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- Abstract

. .
. . L
o .

The use of conic primitives in. three-dimeneional (3D) object

recognition, localization, and motion "recovery 1is studied in this

| . . ! .
‘thesis. The major . result is the closed-form solution 'for 3D
localization- problem” from different conic correspondences.;/ Based on

this result, a "locatiné-labelling" détﬁod.is,proposed for designing an
. (' . . - ‘
efficient 3D object recognition system from a single (2D) intensity

image The eff1c1ency of the method comes from ‘the’ ab111ty to 1ocate an_/>

NS

hypothe51zed ObJeCt 1n 3D, early in the recognition, process that is,
its ability to use a minimum number of‘hypothes1zed correspondence to

locate the " object. Once the hypothesized object is 1Q9§ted,j_its~

‘validity can be tested immediately. Consequent}y, the time spent in
the recogniton process is‘mainlyvfor the initial formulation of the
minimum ‘numoer of;‘hypothesizedu matches; the minimum number: of
elliptic/hyperbolic end.line/point correspondeﬁces required is one-end
three; respectively ‘Further time reduqtion ‘is obtalned'by exp101t1ng

the invariant properties and relatlons of detected image primitives. !

R

Upon completion of recognition of an 3D° object from an intensity

1mage the 3D location of the obJect is accurately determined by u31ng‘
\

all establlshed matches- Further, 3D motion of the .object - from the,

sample instant of the previous 1mage is: recovered by u51ng an extended"

—~

"otlon can also be‘usedf*

) o )

aid the,recognition process. Implementatlon w1th real 1mages ‘shows that
o

the recovered locatlon and motion are very accurate (down to 1.0 mm in

Kalman.Filter algorithm (EKF). The ‘re

position error), and recognltlon of 3D object from 2D images’ is

reliable and economical.
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Chapter 1. Introduction

- . ‘ - s
A e ) : .

One goal of computer vision research is to design a machine which

v

can/'recognize three-dimensional t3D) objects from sensed data

-

determlne the locations of these objects relative to the sensor, and
'predict their motions relative to the‘sensor. A machine with'these
capabilities can be of use in factory'automationj_inyhome.rdbOCics; in.

underwater. or outerspace eXploration In factory_automation, the most

. o . v Y . ’ N

common task in manufacturlng, transportatlon storage, and - assembly 1is
, X

>

"the recognltlon and manlpulatlon of workpleces on convey s or in bins‘
“(Rosem, 1979) Since;workpieces can overlapwone another,‘the machine
must be able to recogﬁize them'when'they are not spatially'separated

In manipulating a workpiece; its stable pose and 1ts locatlon rel/z1Ve

‘o

“to the manlpulator have to be determlned 1n order that the manlpulator

':ucan;grasg and move Lt.’Also a workplece may be’ mov1ng relatlve to the
. . ‘ . . i

. .
leewing caméra or. the'camera is mov1ng w1th the manlpulator hence

Ny motlon 1nformatron Ls‘needed in,afdynamic environment.‘In addition to-
’recognltlon and manlpulatlon of workpleces other - tasks in factory
SR N

,»:automatlon requlrlé% machife vison are. v1sua1 feedback (of relative

locat;on or motiOn)btox;manipulator 6éntrol and wprkpiece inspection
':f(of‘nissing5parts orvlabelsf for‘qaalityhcentroif

Respondlhg to these needs _much»researchihas\been'denoted to thé
sy of 3D ObJeCt recognltlon and localization (for a survey, see Besl
A Jiln, 1985 Chin and Dyer 1986) However rellable efrlclent and‘

economlcal methods for de51gn1ng such systems have yet to be dev1sed

Kl

3 . W 7, ,»J.',.
In the past 20, years mqst»research on“object recognition has. used

P

il
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iotensity imaées. Although recognition of 2D objects from a 2D iﬁage
(e.g., flat objeotsvparallel to the image pldne) has beeo euooessful in
eomé devised systems, few are capable of recognizing 3D objects from a
single 1nten51ty image without human intervention (humans are usually
able to- perform such tasks effortlessly)u'Faced with tRe difficulty in
using intensity images? ranée'images’(eithef from a range finder or
shape-from-X techniques on intensity images) are commonly used in most
recent research on object recognhition in the hope that, 3D recognition
from range 1mages will beA much easier than from intensity images.

Despite the exp11c1t depth information 1n‘range images, the dlfflculty
in QD object recognltlon'remalns, as\exemplified'by the complexfty of

.

the methods of Oshima and Shirai (1983), Bolles ‘and Horaud (1984),
Grimson end Lozano-Pérez .<}985>, F;ugeras and. Ayeche (1986), and
Pentland.(1987).

In this dissertation a method is proposed to. perform 3D object
recognition from a single and/or multiple 2D images. A'prototype System
was built to show tht ’rellablllty, eff1c1ency and. econoﬁy >Of the
proposed methoqi ‘The eff1c1ency of the proposed method comes from
-extensive use of 1ocetion information in fhe recognftfon process. The
‘_ 1ocat10n information about the object to be recognlzed can be obtalned‘
from a minimum nomber of hypothe51zed matches between image and model
rxlmltives The minimum number of matches can be as low as one
(ellipoical_ COfrespondeoce) or as high as _thfee (line or point.
correspondences). To obtain the. looation information with minimum,
compﬁtational effort, closedjform solutions bare derived"for ‘Various
~ types of matches. Afper' location is recovered. for the. hypotheeized

.o

. N .
matches, the matches dre tested to determine if they are consistant
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with the recoyeredvlocation. If they are consistent, more matches can
be hypqthe;?;ed and ‘location ‘information can be refined by using the
' augmented set of ﬁyPothesizedvmatéhes, énd the augmented matches are
tested again with the refined 1ocation_information. However, if the
ﬁypothesized matches are‘ﬁot ébnsistent with the recovered location
informétisn, they are rejected, thus leading to a great time saving by
avoiding any hypotheéis including the rejected matches. As a result, =
the proposed metﬁod can efficiently‘recogni;e 3D objects .and recover
their 3D 1ocatidnsi(each with 3 orientation'anqv3 position parameters)
from a single intensity image.
_‘gﬁ y g

In addition to the recognition and localization capabilities, an
Extended. Kalman Filter (EKF) approach is used to;recover‘the,mOCion of
an object appearing in a sequence of images. The information recovered
is the smoothed motion from the sequénce of images, whicﬁ is more
reliable than the .incremental motion from t#e direct difference of
locations recovered by the ‘recognition process in two consecutive

- nes.

szzgr to introducing the proposed method for 3D recognition,
localization, and motion recovery, the remainder of this chapter will

provide some basic materials in object recognition and relate the

proposed method to previous research.

1.1 &ogstraints: Expressions of Cues for Perce .tion

Given an intensity -image or 2D pattern c ﬁillﬁﬁination; how do we
' possibly choose one out of a large number of vglid 3D interpretations
to fit. the giVen.K;mage? Studies in biological vision tell us that

perception relies heavily on implicit information present in the image.



This 'informa;ion~ can be ‘perspécqiﬁé,”ibinocular disparity, relative

" size, relative b:ightness;'Shadéws and shading, motion parallax (the

~

relative movement ®of objects at_different distance from the.viewer);
texture gradients, coiour, contour, Gestalt groupings, etec. Thié'kind
of informatic rrovides cues for depth, size, and éhgpe perception,
thus imposing constraints on the plausibility of intérpreéations of the
image. In short, such constraints ~cén be wused ;g overcémé the
e;sentially underconstrained ‘nature of object recggnitioh from 2D
views. . | |

Motivated by tHe cues used in biological visén, computer vison
résearchers qually use constraintg ‘to express cues (either
domain-specific or | domain-independent) to solve various vision
problems, The trend of using congtraints can BéAtracéd back to early
.research on vision, notably Robé;t's block world (1965), Guzman'’s SEE
(1968), and Waltz'svfiltering algorithﬁ (Waltz, 1975). Fof ekample, a.
three-line veft?x surrounded by = regular polygons is good evidence for
.a cube (Robert, 1965), an ar§OW'.vertex Of, three lines ié a . good
evidence that two regions, defined. by the three 1ines,‘ are 'linked
(Cuzman, 1968). Although recent research in computer vision has shiftéd
" to early vision such as shape-from-X problem (epitomized by Marr,
1982), the use of constraints in solvipg' vision problem is stili
prevaleét. Fo:.example, iﬁ shape—from-sﬁading (orvsurface orientation

‘ _ ‘ . .

from image intensity), constraints are>thebexpressions of assumptions
such as surfaces are globally ;ontinuous and . albedo (surface
reflectance) is constant or Plecewise constant ‘(Brooks and Horn, 1985;’

Bischof and Fefraro,-l987). The surface continuity assumption relates

- the surface orientation at a given point to the surface orientation at -



/"neighboring points,'thus'imposing constraints on possibie orientation.
‘ L R " ¥

at the ngenypoint The piecewise -constant albedo assumption requires

that the p01nts in a certain region should have the same reflectance

v
N

propegty. As a second example of using constraints 1n early vision

l,‘conslder the approach to, stereopsis (depth from two images at different“

viewx points) by Marr and Poggio (1976). In their - approach,

compatlblllty, unlqueness, and contlnuity constraints are uséd to match

';two images and measure\dlsparlty (angular dlscrepancy in position of
'

1the obJect n two 1mages) between them. The. compa%?hlllty constraint

A ‘ .
rg&Plres that two prlmltlves in dlfﬁerent images match to. each other

Nl

only if they are of the same - type “The uniqﬁenesSfconstrainthmeans;thatff

each primitiVetin one image can match only oneé item-from the other :

? e . . . o e
imagé. The continuity constraints requires that the measured disparity

betWeen two images varies smoothly.

%ince constraints are ubiquitous in the‘comthational approach to
vision, it is‘useful to ekamine duestions as to what»constitutes a
constraint,,in.what,form ahconstraint can be represented, and what are
the waysbto_classify constraints? Examining‘these'questions not only
will help us analyze previous research, ,hut ‘will also help revgal

important ingredi€¢nts for certain vision problems.

v

What constitutes a constraint? A constraint<describes a property
of a constituent or a relatlon among the constituents in an image or
objectumodel, or describes a correspondence among properties/relations

N * b - B
in different images or models. Figure 1.1 1illustrates properties and

§ o
relations (intra-relation) of constituents as well as correspondences

(inter-r:lation) of properties and relations. The constituents can.be

as small as picture elements (pixels) or .as large as’ parts of the

[

“
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object. An . example expressing propertieé, intra-rélations,_ and
intef-relatLon is given.inAFigﬁre 1.2 by using a coffee mug - as the
:»'bbjecg.:_> - ' v

inter-relations

(correspondences across'imagesﬂor,between image and model)
v o | ] .

properties. = - -, intra-relations -
' o R ’ ’ . _‘ , . N
B ' . ' ) . ' ' A Py L d
“., of an image or among image or

model constituent o model constituents
Figure 1.1 constraints as'relationé“andmprppefﬁiéé’of constituents c-
as correspondences of relations and properties of constituents.

[ ' ] ‘ [ ]
Image i i Model .
o L § ) _ :
\ a bile 2 3 4
o ' 5
L _ j ‘ .o j
(a) )
I : T - — - ‘ = - 7
! Properties on ima Correspondence Properties in model |
: ———2—‘—__fgf‘ ‘"‘ig?‘tgétween'properties —QQRQ%———‘ 10 model i
i ellipse(d) — 5 ellipse(1l)
ellipse(e) — AR . -ellipse(5)
part-ellipse(c “— > part-ellipse(4)
line(a) : P > line(2)
lige(b) L e— > line(3) .
. . ' Correspondence . .
Relations on image between relations Relations in model
parallel(a,b) — — parallel(2,3)
; intersect(a,d) e > intersect(2,1) _
i intersect(b,d) - R > intersect(3,1) j
' ‘ (c) . ' »
Figure 1.2 . A - "coffee mug" example for intra-relations and

‘inter-realtions. The constituents used here are ‘conic primitives. (a)
Constituents of image cup. (b) Constituents of model cup. (¢) The
pProperties, relations (or: intra-relations) and correpondences (or
inter-relations). o



; How to express (Constraints. A constr#iht! for a relation or
property can Se eﬁpreségg Symbolically or.fum@£ ally. In numerical
expreésion, a constraint 1is ‘described _by¥ a equality/inequality
‘engfion; An equality constraint means that attriblzés of‘constitgents,

when combined with" a Epgcific rule for expressing a relation or

property, must be equal t§ a certain value. For example, the coordinate

TN

transformatioﬁ between twd}parts in a rigid object 1is equalrto the
combined ‘tfahsformation 'frém the first part through a reference
cbofdinate to the second part. An inequality fonstraint means that the
value from the‘ combination of gonstitpent' attributes : is. within a
specified range. As an ekample in perspectivé projection with ﬁnit
focal'lengtﬁ, if a point Wifh the relative coordinates (x,y,z) to the
view point appears in the perspective image, then the ratios, -x/z and
-y/z, corfespond to a projection point in the'image‘piane. In other

~

words, the ratios, -x/z and -y/z, must be within the horizontal and
o . . P
vertical limits of the image, respectively.

In the symbolfc expression, a relation ‘is abstracted into a terse
[ g

format such as the first-order predicates and semantic. nets. In
[ , : R

artificial intelligence terminology, symbolic constraints are usually

é@lled production/ rules (in -rule-based systems or production systems)

or inference ruqes' (in planning or logic inference). The symbolic

!
expression of relations can be seen from the example of expressing the
3 ‘. . » .

iy
A

sentence, "All bﬁ;dges span roads or riversf. In prédicate logic, the
senténce can be expressed aS:

Vx bridgé(xb = Jy({{ Road(y) Vv River(y)) A Ov;r(x,y)))
where V is the universal quantifier, . and 3 is the existential

quantifier. Vv is the disjunctive connective, A 1is the conjunctive
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connective, and = is the implication connective.
Still, the same sentence can be expressed in semantic net as the
one shown in Figure 1.3. An example of how sementic nets can be used to

describe scenes and compare descriptions is the work reported by

Winston (1975).

‘-[j bridge € > —

Over ¢—— S—

R ad : \_\
~>Lﬁh I ° <_

River ¢ . Or «

Figure 1.3 A semantic net representation of “All bridges ‘span road

“or river". [:] is the universal quantifier, [:] is the existential <
. S g
quantifier, and = is the implication symbol. ~——3 is the logical
link, — 1is the propositlonal link, and ----> is the dependence

.llnk This expression follows Schubert’s representatlon of semantic

net (1976) , ' S

Taxonomi of Constraints. Having defined what constitutes a

constraint and its expression types, we can gléssify the constraints
into.digferent classes. The constraints used in vision research can be
divided into two categories: model-independent. and model—épecific.‘The
model—independent constraints are those relations that can be used
without fesorting to explicit’knowledgefof the object being viewed. One
extfeme example of model - independent constraints -are thegp surface
gedmetric properties which are invariant under 'transformation or
brojection. For instance, the Gaussian and mean curvatures of sﬁrfaces

are independent of transformation (Besl and Jain, 1986) The Gaussian

and mean' curvatures can be derived directly from range images, and

e
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‘their éigns are used to infer the type of viewed surfafe; .mely, peak
surfaceh flat surface, pit surface, minimal surface, fidge surfaceﬁ
saddle’ridge, valley surfacg, or saddle valley (Besl and Jain, 1986).
6ther model-indepeﬁdent conggraints can take the form of assumptions
for a specific application domain. An example is .the assumption of
surface smobéhness used in many shapé-from-shading formulations.

Model-dependent constraints iaré those relations imposed by
specific objectsrbeiﬁg viewed withkprior‘world or object knowledge. An
example is the restricted rangé of angle and diétance of any two
nofmals of points on two specific surfaces (Grimson and Lozano-Pérez,

1984 and 1985). )

Model-independent cornistraints are commonly dﬁed in early (or lo@
level) visual functions to extract higher level descriptions of shape
in the image. In most cases, the applications of this; kind of
constraints 1is data-driven,- althougﬁ cooperative (or interacting)

processes among constituents and coarse-to-fine modular processes can

be used. The bottom-up ‘application of model-independent constraints can

be seen in such examples as Marr and Poggios's stereopsis (1982):

Guzman's SEE (1968), and Waltz's filtering alg;rithm‘(lé75); However,
this isvnot to say that model-independent con;traints can onl; be ;ged
in. low 1level wvision. Thg appliéation 6% such modél-independenf
constraints can provide valuable guidance in high _1éVe1' visual
interpretation, as shown in the use of invariances bj‘Beéliand Jain
(1986) to-help matching model surfaces to.a given input image. ¢

‘On the other‘hand,‘modei;dependent éonstréints can only be used in
high levsl vision, because explicit knowledge of the object model is

needed. In general, model-based vision systems, such as those by Brooks
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(1981), Llee and Fu (1983), bshima and Shirair (1983), Grimson and
Lo;ano-Pérez;(1984,i985), Bolles and Horaud (1984), Faugeras and Hebert
(1986), Lowe (1987), and Pentland (1987), all exploit model-specific
knowledge to recognize object instances in a scene. - //A
Another cléssification. of constraint types comes from %he
compénents of the image formation proceés. Heré the components
correspond.to object shépe and surface albedo, transformations- between

the “objkcts and view ' coordinates, projection geometry, and

il1

’nation. Objecﬁ-inducedv,constraints are the properties and
relations encoded in the object’s surface geometry and its material.
These properties and reiétibns aregy preserved under rojection. The
obje t-inducedlconstraints can be model-independent (e.g , the Gaussian
curvature) or model-dependent (e.gﬁ,.the angle between two specific
rfaces in the model). ih some applications,‘the.constraints caque an
assumption or vhypothesis; e.g., in shape-from-shading techniques,
piece-wise surface continuity and piece-wise constant surface.albedov
are assumed in ofder'tp recover sufface parameter and albedo from an
intensity image. Here,fthe constraint is that neighboring pixels in a
region on the image should have the same albedo and be on a smooth
surface except for those pixels on the contour of a region,
Transformation-induced cogstraints have two properties: common
_fate property and interposition property. The first indicates that an
transformation of the object should have the same effect on éll parts
of the object. One extreme of the common fate property is that, if the
object is rigid, all parts should comply with the same transformation.
The interposition property indiéates whether certain parts in an object

will be océluded‘by the object or other objects, provided that the
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transformations .of all objects in the scene are known. Conversely, the
intérposition constraint meaﬁs that, if a part of an objeét is not
vvisible in the écene, then the tranSformation of the part,‘ﬁhen found,
should comply with the fact that the part is occlﬁded or outside the
field of v;ew%

Projection-induced constraints relate the object and its image
through a specific type of projection and its parameters (e.g., the
scale of size). Under a certain type of projection, properties and
relations of‘parts in the écene are mappedlinto certain propert&es and
relations 9f ;he corresponding parts in the image. For iﬁtensity
images, the projection maps relative positions podrLs in the scene
into relative pixels in the image, and the value of each pixel captures
the reflectance information of each correspond%ng spot in the scene.
Like intensity im: zes, the.range image encodes the relative positions
of points in the - scene into fhe relaéive Pixel coordinates i; the
‘ image; however, the valﬁé of each pixel ' contains  the >relative.
distances of the correéponding point in the scene ﬁo the view point
instead of reflectance information.

Illﬁmination is a factor, in addition tb shape and albedo, which
affecfs the intensity value and shading in intensity images. Further,
the illuminating light, along with the interposition of parts, produces
shadows in the intensity'image. One way to use iliumination for object
recognition is the application of structured 1ight, in which known
light so#rces are used té) illuminate. th; object and the object is
viewed By the camera to detecte the objectvand reconstruct thg object
propertizss (Holland, Rogsel, vand Wafd, 1979). 'Iﬁ“ this manﬁer, the

structured light approach is also able to reconstruct shape of the
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‘object Another way of using illumination is photometric stereo~ where

" two images for two different light directions are taken from the same
view point, and..‘used to recover the ° surface‘ orientations

(Woodham, 1978) .

Evaluation of Constraints. The aforementloned,classification of

constraints is useful for finding constraints for specific wvision
problems. In applying constraints, however;_SOme‘evaluation criteria
are required, and, in most cases, three criteria have to be considered.
-The YFirst is the cost (time, memory space) of using constraints. In
practice, the constraints should | be easily constructable and
applicable. If too much time is spent . in extracting applicable

[od

constraints or it takes too much time to propagate constraints, they
may be of little practical value, especially wnen the computational
resource is limited. . o ‘

Another criterion is the robustness (or stability) ‘of the derived
constraint. The question to be raised is under how much noise, in the
imaging process and the attribute-measuring process, ' the constraints
still  hold true. For example, the "constraints irom' point
correspondences are less robust than those from 1ine correspondences,
since the effect of noise on an image lifie is averaged out, but that on
a point is not. However, constraints.from a larger primitive are not

always more reliable than those. from a smaller primitive. A large
. -

primitive detected in the image may 1nc1ude some elements that belong
:to another primltive due to the difficulty in separating image reglons\vﬂ

for different parts of objects. That is, the larger the primitive size,

the less reliable the prlmitive may be. As a resnlt to have

constraints that are insen51tive to noise and remain reliable, often
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physicai"\brimitive; with identifiable properties (e.g., 1ines)
ellipses, corners, etc.) are useb.

The third criterion is the applicable domain of the constraint. It
is not easy  to fihd'éonstraints that are,indgpendent of.appliCation
domains. However,-constréinﬁs that depend too much on its rgstricted

'doméin may not be desirable, especially &hen‘they are to be expaﬁded to
a broader domain. For ex;mple, the constraints encode& in a junction
dicﬁionary (a colleptibn of allowable sets of physically possibl; iine

labels for each type of junction) for labelling line dra&ings may need

to be totally revised, when the domain of application is extended to
-general scenes. ‘ ‘
: (
' , /
1.2 Approaches to Object Recognition T
From the previéus discussion, the use of proper constraints is
critical to solve a specific problem. Equally important is the way in
which constraints are used to solve a particular problem. In this

section, the major approaches to the object recognition problem are

discussed. The separation of approaches is for the convenience of

discussion, “and it should be borne in  mind that combinations of

different approaches are found in the literature on modelﬂbésed vision,.
. . N - - . .

Research on 3D object recognition can be roughly grouped into five

approaches: the invariant property approéch, ‘the hypothesis testing

\

approach, the labelling approach, the intermediate representation

appfoach, and the location information approaches.

*

Invariant éropertv Approach. This approach usually looks for

(mathemat:cal) invariance to wunravel the shape, 'size, depth,

!

orientation, ar other properties of objects.rThe approach has a strong
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.relation. with Gibson's direct approach to biological vision which -
. holds that perception is a direct .response to information presented in
the stimulus, Hence, it is proposed thatwa set of invariances such.as
texture and motion gradienrts are picked up to permit the perception of
dlfferent object propertles ‘Gibson, 1979)

An object property is invariant if itvremains the same despite
transformation 'and- projection. For’ example, the ratio of height to
width of a riéid object.remains.invariant as we get nearer to, or
farther away fron, the object. Since invariances are hard to flnd for

general transformatlon and projection, invariances are often defined”

under certain types of transformation (e.g., z-axis-rotation invariant)

and projection (e.g., parallel-projection invariant). In some cases,
"semi-invariances" (i.e., those which are almost invariant in most
situations) are used instead of invariances; €.g., two parallel llnesv

- remain almost parallel for most 1nstances of perspectlve projection.
Flndlng invariant properties is. an important“isspe in'(2D) Pattern
Recognition,, inl which different properties are bextracted from the
. { .
pattern and are fed into a_decisionrmechanism to classify the pattern;
The invariant propertles are usually global depending on the whole
‘ pattern ‘and ‘are common to -all possible. patterns. To c1a551fy the
' pattern the extracted propertles‘are used to form a feature space. The,
decision mechanism then uses clnsterlng schemes (surface separdtion,
v-
.statistical sep%ration, etc;) ta clustér#the detectedfproperties in the
feature space for a certain type of pattern. The separation schemes are
usuallyrparametric functions.and their-parameters need to'be fine-tuned

"through a training phase. N

The “success of the application of invariant properties in pattern
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recognition led to- tne at i to\~’use invariances in. object
recog{niti_dn. ‘When - applied in 2D object recognition the .invariant
‘features can be perimeter of the contour compactness (lm . area /
perimeterz), rectangularity (area of the object contour / area of the
its minlmum encloslng rectangular), moments of contour _(area {s the‘:v.

'zer_o-_moment, ~other vr_leo_ments., 'are“lnvarlant to Ob,J ect, size wheén div1ded by
: the ax-"e'(a‘:' : lnthe ..c':o:ntour) : Though ‘these invariances ‘ efre .useful for
unoccluded flat ob_]ects pal:allel to ‘theé ’ir'l'lage olene, the_y are hot

’ rellable for »arbltrarlly oriented 3D objects . og; difficulty s"te'ms from

. the fact that;, when the ooject. is not ‘fl_at. e-nd" can ha\;e arbitrary

" orientation, the invariances -do not always exist in 2D image. Another

difficulty is that it.“is hard to segment the image . into, ‘reli.ebll;'e_;:‘ﬂ

—regions so that the invariant properties éan._be:a'c'cura'_tely’measured».

Hypothesis Testing Approach. This ‘approach \}ie&s recognition as;
the generation 'of a solution that be_st fltS the sensed cu"es‘ in the v
image. In this approach, probable hypoth‘eses ‘about the'obje«cts in the.
image are generated and ‘their val-idit.ies are tesced In generating
hypotheses, it is often desiralb)le that the hypotheses be complete
(never misses ;a solution if one exists), nonredundant (never generétes
a hypothesis twice), and in‘folrmedb (avoids 'fruitlees hypotheses ,a;nd
favors promising: hypothes'es),. 'I_'hi.s approach ‘has.--been‘ fvery popular in
model-besed{ obj_eétirecognition, and was used by Brooks(1981), Bolles

«

and Horaud (1984), Grimson and Lozano-Pérez (1984), and Pentland

S

(1987) .. ) e , ' -
¢ N ' . s L
‘This approach is closely related to t indirect ‘approach to
biological perception, proposed notably by mholtz and Ames (Mcburney

and Collings, '1983). The indirect __approach»Aholds that perception is to
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make a best guess from the sensed cues about - what the object is and
where ‘it ds. This approach helps to explain several - illusions such c:
Necker s cube, Ames’s chalr, Ames’s trapezoidal window, and the Ames's
trapezoidal room.

Labelling pproach Recognition is regarded as the Iabelllng of
‘the constituents in the image ‘as elements in a priori m dels. Labelling

- a ) ‘
is a correspondence process in which constituents in the image are
cla551f1ed 1nto‘certain tppes of primitives (type- labelling) and are
matched to the ‘primitives of the same type in a certain model
',(part-labelling)# The object ‘in a region af the image is then
recognized as tbe object whose model primitives‘best fit'thevimage
primitives,

In labelling, the computational complexity tends to increase as
the number of primitives to be labelled increases, - and as the number
of labels each primitive can be given increases The growth of
computational complex1ty can be exponentlal if brute force labelllng‘is
used. As an_example, consider the problem of labellfhg each»of the d
line segments as one of ‘the N generic ‘types; 1f ey’ 3ustive4comparisions
of each .line segment with each label (in this case, line type) is wsed,
M" or N" tests will be needed.

To reduce’ the computational complexity, “the constraints of
consi - .-t labels are used to ‘prune unilecessary comparisions %f‘
primitives and labels. Aslanlexample of using constraint satisfaction
in typeflabelling, consider Waltz's 1line labeiling algorithm.” In

Waltz's formulation, a’line segment in the image can be labelled as

three types:. concave edge, convex edge, or occluding - edge. To reduce

the labelling’ effgrt, a junction dictionary containing physically
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possible interpretations of different vertices is used; e.g., for an

arrow vertex of three lines, there are three physically possibie
coibinations of concave, convex, and occluding line iabels. Toiuse the
dictionary of constraints, Waltz develéped an filtering algorithm to
efficiently root out impossibleglabels. The algorithm is duplicated

from Davis(1987) a8 follows:

. procedure REFINE(C,Xi){ , .

/* REFINE updates allowable labels for a specific argument Xi
in a given constraint C, and returns the updated set of
allowable labels */

/* C 1s a constraint over arguments: X1, Xz, X3, ....., Xx; .
e.g., in Figure 1.2. (a), parallel(a b) has two arguments
primitive "a" and_"b". */

/* The set Si contains allowable labels for Xi; e.g., the image
primitive "b" in Figure 1.2.(a) is a line, and it can be

- label as model line 2" or "3". Thus, the allowable set for
image primitive "b" is ("2","3"}. With the constraint
"intersect(b,c)", the allowable set for primitive "b" can

» be reduced to {"3").

/* Ai is.an atom (or label) in the allowable label set §; */

S =g,
for each Ai € Si do{
if there exist a set . .
{((A1,....Ax)| A; € S5 for j=1,...,k

, J o= 1)
such that C(A1,..... ,At,.....Ax) holds
them S «— S U {Ai};
} V4
return S;
}
procedure REVISE(C(X1 s Xx )|

/* The set Si contalns allowable labels for Xi before
the procedure REVISE is called */

/* The procedure updates the allowable labels for all arguments
X1,.....,Xk of a given constraint C, and return the set of
arguments whose dllowable lable sets were changed */

CHANGED «— ¢; .
for each argument Xi do{
S ¢« REFINE(C,Xi)
if S = @ then halt;/* the constraints were 1ncon81stent */
else 1f S » Si then({
Si « §; .
add Xi to CHANGED;

-

)
. rerturn CHANGED;



procedure WALTZ(Q){ ,
/* Q is a queue of constraints over arguments Xi,..... Xk */
while Q » @ do{ -
remove a constraint,C from Q;
CHANGED ¢«— REVISE(C);
for each Xi in CHANGED do({
' for each C' = C which has X: in its domain do
add C* to Q; ¢ '

The computational complexity of the Waltz algorithm is shown
(Mackworth and Freuder, 1985) t. be O(ae), where a is the nﬁmber of
possible labels per argument (or node), and e is ;ﬁe the number of
cOnséiainCS. Although the ‘Waltz algorithm is very efficient for
¢ uastraints of ofder relations, it tends to o into infinite loops for
constraints of linear or nonlinear algebréic relations (Davis, 1987).

Another widely used labelling techinique is the parallel
.relaxatién labelling, which was ’originally developed for aséigning
nuMeric or symbolicllabels togbbjects in the presence of ambiguity. In

: ¢ .
relaxation 1abelling, : conétraints usually are eXpressed as
compatibility meas. s

- Cij(A1,A3), for A1 € Si, Aj € S, 1 =< i,j:é k.

- Two approaches can be.égken for the ;;mpatibility measures: one is
discrete relaxation where pairs of labels ;}e eithe% compatible or
completeli 'incompatible, and the otbeg is< the' continuous relaxation
‘where éompatibility measures are real ﬁumbers Qith e%Fh magnitude for
the Jlevel of compatibility and sign for positive consisténcy or

negative consistency (or ihconsistency). One example of the relaxation

‘labelling technique is given by Hummel and Zucker (1983) .
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Intermediate representation approach. This ,approaqh takes. the
position that  a general purpose “vision system “is possible only if
certain information is made explicit. The information can be "Z%D"

sketch (Marf, 1983) and intrinsic images (Tenenbaum, Barrow, -and

Bolles, 1979). A.2§D sketch is the viewer-centered representation of

depths, 1local surface orientations, and surface discontinuities

(obtained from such cues as stereopsis;, structure from motion, optical

flo&, occluding contour, surface orientation contours, texture, and

shading); The intrisic images are aga?n viewer-centered maps of surface
Ll

distances, surface orientations, surface reflectances, iilumiﬂétions,

o

and suyrface textures.

Realizing that direct 3D object reéognition from intensity images
is difficult, most fesearchqrs.have tfied to use intermediate image
representations such as range images for object recognition. The ;ahge
image can be obtained directlytffom a ultrasonic or laser rénge finder
or the result of shape-from-X techniques operating on iﬁtensity images.
Examples of using range data or local ;urface orientations for object
Tecognition are Oshima and Shirai\ (1983), Grimson and LQzano-férez
(1984,1985), Bolles and Horaud (1985), Faugeras and Hebert (1986), and
Pentland (1987). However, these methods with range 1images are still
quite - complex and time-éomsuming in  both data aqdisition and

interpretation. ‘

Location-information approach. This approach holds ‘that using the’

. : .
(estimated) object location information saves time-..in interpreting
images. The role of location information can be seen from the' example
o

~of recognizing an object whode location in space 'is known (e.g.,

recognizing a workpiece held by a fixturing device). Obviously, using

L
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the knewn'object location with other property/relation constraints to
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match image primitives and model Primitives is more efficient than
using property/relation constraint; alone; As a second example, if the
object is known to be flat, itewill be simpler to perform matching by
using ‘one rotation parameter and two translation parameters to
represent the object location instead of using all six parameters. The
technique is agaln.to’use the known information about object location.
What happene if'the object location is not restricted and no a
priori location information is available? There are three obvious ways
one can take to match primitives between an image and a model. The
first is to apply only labe@i@gg,techniques by using part.propertiee
ana relations. The object location is theni~>recovered after all
N
consistent matches are obtained. Clearly, this‘is-the pure labelling
approach, as discgssed above, |
An alternative way is to implant the location\parameters into the
- constraints with the cc s -aints being ‘used in two directions. In one
direction, constraints are propagated over unknown parameters to update
parameter intervals. If the updated.interval is empty, then the set of
constraints is unsatisfiable “and thus inconsistent. In the other
direction, the updated intervals of unknown parameters are used to
calculate the nalues of expressions for propertles or relations of
other prlmltlves The ranges of the expressions are used to predict the
appearances of the assoc1atea prlmltlves and to reduce the search space
for forming a plausible 1nterpretation. One such example of using
constraints for testing consistency and predicting possible 'matches

between object and image primitives is "ACRONYM by Brooks (1981).

Another example by the author is to be 1ntroduced in chapter 2;



however, experiments showed that it is not as efficient as the third

way of using location information, to be discuséed next.
\ ,

'Thé third way is to initially hypothesiée a small set of matches
(e.g, three 1line correspondences or one elliptical. correspondence)
between the image primitives and the model primitives by uging
-properties and relations of primitives. .This step is-then followed by
estimating the object location with the hypothesized corfespondences.
The fecovered location is wused to predict attributes of image
: g
primitiv?s (e.g., visibility,'the slope or Y-intercept of a line, and
cénter and range of an ellipse in the image), and the prediction is
used to augment the set of hypothesized matches of object pfimitives to
image primitives. The hypothesized matches are then used to refine the
estimation of object location, and are tested against the recovered
location to see if they are consistent. If all hypothesized matches are
tested to be cdﬁsistenc with the estimated location,’the hypothesized
matches are consistent, and the cycle of prediction,. augme;tation,
1oéalization, and consistency testing continues. ‘If, however, the
hypothesizéd matches are tested to be inconsistent with the recovered
location, the current set of hypothésized matches is rejected, “and
other sets of hypothesized matches are uséd.’Because the use of the
recovered object location enables the rejection of inconsistent matches

. . AN
at.an early stage, this approach augments the set of consistent matches
; ‘ v

~

without trying many ’fruitless paths and with minimum backtracking.
Examples of this approach are SCERPO by Lowe (1987), the alignment
approach by Huttenlocher and Ullman (1987),  and the proposed

locating-labeling approach (in Chapter 2).

~
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1.3 The Approach Used in This Thesis .

For object recognition, the approaches outlined in the previous
section can be used éoncurrently in ‘a vision systenm. pr instance,
invariant properties (in intrinsic“images, 2§D sketch, or intensity
images) can be used %o hypbthesize the model, and the test. of
hypothesis can be done :ith constraint satisfaction. Thus, the
approach used in this dissertation for object recognition is not a
singie one of the five approaches given above, but a combination of all
five. However, it 1is the purpose of this thesis to stress the
importénce of index feature grouping and location information in object
recognition. Hence, a major part of this thesis will emphaéize the use
of index feature grouping (IFG) and location information in recognizing

n , o
objects.$¥For distinction, the proposed approach‘to object recognition
is calledbyhé "1ocating-1abelling" me thod beqauée the correspondence
process uses recovered location information to guide the matching of
model primitives to image primitives; In-qrdér to locate an object ih’
. 3D space from correspondences between conic primitives in the model and
a given iﬁage, analytic solutions using various types and dﬁmber of
correspondences of conic primitives are derivea (Coﬁics are commonly
found in man-made objects and can be easily extracted from‘an intensity
image). In addition to recognition'and localizatioﬁ of static objects,
this thesis also discuéses the recovery of object motion relative to
the camera. The recovered motion is useful for tracking ﬁoving objects

and can provide verification information for the object recognition

process.

-

. The images used here are intensity images taken by a video camera.

The results show that "absolute" 3D. orientations -and positions of
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objects can Be recovered by using a static image. Further, 3D motion
parameters (three for rotation.and three for translation) between two
frames can be recovered‘accurately. Above all, thisnthesis shows that,
with proper use of location‘ information, 3D object regggnition is
possible and economical by working on an intensity image alone.

The work in this thesis is briefly summarized in the block diagram
in Figure 1.4 énd is discussed in the following chapters. In Chaptér 2,

~the problem of ébjedt recognition is addfessed. The repfesentation of

object models, the detection of conic primiﬁives in an image, the
grouping of index features, the‘formulétion of hypothesized matches,
and the test and augmentation of hypothesized matches are discussed.

In Chapter 5,1the problem of objeét localization from an intensity
image is addressed. An analytic treatment of 1écating an object from
conic correspondences is given. It will be shown that'Athe minimum

‘number 6f correspondences to locate an object 1is three for 1ine_or

.

L . R s .
point correspondence and one for ellipse correpondence.& L
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Wireframe models consist
of conic sections, lines

(—9 Intensity images
and ~ritical points
T

Extract edges and
classify the edges

N
Hypothesize more matches

. > of model primitives
.Detect conic sections, : - to image primitives
lines, and —' using estimated location

critical points

, l " =
Group properties and No Yes

relations of detected . Does the set of
primitive into index hypothesized matches meet
feature groups - the termination criteria
: in the initiated model
Use - the most * Yes ,
significant feature No| - Is the set of =
group to initiate matches consistent?

likely models and form

minimum-correspondence . - v
h othezes Call locating modules to
A ‘ estimate object location [&—

with obtained matches

If necessary, wait for
the object to move or
move the camera, and . :

. Recover motion parameters |¢—

then take another image P

A

Figure 1.4 Block diagram of the proposed method. The solid lines are
for control flow, and dashed lines are for data flow. The bold line
boxes are for the iterative processes of hypothesis testing and
augmentation. For multiple images, initiation of likely models and the
formation of minimum number of matches can use the result of previous
image; e.g., the object classes and object locations.
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In Chapter 4, the problem of motion recofery from a sequence of
intensity images 1is solved with an' extended Kalman filter (EKF)
approach. In the EKF formulation, the dynamic model of object motion
and the measurement modél of image primitive attributes‘are constructed
aﬁd the motion parameters in the dynamic model are estimated such that
an uncertainty measure is minimized. The primitives used in recovering

motion are again conics.

. The algorithms derived in Chapters 2, 3, and 4 are implemented and

T4

discussed in Chapter 5. Three separate experiments are given. The first

is the camera calbration t0»determinqgthé focal length of the camera

A4

. b
with its focusing lens at a certain position. The second is a partial

vimplementation of the "locating-labelling paradigm" to 3D object

recognition. The third is an implementation of motion recovery using

only point correspondences. Finally, Chapter 6 contains conclusions.

Throughout this thesis, perspective projectioh is used to relate

7

image coordinates (X,Y) of an image point to~3B. coordinates
(xc,yc,zc), relative to the camera, of the corresponding point in

space. The relationshiﬁ\is given by:

AY

X ==-f x°/ 2° ‘ , - © (l.1l.a)

Y = -f y°/ 2% - (1.1.b)

where f is the focal length of the camera with f&cusing lens at a

certain position.

S

In characterizing an object’'s location, we use an orientation
matrix O and a position vector p to transform the coordinates of
L)

. . Lo, .
points in a selected object coordinate basis to the coordinates in the

/ .
camera coordinate basis. The transformation is given by:
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X X ,
y°|= 0 vy l+ P o (1.
c o ) i
z | z _
where x°, yq, and z° are the coordinates of a poiﬁt'in the object

. . ‘. g c c c ‘ ' .
coordinate basis, and x » ¥ , and z~ are the coordinates of the same

point in the camera coordinate basis

the image
1 plane, 2= f

<

PO (x%,v°,2%)

P(X,Y,-f)

o ico i
z Y l ) '

Figure 1.5 The perspective projection of a point P° in space. The
projected image point is the intersection of the image plane z°=-f and
the line through the camera origin CO and the point P°. Thus, X=-fx"/z°
and Y=ffyc/zc define the image point P in the image plane.
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\Chapter 2. Objecf Recognition

Model-based object recognition is the determination of an object
-model which - best projects a collect}on of detected primitives and
their relations in ‘the image. Due to occlusion or overlapping,‘

detected primitives belonging to }an- object may be separated by

.

FE

a .

priﬁitives from the same or other objects.‘As a result, some primitives
and relations of g visible object may not appear in the image.
Consequently, a set of disjointed primitives and incomplete relations
is recognized as a projection from ‘a certain objéét only if a set of
consistent - correspondences betweén the detected feétures (here,
features are used to- both properties and relations ogxprimitivés) and
features of a given model vexisps. Note that this is a necessary
condition for recognition, because different objects can prodfice the
same set of image primitives and relations.

In finding the best-fit model, three components afe needed in thé
proposed recognition system. These are the represeﬁtation of the objéct.
modeis, the extraction of image primitives and key féature groups, and
the‘matching between the image primitives and modél primitives. The
three components are usually inte?related, thus the design of one
compénent usually affects the other two. For example, the
representation -of a model affects.rthe type of primitives and relations
which éan be e#tracted from the image and the way of the matqéEQL which -
can be carried put. Despite this interrelationship, these Fhree
components will be discussed separately in the following sections, wi§h

o r
some overlapping for- the sake of clarity. The discussion will be

; . 27
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confined to theHCOndition that only intensity images are used, and®no
intermediate representation such as Z%D sketches or intrinsic images is
used.

Prior to a detailed discussion, each component is brlefly
summarized here. The object models 4dre currently witeframes of
primitives such as conic arcs, lines, and points (critical poings for
maxima of boundary curvature or vertices for edgevjunctions).'Also,
numeric and symboiic knowledge about the properties and relations of
primitives in a object‘are encoded in the model for that object. The
encoding ;s done by using nodes and links from semantic nets and rules-
from productlon systems f necessary, the representation of models can
be expanded in primitives (e.gt, the use of surfaces) or in properties
and relations (e.g., the use of shading, colour, and texture).

Cofresponding to models, the image primitines to be extracted are
conics, 1ines, and eritical'points. The extraction of primitiyes is
dene by a subdivision algorithm which recursively breaks boundary
curves (or detected edges in the image) into 1line segments, and then’by
a conic fitter that comblnes consecntlve line segments into conic arcs.
Once - primitives are extracted nelghborlng prlmltlves ~are grouped
together by using thelr propertles and relat@ons to form feature groups
for 1n1t1at1ng likely object models from which ~the detected 'image
primitives originate.'Examples of feature grouns are an ellipse, two
nearly parallel lines, a'vertex of three lines, etc. .

The matching of\primitives between’images‘and medelsvcan be done
in two directions: bottom-up (dataidrivens and top-down (mbdel-driven).
In either. direction,. constraints from properties and relatlons of

\

primitives and the location information are used to reduce the search
\

\
a
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rd

effort. At an early stage, the matching takes the data-driven direction

by using the most‘significant feature groué_through an index table to

.

w2

retrieve 1ikev1y object models. ’l'he~ \co_rrespondences of  primitives
between each ‘initiated 6bjeét model and the selected féature group are.
used 'to ‘for'm' hypothebses.l Eagl formulated hypothesis is"tested by a
¢ v ’ .

hypothesis-tester using the objecE’,__:]’.ocation recovered from the obt;ained
correspon'dences. In testing a hypéthesis, 'thev hypothesis-tester
pre?iictsv addit;i(opal corresbéndences and augmen.ts the set of
corfespondences until an inconsistenéy_ is detected or a confirmation.
éri;erion in the initiated model is"satisfied by the set"

Lcorrespondences.

‘

/2.1 Object Models and Database ' ) o A .

PR

Each a priori object model used here ‘consists of three kinds of
elements: nodes for shape primitives, 1links for relations among

-primitives, and rules for matching actions. The nodes. and links' are

from the notations of semantic network and graph theory, and rules are

v .

similar to production rules. A node }epresents' a shape primitive and

its properties. A primitive can be a critical point, a line, a conic
' N R : T
section,\\or a surface (currently, surfaces are only used for predicting

visibili{ies of other ‘primitriyeéid"and.ﬁot directly used in matching).
Each nod% contains a{ éererty 1is.t, which  consists of geometrical
properties and pﬁotome;rié .i)ropértie‘s.- ‘Examples of geometrical
properties are: primitive t)’rzge,‘ geometrical attributes of the
primitive, and relative lco'ordinates to a. reference point’ 'in the object

model. Examples of photometric properties are colou.r", reflectance, “and

texture. The photometric properties are not used at present because .

S
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surfaces are not used directly. for matching.

Links tie multiple nodes ?egether to represent relatlons between

the primltives at the nodes. A relation usually has at least two links.

for different nodes. Possible symbhlic relations . arej‘parallelism,
. * , » .
“intersection,  connectedness, 5r6ximity, inclusion,  coplanarity,

collinearity,  symmetry. Numeric relations are the , coordinate

transformations between two primitives. A coordinate transformation
betweenftwo pr1m1t1ves is not exp11c1tly expressed but is lmp11c1tly
encoded in the relatlve coordlnates of the.primitive to a reference

coordlnate basis in the model. .
: ) . Y

A rule usually contains abstracted. knowledge about the ,object_"

r

mddel, and is used to guide the matching process. Three kinds ‘of rules

are used at different stages of'matchingr At first, after likely models
’ 1

“

are 1n1t1ated by the index tﬁble (to be explalned later 1n Sectlon 2.3)

as candldates7 rules in each meodel are used to produce. a set of

%3

correspondences between .the image features and model features and to

generate a confidence measure for -each model as a candidate. The

confidence measure is then used . to schedule the" likely modets.

-

Secondly, when a likely model is selected, a rule in the model would
tell the matcher what 1nformat10n to look for and where. to look for it
. in order to formulate a set of m1n1mum correspoqdences sufficlent for

testlng the candidate model (the term "minimum correspondences" is for

the minimum number of matches needed to recover an object’s location,

' see Chapter 3 for details). As an example, when two parallel lines-:s

match two lines in the image, a rule would ask the matcher"to select.m\/ﬂ*

"O

: neighbdring line, not parallel to the matched two ° 11nes in the model

& -
> . ® Rt

‘ .}s’j

as the model llne to be paired’ to a line in the 1mage Naturally, the



probable image lines would also be close to the two matched image
lines. The set of minumum correspondences is used to- fprm a hypothesis
and then passed to the hypothesis-tester. The hypothesls-tester
augments the correspondences between the image and the initlated model
to test the plau51b111ty of a hypothesis The third type of rule is
: ¢

used by the hypothesis-tester, with the recovered object location,bto :
predict visibilities of other unmatched primitives‘and possible area of
the primitives, 1if wvisible, in the image.“The probability of a
prlmltlve s exlstencehln the image and the rellability of measuring the‘
primitive’s attributes (for example, a 1onger line has more reliable
attributes, when‘meaSured, than a shorter line) are used to rank“the
primitives for the hypothesis—tester to use.

In addftion to the object models, the‘database of the.proposed
system_‘contains"an index table to initiate likely models ‘by using
. detected image feature groups, as is‘illustrated in Figure 2.1. The
index table 1is generated by using the object models and has binage
feature groups in'its entry'columnf for each éﬁg;y, the second column
contains pofnters to the models.which can_produce the»image feature '
group lthrough perspective projection. An image' feature group is a
combinatfon oflimage prinitives and their relations. for,example,,an
e}lipse forms an image feature group which containsoonly:one primitiye,
whereas two paraliel lines form an image feature group.which contain

two primitives and one relation.
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Input: N ‘ : Output: . y

index feature groups ., likely models
y f

éllipse(Pl) Mi,Mz,Ma,
intersection(Pl,Pz) M1 M3
Aellipse(P1)Aline(P2) T
near-parallel(P:1,P2)
Aline(P1)Aline (P2) | Mz, M, M, 3
near-perpendicular(P1,Pz) Mz Ms

Aline(P1)A@ine(Pz§
Jintersection(P1, Pz, P3)
Aline(P1)Aline(P2)Aline(P3) -
trapezoid(P1,P ,P3,Rs)Aline(P1)

M1,M2,M3,M4,M5,—¥-4-—

Aline(Pz)Aline(P3)Aline (P4 ) Mo, M7,
U-shape(P1,Pz2,P3)
Aline(P1)Aline(P2)Aline(P3) Me, M7, Mg,
consecutive(P1,P2, P3) e

Aline(P1)Aellipse(P2)Aline(Pa)

Figure 2.1 An example of index table for initiating likelv object
models. The input pattern is the selected image feature group
which is expressed in conjunction normal form. ‘The output is a-
list of models which are likely to produce the selected feature
group in the image. In the table, Pi is the i-th detected image
primitive, and M; is the j-th model in database.



2.2 Primitive Detection: and Feature Grouping

Edge Extraction. Edges (image pixels at which image intensity
changes) are detected from a given intensity image, by convol#ing the
inteﬁeity image with the Lablacian of a.Gaussiaﬁ iow—pase fil;er or
VZG, where G'is the Geussian 1ow-paes filter. The zero-croesings of‘the_
convolved image then give edges one pixel in width. Alternativeiy,
edges can be detected by convolving theiimage with other difference
operators such as the Sobel operator to give the magnitude of the
intensity gradiené at each pixel. The edges'in the convolved image are
thinned to single pixel widths by picking up the pixel with maximuﬁ
gradient magnitude out of pixels acress the edge. Due to\the‘face that
zero-crossingsn of the  image convolved with' viG »ﬁ;y not always
correspond’to significant.intensity changes ie the image,‘especially
where thé’intensity gradient is low (Lowe,,1987), the Sobel bperapor
abproach is chosen in this implementation. The‘choiee here is primarily
for the convenience' of‘ the current implementaﬁion since our main

interesg is not focused upon optimal edge extraction techniques. A

Edge (Classification. An edge detected in the image can be an
occluding boundary (arising from diécontinuity in depth to the view
point), a surface boundary‘(arisingffroﬁ surfaee orientation change,
élbeao change, a texture bounda;y; or just a cu}ve oﬁ the surface), or
a shadow edge (arising from illumination discoﬁtihuity)r Consequently,
it is advantageogs tp classify edges into one of these types.before
enacting a shape metching process to extract conic primitives.  One way
to.cléssify an edge as.a shadow boundary, an eccluding Boundary,‘or a’
"sufface boundary is propdsed by Tenenbaum, Berroy, and Bolles (1978),

using the,intensity changes on Béth sides of the edge. .Another way to
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distinguish convex from concave edges by using the iﬁtensity_profile
across an edge is proposed by Horn (1977). He shows' that the convex 
edge - usually has step changes in the intensity profile, while a concave
edge usully has roof~shaped changes.

In the cufrentvimplementation, however; edges a;e.not e1assified,
'since‘ this thesis 1is focused ‘on the competence of the proposed

<

"locating-labeling method" for object recognition, not the details of
all possible representations of information. Therefore, the thinned

edge image is fed directly into the primitive detector for detecting

critical points, straight lines, and conics in the image.

Primitive Detection. iInitiall image primitive identification is
iﬁ;lemented-in a t&o—stage algorithm.vIn the first stage, each boundery:
curve (or edge) is divided into straight line segments by‘breaking the
curve at points of loeal maxima of curvature. As a result, each
boundary curve is appregimated *D&_a polyline with a list of break
points. The second"stagg fits conic sections to subsets of the
polyline-approximated curve. On comp}eting this step, a list of conic

arcs is generated for -the given boundary curve, Also,'the‘poihts which

.separate two consecutive conic dres longer .than a prescribed . Jlength are

selected as crltlcal points. This two- stage algorithm is 31m11ar to

that of Liao (1981) with minor modlflcations %y

The approx1mat10n of a boundary curve in the 1mage with a polyllne
is done by .using la recursive subd1v1sion algorithm The algorlthm
breaks a glven curve at the polnt most distant from the stralght line
which passes’ through the two endp01nts ‘of the.given curve. Each newly
obtained subcurve is tested to see ‘either ‘if' it can be fit bby a -

straig?t» line with distances of points.. on the subcurve to the-
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approkimating straight 1ine below a prescribed limit or if the length
of the subcurve has fallen below a pteseribedAminimum length (e.g., 6
“pixels). The §ubcurve is accepted as one segment, of the polyline'when.
ene of- the étove eriteria is satisfied; or else, the subdivision
algorithm breaks the sebcurve recursively.‘This process is summarized

~in the procedure SPLIT() given below.

Procedure FAREST(E) { '
/* The edge E contains n points (X1,Y1), (Xz,Y2), ...., (Xn,Yn) -/
/* the routine ALLOWABLE DEVIATION() is a function calculating the
allowable flttlng error accordlng to.the edge's length */
m ¢ (Yn-Y1)/(Xn-X1) and T < Y1 - m X1
i« 1 and dmax - O,
while 1 < n do {
d e |Yi: - mXi - %];
-1f d > dmax then j 1 and dmax ¢« d;
i« 1i+1;
) .
€ e—'ALLOWABLE_DEVIATION(n);
. , 2,.1/2
if dmax s (14m") < € then return 0;
else-return j; x '
9 ‘
,proced~fe “PLIT(E){
' /x T dge E-contains.n points (X1,Y1), (Xz,Y2),
.S « 1 E
if n  minimum length then return (P);
j ¢— FAREST(E); .
if j = 0 return (P);
El «— ((X1,Y1), (X2,Y2), o (X3,Y5) ) .
E2 e ((Xs+1,Y5+1), (Xj+2,Ys5+2), ..... (Xn,Yn)};
S «— S U SPLIT(E1);
S ¢ S U SPLIT(E2);
return S;

7y (Xn,Yn) %/

WhenAthe.subdiQiSion algorithm terminates, we have a list of line
segments-and a list of breakpoints for'the boundary curve in the image.
However these breakp01nts may not correspond to points with 1oca1
‘max1ma o,_//urvature One reason 1is that the number of breakpoints
depends on the_resolutien of the trescribed error’limit end the miﬁimum

length. As can be seen, if the error limit of fittiﬁg-line segments to
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a curve decreases,~ then the number of breakpoints, in genefal,
Increases. Another reason 1is ‘that the breakpoint from the first
subdivision is not necessarily a high curvature point ’when the
boundary eurve is closed (for this reason, the breakp01nt of the first
subd1v1sion can be chosen at the midpoint of thé‘boundary curve) To
refine the breakpoints for the boundary curve, a readjustment procedure
is needed.. The readjustment is done by suceessively‘ testing if two
consecutive segments of “the polyline-approximated curve can be merged
into a single segment . to fit a straight line within the prescribed
error 1init of ‘distance. If so, the new segment replaces the two
. consecutive segments. If not, a point on either of the two consecutive
segments which breaks the combination of the two consecutive segments
into another<t¥9 segments with smaller fitting‘error than before is
selected. The two new seéments are used to replace the two previou;
ones. This refinement is repeated' until no further readjustment of
breakvoints can be made.

After the polyline approximation ef a boundary curve; the conic
sections 3;3 fit to subsets of successive segments of the‘beundary
eurve tdhﬁgve the‘curve‘approximated with a list of conic segments.
This is done by successively testlng if two consecutive segments can be
fit to a conlc equation | | —

a X + a, X Y + a, Y + a, X + a, Y + 1 = \
where the pair (X s Y ) represents every point in the two segments

By using the pseudo inverse method to minimize. the squared sum of

the equation errors -
‘ ALz A Av2 AL A
fX ,¥Y)=axXx"+2xy +a¥ +aX+ayYy +1
177 174 27174 31 41 U5y

for all points in the two segments, we .can obtain the estimated conic



37

CA
parameters: a

Qz, 23, Q“, and Qs' The fit is acceptable if an error .

measure is within a required limit. The error measure is defined as:

E irMax(Min[dx(Xj,YJ),dy(Xj,YJ)] [”52; all breakpoints, j, in C )
where C'is the union of the two consecutive segments. The first segment !
in C can have multiﬁie breakpoints, as it can be a previously merged:
coqic segment. The measure dx(Xj,Yj) is Fhe‘ disgance of tﬁe 5oint
(Xj,Yj) from the intersecgion of‘the calculated conic arc and the line
Y = ij Likewise, dy(Xj,Yj) is the distance of the point (Xd,Yj) from
the intersection of the calculated conic arc and the line X = X l

If thé " fitting of conic 'equéﬁion .is acceptable, the two
‘gpnsécutivé segments 3are assimilated into a new conic segment. The
fitting then contiﬁues for the new conic segment and the next line
segment in the :béundary curve, If, however, :tﬁe fitting is not
accepﬁable, the first of- the two consecutive segments is‘refitted by
using'é nonlinear>conic fit;er (to be discussed laterAin this section)
and then saved as such, and a new fitting process begins for the second
segment and the next liné segmént in the boundary curve. This merging
processgterﬁinates when all line segménts of the curve are’ tried.

The éforementionedv conic fitter (which is‘,Linear in the conic
parametérs) minimized the équared’sum of equation errors, which may not

always correspond to the minimization of conic parameter error defined

5 .

A 2 . . .

as Z (ak- ak) , where ak is the actualuparamter usually not accessible
k=1 :

and Qk is -the estimated one. In fact, the linear conic fitter favors
curves with high average radius of curvature'value (Ballard and Brown,‘
1982). Thus, a hyperbolic equation may resuli-when attempting to fit a
partial elliptic curve in the image (especially when the partial

ellipse is smaller. than half of the entire ellipse). To rectify this
4 .
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situation, each conic arc, -prior to being saved, 1is refined by

,minimizﬁng the error (Ballard and Brown, 1982):
. ) 2 ’ ’
n | f(Xiin)

)

1< ”Vf(Xi,Yi)"

where f(Xiggi) is the equation error as defingd above, and V isvthe
gradient operator. The pair, (Xi,Yi), is for ‘every point in the conic
arc, and n is the number of points in the arc. .
A : . :

After the two-stage algorithm terminates, there will be a list of
conic arcs and of breakpoints. The breaépoints are processed further‘to
generate stable critical points. Stable critical points are those
breakpoints(whose two neighboring segmentf are loﬁger than a required
'length (e;g., 50 ‘pixels). This process is to eliminate thé bfeakpoihts
in a noisy portion of a curve (Fischler and.Bolles, 1986). 

For the detected primitives, the significance and’ reliability .
are determined. Significancé is a strength measure for the evidence of
thev présence of. a #ertain object, andl reliabiliéy is an. accuracy~
indicatof of the measufed agtributes or parameters. In general, a full
ellipse is mbst significant and'most reliable. Partial conics can be
significant but their computéd‘paramete;s may not be reliable. Straight
lines are less significant than conics of nonzero curvature, but the

~

measured attributes of straight lines are more reliable than those of

partial conics. Obviously, longer lines have more r=liable computed
attributes and more significance than shorter lines. Overall, c¢ritical

points have the least reliagié attributes, except for junctions of two
C R
or more edges. For comparisio

\

v b
n of significance and reliability of conic

primitives, see Table 2.1 and Table 2.2. ' . .

T



‘Table 2.1 Reliability of Measured Attributes for Conic
Primitives (in decending order)

Full Ellipse

Ellipse or hyperbola with spaning angle > «
long line (e.g., > 20 pixels) v €
ellipse or hyperbola with spaning angle <
short line (e.g., > 6 pixels)

. vertex of edges

critical point

~NoouvmpwNo R

Note. Reliability is an accuracy indicator of the measured
attributes or calculated parameters.

Table 2.2 Significance_gﬁf&eﬁélted Conic Primitives
- (in decending order}“// .

r 3

1. Ellipse or hyéerbola (the larger spaning angle the ‘more
significant)
" line (the longer the more significant)
vertex of edges Y
critical point ‘

W

Note. Significance is a strength measure for the evidence of
the presence of a certain object. For individual image
_primitives, the significance is listed in this table. However,
after index feature grouping, the significance may change;
e.g., a four-line -quadrilateral may be more s gnificant than a
single ellipse in imdexing the originating object. For index

feature groups, see Figure 2.1.

’ ' . - |
Representation of Detected Primitives. After primitives. are

dvetec‘tgd',‘ .they'are repr‘esénted ‘and‘arranged in order that relaﬁions &x
between primitives can be easily obtained. For example, parallel lineél -
are thos; iines with similar slope value.‘-Another reason fqr
representing detected image primitivés is that, wheﬁ\«mﬁdel-driven
Satching is used, image.primitives which are probable candidates for a
.given model primitive can be easily retrieved. 1In the current

implementation, three ' types of cells (data structure) are used

sepc  .tely for the three types of primitives: eliipse\and hyperbola,



40

line, and point, as shown in Figure 2.2

* When an e}lipse (or hyperbola) is detected, its two endpoints,
arc length, parameters, enclosing rectangle, and spanning anéle are
captnred'in a cell structure, like the one in Flgure 2.2. (a) The arc
length is deflned as the .number of pixels in the detected arc. The
parameters are the conic coefficients calculated by the conic fitter.
. The enclosing rectaﬁgle is defined as the smallest rectangle which
encompasses the‘detected arc in the image. The rectangle is expressed
by two points. One is the upper—left corner, the other is the
lower-right corner of the rectangle These two corners are expressed in

image coordinates, i.e;} the  set of 512 plxels in X-axis and 480 plxels
in Y-axis. The spanning angle is defined as the angle between two
diameters (lifles through the center of ellipse or hyperbola) passing
through the endpoints of the detected arc. For example,‘a full ellipse
“has a spanning angle of 2m, and a half ellipse has a spanning angie»ef
. )

The elllptlc or hyperbolic cells are linked to create a table by
using the Y coordlnate of the upper- left corner of the enclosing
rectangle as itsv‘column ordlnal, and the .X-coordinate as the row
vord%nai (as in Fignre 2.3). In addition to-tne cell table, a'cell list
containing_pointers to c5nic cells is created. The list is sorted by
using the arc length as ordlnals so .that the cell with longer arc are
placed ahead of those with shorter arcs.

When a‘line is detected, its two endpoints, length, slope, and

R
2

Y-intereept- are stored in the cell . structure, as, shown 'in Figure
/ -

2.2.(b). The slope, m, .and Y-intercept, T, are obtained by fitting the

equation, Y=mX+ T, to all points in the detected line. In the case
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where m ~ @ or |m| > 500., 1/m and X-intercept are stéreq\;nstead of m

. ~
endpoints of each line is created. The table‘is\simi ar to the one in

-

and - Y-intercept. Like conic primitives, a tablevg?n 'éérms of two

Figure 2.3, except that both endpoints of the line are used as entry
keys. That is, each line cell is pointed to by the tablgftéice insQeaa
of once. In addition to the table, two list§ of pointers to line cells
ié created. One is sorted by the line lengtﬁ, and the other by the liﬁe;
slope! ' ‘ A\
Point cells like Figuré 2.2.(c) are used fof‘thé'detected points.

Like conic and iine cells, a table in-terms of the point coordinates
are crgated for alIMpoint cells. The table is similar to the one in

Figure 2.3.

conic cells . ’ : line cell

type : ellipse or hypebdla iength: number of pixels
length: number of pixels endpoints: P1(X1'Y1)’P2(X2'Yz)
endpo;nts: Pl(xl'Yl)’P2<X2'Y2) slope: m
‘parameters: a_,a ,a ,a ,a intercept: T

1772773774 s ‘ —
center: P (X ,Y¥Y ) ' - (b)

B o} [+ c A
aréa: Pul(xul'th)’Plr(xlr'ylr) . oint cell
angle: between PlP and PzP P €
[of c
(a) cootdinéte: P(X,Y) ‘
edges: conic or line cells

(c)

Figure 2.2 Three kirds of cells for three types of primitives.
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Figure 2.3 A conic cell table using the upper-left corher of the cogkc
cell’s enclosing rectangle ' as the sorting keéy. The column contains two
fields? the first contains the value of Y ., which is used as the entry
key, and the.second is a pointer ‘to a row'of items with the same value
of Y- «.Items in the same row are sorted ‘according to Xul value. Each
item'in rows has three fields. The first field is for the value of X
the second contains a pointer to the corresponding conic cell, and Bhe

Indéx‘Feature Groﬁpiné. Although the primicives detected. by using
the aforementioned metﬁod can be. matched directly to mo&éls,.it is
‘'still gncertain‘wheré in{the image the matching process should start
and which object model should be selected prior to others. One possible
'solution is to use featﬁre groupg of primitive p;opertieb and -
relations. A feature group is a combination of the‘pfoperties and
relations of nearby primitives. After fe;tures are'groupéd, the most
significant feéture group is. used to initiate 1ike1y models and to
foémulate Lypothesés for métchihg. Simply éutf the ‘index ‘feature‘
grouping is to detect thg most significanf cluster of primitives and
their relatiQns in the image, and it is used to formulate‘probable ”
Jhypotheses of correagopdénces_ betweeﬁ model primitives agd ‘imagé

. primitives. - - ®
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rIndex.feature groups can include ; full cenic section, conic arcs
ord lines which intersect or neighbor eacﬁ' other, parellel ’lines;
perpendicular lines, U shape of three 1ines, trapexoid‘shape of four.
lines (Lowe, 1986), skewed symmetry; of four 1ine; (Kadadej 1981)!
vertex of mulriple lines or "curves (Guzman,;l968 and Waltz,'l97$),
number of critical points in avboundary curve, composition of cohrc and’
llne segment of a boundary curve, or Fourlerlcoefflcients of a bodndary
curve. Currently, only 1ntersecting conic arcs or lines parallel or

perpendicular lines, and vertices are used. Once index feature groups

. are obtained, each group is expressed in a conJunctlve normal form

(like those in rhe 1eft column of Figu 2.1), and is used to match the
preeonditions of'rﬁles in theAentry columns of the index table. Figure
2.1 shows an example of an 1ndex table with the precondltlon in its
left column

It should be noted that an index feature group is used te index
1ikely hodegé; and.it does notfneeessarily have a model counterpart
‘(i.e., no entry for it in the index taBle) since  the group day be toe
blg‘and may include parts from dlfferent objects.. Hence, there is a

. trade- ogf between the. Slze of th%%&roup and the rellablllty of the
-/ _» o 3 :, . !

i. N A .
group. The rellablllty of théj@g“] &dimfﬁ?shes,as the size or the area

of a feature group grows This }rally true  when one attempts to
‘cluster a group of image elements and then gi¥en ' the grouﬁ an

abstracted name for later ‘processing, as is often used in icon-based

computational vision.

The index feature grouping is different  fror 7e segmentation.
. -

Segmentation -or par;ing; in general, tries to sep. ce image regiens

corresponding to different obJects so that the recogmn idtior can be ‘done
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by. finding which object can generate the characteristic in a certain
region Despite a lot of literature on segmentation, it ig generally
agreed that segmentation of intensity image is very difficult, as
'different objects may produce the same yisual characteristics (e.g.,
intensity, shading, texture, etc.), and object boundaries may be
obscured by shadows or occluSions. In contrast, the index feature
grouping is used to form hypotheses about the detected features without

forcefully segmenting the - 1mage ‘'region. The hypotheses are
subsequently tested to be reJected or augmented by a hypotheses tester
(to be dlscussed in next section).

The 1nden feature grouplng (IFG) is 51m11a5‘to the local feature
focus (LFF) by Bolles and Cain (1982) ' The IFG and LFF both start.with
the 51gn1f1cant features and concentrate_ on their nelghborhoods but
one major difference between the twe approaches is in the matching

¥

stage.. The cluster of features genera.ed by LFF is matched to object

' models by using a graph matchlng technique to establish. the largest set
of correspondences between the cluster of 1mage features and features
of a selected model. The graph natchlng used was ' a nax1mal clique
algor thm A, cllque of size n is a graph. of size n whose nodes are
‘totally connected to each other with arcsi The maximal-clique algorlthn-,’
'determlnes a- completely connected subgraph of maximum side from a given
graph The nodes ‘in  Bolles and Cain's graph _are \the possible
correspondences between 1mage features and model features An arc is
%kglven to .connect two nodes if the two correspondences are onsistent.:
Another naJor dlfference between IFG and LFF 1s in the task dc. ‘‘n. The.
method by Bolles ‘and Cain (1982) is for recognitlon of 2" objects

EY

(e.gt; flat hlnges) out of 2D,images, while the IFG‘is'for recognition
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of éD objects‘frem 2D>imegee.v , ; , ‘, , . -

, ’The index feature grbhp is similar to Lowe'’'s (1987) perceptual
groeping, in which lines are grouped together‘by uslng the principles
of proximity, parallelism, and collinearity. <The grouped lines are used

~as indexing terms into models for reducing the matching effort. In
his formulation, Lowe (1987) derived numerical measures of significance
to accounr for the local density of features (or scale). It could be:
argued that IFG discussed here is a direct extension of Lowe's
perceptual grouping of lihes to that of conic sections wiehpﬁt taking.
into account the local depsity of'features.. .
2.3 Matching Image Prihitives and Model Primitives
To recognlze ,obJects from’ en image 1is to establish consistent
correspondences 'betWEen image elements and model elements. To
< illusérate the computational eomplexity‘of the matching,*cohslder the
problem of establishing L conslstent matches between. I #mage elements
and M medel elements. Clearly, we have IxM p0531b1e palrs for the flrst
correspondence, (IxM-l).possible pairs for the second.correspondences,
~(IxM-é) fork‘the third,\‘ahd so ferth; Thus, for- thie; problem, the
maximum number of [I;M] or roughlyvv(IxM)L potential pairs are to be

tried. This worst case'iS’equiralent_to seerching:every node-iﬁ a L

level tree, in which each level has IxM‘hodes. .

In. ordér to reduce the computatlonal _complexity,..two simple:
approaches can be'takeh.VOne is to reduce the humber of image elements

or the number of model elements. This leads to the use of primitives (a

‘cluster of elements). However, a primitive cannot be too large, or else

it may not be reliable since it may ineludevelements that do not beloﬁg

-
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‘to a detected primitive. Usually, the primitives are chosen to .

v

properties; , -example’, corners,. lines, and conics. The other way to
MR ’ : N / : h .

correspond ‘;:;//physical items that have identifiable physical

reduce computﬁtionél ‘complexity is to use constraints or available
[ '\\’,ﬁ,

e e

knowledge to prune the‘fr&itless'branches in the search tree and order .

the matching sequence in promising branches. Three\ types of

-

constraints, .according to the taxonomy in Chapter 1, are be used. They
dre object-induced constraints, projection-induced constraints, and
transformation-induced constraints.

The object-induced constraints are the properties and relations

encoded in the object shape ‘(note that surface reflectance, texturg,
. . B . ! > °
and colour are not used here). The first, step in applying

3

obJect induced constraints is- to encode object prlmltlves and their
geometrlcal propertles and relations rp nodes and links of the stored
models. Further certain knowledge about an obJect is abstracted as

’

rules and stored in the model for that obJect The second step in

- using object-induced constraints is to retrieve the enfoded Lrowledge

to avéid unpromising  paths - and to o8Jer the matching sequence at
. . 'Y I .

different stages of matching.

" The constraints from" perspective projection _ are the

inter-relations like the ones in Table 2.3, It is ﬁ:fl known that,

under perspective projection, regular conics are prOJected into regular

conies, though not. necessarily of the same type. QRetorys 1969) ‘Table

A
2.3 is derived under.the’fact that the v1ewedﬂéonics are in front of
the camera. A proof of Téble 2.3 is glvena in Appendix A. The

inter- relatlon between image prlmitivesgand model primitives can help
4 :
inltlate plobable models to match a- Speciflc pr1m1t1ve in the image
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. ‘ 5 ’ . . ' . S .
Another. type of projection ‘constraint 1is the index feature group
discussed earlier. The underlying assumption for index feature groups

is that, if certain primitives of the objeEt appear in.the~image then

'k
other neighboring primitives of the same object are likely to appéar hm

i
®

the neighborhood of the 1dent1fied image prlmitlves To 111ustrate the
use of proje. . icr constraint in reducing matching effort, consider
again the pro.. a of matehing I iﬁage, primitives and M  ‘model

primitives. Suppose a data-drivenvreasqning method is used; that is,

s
o BV

image primitives are selected and then labelled a%ﬁ“bertain ~model
[ & 7

[

primitives. If a most significant image primitive (an primitiﬁe most
likely to have a counterpart'in:a certain object model) is " always
available at each level of the searbh tree, then the computatlonal

complexity of the problem can be reduced to’ (Miik 1’y)L 1nstead€ of
e 4 .

(IxM) , where Mlik L is the number of likely model primitives to be
ely B : s i .

paired with the selected significant image primitivei here likely model
primitives for a given image primitive are' those model prinitives
satisfying some found constraints; e.g., if an imege llne is f;une to
be parallel to another image linef the'likeiy mbdel'primitives are

model 1ines that are parallel to other model lines. The“reaee% for the

reduction in time is that the selection of significant image primitives
aveids the need for trying image primitivesf that may{;haVe 'ne
counterperts in the' model. In addition, ; smailer number of model

primitives are needed to be matched to the selected image primitive, as

is generally much smaller than M.
likely
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Table 2.3 Projection of Conic Sections

Model :
5 priﬁitives.iPOint Line [Ellipse|Hyperbola|Parabola
Point| Line (Ellipse|Hyperbola Ellipse
Image : :
X Point+| Line+ line= Hyperbola
primitives ,
. 5 Parabola
! Line~

Note The object containing the conic sections is assumed

to be in front of the camera.

The image primitives marked

with "*" are the degenerate cases which seldom occur,

The common fate principle of transformation constraints means that

if & solution of:object location (orientation and position) is found

from the»established correspondences

I

the solution should be valid for

'

other correspondences that are consistent with the establlshed ones.

A

Tth prlnclple is-used with obJect 1nduced constralnts to test if a set

of correspondences is consistent,

C s

and to predict new correspondences.

As indicated in .Chapter 1, two-ways can be taken to use the common fate

[

principle. One is to propagate - transformation constraints (formulated

as Lnequalltles) over orlentatlon parameters and p051t10n parameters

The lnequallty, when or;entatlon is parametrized by using quaternion

(to be discussed in Chapter 3), is of

quadratic form. Examples of these

inequality constraints are given in Appendix B, and the closed-form

algorithms  for propagating quadratic constraints over its parameters

vare given in Appendix C.

However

‘o

experiments with propagatlng

constra;nts over intervals of q. (the quaternion ‘vector) and P (the

p051tlon vector) indlcated that a large number of correspondences have

to be included to prov1de suff1c1ent constraint to reduce the 1nterva1

of q and p to a managable size.

Also

a large number_pf correspondences

J
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have to be included to detect an inconsistency among them. This way of

applying location information is found to be inefficient, at least when

‘formulated as shown in AppendlxlB. The inefficiency increases with the
number of unkno&n parameters. T@Ré,ﬁghi; appllcation of'the'commdn
fate prlnciple was not used in impléﬁe%cing theﬂproposed method.
Another way of using the common fate pﬁéﬁciple is to initially
locate the object with avmin%muﬁ number of“eorreSpondences (e.gl, one
ellipégﬁl three lines, or three points), and then use tpe estiﬁated
object location- te. predict and establish new correspondences. This
approach proves very-effiéient\and was used in the implementation of
the proposed meéhod. To Illustrate the efficiehcy of using .the
estimated locatlon information,$ consider the matching problemxfor I

image primitives and M model primitives again. Suppose the object

=
WLt

location is available, and a model-driven reasenlng is used; that is,
model primitives are selected first and then labelled es certain image
primitives. Since the object location is known, visible primitives are
projected by using the ideal perspectlve model and the most significant
model primitive (e.g., a model 1line hav1ng the longest length after

prOJectlon) 1is selected and 1abelled asooge “of the image primitives in
Rl”v
the nelghborhood of the ideally prOJected primitive. As' can be seen,

. . ' ' L :
.the computational complex1ty can be reduced to (I Cenb ), where.
] neig or o

I Lebb 1is much smaller than I, because only image primitives near
. ne1lg or .«

the predicted location in the image are tested, instead of primitives

in the entire image:.

L

Obviously, purely model-driven mafching by wusing 1location

- . . .
‘information is not initially possible since the object’'s location is

:

not known in_ advance. Therefore, at the initial stage, index feature

~

v
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groups are used to form hypotheses with a minimum number of

correspondences, Thefeafter,’the location information from the minimum

coxrespondences is used to predict and establish‘new cortespondences

When additional correspondences are included, we update the estlmatlon

of object location. This, in turn leads to more accurate predictlon%;f
o .

other correspondences. Thus, less effort 1is needed to obtain

‘correspondences at a deeper level of the search tree. In such a case,

the complexity of matching I image primitives and M model primitives

3 L-3

becomes (M Y (1
likely neighbor

, if the minimum number  of
correspondences is 3 (e.g., line or point correspondences), If one
ellipse correspondence is found at the beginning, then the complexity
: - :
becomes (M ) (I .
likely neighbor
Having understood the saving im time of using significant features

and location information, we now discuss details of the functions in
. et

the proposed matching method for object recognition.

Indexing Likely Models. ‘Once significant feature groups are
extracted as dlscussed in the previous sectlon they are represented in
conJunctlve normal form in predlcate logic. For example, e»group of two
parallel 1lines 1s‘expressed as parallel(Ll;Lz) A line(Llf\A line(Lz),
and a group of ‘intersectapg ellipse and 1line is represented as
1ntersect10n(EgdA) A 11ne(E1) A 11ne(L1) | To retrieve likely models,
the most significant feature group (one. that can strongly 1nd1cat;
which object generates the features inlthe group and oan provide strong
location information’ of the object) is selected The logic expre531on
of the selected group is then used to- match preconditlons of the rules

in the' index table - Those rules with matched preconditions are

triggered ‘to “index . the 1likely modelsw Figufe 2.1 in Section 2.1
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illustrates this teble-look-up operation. If no rules in the index
table can be triggered, either a subset of the conjunctions ofythe

selected feature group is used to have a relaxed preconditions for'the

table look-up or another feature group is selected

Formulating Minimum Corresgondence Hypothesis. As will be seen in
Chapter 3 the minmum number of 1j e or point correspondences'nee;ed to
located an object in space_ié,three, and that of elllptlc or hyperbollc
correpondences is one. Thus, a formulated hypothesls is required to
have the minimum number of corre;pondences such that the hypothe51s can
be.teeted by rhe hypothesis-tester using‘location recovered from rhe
oBtainedvcbrrespondences. When a likely model is initiated by the

index table and its primitives are matched to the primitives in the

index feature group, sufficient constraints may be ‘available to locate

the object in space. For example, when the'feature group is of%
than one eilipse, er three-line vertex, or four-line trapezeid. In such
a case, correspondences are used directly to form a hypothesis and
routed to the hypethesis-tester (ro be discussed later in rhis
section). However, in cases where correspondences are not sufficient to

locate the object in space (e.g., a feature group of two near-parallel

additional correspondence is needed to have the minimum

correspondence. For example, when two parallel line correspondehces are
obtained, the most needed line correspondence is the one whose model

s mot parallel to the two matched model lines '(since three

parellel line correspondences are not sufficient in locating tﬁe

object, as will be shown in Chapter 3). Hence, any line iﬁtefsecting
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either of the matched lines in £he model can be selected and matched to

image lines which’intersegt the two near-parallel image lines. In this

- Y ’ A .
. . ,
case, .of course, several possible sets of minimum correspondences

R . o g . o .
exist. These possible sets are treated as prghsble hypotheses to be

tested by the hypothesis-tester. The operationsﬁféq%%red 1o

hypotheses are shown in Figure 2.4, ’ 4 5
: , _—
g4
'An intensity image
Edge extraction » o
and classification \_
7 Detected conic
s e . sections, lines,
Primitive detection —_— R n; —
and critical points
. L__in the image
Index feature T 55 ‘
, . Eae
grouping o
- - . Wireframe models
Using index table to . - .
e < <———|/of ‘conic: sections,
initiate likely models .
— - i— lines and .
: critical poihts

Formulate minimum <t
o correspondence hypotheses|<
v and append them to the
bottom of hypothesis queue

Hypothesis queue

Figure 2.4 Block diagram of the minimum-correspondenqe( hypothesis-
formulator. Single-line boxes are operations, and double-line boxes are
datablocks or databases. The solid-line arrows are for ‘control flow,
while dashed-line arrows are for data flow.

Testing Hypothesis. When a hypothesis is .routed to the hypothesis
tester, the hypothesis’ contains sufficient correspondences to locate
the object in space. Hence, ﬁhe»first step the‘hypothesis-tester takes

is to. call the 1ocating modules (to be' derived in ‘Chapter 3) to
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estimate the object pose from the obtained correspondences. Then it
N ;
uses the recovered location to test 1f.thepobtained correspondences are
mutually consistent'(tﬁe consistency test is to be discussed later’in
this section). 1f incbnsistency exists, fhe hypdfhesis-téster rejects
the current hypothesis and takes on ﬁhe next hypothesis in the job
qﬁeue. If, however, the correé;ondences gre,found.to-be consistent,.the
§ypothésis-testér calis the predicter to prediét the Viﬁibilifyv.of
other primitives éf the initiétea_ggdel by uéinglthe recovered object
location.‘The prediéter also generates prédicted image aﬁtibutes of
each visible primitive. For example, 1length and slope of prédicted
lines, and length aﬁd occupied area of predicted arc.:These predicted
v

attributes are.used to evaluate the significance of predicted image

primitives. For example, the longer an image line or arc is, the more

1

sigﬁificant it 1is. The model primitive. Qith théﬁ*most significant
predicted imége counterpart is selected t; be matched to those detected
image primitives whose measured gttributes.are close to the predicted
attribﬁtes. For example, those image lines with élopes and océupied
areas close to the predicted slope and occupied area arevcandidateg to
be péired to the selected model primitive. Wofking on these.candidate
image primitives with the ‘seiected model‘ .primitive, the
' o e
hypothesis—tester incrementally augments the set of correspondences and
" then tests themlby“repeafedly éallingvthe'loCating modules, consistent
‘ tester, and.prediézor. The cycle of 1ocalizat19n, consistency testing,
prediction, énd ‘adgmentation cqntihﬁes until the set of consistent
cbrréspondences meets Sbe>criteria of confirmation in thg inifiated

model or no possible consistent correspondences can be augmented.

Figure 2.5 illustrates the operations in&olved in  the

1



hypothesis-teetiﬁg cycle. -

In testing consistency of correspondend¥s, we define two
predicétegﬁ attribute-fit() and area—fit(}. "~ The predicate,
attribute-fit(d, 4, ¢), is TRUE, if |d-&] < ¢, and FALSE, ~therwise.
The\argﬁment, &; is.a measured aftribueevof an image primitive, and a
is'the projected‘attribute of the corresponeing_model,primitive using
the ' recovered objece locetion. The argument, ¢, is the makimum
tolerable error. The eecond predicate, area-fit(X1,Y1,X2,Y2,§1,91,
R2,92,¢,6), is TRUE, if ('xi¢,Xabe] N Rig Re401) / [Kaog Xerg) = g
and {[Y1-¢,Y24¢] n [91-§,Qz+§]) / [Yl-o,Y2+o]. > é.’ therwiée,’ it is
'FALSE. The arguments, Xi, Y1, Xz,.and Y2 define the rectangle eﬁclosing
a detected image primitive, and 91, 913 92, and 92 are their
corresponding>projected values using the recovered object location (see

'Figure 2.6). The argument, ¢, if the offset for the definedvreceangle,
and ¢ is the minimum required percentagéﬁbof overlap between the
. meagured rectangle and the projected rectengle. For convenience qf
discussion, the two predicates will be referred to with the name of the
attribute or the ‘two points defining the aree instead of full
argumernits. For example, the fit of the slope of a line isiexpressed as
at . ~ of the line). Therefore, conditions for different
~ands of primiti- ¢s ~ be consistent with the estimated location'are
d~fined as fellows:

A elliptic ov hyp -bolic correspondence is consistent with tﬁe
T .covered location if |

ettribute»“ittX ~ the center) A attribute-fit(Ybof the centef)

A attribute-f7 _jor Semi-axis) A attfibute;fit(minor Semi-axis)

ar a-flt(v :r-left and lower-right corners of the eneldsing
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“y

£

window)'.
A line correspondence is consistent with the recovered object’

. cation if :
attribute:fit(slope) A attribute-fit(Y-intercept)
U A ~ .

Afarea-fit(two endpoints of the line).

v 7
i
v

A ppint "correspondence is consistent with the recovered object

location -

& attri.. rit(X of the point) A‘attributelfit(Y of the point)

Chapter Summarv4 [i new “1ocating-labelling paradigm" has been
discussed in detail in this chapter. Three components in the proposed
method are addressed. The first is the representation of object models.
‘The second includes the techniques for detecting conic primitives in an
intensity image and ‘the” representation of detected primitives. The
third component contains the initial formulation of hypotheses and the
testing of hypotheses. The hypothesis testing involvesutne cycling of
“localization from‘ hypothesized matchesg consistency testing_ of the
matchesrwith recovered location,‘th? prediction of additional matches,
and  the augmentation of the set of~ hypothesized matches. .The
“localization process - é%om hypothe51zed magches is the most 1mportant‘

#

part of the 6 proposed . "locating&%abeyling" method - for object

recognition. As such all t@chniques addressed 1n thrﬂgfdhapter-‘are

J

2

selected or’ dev1sed 1n order to apply the locatlng algorithms in

“'1ocalizat10n process, and to exp101t the - 1nformat10n from this process,
ﬁ"&’ 4 : X

3 -

Ei
“The algorlthms for loqating an obJecv'from correspondences of conic

primitives will be discussed in the next chapter.
| .
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From minimum

Pop out the top correspondence .
—> <=
. Hypothesis in queue H hypothesisvformulator
| append |
Call locating modules to : , ; to the .
estimate object location { ) bottom |
fe— hesis |<———
with obtained matches Hypot i :
queue
: . ush
A to &
[e) . . t . ' H H
N Is the se .?f ) : the top!
A matches consistent? : ;
- v H
Yes
, Job sequencer
Does the set of .
correspondences meet the ,
‘termination criteria in |Yes recognition
the initiated modél - . o complete

No.

_ Wireframe models
<—>|lof conic sections,
lines and
critical points

Call predicto to predict
visibilities of other

primitives and s>

their attributes

Use predicted attributes Detegcted conic
" to form hypotheses of sections, lines,
additional cdrrespondences and critical points
e in the image

AT

Seor

order the newly formed
hypotheses and push them
into hypothesis queue

Figure 2.5 Block diagram of the hypothesis-tester. Single-line boxes
are operations, and double-line boxes are data blocks or database. The
solid-line arrows are for cbnﬁy’jgflow, while dash-line arrows are for
data flow. : , ‘g; ' zy

A
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*'(Xl.Yl)
' . J(QI,QI)
I.

(X,,Y,)

- i
. &L

Figure 2.6 Illustration of area fit of a pfimitive. The solid line
rectangle&defined by (leYl) and (Xz’Yz)’ encloses the detected image

primitive.- The dashed line rectangle 1is the projected enclosing
rectangle using the recovered location and the corresponding model

primitive. The shaded area is the overlap of the detected and projected -
enclosing rectangles.
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Chapter 3. Object localization

‘e

&
Recovery of object location is crucial in certain tasks 1like

-manipulation of viewed work pleces in. manufacturlng For this purpose

it is often desirable to determlne obJect 1ocat;on 1n 3D after the

<

object has been recognized. In addition to its practical application,
the abilitfﬂ%o’determine object location during‘the recognition process
can greatly diminish the search effort required to match the given
image and its originating ’object .models, as shown in Chapter 2.

Unfortunately, this latter use in image interpretation 1is often
;
: /

ignored, partially die to the difficulty and time complexity required

to determine‘the 3D object location (e.g., a nonlinear Newton method is
14 .

used by Lowe, 1987, to find- the object location). To explolt

localizability and fast localization methods, thls chapter is devoted

to providing various algorlthms for determlnlng object locatlon using
'establlshed correspondences As w111 be shown, the minimum number of
line or point correspondences required to determlne obJect location is
three and that of - elllptlc or hyperbolic correspondences is one. Due
to the fact that meas;rements( on images are subject to noise, ithé
&
accuracy of locatlon estimation, in general, increaSes as the number of -
correspondences increases. Thus, the location -estimation goes from

coarse to fine as additional correspondences are assimilated.

In this chapter, the localization problem is categorized according to

T
DN

the number and stype of correspondences and treated separately in each
section. .

‘Before we move on, it is necessary to review the methods for

*
bl

- - 1‘, . 58
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representing the orientation of the object relative to a specific
coordinate basis. Although. there are many ways to parameterize a
rdtation'(Stuelpnagel, 1964), only four methods relévant to this thesis

will be summarized. They are the nine-parameter expression, the

roil-pitch-yaﬁ expression, the quaternion expression, and the‘Rodrigues
‘ i

&

expression. The nine-parameter expressioqg§imply uses a 3x3 matrix to
represent the rotation with the constraints that the rows and/or
columns of the matrix are orthonormal. The roll-pitch-yaw expression

uses three‘ consecutive rqﬁ@%ions afound three principal axes to ;-
‘characterize a rotation: . : , '
0 = RPY(6) = Rot(z,6z)Rot(y,fy)Rot(x, fx)
e CHZICHy CHzS0yShx-SH2Chx CﬁzsayC0x+SﬁzSz9x

T Sfﬂzcgy S8250yS8x+CH2C0x  SH25S0yCHx-CHzS8x ‘ (3.1)
-Shy COyShx ChyChx '

where 0=[6x;0y,0z]? Chx=cos(fx), Shx=sin(fx), bﬂy=003(0y>, Sﬁy=sin(9y),
C0z=cos(é;), and Sfz=sin(fz). The) operator Rot(aﬁis,anglé) is for tﬁe
rotaﬁion wifh the spécified angle aroﬁnd‘the,specified agis.
| iThe'quaternionlexpréssion uses theé rotatioq axis (around which tﬁe
Urotation takes place) and the fotatidn‘aﬁgie (the amount of roﬁation)
to,parameFerize ; rotétion: |
qi- qi‘ q§+ qf z(qquF“q5QG) ‘gzq1q31+ qzqa)
.O B 2(q1q2+ qaqa) -qj+'q2f q§+ qf ‘fg(d;qatf‘qlql)

. _ _ o _j‘?,‘ sZ - 2 2
2(glq3 9,9, 2(q2q3+ quh) © -4 4,7 9.+ q)

I3

PRI s 2, 2 2" 2
with the constraint that q1+q2+q3+qa~ 1. 2

In»the.quaternién expfession, the vector [ql,qz,q3]1 definés the
rotation axis and. 2§inﬂ(qa), indicates the rotation oangle. The
disadvaqgage of the quaternién gxpression is that it " uses - four
parametéfs go represént agmatrix with three degrees‘of ﬁréedom.»Since'a

Q
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C

direction in 3D space has two degrees of freedom, one of the quaternion.
parameters cédn be eliminated This results in the Rodrigues expression

- which uses three parameters for rotation axis and rotation angle to

Y s vy

°h‘"‘m°te”ze ® general rotation (Rosemberg, 1977). Let s = q /q,, z"-.

» .ﬂ

q /q ,and s, = q, /q . we have the Rodrigues expression for a rotation as

&

follows:

2 2 2 ' . -
l+s7-s"-5 2(s_ s -5 ) 2(s_ s +s )
. 1 2 73 172 173 "2

2, 2. 2.-1
0 = (1+s74s%4s”)
1 72 T3

3
2 2
2(s s +s ) 1l-g +sz-s
172 T3 172 T3 2
2(s -8 2(s_s _+s
( 153 2) ( 273 ~1) ’
where the rotation axis is specified by [s&,sz,s 1" and the rotation

, . a1 / 2. 2 2
angle is given by 2tan (1y sl+sz+sa)

Of these four types of expression, the nine-parameter expression
and the roll-pitch-yaw expression are used in - this chapter The
quaternion expression is used  'in Appendix B for constraint propagatlon

”The Rodrigues expression is used in Sectior. 3.3 to re-illustrate that
the number of solutlons for- the localization problem w1th three llne
correspondences- 1sv§our. When an Extended Kalman Filter (EKF) is used

¢ in Chapter 4, we use only the roll- -pitch-yaw express1on The quaternlon
I8

expre551on and the Rodrlgues expre351§h'are avoided in that context,

because the former requires more  parameters than needed, and the latter:

has uneven dlstributlon of value in parameters B 7{f

In the rest of the this chapter the symbol O and p are forathe
orientatron matrix and position vector, respectlvely If necessary, the
orlentation matrix is parameterlzed with roll- pltCh -yaw angles 4z, ¢y,
and fx. In all cases, the focal 1ength of the camera is assumed to be

known and its symbol is f. Th1s assumption is pract1ca1 because, even'"

for an“ahtp%focus camera varlous focal lengths can be pre- ca11brated
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and saved in a table for table-look-up retrieval. The camera 15 defined

in a right-handed.coordinate basis to have the X-axis 1ie"on’the
horizontal axis and Y-axis onlthe vertical axis of'the"image"es a
result, objects in front of the camera will have negaﬁf%éﬁz-component
in their relative p051t10n vector to the cam;ra gkigin Due to the
difficulty of using unique symbols for different concepts, thehsymbole

defined in each section are only wvalid for that section, unless

specified otherwise.

M3.1 One-Ellipse Localization (The E1 problem)

It is suff1c1ent’ to determine the object locatlon by u51ng a

‘correspondence between image and model ellipses The ~proof and_ the

procedure are given in Appendix D.l. As can be seen there, four

v

possible locations‘exist for the E1 problem. If one face of the'model

ellipse is known to be visible while the other is not, only two.of the

four solutions are physically possible. The two solutions are shown in

Figure 3.1 with the visible side facing the camera origin.

@ 4

However, when the model ellipse is a circle, one correspondence is

not suff1c1ent to locate the obJect since any rotation aroun&’the ax1s

passlng through the center and pjrthdicular to the plane of the}clrcle '

- »

can not be recovered In this case, we have 12 linear equations“for 14

&

unknowns (seex Appendix D). /Thus, én"additional line ‘r point~~*

i

. correspondence is needed to ‘have 14‘ iinear equations for the, 14
unknowns The two equations from the additional 11ne or point will be
derived later when we discuss line and point cOrrespondences in
Section 3.3 and Section 3-5. Alternatively,h see eouatione (b.2.1),
(D.2.2),‘(D.3.1) and (D.3.2) in Anpendix D.. |

Sy
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y The image . ‘ y
4 plane, z°=-1 Y

camera; 1
¢ origini i
2° 2Bl {

I

Figure 3.1 The perspective projection of ‘an ellipse defined on the:
plane z° = 0. The dashed lines are for the axes of coordinate bases.
The solid segment is for the ellipse sliced by the plane x° = 0. Let x°
be aligned with x°, the image of the ellipse is the bold segment in the
.image plane. On the other hand, when the image ellipse (i.e., the bold
segment) is given, there are two possible orientations for the model:
ellipse . to produce the given image ellipse if the model ellipse can
‘only be seen from the side of positive z°. One orientation solution is
the transformation of the 'solid segment to the camera origin, and the
other is the 180. degree rotation of the first solution around' the zal
axis. : : T

! : " . *

3.2 n-Ellipse Locéliz#tio; (The o proble;;iyhgféAﬁ_>_1)
When more thaﬁ‘oge ellipsé correépondeﬁce‘%s'aﬁéilabley bne has a
' set éf 12 equations, from Appendix b.l, for each correspondence: .
0Q-¢ - (3.1
0s+p=t . RIS
where Q ;nd s specify the transformakioh beFWeen the copie p;imitiQé‘
and the,model coordinate basis;‘ghey‘arevknowa‘and stored iq thé'ﬁédel.’
é and t specify the transfor%ation bétween the conic’ primitive and the

camera; they are obtained by using the ElLoc algorithm in Appendix D.1.
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0 aﬁd p. are the tranSfomatigp froﬁ model coordinate basis to the
camera coordinaté basis; the ’1oca1izati6n proble involvgs thé’
determination of O and P " » ‘ &

The pr;blem of determining b and p is now ovefr-constrained, since
we haﬁe 12xn equations for 9.parametéfs in 0 and 3 parameters in p (an -
ovér;consttaiﬁeg solution is uSually_dééirable for smoothing §S§ the
noise effect)..,Becéuse the equations are linear in the unknbwn ‘
paraﬁeters, an unique’ solution fof the upkqown; can be determined by
using a psquo-inverse method, in which the vector (ATA)-l(ATd),is the

solution for the over-constrained linear equation (Ballard and Brown,
“ v , :

1982)

ot

Ab=d - - B , (3.3)
. .

where:b is the unknown vector, and A and d are known ;onSCaqt matrix
and vector.
3.3 Three-Line Localization (The L3 problem)
Tﬁe algbrithm fof locating the object by wusing three 1line
correspondences i; dérived in Appen%ix D.2. The condition for‘thé three
" line locgtor,? L3Loc, to work is that the ‘three lines a;e .not all
pérallel and any two of the thrée lines are not collinear. . The maximum
‘number of possible solut;Pns from L3Loc for O and p are fouﬁf Since . the
algorithm is to solve 0 and p such that tﬁe projected modél 1iné§ have
the same slopes and Y;infefcept as their imagéVCOnterparts, regardleééﬂ
of their occupied regions, ;hoée‘of the four solutionsé§or 0 and p ;haﬁ
produce unﬁatched regions between the projected model linés and imége

Lines can be eliminated.

It is worth mentioning tHat the slopes of image lines are assumed
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to be finite in the derivation in Appendix D 2. Ih the case of a
vertical image line the inverse of line slope and X-intercept, Instead
of slope and Y-intercept are used to described the image line
However, the derivation in Appendix D.2 is still valid for the mixture
of these two. kinds of image line descriptions

It is not surprising to see that there‘are other ways than the‘
one given in Appendix D. 2, to solve the L3 problem One other way is to
‘Parameterize the 0 matrlx with Rodrigues parameters s, sz; and S,
From (D.2.1) in Appendix D, we have, for three 1line correspohdenoes,

three quadratic equations:

bl 0a = (s.,s ,s ,1] A [s ,s_,s ,117 = 0,

1 1 17273 177172 s

b’ 0a = [s.,s_,s_,1] A [s ,s ,s ,1]T -0 '
2 2 1’7273 2 'T177277;

b’ 0 a = [s ,s_,s +,1] A v
3 . T3t 1’7273 3

where bfa [-mif, £, Ti]/”[-m f i.,,Aand Ti are the slope

and Y-intercept for image 1line 'i. The unit vector a specifies the -

direction of ‘the model line of the i-th correspondence in the model

coordinate basis. Al, Az’ and A3 are 4x4 symmetric matrices.

It can be seen that there are, at most, eight solutions for the-
intersections of the three.quadrics.:One way to fiﬁdlintersections'of‘
quadrlcs can be found in the works by Levin (1976 and 1979) and Sarraga

4

(1983) *Once S S, and s, are found, we can then solve the position

3

Vector as:

pT.171 T 0'r

S IOC R I N
P - b% 2 0 r,
b otr

3 3 3

where r 1s any point on the model line, i, in the model coordinate

basis.
§

 Of the eight - possible solutions, only four of them have'ainegativel
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z-component in the recovered position vector, p, to have the gbject in

front of the viewing camera.

3.4 n-Line Localization (Thean problem ‘where n > 3)

If n > 6, we have at least 12 equations like (D. 2 1) or (D.2. 2) in\
-Appendix D.2. This 1is an over-constrained problem, and 'a unique\
: ,SélutiQH for 0 and p can be found by using the gseudo-inverse method

'»dsed in Section'3.2.2.

“1f h =4 or n = 5, multiple solutions for O and p may exist. Anl

iy |
y Nt

‘approach to téqﬁle this problem can he; the following two-step \
»algorithm: First, threedof‘the correspondences are used by the L3Loc

algorithm to obtain a maximum number of four solutions. Second, each
- Sl o ) ' ) : /
solutlon is- then used as an .initial guess in a two- -parameter IEKF

algorithm (to be derlved later 1n Appendlx E) to find the solutlon that

minimizes the welghted mean- square error of the 2xn equatlons given by

the n correspondences.

The three correspondences selected in the flrst step are those

Ya.

correspondences whose 1mage llnes .have more rellable measurements

(i.e.,-slope and’ Y- 1ntercept) than others For example longer image .
o

lines Prov1de more rellable slope measurement that shorter lines.
In the second step, there are 2 + 2 x (n -3 equatlons for the

‘IEKF algorlthm The first two equatlon are (D 2.9) and (D 2 lO) in

Appendlx D, whlch are dupllcated as. follows |

| b,6QFa ~0 R | S v(\3‘.4)

BIGQFa =0 o '-'/{ji'i :zif'”"»ké.S)'
. and ;v‘and T are the’slope

UHNH

where b - [ £, £, T ]/H[ m, f f T lH

and Y intercept for image -line 1i. The unit vector ai specifies the

i
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direction of the model line of the 1i-th correspondence in the modelmi
coordinate basis. The matrices F and G are chosen such that they .
satisfy (D.2. 4) (D.2.7). Finally, the matrix Q 1s‘defineq as G' O_F .

.Each additional correspondence, J (=4 or '5), gives two edditiona14

equations: T . .
bGQFa =0 - : ‘ (3.6)
3 ' -
bI ot :GQFr .
“bjcQFrJ-b? : :GQFr -0 ‘ (3.7)
J X
b TGQFr ’
3 3 N

<

where aiand bi are defined»in (3.5),Iand r is any‘point on theamodel.,
line, i, in the model coordinate basis. ) |

Since the pitch angle ¢ , in the Q matrlx is zero from (D:2. 8)
there.are ogiy two unknown parameters, e, and @ in the Q matrix to beV
‘estimated. . In using the IEKF: algorlthm or any other optlmlzatlon‘
algoritﬁm;‘ equation (3.6) and (3. 7), should be welghted dlfferently‘
" since a‘j is an unit vector while ;j is in real dlstance (e.g., in
centimeters). Ae in any gtadient methed, derivatives of (3.4)-(3{7)
reletivevto e and ®, are required in the IEKF algorlthm Generlc forms
of derivatives of measurement equations relative to roll- pltch -yaw,
angles for line or point cornespondence are derlved in Sectldn 4.3,

Once w and ¢ are obtained, we can calculate Q- and 0 _(fGQF).

Subsequently, we recover the p051t10n vector as:

T -1 bT O r
b b O0r
3 3 3

g
e

‘3;5 Thfee-Point Localization (The P3 problem)

Although the-P3>problem(can be solved b& converting it‘into a L3

¢ e
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:problem, closed form solutions via finging roots of ‘a fourth-order
i B w
 algebraic equation are derived in Appeﬁd

%D 3. Each real root of the

fourth-order equaéion corresponds to o &j;al
thus, the maximum number of solutions ?@
lndepondent result for the P3 problem mentil_‘ ‘.above is the same as
the one derived by Bolles and Flshchler'(l98l lflocate objects osing

- only point correspondences. ' :

3.6 n-Point Localization (The Pn problem, wheriﬁp > 3)
It is clear that, when n = 3, the Pn problem can be converted into
a Ln problem by using the n independent lines (or edges) which connect

the given points. However, in.some cases (e.g., n = 6 and n = 3), it

may be more convenient to solveAthe Pn problem directly than to solve
its corresponding Ln formulation. For n = 6, more than 12 equations
like (D.3.1) or (D.3.2) are available; consequently,'thé.pseudo-inverse
method can be used to obtain a unique solution for O and P. In the case

where n = 4 or n = 5, the Pn problem is transformed into.a Ln problem

rand solved accordingly.

3.7 Two-Line-One-Point Localization (The L2P1 problem)

If the given point‘is not at the in;ersectioﬁ of the two given
llnes, the L2P1 probleﬁ ,oan be solveo in a way lsimilar to the L3
"problem. Suppose the two model linég are oescribed by (ai,ri) and the
two image'lines by (mi,Ti), where i = 1;2. The symbols oi, ri,imi and
T, are defined in (3.5) and (3.7). Additionally, suppdse the model
polnt is given by r, and the image point by (X3,Y3). Following Appendixl

.

D.2, one has
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b 1% 0
i i -
P-|b b O r (3.8)
uT &I 0 r' . i '
. 3 3 ) ‘ .
b0a =0 ~ (3.9)
1 1 .
b:O a, ~0 . - . -(3.10)
.bT fl bT .
X % B
vor - vi b, b -0 SR (3.11)
3 z % ~
- u 0 r
3 3

T e ) T _
where b = [-m £, £.7.1 /|t mif, £, Ti]“, u_ - [f, 0, xa]/u[f,o,xa]”,
and v, = [0, f, Y1/ J10, £, ¥ 1], Note that the first matrix in (3.8)
is invertible if the given image pgint does not lie on thevintersection

of the two image lines

Using the similar technique as in Appendix D.2, the O matrix can

be obtained from-,3.9)-(3.ll). Subsequently, p can be calculated by

using (3.8).

3.8 One-Line-Two- Point Localization (The L1P2. problem)

If one of two glVen points 'is not on the given line, the L1P2
problem can be converted into the L2P1 problem to have two lines (the
given line and the llne passing the two given’ polnts) and a p01nt.
" (whichever of the two points ie not on the given line).

3.9 k-Line-n-Point Localization (The LkPn problem, where k+nA>‘3)

. If k+n 26, the LkPn problem is‘over-constrained and can be sol;ed
by the pseudo-inverse method. If ki+n < 6 and n = 3, the Lth problem
can be converted to the L(k+n) problem and solved accordlngly If kin <
_ 6 and ‘n < 3, the LkPn problem_ can be converted to the L(k+n41)Pl

problem which can be solved by the L2PI1Loc algorithm and a
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d&ﬁﬁﬁ;

S

two parameter EKF algorithm similar to the ome in Section 3. 3 4.

- 3.10 j—ellipip-k—Line-n-Point Localizatien (The EjLkPn problem)

If § =21, or if k+n > 6, the problem is.over-eonstrained and can
be solved by using the pseudo-inverse method. The remaiﬁing'cases of
Eijfn problem are covered in previous eeetions.

.Chapter éummary. In this Chapter, we have discussed extensively
the problem of object localization using correspondences of conic

primitives; 1t has been.,shOWn that three'_line/point or one
elliptic/hyperbolic corresbondence is sufficient to locate an object'in
3D with the maximum of four possible solutions. Additionai
correspondences to the minimum number of matches reeuired can provide a
unique. solution and‘improve the accuracy of the estimated 1oeat§on. The
Aknpwledge about the minimum number of (point, 1line, or ellipse)
correepondences required }or locating. an object in 3D is used in
Chapter 2 to formulate.a minimum correspondence hypothesis. The abriity
to determine'the 3D obiect location early (i.e., using minimum nuﬁber
of correspondences) in the“ object recognition progbss is shown in
Chapter 2 to be advantageous When additional correspondences are
tabllshed the estimation of the object 1ocat10n is reflned by u51ng
the algorlthms outlined in this chapter. The algorithm; presented here
cover all cases "~of the localization problem  using coﬁic
correspondenges. In addieion to their use 1in object local?zation; the
: N

correspondences of conic primitives can also be used to recover the 3D

object motion, which is to be addressed in the next chapter.

a
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Chapter 4. Essihation ef.Hoﬁioh Dynamics

Using an'Eitended'kalmanvFileer

)
As ‘mentioned earlier, the 1location and motion - information is
desired in p}anning trajectory and grasp fofﬁation for manipulatorsi”In
addition, the information can be used to verify the recognition of
object identities. The main purpose of this chapter is to address this :
problem by modeling the motion dynamics and'devéloping a ﬁethod'to
estimate its Parameters. The dynamic modei_used here assumes constant
velociey motion, though.ﬁigher order dynadics can be appended to it if

so desired. The parameters in the dynamics are six 'unknowns"for
: o

location (orientation and p031t10n at a spe01f1c tlme) and six unkndwns
for motion (rotatlon and translation between two sampllng 1nstaﬁts)

The problem of reeoverlng these ﬁ%knowns_ is formulated in “the-
Extended Kalman Filtef (EKF) format, .in which xhe measured primitive
attriﬁdtes- in the image along with models of ‘motion dynamics and
projection are used’to estimate the unknowns in order to minimize an
averaged mean-square;error at each frame. This chapterris organized as
foliows. Section 4.1 intreduces the.eoncept of EKF. The dyﬁamic and
measurement models are derived in Section 4.2 and Seetion 4.3,

respectively. Since each object has its own motion parameters, each

obJect can be treated 1ndependent1y Thus, the discussion below assumes

v

a s1ngle obJect

4.1 The Extended Kalman Filter (EKF)

The EKF formulationlhasfthree essential concepts: the aspect of

4

70
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-measured and predicted attributes, the aspect of "~ dynemic and
measurement models . to approximate the nature of motion and camera

projection, and the aspect of minimum-risk estimation. These concepts

are illustrated in Figure 4.1 and are to be discussed below.

——?————f% Unit delay
? i .
i Q(k) ? ' Real motion
| ITNN B RIS |
P(klk): o
- . &
: Extrapolation —
using . Camera
dynamic model . Rrojection
T
P(k+1]k) | | b(k+l|k) S : Fizzzﬁy‘
: P ' 23 Ptime k+1
3 L )
Extraﬁé}ation.
N .using
measurement model attribute
gﬁﬁ é " _ :H(k) é, d(k+l[k) meas$fement )-?§ W,
£ = : DRk | d(kel) D
¢ : ' “
d(k+1) - d(k+l1k)|},
. T .
Hf§k+1) ] (kL) - d(ktLk)
: ROkt | .
¢ 1 H(k+1)
‘Minimum-risk e-—¥i
trade-off . —
1 ; - o
P(k+1|k+1): b(k+l[k+1l) = b(k+1|k) + G(k+1) [d(k+1)-d(k+1]k)]
2. L 4 . . ‘

Figure 4.1 The block diagram of motion recovery using extended Kalman
Filter (EKF) approach. The double-line boxes are for internal processés
in the EKF, while single line boxes are for external processes. The
solid-line arrow is for passing attributes and' parameters, and the
dashed-line arrow is for passing covariance matrices. The symbols are
"defined in Table 4.1. : ' ’ '
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Table 4,1. The symbols used in the EKF formﬁlation. , )

d(k):----.... This measurement obtained at the time instant k.
b(k)----.... This wvector contains 6 location parameters and. 6
-motion parameters at time instant k.
n(k):--..... This random vector accounts for the unmodelled
' dynamics at the time instant k. :
v(R)-- oL, This xandom . vector accounts for the measuréement
v noise at theé time instant k. , '
b(klk)----.. The estimaﬁq 4 of b(k), 'conditioned on the
' measurement up to time instant k.
b(k+1|k)----The. estimate of b(k+l), conditioned upon  the
measurement up to time instant k. It is obtained by
_ . extrapolating b(k|k) with the known dynamic model.
d(k+1|k)----The extrapolated measurement rfor time instant k+1,
conditioned upon  the measurement up ' to’ time
instant k. It is obtained by ¢#trapolating b(k+l|k)
with the known measurement model. . : Re
Qk)-----.. »Covariance matrix of n(k). ' .
R(k)-"---.... Covariance matrix df:v(k)ﬂ .
P(kjk)----.. Covariance matrix of b(kik). ¢ -
P(k+1{k)-:--Covariance matrix.of b(k+l|k)." :
F(k)--+--... The derivative of the vector b(k+l|k) with respect
N - ‘to the vector b(k|k). ) : '
H(k+1).-.... The derivative of the vegtor d(k+1|k) with respect
: to the vector b(k+l|k). . i o
- G(k+1) ... A matrix with relates th® amount of update. .in -the-
o estimate b(k+l|k) to the différence between the -
»heasurément,d(k+1) and the extrapolated measurement
- ) ¥ : d£k+l]k)._}n fhis formulation, G(k¥1l) = P(k+l|k+?)
. ‘ CHO(k+1) R (k+1). - 00 @ ~ '
1 . (Ao

E

<

Measurefi Primitive  Attributes. Given a camera image of .viewed

‘ ' L v ) A
objects,, primitives sugEfas maximuQ.curvature point, lines, conics,
blobs,-surfac%s, andEQexﬁure patterns can be ddentified on the image.

.“ ’ « s “ s o .
“Congequently, the attributes of these image primitives can be measured;

The -attributes can be the .X-Y coordinates of a 'point, eslope ahd

Y-int%gcept of a line, or other properties for a shape “or texture.’
g ‘ K = . ‘ R i :

Clearly, the attributes of these primitives can be. measured by working

{

on "the given image alone.  Generally speaking, ‘these - méasured =

- -attributes can be obtained without knowing the nature of motion and
_ : e : .

o 2
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‘ projection and the shapes orfpfher properties of the viewed objectsf”“

o )

For convenience, the measured attributes at frame k are captured in the

_vector d(k) in- the rest of this chapter In EKF terminology, d(k) is-

called the"measurement at time k.

Predicted Primitive Attributes. In contrast to measured

. -

.attributes;” if knowledge (whether it is preprogrammed, acquired, or
hypothesized) about the viewed object shapes, the motion dynamics, and
thefprbjectien is available, primitive attributes on an image at time k

can be predicted before d(k) ' is measured and 'processed. For
. i . ' "

'attributes at time k2, conditiened upon the entire hlstory of

'meéburements up to time kl ‘In EKF termlnology, d(kzlkl) is called the

.extrapolated measurement for time kz, conditioned upon ‘measurements up

to'k1, It‘should begnbted that_in'predicting the attributes for the

N

current frame beﬁgre the they are actaally measured and processed the

1dent1ty of the obJect is assumed to have been recognlzed ‘in the

previous -frame. To predict the attributes, the '3D location _of .the

Ll

object  at the current frame.time is predicted and then the object is

perspectlvely prOJected u51ng the predicted. locatlon To predlct the

object locat1on, we need to. have the model of motion dynamlcs whlch

relates location ‘and mou .or. parameters at one instant, of.time to .those

‘ B «

parameters at other 1nstants of tlme To prOJect the obJect< we need to -

4.\know the measureMent model whlch relates ‘the attrlbutes of the 1mage‘

N cea N - .
N v ”

pr1m1t1ves to the locatlon and motlon parameters of the object The

dynamic modelvand the measurement quel in general,ﬂare:
St

b<k+1> E(b(K)) +n<k> | ST (4.1)

. . ' . . . [}

d(k+l) = h(b(k+1)) + v(k+l) - . | ) L (4.2),

-convenience, d(k2|k12'ris used to rgpresent the predicted primitive

-

Ey
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In (4.1)‘ and (4.2), the 'vector} b(k), . contains 6 location

parameters and 6 motion parameters The vector function, f(*), relates
the dynamically changing parameters in b(*) at different times. The
vector, d(k+1), contains the measured attributes at time k+l. The
vector function, h(*), -relates the measured attributes in d(*) to the
unknown parameters in b(¥) at a particular time. n(k) in (4.1) is a
random vector which alcounts for the unmodelled dynamics and is assumed
to:' be uncorrelated and. w1th . zero-mean Gaus%ian distribution.
Similarily, v(k) in (4.2) is a random vector which accounts for noise
both from the measurement of attributes and from the approximation of
camera projection by perspective projection; It is also assumed to be
uncorrelated and with zero-mean Gaussian distribution.

Having modelled the motion ‘dynamics and the projection, we can

4
A

then wuse ,the -estimate of b(k); conditjoned upon the ‘history of
measurement up to time k, to calculate the extrapolated parameters in
b(k+1|k) and extrapolated attributes in d(k+l[k) by using the next two
equations derived from (4.1) and (4 2)

wmum=f@mkn . o - ‘p»@al

d(k+1|k) = h(b(k+1|k)) | ' | - R (4.4)

Minimum Risk Estimation. After obtaining the extrapolated
e ) . L, * - ¥ : [ 8
patameters in ’b +1|k), the extrapolated attributes in: d(k+1|k) and
- the meaSured attributes in d(k+l) ‘we can proceed to, estimate. the ",
. o . N L

- uniknown parameters at. time k+1, conditioned upon the entire hlstory of

(4

méasurements'up to" time k+1. This estimate is denoted by b(k+l]k+1)
o Lo ' - . ". \
-To obtain this estimate, we have to decide how much - we , trust

(d(k+1)-d(k¥l|k)) and how cdnfident ' we are in the accuracy of the .

extrapolated vector b(k%llk) The conffidence measureyof each‘vector is
X L ] .
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expressed iIin terms of the covariance matrix of that vector.
Conceptually, the one with larger covariance will receive' hareher
[ v

penaltiy. By propagating the‘the‘mean values and covariance matricies. of
(d(k+1)-d(k+l|k)) and b(k+l|k5; the optimal estimate'(i.e., the ohe,
with minimum uncertainty measure) of Ehe'unknown vector b(k+1) turns
out to be one with the minimum covariance of b(k+1l |é(ji-l). .

A derivation of generic EKF is given in Appendix. E. The algorithm
" DynamicEKF is for nonlinear dynamic systems such as the problem at'.
hand. The algorithm StaticEKF ia for nonlinear static systems such as
‘the problem of recovering static object 1ocatron by using images from a
moving camera with known'movement. The algorithm IEKF is used in the
»'inner loop of StaticEKF and DynamicEKF. The algorithm IEKchan also be
tgrpblem.sdch as the one'required

! _ A
S Wis chapter. It should be noted

in the L4 and L5 problems’ 1tw

that the dynamic and measurement models i.e;,vthe vector  functions -

f(*) and h(*) -in (4.1) and (4.2), will vary from one. problem to

another) and have to be derived separately for éhchaindividual'problem‘

\.:

The next two- sectlons discuss the ; detalfs of dynamlc and measurement

models for the problem of recoverlng‘%otlon parameters~

4.2 The Dynamic Model . 5: o N L. . .

>

In thlspsectlon1 we focus on the detafils of the vector functlon T

'f(*) in (4. 1) that is, we obtaln the. dynamlc model for .the. problem of
F

,.
- -

‘- _
emotlon"recovery Assumlng that the ,rigld ymotlon is ' of constant

velocity, and that,the obJect coordinate basis is at ‘the centér of mass . -
e ) ‘»?-';:_’;4*,;" « . N p
of the object)'iwe have the dyriamic equations:

~

3 )
+
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0(k+1) - 0(k)A0(k) 3 ' (4.5.a)"

7 p(kely y:p(k) + Bp(k) . (4.5.b)
" 801y = a0(k) - ‘ '(4.5.¢)
Ap(k+1) = Ap(k) (4.5.d)

where 0(k) and p(k) are the orlentatlon matrlx and p051tion vector of
the object at time k. AO(k) and Ap(k) are the rotation matrix and
translation vector for the motion between vime k and k+1.

Although -0(k) is ; matrix with nine elements, it i1s governed by.
only the three parameters ﬁx} 8y, and 0; in roll-pitch-yaw erpression.
Likewise, A40(k) 1is governed by Afx, Aby, and Aﬁz..‘Ler (k) =

) : .
[ox(k),ay(k),oz<k)]? and AG(K) = [AGx(K),Abygk), A6z(k)]". We have, for
the problem of motlon recovery, b(k) in (4.1) a4s a composite wvector of
0(k), P(k), Af(k), and Ap(k). Since é(k+1) is independent pf p(k) and
Ap(R), in order to frnd the\vectgr‘function, £(*), for (4.5), we ﬁeed
to express §(k+1) only rn terms of §(k) and Af (k).

A . i _ R
Recall,the,roll-pitch-yaw expression for O(k+l): o

O(k+1) = RPY(&(k+l)) = Rot(z Hz(k+l))Rot(y 9y(k+l))Rot(x 0x(k+l))
-

‘ gﬂ_zCﬁ.y“ _CﬂzSﬁy_Sﬂx-SQzCﬂx CﬁzSﬁyCﬁx-f'SﬂzSﬁx ] C s
= |1S8zChy ngSHySH’x-f-CﬂzCﬁx ,SﬁzSGyCHJ:-Cﬂz-Sﬂx - » (4.6)
‘ -S8y " COyShx © ceyesx | . ~ ' '

where Clx = ces(ﬂx(k+1)), Sfx = sin(Bx(k+1)) >C0y‘= cos(ﬁy(k+1)),-

B '

Sy =;sih(0y(k+l)), Chz = cos(ﬁz(k+l)), and Sz = 51n(0z(k+1)) N

‘9 N ’ v
Coﬁﬁ;nlng (4. 5. a) and (4. 67‘y1e1ds oy

REY(0(k+1)) - RPY(&{R)) RPY(A&(k)) & }j . ””1: o

-y,

Let,RPY' be the 1nverse operator of RPY That 1s RPY—'1 takes an

v
- R .

f;orlentatlon matrlx as thc opera a. and returns - its * rollipfteh4yaw
angles ;%ereas RPY takes roll- pltch- W ahgles.as operands and returns

:the correspondlng orlentatlon.rnatr’iic,’Applying'RPY_1 to both’sides of
; . : C fots ,
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(4.7) ylelds:

6 (k+1) = RPY-I(RPY(B(k)) RPY(86(K))) . RO

"With (4.8) for O(k+l) and Af(k+1l) for AO(k), (4.5) can be

rewritten to include unmodelled dynamics, as follows:

(1) = RPY"T(RPY(0(K)) RPY(A0(K))) + mi(k) (4.9.a)
p(k+l) = p(k) o+ Ap(k) + nz(k) | . (4:9.b)
| Aﬂ(k+l) - Aﬁ(k) + na(k) . ( : ‘ ? {419.c)
- Ap(kel) = b (k) 3 ) 4.9.4)

N where ~ni(k), nz(kfh and - nu (k) Jaccount * for the nnmodeiled

5dynamics. ¥

> . ‘: e

As can be seen, (A 9)Mis ‘the explcht expre551qg for (4 ERE W

et

is consldered gext.

n

Details of inverse RPY. Note. that O(k+l) is ﬁn exp11c1t ‘function
B .

of «O0(k) and AO(k) which in turn are exp11c1t funétlons of HYk) and
- fz
A&(k). In ordenr t¢ make exp11c1t (4.9. a) in terms of 4(k) and A&(k)

K

we express 8 (k1) in teyms of elements of O(k+l) By d01ng thls we

Y

.-expllcate RPY Ty "Let o,

P S -

(k+¥% be ‘the the (i, 3) element 1n the matrlx

O(k+1) We so%ve for 0 ‘k+1) 6y(k+10 ~and 0x(k+l) in terms of elements
B .

of O(k+1). Slnce e pltch angle 0y(k+l), lies between -w/2 ‘and /2,

[

(k+l) has the same 31gn as cos(ﬁz(k+1)) 31m11arly,'oil(k+1) has the

same" 31gn as 51n(0z(k+1)) Thus fpomtthe.elements kifi)JAﬁdL(é,l)’oﬁ

N X
"o

_.both sides of (4. 6), we have

tan(ﬁz(k+l)) =o, (k+l)/o k+1)

. . ' T

v which then yields:

v
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9(k+1) = ATANZRo, (I+1),0. (k1)) | (4.10)
where ATAN2(y,x) is a function which caiCulates arc tangent of y/xr The
/yange of the function is from - to x. This arc-tangent function can be

found in programming languages such as C and FORTRAN.‘

3
.

The exception of (4.10) is the degenerate case where‘oll(k+l)
= 0 1€k+1)'- 0. In ghis particular case, the angle Gz(k}l) is set te
zero.

Next, to obtain 0y(k+l), note that cos(ﬂy(k+15) 4s non- negatlve in
the roll-pitch-yaw expression. Thus

cos (8y(k+1)) = (0. (k+l) + o (k+1))1”

whfeh is comblned with the (3,1) elements in the matrlces on both 51des

ﬁ i
rd

of (4 6) to produce

Os(k+1) = ATAN(-0_ (k+1), (o] (k+l) + o (k+1))“2) : (4.11)
where ATAN(x) is angther arc tangent function whose range is from -=/2
to x/2 This functlon can also' be found in C and. FORTRAN.

Agaln for the degenerate case where 011(k+1) = 021(k+1) ;.O,
Oy (k+1) isvequal to zero. - |

Finaiiy, for.ﬂi(k+l), we use the elements (3,2) and (3 3y’ 1n the

matrices« on both sides of (4 6) and the fact that cos(ﬁy(k+1)) is .

: L
nonnegative to obtaln: N
tan(fx(k+1)) = o (k+l)/o  (k+l) )
- . 32 33
B ) ) ) . . . /\
which im turn yields: ' .
© fx(k+1) =‘ATAN2(0 (D) 0 (k1)) ' E 412y

dHere ATAN2(*) ls deflned in (4 10)

i

~~
=
T
=

S

v

o

Again for the degenerate case where o (k+l)
-0 - . 4 )
0x(k+l) is set to zero, i S e

. Bl
T

»
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Bl

Calculating the Derlvative of flb(klk)) with respect to b(klk)

When u51ng EKF, the derlvative of f(b(k|k)) with respect to b(klk) is o

required. The derlvative is 1n fact a matrix which 1s denoted by F(k)
. \

in Appendix E. Since the derivatlves of (4 9 b) (4 9 d) with respect to

b(k) are trlval here we will’ only concern ourselves with
aRPY (RPY(&(k]k)) RPY(AH(k|k)))/6b (k]k) To calculate this, the

deilvatlves of RPY and RPY "1 have to be computed flrst From (4:6), we
?

have
0. C8zS8yCHx+S02Shx ‘fga;seysax+sazc0x
ORPY(0)/86x = |0. S6258yCHx-C0250x  S62S0ySOx-ChzChn (4.13.a)
0.  CoyCox . -COySex |
-C0280y  CO2COyShx C82C0yChx
BRPY(6)/30y = |-S6258y S8zCOyShx- SO2ChyChx | (4.13.b)
-Cly  SHyShx SOyChx . ud
: . ' - RN %
, -582C0y -50250yS0x-C02Chx -S0258yChx+Chy80x
8RPY(§)/30z = | CH2Chy CO2S0yShx-S02Cox coZSoycox+se;50; (4.13.¢)

—~

0. - 0. - o,
where Cx = cos(fx), Sfx = sin(fx), Cly = cosgﬁy), S8y < sin(fy),

Chz = cos(fz), and S6z = sin(dz).

¢

-
1

With (4.7) and (4.13), &é have: " - | | T o
60(k+l|k)/80x(k[k) - (8RPY(9(k[k))/6&x(k|k)) RPY (89 (k[k)) (4.14.2)
60(k+1|k)/80y(k]k) - (6RPY(0(k|k))/66y(k]k)) RPY(A&(k|k)) (4.16.b)

. 30(k+l|k)/60z(k|k) - (BRPY(G(klk))/an(klk)) RPY (46 (k[k))  (4.T4 c)
80(k+11k) /880x(k k) = RPY(&(k]k)) (BRPY (24 (k[ 1)) /90- (k[k&)'ka:lh.d)‘
80(k+1|k)/3A0y(k|k) - RPY(6(k|k)) (aRPY(Ao(klk)>/aA& (kik)) (4.14.e)

@O(k+1|k)/6A6:(klk) ~1RPY(0(klx))‘(BRP\(AB(k!k))/aAé-(k(k)) (&.14.£)

.
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 Since 0(k+1) is 1ndependent of p(k) and Ap(k), it is obv1ous that

80(k+1|k)/3p (k[k) = 0.and 60(k+1|k)/aAp (k|k) = 0. : (4.15)

N : ‘ v ; ’

With (4;14) and'ké.ls), we can now compute 30(k+i]k)/abr(k|k).
Taking derivatives §f'kz.10); (4.11), and (4.12) with respect to b(k),
aéx(k+1;£))3br(k|k) stan(o_ (k+1|k)/o L (641 [K)) /0b7 (k[k)

~ [(30,_(k+1|k)/ab] (k]k))o (k+1]k) -0, , (K¥1[K) (0 (k+1|k)/abré$1k))]

[o? 2o (kL) + or (k+l]k)]™*

38y (k+11k) /ab" (k|k)

atan'l(-oal(k+1|k)/(oil(kii|k) + ofl(k+1]k)) )/8b" (k]k)

- [-6031(k+1]k)/abT(k|k)j:[le(k+1|k)‘+ ol (k+lik)]" 4 |

+ [oll(k+1|k)(aoll(k+1ik)/8b:(k|k))+o (k+1|k)(3021(k+1|k)/abT(k|k))]
(k‘+1ik)[o2 (et i) + o (k+l|k)] - ' (4.16.bj

80z(k+1|k)/ab (k|k) = dtan” "o, , (kH11K) /o (k+l1k))/abT(k[k)

- [(8021(k+1|k)/ab (k|k))qll(k+l]k) o, (k+1|k)(ao (k+l|k)/ab (k[k)) ]

[0 (k¥ljk) + of (k+llk)] 7t . fifsﬂﬁF“ (6160

\\ By using (4. 13)-(4 16), we have the 12x12 matfix:

a(f(b(k]k))/ab (k]k) - 8(b(k+1|k)/6b (k[k)

Faa(k+1|k)/ae(k,k) 0 89(k+1|k)/8A8(k]k) 0
- o S o . 1]
B 0 0 1 0
L0 0. 0 1

where each element i3 an 3x3’ submatrix, and O and I are a 3x3 zero

matrix and a 3x3 identity matrix, respectively.
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4.3 The Measurement Model

. For each kind of image primitive, there is a relation between a
primitive’s image attributes in d(k+l) and the unknown parameters -in

b(k+l). Thus, it is convenient to .discuss each type of primitiyéﬂ
individually. we will discuss the point primitive first, then the”line’

- primitive. and finally, the elllptlcal/hyperbolncal prlmitlve In our -

u

discussion below, the index i is for the i-th correspondence.

. .\3 " :
:The Point Primitives. Let T, be the point in the model and (Xi,Yi)

)

be the dorrespdnding poiné in the imége. It can be shown from (1.1) and

(1.2) that, under perspective projectidn, we have the pair of

equations:
dr’§k+1) = [f, O, Xi(k+l)] (O(k+1) r + é(k+1)) = 0. (4.17fa{
| di'5k+1) = tO, £, Yi(kf;)f (0(k+1) r + p(k+l)) = 0. (4.17.b)_'
where f is the fbcal length, and O(k+l) = RPX(01k+1))L - |

-

In the above equation, the elements of‘di(k+1) do not- represent

physical attributes, but they are linear combinations - of physical

attributes. This .paftiéular. choicé ';f di(k+l) yields - a relatively
;imple vecto£ function h(*).- This is an advantage because the simplér
h(*) in (4. 2) the s1mp1er w111 be. the behav1or of the 1nner 1oop of(
@he DynamLcEKF algorlthm in Appendlx E. Since the inner loop  is

essentlally a nonlinear opt;mlzatlon pnacess,'a simple h(*) will be
. -~

helpful *n avoxdlng the undeSLrable local m1n1mums Thefformulation_in.ﬁ‘

(bil?) always makes the measured attributes in dx(k+1) .zero. In

qohtrast, the ex;fa@oLated'attributps are gi%én by:
o ‘ dx 1~(_k+l_]k).l-r (£, O.-X}(k+1)](0(k+rjk) r 4+ p(k+1ljk)) - (4.18.a)

d (k1K) = 0, f..&';(k+1)}(0(k+1[k’)‘ r + p(k+lik)) (4.18.D)

.-

-
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It is worth mentioning that O(k+1|k) and P(k+1|k) in (4.18) can be
'obgained before X (k+1) and Y (k+1) are actually measured, but~
di(k+1|k) cannot be_obtained Prior to measurement at time k+1. Howevéf,
the inability to calculate di(k+1|k) does not hinder the application of
prediction (e.g., the use of predicﬁion to establish_correspondences),
for O(k+l|k), p(k+l|k) X (k+l|k) and Yi(k+1|k) are the predictions
that are needed, not d (k+1|k) 1ﬁ (4.18). As mentioned_ earlier,
Q(k+1]k) and p(k+l|k) can be qptalned by using the dynamic model

derived in the pPrevious section.” On the other hand,” to calculate

\?1(k+le) and Yi(k+1|k), we have to wuse the following pair of
e : :

=~

gﬁuations:
X (k+l]k) = £ xz(k+l|k) / z:(k+l,' : (4.19.a)
7 S :
Y (k+l|k) = f yz(k+1|k) / z;(k+1‘|k9 ~ , (4.19.b)

where r:(vk+1|k>—[x:(k+1|k),yi(k+1|k),z:(k+1|k)]’ = O(k+ljX)r +p(k+1[k).
For a point primitive, the derivative of d,(k+l|k) with respect to
) . i
b(k+i|k) is given by: -
' 100000000
wxwy wz010000000
_ 0010000 0 0of
© where wx = 80(k+1[k)/89x(k+1|k))r , Wy = 60(k+1|k)/60y(k+1|k))ri, and

£, 0, X (k+l)
1

3d (k+1|k)/8b" (k+1 k)=
oo 0, £, Y (k)

&

H.‘wz % (30(k+1]k)/aﬁz(k+l]k))r - The first matrix on the right hand side

:;\3of the prev1ous equat;on is 2x3, and the: secénd is 3x12; thus,
<y -~

ad (k+1|k)/6b (k+1]k) is a 2x12 matrix.
“ \ ( . .
_}The L1ne Prlmltlves Let a1 be the unlt dlrectlonal vector of the

y - .

;mwdel llne and r, be'any point on the model llne Again,:let the

“
.4’

s -

grresponding lmage llne be descrlbed by the slope m  and - the

.’usﬁfECefCth ‘;. It is shown in Appendlx D.2 that, under perspective

.. N A L,
X profectzog we haVﬁ the palr of equations:
B w . T ﬂv .

e et ~
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di;(kﬂi):— 4j<k+1) O(k+1) a - 0. © (4.20.a)
d,,(k+l) = q (k+1) (O(k+1) T + p(k+l)) = 0. (4.20.b)

K

here ‘f is the focal length, and qi'(‘k+1) - [-f m (k+l), £, Ti‘(k+1)]T.
| .Again, the attributes used in (4.20) are linear combinations of

the physical at:tributes,._:mi and Ti. Also, di(k+l) is always equal to

zero, knd the calculation 'of di (k+1]|k) is given by:®

d, (k+l|k) = q:(k+l) O(ktl|k) a . L (4.21.a)
d,, (k+1jk) = q; (k1) (O(k+l|k) r + p(k+l|k)) (4.21.b)

N
a V3!

For a line primitive, the d@:é;i'vativq of di (k+1}jk) with respect to

b(k+l|k) is given by: S |
. R 00000000 O]
adil(k+1|k)/6bT(k+l|k) - QI(kéﬁ) cxcy cz 000000
w I | 00000000 O]
% 100000000 “
adiz(k+1|k)/abT(k+1|k) - q:(k+l)( wx'wy w2 010000000
- ‘ ] 00100000 0]

where cx = 30(k+1|k)¢80x(k+1|k)5ai, cy = 60(k+1|k)/80y(kf11kf)ai, cz =

.(60(k+1|k)/60z(k+l[k))éi, wx = 80(k+l|k)/60x(k+l|k))ri,‘Wy = (30(k+1}k)

/aay(k+1|k))ri, and wz = (30(k+1|k)/aez(k+1|k));i.

The Elliptic Primitives. Since the derivation 6f;>éiliptic' and
hyperbolig, primitiveé are quite .similar, here we only gonsiderA the
elliptic primitive. Let the transformation of thé primitive- cob:dinate(
basis to the oi:ject coérdinate basis be de{s;:ril;ed by the matrix Qi and
the wvector s.il, ‘and the transformation of the object to the camera be
described by’ “the matrix O(k+1) and the vector p(k+l). The
transformation between the primitive and the camera coordinate bases is
then given by Gi(k+l) = Q(k+l)Qi and t'i(k+1) - O(k+1)si + p(k+l). Lef.

| the model ellipse be the intersection of xz/oz2 + yz/ﬁ2 = 1 and z - 0,

where x, y, and z are in primitive coordinate basis. Also, let w =
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[X,Y,1]7 and u (kt1) = G L)t (k+1) _ Following Appendix A.1, we hafe

the elliptlc equatlon C .

w Ai(k+1)w - D G,(k+1) B, (k+l) G (k+1) D' v=-0 (4.21)
uf §k)/a2 0 -4 gk)u gk)/a
where B (k)= 0 uf sk)/ﬂz gk)u gk)/ﬂ ,

—ui'gk)ui'gk)/az -ui,gk)uilgk)/ﬁz uf gk)/a + u ék)/ﬂ -1

oS -~ O
Hh O© ©

, and u ,(k)" is the j-th element of the vector u (k).
1,] T y ’ 1

Let. the im‘age ell»ipse be described by WTMi (k+1)w = 0, where the

- (3,3) element in M (k+l) is set to one. By comparing elements in
/ i . _

‘Mi(k+1;) and Ai(k+i), we have

SR, B LA 6D - A e S0 e

for every element (j,n) "in the upper trlangle submatrlces of M (k+l)

- . EY

and A (k+1) .except the element (3,3).
iy A Y .

dgonsequent;y, di(k+l-'|k) is given by ?

dilz_,j+n__5k+1|k)__= Mi'.j§k+1) A, (krl[k) AL (4.23)

for every element (\j,n) in the upper triangle submatrices of Mi(k+1)
R ‘ 1
and Ai (k+1|)e), except the element (3,3).

. kv
For _an‘elliptilc primiti\ge; the derivative of d.in(k-l:llk) with

-

respect to B(k+1|k) is" given by : ) ,. .

T R _ T
i 25en- SEFLIK) /87 (k1K) = M (D) (0 (tl|k)/8bT (k1K)

- (afx ‘(k+i‘]1<.)/abT(k+1|k)) B (4.264)

for every element 4, n) in the upper triangle submatrices of M (k+l).

and A (k+1|k), except the element. (3 3)
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Chapter Summary. Although the 3D" object motion between two sample

. s . 'Y .
instants can be extracted by working out the difference between the
' . A0~

object’s locations at rhOse two instants (objectv location at qeach
instant can be determined by using algorithms in the péEVious chapter),
" we have presented an Extended Kalman Filter approath, in this chapter,
to .recover K smoothed 3D “motion from a sequence of .images. In EKF

formulation' dynamlcs aCd measurement models are built to extrapolate

an estimate of, unknowg}parameters (1nclud1ng 6 locatlon parameters and

7 -

"6 motion parameters) and to produce. a minimum uncerCalnty estimate,
from the extrapolated estlmate and measured 1mage prlmltlve attrlbutes
‘The image primitives are ellipse, byperbola, line, and point. The

. recovered :3D motion of an object can be used for tracking‘the object,

and visual feedback. In the next chapter,

. techniques presentéd "in this and previous
AR : » .

i
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. . Chapter 5. Implementations

Ehis chapte;ﬂshpws a cameta calibration schere  (Section 5.1), a
 partial 1mplementat10n of "the proposed "locating 1abeling" method for
obJect recbgnition ‘and localization (Section 5.2), and a partial.
1mp1ementat19n of the proposed motlon reeovery_method (Section 5.3). In -
this thesis,vthe focal lengtn‘assoclated with each image takenvfor
: recognltion, localization) and motlonrreeovery is assumeolto be known.
The tnown'focal length is the result of camera calibration._The 3D
:obJect recognltlon subsystem 1s implemented with only line and point
. Pr¥m;t1ves;: thus only polyhedral ‘objects' are\\recognlzable “in thewp

present implementatlon.;_In _motlon'_recovery eXperlment : the' obJect

A

vy

cofisidered is moved by. a ‘moving device. lndependent of the' v1sion
system. Currently,-onlyrpoint cofrespondences'are,used,for recovering
the ynotion. The motion recovery subsystem was completed one year before B

v

the obJect recognltlon subsystem At this moment,ethe-recognition and
motion recouery_subsystems are are not#intergtated.

'oS.l.éamera Calibration.Subsystem ., - _ o %}i

ln.this thesis, the focal length of the camera is, assumed to- be.
- known The assumptlon comes from the fact that a table_of dlfferent -
focal length values for different positions of the focusing lens of the;

camera can be oomputeo off line. When an image is taken; the focal

length associated with the_lens position_is retrieved by the\proposed/
system from the table.‘ In the oaseﬁ of “an auto-focus oamera, the'

positions of the focusing lens could be obtained . from the revolutions

of the dfiving motor.

o

86
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The camera calibration is_to establish the table of focal lengths

for different lens positions. Currently, a procedure from Tsai (1986)‘-
is used to perform the calibration The procedure is. slightly modified
"to suit our application and is summarized in Appendix F. The camera
calibrating procedure in Appendix F estimates_ the‘ transformation
between a reference coordinate basis and the cameralcoordinate baSlS i
as well as certain camera attributes (focal length and distortion
K <.

factors). The input data to the procedure are a se{ of coordinates_of
peints in a Areference ,coordinate’ basis and their 'identified
.counterparts in'the digitizedkimage. At least 7. correspondences between B

v :

noncoplanar points in the reference space and p01nts in the image§ are
._needed for this algorithm to work. More pairs of points Will in ¥
general give better results. |

The noncoplanar points in the reference coordinate ba/is can be

f_produced by mov1ng a plate of points to different p051tions or by

‘ﬁ'a chg box with pOints on two. of its faces Both are’ implement d but

Qlonly the former will be. reported here Qith experimental “data..

/

The plate used containb 42 points Their\positions relative to the
QFplate coordinate ba51s defined on the plate is: shown in Figure 5.1. The

plate is. moved by a motion generating deVice to different pOSitions

thus resulting in nOncoplanar p01nts in a fixed reference coordinate

basis Images are taken for the plate at different pOSitions In taking_@ffé

4 LN
a set of images the camera can be arbitrarily placed at any pOSitiong

and v1ewing direction as long as aee in the reference spacercanvbe»f

YA

viewed hy the camera.
The'whotion generating devi has a clamp-vice for. holding an'

object which in this case, is the calibration plate,‘A‘draWing of the
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"configuration of the device,‘ the plate and the _camera is -shown. in |

Y

’Figure '5.2 and a photograph is shown in Figure 5 3.(a). 'The‘moving

device iss driven by two. separate stepping motors one_for tranSlation'

- L.

and the Dther for rotation A close "look -of the dev1ce is given in ..

‘Fi ure 5. 3 (b) The translatlon axls ~can be laced at an direction
g jr\ P Y

relative to the camera to generate general 3D translation and the ,
-,rotatlon axls can be fixed at any dlrection of the upper sphere to
produce general 3D rotation. The directlon of the. rotation axis is

adJusted by manually tuning ‘the first two' Euler angles as“shown in.'
A

Flgure 5.3.(b). The angle of rotation abeut the rotatlon axis’ is

controlled by the second stepping motor, which is placed at the,axis of -

r

,the third ‘Euler angle L - ZA - "h .

:Let the.reference coordinate basis er, be at the far end: of the

] L

translatlonal track of the mov1ng dev1ce in Figure 5 3 (a) and the
translat10n~1s along the x" axis. By programming the mov1ng dev1ce to .
move the plate to four dlfferent positlons x - 30 x = 40 S %= 50

and x = 60 w1th y =O 7" = O and(no rotation, we digltlzed four 1mages

in the left column of Flgure 5. 4 The coordinates of the points on the-

plate relatlve to " can be calculated by s;mply addlng the coordlnatesh

. E e ‘
i in ep ‘and the translation between ep and»e"; S ;'{.4 s L0

«

TO measire X and Y coordlnates of the 1mage p01nts eachﬁimage'ng

.'ﬁ. . u ) .
! PR

flrst passed through a.Sobelooperator to extract edges _<The ektracted

edge images are shown in thei;
each edge 1mage is 1dent1fied by‘looking fbr the pattern of a four llnef‘A
'lquadrllateral ' P01nts 1n'_the,‘quadrllatera1 ‘are “detected, and their

coordlnates 1n the 1mage are measured The X and Y coordinates of each

poin- in the edge image '1s” ‘measured y.iaVeraging “the'vx Jand Y

- B
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TfThe calibrated camera model has error measures :

)

\ e B ‘.,, , ”- . J ) ) ,» - N . .‘.'. “

‘COOrdinates of piﬁels'repreSenting"the image point . o »

The measured X and Y coordinates of image points and the known.

" ) <
coordinates of their gounterparts in the reference space are used by.
&

the- calibrating procedure to. recover . the unkown attributes for the

'camera and the unknown transformation of the reference coordinate basis

to the camera ba51s‘ ° ’ s R

With the four 1mages 1n Figure 5.4, we have l68 (4x42) sets of

’*coordinates of p01nts 1n e" and X, Y coordinates of their corresponding
'”;image p01nts in the image for the callbrating algorlthm The results of

,vthls calibration run is summarlzed as follows: _ = o dy

T

”

. [-0:457226+ 0.888811 0. 030977
G = |.-0.013799 0. 021095 -0.999682
-0.889182 0.457508 -0.002619: |’

- -~

t -11 22. 425341 11.552964' -144.681708]"
£~ 1206, 259235, s =.0.797256

kl‘”+ -1.725762e-7, ki = 7.867127e-13
m . S . m ) "

bwhere G and t define the transformation of the reference coordinate

b351s to the camera coordlnate ba31s £ is the focal length for image
5 m .

_coordlnates in plxels s 1is the- ratio betWeen vertical scgle. - and

- . . N N S e
RS

horlzontal scale in the image, and k and k are thegSecond-order and

fourthrorder radial lens distortion factors. More precise definition of

a

- these parameters 1s given in Appendlx F.

o

. Average sqﬁareV




T

Maximum square error = 14157407 Bikels/

. : 0 . :
SRR . e 168 N U .
where . Average square error. = z [(Xm -Aﬁ )2+ (Y v- Q )2]1/2 / 168
L - N N v - . .
' 168 =1 - 2 12 e
Maximum square error = Max [ (X ﬁ ) + (Y Q ) ] !

I

X . and: Y ard the measured X and Y coordlnateg of egch image point;
m
and ﬁ and Q are the extrapolated X and Y coordlnates in the image

L for eachA correspondlng mp01nt lh 1e by using the estimated camera

parameters,
K
0 ) Do
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Flgure 5.1 The callbratlon points on the calibration plate The solid

lines define the boundary of the plate, and dashed lines are for the

axes of the plate coordinate basis. The plate is defined on the plane,
x"=0. Two adjacent points in the same row or column are one centimeter

apart. The origin of the plate coordinate basis is. ‘at the center: of the
bottom border of the plate .
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Figure. 5.2 The referernce c’oordinate: bagis defined in the.
motion-generating device. The moving,part is driven by a stepping motor
.and translated along x* axis. The. rotation' is defined in Euler angles,
. in'which a general rotation is - decomposed into the sequence of three

rotations around the reference coordinate axes, The three rotations in
sequence are’ Rot‘(zr,af), 'Ro't(xr,ﬂﬁ)v,’ Rot(zr,ﬁg), as shown .in. dashed
arsows. The rotation 6} is . driven by a second stepping motor, while ¥3
and 63 are adjusted manually to set ‘the direction of a general rotation
axis. The <camera on a tripod can be placed at any direction and .
position. relative to the reference coordinate basis as_ long as the
object held by the moving part is in the camera’s field of view. :



-

Fig"ure 5.3, One view of the . motion generating device. (a) The /
configuration .of themoving device, the calibration plate and the .
‘< camerh, (\b) A closelook of the moving part of the device o






Figure 5.4 A sequence of images used in camera calibration. The left
column -contains digitizéd intensity images, and the right column
contains processed edge images. ' )

4 ’

.
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5.2 Object Recognition and Localization Subsystem

&‘In this section .the technlques described in Chapters 2 and 3 are

~ i

used to implement’ ah obJect recognltlon and localization subsysﬁsm The

| : -
preseng_impiementatlon is limited to line and point primitives. In the
‘ .
following experlment on one object model isﬂused; the object is an
‘ > : , ” .
' i : . : . '
audio-cassette tape. The wireframe model of the cassette is. shown in

Figure 5.5, and the object coordinate basis‘is shown in Figure 516. Ther

primitives used are lines and points, ‘and  are ﬁ%tored in the model

s

. : z,L bs . . . .
database. In-addition, the .relations between lines, such as parallel,

imtersection " and coplahar are stored symbollcal]y . The sgrfaces of
the obJect are also stored for testlng occlusion. \\3_/"

An image of the cassette is shown in Figure 5.7.(a). The 'image ‘is

taken with f = 2312.734174 and s = 0.855635 (The ratio of vertical

scale- to horizontal scale is different from the ratio, g in Section

5%, because a different camera, though of the same type of RCA'camera,
wvs usedbfot this experiment. Thevtatio, s, in general remains the. same
for a given :camera, regardless of the chahge‘of focal lehgth)t

The ihtensity image in.Figure 5.7.(a) is passed through a Sobel
operator'to extract the edges for piXels with intensity changes. The

edge image is shown in Figure 5.7.(b). The edges are further tainned to

v

.single pixel width, as shown in Flgure 5.7. (c), and the ‘thinned edges

£
are passed* through the two-stage primitive detector (discussed “In

‘

Chapter 2) to extract conic segmeﬁts,“ line - segments, and cfitical

poinﬂs. The detected primitives are Stored with the cell structure

introduced in Chapter 2. Cutrently, only line cells are used for

-

'.recognltlon The 11ne cells® ‘are accessed. through a line table, "a slope

list, or a plxel list. The 11ne table uses- endpoints of image lines as
/ : :



keys'to,store’pointers'to 1ine cells. The slope’list and pixel list’
contain pointers to linebcells‘ The pointers in the slope list.bare
- sorted according to the slope of each line and the poinfers in\gif:
‘ ?
pixel list are sorted with the number of pixels in each line’
| The organlzed ‘image prrmltives ave grouped into parallel lines,
parallel lines Gith another 1line in:ersecting them, glshape of three
lines,l two pairs of parallel lines. forming a quadrilateral and’ a
quadrilateral of four lines§ These groups ave used as index feature
’groups to formulate minimum- correspondence hypotheses

Each hypothesis is tested by the- hypothesls tester 1ntroduced 1n

Sectlon 2 4., The testlng of the hypothesis is done by cycllng the four -

processes; locat1ng the object by u51ng the nypothe31zed matches oo

testing con51stency of the matches with the recovered obJect locatlon
pred’ctlng other 1mage prlmltlves bY“ using the' recoyered”hobject
locatlon and the object model, and augmentlng the set of hypothe51zed
matches between model primitives and image primitives, Figure 5. 8 showsh

_‘a set of hypothe31zed matches belng augmented and tested At flrst.-

<

three llne matches are ‘used to form a mlnlmum correspondence

hypothesis‘ The matches are tested. to be consistent w1th the recovereda

obJect lbcatlon,-as ‘shown ‘in Flgure 5.8. (a) Subsequently, another 11ne1

ﬁ.correspondence is hypothe51zed and added to the ex1st1ng three. QThe

"\augmented set of hypothe51zed matches again are tested to be con51stent;ﬁ
w1th the recovered ObJeCt location, as shown‘Ln-Figure 5.8.6b)f,The

&

locallzation,- consistency _ testing; predlctlon and.. - augmentatlon
__continue until the set of hypothesized matches .meet the termlnation
criteria in the initlated model “in thls case 8 consistent- line: .

matches.



98

-

-

After recognition is. confirmed, the object location is recovered.

again with all,consisteﬁtématches. For the ihage in Figure 5.7.(a),

- ™

the recovered roll,‘pitch, and yaw angles, in radians, of‘the'caSSette
relative to the camera are 0;083818, 0.177362, 0.460718 respectiyely.

The position, in cent%meters of the cassette relative to the camera

.

is recovered as the vector |- o 198683 -1. 670742 -98.425624]17. The model

L™

pr1m1t1ves of " the cassette are prOJected with the. recoVered locatlon
and. superimposed with -the xthlnned edges ~in Figure 5 7. ec) The
"Wsuperimposition is shoWh in Figure 5. 7 (d).”

- Several trlals were run w1th this 1mplementat10n on a IBH AT w1th -

—

f

-"a 80?&\‘math coprocesser Tn most cases, the hypothesis formulatlon and

N

\testlng process takes less than 60 - secs, ‘whlch 1ncludes the
)

PJ‘Superlmpos.ltlon of every set -of hypotheslzed matches w1th;/Fhe ‘edge "¢
1m1ge on 4 monltor driven by aﬁ ITI (Imaglng Technology Inc/.) Series
lOO 1Image Processlng Board In thls d}mplementatlon. the» most t1me

»consumlng part was the edge extractlng and thlnnlng processes It can

take up to 3 mlnutes because of the 1nherent sequentlal nature of thls'
‘1mplementat10n. Howeve{‘,‘~ th&s can be oyercomeqiw by~ employing a

”commercially: available hlgh speed image.'processor,.with' parallelA

e »
convolvers .and p1pe11ne array processors ST



‘Figt'x‘re 5.5 One view of the wireframe model of- the audio cassette.

-
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Figure 5.6 The object coordinate basis defined in the audio cassette..



-

Figure 5.7 The images used in’ the recognition process. (a) A single
- intensity image. (b) The edge image extracted with the Sobel operator.
(¢) The thinned edge image. (d) The‘superimposition' of model wireframe -
projected using recovered, location with the 'thinned edge 1mage* Each .
projected line is tested against surfaces in the model to see’, if they :
are occluded. If so, that Iine is removed. ‘
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¥
ngure 5.8 The hypothesis- testing cycle of localizaXion, consistency
testing, prediction, and augmentation. The hypothetically matched model
lines are projected using recovered object location and superimposed
with detected image- lines. . Consistency testing is conducted by’
comparing the error of thé superposition. When tested to be consistent
with recovered object location, hypothesized matches are augmented by
including the most significant predicted matc .. The following contains
the snapshots of the recognition process (a) three hypothesized
matches. After location is estimated from the matches, the matched
.~model lines are projected (as the bright lines) and are compared with
detected image lines (the dimmed lines). It can be seen that if the
thret hypothesized matches e all wvalid, the projected object almost
coincides the detecte ne on the image. (b) Four hypothesized matches
with one additional”match to e three consistent matches in (a). (c)
Five hypothesiz matches. (d) Six hypothesized matches. (f) Seven
hypothesized matiches. (e) Eigh hypothesized matches. At this stage, it

can be seen that the projectéd object coincides with the detected one
on the image. .
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'5.3 Motion Recovery Subs}stem

rﬁé motion recOverer subsystem ﬁere is tailored for the eétimationv
of the motion of object recognized by the pifposed recognition scheme,
- which was outlined in Chapter 2 and implemented in Sectloﬁ 5.2. The
reeovered motion of a object can be used for grasping the object as
well as aiding 'object recognitioﬁ. In his experiment, we aesumed the
object had already been recognized, and hence proceeded to recover. its
motion by using peiﬁt correspondences between:the iﬁage and the model.

The object used here. is the calibration plate shown 1n Flgure 5.1. ahd
>the moeépn is _enerated by the device shown in Figure 5.2.

By prograﬁming the device, to start at x"= 30. and 0% (or 61 in
Figure 5.2) = -0.698132 radians (or -40. degrees), and the incfemental
motion between two image ffames as Ax" =-10. Lm. and Aﬁi.— 0.15708
radians'(or’9. degrees), we have the trajectory in Table 5. l for six
image frames (the choice of incremental rotation as 9 degrees per frame
is based ‘on the fact that the second.steEping motor’s resolution is 0.9
degrees per step)..

Table 2.1 The trajectory of the programmed motion relative

to the reference coordinate basis at the far end, from the
camera, of the motion- generating device in Flgure 5.2,

Framek““mber 63 (k) px (k) A63 (k) ‘Apx (k)
1 -0.698132 30 0.15708 10,
2 -0.541052 40 0.15708 10
3 0.383972 | 50 0.15708 10
4 0.226893 60 - 0.15708 10
5 -0.069813 70 0.15708 10
3 0.087266 80 0.15708 10

~ "Note.. Angles are in radians, and dlstances are 1n centlmeters.
Apx(k) = px(k) - px(k L), and Agz(k) = az(k) - 92(1( 1)..Other
vdrlables Bx(k) By(k), py(k) and pz(k) are all zero. Here
ﬁz\k) is in roll-pitch-yaw expression, which is equlvalent to
: 01(k) in Flgure 5.2, in this case. - ~
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Though the motion in Table 5.1 is 1D rotation and 1D translation
relative to the reference coordinate basis it is 3D rotation and 3D‘
translation after conversion to the camera coordinete basis. Hence, it
is e 3D morion as far as the camera is coneerhed In this experiﬁent
the transformatren of the reference coordinate basis to the camera
coordlnate basis is the same as one found by the camera calibration in

Sectlon 5.1. The transformation is descrlbed by

~

10.457226 .0.888811 0.030977
G = | 0.013799 0.021095 -0.999682 | .
| -0.889182 0.45750¢ 1.002619

and
t = [-22.425341 11.557964 -144.681708]T
Other camera attributes‘frem the calibration ie Section S.i are
‘summarieed as follows:
| fm— : 1206.259?35, s = 0'797256t

k = -1.725762e-7, k = 7.867127e-13
1m . 2m

* The sequence of iﬁages digitized.for the programmed motion are
shown in"rhe left column. of Figure 5.9, Like_in Sectiem 5;1, these
‘images are passed through a Sobel operator to extract the edge images,
as shown in the right column of Figure 5 9 The plate is detected by
1ook1ng for the quadrllateral of four line§/ The flrst two rows of
p01nts in the quadrllateral are used with their corresponding model
points to recover the location and motion. | .

'According to the formulation in Chapter 4, the unknown vector b(k)
t'has 12 parameters (6 for location and 6 fer motion between two frames).

On the other hand, the measurement vector d(k) has 28 elements, as two
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rows of 7 points are used as correspondences;' The sequence of the
"p;rameters in b(k) are as follows: fx(k), Oy(k), fz(k), px(k), py(k),
pz(k), Afx(k), Afy(k), Afz(k), Apx(k), Apy(k), and Apz(k). Upon entry, .
. the motion parameters iﬁ b(l]Of are set to zero, which is the most
-_-reasonable one, given no a priori knewledge of the'motion.‘The‘location
barameters in b(1]0) are set to the solution of the Pn localization
problem, as disggssed in Chapter 3. The Pn localization algorithm'is a
linear pseudo-inverse method{ since the number of point correspondences
are more than six. As Cmentioﬁed in .Chapter 3, the Pn localization
problem has a<unique solution ifn>6. ' ”—NS\

,In‘.tun@ng the EKF for this. experiment, the coQaFiance ‘matrix,
P(1|0) wupon entry, is set to be a diagonal matrix with diagonal
elements: 1.0e4, l:Oee, 1.0e4, 1.%e4, 1.0e4, 1.0e4, 1.0e7, 1.0e7,

"~ 1.0e7, l.Oeé, 1.0e9, and 1.0e9.'The matrix Q(k) is set te be a constant
diagonal. matrix with elements: 1.0e3, 1.0e3, 1.0e3, 1.0e3, 1.Qe3,J
‘l.Oe3; 1.0e3, 1.0e3,‘ 1.0e3, 1.0e5, 1.0eS5, a;d 1.0e5. 1In fhis
experiment, the covariance, R(k), is set to be an identity_matrix. The_
velues selected.here is the result of eeveral‘tries, and‘the heuristic
- rules for tuning are to be discussed later.

The fecoveted’location and motion parameters are converted baek to
the reference coordinates, and compared with the programmed values in
Table 5.1. The errors of estimatieneare summarized in Figure 5.10. As.
can be seen, the estim&tien'of che location parﬁ, 0§(k) and pi(k);
converges at the first_frame.'Thelerror for pi(k) is less than 1.0 mmb
after frame 3. The estimation of motion, Aﬁi(k)»and.Api(k), convergefat

frame 2, because motion can only "be recovered aftef,’at ieast, two

images are taken. The error for px(k) is” less than 3.0 mm. after the
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third frame, and eventually goes below 1.0 mm. The estimation of 0z(k)
and Aﬂz(k) is not as accurate as that of px(k) and Apx(k), probably
because the target (i.e. the plate) is far away from the eamera (about
1.0 meter)f and when it rotates, the position of the:poiﬂts on tno
snccesive images do not change much. Consequently; the noise introduced
in measuring the p01nt coordinates in the image and the camera model
error have more effect on ﬁi(k) and Aai(k) than on pi(k) and Api(k). In
reel applioationsy when the object is far away, its orientation is not

‘ N

ofimuch interest. For example, it is not until a manipulator)is going
‘ »

to plck up the object that the robot needs to know the orientation of
the obJect To have a b:rter estimete of the orientation and
incremental rotation, the robot can wait for the target to‘come closer{
or else zoom in the object. When the camera has a elose view of the
object, the estimation of orientation and incremental rotation is as
‘good as that for position and kncremental'tranéiation. |

When it comes to 'tuning the filter, experience is of great
imﬁortence. Several sets have to be tried before an aeceptable one
.comes out. The set of P(1]0) and Q(k) used here are by no mean the best
/one.. However, there are heuriétic rules for tuningu the filter. The
initial vaiue of the error covariance, P(l]O)K is one of the factors
that affect the step size of the update at the initial stage. As time
‘evolves,_P(k]k) decreaees thus leaving the update step size to be
determlned by the ratio Q(k)/R(k). Obviously, a small step size will
slow down,the rate of convergence, while a large step-size may make the
estimate too sensitive to the measurement noise. Therefore a
compromise. has to be made to choose a suitable set of filter

parameters. In practice, a non-zero Q(k) has to be used to ensure that

>
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P(k|k) will not decfease to zero as k increases, otherwise the filter
may.stop taking in the me;surements‘to[gydate fhe estimation. ﬁased on
thesé rules, the algorithm‘has to be tuned in its installation stage,
or 1earniﬂg stage. Né attempﬁ‘in this thesis was made to work out a
self-tuning proceduré for the léarhing stage; however, it is a

)
desirable goal to be attained.

'

As far a. the global solufion is concerned, thé.EkF:procedure is
inherently a nonlinear searc¢h method, thus a local minimum solution may
be found by the EKF. Howé?ef, as discussed in the chgpter on object
localizatioﬁ, when >ﬁore‘ than six point or line correspondences ére
used, a unique solution of locgtion.can be guaranteed. When using“EKF
to recover motion, it is suggestéd that the unique'sqiution from Ln,
Pn, or En localization pfob}em be found as initial con&ition so that
the global solution can be foundlby the™EKF procedure;

Iﬁ‘this particular experiment,. however, two possible solutions canv
be féund.for the piate 1ocation; because the points are symmetric with
respect to the rotation axis of 6%, as shown in Eigure 5.1. Consider
the case when the plate is parallel to the focal plan; and is fér away
from the camera. Let us take twg images of the plate: one with §§ = 9
degregs and the other with 6% = -9 degrees. These two images look
almost the same. Partiéularly, under measﬁ;ement noise, one can be
m.staken for thé.other$ Hence: the estimation in this experiment may

sometime come up with the alternative, but incorrect solution.



Figure 5.9 The sequence of images used in the motion recovery
_experiment. The left column contains the, digitized intensity images of
the-plate at the six locations shown in table 5.1. The right column
contains corresponding edge images extracted with the Sobel operator.






-

Figuré 5.10 The errors in motion recovery. The errors are compared, in
the reference coordinates upon which the programmed motion (Table 5.1)

is defined. (a) Estimation errors of rotation angles. (b) Estimation
errors of position components. o
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Chapter Summary. In this chapter, we h&ve seen three implemented
subsystems for a partial realization of the methods proposed in this
thesis. The camé;a calibration subsystem calculates the focal length to
be used by the other two subsystems; the calibration is done off line.
The object recognition and locaiization subsystem is a partial
reali;ation of the proposed "1ocating-labeliné" paradigm. Only 1line
primitives were used ‘in the™ implementation of ' the reéognition
subsystem. The motion fecovery subsystem was con . leted a year earlier
than the recognition and localization subsystem. So far, These two
subsystems have yet to be integrated. However, from these partial

Eﬁblementations, t' ¢ effectiveness of the proposed method for "D object

‘recognition, localization, and motion recovery has been demonstrated.



Chapter 6. Conclusions

The use of conic primitiv;s_(ellipse, hyperbola, line,‘and point)
in object localization and motion reqéveryV hésA been "anélytically
studied, and closed-form solu%i;ns have been obtained for the object
lécalizatioﬁ problem from conic correspondences. As shéwn in Chapterlg,
the minimum number of elliptic or hyperbolic correspongehces required
to locate an object in 3D is one, and that of\ ;ine or ‘point
correspondences is three. =~ e to the presence of noise in the image and-
in the primitive extractién process; the location determined from a
mimimum number of conic corqespoédences may not~ralways be very
accurate. However, the ability to determine the object loéation from a
minimum number of cérresgondence provides us inforhatiqn to éstablish

additional correspondenées with little effort. As. more consistent

correspondences are established, more accurate estimates.of the object -

L .

H ; : ’
locati can then be obtained.

1w closed-form solutions for 1ocating an object in- 3D from a

oY _ <

minimum number of conic‘primitives are applied to the redbgnition'b% 3D .
objects from a singlé intensity image. The ability ﬁo.détermine.the
object location “early" in thév recognition ;Eécess .has' bégn
demonstrated in Section 5.2 by the partial implementatioq of only liné
primitives (though the same priciples applied to all classes of conic
primitives) to provide a great reduction iq compﬁtational comblexity.
This demoﬁstfation shows that the propﬁsed "locating-labelling"

paradigm is not computationallyy intensive since branches of unnecessary

matching tests can be avoided if the object location is known early,

116
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and the computation of the object location is in closed-form, An
analytical explanation of this reduction in computational complexity
has been given in Section 2.3.
‘V The locating-labelling .paradigm divides - the‘ recognition - (or
corresponding) process into two stages. The first is to formulate a
minimum number of hypothe51zed matches sufficient to locate the obJect
The second is to test and augment the set of hypothesized matches
-dntil the set of matches is rejected as inconsistent or is sufficient'
totuniquely determine the object’s identity.

| In order to reduce the searchA space in formulating a minimum
number of correspondences at the initial stage, image feature groups
:(e.g., a quadrilateral of four lines) are detected and used toilndex
the likely object models and to establish probable hypotheses. Like
‘most other ‘recognition schemes, this dnitial Jstage uses invariant
properties and structural relations tc ‘imit the search space. A
detailed discussion of this stage has be.: ;iven in Section 2.3.

’

In the second stage, the location of the object is hypothetlcally

\

determined from the minimum set of hypothe51zed matches The set of
matches 1is then tested immediately against the estimated location. If
the'set of hypothesized'matches is tested to be consistent with the
recovered location; additional hypothesized matches .can be easily
obtained by projectihg an unmatched model primitive (which must be
visible\ at ‘the estimated location) and by pairihg‘ it to image
prihitives which have attr{butes close to those of the‘projected model
primitive. Ih other words, the second stage'of testing and,expanding

the set of hypothesized matches consists of four cyclic processes:

localization from hypothesized matches, -consistency testing og\\\
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hypbthesized matches with the recovered location, prediction éf image
primitives using ghé recovered location and the hypothesized obie:
model, and augmentation of hypéthesized'matches. Augmentinghthe set of
- hyﬁdthésized matches i§ strictly limited in search space, as
hypothesized matches incoﬁsi;tent_ with the hypothetically recovered
object location are quickly detectédJand rejected.

When the set of hypothesized matches is large enough to confirm
recognition, the recognitioﬁ process términates, and the accurate 3D

.1ocation /of the !recognized object is determined from all ‘matches.
Further, the 3D ﬁotion of a recognized object from the previous image
is recovered by using an Extended Kalman Filter approach. The recovered
location and motion és well as récognitioﬁxare important in tasks such
as picking objects from c;nveyors or other transportation deyices.

It is worth noting that an ogje;t 1§ca1izable‘ by the proposed
"locating-labelling" method¢ need not have  all ’its parts as conic
components. As long- ast some parts of the object consist of #conic
éegﬁeﬂts, the proposed method will work ijfirst focusing on those

A

conic segments énd later verifying the recognition with non-conic
segmentsl

The images used here are intensity images taken by a video camera.
The resulﬁs show that - "absolute" 3D orientations and positions of
objects can be reco&ered by using a static image. Further{ 3D motion
parameters gghree fo; rbtationvand-three for translation) between two
frames can be .recovered.

Alén, by * working on an .intensity im#ge valbne, 3D object.
recpgnition is possible and: gconomical, -if location information is

-

properly, used. However, : this is not to say that intermediate -
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reﬁresentations such as 2;? sketches and intrinsic images are not
important (a 2%D sketch usuélly contains explicit infomation about
depths or local surface orientations,‘while a 2D sketch does not). The
point to be taken here i; on the proper use of location information
rather than on the level of represeﬁtation.

' *

For situations where intermediate representation is inevitably
needed (F.g., range data is usually needed in autonomous navigatioﬁ),
this thesis makeswtwo contfibutions. First, the proposed method for
recognition using intensity images can éervé as an initiation process
Or as a verificationlproéess in object recognition, as is illustrated
in'Figure 6.1. Secoﬁd,»the exﬁension of closed-form locating algorithms
can be méde< for in:;rmediate representations® fof example, for

quadrics. Thus, the locating-labelling paradigm can be used with both

intermediate representation and intensity images, as shown Figure 6.2.

Intensity Range
images images

. 1 '
2D sketches n 2-D sketches
S e 2
edge images _Oor intrisic images
Locating-labelling Recognition using
‘paradigm for — intermediate
object recognition representations

Verification using
intermediate rep.
and intensity images

Figure 6.1.3D object recognition by using 1ocating~1abelling paradigm
with 2D skétches and other recognition schemes with ZED sketches.
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Intensity Range
images images

I E—

2D sketches or ' Z%D sketches

edge images or intrisic images

‘Locating-labelling
paradigm for
object recognition

Verification using
intermediate rep.
and intensity images

Flgure 6.2 3D obJect recognition by using locating-labelling paradigm
with both 2D and 2:- D sketches

‘In the following, we briefly compare the proposed . object
recognition method with other recent methods based on a single

intensity image.

Comparisoanith ACRONYM. The proposed method differs from ACRONYM
by Brooks (1981)v£; that ACRONYM infers gonstraints ffom sensed cues
and  the allowable: intervals of free parameters, and then hypothesizes
matches of model primitives to image primitives. The hypothesized .
- matches are tested by propagating the,asséciated constraints over the
free’pérameters to see if the set of constraints is satisfiable or
consistent.

Anothep difference/is in~phe task domain. Although ACRONYM was
‘modeled with 3D'objects the system was tested with ‘aerial photographs

of alrplanes on the ground. The obJects in aerial photographs can be

regarded as 2D in nature, since little variation in depth for different
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object parts can be discerned Indeed, 1t has been argued 'by
Huttenlocher and Ullman (1987) that ACRONYM can only recognize 2D
objects from 2D images. In‘contrast the proposed method is capzble of
recognizing 3D objects from a single 2D image.

‘ Comparison Wlth Alignment Method. The proposed method differs from
the method by Huttenlocher and Ullman (1987) in two ways. First, their
method uses a parallel projection with'a scale factor to approximate
the perspective projqction, whereas the proposed method uses a direct
perspective projection. This difference can be Significant when all

parts on the object do not have approximately the same distance from

the view point. In this case, foreshortening is different for different
parts. The difference becomes severe when the object is close to the
viewpoint. The second difference is that only critical points (zero
crossings of curvature or inflection points in the ‘contour) are used in
the method by Huttenlocher and Ullman, whereasdlines and conics, in
addition to critical points, are formulated_in this proposed.method.

Though high curvature points in the image can correspond to the high
curvature points in the object, the measurement of such points may not
always be stable (Flsher and Bolles,; 1986). In particular, the use of

the derivative for curvature is always subject . to noise, although a
certain .amount of. smoothing is usually wused. The measurement of
attributes of lines and conics are more reliable 'than that of critical
pointsn because attributes of lines or ellipses,are global and subject
to leSs noise, compared to attributes of a point.- For example, the
slope of an image line is measured by using all points on the line,

thus the slope is' quite reliable despite the fact that noise can be’

_present at each point.
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Comparison With SCERPO. Like the approach by Huttenlocher aﬁd
Ullman, Lowe's SCERPO (1987) uses a single type of primitive --- line
segments, in contrast to the generic conic.primitives proposed (though
not fully implemented) in this thesis. In fact, the objects haveé tokbe
polyhedral to be recognizable in Lowe’s SCERPO. Further, the proposed
approach uses a different locating algorithm with line correspondences,
Although Lowe/formulates the,}écaiization pfé%lem in a novel way, the

. 8
prqblem remains nonlinear, and a Newton search method is needed to
estimate the six unknown parémeters. As has been shown in Chapter ?,
o
three 1line correspondences can produce four stable solutions for
location parameters. However, which one of the four global solutions
wiil be found by the Newton method used in SCERPO will depend on the
initial guess of the parameters. Worse still, a local minimum may be
found ifistead of a global minimum. When a local minimﬁm éolution or one

of the incorrect global solutions is found for a set of consistent

matches, the set of matches may be tested as inconsistent and rejected.
. ) ~

~

Another numerical difference in using -line correspondences for

v ¢

localization is that SCERPO minimizes the averaged equation errors of
slope and Y-intercept to obtain tﬁe location parameters. It can be
re;dily shown that the eqﬁation error of line slope is non-uniformly
diétributed over slant angles of the 1line. With such an uneven
distribution bf. equation errors, the Newton method may produce
solgtions-favouring certaih lines. For example, a perturbation of slant
' angle at higher-sfope values will produce larger errors than at lower

P

slope values; thus, the Newton method may find a solutiqn in favor of
— .

lines w.th large slope values.

® " Despite the advantage of this proposed method over SCERPO in
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localizatidn élgorithms, another major.contribu;lon of Lowe’s SCERPO,
namely'Perceptual Organization for initiating hypotﬁesized matches, is
still unparalleled by this proposed method It is believed that proper °
use of Lowe'’s Perceptual Organlzation for formulating probable sets of
minimum hypothesized matches (at the first stage of matchlng process)
and the use of the locating algorithms derived in this thesis for

_testing and augmenting each set of hypothesized matchés (at the second
stage of matchlﬁg process) can lead to a recognition system with béttef

performance than either IRIM or SCERPO.

~ Scope of Further Research. ‘Qur first concern is is to extend the
scale of implementation; that is,. to include the already formulated
ellipse. and hyperbola primitives into the recognition subsystems and to

include overlappiné objects in the scene. Further, we need to
i@pg;vement éhe f}ést stage of'ma;ching fthat is, initiating probable
sets of minimum hypothesized métchés)‘by_employing such techniques as
Lowe's Perceptual Organjzation. Also, the- the recognltlon subsyétem,

must be intergrated with the motion recovery subsystem before this

whole system can be fully appreciated.
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Appendix A. Perspective Projection of Conic Sections

This appendix gives a mathematical proof for Table 2.3 in Chapter
2; assuming that the viewed conic section is in front of the camera and
the focal 1ength is f The cases of point and line are trivial and
omitted here. The cases of e111pse hype;bola, parabola, are treated in
different sections. The formula used in the proof will be‘used again in
Appendix D.1° to determine the location ' of the object once

correspondences between image and model conics are established.

A.1 Perspective Projection of an Ellipse
- . . . 2,2 2,2 '
Let the ellipse be the Intersection of x /o + y'/ﬂ = 1 and z =
0, where x, y, and z are in the primitive coordinate ba§&§. and let the
trarisformation .of prlmltlve coordlnate basis to the camera coordlnate

basis be descrlbed by G and t, one gets:

x° x| - :

y[=¢ |y +t . . (A.1.1),
. C . ) ‘

z 0

where (x,y) represent a point: in  the primitive - coordlnate ba51s and
. hY
_(x ,y z ) is the same p01nt 1n camera coordlnate basis.

Multlplying each side with G’ and using X —-fxc/zc”and Y -;fyc/zC

from (1.1) yields:

vl 6"t = &Myl - 2%/ £t |y - 2/ £6" pT w (A.1.2)



1 0 o0 X
where D = 0- 1 0 , w o= |y ', and (X,Y) represents the
0 0 -f 1

corresponding image point.

Let u = G' t and g, be the i-th column in D matrix. From the third

“element of the vector in the previous eduation, one has
2% = f u, / (g:DTw); if (gzDTw) » 0
Substituting (A.1.3) into (A.1.2) yields

D'w) / (g

D'w) / (g

-

T

X = 93 (g D'w) - u

T
D'w) - u,

[N B e |
@ 1w 1

y =u (g

P4

Using the»ellipse equation xz/o:»2 + yz/ﬁ2 = 1, one obtains

@ 0 0
wDGB [0 20|86 ws=vwuwAw=0
0 0 -1 ' ’
u 0

where B = 0 u 0

1 2 i

" It can be easily shown that det(A)~='-f2u:/(a2ﬂ2)s 0. Thus, if u =
(-zc/f)‘(gTDTw) » 0, then det(A) » 0, and the projection of the ellipse
on the image plane'is a proper or regglar conic section (Korn, 1961).

Whether the image of an ,éllipse is "an ellipse, a hyperbola, or

parabola will depend on the sign éf'a-a - &t
. 11 22 12

(i,j) element’ in the A matrix. It can be shown that
‘ 2 N2, 2 Tt 2 2 2
a3 3, = (Eu) (ta' (a’gsl) - (B By ) /v(aﬁ)

= (0 u) (el (max(a®,6%) / (ap)’

In order for the ellipse to be visible to the camera, -t3 has to

,. Where a.
13
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(A.1.3)

(A.1.4)

C(AL1.5)

(A.1.6)

e

is the

(A.1.7)

.a

>
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q4

be-positive. Consequeptly, -t3 > max(a,ﬂ) is the sufficient condition
for the projection of the ellipse to-be an image ellipse. The physical
) meaning of this condition is that the eilipse is completely in front of
tthe camera.

When u - \-zc[f)(giDTw) - 0, -one‘ has giDTw - 0 since -z‘c is
positivé for every point on th? ellipse. As a result, the image of the
ellipse is an‘image line described by

g13X'+ gzaY - £ 8, .~ 0 | " i (A.1.8)
A.2 Perspective Projection of a Hyperbola'

Let thg hyperbola bgythe.intersectioh of xz/azh- ;2/ﬂ2 -1 and z =
'O, where x, ¥, and z are in the primitive coordinate basis. Followiﬁg

Appendix A.1, one derives the following equation for the projected

hyperbola:
- iy '
a z 0 ~
“DGB [0 5720 | BTy Fula w -0 (A.2.1)
21 }1f -

Similarly, det(a) = £2 u‘/ (a®g%) > 0, and
7 /

.2 . 2, 2 2 2 2
28 3, T U @ )% (B )Y / (ap)
2
< (f u3)2<c3- o’y / (ep)? . (A.2.2)
The sufficient condition for a.a - afz to be negative (so that

the image of a hyperbqlé is an hypérbola) is that -t3 > a and uS#‘O. In
practice, a hyperbola has limited range, and if it is completely in.
front of the camera, then’ the "image of such hyperbola is ‘also a

hyperbola: Again, when u = 0, the image of such hyperbola is an image

line described by (A.1.8).



A.3 Perspective Projection of a Parabola
Let the parabola be the intersection of y = « x> and z - 0, where

X, j} and z are in the primitive coordinate basis. Eollowing Appendix

A.l, one obtains:

ca 0 0
wDGB |0 012 B%6"DTw = w'A w = 0 : (A.3.1)
0 1/2 © . >
/

Similarly, det(A) = a £u!/4, and

aa -a = (fu)(act - g2 ) (A.3.2)

1122 12 3 ¥ T385, gpa U

Since the sign of aa,.- aiz is indeterminate, - the image of a
parabola can be an ellipse; a hyperbola, or a parabola depeﬂding on the
orientation and position of the parabala relative to the camera. In
practiée, the parabola has limited range; therefore, its image ellipse

N~ | B :

or hyperbola will have a missing boundary segment. Again, when u, - 0,

the image of a parabola is an image line described by (A.1.8).



Appendix B. Finding Constraints for Constraint Propagation

By parameterizing _Ehe orientation matrix w1th quaternions,
equations describing the relations such as limits .of view1ng window and
correspondences of image and mgzel primitives usqaﬂly become quadratic
in the quaternion q‘and'the position vector p. Here we éerive eome‘of
these qgadratic constraints and discuss their use in matching image and
model primitives; To use the constraints, a way to find the intervals
of the variables from thé‘qgadratic constrainFs has to be found. This’/
is ‘usually called 'constrainﬁ' propagation, and a way to propagate
‘euadratlc constralnts over their variables is derived in next appendix.

Detailed discussion of parameterizing rotetion, including using
quaternions, is given in Chapter 3; For convenience, a summary of the
quaternion ‘expression is duplicated heree The quatefn%on expreseion
uses the rotation axis (around which the rotation takes place) and the
rotetion angle (the amount‘o% rotation) to ﬁarameterize the orientation
matrix: as foilows:

2 2 2 2 ' S
9,7 9,7 43+ 9, 2(9,9,- q.q,) 2(q,9; + q,q,)

0= 2(q,9,+ q.9,)  -q + q;- q2+ q; 2(q q - 4,9, ) | (B.1)
2(q,9, - 9,0 2(q,q.+ qq;) I q; |

w1th the constraint that q +q +q +q = 1. With the four parameters, . the

vector, i[ql,qé,qa] , defines the. rotation axis, - and ZSinq(q;)

indicates the‘rotaﬁion angIe. |

Before4constra1nts can be derlved the relatlon between a point in

sbace and 1ts  counterpart 1n. the image' need to be mentioned. The

relation between coordinates in camera space and coordinates in object

space is given by: ‘ o .

. 135
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r’ - [xc,yc,zc]?- or’+ p N : R (B.2)
where O and P are the orientation matrix and Egﬁition ector of tﬁe
object coordinate basis relative to the camera coordinate basis. r’ and
r’ are the véctoré,in thejpwo coordinate bases.

Furthermore,,the relation of a point, r°, in the camera coordinate
basis and its iﬁageJ "(X,Y), on the image plane is giyeﬁ. by the
perspective projecﬁion:

X = -x°/2°, and Y - —yc/zc A (B.3)

.S

L "
B.l Possible Quadratic Constraints /

Constraints from the Quaternion Expression

’

Upon entry, qle[-l, 17, qze[-l, 1], qae[-l, 1}, and qke[-l, 1]. In
addition, the unit norm constraint gives the following inequality:

Min(l - } q}) = q} = Max(1 - } ¢%)
. . J i . J
NEEY J>i

Constraints from Visible Parts of Objects

If certain parts of the object is visible, then the following

constraints are valid fcr pointé on the surfaces of these parts.’

Depth constraints. If a point appears on the image, then it must

be in front of the camera. So, the z-component of the poiﬂg\ﬁh camera

-
coordinate basis must be negative. That is,

z (r‘) <‘0. ,Q, (B.4)

for eﬁerylvisible point r° in the object. From (B.l) and (B.2), it

fglloﬁs that (B.4) is quadratic in terms of q and p.

. Viewing direction constraints. If the visible side of a surface is
given by its normal vector n° at the point r°, then the surface is
visible to the camera »nly if

0 £° +p) » n°(c°) < 0.
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The inequality can be expressed as quadratic form of q ‘and P

Viewing Window constrgints If the visible point in the image is
within the rectangular defined by (Wx,Wy) and (Wx,Wy), then it follows‘
that

1 e, o ¢, 0 h l- c, o c ..o h

Wx = -x(r)/z (r) =< Wx , and WY < -y (r)/z(T) <W

Since zc(ro) is not zero these constraints can be expreseed as a

conJunctlon of quadratlc fomula for q . and P by multiplying z°(r° ) to

each ‘side of the 1nequalit1es

ConStra%nts from Primitive Correspondences

Once a edrrespondence between image and model primitives 1is
constituted, a set of algebraic equations decrlblng the match is
obtalned to 11m1t the feasible set of solutiogs for qand P. Due to
noise in the 1mage each obfained equation is supplimentted by an
uhcertainty term, thus reéulting in inequalities.

“Elliptic or fiyperbolic Constraint. This “is the *most powerful

eonstralnt belhg propagated ‘As will be shown in Appendlx D, after a
_ match between image  and model ellipses (or ‘hyperbolas), only two
possible sets of solutions for q and p exist. That is, a match of thle
kind is suff1c1ent to place- the obJect in only two locatlons Se,
‘another correspondence afterf this can be used to verify the

interpretation right away. T

Line-Intercept Constraints. The necessary condition for a- model

line to be matched to a giveﬁ imageqlihe is
{
T=m (-x(r°)/2°(x°)) + y*(£°)/2°(x°)
where T and m are measured-Y-intercept and slope‘of the image line, and

e

"tohis any point in the matched model 1line. Taking into account the
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measurement noise { for Y-intercept, one rewrites the constraint as:
'T-E;m(x(r)/z(r))*+y(r)/z(r) <T+¢,
which can be expressed as quadratic form of q and p by multiplying each

side of the inequality with z (r )

Point Constraints. After a match . of image and model points

'(either'critical points or intersections), one has the constraints:
X-€ = -x"(2°)/z°(x°) < X+¢, and Y-¢ < -y (x%)/z°(2°) = v+e.

where (X,Y) is the image point on the image plane, and £’ is the model

point "in object coordinate 'baSiSu By multipiying each -side of} the

inequalities with z°(r°) one can express point constraints in qeadratic

..

‘form of q and p.

B.2 Coﬁstraints Propogation in Bottom-Up Matching
- * t
In bottom-up pairing, usually a fignificaﬁt image primitive is
selected first. Then, each feasible model priﬁitive is tried against
the selected image primitive to see if the two primitives can form a
correspendence consistent with other correspondences. A candidate model
' primitite’ is said to be ﬁeasibie if, after the set 'of constraints
imposed by the tehtative match between the candidate. primitivexand the
selected image primitive is propagated over the 1ntervals of q and p,
'the tentatively revised intervals of q and.p ere not all null. The
checking of nullness is easily ‘done by checking the, range of v, in the
algorithm LoverVer after using QZQC'and QC2L in Appendix C.

B.3 Constraint Propogation in Top-down Matcliing

In top-down matching,' often a significant model primitive is

selected and projected onto the image plane. Then each feasible image

primitive is tested against the prOJected primitlve to .see if they can
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form a correspondence. If q and p have been determined ,
discretely feasible image primitives are those with measured attributes

close to the projected attributes of the selected model primitive. If,

however q and P can'only be determined in terms of intervals the

Projected attributes of the selected model pr1mit1ve can only be known
within some lower bounds'and upper bounds To determine the lower and
upper bounds for a certain attribute, the expression'for that attribute
is -evaluated by using the kn?wn intervals of q and p. The algorithm
UpdateEqu in Appendix C does just that. In such a case as '‘projected
attributes only known to be within intervals, an image primitive is
said to be. fea31b1e if its measured attrlbutes are within the lntervals

of their respectlve prOJected attributes.



Appendix C. Prbpogéting Quadfatic Constraints

The fact that .equality/inequality equations constrain the ranges
. of their nvariables ‘is often used to reason .the possible vaines of
particular &ariabies under cértain circumstances.” This kind. of
inference is usually called constraint propagation nith interval.lnbels

(Davis, 1987). In this appendix, closed-form solutions are derived for

propagating quadratic constraints ovér their vagiables. Conversely,
this appendix élso diséusses how to find the interval of an quadratic
expression by using the known internals‘of its vgrianie
O.
c.1 Evaluating Intervals of Varizbies Using Given Quadratic Constraints
To find the 1ntervals of variables under a quadratlc constraint,

one flrst converts tne quadratic constraint”into its canonical formSby
using Lhe algorithm Q2Q6 and>£nen converts thevcanonical form into a
1inear constr‘int'by using the algnrithm Q¢2L Secbndly, one propagates

‘the obtalned linear constraint over the transformed varlables by u51ng

.A"“

the’ algorlthm LoverVar Flnally, one applles the algqglthm UpdateVar to

-

step ' . , '

Algorithm Q2QC &
Purpose: To convert the Qdadratic Constraint to Canonical Form.

1. Input Variables:

1 h -
v, o€ [Vi’ vi], for 1 =i < n,

140
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A}
2. Input Constraint: , - . y
. T T T | h
v ,v =V.Av + b v +cv ¢
v, ?) AV + by , g, g
.. T v ‘ T
where v = [v Vo, ...aav , V.= [v v e, Vv , A is a
R 1 _[_ 1t T2 “m] 2 [. m+1’  Tm+2’ n]
mxm matrix, and b and ¢ are vectors with m and n-m>~elements,

respectively.

3. Transformation:

- Let the eigenvalues of " A" be A, A ,...,A, ~and the

. . ’ 1 1 m
corresponding normalized eigenvgétofs be hl, hz’ , h
. . , ' m
let H=[h, h, .~ ,hJand (X , A | x]=ct
: 1 2 Com m+1 m+2 _ n

- 1 - N
Letu = H 'v: and u = v . ' : -
1 1 T T2 2

[ [ "

4. Qutput Variables: ' <4
u e [ul, uh], for 1. =i <n.
1 PR :
[ . < |
wher = thjmh V ) and u = Z Max(h_ v ), for l<i<m, and
Ji g
i=1 i i=1 ‘

1 1 "h h .
u = v__and u=wv_ for m+l<i< n.
3 3

5.- Qutput Constraint:

e ad
o}

. 2 o
g(ul,uz) fiZIAi(ui— uio)‘ + Aiui +d ¢ [g., g ]
. ' . ' B
where u = (bTh Y'and d = - Z A u’
"0 i L

Note. that h iis' the ﬁ§i ,1) element in the matrix H. The value of
Max(h iv ) is (h v ) if h > ‘0 or (h 1v ) lf h < O The Value}ofy

Mln(h ‘W ) is (h iv ) 1f h > 0 or (h i ) if h < O

Algorithm-QC2L & ‘ -

Purpose: To convert the quadratic constraint (in-canonical' form) to
I . . '\

a linear constraint,

1. Input Variables:

1 " 'n ' .
Tu e [ui, ui], for 1 < i < n.
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2. Input Constraint: : e

m n -
2 1
g(ul,uz) - Z Ai(ui- uio) + Z Aiui +d € [g, g
i=1 i=m+1

h

]

3. Transformation:

2 . : .
Let w - (u - v 13 , for 1<i<m, and w - ui,vfor m+l<i<n.

@

4. Output Variables:\’

~

. 1 h .
w e [w,w], forlzx<iz=<n. :
L i i ' »
. I 1 h 1 . 1 2
where, for l<i<m, w =0 if u € [u ,u'], or w = Min{(u - u )7,
— i io i’ iv i 10
h 2 1 1
(ui- uio) }, else. For mt+l<ix<n, woo=ul. Similarly, for 1l<i<m
-~ J ’ :

h 1 2 , h 2, . h. h
woo=Max((u - u )", (u - u )7), and for mtl<i<n, w = u".
i i io0 i i 0 ' i i

1

5. Qutput Constraint:
‘ n
g(w) = Z Aiwi+ d ¢ [g, g ) .

i=1

Algorithm LoverVar

,

Purpose: ' To propagate an linear constrain over its variables.

1. Input Vériables:

1 h ' .
wi € [wi, w ], for 1 < i < n. |
i ‘ .

2. Input Constraint:

n
v : ‘ 1 n
g(w) = X rw+d e lg, g)
- i=-f1 )
3. Output Variables: : , &
7
w e [#, %], forl<i<n.
i i i

Al 1 1
= - E 3 i
where.wi :Max(wél(;/xi)(g Max(Ajwj,)), if Ai > 0, or

. j#i _
Gi = Max(w", (1/x ) (g"- ) Min(A w ))), if A< 0. Similarly,
; [ SR i - J J . i
W= ouine?, A" T minw ). 1f A> 0, of
21 S ' !

00 Min(e®, (1 ) (gt ) Max(A w))), if A < 0.
i i’ i =) J 3 i
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-Algorithm UpdateVar -

~

Purpose: To update the V::iiples of a qudratic constraint after
. ) v :
Q2QC, 0C2L, and LoéverVar* € used.

»

} 1. Input Variables:

L™

Pt g'
‘ . , \ :
Al. Ah . 1 I 1 h . .
- woelw, W]l u e [u, u 1, and v o€ [v ;v'], for l<i<n.
i i’ 74 i i 1 1 - i i .
2. Qutput Variables:
Al Ah Al Ah . .
u € [u’, ui] and ‘vie [v ) vi], for 1 < i < n.

i )
AL 1 Ah 1/2
where u - Max(ui,uio— (w)) !

Ah 1/2
i .

Ah . h
") and u - Max(ui,uio+ (yi) )

. Al . AL Ah Ah L ce L
for l<i<m, and u u - v and u u = wi for m+1<1$n. Further,

m
<\rl = Max(v ZMln(h u 1)) and v = Mln(v , XMax(h _G:))
. . : '=1 i=1 1§ 3

D Ah : L
q. for 1515m,'and = u  and v,omu for m+l<i<n.
i R . i .

C.2 Evaluating Quadratic Expressions for Given Variable Intervals”

<

In contrast to the prev1ous section, the  problem c5n51dered here
s

is to find the possible range, of a qudratlc expfe551on using its known

variable 1ntervals. This  is generally used in a top-down reasonlng

° where the variable ranges are- hypothe51zed or determlned “and are used
. 4 ! . 60
to predlct a certain relation by evaluatlng the expressfon which

s <

descrlbes the relatlon The algorithm Upda:eEqu does jusf that and is

-self-contained.

Algorithm Upda;eEqu‘ i h ' ' . , ’ : 5]&/
Purpose: To evaluate the ‘possible range of an expre551on by usung

- ’
N .

the known ;ntervals of its varlables g

1. Input Varlables:

2. Input Exgre551on .,:

o
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1 W

T LT T
g(vl,vz) - lev1+ b v1+ c v, € g, g ]

X

T .
yeeen V 14, A is a
. n ) :.

T Y
YV""YV] !v-[v ’

1 2 . m 2 m+1 ‘m+2

<

where V.=
mXm matrix, and b and ¢ are vectors with m and n-m; elements,

respectively. -

Transformation:

-

{e

Use Q2QC aﬁd QC2L‘to obtain/tnu intervals:.

1 h '

w e [w,w], for 1 <ix<n,
i } it o
and the expression : T

n

g(w) =) A w +d

i=1 ,
Output Expression: T ,
1 h
gelg, gl

N . ,
where gl = Z Min(kiwi) + d and gh‘= Z Max(Aiwi) + d
v =1 =1
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Appendix D. Hinimum Correspondence Localizat:ion

!,9 F

»In this Appendixk, a minimum' number of correspondences are used to

AI

recover the 3D . location of the viewed object Three basic algorithms

are derlved they are one- elllpse locator (ElLoc), three-line locator
('L3Lo"c), *and  three-point - locator (P3Loc) Other cases like

two line-one-point- and one-line- two p01nt can be solved by modlfylng

the ba51c algorithms, as is explaine_d in Chapter 3.

In ‘each of the locators;’ eight solutions for the orientation

A

PR

matrlxﬂ 0 and pos1t10n vector P can exist. However, half of them

transform the ob_]ect behlnd the camera which is physically impossiblev,

and so, they can be eliminated. The three locators share the same -

assumption that the focal length, f, of the camera 1s known Each of

4, !
o

the algorithms will ,"be' addressed separately in each sectlon that

follows. To avold confllct of symbols symbols defined .in each section

<are only valid for that seétion, unless specified otherwise.

'

D.1 Localiz‘ation Using/OIie Ellipse correspondence
Let the transformatlon of the primitive coordlnate ba51s to the
model coordlnate basis be descrlbed by the rotation matrix Q and the

translatlon“vect-or s, and the transformatlon of ‘the model coordlnate

basis to the camera coordinate basis be described by the orientation

matrlx 0 and the postltlon vector P, then the transformatlon between

the . pr1m1t1ve coordlnate ba51s and the camera coordinate bhasis is glven

by G(-OQ) and- t(-Os+p) Let the model elllpse -be the 1ntersection of

x/a + y/ﬂ = 1 and z = o, where x, y, and z are in pri_mitive-'-

145
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cookrdinate basis, and let w = [X,Y,l]rand g, be the i-th column in G

matrix. It was shown in Appendix A that the projected ellipse is of the

form: < ‘
. -2 )
. a0 0 ‘ " 5}5’ |
wDGB [0 8% | B'¢*D'w = wiA w = 0O . (D.1.1)
o 1 . . | :
0 0 gatT 0 0
where D = | 0 1 O and B = 0 g;t o[
0 -f W 4g:t -g;t 1

By using the orthonormal proﬁerty of the rotation matrix G, it can
be shown that

GB=(gxt, gxt, g] _ (D.1.2)

where x is the cross product operator. .

Suppose the méa;ured image ellipée is given by WM v - 0. If the
measured ellipse is the image of the model ellipse, then A = n M, where
5 is a scalar. Let N = D 'M D-I, one caléulates its eigenvalues as

-

Al,A2, and -3, and the.cofresponding unit eigenvectors as e ; ez, and

ea;' A1 ,X2 , and A3 are all positive for an ellipse. Again, let pz—

¢

A1/A3, vi= Az/X3, and E = [el,»ez, éaj, one has

ap 0 0 ‘
EN10  pv 0] = [aﬂel,ﬁuez,eal =n Q,B = 7 [gzxt,-glxt,gsl (b.1.3)
10 o 1

From (D.1.3) and the orthonormality of .G, one obtains the
following equations:

8.~ e, ,_L N o (D.1.4)
t f p (elx ez)i since t . e = 0 and t .'ez- 0, o (D.1.5)

v
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. . \ . ’ . '
e . g, 0 N (D.1,6)
e . 82-’ei’ (83x 81) - e1' (eax 81) : H(D.1.7)
2 ’ ‘
exexe (e..e )e -(e .e e _
g, t 2 1 3 - 2 3’ 2 1773 (D.l.8)‘
”ezx e x é3” | "(ez.ea)el-(ez.el)eaﬂ
where ” ”, - and x are operators for vector norm, inner product énd

c¢ross product, and p is an unknown scalar.

It is clear that el, ez, and e, in (D.1.3)-(D.1.8) can have -1 or
1 multiplied with them, thus there are eight possible sets of solutions
for G anhd t. However, four of them arg'behind the camera; that is,
thése solutiﬁns with -t, < 0 can be discarded. Further, if éhe face of .
the - ellipse is visible while the other is not, only two of the
remaining four solutions with [0,0,-1] ¢t >0 are‘physipally possible.
The following proéedurg gives the two solutions for 0 éna P.

One-Ellipse Locator (ElLoc): |

1..Let.u = ex e, v‘= e, aﬁd W= (ez.eajei~ (ez.el)e3

. 2. Let u = u/|uf, and w = w/”yﬂ“; |

3. If u3 > 0, then u = -u o

. R\
4. If u . v> 0, then v = -v
5. p= éV/”V x u” » | \\\
6. t =pu : - ’
o/
//'

7. G = [w, vxw, v] or [-w, -vxw, v]
8. 0 =¢G QTand P=t -G Q? s
When the model éliipse ig a circle, the rotafion aﬁgle around z

.axis is uns%ecified. In this case, the solutions of 0 and p are given

a
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by:
, co S§ O ' ‘Tco sg o ,
0= G|-s6¢C6 0fQ , and p=t-G{-s6c6 0lQ°s (D1.9)
0 0 1 , 0 0 -1

'Qhere Cd = Cos(f) and S# = Sin(f). The value, of § is within (-n,7]. In
the special case where the object is symmetricuﬁith-respect to the line
collinear with the.z-axis of the circle, the rotatioﬁ around z-axis can
be ignored. However, in generai, tﬁe degree of freedom in- the angle of
§ has to be taken into account. From (D.l.?), ;ne' has 12 1linear
equations for 14 unknowns: 9 in O, 3 in p, and 2 in C#4 and‘Sﬁ. By
téking an additional 1line or point correspondence> :éhe has two
additional 1linear equations in O aﬁd. p. Examples' for the,‘liﬁear
equatioﬁs are (D.Z.l), (D.2.2;, (D.j.l), and (D.3.2) iq the next  two
sections. Thﬁs; ;ne can solve thé undetéfmined angle ¢, the o;ientation
‘mat:ix 0, and the position vector p by ﬁsiﬁg the éiven circle
correspondence.and an additional line or point correspondence.

For one hyperbola correspondence, a similar procedure can be

derived to give ‘the two possible solutions. However, for the case of

B o : v
parabola, no such solgiyga'fs‘guarapteed.

D.2

the problem of solving O and p by using three line

sformed into an 8-th order root-finding probler.
- / .

Each real root fdd;L corresponds to a solution for O and p. Because

half of the solutions are for the object behind the camera (not

a visible -solution), there are, at most, four possible solutions for

I
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this problem.

i . . "~‘.'{
Let each model line, i, in the model éootdinate basis be given by

’

T =a a + r, where a is the unit directlonal vector of the line, i

is a scalar, nd r, is a point on the line. Also let th e
N : l

correspondlng 1mage line be descrlbed by Y = m X + T where m is thé»

i
slope and T is the Y-intercept of the image line. By transfﬁwmlng the
model lines with the orientation matrix O and positin vector p, and

then perspectively projecting any two points on each transformed model

line, one has the following pair of equatlons for each correspondence

b0 a =0 g (D.2.1)
i i ) S
T T ' : , C
- bOr+bP=0 i N (D.2.2)
i i i ) : N .
where bi=== [fmif, f,<Ti]/”[—m;f, f, Ti]”, and ' the operator, “ IL

computes' the norm of the given vector.

Equation (D.2.15 is’ linear invthe 9. elements of the 0 matrix;
.however, to. solve the 9 elements in O directly, one needs 8 1ine
~correspondences to have 8 equations like kDLZ.l). The fact that matrix
O has only three degrees of freedom;leads to the belief that it is
p0551b1e to solve for (;\by using only three line correspondences
though multlple solutions may exist. If the matrix O is solvable, then

3

P can be ob%ained‘by

1t b Or
R S I B
P = 2 b% (D.2.3)
b b
3 73

where the first matrix is invertible if ‘any two of the three image
:lines are not collinear.
The questlon remaining is how  to solve for 0 by using three

1ndependent equatlons 1like (D.2. 1) An approach is to. eliminate two of
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the urknowns by using two of the three equations, thus forming an

algebraic equation of degree 8 which, is -then solved by a r&ot-finding

technique. To do so, the first step: is to find two rotation matrices F

and H such that

G Fa=[(1 0 0] S - (D.2.4)
gggy » | | o

Fa,=[c, c 0] | (D.2.5)
HTb1= [0 o 117 , - C (D.2.6)
. : iy )
Hb = (0 d_d 17 o (D.2.7)
2 22 23

. 2 2 ’ 2 2
where ¢~ + ¢~ =1 and d° + d° = 1.
21 22 22 23

S

To calculate F, one can parameterize it with Roll-Pitch-Yaw
angles, ¢ , ¢ , and ¢., and then use (D.2.4) to solve ¢ and ¢ and use
z -y x : z Y

(D.2.5) to solve ¢x. Likewise, one can calculate H.

Once F and H atﬁ obtained, by. letting Q = H'O F' and themy:
‘ - » AN
parameterizing the matrix.Q with Roll-Pitch-Yaw angleé, P ¢y, and P
one has thrée estions as followsé

. 1 K
[0 0 1] Q |0]= ) ) (D.2.8)
0l ,
<
C
- 21
[0 d22 d23 ] Q ¢l = 0 : (D.2.9)
0 ] ,
: c
, 31 - .
[d31d32 d33 ] Q el = 0 ' g (D.2.10)
c
33
: - T . o T ’ T
where d = [d' d d ] =bH and ¢ = [c ] =Fa
3 .31 32 33 3 3

C C
31 32 33 3

Equation (D.2.8) yields sin(wy) -.Q or ¢ = 0, since pitch angle;

¢ , is in the range of'-w/2 and n/2. By~substituting ¢;- 0 into (b.2.9)
y - h S »
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and (D 2. 10) and by defining Cz = cos(w ), Sz - sin(wz), Cx = co;&px)

and? - 51n(go ), one obtalns K - ’
(¢, S2) + Sx (a,) +,cx'(qg:cz) -0 ) (D.2.11)
(ﬁlcz+ﬂzsz) + Sx(ﬂg+ﬂ7Cz+ﬂBS£) + Cx(ﬂ3+ﬂ5Cz+ﬂBSz) -0 (D.2.12)
A wbere i dzz 217 %2 T ézsczz’ aé - dzzczz’ ﬂl,F d31c31’_ﬂz T %32%010
\ﬂa = dascqa j%a - daacaz’ ﬂs - dazcsz' ﬂs - -dalcaz’ ﬂ7 - _dazcéafaﬁd
ﬂs - darcaa'

By replacing C: with (1-t%)/(1+t*) and S. with 2t/(1+t%)  in

(D.2.11):and'(D.2.12), and by expressing Sx and Cx in terms of t, one

has »
@ (5, t%4 €6+ 52 - a (€, 2+ .6+ ¢ ) (1+t%)y

Cx (D.2.13)
(n t + ﬂ t + n )(1+t ) - «a (g t + g t + g Y(1- t\)

a (5 t + 5 t + f )(1 t ) - a (n t + U t + n Y(2t)
J. Sx > (D.2.14)
U nt+n %(1+t ) ~ «a (g t2+ ¢t ;-g )(&-t ) '

3+ﬂ5f Ty 2ﬂ6' "y = ﬂa—ﬂ5’ $o = ﬁ4+ﬂ2' £, = zﬂe’
$, = BB, &, =8, €, =28, and § = -8 .

S 2

The fact that ¢% + s = 1 yields
(n,t°+ n_t 4 no)z{al(zt)z:_a2(1+t2)2]
.+ (szt?+ ¢ t+ go)z[a1(°:)2- a (1-t%)"]
+ (§2t2+ glt + e omt - (1+c2)2]
+ 2 aa (1)) % Tt NGt g e s )
e 90 s e ) €6+ €) ‘,
- 2. 3(?L)(1-t2)\x2t2+ glt + éo)K”. “y nlt + n0)= 0 (D.2;15)
Equa n (D.2.15) is an 85th order - gebraic equation in t, which
can be s ./ed by root-f inding. cechn.~ :s. For each root found; its
‘corresponu - and ¢x can be calcu! d. SuBsequehtly,«O can be found

by using 0 = HTOFT, and  ec-°r obtained’ by dsing (D.2.3). The

“succeeding procedure s -~ che stepé for recoverying 0 and P.
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Three-Line Locator (L3Loc):
1. Let ea. :oldel line bem described by (ai,ri) and 1its
correspondlng 1mage line by (m d ), where i = 1,2.

2. Flnd F and H sucihl that ﬁhey satisfy (D.2.4)-(D.2.7).

3. Parameter1 e Q= H\O F : with Roll-Pitch-Yaw angles, <px;\, qoy, and

that here (p as inicated in (D.2.8).
4. Parameterize cos(c th (1‘-t2)/(1+t2)‘ and sin(qoz) - with
S : '
2t/ (letdy .

5. Find t for®(D.2.15) by usiné ‘root-findihg techniques.

6. For each t found in step 5, backsolve kpz and P by using
theparameterization in step 4 "and by using (D.2.13) and
(D.2.14).Subsec/1uently, calculate Oy‘by using the definition in
step 3, and. caculate p by using (D.2.3).

7. Discard any solution with P, > 0.

It interesting to note that when the flrst two model lines are

]

parallel (i.e., al= a) a2 and a in (D.2. 11) are equal to zero;

z

consequently, ¢ = 0 or ¢ = =. By expres@ng €x as (1 s )/(1+s ) and Sx
] z

‘S\

as 25/(1+sz) one has two 2nd- order equatlons to solve éns@éad of the

8-th order equation in (D.2.15).

D. 3 Localization Using Three Point Corresﬁondences

The fact that n points produce @?lndependent edge l}.nes leads to
the result that n-point localization can be done by using the n-line
locating algorithm. However, forgn = 3, it may'be more convenient to

g
solve the problem; directly:® usn’gg a direct three-point locating

algorlthm Lnstead of using Qhe three line 1ocat1ng algorlthm
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Let the three model points‘%e given by r, r, and
image counterparts by (Xl’Y1)’ (XZ,YZ) and (xa’Ys)'
" model points with focal length £,

"two eqations:

one has for each correspondence, i
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ra, and their

By projecting the

[f O X1 (0 rT+p) =0 | (D.3.1y%

[0 f Y;] 0 x+p)=0 (D.3.2)

From (D.3.i),.and A(D.3.2), one concludes that (Ori+p) is
pProportional to the cross product of [f 0 ‘X;jrand [0 £ Yi]T, and
derives“the'following equations:

0 rl; P = o v, (D.3.3)

0 r+p = e'vz ) tD-3;§)

0 r$+ P = g v3 (DZ3;55
where v = [Xi, Y¥{ -f]. Note th;ti thev scalars{ o, p, and n are all

positive in order to have the object in front 6f}the camera.

Taking distance between any - two of t“ju?phiéé>

EN

(D.3.3)-(D.3.5), one has

[ a2 -a 0
) . ] 12
k = Jr-r I = n° £7]- 0] t
"1 1 T2 ‘ 21 “22 o
0 . _—
) 7R «
T
[0 0 0 R
' 2 2 7 ' S
k, = ”rz' N A @22 "%25 t?*} T
0-a  a N L?
32 Tead L
p ;
fr a ’ -a 7
) . o] 11 13 :
k = [r-c|*=9n*¢" 0. 0 0 [t
3 3 1 .
= l-0.70 - a
- 3 33

where aiJ % v, vj, and t = [g/n, p/n, 1}.-

. . . . 2
P Moving n

.

to the left hand sides of (D.3.6)-(D.3.8) yields - .

~

vdetors in




154

a /k  -a_/k_ 0] 0o o 0
T : ' T :
t -am/k1 azz/k1 Ol t~= ¢t |0 azz/k2 -aza/k2 t
0 0 0 RTTATIL NVAR
3 .
a _/k 0 -a /k ~
- t']o 0 o t , «(D.3.9)
-a _/k 0. a, /k3

1271 : :
T , i : - 0) -
e,k ay ks sk A k| ee 0 S @.3.10)
L 0 3.7k, “a,,7k,
. sk sag Ry - A PV
t -a21/k% azz/k1 -0 t =20 (D.3.11)
L aal/ia' 0 “3,,57K, 5
where t = (e .t 11 = lo/n, p/n, 1] .
o N
-
- o;{

in ordér to solve t and:;z, we'muSt“find the intersections of Eﬁéwﬁ\
two conics. One way to find the intersections -of two conics is to
transform-first conic into its canonical form and then describehkhe
second ¢onic with 6ne unknown parameter. The parameterizaﬁion d@pends‘
on the tyne of the conic in canonlcal form The types are parabola
elllpﬁk and hyperbola The unknown parameter in the parameterlzatlon .
is solved by u51ng_the second conic Equatlon. For example, if the first
nonic is an ellipse‘wi#h_ﬁhe cdnonical form, (t1>a>2+ (tz/ﬂ)zf- 1, one
can have the'parameterizétionv t1 = 25/(1+sz)a and t;’— (1-sz)>(1;sz)ﬁ

;-

with the unknown s. The unknown parameter, s, .is solved by subsitituing

t1~and tz into the second conic. A detail discussion of intersecting

°
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conic -sections can Be found in the peﬁer By Levin (1976).
‘ There are, at most, four intersections eetween the two conics in
(D.3.10) and (D.3.11). Each intersection of these two coniee,gives a
selutien forlt; and t,- The solved t and t are then used to determine
.n via (5.3.6). Subsequently, ¢ and p can be determined. “Once o, p, qtﬁ

n afe.foﬁnd, one hag the following equations:

0 (r T : 3
(rlilrz) = oV, - v, - (D. .12)
0] (r - r ) = p v2 SNV, ' - (D.3.13)
To solve 0 and p, let u =(r-r )/"r - T ”, w;= (ov - pvz)/Havl- pv2”,

u ~ (r - r) /”r - “ and w - (pvz- nva)/”pvz- nv.|. So (D.3.12) and

’

(D.3.13) reduce to: . o
Gu =FOu =F v o= [100]° | (D.3.14)
Gu =FOu =Fw =[c ¢ 0] (D.3.15)
2 2 2 21 22 '

Té ealculate F, one .can parameterize 1t with Roll Pltch Yaw
angles, ¢z, ¢y, and'¢x_ and then use, (D 3. 14) to solve ¢ and ¢ and use
(D.B.lS) to solve ¢;. With the same way, one can solve vfor G.
Coﬁsequentlyr one obtéins 0 = F'G. After. having O,‘one can caiculate P

by'uéing (D.3.3), ' . v

fThree—point locator (P3Loc):
1. Let “the each model point be described by ‘¥, and its
correspondlng image p01nt by (X Y ).

2. Letr t = [o/n, p/n, 1]T, where o, p, and g are’ definded in

°
)

(D.3r3)¢_:(_D_3.S). 3:::—"
3. Find ¢ and t, ‘ by intersecting the ‘two conic ‘sections in
*> (D.3.10) and (D.3. 11)

4. For each intersectign -found in step 3, find n by using
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\(D.3.6), .and then ‘find awand p by using the definition:of

s

t in step .2.

5. Solve O by using (D.3.12)-(D.3.15) and then P.by using (Df3.3)'.
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| Appendix E. Extended Kalman Filter (EKF)

&

Tl ‘
Supbose the estimate of the vector b at time k based on the
:4:\_ . s $ . )‘ R

measuremengg uu to tlme instant k, is obtained as b(kfk) for the
Do : g; o ) ' (,‘,x’ l!‘

“;’nonllnear\éystem ‘ =
- b(k+1) < f(b(k)) + n(k) . (E.1)
d(kt1) =h(b(k+1)) + v(el) | (E.2)

where d(k+1)‘¥s the measurement at time k+1. n(k) and v(k+l) represent
unmodelled d;namlcs and observation noise, respectlvely Both n(k) @nd
v(k+1) are assumed to be uncorrelated and with zero-mean Gaussian
dlstrlbutlon ,
The extrapolated;estimate'of b(k+1);~based on'the information up

to measurement at time k.is then given by | |
b(k+l|i) = £(b(k|k)) ) L (E 3)
By llnearlzlng f(b(k%) around b(klk) and h(b(k+1)) around b(k+1jk)
and. by deflnlng e(k) =" b(k) - b(k[k-l), one has, in terms. of the
N .

error e(k), the llnear system:

b(k+L) - b(kHL[K) = F() (b(k)- bk[k)) + n(k)

e(k+l) =
= F(k) e(k) - F(k) e(klk) +'n(k) _ o (E.4)
g(k+l) = d(k+l) - h(b(k+l|k)) - H(k+1) e(k+1) + v(k+l) (E.5)

where F(k)/ af(b)/ab[b(klk) and H(k+1) ah(b)/ab |b(k 1|k)
Let the Kalman gain (a matrix ‘which relates the amount of update
in the estimate to the difference between the measured and exrapolated
,attrlbutesﬂ its calculatlon is given in the procedure DynamlcEKF) be

denoted by G(k+1), then the updated estlmate of e(k+l) for the 11near

system above is given by v K ST -
T '

157 ‘ N
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e(k+l|k+l) = e(k+l|k) + G(k+l) [g(k+l) - H(k+l) e(k+1.|k)]

- C(k+1) [d(k+l) - h(b(k+l|k))] (E.§)
where e(g+1|k) is the coﬁditional expectation of e(k+1) in (E.&), givén
~ measurements up to time k. By taking conditional expecfatipn of
(E.&),‘it is clear that e(k+l|k) -IO.
Comining (E.4) and (E.6) yields |
b(k+l[k) = G(k+1) [d(k+1) - h(b(k+1|k))] | (E.7)
The derivation above gives‘the following procedure to estimate the
unknown b(k+1) by using meauremeﬁts up to time k.
The DynamibEKF procedure: | : o
/* The index k is for the time instant k */

1. Extrapolation of states

b(k+1llk) = £(b(k|k))

2. Extrapolation of .the error covariaqée
P(R+11K) = FOOR(K[KF (k) + Q(k)
where Q(k) = E{n(k)n' (k)] and F(k) = af(b)/ab|b(k|ky:\--

N R
" 3. Error covariance update ' )

P(k+i[k+1) = [P '(k+l|k) + H(k+1)R'1(k+1)H(k+1)1'ﬂ

. 1
.where R(k+1) = E{v(k+1)v(k+1)") and H(k+l) = dh(b

1

)/aB|B(k+1|k)‘

4. Kalman Gain Matrix
G(k+1) = P(k+1]k+1) H' (k+1)R™ *(k+1)

5. State estimate update _ , b

b(k+l|k+l) = b(k+1|k) + G(k+1) [d(k+l) - h(b(k+1|k))f
The state estimate update can be improved by iteratively repeating

. . L
Stép 3 to Step 5, with correction of H(k+l) in each iteration, until no .

improvement can be obtained for b(k+l|k+l). The iteration for Step 3 to

:
£
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Step 5 is done with the ITERATE algorimth to be given- below Details
about EKF can be found in the texts of Maybeck 01982) Anderson and
Moore (1977), and- Balakrishnan (1984). 1If no - dynamics exists in the
‘given syetem, thet‘is, b(k+l) = b(k) + n(k), the previous DynamicEKF

proeedure is reduced to the following one.

The StaticEKF,procedure: ,

1. Error covariance update

" ) S o
P(k+1lk+1) = [[P(k|k)+Q(k)] ' + H(k+1)R 1(k+1) (kL) Fo

E(n(k)n"(k)),

where R(k+l) = E(v(k+L)v(k+1)T), QCk)
and H(k#) = bh(b)/ab]b(k'k).

2. Kalman Gain Matrix

Gktl) = P(k+llk+l) H' (k+1)R™* (k1)

3. State estimate update

~

b(k+1|k+1)‘-’b(k|k) + G(k+1) [d(k+1) - h(b(k|K))]

If time index does not exist, e.g., the problem of finding‘ a

Y

solution to minimize the averaged mean- square error of %he }PCLOI
equation d = h(b), the StatlcEKF procedure is redgced to a procedure*

similar to the Gradient method for uneonstralned_optlmlzatlon.

The ITERATE Procedure for Unconstrained Optimiiation;
/* the Subscript, i, in thls algorlthm is for the i- th 1terat10n and

should not be mistaken as time index */

1. P =[P '+HR YN 17t
irl i i i

where R = E{vv') and Hiu‘éh(b)/ab]b

' : T -1
2.6, =P
1+1 i+1° 8
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- b, +6,, [d-hb)]

i+1

4. If "b1+1 - bi" 5 € terminate, else i « i+l and go to Step 1.



Appendix F. Camera Calibraton
‘ : ' ot _

’This appendix summarizes an algorithm by Tsai (1986)° for camera
caiibration. The purpose of- camera ee1ibrat1en is to estabiish a model
which relates the viewed 501nt in space’to the p01nt in ‘the image The
unknown parameters in the model of this algorithm includes camerh focal
1ength, ratio between horizotel and vertical scales, redial lens
distertion parameters, and the transformation of a reference coordinate
basis to the camera coordiante basis. The reference coordinate basis is
the space where the reference dots are defined. The dots appear on the
image, when viewed by the camera, and their positions in the,image can

4
be determined. The calibration algorithm wuses the measured dot

locations on the image and’the known dot locationg” iey the reference

space to determine the model. Clearly, before the caiﬁbraflon algorlthm v

can be used, correspondences between dots on the image and dots in the

space have to be established.
Suppose the transformation between a reference coordinate basis
and the camera coordinate basis is given by
r =G+t . - __— , (F.1)
P r r r ‘'r.,.T ., - . . I
where r'= [x',y" ,z"]" is a point in the reference coordinate basis and

L

r'= [xé,yi,zcjr is the same point in the camera coerdinate basis. G and
t are the rotatlonal matrix aed translational -vector between the two
coordlﬁate bases. : v ' » '3

For undlstorted pPerspective projection w;%h focal length £, the
proJected point (X , Yu)son the image is given by

u

X = -fx°/z° and Y = -f y°/5° o (F.2)
. u . .

. 161
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, YY) and
d d

<

Under radi.! distortion, the distorted projection (X
the undistofted projection 1is related by
X (1+k r +k;r ) = X, and Y (L+k r+k,r") - ¥ (F.3)

' where k and k are the radial distortioh parameters,

and .r = (x + YZ)“Z

o From (F 2) and (F 3) it is clear that

o /Y AL A o (R4
. Suppose the measured image " point ‘?F ,Y ) and the distorted
Ty . . L m

X m

WS .

prOJectlon have the relatlons
. . Y . i - . ‘ . 4“ ,
- X.'=8X and Y =85Y - (F.5)

m X u .Yy 'u

where.S and S are horlzontal and vertlcal ébales
X

Let s = S /S , £ =8.. f, and r = S r = ((X /s)2+ YZ)UZ, one has
TTm Ty y m’
(X /s) (1+k r'+k x ) - -f x5 (F.6.a)
. m ’ . S .
Y (1+k r2+kf ) =‘-f AVE S T o (F.6.b)
L. m‘ lm m . r : . . v
_where k= k /S? and k_ -. k_/s"
: ) 1m 1 y 2m ¥ 2"y~
From (F.1) and (F.6), one has G, t, f',‘ s, ,ki , and k " as
' . m 1m’

e

unkhoWns, given that X , Y‘,~x y , and z are known The callbratxon
m .

process is to recover the unknowns by u51ng the known coord?nates " For .~

convenience, it is d1v1ded into two consecutive algorithms: CalCameral

and CalCamera?.

'AlgorithmﬂaalCamefal

Purpose: To recdver G, t'fﬁt and:s in (F.l)”and‘(F.6)_
. Xy . ) .
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1. Use "(F.1), (F.4) and (F.6) to obtain for each calibration dot
the ‘equation
r r r r X X
[Yﬁx ,me , sz ,Ym, -me , -X Yo -X 2 ] b= Xﬁ

-1 -1 -1 - ey -1
where b = t s ,t s ,t s st t ,to
» [t, se,,.t "sg,,.t "sg ) g' LTI

x' 23

(

and 8, is (1,3) element of the G matrix.
2. Use at least 7° noncoplanar calibration points to “solve the .
vector b

3. Calculate.the magnitude of t by using the equation
. . y .

fe | = 6%+ b2+ p2y~22

y 5 6 7 ‘

‘which results from the orthonormality of rotation matrix G and
from the defination in step 1.

4. Solve s, G, apd.t using the following equations

2 T2 2.1/2
s = (b1+ b2+ b ,) It ||

g;blgwggn=%hﬂﬁ.%;blgwg,

R L R N S e 1)

[gsl,gaz,g3;] - [g11,g12,g13] * Lg B3z, 8 1'
£e= b le lizs,
5. To determ1ne the 51gn of t , plck a point whose.image (X Y ) is

away from the origin. Assume, for the moment, the s1gn of t is

positive, and use the obtained G t and t to calculate .xvand
B i

y ,. as shown in (F 1). Since z° is negative, X and r° must have -
. ) . m . :

the same 51gn so do. Y and y.. If this is not the case,'theh
m . .

o

the~sign of t mustvbe-negative -and the sign of the varlables

obtained 1n step 4 must be flipped

Algprithm CalCamera? )
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Purpése; To recover f , t , k , and k in ‘(F.l).énd“'F.G)
o . m z 1m . 2m Vo -
1. Let w = 2°- t , and compute y° and w for each calib
. z .
‘psing (F.1).
For each calibration point, modify (F.6.b) to
¢ 2 4 ' 2 4 .
YE+Ywk r’+k r) + Y (I+k. r'+k rHt = -Yw
m m im m 2m m m lm m 2m m z . m
Let k1 = k2 = 0, and, for each calibration point, reduce~?ﬁf
m m . .
to
yOf +Y ¢t = -wy _ , (F.8)
m m z m, .

Use Psedo-Inverse Method to solve f and t for (F.8) of all
. ) m z

calibration points.

Use f and t found in step3 along with kk =k = 0 as initial
m z lm 2m

Tm z im

[N

guess to 'solve £ ,t, k , and k2 . for the nonlinear
m

‘equations, (F.7), of all calibration points.



