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Abstract

This thesis aims at improving robot perception for autonomous navigation

in highly dynamic environments. In the first part of this research, a fixed-

frame visual localization method utilizing a fisheye monocular camera is pro-

posed to enhance the navigation accuracy for autonomous mobile robots in

dynamic indoor environments (with direct application to warehouse or ser-

vice robotics). The method develops an optimal variance filter with covari-

ance adaptation for visual state estimation and is able to address challenging

scenarios due to full/partial occlusion. In the second part of this thesis, a

novel and computationally-eficient visual-inertial dynamic object detection

and tracking framework are proposed, using onboard visual and inertial sen-

sors for autonomous navigation in highly-dynamic environments to address

challenges of existing localization and navigation methods that heavily rely on

the assumption of static features in the scene or use learning-based methods

to detect dynamic objects. The novel framework combines prediction over in-

ertial data with the measurements from stereo vision-based state estimation

to form a stochastic filter with Bayesian tracking for motion classification. In

this pipeline, point cloud clustering, disparity map generation, and consistent

tracking have also been conducted for both fixed- and moving-frame scenarios.

The proposed frameworks are experimentally validated in several autonomous

navigation scenarios in highly dynamic indoor/outdoor environments and in

urban settings. The two distinct solutions presented in this thesis, are designed

to resolve challenges imposed by the dynamic nature of the environment in-

ii



cluding occlusions and unreliable feature selection for localization. The results

of this thesis confirm the reliable, consistent, and real-time performance of the

developed frameworks in both fixed frame (i.e., infrastructure-based) and mov-

ing frame state estimation using multimodal visual-inertial data. Combining

the two solutions proposed in this thesis for networked robotic systems and

connected autonomous driving leads to more precise, robust, and eficient au-

tonomous navigation systems that can be used for both indoor and outdoor

applications.
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Preface

The first part of the methodology and research approach of this thesis (i.e.,

Chapter 3), which focuses on fixed-frame visual state estimation is presented

as a full research paper in the 2022 I E E E  18th International Conference on Au-

tomation Science and Engineering (CASE)  and later published in the confer-

ence proceedings as Augmented Visual Localization Using a Monocular Camera

for Autonomous Mobile Robots with authors: Ali Salimzadeh, Neel P. Bhatt

and Ehsan Hashemi.

The second part of the research on dynamic object detection using mov-

ing visual frames (i.e., Chapter 4) is being prepared for submission to I E E E

Transactions on Intelligent Vehicles.

iv



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Ehsan

Hashemi, for his invaluable guidance and support, encouragement, and ex-

pertise throughout my Master’s program, research publication, and delivering

research outcomes.

I  would also like to thank Prof. Bob Koch, Prof. Dan Sameoto, and Prof.

Osezua for serving on my thesis committee and providing helpful feedback and

suggestions.

I  am grateful to Dr. Neel P. Bhatt and Dr. Arunava Banerjee for their

wonderful research and technical mentorship and support which helped me

complete my research at the NODE lab.

I  would also like to thank my friends and family for their love and support

during my studies. Without their support, this academic journey would have

been impossible.

Finally, I  would like to acknowledge the financial support received from

the Natural Sciences and Engineering Research Council of Canada, Alberta

Innovates, and Major Innovation Fund (Alberta Ministry of Technology and

Innovation).

v



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement and Scope . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8
2.1 Machine Vision . . . . . . . . . . . . . . . . . . . . . . . . . .       12
2.2 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . .       14
2.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . .       15
2.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Fixed Frame Visual State Estimation 21
3.1 2D Perception . . . . . . . . . . . . . . . . . . . . . . . . . . .       23
3.2 Point cloud filtering and drift compensation . . . . . . . . . .       26
3.3 Uncertainty-Aware Visual Localization . . . . . . . . . . . . .       27
3.4 Stability of the state estimator . . . . . . . . . . . . . . . . . .       29
3.5 Input estimation . . . . . . . . . . . . . . . . . . . . . . . . .       33
3.6 State estimator . . . . . . . . . . . . . . . . . . . . . . . . . .       35
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Dynamic Ob ject Detection 38
4.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       39
4.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . .       40
4.3 Stereo Camera Calibration . . . . . . . . . . . . . . . . . . . .       42
4.4 Disparity Map Generation . . . . . . . . . . . . . . . . . . . .       44
4.5 L I D A R  as Ground Truth . . . . . . . . . . . . . . . . . . . . .       46
4.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       47
4.7 Ego-Vehicle Motion Estimation . . . . . . . . . . . . . . . . .       49
4.8 Feature Tracking . . . . . . . . . . . . . . . . . . . . . . . . .       49
4.9 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . .       51
4.10 Visual Velocity Estimation . . . . . . . . . . . . . . . . . . . .       53
4.11 IMU Integration . . . . . . . . . . . . . . . . . . . . . . . . . .       57
4.12 Vector Closure . . . . . . . . . . . . . . . . . . . . . . . . . .       58
4.13 Motion Classification . . . . . . . . . . . . . . . . . . . . . . .       58
4.14 Bayesian Tracking . . . . . . . . . . . . . . . . . . . . . . . . .       60
4.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Experimental Results and Discussions 65
5.1 Infrastructure Aided Localization Results . . . . . . . . . . . .       65
5.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       67
5.3 Combined longitudinal/lateral trajectories . . . . . . . . . . .       68
5.4 Temporary loss of image and occluded scenes . . . . . . . . . .       68
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vi



5.6 Dynamic Object Detection Results . . . . . . . . . . . . . . . 73
5.7 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.8 Driving on Straight Busy Streets . . . . . . . . . . . . . . . . 77
5.9 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.10 Sharp Turns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.11 Special Case Study . . . . . . . . . . . . . . . . . . . . . . . . 81
5.12 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions and Future Works 87

References 90

Appendix A 102

vii



L is t  of Tables

5.1 Clearpath Jackal robot specifications. . . . . . . . . . . . . . . 65
5.2 Intel Realsense T265 camera specifications. . . . . . . . . . . . 66
5.3 Statistical comparison of optimal estimates by the proposed method

for various scenarios. . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Segmented statistical comparison . . . . . . . . . . . . . . . . . 74
5.5 Stereo camera specifications. . . . . . . . . . . . . . . . . . . . 74
5.6 L I D A R  specifications. . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 GNSS sensor specifications. . . . . . . . . . . . . . . . . . . . 75
5.8 Category definitions used for quantifying dynamic object detection

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 Quantitative performance of dynamic object detection for all

four scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



x,k y,k

−→
l  r

→−
k+1|k

k

→−
i

L i s t  of F igures

3.1 Visual node image: a) Raw monocular fisheye image b) Undistorted
image using the model presented in the Appendix . . . . . . . . . 24

3.2 Learning-based forecaster for input estimation in the motion model
Eq. 3.4. The output of the learning forecaster, which takes input
from a moving horizon of the position measurements p , p , will
be used as the acceleration input for the uncertainty-aware motion
model. Al l  15 intermediate blocks have batch normalization and
fully connected tanh layers. . . . . . . . . . . . . . . . . . . . . 33

4.1     Dynamic object Detection flowchart. Green blocks are raw sen-
sor input, blue blocks are data processing steps and the orange
block is the output of the algorithm. (Brackets express lists) . 41

4.2     Bounding box detections for several classes in the COCO dataset.
The potentially dynamic classes will be picked from all the detections
based on their class number. These objects include cars, trucks,
buses, pedestrians, cyclists, and motorbikes. . . . . . . . . . . . 42

4.3 Stereo camera intrinsic and extrinsic calibration using checker-
boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Epipolar geometry and rectification of image planes. Rectifica-
tion creates virtual co-planar image planes to reduce the search
space for similar pixels, to a unique horizontal line (e e ) for
eficient stereo matching performance. . . . . . . . . . . . . . . 44

4.5 Resulting disparity map generated from stereo matching. . . . 45
4.6 Visual frustum, created by filtering a 3D space based on the

reprojection of a 2D bounding box on the image plane ( I )  onto
a parallel plane which is far from the camera (C ). . . . . . . . 48

4.7 Definition of the 2DOF arc motion model of the ego-vehicle
between two frames. Two degrees of freedom are represented as
a linear motion with a magnitude of | d | and a change in
yaw angle ∆ψ .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Overview of the reprojection of an object of interest from 2D
image frames to the corresponding body frame at times t =  k
and k +  1. Between the initial body frame B  and the two
positions of the object i, a closure of vectors forms, enabling us
to measure the motion of that object ( ( B k )  d ). This vector is
used to classify dynamic and static objects. . . . . . . . . . . . 59

5.1 The experimental setup: the monocular vision and the Vicon system
(as the ground truth) and a dense robot point cloud cluster. . . . 67

5.2 Robot trajectory and the estimation results for combined longitudi-
nal and lateral maneuvers. . . . . . . . . . . . . . . . . . . . . . 69

ix



5.3 Visual-based estimated states augmented by the motion model and
covariance adaptation during full loss of the robot visual tracking,
due to trajectories beyond the camera’s field of view. . . . . . . . 70

5.4 Estimated position of the robot with intermittent visual detection
due to multiple occlusions with human presence. . . . . . . . . . . 71

5.5 The robot point cloud clustering when partially visible due to human
occlusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Robot point cloud clustering result with different camera orienta-
tions and robot positions. . . . . . . . . . . . . . . . . . . . . . 73

5.7 Frame diagram of all sensors installed on the autonomous vehi-
cle platform, used for data acquisition. . . . . . . . . . . . . . 76

5.8 Straight driving scenario results. Each column of pictures rep-
resents a single driving test. The Left and right columns cor-respond
to the highway and busy main street driving tests re-spectively. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9  Results for scenarios at intersections. Each column of pictures
represents a single driving test. The left column showcases the
algorithm’s capability to detect orthogonal motion with respect
to the angle of view of the ego-vehicle. On the right column,
the surrounding vehicles take a more random motion pattern
which is angled with respect to the ego-vehicle’s path. . . . . . 80

5.10 Sharp turn driving scenario results. The Left and right columns
of pictures represent the frames from a left and right turn ma-neuver
respectively. . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Changing motion scenario results. The left column pictures
the first half of the test where the ego-vehicle is stationary.
However, the right column frames are captured during a left
turn maneuver on the same test. . . . . . . . . . . . . . . . . . 83

x



Chapter  1

Introduction

Autonomous navigation refers to the ability of a vehicle or a robot to lo-cate

itself in any given environment and discern a path that will lead to its desired

destination without human intervention. Based on such capabilities,

autonomous navigation has found its use in a wide variety of industries, which

include but are not limited to transportation, logistics, agriculture, and de-

fense. In all of these industries, autonomous robots are required to navigate in

remote or highly dynamic environments that are crowded with human work-

ers, moving machinery, and other vehicles. Thus, such complex environments

with their dynamic nature, require eficient solutions that can enable the au-

tonomous agent to perceive its surroundings faster, which can pave the way for a

more rapid decision-making algorithm to perform navigation tasks safely. For an

optimal execution of this task, the autonomous agent should be equipped with

the resources to detect and track dynamic objects and use this infor-mation

to navigate within the dynamic environment. In this context, state estimation

is commonly used for effective and safe navigation, even with noisy data, since

measurement errors are a natural part of all data-gathering pro-cesses, and all

sensors exhibit some level of uncertainty regardless of their build quality. A  wide

range of sensors, including L IDARs,  GNSS, cameras (monoc-ular or stereo

vision), and inertial measurement units (IMUs) are used to estimate the

robot/vehicle states including position, orientation, and longitu-dinal/lateral

velocities (in the body frame). In this regard, pre-processing the measured data

is essential for removing noise and calibration errors before be-
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ing utilized in the state estimation process. Thus, for a variety of autonomous

navigation tasks, including localization, mapping, and motion planning, accu-

rate estimation of the vehicle’s and the surrounding dynamic objects’ states is

crucial for safe and timely operation of the vehicle in challenging environ-

ments and perceptually degraded conditions. This research (and the thesis)

addresses the accuracy and computational challenges of reliable detection and

state estimation of dynamic objects in such arduous conditions and proposes

and experimentally validates two approaches for fixed- and moving-frame vi-

sual state estimation for single and multi-robot settings. More details about

the motivation of this research are provided in section 1.1, followed by the

problem statement and the scope of the thesis in section 1.2. Lastly, the con-

tributions of both localization and perception parts of this thesis are outlined

in section 1.3.

1.1 Motivation

Autonomous navigation in dynamic environments poses significant challenges

for localization algorithms. Traditional approaches rely on the assumption of a

static scene[31], [77], [78], [84], which yields inaccurate results when features

used for localization exhibit motion patterns [47]. Matching the relative poses

of these dynamic objects temporally can result in large reprojection errors, in-

troducing uncertainties in the trajectory estimates of autonomous vehicles or

robots. To  address this issue, it is crucial to detect and account for these mo-

tion patterns and selectively remove foreground objects that are not fixed with

respect to the environment, such as vehicles and human agents. A  methodical

approach is required to enable autonomous navigation in highly dynamic en-

vironments. Instead of indiscriminately removing all moving objects, a more

sophisticated strategy involves detecting and removing dynamic objects based

on their motion patterns. By doing so, localization can be performed with

reduced motion-induced uncertainties while preserving essential visual infor-

mation for robust feature and object detection. By detecting and removing

dynamic objects based on their motion patterns, autonomous navigation sys-
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tems can operate more reliably in complex and highly dynamic environments.

This approach enhances localization accuracy and robustness by mitigating

the negative impact of independent motion patterns, allowing for more pre-

cise trajectory estimations and safer navigation. Furthermore, by selectively

removing dynamic objects and focusing on the static background, feature and

object detection algorithms can extract meaningful information for map build-

ing, motion planning, and decision-making processes in real-time scenarios.

Making a reliable navigation solution by developing a stochastic motion-aware

perception algorithm is the main motivation of the research presented in Chap-

ter 4.

However in indoor environments, where the operational space of autonomous

robots is limited, the utilization of centralized sensing information and com-

putations can greatly benefit autonomous navigation. By deploying visual

sensor units mounted on infrastructure, several advantages can be achieved

compared to relying solely on onboard sensors. Firstly, the visual measure-

ments obtained from infrastructure-mounted sensors are more accurate due to

precise calibration and the absence of motion-induced uncertainties. Addition-

ally, having a bird’s eye view of the operational area enables the observation

of multiple robotic agents simultaneously, leading to enhanced coordination

and reduced costs. Furthermore, stationary sensors are not constrained by the

weight and size limitations of onboard computational hardware, allowing for

highly scalable solutions. This approach finds application in various domains,

including warehouse robotics, service robotics, and automated manufacturing

plants. The exploration of this concept is further detailed in Chapter 3, while

the associated challenges are discussed in the subsequent section.

The shift in testing conditions and the environment from Chapters 3 to 4

is a strategic move aimed at addressing safety concerns crucial for autonomous

navigation. The higher vehicle speed and the presence of multiple moving ob-

jects in the surroundings provide an ideal scenario to evaluate the capabilities

of the developed state estimation framework. Additionally, the assessment

of stochastic state estimation methods in both indoor and outdoor settings

enhances the trustworthiness of the proposed approach and its suitability for
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ensuring navigation safety.

In this regard, some of the main challenges associated with autonomous

navigation in highly dynamic environments (for mobile robots and automated

driving systems in urban settings) include:

Sensor uncertainties: Mobile robots with onboard sensory units en-

counter motion-induced errors. To  address these uncertainties, sensor fusion

frameworks are developed in Chapters 3 and 4, incorporating prior informa-

tion about the process in optimal filters with Bayesian tracking to achieve

accurate system state estimation despite noisy measurements. In addition, a

state estimation framework for localizing multiple agents using a stationary

visual sensor is presented in Chapter 3 and could be used for applications

with human interaction, such as networked and warehouse robotics. This

framework enables safe navigation around independently moving agents by

computationally-fast estimation of the robot (and dynamic objects’) states

which will be utilized for cost map generation using the Edge computing ca-

pability of the developed remote sensing units in the NODE lab.

Localization: A  model-based approach for robust dynamic object detec-

tion, addressing the challenge of accurate localization in dynamic scenes is pre-

sented in Chapter 4. By effectively detecting and handling dynamic objects,

the proposed method enhances the accuracy of localization and navigation

algorithms in dynamic environments.

Motion planning and control: This research aims to improve percep-

tion capabilities for reliable and accurate motion planning and execution in dy-

namic environments, enabling eficient autonomous navigation. Furthermore,

in highly dynamic environments, autonomous navigation systems require ac-

curate risk assessment. The proposed framework in this thesis enhances per-

ception capabilities to enable superior risk management, facilitating the de-

velopment of comprehensive risk-aware planning algorithms for autonomous

operations of mobile robots (and vehicles).
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1.2 Problem Statement and Scope

The objective of this research is visual-based state estimation for autonomous

navigation using fixed or moving stereo vision sensors with computational

constraints due to vehicle/robot onboard processors and embedded systems at

remote visual sensing units (i.e., infrastructure-mounted sensors). Dynamic

objects and tracking their features significantly reduce the accuracy of the vi-

sual localization due to erroneous position estimates by the visual odometry

optimization program that assumes utilizing fixed features for triangulation

and re-projection to calculate translation matrices. This thesis is mainly fo-

cused on theoretical and practical aspects of developing a reliable and con-

sistent dynamic object identification framework that can be used by existing

visual or visual-inertial navigation pipelines [11], [47], [84]. As a result, two

distinct frameworks are proposed and experimentally verified in this thesis to

address visual-based state estimation accuracy and computational eficiency

challenges in dynamic scenes, each targeting indoor or outdoor environments

and perceptually degraded conditions. Furthermore, these two frameworks

and continuous (or event-triggered) communication between them (i.e., the

infrastructure-mounted sensing unit and onboard estimator) can be used to-

gether to improve the perception and reliable navigation of a network of robots in

dynamic scenes.

The initial part of this thesis is focused on using an infrastructure-mounted

visual sensor for localizing an autonomous mobile robot. This technique is

commonly referred to as infrastructure-aided localization. Utilizing a fixed

camera to observe the operation of autonomous mobile robots has multiple

advantages over the use of onboard sensors. Moving sensors tend to suffer from

motion-induced errors and noises. Stationary sensors, on the other hand, avoid

these uncertainties by utilizing highly accurate calibration techniques. These

calibrations are only done prior to operation and result in more reliable mea-

surements. Moreover, visual sensors that are mounted on the infrastructure,

usually have a better point of view and can oversee a large region of the robot’s

operation. These sensors can also avoid occlusions from dynamic objects since
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most of the dynamic activities occur at ground level. Avoiding occlusions can

improve the consistency and reliability of visual detection which in turn will

provide more accurate localization results. Therefore, infrastructure-aided lo-

calization is the focus of the first part of this thesis. This technique can also

be combined with the use of onboard sensors for increased visibility, a higher

level of safety, and added redundancy. The details of this work are explained

in detail in Chapter 3.

The next part of this thesis introduces a real-time technique for detect-

ing dynamic objects from onboard visual-inertial sensors. Outdoor environ-

ments introduce more challenges such as a higher number of object classes

for tracking, uncontrolled light, and weather conditions, and more sporadic

motion patterns compared to indoor environments. Consequently, this part

of the thesis is developed for autonomous driving applications in busy city

streets. First, a broad range of dynamic objects are detected visually based

on AI-generated bounding boxes. Then, their motion is analyzed in a virtual

3D environment created in the algorithm. Classifying the motion patterns of

these objects around the ego-vehicle, results in a binary selection of visual

objects. Finally, the dynamic objects can be removed from the initial visual

frames, to produce completely static frames that are useful for simultaneous

localization and mapping applications.

1.3 Contr ibutions

The contributions of this research are listed in the following under two main

research Themes: infrastructure-aided localization and dynamic object detec-

tion with moving camera frames for autonomous navigation purposes. The

contributions for the first part are summarized as:

• Designing an uncertainty-aware state observer with covariance

adaptation: To  address detection and depth estimation deficiencies

caused by occlusions or algorithmic failure, an uncertainty-aware state

observer is developed with covariance matrix adaptation model based

on the prior information about the sensor noise level. Additionally, the
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states of the system are augmented by the robot’s speed, which increases

the accuracy and robustness of the estimations.

• Devising a data-driven model to estimate robot acceleration: In

order to predict the accelerations of the mobile robot, a neural network

is designed and trained on a moving horizon of position measurements

captured by the remote visual sensing unit. The output of this model is

then used in the state observer to ensure accurate estimation of the robot

pose with stable and bounded estimation error. Asymptotic stability of

the estimation error dynamics is also theoretically analyzed and proved

through observability analysis of the optimal variance filter.

The contributions of the dynamic object detection framework, which classi-

fies the motion patterns of different objects in a dynamic scene with full/partial

occlusion (for autonomous driving applications), are summarized hereby:

• Visual-inertial velocity estimation: To  address the estimation drift

problem associated with inertial integration techniques, a visual-based

velocity estimation node is developed to track static features and es-

timate the optimal temporal velocity of the ego-vehicle (or ego-robot)

using a recursive least squares.

• Geometrical vector closure model for motion classification: A

geometrical-based motion analysis (which benefits from ego-motion com-

pensation) is designed to estimate the motion of the surrounding objects

with temporal tracking.

• Bayesian motion tracking for multiple objects: a novel continuous

dynamic probability distribution is devised to enable tracking of binary

motion states with measurable confidence levels. This motion proba-

bility distribution is updated incrementally using a Bayesian recursive

inference that gets its input from the raw measured motion states.
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Chapter  2

Literature Review

In this section, the background and challenges of visual-based state estima-

tion and existing methods for identifying dynamic objects for simultaneous

localization and mapping (SLAM) are provided to better highlight the chal-

lenges mentioned in section 1.2. A  comprehensive understanding of the ex-

isting challenges will also help to give a clear notion about the motivations

of this research. First, a technical description of the literature for dynamic

object detection is provided. Then, background information on the tools used

in those studies is presented in the following sections.

Visual-inertial navigation using monocular or stereo vision has been well

established in the literature [31], [77], [78], [84] by tracking features using

on-board sensory data and optimizing the corresponding re-projection error

(bundle adjustment). However, the presence of dynamic objects and the re-

sulting occlusions are the main challenges for existing state-of-the-art SLAM

approaches which result in estimation drift [47]. For warehouse or service

robots working in an indoor and dynamic environment, this issue can be re-

solved by localizing the robot independently with an infrastructure-mounted

camera and possible communication with the robot. As a result, the accurate

infrastructure-aided localization information could be used for reliable naviga-

tion, motion planning, and controls utilizing wireless communication between

the robot/vehicle and a base station [19], [70], [127].

Visual localization algorithms can benefit from fish-eye monocular vision

due to the increased field of view and reduced operational and computational

8



costs for the navigation of mobile robots in both indoor and outdoor environ-

ments. For instance, color segmentation from single fish-eye camera frames

is conducted in [19] to localize a robot. Frame differencing is utilized in [85]

for images from a camera installed on the ceiling. However, perceptually de-

graded lighting conditions and shadows are challenging for these methods.

A  robust state estimator is developed in [27] using a series of cameras that

detect infrared beacons installed on the robot. A  single wide-angle ceiling-

mounted camera, with unknown intrinsic and extrinsic parameters, is used in

[58] for mobile robot navigation robust to model uncertainties. Localization

approaches that use sensor/camera networks (e.g., [111]) have been shown to

be precise, but they require an extensive calibration process. To  summarize,

mobile robot localization using infrastructure-aided monocular vision involves

two main challenges: detection failure due to occlusions and sudden lighting

changes; and frame distortion due to the wide-angle lens and noisy visual data.

Dynamic object detection and tracking algorithms in scenes captured by

moving visual frames, such as those obtained from onboard monocular or stereo

vision systems in autonomous vehicles or mobile robots, heavily depend on

the selection of sensors and data representations. Various sensors such as

light detection and ranging ( L IDAR s )  [64], [73], [97], [120], event cameras

[26], [126], and stereo or RG B - D  cameras [23], [115], [118] can be used on the

robot platforms based on the kinematic/dynamic constraints. Regardless of

the choice of sensor types, the processing algorithms can be classified into two

main categories including model-based and fully data-driven methods.

Although data-driven methods are segmented in a separate category, some

model-based approaches also take advantage of machine learning, especially

in visual data processing. However, the use of learning-based tools is limited

in model-based methods to the extent that the core of their work is centered

around a mathematical, geometrical, or probabilistic system representation.

Model-based approaches are superior to end-to-end learning-based meth-

ods, as they provide stability (due to bounded state trajectories and conse-

quent bounded estimation error coming from the inherent characteristics of

stable dynamical models) and prediction based on bounded inputs, and take

9



advantage of engineering intuition in their design. For example, in [80], depth

images are used to generate U-depth and V-depth maps, which estimate the

states of obstacles and demonstrate safe navigation with static obstacles. Sim-

ilar techniques are employed in [59] and [93], where U-depth maps are utilized

to detect and track obstacles and represent them as 3D ellipsoids. Further-

more, dynamic obstacles are detected using depth and U-depth maps in [118],

and the results are combined with an occupancy map for navigating dynamic

environments. Other methods focus on detecting and segmenting dynamic

obstacles in 2D image planes to improve localization robustness and construct

fully static maps. For example, dynamic image patches are segmented through

motion-compensated frame differencing and motion tracking using particle fil-

ters and Maximum-a-posterior (MAP) estimator on vector quantized depth

images as seen in [104]. Moreover, 3D dynamic features are detected by track-

ing the relative motion of 3D map vertices in [18] and removing length-varying

correlations from graph optimization. On the other hand, a combination of

object segmentation with optimization to reduce short-term photometric re-

projection errors of tracked objects is done in [3] to create a dynamic mask,

aimed at improving localization accuracy.

Fully data-driven methods, on the other hand, try to predict dynamic ob-

jects based on training over 3D point clouds or semantics. For example in [121],

dynamic objects are semantically segmented on RG B - D  images, and predic-

tions are filtered based on their moving consistency. In Another method [109],

a logistic classifier is built on a binary feature map created from a voxelized

point cloud grid. The training of the classifier is performed on the K I T T I

dataset, with positive class examples provided by bounding box tracklets of

dynamic obstacles. On the other hand, the method described in [99], utilizes

the region proposal network from YOLO [89] to predict the location and orien-

tation of bounding boxes. This approach combines motion and appearance fea-

tures to extract moving objects directly and can complement existing dynamic

object extraction methods. MODnet [98] is another approach that learns to

extract moving objects by leveraging motion and appearance features. This

method can be used to enhance existing dynamic object extraction methods by
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directly extracting objects based on learned features. Another method that is

based on multi-modal background subtraction is provided in [81]. Multi-modal

background subtraction is performed by classifying image data as foreground

(dynamic obstacles) or background. This is achieved by using a per-pixel

Gaussian mixture model estimated on a background without dynamic obsta-

cles. L I D A R  point clouds are reprojected into the camera’s field of view and

masked as foreground or background using the existing correspondence be-

tween pixels and L I D A R  points. This enables the application of background

subtraction methods on image data to perform binary classification of L I D A R

points. The aforementioned fully data-driven models are challenged by corner

cases that are not included in the learning dataset. In turn, obtaining big

datasets (for training) to fully cover real-world scenarios is time-consuming,

operationally expensive, and not safe, especially for autonomous driving at

the capacity limit or high speed. Consequently, a model-based approach is

proposed (and experimentally verified in various urban driving scenarios) in

chapter 4, which detects possibly moving objects and tracks them using a

Bayesian recursive scheme in 3D to ensure consistent classification of their

motion over time. On the other hand, a learning-aided optimal variance fil-ter

is designed in chapter 3 for position and heading estimation of mobile robots

using a stationary fisheye camera. This approach avoids visual oc-clusions

and motion-induced errors and provides more accurate localization results

utilizing the prior information about the robot and the environment in an

uncertainty-aware optimal filter. This solution is suited for indoor and outdoor

applications, such as service robots in dynamic environments, auto-mated

storage with mobile robots in warehouses, and automated driving in urban

settings [16], [45], [55], [119]. As mentioned previously, existing visual or

inertial-based navigation solutions are reaching their performance limits in

highly dynamic environments due to vision-based feature/point tracking

challenges in uncertain scenes with dynamic objects, perceptually degraded

conditions, or their growing complexities in model-based approaches in the

presence of wheel slippage and tire force non-linearity, impacting estimation

error and update frequency in real-time.
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To design a visual-based state observer, different techniques such as object

detection, feature extraction, and stereo matching are required as they play a

vital role in harnessing both model-based and data-driven approaches [6], [11],

[78], [79]. In the following sections, a review of these tools will be presented,

along with an exploration of available solutions in the literature.

2.1 Machine Vis ion

Machine vision, also known as computer vision, combines artificial intelligence

and computer science to extract meaningful information from digital images or

video sequences. Its objective is to enable computers to perform complex vi-

sual tasks, mimicking and surpassing human visual capabilities. In the field of

robotics, machine vision plays a crucial role in tasks such as depth perception,

object detection, segmentation, tracking, and scene understanding. The key to

understanding visual frames is the identification of distinctive and informative

points, known as features or keypoints, within an image. Early approaches

to feature extraction, such as those in [75] and [21], evaluated gradients and

curvature analysis to identify points of interest. However, these methods had

limitations. More effective strategies were introduced, such as using the Hes-

sian matrix to capture curvature information [67], calculating eigenvalues from

the inverse of the auto-correlation matrix, and introducing indicators for size

and similarity [28]. In [37], a new criterion called the cornerness value was

proposed based on the determinant of the Hessian matrix which helped to

increase the accuracy of keypoint detection. These advanced methods signifi-

cantly improved feature detection capabilities by identifying distinctive points

in images based on local characteristics.

Multi-scale interest operators, such as those discussed in [7], detect features

at multiple scales and match them across scales. However, this approach has

some limitations when the scale difference is too large or the scale ratio is not

known. A  more advanced method is to use scale-space theory, as described in

[62], which convolves the original image with a 2D Gaussian function at differ-

ent scales. By analyzing the local extrema in scale-space using the Laplacian of
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Gaussian (LoG), scale-invariant features can be obtained. The Scale-Invariant

Feature Transform (SIFT),  introduced in [66], approximates the normalized

LoG using the Difference of Gaussian (DoG) and performs sub-pixel localiza-

tion by fitting a local quadratic model to the extrema. S I F T  is well-known for

its effectiveness in matching images with scale changes and can tolerate some

afine distortion. The research proposed in [72], introduced a scale selection

mechanism to the Harris corner detector, preserving points where the L oG is

an extremum. This research also introduced iterative refinement for both scale

and position. These methods leverage scale-space analysis and L oG or DoG

operators to detect scale-invariant features, enabling robust feature detection

and matching across different scales.

Feature description involves converting features into a descriptor space that

allows for easy distinction and matching. The purpose of designing descriptors

is to achieve invariance against various transformations like lighting changes,

rotation, and afine distortions. There are two main types of descriptors:

floating point and binary descriptors. Floating point descriptors offer better

discriminability but are computationally more expensive, while binary descrip-

tors are suitable for applications with limited computational resources [14].

The process of determining descriptors involves several steps: transformation,

aggregation, normalization, and dimension reduction[116]. Transformation op-

erations, such as calculating gradients or Haar feature responses, are applied

to preserve and amplify local patterns. Aggregation combines information

from small regions within the feature support window, enhancing robustness

against noise and limited transformations. Normalization ensures that values

are within a fixed range, reducing the impact of absolute response and improv-

ing robustness against lighting changes. Dimension reduction techniques like

principal component analysis ( P C A )  are used to compress the representation

and eliminate redundancy in high-dimensional descriptors [14].

Classic descriptors, including S I F T  [66] (Scale Invariant Feature Trans-

form) and SURF [4](Speeded-Up Robust Feature), have been widely used in

computer vision. S I F T  calculates gradients within a feature’s support window,

applies Gaussian filtering, and aggregates gradients in aligned grids. SURF
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uses Haar wavelet response and aggregates the gradients in square grids. These

descriptors have built upon previous advancements, providing robust and dis-

tinctive representations of image features for various computer vision appli-

cations. On the other hand, binary descriptors offer an alternative approach

to feature description by comparing pairs of pixel values and representing the

results as binary strings. B R I E F  [9](Binary Robust Independent Elementary

Features) compares pixel values at different positions within a smoothed sup-

port window. ORB [91](Oriented B R I E F )  extends B R I E F  by incorporating

orientation estimation and using a greedy search to select optimal pixel po-

sitions. B R I S K  [56](Binary Robust Invariant Scalable Keypoints) determines

the orientation of keypoints in scale-space and performs gray value compar-

isons in concentric circles. These binary descriptors provide eficient feature

representations that facilitate faster processing and matching of features.

2.2 Stereo Matching

In this section, an overview of different stereo matching algorithms is provided

to establish the different possible methods that could be used for visual re-

projection. Stereo matching involves finding corresponding pixels in a pair of

stereo frames that represent the same feature in the 3D environment. The

disparity, which is the horizontal distance between matching pixels in rectified

images, is measured to create a disparity map that contains disparity values

for all image points and can be utilized for estimating scene depth [79]. Stereo

algorithms can be classified into two main categories based on their global

and local disparity measurement techniques [95]. Local algorithms, such as

block matching and gradient-based methods, focus on matching points within a

local window and use metrics like correlation, rank, and intensity difference [8].

Examples of local algorithms include SAD correlation metric [76], SMP

algorithm [20], and ZNC C  integrated with a neural network [5]. Feature-based

methods handle depth discontinuities and texture uniformity by utilizing fea-

tures like edges [8], including segmentation matching [125] and hierarchical

feature-based methods [107]. Global optimization-based methods incorporate
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smoothness assumptions and perform iterative disparity computation, achiev-

ing accurate results at the cost of computational demand. Examples of global

optimization-based methods include dynamic programming [110], graph cuts

[113], and belief propagation [102], [114]. Handling occlusions is addressed in

methods that utilize techniques like disparity consistency and disparity uni-

formity [69].

In recent years, deep learning techniques have revolutionized the field of

stereo vision, leading to significant advancements in stereo matching algo-

rithms. Various architectures have been proposed to improve performance in

this domain. For instance, MC-CNN-acrt [123] utilizes a convolutional neu-ral

network (CNN) to compute matching costs for disparity or depth maps,

achieving superior performance compared to handcrafted methods. A  multi-

scale CNN structure [13] preserves relational information between patches and

demonstrates improved accuracy. DispNet [71] is an end-to-end network based

on an encoder-decoder architecture, while GC-Net [49] utilizes Siamese con-

volution and constructs a 4D cost volume for matching cost computation.

EdgeStereo [101] integrates an edge detection sub-network and achieves state-

of-the-art results, while HITNet [106] is a real-time stereo matching network

that omits a cost volume and utilizes multi-resolution initialization and ge-

ometric propagation. These deep learning-based stereo matching algorithms

have significantly improved accuracy and eficiency, pushing the boundaries of

stereo vision capabilities.

2.3 Ob ject Detection

Object detection is a challenging task in computer vision, requiring the identifi-

cation and localization of objects within an image. Early models suffered from

slow and inaccurate performance because of their reliance on hand-crafted fea-

tures. However, convolutional neural networks (CNNs) introduced by AlexNet,

revolutionized this field and led to its widespread applications in various do-

mains, such as self-driving cars and medical imaging. Object detection ex-

tends object classification by not only recognizing objects but also providing
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their coarse localization through bounding boxes. It is a supervised learning

problem and relies on large labeled datasets for training and evaluation on

benchmarks. Key challenges include intra-class variation, where objects of

the same class can vary in appearance due to occlusion, illumination, pose,

viewpoint, etc. The large number of object categories poses a challenge, re-

quiring more annotated data. Additionally, the eficiency of object detection

models is important, especially with the prevalence of mobile and edge de-

vices. The Pascal Visual Object Classes (VOC) challenge [24], [25], ImageNet

Large Scale Visual Recognition Challenge (ILSVRC)[92], Microsoft Common

Objects in Context (MS-COCO)[61], and Google’s Open Images dataset[53]

are widely used for evaluating object detection algorithms. Object detectors

are evaluated using various criteria, including frames per second (FPS), preci-

sion, recall, and mean Average Precision (mAP). Precision is calculated based

on the Intersection over Union (IoU), which measures the overlap between the

predicted bounding box and the ground truth. A  threshold is set to determine

if the detection is correct, and True Positive and False Positive classifications

are assigned based on the IoU value. False Negative occurs when an object

present in the ground truth is not detected. Precision represents the percent-

age of correct predictions, while recall measures correct predictions relative to

the ground truth. Average precision is computed for each class, and the mean

average precision (mAP) is used as a single metric to compare performance

across detectors.

Some major milestones in backbone designs for object detection networks

include AlexNet[52], VGG[100], GoogLeNet[105], ResNet[39], and ResNeXt

[117]. AlexNet introduced the concept of using multiple convolutional ker-

nels and achieved high accuracy in the ImageNet challenge. V G G  focused on

network depth and utilized smaller filters to reduce parameters while main-

taining accuracy. It demonstrated superior performance in image classification

and localization tasks. GoogLeNet addressed the computational complexity of

deep neural networks by introducing the locally sparse connected archi-

tecture, using multiple Inception modules for feature extraction. It achieved

high accuracy while being faster than previous models. On the other hand,

16



ResNet addressed the performance degradation issue by increasing network

depth by introducing skip connections, enabling the training of deeper net-

works. ResNeXt improved accuracy without increasing complexity by using

inception-like ResNeXt modules and considering cardinality as a third dimen-

sion. It achieved higher accuracy with fewer hyperparameters compared to

similar-depth ResNet architectures. CSPNet reduced computational resources

while maintaining accuracy by separating feature maps and creating different

paths for gradient flow. This approach improved computation unit utilization

and memory footprint. These advancements in backbone architectures have

significantly contributed to the development of robust and eficient object de-

tection networks.

Object detectors can be categorized into two main types: two-stage and

single-stage detectors. Two-stage detectors employ a separate module for re-

gion proposal generation, followed by classification and localization in the sec-

ond stage. These detectors take longer to generate proposals, have complex

architectures, and lack global context. In contrast, single-stage detectors per-

form object classification and localization in a single pass using dense sampling

and predefined boxes or keypoints. They achieve real-time performance, have

simpler designs, and outperform two-stage detectors in terms of speed.

The first two-stage detector was the Region-based Convolutional Neural

Network (R-CNN) [30]. It uses a class-agnostic region proposal module with

CNNs to convert detection into a classification and localization problem. R-

CNN passes an image through the region proposal module, which produces

2000 object candidates using Selective Search. These candidates are then

propagated through a CNN network to extract feature vectors. The feature

vectors are passed to class-specific SVMs to obtain confidence scores, and

bounding box regression is used to predict the object’s location. SPP-Net

[35] introduced Spatial Pyramid Pooling (SPP) layers to handle images of ar-

bitrary size and aspect ratio, improving the flexibility of the network. Fast R-

CNN [29] improved the speed and eficiency of the two-stage detection pro-cess

by introducing a RoI  pooling layer and an end-to-end trainable system. Faster

R-CNN [90] further enhanced the region proposal generation by intro-
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ducing a fully convoluted network as a region proposal network (RPN) and

utilizing anchor boxes and shared convolution layers. Feature Pyramid Net-

work (FPN)[60] improved the detection accuracy by constructing high-level

semantic features at multiple scales. R-FCN[17] shared computations within

the network and used position-sensitive score maps and convolutional layers for

localization. Mask R-CNN [38] extended Faster R-CNN to include a branch for

pixel-level instance segmentation, achieving better accuracy. These advance-

ments in two-stage detectors have significantly contributed to the progress of

object detection.

In contrast to two-stage detectors, single-stage detectors take a different

approach to object detection. They reframe the problem as a regression task

rather than relying on region proposals. YOLO (You Only Look Once)[87] is

an example of a single-stage detector that directly predicts bounding box

attributes and object classes for each grid cell in an image. YOLO divides

the image into a grid and predicts multiple bounding boxes and confidence

scores for each cell. It achieved high accuracy and real-time performance,

although it had limitations in localizing small or clustered objects and handling

multiple objects within a cell. Another single-stage detector, SSD (Single Shot

MultiBox Detector)[63], achieved comparable accuracy to two-stage detectors

like Faster R-CNN while maintaining real-time speed. SSD utilized additional

auxiliary structures and a VGG-16 backbone to handle different object scales

and aspect ratios. It employed techniques such as default boxes, Jaccard

overlap matching, hard negative mining, and data augmentation for effective

training. Although SSD initially struggled with small object detection, this

issue was addressed by incorporating improved backbone architectures like

ResNet. Single-stage detectors like YOLO and SSD have played a significant

role in real-time object detection tasks.

Moreover, YOLOv2 [89] improved upon the original YOLO algorithm by

replacing the GoogLeNet backbone with DarkNet-19, incorporating techniques

like Batch Normalization, and using learned anchor boxes for improved re-

call. YOLOv2 offered a balance between speed and accuracy and provided

flexibility in model selection. YOLO9000 extended YOLOv2 to predict 9000
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object classes by combining classification and detection datasets using a hi-

erarchical structure called WordTree. YOLOv3 [88] introduced incremental

improvements over YOLOv2, replacing the feature extractor with Darknet-53,

incorporating data augmentation, multi-scale training, and logistical classi-

fier. However, it had lower accuracy compared to other state-of-the-art detec-

tors. Finally, YOLOv4[6] incorporated various data augmentation techniques,

regularization methods, and network enhancements to improve training and

inference, resulting in a fast and easy-to-train object detector.

2.4 State Estimation

State estimation combines mathematical models with limited measurements

to determine the internal state of a system. By comparing model predictions

with measured outputs, errors are corrected, resulting in robust estimates that

account for model inaccuracies and measurement noise. This enables accurate

analysis and task management in stochastic systems. Kalman filters [46] are

powerful state estimators that adapt to non-stationary environments and pro-

vide optimal estimates by minimizing mean squared error. They recursively

update state estimates based on noisy measurements and consist of time up-

date and measurement update equations, projecting the state estimates for-

ward and incorporating new measurements to improve the estimates. The

Kalman filter, renowned for providing estimates that are both unbiased and

possess minimum variance, is not without its limitations. These limitations

stem from a variety of factors, each influencing the filter’s performance and

applicability in certain contexts and include poor observability, numerical in-

stability, and blind spots [94]. These limitations can be addressed through

sensor changes, supplemental data acquisition, and careful handling of covari-

ance matrices.

The Extended Kalman Filter ( E K F )  linearizes the equations around the

current mean and covariance to apply the Kalman filter algorithm for nonlinear

systems or measurement models. The E K F  consists of a time update and a

measurement update step. In the time update, states are projected based on
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the nonlinear process model, and their Jacobian matrix is calculated. State

estimates and covariance matrices are updated using the linearized process

equation. In the measurement update, the Kalman gain is computed using

the linearized measurement equation and error covariance. State estimates

are updated based on the difference between the actual measurement and the

predicted measurement. The error covariance is updated accordingly. While

the E K F  allows for nonlinear models, it has limitations [2] such as potential

bias, inaccurate error covariance estimation, challenges in finding Jacobian

matrices, sensitivity to initial state estimates, and the need for parameter

tuning.

In the survey conducted in [44], three types of unscented filtering and

nonlinear estimation algorithms were explored: the Unscented Kalman Fil-

ter (UKF),  Iterated Unscented Kalman Filter, and Unscented Particle Filter.

The U K F  algorithm, based on linearization using Taylor series expansions,

utilizes unscented transformation to represent random variables using a set of

deterministically selected sample points called sigma points [43]. These sigma

points accurately capture the mean and covariance of the random variable,

even in the presence of nonlinearity. The U K F  algorithm involves calculating

sigma points, performing time and measurement updates using these points,

and computing the estimated state. Another study in [54] compared various

modifications of Kalman Filters for nonlinear systems, including the Central

Difference Filter and UKF,  with the Extended Kalman Filter and Iterated

Extended Kalman Filter. The U K F  algorithm was found to outperform the

Extended Kalman Filter in terms of accuracy and computational eficiency,

offering a robust approach to nonlinear state estimation problems.
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Chapter  3

F i x e d  Frame Visual  State
Estimation

Navigation of autonomous vehicles in unknown environments relies heavily on

accurate localization which refers to the determination of position and orien-

tation of the vehicle. Accurate localization is crucial for safe decision-making

and precise navigation. To  achieve this, various sensors such as cameras or

range finders like L I DA R s  and Radars are used to capture the shape of the

environment; this is usually the first block of simultaneous localization and

mapping (SLAM) algorithms. If the localization is done accurately, the subse-

quent navigation including mapping, path planning, and control can be done

with higher certainty. Cameras are a common choice for localization because of

their higher resolution and lower cost compared to L I DA R s  and Radars.

Cameras are also capable of capturing intensity and color information from

the scene, which provides additional information about surrounding objects

along with geometry. However, cameras are sensitive to changes in lighting

conditions and are unable to capture depth information in 2D images. There-

fore, additional sensors are used alongside cameras, including L I DA R s  or iner-

tial measurement units (IMU), to improve the accuracy and reliability of the

localization.

Pose refers to the specific position and orientation of an object in a given

space. In the case of a vehicle, it refers to its exact location and orientation

within its environment. Global optimization of vehicle poses entails minimiz-

ing the error term associated with each estimated pose to enhance the accuracy
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of tracking the entire trajectory. However, this technique introduces increased

run-time and computational complexity, which can pose challenges in real-time

navigation scenarios. Additionally, optimization algorithms may suffer from

local minima problems, where it converges to a sub-optimal solution. Another

method that identifies previously visited locations and uses this information

to improve the total error term of a pose graph is loop closure. However, loop

closure works best in environments with little change during the navigation

session and can struggle with dynamic objects in the environment. The use

of inertial sensors or wheel odometry is the third technique that provides ad-

ditional information about the vehicle’s motion. Nevertheless, incorporating

these sensors into the SLAM algorithm can add complexity and cost to opera-

tions. In general, the choice of sensors and algorithms depends on the specific

requirements of the application and the available resources.

The second approach for localization in SLAM algorithms involves using

fixed sensors within the environment to observe the autonomous vehicle. This

method is known as infrastructure-aided localization and has shown to be

significantly more accurate than onboard sensors since the fixed sensors benefit

from meticulous calibration processes and do not suffer from motion-induced

errors that are often present in onboard sensors. However, they have some

limitations regarding their field of view, which means that multiple sensors

are required to cover a large environment. Additionally, external localization

can be challenging in dynamic environments, where objects can move and

cause occlusions or changes in the environment.

Using a hybrid sensory system created by both onboard and external sen-

sors can produce more accurate and robust results. The fusion of the two

sensory systems will enable the external sensors to provide a reference for the

onboard sensors, reducing the uncertainty and improving the accuracy of the

pose estimation. Conversely, onboard sensors have the capability to acquire a

more intricate and nuanced perception of the immediate vicinity of the vehicle.

This capability proves advantageous, particularly in the context of generating

comprehensive and detailed environmental maps. This hybrid system also has

a more robust design since it relies on two independent sensory units that
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help with its continuous functioning even in the case of a failure in one of the

sensory systems.

Thus, the focus of this chapter will be on infrastructure-aided localization

using fish-eye monocular vision. The following section provides information

about an augmented state estimation framework in which the depth is esti-

mated from an undistorted image to generate a point cloud in a detection-

informed region of interest (ROI) for robot localization. This measurement is

then used in an uncertainty-aware state observer with adaptive covariance

allocation to deal with noisy visual measurements at the limits of the field of

view with intermittent occlusions by other dynamic objects.

3.1 2 D  Perception

Fisheye lenses are commonly used in indoor/outdoor monitoring systems to

maximize the field of view of monocular vision. However, these lenses intro-

duce distortions and errors in the image since the field of view gets significantly

warped to fit inside a flat circular frame. To  address this issue, a fisheye model

is used to undistort the frames, as shown in Fig. 3.1. This fisheye model is

used to rectify the distorted frames so that they can be accurately used for

object detection and depth perception. The parameters for this function are

obtained through camera intrinsic calibration using a multi-point correspon-

dence algorithm and a checkerboard, as explained in Appendix A. This cali-

bration process ensures that the camera parameters are accurately estimated,

which is essential for the accurate undistortion of the frames.

In order to identify the robot within the 2D undistorted image frame,

a customized YOLOv4 object detection model is trained using an exclusive

dataset acquired from the fisheye camera within the designated testing en-

vironment. The resultant bounding box from this detection process is then

employed to isolate the pixels associated with the robot. This pixel set is

subsequently projected into a 3D point cloud to facilitate three-dimensional

localization. Notably, the generation of the raw point cloud is confined to

the pixels enclosed within the YOLO bounding box, which is denoted as the
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Figure 3.1: Visual node image: a) Raw monocular fisheye image b) Undistorted
image using the model presented in the Appendix

region of interest (ROI). By narrowing down the search scope within the 3D

point cloud, this approach effectively reduces computational demands, distin-

guishing itself from methods that employ clustering across the entire point

cloud dataset[15], [22], [83], [124]. This methodology facilitates more eficient

point cloud processing, encompassing the accurate estimation of the robot’s

pose, which is subsequently employed for the development of an uncertainty-

aware state observer. A  more comprehensive description of the point cloud

extraction procedure is presented in the next section.

Overall, the custom YOLOv4 object detector provides a fast and eficient

way to detect the robot in the 2D undistorted image frame, while the bound-

ing box-informed ROI for point extraction reduces the computational cost of

point cloud processing. This approach enables accurate pose estimation,

which is essential for the development of the uncertainty-aware state observer.

To  estimate the depth from visual data, traditional methods of fusion between

monocular vision and LIDAR/radar sensors [15], [32], [74], [82] or stereo vision

[41], [103], have been well investigated in the literature. However, recovering

depth from monocular camera frames is recently made possible due to arti-

ficial intelligence and also through the utilization of advanced computation

hardware. Monocular depth estimation will assist in reducing the complexity
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of the system since no sensor fusion or calibration is needed for the single-

camera used. In this chapter, MiDas [86] neural network, which has been used

in literature to recover a dense map of the environment from a polarimetric

mono-camera [96], and in SLAM to recover a dense and globally consistent

3D structure of the environment [65], is utilized to estimate a disparity map

from undistorted monocular camera frames. Using MiDas for depth estima-

tion from monocular camera frames has several advantages. It eliminates the

need for any additional sensors including L I DA R s  or more cameras which were

previously needed to recover depth. Monocular depth estimation will also be

more feasible for a wider range of applications, including mobile and handheld

devices. Additionally, the use of a neural network allows the system to be

trained on large datasets, improving its accuracy and reliability.

The obtained disparity is then used to recover the depth for each pixel

on the image coordinate, and eventually for point cloud generation for the

ROI inside the bounding box. The recovered depth is used to calculate the

position of the robot in the world frame {w }.  The re-projection of point pi =

[ui, vi, 1]� in the image frame { i }  to the point pc =  [pc , py, pz]� in the camera

3D frame { c }  is obtained by pc · pi =  K pc , where K  is the intrinsic camera

matrix including the focal lengths f x , fy  and the principal point coordinates

cx, cy as in Eq. (3.1). To  transform the point cloud into the world frame

fixed to the indoor testing environment, afine transformations w Rc and wP c

corresponding to the camera orientation and position in { w }  are employed to

define a homogeneous transformation w Tc � R 4 × 4  at the time instant k (in

discrete-time) as

�
f 0

K  =  � 0 fy

0      0

c 
�

1 
�, wTc,k = 01×3

wP c,k
 
1

(3.1)

Following the alignment of the robot point cloud {Pclk  }  in {w },  an outlier

rejection is conducted. This is required to eliminate unnecessary points (on

the ground or far features) from the depth estimator that uses the point cloud

within an ROI.
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3.2 Point  cloud filtering and drift compensa-
tion

Visual point cloud generation from a single camera frame produces two types of

outliers due to depth uncertainty or occlusions. The first type of outliers

corresponds to pixels on the ROI rectangular bounding box that are on the

ground. These points are removed by using a proper height threshold which

crops the ROI point cloud. The second type of outliers is created around

the edges of objects which creates a sudden gradient in the recovered depth

map. These edges will be stretched and have a lower density because of the

huge gradient in the depth map. Filtering these points is conducted based on

a minimal neighboring points threshold n̄ (i.e., {Pcl f , k }  =  {Pclk  }  \  S f , S f  =

{ i  � {Pclk  } , N k ( i )  <  n̄})  that removes the points with fewer than n̄ neighbors.

This two-step process ensures that the ROI point cloud only contains points

that belong to the vehicle. Since the robot has a symmetrical body, it is

possible to represent its position using only one point. The geometrical center

of the filtered ROI point cloud is selected to be the point representation of the

robot’s position, denoted as pk.

Another type of uncertainty in the point cloud generation arises from drifts

in the estimated drift from the MiDas neural network which happens because

of the excessive blurring effect that is induced in the fisheye images after

rectification. To  resolve this issue the characteristics of the error have been

studied using recursive least squares. The best fit for the position errors mea-

sured against the actual position values (ground truth) obtained from the

Vicon system is found to be a fourth-order polynomial (g(·)). This polyno-

mial function calculates the position correction vector ek =  [ex,k , ey,k]� from

the measured Euclidean distance of the robot from camera frame {c}.  By

using the estimated correction vector elements ex, ey from the least squares,

the states pk =  [p̃  ,k , p̃  ,k]� measured from the geometrical center of the point

cloud (i.e., Pclf  )  are corrected to compensate the depth drift as described in

Eq. (3.2) and Eq. (3.3), where p̃  and p̃  are the corrected measurements at

time instant k. The estimation of the correction vector and re-projection is
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provided in Algorithm 1.

px,k =  px,k +  ex,k (3.2)

py,k =  py,k +  ey,k (3.3)

Algorithm 1: Visual-based state vector correction
Input : Raw images in the camera frame (Iraw,k )

W Tc,k and model Param. z̄, αx,iαy,i

Output: Robot state vector pk =  [px,k , py,k]�
1 while k ≥  0 do
2 Iu,k ← Fisheye undistortion on Iraw,k

3 Extract the robot bounding box and ROI with Yolo;
4 Estimate the NN-based disparity map Id,k ;
5 Re-project the point cloud {Pclk }  using Eq. (3.1);
6 {Pclw } =  W Tc,k · {Pclc } ;
7 Geometrical filter f : zi,k ≥  z̄, Ni,k ≥  n̄, i � {Pcl }
8 {Pcl f , k }  ← f ({Pclk } ) ;
9 pk ← Pclf  : =  E{Pc l f  } ;

10 ek =  ĝ(α̂, pk), α̂(t) =  α̂(t) +  K (t)[g (t) −  ĝ(t)],
11                 RLS:  arg min[g −  ĝ(α, p)];
12 pk =  pk +  ek;
13 end

αx, αy , j � {1, . . . , 5} are the parameters of the distortion correction error

function g(αx,y , p), and z̄  is the threshold for ground points removal in the

point cloud cluster within the ROI. The resulting positions coming from al-

gorithm 1 are noisy and thus need to be processed using an optimal filter to

remove uncertainties and noises. The next chapter provides additional details

about an Uncertainty aware Kalman Filter method that has prior knowledge

about the error of the system based on its states.

3.3 Uncertainty-Aware Visual  Localization

The system’s measured states tend to be affected by noise due to several fac-

tors. These include errors introduced by monocular depth estimation, uncer-

tainties related to visual detection, and the common incidence of occlusions,
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especially prominent in environments with high levels of dynamic motion. To

deal with these uncertainties, one solution is to take the motion model of the

robot into account to make the total trajectory of the robot more feasible.

This motion model is used in a state observer to compensate for the uncer-

tainties and noises that are present in the measurement (pk ). To  simplify

the motion model of the robot which is a 4-wheeler in this case, a constant

acceleration motion model with adaptive acceleration forecasting is employed

which updates based on the measurements obtained from the visual node.

This motion model is then fused with the visual node in a Kalman state ob-

server that benefits from adaptive covariance tuning to help by estimating a

more reliable trajectory for the robot regardless of the level of noise present

in the measurements or the environmental disturbances that are common in

dynamic workplaces. The adaptive covariance tuning is designed based on the

level of noise present in the measurements when compared to the ground truth

and works independently in the operation phase. The discrete-time uncertain

model for the state estimation is

x k + 1  =  A k x k  +  Bk uk  +  ϱk,

yk =  C k x k  +  νk, (3.4)

where the state variable xk  =  [px,k py,k vx,k vy,k]� � R4  includes the position

(px, py ) and velocity (vx, vy ) states which are in the x  and y direction of the

camera frame (c) respectively. Process uncertainties on position and velocity

states represented by ϱk � R4  and visual-based measurement noises νk � R4  are

bounded. The input uk =  [ax, ay]� is the translational accelerations in the

longitudinal and lateral directions from the visual node (monocular camera)

and is obtained by a learning-based forecasting method using position and

speed gradients (refer to section 3.5). The state and input matrices are:
� 

1 0 Ts 0 
� � 

T 2/2 0
�

A  =  � 0 0 1 0 �, B  =  �
0 Ts /2 �, (3.5)

0 0 0 1 0          Ts

where Ts � R  is the sample time between two consecutive frames. It is as-

sumed in the design that the output is exactly the same as the measurements,
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thus the output matrix is C  =  I4× 4 . It is assumed that E ϱkϱk ≤  Qk,

E  νkνk ≤  Rk .  Process and measurement noises are assumed to be uncorre-

lated i.e., E  ϱkνk =  0,�k � N. The assumption of the constant acceleration is

valid between two consecutive frames since the system is operating at a high

update rate (10 Hz) and the dynamics of the system are substantially slower

when compared to the data acquisition rate. Nevertheless, the acceler-ation is

updated at every time step (i.e., Ts =  100 ms) using a learning-based

forecasting method which will be described in the next subsection.

Moreover, the motion model helps with reliable tracking of the robot and

localization in case of occlusion in dynamic environments with human pres-

ence. These occlusions are common in factories and warehouses where humans

and robots are working symbiotically together to ensure higher productivity

and safer workspace conditions. Also, in the outdoor environment (i.e. on the

streets) all types of dynamic objects are around an autonomous vehicle that

could cause occlusions and interfere with the infrastructure-mounted localiza-

tion sensors. In these cases, a motion model acts as a memory to store the

past behavior of the vehicles or mobile robots and provides information about

their pose even when sensory detection nodes are failing.

3.4 Stabi l i ty  of the state estimator

The stability of the estimation error dynamics of the Kalman observer, with

covariance adaptation for the augmented visual system, is studied in this sec-

tion. Due to the blurring effect that the rectification step has on the image, the

reliability of the depth estimation decreases as the distance between the robot

and the fisheye camera frame { c }  increases. To  address this, an uncertainty-

aware adaptive covariance allocation scheme is utilized for the discrete-time

observer discussed in section 3.3. Adaptivity in the selection of the process and

measurement covariance matrices enables the algorithm to switch its reliance

on each one of them based on the state of the system. More specifically, when

the robot is close to c and detections are consistent without any occlusions,

visual measurements are reliable; thus, the measurement covariance should be
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selected such that state estimation relies heavily on the accurate sensor mea-

surements to avoid wrong results. However, as the robot gets far from the

camera and occlusions happen more frequently, the noise in the visual detec-

tion increases. In this case, the algorithm should be capable of switching its

reliance to focus more on the motion model of the robot. The motion model

updates based on a moving horizon of position measurements, which increases

its robustness to intermittent noises and detection failures. By relying more

on the robust motion model of the robot, the Kalman observer can accurately

estimate the correct and smooth trajectory of the robot even in edge cases

where the visual node provides noisy or faulty measurements.

For the automatic and smooth adaptation of the process and measurement

covariance matrices, a transition function is designed based on the Euclidean

distance of the robot from the frame {c}.  States of the system can be mea-

sured through the visual node which is associated with the ”measurement

covariance” matrix. On the other hand, states can be predicted with the mo-

tion model which is used in the observer alongside the ”process covariance”

matrix. Switching the reliance of the state observer is done by increasing or

decreasing the values inside each of these covariance matrices. For example, in

the case that the robot is close to the camera, the measurement covariance ma-

trix is selected to have smaller values when compared to the process covariance

matrix. However, for the case where the visual node is noisy or faulty due to

occlusions, the measurement covariance should have greater values compared

to the process covariance matrix.

Remark 1 The stability of the state observer relies on the observability of the

state space model that was designed for the system, as observability is a

suficient condition for the implementation of an optimal variance filter (such as

a Kalman). The observability matrix for the system Eq. (3.4) with the system

matrix components in Eq. (3.5) can be written as [108]:

On : =  [ξ1, ξ2, . . . , ξn]�

ξ i +1  =  ξ i A +  ξi ξ1 =  C, (3.6)
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The observability condition is checked and satisfied (i.e., rank(O4) =  4) for the

discrete time-invariant system Eq. (3.4).

Lemma 1 The system Eq. (3.4), with known initial states and covariances,

is uniformly detectable.

Proof 1 By definition, the pair [Ak , Ck ] in the augmented linear discrete-time

system Eq. (3.4) is uniformly detectable if there exists β � R + , 0  ≤  β ≤  1 and

�ε, n2 ≥  0, such that

η�O(n2, n1)η ≥  βη�η, (3.7)

whenever ||ψn1+ε,n1η|| ≥  β||η|| for some η, n1 [1]. The observability grammian is

denoted by O. The condition Eq. (3.7) necessitates Eq. (3.8) holds for some β:

O =  
X  

ψk ,n1
Ck Ckψk,n1 , O(n2, n1) ≥  β I  >  0, (3.8)

k = n 1

where, ψ i , j  =  ψ i , i−1ψ i−1,j , ψ i+1, i  =  A i  are the state transition matrices for i  ≥

j .  The state matrix for the developed uncertainty-aware visual system is a

function of the sampling time, which is constant. For transition and switching

between the error covariances (as will be described in subsection 3.6) for far

robot positions with respect to { c }  (i.e., small ROI),  uniform detectability is

suficient for bounded error covariance and asymptotic stability of the optimal

variance filter. The condition Eq. (3.8) on the observability grammian O holds

for the developed (augmented) visual localization system, with known initial

covariances. As a result, Eq. (3.4) is uniformly detectable.

Theorem 1 The state observer for the system Eq. (3.4), with the (augmented)

state variables in x,  bounded system and output matrices, and known initial

state/covariance, has bounded error covariance.

Proof 2 With [Ak , Ck ] uniformly detectable as in Lemma 1, the Kalman filter

error covariance is bounded (see Lemma 5.1 in [1]) and there exists a bounded

sequence L k  such that x k + 1  =  (A k  − L k C k ) x k  is exponentially stable for known

initial state and covariance.
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The intuitive expression of Theorem 1 is guaranteeing bounded estimation

error for the robot pose using the uncertainty-aware stat observer which is

subject to switching due to covariance adaptation for far/close features.
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3.5 I n p u t  estimation

The state space model of the observer discussed in section 3.3 takes linear

acceleration inputs in both x  and y directions. However, the robot in this

application is autonomous which means that the inputs are generated by the

robot’s perception and controller units. Thus, the infrastructure-mounted sen-

sor does not have any information about the motion inputs to the robot. To  be

able to reproduce the acceleration inputs, the only source of information is the

position measurements which are coming from the camera. For this purpose,

a learning-based forecaster is designed to estimate the acceleration inputs for

the motion model discussed in Eq. (3.4) using the position mea-surements

px,k, py,k. The input to the network is a moving horizon Nh of the robot

positions:

px,k =  { p̂  ,L , . . . , px,k }, py,k =  { p̂  ,L, . . . , py,k },

where, L  =  k −  Nh +  1. The estimated accelerations for both longitudi-

nal and lateral directions are updated with every corrected position measure-

ment pk at time step k from the visual node utilizing the estimated positions

{px,L , . . . px,k−1 } throughout the horizon Nh. The number of neurons in each

Figure 3.2: Learning-based forecaster for input estimation in the motion model
Eq. 3.4. The output of the learning forecaster, which takes input from a moving
horizon of the position measurements px,k , py,k , will be used as the acceleration in-put
for the uncertainty-aware motion model. Al l 15 intermediate blocks have batch
normalization and fully connected tanh layers.

layer drop, linearly from the number of elements in the moving horizon (Nh),
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to one neuron which is the output acceleration in either longitudinal/lateral

directions. The model has been trained on an extensive data set of position

measurements from the fisheye camera and the actual accelerations coming

from a precise motion capture camera system installed in the environment

(Vicon). This helps with making the forecaster robust to the different sources

of uncertainties present in the visual measurements captured by the fisheye

camera.

After each T anh layer, a batch normalization layer has been used to regu-

larize the model and increase the learning rate [42]. To  estimate the accelera-

tion (which is input to the motion model of the uncertainty-aware observer),

every batch is normalized using u =  (u −  E {u} ) / ( var{u} +  ϵ). Regular-

ization of all layers helps in different ways. The first benefit is improving

convergence during training by normalizing the input of each layer and reduc-

ing the risk of vanishing gradients. The next benefit is a faster convergence

rate which can be beneficial, especially for large data sets and deep neural

networks. Also, batch normalization creates a more generalized network that

can learn all the excitations present in the data set and produce more stable

results. Finally, batch normalization can make the network less sensitive to

the initial choices for the weights and biases in each of the neurons.

The idea behind this approach is to leverage machine learning to estimate

acceleration inputs to the robot which are dificult to measure externally. Once

the accelerations are estimated they can be incorporated into the state space

model in Eq. (3.4), which describes how the position and velocity of the robot

change over time. This allows for a more accurate representation of the system

by taking the dynamics of the robot into account. Since the model is trained on

ground truth acceleration measured by precision motion capture sensors, the

resulting position estimates of the state space model will also be more

precise.

34



k k
¯ ¯ ¯

¯

¯

¯ ¯ ¯ ¯T �

¯ ¯

˜ ¯

¯¯ ˜
2 2

¯ ˜
2 2

¯

3.6 State estimator

The discrete-time Kalman observer provides the following prediction (with

correction) to estimate the robot states, i.e., position and speeds, defined by

x̂k +1|j  � E{xk |yj }  using a sequence of measurements yj :

x̂k +1|k =  Ak x̂k |k−1 +  Bk uk  +  Lk (yk  −  Ck x̂k |k−1 ), (3.9)

where the optimal gain is L k  =  Ak Pk |k−1 C �(Ck Pk |k−1 C � +  R k ) − 1  and error

covariance Pk+1|k � cov{xk +1 −  x̂k + 1| k } forms a discrete time-varying Riccati

equation Eq. (3.10) for both zero and non-zero state initialization x̂0|−1 =

E { x 0 }  and covariance initialization P0|−1     � covx0     =  E { (x 0  −  x̂0|−1 )(x0 −

x̂0|−1 )�}:

Pk+1|k =  Ak Pk | k−1 Ak  +  Qk −  K k C k P k | k −1 A k  . (3.10)

The Kalman gain and error covariance does not depend on the measurements,

even for the time-varying case, but only on the noise statistics. The estimation

error is defined by ek+1|j � x k + 1  −  x̂k +1|j , which yields:

ek+1|k =  (A k  −  Lk Ck )ek | k−1  −  L k ν k  +  ϱk. (3.11)

To  address sensor noise/uncertainty dependency on depth due to the blurring

effect after undistortion, and small ROI for far distances, process and mea-

surement covariances Qk , Rk are switched between two different modes based

on an error distance d � dk −  d (with the depth dk obtained in section 3.1. A

and a specific depth threshold d) as in Qk =  Qd [ 1−γQ  tanh(sd) +  1 + γ Q  ] and R k  =

R d [ 1− γ R  tanh(sd) + 1 + γ R  ], in which γQ , γR are the transition coeficients,

s is the transition smoothness parameter and Qd and R d  are the default (diag-

onal) process and measurement covariance matrices, respectively. For dk � d the

optimal state estimator in the sense of error covariance, relies more on the

motion model rather than visual-based position measurements pk.

The uncertainty-aware state estimation with the input acceleration predic-

tion is provided in Algorithm 2.
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Algorithm 2: Augmented visual state observer
Input : Corrected visual-based position states pk and horizon

pq,k =  { p̂  ,L, . . . , pq,k }, q � {x , y } , L  =  k −  Nh +  1
Output: States [p̂ ,k , p̂ ,k , v̂x,k , v̂y,k ]�

1 Initialize the observer with x̂0 � E { x }  and
P0 � E { (x 0  −  x̂0 )(x0 −  x̂0 )�}

2 while k ≥  0 do
3 if k <  Nh then
4 yk =  [px,k , py,k, 0, 0]�;
5 uk =  [0, 0]�;
6 else
7 p̄ ,k ← stable first-order filter w. τx, τy on pq,k, q � {x, y };
8 yk =  [px,k , py,k, p̄ ,k , p̄ ,k]�;
9 Input estimation

10 Learning-based acceleration input uk estimation using px,k, py,k;
11             end
12 Uncertainty-aware covariance adaptation
13 Update Qk , Pk based on depth;
14 Time update: x k + 1  =  A k x k  +  Bk uk ;
15 Optimal variance measurement update:
16 L k  =  Ak Pk |k−1 C �(Ck Pk |k−1 C � +  Rk )−1 ;
17 Estimate x̂k +1|k from Eq. (3.9);
18 end

3.7 Summary

To summarize, a novel approach was proposed in this chapter for localiz-ing

a mobile robot in highly dynamic indoor environments using a monocu-lar

infrastructure-mounted fisheye camera. The visual sensor measurements,

which are inherently noisy, were fused with a constant acceleration motion

model using an uncertainty-aware Kalman filter. The novel aspect of this fil-

tering technique lies in its covariance matrix dynamic tuning scheme, which

effectively reduces the overall uncertainty of the state estimation by incorpo-

rating prior knowledge about the robot’s motion and sensor characteristics.

By leveraging the visual information captured by the single low-cost camera,

the proposed method demonstrates promising results in terms of localization

accuracy and robust trajectory estimation. The fusion of visual and motion in-

formation enables the algorithm to mitigate the uncertainties associated with
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sensor measurements and generate reliable trajectory estimates. An impor-

tant advantage of utilizing infrastructure-mounted sensors is their large and

unobstructed field of view. Additionally, the wide field of view of the fisheye

camera lens used in experiments enables overseeing multiple robots within a

large indoor environment. This visual sensor serves both as a surveillance sys-

tem and a localization node of the robotic operation. Moreover, using a camera

to detect multiple autonomous robots in an indoor environment provides the

possibility to decrease costs and increase the scalability of the operations. Fur-

thermore, having a centralized and fixed sensor unit enables the use of more

powerful hardware, thereby increasing the computational capacity required to

manage a greater number of mobile agents.
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Chapter  4

Dynamic Ob ject Detection

Autonomous navigation systems rely on precise perception of the environment

to make informed decisions regarding trajectory planning. Visual sensors, such

as cameras, are commonly employed to capture environmental information

however, the presence of dynamic objects and scene changes introduces chal-

lenges that significantly affect the accuracy of visual perception algorithms.

Tracking the features of dynamic objects can lead to errors in visual localiza-

tion due to the assumption of fixed features for triangulation and re-projection

in visual odometry optimization. As a result, existing SLAM algorithms[31],

[65], [77], [78] often neglect dynamic objects or exclude potentially moving ob-

jects altogether to mitigate localization errors. Nevertheless, such approaches

prove inadequate in highly dynamic scenes where dynamic objects dominate

the visual frames. To  enable autonomous driving in such environments, accu-

rate detection of dynamic objects and scene segmentation becomes imperative.

Therefore, the aim of this research is to develop a visual-inertial state estima-

tion framework for autonomous navigation in dynamic environments, leverag-

ing onboard sensors while addressing the computational constraints imposed

by the vehicle or robot’s onboard processors and embedded systems. The

proposed framework aims to enhance visual-based state estimation accuracy

and computational eficiency by detecting individual motion patterns at the

object level, with a specific emphasis on outdoor environments and percep-

tually degraded conditions. The effectiveness of the proposed framework is

verified through rigorous experimentation, validating its capability to address

38



the identified challenges in autonomous navigation.

This chapter outlines a stepwise procedure for dynamic object detection

in camera frames, employing a hybrid approach that combines machine learn-

ing and model-based solutions. The utilization of this hybrid method offers

several advantages compared to end-to-end learning algorithms. Specifically,

it allows for customization and adaptation to specific application constraints

and requirements, facilitating the optimization of performance in diverse sce-

narios. In contrast, end-to-end learning methods may struggle to incorporate

case-specific constraints effectively. Moreover, the hybrid method strikes a

balance between data-driven estimation and the integration of prior knowl-

edge. By leveraging geometrical reasoning, the framework enhances overall

performance, complementing the capabilities of neural networks and enabling

a more comprehensive understanding of the data processing task at hand.

4.1 Sensors

Detecting dynamic objects in 3D space from a single camera frame is chal-

lenging since the captured frames lack depth information. To  overcome this

loss of dimension, a pair of rectified stereo cameras with a fixed baseline is

used. Since the cameras have a horizontal distance from each other, the pixel

location of the same object will differ in the stereo images. This difference

in pixel locations is called disparity, which is further explained in the stereo

calibration section 4.3. By analyzing the disparities between the two stereo

images, a depth map of the mutual field of view of the cameras can be re-

constructed. This depth map provides useful information about the relative

distances of the objects in the scene and enables the re-projection of features

and objects from the image plane I  to the 3D world frame W .

On the other hand, estimating the ego-vehicle motion and distinguishing it

from the motion of objects in the environment is a challenging task, especially

when the cameras themselves are in motion. In such cases, it is necessary to

first estimate the ego-motion, which can then assist in segmenting the motion of

surrounding objects. While motion estimation using cameras alone is pos-
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sible, existing visual odometry methods often require substantial computation

time and resources. To  address this, an inertial measurement unit (IMU) is

employed in this research to enhance robust ego-motion estimation. An IMU is

a sensor consisting of three accelerometers and gyroscopes mounted on three

orthogonal axes, enabling the measurement of linear acceleration and rota-

tional rate around each axis. By integrating the data from the IMU sensors

with the visual perception unit, more accurate ego-motion estimation can be

achieved.

Moreover, the use of light detection and ranging sensors (L IDAR s )  is also

discussed in this chapter as a ground truth generation sensor to verify the

depth map obtained from stereo vision. L I D A R  and camera data are also fused

together to generate the final result of the dynamic object detection algorithm

for comparison with the stereo vision method. Finally, to generate the ground

truth data for the verification of localization results, a high-accuracy global

navigation sensor system (GNSS) has been used, alongside real-time kinetic

corrections. This sensor unit measures the latitude, longitude, and altitude of

the vehicle which then is converted into a local universal transverse mercator

(UTM) coordinate for convenience.

Before diving deep into the details of each module developed in this re-

search, an overview of the complete process of this chapter is provided in a

flowchart (Fig. 4.1). Inputs to this algorithm are raw stereo images and in-

ertial measurements, and the output is a 2D detection of dynamic objects in

the left image frame (c I l ).

4.2 Ob ject Detection

The first step in the methodology of this chapter is detecting the objects of

interest inside the visual frames from one of the cameras. It is to be noted

that object detection is performed on the left camera only since the field of

view of both cameras is similar. This will help with reducing the computa-

tional load of the algorithm by avoiding duplicate processing of visual data.

For this chapter, a custom ROS implementation of the YOLOv4 [6] object
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Figure 4.1: Dynamic object Detection flowchart. Green blocks are raw sensor
input, blue blocks are data processing steps and the orange block is the output of the
algorithm. (Brackets express lists)

detector is used to detect classes of objects on an outdoor scene that might be

dynamic. These potentially dynamic object classes include cars, trucks, buses,

pedestrians, cyclists, and motorbikes. Object detections will be represented

with rectangular bounding boxes around the objects on the image frame (I ).  A

sample of these bounding box detections including several data classes from the

COCO dataset is represented in Fig. 4.2

The motion characteristics of potentially dynamic objects detected by

YOLO are examined to classify their actual movement pattern. If these ob-

jects are confirmed to be dynamic, they are excluded from the localization

process, leading to a significant improvement in localization accuracy. Con-

versely, if a potentially dynamic object is identified as stationary, it is included

in localization. In this case, the features of the stationary object assist the

visual perception unit in better comprehending the changes in the ego vehicle’s

position within the environment.
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Figure 4.2: Bounding box detections for several classes in the COCO dataset.
The potentially dynamic classes will be picked from all the detections based on their
class number. These objects include cars, trucks, buses, pedestrians, cyclists, and
motorbikes.

4.3 Stereo Camera Calibration

The next step involves the fusion of data acquired from the left and right cam-

eras to reconstruct the missing dimension of the environment. To  accomplish

this, the initial step is to calibrate the cameras, mounted in a stereo config-

uration. This calibration process is done to measure the intrinsic parameters

of the stereo cameras such as focal length and the optical center positions for

each camera. These values are reported in a matrix known as the intrinsic

camera matrix K  which is provided in Eq. (4.1).

�
f 0 c 

�
K  =  � 0 fy cy� (4.1)

0      0      1

Moreover, the calibration also provides information about the relation be-

tween the pose of the cameras with respect to a known frame. This information is

provided in an extrinsic matrix which includes a rotation matrix and a trans-

lation vector. The details of the extrinsic camera matrix are provided in Eq.

(4.2).

�
r11 r12 r13

[R|T ] = r21 r22 r23

r31 r32 r33

t 
�

t2� (4.2)
t3
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The calibration is a meticulous procedure that involves several steps and re-

quires substantial computational resources to accurately measure the intrinsic

and extrinsic parameters as well as distortion characteristics. Initially, a large

checkerboard with a known size (typically a 9 × 6 tile pattern) is placed in dif-

ferent poses in front of the stereo camera pair and used for pattern recognition.

The frames captured by the cameras are used to localize the interior corners

of the checkerboard, which serve as the reference pattern for parameter iden-

tification. By moving the checkerboard incrementally to cover all poses for a

full excitation of patterns, a set of images are created with their corresponding

corner detections and used for further computations. These post-processing

steps include estimating the physical dimensions of the checkerboard pattern

to establish the 3D world coordinates, matching the 2D corner coordinates

between the cameras with their corresponding 3D world coordinates, optimiz-

ing the calibration by minimizing the reprojection error and estimating the

intrinsic parameters (focal length, principal point, distortion coeficients) and

extrinsic parameters (rotation and translation) for both cameras. This calibra-

tion process determines the geometric properties and distortion characteristics

of the stereo camera system, which are essential for accurate stereo vision ap-

plications such as 3D reconstruction, depth estimation, and object tracking.

An example set of the images used in the checkerboard stereo camera calibra-

tion is presented in Fig. 4.3.

Figure 4.3: Stereo camera intrinsic and extrinsic calibration using checkerboards.

Once the intrinsic and extrinsic matrices, as represented in Eq. (4.1) and

Eq. (4.2), are obtained, the next step involves rectifying the image frames.

Rectification is a crucial process that aims to transform the frames such that

the image planes become virtually co-planar. When the image planes of the left
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and right cameras are not co-planar, the search for pixels corresponding to the

same points in the field of view becomes challenging. This can render disparity

estimation either impossible or computationally unfeasible. By rectifying the

image planes to be co-planar, the search space for matching pixels belonging to

the same point in the environment is constrained to a horizontal line that

passes through both images when they are displayed side by side. The co-

planarity of the virtual image planes effectively shifts the epipolar center to

infinity. Consequently, the lines that pass through the same object in both

images become parallel with the y-axis of image coordinates. The rectification

process is further illustrated in Fig. 4.4.
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ᵅ� ᵅ�
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ᵅ�

ᵅ�−ᵅ�ᵅ�ᵅ�ᵆ�
ᵅ�

ᵅ�−ᵅ�ᵅ�ᵅ�ᵆ�

ᵅ�ᵅ� ᵅ�ᵅ�

ᵄ�ᵅ� ᵅ�

Figure 4.4: Epipolar geometry and rectification of image planes. Rectification
creates virtual co-planar image planes to reduce the search space for similar pixels, to
a unique horizontal line (el er ) for eficient stereo matching performance.

4.4 Dispar i ty  Map Generation

Once the rectification and object detection steps have been performed in the

2D image space, the algorithm transitions to the 3D local space of the ego-

vehicle. This transition enables the algorithm to perform 3D localization and

motion estimation of both the ego-vehicle and the objects in the environment.

However, one element is missing from the data gathered by the cameras and

what has been perceived so far. This lost element is related to the fact that

cameras capture the environment in 2D, lacking depth information for all pix-
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els. Depth estimation plays a crucial role in this method as the final purpose

is to study the independent motion of multiple objects in the 3D environ-

ment. While this task is relatively straightforward using stationary cameras, it

becomes challenging in the case where cameras are mounted on a moving

vehicle. This is due to the fact that differentiating between the motion of the

ego-vehicle and the surrounding objects is dificult in 2D image space. Re-

covering depth can unlock a more comprehensive 3D space that can be used

to describe the pose and motion characteristics of all objects more accurately.

Moreover, by transitioning to 3D space, describing and segmenting the mo-

tion of surrounding objects is more realistic and does not require designing

and testing exclusive 2D features incorporated into the images.

In order to perform motion classification by mapping 2D detections on the

image plane to the 3D body frame, H I T N E T  [106] is utilized to generate a

dense disparity map that accurately estimates depth from the stereo image

pair. H I T N E T  leverages hierarchical iterative tiling and deep neural networks

to provide a dense disparity map for all the pixels inside the left camera of

the stereo setup. The resulting disparity map is a gray-scale image of the

same size as the left camera image; a sample of this result is provided in Fig.

4.5. By having the disparity value of all pixels, a perspective transform can

be employed to calculate the 3D location of each pixel in the body frame.

This perspective transform utilizes the parameters estimated in the intrinsic

calibration process discussed in Section 4.3.

Figure 4.5: Resulting disparity map generated from stereo matching.

Projecting all the pixels with the perspective transform shown in Eq. (4.3)

will be computationally expensive; thus only some pixels which represent the

objects in the 2D images will be projected to the 3D body frame. Selected
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pixels on the disparity map expressed in the image plane ( I )  are transformed

into the body frame (B )  using the perspective transformation matrix Q rep-

resented in Eq. (4.3). The transformation Q is solely dependent on camera

parameters such as the left camera center coordinates (cx, cy), the focal length

f ,  and the baseline of the stereo camera pair T . The resulting vector in the

body frame represents the unscaled 3D components (X , Y , Z )  which have to

be divided by the scalar value of W to obtain the 3D coordinates of the object.
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Utilizing this mathematical expression, it is possible to compute the relative

location of individual objects or features within the images with respect to the

body frame and utilize these values in the next sections of the analysis.

4.5 L I D A R  as G r o u n d  Tr u t h

Another way to localize the objects around the ego-vehicle is to use a Light De-

tection and Ranging sensor ( L I DA R )  to measure the depth of the environment

directly. This method will generate precise position measurements for the ob-

jects surrounding the ego-vehicle, which are used as the localization ground

truth for evaluating the visual node’s performance. To  achieve these precise

measurements, the first step is to calibrate the left camera and the L I D A R  to-

gether. This calibration provides the extrinsic parameters which will generate

a homogeneous transformation between the left camera and the L I D A R  (C TL ).

By using this matrix, the 3D point clouds captured on the L I D A R  frame ( L )

are first transformed into the camera frame (C ). Thereafter, these points are

projected onto the image plane (I ),  using the pinhole camera projection model

as given in Eq. (4.4). Projected points that fall within the object bounding

boxes discussed in Section 4.2 are identified and their indices are used to cre-

ate multiple 3D regions of interest (ROI) in the L I D A R  point cloud. These

ROIs will be representing each object of interest that is detected on the image
46



x 0
0 z

i

z
� �
� �

frame. Visual filtering of 3D ROIs around objects of interest in the L I D A R

point cloud eliminates the need for 3D object detection, significantly reducing

the computational complexity.
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The 3D point cloud filtering process based on bounding box detections in

the image frame may result in the inclusion of outliers that do not belong to

the object of interest. These outliers arise from two common challenges

encountered in outdoor environments. The first type of outliers is seen when

occlusion takes place. For instance, if the object of interest, such as a car,

is partially occluded by a tree, the L I D A R  points reflected from the tree’s

surface may erroneously be included in the car’s ROI. The second type of

outlier includes L I D A R  points located on distant surfaces that project close to

the edges of 2D object bounding boxes. This is due to the fact that filtering

a 3D space based on the re-projection of a rectangular bounding box on the

image plane, creates a frustum of a pyramid (Fig. 4.6). This frustum which

encloses the points inside the ROI could potentially include L I D A R  points

that are on extremely far objects. These outliers can be identified and filtered

with Euclidean clustering which is discussed in detail in Section 4.6.

4.6 Cluster ing

Removing both types of outlier points from ROI point clouds is achieved

through Euclidean clustering, as outlined in [112]. This method groups the

points inside a point cloud based on their proximity to each other and has

been used extensively in 3D object detection research as can be seen from [12],

[40], [50], [51], [57]. By performing Euclidean clustering on individual ROI

point clouds; multiple point clusters are generated which represent multiple

neighborhoods of points. These clusters could be representing the object of

interest or any other close-by surface; thus, cluster filtering is performed by

comparing prior information about the geometry and the dimensions of the
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Figure 4.6: Visual frustum, created by filtering a 3D space based on the reprojec-
tion of a 2D bounding box on the image plane ( I )  onto a parallel plane which is far
from the camera (C ) .

detected object with the measured aspect ratio and dimension of each cluster.

This approach results in only one detection inside each ROI point cloud and

concurrently rejects all of the clusters that are on other surfaces and objects

in the ROI. Moreover, the frustum problem is also solved since the points

creating the frustum are mostly far away in the scene and are present in the

low-density areas of the ROI and Euclidean clustering disregards low-density

neighborhoods in the point cloud.

After clustering the ROIs, the geometrical median of each filtered cluster

is selected to present the center position of that object in the environment.

This center position will be utilized as the ground truth for the visual 3D

localization measurements of each object. These ground truth measurements

are generated automatically through the proposed methodology in real-time.

This eliminates the need for manual measurements from L I D A R  data; making

the evaluation process of the visual localization node more convenient. One

significant bottleneck of this automatic ground truth generation algorithm is

the 3D Euclidean clustering. However, by filtering the L I D A R  data using

visually-aware ROIs, the 3D search space is reduced significantly. This allows

running multiple instances of Euclidean clustering for different ROIs, and real-

time ground truth generation.
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4.7 Ego-Vehicle Motion Estimation

Localizing objects seen in static camera frames and L I D A R  point clouds in the

local body frame has been well investigated in the literature. However, as the

ego-vehicle is moving within the environment itself, each localization result

will be in an exclusive frame that relates to the previous poses of the body

frame with respect to a fixed world frame. As a result, estimating the motion of

the ego-vehicle is crucial for calculating the transformations between the

consecutive body frames. To  achieve this, a GNSS sensor is used with real-

time kinematic corrections from a base station to generate the ground truth

for the ego-vehicle poses. This GNSS sensor fuses the data gathered from

Global Positioning Satellites and the in-built IMU sensor to provide smooth

acceleration, velocity, and positioning information. The accuracy of the ground

truth for the ego vehicle’s motion is less than 5cm which is adequate for the

vehicle in an outdoor environment. For measuring the motion of the vehicle

independent of the GNSS sensor, visual velocity estimation is done through

the re-projection and tracking of 3D static features found on the left camera

frame. The complete methodology is discussed further, later in this chapter.

4.8 Feature Track ing

The process of measuring the pose of an ego-vehicle from onboard cameras is

called Visual Odometry VO. By analyzing the image frames captured from one

or multiple onboard cameras, VO provides online incremental updates to the

pose estimates of the vehicle as described in [10], [33]. However, visual odom-

etry methods have long faced challenges related to computational complexity

and varying lighting conditions [34], [122]. Another issue arises when tracking

moving features, as it becomes impossible to distinguish between the motion

of the feature and that of the ego-vehicle without additional information.

This chapter describes a novel velocity estimation for the ego-vehicle to aid

with dynamic object detection through the camera frames. The first step is

the extraction of features from the left image frame which is performed using a
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Harris corner feature detector [36]. After extracting features, a filtration step is

performed based on the object detection results. This is done to remove the

features that are on potentially dynamic objects to avoid problems regarding

the tracking of moving features. Based on the bounding box detections from

YOLO (4.2), features that fall within the bounding boxes of potentially dy-

namic objects are removed from the tracking list. This will result in a more

reliable tracking process and also reduces the number of features, reducing the

computational load of the visual velocity estimation node.

Tracking static features is carried out using a simple and computationally

eficient sparse optical-flow algorithm developed in [68]. Optical flow, also

known as optic-flow, is referred to the study of patterns of apparent motion of

objects and surfaces in the 2D image frame. These patterns are caused

because of a relative motion between the observer camera and the different

parts of the environment. The algorithm in [68] finds these flow patterns by

constant motion assumption in a local neighborhood around a specific pixel

under consideration. By forming the flow equations and solving them in the

local neighborhood, a 2D flow vector is calculated which points from the query

feature to its most probable new location in the new frame captured after the

relative motion happens. Using this approach, all static features are tracked

in 2D image frames and two sets of corresponding features are ready to be re-

projected into the 3D body frame B  for ego-motion analysis. The reprojection is

done using the depth map created in Section 4.4, similar to the reprojection of

dynamic objects from the image plane I  to the body frame B  explained in Eq.

(4.3). Following this, both sets of tracked 2D features are reprojected on local

body frame B t = k  and Bt = k + 1 .  Note that the body frames are not the same

since the ego-vehicle is moving within the environment. To  mea-sure this

motion, a transformation is calculated between the two body frames B t = k  and

B t = k + 1  such that, the overall re-projection error of the feature set is

minimized. To  simplify the problem, the elevation of the features is dis-

regarded, effectively reducing the search space from three dimensions to two.

This assumption limits the transformation between the two body frames to

three degrees of freedom instead of six. The three parameters considered are
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the linear motion components along the x  and y axes, and the yaw angle ψ

around the z axis. By neglecting the elevation of features, the complexity of

the problem is reduced while still capturing the essential aspects of the trans-

formation between the frames. With this approach a simplified analysis of a

planar ego-motion is carried out which aligns with the definition of the motion

model explained in Section 4.9.

4.9 Motion Model

Defining a motion model for the ego-vehicle is an essential part of every au-

tonomous driving system. Such a motion model serves as a foundational part of

the algorithm, providing valuable information about the ego-motion of the

autonomous agent. Without this information, the ability to detect dynamic

objects only from moving camera frames becomes extremely challenging and

computationally heavy. However, by leveraging a fully defined motion model,

the performance of the perception unit can be enhanced for object detection

and tracking. For the purpose of detecting moving objects, only a concise

description of the ego-motion is suficient. This is mainly due to the fast data

acquisition rate of sensors used in this project. The cameras and the inertial

sensors used are operating at 20H z which is relatively fast in comparison to

the rate of change of the dynamics of vehicles moving in an outdoor setting.

Moreover, controlling the ego-vehicle’s motion is not the objective, thus reduc-

ing the need for a complex motion model describing all dynamic modes of the

system in detail. Consequently, a simple two-degree of freedom (DOF) model

is designed to describe the motion of the ego-vehicle in the environment. This

model presumes the motion happens on an arc between every two consecu-

tive frames (0.05s), which only requires a displacement vector ( d k+1|k ) and

a change in the yaw angle (∆ψ )  of the vehicle, to be fully defined. These

two parameters are the most significant factors in the motion of the vehicle

under normal driving conditions with minimal tire slip. This motion model is

described in detail in Fig. 4.7.

Calculating the yaw angle of the vehicle is possible by integrating the an-
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Figure 4.7: Definition of the 2DOF arc motion model of the ego-vehicle between
two frames. Two degrees of freedom are represented as a linear motion with a mag-
nitude of | d k+1|k| and a change in yaw angle ∆ψ .

gular velocity measurements coming from the gyroscope afixed to the body of

the vehicle. However, the integration of noisy measurements will accumulate

errors, and drift gradually from the actual yaw angle value. To  avoid this,

only the change in the yaw angle (∆ψ )  is calculated by integrating once over

new angular velocity measurements ψk around the z-axis of the body frame

Bk .  By focusing on the change in the yaw angle rather than its absolute value,

the gradual integration drift effects on the estimation are mitigated. This is

because this integration will only contain the sensor error at time t =  k and

does not suffer from any uncertainty accumulation over extended periods of

time. Moreover, the absolute value of the orientation is not needed since all

calculations happen relative to the body frame Bk .

In contrast, the estimation of the second parameter, dk+1|k , in the motion
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model presents greater challenges compared to estimating the change in yaw

angle. This dificulty arises from the fact that IMU readings provide the sec-

ond derivatives of linear motion, which necessitates the knowledge of initial

conditions for double integration. Moreover, estimation drift can not be miti-

gated for double integration of uncertain measurements. Consequently, there

is a need for a direct measurement of the initial condition, specifically the

linear velocity of the vehicle. This is accomplished through the visual node

by reprojecting the tracked features, as explained in Section 4.8. The detailed

procedure for visual velocity estimation will be discussed in the subsequent

section.

By establishing the motion modes of the vehicle, a homogeneous transfor-

mation can be formulated to map a body frame to the previous body frame.

This transformation is constructed from a rotation matrix ( B k ) R ( B k + 1 )  � R 3 × 3

and a translation vector ( B k ) T ( B k + 1 )  � R3 × 1 . The rotation matrix aligns the two

frames based on the yaw measurement ∆ψ  and the translation vector shifts

them to create the best overlap of the 3D features. The complete mathematical

representation of this transformation is provided in Eq. (4.5).

�
cos(∆ψ)

�sin(∆ψ )
( B k + 1 )                         0

0

−sin(∆ψ )  0
cos(∆ψ )      0

0             1
0 0

dcos( ∆ψ )
�

dsin( ∆ψ  )�
0
1

(4.5)

The next section provides a description of velocity estimation based on

static feature tracking and the definition of the motion model. This motion

estimation is used to compensate for the relative motion of the scene with

respect to the ego-vehicle and comprehend the absolute motion of each object

in the environment.

4.10 Visual  Velocity Estimation

After finding reliable static features on the left image and tracking them tem-

porally, both sets are reprojected into their corresponding body frames. Since

all features are selected on static surfaces and objects in the images, then their
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reprojection should also be in the same place. Finding the best overlap of the

features by calculating the optimal transformation between the two 3D sparse

point clouds, can enable the algorithm to have a perception of the motion of

the body frames. With this approach, ego-motion estimation becomes a sim-

ple optimization problem with only 2 degrees of freedom; one of which is the

change in the yaw angle that is measured directly with the gyroscope as dis-

cussed in Section 4.9. The only other unknown parameter of this optimization

is the magnitude of the linear ego-motion (d). By using the transformation

matrix derived from the motion model Eq. (4.5) the reprojection error of each

static feature (ej ) can be calculated using Eq. (4.6). It is to be noted that the

magnitude of shift (d) is unknown and present in ( B k ) T ( B k + 1 ) .

ej  =  ( B k )  p j  −  ( B k ) T ( B k + 1 ) . ( B k + 1 )→−  
j (4.6)

As mentioned previously, the reprojection error component in the z-axis

has no effect on the velocity estimation which is done in the xy plane. Conse-

quently, by removing the 3rd dimension from Eq. (4.6), not only the accuracy

of estimation is not affected, but also the computational complexity of the

optimization process can be reduced. By removing the z dimension and re-

forming Eq. (4.6) such that the motion parameter (d) is isolated on one side

Eq. (4.7) is created.

( B k ) x cos(∆ψ ) −sin(∆ψ )
 ( B k + 1 ) x cos( ∆ψ  )

y j |
sin(∆ψ ) 

{z
cos(∆ψ ) 

}
y j | {z 

ψ )
}

j

r                                                                                        h

(4.7)

It should be noted that this equation is written with an (≈ )  sign since

the uncertainty of the sensors will result in different motion parameters (dj )

for each feature. Estimating a unique motion parameter which is closest to

the actual value, can be dificult because of the high number of features and

their different corresponding uncertainty levels. Thus, traditional optimization

methods that form a cost function over all of the motion estimates for every

feature, might not result in the optimal state estimate. To  resolve this issue, a
54



�
���.

x n

�
���

�
���.

x n

�

�

d1

.

� � �
� � �

� �

n

recursive least square (RLS)  equation is used to deal with sensor uncertainties

and different errors for each feature, to obtain the best approximation of a

single motion parameter for the ego-vehicle at each time stamp. First, Eq.

(4.7) is used on all features to calculate a set of motion parameters. By finding

the median of this set and choosing n features that have resulted in motion

estimates closest to the median, we can formulate the R LS  model as in Eq.

(4.8).

(B k )�
x1

� ( B k + 1 )�
x1

� � �

�y1 � 
−  R

�y1 � =  H  �
d2� +  νk (4.8)

�
yn

� �
yn

�
dn

R  =  r 2n × 2n  , H =  h2n×n (4.9)

where, n is the number of chosen features that result in motion parameters

closest to their median, r  and h are defined in Eq. (4.7), and νk � R n × 1

represents the uncertainty of different features.

This model gets measurement input from n features which are extracted

from the camera frame and reprojected to 3D using the generated depth map.

The result will be 2 motion parameter estimations which form a probability

distribution function. These estimations and their corresponding covariance

matrix, are initialized according to Eq. (4.10). The initial values for the esti-

mates are all zeros, and the covariance matrix starts from a diagonal matrix

with elements of 10. These values have been chosen based on the prior in-

formation about the magnitude and range of the motion parameters, which

represent the displacement of the ego-vehicle in one-tenth of a second. The

optimal motion parameter dk at time t =  k can vary based on the velocity of

the vehicle, however, a starting magnitude of 0m and a covariance of 10m2 are

good candidates. The covariance is set to start from a high value since at the

initialization step, no information is available about the actual estimation.
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However, choosing any higher value for the diagonal elements of the covariance

matrix is not recommended as it may delay convergence.

D 0  =  On×1 , P0 =  E [(d −  d0)(d −  d0)T ] (4.10)

After proper initialization, the R LS  updates the estimations by receiving

the first measurement from the 3D features and the inertial sensor data, ac-

cording to Eq. (4.11), (4.12) and (4.13).

K k  =  P k − 1 H T  (H k P k − 1 H T  +  R k ) − 1 (4.11)

Pk  =  I  −  K k H k P k − 1 ( I  −  K k H k ) T  +  K k R k K T (4.12)

D k  =  D k − 1  +  K k (y k  −  H k X k − 1 ) (4.13)

First, an R LS  gain is calculated based on the covariance of the previous

step Pk−1 , and the newly measured rotation block diagonal matrix R k  and

measurement block diagonal matrix Hk .  Following the calculation of R LS

gain (K k ) ,  the covariance matrix Pk  and the estimation vector D k  are up-

dated. By iteratively updating the estimated vector and covariance matrix

based on new measurements, the recursive least squares (RLS)  method pro-

vides a way to continuously improve the accuracy of the motion parameter

estimates over time. This estimation method is particularly useful in our sce-

nario where measurements are obtained sequentially and the uncertainties in

the underlying system need to be estimated. The motion estimates gradually

converge through multiple iterations of R LS  and a vector of estimations forms

around the actual value of the ego-motion parameter of the vehicle between

two timestamps. To  select a unique number based on the estimation vector, a

histogram is formed and its center of area is picked as the number representing

the motion of the ego-vehicle.
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4.11 I M U  Integration

The primary objective of this section is to achieve a consistent estimation of

ego-motion, which can be computationally demanding when relying solely on

the visual velocity estimation node. To  overcome this challenge, a hybrid ap-

proach is employed where the visual velocity node measures velocity at prede-

fined intervals, while the inertial measurement unit (IMU) predicts the velocity

between these intervals. This approach improves computational eficiency and

enhances robustness. The inclusion of information from the IMU compensates

for limitations encountered by the visual node, such as challenging lighting

conditions and feature tracking dificulties, thereby mitigating occasional fail-

ures in consistent velocity estimation. The synergistic utilization of data from

both sources leads to more robust and reliable results.

IMU integration is done by assuming the motion of the vehicle has a con-

stant acceleration between two timestamps. However, the value of the constant

acceleration can change as new linear acceleration measurements are received.

The integration is only carried out for the longitudinal motion of the vehicle.

This is because the 2DOF motion model discussed in Section 4.9, only takes

longitudinal and rotational motion modes into account. The formulations for

the integration are presented in Eq. (4.14). Where dk+1|k is the longitudinal

displacement from time t =  k to t =  k +  1, ak is the longitudinal acceleration

reading from the previous timestamp measured by the IMU, vk is the previ-

ously estimated velocity and finally ts is the time passed between every two

measurements.

dk+1|k =  ak (  

2 
) +  vk ts (4.14)

The estimated velocity (vk ) comes from a single integration over the lin-

ear acceleration reading of the IMU. However, this process suffers from drift

as mentioned previously. To  eliminate this drift, the estimated velocity will

be changed with visual velocity estimations at set intervals. This will keep

the drift close to zero, making displacement estimations more accurate. The
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following updates on the velocity of the ego-vehicle are calculated from Eq.

(4.15).

vk =  vk−1 +  ak−1 ts (4.15)

4.12 Vector Closure

After knowing the position of all objects of interest in two body frames B k  and

B k + 1 ,  and the ego-motion of the vehicle between t =  k and t =  k +  1, analysis

of each object’s motion can begin. Similar to 3D reprojected features, objects

are also presented as single points in the 3D body frames. Consequently, each

new 3D object position represented in B k + 1 ,  can be transformed into the pre-

vious body frame Bk .  This is done through the use of the same homogeneous

transformation matrix presented in Eq. (4.5).

By performing this frame transformation, a predicted position ( B k )  p i  can

be calculated for the ith object according to Eq. (4.16). The predicted position

of the ith object in frame B k  is different than its measured position ( B k )  p i  at

the previous time stamp. This allows for a comparison between predicted and

previous measurements for the position of each object. Details of this trans-

formation and projection are presented in Fig. 4.8. After this transformation

is performed, all points are represented in a single body frame, the same as

the case where the ego-vehicle is not moving.

( B k )  p � =  ( B k ) T ( B k + 1 ) . ( B k + 1 )→−  
i (4.16)

Comparing the prediction and previous measurement of the position of the

object i  in frame B k  can provide a 3rd vector ( ( B k )  d i )  which represents the

motion of that object represented in the same frame.

4.13 Motion Classification

After the vector closure step, the motion characteristics of all objects of in-

terest are determined and categorized as either static or dynamic. It is un-
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Figure 4.8: Overview of the reprojection of an object of interest from 2D image
frames to the corresponding body frame at times t =  k and k + 1. Between the initial
body frame B k  and the two positions of the object i ,  a closure of vectors forms,
enabling us to measure the motion of that object ( ( B k )  d i ).  This vector is used to
classify dynamic and static objects.

necessary to include small motions in the dynamic object list for two main

reasons. Firstly, small motions do not result in significant changes in the posi-

tion of features, which can be effectively compensated for through global and

local minimization of errors in estimated ego-vehicle poses and reprojections.

Therefore, including these small motions in the dynamic object list is unnec-

essary. Secondly, small motion detections can be attributed to sensor and

process uncertainties, leading to dynamic classification for objects that are

actually static. Disregarding small displacements helps to eliminate outliers

from the final results and improves the overall accuracy.

On the other hand, the selection of an appropriate threshold value plays a

crucial role in achieving optimal classification results. Fine-tuning this value

allows for a balance between accuracy and consistency in the classifications.

Increasing the threshold value disregards more small motion detections, lead-

ing to improved overall consistency. However, this may result in falsely de-

tecting dynamic objects as static. Conversely, decreasing the threshold value

provides a more accurate measure of object motion and can detect even subtle
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displacements. However, this approach is not ideal as sensor uncertainties can

introduce false detections for non-moving objects or objects with slow mo-

tion. Hence, finding the optimal motion threshold value is essential to achieve

satisfactory classifications. This process is further discussed in Section 5.12.

4.14 Bayesian Track ing

To improve the temporal consistency of object motion classifications, a Bayesian

filter is applied to track and analyze detection results. The binary static and

dynamic states are transformed into a continuous probability domain between

0 and 1, enabling incremental updates to the detection probability. Subse-

quently, a Bayes filter is utilized for recursive updates on object states, with

each object tracked using an ID  generated by the 2D object detection algorithm

described in Section 4.2. By applying Bayes’ rule to the dynamic probability

of the ith object’s state (si )  at time t =  k, given the prior measurements z1:k

from t =  1 to t =  k, the posterior probability of the state can be estimated.

This is achieved by combining the prior probability and the likelihood of the

measurements, as demonstrated in Eq. (4.17). It should be noted that the

tracking process begins when the first measurement of a specific object is re-

ceived. Thus the time reference (t =  1), varies for different objects, based on

their respective entry times into the field of view of the cameras.

P (sk|z1:k) =  P (zk |sk, z1:k−1)P (sk|z1:k−1) (4.17)

According to the Markov assumption, current measurements can be pre-

dicted based on the known state of the system at the same timestamp. This

implies that the current measurement is independent of the prior measure-

ments and is only correlated with the current state. Applying this Markov

assumption to Eq. (4.17) will result in Eq. (4.18), as the prior measurements

are not needed for predicting the probability of a measurement at the current

time stamp.
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P (sk|z1:k) =  P (zk|sk)P (sk|z1:k−1) (4.18)

Estimating the probability of the current state of the system at time t =  k,

solely based on all measurements until t =  k−1 is challenging as no information

is available about the most recent measurement (zk ). To  address this, we

can utilize the rule of total probability to leverage our knowledge about the

previous belief of the system and estimate the probability of the current state

based on the available measurement information. This approach allows us to

derive a recursive formula for predicting the next belief of the system, taking

into account the previous belief and the newly received measurements. The

mathematical application of the rule of total probability is represented in Eq.

(4.19).

Z
P (sk|z1:k) =  P (zk|sk) P (sk |sk−1, z1:k−1)P (sk−1|z1:k−1)dsk−1 (4.19)

Further analysis of Eq. (4.19), highlights another opportunity to use the

Markov assumption to simplify the process. Specifically, the probability of the

current state is independent of all the measurements prior to t =  k. In other

words, the probability of the current state of the system can be predicted only

based on the previous state and is not affected by any measurements received

before that. Applying this Markov assumption will result in Eq. (4.20)

Z
P (sk|z1:k) =  P (zk|sk) P (sk |sk−1)P (sk−1|z1:k−1)dsk−1 (4.20)

By simplifying the process using the second Markov assumption, a recursive

formula is obtained that can predict the current belief about the state of the

system, based on the previous belief and the information gathered from the

measurement and state transition models. This recursive Bayes filter formula

is represented in Eq. (4.21).

Z
bel(sk) = P (zk|sk)

measurement model

P (sk |sk−1) bel(sk−1)dsk−1 (4.21)

state transition model
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The probability models, presented in the recursive Bayes formula are de-

scribed as the following:

• Sensor model: Predicts the probability of a specific binary measure-

ment given the current estimated state. It assigns a higher probability

to detections that align with the predicted state. The probability is 95%

for similar detections and 5% otherwise.

• State transition model: Predicts the probability of a new state oc-

curring based on the previously estimated state. It assigns a higher

probability to cases where the new state aligns with the previous state.

The probability is 95% for consistent states and 5% for state changes.

Utilizing the sensor and state transition models, the recursive Bayes for-

mula is completed and can be used for updating the state of each tracked

object. For simplicity, the integral can be turned into a simple summation of

two binary possibilities which is represented in Eq. (4.22). Where s̃ k−1 is the

binary inverse of previous state of object j .  The recursively calculated dy-

namic probability of each object can then be segmented into two halves using

the central threshold probability of θ =  0.5 to decide about the binary state

of the object for visualization purposes.

bel(sk) =  P (zk |sk)[P (sk|sk−1)bel(sk−1) +  P (sk |s̃k−1)(1 −  bel(sk−1))] (4.22)

By calculating the belief about the state of each object, we can decide

about its dynamic/static class based on the dynamic probability model. This

probability is then visualized in the shape of red (static) and green (dynamic)

bounding boxes, on the left plane; This is furthermore discussed in the results

section (5.7). Additionally, a detailed pseudo-code of the proposed method is

provided in Algorithm 3.

4.15 Summary

In this chapter, by utilizing the semi-3D geometry of navigation environments,

a novel visual-inertial dynamic object detection framework is presented to ad-
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Algorithm 3: Dynamic object detection
Input : Raw images in the camera frames (c I l  and c I r )

IMU measurements ( B k )  a and ( B k )  ω
camera parameters: cx, cy , f, T

Output: Object classification state list: [bel(si )]
1 while k ≥  1 do
2 Extract the object bounding boxes using YOLO;
3 Obtain centers of bounding boxes in both image frames: [(Ik ) oi ]

and [( I k + 1 ) oi ], i : 1 → n;
4 Perform depth map generation using HITNET:  ([( Ik ) dij ],

[ ( I k + 1 ) di j ], i, j  � I ) ;
5             Re-project objects ( B k )  r  o and ( B k + 1 )  r  o using Eq. (4.3);
6             Estimate change in yaw using: ∆ψ ( k : k + 1 )  =  ( B k )  ω ψ ×  ts;

7 Predict ego-vehicle displacement (dk+1|k ) from Eq. (4.14);
8 ( B k )  p � =  ( B k ) T ( B k + 1 ) . ( B k + 1 )  p i ;
9 Vector closure: B k  d i  =  ( B k )  p � −  ( B k + 1 )  p i ;

10 z i =  ||Bk d i|| ≥  T hm;
11 Track object state with recursive Bayes formula Eq. (4.22);
12 end

dress perception challenges in autonomous navigation in highly dynamic envi-

ronments and perceptually degraded conditions using onboard sensory units.

The ego-motion of the vehicle was initially compensated by using a motion

model over inertial data and estimating initial conditions based on measure-

ments from stereo vision, effectively mitigating integration drift. Subsequently,

displacements of visually detected objects obtained from a CNN network were

analyzed using a semi-3D geometrical vector closure model. These displace-

ments were then classified into static and dynamic classes using a carefully

tuned threshold value, which facilitated the implementation of a stochas-tic

filter with Bayesian tracking to enhance temporal consistency in motion

classification. Additionally, point cloud clustering, disparity map generation,

and consistent tracking were performed for both fixed- and moving-frame sce-

narios within the proposed framework. This hybrid model-based/data-driven

approach exhibited numerous advantages over end-to-end learning solutions,

including the incorporation of prior information for improved detection, adapt-

ability to varying environmental conditions, generalization capability, and ro-
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bustness to sensor uncertainties. The analysis yielded accurate classification

of objects into dynamic and static classes, achieving a classification accuracy of

approximately 90%. Consequently, major dynamic components in the vi-sual

frames could be effectively filtered in real-time, resulting in frames that solely

contain static parts that can seamlessly be integrated into online visual SLAM

algorithms, which typically assume the prevalence of static features and

landmarks in the environment, thereby facilitating autonomous navigation in

highly dynamic environments.
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Chapter  5

Exp erimental Results and
Discussions

5.1 Infrastructure A i d e d  Localization Results

The mobile robot used for experimental evaluation of the proposed localization

framework is the Clearpath Jackal shown in Fig. 5.1. This robot is equipped

with 4 wheels and a skid steering system. This mechanism allows the robot

to control its motion by independently driving each wheel at a certain speed

and direction for more agility. This control scheme facilitates the constant-

acceleration motion model for the uncertainty-aware Kalman state observer

with covariance adaptation. Further details of the Jackal robot are presented

in table 5.1.

Table 5.1: Clearpath Jackal robot specifications.

Dimensions (m) Linear motion Rotational motion

length width height
0.508      0.430      0.250

vmax ( m s − 1 )

2
amax ( m s − 2 )

4
ωmax ( R a d s − 1 )

20
αmax ( R a d s − 2 )

25

Visual frames have been captured using an Intel Realsense T265 camera

with a fisheye lens showcased in Fig. 5.1. Although this camera has two

R G B  sensors, only the frames from the right camera have been used for the

proposed localization framework throughout this research. Also, Additional

information from the internal IMU and generated stereo depth map are not

used throughout this research. This is done to simulate the use of a low-cost
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monocular camera sensor and prove its feasibility. Most important information

about the Realsense T265 camera is provided in table 5.2.

Table 5.2: Intel Realsense T265 camera specifications.

Resolution ( p i x e l s ) sensor

width height
848           800

diagonal FOV°
173

Frames/second
30

Generating precise ground truth detections about the real location of the

robot is crucial for the evaluation of the final results. Consequently, a Vicon

motion capture camera system is used to generate the actual location of the

robot in different scenarios. This motion capture camera system consists of

multiple individual sensors installed all around the testing environment. Uti-

lizing multiple high-resolution Vicon cameras from different angles creates the

opportunity to detect Infrared ( IR)  markers attached to the robot with high

accuracy.

Vicon cameras are calibrated with extreme precision prior to testing. Metic-

ulous calibrations allow for a detection accuracy of around 1mm or even lower in

our case. The location of the I R  markers is then processed to provide mean-

ingful full information about the pose of the robot; However, this is not the

main focus of this research and thus we will not get much into the details of

this process.

The coordinate frames showcased in Fig. 5.1, are denoted by {b} which

is fixed to the robot body (located under the L iDAR);  the camera frame { c }

used for point cloud projection; { v }  attached to the Vicon camera coordi-

nate system, and { w }  fixed to the location of a specific indoor feature, at

the monitoring system unit. An initial calibration process has also been con-

ducted between all coordinate system locations. This enables the automatic

transformation of ground truth and localization measurements to the world

frame.
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Figure 5.1: The experimental setup: the monocular vision and the Vicon system
(as the ground truth) and a dense robot point cloud cluster.

5.2 Scenarios

To have a comprehensive evaluation of the results of the proposed algorithm,

various trajectory tracking scenarios have been designed. Each scenario is

designed to challenge the algorithm by simulating real-world problems that are

encountered in the literature and industrial applications. The performance of

the algorithm can be assessed by subjecting it to these scenarios. Moreover, the

results obtained from these tests are used to measure the accuracy, precision,

and robustness of this approach under different challenging conditions.

Designing the scenarios have been done to simulate two main categories

of challenging conditions. The first category of scenarios is designed to ad-

dress challenges associated with tracking highly complex trajectories. These

trajectories include sharp turns, sudden changes in velocity, multiple changes

in the direction of motion, and complex patterns that can challenge motion

prediction models.

The second category is associated with problems and failure cases in the

visual node. This involves simulating situations where detections are sporadic
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due to multiple occlusions, or completely fail because of the limited field of

view of the single camera used. By introducing such challenges, the robustness

of the optimal state estimator is assessed. This category has been specifically

designed for indoor environments where many humans are present and work

alongside the robots in a symbiotic manner. This will be an often case in

factories, warehouses, medical facilities, etc. after the industrial adoption of

mobile robots.

5.3 Combined longitudinal/lateral tra jectories

A  broad range of robot motion in both longitudinal and lateral directions

is covered in scenario 1 under the first category. The qualitative results are

compared in Fig. 5.2 with pure visual-based detection and depth estimation.

Each testing scenario is designed to measure a distinct ability of the proposed

method. In scenario 1, although the range of longitudinal and lateral trajecto-

ries is greater than in other tests, the robot has been within the camera’s field

of view. Hence, visual detection is not disrupted. When depth estimation

from the visual node drifts near the image frame boundaries, due to heavy

blurring effects by undistortion, the uncertainty-aware observer handles such

cases reliably through covariance adaptation, as demonstrated in Fig. 5.2.

As can be seen from Fig. 5.2, obviously, the motion model increases the

accuracy of state estimation for trajectories far from the lens (i.e., lateral

positions around 3.5m) where there is a small number of detection, and con-

sequently inaccurate point cloud generation and depth estimation.

5.4 Temp orary loss of image and occluded scenes

In scenario 2, the robot trajectory was intentionally set to go out of the undis-

torted frames (for almost 5s) to evaluate the robustness of the augmented

framework to temporary loss of the robot coverage/detection in the image.

The estimated robot states are provided in Fig. 5.3, where the capability

of the proposed method in addressing scenarios with full loss of visual node

information (due to long occlusion or moving out of coverage) is shown.
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Figure 5.2: Robot trajectory and the estimation results for combined longitudinal
and lateral maneuvers.

As can be seen from Fig. 5.3, as a halt in observations for a small portion

of the robot trajectory, although no data is received from the visual node, the

state observer can re-initiate correct estimation as soon as a new stream of

visual measurements is received.

In the last four scenarios, the robot detection is interrupted multiple times

due to occlusions that are common in indoor shared working environments

(e.g., warehouses) where humans are present and work around autonomous

mobile robots during robots’ trajectory tracking operation. The estimated

robot position for one of these occluded scenarios is shown in Fig. 5.4, where

the method benefits from the uncertainty-aware state observer with accelera-

tion prediction to address multiple loss of visual depth information.

Fig. 5.2-5.4 showcase the robustness of the developed framework under

the aforementioned challenges by taking advantage of the motion model, ROI

for point cloud generation, and learning-based acceleration prediction, where

the Kalman observer reliance dynamically changes as a function of robot posi-

tion to incorporate for sensor noise variances. Consequently, this adaptability

results in reliable and consistent pose estimates in dynamic and human-robot-

shared working environments even when the robot is partially visible.
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region, the robot
moves out of the
field of view for 7s.

Figure 5.3: Visual-based estimated states augmented by the motion model and
covariance adaptation during full loss of the robot visual tracking, due to trajectories
beyond the camera’s field of view.

Finding a region of interest via object detection prior to 3D localization de-

creases the chance of false positive clustering, and makes the algorithm capable

of localizing the robot when it is partially visible from a camera perspective.

Moreover, 3D detection is aided by taking advantage of the flat ground as

the prior information for outlier removal. The performance of the detection

for robot point cloud clustering during occlusion (by human or dynamic ob-

jects) and different camera orientations are demonstrated in Fig. 5.5 and

5.6, respectively, where the red point cluster shows the detected robot. In

the aforementioned scenarios, the number of points in the environment point

cloud has been uniformly down-sampled to reduce the computational burden.
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Figure 5.4: Estimated position of the robot with intermittent visual detection due
to multiple occlusions with human presence.

5.5 Evaluation

In this section, position estimation error with respect to ground truth gener-

ated by Vicon cameras is analyzed in terms of root mean square error (RMSE)

and average displacement error (ADE),  to evaluate the performance of the pro-

posed framework. All six testing scenarios mentioned previously, have been

evaluated and the results are provided in table 5.3. The RMSE for scenario 2

Table 5.3: Statistical comparison of optimal estimates by the proposed method for
various scenarios.

Scenario

1
2
3
4
5
6

Lat. RMSE (m)

0.3307
0.3645
0.1836
0.1993
0.2165
0.3296

Long. RMSE (m) A D E  (m)

0.1412 0.2893
0.2278 0.3768
0.1928 0.2261
0.1488 0.2269
0.1927 0.2557
0.1811 0.3390

is the largest (but still less than half of the robot length) due to long visual

tracking loss (for almost 5s) when the robot moves out of the camera’s field

of view. Results can be improved significantly by the use of a camera with a
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Figure 5.5: The robot point cloud clustering when partially visible due to human
occlusion.

higher resolution which affects depth estimation and point cloud generation

for robots operating at farther distances. The communication between the

robot and the visual node (with the edge computing capability), which ex-

ecutes the uncertainty-aware state estimation and broadcasts only the pose

information, will be conducted as the future work to enhance the accuracy of

the localization for the robot’s on-board motion planning and control systems.

Additionally, the trajectory of the robot has been studied in different seg-

ments consisting of close-range motion, far lateral and longitudinal motion,

and cases where the robot is not consistently detected by the object detec-

tor due to occlusion. As shown in table 5.4, close-range localization is more

precise which can be traced back to more reliable depth estimation for closer

objects. In cases where the robot is moving farther from the camera, larger er-

rors are observed, but no significant difference is seen between the longitudinal

or lateral motion in the test scenarios.
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Figure 5.6: Robot point cloud clustering result with different camera orientations
and robot positions.

5.6 Dynamic Ob ject Detection Results

In this chapter, the experimental results obtained from the proposed dynamic

object detection algorithm are presented. Prior to that, the technical details

are elaborated upon, including the sensor types, specifications, and the coor-

dinate frame convention employed in this research. Starting with the visual

sensors, which serve as the primary source of information in this project, a

stereo configuration is utilized, with two cameras positioned inside the ego-

vehicle. These cameras are equipped with variable exposure times and have

the capability to receive external signals for precise synchronization with the

other sensors used on the vehicle. The specifications of the stereo cameras are
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Table 5.4: Segmented statistical comparison

Scenario

1
2
3
4
5
6

Close range
A D E  (m)

0.1582
0.1656
0.1344
0.1484
0.1684
0.1427

Lat. motion
A D E  (m)

0.2118
0.2526
0.2458
0.2278
0.2384
0.2745

Long. motion
A D E  (m)

0.2980
0.2194
0.2484
0.2351
0.2421
0.2946

Occlusion
A D E  (m)

0.2842
0.2945
0.3468

provided in Table 5.5 for reference.

Table 5.5: Stereo camera specifications.

Resolution(pixels) sensor

width height
1600        1200

Focal length(pixels)

1325
FPSma x ( H z )

60

Furthermore, to acquire ground truth information regarding the relative

position of objects with respect to the vehicle’s body frame, a L I D A R  sen-sor

has been installed on the vehicle’s roof. This sensor is a mechanical 32-beam

L I D A R  that offers a panoramic view of the surroundings of the ego-vehicle.

The high accuracy and 360-degree field of view of the L I D A R  make it well-

suited for obtaining reliable measurements of the environment’s structure, which

can be fused with camera data for acquiring ground truth information about

the pose of any object around the ego-vehicle. Moreover, this sensor exhibits

superior performance in adverse weather conditions compared to the cameras,

ensuring the robustness of the ground truth data. This, in turn, en-ables a

more comprehensive performance evaluation of the visual node within this

project. Additional specifications of the L I D A R  sensor can be found in Table

5.6.

On the other hand, generating accurate ground truth data for the ego-

vehicle’s position plays a crucial role in this thesis, as it facilitates a compre-

hensive evaluation of the visual velocity estimation node employed to mitigate

drift in IMU integration results. To  accomplish this, a positioning sensor
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Table 5.6: L I D A R  specifications.

Detection Field of view° Sensor

range(m)

1600
accuracy(m)

1200
horizontal

360
vertical

40
Resolution°

0.2
FPS ( H z )

10

is installed on the ego-vehicle to obtain real-time measurements of its loca-

tion. This sensor leverages communications with the global navigation satellite

system (GNSS) and real-time kinematic corrections to provide highly precise

positioning data for the ego-vehicle. This location data is subsequently fused

internally with IMU measurements to achieve more consistent and robust pose

estimations, serving as the ground truth for the ego-vehicle’s location. Addi-

tionally, the built-in 6 degrees of freedom (DOF) IMU of the GNSS sensor

captures inertial measurements, including angular velocity and linear acceler-

ations, which are utilized in the motion compensation node. A  comprehensive

overview of the technical specifications of this sensor can be found in Table

5.7.

Table 5.7: GNSS sensor specifications.

GNSS/INS Accuracy IMU Integrated sensor

position(m)

0.01
velocity(m/s)

0.03
heading° DOF

0.2              6
F P Sm a x ( H z )

100

To ensure data synchronization, it is necessary for all sensors to record their

measurements at a consistent refresh rate. In this setup, this is determined

by the practical upper limit set by the 32-beam L I DA R .  Therefore, all sensors

are configured to record data at a rate of 10Hz, which is deemed suficient for

autonomous navigation purposes. It should be noted that the final system has

the capability to operate at higher frequencies, as ground truth data is not

required during operation. Thus, the choice of refresh rate should be based

on the specific requirements of any future projects and the available hardware

resources. Furthermore, it is crucial to determine the relative positions of the

75



1.
58

 m

0.
60

 m

0.
35

 m

0.
38

 m

0.
79

 m

sensors with respect to the body frame to accurately fuse their data during

the post-processing step. Consequently, all sensors are extrinsically calibrated

and the resulting transformations are utilized throughout this project. An

overview of the sensor frame positions, installed on the autonomous vehicle

platform, is provided in Fig. 5.7.

All height measurements wrt. Road surface

Right cam
(h: 1.42m)

Left cam
(h: 1.42m)

0.88 m

1.60 m

LIDAR
(h: 1.75m)

GNSS/IMU
(h: 1.03m)

0.07 m

2.71 m

Figure 5.7: Frame diagram of all sensors installed on the autonomous vehicle
platform, used for data acquisition.
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5.7 Scenarios

In this section, a detailed discussion is provided regarding the experiments

conducted in busy city streets, which served as an ideal example of highly

dynamic environments, to evaluate the reliability, precision, and robustness of

the algorithm. Meticulous consideration was given to designing scenarios that

would challenge the algorithm in various ways, aiming to create a comprehen-

sive evaluation process. Through this evaluation, both the weaknesses and

strengths of the algorithm were revealed, offering valuable insights for future

work and potential enhancements in the automated visual detection process.

Various challenges arise in busy city environments, resulting in noisy and

uncertain measurements. For example, abrupt lighting changes can occur as

the vehicle moves through the shadows of buildings, trees, and other vehicles

in sunny conditions. These sudden lighting changes are frequent and inevitable

in real-world scenarios, highlighting the need for a robust algorithm capable

of handling such visual disturbances. Furthermore, the motion estimation

and compensation process is complicated by the presence of multiple dynamic

objects surrounding the vehicle. The assumption of stationary tracked features

is challenged in highly dynamic environments, necessitating a higher level of

perception to discern individual object motions. To  comprehensively evaluate

the performance of the proposed method, four distinct motion scenarios were

considered for both the ego-vehicle and the objects in the environment. Each

scenario was described in detail in the subsequent sections, followed by the

presentation and discussion of the corresponding algorithm results.

5.8 D r i v i n g  on Straight  B u s y  Streets

The first scenario focuses on challenges encountered during straight driving,

which is a significant driving condition. Demonstrating satisfactory perfor-

mance in this scenario highlights the algorithm’s effective handling of common

challenges in detecting dynamic objects under typical driving conditions. The

visual results for this scenario are depicted in Figure 5.8 for two different en-
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vironments. Green and red bounding boxes represent detections of dynamic

and static objects, respectively. The algorithm achieves accurate detection

of dynamic objects through the utilization of novel visual-inertial motion es-

timation and Bayesian motion tracking techniques for surrounding objects.

Additionally, the ego-motion of the vehicle is consistently and accurately esti-

mated, demonstrating effective drift compensation based on static visual cues

extracted from the images. The evaluation conducted in this scenario confirms

the algorithm’s capability to maintain correct state estimates over long drives

without divergence or an increase in uncertainty.

Furthermore, the results demonstrate the accurate performance of the

model-based state estimation used in the proposed framework under nor-

mal driving conditions in different environments. This functionality of the

framework emphasizes the advantage of this research over fully data-driven

approaches. Moreover, the accurate results shown in Figure 5.8 are achieved

without the need for a large dataset or prolonged training time, aligning with

the motivation behind choosing the model-based approach discussed in the

previous motivation section (Section 1.1).

5.9 Intersections

The next scenario focuses on evaluating the algorithm’s ability to accurately

estimate orthogonal motion, which includes any motion that is not parallel to

the course of the ego-vehicle. Objects moving perpendicular to the ego-vehicle

tend to exit the camera’s field of view more rapidly compared to objects moving

parallel to the ego-vehicle. The limited field of view of the cameras imposes

a time constraint on temporal object tracking and motion estimation. Many

estimation models require multiple frames to converge to a correct estimated

motion state. To  address this challenge, the second scenario is designed to

test the algorithm’s detection capabilities at intersections, where orthogonal

motion is commonly observed. The tests are conducted in two main categories,

differing in terms of the ego-motion.

The first test is conducted when the vehicle is stationary behind a red
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Figure 5.8: Straight driving scenario results. Each column of pictures represents a
single driving test. The Left and right columns correspond to the highway and busy
main street driving tests respectively.

light, observing the orthogonal motion of other vehicles from the first row of

the trafic line. The second test evaluates the effect of visual motion estimation

on these detections, where the vehicle is crossing an intersection. This test in-

volves angled motion with respect to the ego-vehicle and multiple lane changes,

creating a more challenging environment for detecting dynamic objects. De-

spite the presence of irregular or random motion patterns at intersections,

the visual results shown in Figure 5.9 illustrate the accurate performance of

the proposed method in detecting dynamic objects. This demonstrates the

effectiveness of the geometrical vector closure model in estimating the motion of

surrounding objects. Moreover, the Bayesian motion tracking technique

rapidly converges to the correct motion state of the objects, as evidenced by
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its accurate estimates after only the first frame. This rapid convergence is

made possible through the innovative recursive Bayesian formula, in conjunc-

tion with the continuous dynamic probability model discussed in Section 4.14,

which is used to track the binary states with continuous representation.

Figure 5.9: Results for scenarios at intersections. Each column of pictures repre-
sents a single driving test. The left column showcases the algorithm’s capability to
detect orthogonal motion with respect to the angle of view of the ego-vehicle. On the
right column, the surrounding vehicles take a more random motion pattern which is
angled with respect to the ego-vehicle’s path.

5.10 Sharp Tu r n s

The third scenario is designed to assess the framework’s ability to detect the

motion of other objects using onboard cameras while the ego-vehicle performs

a sharp turn. This scenario presents several challenges. Firstly, the sharp
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turn in the trajectory alters the relative motion patterns of surrounding ob-

jects from the ego-vehicle’s perspective. Objects that were previously moving

parallel to the ego-vehicle will now exhibit angular velocities relative to the

observer. Additionally, the sharp turn introduces abrupt changes in sensor

measurements, which can lead to incorrect or inconsistent object detections.

Moreover, the rapid change in the field of view of the cameras during the turn

can result in motion blur, posing a significant challenge for visual perception

systems. Motion blur can lead to the loss or an insuficient number of features,

which can impact the performance of the visual velocity estimation node. Con-

sequently, the third scenario is designed to evaluate the framework’s ability to

handle challenges associated with sharp turn maneuvers.

The visual results shown in Figure 5.10 demonstrate that there is no signifi-

cant degradation in the quality of motion segmentation. This can be attributed

to the framework’s design, which tracks the motion of objects rather than in-

dividual feature points. Object detection is a more robust form of perception

compared to feature detection and matching. Furthermore, it is important to

note that the framework estimates the ego-vehicle’s motion by integrating gyro

and accelerometer sensor measurements, enabling reliable inertial ego-motion

estimation. This approach is specifically designed to mitigate the effects of un-

reliable visual motion estimations during sharp-turn scenarios, where motion

blur is prevalent. The results also highlight the accurate performance of the

hybrid ego-motion compensation module across different driving conditions.

5.11 Special Case S t u d y

The final scenario aims to examine the impact of sudden changes in the trajec-

tory of other vehicles, including turning maneuvers, acceleration, and deceler-

ation. Special emphasis is placed on edge cases that occur at intersections in

urban environments, as the accurate perception of the rapid motion changes of

surrounding vehicles is crucial for the development of autonomous driving sys-

tems and road safety. Evaluating the performance of the proposed method in

scenarios where various objects are moving in different directions and chang-
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Figure 5.10: Sharp turn driving scenario results. The Left and right columns of
pictures represent the frames from a left and right turn maneuver respectively.

ing their paths ensures the system’s reliability, accuracy, and robustness in

practical operation.

The results for this scenario consist of a single test drive comprising 10

frames, as illustrated in Figure 5.11. The evaluation begins with the ego-

vehicle stopped behind a red light at an intersection, allowing the onboard

cameras to observe multiple pedestrians and vehicles in motion. This demon-

strates the algorithm’s ability to detect the rapid changes in motion of the

surrounding objects. In the second half of the test, the ego-vehicle initiates

a sharp left turn maneuver behind another truck, introducing a challenge to

the consistency of detections as both the ego-vehicle and the surrounding ob-

jects undergo state changes. However, the combination of a fast-responsive
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Bayesian motion tracking algorithm and highly accurate motion estimations

based on geometrical vector closure enables the framework to quickly adapt

to these changes in the observed system.

Figure 5.11: Changing motion scenario results. The left column pictures the first
half of the test where the ego-vehicle is stationary. However, the right column frames
are captured during a left turn maneuver on the same test.
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5.12 Quantitative Results

In this section, the performance of the proposed method is evaluated quantita-

tively based on the information obtained from the previously defined scenarios.

To  facilitate the numerical assessment, the binary detections are categorized

into four groups, each with two attributes. These groups, as presented in Table

5.8, are described as follows:

• True Positive ( T P ) :  correct (True) detections of dynamic (Positive)

objects. This indicates a successful detection of a dynamic object within

the image frames and can provide a measure of detection accuracy.

• True Negative ( T N ) :  correct (True) detections of static (Negative)

objects. This category also showcases the successful detection of a static

object after data processing through the proposed method.

• False Positive ( F P ) :  incorrect (False) detections of dynamic (Positive)

objects. This category refers to cases where a potentially dynamic object

has been classified as static by mistake. These detections are identified

based on their contradictions with the ground truth labels.

• False Negative ( F N ) :  incorrect (False) detections of static (Negative)

objects. Indicating wrong dynamic detections for a static object.

Table 5.8: Category definitions used for quantifying dynamic object detection
results

Dynamic Object
Static Object

Correct Detection

T P
TN

Wrong Detection

F P
FN

The main intent of this research is to eliminate all dynamic objects from the

visual frames to enhance the reliability of visual SLAM algorithms. Among the

four categories of detections discussed earlier, false positive ( F P )  detections

are considered the most detrimental. Mistakenly identifying dynamic objects

as static can lead to unreliable frames that still contain dynamic regions and
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compromises the accuracy and effectiveness of visual SLAM algorithms. To

reduce the number of F P  detection occurrences throughout experiments, an

extensive hyper-parameter fine-tuning step has been conducted. By optimiz-

ing the parameters, the algorithm is structured with a bias towards classifying

more objects as dynamic in cases where the object velocity is low and detec-

tions are uncertain. This will help to remove many F P  cases as this bias will

increase the number of dynamic detections.

On the other hand, this approach will create some FN detections because

static objects may be falsely classified as dynamic. Nevertheless, this is not

a major concern since falsely detecting a static object as dynamic will only

result in removing some unnecessary regions from the images. Particularly,

this will reduce the number of features that can be used for localization, but

this reduction in static image regions is only by a small percentage since the

majority of the frames will be still used for reliable feature detection and

tracking purposes. Consequently, by introducing a dynamic detection bias in

this algorithm, harmful F P  detections are minimized and at the same time,

reliable localization capabilities are maintained. Furthermore, by identifying

high-probability regions in the camera frames that picture static parts of the

environment, traditional visual SLAM algorithms can be used in highly dy-

namic environments without any concerns about the changes in the scene.

Precision criterion for the visual dynamic object detection results, is de-

fined as the ratio of T P  detections to total positive detections for all frames

in a single test. This criterion measures the portion of dynamic objects that

are identified correctly during a test drive. Another measure needed for the

numerical evaluation of this algorithm is the recall criterion. Recall is defined

as the ratio of T P  detections to the total number of dynamic detections. This

criterion can provide a numerical interpretation of the reliability of all dynamic

detections. By combining precision and recall criteria, a metric can be defined

as A P  which measures the area under the precision-recall curve. This can

provide a single numerical metric for evaluating the accuracy of the dynamic

detections for a complete test drive. The mathematical equations regarding

the numerical evaluation metrics are provided in Eq. (5.1) and (5.2).
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T P T P

n

n

P recision : P  =  
T P +  F P  

, Recall : R  =  
T P +  F N

(5.1)

A P  =  
1 X

P k R k (5.2)
k = 1

For quantitative evaluations, manually labeled ground truth dynamic/static

object segmentation datasets have been created for all of the testing scenarios

provided in Section 5.8 to 5.11. All of the frames for each test drive are com-

pared to the ground truth labels to calculate precision, recall and A P  metrics,

and complete results are provided in Table 5.9.

Table 5.9: Quantitative performance of dynamic object detection for all four sce-
narios.

Scenario

Straight busy streets
Intersections
Sharp turns
Special case study

Average precision

0.967
0.912
0.923
0.934

Average recall A P

0.912 0.893
0.872 0.824
0.895 0.861
0.906 0.878
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Chapter  6

Conclusions and Fu t u r e  Works

The primary objective of this thesis is the development of robust state estima-

tion methods for autonomous navigation in highly dynamic environments and

perceptually degraded conditions. This objective was studied from two per-

spectives: visual-based state estimation using stationary camera, and moving

camera.

In this regard, two main approaches were proposed (and experimentally

verified) to improve the accuracy and reliability of localization and perception of

autonomous mobile agents in indoor and outdoor applications. The ini-tial

part of this thesis centers around localizing a mobile robot moving within a

dynamic indoor environment, utilizing an infrastructure-mounted camera.

The robot was observed via a fixed monocular fisheye camera, and the noisy

visual sensor measurements were fused with a constant acceleration motion

model using an uncertainty-aware Kalman filter with covariance adaptation,

helping reduce the overall uncertainty of the state estimation while using prior

information about the motion of the robot over a horizon. By leveraging the vi-

sual information captured by the single low-cost camera, the proposed method

showcased promising performance in terms of localization accuracy and robust

trajectory estimation. The fusion of visual and motion information enabled

the algorithm to mitigate measurement uncertainties and generate reliable tra-

jectory estimates. A  significant advantage of infrastructure-mounted sensors is

their large and mostly unobstructed field of view to observe the operation of

multiple robots in indoor/outdoor environments. This can decrease the cost
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instead of installing onboard stereo cameras in each robot and increase the

scale of operations through computing in the cloud. Moreover, having a cen-

tralized and fixed sensor unit will allow the use of more powerful hardware to

increase the computational power, needed to manage networked robots.

Future avenues to improve the accuracy of the navigation solution using the

proposed infrastructure-aided localization framework include: i)  distributed

state estimation (e.g., Kalman consensus filter) leveraging communication be-

tween the onboard estimator (which utilizes IMU, wheel encoders, and low-cost

monocular camera) and the stationary sensor node mounted on infrastructure;

and ii) developing constrained state observers and including semantic infor-

mation for covariance adaptation. These two are recently under development

at the NODE lab. This technique can also be used for autonomous driving ap-

plications (to address occlusion and enhance the Safety of Intended Function-

ality, SOTIF)  through multiple stationary multimodal visual-LIDAR sensors

for better coverage in highly dynamic environments.

The second objective of the thesis is to address the visual-based state esti-

mation challenges in dynamic scenes for mobile robots/vehicles by designing

robust dynamic object detection for reliable navigation using onboard visual

and inertial sensory data. The proposed novel framework combines predic-

tion over inertial data with the measurements from stereo vision-based state

estimation to form a stochastic filter with Bayesian tracking for motion classi-

fication. The object classes that are detected for this work, range from pedes-

trians and cyclists to different types of vehicles such as cars, trucks, buses, etc.

After detecting the potentially dynamic objects, their motion is furthermore

investigated and classified into two static and dynamic groups. This is done by

first estimating the ego-motion using a combination of integration over inertial

measurements and visual cues gathered from static parts of the scene. This

hybrid method allows for a more robust and accurate motion estimation and

compensation process.

Experimental results in various dynamic scenes (e.g., driving in busy down-

town areas) confirm a 90% accuracy on average for successfully detecting dy-

namic objects, while maintaining a very low computational load for real-time
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performance required in autonomous driving, especially at high speed and at

the tires capacity limit. By using this real-time algorithm, dynamic parts of

the scene can be excluded from all localization processes, resulting in more

accurate pose estimations for autonomous navigation. Moreover, this algo-

rithm can be used for building static maps from the environment for indoor

applications.

Potential future contributions could focus on i)  optimizing computationally

expensive algorithms involved in obtaining the visual dynamic regions. This

optimization can enhance the eficiency of the process; and ii) incorporation of

wheel odometry data within the general constrained semi-3D geometrical

odometry as a motion model which is uncertain due to tires’ longitudinal slip.

The fusion of visual and wheel odometry data (through designing a new state

observer) can lead to more precise estimations of the ego-motion, resulting in

enhanced motion compensation results and lower uncertainties. However, the

longitudinal slip will affect the accuracy of the state observer and needs to be

considered as bounded uncertainty. This can be particularly valuable in

applications where precise motion analysis and classification of dynamic

objects are critical for navigation and decision-making tasks such as high-

speed driving.

The outcomes of this research can considerably improve the navigational

accuracy of autonomous mobile robots by designing robust and computationally-

eficient state observers using available onboard sensory data and possible com-

munication with stationary sensor nodes with wide real-time applications (with

Edge computing capability) in intelligent transportation, and networked robots

for services, delivery, and material handling in healthcare and manufacturing

sectors.
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The undistortion of the image coordinates for the fisheye lens used in the visual

tracking is discussed in this Appendix. The radial distance dr for perspective

pinhole projection between the image coordinates of the incoming ray of the

world point P  and the principal point is defined by dr = u2 +  v2, where u, v

are the coordinates of the projection point in pixels (i.e., pinhole projection

coordinates of P ). The angle between the ray and the principal axis is denoted

by θ =  tan−1(dr ). The radial fisheye distortion factor Ψd is modeled as in [48]

:

θd =  θ(1 +  k1θ2 +  k2θ4 +  k3θ6 +  k4θ8), (A1)

where k1, . . . k4 are lens distortion parameters. The distorted image coordi-

nates of the projected point are realized by ū =  dr  
u, v̄ =  dr  

v, which will be

used to obtain the undistorted coordinates of the projection point (in pixels)

as in

u =  fx ( ū  +  αv̄) +  cx, v =  fy v̄  +  cy, (A2)

where f x  and fy  are the lens’ focal lengths and cx, cy are the principal point

coordinates (at the image center).
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