pyram id are {3x3,1}, {5x5,2}, {7x7,2} from the 

lowest resolution level to the highest resolution level, where {7x7,2} means a 

multiresolution neighborhood of 2 levels (with size 7x7 at the higher resolution level and 

3x3 at the lower resolution level) is used to generate the highest resolution level. The 

results for the Liang et al.’s algorithm are taken from Paget’s website [124].

As shown in Figure 4-8, H eeger’s algorithm is able to capture the overall 

appearance of a given texture sample, but fails to capture the local structures in the 

texture because of the global histogram-matching scheme used in the algorithm. W ei’s 

algorithm is able to capture the details of a given texture using a pixel-based sampling 

scheme, but has a smoothing effect in the output because of the inaccurate SSD (sum of 

squares differences) measure used to measure the similarity between the output and the 

input and the Gaussian pyramid used to represent a texture image. Although, Liang’s 

algorithm can generate good results, our algorithm generates better results for the input 

textures in the 1st, 2nd, and 5th rows. For other input textures in the figure, the results for 

our algorithm are comparable to those of L iang’s algorithm.

The number under each output texture is the value of the BGLAM-based distance 

measure (see Eq. 4.1) of the output compared to the input. The smaller the BGLAM 

distance value, the greater the similarity between two texture images. The quantitative 

evaluation based on the BGLAM distance function also shows that the synthesis results 

from our approach are better than those from Heeger’s and W ei’s algorithm, and are 

comparable to those of L iang’s algorithm.
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0.03 0.63 0.75 0.07

0.06 0.39 0.23 0.02

Figure 4-8: The comparison of results of our approach (column 2) with Heeger and 

Bergen’s algorithm (column 3), Wei and Levoy’s algorithm (column 4), and Liang et 

al.’s algorithm (column 5), where the input textures are in column 1.
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Figure 4-9: Examples of BGLAM-based 2D texture synthesis. The smaller image in each 

pair is the input texture (size 64x64), and the larger image is the synthesized texture. The
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sizes of output texture in column 2, 4, and 6 are 100x100, 128x128, and 156x156, 

respectively. Since the textures in the first column contain large structures, 120 BGLAMs 

calculated over a neighborhood system o f size 11 are used to generate the output in the 

second column. The output textures in the 4th and 6th column are generated using 48 

characteristic BGLAMs.

k

r* *

MjfettSMlS *t
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Figure 4-10: Examples of BGLAM-based 2D texture synthesis. The smaller images are 

the input textures (size 128x128), and the larger images are the synthesized textures
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(size 200 x 200) that are generated using 80 BGLAMs calculated over a neighborhood

system of size 9.

*"V >>»!*■ ip.

Figure 4-11: Examples of BGLAM-based 2D texture synthesis. The smaller images are 

the input textures (size 128x128), and the larger images are the synthesized textures 

(size 200x200) that are generated with 80 BGLAMs calculated over a neighborhood 

system of size 9.
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4.4.3 Synthesis Results

Examples of texture synthesis using BGLAMs with various input textures are 

shown in Figure 4-9, Figure 4-10, and Figure 4-11. The smaller image in each pair is the 

input texture, and the larger image is the synthesized texture. More results can be found 

at the author’s webpage [149]. The experimental results have shown that a broad range of 

textures can be faithfully synthesized using our approach.

Input Output Difference of Difference o f
Input and output the highlighted part 

o f input and output

Figure 4-12: An example of a synthesized texture with duplication effects. Both the input 

(it is enlarged in the figure) and output have the same size (3 2 x 3 2 ) . The synthesized 

texture is generated by the algorithm described in Figure 4-4 with 120 BGLAM s and a 

threshold value 0.001. The difference image of the input and output shows that the input 

and output is not identical. In addition, the difference image (enlarged) of parts o f the 

input and output in highlighted windows (where the duplication effect occurs) shows that 

the two parts are not identical.

Some discussions on the duplicate effect from parts of the input in the synthesized 

texture are given as follows. As shown in some examples (e.g. the result for the first input 

in Figure 4-7 and the result for the input in row 4 and column 4 in Figure 4-11), it seems 

that parts of the output texture are directly duplicated from the input; while in fact it is
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not. This effect is more noticeable when a very small threshold value (e.g. 0.001) is used 

in the sampling o f our algorithm. Our method generates a synthesized texture by 

iteratively modify the output such that the BGLAMs o f the output match those of the 

input, it is possible that parts of the output look like duplicated from the input if the 

threshold value is very close to zero. However, those parts are not exactly the same. 

Figure 4-12 gives an example o f an input texture, its synthesized texture of the same size 

by BGLAMs, the difference image o f the input and output, and the difference image of 

the highlighted parts o f the input and output where the duplication effect occurs.

Input 1.90 1.04 0.46 0.08

Figure 4-13: An example using BGLAM-based distance measure to evaluate the

synthesized results against the input.

4.4.4 Evaluating Synthesis Results

One significant advantage of the BGLAM-based approach for 2D texture

synthesis over existing approaches is that the BGLAM-based distance measure defined in

Eq. 4.1 can be used to evaluate the synthesis result to determine whether or not the output

looks similar to the input. By our experimental results, we found that if two texture

images have a distance value greater than 1.0, then they are dissimilar. If  the value is

below 0.1, then the output is assured similar to the input. However, if the distance value

is between 0.1 and 1.0, then the similarity between the two textures is difficult to

determine, in this case we consider the output with a distance value below 0.5 a success
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and a failure otherwise. This observation is made by our extensive experiments. Figure

4-13 gives an example to demonstrate this point. Note that in Figure 4-8, each output 

texture has a number beside it to show its BGLAM -distance to the input.

4.4.5 Running Time and Acceleration

On the running time, for an input color texture sample of size 6 4 x 6 4  and an 

output color texture of size 128x128 , the average running time is about 30 minutes on a 

1.4GHz Pentium 4 PC running W indows XP Professional.

For acceleration, we extend our algorithm so that it can perform texture synthesis 

in multiresolutions, similar to the non-filter-based multiscale method used in Paget’s 

work [129], to build the multiresolution representation of a given image. W ith a 

multiresolution scheme of 4 levels and 24 BGLAM s used for each level, the running time 

is reduced to about 2-3 minutes. For color images, our algorithm is extended to 

synthesize the three independent color channels in parallel after the step of color-space 

transformation as described in Section 4.3.5. In this case, the above running tim e can be 

further reduced to about 1 minutes.

4.5 Limitations and Future Work

One limitation of the current implementation of the BGLAM-based 2D texture 

synthesis algorithm is the gray level update scheme during the sampling as described in 

Section 4.3.3. It is quite possible that after a few iterations, the number of candidates of 

possible gray levels for a target pixel is less than 3, which may sometimes cause the gray
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level values o f pixels in the output texture to quickly converge to local minima, and thus 

generate visible seams in the output textures as shown in Figure 4-14. In this case, 

fortunately, the BGLAM-based distance measure between the output and the input cannot 

decrease any further, and a large distance value, normally above 0.5, is returned to 

indicate a failure (see Figure 4-14). Future research should be carried out to address this 

problem. One possible solution is to extend the current single-point search scheme to a 

multiple-point search scheme during sampling so that the convergence to the local 

minima can be avoided as much as possible. Since genetic algorithms [66, 153] are well 

suited for searching in multiple directions, it is an interesting future research topic to 

explore using genetic algorithms to address this local minima problem.

visible seams

Figure 4-14: Example of visible seams in the synthesized textures. The visible seams are 

located within the areas bounded by the dashed lines. The number beside each output 

texture is its distance measure calculated using Eq. 4.1. Since those values are greater 

than 0.5, the output textures are considered as failures based on the evaluation criterion 

described in Section 4.4.4.

Another interesting future work is the application o f our method to evaluating 

synthesized textures from various existing approaches, such as Wei and Levoy’s, Liang et
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al.’s [106] and Kwatra et al.’s [101], and choosing the best one. Other future works 

include the comparison of BGLAM  distance measure with other existing distance 

measures, and the study of the sensitivity of the threshold values used in the BGLAM  

distance function for measuring the similarity of texture samples and for evaluating the 

synthesis results.

4.6 Summary

In this chapter, a new 2D texture synthesis approach, called aura 2D texture, is 

proposed. Given an input texture, our algorithm first calculates a set of independent 

BGLAMs to represent the texture, and then generates the synthesized texture by sampling 

only the BGLAMs of the input. The experimental results show that the new technique 

can successfully synthesize a wide range of textures and is comparable to several existing 

techniques. In addition, based on a new distance measure defined by BGLAMs, our 

technique is able to automatically evaluate the results and determine whether or not the 

output is a successful synthesis of the input. To our best knowledge, none of the existing 

techniques has the ability to evaluate their synthesis results. In the next chapter, we 

present a new method for synthesizing solid textures using BGLAMs.
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Chapter 5 

BGLAM 3D Texture Synthesis

5.1 Introduction

In com puter graphics and computer games, 3D texture synthesis has been widely 

recognized as an im portant tool in generating realistic textures for rendering complex 

graphic scenes. Recent advances in 2D texture synthesis [3, 49, 50, 81, 101, 106, 190] 

have ignited the development of many successful techniques for generating surface 

textures from input samples [20, 43, 108, 179, 191, 204], Although a wide range of 

textures can be synthesized in 2D, there is still a lack of techniques in generating 3D 

textures. W hen 2D textures are used in texturing 3D objects, the following disadvantages 

are found: (1) the distortion problem on large-curvature surfaces, and (2) non-reusable -  

textures generated for one surface cannot be used for other surfaces. The second 

limitation makes 2D surface textures difficult, if  not impossible, to be used in procedural 

shaders [47].

To overcome the above problems, solid textures [132, 134] can be used. A solid 

texture is considered as a block of colored points in 3D space to represent a real-world 

material, for example, a wood trunk. Once the solid texture is available, any given 3D 

object can be textured by carving the object out of the volumetric data. Since solid 

textures define colors for each point in 3D space, they avoid the problems of distortion 

and discontinuity. However, solid textures are far more difficult to obtain than 2D 

textures; there is no easy way to obtain solid textures from real-world materials. Over the
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last two decades, procedural techniques and image-based techniques have been 

developed to generate solid textures. In procedural approaches [47], procedures are 

designed and called to generate solid textures with the surface appearance of realistic 

objects, such as wood, stone, smoke, fire, fluid, cloud, etc. However, these techniques can 

model only a limited range of textures. In addition, the procedures are difficult to 

understand and control because there are many parameters in the procedures and these 

parameters are not intuitive for a user to determine their appropriate values. To address 

these problems, a number of researchers have developed image-based techniques [41, 42, 

81, 86, 103, 188] for synthesizing solid textures from input samples, and appealing 

results have been obtained. Unfortunately, some of these techniques are not fully 

automatic, which involve nontrivial user interactions [41, 86]; while others may apply to 

only limited types of textures [42, 81, 86 , 103, 188].

Input Sample I

BGLAM 3D 
Sampling

BGLAMs
ofl

Texturing 
& Rendering

Figure 5-1: An overview o f BGLAM 3D textures.

In this chapter, we present a new technique, called aura 3D textures, for 

synthesizing solid textures from input examples using BGLAMs. Our method is fully
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automatic and requires no user interaction in the process. In theory, our method can take 

any number o f input samples. As shown in Figure 5-1, given one or more input textures, 

our method first characterizes each input sample as a set o f  special aura matrices called 

BGLAMs that are introduced in Chapter 3. Once the BGLAMs are calculated, the input 

will not be needed. A  solid texture is generated by sampling the BGLAMs o f the input 

constrained in multiple view directions. The details o f the aura 3D sampling are described 

in Section 5.3.1. After the solid texture is generated, any given object can be textured by 

the solid texture using a shader.

We have compared our algorithm w ith two recently proposed algorithms: W ei & 

Levoy’s [188]; and Jagnow et al.’s [86]. The experimental results show that our method 

outperforms Wei & Levoy’s and is comparable to that o f Jagnow et al.’s. However, the 

latter method involves extensive user interactions in designing appropriate 3D shapes as 

well as in estimating the correct cross sectional profile; while our method is fully 

automatic with no user interactions in generating solid textures. In addition, their method 

can take a single input only; while ours can generate solid textures from multiple inputs.

To test the accuracy o f  our aura 3D texture approach, we present an evaluation 

method based on extensive user studies in Section 5.6. To avoid manual paper work, we 

have designed a GUI-based system to collect data and to perform the evaluation 

efficiently. The evaluation results show that our algorithm can generate faithful results 

for a wide range o f  textures, including both stochastic and structural textures, with an 

average successful rate o f 76.4%.
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5.2 Related Works

In 3D texturing, there are four ways to generate synthetic textures onto 3D 

surfaces: texture mapping, procedural texturing, image-based surface texturing, and 

image-based solid texturing. Texture mapping [79] is the earliest approach to generating 

synthetic textures on surfaces o f computer-generated objects. Since Blinn’s work [12], 

various techniques [85, 99, 170, 187, 202, 205] have been developed to synthesize high 

quality textures efficiently on 3D surfaces. In general, texture mapping suffers the well- 

known problems of distortion, discontinuity, and unwanted seams.

The second approach is called procedural texturing [47]. Since the seminal works 

of Cook [28], Peachey [132], and Perlin [134], procedural techniques have been widely 

accepted in the com puter graphics community. In most existing techniques, storage- 

efficient procedures built on basis functions [29, 102, 134, 199] are used to generate high 

quality 3D textures with no distortion and no discontinuity. Some techniques use the 

reaction-diffusion processes [56, 180] to generate biological patterns, e.g. zebra stripes 

and cellular patterns, that are found on animal skins. The disadvantages of procedural 

texturing include: (1) only limited types of textures can be modeled, (2) the design of 

procedures is based on the experience of the designer and is largely a manual process, 

and (3) the parameters of a texturing procedure are difficult to tune or estimate [153],

The third approach is the image-based surface texturing developed by a num ber of 

researchers recently. W ei & Levoy [191], Y ing et al. [201], and Turk [179] have 

concurrently extended Wei & Levoy’s 2D texture-synthesis algorithm [190] to synthesize 

textures onto arbitrary mesh surfaces. Using feature-based warping and texton masks, 

Zhang et al. [204] have successfully synthesized progressively-variant textures onto 3D
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surfaces from multiple input samples. In C hen’s work [20], shell texture functions are 

used to synthesize realistic textures with translucency variations on surfaces from  either 

2D or 3D samples, e.g. a block of CT scan. Recent research works [108, 177] have also 

been done in generating bidirectional texture functions (BTF) onto 3D mesh surfaces. 

Compared with procedural texturing, image-based surface texturing can synthesize a 

wide range of textures. However, the approach may suffer the distortion problem  on 

surfaces where the curvature is large. Another problem of the approach is that textures 

generated for one surface cannot be used for other surfaces. This limitation makes the 

techniques difficult to be used in procedural shaders [47].

To combine the advantages of procedural texturing and image-based 2D texture 

analysis and synthesis, a number of researchers have developed techniques for generating 

solid textures from input samples, which we call image-based solid texturing. D ifferent 

from image-based surface texturing, these techniques synthesize a volumetric texture data 

from input samples. Once the volumetric data is generated, it can be used to texture 

different objects. In Heeger and Bergen’s work [81], homogeneous and stochastic 3D 

textures are successfully generated by matching the histogram of a volumetric data with 

that of the input sample from coarse to fine resolutions. However, their approach fails for 

structural textures. To address this problem, D ischler et al. [42] propose a method based 

on spectral and histogram analysis to synthesize a wider range of solid textures from 

input samples. Although only a limited range of textures can be modeled, Dischler et al.’s 

method [42] is the first approach capable of generating structural solid textures such as 

wood and marble. By analyzing and extracting parameters from input images, Lefebvre 

and Poulin’s algorithm [103] is able to synthesize some structural textures such as wood

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and regular tiles. Wei [188] and Paget [125] have extended their respective 2D texture 

synthesis algorithms [129, 190] to generate structural solid textures as well as stochastic 

textures. However, both approaches work for only a limited range of textures. In Jagnow 

et al.’s work [86], a stereology-based approach is presented to successfully generate solid 

textures on some texture classes, e.g. marble-like textures. In their approach, in order to 

generate the correct results, extensive user interactions are required in creating 3D 

particles of desired shapes and of required distributions. Dischler and Ghazafarpour [41] 

have also developed an interactive image-based framework for synthesizing structural 

solid textures of certain types.

Our work belongs to the category of image-based solid texturing. In particular, we 

present a BGLAM -based framework for synthesizing solid textures from 2D input 

samples. Additionally, we describe how to evaluate the results of our method using 

extensive user studies based on a carefully designed GUI-based system. The new 

approach is motivated by and extended from the work on 2D texture analysis and 

synthesis using BGLAM s as described in the last two chapters. Our work is most related 

to Heeger and Bergen’s [81] and Dischler et al.’s methods [42]. However, the texture 

analysis process of our method is done using BGLAM s rather than using gray level 

histograms [81] or spectrum in the frequency domain [42] (Note: Dischler et al.’s method 

also uses histogram-analysis to characterize textures). In the synthesis process, our 

method generates solid textures by sampling only the BGLAMs of the inputs. On the 

other hand, Heeger and Bergen’s method needs filters to build pyramids for the input and 

output, and the synthesis results of their method heavily depend on the selection of filters. 

W hile there is no need for filters in Dischler et al.’s approach, it cannot synthesize
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textures with edges [42], Both Heeger and Bergen’s and Dischler et al.’s methods fail for 

large structural textures such as bricks; while our method can generate appealing results 

for such structural textures as shown in the experimental section.

5.3 The Approach

The general flow of our BGLAM  3D texture synthesis is given in Figure 5-2. Our 

approach can take a single input sample or multiple input samples. Given an input texture 

sample, as shown in Figure 5-2, our method first characterize the input so that the given 

sample texture can be well represented. As demonstrated in previous chapters, a texture 

image can be accurately represented by and faithfully reconstructed from BGLAMs, we 

use BGLAMs to characterize and parameterize a texture sample. In BGLAM  3D 

sampling, a solid texture is generated by matching the BGLAMs of volumetric data’s 

slices with the BGLAMs of the input in multiple view directions, e.g. the positive 

directions of the x, y, and z-axes of the 3D coordinate system. Once the solid texture is 

generated, a shader can be used to texture different objects. The details of our approach 

are described as follows.

5.3.1 BGLAM 3D Sampling

For illustration purposes, we describe the BGLAM  3D sampling in the case of

three input samples. The situation for fewer or more input samples can be handled

similarly. As shown in Figure 5-2, in the beginning, the BGLAMs of input samples are

calculated using the algorithm described in Section 4.3.1 and a volume of white noise is

initialized. The BGLAMs of each input is used to define constraints in a specific view
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direction during sampling such that the final synthesized volume will have similar texture 

to the corresponding input sample when a cross section perpendicular to the view 

direction is cut from the volume. In Figure 5-2, for example, the aura matrices o f input I x 

are used to constrain the sampling in the direction o f x-axis to make sure the slices of the 

output volume in that direction look similar to I x. For the case o f single input sample, the 

aura matrices constrained in a view direction is calculated either from the input or from 

the rotated version o f the input.

Output Solid Texture

BGLAMs o f L

White noise Is aura-matrix 
distance decreased?

BGLAMs o f L

BGLAM 3D 
SamplingBGLAMs of I2

Figure 5-2: The general flow of BGLAM 3D texture synthesis.

The view directions for adding constraints can be arbitrary in our algorithm. For 

example, to generate a solid texture of a regular octahedron (a polyhedron with eight 

equilateral triangles as faces), eight input samples can be placed along the norm
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directions of the octahedron’s eight faces. For the purpose of illustration, the view 

directions in Figure 5-2 are demonstrated as in the positive directions of the xyz-axes.

After initialization, the algorithm iteratively modifies the noise such that the aura- 

matrix distances defined in Eq.5.1 in Section 5.2 between the xyz-slices of the volum e 

and the input samples is decreased as much as possible. The intuition behind this is as 

follows: two textures are guaranteed to look similar if their corresponding BGLAM s are 

close enough as demonstrated in Chapter 3 (also see [151]). W e use the weighted-sum 

distance (see Eq. 5.1) because we want to make sure that the points in the volume closer 

to a view direction are more likely synthesized by the input sample constrained in that 

direction and that there is a smooth transition between textures of different views. The 

calculation of weights, which is discussed later, depends only on points in the volume and 

the view directions and thus is automatically done by the algorithm.

z slice S-

y slice S-

O : the volume's center 
a ,  /3 ,y .  the direction angles of Px slice S;

Figure 5-3: The view slices S x , S y , and S z at point P ( x , y , z ) and its direction angles 

a , /? , and y .
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During an iteration of sampling, each point in the volume is visited randomly  

once, and its color is modified so that the distance defined in Eq.5.1 between the 

BGLAMs of the view slices (see Figure 5-3) of the volume and the BGLAMs of the input 

samples is decreased. M ore precisely, when visiting a point, the algorithm first finds the 

candidate set of all colors different from the current color that decrease or at least do not 

increase the aura-matrix distance. Then, it randomly chooses a color from  the candidate 

set as the color of the point. Note that even when a color does not change the distance, i.e. 

at the same distance as the current color, the algorithm still includes it into the candidate 

set in order to increase the randomness in the output. It is possible that the candidate set is 

empty at the end of search, which implies that any color different from the current color 

will increase the distance. In such a case, the point retains its current color and the 

algorithm goes to process the next point in the volume. W hen the distance is below a 

predefined threshold or there is no change in colors in any point of the volume, the 

algorithm returns the volume as the final solid texture.

5.3.2 Aura-Matrix Distance

The aura-matrix distance used in the aura 3D sampling is defined by

t  = w - h - h  • r ) = 2> ,  (.py* d ( s , , / , )
I V  I PeV  , ( 5 . 1 )

+wy ( P ) * d ( S y, I y ) + wz (/>) * d ( S z, I z)]

where | V \ is the total number of points in volume V; wx ( P ) , wy (P ) ,  and wz (P) are the 

weights calculated from the direction cosines of a  , /3 , and y  of point P  in V  as shown
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in Figure 5-3; and d ( S x, I x) is the distance between the BGLAM s of view slice S x and 

the BGLAMs of input sample I x. Given two images X  and Y, let 

A ( X )  = {Ak | 0 < k < m  -1} and A(Y)  = {Bk \ 0 < k < m  -1}  be their corresponding 

normalized BGLAMs, then the BGLAM distance d ( X , Y ) is defined in Eq. 3.13 in 

Section 3.4, which is restated below for ease of reference:

i  m -1

d ( X , Y )  = d { A ( X ) , A ( Y ) )  = - X I I  A  - B k \ | , (5.2)

G - l

where for a given matrix A  = [at] J0£i j£G_ ,, || A  ||= X |  ai} \ , and an aura matrix
i , j =0

A = [a ; ]0£i ;<G_j is normalized if  X  a i; = 1. Since two images X  and Y  may have different
' , i

sizes, the aura matrices must be normalized to make sure that there is no bias in the 

values of d ( S x , I x) ,  d ( S y , I  ) ,  and d ( S z , I z) when the distance defined by Eq. 5.1 is 

calculated.

As shown in the right of Figure 5-3, when a point in the volume is closer to a 

view direction, e.g. the v-axis, there is more chance during sampling for the point to be 

colored by the input sample constrained in that direction. Since c o s ( a ) , cos(/3), and 

cos(y) are continuous functions, there is a smooth transition in the synthesized textures 

from one view direction (e.g. the x-axis) to the other (e.g. the y-axis). For a given point 

P ( x , y , z )  in the volume V,  let O(x0,y 0,z 0) be the center of V,  then the weights can be 

calculated by

d e f

wx (P ) = cos (a )2 / ^ _  ( * - * o )
2

(x -x0) + ( y - y 0) + (z -z oy
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w y{P) = cos2(^ )  = ----------- , (V y ° \ ----------------------------------------- (5.3)
( x - x 0)2 + ( y - y 0) 2 + ( z - z 0)2

d e f

W,(P)  = COS2 (}/ )
( Z - Z 0 ) 2

( x - x 0) + ( y - y 0) + ( z - z 0)

One can verify that wx (P ) + w (P)  + w z (P)  = 1. W hen P  coincides with O, we let 

wx(P) = w ( P )  = w z(P) = 1/3.

BGLAM-Based 3D Texture Synthesis

Input:
7X, Iy, lz <— sample texture images.
e <— a given small positive number in (0,1)

Output:
V *— the synthesized solid texture.

Begin
1 Initialize V  as a volume of random noise.
2 While d=d(V, /x, Iy, Iz) > e do

2.1 While there are unvisited points in V, randomly choose an unvisited point P do 
grayLevelip) <— bglamBased3DRandomSampling(P, d, 7X, 7y, 1,,V).

End of while 
End of while

End of begin

bglamBased3DRandomSampling(P, d, 7X, 7y, IZ,V)
b.l C=empty (the candidate set of gray levels for point P). 
b.2 For each gray level j  =  0  to G  - 1 do

b.2.1 S x( j) ,  Sy(j),  Sz(f) <— the view slices of V  at point P when P has gray level j .  
b.2.2 dt ^  d(V, 5X(/), S y( j b  S z(j)).  
b.2.3 if dj < d, then C = C U {j}. 

b.3 IfC is empty, then g <— the current gray level value of P,
Else g <— a randomly chosen gray level from C. 

b.4 Return g.

Figure 5-4: The pseudo code of the BGLAM -based 3D texture synthesis algorithm.

5.3.3 Algorithm

The pseudo code of the algorithm for aura 3D textures is given in Figure 5-4. The 

definition of distance d  in the step 2 of the main algorithm is given in Eq. 5.1. In the step
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b.2.1 of bglam3DBasedRandomSampling, the view slices of V  at point P  are defined as 

shown in Figure 5-3.

The major computation cost of the above 3D aura texture synthesis algorithm is in 

the two while loops in step 2. In an iteration of step 2 (i.e. step 2.1, which is one pass of 

visiting all points in V), a brute force method would perform  fresh recalculations each 

time computing the aura matrices of the volum e’s view slices and the aura-matrix 

distance (see Eq. 5.1) with a cost of at least 0 [ m * n p 2 * G * ( S  + G 2) ] , where G is total 

number of gray levels in the input image, m  the total num ber of BGLAMs used in the 

sampling, np the number of points in the volume, and S is the size of the view slices of 

volume V. A more efficient way is to perform an iterative update based on existing 

information, which can be done with a computation cost of 0 (n p  * (m + S) * G) because 

when a pixel changes its gray level value, only its neighboring pixels are affected. The 

proofs of the above time complexities are given below.

[Proof of the brute-force time complexity] In the following, the time 

complexity for one iteration in step 2, i.e. one pass that goes through step 2.1 by visiting 

all points in volume V, is proved to be at least 0[m  * n p 2 * G *  (S + G 2)] , where G is the 

total number of gray levels in the input image, m  the total number of BGLAM s used in 

the sampling, np the number of points in the volume, and S the size of the view slices of 

volume V.

Let T ( 2 . l ) , and T(h)  be the time complexity for step 2.1 and procedure 

bglamBased3DRabdomSampling, respectively, then T(2. l) is given by:

T(2A)  = n p* T( b ) .  (5.4)

From the pseudo code of bglamBased3DRandomSampling given in Figure 5-4, we have:
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T(b) = T(b. 1) + T(b.  2) + T(b.  3) + T(b.  4)

> 0(1) + G * [T(b.2.1) + T(b.2.2) + T(b .23)\ + 0(1) + 0(1)

= G * [T(b.2.1) + T(b .22) + T(b.2.3)]

= G * (0 (5 )  + 0[m  * np* (S + G 2)] + 0(1)} ' (5’5)

= G * 0 [m *  np*  (S + G 2)]

= 0[m  * n p * G * { S  + G 2)]

In the above equation, the time for both step b .l and step b.4 is a constant, and the 

time for step b.3 is at least 0 (1 ). Step b.2.1 computes the view slices at a point in volume 

V, and takes a computation time of 0 ( S )  to finish. Based on the definition of aura-matrix 

distance (see Eq. 5.1), one can prove that the time for step b.2.2 is 0 [ m * n p *  (S + G 2)] 

because the brute-force time for computing d ( S v, I v),  v = x, y , z ,  is 0 [ m * ( S + G 2)]. 

Thus, we have:

T (2.1) > n p * T ( b )

= np* 0[ m * np* G *  (S + G 2)].

= 0[m * np2 * G * ( S  + G 2)]

■
[Proof of th e  fast-version  tim e com plexity] Based on Lemma 3-5 and Algorithm 

3-1, using an analysis method similar to the one used for the BGLAM-based 2D texture 

synthesis as described in Section 4.3.4 in Chapter 4, the distance dj  in step b.2.2 o f the

algorithm as shown in Figure 5-4 can be efficiently updated from distance d  with a 

computation cost of 0 ( m)  . The time for step b.3 is at m ost 0 ( G ) .  The time for step b.2.1 

and step b.2.3 is 0 ( S ) and 0 (1 ), respectively. Thus, we have the following:
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T(b) = T(b.  1) + Tib. 2) + T(b.  3) + T(bA)

< 0(1) + G * [Tib.2 A) + T(b.2.2) + T(b.2.3)] + 0( G)  + 0(1)

= G * [T(b.2 .1) + T(b.2.2) + T(b.2.3)] + 0 (G)

= G *[0(S) + 0(m) + 0(l)] '(5'6)
= G * 0 ( m  + S)

= 0 [ G * ( m  + S )]

By Eq. 5.4 and Eq. 5.6, we have T(2.1) < np* 0 [ G *  (m + S)] = 0[np * G * (m + S ) ] . H

5.3.4 Color Input Texture

For color input texture samples, one cannot simply apply the above basic 

algorithm to each of the RGB channels separately since the RGB components o f a color 

image are dependent on one another. Before applying the basic aura 3D texture synthesis 

algorithm, a color-space transformation T  based on the singular value decomposition 

technique [146] is used to transform the R, G, and B  components of an color image into 

three independent components R ' , G ', and B' in another color space. After this RGB- 

color-decorrelation step, the basic synthesis algorithm is applied to each of the 

independent color components R ’ , G ', and B'  to generate three gray-scale solid textures 

in the transformed color space. Using the inverse transformation of T,  the final 

synthesized three gray-scale sold textures are transformed back into the RGB color space 

to produce the final synthesized color solid texture. The algorithm of transforming RGB 

color channels into independent color channels is given in Figure 4-5 in Chapter 4.

5.4 Acceleration

For acceleration, we extend our algorithm so that it can run texture synthesis in 

multiresolutions, similar to the pyramid method used in Heeger and Bergen’s work [81]. 

However, from our experience, we find that the filtering process only complicates our
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algorithm. Thus we have used a simpler non-filter-based method, called local decimation 

[129] to build the multiresolution representations o f the input and output. For an input 

color texture sample o f  size 6 4 x 6 4  with 80 characteristic BGLAMs and an output 

volume o f size 128x128x128 , the average running time in single resolution is about 10 

hours on a 1.4GHz Penntium 4 PC running Windows XP Professional. With a 

multiresolution scheme o f 4 levels and 24 BGLAM s used for each level, the running time 

is reduced to about 3 hours. For color images, our algorithm is further extended to 

synthesize the three independent color channels in parallel after the step o f  color-space 

transformation as described in Section 4.3.5. In this case, the above running time can be 

further reduced to about 1 hour. Once the solid texture is generated, a given object can be 

textured within seconds. An average runtime o f  6 seconds is recorded in our experiments.

3x3 5x5 7x7 9x9

Figure 5-5: An example o f aura 3D textures using different window sizes given under

each output.

5.5 Results

The window size used to calculate BGLAMs in our algorithm is an important 

parameter that affects the synthesis results. In general, an input texture containing large 

structures or favorable orientations requires a relatively large neighborhood size. For a 

given input texture, different synthesis results can be generated with different window
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sizes. Figure 5-5 gives an example texture and its solid textures generated by using 

windows o f different sizes.

Figure 5-6: Comparison results o f our method with Wei & Levoy’s. The inputs (size 

64x64)  are shown in the first column, and the synthesis results (size 128x128x128) are 

displayed in the same row as the corresponding inputs. Images in column 2 are the results 

of our algorithm, and images in the last column are the results o f Wei & Levoy’s.

We compare our aura 3D textures with two existing approaches. Figure 5-6 gives 

some comparison results of aura 3D textures with Wei & Levoy’s approach [188]. 

Images in the first column are input samples o f size 64x 6 4 ,  images in column 2 are 

results of our algorithm, and images in the last column are generated by Wei & Levoy’s 

algorithm. For each input texture, a solid texture of size 128x128x128 is generated
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using our algorithm and Wei & Levoy’s, respectively. In our algorithm, we use 80 

BGLAMs, which are calculated over a 9 x 9  window, to characterize all input textures 

and to generate results shown in Figure 5-6 and in the rest o f this section. Figure 5-7 

gives some comparison results o f aura 3D textures with Jagnow et al.’s algorithm [86], 

where images in column 2 are results o f our algorithm, and images in the last column are 

results of Jagnow et al.’s. As shown in Figure 5-6, the results o f our method are better 

than those of Wei & Levoy’s algorithm. Compared to Jagnow et al.’s algorithm, although 

the result of our algorithm is not as good as theirs for the input in the last row, our 

algorithm generates better results for the inputs in row 1 and 2.

tgle conceptual and 
t wealth of uutpt* 

*n
• if iu eh  * rrnntpKoi
* to  understand t* 
v.. W here** no f* DOGl difference c

Figure 5-7: Comparison results of our method with Jagnow et al.’s. The inputs (size 

64x64)  are shown in the first column, and the synthesis results (size 128x128x128) are
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displayed in the same row as the corresponding inputs. Images in column 2 are the results 

of our algorithm, and images in the last column are the results o f Jagnow et al.’s.

Figure 5-8: Results o f aura 3D textures. Small patches are input samples and results of 

solid textures generated on the surfaces of different objects are displayed beside the 

corresponding inputs.
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Figure 5-9: More results of aura 3D textures. Small patches are input samples and results 

o f solid textures generated on the surfaces of different objects are displayed beside the 

corresponding inputs.
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Figure 5-10: More results o f aura 3D textures. Small patches are input samples and 

results of solid textures generated on the surfaces of different objects are displayed beside 

the corresponding inputs. In the last row, three input samples are used to generate the 

solid texture.
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It is noteworthy that Jagnow et al.’s method requires a user to manually design 

and to edit 3D particles to match the texture profiles of a given sample. While it provides 

flexibility, it is nontrivial to design a complex texture. If the shapes of predesigned 3D 

particles do not match the profiles of input textures, the algorithm will likely generate 

incorrect results as the one shown in the second row in Figure 5-7. More results o f our 

method can be found in Figure 5-8 - Figure 5-10, and at the author’s webpage [149].

5.6 Evaluation

W e present a method based on user studies for evaluating our aura 3D textures 

results. W e only describe the algorithm for the case of single input textures. It is 

straightforward to extend the algorithm to multiple input textures. To test the accuracy of 

our aura 3D textures, it is reasonable to have the following two evaluation goals: (1) we 

test whether or not the slices of the solid texture in each constrained direction, i.e. the 

direction in which the BGLAMs of the input are used to constrain the aura 3D sampling, 

look similar to the corresponding input; and (2) we determine whether or not textures 

change smoothly between consecutive slices in any view direction, including view 

directions that are not  used to constrain the aura 3D sampling.

Suppose a solid texture V  of size n x n x n  is synthesized from an input texture. 

To test the first goal, for each direction in which the BGLAMs of the input are used to 

constrain the sampling, we obtain all n slices of V  and randomly select m (< n) of them. 

We mix the selected m  slices with other texture images that are randomly drawn from a 

database of texture images (a database of over 2000 images is used in our experiments),
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and display them in random order on the screen. Each display is evaluated by 18 people. 

Among them, 6 are researchers in the same research lab as the authors and have the 

knowledge in texture analysis and synthesis; the other 6 are graduate students in the same 

department and have some general knowledge in computer vision and image processing, 

and the remaining 6 are from outside of the department but in the same university and are 

in completely unrelated disciplines.

Each subject is asked to select all texture images that look similar to a specified 

input image. If all m slices in each o f the constrained directions are selected, we consider 

the solid texture as a SUCCESS in terms o f subject’s evaluation. If  more than 50% of the 

subjects give an evaluation of SUCCESS on a solid texture, the solid texture is 

considered as a success for the first goal. Otherwise, it is a failure.

Figure 5-11: Animation sequences of cross sections o f two solid textures that are 

generated by our algorithm. The texture in the first row is a cloud-like solid texture, and 

the one in the second row is a green-marble-like solid texture.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the second goal, we randomly select v view directions (six are used in our 

experiments). For each view direction, we generate an animation of all cross sections of 

the solid texture that are cut in order along that direction. A subject is asked to watch the 

animation to determine if the texture changes smoothly from  frame to frame. We repeat 

this test for 18 people. If no sudden change has been identified in all the animations of the 

selected views, we consider the synthesized solid texture as a SUCCESS by the subject. 

If more than 50% of the subjects assign a SUCCESS to a solid texture, the solid texture is 

considered as a success for the second goal. Otherwise, it is a failure. Figure 5-11 shows 

example sequences of animation frames of two solid textures that are generated by our 

method, one for a cloud-like solid texture and another for a green-marble-like solid 

texture.

To avoid the manual data collection process and to make our evaluation efficient, 

we have designed a GUI-based evaluation system. Figure 5-12 gives a screen shot of the 

system when it is used for evaluating the first goal. The input is displayed as a smaller 

image in the top-left com er of the window. The m  slices together with other texture 

images randomly selected by the system from two texture databases (one for selecting the 

m  slices and one for selecting the other textures) are displayed on the screen in random 

order as larger images below the input. Texture images similar to the input are selected 

by just clicking the button labeled “Similar” under them. W hen a user finishes the test, 

the system calculates and stores the evaluation results. The user does not know the score 

until after the experiment is complete.

In our GUI-based evaluation system, the user does not have any information on 

the value of m because otherwise he/she will use the information to guide his/her
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selection, which will cause a biased evaluation. In fact, in our implementation, the value 

of m is assigned randomly each time by the system to make sure that the user will not 

guess it. Furthermore, we found that the color provides an important cue in user’s 

selection that causes bias. For example, in Figure 5-12, the user may make selections by 

following the color instead of the textures of the input. To avoid this bias, we converted 

all color images into gray scale images when testing the first goal. For testing the second 

goal, we used color images because there is no such color-bias problem.

^ U ser Evaluation GUI o f  A ura 30 T ex tu re s

Strmar Sim ilar S im ilar S im itar SimilarSim ilar

Similar Sim ilar S lm ilor SimilarSimilar SinnHor

Simitar Sim itar Sim itar SimilarS im ila r S im ila r

N ex t P a g e  0 1  p a g e s  left)

Figure 5-12: The GUI-based user evaluation system of aura 3D textures.

For the evaluation of both goals, we have used 126 input textures, which include 

stochastic and structural textures. The experimental results show that the average

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



percentage of success (for the experiments o f both goals) for our aura 3D textures is 

76.4%. The results of the three different groups of subjects are, respectively, 76.8%, 

77.2%, and 75.1%. Thus, there is no significant difference between the results of different 

groups.

(a) (b) (c) (d) (e)

Figure 5-13: An example o f failure from our algorithm that is identified during the 

evaluation. The input is shown in (a), the solid texture and its two cross sections are 

shown in (b), (c) and (d), respectively. A textured sphere by the solid texture is shown in 

(e). The failure of the solid texture in (b) is identified by viewing its cross sections as 

shown in (c) and (d).

Figure 5-13 gives an example of failure of our algorithm that is identified from 

the evaluation. This example also demonstrates the importance o f the evaluation process 

as discussed below. In the figure, the input and the generated solid texture o f the input are 

shown in (a) and (b), respectively. The two cross sections o f the solid texture are shown 

in (c) and (d). A textured sphere by the solid texture is shown in (e). By just looking at 

the solid texture and the textured sphere, the results look reasonably good. However, by 

evaluation, we have actually identified the problems of the solid texture as shown in (c) 

and (d), which do not appear in the textured sphere.
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5.7 Limitations and Future Work

Similar to the BGLAM-based 2D texture synthesis algorithm as described in the 

previous chapter, one limitation o f the current implementation o f the aura 3D texture is 

the color update scheme during the sampling as described in Section 5.3.1. It is quite 

possible that after a few iterations, the number o f candidates of possible colors for a 

target point is less than 3, which may sometimes cause the color values for points in the 

output volume to quickly converge to local minima and thus generate visible seams in the 

output textures as shown in Figure 5-13. The possible solution to this problem is to use 

genetic algorithms [66] as discussed in Chapter 4.

Inconsistency
problem

Synthesized solid texture

Figure 5-14: An example of inconsistency problems in oriented structural solid textures.

The second limitation is that although our method can generate faithful results for 

oriented structural textures, such as the brick texture as shown in Figure 5-8, we find one 

problem related to the issues o f constraints, which we still have not found a satisfactory 

solution. It is relatively easy to see that the orientations o f three adjacent structural 

textures at a junction may create an inconsistency problem. An example of such problems 

is shown in Figure 5-14, where the input sample is shown in the left and the
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corresponding synthesized solid texture generated by our method is shown in the right. 

Although the orientation of the brick at the solid’s com er highlighted by the dashed line 

is consistent with the orientation of the bricks on both sides of the solid, it is 

inconsistency with that of the bricks at the top. The solution to the inconsistency 

problems in oriented structural textures, if it exists, depends on the interpretation of the 

given surface textures, which is a very interesting inverse problem for future research. 

For example, can we detect inconsistencies? If the textures are consistent, is the solution 

unique?

The third limitation is related to the current implementation of the aura 3D 

sampling. Although our method is general enough to handle the situation in which input 

samples can be placed along non-orthogonal view directions to constrain the aura 3D 

sampling, our current implementation only handles orthogonal view directions in 3D 

space. We are currently considering a new implementation of our algorithm for handling 

non-orthogonal-view constraints. Other future research may include: the extension of our 

approach for GPU-based texture synthesis and the evaluation of solid textures generated 

by other approaches, e.g. Jagnow et al.’s algorithm [86].

5.8 Summary

In this chapter, a new method for generating solid textures from input samples is 

presented. Given one or more input textures, the BGLAMs of input samples are 

calculated first; a solid texture is then generated by sampling the BGLAMs of input 

samples. W e evaluate the results o f our method based on extensive user studies. The 

evaluation results show that our algorithm can generate faithful results over a wide range
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of textures with an average successful rate of 76.4%. The synthesized results show that 

our algorithm outperforms W ei & Levoy’s and are comparable to Jagnow et al.’s. 

However, the latter method involves extensive user interactions in designing correct 3D 

shapes while our method is fully automatic with no user interactions in generating solid 

textures.
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Chapter 6 

BGLAM Texture Classification

6.1 Introduction

The problem of classifying texture images into pre-leam ed classes is a very 

demanding task in computer vision and has important applications in automated 

inspection, medical image analysis, document processing, and bioinformatics [77, 178]. 

Given a set of texture classes and a set of training samples for each texture class, the goal 

of texture classification is to estimate the class labels o f texture images in a given 

database. The success of texture classification depends on whether or not different 

textures can be correctly analyzed mathematically. However, analyzing textures with 

mathematical precisions is challenging and has been studied by researchers in the vision 

area for decades with only limited success.

In existing approaches [4, 36, 57, 72, 113, 116, 143, 167], the statistics of a set of 

filter responses are used to characterize an example texture for classification. However, 

mathematically, it requires an infinite number of filters to model a given texture with the 

necessary and sufficient information, each of which is as big as the given texture sample. 

In general, it is a difficult task to automatically design and select appropriate filters for 

different textures. As a result, in texture modeling, most filter-based approaches have 

used predefined filters, which are usually insufficient to differentiate textures. Portilla 

and Simoncelli [143, 144] have shown that two different texture samples may have 

identical means, variances, covariances, skewnesses, kurtosises or histograms computed
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from filtered images [143, 144], When those characterization statistics (e.g. means, 

variances, skewnesses, and kurtosises) are used in texture classification, they m ay cause 

the problem of assigning the same class label to different textures.

* . « »  .  ■ !

■> VI
*1

c l c2 c3 c4 c5

Figure 6-1: Exam ple of the classes that are learned from training texture samples.

d ] ; i l : *■

iiiM m
Figure 6-2: An example of texture images to be classified by the classes shown in Figure 

6-1. Images are taken from  the Brodatz textures [14].

Therefore, it is crucial that the characterization statistics extracted from a given 

texture sample have the necessary and sufficient information to represent the texture 

sample. The BGLAM  mathematical framework developed in Chapter 3 suggests that 

BGLAMs can be used to characterize texture samples with this property. W e have proved 

(in Chapter 3) that two images are identical if and only if their corresponding BGLAMs

are the same, and thus an image can be uniquely represented by its BGLAMs.
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Based on the BGLAM  theory developed in Chapter 3, in this chapter, we present 

a new method of classifying texture images using BGLAMs. Given a texture sample (e.g. 

the first image in Figure 6-2) from an image database, our goal is to classify it into one of 

the pre-leam ed classes (e.g. the class represented by the second im age with label c 2 in 

Figure 6-1). Our algorithm consists of two stages: a learning stage and a classification 

stage. In the first stage, models of texture classes are learned from the BGLAM s of 

training examples using the SVM (Support Vector M achine) [182], and in the second 

stage, a given texture image is classified into one of the pre-leam ed classes.

We compare our approach experimentally with existing approaches by 

performing texture classification using the Brodatz database, the Vistex database, and the 

ASI (All Sky Imager) database. The experimental results show that the proposed 

approach has obtained an average successful classification rate of 100%, 97%, and 97% 

vs 91%, 83%, and 66% using other approaches over the Brodatz textures, the Vistex 

textures, and the ASI textures, respectively. The test results indicate that the proposed 

method outperforms both Guo et al.’s algorithm [72] and the SGLAM method [152].

6.2 Related Works

The work in this chapter is closely related to texture discrimination in com puter 

vision and image processing. One of the major research areas in texture discrimination is 

texture similarity measure and leaning for image classification and image retrieval. 

Various techniques have been developed in this area. The conventional approach is based 

on Gabor texture features. In M a & M anjunath’s work [113, 116] and Puzicha et al.’s 

work [148], the first and second order statistics of Gabor filter responses are used for 

measuring and characterizing textures using neural network. They have applied their
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method to the classification of texture images from the Brodatz database and to the 

content-based image data retrieval from large satellite or aerial photographs. As a 

superset of Gabor filters, the windowed Fourier filter responses are used for texture 

similarity measure and learning in Azencott et al.’s work [4], Based on the Gabor filter 

responses, Guo et al. [71, 72] use a SVM  algorithm to learn similarities between texture 

images. Both Azencott et al.’s approach and Guo et al.’s approach have better 

performance in texture classification than that of Ma and M anjunath’s approach.

The second approach in texture discrimination is based on wavelet-type features. 

In the work by Simoncelli and Portilla [143, 167], it is shown that texture images can be 

faithfully characterized by and reconstructed from a set of global joint statistics of 

complex wavelet coefficients at multiple scales and orientations. Rather than using global 

joint statistics, DeBonet and Viola use local joint statistics of wavelet distributions in 

multiresolutions to measure the similarity between images [36]. In addition to texture 

image classification, DeBonet and V iola’s method can perform object detection in SAR 

(Synthetic Aperture Radar) images and faithful results have been obtained. In 

Arivazhagan and Ganesan’s work [2], texture classification is performed using a 

combination of the wavelet statistical features and the wavelet cooccurrence features. As 

a variation of the joint statistics of filter responses, a number o f researchers model 

textures using probability distributions of textons [206], and learn textons and texture 

models from training images. The classification of a given texture image is done by 

comparing the texton distribution of the image with the pre-leamed models. The texton- 

based approach has been successfully used in classifying texture images under unknown 

viewpoint and illumination [104, 162, 183].
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Another important approach for texture discrimination is the M arkov/Gibbs 

random field (MRF/GRF) texture models [32, 63], Researchers [17, 18, 38-40, 64, 143] 

have used M RF/GRF models for supervised classification and segmentation, where the 

number of texture classes is known as a prior. In those approaches, texture classification 

is performed by using either the M AP (M aximum a Posterior) estimate [64] or the M PM  

(Maximum Posterior M arginal) estimate [18]. Supervised texture recognition techniques 

have difficulties in classifying images with complex textures, for example SAR images, 

because there might be unknown texture types that are not in any of the pre-leam ed 

classes. To address the problem, several researchers have proposed M RF/GRF-based 

techniques for the unsupervised texture classification or segmentation [94, 115, 128, 

155],

Gray level cooccurrence matrices (GLCMs) have also been studied in texture 

modeling for discrimination and characterization. Research studies [21, 34, 67, 75, 76, 

112, 209] have shown that GLCMs can be used as a powerful tool for texture analysis, 

classification, segmentation, and synthesis. The disadvantage of a GLCM  is that it only 

contains cooccurrence information between two pixels, and thus cannot capture the 

spatial relationship between three or more pixels in the image. This problem can be 

addressed by using symmetric gray level aura matrices (SGLAMs) [51, 137, 138], which 

incorporate neighborhood systems to model the relationship between the target pixel and 

its neighboring pixels, and thus are capable of capturing the relationship between any 

number of pixels. In the recent work of Qin and Yang [152], SGLAMs combined with 

wavelet transforms [166] have been successfully used in learning texture similarity for 

texture image classification and retrieval.
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The work in this chapter demonstrates that BGLAM s without combining with any 

filters can perform better in classification than SGLAMs with wavelet transforms. For 

real applications, it is demonstrated that BGLAMs significantly outperforms SGLAM s 

and other existing approaches. In our approach, texture features are represented by 

BGLAMs calculated directly from images, and texture models are learned using the S VM 

technique [182], Since the texture feature vectors in our approach have a very high 

dimension (e.g. 1536 used for experiments in our work), we adopt Joachim s’s fast 

implementation of the SVM  learning algorithm [89], The details of our approach are 

described in the next section.

6.3 The Approach

The classification problem addressed in this chapter is the following: Given a 

database of texture images of unknown categories, classify each image in the database 

into one of the classes that are learned from training samples. Figure 6-3 gives an 

overview of the BGLAM-based algorithm for texture classification. In the beginning, two 

texture databases are given: one is the training database that is used for learning texture 

classes; the other is the query database that needs to be classified and is used for 

evaluation. The first step of the algorithm is the characterization of texture images in both 

the training database and the query database using BGLAMs. The outputs of this step are 

two databases of BGLAMs: one for the training images and one for the images to be 

classified. Once this step is finished, the original texture databases are not needed any 

more, and the calculated BGLAMs are taken as texture features and used in the rest of the 

algorithm for learning and classification.
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Figure 6-3: An overview of the BGLAM -based algorithm for texture classification.

In the second step, the models of texture classes are learned from the BGLAMs of 

training texture samples using the SVM [182], The model of each texture class learned is 

a hyperplane represented by a set of support vectors (SVs) in the texture feature space. 

Once the models of texture classes are learned from the BGLAMs of training samples, 

they are used to classify all images in the query database in the final step. The three steps 

of the algorithm are shown as ovals in Figure 6-3.

6.3.1 Characterizing Texture Images

In our method, before learning the models of texture classes, texture images of

both the training database and the query database are characterized by BGLAMs.

Intuitively, the BGLAMs of an image characterize the cooccurrence probability

distributions of gray levels at all possible displacement configurations and thus estimate

the underlying stochastic process that is used to generate a given texture sample. In fact,
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in Chapter 3, we have proved that that BGLAMs form a basis of GLAMs, which is a 

superset of GLCMs, and that two images are identical if and only if their corresponding 

BGLAMs are the same. Since a given texture sample can be accurately represented by 

and faithfully reconstructed from its BGLAMs, we use BGLAMs to characterize a 

texture sample. In our work, a compact set of BGLAM s defined over a 5 x 5  square 

window is used to characterize texture images. Once the BGLAMs are calculated, the 

original texture image is no longer needed and only the BGLAMs are used in the 

subsequent processes of learning and classification.

A fast algorithm for computing the BGLAMs of a given texture image is given in 

Section 4.3.1 in Chapter 4. An example of the BGLAMs calculated from a binary image 

can be found in Figure 4-3. In our algorithm of leaning and classification, the BGLAMs 

are normalized (see Definition 3-15) because texture images in the databases may have 

different sizes. To achieve the best performance both in the quality of results and in 

running time, we have also quantized [8] texture images from  256 gray levels to 8 gray 

levels. In the experimental section, we discuss the performances of using different 

number of gray levels.

6.3.2 BGLAM-Based SVM Learning

The BGLAMs of texture images in the training database are treated as texture 

features for learning the models of texture classes. M ore precisely, for a given training 

sample, its BGLAM s are combined together to form a vector in the texture feature space, 

and the vector is called a feature vector of the training sample. For each texture sample X  

in training database T, let {B i \0  < i  < m - l }  be its m BGLAMs and x  be its feature 

vector, then x  is given as:
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x  = ( B0, B l , . . . ,Bm̂ ) .  (6.1)

If each BGLAM  in { B j | 0 < i < m  -1} has b entries, then the dimension of x  is n = m * b  . 

Figure 6-4 gives an example of a feature vector x  computed from four normalized 

BGLAMs.

" 6 3  " " 6 6  " " 3 8  " ‘ 6 6  ‘

1 6 1 6 B = 2 0 2 0 B  = 1 6 1 6 B , = 2 0 2 0
3 4 " t 4 4 2 3 2 3 3 5

_16 16_ _ 2 0 2 0 . . 1 6 16_ . 2 0 2 0  _

3 3 1 ^
 

1 6 4 4  3 8 3 2 6 6 3 f

1 6  1 6  1 6  1 6  2 0  2 0  2 0  2 0  1 6  1 6  1 6  1 6  2 0  2 0  2 0  2 0  y 

Figure 6-4: An example of a feature vector x  com puted from  four BGLAMs B 0, B l , B 2,

and Z?3. The dimension of vector a; is 4 x 4  = 16.

The learning is performed with the feature vectors of training samples. Suppose 

we have a set of training vectors of two different classes, (x,., y,.), 0 < i < L - l ,  where

X,. g  91" is a feature vector calculated from a texture image as described before, and 

y(. g  { - 1 ,+ 1 }  is the class label for x ; , where label + 1  means a positive example (i.e. a 

pattern of a target class) and -1 means a negative example (i.e. a pattern not in the target 

class). W e assume that during the learning process, all training texture samples o f a 

desired category (e.g. all images that contain a specific texture type) are grouped into one 

class and labeled as positive examples, while samples not in the desired category (e.g. 

images that do not contain the target texture type) are considered as negative examples. 

We also assume that an image database consists of disjoint classes. Namely, each texture

image in the database has and only has one class label.
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Figure 6-5: An example of the boundary of a sample class C0 in 912. The boundary of 

C0 , which separates C0 from the other three classes C j, C2 , and C3, is shown as a 

closed curve around C0 .

The goal of learning is to find the optimal boundary that separates the positive and 

negative examples. The boundary is a hyperplane in feature space 91". Figure 6-5 gives 

an example of the boundary of a sample class C0 , which separates the class from  the

other three classes in space 912.

In fact, finding the boundary leads to the following quadratic optimization 

problem [182]:

L - l  ^ L_1

I > ,  + t  Z  y> y ja ia j K  (x i ’ x j )
i=0 ^  1,7=0

a  -  arg mm
a

L -l

subject to : or. y, = 0, V / : 0 < or, < C

, (6 .2)

;=o

where the vector <2 = (<̂ , )0<,<l-i is the parameter to be estimated, K ( x , y ) is the kernel

function, and C is a constant. There are a number of choices for the kernel function. For 

the discussion on how to choose an appropriate kernel function for different applications,
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the reader is referred to V apnik’s book on statistical learning [182]. In our work, we use 

the RBF (Radial Basis Function) because it is best suited for classification as discussed in

1 „ ll2
Joachim s’s work [88, 89]. The RBF kernel is given as K ( x , y ) = exp(   || x  -  y  || ) ,

2(7

where a  is a constant given by the user. In all the experimental results shown in this 

chapter, we set a  = 0.02.

In Eq. 6.2, if all the training samples are used for optimization, then it is very 

inefficient for large training sets. It has been shown [182] that a set of SVs (support 

vectors), which is a small subset of the training samples, can be used in Eq. 6.2 for 

optimization. Once the optimal param eter a * = (« * )0<,<m-i is estim ated in Eq. 6.2 using 

m  SVs, the optimal boundary B  is given by:

m —1

Y , a * y iK ( x * ,x )  + b* = 0 ,  (6.3)
i= 0

where {x* 10 < i < m  -1} is a set of SVs, b* is a constant. The parameters a *, x *, and 

b* are all learned from the SVM. In our work, we have used a fast implementation of the 

SVM, called SVMhght, developed by Joachims [88, 89] to learn parameters a * , x *, and

b*, i -  0 , l , . . . ,m - l .

The model of a specific texture class is represented by its boundary B, whose 

equation is given as in Eq. 6.3. For an image database o f multiple disjoint classes, the 

above SVM learning algorithm is applied to each class to learn its optimal boundary. 

Once the boundaries of all classes are learned from the training samples, they will be 

used to classify each texture image in the query database.
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6.3.3 Classifying Texture Images

For a given texture image Z  in query database Q, its feature vector z  calculated by 

Eq. 6.1 is used to classify it into one of the classes that are learned from the training 

database T  using the SVM  as discussed in the previous section. Suppose there are k  pre- 

leamed classes {Cy |0 <  j < k - 1} with optimal boundaries {Bj  |0 <  j < k - 1} defined

by Eq. 6.3, then the signed distance of feature vector z to the boundary B-  is given by:

ro -1  j  m - 1

dj  = d ( z , B j ) = [ Y j a jiy jiK (x*i ,z)  + b * ] / 1| V i  II > J = 0 ,1 ,- ,*  - 1  .(6.4)
(=0 /  i=0

Since a one-against-all strategy is used in learning, for class C . with boundary B  ., if the

signed distance d . = d ( z , B j )  calculated from Eq.6.4 is positive, then texture image

Z e  C .; otherwise, it belongs to one of the other classes. For multiple classes, the final

class label I of texture image Z is determined by the boundary of the class to which z  has 

the largest distance, i.e.

Z = argm ax{d t \ 0 <  j  < k - l } .  (6.5)
j

If a class contains subclasses, the SVM  algorithm can be further applied to images in that 

class to learn subboundaries.

6.3.4 Algorithm

The pseudocode of the BGLAM-based algorithm for texture classification by 

learning is given in Figure 6-6. The inputs are two databases of texture images: one is the 

training database, where each image has an assigned class label; the other is the query 

database, where texture images are to be classified. The output of the algorithm is a 

classified database in which each image has a class label associated with it.
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BGLAM-Based Texture Classification 

Input:
T <— the training texture database.
Q <— the query texture database to be classified.

Output:
Q <— the classified texture database with each image having an assigned class label. 

Begin
1 Calculate BGLAM s of each image in both T and Q,  and store them.
2 Learn models of texture classes with BGLAMs of images in T using SVM.

2.1 For each class C j,  learn its optimal boundary B j  using the SVM, 0<j<k-1.
3 Classify texture images in Q, i.e. for each image Z in Q

3.1 z <— the feature vector of Z calculated by Eq. 6.1.
3.2 For each class Cj, 0<j<k-l

3.2.1 Calculate the signed distance dj using Eq. 6.4.
3.3 I <— maxarg{do, dj, ... , dk-i}
3.4 Assign the class label I to image Z.

End of 3
4 Return Q 

End of begin

Figure 6-6: The pseudo code of the BGLAM-based algorithm for texture classification.

There are three major steps in the algorithm. The first step is to calculate the 

BGLAMs of texture images in both the training database T  and the query database Q. 

The BGLAMs of images are used as features to characterize texture images. Once the 

BGLAMs are calculated, they are used in the subsequent learning and classification. In 

the second step, the optimal boundary of each class is learned with the BGLAM s of 

training samples from that class using the SVM based on the one-against-all strategy as 

described before. The classification of each texture image in the query database Q  is done 

in the third step.
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6.4 Experiments

In this section, we present the experimental results to evaluate our BGLAM -based 

approach for texture classification by learning. W e compare our approach with existing 

approaches. The Brodatz database, the Vistex database, and the ASI (All Sky Imager) 

database are used for testing. Since Gabor filters are used in our experiments for 

extracting texture features for existing approaches, they are briefly described first. The 

experimental results for each texture database are then followed.

6.4.1 Gabor Filters

Gabor filters [87, 116] are derived from a two dimensional Gabor function

g(x,  y) and its Fourier transform G (u ,v ) , whose definitions are given below:

where W  is constant. The standard deviations a x and a  y of the Gaussian function in Eq.

6.6 are usually called the bandwidth parameters because they determine the bandwidth of 

the Gabor function g(x,  y ) .

Gabor filters are obtained by appropriate scales and rotations of g(x, y ) using the 

generating function:

(6.6)

(6.7)

o.
2 n a

1

x

(6 .8)
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,(x,y) = a~mG(x1,;y1)

n n  . n n  ̂
= a x co s------ by sin ----

{ T  T  J (6.9)

y, = a
. n n  n n

-  x sm  b ycos
T T

where a >  1, m  = 0 , 1 , vS- 1 ,  n = 0,1,...,T - 1 ,  S is the total number of scales, and T  is 

the total number of orientations.

Let L and U  be the lower and upper center frequencies of interest. Given the total 

number of scales S and the total number of orientations T, by using a method proposed by 

Manjunath and M a [116], the optimal values for the filter parameters a u and a v are

computed as follows:

a = (l /U  )1/<s_1) and a„ =
{ a - l ) U  

“ (a + l)-s/21n 2

cr = tan f r „ (2 In 2) cr 1
U -  21n u 2 In 2 , “

127V [ u ) U

- 1/2 (6.10)

Once the values of a u and crv are obtained using Eq. 6.10, the bandwidth parameters a x

and o y can be computed using Eq. 6.8. For good performance, Manjunath & M a [116]

and Clausi & Jem igan [22] have suggested that L  = 0.05, U -  0 .5 , 5 = 4 ,  T  = 6 ,  and 

W  = U . In the experiments described in this chapter, we use L = 0.05, U = 0.5 and 

W  - U , and show results for different values of S and T. For the general guidance and 

detailed discussions on how to choose optimal values for S and T, the interested reader is 

referred to Clausi and Jem igan’s work [22],

Given an image 7, the Gabor filter response of a given m  and n at pixel location 

(x, y ) , denoted by f mn (x, y ) , is given by:
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fmn y )  =  j  7 “  V ^ d t ]  , (6.11)

where m =0,1,...,S - 1 ,  n = 0,1,...,T  - 1 ,  S is the total number o f scales, T  is the total 

number of orientations.
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1)1 I
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Figure 6-7: The 20 images from the Brodatz database used for experiments. The names of 

texture images (e.g. D4) are the original names from the Brodatz Album [14].
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6.4.2 Brodatz Textures

The Brodatz texture database contains 112 texture images and each texture is a 

256x256 image. Among the 112 images, we select 20 images that are homogenous 

textures. Figure 6-7 shows the 20 Brodatz texture images. Each of the 20 texture images 

is considered as a texture class. Table 6-1 gives the class labels assigned to the 20 images 

shown in Figure 6-7. Those labels are used as references to the images in the rest of this 

subsection. For testing, each texture im age is divided into 16 disjoint subsamples of size 

64x64. Among the 16 subimages, eight images are randomly selected and used for 

training; the remaining 8 subimages are for classification. Therefore, we have a database 

of 160 images for learning, and a database of 160 images for testing in classification. At 

the end of this subsection, we also present the classification results by varying the 

number of learning samples (from 1 to 8) for each class.

Table 6-1: Class labels of the 20 Brodatz images that are shown in Figure 6-7.

Class Name in the Brodatz Database Class Name in the Brodatz Database
1 D4 11 D76
2 D6 12 D80
3 D ll 13 D83
4 D20 14 D95
5 D23 15 D98
6 D37 16 D101
7 D65 17 D104
8 D66 18 D109
9 D74 19 D110
10 D75 20 D i l l

The reason for selecting homogenous texture images from the database is that in

the experiments all subsamples of an image are treated as a single class. If an image

contains inhomogeneous textures, then its disjoint subsamples may contain different
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textures, thus should belong to different classes. An example is given in Figure 6-8 to 

illustrate the problem.

D7 Subsamples

Figure 6-8: An example of a Brodatz image (D72) with inhomogeneous textures and its 

disjoint subsamples. The middle subsample contains textures different from those in other 

subimages. However, it has the same class label as those used for other subsamples. For 

example, if the middle subsample were used for training, then a wrong model would be 

learned.

For each texture sample X  in the test database, it has a true label, denoted by 

/0( X ) ;  it also has a label assigned by a classification algorithm, denoted by I f X ) .  If 

label I f X )  matches label l0( X ) ,  which indicates that image X  is correctly classified by 

the algorithm, then we record a success', otherwise we record a failure. For each class C ,, 

the success rate Rt o f a classification algorithm is given by:

Thetotal number o f  sucesses over test images in C .
, i — 0,1,..., N  1  ̂ (o. 12)

The total number o f  test images in C, 

where N  is the total number of classes. The average success rate R  over the entire test 

database is given by:
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^  The total number o f  sucesses over images in the test database 
The total number o f  images in the test database

For example, if there are 700 images correctly classified over a test database of 1000 

images, then the average success rate of classification is 700/1000 = 70% .

W e compare the BGLAM  algorithm with Guo et al.’s algorithm [72] and the 

SGLAM method [152]. W e have implemented both algorithms, which require filters for 

extracting texture features. For a fair comparison, the same filters (e.g. Gabor filters [87, 

116] as that used in Guo et al.’s original paper [72]) are used to extract texture features 

for both Guo et al.’s m ethod and the SGLAM method. Note that our new method does 

not need filters.

For Guo et al.’s approach [72], Gabor filters of 4 scales and 6 orientations, i.e. 24 

filters in total, are used. To extract texture features of an image, Guo et al.’s algorithm 

first applies the Gabor filters to the image to obtain 24 filtered images. Then, it calculates 

the mean and standard deviation o f pixels’ gray levels of each filtered image. Finally, it 

combines the 24 means and standard deviations to form a feature vector of the image. 

The dimension of each feature vector for Guo et al.’s algorithm is 2 x 2 4  = 48 . In the 

experiments for Guo et al’s algorithm, an image is not quantized to reduce the total 

number gray level in the image because otherwise the performance of the algorithm will 

be decreased [22].

For the SGLAM approach [152], Gabor filters of 4 scales and 6 orientations, i.e.

24 filters in total, are used to extract texture features. Each image is quantized evenly

from 256 gray levels into 8 gray-level bins. A SGLAM is calculated for each filtered

image using a 5 x 5  window. Since there are 8 gray levels, the size of each SGLAM  is

8 x 8 .  We calculate SGLAMs for all the 24 filtered images and combine the 24 SGLAMs
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together (see Eq. 6.1) to form the feature vector. Thus, the dimension o f each feature 

vector for the SGLAM algorithm is 2 4 x 8 x 8  = 1536.

For our approach, we calculate BGLAMs directly from images using a 5x5  

neighborhood. The calculated BGLAM s are then combined to form  an im age’s feature 

vector. Since there are 24 BGLAMs calculated for each image, and each BGLAM  has 

8 x 8  entities, the dimension o f each feature vector the BGLAM  algorithm is 

2 4 x 8 x 8  = 1536.

Table 6-2: The comparison results o f  our algorithm with Guo et a l.’s algorithm and the 

SGLAM method on the Brodatz textures.

Average Success Rate of Classification (R)
Guo et al. 90.0%
SGLAM 91.9%
BGLAM 100%

O Our Algorithm X SGLAM 1 Guo et al.

8 100-&&&<&£><g><&OO(!><&&®OO®®&<&(!)
,g

S  90 X X 1 X X*4-1

S 80-
2 l I x I I I I
tst8 70-O
M x 1oO i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r-*1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Class label
Figure 6-9: The comparison results o f  our algorithm with SGLAM  and Guo et al.’s

algorithm. The class labels are shown along the horizontal axis, and the success rates (see

Eq. 6.12) o f  the three algorithms for the 32 classes are shown along the vertical axis.

Table 6-2 gives the comparison results o f the three algorithms in terms o f the 

average success rate over the 20 Brodatz textures. Table 6-2 shows that our algorithm
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outperforms both SGLAM  and Guo et al.’s algorithm. Figure 6-9 gives the comparison 

results of the three algorithms in terms of the success rate for each of the 20 classes. In 

Figure 6-9, for each class, the success rates of our algorithm, SGLAM , and Guo et al.’s 

algorithm are marked by a circle (o), a cross (x) ,  and a short vertical line (I), 

respectively. Table 6-2 and Figure 6-9 have shown that our algorithm outperforms both 

SGLAM and Guo et al.’s algorithm. In fact, our algorithm has correctly classified all of 

the 160 images in the test database, while SGLAM  and Guo et al.’s algorithm have 

misclassified, respectively, 8.1% and 10% of the 160 images.

One advantage of our approach is that our algorithm has intuitive user-specified 

parameters, while both SGLAM and Guo et al.’s algorithm have nonintuitive ones. Our 

algorithm has two parameters that can be tuned by the users: the number of BGLAMs 

and the size of BGLAMs. The number of BGLAM s is determined by the size of the 

neighborhood system. For an m x m  neighborhood system, the total number of BGLAMs 

is m 2 - 1  (see Section 4.3.1). In general, the larger the neighborhood size, the better the 

results in classification. The computation time is, however, longer for a larger 

neighborhood system. In the experiments, we found that when m  = 5 , 7, or 9, our 

algorithm has good performance in both classification and running time. Figure 6-10 

gives the classification performance of our algorithm in terms of the average success rate 

on the 20 texture images from the Brodatz database with different values of m. Figure 

6-11 shows the corresponding running times. The results of Figure 6-10 and Figure 6-11 

are summarized in Table 6-3 for the ease of comparison. To achieve the best performance 

in classification’s accuracy, Table 6-3 suggests that the value of m  must be at least 5.
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1 3 5 7 9 11 13 15
Neighborhood size (m)

Figure 6-10: The classification results of our algorithm on the Brodatz database with 

m = 1, 3 , 5 , 7 ,  9 , 11, 13, 15, respectively. If m = 1, then the BGLAMs of an image are 

calculated with the four-nearest neighbors; otherwise, they are calculated with an m x m  

square window. The results are obtained with BGLAMs of size 8 x 8 .

^ 1800- 
Vi|  1550- 
| 1300- 
'I' 1050 - 
■-* 800- 
|  550- 
! 300 -

7 9 1 1 13 153 5
Neighborhood size (m)

Figure 6-11: The running time of our algorithm on the Brodatz textures with 

neighborhood size m  = 1, 3 , 5 , 7 , 9 , 11, 13, 15, respectively. The results of this figure 

are obtained with BGLAMs of size 8 x 8 .
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Table 6-3: The average success rates of our algorithm on the Brodatz texture with 

neighborhood systems of different sizes and the corresponding running times. The results 

are obtained with BGLAM s of size 8 x 8 .

Neighborhood size (m) Average success rate (R) Running time (seconds)
1 96.1 61
3 98.3 75
5 100 185
7 100 302
9 100 370
11 100 611
13 100 1057
15 100 1761

1 0 0  -

bD

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Size o f BGLAMs

Figure 6-12: The classification results of our algorithm in terms of average success rate 

on the Brodatz images with BGLAMs of different sizes. A  number 8 along the jc-axis 

means the size of BGLAMs is 8 x 8 .  The results are obtained with a 5 x 5  neighborhood.

The second parameter of our algorithm is the size of BGLAMs, which is

determined by the total number of gray levels in images. Similar to the first parameter

discussed before, the larger the parameter, the better the results in classification (see

Figure 6-12), but the more expensive the computation cost (see Figure 6-13). In the

experiments, we found that when the size of BGLAMs is 8 x 8  to 16x16,  our algorithm

has good performance in both classification and running time. Table 6-4 shows the
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average success rates of our algorithm on the Brodatz textures with BGLAMs of different 

sizes and the corresponding running times. Table 6-4 indicates that when the size of 

BGLAMs is greater than 8, our algorithm reaches the optimal performance in 

classification’s accuracy with an average success rate of 100%.

« 700- 
g 600- 
“ 500-Vi<l> 400 - 
I 300 - 
a 2 0 0 -  

a 100  -

8 10 12 14 162 4 6
Size o f BGLAMs

Figure 6-13: The running time of our algorithm on the Brodatz textures with BGLAMs of 

different sizes. The results are obtained with a 5 x 5 neighborhood.

Table 6-4: The average success rates of our algorithm on the Brodatz texture with 

BGLAMs of different sizes and the corresponding running times.

Size of BGLAMs Average success rate (R) Running time (seconds)
2 89.3 31
4 93.5 40
6 95.7 69
8 100 134
10 100 255
12 100 420
14 100 551
16 100 669

Both SGLAM and Guo et al.’s algorithm use Gabor filters to calculate texture

features. Before applying Gabor filters, two parameters must be specified by the users:

the number of scales and the number of orientations (for the details, see Section 6.4.1).

Figure 6-14 and Figure 6-15 show the classification results of both SGLAM and Guo et
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al.’s algorithm in terms o f the average success rate on the Brodatz textures with different 

number of scales and different num ber of orientations, respectively. From the results, we 

cannot conclude that the larger the param eter values, the better the results.

100  -  

95 -  

90 -  

85 -

— Guo et al.SGLAM

2 3 4 5 6 7

Humber of scales

Figure 6-14: The classification results of SGLAM  and Guo et al.’s algorithm in terms of 

average success rate on the Brodatz textures with different number of scales. For all 

scales, the number of orientations used is six.
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Figure 6-15: The classification results of SGLAMs and Guo et al.’s algorithm on the 

Brodatz textures with different number of orientations. The results are obtained with four 

image scales.

In the above experiments, the number of training samples for each class is equal

to the number of testing samples. W hen the number of training samples is decreased, the

classification performance of our algorithm decreases only slightly; while the

performance of Guo et al.’s algorithm and of SGLAM decreases significantly. Figure
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6-16 shows the comparison results of our algorithm with Guo et al.’s algorithm and 

SGLAM in terms of the average success rate when the number of training subsamples for 

each class decreases from 8 to 1 while the num ber of testing subsamples increases from  8 

to 15 (Note that the total number of samples of each class in training and testing is 16). 

W hen only one training subsample is used, our method has an average success rate of 

above 90%; while Guo et al.’s algorithm and the SGLAM algorithm have low average 

success rates of about 13% and 44%, respectively.

100 
90

t  80
g 70 
§ 60 
3  50■D
S? 40  
g  30 
<  20 

10 
0

Figure 6-16: The comparison results of our algorithm with Guo et al.’s algorithm and 

SGLAM with the number of training samples for each class decreased from 8 to 1 while 

the number of testing subsamples is increased from  8 to 15.

With respect to running time, our algorithm is faster than SGLAM, but slower 

than Guo et al.’s algorithm. In the experiments, our algorithm uses 24 BGLAMs and each 

BGLAM ’s size is 8 x 8 ;  SGLAM algorithm uses Gabor filters of with 4 scales and 6 

orientations, and each SGLAM ’s size is 8 x 8 ;  Guo et al.’s algorithm use Gabor filters of 

with 6 scales and 4 orientations. For the 20 Brodatz images as shown in Figure 6-7 (160 

learning images and 160 testing images of size 64x64) ,  the running times for our new
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algorithm, SGLAM, and Guo et al.’s algorithm, are 134, 315, and 39 seconds, 

respectively.

Table 6-5: Classes in the Vistex texture database. The name of an image, which indicates 

the type of textures the image contains, is the original name from the MIT Vistex [185],

Class Name in the Vistex Database Class Name in the Vistex Database

1 Bark 11 Misc

2 Brick 12 Paintings

3 Buildings 13 Sand

4 Clouds 14 Stone

5 Fabric 15 Terrain

6 Flowers 16 Tile

7 Food 17 Water

8 Grass 18 WheresWaldo

9 Leaves 19 Wood

10 Metal

buildings0005 paintingsOOOl

Figure 6-17: Examples of Vistex images that contain inhomogeneous textures.
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I l l l l  i l l l l  i g *

i l l l l i n i n i
Bark0009 BrickOOOl Buildings0009 CloudsOOOO FabricOOOl

FlowersOOOO FoodOOOO Grass0009 Leaves0003 Metal0004

MiscOOOl PaintingsOOOO Sand0005 Stone0002 Terrain0009

Tile0009 Water0002 WhresWaldoOOOl WoodOOOO

Figure 6-18: The 19 Vistex images used for the experiments. The names of images (e.g. 

Bark0009) are the original names from the MIT Vistex [185],

6.4.2 Vistex Textures

The Vistex texture database contains 167 texture images, and each texture is a 

256x256 image. They are originally grouped into 19 meaningful classes as shown in 

Table 6-5. Vistex images that contain inhomogeneous textures (see Figure 6-17) are not 

used in the experiments for the same reason as discussed in the previous subsection. 

Therefore, only Vistex images with homogeneous textures are used for experiments.
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Each of the 19 texture classes (Table 6-5) has different number of samples; for example, 

there are 11 Building images but only two Cloud images. To avoid bias in the num ber of 

samples for each class in learning, we use one Vistex image for each class. Figure 6-18 

shows all the 19 Vistex images with their original names from the M IT Vistex [185].

Following a similar experimental setup to the one used for the Brodatz textures as 

described in the previous subsection, we obtain 16 disjoint subimages for each Vistex 

image. Eight subimages are randomly selected and used for training; the remaining 8 

subimages are used for classification. Thus, we have a learning database of 152 images, 

and a testing database of 152 images.

Table 6-6: The comparison results o f our algorithm with Guo et al.’s and SGLAM  on 

Vistex textures.

Average Success Rate of Classification (R)
Guo et al. 82.2%
SGLAM 84.2%
BGLAM 97.4%

100

I 90-|
1  «H
OS« 70
<d 60
te

20

O Our Algorithm X SGLAM 1 Guo et al.

O  &  <t> 6  ®  <& & &  &  & 6  O &  ® (!)
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X X X

X

I

X

l I

I X

I

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19
Class label

Figure 6-19: The comparison results of our algorithm with SGLAM and Guo et al.’s 

algorithm for each class in the Vistex database.
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We compare our algorithm with Guo et al.’s algorithm [72] and SGLAM  [152], 

Table 6-6 gives the comparison results of the three algorithms in terms of the average 

success rate over the 19 Vistex textures. Figure 6-19 gives the comparison results o f the 

three algorithms for each class. Table 6-6 and Figure 6-19 show that our algorithm 

outperforms both SGLAM  and Guo et al.’s algorithm with an average successful rate of 

97% vs 84% and 82% of SGLAM and Guo et al.’s, respectively.

CloudsOOOO Two misclassified samples Water0002
of CloudsOOOO into Water0002

Figure 6-20: Examples of misclassified subsamples of CloudsOOOO.

Some discussions on the results in Figure 6-19 are given as follows. Except for 

some subsamples of CloudsOOOO (class 4) and TerrainsOOOO (class 15), our m ethod have 

correctly classified all subsamples in other classes. For failed cases, our m ethod has 

misclassified two subsamples of CloudsOOOO into W ater0002, and two subsamples of 

TerrainOOOO into WheresWaldoOOOl. The misclassification is caused by the similarity 

between subsamples of tw o different classes. For example, as shown in Figure 6-20, the 

two misclassified subsamples of CloudsOOOO look similar to parts of W ater0002. Since 

the classification is done in feature space, the closer the feature vectors of the two 

samples, the more likely they will be classified into the same class. Our m ethod uses
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BGLAMs as feature vectors (see Eq. 6.1). It has been shown in Chapter 4 that when the 

BGLAMs of two texture samples are close enough, the two samples look similar. 

Therefore, our BGLAM -based classification method tends to classify similar texture 

samples into the same class.

However, for failed cases, both Guo et al.’s algorithm and the SGLAM method 

have classified a Vistex image into a class that has very dissimilar textures. For example, 

Guo et al’s algorithm has misclassified five subsamples of CloudsOOO into four classes of 

different textures, namely Buildings0009, FlowersOOOO, PaintingsOOOO, and Tile0009 as 

shown in Figure 6-18, where the two subsamples in Figure 6-20 are classified as 

FlowersOOOO. The SGLAM  algorithm has misclassified four subsamples of CloudsOOO 

into four different classes: Bark0009, FoodOOOO, Grass0009, and Metal0004, where the 

two subsamples in Figure 6-20 are classified as FoodOOOO and Grass0009, respectively. 

Since the means and standard deviations of image subbands are inadequate to 

differentiate textures [143, 144], Guo et al’s algorithm may classify a texture sample into 

a class that has completely different textures. As discussed in Chapter 4, textures cannot 

be effectively differentiated by SGLAMs either, thus the SGLAM  method suffers the 

same problem of classifying an image sample into a class that has dissimilar textures.

W ith respect to running time, similar to the results for Brodatz textures, our 

algorithm is faster than SGLAM, but slower than Guo et al.’s algorithm. In the 

experiments, we have used 24 BGLAMs of size 8 x 8  for our algorithm, Gabor filters of 4 

scales and 6 orientations for both SGLAM algorithm and Guo et al.’s algorithm. For the 

Vistex textures of 152 learning images and 152 testing images, the running times for our 

new algorithm, SGLAM, and Guo et al.’s, are 119, 279, and 36 seconds, respectively.
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6.4.3 ASI Textures

ASI stands for All-Sky Imager. In recent years, the digital ASI has become an 

important tool in auroral and magnetospheric physics [174], Images captured from the 

ASI play very important roles in studying the environment of the near-Earth space where 

auroral phenomena occur. Typical exam ples of auroral phenomena are the northern (or 

southern) lights, which are caused by the solar-terrestrial interaction. Auroral phenomena 

usually modify atmospheric properties, e.g. those affecting radio wave propagation. The 

study of auroras is of great scientific and practical interests. For example, observations of 

auroras and their associated effects on radio wave propagation provide a means of testing 

scientific models of the precipitation mechanisms, remote sensing, magnetospheric 

dynamics, and better understanding the solar-terrestrial interaction [174].

Auroral phenomena are observed and captured through special ground-based 

network cameras called all-sky imagers [174], There are tens of millions of ASI images 

acquired annually around the world. M anual analysis of the ASI images by subjects (or 

researchers) is tedious and impractical. Full utilization of these powerful ASI data sets 

demands automated analysis tools. However, one o f the challenges in developing such 

tools is that automatically classifying ASI images according to auroral structures is 

difficult [174], In the rest of this subsection, we present classification results of our 

BGLAMs on ASI images and compare with existing approaches.

The ASI images used for learning and testing are a set of 3400 images (size 

128x128), which are randomly taken from a database of 222000 auroral ASI images at 

the CANOPUS (Canadian Auroral N etwork for the Open Program Unified Study) [44, 

159]. The 3400 texture images are grouped manually by researchers at the Institute for
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Space Research at the University of Calgary [84] into three classes, namely Arcs, Patches 

and Omega-bands as shown in Table 6-7 and Figure 6-21. The number of images for Arc, 

Patch, and Omega-band is 1200, 1200, and 1000, respectively. For each class, one-third 

of the images are randomly selected and used for learning and the rest of them are used 

for testing. For example, among the 1200 Arc images, 400 images are randomly selected 

and used for learning and the rest of 800 images are used for testing.

Table 6-7: Classes in the 3400 ASI auroral texture images. Example images of each class 

are given in Figure 6-21. The number in the bracket beside each class name gives the 

total number of images in that class among the 3400 images.

Class Name (number of images) Description

1 Arc (1200) East-west or north-south aligned arc-like stmctures. 

They usually occur at nights.

2 Patch (1200) Irregular blob-like structures. They usually occur in 

the late morning to dawn.

3 Omega-band (1000) Structures that usually occur either following or 

during substorm activity in the midnight.

The ASI data is collected and given to us by Dr. Eric Donovan and Dr. Mikko 

Syrjasuo at the Institute for Space Research at the University of Calgary. The data is in 

fact a time series. However, to avoid temporal bias, the images in the database are 

scrambled; thus, it is very difficult to classify images in the database manually without 

deep understanding in auroral and magnetospheric physics. The testing has also been 

done in a doubly-blinded manner.
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Figure 6-21: Exam ple images of the three classes in ASI database. Images in the 1st, 2nd, 

and 3rd row contain arcs, patches, and omega-bands, respectively. In the 1st row, the first 

two images contain east-west aligned arc-like structures, and the last two contain north- 

south aligned arc-like structures.

The most recent work on classifying ASI images, which is also the only previous 

work to our best knowledge, was done by Syrjasuo and Donovan [175]. In their 

approach, simple statistics such as means and histograms from image pyramids are used 

to represent texture images in the feature space and the kNN (k-Nearest-Neighbors) 

classifier is used to classify a given ASI image based on the training images. Table 6-8 

gives the comparison results of our approach with theirs. For ease of reference, the results 

of Guo et al.’s algorithm [72] and SGLAM [152] are also given in the table. For an 

auroral class, the total number of test images in that class is shown in the bracket beside 

the class name. For each class, both the total number of images correctly classified by an
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algorithm and the associated success rate (see Eq. 6.12) are shown in the table. For 

example, Table 6-8 shows that there are a total o f  800 arc-class images for testing, and 

that BGLAM correctly classifies 795 out o f  800, w ith a success rate o f 99.4% 

(795 /800  = 99.4%). Table 6-8 shows that our algorithm has the best performance.

Table 6-8: The comparison results o f  our approach with Syrjasuo and D onovan’s, Guo et 

al.’s algorithm, and SGLAM on ASI images.

A rcs(800) Patchy (800) Omega (667) Average Success Rate

BGLAM 795 (99.4%) 777 (97.1%) 627 (94.0%) 97.0%

Syr. & Don. 792 (99.0%) 712 (89.0%) 80 (12.0%) 69.9%

Guo et al. 784 (98.0%) 553 (69.1%) 79(11.8%) 52.5%

SGLAM 786 (98.3%) 636 (79.5%) 309 (46.3%) 76.4%

As demonstrated in previous chapters, a texture image can be uniquely 

represented by and faithfully reconstructed from BGLAM s, but not by SGLAMs. 

Therefore, BGLAMs are able to differentiate Omega images from other classes; while 

SGLAMs are not. Portilla and Simoncelli [143, 144] have shown that simple statistics 

such as means, variances, histograms from image pyramids are inadequate for 

differentiating textures. Thus, both Guo et a l’s method and Syrjasuo and D onovan’s 

method have difficulty in separating Omega images from images o f  other types.

6.5 Summary

This chapter describes texture image classification using BGLAMs. Given an 

unseen texture image, our approach classifies it into one o f  the pre-leamed classes. There 

are two stages in our algorithm: a learning stage and a classification stage. In the first
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stage, models of texture classes are learned from the BGLAMs of training examples 

using the SVM, and in the second stage, a given texture image is classified into one of the 

pre-leamed classes, to which the image has the largest signed distance. W e compare our 

approach experimentally with existing approaches by performing texture classification 

over the Brodatz textures, the Vistex textures, and the ASI textures. The experimental 

results show that our approach has better performance than existing approaches.
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Chapter 7 

Conclusions

7.1 Summary

Texture modeling plays important roles in com puter graphics, vision and image 

processing. Although many techniques have been developed for the study of texture 

analysis and synthesis, the mathematical definition of texture is still unclear. Due to the 

vague definition of texture, each technique has its own advantages and disadvantages, 

and thus fails to model certain types of textures. Challenging problems in texture 

modeling are as follows:

l . I n  computer vision, it is difficult to define textures with mathematical precision. 

Given a texture sample, what can be used to represent the sample with the 

necessary and sufficient information?

2. In exiting texture modeling approaches, a good analysis technique may not work 

well for synthesis; while a good synthesis technique that generates impressive 

results may have done the analysis poorly or may not be applicable to analysis at 

all. Therefore, there is a lack of good unified frameworks that work well for both 

analysis and synthesis.

3 .It is difficult to perform 3D texturing. In general, existing 3D-texture techniques 

are complex to understand and work for only a lim ited range of textures.

4. It is a challenging problem to evaluate texture-synthesis results quantitatively. 

Visual inspection is the only way for previous approaches to evaluate their 

synthesis results.
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This thesis presents a new unified mathematical framework for modeling textures 

using BGLAMs that has successfully addressed the above issues. Our new framework for 

texture analysis and synthesis will provide important understanding in texture modeling 

in both computer vision and com puter graphics. W e prove that BGLAMs forms a basis of 

GLAMs, and that two images are identical if and only if their corresponding BGLAMs 

are the same. W e also proved that the number of different BGLAM s of a given image is 

at most equal to the number of pixels in the image. BGLAMs should not be confused 

with GLCMs. In fact, we have proved that a GLCM  can be represented as a sum of two 

BGLAMs, and have shown that BGLAM s significantly outperforms GLCM s in texture 

modeling.

Based on the theory, we have developed new techniques for 2D and 3D texture 

synthesis, respectively, and a new m ethod for classifying texture images using BGLAMs. 

For 2D texture synthesis, given a sample, our method first characterizes it by a set of 

BGLAMs. Then, by sampling from  the BGLAM s only, our m ethod generates an output 

texture similar to the input by iteratively modifying the gray level of each pixel in the 

output image until the distance between the corresponding BGLAM s of the output and 

those of the input is small enough or until there is no further change in pixel’s gray level 

values in the output. The experimental results show that the new 2D texture-synthesis 

technique can successfully synthesize a wide range of textures and is comparable to the 

existing techniques. In addition, based on the BGLAM-based distance measure, our 

technique is able to automatically evaluate the results and determine whether the output is 

a successful synthesis of the input. To our best knowledge, none of the previous 

techniques has the ability to evaluate their synthesis results.
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For 3D texture synthesis, we have developed a new technique, called aura 3D  

textures, for synthesizing solid textures from input examples using BGLAMs. Our 

method is fully automatic and requires no user interaction in the process. Given one or 

more input textures, a solid texture is generated by sampling the BGLAMs of the input(s) 

constrained in multiple view directions. Once the solid texture is generated, any given 

object can be textured by the solid texture using a shader. The evaluation results have 

shown that our algorithm for solid textures can generate faithful results of both stochastic 

and structural textures with an average successful rate of 76.4%. As well, the new method 

outperforms Wei & Levoy’s method [188] and is comparable to that proposed by 

Jagnow, Dorsey, and Rushmeier [86].

In addition to 2D and 3D texture synthesis, we demonstrate that BGLAMS can be 

used in classifying texture image databases by learning. In the learning stage, models of 

texture classes (i.e. the optimal boundaries of classes in the feature space) are learned 

from the BGLAMs of training examples using a SVM  algorithm. Given an unknown 

texture image, our approach classifies it into one of the pre-determined texture classes, to 

which the image has the largest signed distance. W e compare our approach 

experimentally with existing approaches by performing texture classification using the 

Brodatz database, the Vistex database, and the ASI database (a real application database). 

The experimental results show that our classification method has better performance than 

previous methods. For both the Brodatz database and the Vistex database, the 

experimental results show that the proposed new approach has performance better than 

Guo et al.’s algorithm and the SGLAM method. For the ASI database, the results have
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shown that our approach significantly outperforms existing approaches with an average 

successful rate of 97% vs 66%.

7.2 Contributions

The main contributions of this thesis work are as follows:

1. The mathematical theory of BGLAMs. It is proved that BGLAMs form the basis

of GLAMs, and that two images are identical if and only if their corresponding 

independent BGLAMs are the same. At present, to our best knowledge, this 

work clarifies the relationship between BGLAMs, SGLAMs, GLAMs, and 

GLCMs. W e demonstrate that an image can be uniquely represented by its 

BGLAMs, but not by GLCMs nor by SGLAMs.

2. A new BGLAM-based method for 2D texture analysis and synthesis. For a given

input texture sample, synthetic 2D textures can be generated by sampling a 

small set of BGLAMs (e.g. 64 BGLAMs for an image of size 6 4 x 6 4 )  that are 

calculated from the input.

3. An original BGLAM-based algorithm for synthesizing solid (i.e. 3D) textures

from one or more input samples. Our method generates solid textures by 

sampling the BGLAMs of the input samples constrained in m ultiple view 

directions.

4. A new distance function based on BGLAMs for measuring texture similarity. In

addition to the metric properties, the BGLAM  distance function is one-to-one. 

This one-to-one property implies that a zero value of the distance measure on 

two images will guarantee that they are identical, and that the sm aller the
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distance value, the closer the two texture images look to each other. Based on 

the BGLAM  distance measure, we present an original method for evaluating 

texture synthesis results quantitatively. For previous synthesis techniques, 

human visual inspection is the only effective way to evaluate the synthesis 

results.

5. A BGLAM -based method for texture image classification. W e test our m ethod by 

performing image classification on the Brodatz database, the Vistex database, 

and the ASI database.

7.3 Future Work

The work in this thesis encourages future research in several directions. W hen 

BGLAMs are used in synthesizing both 2D and 3D textures from  input samples, our 

sampling methods tend to converge to local minima quickly, and thus generate visible 

seams in the synthesized textures. One solution to this problem is to use a genetic-based 

search method [66] (a multiple-point search scheme) rather than a single-point search 

scheme during sampling (see Chapter 4 and Chapter 5 for more details). Alternatively, 

optimization methods based on graph cut techniques [13, 184] can be used to avoid the 

problem of local minima. It has been demonstrated [13, 184] that graph cuts can be used 

to efficiently find the global or nearly global optimal solutions for labeling problems in 

image restoration and stereo and motion analysis. By correctly formulating the labeling 

problems and by defining appropriate energy functions for our BGLAM-based 2D and 

3D texture synthesis, the problem of visible seams can be well resolved using graph cut 

techniques [13, 184],
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Another future research is the GPU (Graphics Processing Unit)-based texture 

synthesis using BGLAMs. Real-time texture synthesis is in high demand to run in 

computer games and computer-generated movies. Existing texture-synthesis techniques 

are computationally expensive, and thus difficult to run in real-time. State-of-the-art 

graphics hardware makes the GPU available for real-time texture synthesis. The 

challenge in GPU-based texture synthesis is to develop new techniques that can fit into 

the graphics processing pipeline. This requires not only a compact representation of 

textures but also a parallel sampling process in texture synthesis. So far, no technique has 

been successfully developed to perform GPU-based texture synthesis on given input 

samples. Using independent BGLAMs, textures can be efficiently stored in memory. 

Since the BGLAM -based texture synthesis uses a random site-visitation scheme, it is 

possible to turn the sampling into a parallel process by segmenting the output texture into 

independent and identically distributed regions.

Future work can also be conducted on unsupervised texture image classification 

using BGLAMs. The method for texture image classification presented in the thesis is 

supervised in the sense that the number of texture classes is known a priori. For some 

applications, the number of classes might not be known first. Therefore, it is desirable to 

perform unsupervised texture classification by which texture classes are dynamically 

detected. By treating BGLAMs as texture features and by using BGLAM-based distance 

measure, it is possible to perform unsupervised texture classification.

Other future research may include: the application of BGLAMs to evaluating 

synthesized textures from various existing approaches and choosing the best, the study of 

the sensitivity of the threshold values used in the BGLAM-based distance function for
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measuring the similarity of texture samples and for evaluating the synthesis results, 

dynamic texture [169] synthesis using BGLAMs, texture image segmentation using 

BGLAM s and its applications to segmenting M RI (Magnetic Resonance Imaging) scans 

in order to identify brain tumors or breast cancers, and the extension of the BGLAM  

framework to image or video analysis and synthesis using mathematical morphology 

[164],
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