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Abstract

Arc consistency algorithms represent an important class of constraint satis-
faction algorithms. General arc consistency 3 (gac3) is the most common
algorithm in this class. In 1997, Bessiere and Regin proposed general arc
consistency (gac7) as a more sophisticated general arc consistency algorithm.
We show how to incorporate Bessiere and Regin’s proposal into backtracking
search. We also perform the first evaluation of this algorithm.

In this thesis we also present work in the area of estimating the cost of
solving constraint satisfaction problems. Some existing work in this area is
evaluated. Effective estimation techniques could have applications in areas
such as: problem modeling, algorithm selection, and variable ordering. We
also develop an estimation technique, based on statistical sampling algorithms
by Knuth and Purdom. We demonstrate the usefulness of our estimator as a

dynamic variable ordering.
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Chapter 1

Introduction

Constraint programming is a simple, yet powerful paradigm in which problems
are represented as constraint satisfaction problems. A constraint satisfaction
problem (CSP) is defined by a set of variables, a domain of values for each
variable, and a set of constraints over the variables. CSPs are a very natural
way to model many interesting problems, including problems in the areas of
scheduling and planning.

A constraint satisfaction problem can be solved using a variety of algo-
rithms. The most common complete algorithms used are based on chronolog-
ical backtracking. Another type of algorithm used in the area of constraint
satisfaction is arc consistency algorithms. Often backtracking algorithms in-
corporate an arc consistency algorithm to enforce arc consistency at each node
of the search. Many arc consistency algorithms have been designed specifically
for problems with only binary constraints (that is, constraints involving ex-
actly two variables). Arc consistency algorithms that apply, more generally, to
problems with constraints of arbitrary arity, are often called general arc con-
sistency algorithms. General arc consistency incorporated into backtracking
search has been shown to be useful on many problems.

In [18], Mackworth proposed an algorithm, called AC3, for enforcing arc
consistency on binary constraint satisfaction problems. In [19], he showed
how AC3 could be generalized to handle general CSPs. This, generalized, al-
gorithm is called gac3. More recently, Bessiere and Regin [4] have proposed

gac7 as a more sophisticated general arc consistency algorithm. Gac7 has sev-



eral features that, intuitively, seem to be improvements over the more straight
forward gac3 algorithm. In this thesis we show how gac7 can be incorporated
into backtracking and we perform the first evaluation of gac7. In particular
we compare gac7 with gac3.

In this thesis we also present work in the area of estimating the cost of
solving constraint satisfaction problems. In 1975, Knuth [15] developed a
sampling algorithm that could take a problem instance, P, and produce an
estimate of the cost of solving P using chronological backtracking. In 1983
and 1990, Nadel [24, 22], building on the work of Haralick and Elliott [13],
developed, using analytic methods, a series of formulas for predicting the cost
of solving a problem instance using backtracking and forward checking. We
present an evaluation of these techniques.

In addition to this evaluation, we develop an estimation technique that
takes a constraint satisfaction problem instance, P, and an algorithm, A, and
returns an estimate of the cost of solving P using A. In particular we apply
techniques, similar to those used by Knuth, to backtracking-based algorithms,
such as forward checking and arc consistency. We provide a discussion about
possible applications of our estimator. We also evaluate the usefulness of our
estimator in one of these application areas: dynamic variable orderings.

The thesis is organized as follows. Chapter 2 presents some background
information on the topic of constraint satisfaction. Chapter 3 presents our
comparison of gac7 with gac3. Chapter 4 presents our work on estimation.

Chapter 5 provides suggestions for future work and a summary.



Chapter 2

Background

In this chapter we discuss some necessary background information. In section
2.1 we discuss some basic definitions and introduce the notation we will use.
In section 2.2 we introduce four problems that will be used in evaluating the
techniques discussed in this thesis. In section 2.3 we introduce some basic
techniques and algorithms commonly used in solving constraint satisfaction

problems.

2.1 Basic definitions

A constraint satisfaction problem P is a triple (X, D, C), where X is a set of
n variables {z1, ...,z,}, D is a set of finite domains {D(z,), ..., D(z,)} on the
variables, and C is a set of m constraints over sets of the variables in X. The
domain of a variable is a set of possible values that can be assigned to it. A
variable, together with a value from its domain, is referred to as a label. A
solution to P is an assignment of a value a; € D,, to z;, 1 < i < n, that
satisfies all of the constraints.

Fach constraint ¢ € C is a constraint over some set of variables in X . This
set of variables is known as the scheme of the constraint, and the size of this
set is known as the arity of the constraint. If a constraint ¢ € C is defined
on the ordered set of variables X (c) = (z1, ..., Z¢) then ¢ can be defined as a
subset of the space D(z;) x ... x D(z,). This Cartesian product is the space
of all possible assignments to the variables in X (c¢), where each element in the

product is a tuple ¢t = [ay, ..., ax]. The notation [z] is used to refer to the value



corresponding to the variable z in the tuple £. The subset ¢ of this product is

referred to as the set of all satisfying or valid tuples. The ratio

|c]
ID(z) % .. x D(z¢)]

is a measure of the tightness (or the tightness ratio) of the constraint. Lower
values of this ratio correspond to tighter constraints.

Constraints are sometimes stored explicitly as a set of satisfying tuples, in
which case they are said to be stored in eztension or eztensionally. More gen-
erally, however, constraints can be thought of (and implemented) as a boolean
function. This function takes an instantiation of the variables participating in
the constraint and returns true if the instantiating variables satisfy the con-
straint, and false if they do not. Tuples that are not stored in extension are

said to be stored intensionally.

2.2 Problems

In the constraint programming methodology we cast the problem as a con-
straint satisfaction problem in terms of variables, values, and constraints. The
choice of variables defines the search space and the choice of constraints de-
fines how the search space can be reduced so that it can be effectively searched
using backtracking search. Also part of the modeling task is to specify what
kind of propagation is desired for each constraint: forward checking or arc
consistency checking for example. See section 2.3 for more on this.

Here we discuss several problems that can be cast as constraint satisfaction
problems, and that will be useful to us later: the crossword puzzle problem (see
section 2.2.1), the Golomb problem (see section 2.2.2), the logistics problem

(see section 2.2.3), and randomly generated problems (see section 2.2.4).

2.2.1 Crossword puzzle

Input to the crossword puzzle problem is a puzzle and a dictionary. The puzzle
is an arrangement of spaces and blanks as in figure 2.1. Given such a puzzle

the goal is to find words (from the given dictionary) that fit into the adjacent



Figure 2.1: A 5 x 5 crossword puzzle with 4 blanks.

spaces. The solution can be further constrained by requiring that all words in
the solution be distinct. We will consider three ways to model this problem as
a CSP: the letter, the dual and the hidden. A comparison between these three
models can be found in table 2.1.

In the letter model there is a variable for each letter to be filled in and a
constraint enforces that a maximally contiguous sequence of letters forms a
word that is in the dictionary. In this formulation, the domain of a variable
consists of 26 letters, from a to 2. The arity of a constraint reflects the length
of the word that the constraint represents. For example, a word of 10 letters
will result in a 10-ary constraint over those letter variables. The tuples in the
constraint are all of the words in the dictionary of the appropriate length.

An alternative representation of the problem, historically called the dual,
can be automatically generated from the letter model. In this representation,
each word in the puzzle is represented by a dual variable. The domain of a dual
variable is all of the words in the given dictionary of the appropriate length.
The domain size of a dual variable may be as large as 32865 (depending on
the size of the dictionary). Binary constraints between these variables ensure
that instantiating words chosen agree on intersecting letters.

In the hidden representation, each of the letters and each of the words in



the puzzle are given a variable. This representation is called the hidden rep-
resentation because the extra variables (corresponding to words in the puzzle)
are referred to as hidden variables, because they do not participate in the so-
lution. A hidden constraint enforces an assignment of a letter variable to be

compatible with an assignment of a word variable.

Table 2.1: Size of an instance of a model given a dictionary and the grid shown
in Figure 2.1, where n is the number of variables, d is the maximum domain
size, T 1s the maximum constraint arity, and m is the number of constraints.

model dictionary n d T m
letter UK 21 26 10 23
dual UK 10 10,935 2 34
hidden UK 31 10,935 2 55
letter words 21 26 10 23
dual words 10 4,174 2 34
hidden words 31 4,174 2 55

The set of crossword puzzle instances we used in our experiments include:

e A set of 10 puzzles {05.01,...,05.10} that represent all legal puzzles of
size 5 X 5. A legal puzzle is one which is symmetric, has no single letter

words, and is connected.
e A set of 10 puzzles {15.01,...,15.10} of size 15 x 15.
e A set of 10 puzzles {19.01,...,19.10} of size 19 x 19.
e A set of 10 puzzles {21.01,...,21.10} of size 21 x 21.
e A set of 10 puzzles {23.01,...,23.10} of size 23 x 23.

For our experiments we used two dictionaries: one we refer to as the UK
dictionary, which is available at [1], the other is the standard Linux dictionary,
referred to as the words dictionary. A puzzle together with a dictionary define
an instance of the crossword puzzle problem. Since we have fifty puzzles and

two dictionaries this represents 100 instances.



2.2.2 Golomb

The Golomb problem is available at the CSPLib benchmark library (prob006
at http://csplib.cs.strath.ac.uk/). It is also described by Dewdney in [10]. The

library describes the problem as:

“A Golomb ruler may be defined as a set of m integers 0 = a; <
az < ... < G, such that the m(m — 1)/2 differences a; — a;,1 <=
1 < 7 <= m are distinct. Such a ruler is said to contain m marks
and is of length a,,. The objective is to find optimal (minimum

length) or near optimal rulers”.

To distinguish between the m used in the above description and the m used
in our notation for the number of constraints in a CSP, we will use M to refer

to the number of marks in a Golomb ruler instance.

Example 1 As an example, a Golomb ruler with M = 4 can be constructed
by placing mark 1 at distance 0 on the ruler, mark 2 at distance 1, mark 3 at
distance 4, and mark 4 at distance 6. This corresponds to a ruler of length 6

which is the optimal Golomb ruler for M = 4.

The basic approach to solving an instance of the Golomb problem, like
other optimization problems, is an iterative approach. For an instance with
M marks the typical initial length to try is the minimum length found for an
instance with M — 1 marks. So given an M, a ruler length L is selected to
try first. Then a CSP instance is generated (more details on how this is done
are given below). If a solution can be found to this instance, then L is the
optimal length for a Golomb ruler with M marks. If a solution can not be
found to this instance, then the process is repeated with a ruler of length L+1.
This iterative process is continued, with progressively longer rulers, until the
optimal length ruler is found.

The Golomb CSP generator takes as input the number of marks M and a
ruler length L. The resulting CSP has M variables, zi,...,z, (ie. n = M)

each with a finite integer domain of size equal to the length L. This domain



corresponds to each of the places the mark can be placed, so an assignment

of a value a to a variable z; corresponds to the #** mark being placed on the

ruler at position a.

The model we used involves three types of constraints:

e binary less than constraints

Vz;,z; € X if 1 < j then z; < z;

e ternary not equal constraints
Vz;, i,z € X if (i < j < k) then (|zx — 2] # |z; — z:i] and |zx — 24| #
|z; — zi| and |zx — zj| # |2k — 7 )

e quaternary not equal constraints
Vi, 25, Tk, 71 € X if (1 < J < k <) then ( |z, — zi| # |zx — z;| and
|z1 — ;| # |z — z:| and |z — 2| # |25 — 73] )

The range of problems that we found to be solvable within a reasonable

length of time, given our formulation, are problems with up to 13 marks. If

M is 11 and L is 72 (which is the optimal length for a Golomb ruler with 11

marks), the CSP instance generated has:

e 11 variables, each with domains of size of 73,
e 55 binary constraints,
e 165 ternary constraints, and

e 330 quaternary constraints.

2.2.3 Logistics

Logistics is a planning problem. Like the Golomb problem, described above, it
is an optimization problem. In the logistics problem, there are packages which
need to be moved around between cities and between locations within cities
using trucks and planes. In particular an initial state specifies the locations

of the packages, trucks and planes. A goal state specifies the desired location



for each package. A solution to the problem is a series of transitions ffrom the
initial state to the goal state, where the number of transitions is min&mized.

Following van Beek and Chen (see [28]) we model each state by a ceollection
of variables and the constraints enforce valid transitions between sta-tes. For
each state, S, we have the following variables: C;; (representing packagges), T},
(representing trucks), and Py, (representing planes), where i, j, k ramge over
the number of packages, trucks, and planes, respectively, and ¢ rangges over
the number of steps (atomic actions) in the plan. The domains of the package
variables are locations, trucks, and planes. Assigning a package vasriable a
location means the package is at that location in that state and assfigning a
package variable a truck means the package is in that truck in that state.
Similarly, the domains of trucks and planes are locations.

Minimally the constraints must enforce how variables can change from state
S; to state S (we call these action constraints) and how variables wvithin a
state must be consistent (we call these state constraints). More spescifically,

the essential constraints are:

e Action constraints model the effects of actions. For example, a package
variable can only change from being at a location in state S; t-o being
in a truck or plane in state S;;;. In other words a package can only be
loaded onto a truck or plane if it is at the same location as the ®truck or

plane.
e State constraints enforce how variables within a state must be corsistent.

e Distance constraints are upper and lower bounds on how many stteps are
needed for a variable to change from one value to another. (Actually

only the bounds for adjacent states are essential constraints).

When the problem is modeled with only this minimal set of constraints we
refer to it as the basic model. Additional redundant constraints can bee added

for efficiency:

e Symmetric values constraints are constraints which break sym:metries

on the values that variables can be assigned. For example, giwen two

9



package variables, the planes in their domains are often symmetric and
if there is a solution (or no solution) with a particular assignment of
planes to packages, there is another solution (or no solution) with the

planes swapped.

e Action choice constraints enforce constraints on which actions can be
performed in each state. For example, suppose there are two packages
at an airport. A plane can either pick up both at once, or pick up one
now and another later. All of these will end up being equivalent and a

constraint is added which forbids all but one of the action sequences.

e Domain constraints enforce restrictions on the original domains for the
variables. For example, if a package is to be delivered to a location
within the city that it originates in, it can have its domain restricted to

locations and trucks within that city.

When these additional, redundant constraints are added, we refer to this as
the redundant model.

An iterative approach (similar to that described above for the Golomb
problem) is used to find the optimal plan. The procedure employed involves
generating a minimum bound on the number of transitions that will be required
to reach the goal. This is done by simplifying the problem, by dropping some
preconditions on the actions, and then computing the minimum number of
steps required to solve this simplified version.

Beginning with this minimum, the algorithm generates a CSP (assuming
exactly this many steps will be required) and attempts to solve it. If the
instance can not be solved then the minimum bound is incremented and a
new CSP is generated. This iterative process continues until a solution (i.e. a
plan) is found.

The test suite used has 35 instances of the logistics problem. As an ex-
ample, here are some statistics from problem number 6 of this test suite: 16
packages, 2 planes, 18 cities, 4 locations per city, and 26 trucks. The minimum

bound calculated is 11 steps. Given the basic model, the CSP generated, for

10



the first iteration (corresponding to 11 steps), for problem 6 has: 288 variables
with domain sizes ranging from 1 to 23, 660 binary constraints, and 1540
quaternary constraints.

For the first iteration of problem 6, given the redundant model, the CSP
generated has: 288 variables with domain sizes ranging from 1 to 23 (same as
basic model), 660 binary constraints, 2290 ternary constraints, 5548 quater-

nary constraints, and 275 5-ary constraints.

2.2.4 Randomly generated problems

Often it is valuable to look at randomly generated problems because it can
be helpful to have problems with specific properties and parameters that can
be systematically varied. We use a simple approach to generating random
problems. Input to the generator is the number of variables n, the domain
sizes d of the variables (all variables have the same domain size), the arity of
the constraints r (all constraints have the same arity) and the tightness of the
constraints ¢ (all constraints have the same tightness).

The generator then creates a CSP with these parameters. Satisfying tuples
are stored explicitly and are chosen uniformly from the space of all tuples.
With this formulation, the available memory limits the size of problems that

can be generated.

2.3 Algorithms for solving constraint satisfac-
tion problems

Once a problem is modeled as a CSP, several algorithms are available for solv-
ing it. The most commonly used complete algorithms are based on chrono-
logical backtracking. One way in which the various backtracking algorithms
differ is in the level of consistency that is enforced. The most common levels
of consistency used are forward checking and full arc consistency. In section
2.3.1 we introduce the basic chronological backtracking algorithm. In section
2.3.2 we introduce forward checking. Arc consistency is discussed, in detail,

in chapter 3.

11



Forward checking and arc consistency can be characterized as look ahead
techniques. Conflict-directed backjumping is a backward checking algorithm
that can also be used in conjunction with backtracking. It is discussed in

section 2.3.3.

2.3.1 Chronological backtracking

Chronological backtracking, often just called backtracking, is a common prob-
lem solving technique. The version of backtracking listed in algorithm 1 is a
recursive implementation. Each call to the recursive procedure corresponds to
a node in the search tree. At each node the algorithm picks an uninstantiated
variable to instantiate next (see line 9 of algorithm 1). Each value in this
variable’s domain is tried as a possible value for the variable and the function
CheckConstraints() is called. For each constraint for which all of the partic-
ipating variables are instantiated, CheckConstraints() performs a constraint
check to ensure that it is satisfied. If assigning this value to the variable does
not violate any constraints then the search is continued by recursing deeper.

If at any stage, during the search, no satisfying instantiations can be found,
the algorithm backs up to the previous level in the tree. Any time that the
search reaches level n, where n is the number of variables in the problem being
solved, if all constraints are satisfied then the current instantiations form a
solution to the problem. If this occurs then the algorithm quits. However,
if the line “return true” on line 15 is replaced with “return false”, then the
resulting algorithm continues searching until all solutions are found.

Efficiency gains can be achieved by allowing the selection of the variable to
instantiate next, done by the function PickVariable(), to be dynamic. Various
heuristics are often used to guide the selection of the next variable to instan-
tiate. These heuristics, often called dynamic variable orderings, are used to
minimize the size of the search tree.

One of the most popular variable ordering techniques is called fail first.
This ordering chooses the variable with the fewest (currently) valid values
(smallest domain). This reduces the branching factor at the current level. It

also attempts to raise the height of failures. We will refer to this ordering

12



Algorithm 1 Backtrack( level )
1: if at leaf then

2: if CheckConstraints() then
3 print solution

4 return true

5: else
6
7
8
9

return false
end if
: end if
: var + PickVariable()
10: for all d € D(var) do
11:  if (var,d) is a currently valid label then

12: assign the variable var the value d
13: if CheckConstraints() then

14: if Backtrack( level+1 ) then
15: return true

16: end if

17: restore( level )

18: end if

19: end if

20: end for

21: return false

as ff. Degree is another feature that is often exploited by variable ordering
heuristics. A variable’s degree is the number of variables that are connected
with it. Two variables, z and y, are connected if there exists a constraint c
such that z € X(c) and y € X(c). Selecting the variable that minimizes the

ratio
domain_size

degree
has been found to be a useful variable ordering heuristic. We will refer to this

ordering as ff/deg. A third variable ordering, which we will call ff+deg, first
considers domain size and then breaks ties by selecting the variable with the
largest degree. Finally a variable order, which we will call ff/con, picks the
variable that minimizes the ratio

domain_size
con

3

where con is the number of constraints the variable is involved in.

13



2.3.2 Forward checking

Chronological backtracking is often inefficient and is rarely used on its own
in the context of solving constraint satisfaction problems. Combining a for-
ward checking algorithm with backtracking can often increase the efficiency (in
terms of CPU time) of the search. Forward checking can perform consistency
checks on variables that have not been instantiated and potentially remove
values from the domains of these variables, thus reducing the branching factor
of the search space beneath the current node. This reduction comes at the
cost of increasing the cost of processing each node in the tree; however, in
many cases the net effect is a reduction in the CPU time required to solve the
problem.

To combine a forward checking algorithm with the basic backtracking algo-
rithm (algorithm 1), the function on line 13, CheckConstraints(), is replaced
by the function ForwardCheck(). The function ForwardCheck() considers each
forward checkable constraint, that could have been affected, directly or indi-
rectly, by the assignment in line 12. A constraint is forward checkable if
exactly one of the participating variables has not been instantiated. For each
such constraint the routine removes inconsistent values from the domain of
the uninstantiated variable. If during this process a domain is reduced to the
empty set, ForwardCheck() returns false, and the effects of forward checking

are undone. Example 2 shows how this is done.

Example 2 Consider the problem P = (X, D, C), where
X = {zo, 21,72},
D(zo) = {a0, a1}, D(z1) = {ao, a1}, D(z2) = {ag,a.},
C ={co,a}, X(co) = {zo, 21}, X(c1) = {21, 22},
co = {[ao, a1], [a1, ao}, [a1, @1]} and
c1 = {[ao, aq), [a0, a1], [a1, a1]}-
Assume that z; is selected as the first variable to instantiate during back-
tracking and that it is given value ag. The constraint cy becomes forward
checkable, because z; is the only uninstantiated variable in X (c). A forward

checking algorithm would check each of the values in z;’s domain, a¢ and a;.

14



Checking is done by first (temporarily) assigning z; the value ay and check-
ing if the resulting tuple [ag,a0] (that is o = a¢ and z; = ap) satisfies the
constraint cg. Since it does not, ag is removed from z,’s domain. Next z;
is assigned the value a; and the resulting tuple [ag,a;] is checked against the
constraint c¢g. Since this tuple does satisfy the constraint, the value a; is not

removed from the domain of z;. Finally z, is unassigned.

When the search reaches level n, where n is the number of variables in
the problem being solved, it is unnecessary to check that all constraints are
satisfied (as the backtracking algorithm does on line 2). This is because the
pruning done by the ForwardCheck() function guarantees that all completely
instantiated constraints are satisfied. When all variables in a constraint except
one are instantiated, forward checking removes all values from the domain of
the uninstantiated variable’s domain that are inconsistent with the current
partial instantiation. So when the last variable is instantiated it is certain to

be given a consistent value.

2.3.3 Conflict-directed backjumping

Forward checking can be used to look forward in the search by considering
uninstantiated variables. Conflict-directed backjumping can be used to per-
form, what is sometimes called, backward checking. Every variable has a con-
flict set that contains the past variables which failed consistency checks with
its current instantiation. When consistency checks fail, during backtracking,
conflict sets allow the algorithm to keep track of the variables whose instan-
tiations are conflicting. This information allows “multiple backjumps” to be
performed; that is, after the initial backjump from a dead-end it can con-
tinue backjumping across conflicts, which may potentially result in significant
savings.

Conflict-directed backjumping and forward checking are orthogonal and
can be beneficially used in conjunction with each other. Algorithms that
combine look ahead and backward checking techniques are called hybrid algo-

rithms.
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Chapter 3

Arc consistency for general
constraint satisfaction problems

In this chapter we discuss two general arc consistency algorithms: gac3 and
gac7?. Gac3 is described in section 3.2. Gac7 is described in section 3.3.
Section 3.4 presents an experimental evaluation of these two algorithms. We

begin with an introduction and some definitions.

3.1 Introduction

In chapter 2 we introduced the basic backtracking algorithm. We also dis-
cussed how a forward checking algorithm could be interleaved with backtrack-
ing. The pruning (i.e., the removal of values from domains) performed by
forward checking can significantly reduce the number of nodes visited during
backtracking.

General arc consistency enforces a stronger level of consistency than for-
ward checking does and, therefore, can in general prune more values from the
domains of uninstantiated variables. When an algorithm for maintaining arc
consistency is interleaved with a backtracking algorithm the size of the search
tree can, in many cases, be significantly reduced. At the same time more work
is required at each node in the search tree. For many problems, as in the case
of forward checking, the result can be an overall reduction in running time.
A backtracking algorithm, combined with a general arc consistency routine, is

shown in algorithm 2.
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Algorithm 2 Backtrack( level )
1: if at leaf then
2:  print solution
3: return true
4: end if

5: var + PickVariable()

6: for all d € D(var) do

7:  if (var,d) is a currently valid label then
8: assign the variable var the value d
9: if EnforceConsistency() then

10: if Backtrack( level+1 ) then
11: return true

12: end if

13: restore( level )

14: end if

15: end if

16: end for

17: return false

This chapter investigates two different algorithms for enforcing arc consis-
tency on general constraint satisfaction problems (that is, two instantiations of
the function EnforceConsistency() on line 9 of algorithm 2): general arc con-
sistency 3 (gac3) and general arc consistency 7 (gac7). Gac3 is a well known
algorithm that was originally proposed by Mackworth in 1977 (see [19]). Gac7
was proposed by Bessiere and Regin in 1997 (see [4]). Arc consistency can be
used in two ways: as a preprocessing algorithm and incorporated into back-
tracking. It is the latter which is the most useful. Bessiere and Regin show
how to enforce arc consistency, but do not describe how to incorporate it into
backtracking. In section 3.3 we describe gac7 and describe how it can be
incorporated into backtracking. Also, Bessiere and Regin, do not provide a
meaningful evaluation of the gac7 algorithm. In section 3.4 we present results
from our experimental evaluation of gac7. In particular we compare it to gac3.

We begin this discussion with some definitions. Following Bessiere and
Regin (4], let P = (X, D,C) be a constraint satisfaction problem, let ¢ € C
be a constraint, and let z € X(c) be a variable involved in c¢. A value a €
D(z) is consistent with ¢ iff 3¢t € ¢, such that ¢ = t[z] and ¢ is still valid

(that is all values in the tuple are still valid values). The tuple t can be
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called a support for the label (z,a) on c. The constraint c is arc consistent
iff Vz € X(c),D(z) # 0@ and Va € D(z), a is consistent with c¢. Problem
P is arc consistent iff all the constraints in C are arc consistent. Enforcing
arc consistency involves removing inconsistent values from domains until all
constraints are arc consistent. Note that removing a value from a domain
may make some previously valid tuples invalid. As a result some previously
consistent values may become inconsistent.

During backtracking, when a variable is instantiated its domain is reduced
to one element (namely the value that has just been assigned to it). As a
result of this assignment the problem may no longer be arc consistent. The
function EnforceConsistency() (line 9 of algorithm 2) is called to reestablish arc
consistency; if this is not possible then the function returns false. Example
3 demonstrates that an instantiation (during backtracking) can result in a
previously consistent problem becoming inconsistent. It also demonstrates

what needs to be done to restore arc consistency.

Example 3 Consider the problem P = (X, D,C), where
o X = {z9,71,Z2},
e D(z0) = {ao, a1}, D(z1) = {ao, a1}, D(z2) = {a0, a1},
e C={cyp,c1}, X(co) = {z0, 21}, X(c1) = {z1, 22},
e ¢o = {[ao, a1}, [a1,a0], [a1,a1]} and ¢; = {[ao, ao], [@0, a1}, [a1,a1]}-

P is arc consistent, meaning that each constraint is arc consistent. To see that
co, for example, is arc consistent notice that each value in the domain of the
variables involved in ¢g (z¢ and z;) is supported by (or appears in) at least one
of the tuples in ¢g. The same observation holds for c;.

Now let’s see what happens during backtracking. Assume that z is selected
as the first variable to instantiate and that it is given value ag. The value
a, is no longer a valid member of the domain of zy, which means that the
constraint ¢ is (effectively) reduced to {[ag,a;1]} (i.e. only those tuples that

do not contain a value of a; for z;). In other words, if zo is given the value
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ag, then z,; can not be assigned the value ag, without violating co. Now notice
that P is no longer arc consistent, because not all of the values in D(z;) (aq
in particular) are consistent with co.

To reestablish arc consistency, ag must be removed from D(z;). However
this reduces ¢; to {[aog, a1}, [a1,a1]}- Because the value aq for the variable z,
is not consistent with ¢;, P is still not arc consistent. So ag must be removed

from D(z2). Now P is arc consistent.

We now consider two algorithms for enforcing arc consistency: general arc
consistency 3 (described in section 3.2) and general arc consistency 7 (described

in section 3.3).

3.2 General arc consistency 3 (gac3)

General arc consistency 3, as proposed by Mackworth [18, 19] has become a
common method for enforcing arc consistency during backtracking. A brief
description of this algorithm follows.

The key data structure used by gac3 is a stack of variables. The presence
of a variable in the stack means that its domain has been reduced and the
effects of this reduction still need to be propagated. Propagating the effects
of this reduction involves determining which other domains now need to be

reduced as a consequence.

Algorithm 3 EnforceConsistency() gac3 version

1: while stack # 0 do

2 remove a variable, var, from the stack

3: for all constraints c that var is involved in do

4: for all uninstantiated variable v (except var) participating in ¢ do
5 if not Revise(v,c) return false

6 end for

7 end for

8: end while
9: return true

During backtracking, when a variable is instantiated (and therefore its

domain is reduced) it is pushed onto the stack. Then EnforceConsistency() is
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called. The gac3 version of the EnforceConsistency() (shown in algorithm 3)
loops until the stack is empty. Each time through the loop a variable, var, is
popped off the stack, and for each variable, v, that is involved in a constraint

with var, the function Revise() is called.

Algorithm 4 Revise(v,c)
: changed + false
for all values a in the domain of v do
if not Exists(v,a,c) then
remove a from D(v)
changed < true
end if
end for
if changed then
push v onto the stack
end if
if D(v) =0 then
return false
: else
return true
: end if
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The function Revise() (see algorithm 4) considers each value in the domain
of v. For each of these values the function determines if it is still valid, if it is
not it is removed from the appropriate domain and the appropriate variable is
pushed on the stack. If at some point in this processing the domain of some
variable is reduced to the empty set then false is returned. Otherwise true is
returned.

If Revise() returns false, having failed to establish arc consistency on a
constraint, EnforceConsistency() also returns false. This means that, given
the current partial instantiations, the given problem can not be made arc
consistent. This also means that, given the current instantiations, no solution
to the problem exists.

It is important to note that while gac3 is characterized as an arc consistency
algorithm, it does not need to establish arc consistency before backtracking
begins, nor does it, strictly speaking, need to maintain arc consistency during

backtracking. In fact, with gac3 it is possible to vary the level of consistency
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enforced. Just as forward checking (see section 2.3) only considers constraints
that have exactly one uninstantiated variable, gac3 can be set to only consider
constraints with at most u uninstantiated variables. Then, if u is set to 1,
gac3 enforces the same level of consistency as forward checking. If u is set to
oo, full arc consistency is enforced (except that often arc consistency is not
established before backtracking begins). This flexibility is of great practical
value, because the parameter u can be used to balance the tradeoffs between
decreasing the number of nodes visited and reducing the amount of work done
at each node.

Using gac3 to enforce arc consistency can be expensive, especially for large
values of u. Consider the amount of work that can be performed by Revise().
As mentioned above, Revise() looks at each uninstantiated variable in a con-
straint and checks if each value in its domain can satisfy the constraint. If
u is set to oo and d is the maximum domain size, then for a constraint of
arity r, the amount of work done to propagate the effects of a deletion on this
constraint will be proportional to d"~!. For large problems, or problems where
checking constraints is expensive, this can be prohibitively expensive. This

difficulty has led to work on improving gac3.

3.3 General arc consistency 7 (gac?7)

In [4] Bessiere and Regin propose a general schema for arc consistency on
non-binary constraint networks. The schema is based on the AC-7 schema, for
binary constraint satisfaction problems (see [3]). The basic approach involves
maintaining a single supporting tuple for each label. When this is no longer
possible (i.e. there is no available support) the label is removed. In addition
gac7 also supports multi-directionality. That is, if the constraint ¢ involves the
variables 7o, z; and z2, and the tuple ¢ = [ag, a1, a0] is currently the support
for (zg, ag) on ¢, then the algorithm will infer that ¢ can also serve as a support
for the labels (z;,a;) and (z2, az)-

Two special data structures are needed to store supports and to support

multi-directionality: supports and values.
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e The data structure supports(c,z,a) is the set of tuples ¢ that are the
current support for some value on ¢ and such that ¢[z] = a. This provides

a mapping between labels and supporting tuples that depend on them.

e The data structure values(c,t) is the set of values (labels) that are cur-
rently supported by the tuple ¢ on ¢. This provides a mapping between
tuples and the labels supported by them.

These data structures allow the algorithm to efficiently answer the ques-

tions:

e Given a label (z,a), which tuples currently support some labels and

contain (z,a)?
e Given a tuple ¢, which labels are currently supported by ¢?

This information is used to minimize the work done in propagating the effects
of changes to domains.

Where gac3 maintains a stack of variables whose domains have been re-
duced, gac7 maintains a stack of labels that have been deleted. Recall that
when an arc consistency algorithm is interleaved with backtracking, the arc
consistency algorithm is called immediately after a variable is instantiated (see
algorithm 2).

Assume that a variable = has the domain {ag, a;,as}. If z is instantiated
with the value ag, the values a; and a, are removed from D(z). The labels
(z,a1) and (z, a) all become invalid and are pushed onto the stack. Then the

function EnforceConsistency() (see algorithm 5) is called.

Algorithm 5 EnforceConsistency() gac7 version
1: while stack # 0 do

2: remove a label (z,a) from stack

3 for all constraints c that variable z participates in do
4: if not Propagate(c,x,a) then return false

5: end for

6: end while
7: return true
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The gac7 version of EnforceConsistency() is simply a loop that processes
each label in the stack. Processing is done by calling Propagate() (see algo-
rithm 6) with a label (z, a) that has been deleted and a constraint ¢ that the
variable z participates in. The purpose of Propagate() is to propagate the ef-
fects of this deletion; that is, to determine what other labels need to be deleted
as a consequence. The first step in this is to determine which tuples, that are
currently supporting at least one label on ¢, become invalid with the deletion
of (z,a). This is available by checking the contents of the set supports(c, z, a).
Next, for each such tuple, £, the labels that are currently supported by ¢ are
retrieved from the set values(c,t). For each of these labels FindSupport() is

called.

Algorithm 6 Propagate(c,x,a)
1: for all ¢ € supports(c,z,a) do

2: for all (2,b) € t do remove ¢t from supports(c, z, b)
3: for all (2,b) € values(c,t) do

4: remove (z,b) from values(c, t)

5: if not FindSupport(c,x,a) then return false

6: end for

7: end for

8: return true

FindSupport() (see algorithm 7) first calls SeekInferableSupport(). Seek-
InferableSupport() allows the algorithm to deal with multi-directionality. As-
sume t = [ag, @1, G2] is a tuple on a constraint ¢ where X (c) = (zo, 1, T2). If ¢
is found as a support for (zg, ag), then (zq, ag) is added to the set values(c, t);
this means that ¢ is currently the support for (zg, ag). Also, ¢ is added to the
sets supports(c, zo, ag), supports(c,z1,a,) and supports(c, T3, a,). The reason
for this is that ¢ could potentially serve as a support for (z,,a;) and (z2, as).
So SeekInferableSupport() checks for an already found support by looking
through the appropriate supports set. If a tuple ¢, supporting (z,a) on c is
inferred, then (z,a) is added to values(c,t). Recall that values(c, t) is the set
of all labels currently supported by ¢ on c.

If support for (z,a) on ¢ can not be inferred then SeekNextSupport() is
called. SeekNextSupport() searches for a currently valid tuple (that is, one
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that satisfies ¢ and contains only valid values) to be a support for (z,a) on c.
If no such tuple can be found FindSupport() will return false. This implies
that given the current partial assignments the label (z, a) is inconsistent, and

is therefore removed and pushed onto the stack.

Algorithm 7 FindSupport(c,x,a)
1: t « SeekInferableSupport(c,x,a)
2: if support was successfully inferred then
3: add (z,a) to values(c,t)

4: else

5: t + SeekNextSupport(c,x,a)

6: if support could not be found then
7 remove a from D(z)

8: push (z,a) onto the stack

9: if D(z) = 0 then return false
10: else
11: add (z,a) to values(c,t)
12: for all y € X(c) do

13: add t to supports(c,y, t[y])
14: end for
15: end if

16: end if

17: return true

Example 4 A clarifying example may be helpful. We will walk through ex-
ample 3, given in section 3.1 to show how gac7 works. After the supports have
been initialized (which must be done before backtracking begins) the values

structure could map the following tuples to labels (the mapping is not unique):

values(cg, [ao, a1]) = {(z0, @0), (z1,a1)} values(c, [a1,a1]) = {(z1,a1)}
values(co, (a1, a0]) = {(z0,a1), (z1,00)} walues(ci,[a0,a1]) = {(22,01)}
values(ci, [ao, ao]) = {(z1, a0), (z2,a0)}

The first entry can be read as “the labels (zg,ap) and (z;,a;) are currently

supported by the tuple [ag, @;1] on constraint cy”. The supports structure would

then map the following labels to tuples:

supports(co, To, ag) = {[as,a1]} supports(ci,z1,a0) = {[ao, a0,[a0,ai1] }
supports(co, To, a1) = {[a1,a0]} supports(ci,z1,a1) = {[a1,a1]}
supports(co, T1, ag) = {[a1,a0]} supports(ci,z2,a0) = {[ao, aol}
supports(co, T1,a1) = {[ao,a1]} supports(ci, T2, a1) = {[ai, a,l]}
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The first entry can be read, “the tuple [ag,a;] is currently the support for
at least one label on constraint ¢o and it depends on the label (zg, ag).”

If, during backtracking, the variable z, is assigned the value ao then the
value a, is removed from the domain of zy, and the label (z4,a;) is added
to the stack. The algorithm next enters the loop in the function Enforce-
Consistency(). The label (zo,a;) is retrieved from the stack. In order to
propagate the effects of removing the label (zo, a;), the algorithm looks at the
set supports(co, g, a1) to get the set of supports that depend on (zg, a;). This
set contains only the tuple [a;, ag]. Next the set values(cg, [a1, ag]) is used to
retrieve the set of labels that are currently supported by the tuple [a1, ap]. This
set contains two labels (zp, a;) and (z1, ag), which are both removed from the
set values(cy, [a1,ao])- Note that the label (zg,a;) has already been deleted.
The algorithm next attempts to find new support for the label (z;,a0). No
support can be inferrred as the only tuple in the set supports(co, z1, ao) is
the tuple [a;, ag] which is invalid since the label (zg, a;) is invalid. Also, none
can be found so the value aq is removed from the domain of z; and the label
(z1,a0) is pushed on the stack. Next the algorithm propagates the effects of

removing the label (z, ap) in a similar fashion.

In summary, using these data structures allows the algorithm to know
exactly which labels need new support in the event of a deletion. This is in an
effort to avoid looking at all values in the domains of all variables as gac3 does.
However, initializing (before backtracking begins), and maintaining (during

backtracking) these data structures imposes some additional overhead.

3.3.1 Implementation notes

Initially the values and supports structures were implemented as multidimen-
sional arrays (in C++). Given a tuple, ¢, satisfying a constraint, ¢, values[c][t]
is a set of labels for which ¢ is the current support on ¢. This requires that
t be an integer, and therefore that tuples are stored extensionally. Sets are

implemented as sorted binary trees (C++ STL set type). For a given prob-
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lem P = (X,D,C), if t is the maximum number of satisfying tuples then the
values structure consumes space proportional to |C| x t.

Given a constraint ¢ and a label (z, a), where z participates in ¢ (that is,
z € X(c)), supports|c|[z][a] is a set of tuples that satisfy ¢ and contain the
label (z,a). As above tuples are stored as integers and this set is implemented
as a sorted binary tree. If r is the maximum arity of a constraint, and d
is the maximum domain size, then the supports structure consumes space
proportional to [C| x r x d.

For many problems these space requirements are unreasonable. Also for
many problems it is infeasible to compute (and store) all satisfying tuples. For
these reasons tuples can not always be stored in extension. These difficulties
motivated a second implementation of the values and supports data struc-
tures. In our second implementation, tuples were represented as arrays of val-
ues (rather that as integers). For each constraint ¢, values(c] and supports|c]|
are map data structures. These maps are implemented as a binary tree of
key-value pairs, and are sorted on key (C++ STL multimap type). In the case
of values, the mapping is from tuples to labels. In the case of supports, the
mapping is from labels to tuples. The space requirements are proportional to
the number of tuples currently supporting some label.

Our initial implementation allows the program to answer questions like
“which labels are currently supported by tuple ¢?” in constant time. Our
second implementation sacrifices some time to reduce the memory required. In
our second implementation the above question can be answered in logarithmic
(in the size of the structure) time.

Another data structure that Bessiere and Regin propose and we found to
be of practical value is lastsupport(level, c, (z,a)). This structure is used by
the FindNewSupport(). It stores the last tuple returned as a support for the
label (z,a) on the constraint ¢ at the specified level. This data structure can
consume a significant amount of space. In implementing this structure, space
and time tradeoffs similar to those encountered in implementing the values
and supports data structures are encountered.

To demonstrate the effects of these time versus space tradeoffs, we present
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some quick comparisons using crossword puzzles. These results were obtained
using the letter model of problem 15.01 and the UK dictionary (dvol). Our
initial version of gac7 solves this problem in about 23 seconds of CPU time
and uses about 48 MB of main memory. If the lastsupport data structure
is removed, gac7 solves the problem in about 32 seconds of CPU time using
40 MB of main memory. Finally if arrays (for values and supports data
structures) are replaced by maps, as discussed above, gac7 uses 6 MB of main
memory but can not solve the problem within 1 hour of CPU time. More

extensive experimentation is discussed in the next section.

3.4 Experiments

Gac3 and gac7 were compared on three types of problems: crossword puzzle
problems (see section 3.4.1), logistics problems (see section 3.4.2) and some
random problems (see section 3.4.3). All of our experiments were run on
either a 400 MHz Intel Pentium II or a 450 MHz Intel Pentium III. Each
machine had 256 MB of main memory. Results from the Pentium II machine
are never compared with results from the Pentium III machine. In all of our
implementations, conflict-directed backjumping (as described in section 2.3)

is used together with the arc consistency algorithm.

3.4.1 Crossword puzzle problem

The crossword puzzle problem, together with the instances we used, are de-
scribed in section 2.2.1. Table 3.1 shows the results from some initial ex-
periments done on various models of the crossword puzzle problem. Three
algorithms were used: a generic gac3 algorithm, an implementation of gac?
which requires that satisfying tuples be stored extensionally, and a special
purpose propagator (called pac in the table) for each model that enforces arc
consistency. Each of these propagators use knowledge about the model to very
efficiently enforce arc consistency. Two dynamic variable orderings were used:
ff+deg and ff/deg. Both of these ordering algorithms are described in section
2.3.1.
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The implementation of gac7 used for these experiments could not be used
on the dual and hidden models of the crossword puzzle problem because the
memory required was well above the memory limit that we set (256 MB). In
the letter model of the crossword puzzle problem, the values, supports and
lastsupport data structures all fit easily into main memory. In this model the
satisfying tuples, which are the words in the dictionary, also easily fit into

memory.

Table 3.1: Number of problems, out of 100, that could be solved given a limit
of 256 MB of memory and 10 hours of CPU time per problem.

model

algorithm | letter dual hidden
gac3, ff+deg 20 50 83
gac3, ff/deg 20 50 81
gac7, ff+deg 89 0 0
gac7, ff/deg 92 0 0
pac, fi+deg 88 80 84
pac, fi/deg 91 85 84

GacT7 performed very well on this set of problems. Out of the 100 problems
described in section 2.2.1, given 10 hours of CPU time, gac7 can solve 92. The
next best result was obtained by the special purpose propagator on the letter
model. For a general purpose algorithm (gac7) to perform as well or nearly as
well as a special purpose propagator is significant.

Gac3 performed less well on this problem set. Out of the 100 problems,
given 10 hours of CPU time, gac3 can solve only 20 instances of the letter
model. However, gac3 has the benefit of being applicable to all of the models
of the problem that we considered. On the dual version of the problem, gac3
was able to solve 50 problems and on the hidden model gac3 was able to solve
83 of the 100 problems.

The gac3 implementation used in the above experiments, did not take ad-
vantage of the fact that the tuples were stored extensionally, while the gac7
implementation did. The constraints in the letter model of this problem are

extremely tight, so making use of the explicitly stored tuples gives gac7 a
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significant advantage over gac3. So, to compare more closely the relative
performance of gac3 and gac7 we consider here some results from a slightly
simplified version of the crossword puzzle. This simplification comes by drop-
ping the constraint that words in the solution must be unique. This is done
to allow for a more direct comparison of the propagation done by the two al-
gorithms. A second implementation of gac3 was developed to take advantage
of the tuples being in extension. Recall from the discussion in section 3.2 that
gac3 can enforce varying levels of consistency. This level is controlled by the

parameter u. In our experiments we consider two values of u, 2 and oo.

Table 3.2: Number of seconds spent finding a solution to ten crossword puzzle
problems. The number in brackets, beside gac3, is the value of u.

extensional not extensional
puzzle | gac7 gac3 (2) gac3 (00) | gac? gac3 (2) gac3 (o0)
05.01 1.06 57.22 3.65 | 68.24 4.25 136.72
05.02 0.68 36.33 1.90 | 41.18 3.38 71.77
05.03 0.37 7.63 1.15 | 23.21 0.78 34.89
05.04 0.28 0.43 0.66 | 10.80 0.14 5.95
05.05 0.22 0.18 0.49 | 10.88 0.16 4.72
05.06 0.52 277.96 1.44 | 39.05 23.90 68.18
05.07 0.34 121.34 1.13 | 29.83 11.40 36.47
05.08 0.42 19.85 1.23 | 32.92 1.97 56.42
05.09 0.27 6.87 0.56 | 12.08 0.60 5.26
05.10 0.21 0.19 0.43 | 10.54 0.12 4.33
total 4.37 528.00 12.64 | 278.73 46.70 424.71
median | 0.36 13.74 1.14 | 26.52 1.38 35.68

Results were obtained from experiments on the letter model of the cross-
word puzzle problem. In particular 5 x 5 (see table 3.2) and 15 x 15 (see table
3.3) instances were used. In all cases the words dictionary was used.

These results allow several interesting comparisons. First, notice that on
both the 5 x 5 and 15 x 15 puzzles, gac7 with tuples being stored extensionally
performs the best. On puzzles of size 15 x 15, for example, gac7 reduced the
median time by a factor of 4.51, and the total time by a factor of 4.06 over
gac3 with u set to co. Gac3 with u set to 2, and tuples stored extensionally,

could not solve any of the 15 x 15 puzzles with in the given the one hour CPU
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Table 3.3: Number of seconds spent finding a solution to ten crossword puzzle
problems. The number in brackets, beside gac3, is the value of u. A ’-’ means
that the algorithm could not solve the particular problem within 1 hour of
CPU time.

extensional not extensional
puzzle | gac?7 gac3 (2) gac3 (00) | gac?7 gac3 (2) gac3 (o0)
15.01 23.33 - 75.86 - - -
15.02 24.68 - 188.24 - - -
15.03 22.51 - 72.61 - 966.2 -
15.04 19.16 - 130.92 - - -
15.05 14.98 - 43.60 - - -
15.06 44.79 - 234.67 - - -
15.07 83.66 - 220.55 - - -
15.08 17.95 - 45.27 - - -
15.09 16.61 - 46.77 - - -
15.10 38.87 - 187.65 - - -
total 306.54 - 1246.14 - - -
median | 22.92 - 103.39 - - -

time limit.

When tuples are not stored extensionally, gac3 with u set to 2 performs
best. For 5 x 5 problems, using gac3 with u set to 2 reduced the median time
by a factor of 25.9 over gac3 with u set to oo, and by a factor of 19.2 over
gac7. It seems that when tuples are not stored extensionally (and therefore
enforcing consistency becomes more expensive) the extra work done to enforce
a stronger level of consistency outweighs the savings in nodes searched.

In both the extensional and intensional cases gac7 improves performance
over gac3 when u is set to co, though in the intensional case the improvement
is only moderate. This shows that on this problem gac7 is a superior algorithm
for enforcing full arc consistency.

As a last comparison it is worth noting that with u set to 2, gac3 performs
better when tuples are not stored extensionally. The reason for this is that
by the time the algorithm is looking for a support (see algorithm 4) for a
particular value, part of the constraint is already instantiated. As an example,
consider a, four letter word in the crossword puzzle. Before any propagating is

done on this constraint (if u is set to 2) two letters have been filled in. If the
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first two letters are filled in it may look like “t,h,_,_”. During propagation the
algorithm may ask the question “is the letter e a valid value for the third letter
in this word”? This is equivalent to asking the question “is there a four letter
word in the dictionary that begins with the?” If tuples are stored extensionally
the algorithm will look at each four letter word until one beginning with the is
found. If tuples are not stored extensionally the algorithm will consider each
of the (at most) 26 possible terminations to the word (i.e. thea, theb, thec, ...)
until one is found that is in the dictionary. Of course the second approach will
be more efficient in this case.

On the other hand, if u is set to co then the algorithm will begin propagat-
ing the effects of domain reductions even if no variables have been instantiated.
In the case of a four letter word the algorithm will ask the question “is there
a four letter word in the dictionary beginning with e?” If satisying tuples
are not stored explicitly, the algorithm will try all 262 possible completions of
e,-,-,—. If satisying tuples are stored explicitly, the algorithm will look at each
four letter word in the dictionary until one is found that begins with e. This
second approach will be more efficient in this case.

From these experiments we conclude that gac7 is superior to gac3 on the
letter model of the crossword puzzle problems. However, we have also exposed
some weaknesses of our gac7 implementation. Gac7 could not be used on the
dual and hidden models of the crossword puzzle problem due to excessive space
consumption. Also, with our implementation of gac7, it is not possible to vary
the level of consistency enforced during backtracking. This flexibility proved

valuable to gac3 in our experiments.

3.4.2 Logistics

Next we compared gac3 and gac7 on the logistics problem. The logistics prob-
lem, together with the instances we used, are described in section 2.2.3. The
experiments reported here are based on the basic model of the logistics prob-
lem. The major constraints in this problem are action constraints. These
constraints specify when a package can be loaded or unloaded from a plane or

truck. In one set of experiments gac3, with u set to oo, is used to propagate

31



this constraint. In another set of experiments gac7 is used to propagate this
constraint. Other constraints (distance constraints) are handled by a forward
checking routine. So the results of our experiments (see table 3.4) are a com-
parison of how effectively gac3 and gac7 can propagate the quaternary action

constraint.

Table 3.4: Performance of gac7 and gac3 on instances of the logistics problem,
where P is the problem number, time is the CPU time, in seconds, spent
solving the problem, and visits is the number of nodes visited during the
search. A ’-’ means that the algorithm could not solve the problem given 1
hour of CPU time. Only problems solved by at least one of the algorithms are
included in the table.

gac7 gac3

P time visits time visits

1 0.24 106 0.02 106
2 0.4 105 0.04 123
3 1.94 210 0.11 226
4 2.77 234 0.15 255
5 80.63 13198 9.55 13200
7 1.11 164 0.08 164
8 2.42 166 0.11 177
11 0.72 202 0.04 202
12 1.74 170 0.11 170
13 7.96 275 0.48 292
14 11.46 457 0.56 457
15 - - | 448.63 264777
16 2.89 276 0.16 304
17 1.62 330 0.09 330
20 | 1978.70 18235 | 114.71 18430
21 12.65 441 0.59 472
24 1.41 187 0.08 200
31 0.03 45 0.01 45
32 0.06 71 0.01 71
33 0.33 138 0.01 136
34 1.63 284 0.10 284
35 - - | 2478.71 5519278

On instances of the logistics problem, gac3 was found to consistently per-
form better than gac7 by a significant margin. The most difficult problem that
can be solved by both algorithms is number 20. This problem is solved 17.2
(1978.70/114.74) times faster by gac3 than by gac?7.
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As mentioned in section 3.3, gac7 establishes arc consistency before back-
tracking begins and therefore enforces a slightly stricter form of arc consistency
than does gac3. This can be seen as a strength or as a weakness of the al-
gorithm. This extra work can have the effect of significantly reducing the
number of nodes visited during backtracking. On the other hand, it may be
the case that the extra work is done without a significant reduction in the
search space. Consider the results in table 3.4. For each problem the number
of visits performed by gac? is very close (and in some cases identical) to the
number of visits performed by gac3. On problem 20, for example, a reduction
of less than 2% in nodes visited is achieved by the stricter consistency (18235
versus 18430). The extra work does not seem to pay off in the case of this
problem. It seems likely that the reason for this is the looseness of the action

constraints. This is explored in the next section, using random problems.

3.4.3 Random problems

The experiments reported in section 3.4.1 showed that gac7 performs much
better that gac3 on some problems. The experiments reported in section 3.4.2
showed that gac7 performs much worse on other problems. The purpose of the
experiments presented here is to explore where one algorithm performs better
than the other.

To begin we compare the characteristics of the crossword puzzle problem
with those of the logistics problem. Recall, from section 2.1, that the tightness
of a constraint is defined as the number of tuples that satisfy the constraint
divided by the size of the space of all tuples. The letter model of the crossword
puzzle problem has very tight constraints. For example, in the case of the
words dictionary, a constraint on four variables corresponds with a set of 2237
satisfying tuples (because these are 2237 four letter words in the dictionary).
The total space of all tuples is 26* or 456976. This corresponds to a tightness
ratio of 2237/456976 = 0.005. On the other hand the major constraint in the
logistics problem is very loose, as an example the tightness ratio, for one of
the action constraints for problem 6, is 0.922 (138060/149688).

To investigate the correlation between tightness and the performance of the
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two algorithms we performed a series of experiments on random problems. The
data is presented in tables 3.5 to 3.10. Each data point represents the median
value from 11 runs. In each of these experiments, except where otherwise

specified, the parameter u is set to co.

Table 3.5: A comparison of gac7’s performance and gac3’s performance on
random problems with 20 variables each with domain size 25, and 40 con-
straints each of arity 3. The first column in the table () is the tightness of
the constraints. A ’-’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac? gac3
t time  visits time visits
0.1 | 550.00 623 - -

0.2 - - - -
0.3 | 16.43 28 1 1257.83 1690
0.4 | 10.64 21 8.43 24
0.5 | 1141 20 5.15 21
0.6 | 13.52 20 6.49 20
0.7] 13.64 20 6.82 20
0.8 | 12.89 20 6.23 20
09| 11.02 20 6.65 20

These experiments demonstrate areas where gac7 performs better than
gac3. In particular, where the constraints are tight gac7 seems to perform well
relative to gac3. To take just one example, consider table 3.6. On instances
where the tightness ratio is set to 0.1, gac7 has a median time of 1941.87
seconds and gac3 has a median time of more than 7200 seconds (which was
the CPU time limit we set).

At the very loose end of the spectrum, gac3 performs better than gac7. As
a representative example, again consider table 3.6. On instances where the
tightness ratio is set to 0.7, gac7 has a median time of 10.18 seconds and gac3
has a median time of 3.50. However, at this end the problems also become
relatively easy (for both algorithms) to solve. In fact, we were not able to
generate (hard) problems on which gac3 performs significantly better than
gac’.

In the case of the logistics problem, even though the constraint that gac3
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Table 3.6: A comparison of gac7’s performance and gac3’s performance on
random problems with 20 variables each with domain size 25, and 30 con-
straints each of arity 3. The first column in the table (¢) is the tightness of
the constraints. A ’-’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac’ gac3

t time visits | time  visits
0.1 | 1941.87 3580 - -
0.2 10.57 33 | 348.70 1052
0.3 6.86 21 5.59 27
0.4 7.68 20 3.70 22
0.5 8.78 20 3.11 20
0.6 10.21 20 3.43 20
0.7 10.18 20 3.50 20
0.8 9.36 20 3.48 20
0.9 8.04 20 4.15 20

and gac7 are being compared on is very loose, the problems are not easy. The
reason for this seems to be the interaction with the other constraints that
are being forward checked. The result is that the extra work done by gac7
(maintaining the various data structures on this very loose constraint) does
not pay off, neither in a significant reduction of the number of nodes visits,

nor in a reduction in the amount of work processing each node.

3.5 Conclusions

In this chapter we have experimentally compared two arc consistency algo-
rithms: gac3 and gac7. This comparison showed that gac7 is an effective arc
consistency enforcing algorithm on some types of constraints. In particular,
gac? performed better than gac3 on the letter model of the crossword puzzle
problem as well as on some random problems.

We found that gac3 performed better than gac7 on all instances of the
logistics problem. We also showed that gac3 is a more flexible algorithm in
that the level of consistency enforced can be varied, and that it consumes less

memory.
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Table 3.7: A comparison of gac7?’s performance and gac3’s performance on
random problems with 15 variables each with domain size 15, and 30 con-
straints each of arity 4. The first column in the table (¢) is the tightness of
the constraints. A ’-’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac’7 gac3

t time visits | time  visits
0.2 - - - -
0.3 - - -
0.4 | 127.88 86 | 869.93 690
0.5| 24.00 181 27.20 54
0.6 28.37 16 8.68 16
0.7 24.34 15 5.44 15
0.8 23.11 15 6.34 15
09| 19.14 15 4.41 15

Table 3.8: A comparison of gac7’s performance and gac3’s performance on ran-
dom problems with 30 variables each with domain size 25, and 20 constraints
each of arity 4. The first column in the table is the number of satisfying con-
straints (out of a possible 390625). The number in brackets beside gac3 is
the value of u. A ’-’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac’? gac3 (2) gac3 (oo0)
tuples | time visits [ time visits time visits
1000 160.78 346 - - | 4857.40 7723
2000 706.96 747 - - - -
2500 - - - - - -
5000 - - - -

7500 | 363.12 234 - - - -
10000 | 97.54 70 - - - -
12500 | 24.61 36 - - - -
15000 | 40.53 42 - - -
25000 | 43.03 33 | 2930.23 7420 63.25 48
35000 | 57.07 30 31.55 90 56.94 37
45000 | 64.70 30 47.40 64 50.02 32
55000 | 73.90 30 67.64 92 65.12 37
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Table 3.9: A comparison of gac7’s performance and gac3’s performance on ran-
dom problems with 30 variables each with domain size 25, and 40 constraints
each of arity 4. The first column in the table is the number of satisfying con-
straints (out of a possible 390625). The number in brackets beside gac3 is
the value of u. A ’-’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac? gac3 (2) gac3 (o0)
tuples | time visits solns | time visits solns | time visits solns
1000 33 25 11 - - 2 509 528 11
2000 758 518 11 - - 06298 1855 6
2500 | 1724 717 11 - - 0 - - 0
5000 - - 2 - - 0 - - 0
7500 - - 2 - - 0 - - 0
10000 - - 0 - - 0 - - 0
12500 - - 0 - - 0 - - 0
15000 - - 0 - - 0 - - 0
25000 - - 0 - - 0 - - 0
35000 - - 0 - - 0 - - 0
45000 - - 0 - - 0 - - 0
55000 - - 0 - - 0 - - 0

Table 3.10: A comparison of gac7’s performance and gac3’s performance on
random problems with 50 variables each with domain size 25, and 20 con-
straints each of arity 4. The first column in the table is the number of satisfy-
ing constraints (out of a possible 390625). The number in brackets beside gac3
is the value of u. A -’ means that the algorithm could not solve the particular
problem within 2 hours of CPU time.

gac7 gac3 (2) gac3 (co)

Tuples | time visits time visits | time  visits
1000 22.03 136 - - - -
2000 3.72 51 - - | 283.47 246
2500 5.71 52 - -1 170.96 328
5000 8.65 50 | 3283.29 79061 | 15.50 66
7500 12.24 50 | 2096.91 10170 | 12.78 51
10000 | 16.53 50 | 1229.42 12741 | 19.53 53
12500 | 20.14 o0 | 750.88 2172 | 19.91 59
15000 | 22.75 50 84.37 452 | 20.23 52
25000 | 38.82 50 | 107.38 883 | 30.28 52
35000 | 50.67 50 22.39 75| 29.34 52
45000 | 62.97 50 14.56 52 | 27.14 50
55000 | 68.22 50 16.18 51 ( 29.17 50
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Chapter 4

Estimating the cost of solving
constraint satisfaction problems

4.1 Introduction

Experience has shown that the cost of solving constraint satisfaction problems
can vary wildly, even for slightly different instances of the same problem. This
gives rise to the question, is it possible to accurately estimate the cost of solving
a constraint satisfaction problem?

The cost of solving a constraint satisfaction problem can be measured in
several ways. One approach is to measure the CPU time required to solve the
problem. It is also often convenient to consider the number of nodes visited
during the search or the number of consistency checks performed. Also, the
meaning of solving the problem can vary. The goal may be to find one solution
(i-e. the first solution) to a problem, or the goal may be to find all solutions to
a problem. Finding all solutions is essentially a complete search of the space.
Solving optimization problems, such as the Golomb problem, often involves
showing that there is no solution to some formulations of the problem and
finding one solution to the formulation corresponding to the optimal. Solving
the 11 mark Golomb problem, for example, involves proving that there is no
solution for formulations corresponding to ruler lengths of less than 72 and
that there is at least one solution to the formulation corresponding to a ruler
of length 72.

In this chapter we explore techniques for estimating or predicting the cost
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of solving a constraint satisfaction problem. We discuss both solving for one
solution and solving for all solutions, though our focus is on the all solutions
case. In particular, we are interested in a tool that could be given a problem
instance and an algorithm, and would return an estimate of the size of the tree
(or some other measure of the cost) that would be searched by the algorithm
in solving the given instance. This is different from related efforts to explore
techniques for estimating the average cost of finding solutions over an entire
problem class.

Our major contributions in the area of estimation are listed here.

e We identify and aiscuss a comprehensive list of possible applications for

an estimator.

e We evaluate several analytic techniques that have been proposed as es-

timation techniques.

e We develop an estimator for backtracking-based algorithms. Our es-
timator is based on Purdom’s statistical sampling technique, which in
turn is based on a similar technique due to Knuth. We also provide an

evaluation of our estimator.

e We develop and evaluate a new domain independent dynamic variable

ordering algorithm based on our estimator.

4.1.1 Applications of an estimator

Here we discuss several possible applications for an estimator. This discussion
will motivate the rest of this chapter. It surveys previous work done in this

area.

e Algorithm selection Given a formulation of a problem as a CSP, sev-
eral algorithms are available for solving it. For sufficiently difficult prob-
lems, algorithm selection is important. Selecting an algorithm involves
selecting a variable ordering heuristic, selecting a value ordering heuris-

tic, and determining what level level of consistency should be enforced.
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In {17}, Lobjois and Lemaitre propose a method called selection by per-
formance prediction (SPP), which is based on Knuth’s sampling method
(described in section 4.5.1). Lobjois and Lemaitre’s work is in the area
of mazimal constraint satisfaction problems, which can be solved by one
of several branch and bound algorithms. The four branch and bound
algorithms discussed in [17] differ in variable orderings, value orderings
and in the type of consistency algorithm used. Given a problem, P, SPP
uses an estimate of the time each of these algorithms will take to solve P,
to select which algorithm to use. Lobjois and Lemaitre found that SPP
works very well in practice. Their results demonstrate that it is better
to use the algorithm selected by SPP than to use the best algorithm on

average for all instances.

Other competing approaches to selecting the best algorithm include
Tsang’s work on constructing maps [27], Minton’s work on configuring
constraint satisfaction programs [21], and Frost’s work on finding the
best algorithm [12] for binary problems. The general approach in these
papers involves mapping an instance to some class of problems based on
one or more parameters, then the best algorithm for the class is selected

as the algorithm to use on the instance.

Model selection For a given problem, there is generally more than
one way to model it as a CSP. The task of modeling involves choosing
variables and constraints. In the crossword puzzle problem, described in
section 2.2.1, we identified three possible ways to model the problem as a
CSP. In the letter model the variables represent letters in the puzzle and
constraints enforce that adjacent letters form words. In the dual model
the variables represent words in the puzzle and constraints enforce that

words agree on intersection letters.

Selecting between alternative problem models is often difficult, and could
be a useful application of an estimator. Also the process of tuning a
model (adding redundant constraints for example) could benefit from

the use of an estimator.
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Some work was done in this area by Borrett [5]. He uses Nadel’s esti-
mator (see section 4.3.2 for a description of this estimator) to determine

which redundant constraints should be added to a problem.

Dynamic variable ordering It is possible that an estimator could be
used as a variable ordering. That is, it could be used during backtracking
to determine which variable to instantiate next. For more on this see

section 4.6.

Value ordering heuristic A value ordering heuristic can be used dur-
ing backtracking to determine which order the values should be tried in.
An estimator could be used to estimate the size of the subtrees beneath
each value for the current variable. Bart Selman, in a personal com-
munication, suggested that asymmetries in the size of these trees may

provide a useful heuristic to guide value ordering.

Predicting An estimator may be useful in predicting whether a given
problem instance has a solution. It may also be useful in predicting
whether an instance would be solved by the backtracking algorithm in a

reasonable amount of time. For some work in this area see [16].

Thrashing detection Bart Selman, in a personal communication, sug-
gested that it would be valuable to explore the usefulness of an estimator
in a restart algorithm. In particular it may be useful to use an estima-
tor to detect thrashing. This would involve answering the question how

much progress is the algorithm making?

Barbara Smith, in a personal communication, points out that for many of

the applications mentioned above it is not necessary for an estimator to be

an accurate predictor of the cost of solving a problem. Rather it is important

that the estimates are relatively correct. That is, given instances P; and P, if

the actual cost of solving P, is less than the actual cost of solving P,, then for

a relatively correct estimator, the estimated cost of solving P, would be less

than the estimated cost of solving P,. This would mean that decisions made,

based on these estimates, such as which model to use, would be correct.
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A significant amount of work has been published on estimating the cost
of finding all solutions to a problem. Three basic approaches are used: hard
problem identification, statistical models, and stochastic sampling. We discuss
each of these approaches below. Less work has been published on the more
difficult task of estimating the cost of finding one solution. In section 4.4 we

briefly discuss some work on the one solution case.

4.2 Hard problems

In [7], Cheesman, Kanefsky and Taylor discuss hard problem generation and
identification. They find that hard instances of NP-complete problems typi-
cally occur at critical values of some “order parameter”. For example instances
of the 3-colorability problem can be ordered based on average connectivity,
which is the average number of edges per node. Cheesman et al. find that
3-colorability is hard on average in a certain range of values for average con-
nectivity. Similar hard regions exist for other NP-complete problems as well.

Cheesman et al. conjectured that:

“because it is possible to locate a region where hard problems oc-
cur, it is possible to predict whether a particular problem is likely

to be easy to solve.”

In other words, knowing one parameter for an instance would very coarsely
give an estimate for the cost of solving the problem by predicting whether it
would be “easy” or not.

More recent work takes a different view on the usefulness of these order

parameters. For example, in [14] Hogg reports that:

“A readily computed measure of problem structure predicts the dif-
ficulty of solving the problem, on average. However, this prediction
is associated with a large variance and depends on the somewhat
arbitrary choice of the problem ensemble. Thus these results are

of limited direct use for individual instances.”
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It is generally agreed today, that a single order parameter can not accu-
rately predict the difficulty of an instance of an NP-complete problem. For

more on this topic see [9], a survey by Cook and Mitchell.

4.3 Analytic or statistical models for finding
all solutions

Statistical modeling is another approach to estimating that has been discussed
in the literature. This approach involves developing a mathematical model of
the algorithm. Building such a model typically involves making simplifying
assumptions about the problem or the search space. Once the model has been
selected, formulas can be derived for the expected cost (total number of nodes
visited, for example) of finding all solutions to instances of the problem for a
given algorithm.

Though a significant amount of work has been published in this area, we
will discuss only a representative sample of this work. We will discuss, in
detail, Haralick and Elliot’s work (see [13]), and Nadel’s work (see [22]) since
these deal specifically with CSP’s. First however we will mention briefly some
other significant contributions. This will illustrate the types of assumptions
that are made.

In [26], Stone and Sipala, analyze backtracking search (they refer to this
as depth-first search). They assume:

1. uniform branching factor of 2,

2. p, the probability of a node being expanded, is fixed and greater than
0.5, and

3. the probability of an arbitrary leaf node being successful is

pNLE'FT(l _ p)NRIGHT

1

where NLEF'T is the number of left hand branches on the path from
the root to this leaf and NRIGHT is the number of right hand branches
on this path.
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The assumption that the probability of a node being expanded is independent
of depth is a very strong assumption. In [23] Nicol observes that larger partial
solutions are more difficult to expand than smaller partial solutions. So he
assigns an eztension probability, p, such that a node expands if p < %, where
n is the current depth of the search. Nicol’s analysis also allows for a random
number of children rather than assuming a uniform branching factor of 2 as
Stone and Sipala do.

Other significant contributions include, Franco and Paull’s analysis of the
Davis Putnam procedure (DPP) (see [11]) and Bender and Wilf’s analysis of
the graph coloring problem (see [2]). Franco and Paull describe two different
distributions of the SAT problem, which they call G and F. Each distribution
represents different assumptions about the problem space. The analysis shows
that for distribution G, DPP’s expected complexity is polynomial, while for
distribution F', DPP’s expected complexity is ezponential.

Bender and Wilf analyzed backtracking on graph coloring decision prob-
lems. They describe a parameterized distribution of the problem space, X, (p).
Their analysis shows that when p = -;- the expected complexity is constant.

However over all graphs the expected complexity is ezxponential.

4.3.1 Haralick and Elliott’s approach

In [13], Haralick and Elliott develop a model for binary CSP’s. In this model
it is assumed that all domains are the same size M. They also assume that a
pair of labels is consistent with probability p. Using this model Haralick and
Elliott analyze the backtracking and the forward checking algorithms. Here we
present a summary of their analysis.
Backtracking

Haralick and Elliott observe that backtracking visits a node iff its parent is
consistent. The probability that a node at level k£ has a consistent parent is

given by,
ple—1(k=2)/2
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since consistent nodes must satisfy consistency checks between every pair of

variables. The expected number of nodes at level k is given by,
N(k) — mkp(k—l)(k—2)/2

since there are m* possible nodes at level k. At each node a value must be
tested for consistency with the values given to the previous k& — 1 variables.
With probability 1 —p the first consistency check fails and only one consistency
check is performed. With probability p(1 — p) the first consistency check
succeeds and the second consistency check fails and so only two consistency
checks are performed. And so on. Hence the expected number of consistency

checks performed at each node is,

k—1
i1 —-p)+ (k= 1)p* 7,

=1

which can be simplified to

1— pk—l
1—p
Thus the expected number of consistency checks at level & is given by
1— pk—l
C(k)=N(k)———
(F) = N(k) 2

The expected number of solutions is just the number of nodes at the deepest

level in the search tree, namely

mnpn(n.—l)/Z .

Forward Checking
Haralick and Elliott observe that the forward checking algorithm visits a
node iff it is consistent and its parent is consistent with all future variables.

The probability that a node is consistent is given by

pFk=1)/2

since consistent nodes must satisfy %k(k — 1) consistency checks. The prob-
ability that a node is consistent and its parent is consistent with all future

variables is given by

pk(k—l)/z[l - (1 _ pk—-l)m]n—k.
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Thus the expected number of nodes at level k is given by
N(k) = mkpk(k—l)/2[l _ (1 _ pk—l)m]n—k.

Thus the expected number of consistency checks at level & is given by

mpptt  1-[ - -t
@ -1 (O

The assumptions made by Haralick and Elliott in their analysis are quite

C(k) = N (k)=

strong. In particular the uniform consistent probability assumption is a serious
weakness of this model. The model used by Nadel allows this assumption to

be dropped.

4.3.2 Nadel’s approach

Nadel’'s work, which builds on the work by Haralick and Elliott described
above, provides a more sophisticated analysis of binary CSP’s. In this model
a given pair of variables z; and z; with a given pair of values is consistent with
probability p;;. The domain sizes of each variable are given by M;. Nadel used
this model to analyze the backtracking [22] and forward checking algorithms
[24].

Backtracking

The probability that a node at level k£ has a consistent parent is given by

II »py
1<i<j<k—1
since consistent nodes must satisfy consistency checks between every pair of
variables. Thus, the expected number of nodes at level k is given by
k

N(k) = Hmi H Dij-

=l 1<i<j<k—1

At each node a value must be tested for consistency with the values given to
the previous k£ — 1 variables. With probability 1 — p;x the first consistency
check fails and only one consistency check is performed. With probability

P1k(1l — pax) the first consistency check succeeds and the second consistency
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check fails and only two consistency checks are performed. And so on. Hence
the expected number of consistency checks performed at each node is
k—1 i-1 k—1
> —pi) [ pix | + (6 = 1) I] pis-
i=1 Jj=1 =1
Thus the expected number of consistency checks at level k is given by
k-1 i—1 k-1
C(k)y=N() |>_ (i1 —pw) [ pie | + (5 —1) I] pje| -
=1 j=1 Jj=1
The expected number of solutions is given by
n
H my H Dij-
i=l  1<i<j<n
Nadel provides experimental results to demonstrate the accuracy of these
formulas. This is done by experimenting with various formulations of the N-
Queens problem for 3, 4 and 5 queens. We reproduced some of his experiments

using up to 12 queens. Figure 4.1 shows the relative error for consistency checks

performed and nodes visited. The relative error is given by

lactual — expected|

actual

In the region of the graph reported in [22] the relative error is small, meaning
that the expected values are close to the actual values. However the relative
error increase significantly as the problem size (the number of queens) grows.
Forward Checking
In [24], Nadel describes his aims in analyzing the forward checking algo-
rithm (in this quote clp refers to the Consistent-Labeling Problem, which is

another name for CSP’s):

“What we ideally want is the complexity for solving a specific clp
(by some given algorithm). Since this appears difficult to obtain
we might aim for the expected complexity of solving clps in an

equivalence class to which our problem belongs.”

The parameters used to partition the space into equivalence classes are the

number of variables (n) the domain sizes of the variables (M; is the domain

47



Figure 4.1: Relative error of Nadel’s estimator, for backtracking on various
instances of the N-Queens problem.
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size of variable 7) and the compatibility count matrix I. The number of sat-
isfying tuples for the constraint between variables ¢ and j is [;;. R;; is the
compatibility ratio (R;; = I;;/(M;M;)). We have previously defined this as
the tightness ratio of a constraint.

Nadel’s analysis allows for a static but specifiable variable ordering, Ag.
Ay is the first £ variables in the list Ag. Fj is thee list of n — k variables not yet
assigned at level k. The analysis also allows for a static but specifiable consis-
tency checking order. The list Gq is a list of variables in which order future
variables will be checked. The order in which Ffuture variables are considered
for forward checking at level k is G, = Gy — Ax.

Then the expected number of nodes visited is at level & is given by

Ne= (I M:)( TI Ry)(EI S¥7Y),

€Ay i<jeAr feFy,

where S}k) is the probability that f has at least one of its My possible labels
consistent with the instantiations up to level k. Since there are no forward

checkable constraints at level n, the expected number of nodes visited at level
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n (which is also the expected number of solutions) is given by
S = ([T M)(II R:)-
i i<j

The expected number of consistency checks performed at level k& is given by
Cr = Nicy,

where ¢ is the expected number of consistency checks performed at each node

at level k. This is given by

(Gl i—1
e = [>_ (M= [T S&/SE)].
i=1 =1

J

Nadel [24] reports on some experimentation used to explore the usefulness
of his analysis in predicting the cost of solving CSP instances. The 5-Queens
problem is used in these experiments (as well as some random problems). To
further evaluate the accuracy of the formulas, we experimented with the N-
Queens problem using from 3 up to 12 queens. Figure 4.2 shows the relative
error. As in the case of backtracking, the relative error grows as the problem
size grows. It is worth noting here that the 12-Queens problem is a trivial

problem.

4.3.3 Discussion

The accuracy of the analysis is very sensitive to changes in the assumptions
about the problem. This is demonstrated by Franco and Paull in [11]. They
showed that DPP’s expected complexity can vary between polynomial and
exponential depending on assumptions about the search space.

This type of analysis has not been done for newer algorithms that enforce
stronger levels of consistency, such as arc consistency or arc consistency with
conflict-directed backjumping. This analysis has also not been done for non-
binary constraint satisfaction problems. While doing this analysis may have
some value, it does not seem to be an effective tool for predicting the cost
of solving CSP instances. Experimental results are not encouraging, even for
the relatively simple algorithms, backtrack and forward checking, and quite

simple problems, small instances of the N-Queens problem, for example.
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Figure 4.2: Relative error of Nadel’s estimator for forward checking on various
instances of the N-Queens problem.
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In [6] Brown and Purdom carry out an analysis of backtracking. They
suggest that to obtain an accurate estimate for the running time of a given
backtrack program, Knuth’s method should be used. Knuth’s method falls

into the category of simulation or statistical sampling discussed in section 4.5.

4.4 Analytic or statistical models for finding
one solution

Estimating the cost of finding one solution to a given problem has proved to
be a difficult problem. Van Liempd and van den Herik’s have published some
work on this topic. Bacchus also did some work in this area, though it was not
published. Bacchus found that the analytic method he was developing did not
provide a useful estimate of the cost of finding the first solution to a problem.

In [29] and [30], van Liempd and van den Herik build on Haralick and
Elliott’s work discussed in section 4.3.1. It is based on the assumption that

a pair of labels is consistent with some uniform probability p, independent of
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the variables or values involved and independent of any past processing. Van
Liempd and van den Herik use this model to derive estimates for the cost of
finding one solution to a CSP using backtracking and min forward checking.

Van Liempd and van den Herik report on some experiments to test the
accuracy of their estimates. They found that for random CSP’s the formulas
accurately predicted the cost for both of the algorithms considered. For the N-
Queens problem the predicted cost was (some what) close to the actual cost for
the min forward checking algorithm. However for the backtracking algorithm
the predicted cost was not close to the actual cost. Van Liempd and van den
Herik attribute this difficulty to the assumptions mentioned above.

Van Liempd and van den Herik conclude that these formulas can be used
to select which search algorithm (i.e. backtracking or min forward checking)
should be used for a given instance of a CSP. This conclusion is based on ex-
perimentation with random problems. However in the case of N-Queens it was
shown that the estimates were not as accurate. Results from [29] are repro-
duced in table 4.1. It is clear that using the predicted costs to guide algorithm
selection would be misleading. For example, the predicted cost for solving the
20-Queens problem using backtracking is less than the predicted cost for solv-
ing the same problem using forward checking. However the measured costs

are much less for forward checking than for backtracking.

Table 4.1: Predicted and measured costs for solving various sizes of the N-
Queens problem using standard backtracking (bt) and min forward checking
(fc). This data is taken from table 1 in [29].

backtracking forward checking

n p | predicted measured | predicted measured
10 0.77| 1.8 x10° 3.2x10°] 3.2x10% 5.7 x 10?
20 0.89 | 56x10%2 25x107| 2.1 x10°% 4.1 x103
30 092 1.2x10% 1.6x10¥| 7.1 x10® 9.1 x10°
40 094 | 2.1 x 103 — | 1.7x10* 1.9 x 104

This work exposes some difficulties in estimating the cost of finding one so-
lution. Van Liempd and van den Herik, like Nadel, take an analytic approach.

To do this they make several assumptions about the search space. When ran-
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dom problems are generated, based on these assumptions about the search
space, the estimates are reasonably accurate. However on arbitrary problems
these assumptions may not hold as well, and so the estimates can be expected

to be much less accurate.

4.5 Simulation or statistical sampling techniques

Simulation or statistical sampling has been suggested as a method for estimat-
ing the cost of tree searches. The foundation for this work was laid by Knuth.

Follow up work was done by Purdom and by Chen.

4.5.1 Knuth’s approach

In {15] Knuth explains his motivation for pursuing his study of estimators:

“Sometimes a backtrack program will run to completion in less
than a second, while other applications seem to go on forever...
These great discrepancies in execution time are characteristic of
backtrack programs, yet it is usually not obvious what will happen

until the algorithm has been coded and run on a machine.”

The basic approach, used by Knuth, involves taking samples of the search
tree. A sample is taken by exploring one path from the root of the tree to a leaf
of the tree. The path is chosen by selecting a successor at random. During the
exploration statistics are gathered about the size of the tree. The statistics
of interest to Knuth are: the cost of processing a node, and the number of

children. If the number of children at level 7 is d; then
(1) + (dl) + (dl X d2) + ...+ (d1 X .o X dn)

gives an estimate of the number of nodes in the tree.

Figure 4.3 shows one sample of a search tree. The black nodes represent a
random path chosen as a sample of the tree. The grey nodes are the nodes that
the sampling algorithm knows about (by checking the number of children that

each of the black nodes has) but does not explore. Given this sample of the tree
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Figure 4.3: A sample of a search tree.

Knuth’s algorithm would estimate the size of the tree as 1+2+2x2+2x2 x4,
which is 23. The actual number of nodes in this search tree is 20. An estimate
of the size of the tree (or an estimate of the cost of searching the entire tree)

can be obtained by averaging over many such samples.

Now, to make this more precise we next introduce some of Knuth’s nota-

tion.
e P is the predicate that a solution must satisfy.
e P is the predicate that a partial solution must satisfy at level k.

e T is the search tree explored by the search procedure. That is, all partial
solutions that satisfy the appropriate Py, which is the set {(zy, ..., z¢) |k >
oA Pk(:vl, ceey .’L‘k)}

e The value c(%) is the cost of processing node ¢ € T. Various measures of
the cost are possible including consistency checks and CPU time. The

value ¢() is the cost of processing the root node.

e The value cost(T) is the cost of searching T, or in other words, the cost

of processing each node in T', which is just 3 ;7 c(t).
e S; is the set of all successors to the node at level k.

e The value di is the number of children at level k.
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Then, given a tree T', the goal is to estimate cost(T). Knuth’s algorithm to
produce this estimate is listed in algorithm 8. When the algorithm completes,
the value of variable C is returned as an estimate for cost(T") (see line 8 of the
algorithm). If ¢(t) is set to 1 for all ¢t € T, then cost(T) is an estimate of the
size of the tree. If ¢(¢) is the number of consistency checks performed, while
processing t, then cost(T) is an estimate of the number of consistency checks
that would be performed during the search. Similarly setting c(¢) to be the
amount of CPU time taken to process the node ¢, produces an estimate of the

CPU time that would be required to solve the problem.

Algorithm 8 Knuth’s Algorithm

1: k«0

2: D1

3: C +¢()

4: while true do
Sk {zer1| Pesr (i, oo, Thgr) }
dk — lSkl
if di, = 0 then

return C

end if
10:  Zg4, < random element of Sk
11: D« diD
12: C (—C+C(LL’1,...,.’II[¢+1)D
13: k—k+1
14: end while

©eIPN

4.5.2 Purdom’s enhancements

In [25], Purdom builds on Knuth’s work described above. Purdom finds that
for trees that have many nodes with no successors at each level, Knuth’s algo-
rithm has difficulty learning about the deeper levels of the tree. To overcome
this difficulty Purdom proposes a sampling algorithm that he calls partial back-
tracking. While Knuth’s algorithm never backtracks and explores exactly one
path from the root to a leaf, Purdom’s algorithm allows the exploration of
some specifiable number (w) of children of each visited node. When w = 1
then Purdom'’s algorithm is equivalent to Knuth’s. Purdom showed that for

some types of trees his algorithm produces significantly better estimates of the
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tree size.

Algorithm 9 PartialBacktracking(k)
: if at leaf node then return
v «— PickVariable()
Q < all values in D(v)
a+ |Q|
m + min(a, w)
dk — dk_la/ m
S < m randomly chosen elements of @
for all bin S do
assign v the value b
if CheckConstraints() then
PartialBacktracking(k+1)
end if
unassign v
end for

z‘??.’h’t"

© NP

= e
e

The efficiency and accuracy of Purdom’s approach both depend on the
choice of w. As w grows partial backtracking approaches complete backtrack-
ing, and the accuracy, of course, increases while the efficiency decreases. An

adaptation of Purdom’s algorithm is listed algorithm in 9.

4.5.3 Chen’s enhancements

In [8] Chen’s goal is to provide techniques to determine the feasibility of a
particular search program. In particular the goal is to estimate the sum
v=>_f(s),
seS
where S is the set of states or nodes in the tree. If f(s) is the cost of processing
a node s then ¢ is the cost of traversing the tree.

To this end Chen generalizes Knuth’s sampling technique. He adopts a
stratified sampling (or heuristic sampling) approach based on a “heuristic func-
tion” called a stratifier. Basically the stratifier’s role is to categorize the nodes
of the tree. More specifically, it is a heuristic function A : S — P that maps
each state s to a stratum h(s) in a partially ordered set P. The function A
should be strictly decreasing along each edge of the tree. Then, given a tree

that is stratified under ~,XS a heuristic sampling algorithm will sample each
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stratum o« for a representative node s, and simultaneously to obtain an esti-
mate w, = w(s,) for the number of nodes in that stratum. Then an unbiased

estimate of ¢ is
¢ = E wozf(sa)'
23

Chen finds that a good stratifier can significantly reduce the variance relative
to Knuth’s algorithm. The heuristic sampling algorithm is listed in algorithm
4. When h(s) = —depth(s), which is the one obvious domain independent

stratifier, then heuristic sampling is equivalent to Knuth’s method.

Algorithm 10 Heuristic Sampling
1: Q « (root,1)
2: while Q) not empty do

3: (37 ’U)) A pop(Q)
4: for all children ¢ of s do
5: o < h(t)
6: if Q contains an element (s,, W) in stratum o then
7: W ¢ Wo +wW
8: with probability w/w, do sq < ¢t
9: else
10: insert a new element (¢,w) into @
11: end if

12: end for
13: end while

4.5.4 Discussion

We have discussed three categories of estimation techniques: hard problem
identification, analytical models, and statistical sampling. Of these three,
statistical sampling seems to be the most promising. The next section will

focus on further developing these techniques.

4.5.5 OQOur implementation

Knuth’s sampling algorithm, as well as Purdom’s algorithm, was designed to
estimate the cost of finding all solutions to an instance using basic backtrack-
ing. Our goal was to apply similar techniques to more general backtracking

based algorithms, such as forward checking and general arc consistency. While
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Knuth’s algorithm assumes a fixed variable ordering, it can be simply extended
to allow for dynamic variable orderings.

The sampling algorithm that we implemented is heavily based on Purdom’s
sampling algorithm, described above. One difference is that our sampling
algorithm allows for a complete search to some depth in the tree. The number
of nodes at deeper levels is then estimated by applying a sampling algorithm
on the subtrees below each of the nodes at that level. This technique is used
in an effort to allow the algorithm to more frequently sample nodes deeper in
the tree, and to avoid the repeated sampling of the most shallow levels. We
use the notation, nodes;, to represent the number of nodes in the tree at level
1.

The behavior of our algorithm is controlled by four parameters.

1. sample_time
The amount of time to spend sampling the tree. Alternatively, the pa-~
rameter samples can be set which results in a fixed number of samples

being taken.

2. sample_depth
Depth at which to begin sampling. Above this level complete search
is used. Then for all i < sample_depth, the number of nodes at level z,
nodes;, is known exactly. For all ¢ > sample_depth, nodes; is an estimate
of the actual number of nodes at level 7. When sample_depth = 1, our
implementation samples repeatedly, beginning at the root, as Purdom’s

algorithm does.

3. bf _ratio
A ratio specifying the number of children to sample at each node. The

children to sample are chosen randomly.

4. bf _max
The maximum number of children to sample at each node, branching
factor notwithstanding. If a given node, visited during sampling, has c

children, then the number of children visited by the algorithm will be
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the minimum of, bf_ratio X ¢ and bf_maz. If the value of bf_ratio x ¢

is less than 1, then one child will be sampled.

Algorithm 11 Estimate(level)

1: if level = search_depth then
2:  Sample( level )

3 return

4: end if

5: if level > N then

6: return

7: end if

8: v = PickVariable()

9: for all a in D(v) do

10:  nodeSieyer — NodeSieyer + 1
11:  assign v the value a
12:  if EnforceConsistency() then

13: Sample(level + 1)
14: end if

15:  unassign v

16: end for

Our sampling algorithm uses two main functions to produce an estimate:
Estimate() (see algorithm 11) and Sample(). The portion of the function
Estimate(), from lines five to eighteen, is nearly identical to the generic back-
tracking algorithm. One difference is that, on line ten the nodes data structure
is updated. The PickVariable() function (on line 8) can be any variable or-
dering routine. The EnforceConsistency() function (on line 13) can be any
consistency enforcing algorithm. In this way our estimator can be use to es-
timate the cost of solving an instance using an arbitrary backtracking-based
algorithm.

Estimating begins by calling the function Estimate() with level = 1, and
proceeds just like backtracking when level < sample_depth. When level =
sample_depth, Estimate() calls the function Sample(), to sample the subtree
below the current node. Sample() is essentially Purdom’s partial backtracking
algorithm (see algerithm 9) adapted to work on subtrees. This function pro-
duces an estimate of the number of nodes at each level in the subtree below

the current node. Figure 4.4 shows a tree sampled using our technique. The
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Figure 4.4: Regions of a search tree.

grey section of the tree is the portion above sample_depth. The number of
nodes in this section is known exactly. The white sections of the tree in figure
4.4 represent the subtree’s below each of the nodes at level sample_depth. An
estimate for the size of the entire tree (below sample_depth) can be derived
by summing the estimated size of each of these subtrees, by level. Then, when
the function Estimate() completes,

n

ts = Y _nodes(i],

i=1
where n is the number of levels in the tree, is an estimate of the total size of
the search tree.

The algorithm can be run on the instance for a short period of time to
produce an estimate for the rate, r, at which nodes are visited. Then ¢ts x r
is an estimate of the time that would be required by the algorithm to solve
the instance. It turns out that, in practice, this technique (which was used in
[17]) is more accurate than maintaining statistics during sampling about the

time to process each node.
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4.5.6 Experiments

We performed some experiments to explore the accuracy of our estimator, as
well as the trade offs between various values of the parameters that need to be
calibrated. Random problems, Golomb problems, and logistics problems were
used. In our experiments on random problems we are solving for all solutions
in each instance. In the case of the Golomb and logistics problems used in
these experiments, we are proving that no solution exists.

The accuracy of our estimates is measured in terms of relative error, which

is calculated using the formula

|actual — estimate|
actual

As an example, if the actual size of a tree is 1.60 x 10°, and the estimated size

is 8.0 x 10%, then the relative error is

[1.60 x 10° — 8.0 x 10%|
1.60 x 10°

which is 0.5.

Random problems

In general, the trees built to solve random problems are easy to sample. Sam-
pling assumes that the size of the entire tree can be inferred from a small
sample of the tree. Random problems tend to generate quite uniform trees
and so this assumption holds. To demonstrate the algorithm’s accuracy with
random problems, we report on a few experiments with these problems.

To choose values for the sampling parameters (described above) to use
in our experiments we calibrated using three small problems. Because these
problems were small, it was easy to get the actual sizes of the corresponding
search trees. This was done by trying various values for sample_depth (1, 2,
and 3), bf ratio (0.25, 0.5, 0.75, and 1.0), and bf_maz (1, 2, 3, and 4), and
choosing the values that produced the most accurate estimates. The values

chosen for these experiments were:
e sample_depth = 2,
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e bf_ratio = 1.0, and
e bf _max = 2.

With these values, sampling will begin at depth 2 and will visit 2 children of
each node that is visited (unless there are fewer than 2 children). Using these

settings we obtained the results in table 4.2.

Table 4.2: Tree size estimates versus actual size for random problems with 31,
32, 33 and 35 variables. In all cases domains of size 40 were used. Sampling

was limited to 20 or 40 seconds. Solving is for all solutions.

time | vars actual estimated error
20 31 | 2.037 x 10® | 2.017 x 10% | 0.0098
20 32 | 2.560 x 108 | 2.560 x 108 | 0.0000
20 33 |[8.135 x 108 | 9.661 x 108 | 0.1876
20 35 |1.728 x 10° { 1.751 x 10° | 0.0133
40 31 |2.037 x 108 | 2.013 x 108 | 0.0118
40 32 |[2.560 x 108 | 2.617 x 10® | 0.0223
40 33 |8.135 x 108 | 8.382 x 10% | 0.0304
40 35 | 1.728 x 10° | 1.621 x 10° | 0.0619

On the random problems our sampling algorithm very accurately predicts
the size of the search tree. For the largest tree considered in our experiments
(see the last line of table 4.2), with just 40 seconds of sampling, an estimate
within 0.5% of the actual is obtained. However as mentioned above this is to
be expected because the trees tend to be quite uniform. For this reason these

results are of limited value.

The Golomb problem

The Golomb problem is described in detail in section 2.2.2. Since the goal is to
find the shortest ruler that can accommodate a given number of marks M, an
iterative approach is used in solving instances. This is done by beginning with
some initial length L for the ruler and attempting to solve the problem. If no
solution can be found the process is repeated with L + 1. For each “failed”
attempt the algorithm searches the complete tree. In fact a significant portion

of the work to solve an instance of the Golomb ruler is in proving optimality
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(i.e. in these complete searches). Each of the trees searched (corresponding to
various ruler lengths) are considered separately.

Three small trees (11 marks with length 67, length 68 and length 69) were
used in experiments to calibrate the sampling algorithm; that is, to select
values for the three parameters. As described above we ran our estimator
using various values for sample_depth (1, 2, and 3), bf_ratio (0.25, 0.5, 0.75,
and 1.0), and bf_maz (1, 2, 3, and 4), and chose the values that produced the

most accurate estimates. The values chosen for these experiments were:

e sample_depth = 2,
e bf_ratio = 0.5, and

e bf mar = 2.

As an aside, a sample_depth of 3, bf _ratio of 1, and bf_maz of 4 was found to
be the worst (produced the least accurate estimates of the small trees). Table

4.3 shows some of our results.

Table 4.3: Tree size estimates versus actual size for Golomb problems. Sam-
pling was limited to 20 or 40 seconds.

time | M L actual estimated error
20 11 71 | 4.842 x 107 | 4.346 x 107 | 0.1024
20 11 72 | 5.446 x 107 | 5.670 x 107 | 0.0411
20 12 84 | 3.432 x 10® | 3.696 x 108 | 0.0769
20 12 85| 4.019 x 108 | 5.002 x 108 | 0.2446
40 11 71 | 4.842 x 107 | 4.793 x 107 | 0.0101
40 11 72 | 5.446 x 107 | 5.059 x 107 | 0.0712
40 12 84 | 3.432 x 108 | 3.380 x 108 | 0.0152
40 12 85| 4.019 x 108 | 4.433 x 108 | 0.1030

Our estimator is quite accurate on the trees searched while solving instances
of the Golomb problem. For the largest tree considered in these experiments
(see table 4.3) a size estimate within 10% of the actual tree size was obtained.
In further experiments we found that if 80 seconds of sampling time is allowed,
an estimate within 1% of the tree size was obtained. To put these results into
perspective, these results mean that 80 seconds of sampling can produce an

accurate estimate of the size of a tree that takes 6.9 x 104 seconds to search.
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Logistics problem

The logistics problem is described in detail in section 2.2.3. As in the Golomb
problem, solving an instance of the logistics problem involves several searches.
For a given instance a lower bound, S, on the number of steps is required to
achieve the final state. Then the problem is formulated and search is begun.
If no solution can be found the process is repeated using S + 1 steps. Much
of the total search effort is spent searching trees that have no solution. This
search is by its nature a complete search of the tree. Table 4.4 demonstrates
the effectiveness of our estimator on several trees. The largest of these trees
(which corresponds to problem 27 with 13 steps) has 1.659 x 10° nodes and

requires 12468 seconds to completely search.

Table 4.4: Actual tree sizes versus estimated tree sizes, for several instances
of the logistics problem, where t is the number of seconds spent sampling, P
is the problem number, and S is the number of steps.

time | P S actual estimated error
40 27 12 | 5.804 x 10° | 3.583 x 103 | 0.1464
40 20 13| 8.129 x 10° | 4.126 x 10° | 0.3890
40 27 13| 1.659 x 108 | 1.175 x 108 | 0.4740
80 27 12| 5.804 x 103 | 3.983 x 103 | 0.0984
80 20 13| 8.129 x 105 | 4.403 x 105 | 0.3085
80 27 13| 1.659 x 10° | 8.343 x 105 | 0.5557

Our estimator (as described in section 4.5.5) proved to be not very accurate
on the trees encountered when solving instances of the logistics problem. As
an example, consider the last row of table 4.4. Given 80 seconds of sampling,
the estimated tree size is only about half of the actual tree size. We also found
that increasing the amount of time sampling did not reliably increase the
accuracy. On the other hand, the estimates are relatively correct, for example
it accurately predicted that the tree corresponding to problem 20, with S set
to 13 is smaller than the tree corresponding to problem 27 with S set to 13.

On closer inspection, we were able to determine why our estimator was
inaccurate on these trees. The reason is related to the shape of the trees.

Every node has 0, 1, or 2 children, but the trees are very large because they
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are hundreds or thousands of levels deep. If ¢ is the number of children of a
node, our sampling algorithm chooses the number of successors to sample by

choosing the minimum of these two values:
e bf_ratio x ¢, and
e bf maz.

If bf _ratio is set to 1.0 and bf_maz is set to 2, then the algorithm will
attempt to sample all children of each node. This, of course, is a complete
search and can not produce a good estimate in the few seconds that are allowed
for sampling. On the other hand if bf _maxz is set to 1, the algorithm will behave
like Knuth’s, in that exactly one child will be sampled (regardless of the value
of bf_ratio). Purdom observed that for tall, thin trees Knuth’s method does
not tend to produce good estimates. This, in fact, was Purdom’s motivation,
for introducing his partial backtracking method.

In an attempt to remedy this difficulty we changed the way the number
of children to explore is chosen. A new parameter was introduced, p, and
the value of bf_mazx was allowed to vary. At each node encountered during
sampling, bf_maz is recalculated in such a way that bf_maz = co with prob-
ability p and 6f_maz = 1.0 with probability 1 — p. This change allowed for
more sampling to be done deeper in the tree and this seemed to improved the
accuracy of the estimator.

To demonstrate this improvement we present some results from our ex-
periments. We calibrated our estimator using a small tree (5804 nodes) from
the logistics problem domain. This was done by trying various values for
sample_depth (1,69,70,71,72, and 73), and p (3, %, £, and &), and choosing the
values that produced the most accurate estimates. The reason that some of
values for sample_depth were so high is because the initial (and goal) states
have variables with domain sizes of 1. So at the top of the tree search all nodes
have exactly one successor. The values for the parameters that produced the

best estimates, on the small tree, were:
e sample_depth = 73, and

64



e p=0.25

Using these parameters we performed experiments on the tree corresponding to
logistics problem 27 with 13 steps. The actual size of this tree is 1.659 x 108.
Our results are presented in table 4.5. These results demonstrate that this
revised estimator can produce (some what) better estimates of the search tree.
We found that the accuracy is sensitive to changes in the parameters chosen.

It may be that for some applications the accuracy achieved is sufficient.

Table 4.5: Performance of our revised estimator on logistics problem 27 with
13 steps, where sample_depth is set to 73, p is set to 0.25 and bf _ratio is set
to 1.0. In the table, time is the number of seconds spent sampling to produce
the estimate. The actual size of this tree is 1.659 x 108.

time estimate error
20 1.0212 x10° 0.3844
40 1.2628 x10° 0.2388
60 1.6098 x10° 0.0297
80 9.3558 x10° 0.4361
100 2.5452 x10% 0.5342
120 1.5532 x10° 0.0638

4.6 Variable ordering algorithm

We are now going to explore one possible application of our estimator.

A dynamic variable ordering algorithm (dvo) is used during backtracking
at each level, to determine which variable to instantiate next. An effective
dvo can significantly improve the efficiency of a backtracking algorithm. As
discussed in section 2.3.1, ff+deg and ff/deg are popular domain independent
dvo algorithms. In this section we present a new domain independent dvo
algorithm based on the estimator described above.

The idea behind this dvo algorithm is simple. First, for each possible
choice as the next variable to instantiate, estimate the size of the subtree that
would result if this variable were instantiated next. Then, return the variable
associated with the smallest estimate. If this estimate were exact then the

procedure described above would pick exactly the right variable to instantiate
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next. In this context the right variable means the choice that would produce
the smallest search tree, given the assumption that we are finding all solutions
to a problem or showing that no solutions exist.

In general, it is impractical to perform this estimate for all variables. So
instead we generate a list of candidate variables that seem promising. We
make this selection based on the current domain sizes of the variables. Near
the root of the search tree, a variable ordering can make the most difference on
the overall size of the search tree, and at the root there is less information for
more standard variable orderings (such as ff+deg) to make decisions on, since
less propagation has occurred. Also at deeper levels, time spent sampling is
less likely to be rewarded by a sufficiently reduced search tree size. So we use
sampling above some maximum depth, and a more standard variable ordering
method below (see line 1 and 2 of algorithm 12).

In addition to the parameters used by the sampling algorithm, the dvo

algorithm uses a few others.

e maz_depth
The maximum depth at which sampling will be used to select the next

variable to instantiate.

e standard_dvo

The variable ordering to use at depths greater than maz_depth.

e close
This is used in generating a list of candidate variables. If d is the mini-
mum domain size, then all variables with domain size less than or equal

to d X close will be considered a candidate.

The complete algorithm is listed in algorithm 12. The first step is to come
up with a set of possible candidates for the choice of next variable. Then
the function Sample() is used to estimate the size of the subtree that would
be search if v is selected. While the function Sample() is estimating the size
of the subtree it uses a static variable ordering. The variable choice that

corresponds to the smallest (estimated) tree size is returned as the variable to
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Algorithm 12 Dvos(level)

1: if level > maz_depth then

2 return a result from some other dvo algorithm

3: end if
4: min_domain < FindMinimumDomainSize()
5: min_size < o0
6
7
8
9

: minwvar <0
: for all v such that D(v) < (min_domain x close) do
estimate < Sample()
: if estimate < min_size then
10: min._stze <— estimate

11: MIN_VAr <— v
12: end if
13: end for

14: return min_var

be instantiated next. In some sense our algorithm can be thought of as using
the Sample() algorithm as a tie breaking strategy for fail first. We call our

algorithm dvos.

4.6.1 Experiments

We applied our variable ordering algorithm to instances of the Golomb and

crossword puzzle problems.

Golomb

The Golomb problem is described in section 2.2.2. Table 4.6 presents some
of our experimental results. Our ordering algorithm, dvos, is compared with
ff/con on trees from the Golomb problem. On these problems ff/con, proved
more effective than ff+deg or ff/deg. In all cases, we are solving for one solu-
tion, however for many of the trees no solution exists. In particular, solutions
exist for M = 11 when L = 72, and for M = 12 when L = 85. However the
number of solutions in these instances is very small. In these experiments dvos

used the following (arbitrarily chosen) sampling parameters:
e samples = 15,

e bf_maz =1, and

67



e maz.depth = 4.

Note that when &f_maz is set to 1, sampling will always visit exactly one

successor of each node independent of the value of bf_ratio.

Table 4.6: A comparison of two variable orderings, ff/con and dvos, combined
with forward checking on instances of the Golomb problem. The numbers in
the table show the time (in seconds) required to solve the problem. A ’-’ means
that the problem could not be solved within the 144000 second time limit.

M L |fi/con dvos
11 72 130 216
12 60 1601 311
12 701 9405 3830
12 80 | 48432 12587
12 81 | 57213 17961
12 82 | 66853 34568
12 83 | 77925 21882
12 84 | 90843 22245
12 85| 12899 1967
13 90 - 78394

Our experiments suggest that dvos is an effective dynamic variable ordering
on instances of the Golomb problem. For simple problems, ff/con performs
better than dvos. However on more difficult problems, dvos performs better
than ff/con. As an example, when ff/con is used on the tree corresponding to
M =12 and L = 84, 90843 seconds are required to solve the problem. When
dvos is used on the same tree, 22245 seconds are required. This represents a

75% performance gain.

Crossword puzzle

The crossword puzzle problem is described in section 2.2.1. Table 4.7 presents
some of our experimental results. Our ordering algorithm, dvos, is compared
with ff+deg on instances of the crossword puzzle problem.

In all cases, we are solving for one solution using an arc consistency al-
gorithm (gac3 in particular). In these experiments dvos used the following

sampling parameters:
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e samples = 5,
e bf mar =1, and
e mazx_depth = 3.

We initially tried running experiments with samples = 15 and maz_depth = 4
(as in the Golomb experiments) but quickly found that too much time was

spent sampling.

Table 4.7: A comparison of two variable orderings, ff+deg and dvos, combined
with arc consistency on (15 x 15) crossword puzzle problems. The numbers
in the table show the time (in seconds) required to solve the problem. A ’-’
means that the problem could not be solved within the 7200 second time limit.

p ff+deg dvos
15.01 20.14 49.34
15.02 | 248.93 248.36
15.03 | 10.55 37.82
15.04 - 3618
15.05 7.84 1244
15.06 | 2526.8 2560.8
15.07 | 24.09 64.86
15.08 9.14 37.85
15.09 | 11.48 47.09
15.10 - 8277

On easy problems the dvos algorithm performs worse than the ff+deg al-
gorithm. The reason for this is that the time that the dvos algorithm spends
sampling dominates any savings from an improved variable ordering. On the
most difficult problems dvos performed better than ff+deg. When ff+deg is
used on puzzle 15.04, for example, more than 7200 seconds are required to
solve the problem. When dvos is used on puzzle 15.04, the problem can be
solved in 3618 seconds. When ff+deg is used on puzzle 15.10 more than 7200
seconds are required to solve the problem. When dvos is used on puzzle 15.10,
the problem can be solved in 827 seconds.

In choosing the values for the various sampling parameters, somewhat ar-
bitrary values were chosen. It is possible that dvos would perform better with

other values.
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These results from our experiments on both the Golomb problem and the
crossword puzzle problem should be characterized as preliminary. However
they indicate that this dynamic variable ordering is promising. It is particu-
larly interesting to note that an estimate of the size of the tree associated with
finding all solutions to the problem can provide a valuable variable ordering

heuristic for a search for one solution.
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Chapter 5

Conclusion

In this chapter we provide some suggestions for future work and a summary.

5.1 Future work

1. Further work could be done to characterize the types of problems on
which gac?7 is superior to gac3. A technique for selecting which algorithm

to use could be useful.

2. Possibly, features of gac7, such as the lastsupport structure, could be
added to gac3. The goal would be to produce an algorithm with some

of the efficiency gains found in gac7 while retaining gac3’s flexibility.

3. Our estimator has several parameters that control the way sampling
is done. Currently, tuning these parameters is a manual process. An

automated method for tuning parameters would be useful.

4. In the introduction to chapter 4 we motivated the topic of estimation by
discussing some possible applications for an estimator. We applied our
estimator to only one of these applications: a dynamic variable ordering.
Future work could involve determining if our estimator can be used in

others of these applications.

5. The estimator we developed works well on two traditional backtracking-

based algorithms: forward checking and arc consistency. A sampler for
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other algorithms such as conflict-directed backjumping, while challeng-
ing, could be equally useful.

6. In [20], Maron and Moore discuss Hoeffding Races, which is a technique
for selecting between sets of options. This technique can be applicable
when sampling is done to produce estimates of how good a particular
option is. The general approach involves iteratively performing sampling
for each option and discarding options as they are shown to be inferior.
Russ Greiner, in a personal communication, suggested that it would
be valuable to use this approach in selecting between variables in our

dynamic variable ordering algorithm, dvos.

5.2 Summary

In chapter 3 we described two general arc consistency algorithms: gac3 and
gac7. We described how gac7 could be interleaved with a backtracking algo-
rithm. We also performed an experimental comparison of these two algorithms.
Crossword puzzle problems, logistics problems, and some simple random prob-
lems, were used in this comparison. Gac7 performed better than gac3 on the
crossword puzzle problems and the random problems. Gac3 performed bet-
ter than gac7 on the logistics problem. Gac3 was also found to be easier to
implement, more flexible (in the level of consistency that is enforced) and to
consume less memory.

In chapter 4 we discussed techniques for estimating the cost of solving
an instance of a constraint satisfaction problem. We surveyed work that has
been done in this area including hard problems, analytical techniques, and
statistical sampling techniques. We discussed previous work that has shown
that the hard problems approach is not an effective technique for estimating
the cost of solving a problem. QOur evaluation of existing analytical techniques
showed that they can not accurately estimate this cost of solving constraint
satisfaction problems. We implemented a statistical sampling algorithm, which
builds on the work done by Knuth and Purdom in this area. We evaluated

our algorithm on random problems, Golomb problems, and logistics problems.
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We found that our estimator can accurately predict the cost of solving for all
solutions of these problems.

We discussed applications for estimators and evaluated our estimator on
one such application: a dynamic variable ordering which we called dvos. The
limited experiments we did to evaluate our ordering algorithm were encour-
aging. In particular we found that, on Golomb problems, dvos outperformed
ff/con, and on (sufficiently difficult) crossword puzzle problems, dvos outper-

formed ff+deg.
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