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Abstract

This thesis is about the theory of vertex operator algebras and their represen-

tations. Its main results provide new examples of logarithmic C2-cofinite vertex

operator algebras. These include closure of the characters under modular trans-

formations with explicit determination of the modular coefficients for an infinite

family of parafermionic vertex operator algebras and proofs of C2-cofiniteness for

a few specific levels including for three new cases. The rest of the work presented

in this thesis provides a new comprehension of the notoriously difficult proof of

the Kac-Wakimoto character formula, but also categorical results and tools to study

certain vertex operator algebras’ categories involving infinite direct sums.
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Introduction

The main topic of my PhD is the study of certain classes of vertex operator algebras.

The notion of vertex operator algebra originated from physical theories developed

in the late 20th century. A few decades earlier, physicists had advanced two theories

that are now used to understand the physical world: quantum physics and general

relativity. However, both theories fail to explain some observed phenomena such as

black holes and dark matter. Such a shortcoming might be due to differences in the

nature of the two theories: quantum physics is probabilistic, while general relativity

is not. In order to fill these gaps, many have tried to find a new theoretical framework

for physics that would account for both quantum physics and general relativity at

the same time. Provided it exists, such a unified framework would certainly bring

new insights into understanding phenomena that remain unexplained. A promising

candidate has been thought to be the so-called String Theory in which 2-dimensional

Conformal Field Theories play an important role [GG 2000]. Conformal Field The-

ories satisfy certain conformal invariance properties Conformal invariance has to

do with invariance properties of the physical theory under the effect of Lorentz

transformations [DFMS 1997] and as a consequence, a Virasoro Lie algebra ac-

tion appears naturally in 2-dimensional Conformal Field Theory. Introductions to

Conformal Field Theory can be found in [DFMS 1997] and [Gab 2000], while an

axiomatic treatment is outlined in [GG 2000]. The highly developed language in
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which all these physical theories are written requires more than just bare Lie Theory

to be understood. Along with other mathematical motivations, the study of vertex

operator algebras came to be a field on its own, which can be thought of as the study

of some natural invariants of the physical theories, see [BLL+ 2015], [BR 2018]

for instance. Specifically, the space of states of a physical system in a Conformal

Field Theory is often seen as a representation for a certain type of vertex operator

algebra. A mathematician would then say that the chiral symmetry of the Confor-

mal Field Theory is expressed by the action of that same vertex operator algebra

[Gab 2000], [DFMS 1997].

Regardless of any physical veracity, the mathematical study of vertex operator

algebras has since unveiled a lot of unexpected connections between many areas in

the very same mathematics. A vertex operator algebra is an object of multifaceted

nature. For example, from an algebraic perspective the structure of a vertex operator

algebra is strongly connected to Lie Theory, and its representations provide new

insights into Number Theory (see [LW 1981], [KLRS 2017] for instance). On

the other hand, the physical origin of vertex operator algebras makes them strongly

linked with modular forms [DFMS 1997], complex analysis, geometry, topology and

even probability theory [CR 2013a], [MR 2007]. Notable connections to topology

involve the so-called Jones polynomial and Reshetikhin-Turaev invariants in relation

to knots [RT 1991].

As an algebraic structure, a vertex operator algebra “lives trough its actions”

in the sense that what really characterises it are its representations. Therefore,

Category Theory is a very natural tool to study vertex operator algebras. It does

provide a framework to make sense of the algebras and their modules as a whole.

Remarkably, certain vertex operator module categories exhibit very rich structures

involving a tensor product bifunctor, see [MS 1989], [Hua 2005], [Hua 2010] and
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also [HL 2013], [HLZ 2007], [Miy 2003], [Miy 2010], [CG 2017]. The study of

tensor products for vertex operator algebras is not an easy task in general, but it

is certainly rewarding for both the general understanding of these structures and

for the potential applications and insights in Physics and Geometry. Typically,

physicists use tensor product fusion rules to compute correlation functions and other

statistical features of quantum systems. It is difficult to have precise descriptions of

tensor products for general vertex operator algebras. Even to properly define tensor

products is a challenge in general. Under suitable assumptions, the Verlinde formula

relates the tensor product to modular transformation coefficients of characters of

modules [Ver 1988], [Hua 2005]. The Verlinde formula is quite useful in practice

because it lets one understand tensor products through modular forms. In the

appropriate settings, the Verlinde formula can also take categorical data as input:

such data are derived from traces of monodromy homomorphisms of modules called

the Hopf links. Historically, key landmark results include that somple, rational and

C2-cofinite vertex operator algebras of CFT-type that are isomorphic to their graded

restricted dual have a category of module with a modular tensor category structure

[Hua 2005], [Lep 2005], [Hua 2008]. Those are special types of ribbon braided

monoidal categories with duality morphisms. In this way, the worlds of braided

monoidal categories and modular forms meet with that of algebra and physics. Such

connections are fascinating and it is often not known how general they are.

Currently, well understood vertex operator algebras are often too specific for the

most relevant applications in Physics and other mathematical fields. The theory

of vertex operator algebras is still quite recent and its technical challenges make

interesting examples rather hard to approach. This is also valid for the study of

modules of vertex operator algebras about which so little is known in general. For

example, it is hard to prove the existence of projective covers of simple modules, even
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for a simple vertex operator algebra. As mentioned above, natural tensor product

bifunctors are often hard to define and to make use of [HLZ 2007], [CHY 2018],

see also [Miy 2003] for instance. Over time, mathematicians and physicists have

developed many ways of constructing new vertex operator algebras building upon

existing ones, but what people actually know about the corresponding module

categories is often very limited. Currently, the well understood Representation

Theory settings for vertex operator algebras orbit around the rational vertex operator

algebras while only little is known about non-rational vertex operator algebras: even

less about more generic structures [Mil 2014], [Fuc 2007], [CG 2017].

We are going to focus primarily on irrational vertex operator algebras that areC2-

cofinite and related matters. We will call such vertex operator algebras logarithmic

and C2-cofinite. The use of the adjective logarithmic here comes from the fact

that the non-semisimplicity of modules for such vertex operator algebras often

leads to the appearance of logarithms of variable in formal variable expansions of

intertwing operators used to define well-behaved tensor products. The property of

C2-cofiniteness was introduced by Zhu [Zhu 1996] and is seen as a rather technical

finiteness condition although other interpretations have since been given [GG 2009]

including a notable geometrical one [Ara 2012]. The importance of C2-cofinite

vertex operator algebras is that they have finitely many simple modules and they

share a key property for physical applications: a natural modularity behaviour of

its ring of characters [Miy 2004]. Logarithmic C2-cofinite vertex operator algebras

have non-simple indecomposable modules, a feature that makes them complicated to

study. Despite all obstacles, it is believed that they share key features of their rational

C2-cofinite cousins: a category of modules with a log-modular tensor category,

modularity behaviour of characters and the Verlinde formula [CG ], [CG 2017],

[GR 2017]. Until now, examples of logarithmicC2-cofinite vertex operator algebras
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are quite rare and not much is known about them in general [AM 2013], [CG ]. Most

of the better known logarithmic C2-cofinite structures that are known are related to

the so-called triplet W(p)-algebras whose categorical and modularity features are

well detailed in [TW 2013], see also [AM 2008a].

The aim of the thesis is to provide new details about certain logarithmic ver-

tex operator algebras that are thought to be C2-cofinite and prove C2-cofiniteness

whenever possible. In Chapter 1, we present a detailed proof of the Kac-Wakimoto

character formula [KW 1988], which helped mathematicians to discover modular

behaviours in infinite dimensional Lie theory and beyond. This formula has direct

applications to logarithmic affine vertex operator algebras. In Chapter 2, we present

a direct sum completion of a monoidal braided category and apply this framework

to the problem of constructing even lattice vertex operator algebras, a basic vertex

operator algebra extension setting. The sum completion fills a gap in the literature

and combined with the techniques of [CKM 2017] and [CKL 2015], it will help

understand much more complex settings on solid grounds. Note that the results

of Chapter 2 have been accepted for publication in a journal [AR 2018]. In Chap-

ter 3, we study logarithmic parafermion vertex operator algebras associated with

the affine simple vertex operator algebra Lk(sl2) at admissible rational level k. We

show that a family of these parafermion vertex operator algebras have a category of

module whose characters have a modular behaviour comparable to that described

in [Miy 2004]. We then conjecture that our family of parafermion vertex algebras

is C2-cofinite. The results of Chapter 3 have also been accepted for publication

in a journal [ACR 2018]. In Chapter 4, we prove C2-cofiniteness of a number of

logarithmic parafermion vertex operator algebras of Chapter 3 using computational

methods.
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Chapter 1

The Kac-Wakimoto Character

Formula

This chapter presents an accessible proof of the famous Kac-Wakimoto character

formula [KW 1988]. Understanding the proof of this formula has remained a

notoriously challenging task for many mathematicians, including representation

theorists. Consider a Kac-Moody Lie algebra with symmetrisable Cartan matrix,

then a slightly modified Weyl-Kac character formula holds for certain irreducible

Verma quotients L(λ)’s with specific allowed weights λ’s. The Kac-Wakimoto

formula is:

ch [L(λ)] =
∑

w∈Wλ+ρ

ε(w) ch [M(w • λ)] .

For the rest of the thesis, the weights for which the corresponding irreducible Verma

quotient will satisfy this formula will be called admissible weights.

The Kac-Wakimoto character formula, just as other character formulas known

in Representation Theory, relates some algebraic objects to certain power series.

Interpreting the resulting power series in various ways proved to be a very prolific
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point of view as notable objects emerged from this analysis, e.g. meromorphic

functions, vector-valued modular forms, etc. These ideas allowed to borrow com-

binatorial and analysis concepts and techniques to study Representation Theory. In

such ways, character formulas have established many connections between Algebra

and other mathematical topics such as Number Theory and even Analysis and Topol-

ogy. This is especially the case when the algebraic objects originate from infinite

dimensional Representation Theory. These bridges have actually worked both ways:

for example characters have sometimes helped to understand and motivate complex

combinatorial identities, see for instance [KLRS 2017] and [LW 1981].

The character formula from V. Kac and M. Wakimoto is especially notable

because it revealed the presence of so-called modular-phenomena in the context of

affine Lie algebras and integrable modules [KP 1984], [Fre 1984]. It turns out that

the admissible weight modules are precisely those on which one can define a natural

vertex algebra module structure for an action of the associated simple affine vertex

operator algebra. A fascinating aspect of characters is that they do reflect properties

of the associated algebraic structure or its module categories. Y. Zhu proved in

[Zhu 1996] that the linear span of characters of the simple modules of a rational

C2-cofinite vertex operator algebra gives rise to a finite dimensional vector-valued

modular form, a result which was later generalised by M. Miyamoto to more general

C2-cofinite vertex operator algebras [Miy 2004]. As it will be seen at the begining

of Chapter 3, the Kac-Wakimoto character formula gives a starting point to study

module categories of affine vertex operator algebras.

The proof of the Kac-Wakimoto formula presented in this section follows the

original paper of V. Kac and M. Wakimoto. In this Chapter, the proof is presented

in four logical steps presented in four different sections:
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Section 1.1: a few results dealing with roots and weights;

Section 1.2: a few categorical results;

Section 1.3: a proof that a translation functor T maps M(w • λ) to M(w • µ);

Section 1.4: the proof of the Kac-Wakimoto formula itself.

Precious references for understanding [KW 1988] have been [DGK 1982] and

also [Ioh 1997]. Note also that certain ideas and tools developed for the proof of

Kac-Wakimoto’s formula have analogs in the category O for a finite dimensional

semisimple Lie algebra, see [Hum 2008] and also the comments from Section 13.6

of the same reference.

Notation

Throughout the chapter, the following notation will be employed:

• a ≥ 0 (a ∈ C) ⇔ Re a > 0 or a ∈ R≥0i;

• L = n+⊕h⊕n− is the triangular decomposition of a Kac-Moody Lie algebra

with symmetrisable Cartan matrix;

• h ⊆ L is its Cartan subalgebra i.e. a maximal toral Lie subalgebra of L;

• P+ ⊆ h∗ is the set of dominant integral weights of L;

• Q+ is the set of positive roots of L;

• R∨ = { Real coroots } ⊆ h;

• ρ ∈ h∗ is an element such that ρ(s) = 1 for all simple coroots s. It is usually

called the Weyl element;
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• W is the Weyl group of L;

• w • λ = w(λ+ ρ)− ρ where for w ∈ W and λ ∈ h;

• (−|−) = the symmetric, invariant and non-degenerate bilinear form on L

normalised so that the longest roots of L have squared length 2;

• (−,−) = the induced bilinear form on h∗;

• K =

⎧⎪⎨⎪⎩ λ ∈ h∗
⏐⏐⏐⏐ #{r ∈ R∨

+ |λ(r) < 0)} <∞

β positive isotropic root ⇒ (λ, β) ̸= 0

⎫⎪⎬⎪⎭ ⊆ h∗;

• KL = −ρ+K;

• O = the category of L-modules such that:

(O1) M is h-semisimple with finite dimensional weight spaces;

(O2) any weight of M is contained in a finite union
N⋃
r=1

(µr −Q+),

where the µr are weights of L.

For more details, see [Kac 1974];

• OL = the subcategory of the category O formed of objects whose irreducible

constituents are all L(λ)’s for λ ∈ −ρ+K;

• C =

⎧⎪⎨⎪⎩ λ ∈ h∗
⏐⏐⏐⏐ r ∈ R∨

+ ⇒ λ(r) ≥ 0

β positive isotropic root ⇒ (λ, β) ̸= 0

⎫⎪⎬⎪⎭ ⊆ K ⊆ h∗;

• R∨
λ = {r ∈ R∨ |λ(r) ∈ Z} for a given λ ∈ h∗;

• Π∨
λ = { the simple elements of R∨

λ} for a given λ ∈ h∗;
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• W λ = ⟨σr | r ∈ R∨
λ ⟩ = ⟨σs | s ∈ Π∨

λ ⟩ ≤ W where W is the Weyl group of

the root system of L.

Here are a few remarks:

Remark 1.1. Both the sets {a ∈ C | a ≥ 0} (see the above notation) and its comple-

ment are closed under addition.

Remark 1.2. K is W -invariant under the standard Weyl action on h∗.

Remark 1.3. KL is W -invariant under the dot action on h∗.

Remark 1.4. C ⊆ K and in each W -orbit in K, there exists a unique element of C

in that orbit.

1.1 Preliminary Results

In this first section, I present some relevant results for later use in the proof of the

Kac-Wakimoto character formula. All these results are related to weights, roots and

Weyl group properties or to some basic properties of the category O.

Result 1.5. L(µ) is a constituent (subquotient) of M(λ) if and only if there exists

positive roots β1, ... , βN and n1, ... , nN ∈ N such that

(1) µ = λ−
∑N

ℓ=1nℓβℓ;

(2) 2
((
λ−

∑j−1
ℓ=1nℓβℓ

)
+ ρ , βj

)
= nj

(
βj , βj

)
for all j ∈ {0, ... , N} .

Proof: Can be found in [KK 1979], see Theorem 2.

Result 1.6. Let λ ∈ KL. Then:

L(µ) is a constituent of M(λ) =⇒ µ ∈ KL .
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Proof: By Result 1.5, we just need to prove that µ′ = λ− n1β1 ∈ KL = −ρ+K.

We know that 2(λ + ρ, β1) = n1(β1, β1) where n1 ∈ N\{0} to avoid tackling a

triviality. Then, since λ + ρ ∈ KL, the root β1 cannot be isotropic i.e. cannot be

such that (β, β) ̸= 0. Next, we can write

µ′ = λ− n1β1

= λ− 2
(λ+ ρ, β1)

(β1, β1)
β1

= (λ+ ρ)− 2
(λ+ ρ, β1)

(β1, β1)
β1 − ρ .

It means that if β1 were a real root, we could write µ′ = σβ1 • λ and conclude that

µ′ ∈ −ρ+K by the W -invariance of the set KL under the dot action.

Suppose then that β1 is an imaginary root i.e. that (β1, β1) < 0. In this case kβ1

is also a positive root for each k ∈ N\{0} and this leads to

(λ+ ρ, kβ1) = k(λ+ ρ, β1) = kn1(β1, β1) < 0 for each k ∈ N\{0} .

However, since λ + ρ ∈ K, this situation cannot occur. Therefore β1 is a real root,

σβ1 ∈ W and so µ′ = σβ1 • λ ∈ KL since KL is W -invariant under the dot action.

Q.E.D.

Definition 1.7. Define an equivalence relation ∼ on KL as follows:

λ ∼ µ ⇐⇒ there exist λ = λ0, λ1, ... , λn−1, λn = µ such that

for all i ∈ {0, . . . , n− 1}, we have either:

a) L(λi) is a constituent of M(λi+1) , or

b) L(λi+1) is a constituent of M(λi) .
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For any λ ∈ KL, we will denote by JλK its equivalence class under ∼. Note that a)

and b) just above can be understood in terms of weights and roots by Result 1.5.

Remark 1.8. Note that we cannot conclude a priori that∼ is the relation defining the

extension blocks of the category OL, although it probably can be shown with further

analysis. See Section 1.13 of [Hum 2008] for the definition of the linkage equiva-

lence relation in the Representation Theory setting of finite-dimensional semisimple

Lie algebras.

Proposition 1.9. The category OL formed of objects whose constituents are all

L(µ)’s with µ ∈ KL, is a full subcategory of the category O.

Definition 1.10. For a given λ ∈ KL, we define a category OL
JλK formed of the

objects whose constituents are all L(µ)’s for µ’s that all lie in the equivalence class

JλK ⊆ KL. These are full subcategories of the category OL.

Result 1.11. The category OL decomposes as:

OL =
⨁

λ∈KL

OL
JλK .

Proof: Can be found in [DGK 1982], see Theorem 5.7.

Remark 1.12. Corollary 5.4 of [DGK 1982] shows that OL also contains all Verma

modules M(λ)’s where λ ∈ KL.

Remark 1.13. In fact, given λ, µ ∈ KL such that JλK ̸= JµK (i.e. such that λ ̸∼ µ),

Theorem 4.5 of [DGK 1982] states that

V ∈ ObOL
JλK

W ∈ ObOL
JµK

⎫⎪⎬⎪⎭ =⇒ Ext1L(V,W ) = 0 .
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This is a property of the decomposition of OL given in Result 1.11 that an extension

block decomposition of OL would also share.

Focusing on the categoryOL rather thanO allows one to get a precise description

of the equivalence relation ∼ in terms of the Weyl group and some of its subgroups

W η’s for some η ∈ h∗. Here is a useful thing we can say about these subgroups:

Result 1.14. Let η ∈ h∗ and let w ∈ W . The following statements are true:

(1) w
(
Rη
)
= Rw(η);

(2) wW ηw−1 = Ww(η). In particular, if g ∈ W η, then W η = W g(η).

Proof: To prove (1), let r ∈ Rη. Then

2
(η, r)

(r, r)
= 2

(
w(η), w(r)

)(
w(r), w(r)

) ∈ Z .

So we obtain w(r) ∈ Rw(η). Finally, since the previous line is an equality and since

W is a group, the proof of (1) is complete.

To prove (2), let g ∈ W η. Then write g =
∏
i

σri where ri ∈ Rη for all indices i.

Next, we can write

wgw−1 =
∏
i

(wσriw
−1) =

∏
i

σw(ri) .

By part (1),w(ri) ∈ Rw(η) for all indices i, so by definitionwgw−1 ∈ Ww(η). Again,

since W is a group, the proof is complete.

Q.E.D.

Result 1.15. The following statements are true:

(1) for λ ∈ KL, we have: JλK = W λ+ρ • λ;
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(2) for λ ∈ KL and w ∈ W , we have: Jw • λK =
(
wW λ+ρ

)
• λ.

Proof: Property (2) is easy to derive from (1). Let’s start by proving (1).

If µ ∈ KL is such that JµK = JλK, then by the definition of ∼ we can assume

(without loss of generality), that µ = λ− nα where n ∈ N, α is a positive root and

2(λ+ ρ, α) = n(α, α).

By assumption, α is a positive root, but it is also a real one for the same reason

as in the proof of Result 1.6. With this key information at hand, we can write:

µ = λ− nα = (λ+ ρ)− 2
(λ+ ρ, α)

(α, α)
α− ρ = σα • λ .

As α∨ ∈ R∨
λ+ρ, we know that σα ∈ W λ+ρ and this concludes this part of the proof.

We now need to prove that any element of W λ+ρ • λ is equivalent to λ under ∼.

As W λ+ρ is generated by the reflections σr where r ∈ Π∨
λ+ρ ⊆ R∨

λ+ρ,+, it will be

sufficient to prove that Jσr • λK = JλK for a fixed r ∈ Π∨
λ+ρ.

Let us now denote by β the positive real root corresponding to the positive real

coroot r ∈ Π∨
λ+ρ and let n ∈ Z be such that

(
λ+ ρ

)
(r) = n. Then we can write:

σr • λ = λ− 2
(
λ+ ρ

)
(r)β = λ− nβ ,

where β is a root with 2(λ+ ρ, β) = n(β, β) for a n ∈ Z. Note here that we have

(
λ+ ρ

)
(r) = n , and

(
λ− nβ + ρ

)
(r) = −n .

If n ∈ N, then setting λ′ = λ and µ′ = λ−ns, we see by Result 1.5, that L(µ′) is

a constituent ofM(λ′). Else, if−n ∈ N, we see thatL(λ′) is a constituent ofM(µ′).

In both cases, the definition of ∼ allows to conclude that indeed, Jσr • λK = JλK.
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This finishes the proof of (1).

To prove (2), we use part (1) that tells us we have JλK = W λ+ρ • λ for any

λ ∈ KL. Let w ∈ W , then we can write

Jw • λK =
(
Ww•(λ)+ρ

)
• (w • λ)

=
(
Ww•(λ)+ρw

)
• λ

=
(
Ww(λ+ρ)−ρ+ρw

)
• λ

=
(
Ww(λ+ρ)w

)
• λ

=
(
wW λ+ρw−1w

)
• λ by Result 1.14

=
(
wW λ+ρ

)
• λ .

Q.E.D.

Corollary 1.16. Ifλ, µ ∈ KL are such that JµK = JλK, then we haveW µ+ρ = W λ+ρ.

Proof: The hypothesis JµK = JλK gives µ = g • λ for a certain g ∈ W λ+ρ by part

(1) of the Result 1.15. Thus, we know that W µ+ρ = W g•λ+ρ = W g(λ+ρ).

Then, using part (2) of Corollary 1.14, we get W λ+ρ = W g(λ+ρ) because g

belongs to W λ+ρ. This gives W λ+ρ = W µ+ρ and the proof is complete.

Q.E.D.

Remark 1.17. Corollary 1.16 explains how a thing such as part (1) of Result 1.15 is

possible at all, knowing that µ ∼ λ ⇔ λ ∼ µ . To see it, one has to keep in mind

that ∼ is an equivalence relation.

To conclude Section 1.1, we report here a relevant result about a hypothesis that

will be often used in the rest of the chapter:
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Result 1.18. Let λ, µ ∈ h∗ be such that
(
W (µ− λ)

)
∩ P+ ̸= ∅, then W λ = W µ.

Proof: First note that
(
W (µ− λ)

)
∩ P+ ̸= ∅ implies that it contains precisely one

element. This is because there is at most one dominant integral element in any given

W-orbit inside of h∗.

Let θ be the dominant integral element in
(
W (µ−λ)

)
∩P+ ̸= ∅ and let ω ∈ W

be such that ω(µ− λ) = θ. Then

µ = λ+ ω−1(θ) , and µ+ ρ = λ+ ρ+ ω−1(θ) .

We are almost ready to get started. Recall that W µ+ρ = ⟨σr | r ∈ R∨
µ+ρ ⟩. Fix

any r ∈ R∨
µ+ρ. In the following, it will be proved that this r ∈ R∨

λ+ρ.

Let s be the real root corresponding to the real coroot r. As s is a real root, it is

in the W -orbit of a simple root, say α. So let’s write s = w(α) for some w ∈ W .

Next, we know that w−1ω−1(θ) is a weight of the module L(θ), so w−1ω−1(θ) ∈

θ −Q+. Therefore, we can write:

w−1ω−1(θ) = θ −
∑
finite

ciαi .

where ci ∈ N and αi is a simple root for every i’s. Then, we can write:

(
µ+ ρ

)
(r) =

(
λ+ ρ

)
(r) +

(
ω−1(θ)

)
(r)

=
(
λ+ ρ

)
(r) + 2

((
ω−1(θ)

)
, s
)

(s, s)
ω−1(θ)

=
(
λ+ ρ

)
(r) + 2

((
w−1ω−1(θ)

)
, α
)

(α, α)
w−1ω−1(θ)

)
=
(
λ+ ρ

)
(r) + 2

(θ, α)

(α, α)
θ −

∑
finite

ci · 2
(αi, α)

(α, α)
αi . (1.19)
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Now, since r ∈ R∨
λ+ρ, the first term in the previous line is an integer. Since

θ ∈ P+ and since α is a simple root, the second term is also an integer. Also,

each term of the sum is an integer ci multiplying a Cartan integer since the αi’s

are simple roots, just as α is. Putting the above information together, this tells us

that
(
µ + ρ

)
(r) ∈ Z. As we started with an arbitrary r ∈ R∨

λ+ρ, this means that

R∨
λ+ρ ⊆ R∨

µ+ρ.

Finally, as we can reproduce another big formula just like (1.19) starting from

any other r ∈ R∨
µ+ρ instead, we obtain the other inclusion so that

R∨
λ+ρ = R∨

µ+ρ .

As W λ+ρ and W µ+ρ are generated by the same set, they are equal and the proof

is complete.

Q.E.D.

1.2 Translation Functors and Composition Series

In this second step, I present the key elements to prove the Kac-Wakimoto character

formula. These key elements are some translation functors and a specific weak

composition series. The results of this section are only related to properties of the

categories O and OL.

The mathematician J.C. Jantzen defined certain translation functors that will be

key for our purpose. Here is an account of the elements that are needed to prove the

Kac-Wakimoto character formula.
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Let C be a category that has an “extension-block”-like decomposition:

C =
⨁

b∈ ext-block

Cb . (1.20)

Remark 1.21. An extension block decomposition in a suitable category C is a par-

tition of its objects according to an equivalence relation comparable to that given

in Definition 1.7 up to a certain modifications. For two objects M,N ∈ Ob(C),

we would write that M is in the same extension block as N if and only if either

they are isomorphic or there exist a finite sequence of objects {Ci}ni=0 ⊆ Ob(C)

with C0 = M , Cn = N and for which ExtC(Ci, Ci+1) or ExtC(Ci+1, Ci) ̸= 0 for

i ∈ {0, . . . , n − 1}. The equivalence class of an object under this relation is then

called its extension block or its linkage class. One should now compare (1.20) to

Proposition 1.11. In a block decomposition, objects from different extension-blocks

must have no non-trivial morphisms and extensions between them (the latter corre-

sponds to Remark 1.13 in our setting). An illustrative reference for understanding

the parallel between an extension block decomposition and the decomposition of

OL of Proposition 1.11 is [Hum 2008]: in particular Section 1.13 is most relevant.

However, [Hum 2008] treats of finite-dimensional semisimple Lie algebra settings

and not of Kac-Moody Lie algebras.

Fix a θ ∈ P+ for which one has M ⊗L(θ) ∈ ObC for all M ∈ ObC. Then you

can define a translation functor from the "ext-block" b1 to another "ext-block" b2 by

setting:

T(θ)b2b1 : Cb1 Cb2

M [M ⊗ L(θ)]b2-comp

. (1.22)

where [C]b2-comp means the b2-component of a module C, in its decomposition as a
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direct sum of submodules with respect to the "ext-block" decomposition (1.20).

Remark 1.23. For the original setting in which the translation functors first appeared,

see the book [Jan 1979] (in German) by J.C. Jantzen.

Remark 1.24. In [DGK 1982], the authors mention that J.C. Jantzen makes use of

such functors in finite dimensional Lie theory settings.

Remark 1.25. We will use some translation functors with the category OL and its

decomposition given by Result 1.11.

Some very important results for later use follow:

Result 1.26. The translation functors (1.22) defined with respect to the decomposi-

tion of category OL given of Result 1.11 are additive and exact.

Proof: It follows from Section 5 of [DGK 1982].

Remark 1.27. For more details on how to prove Result 1.26, see also Chapter 7 of

[Hum 2008] for details in the case of category O for finite-dimensional semisimple

Lie algebras. For instance, a module M in category O for an affine Lie algebra

associated to a finite-dimensional semisimple Lie algebra g will also be in category

O for g (pulling back its action to a g-action). In such a case, properties of the

translation functors can be deduced from their validity in category O for g.

Result 1.28. Let θ ∈ P+ and let M ∈ ObOL. Then M ⊗ L(θ) ∈ ObOL.

Proof: Can be found in [DGK 1982], see Proposition 5.9.

Definition 1.29. For a module in C ∈ ObO, a weak composition series is an

increasing filtration of some of its submodules

{0} = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ C ,
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such that

(1)
⋃

i Pi = C;

(2) Pi+1/Pi is a highest weight module for any given i;

(3) if the highest weight of Pi+1/Pi is greater than that of Pj+1/Pj , then i < j

(i.e. highest weights of the quotients decrease along with the indices);

(4) for any weight η of C, there exist an index iη such that
(
C/Piη

)
η
= 0.

Remark 1.30. Filtrations from Definition 1.29 are called a weak composition series

partly because the successive quotients are not required to be irreducible modules

like in a usual composition series. Also, note that the filtration is not required to be

finite.

Result 1.31. Let θ ∈ P+ and let V be a highest weight module of highest weight

λ ∈ h∗, then V ⊗ L(θ) has a weak composition series

{0} = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ C ,

such that for any i, Pi+1/Pi is a highest weight module of highest weight λ + νi

where νi is a weight of L(θ). As part of coming from a weak composition series, the

set of weights {νi}i satisfy

νi > νj =⇒ i < j .

If we take V =M(λ), then Pi+1/Pi
∼= M(λ+ νi) for all i.

Proof: Can be found in [DGK 1982], see Lemma 5.8.
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Remark 1.32. The (only) properties of Result 1.31 that we will really be making use

of are the following:

•
⋃

i Pi =M ⊗ L(θ);

• Pi+1/Pi
∼= M(λ+ νi) for all i’s when V =M(λ) to start with.

Remark 1.33. Result 1.31 is in fact Lemma 5.8 of [DGK 1982]. While their Lemma

5.8 may seem more precise than Result 1.31, it is not the case. In the current

exposition of the proof of the Kac-Wakimoto formula, I will not fix a particular

notation to denote weights of L(θ) since it would not be used later on.

Coming back to the category OL =
⨁

λ∈KL

OL
JλK , here is a corollary to the above

remarks:

Corollary 1.34. Let θ ∈ P+, let V be a highest weight module of highest weight

λ ∈ KL (so that V ∈ ObOL) and fix η ∈ KL. Then the module
[
V ⊗L(θ)

]
JηK-comp

has a weak composition series

{0} = P̃0 ⊆ P̃1 ⊆ P̃2 ⊆ · · · ⊆
[
V ⊗ L(θ)

]
JηK-comp ,

such that P̃i+1/P̃i is a highest weight module with highest weight λ+ ν̃i ∈ JηK where

ν̃i is a weight of L(θ).

As part of coming from a weak composition series, the set of weight {ν̃i}i satisfy

ν̃i > ν̃j =⇒ i < j .

If we take V =M(λ), then P̃i+1/P̃i
∼= M(λ+ ν̃i) for all i.

Proof: Take the weak composition series for V ⊗ L(θ) given by Result 1.31 and

keep only the Pi’s such that after relabeling, the highest weights of any successive
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quotient is in the correct equivalence class of ∼, namely JηK.

Q.E.D.

Remark 1.35. For more details on Corollary 1.34 and/or on its justification, see

Remark 5.11 in [DGK 1982].

To conclude Section 2, here is a word on translation functors in the case of OL.

We define them just as of line (1.22). However, there is a more relevant one to care

about. Let λ, µ ∈ KL be such that
(
W (µ − λ)

)
∩ P+ = {θ}. Then consider the

specific translation functor

T(θ)
JµK
JλK : OL

JλK OL
JµK

M [M ⊗ L(θ)]JµK-comp

, (1.36)

which will be the most interesting translation functor. It is also this specific functor

that will allow us to prove the Kac-Wakimoto character formula.

Remark 1.37. A reason why the specific functor (1.36) is relevant for proving the

Kac-Wakimoto formula follows from the fact that the assumption

#
(
W (µ− λ)

)
∩ P+ = #{θ} = 1 ,

combined with properties of T, will be sufficient to prove an existence and unicity

result.

1.3 Translation of Certain Verma Modules

In this third step, I present a detailed proof of Lemma 1 from [KW 1988]. This

is the last preliminary step to proving the character formula. The purpose of this

lemma is to prove that the specific translation functor (1.36) is the right object to
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focus upon.

Lemma 1.38. (Lemma 1 of [KW 1988]) Let λ, µ ∈ KL be weights such that(
W (µ − λ)

)
∩ P+ ̸= ∅. Suppose that

(
λ + ρ

)
(r) ̸= 0 for all r ∈ R∨

λ+ρ. Further,

assume that

(
λ+ ρ

)
(r) > 0 =⇒

(
µ+ ρ

)
(r) ≥ 0 ,(

λ+ ρ
)
(r) < 0 =⇒

(
µ+ ρ

)
(r) ≤ 0 .

Then for any g ∈ W λ+ρ = W µ+ρ, we have

T(θ)
JµK
JλK

(
M(g • λ)

)
=M(g • µ) . (1.39)

Proof: Corollary 1.34 from Section 1.2 describes a weak composition series for the

translated Verma module of the left handside of equation (1.39).

In order to figure anything out about such a specific weak composition series,

we need to invesigate the possibility of having g • λ+ ν ∈ JµK where ν is a weight

of L(θ). Firstly, observe that Result 1.15 (1) gives JµK = W µ+ρ • µ = W λ+ρ • µ so

we will need to solve the equation

g • λ+ ν = g̃ • µ (1.40)

where ν is a weight of L(θ) and g̃ ∈ W µ+ρ = W λ+ρ.
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Let’s first derive an equivalent formula to solve. We can write:

(1.40) ⇐⇒ g−1 • (g • λ+ ν) = g−1 • g̃ • µ

⇐⇒ g−1
(
g(λ+ ρ)− ρ+ ν + ρ

)
− ρ = (g−1g̃) • µ

⇐⇒ (λ+ ρ) + g−1(ν)− ρ = (g−1g̃) • µ

⇐⇒ λ+ g−1(ν) = (g−1g̃) • µ

⇐⇒ λ+ ψ = h • µ (1.41)

where ψ is a weight of L(θ) and h ∈ W µ+ρ = W λ+ρ.

Next, let w ∈ W be the unique element such that w • λ ∈ ρ + C. Then it will

be applied to both sides of (1.41):

(1.41) ⇐⇒ w • (λ+ ψ) = w • h • µ

⇐⇒ w(λ+ ψ + ρ)− ρ = (wh) • µ

⇐⇒ w(λ+ ρ) + w(ψ)− ρ = (wh) • µ

⇐⇒ w(λ+ ρ) + w(ψ)− ρ =
(
wh
)
(µ+ ρ)− ρ

⇐⇒ w(λ+ ρ) + w(ψ) =
(
wh
)
(µ+ ρ)

⇐⇒ w(λ+ ρ) + w(ψ) =
(
whw−1

)(
w(µ+ ρ)

)
⇐⇒ w(λ+ ρ) + ψ̄ = ḡ

(
w(µ+ ρ)

)
(1.42)

where ψ̄ is a weight of L(θ) and ḡ ∈ Ww(µ+ρ) = Ww(λ+ρ) using Result 1.14. Also,

note that w(λ+ ρ) ∈ C in (1.42).

The next step to prove this lemma is to show that the problems (1.40)⇔ (1.41)

⇔ (1.42) admit precisely one solution. Recall that w, λ and µ are fixed.
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Existence: By assumption,
(
W (µ−λ)

)
∩P+ = {θ}. Let’s callω ∈ W an element

so that ω(µ− λ) = θ. This leads to the equation

λ+ ω−1(θ) = µ . (1.43)

Since ω−1(θ) is a weight of L(θ) and since µ ∈ JµK = W µ+ρ • µ, line (1.43)

represents a solution for equation (1.41)⇔ (1.40)⇔ (1.42).

Unicity: Assume that ψ̄ ∈ P
(
L(θ)

)
and ḡ ∈ Ww(µ+ρ) = Ww(λ+ρ) provides a

solution of (1.42), i.e. that

w(λ+ ρ) + ψ̄ = ḡ
(
w(µ+ ρ)

)
.

Then as w(λ+ ρ) ∈ C, we have

(
w(λ+ ρ)

)
(r) > 0 for all r ∈ Rw(λ+ρ)

+ = R
w(µ+ρ)
+ . (1.44)

The two assumptions of the lemma then give:

(
w(µ+ ρ)

)
(r) ≥ 0 for all r ∈ Rw(λ+ρ)

+ = R
w(µ+ρ)
+ . (1.45)

Let’s set λ̄ = w(λ+ ρ) and µ̄ = w(µ+ ρ) so that we can write

λ̄+ ψ̄ = w̄(µ̄) (1.46)

where ψ̄ ∈ P
(
L(θ)

)
and w̄ ∈ W λ̄ = W µ̄. We’ll end up showing that the equation

(1.46) represents the same solution to (1.41) as the one given in the unicity part.
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We can make use of the form (−,−) on h∗ × h∗ and write

(ψ̄, ψ̄) =
(
w̄(µ̄)− λ̄, w̄(µ̄)− λ̄

)
=
(
w̄(µ̄), w̄(µ̄)

)
+ (λ̄, λ̄)− 2

(
w̄(µ̄), λ̄

)
=
(
µ̄, µ̄

)
+ (λ̄, λ̄)− 2

(
w̄(µ̄), λ̄

)
. (1.47)

By Proposition 3 (i) of [MP 1995], Rλ̄ = Rµ̄ is a subroot system of the whole

root system and its Weyl group is W λ̄ = W µ̄. This last fact is easy to check. We

then use Exercise 3.12 of [Kac 1990] to obtain

w̄(µ̄) = µ̄−
∑
finite

µ̄(si)βi (1.48)

where for any i, si ∈ Πµ̄ and βi is a positive real root corresponding to some real

coroot ri of Rµ̄
+. Note that the coefficients in the sum of (1.48) are all in N by

Equation (1.45).

Let’s then use (1.48) to rewrite
(
w̄(µ̄), λ̄

)
differently:

(
w̄(µ̄), λ̄

)
= (µ̄, λ̄)−

∑
finite

µ̄(si) (βi, λ̄)

= (µ̄, λ̄)−
∑
finite

µ̄(si) λ̄(ri)

∈ (µ̄, λ̄)− N by the paragraph just above and (1.44) .

Therefore, we get
(
w̄(µ̄), λ̄

)
≤ (µ̄, λ̄) with equality ⇔ w̄(µ̄) = µ̄. Combined to

the line (1.47), this gives

(ψ̄, ψ̄) ≥
(
µ̄− λ̄, µ̄− λ̄

)
= (θ, θ) with equality ⇔ w̄(µ̄) = µ̄ . (1.49)
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On the other hand, Proposition 11.4 a) of [Kac 1990] shows that we do always

have

(ψ̄, ψ̄) ≤ (θ, θ) with equality ⇔ ψ̄ ∈ W (θ) . (1.50)

Both the inequalities (1.49) and (1.50) being true, we are forced to admit that

there is equality and so we have

w̄(µ̄) = µ̄ and ψ̄ = f(θ) for some f ∈ W .

It follows that the equation (1.46) can be rewritten as

λ̄+ f(θ) = µ̄ . (1.51)

From the previous equality, we can deduce that

f(θ) = µ̄− λ̄

= w(µ+ ρ)− w(λ+ ρ)

= w(µ− λ)

= wω−1(θ) . (1.52)

The equation (1.51) can then be rewritten as

λ̄+ f(θ) = µ̄

w(λ+ ρ) + wω−1(θ) = w(µ+ ρ)

λ+ ρ+ ω−1(θ) = µ+ ρ

λ+ ω−1(θ) = µ . (1.53)
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As the equations (1.53) and (1.43) are the same, we conclude that the existing

solution of the problems (1.40)⇔ (1.41)⇔ (1.42) is unique.

Finally, the problem (1.40) of solving g • λ + ν ∈ JµK where ν is a weight of

L(θ) admits precisely one solution in the current setting. This solution is given by

applying the g dot action on both sides of (1.43):

g •
(
λ+ ω−1(θ)

)
= g • µ

g
(
λ+ ρ+ ω−1(θ)

)
− ρ = g • µ

g(λ+ ρ) + gω−1(θ)− ρ = g • µ

g(λ+ ρ)− ρ+ gω−1(θ) = g • µ

g • λ+ gω−1(θ) = g • µ .

We then conclude from the Corollary 1.34 that the module

T(θ)
JµK
JλK

(
M(g • λ)

)
=
[
M(g • λ)⊗ L(θ)

]
JµK-comp

has a weak composition series

{0} = P̃0 ⊆ P̃1 (1.54)

where P̃1/P̃0
∼= P̃1

∼= M
(
g • λ+ gω−1(θ)

)
=M(g • µ).

By the definition of a weak composition series, we must have

T(θ)
JµK
JλK

(
M(g • λ)

)
=
⋃

iP̃i = P̃1
∼= M(g • µ) ,

where we used (1.54).

Q.E.D.
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1.4 The Kac-Wakimoto Formula

In this fourth and last step, I present a detailed proof of Theorem 1 from [KW 1988].

This is the proof of the Kac-Wakimoto formula. We basically just use general

properties about the category O, a topological lemma about Weyl chambers from

[MP 1995] and some translation functors from Section 1.3.

Lemma 1.55. Let λ ∈ KL for which R∨
λ+ρ ̸= ∅. Assume that λ(t) > 0 for all

t ∈ Π∨
λ+ρ,+. Then for any fixed s ∈ Π∨

λ+ρ, there exists a µ ∈ h∗ such that

(i)
(
W (µ− λ)

)
∩ P+ ̸= ∅;

(ii)
(
µ+ ρ

)
(s) = 0;

(iii)
(
λ+ ρ

)
(t) > 0 for all t ∈ Π∨

µ+ρ\{s} = Π∨
λ+ρ\{s}.

Proof: Can be found in [MP 1995], see Lemma 6.8.6.

Theorem 1.56. (Theorem 1 of [KW 1988]) Let λ ∈ KL for which λ(t) > 0 for all

t ∈ Π∨
λ+ρ. Then

ch [L(λ)] =
∑

w∈Wλ+ρ

ε(w) ch [M(w • λ)] (1.57)

where ε(w) is the sign of the Weyl group element w.

Proof: Since we work within in the category O, any module V has a character given

in terms of a sum of characters ch [L(η)]’s for certain η’s in h∗.

BecauseM(λ) is in OL, we have (by Result 1.6) that ch [M(λ)] is given in terms

of a sum of ch [L(η)]’s for certain η’s in KL.

In the case of M(λ), we have that P
(
M(λ)

)
⊆ λ− NQ+. Consider the set

P = {λ = p0, p1, p2, ...} = JλK ∩
(
λ− NQ+

)
, (1.58)
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for which pi ∈ pj − NQ+ for all i > j. Also, recall that JλK = W λ+ρ • λ. Next,

since λ ∈ KL, Result 1.5 lets us write
[
M(λ) : L(η)

]
̸= 0 ⇒ JηK = JλK and so

we have [
M(λ) : L(η)

]
̸= 0 =⇒ η = pj for some j .

For any fixed i ∈ N, we then obtain

ch [M(pi)] =
∑
j≥i

[
M(pi) : L(pj)

]
ch [L(pj)] . (1.59)

Note that
[
M(pj) : L(pj)

]
= 1 for any given j ∈ N because of the basic properties

following from the definition of a Verma module. Next, we can view the set of

Equations (1.59) as an infinite triangular “linear system”:

( Multiplicities ) · ( ch [L(p)] ’s ) = ch [M(p)] ’s⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

⋆ 1 0 0 0

⋆ ⋆ 1 0 0

...
... . . . 1 0

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(λ)

L(p1)

L(p2)

...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(λ)

M(p1)

M(p2)

...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.60)

Formally inverting the triangular “linear system” (1.60) gives us the formula:

ch [L(λ)] =
∑

w∈Wλ+ρ

m(w, λ) ch [M(w • λ)] (1.61)

for some integersm(w, λ). The only differences between formulas (1.61) and (1.57)

are the coefficients of the corresponding sums. Understandably, the last objective

will be to justify that m(w, λ) = ε(w) for any given w ∈ W λ+ρ. In order to achieve
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that, let’s first fix an s ∈ Π∨
λ+ρ ̸= ∅. With s ∈ Π∨

λ+ρ fixed, Lemma 1.55 ensures the

existence of a µ ∈ KL such that

(
W (µ− λ)

)
∩ P+ = {θ} (fixing the notation);(

µ+ ρ
)
(s) = 0; (1.62)(

µ+ ρ
)
(t) > 0 for all t ∈ Π∨

µ+ρ\{s} = Π∨
λ+ρ\{s}

The pair (λ, µ) does satisfy the conditions of Lemma 1.38 and so the corre-

sponding translation functor T(θ)
JµK
JλK does map M(w.λ) to M(w.µ). Note that this

functor was also both exact and additive.

Letβs be the positive root corresponding to the positive coroot s. The assumption

from the theorem together with the choice of s ∈ Π∨
λ+ρ give

(
λ + ρ

)
(s) ∈ N\{0}.

In fact, Result 1.5 then gives that
[
M(λ) : L(σs • λ)

]
̸= 0.

Next, we have

M(σs • λ) ⊆ N(λ) (1.63)

where N(λ) is the maximal submodule of M(λ) for which the quotient is the

irreducible L(λ). It follows from line (1.63) that there is a surjection

M(λ)

M(σs • λ)
↠

M(λ)

N(λ)
∼= L(λ) .

Equivalently, there is an exact sequence

M(λ)

M(σs • λ)
→ L(λ)→ 0 . (1.64)

Let’s apply the exact functor T(θ)
JµK
JλK to the sequence (1.64). Using the descrip-

tion of the effect of the functor on Verma modules given at the line (1.39) from
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Section 1.3, we obtain the exact sequence

M(µ)

M(σs • µ)
→ T(θ)

JµK
JλK

(
L(λ)

)
→ 0 . (1.65)

As presented at line (1.62), the choice of µ gives

σs • µ = µ+ ρ−
(
µ+ ρ

)
(s)βs − ρ = µ−

(
µ+ ρ

)
(s)βs = µ .

Therefore, M(σs.µ) =M(µ) and the exact sequence (1.65) really is

0→ T(θ)
JµK
JλK

(
L(λ)

)
→ 0 . (1.66)

This means that T(θ)
JµK
JλK

(
L(λ)

) ∼= {0} is itself the trivial module.

Now, since the translation functors are additive, their application on modules

commutes with taking characters. From this relevant fact, we rewrite the formula

(1.61) as we apply the functor T(θ)
JµK
JλK. The result is

0 = ch
[
T(θ)

JµK
JλK

(
L(λ)

)]
=

∑
w∈Wλ+ρ

m(w, λ) ch [M(w • µ)] . (1.67)

Thus, the coefficient of any Verma module of the right handside of (1.67) will be

zero. Let’s focus on the coefficient of M(w • µ) in the right handside of (1.67)

where w ∈ W λ+ρ = W µ+ρ is any fixed group element.

To obtain the coefficient of M(w.µ) in (1.67), we must find all the elements g

of W λ+ρ = W µ+ρ such that

g • µ = w • µ ⇐⇒ g−1w ∈ StabWλ+ρ•{µ} . (1.68)
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Let’s then proceed to find StabWλ+ρ•{µ}. First, recall that

W λ+ρ = ⟨σt | t ∈ Π∨
λ+ρ ⟩ . (1.69)

With this in mind, the properties of µ at line (1.62) lead to

StabWλ+ρ•{µ} = {Id, σs} .

We deduce that the elements g from the line (1.68) we are looking for are w and

wσs. Finally, we can write that the coefficient of M(w.µ) in the right handside of

the equation (1.67) is m(w, λ) +m(wσs, λ). From this same equation we have

0 = m(w, λ) +m(wσs, λ)

−m(wσs, λ) = m(w, λ) . (1.70)

In conclusion, since line (1.70) is independent of µ that was chosen to suit our

arbitrarily fixed s ∈ Π∨
λ+ρ and since w ∈ W λ+ρ is also arbitrary, equation (1.70)

holds independently of the choices of pairs (w, s).

Using the fact that W λ+ρ is generated by the Weyl reflections σt for t ∈ Π∨
λ+ρ,

we conclude that m(w, λ) = ε(w). It is then possible to rewrite the equation (1.61)

as:

ch [L(λ)] =
∑

w∈Wλ+ρ

ε(w) ch [M(w • λ)] ,

which is the Kac-Wakimoto character formula.

Q.E.D.
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Chapter 2

Direct Sum Completion of a Braided

Monoidal Category

This chapter is devoted to establishing a categorical framework that allows for

considering infinite direct sums within braided monoidal categories settings. This

plays an important role in the study of some vertex operator algebras constructions

such as simple currents extensions of infinite order and for linking some of the

related module categories. Most of the content of this chapter is summarised in

[AR 2018].

Since the appearance of vertex operator algebras in relation to Physics’ Confor-

mal Field Theories, notable examples of vertex operator algebras have displayed rich

module category structures that involve tensor products as well as rich additional

structures [MS 1989], [Hua 2005], [Lep 2005], [Hua 2010], see also [CG 2017] for

a recent related work. For instance, the class of rational and C2-cofinite vertex

operator algebras have been shown to have so-called modular tensor category, see

[Hua 2005]. For most physical applications in Conformal Field Theory, the module

category of a vertex operator algebra should possess certain properties and structural
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elements. Perhaps the most obvious example is that of a fusion product of modules:

on the mathematical side of the picture, a well defined fusion product means an exact

tensor product bifunctor for which we can express a product of two indecomposable

modules as a finite linear combinations of other modules with coefficients in N.

For related comments, see [FHST 2004]. Huang has also proved that a Rational

Conformal Field Theory led to having a rational vertex operator algebra, that is

a vertex operator algebra with a (finite) modular tensor category of modules, see

[Hua 2005].

The non-rational Conformal Field Theories [CR 2013a] are both much more

challenging and rewarding to study than the rational ones. The associated loga-

rithmic vertex operator features non-semisimple modules and allows for non-trivial

extensions, but such theories can relate to more important physical phenomena.

For a long time, not much has been known about logarithmic vertex operator al-

gebras’ Representation Theory, but their categories of modules are certainly rich

mathematical objects [Hua 2005], [Hua 2010], [Fuc 2007]. Serious work has been

done in the last decade to define appropriate tensor products for logarithmic vertex

operator algebras, see [HL 2013] and [HLZ 2007]. Even though the applicability

of this logarithmic tensor theory is still very difficult to decide (see [Hua 2017] or

even [CHY 2018] for instance), ideas about the structure of the corresponding mod-

ule categories are being developed for logarithmic and C2-cofinite vertex operator

algebras [Miy 2003], [Miy 2010], [CG 2017].

A general obstacle to developments on logarithmic vertex operator algebra is

the lack of examples. Even in the case of logarithmic C2-cofinite algebras, only

the triplet vertex operator algebras [TW 2013], [AM 2008a], some superalgebra

analogues [AM 2008b], [AM 2009], and the even part of the symplectic fermions

superalgebra [Abe 2007] have been known. To remedy this lack of examples, one
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usually attempts to construct new examples from algebras that already have some

of the required properties. As the following chapters of this thesis will show, a

successful application of this procedure has been to consider simple current exten-

sions of vertex operator algebras, see [CKL 2015], [CKM 2017] for instance. In the

next chapters, we consider infinite order simple current extensions of parafermionic

vertex operator algebras. Since these extensions are of infinite order, they involve

objects made from infinite direct sums. Therefore, we have addressed this problem

by developing a suitable notion of a direct sum completion. My colleague M. Rupert

and I wrote a paper [AR 2018] on this chapter’s topic. Currently with T. Creutzig,

S. Kanade and M. Rupert, we are preparing a paper [ACKR ] in which applying

the direct sum completion and the extension theory for vertex operator algebras

[CKM 2017] to study a module category for the logarithmic Bp vertex operator al-

gebra of [CRW 2014] that relate to some Argyres-Douglas Theories [Cre 2017] (in

Physics). In our paper, we describe a category of localBp-modules whose characters

satisfy a Verlinde-type formula. For p odd, the modular and Hopf links S-matrices

coincide up to normalisation and the Grothendieck ring of the semisimplification of

our category is a Z+-ring. We also show that the character of Bp matches that of a

certain subregular quantum Hamiltonian reduction of slp−1.

In the first section of the chapter, we develop a proper background on categorical

limits in order to formulate a suitable definition of a direct sum completion. In

the second section, we propose a definition of the direct sum completion C⊕ of

a base category C that is either K-linear additive category, K-linear additive and

monoidal category or K-linear, additive, monoidal and braided with possibly twist

isomorphisms. We conclude the chapter by illustrating the use of the direct sum

completion and of the theory of vertex operator algebra extensions [HKJL 2015],

[CKL 2015], [CKM 2017] in a basic vertex operator algebra setting: constructing
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the even lattice vertex operator algebra from the Heisenberg vertex operator algebra.

This last part is also treated in [AR 2018].

Notation

Throughout the chapter, the following notation will be employed:

• K is a field;

• C is a category with some specified additional structure;

• ⊕ is a direct sum or coproduct on a given category;

• f.s.(S) = {finite subsets of S} for any set S;

• ⊗ is a tensor product bifunctor on a given category;

• a−,−,− are the natural associativity isomorphisms in a given monoidal cate-

gory;

• 1 is a tensor product identity in a monoidal category;

• l− and r− are left and right unit constraints on a monoidal category;

• c−,− is a braiding on a monoidal category;

• θ− is a twist on a braided monoidal category;

• L =
√
2N Z is an even lattice with standard product as its bilinear form

(ℓ1 · ℓ2) = ℓ1ℓ2;

• L∗ = 1√
2N

Z = {x ∈ L⊗Z C | xℓ ∈ Z for all ℓ ∈ L} is the lattice dual to L.
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• F : Cloc → Rep0 VL is the induction functor from local modules of C to the

category of untwisted VL-modules where VL is seen as an algebra object, see

[CKM 2017] and Appendix B for details.

For an overview of background concepts on Category Theory topics, see Ap-

pendix B. For more details on braided monoidal categories, tensor categories and

modular categories, a useful reference is the book [EGNO 2015].

2.1 Categorical Limits

In this section, we review notions of categorical limits that are needed to under-

stand the abstract Ind-category of [AGV 1971]. The latter is often pointed to as a

framework that allows for a rigorous treatment of infinite direct sums. However, no

one seems to have explained how this could be done since the Ind-category is too

abstract to be manipulated with ease. In the following, we go through the key notion

of categorical limit in order to explain what should be an Ind-category. This section

serves as an inspiration for the rest of the chapter.

2.1.1 Limits Version 1

In order to approach the notion of infinite direct sums in categories, they have to

be viewed as coproducts, which are themselves special cases of categorical limits.

References on these topics include [Rot 2009] and [PP 1979].

Fix a category C. Here is a first notion of a categorical limit in C.

Definition 2.1. A directed set is a pair (I,≤) where I is a set and where ≤ is a

relation on I that satisfies:

• ≤ is reflexive and transitive;
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• for any given two elements i, j ∈ I , there exists a k ∈ I such that i ≤ k and

j ≤ k.

For limits to make sense, notions of a progression of objects must be established.

In this way a limit can be interpreted as the “final stage” of the progressions. The

correct categorical notions of relevant “progressions of objects” is that of a system

of objects in C. In a system of objects in C, a direction is to be given via a directed

set.

Definition 2.2. A direct system in C is a directed set (I,≤) together with a pair

(
{Xi}i∈I , {tij : Xi → Xj}i≤j in I

)
composed of a family of objects of C and a family of transition morphisms be-

tween them. These transition maps represent the relation ≤ on I and “preserve its

orientation”. This means that they satisfy

• tii = IdXi
for any i ∈ I , and;

• tjk ◦ tij = tik : Xi → Xj → Xk whenever i ≤ j ≤ k in I .

Definition 2.3. An inverse system in C is a directed set (I,≤) together with a pair

(
{Xi}i∈I , {tij : Xj → Xi}i≤j in I

)
composed of a family of objects of C and a family of transition morphisms between

them.

These transition maps represent the relation ≤ on I and “invert its orientation”.

This means that they satisfy

• tii = IdXi
for any i ∈ I , and
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• tij ◦ tjk = tik : Xk → Xj → Xi whenever i ≤ j ≤ k in I .

The categorical limits for a system of either type is defined as follows:

Definition 2.4. The limit of a direct system
(
{Xi}i∈I , {tij : Xi → Xj}i≤j∈I

)
in C

is (if it exists) a pair (
L, {λi : L→ Xi}i∈I

)
,

made of an object L of C together with morphisms λi compatible with the transition

morphisms of the direct system. Furthermore, L must be universal with respect to

this property.

This means that for any given object Y in C such that a family of morphisms

yi : Y → Xi is compatible with the transition morphisms of the direct system, there

exists a unique map u : Y → L such that yi = λi ◦ u for any given i ∈ I .

Definition 2.5. The limit of an inverse system
(
{Xi}i∈I , {tij : Xj → Xi}i≤j∈I

)
in

C is (if it exists) a pair (
L, {λi : Xi → L}i∈I

)
made of an object L of C together with morphisms λi compatible with the transition

morphisms of the inverse system. Furthermore, L must be universal with respect to

this property.

This means that for any given object Y in C such that a family of morphisms

yi : Y → Xi is compatible with the transition morphisms of the direct system, there

exists a unique map u : Y → L such that yi = λi ◦ u for any given i ∈ I .

Table 2.1 reports equivalent terminologies that are commonly employed for the

above notions of limits in C.

Remark 2.6 (
⨁

and
∏

as limits). In a given category C, both finite and infinite

direct sums, if they exist, can be seen as colimits (of direct systems). Similarly, finite
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Limit of a direct system Limit of an inverse system

colimit limit

inductive limit projective limit

direct limit inverse limit

Table 2.1: Equivalent common terminologies for categorical limits.

and infinite products, if they exist, can be seen as limits (of inverse systems). Given

an index set S over which to consider a direct sum or a product. The construction

of the corresponding systems in C goes as follow:

• the relevant directed set (I,≤) is given by I = f.s.(S) and the relation ≤ is

the inclusion ⊆ of subsets;

• the objects composing the relevant systems are the partial direct sums or the

partial direct products over elements of I;

• the transition morphisms of the relevant systems are the natural injections for

direct sums and the natural projections for products.

If it exists, the limit of such a system will be a direct sum or a product, in accordance

with the choice of the system.

2.1.2 Presheaves, Yoneda’s Lemma and Representability

References for the content of this section include [Sch 1972], [PP 1979], [ML 1998].

Let us fix a K-linear category C. This means that C is an additive category for

which the Hom-spaces are vector spaces, compositions of morphisms are K-linear

(in both slots) and where ⊕ : C× C→ C is K-bilinear.
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Definition 2.7. Define Ĉ to be the category of K-linear contravariant functors

C→ Vect .

Morphisms of functors are simply natural transformations and the category Ĉ is

called the category of vector space presheaves over C.

Definition 2.8. Let A be an object of C. Define the following presheaf:

hA(−) = HomC(−, A) ∈ Ob Ĉ .

Note that since HomC(−,−) is a bifunctor C × Cop → Vect the mapping

A ↦→ hA(−) is natural in A. In particular, the following mappings form a functor:

h : C Ĉ

X hX(−) = HomC(−, X)

[f : A→ B] [(? ◦ f) : hB(−)→ hA(−)]

. (2.9)

Definition 2.10. An object R(−) of Ĉ is said to be representable if there exists an

object A of C such that R(−) ∼= hA(−).

Lemma 2.11. (Yoneda’s Lemma) Let A be an object of C and R(−) be an object

of Ĉ. Then there is an isomorpism

YonedaA,R : Hom
Ĉ
(hA, R) R(A)

η ηA(IdA)
,

that is natural in both A and R(−).
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Proof: Let η ∈ Hom
Ĉ
(hA, R). Then for any X ∈ ObC, one has a map ηX

ηX : hA(X) = HomC(X,A) R(X)

that is natural in X . In particular, for any f ∈ HomC(X,A), one has to fix a value

ηX(f) ∈ R(X). As IdA ∈ HomC(A,A) is such that f = IdA ◦f =
(
hA(IdA)

)
(f),

write the following commutative diagram

hA(A) = HomC(A,A) R(A)

hX(A) = HomC(X,A) R(X)

ηA

− ◦ f R(f)

ηX

By commutativity, ηX(f) =
(
R(f)

)(
ηA(IdA)

)
. This means that ηA(IdA) ∈

R(A) actually determines the behaviour of the whole natural transformation, η ∈

Hom
Ĉ
(hA, R).

Next we define YonedaA,R(η) = ηA(IdA). This map is bijective because we

can define an inverse map

ΘA,R : R(A) Hom
Ĉ
(hA, R)

r ηr = (ηrX)X∈ObC

where ηrX(X
f→ A) =

(
R(f)

)
(r). This ηr is a well defined natural transformation

and indeed, the following equalities hold:

YonedaA,R ◦ΘA,R = IdHom
Ĉ
(hA,R) and ΘA,R ◦YonedaA,R = IdR(A) .

It will now be shown the naturality of YonedaA,R in A and R. First, we fix

g ∈ HomC(A,B) to obtain the natural transformation (g ◦−) : hA → hB. Then for
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any θ ∈ Hom
Ĉ
(hB, R) one has

YonedaA,R

(
θ(g ◦ −)

)
= θA(g ◦ IdA) ∈ R(A)

= θA(g)

=
(
R(g)

)(
θB(IdB)

)
=
(
R(g)

)(
YonedaB,R(θ)

)
.

It means that YonedaA,R is natural in A. Finally, we will show its naturality

in R. If τ ∈ Hom
Ĉ
(R,G), we get that (τ ◦ −) : Hom

Ĉ
(hA, R) → Hom

Ĉ
(hA, G).

Then for any η ∈ Hom
Ĉ
(hA, R), one has

YonedaA,G(τ ◦ η) =
(
τ ◦ η

)
A
(IdA) ∈ G(A)

= τA
(
ηA(IdA)

)
= τA

(
YonedaA,R(η)

)
.

Q.E.D.

Corollary 2.12. The covariant functor h from line (2.9) is fully faithful (i.e. it is

bijective on morphisms). Moreover, one has hA ∼= hB ⇔ A ∼= B.

Proof: If η : hA → hB is an isomorphism of functors, then there is an η−1 : hB →

hA is an isomorphism of functors and we have η ◦ η−1 = IdhA
and η−1 ◦ η = IdhB

.
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This means that

IdA = (IdhA
)A(IdA)

= YonedaA,hA
(IdhA

)

= YonedaA,hA
(η ◦ η−1)

= ηB
(
YonedaB,hA

(η−1)
)
∈ HomC(B,B)

=
(
hB(YonedaB,hA

(η−1)
)(
ηA(IdA)

)
=
(
YonedaB,hA

(η−1)
)
◦
(
ηA(IdA)

)
=
(
(η−1)B(IdB)

)
◦
(
ηA(IdA)

)
.

Similarly, IdB = (η−1)A
(
YonedaA,hB

(η)
)
∈ HomC(A,A). This will imply that

YonedaA,hB
(η−1) ∈ HomC(A,B) and YonedaB,hA

(η) ∈ HomC(B,A) ,

are inverses of each other. Proving this statement is straightforward.

Q.E.D.

2.1.3 Limits Version 2

References for the contents of this section include [AGV 1971] and [PP 1979].

We will revisit the notion of limit in a more structured way. The first thing to

mention is that directed sets can be interpreted as categories and then, systems in a

fixed category C appear as functors from a directed set to C.

Definition 2.13. A directed set (I,≤), as in Definition 2.1, is naturally interpreted
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as constituting a category by setting:

Ob(I,≤) = I, Hom(I,≤)(i,j) =

⎧⎪⎨⎪⎩ {i→ j} if i ≤ j

∅ otherwise
,

where the composition is given by concatenation of arrows. This is indeed a category

since the associativity of the composition is ensured by the transitivity of≤ and the

existence of identity morphisms i→ i is ensured by the reflexivity of ≤.

The “upper bound property” of ≤ translates into the statement that for any pair

of objects i and j, there exists a k such that i→ k and j → k are morphisms in this

categorical interpretation.

Definition 2.14. A direct system in C is a covariant functor V : (I,≤)→ C where

(I,≤) is a directed set viewed as a category via Definition 2.13.

Definition 2.15. An inverse system in C is a contravariant functor R : (I,≤)→ C

where (I,≤) is a directed set viewed as a category via Definition 2.13.

Remark 2.16. The equivalence between notions of direct systems from Defini-

tion 2.14 and Definition 2.2 can be given by V (i) = Xi and V (i → j) = ti,j . A

similar equivalence holds for Definitions 2.15 and 2.13 of inverse systems.

A great advantage of these new notions of systems in C is that one can then

naturally speak of a category of systems of a given type in C. For instance, if

VI : I → C and VJ : J → C are two direct systems in C, a natural notion of a

morphism between VI and VJ could be that of a pair

(u, ψ) (2.17)

where u : I → J is a functor and where ψ ∈ Cov(I,C) ∈ HomC(VI , VJ ◦ u).
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In order to define new notions of limits in a category C, we will need the notion

of a constant functor.

Definition 2.18. Let X ∈ ObC. For any categoty I , the constant functor is defined

by:
kX : I Ĉ

i X

[f : i→ j] [IdX : X → X]

. (2.19)

Note that kX is always both a covariant and a contravariant functor I → C.

Definition 2.20. Let C be a fixed K-linear category. The limit of a direct system

V : I → C with values in C is the following functor:

(limV ) : C Vect

X HomCov(I,C)(kX , V )
.

Note that (limV ) ∈ Ĉ for a direct system V .

Definition 2.21. Let C be a fixed K-linear category. The limit of an inverse system

R : I → C with values in C is the functor

(limR) : C Vect

X HomCont(I,C)(R, kX)
.

Note that (limR) : C→ Vect is a covariant functor for an inverse system R.

The limits presented in Definitions 2.20 and 2.21 are such that the representability

of their limit functors is equivalent to the existence of a limit in terms of Defini-

tions 2.4 and 2.5. Concretely, if a limit functor, as of Definitions 2.20 or 2.21, is

represented by an object L ∈ ObC, then L is precisely the limit of the correspond-

ing system in the sense of Definitions 2.4 and 2.5. As the converse also holds, we
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conclude that Definitions 2.20 and 2.21 are simply more general notions of limits.

Another important element to note is that since limits of functors I → C are

themselves functors C → Vect, an intuitive notion of a morphism in a category of

systems can be put forth: that a morphism between two systems in C should be given

by a morphism of their respective limit functors. This provides a weaker notion of

morphism than that of (2.17) which often turns out to be more practical.

2.1.4 The Ind-Category

References for this section include [AGV 1971] and [PP 1979].

Given a K-linear category C, the Ind-category Ind(C) is composed of direct

systems. The notion of morphism between two systems is more subtle and has to

do with morphisms in Ĉ between the limits.

Consider the fully faithful functor h : C → Ĉ. By Corollary 2.12, working

in C up to isomorphism is the same as working in Ĉ up to isomorphism. Taking

limits of functors whose index sets are directed sets commute with evaluations

evX : Ĉ→ Vect where X ∈ ObC. Additionally, limits of such direct systems in Ĉ

are alway representable in Ĉ. Concretely, given a direct system V : I → C one can

make it a direct system in Ĉ via composition by the covariant functor h as follows:

(h ◦ V ) : I → C
h−→ Ĉ .

Since lim(h ◦ V ) : I → Ĉ is always representable, it has to be is represented by

an object of L
(
lim(h ◦ V )

)
∈ Ob Ĉ. The Ind-category associated with C has the

following definition:
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Definition 2.22. The category Ind(C) is defined by the following:

Ob Ind(C) = {V ∈ Cov(I,C) | I is a directed set}

= {direct systems in C whose index category is a directed set} .

Also, for any two covariant functors VI : I → C
h→ Ĉ and VJ : J → C

h→ Ĉ, we

define

HomInd(C)(VI , VJ) = Hom
Ĉ

(
L(limVI), L(limVJ)

)
.

where L(limV ) is the object of Ĉ that represents the limit of V .

Remark 2.23. This notion of an Ind-category is a little less general than in [AGV 1971],

but it is necessary for treating the upcoming topics. To have the most general notion

of Ind-category, one can further weaken the properties of the index category I in a

way such that limits are still defined with decent properties.

The notion of Ind(C) displayed in Definition 2.22 actually points how to naturally

define morphisms between formal direct sum of objects.

2.2 Direct Sum Completion

A notion of a direct sum completion of an additive category C is detailed below. In

few words, it will be a concrete presentation of the subcategory of Ind(C) whose

direct systems correspond to coproducts or direct sums. See Remark 2.6 for a

description of such systems.

At term, we will consider a category C that will also be K-linear, monoidal,

braided and with twist isomorphisms. We will then want to show that C⊕ naturally
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retains such characteristics. We expect that a natural inclusion functor C → C⊕

would then be fully faithful and preserve the pertinent supplementary properties.

2.2.1 The Direct Sum Completion of an Additive Category C

Given an additive category C, we will define the category C⊕ as follows:

Definition 2.24. Define C⊕ by setting:

ObC⊕ =

⎧⎪⎨⎪⎩
⨁
s∈S

Xs

⏐⏐⏐⏐⏐⏐⏐
S is a set

Xs ∈ ObC for every s ∈ S

⎫⎪⎬⎪⎭ ,

HomC⊕

(⨁
s∈S

Xs,
⨁
t∈T

Yt

)
=
{(
α, {fs,t}t∈α(s)s∈S

)}/
∼

where

• α : {finite subsets of S} → {finite subsets of T} is a function that commute

with unions. For any singleton {s} ⊆ S, we employ the notation α(s) =

α
(
{s}
)
;

• fs,t ∈ HomC(Xs, Yt) for any t ∈ α(s);

• ∼ is an equivalence relation defined by:

(
α, {fs,t}t∈α(s)s∈S

)
∼
(
A, {Fs,t}t∈A(s)

s∈S

)
⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fs,t = 0s,t if t ∈ α(s)\A(s)

fs,t = Fs,t if t ∈ α(s) ∩ A(s)

Fs,t = 0s,t if t ∈ A(s)\α(s)

;

• the composition of a pair of morphisms
(
β, {gt,r}r∈β(t)t∈T

)
:
⨁

t∈T Yt →⨁
r∈R Zr and

(
α, {fs,t}t∈α(s)s∈S

)
:
⨁

s∈S Xs →
⨁

t∈T Yt is defined to be the
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equivalence class of

⎛⎜⎜⎝β ◦ α,
{ ∑

t∈α(s)
s.t. r∈β(t)

gt,r ◦ fs,t

}r∈
(
β ◦α
)
(s)

s∈S

⎞⎟⎟⎠ ;

• the identity morphism of
⨁

s∈S Xs is the equivalence class of
(
Idf.s.(S), {IdXs}s∈S

)
.

Proposition 2.25. The elements of Definition 2.24 really define a category C⊕. In

particular, it means that:

• ∼ is indeed an equivalence relation;

• the composition is compatible with ∼ in both arguments;

• the composition is associative;

• the identity morphisms of an object indeed preserve any morphism via com-

position on both sides.

Proof: See proof of Proposition 3.2 of [AR 2018].

Remark 2.26. The equivalence relation∼ appearing in Definition 2.24 is relevant in

the definition of morphisms. It allows to restrict their study to pairs
(
α, {fs,t}t∈α(s)s∈S

)
such that fs,t ̸= 0 whenever defined. This equivalence relation will also find use in

defining an additive structure on C⊕.

Remark 2.27. The notion of morphism can be thought of in a more concrete manner.

Fix objects
⨁

s∈S Xs and
⨁

t∈T Yt, then the following notions are equivalent :

• an element of HomC⊕

( ⨁
s∈S Xs,

⨁
t∈T Yt

)
=
{(
α, {fs,t}t∈α(s)s∈S

)}/
∼ ,

and;

51



• an element of
∏

s∈S

(⨁
t∈T HomC(Xs, Yt)

)
,

the latter being less easy to deal with for theoretical purposes. To pass from the first

notion to the second, we identify
(
α, {fs,t}t∈α(s)s∈S

)
→
(
fs,t
)
s∈S, t∈α(s).

Remark 2.28. If our base category C were the skeleton of the Heisenberg vertex

operator algebra module category (i.e. a semisimple category with simple objects

Fλ for λ ∈ C, the Fock spaces), even the definition of morphisms of its completion

C⊕ appears simplified. Indeed, Schur’s Lemma guarantees that

s ̸= t =⇒ HomC(Fs, Ft) = {0} .

Thus, a general morphism of HomC⊕

(⨁
s∈S Fs,

⨁
t∈T Ft

)
is of the shape

(α, {fs,t}t∈α(s)s∈S ) ∼ (α̃ : {si}ni=1 ↦→ {si | si ∈ T}ni=1, {fs,s}s∈S∩T ) .

So, elements of HomC⊕

(⨁
s∈S Fs,

⨁
t∈T Ft

)
naturally correspond to n-tuples of

scalars

(φs)s∈S∩T ∈
∏
S∩T

k .

However, note that categories C⊕ and Rep0A for an algebra object A ∈ ObC⊕ are

quite different. In Rep0A, we will have fewer morphisms.

Definition 2.29. Addition on HomC⊕

(⨁
s∈S Xs,

⨁
t∈T Yt

)
is defined as follows:

(
α1, {f 1

s,t}
t∈α1(s)
s∈S

)
+
(
α2, {f 2

s,t}
t∈α2(s)
s∈S

)
=

(
α1 ∪ α2, {σs,t}

t∈
(
α1∪α2

)
(s)

s∈S

)
(2.30)

where

• for any finite subset A ⊆ S, define
(
α1 ∪ α2

)
(A) = α1(A) ∪ α2(A) ;
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• for any s ∈ S and t ∈
(
α1 ∪ α2

)
(s), define

σs,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f 1
s,t if t ∈ α1(s)\α2(s)

f 1
s,t + f 2

s,t if t ∈ α1(s) ∩ α2(s)

f 2
s,t if t ∈ α2(s)\α1(s)

.

Given any λ ∈ F, a scalar multiplication by λ on HomC⊕

(⨁
s∈S Xs,

⨁
t∈T Yt

)
can be defined as follows:

λ ·
(
α, {fs,t}t∈α(s)s∈S

)
=
(
α, {λfs,t}t∈α(s)s∈S

)
. (2.31)

Definition 2.32. A zero object is defined as 0C⊕ =
⨁

0∈{0} 00 where 00 = 0 ∈

Ob(C). Also, the zero morphism in HomC⊕

(⨁
s∈S Xs,

⨁
t∈T Yt

)
is defined as(

Ω, ∅
)

where Ω(A) = ∅ ⊆ T for every finite subset A ⊆ S. In particular, this gives

HomC⊕(0C⊕ , 0C⊕) =

⎧⎪⎨⎪⎩ The equivalence

class of
(
Ω, ∅

)
⎫⎪⎬⎪⎭ . (2.33)

Definition 2.34. We define direct sums in C⊕ as follows. Given a pair of objects⨁
s∈S Xs and

⨁
t∈T Yt of C⊕, we have an object

⨁
a∈S⊔T Aa where

Aa =

⎧⎪⎨⎪⎩ Xa if a ∈ S

Yt if a ∈ T
,
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with projection and inclusion morphisms pS, pT , iS, iT satisfying

pS ◦ iS = Id⨁
s∈S Xs , pT ◦ iT = Id⨁

t∈T Yt , (2.35)

iS ◦ pS + iT ◦ pT = Id⨁
a∈S⊔T Aa , (2.36)

and defined as:

pS =
(
πS, {IdXa}a∈S⊔T

)
∈ HomC⊕

( ⨁
a∈S⊔T

Aa,
⨁
s∈S

Xs

)
,

pT =
(
πT , {IdYa}a∈S⊔T

)
∈ HomC⊕

( ⨁
a∈S⊔T

Aa,
⨁
t∈T

Yt

)
,

iS =
(
ιS, {IdXs}s∈S

)
∈ HomC⊕

(⨁
s∈S

Xs,
⨁

a∈S⊔T

Aa

)
,

iT =
(
ιT , {IdYt}t∈T

)
∈ HomC⊕

(⨁
s∈S

Xs,
⨁

a∈S⊔T

Aa

)

where

• πS(A) = {a ∈ A | a ∈ S} ⊆ S for any finite subset A ∈ S ⊔ T ;

• πT (A) = {a ∈ A | a ∈ T} ⊆ T for any finite subset A ∈ S ⊔ T ;

• ιS(B) = B ⊆ S ⊔ T for any finite subset B ⊆ S;

• ιT (C) = C ⊆ S ⊔ T for any finite subset C ⊆ T .

Proposition 2.37. The elements of Definitions 2.29, 2.32 and 2.34 make C⊕ an

additive K-linear category. In particular:

• the addition (2.30) and scalar multiplication (2.31) are compatible with the

equivalence relation ∼ in both arguments;

• the scalar multiplication is distributive with respect to the addition;
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• the Hom-spaces of C⊕ form K-vector spaces with the zero morphisms (Ω, ∅)

and where the inverse of a morphism (α, {fs,t}) is just (α, {−fs,t});

• the composition of morphisms in C⊕ is K-bilinear;

• the equalities (2.33), (2.35)and (2.36) indeed hold.

Proof: See proof of Proposition 3.6 of [AR 2018].

Proposition 2.38. Let C be an additive category. In the additive category C⊕,

arbitrary infinite coproducts exist. Let
(⨁

s∈Si
X i

s

)
i∈I

be a family of objects in C⊕;

define their coproduct as the object
⨁

a∈
⨆

i∈I Si
Aa where

Aa = X i0
a for a ∈ Si0 ⊆

⨆
i∈I

Si .

The structural injections are given by

injSi0
=
(
ιSi0

, {Id
X

i0
s
}s∈Si0

)
∈ HomC⊕

⎛⎝ ⨁
s∈Si0

X i0
s ,

⨁
a∈

⨆
i∈I Si

Aa

⎞⎠
where ιSi0

(B) = B ⊆
⨆

i∈I Si for any finite subset B ⊆ Si0 .

Proof: This is Proposition 3.8 of [AR 2018].

Fix C to be aK-linear category. The above results show that C⊕ also has a natural

K-linear and additive structure. This section’s last results are meant to justify the

choice of “direct sum completion” to qualify the construction C⊕ with respect to C.

Definition 2.39. We define an inclusion functor I : C→ C⊕ as follows:

X ↦−→
⨁
0∈{0}

X0 where X0 = X ,

[X
f→ Y ] ↦−→

(
Id{0}, {f0,0 = f}0∈{0}0∈{0}

)
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Proposition 2.40. The inclusion functor I is fully faithful and K-linear. In other

words, there are natural K-linear bijections

HomC⊕

(
I(X), I(Y )

)
= HomC(X, Y ) .

Moreover, every
⨁

s∈S Xs ∈ Ob(C⊕) is a coproduct of its terms I(Xs) ∈ Ob(C⊕).

Proof: See proof of Proposition 3.10 of [AR 2018].

2.2.2 Monoidal Structure on C⊕

In this section, let C denote a K-linear monoidal category with tensor product ⊗,

associativity isomorphisms {aX,Y,Z}X,Y,Z∈Ob(C) and unit (1, l, r). The goal of this

section is to define a natural monoidal structure on C⊕.

Definition 2.41. A tensor product on ⊗C⊕ : C⊕ × C⊕ → C⊕ is defined as follows:

• it sends a pair of objects
(⨁

s∈S Xs

⨁
t∈T Yt

)
to the object

⨁
(s,t)∈S×T (Xs⊗C

Yt);

• it sends a pair of morphisms
(
α, {fs,s̃}s̃∈α(s)s∈S

)
,
(
β, {gt,t̃}

t̃∈β(t)
t∈T

)
to the mor-

phism described by

α⊗ β :
{
(si, ti)

}n
i=1
↦−→

n⋃
i=1

(
α(si)× β(ti)

)
, (2.42)

{
fs,s̃ ⊗ gt,t̃

}(s̃,t̃)∈α(s)×β(t)=
(
α⊗β
)
(s,t)

(s,t)∈S×T
. (2.43)

Note that the rule ∅ × A = ∅ for any set A is assumed in the above.
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Definition 2.44. Let
⨁

s∈S Xs,
⨁

t∈T Yt,
⨁

r∈R Zr ∈ Ob(C⊕). Associativity mor-

phisms for the tensor product ⊗C⊕ are defined as follows:

a
C⊕
(⊕SXs,⊕TYt,⊕RZr)

=(
α :
{(

(si, ti), ri)
)}n

i=1
↦→
{(
si, (ti, ri)

)}n

i=1
,
{
aXs,Yt,Zr

}(
(s,t),r)

)
∈(S×T )×R

)
.

Definition 2.45. We define a unit object 1C⊕ = I(1) =
⨁

0∈{0} 10 where 10 is

simply 1 ∈ Ob(C) and we define a left unit lC⊕
− by

l
C⊕⨁

s∈S Xs
=
(
α : {(0, si)}ni=1 ↦→ {si}ni=1,

{
lXs

}s∈α(0,s)
(0,s)∈{0}×S

)
,

in HomC⊕

(
1C⊕ ⊗

⨁
s∈S Xs,

⨁
s∈S Xs

)
. Right units are defined similarly.

Proposition 2.46. The elements of Definitions 2.41, 2.44, 2.45 define a monoidal

structure on C⊕. In particular:

• ⊗C⊕ is a bifunctor C⊕ × C⊕ → C⊕;

• (1C⊕ , l
C⊕
− , r

C⊕
− ) is a unit for this tensor product;

• the isomorphisms aC⊕
−,−,− are well defined and trinatural;

• the pentagon and triangle axioms are satisfied.

Proof: See proof of Proposition 3.14 of [AR 2018].

The proof of the following natural proposition is then straightforward.

Proposition 2.47. The inclusion functor I : C → C⊕ from Definition 2.39 is

monoidal.

Proof: Long but straightforward at this point.
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2.2.3 Braiding and Twist on C⊕

In this subsection, letC denote a braided,K-linear and monoidal category with braid-

ings {cX,Y }X,Y ∈Ob(C) and possibly with twist isomorphisms {θX}X∈Ob(C) satisfying

the balancing axiom θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y for every X, Y ∈ ObC.

Definition 2.48. Let
⨁

s∈S Xs,
⨁

t∈T Yt ∈ Ob(C⊕). Braiding isomorphisms in C⊕

are:

c
C⊕
(⊕SXs,⊕TYt)

=

(
α :
{
(si, ti)

}n

i=1
↦→
{
(ti, si)

}n

i=1
,
{
cXs,Yt

}
(s,t)∈S×T

)
.

Definition 2.49. If C has twist isomorphisms, let
⨁

s∈S Xs ∈ Ob(C⊕). Twist

isomorphisms in C⊕ are:

θ
C⊕
(
⨁

s∈S Xs)
=

(
Idf.s.(S),

{
θXs

}
s∈S

)
.

Proposition 2.50. The braiding and twist of Definitions 2.48 and 2.49 makes C⊕ a

braided K-linear monoidal category (with twists if C has twists). In particular:

• the braiding c
C⊕
−,− and twist θC⊕

− are natural isomorphisms in C⊕ (in every

argument);

• the hexagon and balancing axioms are satisfied.

Proof: See proof of Proposition 3.18 of [AR 2018].

Finally, the following (straightforward) proposition motivates the choice of the

word completion for C⊕ in the context of braided monoidal categories:

Proposition 2.51. The inclusion functor I : C → C⊕ of Definition 2.39 is braided

monoidal and preserves twist.
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With this setup, a braided K-linear category C with twists can be replaced by

C⊕ where infinite direct sums are needed. We will make use of the framework C⊕

in the following section to illustrate how it matches with what one would expect.

2.3 Application: The Even Lattice Vertex Operator

Algebra From Simple Heisenberg Currents

In this section, we make use of the direct sum completion framework in order to

realise the usual module category of an even lattice vertex operator algebra as a

module category for an algebra object in C⊕. This serves as an illustration of the

works presented in [CKM 2017] and [CKL 2015] in the context of well understood

basic algebras where the need for dealing with infinite direct sums is also needed.

Let H be the rank 1 Heisenberg vertex operator algebra and let VL be a rank

1 lattice vertex operator algebras (see Appendix A for a review). The goal of

this section is to explicitly realise the category of untwisted weak VL-modules

as the category Rep0 VL where VL interpreted as an algebra object in a direct sum

completion of an appropriate category ofH-modules (see Appendix B for a review).

By the methods of [CKM 2017], we will determine the braided monoidal structure

on the skeleton of category of untwisted weak VL-modules.

In this section, there will be three important categories to distinguish:

• C : the skeleton the category of H-modules described in Appendix A;

• C⊕ : the direct sum completion of C as described in the previous section;

• Rep0 VL : the category of untwisted weak modules for the algebra object

VL ∈ ObC⊕. Objects in this category are those for which the double braiding
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with VL is the identity.

The tensor products of the above three categories will be noted by ⊗, ⊗C⊕ and ⊗A,

respectively.

2.3.1 The Commutative Algebra Object VL in C⊕

Let L =
√
2N Z be an even lattice and consider the even lattice vertex operator

algebra VL. It is well known that the simple vertex operator algebra VL decomposes

as
⨁
ℓ∈L

Fℓ when seen as anH-module. Henceforth, we will interpret VL as an algebra

object in C⊕ as follows:

The object VL =
⨁
ℓ∈L

Fℓ ∈ ObC⊕ can be seen as a simple commutative algebra

object by fixing multiplication an unit morphisms in C⊕1. Since Fock spaces Fλ

with λ ∈ R are the simpleH-modules of C, they are also the simple modules in C⊕.

By Schur’s Lemma, we can interpret component morphisms of C⊕ between Fock

spaces as complex numbers and so the multiplication and unit maps of the algebra

object VL must be of the following form:

µ ∼
({

(ℓ1, ℓ2)
}
↦→ {ℓ1 + ℓ2}, {µℓ1,ℓ2}(ℓ1,ℓ2)∈L2

)
∈ HomC⊕(VL ⊗C⊕ VL, VL) ,

u ∼
(
{0} ↦→ {0}, {u0}0∈{0}

)
∈ HomC⊕(F0, VL)

where µℓ1,ℓ2 ∈ C× for all ℓ1, ℓ2 ∈ L and where we can set u0 = 1.

Note that having all the scalars µℓ1,ℓ2 non-zero is important to ensure VL is indeed

a simple algebra. Setting the scalar u0 = 1 simply means that the map u is taken to

be the natural inclusion H = F0 ⊂
⨁
ℓ∈L

Fℓ = VL.

The associativity, commutativity and unit requirements for VL to be an algebra

1Note that since #L =∞, we need to use the direct sum completion C⊕ here.
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object forces the following relations:

(associativity) µℓ1,ℓ2µℓ1+ℓ2,ℓ3 = µℓ1,ℓ2+ℓ3µℓ2,ℓ3 , (2.52)

(commutativity) µℓ1,ℓ2 = eπi(ℓ1·ℓ2)µℓ2,ℓ1 , (2.53)

(unit) µℓ,0 = 1 , (2.54)

(unit) µ0,ℓ = 1 (2.55)

for all ℓ, ℓ1, ℓ2, ℓ3 ∈ L. In other words, the multiplication map µ gives rise to a

2-cocycle
K(µ) : L× L C×

(ℓ1, ℓ2) µℓ1,ℓ2

. (2.56)

We can make sense of K(µ) as a cocycle of the usual group cohomology set2

H2(L2;C×). However, in [DF 2012], the authors prefer to seeK(µ) in another type

of cohomology set defined for abelian groups. Theorem 4.5 of [DF 2012] shows that

with an even latticeL =
√
2NZ, the requirements (2.52)–(2.55) fix the cohomology

class of µ ∈ H2(L2;C×).

Remark 2.57. One can show that cohomologous cocycles that satisfy the require-

ments (2.52)–(2.55) lead to isomorphic algebra objects (see [CGR 2017] for a justifi-

cation for the even lattice case). In [AR 2018], we deliberately chose to fix µℓ1,ℓ2 = 1

for all ℓ1, ℓ2 ∈ L in order to facilitate all forthcoming computations. However, the

work presented in this thesis maintains µ a general cocycle.

Remark 2.58. Note that in C, the twist θFℓ
for any ℓ ∈ L =

√
2N Z is trivial because

θF√
2Nr

= eπi(
√
2Nr)2 IdF√

2Nr
= e2πiN

2r2 IdF√
2Nr

(2.59)

2H2(L2;C×) is the second group cohomology of the abelian group L with values in C×, which
is a trivial L-module.
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where r ∈ Z. It follows that the twist of VL can be seen as an object of C⊕ is

θ
C⊕
VL

= IdVL
according to Definition 2.49. This fact will allow to make sense of a

natural twist on θRep0 VL

VL
on the category Rep0 VL.

2.3.2 Objects and Tensor Products in Rep0 VL

Consider the algebra object VL =
⨁

ℓ∈L Fℓ as of Section 2.3.1. Recall that C is a

semisimple, skeletal and strict category (see Appendix B).

By applying Theorem 4.5 of [CKM 2017] to our setting, we obtain that all simple

objects of Rep0 VL are induced by simple objects of Cloc. Recall that Cloc is the full

subcategory of C consisting of objects that induce to Rep0 VL. Thus, we arrive at

the following result

Lemma 2.60. The simple modules of Rep0 VL are can be realised by the induction

of Fock spaces with highest weight contained in L∗.

Proof: Since C is semisimple with simple modules being Fock spaces with real

highest weight, it is sufficient to check which Fock spaces Fλ with λ ∈ R are

induced in Rep0 VL. By Theorem 3.15 of [CKL 2015], F(Fλ) ∈ ObRep0 VL if

and only if the double braiding (or monodromy) cFλ,F√
2N
◦ cF√

2N ,Fλ
= IdF√

2N+λ

where F√
2N is a simple current sufficient to build VL. Since the two braidings are

cFλ,F√
2N

= cF√
2N ,Fλ

= eπiλ
√
2N IdF√

2N+λ
, we conclude that Fλ induces to Rep0 VL

if and only if e2πiλ
√
2N = 1, which means that λ should be in L∗, the dual of L.

Q.E.D.

Remark 2.61. Fix λ ∈ L∗ so that F(Fλ) =
⨁
ℓ∈L

Fℓ⊗Fλ is in ObRep0 VL. Just as for

the multiplication map of VL (see Section 2.3.1), Schur’s Lemma and the notion of

62



morphisms in C⊕ allow to explicit the VL-action map corresponding to F(Fλ) as:

({
(ℓ1, ℓ2)

}
↦→ {ℓ1 + ℓ2}, {µℓ1,ℓ2}(ℓ1,ℓ2)∈L2

)
∈ HomC⊕

(
VL ⊗C⊕ F(Fλ),F(Fλ)

)
.

We now proceed to study the tensor product of induced modules and to clas-

sify the simple modules that the simple modules of Rep0 VL. It was proven in

[CKM 2017] (see also Theorem B.16) that F is a tensor functor so we know there

should be natural VL-isomorphisms

F (Fα)⊗A F (Fβ) ∼= F (Fα+β) (2.62)

for all α, β ∈ L∗.

As we expect to retrieve the well known fact that the isomorphism classes of

simple VL-modules are in bijection with the set

S =
{
F(F a√

2N
) | a ∈ {0, . . . , 2N − 1}

}
, (2.63)

we will prove the following important Lemma:

Lemma 2.64. Let λ ∈ L∗ and ℓ ∈ L. Then F (Fλ+ℓ) ∼= F (Fλ) as a VL-module.

Proof: In the skeletal category C, we have Fλ+ℓ = Fℓ ⊗ Fλ. Thus, for any ℓ1 ∈ L,

we can write:

Fℓ1 ⊗ Fλ+ℓ
∼= Fℓ1 ⊗ Fℓ ⊗ Fλ

∼= Fℓ1+ℓ ⊗ Fλ .

Trying to reproduce the above line in the definition of a VL-module isomorphism

that is hopefully compatible with the VL-actions, one defines:

Shiftℓ =
(
{ℓ1} ↦→ {ℓ1 + ℓ}, {µℓ1,ℓ}ℓ1∈L

)
∈ HomC⊕

(
F(Fλ+ℓ),F(Fλ)

)
. (2.65)
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Obviously, the morphism of C⊕ that is Shiftℓ is invertible with inverse Shift−ℓ. At

this point, it is sufficient to show that Shiftℓ intertwines the VL-actions on these two

induced modules (see Remark 2.61). For this, recall that C⊕ is a strict monoidal

category because C is in the first place. It follows that in

HomC⊕

(
VL ⊗C⊕ F(Fλ+ℓ),F(Fλ)

)
,

we have the following relations:

Shiftℓ ◦ µ =
({

(ℓA, ℓ1)
}
↦→ {ℓA + ℓ1 + ℓ}, {µℓA,ℓ1 · µℓA+ℓ1,ℓ}(ℓA,ℓ1)∈L2

)
=
({

(ℓA, ℓ1)
}
↦→ {ℓA + ℓ1 + ℓ}, {µℓ1,ℓ · µℓA,ℓ1+ℓ}(ℓA,ℓ1)∈L2

)
= µ ◦ Shiftℓ

where we make use of the cocycle property (2.52) of K(µ). We conclude that

F(Fλ+ℓ) ∼= F(Fλ) in Rep0 VL.

Q.E.D.

Corollary 2.66. The set S of line (2.63) is a complete set of representatives of

isomorphism classes of simple VL-modules without redundancies.

Proof: It is sufficient to show that for all α, β ∈ L∗, we have F (Fα) ∼= F (Fβ) if

and only if α ≡ β ∈ L∗/L.

By Lemma 2.64, α ≡ β ∈ L∗/L implies that the two modules are isomorphic.

However when α ̸≡ β, Schur’s Lemma and the definition of morphisms in C⊕

implies that all component maps between the two induced modules at the level of

Fock spaces are 0, and so is any such morphism in Rep0A.

Q.E.D.

Now that the simple modules of Rep0 VL are classified in Corollary 2.66, we
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turn to constructing explicit VL-isomorphisms that realise (2.62). This is crucial to

explicitly compute the associativity isomorphisms for the skeleton of Rep0 VL with

simple objects S that will be considered in the subsequent subsection. To achieve a

meaningful understanding of (2.62), we will need the following analysis.

For α, β ∈ L∗, we would like to clarify the definition of the tensor product

F (Fα)⊗VL
F (Fβ) and compare it to F(Fα+β). Since the resulting object of a tensor

product ⊗VL
is really a quotient of the corresponding object resulting of ⊗C⊕ , let’s

start by writing out their tensor product in C⊕:

F (Fα)⊗C⊕ F (Fβ) =
⨁

ℓ1,ℓ2∈L

(Fℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ) , (2.67)

F(Fα+β) =
⨁
ℓ3∈L

(Fℓ3 ⊗ Fα+β) . (2.68)

The above two decompositions strongly suggest that the passage from line (2.67)

to (2.68) can be achieved by somehow adding labels ℓ1 and ℓ2 to produce a corre-

sponding label ℓ3. However we need to write out the action maps mleft and mright

that are identified with each other in Definition B.8. In the appropriate morphism

spaces, one can write:

mleft =
({

(ℓ1, ℓA, ℓ2)
}
↦→
{
(ℓA + ℓ1, ℓ2)

}
,

{
µℓA,ℓ1 · e

πi
(
(ℓ1+α)·ℓA

)}
(ℓ1,ℓA,ℓ2)∈L3

)
,

(2.69)

mright =
({

(ℓ1, ℓA, ℓ2)
}
↦→
{
(ℓ1, ℓA + ℓ2)

}
, {µℓA,ℓ2}(ℓ1,ℓA,ℓ2)∈L3

)
. (2.70)

We then fix ℓ1, ℓ2, ℓ̃1, ℓ̃2 ∈ L such that ℓ1 + ℓ2 = ℓ̃1 + ℓ̃2. According to

Definition B.9, the above left and right actions maps have indicates us that in

the quotient space F (Fα) ⊗VL
F (Fβ), one must view as equivalent the following
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operations on components of F (Fα)⊗C⊕ F (Fβ):

• multiplying Fℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ by µℓ1−ℓ̃1,ℓ̃1
eπi
(
(ℓ̃1+α)·(ℓ1−ℓ̃1)

)
;

• multiplying Fℓ̃1
⊗ Fα ⊗ Fℓ̃2

⊗ Fβ by µℓ̃2−ℓ2,ℓ2
.

(2.71)

This means that the components Fℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ and Fℓ̃1
⊗ Fα ⊗ Fℓ̃2

⊗ Fβ of

F (Fα)⊗C⊕ F (Fβ) are redundant in the quotient F (Fα)⊗VL
F (Fβ). Consequently,

we can write:

F (Fα)⊗VL
F (Fβ) =

⨁
(ℓ1,ℓ2)∈ L2

ker(+)

(Fℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ)

∼=
⨁
t∈L

(Ft ⊗ Fα ⊗ Fβ) (2.72)

=
⨁
t∈L

(Ft ⊗ Fα+β)

= F (Fα+β) .

The map at line (2.72) should constitute an VL-module isomorphism. The following

proposition formalises this result:

Lemma 2.73. The the VL-module isomorphism needed at line (2.72) can be defined

as follows:

fα,β =
({

(ℓ1, ℓ2)
}
↦→ {ℓ1 + ℓ2}, {µℓ1,ℓ2e

πiαℓ2}
(ℓ1,ℓ2)∈ L2

ker(+)
=L

)
.

Note that thisVL-isomorphism corresponds to that of Theorem 2.59 (2) of [CKM 2017].

Proof: This is also Lemma 4.6 of [AR 2018] when the cocycle K(µ) is taken to be

trivial. See also Proposition 5.7 of [DF 2012]. To show that fα,β is well defined,

we must compare its effects on two equivalent components of F (Fα) ⊗VL
F (Fβ).
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With the same notation as of line (2.71), we see that fα,β is well defined if and only

if

µℓ1,ℓ2e
πi(α·ℓ2) = µℓ̃1,ℓ̃2

eπi(α·ℓ̃2) ·
µℓ̃2−ℓ2,ℓ2

µℓ1−ℓ̃1,ℓ̃1

eπi
(
(ℓ̃1+α)·(ℓ1−ℓ̃1)

)
. (2.74)

Recall that α, β ∈ L∗ and that ℓ1, ℓ2, ℓ̃1, ℓ̃2 ∈ L are such that ℓ1 + ℓ2 = ℓ̃1 + ℓ̃2. We

proceed to check (2.74) by writing:

1 =
µℓ̃1,ℓ̃2

µℓ̃2−ℓ2,ℓ2

µℓ1,ℓ2µℓ1−ℓ̃1,ℓ̃1

eπi
(
(ℓ̃1+α)·(ℓ1−ℓ̃1)+(α·ℓ̃2)−(α·ℓ2)

)
⇔ 1 =

µℓ̃1,ℓ̃2
µℓ̃2−ℓ2,ℓ2

µℓ1,ℓ2µℓ1−ℓ̃1,ℓ̃1

eπi(ℓ̃1·ℓ1)

⇔ 1 =
µℓ̃1,ℓ̃2

µℓ̃2−ℓ2,ℓ2

µℓ1,ℓ2µℓ1−ℓ̃1,ℓ̃1

eπi
(
ℓ̃1·(ℓ1−ℓ̃1)

)
⇔ 1 =

µℓ̃1,ℓ̃2
µℓ̃2−ℓ2,ℓ2

µℓ1−ℓ̃1,ℓ1

µℓ1,ℓ2µℓ1−ℓ̃1,ℓ̃1
µℓ1,ℓ1−ℓ̃1

⇔ 1 =
µℓ̃1,ℓ̃2

µℓ̃2−ℓ2,ℓ2

µℓ1,ℓ2µℓ1,ℓ1−ℓ̃1

where at the last step, one sets A = ℓ̃1, B = ℓ1 − ℓ̃1 = ℓ̃2 − ℓ2 and C = ℓ2 and

writes down the cocycle property µA,BµA+B,C = µA,B+CµB,C to conclude equality.

This check means that fα,β is a well defined morphism in C⊕.

It remains to be shown that fα,β intertwines the VL-actions on and that it is

both injective and surjective. The morphism fα,β will be one also in Rep0 VL if the

following diagram of VL-actions commutes:

FℓA ⊗ Fℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ FℓA+ℓ1 ⊗ Fα ⊗ Fℓ2 ⊗ Fβ

FℓA ⊗ Fℓ1+ℓ2 ⊗ Fα+β FℓA+ℓ1+ℓ2 ⊗ Fα+β

µℓA,ℓ1

µℓ1,ℓ2e
πi(α·ℓ2) µℓA+ℓ1,ℓ2e

πi(α·ℓ2)

µℓA,ℓ1+ℓ2

.

The above diagram does indeed commute thanks to the cocycle property of K(µ).

Finally, let’s address the injectivity and surjectivity of fα,β . They both simply follow
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from the facts that: 1) at the level of Fock spaces, the component maps of fα,β are

isomorphisms (scalar multiples of the identity), and 2) that there is a natural bijection

+ : L2/ ker(+)
1:1←→ L ,

between the index sets of the domain and codomain direct sums of f .

Q.E.D.

2.3.3 Associativity, Braidings and Twists in Rep0A

In this last section, we recover the structure of the skeleton of the monoidal cate-

gory Rep0 VL: we will compute braiding, twist, duals and associativity morphisms

associated to triples simple modules of the set S defined in (2.63). In order to do so,

we have to work in Rep0 VL while making sure to keep manipulating objects from

S at every step.

Here are a few technical concepts that will be useful to stay within S. Consider

the following short exact sequences of abelian groups:

0→ L→ L∗ g→ L∗/L→ 0

where g is the quotient map. This choice of complete set of representatives S as in

line (2.63) effectively corresponds to the following choice of a section of the above

short exact sequence:

s : L∗/L L∗

λ
a√
2N

where a ∈ {0, ... , 2N − 1} and g
(

a√
2N

)
= λ .

From the same short exact sequence, one has an isomorphism L∗ ∼= L ⊕ (L∗/L)

68



as abelian groups. The section s gives us a nice way to precise this isomorphism.

Since s is injective, one has

L⊕ s(L∗/L) ∼= L∗ , (2.75)

and we can make sense of the addition in L∗ on the left-hand side of (2.75) by

defining a cocycle tS as follows:

(ℓ1, α) + (ℓ2, β) =
(
ℓ1 + ℓ2 +

tS(α,β)  
s(α) + s(β)− s(α + β), α + β

)
∈ L⊕ s(L∗/L) .

Note that tS : L∗/L× L∗/L→ L is a well defined group 2-cocycle. Explicitly, the

cocycle tS takes values in the set
{
0,
√
2N
}

:

tS : (α, β) ↦−→

⎧⎪⎨⎪⎩
√
2N if s(α) + s(β) >

√
2N

0 if s(α) + s(β) ≤
√
2N

. (2.76)

Let’s now make sense of the braiding morphisms on the skeleton of Rep0 VL

given by S. By Lemma 2.73, we know how to handle the tensor isomorphisms

(2.62). Plus, we know that F is a braided tensor functor, so the braiding on the

objects of Cloc should induce to a braiding on Rep0 VL. First, we check that the

morphism c
C⊕
F(Fα),F(Fβ)

of C⊕ is well defined on the tensor product of ⊗VL
. Second,

we consider the following diagram:

F(Fα)⊗ F(Fβ) F(Fα+β) F
(
Fα+β−tS(α,β)

)

F(Fβ)⊗ F(Fα) F(Fα+β) F
(
Fα+β−tS(α,β)

)
Shift−tS(α,β)(fα,β)−1

c
C⊕
F(Fα),F(Fβ)

fβ,α

(
Shift−tS(α,β)

)−1

.

Let’s compute the scalar multiple of the identity corresponding to a fixed single
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component from the above diagram. To do so, fix ℓstart = ℓ1 + ℓ2 with ℓ1, ℓ2 ∈ L:

µℓstart,−tS(α,β) ·
1

µℓ1+tS(α,β),ℓ2
eπiαℓ2

· eπi
(
ℓ1+tS(α,β)+α

)
(ℓ2+β)

· µℓ2,ℓ1+tS(α,β)e
πiβ
(
ℓ1+tS(α,β)

)
· 1

µℓstart,−tS(α,β)

= eπi(−αℓ2)eπi
(
ℓ1+tS(α,β)

)
ℓ2eπi(−αℓ2)

· eπi
(
ℓ1+tS(α,β)+α

)
(ℓ2+β)eπiβ

(
ℓ1+tS(α,β)

)
by (2.53)

= eπiαβ .

This scalar then corresponds to that of the induced VL-morphism F(c
C⊕
Fα,Fβ

). Note

that the previous computations would have given the same result should we chose

to group tS(α, β) with ℓ2 instead of ℓ1. We conclude that one can define a braiding

on the skeleton of Rep0 VL by setting

cRep0 VL

F(Fα),F(Fβ)
= F(c

C⊕
Fα,Fβ

) . (2.77)

Next, let’s make sense of a compatible twist isomorphisms for the skeleton of S.

Recall Remark 2.58 in which we show that θC⊕
VL

= IdVL
. Fix a ∈ {0, . . . , 2N−1} so

that F
(
F a√

2N

)
∈ S. The natural candidate is just the twist of the underlying object
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of F
(
F a√

2N

)
in C⊕. By the balancing axiom in C⊕, we can write

θ
C⊕

VL⊗C⊕F

(
F a√

2N

) =

⎛⎝cC⊕

VL,F

(
F a√

2N

) ◦ cC⊕

F

(
F a√

2N

)
,VL

⎞⎠ ◦
⎛⎝θC⊕

VL
⊗ θC⊕

F

(
F a√

2N

)
⎞⎠

=

⎛⎝θC⊕
VL
⊗ θC⊕

F

(
F a√

2N

)
⎞⎠ since F

(
F a√

2N

)
∈ Rep0 VL

= 1⊗ θC⊕

F

(
F a√

2N

) since θC⊕
VL

= IdVL

= F

(
θCF a√

2N

)
.

Therefore, the twist isomorphisms θC⊕
− automatically commute with the VL-actions

on the induced modules. By the discussion leading up to Lemma 2.60, the induced

modules constitute all the modules of Rep0 VL. We conclude that one can simply

define a twist θRep0 VL
− on Rep0 VL as follows:

θRep0 VL

F

(
F a√

2N

) = F

(
θCF a√

2N

)
. (2.78)

This twist then satisfies the banalcing axiom in Rep0 VL since it does in C⊕ and the

braiding on Rep0 VL is also induced.

We are now ready to compute the associativity morphisim of the skeleton of

Rep0 VL with simple objects labelled by the set S of line (2.63).

Proposition 2.79. Let λ1, λ2, λ3 ∈ { a√
2N
}2N−1
a=0 so that F(Fλ1), F(Fλ2) F(Fλ3) are

all three in the set S. Then the associativity map is as follows:

aRep0 A
F(Fλ1

),F(Fλ2
),F(Fλ3

) = (−1)λ1·tS(λ2,λ3) Id
F
(
Fs(λ1+λ2+λ3)

) .

Proof: In our computation similar to that of Proposition 4.5 of [AR 2018], we must
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now take into account the scalars produced by the cocycle K(µ) of line (2.56).

I a) Applying fλ1,λ2;

b) then µℓ1+ℓ2,tS(λ1,λ2)
;

c) then f s(λ1+λ2),λ3;

d) and finally µℓ1+ℓ2+ℓ3+tS(λ1,λ2),tS(λ1+λ2,λ3)
:

(Fℓ1⊗Fλ1)⊗ (Fℓ2 ⊗ Fλ2)⊗ (Fℓ3 ⊗ Fλ3)

∼= (Fℓ1+ℓ2 ⊗ Fλ1+λ2)⊗ (Fℓ3 ⊗ Fλ3)

∼=
(
Fℓ1+ℓ2+c(λ1,λ2)

⊗ Fs(λ1+λ2)

)
⊗ (Fℓ3 ⊗ Fλ3)

∼= Fℓ1+ℓ2+c(λ1,λ2)+ℓ3
⊗ Fs(λ1+λ2)+λ3

∼= Fℓ1+ℓ2+ℓ3+tS(λ1,λ2)+tS(λ1+λ2,λ3)
⊗ Fs(λ1+λ2+λ3)

.

The operations a), b), c), d) above correspond to multiplying by the following

scalar:

µℓ1,ℓ2e
πi(λ1·ℓ2)µℓ1+ℓ2,tS(λ1,λ2)

µℓ1+ℓ2+tS(λ1,λ2),ℓ3

· eπi
(
s(λ1+λ2)·ℓ3

)
µℓ1+ℓ2+ℓ3+tS(λ1,λ2),tS(λ1+λ2,λ3)

.

II a) Applying fλ2,λ3;

b) then µℓ2+ℓ3,tS(λ2,λ3)
;

c) then fλ1,s(λ2+λ3);
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d) and finally µℓ1+ℓ2+ℓ3+tS(λ2,λ3),tS(λ1,λ2+λ3)
;

(Fℓ1⊗Fλ1)⊗ (Fℓ2 ⊗ Fλ2)⊗ (Fℓ3 ⊗ Fλ3)

∼= (Fℓ1 ⊗ Fλ1)⊗ (Fℓ2+ℓ3 ⊗ Fλ2+λ3)

∼= (Fℓ1 ⊗ Fλ1)⊗
(
Fℓ2+ℓ3+tS(λ2,λ3)

⊗ Fs(λ2+λ3)

)
∼= Fℓ1+ℓ2+ℓ3+tS(λ2,λ3)

⊗ Fλ1+s(λ2+λ3)

∼= Fℓ1+ℓ2+ℓ3+tS(λ2,λ3)+tS(λ1,λ2+λ3)
⊗ Fs(λ1+λ2+λ3)

.

The operations a), b), c), d) above correspond to multiplying by the following

scalar:

µℓ2,ℓ3e
πi(λ2·ℓ3)µℓ2+ℓ3,tS(λ2,λ3)

·

µℓ1,ℓ2+ℓ3+tS(λ2,λ3)
e
πi

(
λ1·
(
ℓ2+ℓ3+tS(λ2,λ3)

))
µℓ1+ℓ2+ℓ3+tS(λ2,λ3),tS(λ1,λ2+λ3)

.

III The associativity scalar is then the quotient the scalar of I by that of II:

µℓ1,ℓ2µℓ1+ℓ2,tS(λ1,λ2)
µℓ1+ℓ2+tS(λ1,λ2),ℓ3

µℓ1+ℓ2+ℓ3+tS(λ1,λ2),tS(λ1+λ2,λ3)

µℓ2,ℓ3µℓ2+ℓ3,tS(λ2,λ3)
µℓ1,ℓ2+ℓ3+tS(λ2,λ3)

µℓ1+ℓ2+ℓ3+tS(λ2,λ3)tS(λ1,λ2+λ3)

·

e
πi
(
λ1·ℓ2+s(λ1+λ2)·ℓ3

)
−
(
λ2·ℓ3+λ1·

(
ℓ2+ℓ3+tS(λ2,λ3)

))
. (2.80)

where a number of simplifications (omitted here) can be made thanks to

the cocycle property (2.52) of K(µ). After performing the much needed

simplifications at line (2.80), we obtain the following scalar:

µc(λ1,λ2),c(λ1+λ2,λ3)

µc(λ2,λ3),c(λ1,λ2+λ3)

(−1)λ1·c(λ2,λ3) . (2.81)
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As a check that the simplifications of (2.80) really lead to (2.81), observe that

(2.81) matches perfectly the associativity scalar computed in Proposition A.2

of [DF 2012].

IV Given the description of the cocycle tS from line (2.76), we can check explicitly

that the quotient of cocycle values in line (2.81) is always equal to one. It

follows that the associativity scalar is precisely (−1)λ1·c(λ2,λ3).

Q.E.D.

Remark 2.82. The exponent of −1 in the associativity map of Proposition 2.79

makes sense. It is indeed an integer since λ3 ∈ L∗ and tS(λ2, λ3) ∈ L.

Finally, we can gather the scalars associated with associativity, braiding and

twists from Proposition 2.79 and Equations (2.77), (2.78) to state a result equivalent

to Theorem 4.7 of [AR 2018]:

Theorem 2.83. The skeleton of the semisimple categoryRep0 VL with simple objects

given by the set S of line (2.63) is a braided monoidal category with a twist. Its

tensor product is

F(Fx)⊗VL
F(Fy) = F(Fs(x+y))

where F(Fx), F(Fy) ∈ S and tS is as of line (2.76). This skeletal category has

associativity, braidings and twists given by

aVL

F(Fx),F(Fy),F(Fz)
= (−1)x·tS(y,z) IdF(Fs(x+y+z)) ,

cVL

F(Fx),F(Fy)
= eπixy IdF(Fs(x+y)) ,

θVL

F(Fx)
= eπix

2

IdF(Fx)

where F(Fx),F(Fy),F(Fz) ∈ S. Notice that the above associativity, braiding and

twist scalars match their respective analogues for VL seen as a vertex operator
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algebra.

Remark 2.84. Duals in Rep0 VL can also be induced from Cloc. We omit the details

here, but the interested reader may want to read Exercise 2.10.6 and Section 2.10 of

[EGNO 2015]. Recall that the dual of a Fock space Fλ in Cloc is given by F−λ and

that evaluation and coevaluation morphisms can be fixed in terms of scalar multiples

of the identity (the category Cloc is skeletal as well here).

Considering the duals of S in the skeleton of Rep0 VL effectively allows to

recover its ribbon category structure. One could even go further and deduce from

this picture the whole modular tensor structure of it. This includes categorical

traces, Hopf-links, the S-matrix and the famous Verlinde formula.
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Chapter 3

Modularity of Parafermion Vertex

Algebras

In this chapter, we establish the modular behaviour of the characters of the modules of

a certain category of representations for some parafermion vertex operator algebras.

Note that modularity properties are of notable significance in Conformal Field

Theory, see Chapter 10 of [DFMS 1997] for instance. The type of parafermion

vertex operator algebra studied here is logarithmic, which means that it has reducible

indecomposable modules, thus non-trivial extensions. This chapter’s main result is

especially important because within this logarithmic vector operator algebra setting,

it is precisely the type of modular behaviour expected of aC2-cofinite vertex operator

algebras. This gives very good reasons to conjecture that the family of extended

parafermions vertex operator algebras we study is a new family of examples of

logarithmic C2-cofinite vertex operator algebras. Note that this chapter includes the

main results of the article [ACR 2018] that has now been accepted for publication

in the journal Letters in Mathematical Physics.

We consider the category Ak of relaxed highest weight Lk(sl2)-modules and
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their spectral flow twists as in [CR 2012] and [CR 2013b]. This category allowed

the authors to establish modular properties and an adapted Verlinde formula that

predicts non-negative integral fusion rules for what would be the Grothendieck ring

of this category (see Appendix B). With the objective of constructing new examples

of C2-cofinite vertex operator algebras, we consider the Heisenberg commutant

Ck(sl2) = Com
(
H,Lk(sl2)

)
,

known as the parafermions and construct a big extension Bk(sl2) of Ck(sl2):

Lk(sl2) Ck(sl2) Bk(sl2) .
commutant ∞-extension (3.1)

Recall that C2-cofinite vertex operator algebras have a finite number of simple

modules whose characters have a certain modular behaviour. Tools were developed

in [CKLR 2016] to analyse the commutants of type Ck(sl2) including a Schur-Weyl

type duality result that establishes a correspondance of simple modules. From Ak,

one could then produce a family of Ck(sl2)-modules whose characters are terms of

known functions with good modular properties. Studying a big extension Bk(sl2)

effectively lowered the number of simple modules to a finite number. Under two

natural assumptions, we were able to analyse the finitely many simple characters of

the extended parafermions Bk(sl2) for k < 0 admissible. We show that the simple

Bk(sl2)-characters display the modular behaviour of a C2-cofinite vertex operator

algebra. Our conclusion is to conjecture that for all k < 0 admissible, Bk(sl2) are

C2-cofinite. In Chapter 4 we will prove that our conjecture holds for certain values

of k.

In the first section, we introduce a certain category Ak of Lk(sl2)-modules and
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its simple objects. We then introduce the parafermions algebras Ck(sl2) andBk(sl2),

a simple current extension of Ck(sl2) of infinite order. In the second section, we

compute characters of simple modules for Ck(sl2) that we obtain from the simple

Lk(sl2)-modules of Ak. Inducing the appropriate subset of the simple Ck(sl2)-

modules to untwisted Bk(sl2)-modules leaves us with finitely many simple Bk(sl2)-

module of which we determine the character. In the last section, we decompose

the finitely many simple characters of Bk(sl2) in terms of Jacobi-theta functions

and derivatives. By an explicit computation, we then check the closure of the

C[τ ]-span of characters under modular transformation. We end up with a finite

dimensional vector-valued modular form of which we also determine an upper

bound the dimension.

Notation

Throughout the chapter, the following notation will be employed:

• H ⊂ C is the upper-half plane of the complex numbers;

• k such that k + 2 ∈ Q>0\
{
1, 1

2
, 1
3
, 1
4
, . . .

}
is called an admissible level of the

affine vertex operator algebras associated to sl2;

• t = k + 2 = u
v

with gcd(u, v) = 1 where k ∈ Q is an admissible sl2 level;

• w = −kv = 2v − u is the numerator of k up to a sign; in the case where

k < 0 and is admissible that we will consider in the current chapter, this will

ensure w ∈ N;

• Vk(sl2) is the universal affine vertex operator algebra of level k associated to

the finite dimensional Lie algebra sl2(C);
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• Lk(sl2) is the simple quotient of Vk(sl2) with the inherited vertex operator

algebra structure; for k admissible, the kernel of the quotient map is generated

by a single singular vector while for non-admissible k, thenLk(sl2) = Vk(sl2);

• H is the Heisenberg vertex operator algebra generated by the field associated

to the Cartan subalgebra of sl2; note that H ⊂ Vk(sl2) also makes sense as a

subalgebra of Lk(sl2);

• h ⊂ sl2 is the Cartan subalgebra of sl2;

• Q = 2Z is the root lattice of sl2 that has been identified with 2Z;

• ⟨w⟩ ⋉ ⟨σ⟩ = Z2 ⋉ Z is the affine Weyl group of sl2; the generator w is the

finite dimensional Weyl group generator and σ is the spectral flow; the two

generators are subject to the relation wσw = σ−1;

• η(q) = q
1
24

∞∏
n=1

(1 − qn) is Dedekind’s η function; it converges to a modular

function on H.

3.1 The Extended Parafermions Bk(sl2)

In this section, we review relaxed highest weight modules for Lk(sl2) and their

spectral flow twists. We then define the main objects of this study: the parafermion

vertex operator algebras Ck(sl2) and Bk(sl2).

3.1.1 Relaxed Highest Weight Modules and Spectral Flow

We recall the basics of the vertex operator algebra Lk(sl2) from Appendix A and let

k be an admissible level. We will first consider the class of relaxed highest weight

Lk(sl2)-modules. Those will be induced relaxed highest weight modules for sl2
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Consider the following triangular decomposition of the Lie algebra ŝl2:

{xn | x ∈ sl2 and n < 0}  
N−

⊕{x0, κ | x ∈ sl2}  
T ∼= sl2⊕C.κ

⊕{xn | x ∈ sl2 and n > 0}  
N+

(3.2)

where κ is the central element.

Definition 3.3. Consider the triangular decomposition (3.2) of ŝl2. A relaxed highest

weight vector vλ of relaxed highest weight λ in an ŝl2-module is a vector such that

N+.vλ = 0 and h0 ∈ h ⊂ T acts as h0.vλ = λ(h0)vλ. For the rest of the chapter,

we will think of λ as the complex number λ(h0) ∈ C since the Cartan subalgebra

of sl2 is C.h0.

Remark 3.4. A usual highest weight vector for ŝl2 is then a relaxed highest weight

vector with the additional property that e0.vλ = 0.

Fix an admissible level k so that κ ∈ T always act as multiplication by k.

Simple ŝl2-modules of level k include the unique simple quotients L(λ) of the

Verma modules

V (λ) = U(N−)⊗U(T⊕N+) C.vλ ,

generated by a highest weight vector vλ of highest weight λ. However only few

among them turn out to make sense as modules for the simple affine vertex operator

algebra1 Lk(sl2). As shown in [AM 1995] and [DLM 1997], the allowed highest

weights λ for L(λ) compatible with the natural structure of Lk(sl2)-module are

those of the form

λr,s = (r − 1)− st (3.5)

where r ∈ {1, . . . , u− 1} and s ∈ {0, . . . , v − 1}. Throughout the chapter, we will

1This is due to the fact that the singular vector that generates the ideal Ising ⊂ Vk(sl2) has to act
as zero on L(λ).
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employ the following notation:

• Lr = the simple quotient L(λr,0) of the Verma module V (λr,0) for

r ∈ {1, . . . , u− 1};

• D+
r,s = the simple quotient L(λr,s) of the Verma module V (λr,s) for

r ∈ {1, . . . , u− 1} and s ∈ {0, . . . , v − 1}.

One of the main reasons for the notational distinction for whether s = 0 or s ̸= 0 is

that the T-module {x ∈ V (λr,s) | N+.x = 0} is an infinite dimensional T-module

for s ̸= 0 while it is a finite dimensional T-modules for s = 0.

Remark 3.6. Note that as an Lk(sl2)-module, we have Lk(sl2) ∼= L1.

Given the Sugawara conformal vector ω ∈ Lk(sl2) as in Appendix A, one can

show that any highest weight vector vλ has a conformal weight (a L0-eigenvalue) of

λ(λ+ 2)

4t
=
λ(λ+ 2)

4(k + 2)
.

Applying this to the allowed highest weights λ = λr,s yields the conformal dimen-

sions of the simple highest weight Lk(sl2)-modules Lr and D+
r,s:

∆r,s =
λr,s(λr,s + 2)

4t
=

(r − st)2 − 1

4t
. (3.7)

Before moving on, note that for any of r ∈ {1, . . . , u−1} and s ∈ {0, . . . , v−1}

the following hold:

λu−r,v−s = −λr,s − 2 and ∆u−r,v−s = ∆r,s . (3.8)

When it comes to the relaxed highest weight simple Lk(sl2)-modules, we have

the following fundamental result:
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Theorem 3.9. (from [AM 1995]) Let k = −2+ u
v

be an admissible level forLk(sl2).

Then the simple relaxed highest weight modules are exhausted up to isomorphisms

in the following list:

• the Lr, for r ∈ {1, . . . , u− 1};

• if v > 1, the D+
r,s, for r ∈ {1, . . . , u− 1} and s ∈ {1, . . . , v − 1};

• if v > 1, the conjugates D−
r,s = w(D+

r,s)2, for r ∈ {1, . . . , u − 1} and

s ∈ {1, . . . , v − 1};

• if v > 1, the Eλ;∆r,s , for r ∈ {1, . . . , u − 1}, s ∈ {1, . . . , v − 1} and λ ∈ h∗

with λ ̸= λr,s, λu−r,v−s mod Q.

Remark 3.10. The simple modules Eλ;∆r,s are often referred to as typical Lk(sl2)-

modules as they are classified by a continuous set of parameters as opposed to Lr

and D±
r,s which are referred to as atypical modules. In practice, the Lk(sl2)-modules

Eλ;∆r,s are generated by a single relaxed highest weight vector that is not a highest

weight vector. Interestingly, these modules also have an interpretation in terms of

Whittaker modules [Ada 2017].

Modules of type Eλ;∆r,s but with λ = λr,s also make sense. However these are

indecomposable non-simple modules (see Remark 2.4 of [ACR 2018] for a bit more

details). Notably, these typical indecomposable modules are non-split extensions

of typical modules (see also [KR 2018]). As this is quite useful for the character

analysis to come, we fix the following notation:

E+
r,s = Eλr,s;∆r,s , E−

r,s = w(E+
r,s) (3.11)

2This corresponds to the module D+
r,s whose Lk(sl2) action map is twisted by the automorphism

w coming from the Weyl group of sl2. More details on this can be found in Appendix A.
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for r ∈ {1, . . . , u− 1} and s ∈ {1, . . . , v − 1}.

As explained in [CR 2013b], the typical indecomposables (3.11) are extensions

of atypical simple modules [RW 2015a] as follows:

0 −→ D+
r,s −→ E+

r,s −→ D−
u−r,v−s −→ 0 , (3.12)

0 −→ D−
r,s −→ E−

r,s −→ D+
u−r,v−s −→ 0 . (3.13)

We will then consider new simple Lk(sl2)-modules that are obtained by twisting

the Lk(sl2)-action by automorphisms of ŝl2 coming from the affine Weyl group3

associated to the affinisation of sl2. From Appendix A, recall that the affine Weyl

group associated with sl2 is generated by the conjugation w and the spectral flow

σ [CR 2013b] under the relation wσw = σ−1. As automorphisms are invertible,

applying twists by a fixed automorphism constitutes an exact functor on the module

categories. Twisting the action by an automorphism thus preserves short exact

sequences. An important consequence for us is that twisting a simple module by an

automorphism results in another simple module. Additionally, for each ℓ ∈ Z one

can directly apply spectral flow twists σℓ to the short exact sequences (3.12) and

(3.13) to produce new short exact sequences.

For the rest of the chapter, we will be interested in the relaxed highest weight

Lk(sl2)-modules of Theorem 3.9 and their twists by the automorphisms w and σℓ

(ℓ ∈ Z). However we must consider a few identifications among the twisted relaxed

highest weights that we have introduced up to now:

Proposition 3.14. (see [CR 2013b]. Also reported in [ACR 2018] as Remark

2.5 and Proposition 2.6) Given k = −2 + u
v

admissible, we have the following

3Recall that if M is an Lk(sl2)-module, the action is given through vertex operators with
coefficients in End(M); such coefficients must then satisfy the defining relations of ŝl2 as explained
in Remark A.9
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isomorphisms:

w(Lr) ∼= Lr , w(Eλ;∆r,s)
∼= E−λ;∆r,s , w(E±

r,s)
∼= E∓

r,s .

Also, if v > 1 we have the following additional isomorphism:

σ(Lr) ∼= D+
u−r,v−1, σ−1(Lr) ∼= D−

u−r,v−1 for r ∈ {1, . . . , u− 1} ,

σ−1(D+
r,s)
∼= D−

u−r,v−1−s for r ∈ {1, . . . , u− 1} and s ∈ {1, . . . , v − 2} .

From the isomorphisms of 3.14 and the twisted short exact sequences, we deduce

the following resolutions of atypical modules Lr and Dr,s, respectively, in terms of

typical indecomposable modules E+
r,s of line (3.11):

· · · −→ σ3v−1(E+
r,v−1) −→ · · · −→ σ2v+2(E+

r,2) −→ σ2v+1(E+
r,1)

−→ σ2v−1(E+
u−r,v−1) −→ · · · −→ σv+2(E+

u−r,2) −→ σv+1(E+
u−r,1)

−→ σv−1(E+
r,v−1) −→ · · · −→ σ2(E+

r,2) −→ σ(E+
r,1) −→ Lr −→ 0 , (3.15)

0 −→σv−s(Lu−r) −→ σv−1−s(E+
r,v−1) −→ · · ·

−→ σ2(E+
r,s+2) −→ σ(E+

r,s+1) −→ D+
r,s −→ 0 . (3.16)

These resolutions are originally presented in [CR 2013b], but are reported as Re-

mark 2.14 in [ACR 2018]. Among other useful things, they will help us to express

characters of the simple Lk(sl2)-modules of Theorem 3.9.

For the rest of this chapter, we will be considering the following families of

simple Lk-modules:

• the σℓ(Lr), for ℓ ∈ Z and r ∈ {1, . . . , u− 1};
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• if v > 1, the σℓ(D+
r,s), for ℓ ∈ Z, r ∈ {1, . . . , u− 1} and s ∈ {1, . . . , v − 1};

• if v > 1, the σℓ(Eλ;∆r,s), for ℓ ∈ Z, r ∈ {1, . . . , u − 1}, s ∈ {1, . . . , v − 1}

and λ ∈ (R/2Z)\{λr,s, λu−r,v−s}.

The fact that we are interested in the σℓ(Eλ;∆r,s) with real λ’s has some physical

sense and follows logically from the studies of [CR 2012] and [CR 2013b].

Definition 3.17. For the rest of the chapter, the category Ak of Lk(sl2)-modules

we consider is the full subcategory of Lk(sl2)-modules in which the simple objects

are listed above and in which the objects are subquotients of iterated tensor (fusion)

products of a finite number of simple objects. This presupposes that the tensor

product behaves well enough between such modules. Although such checks are

very difficult for logarithmic vertex operator algebras, there is evidence to justify

our interest in the category Ak (see [ACR 2018] for details).

Next are some important assumptions that for the rest of this chapter:

Assumption 3.18. The spectral flow twists behave well with respect to tensor prod-

ucts of Lk(sl2)-modules in the sense that there are the following natural isomor-

phisms

σℓ1(M)⊗Lk(sl2) σ
ℓ2(N) ∼= σℓ1+ℓ1(M ⊗Lk(sl2) N) .

Assumption 3.19. For k admissible, the Grothendieck fusion rules of Ak are

well defined and the fusion coefficients are computed by the Verlinde formula

of [RW 2015b] and [CR 2013a].

No proof of Assumption 3.18 is known. However, Assumptions 3.18 and 3.19 are

supported by a number of results. For instance, the authors of [CR 2013b] compute

fusion rules for all modules of Ak (see Definition 3.17) in perfect agreement with
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what was already known for the specific cases k = −1
2

[Rid 2011] or k = −4
3

[Gab 2001].

Remark 3.20. It is worth noting recent progress on fusion for affine vertex operator

algebras. The affine case is of particular interest to eventually explain Assump-

tions 3.18 and 3.19 introduced also in [ACR 2018]. On the Category Theory front,

[CHY 2018] and [Cre 2018] establish that the category of ordinary modules for an

affine vertex operator algebra has a braided tensor structure in the sense of Huang-

Lepowsky-Zhang and in certain cases, it is also a fusion category. The authors in

[CHY 2018] can even verify fusion rules for the category of ordinary modules. For

instance, this means that the category of Lk(sl2)-modules generated by the relaxed

highest weight modules of Theorem 3.9 have their fusion rules as expected and

stated in Chapter 3. Of course, much more has to be done in order to prove that the

category Definition 3.17 also fits in this vertex tensor theory mold, but these recent

advances let us believe that this will be a possibility in the future. Additionnally,

D. Adamović realises the relaxed highest weight Lk(sl2)-modules as modules for

a rational Virasoro vertex operator algebra tensored with a lattice vertex operator

algebra [Ada 2018]: such methods can possibly be extended to prove certain tensor

product fusion rules among more modules. Also, let’s mention Proposition 2.4

of [Li 1997] that can help to construct intertwining operators for modules whose

action have been twisted by an endomorphisms of a so-called universal enveloping

algebra of a vertex operator algebra, see [FZ 1992] for details.

A third assumption will be introduced in the next section.

3.1.2 The Parafermions Algebras Ck(sl2) and Bk(sl2)

Let k be an admissible level for sl2.
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Definition 3.21. Let H ⊂ Lk(sl2) be the Heisenberg vertex operator algebra

generated by the vertex operator fields of vectors from the Cartan Lie algebra

h = C.h0 ⊂ ŝl2. We define the vertex operator algebra Ck(sl2) as the commutant of

the fields of H in Lk(sl2):

Ck(sl2) = Com
(
H,Lk(sl2)

)
.

Now consider the vertex operator algebraH⊗Ck(sl2) ⊂ Lk(sl2). By [CKM 2017],

this is a vertex algebra extension.

The duality results of Schur-Weyl flavour developed in [CKLR 2016] com-

bined with the tools of [CKL 2015], allow us to formulate key results reported

in [ACR 2018] as follows:

Result 3.22. (Results 1.1–1.3 of [ACR 2018]) As an
(
H ⊗ Ck(sl2)

)
-module, the

vertex operator algebra Lk(sl2) decomposes as follows:

Res
Lk(sl2)
H⊗Ck(sl2)

Lk(sl2) ∼=
⨁
µ∈Q

Fµ ⊗ Cµ (3.23)

where the Fµ’s are usual Fock spaces forH . The Cµ’s are simple currents of Ck(sl2)

with C0
∼= Ck(sl2) and for which

Cλ ⊗Ck(sl2) Cµ
∼= Cλ+µ . (3.24)

Additionnally, for k < 0 the decomposition (3.23) is multiplicity-free in the sense

that λ ̸= µ implies Cλ ≇ Cµ.

So the restriction ofLk(sl2) to a
(
H⊗Ck(sl2)

)
-module produces simple currents

Cλ’s of Ck(sl2) with nice tensor product properties. The simple currents involved
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in (3.24) are of infinite order and so a simple current extension of Ck(sl2) by

some Cλ would have a much reduced number of simple modules. Together with

the modularity, such simple current extensions would make good candidates for

C2-cofiniteness.

Let’s now see how we can make sure that an extension of Ck(sl2) by some

simple current Cλ exists. The following argument is reported from Section 1.1 of

[ACR 2018]. Given a lattice L ∈ C ⊗Z Q, we can give a natural vertex operator

algebra structure to VL ∼=
⨁
λ∈L

Fλ if and only if VL is Z-graded by conformal weight

[DL 1993]. Likewise, a result of [Li 2001] implies that
⨁
λ∈L

Cλ has a natural vertex

operator algebra structure if an only if it is Z-graded by conformal weight.

For all values of admissible level k, the largest lattice L ensuring that the space⨁
λ∈L Cλ has natural structure of vertex operator algebra is

L = −2vkZ = 2wZ = wQ ,

as explained in Section 4.1 of [ACR 2018]. We can now define the extended

parafermion algebra accordingly:

Definition 3.25. Let k be admissible. From the simple currents (3.24), the extended

parafermions vertex operator algebra at level k is defined as

Bk(sl2) =
⨁
λ∈L

Cλ =
⨁
ℓ∈Z

C2wℓ .

Note that Bk(sl2) is a simple current extension of Ck(sl2) of infinite order and can

be understood with the framework of Chapter 2 and [CKM 2017].

Remark 3.26. For k < 0, the Bk(sl2)-modules coming from (3.1) and the Lk(sl2)-

module category will have weights that are bounded from below. This key property
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effectively allows the Bk(sl2)-characters to have meromorphic continuations on the

upper half plane H: otherwise, the series would not even possibly converge. In the

following modularity analysis, we will thus consider k to be negative.

Remark 3.27. The same vertex operator algebra Bk(sl2) also has an interpretation

in terms of a commutant inside an infinite order simple current extension of Lk(sl2)

built using spectral flow alone. For more details, see Section 4.1 of [ACR 2018].

Let’s focus once again on the unextended parafermions Ck(sl2). The following

Schur-Weyl type duality result of [CKLR 2016] also has a meaning for indecom-

posable Lk(sl2)-modules on which H acts semisimply:

Result 3.28. If M is an indecomposable Lk(sl2)-module on which H acts semisim-

ply, then it decomposes as an
(
H ⊗ Ck(sl2)

)
-module as follows:

Res
Lk(sl2)
H⊗Ck(sl2)

M ∼=
⨁

µ∈α+Q

Fµ ⊗ Tµ (3.29)

for some α ∈ C ⊗Z Q and some indecomposable Ck(sl2)-modules Tµ. Moreover,

this decomposition is structure-preserving: if M has socle series 0 ⊂ N1 ⊂ · · · ⊂

N r−1 ⊂M and we define Ck(sl2)-modules T i
µ by

Res
Lk(sl2)
H⊗Ck(sl2)

N i ∼=
⨁

µ∈α+Q

Fµ ⊗ T i
µ, for i ∈ {1, . . . , r − 1},

then 0 ⊂ T 1
µ ⊂ · · · ⊂ T r−1

µ ⊂ Tµ is the socle series of Tµ for all µ ∈ α + Q.

Recall that the H-actions on relaxed highest weight Lk(sl2)-modules of Ak are

semisimple as they are weight modules. Therefore, all the simple and indecom-

posable modules we consider in the category Ak of Lk(sl2)-modules will produce,

respectively, certain simple and indecomposable modules which have the same
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structures. We will then want to see which of them are induced in the category of

untwisted modules for the extended parafermions algebra Bk(sl2). To accomplish

this, we can relate to the theory of extensions for logarithmic vertex operator algebras

[CKM 2017] if we make the following assumption:

Assumption 3.30. The vertex tensor category theory of Huang-Lepowsky-Zhang

[HLZ 2007] may be applied to the smallest Ck(sl2)-module category containing all

simple and indecomposable objects produced by Result 3.28 from the simple and

indecomposable Lk(sl2)-modules of Ak (see Definition 3.17).

We will be interested in untwisted Bk(sl2)-modules where Ck(sl2) ⊂ Bk(sl2)

is a vertex operator algebra extension. From this point of view (see [CKM 2017]

and [KJO 2002]). We recall that the untwisted Bk(sl2)-modules are just the ones

in Rep0 Bk(sl2). From the same references, we know that the induction functor F

from Ck(sl2) to Bk(sl2)-modules is given by Bk(sl2) ⊗Ck(sl2) − and that it should

constitute a tensor functor.

Remark 3.31. We now investigate when our Ck(sl2)-modules is induced to an un-

twisted Bk(sl2)-module. From [CKL 2015], we have that a Ck(sl2)-module with

a one dimensional endomorphism space induces to an untwisted module if and

only if it is Z-graded. Moreover, simple Ck(sl2)-modules that induce to untwisted

Bk(sl2)-modules give simple Bk(sl2)-modules (see Result 1.6 of [ACR 2018]).

3.2 Obtaining Bk(sl2)-Characters

We now fix k admissible such that k < 0.

With the parafermions vertex operator algebras Ck(sl2) and Bk(sl2) defined

above and Assumptions 3.18, 3.19 and 3.30 in place, we are now set to produce
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a number of Bk(sl2)-characters from the simple Lk(sl2)-modules in Ak. Modular

transformations will then be applied to these Bk(sl2)-characters in the subsequent

section.

3.2.1 Relevant Characters of Lk(sl2) and Ck(sl2)

We now gather the characters of the indecomposable objects from the category

Ak of Lk(sl2)-modules. Recall from [CR 2013b] that the spectral flow twist of a

Lk(sl2)-action changes the effects of all the operators κ, h0, L0 ∈ ŝl2. We will then

introduce variables y and z in the characters to keep track of such effects. Thus, the

Lk(sl2)-character of a weight module M of level k is given by:

ch [M ] (y; z; q) = trM(yκzh0qL0− c
24 ) = yk

∑
n∈Z

(dimMλ,n) z
λq(n+hM )− c

24

where c = 3k
2t

is the central charge of Lk(sl2) with the Sugawara conformal vector.

The effect of twisting the Lk(sl2)-action on characters is as follows:

ch
[
σℓ(M)

]
(y; z; q) = ch [M ]

(
yzℓq

ℓ2

4 ; zq
ℓ
2 ; q
)

for all ℓ ∈ Z

ch [w(M)] (y; z; q) = ch [M ]
(
y; z−1; q

)
.

Let’s start by characters of the typical relaxed highest weight modules of the

form Eλ;∆r,s for any λ ∈ R/2Z. From [CR 2013b], [Ada 2017] and [KR 2018], we

have the following formula:

ch
[
Eλ;∆r,s

]
(y; z; q) = yk

zλχ
M(u,v)
r,s (q)

η(q)2

∑
n∈Z

z2n (3.32)

where χM(u,v)
r,s (q) is the character of a simple module for the simple Virasoro vertex
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operator algebra M(u, v) and η(q) is Dedekind’s η function. The Virasoro vertex

operator algebra M(u, v) is often referred to as the Virasoro minimal model of

central charge 1 − 6(v−u)2

uv
. The characters χM(u,v)

r,s (q) are given at line (2.12) of

[ACR 2018] along with the corresponding simple module’s fusion rules in Section

2.3 of the same reference (see also section 8.1.2 of [DFMS 1997]).

While we could use the Kac-Wakimoto character formula of Chapter 1 to obtain

the characters of the Lk(sl2)-modules of the form Lr and D+
r,s (in case v > 1) for

appropriate r ∈ {1, . . . , u− 1} and s ∈ {1, . . . , v− 1}, we prefer using Proposition

3.14 and the resolutions (3.15) and (3.16) to do so. The reason for this preference

is that both the simple characters χM(u,v)
r,s (q) and η(q) appearing in (3.32) have well

known modular behaviours [CR 2013b]. In this way, we can obtain all the simple

characters of Ak.

Proposition 3.33. (Proposition 2.10 of [ACR 2018]) Let k = −2 + u
v

be an

admissible level and assume that v > 1. Then, we have the following character

formulae:

ch
[
σℓ(Eλ;∆r,s)

]
=
ykzℓkqℓ

2k/4χ
M(u,v)
(r,s) (q)

η(q)2

∑
µ∈λ+Q

zµqℓµ/2 ,

ch
[
σℓ(E+

r,s)
]
=
ykzℓkqℓ

2k/4χ
M(u,v)
(r,s) (q)

η(q)2

∑
µ∈λr,s+Q

zµqℓµ/2 ,

ch
[
σℓ(Lr)

]
=

v−1∑
s′=1

(−1)s′−1

∞∑
m=0

(
ch
[
σ2mv+s′+ℓ(E+

r,s′)
]
− ch

[
σ2(m+1)v−s′+ℓ(E+

u−r,v−s′)
])

,

ch
[
σℓ(D+

r,s)
]
=

v−1∑
s′=s+1

(−1)s′−s−1 ch
[
σs′−s+ℓ(E+

r,s′)
]
+ (−1)v−1−s ch

[
σv−s+ℓ(Lu−r)

]
.

If k < 0, then the infinite sum in ch
[
σℓ(Lr)

]
converges in the sense of formal

power series in z, meaning that the coefficient of each power of z converges to a
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meromorphic function of q for |q| < 1.

We can now proceed to using the Schur-Weyl duality stated above as Result 3.28

to obtain the corresponding simple Ck(sl2)-characters. Here is a procedure that

allows us to compute pertinent Ck(sl2)-characters from corresponding Lk(sl2)-

characters:

1. the characters of a module M that is both a module for H ⊗ Ck(sl2) and

Lk(sl2) coincide since the operators κ, h0 and L0 of these two vertex operator

algebras coincide; in fact we have

trM

(
yκzh0qL

Lk(sl2)
0 − c

24

)
= trM

(
yκzh0qL

H
0 − cH

24 · qL
Ck(sl2)
0 − cCk(sl2)

24

)
;

2. since h0, LH
0 and κ commute with LCk(sl2)

0 , we have

ch [Fλ ⊗N ] (y; z; q) = ch [Fλ] (y; z; q) · ch [N ] (q) ,

for any Ck(sl2)-module N with finite dimensional weight spaces4;

3. the character of a simpleH-module (a Fock space) is given by ch [Fλ] (y; z; q) =

yk zλq−
λ2

4k

η(q)
.

Since Proposition 3.33 gives the simple characters of Ak in terms of the typical

modules of the form ch
[
Eλ;∆r,s

]
, Proposition 3.1 of [ACR 2018] establishes the

existence of corresponding Ck(sl2)-modules denoted by CE
µ;r,s with µ ∈ λ + Q and

whose characters are given by

ch
[
CE
λ;r,s

]
(q) = ch

[
C±
µ;r,s

]
(q) =

χ
M(u,v)
(r,s) (q)

η(q)
q−µ2/4k . (3.34)

4Observe that the character of N does not depend on z anymore.
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To be exact, these atypical Ck(sl2)-modules appear as follows:

ResLksl2
H⊗Ck(sl2)

σℓ(Eλ;∆r,s)
∼=
⨁

µ∈λ+Q

Fµ+ℓk ⊗ CE
µ;r,s

for any choice of λ ∈ R/2Z. When λ /∈ {λr,s, λu−r,v−s}, the modules CE
µ;r,s are

simple. Else, λ ∈ {λr,s, λu−r,v−s} and the C±
µ;r,s are indecomposables of Loewy

length 2 just as the E±
r,s are of Loewy length 2 for Lk(sl2).

Combined with Proposition 3.1 of [ACR 2018], Proposition 3.33 above allows

us to obtain the simple Ck(sl2)-characters of all corresponding types:

Proposition 3.35. (Proposition 3.3 of [ACR 2018]) The atypical irreducibleLk(sl2)-

modules decompose into
(
H ⊗ Ck(sl2)

)
-modules as

ResLksl2
H⊗Ck(sl2)

σℓ(Lr) ∼=
⨁

µ∈λr,0+Q

Fµ+ℓk ⊗ CL
µ;r ,

ResLksl2
H⊗Ck(sl2)

σℓ(D+
r,s)
∼=

⨁
µ∈λr,s+Q

Fµ+ℓk ⊗ CD
µ;r,s

where the CL
µ;r and CD

µ;r,s are irreducible highest weight Ck-modules characterised

by the following resolutions:

· · · −→ C+
µ−(3v−1)k;r,v−1 −→ · · · −→ C+

µ−(2v+2)k;r,2 −→ C+
µ−(2v+1)k;r,1

−→ C+
µ−(2v−1)k;u−r,v−1 −→ · · · −→ C+

µ−(v+2)k;u−r,2 −→ C+
µ−(v+1)k;u−r,1

−→ C+
µ−(v−1)k;r,v−1 −→ · · · −→ C+

µ−2k;r,2 −→ C+
µ−k;r,1 −→ CL

µ;r −→ 0 ,

0 −→ CL
µ−(v−s)k;u−r −→ C+

µ−(v−1−s)k;r,v−1 −→ · · ·

−→ C+
µ−2k;r,s+2 −→ C+

µ−k;r,s+1 −→ CD
µ;r,s −→ 0 .
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Their characters are given by:

ch
[
CL
µ;r

]
(q) =

v−1∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∞∑
m=0

(
q−(µ−sk+2wm)2/4k − q−(µ+sk+2w(m+1))2/4k

)
,

ch
[
CD
µ;r,s

]
(q) =

v−1∑
s′=s+1

(−1)s′−s−1
χ
M(u,v)
(r,s′) (q)

η(q)
q−(µ−(s′−s)k)2/4k + (−1)v−1−s ch

[
CL
µ−(v−s)k;u−r

]
.

We now have the characters of infinitely many simple and indecomposable

Ck(sl2)-modules of the form ch
[
CL
µ;r

]
, ch

[
CD
µ;r,s

]
and ch

[
CE
λ;r,s

]
. This is what we

were looking for. Many identifications and symmetries among those characters

are noted in several remarks in [ACR 2018]. The conformal dimensions of these

Ck(sl2)-modules are given by Proposition 3.8 of the same reference.

Fusion rules among the Ck(sl2)-modules of the form ch
[
CL
µ;r

]
, ch

[
CD
µ;r,s

]
and

ch
[
CE
λ;r,s

]
are specified in Section 3.2 of [ACR 2018].

Section 3.3 of [ACR 2018] then identifies the simple vertex operator algebra

Ck(sl2) at a few specific levels k ∈ Q to other simple logarithmic vertex operator

algebras studied in the literature.

3.2.2 Characters of Bk(sl2)

We will now see what type of untwisted simple Bk(sl2)-characters (k < 0 admis-

sible) we obtain by lifting the appropriate Ck(sl2)-modules of the form CL
µ;r, CD

µ;r,s

and CE
λ;r,s determined above. Let’s start by relating the simple Ck(sl2)-modules of

Section 3.2.1 to those needed in the construction of Bk(sl2). Consider the simple

Ck(sl2)-modules Cµ of (3.23) and of Definition 3.25. Then we have that Cµ
∼= CL

µ;1

and C0
∼= Ck(sl2) ∼= CL

0;1 for all µ ∈ Q = 2Z. In particular, we can identify the
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extended parafermion vertex operator algebra:

Bk(sl2) ∼=
⨁
λ∈L

CL
λ;1 =

⨁
ℓ∈Z

CL
2wℓ;1 (3.36)

where w = −kv > 0 (note that w is the absolute value of the numerator of k).

Recall that we are interested in untwisted Bk(sl2)-modules. By the theory of

vertex operator algebra extensions of [CKM 2017], the induction from Ck(sl2)-

modules to Bk(sl2)-modules is given by the tensor product with Bk(sl2)⊗Ck(sl2) −.

Fusion rules for Ck(sl2) could be determined in Section 3.2 of [ACR 2018] and we

know that the modules CL
2wℓ;1 are simple currents of infinite order (Remark 3.10 of

[ACR 2018]).

Remark 3.31 points out that the simpleCk(sl2)-modules lift to untwistedBZ(sl2)-

modules if and only if they are Z-graded (see Result 1.6 of [ACR 2018]). For the

indecomposables C±
µ;r,s, an argument shows that they induce in the category of

untwisted Bk(sl2)-modules whenever µ ∈ L′, the dual lattice of Lwhich is 1
v
Z here.

We deduce the following definitive answer:

Proposition 3.37. (Proposition 4.3 of [ACR 2018]) The typical Ck(sl2)-modules

CE
µ;r,s lift to irreducible highest weight Bk(sl2)-modules (denoted by BE

µ;r,s), only if

µ ∈ L′. The atypical irreducible Ck(sl2)-modules CL
µ;r and CD

µ;r,s always lift to irre-

ducible highest weight Bk(sl2)-modules (denoted by BL
µ;r and BD

µ;r,s, respectively).

Likewise, the atypical standard Ck(sl2)-modules C±
µ;r,s always lift to length 2 inde-

composableBk(sl2)-modules, denoted byB±
µ;r,s. The corresponding decompositions

as Ck(sl2)-modules take the unified form

ResLksl2
H⊗Ck(sl2)

B•
µ;⋆
∼=
⨁

λ∈µ+L

C•
λ;⋆ (3.38)
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for appropriate • and ⋆. We have B•
λ;⋆
∼= B•

µ;⋆ when λ = µ mod L.

Remark 3.39. The allowed indices deduced from Proposition 3.35 for the three types

of Bk(sl2)-modules of Proposition 3.37 are summarised in Table 3.1

module type BE
µ;r,s BL

µ;r BD
µ;r,s

allowed µ mod L 1
v
Z = L′ λr,0 + Q λr,s + Q

Table 3.1: Allowed indices for three types of untwisted Bk(sl2)-modules. Note that
Q = 2Z, r ∈ {1, . . . , u − 1} and s ∈ {1, . . . , v − 1} for v > 1. Also, recall from
(3.5) and (3.8) that λr,s = (r − 1)− st with λu−r,v−s ≡ −λr,s mod Q

From Remark 3.39, we see that the number of isomorphism classes of the

Bk(sl2)-modules given in Proposition 3.37 is finite. While there might exist other

untwisted Bk(sl2)-modules, we believe that we have them all when Bk(sl2) is C2-

cofinite. This is the conjecture we will formulate at the end of this chapter.

Let’s move on to computing the characters of the untwisted Bk(sl2)-modules

from Proposition 3.37. According to (3.38), the characters of the BE
µ;r,s, BL

µ;r and

BD
µ;r,s are given by infinite sums of Ck(sl2)-characters of type E,L,D, respectively.

Omitting computational technicalities reported in details in Section 4 of [ACR 2018],
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the resulting Bk(sl2)-characters can be expressed as follows:

ch
[
BE

µ;r,s

]
(q) = ch

[
B±

µ;r,s

]
(q) =

χ
M(u,v)
(r,s) (q)

η(q)

∑
λ∈µ+L

q−λ2/4k , (3.40)

ch
[
BL

µ;r

]
(q) =

v−1∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)
·

∑
λ∈µ+L

∞∑
m=0

(
q−(λ+2mw−sk)2/4k − q−(λ+2(m+1)w+sk)2/4k

)
,

(3.41)

ch
[
BD

µ;r,s

]
(q) =

v−1∑
s′=s+1

(−1)s′−s−1 ch
[
BE

µ−(s′−s)k;r,s′

]
(q)

+ (−1)v−1−s ch
[
BL

µ−(v−s)k;u−r

]
(q) . (3.42)

where the indices are as of Table 3.1.

3.3 Modularity Behaviour of the Bk(sl2)-Characters

In this last section, we explicitly describe the effect of the modular transformations

on the simple Bk(sl2)-characters (3.40), (3.41) and (3.42) where k < 0 is admissi-

ble. We will show that their linear span defines a finite dimensional vector-valued

modular form.

In order to do so, we should first recall that characters ch [M ] (q) = ch [M ] (τ)

will be interpreted as complex-valued functions supported on a suitable open set of

H, where q : τ ↦−→ e2πiτ (τ ∈ H). The modular group PSL2(Z) acts on H via

MÃűbius transformations ⎛⎜⎝a b

c d

⎞⎟⎠ : τ ↦−→ aτ + b

cτ + d
.
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So we will let PSL2(Z) act on characters. As the two modular transformations

S : τ ↦→ − 1
τ

and T : τ ↦→ τ +1 generate the action of PSL2(Z), it will be sufficient

to consider their effects alone.

The modular transformation T is quite easy to describe given the definition of

the character of a N-graded module M with finite dimensional weight spaces:

ch [M ] (τ + 1) =
∑
n∈Z

(dimMn)e
2πi(τ+1)(n+hM− c

24
)

=
∑
n∈Z

(dimMn)e
2πi(τ)(n+hM− c

24
) · e2πi(n+hM− c

24
)

= e2πi(hM− c
24

)
∑
n∈Z

∑
n∈Z

(dimMn)e
2πi(τ)(n+hM− c

24
)

= e2πi(hM− c
24

) ch [M ] (τ) (3.43)

where hM is the conformal dimension of M and c is the central charge of the vertex

operator algebra. Note that in our case the conformal vector ofBk(sl2) coincides with

that of Ck(sl2) and so their central charges are equal. Their conformal dimensions

are also equal modulo Z by Proposition 3.8 of [ACKR ]. Therefore (3.43) already

provides a description of the effect of the modular generator T on the Bk(sl2)-

characters (3.40), (3.41) and (3.42).

It is much more difficult, however, to describe the effect of the modular transfor-

mation S on characters. In Section 3.3.1, we will decompose the Bk(sl2)-characters

(3.40), (3.41) and (3.42) in terms of functions with known modular properties. In

Section 3.3.2, we will then compute modularity coefficients and gather results and

conclusions on the modularity behaviour of the Bk(sl2)-characters.
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3.3.1 Decompositions of Bk(sl2)-Characters

Note that the simple Bk(sl2)-characters (3.42) are expressed in terms of those of

(3.40) and (3.41). Therefore, it will suffice to analyse the effect of the modular

generator S on the characters ch
[
BE

µ;r,s

]
with µ ∈ L′ = 1

v
Z and ch

[
BL

λ;r

]
with

λ ∈ λr + Q.

Let’s first rewrite characters of type BE
µ;r,s (µ ∈ L′) in a more effective way. We

first fix any µ ∈ L′. The sum supported on L that appears in the characters of BE
µ;r,s

given in (3.40) can be interpreted as Jacobi-theta functions5 of the lattice L; such

functions will be denoted by

ϑµ+L(z; q) =
∑

λ∈µ+L

zλq−λ2/4k , (3.44)

so that

ch
[
BE

µ;r,s

]
(q) =

χ
M(u,v)
(r,s) (q)

η(q)
ϑµ+L(q) . (3.45)

Likewise, we will rewrite characters of type ch
[
BL

λ;r

]
(λ ∈ λr + Q) in a better

way than (3.41). Recall that

ch
[
BL

µ;r

]
(q) =

v−1∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∑
λ∈µ+L

∞∑
m=0

(
q−(λ+2mw−sk)2/4k − q−(λ+2(m+1)w+sk)2/4k

)
.

As we already know about the modular properties of η(q) and χ
M(u,v)
(r,s) (q) (see

[DFMS 1997] for the latter), we should focus on the double sum of the previous

5The function ϑµ+L(q) = ϑµ+L(1; q) is invariant under translations by L and µ ↦→ −µ. These
properties have to do with affine Weyl group associated to sl2.
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expression. For this, we introduce the following notation6:

ϑ′
µ+L(z; q) = −

z

2w
· ∂
∂z

(
ϑµ+L(z; q)

)
= − 1

2w

∑
λ∈µ+L

λzλq−λ2/4k , (3.46)

Aλ(q) =
∑
ℓ∈Z

∞∑
m=0

(
q−(λ−2w(ℓ+m))2/4k − q−(λ+2w(ℓ+m+1))2/4k

)
. (3.47)

Note that Aλ(q) is not absolutely convergent. Manipulating it with care, we

show that it can be rewritten in terms of the lattice Jacobi-theta functions of lines

(3.44) and (3.46):

Proposition 3.48. (Lemma 4.10 of [ACR 2018]) For any λ ∈ L′, we have

Aλ(q) = 2ϑ′
λ+L(q) +

(
1 +

λ

w

)
ϑλ+L(q) .

With this result at hand, we have what it takes to re-write ch
[
BL

µ;r

]
in terms of

functions with known modular behaviour. We note that this character is invariant

under the transformation µ ↦→ −µ and so we prefer to use the more symmetric form

ch
[
BL

µ;r

]
(q) =

1

2

(
ch
[
BL

µ;r

]
(q) + ch

[
BL

−µ;r

]
(q)
)
,

in the what follows. In this way, we obtain a useful expression:

Proposition 3.49. (Proposition 4.11 of [ACR 2018]) We have

ch
[
BL

µ;r

]
(q) =

v−1∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

(
ϑ′
µ+sk+L(q)− ϑ′

µ−sk+L(q)

+
µ− (v − s)k

2w
ϑµ+sk+L(q)−

µ+ (v − s)k
2w

ϑµ−sk+L(q)

)
(3.50)

6The function ϑ′
µ+L(q) = ϑ′

µ+L(1; q) is invariant under translations by L and antisymmetric
with respect to the transformation µ ↦→ −µ.
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for all r ∈ {1, . . . , u− 1} and µ ≡ λr,0 mod Q.

In the expression (3.50), we can recognise instances of simpler characters

ch
[
BE

µ;r,s

]
of line (3.45). We can also rename the “leftover terms” of ch

[
BL

µ;r

]
as

Γµ;r(q) =
v−1∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

(
ϑ′
µ+sk+L(q)− ϑ′

µ−sk+L(q)
)

(3.51)

for µ ≡ λr,0 mod Q.

Remark 3.52. The effect of the modular transformation S on ch
[
BL

µ;r

]
is completely

determined by its effects on Γµ;r and ch
[
BE

µ;r,s

]
.

Before closing the current section, we briefly discuss linear relations among the

different expressions Γµ;r. The Kac table (see Table ) also gives symmetries of

the Virasoro characters χM(u,v)
(r,s) (q) In addition, we consider the Weyl symmetries of

Kac(u, v) = {1,...,u−1}×{1,...,v−1}
(r,s)∼(u−r,v−s)

Table 3.2: Kac’s table of symmetries for the Virasoro characters χM(u,v)
(r,s) (q).

ϑ′
µ+L under translations by L or reflections µ ↦→ −µ to deduce the following result:

Lemma 3.53. (Lemma 4.13 of [ACR 2018]) For r ∈ {1, . . . , u − 1} and µ ≡

λr,0 mod Q, we have the following identities:

Γµ;r = Γµ+2w;r , Γµ;r = Γ−µ;r ,

Γµ;r = (−1)v−1Γw+µ;u−r , Γµ;r = (−1)v−1Γw−µ;u−r .

Setting Vk = SpanC{Γµ;r | µ ≡ r − 1 mod 2Z}, the above identities allow us

to find a nicely reduced generating set (perhaps even a base) for Vk:
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Proposition 3.54. (Proposition 4.14 of [ACR 2018]) The vector space Vk is gener-

ated by the set Genk given by the elements Γµ;r with indices from Table 3.3 subject

to µ ≡ λr,0 ≡ r − 1 mod Q.

µ r

u odd {0, 1, . . . , w}
{
1, 2, . . . , 1

2
(u− 1)

}

u even
{0, 1, . . . , w}

{
0, 1, . . . , w

2

}
{
1, 2, . . . , 1

2
u− 1

}
{

1
2
u
}

.

Table 3.3: Indices of the elements Γµ;r generating the set Genk.

In particular, we have

dimC Vk ≤

⎧⎪⎨⎪⎩
1
4
(u− 1)(w + 1) if u is odd,

1
4
uw − 1

2
(v − 1− u) if u is even.

We are now ready to compute the effects of the modular transformation S on

functions of the form ch
[
BE

µ;r,s

]
(q) and Γµ;r(q) with appropriate indices.

3.3.2 Modularity Behaviour of Characters

Recall from (10.12) of [DFMS 1997] that Dedekind’s η-function obeys the following

S-transformation rule

η

(
−1

τ

)
=
√
−iτ η(τ) . (3.55)

We now proceed to describing the behaviour of the characters ch
[
BE

µ;r,s

]
for µ ∈ L′

and of ch
[
BL

λ;r

]
where λ ∈ λr + Q under the S-transformation.
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Let’s start with characters of type ch
[
BE

m
v
;r,s

]
for some m ∈ {0, 1, . . . , p}.

The Jacobi-theta functions ϑµ+L(z; q) for µ ∈ L′ of line (3.44) have well known

behaviour under the modular S-transformation (see (4.23) and (4.24) of [ACKR ]

for instance). We then set p = 1
2
|L′/L| and fix m

v
for some m ∈ {0, 1, . . . , p}. The

following holds:

ϑm
v
+L

(
−1

τ

)
=
√
−iτ

p∑
ℓ=0

Sϑ
mℓ ϑℓ/v+L(τ) (3.56)

where

Sϑ
mℓ =

⎧⎪⎨⎪⎩
√

1
2p
cos
(

πℓm
p

)
if ℓ ∈ pZ,√

2
p
cos
(

πℓm
p

)
otherwise.

(3.57)

The S-transformation rules of the minimal model characters χM(u,v)
(r,s) (q) are

χ
M(u,v)
(r,s)

(
−1

τ

)
=
∑
(r′,s′)

S
M(u,v)
(r,s) (r′,s′) χ

M(u,v)
(r′,s′) (τ) (3.58)

where

S
M(u,v)
(r,s) (r′,s′) = −2

√
2

uv
(−1)rs

′+r′s sin
vπrr′

u
sin

uπss′

v
(3.59)

and the summation is taken from the Kac table. See Section 10.6 of [DFMS 1997]

for a proof of the formulas (3.58) and (3.58).

Combining the S-transformation rules (3.55), (3.56) and (3.58), we can formu-

late an interesting result:

Proposition 3.60. (Proposition 4.9 of [ACR 2018]) The S-transformation rules of

the typical Bk(sl2)-characters are

ch
[
BE

m/v;r,s

](
−1

τ

)
=
∑
(r′,s′)

p∑
ℓ=0

S
M(u,v)
(r,s) (r′,s′)S

ϑ
mℓ ch

[
BE

ℓ/v;r′,s′

]
(τ) (3.61)
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where S
M(u,v)
(r,s) (r′,s′) and Sϑ

mℓ are defined in (3.59) and (3.57), respectively. Note that

the sum
∑

(r′,s′) in (3.61) runs over Kac’s table, see Table 3.2.

Following indications from Remark 3.52, we now only need to apply the S

transform to the expressions Γµ;r(q) with µ ≡ r − 1 mod 2Z as in (3.51). In order

to do so, we record the effect of S on the differentiated Jacobi-theta function. Set

p = 1
2
|L′/L| as before. Then for m ∈ {1, . . . , p− 1}7:

ϑ′
m
v
+L

(
−1

τ

)
= (−iτ)

3
2

p−1∑
ℓ=1

S′
mℓϑ

′
ℓ
v
+L

(τ) (3.62)

where

S′
mℓ =

√
2

p
sin

(
πℓm

p

)
.

All is then set up for complicated computations of the effects of the modular

transformation S on Γµ;r(q). Here is the outcome:

Theorem 3.63. (Theorem 4.17 of [ACR 2018]) The elements of Vk constitute a

finite dimensional vector-valued modular form of weight 1 with

Γµ;r

(
−1

τ

)
= −iτ

∑
(µ′;r′)∈Genk

SΓ
(µ;r)(µ′;r′)Γµ′;r′(τ) ,

Γµ;r(τ + 1) = e2πi(δ
L
µ;r− c̃

24
)Γµ;r(τ) ,

where

δLµ;r =

⎧⎪⎨⎪⎩ ∆r,0 − µ2

4k
if |µ| ≤ r − 1

∆r,0 − µ2

4k
+ |µ|−r+1

2
if |µ| > r − 1

,

7For m = 1 or m = p, we can check that ϑ′
m
v +L(τ) vanishes. However, we can also check that

the corresponding S-matrices elements also always vanish. Therefore, we may as well include 1 and
p in the domain m here to simplify notation.
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c̃ = 2− 6
t
, Genk is the generating set of Vk given in Proposition 3.54 and

SΓ
(µ;r)(µ′;r′) =

2Aµ′;r′√
uw

sin

(
πrr′

t

)
cos

(
πµµ′

k

)
,

with Aµ′;r′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

if r′ = u
2

and µ′ ∈ wZ,

2 if r′ ̸= u
2

and µ′ /∈ wZ,

1 otherwise.

Theorem 3.63 ensures that the linear span of Bk(sl2)-characters

SpanC

⎧⎪⎨⎪⎩ch
[
BE

µ;r,s

]
(q) , ch

[
BL

µ;r

]
(q) , ch

[
BD

µ;r,s

]
(q)

⏐⏐⏐⏐⏐ indices are as

in Remark 3.39

⎫⎪⎬⎪⎭ ,

is also a finite dimensional vector-valued modular form. Its dimension is given in

Corollary 4.18 of [ACR 2018] as p(u − 1)(v − 1) + 2 dimC Vk. In conclusion, we

believe that the modularity results of this chapter suggest the following conjecture:

Conjecture 3.64. The logarithmic vertex operator algebras Bk(sl2) is C2-cofinite

for admissible negative k.

Assuming our conjecture holds, the results of [Miy 2004] on the modularity

behaviour of characters of aC2-cofinite vertex operator algebra lead us to believe that

the elements of Vk (see Proposition 3.54) can be identified with the so-called pseudo-

trace functions. The pseudo-trace functions of [Miy 2004] are usually difficultly

identifiable, although conjectures are being formulated in [CG ] and [CG 2017], see

also [GR 2017] on pseudo-trace functions. We hope that our results in [ACR 2018]

will furnish some inspiration in this direction.

Remark 3.65. We note that Theorem 3.63 and the other modularity results for the

Bk(sl2)-characters of this chapter are not the most general modularity behaviours
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expected for a C2-cofinite vertex operator algebra. The most general objects that

are modular invariant associated to a C2-cofinite vertex operator algebra are in fact

the torus one-point functions: the general modular invariance result can be found as

Theorem 5.2 of [Miy 2004].

Denote by E2r(q) (r ∈ N) the corresponding Eisenstein q-series. We introduce

the torus one point functions here:

Definition 3.66. Let V be a vertex operator algebra. Denote byOq(V ) the submod-

ule of V [E4(q), E6(q)] ⊂ V [[q]] generated by elements of the type v[0](u) where

u, v ∈ V . Then the space C1(V ) of torus one-point functions is the C-linear space

of functions

S : V [E4(q), E6(q)]⊗H→ C ,

satisfying the following conditions:

• for u ∈ V
(
SL(Z)

)
, S(u, τ) is holomorphic in τ ∈ H;

• S is linear in C[E4(q), E6(q)];

• S(u, τ) = 0 for u ∈ Oq(V );

• For u ∈ V , one has

S
(
L[−2](u), τ

)
=

1

2πi

∂

∂τ
S(u, τ) +

∞∑
r=1

E2r(τ)S
(
L[2r−2](u), τ

)
.

M. Miyamoto obtains the modular behaviour of the one-point functions in his

Theorem 5.2 [Miy 2004]. In fact, given a vertex operator algebra V and a weak

N-graded module M , then the trace functions

trM
(
o(v)qL0− c

24

)
, (3.67)
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belong to C1(V ) where c is the central charge of V and o(v) is the grade-preserving

operator of v (for v ∈ V homogeneous). Specialising v = 1 ∈ V in Formula (3.67),

we recover Definition A.15 of the character of a module that we have been using in

this chapter and [ACR 2018].

In his Theorem 5.5 [Miy 2004], Miyamoto argues that C1(V ) is spanned by trace

and pseudo-trace functions associated to generalised Verma modules. What we have

proved in this chapter and [ACR 2018] is modular invariance of one-point functions

specialised at v = 1 ∈ V . Specialisation of trace functions (3.67) to v = 1 ∈ V

induces a C-algebra map

evv=1 : trM
(
o(v)qL0− c

24

)
↦−→ trM

(
qL0− c

24

)
= ch [M ] (q) .

Proving modularity of one-point functions C1 (Bk(sl2)) thus requires more work

than what we have done in this chapter and [ACR 2018]. However, our modularity

result still gives us partial evidence to have identified a new family of C2-cofinite

vertex operator algebras.
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Chapter 4

C2-Cofiniteness of Certain

Parafermion Vertex Algebras

In this chapter, we prove C2-cofiniteness of eight examples of logarithmic vertex

operator algebras of which five are totally new. These non-rational C2-cofinite

vertex operator algebras are the extended parafermion algebras Bk(sl2) of Chapter 3

and [ACR 2018] at the following specific admissible negative levels1:

A =

{
−1

2
,−4

3
,−8

5
,−5

4
,−7

5
,−12

7
,−16

9

}
∪
{
−2

3

}
. (4.1)

The above levels correspond to those for which our computational approach has

been successful so far. The central charges of Bk(sl2) for k ∈ A are reported in

Table 4.1.

We use K. Thielemans’ Mathematica package OPEdefs.m (see [Thi 1991]) as

a basis to perform vertex algebra computations within the universal affine vertex

operator algebra Vk(sl2). For obtaining this chapter’s results, I have developed and

1As of now, the C2-cofiniteness of B− 2
3
(sl2) is true assuming a conjecture. For more details, see

Remark 4.20 of [ACR 2018].
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level k −1
2
−4

3
−8

5
−5

4
−7

5
−12

7
−16

9
−2

3

u num(k + 2) 3 2 2 3 3 2 2 4

v denom(k + 2) 2 3 5 4 5 7 9 3

c 2(k−1)
k+2

−2 −7 −13 −6 −8 −19 −25 −5
2

Table 4.1: Parameters u, v and central charges c of Bk(sl2) for specific levels k
studied in Chapter 4.

commented additional Mathematica functions and packages.

Two of the admissible negative levels in A produce algebras Bk(sl2) known to

beC2-cofinite, whileC2-cofiniteness for k = −2
3

has been proven assuming another

conjecture. The extended parafermion B− 1
2
(sl2) is isomorphic to the triplet vertex

operator algebra W (1, 2) and B− 4
3
(sl2) is isomorphic to a Z2-orbifold of the triplet

W (1, 3) while B− 2
3
(sl2) is isomorphic to the even part of the supertriplet sW (1, 3)

(see Section 4.3 and Remark 4.20 of [ACR 2018] for more details). Note that the

triplet vertex operator algebras are some of the few known types of algebras that are

both logarithmic and C2-cofinite [TW 2013].

Computational approaches have already been used in [DLY 2009] and [ALY 2014]

to establish rationality and C2-cofiniteness of the parafermion algebra Ck(sl2) for

k ∈ N\{0}. Thanks to investigations on the structure the parafermion vertex opera-

tor algebra in [DLWY 2010], [DW 2010], we know that Ck(sl2) has a finite number

of strong generators2 {
L = L

para
,W3,W4,W5

}
where the latter three are Virasoro primary vectors of conformal dimension matching

2That vertex operator algebra V is strongly generated by a set of generators means that every
vertex operator field Y(v, z) for v ∈ V is a normally-ordered polynomial in the generators and their
derivatives.
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their subscript. By Corollary 2.6.2 of [Ara 2012], it can then be argued that we have

a natural surjection of commutative algebras

C[x2, x3, x4, x5] ↠
Ck(sl2)

C2 (Ck(sl2))
, (4.2)

where the product on the C2-quotient is given by (a, b) ↦→ a(−1)(b) is the vector

whose vertex operator field is the normally ordered product of those of a and b:

Y(a(−1)(b), z) = : Y(a, z)Y(b, z) : .

By computing enough relations amongst the generators {Wi}5i=2, one can aim to

show that the surjective map (4.2) factors through a finite dimensional quotient

C[x2, x3, x4, x5]/I , which immediately implies C2-cofiniteness of Ck(sl2). In this

chapter, we follow a similar approach for our extended parafermion algebra Bk(sl2)

where k is a negative and admissible level instead of being integral and positive.

Currently, the computations behind this chapter’s results rely on our capacity

to compute explicitly the non-trivial singular vector of sk ∈ Vk(sl2) where k is

admissible. Let k = −2 + u
v

be admissible. Thanks to the Kac-Kazhdan formula

for the Shapovalov determinant [KK 1979], we know what h0 and L0 weight the

singular vector sk should have. However, the dimension for the appropriate ho-

mogeneous subspaces grow rapidly when varying k and determining sk by direct

computation become out of reach when the conformal dimension of ss is above 11.

Though we have considered making use of the expression of sk in terms of Jack

polynomials [RW 2015a], we have not yet fully implemented the required free field

realisation of Vk(sl2).

In the first section, we discuss C2-cofiniteness, generators for Ck(sl2), Bk(sl2)
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and describe a strategy for computingC2-cofiniteness. In the second and last section,

we give results of computations in the form of polynomial relations that must hold

in the C2-quotient of Bk(sl2). A few of these relations hold for general k as seen

in [DLY 2009] while most others depend on the specific value of k ∈ A where A is

the set (4.1). In the second section, we focus on each k ∈ A separatedly by giving

more complete lists of polynomial relations to hold in Bk(sl2)
C2(Bk(sl2))

and we use Gröbner

bases (see [CLO 1997] for instance) to establish C2-cofiniteness.

Notation

Throughout the chapter, the following notation will be employed:

• for a vertex operator V with strong generators {Gi}, we will write

Gi(z) = Y(Gi, z);

• C2 (V ) = {a−2(b) ∈ V | a, b ∈ V } where V is a given vertex operator

algebra;

• V
C2(V )

is the C2-quotient associated to a given vertex operator algebra V .

It is known to have a natural associative and commutative Poisson algebra

structure, see [Ara 2012] for instance;

• let k be admissible. Then sk is the singular vector3 of Vk(sl2). In particular,

its coefficients must all act as zero on Lk(sl2) = Vk(sl2)/⟨sk⟩;

• let k be admissible. Then spara
k is the singular vector of Com

(
H, Vk(sl2)

)
whose unique simple quotient is Ck(sl2) = Com

(
H,Lk(sl2)

)
. In particular,

the coefficients of its vertex operator must all act as zero on Ck(sl2).

3Just like for ŝl2, this means that en.sk = fn+1.sk = hn+1.sk = 0 for all n ∈ N and that sk is
an h0-eigenvector.

112



4.1 Principles, Approach and Methods

In this section, we summarise the approach and the computing methods employed to

prove C2-cofiniteness of the extended parafermions vertex operator algebra Bk(sl2)

with k ∈ A as in (4.1).

The parafermion vertex operator algebra Ck(sl2) with k ∈ N\{0} has been

studied in [DLY 2009], [DLWY 2010], [DW 2010]. The C2-cofiniteness property

has been estaablished for all positive integral level parafermion algebras [ALY 2014],

see also [DLY 2009]. In our case, however, we want to consider k to be admissible

and negative instead of integral and positive.

4.1.1 Our Approach

Fix k admissible and negative. A quick review of some key the properties and

consequences of C2-cofiniteness can be found in Appendix A. Recall that we define

the C2-space of a given vertex operator algebra V as

C2 (V ) = SpanC{a−2(b) | a, b ∈ V }

and that V is called C2-cofinite if dimC
V

C2(V )
< ∞. In particular, the existence of

the conformal vector ω ∈ V allow us to show that a−m(b) ∈ C2 (V ) for all m ≥ 2.

Relevant properties of the C2-quotient V
C2(V )

of an arbitrary vertex operator algebra

V can also be found in Section 3 of [ALY 2014] or Section 2.3 of [BR 2018]. We

recall here certain basic facts about the C2-quotient of a vertex operator algebra:

Result 4.3. For a vertex operator algebra V , the C2-quotient V
C2(V )

has a natural
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structure of a commutative associative Poisson algebra with multiplication

(a, b) ↦−→ a−1(b) ,

and Poisson bracket

(a, b) ↦−→ a0(b) .

In particular:

• the multiplication is associative and commutative;

• the Poisson bracket satisfies a Leibniz-type rule with respect to the multipli-

cation:

a0
(
b−1(c)

)
=
(
a0(b)

)
−1
(c) + b−1

(
a0(b)

)
;

• the Poisson bracket satisfies a Jacobi identity similar to that of Lie algebras.

Remark 4.4. Recall that the mapping a ↦→ Y(a, z) for a in a given vertex operator

algebra is always injective. If one works with vertex operators instead of vectors,

the multiplication on V
C2(V )

is just the normally ordered product of the two given

vertex operators:

(
Y(a, b),Y(b, z)

)
↦−→ : Y(a, z)Y(b, z) : .

The following result is also helpful:

Result 4.5. Let V be a vertex operator algebra and a vertex ideal I ◁ V . Then one

has C2(V/I) ∼= (C2(V ) + I) /I and so

V/I

C2 (V/I)
∼=

V/I

(C2(V ) + I) /I
∼= V/ (C2(V ) + I) .
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This means that the C2-quotient of V/I can be understood in terms of that of V

subject to any additional relations coming from the ideal I .

Now recall that Vk(sl2) has a unique maximal ideal I = ⟨sk⟩ generated by a

singular vector and the corresponding quotient is Lk(sl2) = Vk(sl2)/⟨sk⟩. We will

show in the subsection below that by applying certain powers of the operator f0

to sk, we obtain a unique singular vector spara
k ∈ Com

(
H,Vk(sl2)

)
. Then since

the Heisenberg vertex algebra H ⊂ Vk(sl2) also injects naturally into the simple

quotient Lk(sl2), one can argue similarly as in [DLWY 2010] and obtain that

Ck(sl2) ∼= Com
(
H, Vk(sl2)

)
/⟨spara

k ⟩ .

Another important result from [DLWY 2010] is thatCk(sl2) is strongly generated

by its conformal vector L along with three Virasoro primary vectorsW3,W4 andW5

of conformal dimensions 3, 4, 5, respectively. By Remark 4.1 of [ACR 2018], we can

strongly generate the extended parafermion vertex operator Bk(sl2) =
⨁

ℓ∈Z C
L
2wℓ;1

with the generators of Ck(sl2) and two additional Virasoro primary vectors W±

associated with the highest weight states of the simple Ck(sl2)-modules CL
±2w;1.

Moreover, the simple current extension Ck(sl2) ⊂ Bk(sl2) is by an abelian inter-

twining algebra governed by the additive group of the latticeL = 2wZ so the algebra
Bk(sl2)

C2(Bk(sl2))
will also be polynomial in its strong generators.

Strong generators are key here because theC2-quotient is also generated by them

as shown in Corollary 2.6.2 of [Ara 2012]. By the discussion above, the following

key result holds:

Result 4.6. For k admissible and negative, the set {L,W3,W4,W5} strongly gen-
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erates Ck(sl2) and the set

{L,W3,W4,W5,W+,W−} , (4.7)

strongly generates Bk(sl2). Consequently, there is a surjective algebra homomor-

phism

C[x2, x3, x4, x5, x+, x−] ↠
Bk(sl2)

C2 (Bk(sl2))
, (4.8)

sending x2 to L, xi to Wi for i ∈ {1, 2, 3} and x± to W±.

In practice, Results 4.5 and 4.6 allow us to compute relations amongst the

generators and the singular vector spara
k in order to show C2-cofiniteness of Bk(sl2).

A sufficient number of such relations, would allow us to bound the dimension of its

C2-quotient space by a finite number. The principle is as follow: for every relation

r(L,W3,W4,W5,W±), form a the corresponding polynomial r(x2, x3, x4, x5) and

let P ◁C[x2, x3, x4, x5, x+, x−] be the the ideal generated by all corresponding such

polynomials. By construction, the surjection (4.8) factors through

C[x2, x3, x4, x5, x+, x−]/P . (4.9)

Therefore, showing that the dimension of the above quotient is finite will immediately

imply that Bk(sl2) is C2-cofinite!

Let us describe how we can find relations in the kernel of (4.8). By Remark 4.1

of [ACR 2018], we deduce the following two relations in Bk(sl2)
C2(Bk(sl2))

:

x2+ = 0 , x2− = 0 . (4.10)

This is because
(
: W+W+ :

)
(z) = 0 and

(
: W−W− :

)
(z) = 0 for conformal
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weight reasons. For obtaining other necessary relations among the generators (4.7),

we will look for certain types of relations in Bk(sl2)
C2(Bk(sl2))

, in particular:

• relations coming from a parafermion singular vector spara
k ∈ Com

(
H,Vk(sl2)

)
.

In practice, all the operator product expansion coefficients γG,s
para
k

i (w) have to

be set to zero where i ∈ N and where G ∈ {L,W3,W4,W5} is a strong

generator of Ck(sl2);

• genuine relations among the generators W3,W4,W5 in Ck(sl2). Relations of

this type were also computed in [DLY 2009] by writing
(
: W4W4 :

)
(z),(

: W4W5 :
)
(z) and

(
: W5W5 :

)
(z) as linear combinations of the other

normally ordered monomial of appropriate conformal weight in the strong

generators {L,W3,W4,W5} of Ck(sl2);

• a relation of the form x+x− = p(x2, x3, x4, x5) where p is a polynomial. This

is predictable because
(
: W+W− :

)
(z) must lie in Ck(sl2) by construction

of our extended parafermion vertex operator algebra Bk(sl2).

Remark 4.11. We expect that relations coming from the parafermion singular vector

to be the most challenging to obtain since singular vectors are very hard to explicitly

determine. However, they should be the most rewarding when it comes to producing

relations that must hold in the C2-quotient Bk(sl2)
C2(Bk(sl2))

.

Certain semi-explicit forms for the singular vector of Vk(sl2) are known, but

none of them is workable. For instance, sk is given in [MFF 1986] as a monomial

in en, fn for certain n ∈ Z with fractional powers. However to make sense of such

an expression in U
(
ŝl2

)
is all but straightforward and cannot be done in a sensible

way for a generic k. There is also an expression for sk in terms of Jack polynomials

[RW 2015a] if one realises Vk(sl2) in the Wakimoto free field realisation, but I have

not yet been able to take full advantage of this.
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There is a problem, however, with computing a polynomial relation for(
: W+W− :

)
(z) in terms of fields of Ck(sl2): the generically high conformal

dimension of the space in which such a computation would be performed:

2(v + 1)w = 2(v + 1)(2v − u) .

We will instead try to compute a polynomial relation in fields of Ck(sl2) for

certain generalised fields G±2 that we will be introduced in the next section. These

fields G±2 will be those associated to a vertex operator algebra action of Ck(sl2) on

the highest weight vectors of CL
±2;1, respectively4 .

We now want to develop a concrete strategy to determine C2-cofiniteness of

Bk(sl2) using Mathematica and a personal computer. Recall that we can only

manipulate vertex operator algebra fields of integral conformal dimensions with

OPEdefs.m. To meet our objective, we will make use of auxiliary generalised vertex

operator fields taken from a certain auxiliary positive definite lattice vertex operator

algebra:

Result 4.12. Suppose there exists a positive definite even lattice L̃k such that:

• M/L̃k ∼= (Q/wQ) = (2Z)/(2wZ) ∼= Z/wZ for some bigger lattice M such

that L̃k ⊂M ⊂
(
L̃k
)′

;

• there is m ∈M such that m = m+ L̃k generates M/L̃k and

1

2
(m ·m) =

⌈ v
w

⌉
− v

w
∈ Q ∩ [0, 1] . (4.13)

Then the following procedure allows to deduce that Bk(sl2) is C2-cofinite:

4In this sense, G±2(z) can be thought of as being wth-roots of the fields W±(z), respectively.
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1. we fix an isomorphism of abelian groups τ : M/L̃k → Q/wQ such that

τ(m) = 2 + wQ ∈ Q/wQ;

2. just as in Chapter 3, a result of [Li 2001] shows that

AM,k =
⨁

m∈M/L̃k

(⨁
ℓ∈Q

CL
ℓ+τ(m);1

)
⊗ VL̃k+m , (4.14)

is a vertex operator algebra since it is Z-graded by conformal weight;

3. we prove C2-cofiniteness of Ak,M by computing the normally ordered product(
: G2G−2 :

)
(u) ⊗

(
: VmV−m :

)
(u) ∝

(
: G2G−2 :

)
(u) in a space of

low conformal dimension and adding it to the other polynomial relations we

already have;

4. we note that M/L̃k naturally acts on Ak,M by automorphisms via

m.x = eπi(m·n)x ,

for any x ∈
(⨁

ℓ∈Q CL
ℓ+τ(n);1

)
⊗ VL̃k+n where n ∈ L̃k. By construction, the

orbifold (or invariant) sub-vertex operator algebra

A
M/L̃k

k,M = Bk(sl2)⊗ VL̃k , (4.15)

of the C2-cofinite Ak,M under the action of the finite solvable abelian group

M/L̃k ∼= Z/wZ has to be C2-cofinite as well, see [Miy 2015], [CM 2016] for

details.

5. thatBk(sl2) isC2-cofinite will follow form from the fact that the tensor product

vertex operator algebra (4.15) is C2-cofinite.

119



Remark 4.16. We will not address the problem of the existence of the suitable even

lattice L̃k in detail here. Note however that for all k ∈ A as of (4.1), we could

always find a lattice of the form
⨁a

i=1Ani
where ni ∈ N\{0} and Ani

is the root

lattice of finite dimensional simple Lie algebra slni+1 whose invariant bilinear form

is normalised so that the roots have length 2.

4.1.2 Methods of Computation

Fix k = −2 + u
v

admissible and negative. Recall that Laff is given by the Sugawara

conformal vector in Lk(sl2), that LH = 1
4k
h2−11 (where 1 is the highest weight

vector that generates Lk(sl2)) and that

L = Lpara = Laff − LH . (4.17)

Any computations can only be performed in a freely generated vertex operator

algebra since computers cannot directly manipulate and operate in any coset defined

by an equivalence relations. We will therefore work with fields of the universal

vertex operator algebra Vk(sl2) and construct parafermion fields in the universal

parafermion vertex operator algebra5

Com
(
H,Vk(sl2)

)
= {a ∈ Vk(sl2) | hn.a = 0 for all n ∈ N} .

It follows that LH
0 = 1

2k

∑
n>0

nh−nhn acts as zero on elements of Com
(
H, Vk(sl2)

)
.

In particular, we have the following useful fact:

Result 4.18. Let v ∈ Com
(
H,Vk(sl2)

)
⊂ Vk(sl2). Then the conformal weights of

5Recall from last section that Com
(
H,Vk(sl2)

)
has a unique maximal submodule generated by

a parafermion singular vector. The corresponding simple quotient Ck(sl2).
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v ∈ Com
(
H, Vk(sl2)

)
, v ∈ Vk(sl2), v ∈ Ck(sl2) and v ∈ Lk(sl2) all coincide.

Our computations will be performed using the software Mathematica using

K. Thielemans’ package OPEdefs.m [Thi 1991] for computing operator product

expansions and normally ordered products of fields as well as a number of cus-

tom functions. The usual Poincaré-Birkhoff-Witt basis of Vk(sl2) combined with

Result 4.18 allows to represent the homogeneous elements of Ck(sl2) with linear

combinations of monomials of the form

h
ph,q
−iq
· · ·hph,1i1

· epe,r−ir
· · · epe,1i1

· fph,s
−is
· · · fpf,1

i1
1+ ⟨spara

k ⟩ (4.19)

where q, r, s ∈ N, iℓ > · · · > i1 for every ℓ ∈ {q, r, s}, where px,ℓ ∈ N for every

(x, ℓ) ∈ {(h, q), (e, r), (f, s)} and

r∑
a=1

pe,a −
s∑

b=1

pf,b = 0

whenever any of the two above sums make sense. The vector (4.19) has conformal

weight
∑

ℓ∈{q,r,s}
∑ℓ

r=1 ir.

To setup computations in Ck(sl2) with Mathematica, we just define strong gener-

ator vertex operator fields L(z) = Lpara(z) by (4.17), and W3(z), W4(z) and W5(z)

as linear combinations of terms of the form (4.19) with the additional restrictions

for being a primary Virasoro vector for L ∈ Ck(sl2). The general expressions we

obtain in this way will be reported in the next section. Note that our expressions for

W3(z), W4(z) and W5(z) are equivalent to what has been computed in [DLY 2009]

and used in [ALY 2014].

Remark 4.20. In principle, Lemma 4.1 of [ALY 2014] could help us finding the

Virasoro primary vectors by eliminating the possibility for certain terms of the

121



form (4.19) to appear. While this is rather useless here, one could try to apply the

same idea to the problem of computing the singular vector spara
k ∈ Vk(sl2).

Singular vector relations. The first type of relations for the C2-quotient that we

aim for are those coming from singular vectors (also called null fields). Recall that for

k admissible, there exists a unique single singular vector sk ∈ Vk(sl2) that generates

an ideal whose quotient is Lk(sl2). By the Kac-Kazhdan formula [KK 1979] for the

Shapovalov determinant, we find that the singular vector sk ∈ Vk(sl2) has to satisfy:

h0.sk = 2(u− 1) · sk , L
Lk(sl2)
0 .sk = (u− 1)v · sk . (4.21)

For more explanations, see for instance [CR 2013b]. This will allow us to explicitly

compute sk for k ∈ A as of line (4.1).

The singular vector sk of Vk(sl2) must act as zero on the simple affine Lk(sl2).

By applying appropriate powers of the operator f0 ∈ U
(
ŝl2

)
to the affine singular

vector sk produces a parafermion singular vector spara
k in Com

(
H,Vk(sl2)

)
. Indeed,

operating via f0 ∈ U(sl2) ⊂ U(ŝl2) shifts the h0-weight of any weight vector by

−2 and this operation commutes with the quadratic Casimir element LLk(sl2)
0 ∈

U(sl2) ⊂ U(ŝl2) so that:

hn.(f
u−1
0 .sk) = 0 for all n ≥ 0 ,

L
Ck(sl2)
0 .(fu−1

0 .sk) = L
Lk(sl2)
0 .(fu−1

0 .sk)−

(
1

2k

∑
n>0

nh−nhn

)
.(fu−1

0 .sk)

= L
Lk(sl2)
0 .(fu−1

0 .sk)

= (u− 1)v · (fu−1
0 .sk) .
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We can thus define the parafermion singular vector as follows:

spara
k = fu−1

0 .sk ∈ Com
(
H,Vk(sl2)

)
. (4.22)

In terms of vertex operator algebra operations, we obtain spara
k from (4.22) as

the (u − 1)
th operator product expansion coefficient of the vertex operator fields

Y(fu−1
−1 , z)Y(s,w). It follows that determining explicitely spara

k is equivalent to de-

termining sk ∈ Vk(sl2). In practice, we have been able to determine spara
k and spara

k

only for values of k such that (u− 1)v ≤ 11. Remark 4.20 outlines an idea on how

to potentially ease the computation of spara
k , which may allow for computing singular

vectors of conformal weight higher than 11.

As spara
k is set to zero in Ck(sl2) (and in Bk(sl2) too), its corresponding vertex

operator field Y(spara
k , z) should also be set to zero. Therefore, for every strong

generator X ∈ {L,W3,W4,W5}, we can produce null relations by taking OPE

coefficients with the parafermion generators:

Y(spara
k , z)Y(X,w) =

N(X)∑
r=0

γ
s

para
k ,X

r (w)

(z − w)r
. (4.23)

Then all fields γs
para
k ,X

r (w) in (4.23) have to be set to zero in Ck(sl2). We can then

express each γs
para
k ,X

r (w) with X ∈ {L,W3,W,4 ,W5} as normally ordered polyno-

mials in the generating vertex operator fields L(w),W3(w),W4(w) and W5(w) and

set all derivatives to zero to obtain valid null relations in the C2-quotients Ck(sl2)
C2(Ck(sl2))

and Bk(sl2)
C2(Bk(sl2))

.

Relations for unextended generators. The second type of relation for the C2-

quotient to aim for comes from genuine relations amongst the parafermion generators
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{L,W3,W4,W5}. As noted in [DLY 2009], the parafermion algebra Ck(sl2) is not

freely generated and so there exist non-trivial linear relations among them. The

existence of such relations can also be checked theoretically by comparing the low

q-powers of the character of ch [Ck(sl2)] (q) = ch
[
CL
0;1

]
(q) given in Proposition 3.35

with the character of a freely generated algebra by generators of conformal dimension

2, 3, 4 and 5:

∞∏
r=1

1

(1− qn+2)(1− qn+3)(1− qn+4)(1− qn+5)
. (4.24)

For every pairX, Y ∈ {L,W3,W4,W5}, we can express
(
: XY :

)
(z) as a normally

ordered polynomial in the generating fieldsL(z),W3(z),W4(z) andW5(z) and their

derivatives. For every non-trivial normally ordered polynomial found in this way, we

obtain potential relations for the C2-quotient by removing all monomials containing

derivatives and conserve any non-trivial equalities. Following [DLY 2009], we

expect non-trivial relations of this type for the C2-quotient to be arising in spaces of

conformal dimensions 8, 9 and 10.

Suppose that two strong generators X and Y can be expressed in a non trivial

normally ordered polynomial rX,Y in the strong generators and their derivatives as

follows:

(
: XY :

)
(z) = rX,Y (L,W3,W4,W5 and their derivatives) .

Then the field

NX,Y (z) =
(
: XY :

)
(z)− rX,Y (L,W3,W4,W5 and their derivatives) ,

is a null field. This means that we can also find set all the operator product expansion
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coefficients of NX,Y (z) and G(w) to zero. This process however does not seem to

produce new relations for the C2-quotient in general.

Relation for extended generators. A priori, the third type of relations in the

C2-quotient of Bk(sl2) that we would aim for is of the type

(
: W+(z)W− :

)
(z) ≡ p

(
L(z),W3(z),W4(z),W5(z)

)
+ C2 (Bk(sl2)) (4.25)

where p is a normally ordered polynomial. However, recall that the fields W±(z) =

Y(W±, z) are those of the generating highest weight vectors W± of the Ck(sl2)-

modules CL
±2w;1 used to construct the extension Bk(sl2). Their corresponding h0-

weight is ±2w and their conformal dimensions are given in Remark 4.1 and Propo-

sition 3.8 of [ACR 2018] by (v + 1)(2v − u) = (v + 1)w. As argued at the end of

the preceding section, this number is generically too high to perform computations.

Indeed, as conformal dimension increases, bases for the correponding homogeneous

spaces for Ck(sl2) grow very fast: to have an idea, expand the product (4.24) as

a sum and consider the growth of the coefficients of qn as n grows. Even if one

had explicit expressions for both W±(z), computing a relation of type (4.25) would

probably be impossible for generic k.

At the end of last section, we outlined a procedure to circumvent this difficulty.

We must now introduce the generalised fields G±2(z). Recall from Chapter 3 that

ResLksl2
H⊗Ck(sl2)

Lk(sl2) =
⨁
2n∈2Z

F2n ⊗ CL
2n;1 (4.26)

where 2Z corresponds to the root lattice Q of the finite dimensional Lie algebra

sl2. In order to build the simple current extension Bk(sl2) of Ck(sl2) = CL
0;1, we

only used the simple currents CL
2wn;1 where w = −kv is the absolute value of the
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numerator of k. This choice is minimal with the property of ensuring that Bk(sl2)

is Z-graded by eigenvalues of Lpara ∈ Ck(sl2) ⊂ Bk(sl2) at any negative admissible

level k. Note that the fields W±(z) are those corresponding to the Ck(sl2)-actions

on the highest weight vectors that generate CL
±2w;1, respectively. In particular, we

have

(
: ew :

)
(z) = V2w(z)⊗W+(z) , (4.27)(

: fw :
)
(z) = V−2w(z)⊗W−(z) . (4.28)

However, we will rather focus on generalised fields G±2(z) introduced below:

Definition 4.29. The generalised vertex operator fields G±2(z) correspond to the

highest weight generating vector of the Ck(sl2)-module CL
±2;1. In particular:

e(z) =V2(z)⊗G2(z) from F2 ⊗ CL
2;1 ⊂ Lk(sl2) , (4.30)

f(z) =V−2(z)⊗G−2(z) from F−2 ⊗ CL
−2;1 ⊂ Lk(sl2) . (4.31)

Remark 4.32. We say that G±2(z) are generalised vertex operator fields for Ck(sl2)

because their conformal weight is generically fractional since k is both negative and

admissible. We have recorded conformal dimensions of the above pertinent vertex

fields appearing in the current discussion in Table 4.2. Note that these values are

deduced from Proposition 3.8 of [ACR 2018].

Here is a first technical result on the generalised fields G±2(z):

Lemma 4.33. The generalised fields G±2(z) from Definition 4.29 appear in the
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field e(z), f(z) G±2(z) V±2(z)

conf. dim. 1 1 + v
w

− v
w

Table 4.2: Conformal dimensions of certain fields. Note that all fields in the above
table make sense in terms of action maps for the vertex operator algebra Lk(sl2) or
H ⊗ Ck(sl2) or both. In particular, the fields G±2(z), V±2(z) mutually commute.

following expressions:

G2(z)G−2(u) =
∞∑

ℓ=−2

Xℓ(u) · (z − u)ℓ−
2v
w

where

• X−2(u) = −k Id;

• X−1(u) = 0;

• Xℓ(u) is a polynomial in fields of Ck(sl2) of homogeneous conformal dimen-

sion ℓ for all ℓ ≥ 0.

Moreover, we have

1

n!
(: e(n)f :)(u) =

n+2∑
t=0

Ỹt(u)⊗Xn−t(u) for all n ∈ N , (4.34)

where

• Ỹ0(u) is a scalar multiple of the identity;

• Ỹt(u) is a polynomial in h(u) and its derivatives of homogeneous conformal

dimension t for all t > 0. In particular, the constant term of these polynomials

is 0.
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Proof: Recall from Lk(sl2) the following OPE relations:

e(z)f(u) =
−k · Id
(z − u)2

+
h(u)

z − u
+ : e(z)f(u) :

=
−k · Id
(z − u)2

+
h(u)

z − u
+

∞∑
n=0

1

n!

(
: e(n)f :

)
(u) · (z − u)n

We note that

V2(z)V−2(u) = (z − u)
2v
w ·
∑
t=0

Ỹt(u) · (z − u)t ,

has all the claimed properties. Using (4.30) and (4.31), we write

e(z)f(u) = G2(z)G−2(u) · (z − u)
2v
w ·
∑
t=0

Ỹt(u) · (z − u)t , (4.35)

so we deduce that G2(z)G−2(u) has an expansion of the form

G2(z)G−2(u) · (z − u)
2v
w =

∞∑
ℓ=−2

Xℓ(u) · (z − u)ℓ

where Xℓ(z) is a field of Ck(sl2) for all ℓ ≥ −2 with all the claimed properties. In

particular, we find thatX−2(u) is a scalar multiple of the identity, X−1 = 0 since its

conformal dimension has to be 1. Also by inspection of (4.35), we obtain (4.34).

Q.E.D.

In practice, we compute the required polynomial relation to complete the proof

that Ak,M (4.13) is C2-cofinite as follows:

1. by assumption, the auxiliary lattice vertex operator algebra ṼL̃k contains a
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primary vector m as in (4.13) vertex operator fields V±m(z) which satisfy

Vm(z)V−m(u) =
∞∑
b=0

Bb(u) · (z − u)b−(m·m)

=
∞∑
b=0

Bb(u) · (z − u)b−2⌈ v
w⌉+ 2v

w

where B0(u) is a scalar multiple of the identity and Bb(u) is a polynomial

in the bosonic generators of the auxiliary lattice L̃k and their derivatives of

homogeneous conformal dimension b for all b > 0;

2. Consider the fields G2(z) ⊗ Vm(z) and G−2(z) ⊗ V−m(z) that complete L,

W3, W4 and W5 to form a strong generating set of Ak,M from (4.14). By

construction, the normally ordered product of G2(z)⊗ Vm(z) and G−2(z)⊗

V−m(z) lies in

Ck(sl2)⊗ SpanC{ “ bosons associated to L̃k ”} .

On the other hand, we know that we can write

G2(z)G−2(u)⊗ Vm(z)V−m(u) =
∞∑

ℓ=−2
b=0

Xℓ(u)⊗Bb(u) · (z − u)ℓ+b−2⌈ v
w⌉ .

The normally ordered product is thus the coefficient of (z − u)0, which is

2⌈ v
w⌉+2∑
b≥0

X2⌈ v
w⌉−b(u)⊗Bb(u)

Next, we note Bb(u) ≡ 0 modulo C2 (Ak,M) so that the only part of this

coefficient that could possibly have a non-trivial contribution for a relation in
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the C2-quotient of Ak,M is the parafermion field X2⌈ v
w⌉(u);

3. now that we know that we need to determineX2⌈ v
w⌉(u), here is what we do to

compute it using the affine fields defined in Mathematica. Write down (4.34)

specialised at n = 2
⌈
v
w

⌉
so that it reads

1(
2
⌈
v
w

⌉)
!

(
: e(2⌈

v
w⌉)f :

)
(u) =

2⌈ v
w⌉+2∑
t=0

Ỹt(u)⊗X(2⌈ v
w⌉)−t(u) ; (4.36)

4. effectively, we just have to compute the left-hand side of (4.36) as a linear

combinations of fields h(z), L(z),W3(z),W4(z), W5(z) and their derivatives

and then set all the terms with h(z) (and its derivatives) to zero. This way, we

obtain X2⌈ v
w⌉(z) (modulo the C2-space of Ak,M ) as per the right-hand side

of (4.36).

Remark 4.37. Surprisingly, we do not need to define any auxiliary fields from L̃k

to obtain a ± relation for C2-cofiniteness. Although it may seem surprising on first

look, one may observe that the existence of an L̃k with the properties stated in the

the previous section is only required to ensure that one can define the vertex operator

algebra Ak,M as of (4.14). It is then Ak,M whose very existence in turn implies that

we may use the procedure described at the end of the preceding section.

The non-necessity of using auxiliary fields from L̃k in the computations with

Mathematica has in fact showed up in my early attempts to preform the computation.

In these attempts, coefficients associated with the auxiliary fields often turned out

to be zero. It has since been satisfactory to observe how the theory caught up with

the experiment!

Remark 4.38. In practice, to find a lattice L̃k for a given k, we look at the denominator

in Equation (4.13) multiplied by 2. This denominator will generically bew if it is an
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odd number, or w
2

ifw was even to start with. In Remark 4.16, we have mentioned to

have found lattices L̃k to be a direct sum of lattices of typeAn for certain n ∈ N\{0}:

the reason is that VAn should have a fundamental weight ω1 ∈ (A1)
′ should have

a rational norm where the denominator a number closely related to n. We intend

to develop more on this in the near future. In particular, a suitable choice of L̃k

might even be made explicit for certain specific families of levels k such as boundary

admissible.

4.2 Results

In this section, we record the polynomial relations found to bound the dimension

of the space Ak,M

C2(Ak,M)
for each of the k ∈ A as of line (4.1). We then deduce

C2-cofiniteness of Ak,M and of the extended parafermion vertex operator algebra

Bk(sl2).

4.2.1 Relations for Generic Negative Admissible Level k

Just as in [DLY 2009] and [ALY 2014], we have determined the strong generating

fields L(z),W3(z),W4(z) andW5(z) in terms of the fields e(z), f(z) and h(z) from

Lk(sl2). The explicit expressions can be found in Appendix C. In the C2-quotient,

non-trivial polynomial relations among the strong generating fields L(z), W3(z),

W4(z) and W5(z) have been found in spaces of conformal dimension 8, 9 and 10.

Recall from Result 4.6 that the map (4.8) factors through a quotient

C[x2, x3, x4, x5, x+, x−]/P

where P is an ideal, see (4.9). The relations in the spaces of conformal dimensions
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8, 9 and 10 already give us three relations in theC2-quotient of Ck(sl2) ⊂ Bk(sl2) ⊂

Ak,M . After changing the normally ordered polynomials in fields L(z), W3(z),

W4(z), W5(z) by the corresponding polynomial in x2, x3, x4 and x5, we obtain the

following three polynomial relations:

x24 =
18(72k7 + 518k6 + 1391k5 + 1652k4 + 732k3)

16k + 17
x22x4

− 162(104k7 + 852k6 + 2518k5 + 3207k4 + 1494k3)

64k + 107
x2x

2
3

+
4536

(16k + 17)2
(72k14 + 828k13 + 3934k12 + 9713k11 + 12324k10+

4856k9 − 6368k8 − 8304k7 − 2880k6)x42 +
3(2k + 3)

2(3k + 4)
x3x5

x4x5 = 972(12k6 + 52k5 + 75k4 + 36k3)x33

+
252(6k7 + 41k6 + 104k5 + 116k4 + 48k3)

16k + 17
x22x5

− 108(2148k7 + 13736k6 + 32679k5 + 34306k4 + 13416k3)

64k + 107
x2x3x4

− 3888

(16k + 17)(64k + 107)
(8088k14 + 91220k13 + 423682k12 + 1014691k11

+ 1216690k10 + 344852k9 − 833704k8 − 951744k7 − 316800k6)x32x3
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x25 = 648(18k6 + 75k5 + 104k4 + 48k3)x23x4

− 432(498k7 + 3121k6 + 7269k5 + 7466k4 + 2856k3)

64k + 107
x2x3x5

− 20736(18k12 + 183k11 + 770k10 + 1716k9 + 2136k8 + 1408k7 + 384k6)x32x4

+
23328

(16k + 17)(64k + 107)2
(3123072k15 + 46891896k14

+ 309206212k13 + 1175980402k12 + 2844159575k11 + 4537865348k10

+ 4777381292k9 + 3200532544k8 + 1238077632k7 + 210673152k6)x22x
2
3

− 373248

16k + 17
(216k19 + 3204k18 + 20658k17 + 75103k16 + 165574k15

+ 215512k14 + 128048k13 − 49744k12 − 142624k11 − 95232k10 − 23040k9)x52

Note that scaling W3(z), W4(z) and W5(z) slightly differently, one can get rid

of all denominators in the above three relations. As a consequence, we should have

three non-trivial relations of this type for generic values of k.

4.2.2 C2-Cofiniteness of Bk(sl2) at Specific Levels

In this section we establishC2-cofiniteness ofBk(sl2) for all k ∈ A by the means of a

combination an adaptation of Result 4.6 forAk,M instead of Bk(sl2) and Result 4.12.

With the computer, we must compute polynomial relations.

Following the ideas developed in this chapter, we explicit lists of polynomial

relations composed of relations of the following types

• one for spara
k ∈ Ck(sl2), the parafermion singular vector;

• several others corresponding to the null fields that spara
k produces by taking the

operator product expansion coefficients with the strong generators of Ck(sl2);
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• three for the relations in spaces of conformal dimension 8, 9 and 10, respec-

tively. We can just substitute the value of k in the relations obtained at the

previous section;

• the two relations x2± = 0 where x± corresponds to G±(z)⊗ V±m(z);

• one for X2⌈ v
w⌉(z) computed from expressing

(
: e

(
2⌈ v

w⌉
)
f :

)
(z) ,

in terms of h(z), L(z), W3(z), W4(z),W5(z) and their derivatives. We then

set h(z) and all derivatives to zero. The result should allow to show thatAk,M

is C2-cofinite, which then implies C2-cofiniteness of Bk(sl2).

After listing all relevant polynomials, we consider the ideal

Pk ∈ C[x2, x3, x4, x5, x+, x−] ,

generated by all of them. We then compute a Gröbner basis of Pk and argue that Pk

has finite codimension by computing the associated affine variety. By an adaptation

of Result 4.6 for Ak,M and Result 4.12, we will would establish C2-cofiniteness of

the extended logarithmic parafermion vertex operator algebra Bk(sl2).

Let’s now treat the cases k ∈ A from line (4.1) one by one. Before doing so,

we record a few special levels where the singular vector is proportional to a strong

generator of Ck(sl2) in Table 4.3.

Case k = −1
2
. In this case, w = 1 and the parafermion singular vector can be

taken to be spara
− 1

2

= W4, so we record the relation x4 = 0 .
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k ∈ A −1
2

−4
3

−8
5

spara
k ∝ W4 W3 W5

Table 4.3: Special coincidences of parafermion singular vector.

Takingx4 = 0 into account, the non-trivial null relations we obtain from the oper-

ator product expansion of spara
− 1

2

with the strong generating fields L(z),W2(z),W3(z),

W4(z) and W5 are:

0 = 2025x32 − 648x23 , 0 =
171

2
x2x5 , 0 = x42 −

8

25
x2x

2
3 −

16

4725
x3x5 .

The three relations in conformal dimension 8, 9 and 10 together with x4 = 0

found above lead to the following two non-redundant relations:

0 =
30375

8
x32x3 −

315

8
x22x5 − 1215x33 , x25 =

27

14
x2x3x5 − x25 .

Next, we find relations for the variables x±. In this specific case, w = 1 and

v = 2 so W±(z) = G±2(z) ∈ CL
2;1. Moreover (4.34) allows us to directly compute(

: W+W− :
)
(u) by setting 2v = 4 and let all h(u) and their derivatives to be zero

in the resulting expression. This is why in this very specific case, we do not even

need the existence of any lattice with special properties. Using also x4 = 0 from

the singular vector, we obtain the relation:

x+x− = 144x32 −
128

3
x23

where we note that 128
3∗144 ̸=

8
25

so this relation is not a priori redundant. Next, as
(
:
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W±W± :
)
(z) = 0moduloC2 (Bk(sl2)), so we also record: 0 =

(
144x32 −

128

3
x23

)2

.

Eliminating the variables x4 found to be zero above, we consider the ideal P− 1
2

generated by the above boxed polynomials:

P− 1
2
◁ C[x2, x3, x5, x+, x−] ⊂ C[x2, x3, x4, x5, x+, x−] .

To determine it has finite codimension, we compute a Gröbner basis with lexico-

graphic variable ordering x2 < x3 < x5 < x+ < x−:

{
x2−, x

2
+, x−x+x5, x

2
5, x3x5, 256x

2
3 − 75x−x+, x2x5, 32x

3
2 − 3x−x+

}
.

Let B− 1
2

denote the ideal generated by the polynomials of the above Gröbner ba-

sis. Recall that then the affine variety V
(
P− 1

2

)
coincides with the affine variety

V
(
B− 1

2

)
. By Elimination Theory and the properties of Gröbner bases [CLO 1997],

we can easily compute V
(
B− 1

2

)
as follows:

1. 0 ∈ C is the only point of V
(
⟨x2−⟩

)
= V

(
⟨x−⟩

)
where ⟨x2−⟩ = B− 1

2
∩C[x−]

is the fourth elimination ideal;

2. 0 ∈ C is the only point a such that (a, 0) ∈ C2 is actually in

V
(
⟨x2−, x2+⟩

)
= V

(
⟨x−, x+⟩

)
where ⟨x2−, x2+⟩ = B− 1

2
∩ C[x+, x−] is the third elimination ideal;

3. 0 ∈ C is the only point a ∈ C such that (a, 0, 0) ∈ C3 is actually in

V
(
⟨x2−, x2+, x−x+x5, x25⟩

)
= V (⟨x−, x+, x−x+x5, x5⟩)
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where ⟨x2−, x2+, x−x+x5, x25⟩ = B− 1
2
∩C[x5, x+, x−] is the second elimination

ideal;

4. 0 ∈ C is the only point a ∈ C such that (a, 0, 0, 0) ∈ C4 is actually in

V
(
⟨x2−, x2+, x−x+x5, x25, x3x5, 256x23 − 75x−x+⟩

)
,

which is the varitety of the first elimination ideal;

5. 0 ∈ C is the only point a ∈ C such that (a, 0, 0, 0, 0) ∈ C5 is actually in the

full affine variety V
(
B− 1

2

)
.

It follows that V
(
B− 1

2

)
= V

(
P− 1

2

)
=
{
(0, 0, 0, 0)

}
⊂ C4, and so this affine

variety is zero dimensional. By Theorem 5.3.6 of [CLO 1997], this statement

directly implies that

dimC

(
C[x2, x3, x4, x5, x+, x−]

P− 1
2

)
<∞ .

Finally, since the map (4.8) factors through C[x2, x3, x5, x+, x−]/P− 1
2

(by construc-

tion), we conclude that B− 1
2
(sl2) is C2-cofinite. In particular, it is a logarithmic

C2-cofinite vertex operator algebra.

Case k = −4
3
. In this case, the parafermion singular vector can be taken to be

spara
− 4

3

= W3, so we record the relation x3 = 0 .

Note that since we can find W4(z) and W5(z) in the operator product expansion

coefficients of combinations of W3(z) = 0 and L(z), we expect to eventually find

x4 = 0 = x5. Taking the x3 = 0 into account, the only non-trivial null relation

we obtain from the operator product expansion coefficients of spara
− 4

3

with the strong
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generators of C− 4
3
(sl2) is

1024

27
x2x4 = 0 .

There is no genuine relation in conformal dimension 8 in this specific case.

However the genuine relations in conformal dimension 9 and 10 together with the

relation x3 = 0 found above lead to: x4x5 = 0 and x25 = 0 .

Next, the variables x± ↔ G±(z) ⊗ V±m(z) mod C2

(
A− 4

3
,A3

)
. Recall that we

always have the two relations x2± = 0 . The polynomial relation we find (having

implemented x3 = 0 found above) is

x+x− = x22 −
27

512
x4 .

As x2± = 0, we also record: 0 =

(
x22 −

27

512
x4

)2

.

Eliminating the variable x3 found to be zero above, we consider the ideal P− 4
3

generated by the above boxed polynomials:

P− 4
3
◁ C[x2, x4, x5, x+, x−] ⊂ C[x2, x3x4, x5, x+, x−] .

To determine if it has finite codimension, we compute a Gröbner basis with lexico-

graphic variable ordering x2 < x4 < x5 < x+ < x−:

{
x2−, x

2
+, x

2
5, x4x5, 27x

2
4 + 512x−x+x4, x2x4, 512x

2
2 − 512x−x+ − 27x4

}
.

Let B− 4
3

denote the ideal generated by the polynomials of the above Gröbner basis.

We compute the variety V
(
B− 4

3

)
as follows:

1. 0 ∈ C is the only point of V
(
⟨x2−⟩

)
where ⟨x2−⟩ = B− 4

3
∩ C[x−];

2. 0 ∈ C is the only point a such that (a, 0) ∈ C2 is actually in V
(
⟨x2−, x2+⟩

)
;
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3. 0 ∈ C is the only point a ∈ C such that (a, 0, 0) ∈ C3 is actually in

V
(
⟨x2−, x2+, x25⟩

)
;

4. 0 ∈ C is the only point a ∈ C such that (a, 0, 0, 0) ∈ C4 is actually in

V
(
⟨x2−, x2+, x25, x4x5, 27x24 + 512x−x+x4⟩

)
;

5. 0 ∈ C is the only point a ∈ C such that (a, 0, 0, 0) ∈ C5 is the such that

(a, 0, 0, 0, 0) ∈ C4 is actually in the full V
(
B− 4

3

)
.

So V
(
P− 4

3

)
= V

(
B− 4

3

)
=
{
(0, 0, 0, 0, 0)

}
is a point. Then this variety is zero

dimensional and we conclude by Theorem 5.3.6 of [CLO 1997] that P− 4
3

has finite

codimension in C[x2, x4, x5, x+, x−]. As for the other case, this imply that A− 4
3
,A3

and B− 4
3
(sl2) are C2-cofinite vertex operator algebras!

Case k = −8
5
. In this case, the parafermion singular vector can be taken to be

spara
− 8

5

= W5, so we record the relation x5 = 0 .

Taking the x5 = 0 into account, the non-trivial null relation obtained from the

operator product expansion coefficients of spara
− 8

5

with L(z),W3(z),W4(z) andW5(z)

are

0 = −2629632

3359375
x32 +

1

20
x4x2 −

3

40
x23 ,

0 =
10857140453376

10498046875
x32 −

1032192

15625
x4x2 +

1548288

15625
x23 ,

0 =
3514368

1596875
x4x

2
2 −

2261495808

1596875
x23x2 +

23005

1533
x24 .

The genuine relations in conformal dimensions 8, 9 and 10 together with x5 = 0

found above lead to:

x24 =
5555405979648

451416015625
x42 −

626688

671875
x4x

2
2 +

1492992

15625
x23x2 ,
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0 =
13959180582912

10498046875
x3x

3
2 −

1327104

15625
x3x4x2 +

1990656

15625
x33 ,

0 =
1872406729451372544

164031982421875
x52 +

695784701952

244140625
x4x

3
2 −

212910118797312

10498046875
x23x

2
2 +

5308416

15625
x23x4 .

Next, the variables x± ↔ G±(z)⊗ V±m(z) mod C2

(
A− 8

5
,A7⊕A3

)
. Recall that

we always have x2± = 0 . Using x4 = 0 found above, we obtain

x+x− = − 73

430
x22 −

3125

73728
x4 .

We also record that the right side of the above equation squares to zero.

Eliminating the variables x5 previously found to be zero, we consider the ideal

P− 8
5

and compute its associated affine variety by obtaining a Gröbner basis with

lexicographic variable ordering x2 < x3 < x4 < x+ < x− using Mathematica.

Proceeding with the routine use of the elimination ideals, it is then straightforward

to check that V
(
P− 8

5

)
=
{
(0, 0, 0, 0, 0)

}
⊂ C5.

As in the other cases treated above, this implies that the vertex operator algebras

A− 8
5
,A7⊕A3

and B− 8
5
(sl2) are C2-cofinite!

Case k = −5
4
. In this case, the parafermion singular vector spara

− 5
4

is in the space

of conformal dimension 8. It has a complicated shape, but its reduction to the

C2-quotient of B− 5
4
(sl2) gives the polynomial relations6

0 = x42 −
37670912x4x

2
2

362112375
+

4194304x24
2930765625

− 67108864x3x5
9052809375

,

0 =
28659x4x

2
2

965633
+ x23x2 −

22528x24
7815375

− 1707008x3x5
362112375

,

6More than one relation shows up because the singular vector spara
− 5

4

lies in the space of conformal
dimension 8, which is greater than 7. One of these relations is thus redundant with a genuine relation
among generators in conformal dimension 8.
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which is in fact the singular vector up to some genuine null relation modulo

C2

(
B− 5

4
(sl2)

)
.The non-redundant null relations obtained from the operator product

expansion coefficients of spara
− 5

4

withL(z),W3(z),W4(z) andW5(z) are the following:

0 = − 167030078104x4x
2
2

570326990625
− 17484568x23x2

1771875

+
393892347904x24
13847867578125

+
29846297452544x3x5
641617864453125

,

0 = − 221407084584x33
42849964375

+
453890642996x2x4x3

1156949038125

− 2526520076x22x5
42849964375

+
1763563466752x4x5
433855889296875

,

0 = −4321903270941x4x
2
2

43260358400
−150804399x23x2

44800
+
4423595704x24
455896875

+
335187910844x3x5

21123221875
,

0 =
3023152420813439x4x

3
2

18942969337216
− 587080074087856x24x2

277484902400625
+

1820781698047432x3x5x2
92494967466875

− 1695724461924352x25
34685612800078125

− 393219331912544x23x4
92494967466875

,

0 =
9050014582371x33

8775672704
− 12368520021641x2x4x3

157962108672

+
206543016213x22x5

17551345408
− 187723064332x4x5

231389807625
.

The genuine relations in dimension 8, 9 and 10 are:

x24 = −
1993359375

4194304
x42 +

3375

64
x4x

2
2 +

113625

1024
x23x2 + 3x3x5

x4x5 = −
8536640625

2097152
x3x

3
2 +

23625

2048
x5x

2
2 +

83625

1024
x3x4x2 −

30375

256
x33 ,
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x25 =
2883251953125

67108864
x52 −

34171875

32768
x4x

3
2 +

4875890625

1048576
x23x

2
2

+
22875

512
x3x5x2 −

10125

256
x23x4 .

Next, the variables x± ↔ G±2(z)⊗ V±m(z) mod C2

(
A− 5

4
,A4

)
. Recall that we

always have x2± = 0 . In this case, we find that: x+x− =
256x4
5625

− 15x22
8

. We also

record that the right side of the above equation squares to zero.

Let P− 5
4

denote the ideal generated by all the above polynomials. We obtain

a Gröbner basis with the computer and follow the elimination process as above

to determine its associated affine variety. In this case, the elimination process is

straightforward and we deduce that V
(
P− 5

4

)
=
{
(0, 0, 0, 0, 0, 0)

}
.

Therefore B− 5
4
(sl2) is another C2-cofinite logarithmic vertex operator algebra!

Case k = −7
5
. In this case, the parafermion singular vector spara

− 7
5

is in the space

of conformal dimension 10. It has a complicated shape, but its reduction to the

C2-quotient of B− 7
5
(sl2) gives the polynomial relations

0 = x52 −
118913330078125x24x2
110818158196028724

− 1700535888671875x3x5x2
110818158196028724

− 2843620452880859375x25
8210295704427376103712

− 8627197265625x23x4
12313128688447636

0 = x22x
2
3 −

776755484375x4x
2
3

107695003105956
− 16058659375x2x5x3

1648392904683

− 189225000000x2x
2
4

8974583592163
+

604660931640625x25
23936722170342204384
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0 = x4x
3
2 −

2932006609375x24x2
53847501552978

− 14994586121875x3x5x2
107695003105956

+
5616852935546875x25
7978907390114068128

+
1118394421875x23x4
35898334368652

,

which is in fact the singular vector up to some genuine null relation modulo

C2

(
C− 5

4
(sl2)

)
.The non-redundant null relations obtained from the operator prod-

uct expansion coefficients of spara
− 7

5

with L(z), W3(z), W4(z) and W5(z) are the two

following:

0 = − 939048374945

111560627598
x4x

3
2 +

2753296041861593152109375

6007261067834505325886844
x24x2

+
14080641730719568466421875

12014522135669010651773688
x3x5x2 −

5274496621430345793623046875x25
890131915987445661168608996544

− 350075488136423836640625x23x4
1334946903963223405752632

,

0 = − 915008736546408x4x
3
2

1185805990625
+

20440469814780467561260x24x2
486496685117792786353

+
52267342104431038147358x3x5x2

486496685117792786353
− 9789465729374721792964375x25

18021783203503515977660532

− 11695321907661647534490x23x4
486496685117792786353

,

The genuine relations in dimension 8, 9 and 10 are:

x24 =
3972771432

244140625
x42 +

109074

15625
x4x

2
2 +

12946878

453125
x23x2 −

3

2
x3x5 ,

x4x5 =
2556821480976

7080078125
x3x

3
2 −

28812

15625
x5x

2
2 −

10705716

453125
x3x4x2 +

333396

15625
x33 ,
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x25 =
9082327572638208

3814697265625
x52 −

65868380928

244140625
x4x

3
2

+
118177938609696

205322265625
x23x

2
2 −

2074464

453125
x3x5x2 −

222264

15625
x23x4 .

Next, we find relations for the variablesx± ↔ G±2(z)⊗V±m(z) mod C2

(
A− 7

5
,A6

)
.

Recall that we always have x2± = 0 . In this case,W±(z) ∈ CL
14;1 sincew = 2v−u =

7. Then using two bosonic auxiliary fields we find that:

x+x− =

(
3125

43218
x4 −

67

105
x22

)7

.

We also record that the right side of the above equation squares to zero.

Let P− 7
5

denote the ideal generated by all the above polynomials. We obtain

a Gröbner basis with the computer and follow the elimination process as above

to determine its associated affine variety. In this case, the elimination process is

straightforward and we deduce V
(
P− 7

5

)
=
{
(0, 0, 0, 0, 0, 0)

}
. Therefore A− 7

5
,A6

and B− 7
5
(sl2) are C2-cofinite vertex operator algebras.

Case k = −12
7

. In this case, the parafermion singular vector spara
− 12

7

is in the space

of conformal dimension 7. It has a complicated shape, but its reduction to the

C2-quotient of B− 12
7
(sl2) gives the polynomial relation

0 = − 163200

3330187
x3x

2
2 +

49

1679616
x5x2 −

49

1119744
x3x4 .

The non-redundant null relations obtained from the OPEs of spara
− 12

7

withL(z),W3(z),

W4(z) and W5(z) are the following:

0 = 163200

475741
x3x

2
2 −

343

1679616
x5x2 +

343

1119744
x3x4 ,
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0 = − 28576

6936489
x4x

2
2 +

13675752

4881233
x23x2 +

1634689

359437824
x24 −

154399

59906304
x3x5 ,

0 = −52264275148800

4085843062357
x3x

2
2 +

572

75117
x5x2 −

286

25039
x3x4 ,

0 = −24786000

16200233
x33 −

9652920

4216499
x2x4x3 −

4789520

1182617009
x22x5 +

728875

489691008
x4x5 ,

0 = − 1097780428800

30224851643
x4x

2
2 +

269514805955788800

10911171443123
x23x2

+
587153600

14643699
x24 −

110915200

4881233
x3x5 ,

0 =
1972560521134080

78830730920893
x4x

3
2 +

1319315915480

114578576847
x24x2 +

64531360800

12730952983
x3x5x2

− 1098641005

243046531584
x25 +

109811372740

12730952983
x23x4 .

The genuine relations in dimension 8, 9 and 10 are:

x24 =
238505686990848

10537174213447
x42 +

1866240

8588377
x4x

2
2 −

1355450112

2235331
x23x2 +

9

16
x3x5 ,

x4x5 = −
69224603880259584

19197865347787
x3x

3
2 +

5971968

1226911
x5x

2
2 +

3430895616

2235331
x3x4x2 +

120932352

117649
x33 ,

x25 =
3798262214739628130304

118874192647462777
x52 +

95105071448064

13841287201
x4x

3
2

− 600419976231650328576

364759441607953
x23x

2
2 +

5840584704

2235331
x3x5x2 +

214990848

117649
x23x4 .

Next, we find relations for the variablesx± ↔ G±2(z)⊗V±m(z) mod C2

(
A− 12

7
,A3⊕A5

)
.
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In this case, we obtain:

x+x− = −107x22
1533

− 16807x4
1119744

.

We also record that the right side of the above equation squares to zero.

Let P− 12
7

denote the ideal generated by all the above polynomials. We obtain a

Gröbner basis with the computer and follow the elimination process as above to de-

termine its associated affine variety. In this case, the elimination process is straight-

forward and we deduce V
(
P− 12

7

)
=
{
(0, 0, 0, 0, 0, 0)

}
. Therefore A− 12

7
,A3⊕A5

and

B− 12
7
(sl2) are other C2-cofinite vertex operator algebra!

Case k = −16
9

. In this case, the parafermion singular vector spara
− 16

9

is in the space

of conformal dimension 9. It has a complicated shape, but its reduction to the

C2-quotient of B− 16
9
(sl2) gives the polynomial relations

0 = x33 +
6729402

13223275
x2x4x3 +

78751

44655650
x22x5 −

126502641

284131328000
x4x5 ,

0 = x3x
3
2−

3322234521

4318796185600
x5x

2
2+

1782039771

539849523200
x3x4x2−

2434162932387

2830366268194816000
x4x5 ,

which is in fact the singular vector up to some genuine null relation modulo

C2

(
B− 16

9
(sl2)

)
. Null relations obtained from the operator product expansion coef-

ficients of spara
− 16

9

with L(z), W3(z), W4(z) and W5(z) include the following:

0 =− 87420035596x4x
3
2

5991911555535
− 90842849951x24x2

19950511390720
− 58231219427x3x5x2

39901022781440

+
66932590636017x25

26149534290044518400
− 367439665479x23x4

39901022781440

0 =
316925050x33
73660347

+
31839436x2x4x3

14541363
+

57566981x22x5
7587015741

− 14094411x4x5
7357726720
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0 =
829728807356x5x

3
2

270502934862429
+

761050557088x3x4x
2
2

875414028681
− 16560666313x4x5x2

21860666736640

− 26653523x3x
2
4

5305987072
+

133267615x23x5
42447896576

0 = − 128104005365043036160x4x
3
2

1438853300800663941
− 2031246124904360x24x2

73101320977527

− 651025033193860x3x5x2
73101320977527

+
31162214681x25
1995051139072

− 1369325153351740x23x4
24367106992509

The genuine relations in dimension 8, 9 and 10 are

x24 =
70652212019200x42
4110143967801

+
163840x4x

2
2

225261
− 135577600x23x2

400221
+

5x3x5
8

x4x5 = −
1778975454003200x3x

3
2

2434162932387
+
9175040x5x

2
2

2027349
+
456785920x3x4x2

400221
+
1638400x33

729

x25 =
21166918248641331200x52

785436540953661
+

2748779069440x4x
3
2

387420489

− 9980713721921536000x23x
2
2

16498215430623
+

673710080x3x5x2
400221

+
2621440

729
x23x4

Next, the variables x± ↔ G±2(z)⊗ V±m(z) mod C2

(
A− 16

9
,A3⊕A15

)
. In this case,

we find that:

x+x− = −47x22
1236

− 6561x4
655360

.

We also record that the right side of the above equation squares to zero.

Let P− 16
9

denote the ideal generated by all the above polynomials. We compute a

Gröbner basis with the computer and follow the elimination process as above. With a

little more work at each elimination step, we show with the help of the computer that

V
(
P− 16

9

)
=
{
(0, 0, 0, 0, 0, 0)

}
. Therefore A− 16

9
,A3⊕A15

and B− 16
9
(sl2) are other

C2-cofinite vertex operator algebras!
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Case k = −2
3
. The C2-cofiniteness of B− 2

3
(sl2) is established in Remark 4.20 of

[ACR 2018] assuming validity of a conjecture. This conjecture says that a certain

vertex operator algebra result of [Miy 2015] should still hold for an appropriate

vertex operator superalgebras. In the following, we record what can be inferred

from the same procedure as above, although we cannot quite arrive to a definitive

proof.

For this level, the parafermion singular vector spara
− 2

3

is in the space of conformal

dimension 9. It has a complicated shape, but its reduction to the C2-quotient of

B− 2
3
(sl2) gives the polynomial relation

−496545

176416
x33 −

108959319

42560360
x2x4x3 +

752121

1047470
x22x5 +

5325183

282265600
x4x5 = 0 .

The non-redundant null relations obtained from the operator product expansion

coefficient of spara
− 2

3

with L(z), W3(z), W4(z) and W5(z) are the following:

0 =− 6769089

1047470
x22x5 +

980633871

42560360
x2x3x4 +

4468905

176416
x33 −

47926647

282265600
x4x5

0 =
7094834624

2046195
x32x4 +

3280059

303140
x2x3x5 +

9312603

60628
x2x

2
4

− 2141834337

4850240
x23x4 −

2464860321

6208307200
x25

0 =− 3491793808547840

2132544429
x32x4 −

44842051040

8775903
x2x3x5

− 1909704455200

26327709
x2x

2
4 +

1830078450170

8775903
x23x4 +

363745459

1940096
x25
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The genuine relations in dimension 8, 9 and 10 are

x24 = −
45875200

29241
x42 −

47360

513
x22x4 +

315200

1737
x2x

2
3 +

5

4
x3x5

x4x5 =
36129996800

2673243
x32x3 −

35840

513
x22x5 +

1230080

1737
x2x3x4 − 1600x33

x25 =
5242880

567
x32x4 −

794663321600

1203850431
x22x

2
3 +

1761280

36477
x2x3x5 +

77824

189
x2x

2
4 − 1280x23x4

Next, we find relations for x± ↔ G±2(z)⊗ V±m(z) mod C2

(
A− 2

3
,A1

)
. In this

case, we obtain:

x+x− = −1728

19
x32 −

81

20
x2x4 +

81

8
x23 .

We also record that the right side of the above equation squares to zero.

Let P− 2
3

denote the ideal generated by all the above polynomials. We compute a

Gröbner basis with the computer and follow the elimination process as above. With

a little more work at each elimination step, we show with the help of the computer

that

V
(
P− 2

3

)
=
{
(0, 0, 0, 0, 0, 0)

}
∪ {an infinite number of points}

where the “infinite number of points” arise from each non-trivial solution of

0 = 22488831379104477184x54 + 265954664335840695x45 where x5 ̸= 0 .

So we cannot conclude just as in the other cases. We could probably obtain

the C2-cofiniteness of B− 2
3
(sl2) with a few new polynomial relations. Results of

[ALY 2014] suggest that applying the operator (W1)1 successively to spara
k ∈ Ck(sl2)
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up to three times might produce sufficient relations, however computations in the

space of homogeneous dimensions 12 seem too complicated for the computing power

of a personal computer of the second decade of the second millenium. Hopefully

we can obtain a positive answer sometime in the near future.
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Conclusion

4.3 Summary of the Results

4.3.1 Proof of Kac-Wakimoto Formula

In Chapter 1, we gave a detailed proof of the Kac-Wakimoto character formula

for a Lie algebra with triangular decomposition. The key step of the proof is the

application of certain exact translation functors to Verma highest weight modules

whose highest weight λ satisfy certain integrality conditions. Results on weak

composition series for Verma modules allow to analyse precisely their images under

certain translation functors, which leads to a preliminary character formula. In

the last technical step of the demonstration, we find coefficients of the preliminary

formula by determining stabilisers of weightsµ under the action of a certain subgroup

W µ of the full Weyl group W of the Lie algebra.

For certain general Lie algebras with triangular decomposition, one expects that

character formulae can most likely be deduced from the determination of stabilisers

for the action of certain Coxeter groups. Also, one could eventually determine if the

Kac-Wakimoto character formula can also be generalised affine Lie superalgebras,

and also to categories of relaxed highest weight modules for affine Lie algebras such

as those appearing in [AM 1995], [CR 2012], [CR 2013b]: a positive result could
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help to generalise the analysis of Chapter 3 and [ACR 2018] to higher rank Lie

algebras.

4.3.2 Direct Sum Completion of a Braided Monoidal Category

In Chapter 2, we defined a suitable direct sum completion C⊕ of a category C. If

in addition the base category is a braided monoidal category with possibly a twist,

then the completion naturally inherits these structural features. This work fills a gap

in the literature and where many authors referred to the highly abstract notion of

Ind-object of [AGV 1971], one can now point to the completion C⊕.

Our main application of C⊕ is to provide a working framework when dealing

with a vertex operator algebra extension V ⊆ E, where E is seen as a V -module is

an infinite direct sum of modules. In such a situation, the results of [HKJL 2015],

[CKM 2017] show that E ∈ C⊕ is an algebra object where C is a certain category

of V -modules. The category of untwisted E-modules is braided equivalent to the

category Rep0E of modules for E seen as an algebra object. In certain situations,

we can find out much information about E-modules from the knowledge of a base

category of V -modules and a natural induction functor. We displayed such an

application to the simplest possible vertex operator algebra setting of H ⊂ VL

where H is the rank 1 Heisenberg algebra and where VL is the even lattice vertex

operator algebra. Note that the content of this chapter has now been published

[AR 2018].

Combined to [CKM 2017], our work in Chapter 2 and [AR 2018] provides a

solid framework for studying lare vertex operator algebra extensions. For instance,

when branching rules of a extension V ⊂ E are infinite, our completion is of great

help to make sense of and to manipulate objects in full rigour.
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4.3.3 Modularity Behaviour of Bk(sl2)

In Chapter 3, we studied an infinite order extensionBk(sl2) of the simple parafermion

algebra Ck(sl2) at negative admissible level k. In particular, k /∈ −2 + N is

rational and so Bk(sl2) is a logarithmic vertex operator algebra. The outcome of our

analysis is the modular behaviour of simple characters of Bk(sl2) under two natural

assumptions on our module categories. The modular behaviour found is of the type

that is expected of a C2-cofinite vertex operator algebras [Miy 2004]. Since also we

have finitely many simple modules in the category of Bk(sl2)-modules considered,

we conjecture that Bk(sl2) are C2-cofinite at all negative admissible levels. Again,

the content of this chapter has recently been published [ACR 2018]. In this paper,

we also deduce fusion rules of some indecomposable modules in the categories we

have considered.

It is interesting to note that Bk(sl2) as an algebra object in the direct sum

completion of a certain category of Ck(sl2)-modules and we can use the point of

view of [HKJL 2015], [CKM 2017] to support our study thanks to the direct sum

completion from Chapter 2 and [AR 2018].

4.3.4 C2-Cofiniteness of Bk(sl2) for Certain k’s

In Chapter 4, we have established the C2-cofiniteness of certain logarithmic vertex

operator algebras Bk(sl2) at negative admissible level, namely those for k ∈ A as of

line (4.1). These furnish new examples of non-rational C2-cofinite vertex operator

algebras that may be useful in future developments of logarithmic vertex operator

algebra theory. Since the choice of levels k ∈ A has been mostly due to computa-

tional restrictions, these new examples add much weight to the conjecture resulting

from Chapter 3 and [ACR 2018] stating that Bk(sl2) would be C2-cofinite for any
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negative admissible level k. We hope to improve our approach strategies in the

future to deduce broader C2-cofiniteness results for Bk(sl2) and other parafermion

vertex operator algebras.

In fact, the results obtained in this chapter suggest that the methods for establish-

ing C2-cofiniteness of Ck(sl2) for k ∈ N\{0} from [DLY 2009], [ALY 2014] could

somehow be adapted to the non-integral case if one replaces Ck(sl2) by a suitable

infinite order extension Bk(sl2).

4.4 Future Work

Results of Chapters 3 and 4 are promising and we hope that they will help us

discovering more on C2-cofiniteness for logarithmic vertex operator algebras. It

is notable that most of the C2-cofinite Bk(sl2) with k ∈ A as of line (4.1) are not

related to the triplet vertex operator algebras or the symplectic fermions, which used

to be about the only families of logarithmic vertex operator algebra known to also

be C2-cofinite.

Testing and comparing elements of theories for C2-cofinite logarithmic vertex

operator algebras with the new examples provided in this thesis might prove useful

to further developements. Following [ADJR 2018], one could also compute the

quantum dimensions of all indecomposable Bk(sl2)-modules considered in Chapter

3 and perform further analysis to check elements of the theory of [CG ], [CG 2017],

especially for k ∈ AwhereC2-cofiniteness is known. The key element of the theory

of log-modular categories developed in [CG 2017] seems to be the open Hopf-links

of projective indecomposable modules. As the two authors of the latter reference

noted, even if serious work might be needed to identify such objects in our case

it is probably worth investing such efforts. In [GR 2017], the authors offer a new
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approach to the important notion of pseudo-trace function [Miy 2004]. It might be

instructive to compare pseudo-trace functions of Bk(sl2) to the components of the

finite dimensional vector-valued modular form of Chapter 3 and [ACR 2018]. Even

just in the cases k ∈ A as of line (4.1), such checks could help us make sense of the

chosen Bk(sl2)-module category in a broader sense.

We will also aim to improve the scope of theC2-cofiniteness results of Chapter 4.

According to the structural results of [DW 2010], [DW 2011], the more general

parafermion vertex operator algebras Ck(g) associated with any finite dimensional

simple Lie algebra g can be sufficiently well understood through the sl2-triples in

g and a good knowledge of Ck′(sl2) where k′ ∈ {k, 2k, 3k}. When k ∈ N\{0},

the simple and explicit form of the parafermion singular vector of Ck(sl2) allowed

to obtain C2-cofinitness for all Ck(g) [ALY 2014]. Interestingly, the authors of the

latter reference proved that rationality of the C2-cofinite parafermion sl2-triples of

Ck(g)was not needed to conclude itsC2-cofiniteness. Therefore, we expect a similar

approach to work for k negative and admissible where Ck(g) would be replaced by

a big extension Bk(g) whose “sl2-triples” would coincide with Bk(sl2). When g is

simply laced, i.e. of type A-D-E, we have k′ = k and so a C2-cofiniteness result for

Bk(g) might already be within reach for all k ∈ A as in (4.1).

Even for k ∈ A, a challenging step for proving the C2-cofiniteness of Bk(sl2)

at admissible negative level following the procedure of Chapter 4 is the explicit

determination of the parafermion singular vector spara
k ∈ Ck(sl2). Determining

singular vectors in a given symmetry algebra is a general problem of Representation

Theory that is also important for physical applications [DFMS 1997], [AV 2014],

[RW 2015a]. Despite the difficulties, a couple of semi-explicit forms for the singular

vector sk of Vk(sl2) have been known: there is the Malikov-Feign-Fuchs formula

for sk in terms of elements of the standard negative Borel subalgebra Uk(ŝl2) with
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fractional exponents [MFF 1986] and more recently, there are expressions for sk

in terms of Jack polynomials in the Wakimoto free-field realisation of Vk(sl2)

[RW 2015a].

Another possible work to pursue could be an analysis of the type [ALY 2014] in

wich we consider the effects of the differential operator induced by (W1)(1) on theC2-

quotient of Bk(sl2). This might enable one to reduce the C2-cofiniteness problem

of the general Bk(sl2) to a simpler one. Indeed, the conclusions of [ALY 2014]

include that C2-cofiniteness of Ck(sl2) where k ∈ N\{0} can be established by a

number of polynomial relations that can be produced by few successive applications

of the operator (W1)(1) to a genuine null relation in conformal dimension 8 and

to the singular vector spara
k of Ck(sl2). The fact that Gröbner bases of an ideal

of a polynomial ring can be related to the ideal generated by the leading terms

[CLO 1997] might be of use here.

Given that the parafermion vertex operator algebras Ck(sl2) and Bk(sl2) at spe-

cific levels k ∈ {−1
2
,−2

3
,−4

3
} are related to other well understood vertex opera-

tor algebras [ACR 2018], another interesting avenue is to explore and study these

parafermion algebras at certain specific families of levels such as the boundary ad-

missible ones k ∈
{
−2 + 2

n
| 1 ̸= n odd

}
. Other interesting cases would be given

by the non-dmissible levels of the form k ∈
{
−2 + 1

n
| n ∈ N\{0}

}
: at such levels,

one would not have the problem of determining a singular vector for it does not exist

in the vertex operator algebra when k is not admissible, but we can consider a larger

simple current extensions than Bk(sl2). This means that such cases might be even

more accessible.

In a work that is currently in preparation [ACKR ], we study interesting features

of a certain category of local modules of a logarithmic vertex operator algebra Bp of

interest in current Physics. This vertex operator algebra can be related to the Argyres-
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Douglas Theories whose Schur indices can be related to the character ch [Bp] (q)

of the algebra [Cre 2017]. The tools for our analysis are simply [CKM 2017] and

Chapter 2 or [AR 2018]. We plan to apply similar methods to understand more on

the Representation Theory of large vertex operator algebra extensions in the future.

Obviously, much is left to do to understand logarithmic vertex operator algebras.

However, I hope that the new examples of logarithmic C2-cofinite vertex operator

algebras introduced in this thesis will help construct a useful theory and to refine our

understanding of these structures. This could eventually be an asset to understanding

certain intriguing physical applications.
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Appendix A

Selected Basic Elements of Vertex

Operator Algebras

In this appendix, you will find basic notions definitions about Vertex Operator

Algebras and their Representation Theory. There is also a review of the Heisenberg

and the even lattice vertex operator algebras which will be of use to understand

the last section of Chapter 2. Introductive books on the notions of vertex operator

algebras include [FBZ 2004] and [LL 2003]. A nice elementary account on vertex

operator algebra axioms is presented in [Tui 2017].

Throughout Appendix A, all vector spaces are defined over the field C unless

otherwise mentioned.

A.1 Vertex Operator Algebras

A.1.1 Basic Concepts and Definitions

Here are basic concepts about vertex operator algebras:
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Definition A.1. A vertex operator algebra V = (V,Y,1, ω) consists of the follow-

ing data:

(1) a Z-graded vector space V =
⨁

n∈Z Vn;

(2) a linear map Y(−, z) : V →
(
EndV

)
((z)) that associates a power series in

z with coefficients in EndV to an arbitrary vector v ∈ V . The image of v is

often denotedY(v, z) =
∑

n∈Z v(n)z
−n−1 and is called a vertex operator. The

meaning of ((z)) in the symbol
(
EndV

)
((z)) can be summarized as follows:

Y(u, z)v =
∑
n∈Z

u(n)(v)z
−n−1 is a Laurent series in z for all u, v ∈ V,

so that all vertex operators are what is called a field;

(3) a distinguished vector 1 ∈ V subject to:

• Y(1, z) = IdV z
0 = IdV ;

• Y(v, z)1 =
∑

n v(n)(1)z
−n−1 has only non-negative powers of z and

the coefficient of z0 in the same power series is v;

(4) Another distinguished vector ω ∈ V , called the conformal vector, subject to:

• writing Y(ω, z) =
∑

n Lnz
−n−2 gives

[Ln, Lm] = (n−m)Ln+m +
n(n2 − 1)

12
δn+m,0 c IdV (A.2)

where c ∈ C is a constant called the central charge of the vertex operator

algebra;

• Vn = ker(L0 − n IdV ) for all n;

• Y
(
L−1(v), z

)
= d

dz
Y(v, z) for all v ∈ V ;
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(5) for all u, v ∈ V , there exists an N ∈ N such that

(z − w)N ·
[
Y(u, z)Y(v, w)

]
= 0

where [−,−] is the usual commutator. This axiom is also called mutual

locality of the fields and has other interpretation in terms of power series.

Remark A.3. For a topological and algebraical introduction to the notion of a vertex

operator algebra, see [FBZ 2004]. For an elementary approach to the basic axioms

(including that of locality) and results for vertex operator algebras, see [Tui 2017].

While Definition A.1 surely defines sensible objects, some vertex operator alge-

bras we will often consider will have the following additional properties:

• the conformal grading on V is actually by N: V =
⨁

n∈N Vn;

• the space V0 of lowest conformal dimension is one dimensional: V0 = C.1.

Note that the two above assumptions are necessary for a simple vertex operator alge-

bra V to have a unique nondegenerate symmetric invariant bilinear form [Li 1994].

Bilinear forms are relevant for physical applications and very relevant to important

mathematical results.

From the axioms (3), it can be derived that the map Y is injective. This is known

to physicists as the state-field correspondance. Therefore, one can vertex operator

algebra V through its vertex operator fields rather than its vectors (the states).

The very useful Mathematica package OPEdefs.m [Thi 1991] written by K. Thiele-

mans to achieve vertex operator algebra related computations actually only allows

for manipulation of fields and vertex operators by the computer. The code developed

here for obtaining C2-cofiniteness results in Chapter 4 also manipulates fields.
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An equivalent axiom to (5) is that for every pair of elements u, v ∈ V , a certain

Jacobi identity is satisfied. This identity relates a composition Y
(
Y(u, z)v, w

)
of vertex operators to “multiplications” Y(u, z)Y(v, w) and Y(v, w)Y(u, z) up to

some formal power series factors. Just as for Lie algebras, this Jacobi identity is

often thought of as a property that replaces associativity in the “algebra” V . For

more details, see Section 3.2 of [FBZ 2004].

It is important to note that vertex operator algebras are not just like more basic

algebraic structures like groups and algebras. If V is a vertex operator algebra, there

is no straightforward binary multiplication V ⊗V → V , but instead we can view the

operation Y as a map u⊗ v ↦−→ Y(u, z)v resulting in a formal Laurent series with

coefficients in V . This fundamental difference is also what makes vertex algebras

special and it also suggests natural connexions with Analysis and Topology. For

instance, the axiom of mutual locality in Definition A.1 has a precise interpretation

in terms of power series, see Theorem 3.2.1 of [FBZ 2004] for instance.

Remark A.4. Although vertex operator algebras are quite different than classical

types of algebras, they remain closely related with Lie algebras in particular. For

example, it can be proved that the linear span of the collection of the coefficients

Coeffs(V ) of the vertex operator series Y(u, z) for u ∈ V actually form a Lie

algebra. The Lie bracket of two vertex coefficients of Coeffs(V ) is then given by

the formula

[un, vm] =
∑
r≥0

(
n

r

)(
ur(v)

)
n+m−r

(A.5)

where u, v ∈ V . Note that even tho ugh n can be negative, the binomial coefficients

above have a precise meaning. For more details on this formula, see (3.3.12) in

[FBZ 2004].

Another key aspect of Definition A.1 is that equation (A.2) represents the defining
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relations of Virc the Virasoro Lie algebra of level c, which is also the central charge

parameter of the vertex operator algebra. The presence of the conformal vector

ω ∈ V effectively makes the vertex algebra V a Virc-module. This is in fact

what makes a vertex operator algebra potentially relevant for the Conformal Field

Theories: the physical axiom of conformal invariance translates into a Virasoro

algebra action on V .

Notice that the Virasoro element L0 provides the grading of the vertex operator

algebra V =
⨁

n∈Z Vn. In fact, this grading on V bears the name of conformal

grading: the subspace Vn is said to be the subspace of vectors of conformal weight

or conformal dimension n.

As for any type of algebra, a very important concept to understand how pairs

of elements multiply or interact with each other. For a vertex operator algebra V ,

two vertex operators Y(u, z) and Y(v, w) can be combined through a so-called

operator product expansion. The naive combination Y(u, z)Y(v, w) will always

admit a unique expansion as follows:

Y(u, z)Y(v, w) =
N−1∑
r=0

γr(w)

(z − w)r+1
+ : Y(u, z)Y(v, w) : (A.6)

where γr(w) are also fields coming from V and where : Y(u, z)Y(v, w) : is a

special type of operator called the normally ordered product of the fields Y(u, z)

and Y(v, w). For a complete definition of the normally ordered product of two

fields as of line (A.6), see Definition 2.2.2 of [FBZ 2004] and read the Section 3.3.4.

Remark A.7. The normally ordered product appearing in (A.6) has two formal

variables. However, it also has a meaning in terms of a single variable, about z = w.

The outcome is in fact a vertex operator that has a corresponding state vector in V .

To see it, one can apply a formal Taylor expansion centred in z = w to Y(u, z) (A.6)

176



and compare with equation (3.3.1) of [FBZ 2004] to establish that:

: Y(u, z)Y(v, z) : = Y
(
u−1(v), z

)
,

which is in fact a special case of equation (3.3.8) of the same reference. The above

equation means that the element u−1(v) ∈ V is a state vector whose vertex operator

is the normally ordered product : Y(u, z),Y(v, z) : .

Normally ordered product is that they are in general not associative nor commu-

tative. The convention for writing them when more than two factors are involved is

to write

: Y(v1, z1) . . .Y(vr, zr) : = : Y(v1, z1) : · · · : Y(vr−1, zr−1)Y(vr, zr) : · · · :

Now that the vertex operator algebras have been defined, we can define their

modules, or representations.

Definition A.8. Let V be a vertex operator algebra. A weak V -module (M,YM) is

defined as a vector space M with

(1) a linear map YM(−, z) : V →
(
EndM

)
((z)) that associates a field with

coefficients in EndM to an arbitrary v ∈ V . The image of v is often denoted

Y(v, z) =
∑

n∈Z v
M
(n)z

−n−1;

(2) the distinguished vector 1 ∈ V is subject to YM(1, z) = IdM z0 = IdM ;

(3) the coefficients ofY(ω, z) span a Virasoro Lie algebra of level c corresponding

to the central charge of V ;

(4) YM

(
L−1(v), z

)
= d

dz
YM(v, z) for all v ∈ V ;
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(5) the YM(u, z) and YM(v, w) are local with each other or, equivalently, YM

should satisfy a Jacobi identity.

Remark A.9. Given any V -module M , one observes that for any v ∈ V and any

n ∈ Z, we have vn ∈ End(V ) and vMn ∈ End(M). It can be proven that the natural

association

∧M : Coeffs(V ) End(M)

vn vMn

is a Lie algebra homomorphism. However, one truly needs more than just bare Lie

theory to study vertex operator algebras.

While the Definition A.8 of weak modules surely exposes sensible mathematical

objects, the vertex operator algebras we consider are Z-graded by conformal weight

(the eigenvalue of L0) and so the modules we will consider in this thesis will also

be graded objects:

Definition A.10. An N-graded weak module M is a weak module as of Definition

A.8 that satisfies the following additional properties:

(6) M is graded is by N: M =
⨁

n∈NMn;

(7) for any n,m ∈ Z, r ∈ N and u ∈ Vn, we have:

um|Mr :Mr →Mr+(n−m−1) ,

so that um is a homogeneous linear operator of degree n−m− 1 on M .

In particular, LM
0 is a degree preserving linear operator and LM

−1 is a degree 1 linear

operator on M .

Remark A.11. There exists also a notion of ordinary V -module. This is defined
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to be a N-graded weak modules M =
⨁

n∈NMn such that LM
0 is semisimple on

MhM+n and dimCMhM+n <∞ for each n ∈ N.

Remark A.12. N-graded modules are more often considered rather than Z-graded

ones. This can be partly explained by the access it gives to convergence results for

certain complex valued power series such as characters and trace functions that will

later be discussed in this appendix. From another point of view, this can be motivated

by the already vast and developed study of highest weight modules for Lie algebras

with triangular decompositions. Highest weight modules of universal affine vertex

operator algebras associated with a finite dimensional semisimple Lie algebra will

be N-graded and rather than just Z-graded. Also, highest weight modules in general

are of particular significance in some physical applications.

Let’s now recall a few important result on simple modules here:

Result A.13. (see Lemma 2.7 of [Zhu 1996]) Let V be a vertex operator algebra. If

M =
⨁∞

n=0Mn is an irreducible V -module such thatM0 has countable dimension,

then there is a constant hM ∈ C called the conformal dimension of M such that

LM
0 acts on each Mn as the scalar hM + n. In particular, every simple N-graded

weak V -module M with dimCM0 <∞ has a conformal dimension hM .

The following result is also useful for many important examples of vertex oper-

ator algebras:

Result A.14. (see Lemma 1.2.2 of [Zhu 1996]) If V has a countable basis, then

any simple N-graded weak V -module M =
⨁∞

n=0Mn have a conformal dimension

hM ∈ C just as in Result A.13. In particular, LM
0 acts on each Mn as the scalar

hM + n.

Unsurprisingly, modules for a given vertex operator algebra form categories,
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where the arrows are the maps between pairs of modules M,N that intertwine the

corresponding vertex action maps YM and YN .

Given an automorphism g ∈ Aut(V ) of a vertex operator algebra V and given a

V -module M with action map YM , one can construct a new representation on the

space M :

M̃ =M as vector spaces and YM̃(v, z) = YM

(
g−1(v), z

)
.

If instead of g ∈ Aut(V ) we are given a certain type of automorphism θ ∈

Aut (Coeffs(V )) of the Lie algebra Coeffs(V ), we can also define a new ver-

tex V -action map on the vector space M as follows:

Yθ
M(v, z) =

∑
n∈Z

θ−1(vn)z
−n−1

where v ∈ V .

When studying categories of modules and their characters like in Chapter 3, the

above constructions of twisted modules are very useful. For instance, ifM is a simple

module, then M̃ will also be a simple module. Also invertibility of automorphisms

ensure that twisting by a given one is functorial. Such considerations play a key role

in [CR 2012], [CR 2013b] and [ACR 2018] for instance.

A.1.2 Characters

Let V be a vertex operator algebra. For any N-graded weak V -module M =⨁
n∈NMn whose graded pieces are finite dimensional

dimCMn <∞ for all n ∈ N ,
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one can define its character or graded dimension as follows:

Definition A.15. Let M be as above. Then its character is defined to be a formal

power series

ch [M ] (q) =
∑
n∈N

dim(Mn) q
n− c

24

where c is the central charge of V . The series ch [M ] can be thought of as a vertex

operator algebra module adaptation of the Hilbert-PoincarÃľ series of a N-graded

algebra: see Problem 2.8.11 of [EGH+ 2011] for instance. The character of M also

corresponds to a formal graded trace of certain operators:

ch [M ] (q) = trM(qL0− c
24 ) . (A.16)

A priori the variable q is formal, however the characters of certain vertex operator

algebra modules can sometimes be re-interpreted as complex-valued functions by

setting q = e2πiτ where τ ∈ H ⊂ C is a variable from the the upper-half plane.

This observation has led to proofs that the complex functions that characters

define are continuous and even holomorphic for certain classes of vertex operator

algebras. In fact Y. Zhu proved that for rational and C2-cofinite vertex operator

algebras, the linear span of the simple module’s characters is invariant under an

action of SL2(Z) [Zhu 1996]. This means that the characters of the weak modules

of a rational and C2-cofinite seen as functions give rise to a finite dimensional

vector-valued modular form. M. Miyamoto eventually generalised Y. Zhu’s results

on SL2(Z)-invariance of character by proving that any C2-cofinite vertex operator

algebra gives rise to a finite dimensional vector-valued modular form [Miy 2004].

Known examples of non-rational C2-cofinite vertex operator algebras are few, but

include the triplet vertex operator algebras [AM 2008a], [TW 2013] and some of the
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extended parafermions algebras of [ACR 2018] and Chapter 4 at certain admissible

negative levels as shown in Chapter 4. For the latter example, details about the

vector-valued modular form can be found in Chapter 3.

Characters of modules also behave well with respect to short exact sequences that

we sometimes study to understand categories. In fact, characters are additive with

respect to them. This means that given a vertex operator algebra V , a category C of

V -modules and M,E,N ∈ Ob(C) such that the sequence 0→M → E → N → 0

is exact, one has

ch [E] = ch [M ] + ch [N ] . (A.17)

Important consequences include that it is sufficient to consider characters of inde-

composable modules in order to consider them all.

For locally finite abelian monoidal tensor categories with an exact tensor product

bifunctor, it is possible to define its Grothendieck ring. Recall that a locally finite

category is one where every object has finite length and where the dimension of

every Hom space is finite dimensional for every pair of objects [EGNO 2015].

Definition A.18. Let C be a locally finite monoidal tensor category with exact tensor

product. For an objectX ∈ Ob(C), let [X] denote its isomorphism class. We define

the Grothendieck ring of C to be the ring

G (C) =

⎛⎝ ∑
X∈Ob(C)

Z.[X]

⎞⎠/⟨
[E] = [A] + [B]

whenever 0→ A→ E → B → 0 is exact

⟩
.

where the addition and multiplication are given by

[X] + [Y ] = [X ⊕ Y ] ,

[X] · [Y ] = [X ⊗ Y ] ,
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for every objects X, Y ∈ Ob(C). The multiplication on G (C) is usually referred to

as the Grothendieck fusion product.

Thanks to the Krull-Schmidt theorem, every object of C is a direct sum of

indecomposable modules. Now since all non-zero indecomposables have finite

length, their images in G (C) are well defined non-zero N-linear combinations of

isomphism classes of simple objects of C. Therefore, we recover the well known

fact that G (C) is generated by the isomorphism classes of its simple objects as an

abelian group. Moreover, one can argue that G (C) is a Z+-ring [EGNO 2015].

Remark A.19. Note that the exactness of ⊗ on C is required for the multiplication

on G (C) to be distributive on the addition ⊕.The assumption for C to be abelian

in Definition A.18 is important to make sense of exact sequences. Also, C should

be locally finite to ensure that an element of G (C) is never an infinite sum of

isomorphism classes of simple modules.

In principle, a well defined notion of G (C) might hold for slightly more general

C, which might be useful for certain non-abelian vertex operator algebra module

categories. However, we will not develop further this topic here.

To better understand C, it is evident that a knowledge of G (C) is key. The main

difficulty for this is to grasp the multiplicative structure of G (C), that is, the tensor

(fusion) product of arbitrary pairs of simple objects in C.

For X, Y, Z ∈ Irrep (C), we define the Grothendieck fusion rules GrNZ
X,Y ∈ Z

to be the structure constants of G (C) appearing in

[X] · [Y ] = [X ⊗ Y ] =
∑

Z∈Irrep(C)

GrNZ
X,Y [Z] . (A.20)

Remark A.21. Since G (C) is a ring, it is a module over itself and the corresponding
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[X]-action map for X ∈ Irrep (C) is

act[X] : G (C) G (C)

[Y ]
∑

Z∈Irrep(C) GrNZ
X,Y [Z]

for Y ∈ Irrep (C). In particular, when #Irrep (C) < ∞ and we fix one rep-

resentative per isomorphism classe if simple object in Irrep (C), we have square

matrices

act[X] =
(
GrNZ

X,Y

)
Y,Z∈Irrep(C)

for everyX ∈ Irrep (C). The analogy with matrices persists when#Irrep (C) =∞

often providing good notation and reference points for certain complex formulae

one has to write.

Remark A.22. ForX, Y, Z ∈ Indecs (C), we could define simply fusion rules NZ
X,Y

to be the structure constants

X ⊗ Y =
∑

Z∈Irrep(C)

NZ
X,Y Z .

Notice the difference of the above equation with (A.20). Indeed there is an important

distinction to make between fusion rules and Grothendieck fusion rules.

Known modularity results in Rational Conformal Field Theory settings have

made possible the important discovery that the Grothendieck fusion rules of the

simple modules could be obtained by their character modular transfomation data

[MS 1989], [Hua 2005]. In addition, he observed that the S-transformation diag-

onalise the Grothendieck fusion rules. This connexion is quite important since in

relates analytical and number theoretical data from characters to categorical data

from tensor products. For physicists, Grothendieck fusion rules allow to compute
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invariant quantities and to perform certain geometrical constructions. This very

important connexion is best summarised as the Verlinde formula which is best ex-

pressed for a simple rational C2-cofinite vertex operator algebra R. We know that

R has a semisimple module category C with a finite number of simple modules

{Mi}Ni=0 such thatM0 = R. The associated characters are ch [Mi] (q) = ch [Mi] (τ)

where q = e2πiτ for τ ∈ H and behave as follows under modular transformation:

T. ch [Mi] (τ) = ch [Mi] (τ + 1) = e2πihMi ch [Mi] (τ) ,

S. ch [Mi] (τ) = ch [Mi]

(
−1

τ

)
=

N∑
i=0

Si,j · ch [Mi] (τ)

where Si,j ∈ C for all i, j ∈ {0, . . . , N}. In this setting, every module Mi has a

dual Mi∗ where i∗ ∈ {0, . . . , N}. We can now write Verlinde’s formula as follows:

GrNMk
Mi,Mj

=
N∑
r=0

Si,rSj,rSk∗,r

S0,r

. (A.23)

Attempts to generalise such a formulas to logaritmic C2-cofinite settings are the

object much current research despite the many challenges [CR 2012], [CR 2013b],

see also [CG ], [GR 2017], [RW 2015b], [CM 2014], [CMR 2016] as well. Com-

plications due to the presence of reducible indecomposable modules for logarithmic

vertex operator algebras makes this situation challenging. Another challenge to over-

come is the lack of examples of logarithmic C2-cofinite vertex operator algebras.

Hopefully, this thesis can improve the situation.

Modularity of rational C2-cofinite vertex operator algebra was properly es-

tablished in [Zhu 1996], while modularity of general C2-cofinite vertex operator

algebra was proven in [Miy 2004]. That a rational C2-cofinite vertex operator

algebra has a modular tensor category was finally proven in [Hua 2008]. Cur-
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rently, some research is underway to describe categories of C2-cofinite vertex

operator algebras and some of their general features [CG 2017], [CG ], see also

[Miy 2003], [Miy 2010], [GR 2017].

A.1.3 C2-Cofiniteness

The property of C2-cofiniteness is unavoidable when it comes to vertex operator

algebras. Originally introduced by Y. Zhu in [Zhu 1996], C2-cofiniteness is a rather

technical property that can be defined as follows:

Definition A.24. A vertex operator algebra V is said to beC2-cofinite if the subspace

C2 (V ) = {a−2(b) ∈ V | a, b ∈ V } ⊆ V ,

has finite codimension in V . This just means that V is C2-cofinite if dimC
V

C2(V )
<

∞.

Although quite technical, this property has a lot of theoretical consequences on

the vertex operator algebra and its representation theory [Miy 2004]:

Result A.25. (see Theorem 2.7 of [Miy 2004]) Let V be a vertex operator algebra.

The following statements are equivalent:

• V is C2-cofinite;

• every weak module is a direct sum of generalised eigenspaces of L0 .

Therefore, the C2-cofiniteness does have a simple conceptual meaning after

all. However, it is not the only such conceptual meaning. It is now known that

the C2-quotient V
C2(V )

of any vertex operator algebra V has a natural structure of

Poisson algebra and gives rise to an algebraic variety [Ara 2012]. Using appropriate
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geometric methods, T. Arakawa could show that C2-cofiniteness is also equivalent

to the requirement that theC2-quotient should have finitely many symplectic leaves1

or lisse.

A C2-cofinite vertex operator algebra V , always have a finite number of simple

weak modules since the dimension of V
C2(V )

bounds the dimension of Zhu’s algebra

A(V )whose simple modules are in bijection with simpleN-graded weak V -modules

[Zhu 1996]. Moreover, the conformal dimensions and conformal weights of a C2-

cofinite vertex operator algebras are always rational numbers [Miy 2004].

Perhaps the most important consequence of the C2-cofiniteness property is the

modularity behaviour of the finite dimensional span of trace and pseudo-trace

functions [Miy 2004]. Moreover, it is proven that the torus 1-point functions of a

C2-cofinite vertex operator algebra are spanned by trace and pseudo-trace functions

[Miy 2004]. While trace functions are closely related to characters of modules,

pseudo-trace functions introduced in the latter reference are rather complicated to

define. However a new approach to pseudo-trace functions developed in [GR 2017]

seems to be a bit simpler to understand, see also [AN 2014] on the same topic.

Note that modular invariance results are also expected in many physical situations

[DFMS 1997], [GN 2003].

Another very important consequence of C2-cofiniteness is that the characters

of the N-graded weak V -modules with finite dimensional graded pieces where V

is a C2-cofinite vertex operator algebra converge to holomorphic functions on the

upper half plane. To see it, combine Theorem 4.4.1 of [Zhu 1996] with a = 1 and

the general modularity result of [Miy 2004]. From this key result, we deduce that

general C2-cofinite vertex operator algebras give rise to finite dimensional vector-

1This notion has to do with properties of certain schemes defined on this type of algebraic varieties
called jet schemes.
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valued modular forms: the one spanned by its trace and pseudo-trace functions. For

more on vector-valued modular forms, see [KM 2003], [Gan 2014].

Here are a few useful results about theC2-quotient of an arbitrary vertex operator

algebra V :

Result A.26. (Lemma 3.1 of [Ara 2012]) We have the following properties:

• L−1V ⊂ C2 (V );

• anC2 (V ) ⊂ C2 (V ) for all n ≤ 0 and a ∈ V ;

• anV ⊂ C2 (V ) for all n ≤ 0 and a ∈ C2 (V );

• a1(b) = b1(a) mod C2 (V ) for all a, b ∈ V . Equivalently this property can be

reformulated as : Y(a, z)Y(b, z) : ≡ : Y(b, z)Y(a, z) : mod fields of C2 (V ).

It is mentioned in [BR 2018] that the associator with respect to the normally

ordered product in V actually lies inC2 (V ). We deduce that V
C2(V )

is a commutative

associative algebra with the normally ordered product. It is also known that any set

of generators for V
C2(V )

furnishes a set of strong generators for V and vice-versa, see

Corollary 2.6.2 in [Ara 2012]. In particular, C2-cofinite vertex operator algebras

should have a finite set of stong generators. Note that this was previously known

[GN 2003].

Let’s state a last useful result in this section:

Result A.27. (Lemma 3.2 of [Ara 2012]) Let a ∈ V such that a0V ⊂ C2 (V ).

Then

• a1C2 (V ) ⊂ C2 (V );

• a1(b−1c) ≡ (a1b)−1c+ b−1(a1c) mod C2 (V ) for all b, c ∈ V .
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In particular, a1 induces a derivation on V
C2(V )

.

Note that ω ∈ V always satisfies the condition of Result A.27 and ω1 = L0.

In fact, using filtrations, one can show that V
C2(V )

is a Z-graded commutative

Poisson algebra where V is any vertex operator algebra: see Section 3 of [Ara 2012].

A.2 Three Basic Vertex Operator Algebras

A.2.1 Heisenberg Vertex Operator Algebras

The Heisenberg vertex operator algebras are among the most basic non-commutative

vertex operator algebras, see [FBZ 2004] for instance.Their underlying vector space

is that of a Verma module for a universal central extension of the loop algebra

associated to a commutative finite dimensional Lie algebra. The text [Sch ] treats

of these Lie algebras in an effective and accessible manner.

Let h =
⨁r

i=1C.bi be a commutative Lie algebra and let

ĥ =
(
h⊗ C[t±1]

)
⊕ C.κ

where [h, κ] = 0 and [bi ⊗ tn, bj ⊗ tm] = nδn+m,0 κ. For any ⋆ ∈ {Z>0,Z<0} set

ĥ⋆ = SpanC
{
bi ⊗ tn | for all i ∈ {1, . . . , r} and n ∈ ⋆

}
= SpanC

{
(bi)n | for all i ∈ {1, . . . , r} and n ∈ ⋆

}
,

ĥ0 = SpanC
{
bi ⊗ 1

}
⊕ C.κ

= SpanC
{
(bi)0

}
⊕ C.κ ,

where the more convenient notation (bj)m = bj ⊗ tm is employed. Then the
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Heisenberg vertex operator algebra H is a structure given to the underlying vector

space of the Verma module

M(0, 1) = U(ĥ)⊗U(ĥ≥0) C.1 (A.28)

where bi ⊗ tn.1 = 0 for all n ∈ N and where κ.1 = 1. More precisely, we

set H = M(0, 1) as a vector space and consider its Poincaré-Birkhoff-Witt basis

composed of monomials of the form

(bi1)n1 · · · (bid)nd
.1 ∈ H (A.29)

where d ∈ N, ij ∈ {1, . . . , r} and nj ∈ Z<0 for all j ∈ {1, . . . , d} satisfy ij ≤ ij′

whenever j < j′ and nj < nj′ whenever ij = ij′ and j < j′. The vertex operator

algebra structure H is then fixed by setting

• 1 ∈ H is the vacuum vector;

• we set bi(z) = Y
(
(bi)−1.1, z

)
=
∑

n∈Z(b
i)nz

−n−1;

• for v given by (A.29), we set

Y(v, z) =
: ∂−n1−1

z bi1(z) · · · ∂−nd−1
z bid(z) :

(−n1 − 1)! · · · (−nd − 1)!
;

• the (standard) conformal vector is given by the Casimir element in U(h) as

follow:

ωH =
1

2

r∑
a=1

(ba)−1(b
a)−1.1 ∈ H . (A.30)

It has central charge of ch = r = dimC h and makes all generators bi homo-

geneous elements of degree one.
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The operator product expansion among pairs of generating fields is then

ba1(z)ba2(w) =
2 · 1

(z − w)2
+ : ba1(z)ba2(w) : , a1, a2 ∈ {1, . . . , r}

Remark A.31. Recall that an H-module is automatically ĥ-module where ĥ is a Lie

algebra. For the vertex operator algebra H , a weight module M is a H-module that

is semisimple as an h-module through the natural injection of Lie algebras h ↪→ ĥ0.

In particular, a simple Z-graded weight module forH is parametrised by an element

λ ∈ h∗ = {x ∈ h⊗Z C | (x, h) ∈ Z for all h ∈ h}.

For simplicity, let H be the vertex operator algebra associated with the rank 1

Heisenberg Lie algebra h = SpanC{b0.}. Recall that h∗ ∼= C via (λb0, b0) = 2λ ∈

C. Here are some key facts about the categoryC of finitely generated weight-modules

for H:

• C is semisimple and its simple objects are the Fock spaces

{
M(λ, 1) = Fλ | λ ∈ h∗ ↔ (λb0, b0) where λ ∈ C

}
,

whose tensor product rules are given by Fλ ⊗ Fµ
∼= Fλ+µ;

• C is a semisimple ribbon tensor category;

• under the identifications Fλ ⊗ Fµ = Fλ+µ = Fµ ⊗ Fλ, the braiding of two

Fock spaces is given by cFλ,Fµ = eπiλµ IdFλ+µ
;

• associativity maps in C are trivial;

• the unit for the tensor product in C is H = F0;
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• duals are given by
(
Fλ

)∗
= F−λ and the associated evaluation and coevalua-

tion morphisms are scalar multiples of the identity whose scalars can be fixed

for every λ̄ ∈ C/{µ ∼ −µ};

• twists isomorphism are given by θFλ
= eπiλ

2
IdFλ

.

Note that these results for C hold more generally for the H based on a r-

dimensional Heisenberg Lie algebra h. The main difference is that λ ∈ h∗ will be a

r-tuple of complex numbers instead of a single one.

A.2.2 Even Lattice Vertex Operator Algebras

More details can be found in [Don 1993], [DL 1993], [LL 2003]. Certain explicit

details can also be found in [FRS 2004]. For a compact overview of key elements

of the representation theory of the lattice vertex operator algebras, see [Mil 2014].

LetL =
∑r

i=1 Z.gi be a positive definite even lattice of rank r with bilinear form

(−,−) : L× L→ C .

In particular, this implies that (ℓ, ℓ) ∈ 2N\{0} for all ℓ ∈ L and we deduce that

(ℓ1, ℓ2) is an integer for every ℓ1, ℓ2 ∈ L. Set gi(z) =
∑

n∈Z(g
i)n z

−n−1 for all

i ∈ {1, . . . , r} and set

gi(z)gj(w) =
(gi, gj) · 1
(z − w)2

+ : gi(z)gj(w) : ,

for all i, j ∈ {1, . . . , r}. This is equivalent to defining a Lie algebra structure on the
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vector space ĥL = L⊗Z C[t±1]⊕ C.κ as follows:

[
(gi)n, (g

j)m
]
= n(gi, gj) δn+m,0 · κ ,[

κ, (gi)n
]
= 0 .

We observe that, ĥL has a natural triangular decomposition

SpanC{(gi)n | n ∈ Z<0}  
ĥL<0

⊕ (SpanC{(gi)0} ⊕ C.κ)  
ĥL0

⊕ SpanC{(gi)n | n ∈ Z>0}  
ĥL>0

.

As is usual for lattices, define L∗ = {x ∈ L ⊗Z C | (x, ℓ) ∈ Z}2. Eventually, L∗

will be used to define Z-gradation on certain spaces that will bear the structure of

weak N-graded VL-modules.

Similarly to the case of the Heisenberg vertex operator algebra treated in the

above subsection, define HL = M(0, 1) by (A.28), with ĥL instead of ĥ. The even

lattice vertex operator algebra VL is then the following extension of HL:

VL =
⨁
a∈L

M(λa, 1)

where λa(−) = (a,−) ∈ L∗ is a weight function. By definition, any v ∈ VL can be

written as a finite sum of Poincaré-Birkhoff-Witt monomials corresponding to some

spaces M(λa, 1). By the Reconstruction Theorem (see [FBZ 2004] for instance),

the vertex operator fields for v ∈ HL =M(0, 1) can be defined inductively by only

the fields associated to the highest weight vectors 1λa ∈ M(λa, 1) for a ∈ L. The

conformal vector ωVL
is given by the Casimir element of hL just as (A.30) is for

2The notion of dual lattice L∗ coincides with the notion of integral weight lattice of the toral Lie
subalgebra ĥL0 ⊂ ĥL.
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H in the previous section. The fields Y(v, z) for v ∈ HL are defined just as for

the Heisenberg vertexoperator algebra and the fields Y(1λa , z) are set so that they

satisfy

Y(L0.1λa , z) =
(λa, λa)

2
Y(1λa , z) ,

Y((L1.1λa , z) = ∂zY(1λa , z) .

Using explicit formulas for the endomorphisms Ln, it can be shown that Ln.1λa = 0

for all n ≥ 2. It follows that Y(1λa , z) is Virasoro primary vector for all a ∈ L.

The even lattice vertex operator algebra VL is known to be a rational C2-cofinite

vertex operator algebra. In particular, the category of finitely generated VL-module

with a semisimple hL-action has a finite set of simple modules. These correspond

to the simple weak N-graded VL-modules:

VL+γ = VL ⊗M(γ, 1) (A.32)

where γ̄ ∈ L∗/L. Fixing a complete set of representatives S = {L + γi}#L∗/L
i=1 of

right cosets of L∗/L is the same as fixing a 2-cocycle

kS : L× L L

(γi, γj) γi+j

where γi + γj ≡ γi+j ∈ S .

Let C be the category of weak N-graded VL-module with a single object in each

isomorphism class where S is the complete set of representatives of the simple

objects. Then C is known to have the following semisimple ribbon tensor category

structure:

• it has a finite set S of simple objects;
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• the tensor product rules between any two such simple modules is given by

VL+γi ⊗ VL+γj
∼= VL+γi+j

;

• the associativity isomorphisms are

aγa,γb,γc = (−1)
(
γa,kS(b,c)

)
IdVL+γa+b+c

;

• the braiding isomorphisms are

cγa,γb = (−1)(γa,γb) IdVL+γa+b
;

• the twist isomophisms are

θγa = (−1)(γa,γa) IdVL+γa
;

• the dual of the module VL+γa is VL+γ−a. Corresponding evaluation and

coevaluation maps are given as scalar multiple of the identity in the same way

as for the Heisenberg algebra HL.

Note that since the double braiding of VL+γ with VL is c0,γ ◦ cγ,0 = IdVγ is always

trivial, the modules of C are said to be untwisted.

A.2.3 Affine Vertex Operator Algebras

Let g be a finite dimensional simple Lie algebra. Then one forms two important

associated affine vertex operator algebras: the universal one and the simple one,

which sometimes match.
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Fix a basis {X i}dim g
i=1 of g, a symmetric invariant bilinear form (−,−) such that

the length of the long roots of g is 2. Consider ĝ = g ⊗ C[t±1] ⊕ C.κ with Lie

bracket

[xn, ym] = [x, y]n+m + n(x, y)δn+m,0 · κ and [κ, xn] = 0 ,

for all x, y ∈ g and n,m ∈ Z. Fix k ∈ C and consider the following triangular

decomposition of g:

g>0 = SpanC{xn | x ∈ g and n ∈ Z<0} ,

g0 = SpanC{x0 | x ∈ g} ⊕ C.κ ,

g<0 = SpanC{xn | x ∈ g and n ∈ Z>0} .

Similarly as in the previous two sections, we can define a vertex operator algebra

structure on a Verma module. This time, the Verma module we consider has highest

weight 0 (the h0-eigenvalue) and level k (the κ-eigenvalue):

V (0, k) = U(ĝ)⊗U(g≥0) C.1

where g>0.1 = e0.1 = h0.1 = 0 and κ.1 = k1. The vertex operator algebra

structure is then given by:

• 1 ∈ V (0, k) is the vacuum vector;

• we set x(z) = Y(x−1, z) =
∑

n∈Z xnz
−n−1 for all x ∈ {hi, ei, fi}ri=1;

• for a Poincaré-Birkhoff-Witt monomial v =
(∏dim g

i=1

∏ni

s=1X
i
ai

)
.1 where
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ni ∈ N and ai ∈ Z≤0 for all i, we define

Y(v, z) =
:
∏dim g

i=1

∏ni

s=1 ∂
−as−1
z X i(z) :∏dim g

i=1

∏ni

s=1(−as − 1)!

where the term ordering in the normally ordered product is the same than that

of the Poincaré-Birkhoff-Witt base;

• the (Sugawara) conformal vector is given in a way that recalls the Casimir

element as follows:

ωg =

(
dim g∑
i=1

(X i)−1(X
i,∗)−1

)
.1 ∈ V (0, k)

where x∗ is the dual of xwith respect to the bilinear form (−,−) for all x ∈ g.

This conformal vector has central charge

cg =
(dimC g)k

k + h∨

where h∨ is the dual coxeter number3 of g.

The operator product expansion among pairs of generating fields is then

X i(z)Xj(w) =
k (X i, Xj) · 1

(z − w)2
+

[X i, Xj](w)

z − w
+ : X i(z)Xj(w) :

where i, j ∈ {1, . . . , dim g}.

3This is the number h∨ such that the 2 = (r, r) = 1
h∨ (r, r)Killing for all long roots r ∈ Qg of g.
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Appendix B

Notions of Category Theory

In this appendix, you will find basic notions definitions about Category Theory and

extensions for vertex operator algebras in order to be able to better follow some parts

of the thesis. A more compact version of this appendix can be found in Section 2 of

[AR 2018].

For a brief introduction to basic notions of Homological Algebra in the specific

context of Representation Theory, see [EGH+ 2011]. For a more in depth coverage

of Homological Algebra, one can find much in [Rot 2009] and [Wei 1994].

Historically, it was proven that rational and C2-cofinite vertex operator algebras

give rise to categories of modules with the rich structure of a modular tensor category

[Hua 2008]. Motivated partly by physical considerations, it is expected that parts

of this rich categorical structure is still shared in important non-rational settings

[HLZ 2007], [CG 2017], [CG ], see also the introductive parts of [CKL 2015],

[CKM 2017]. In [HLZ 2007], considerable efforts have been put to define tensor

products for a broad class of vertex operator algebras. The important family of

logarithmic triplet vertex operator algebras are also known to have a rich category of

modules [TW 2013]. Several studies of logarithmic settings [CR 2013b],[GR 2017],
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[Fuc 2007] lead to the expectation that monoidal braided tensor categories are key

concepts for better understanding generic vertex operator algebras.

B.1 Background on Braided Monoidal Categories

Detailed references on monoidal categories and related topics include [EGNO 2015]

and [BAK 2001]. In the latter reference, the very useful graphical calculus is

introduced and detailed.

B.1.1 Categorical Background

A category C is a class of objects ObC and of morphisms HomC(X, Y ) where

X, Y ∈ ObC. These are subjected to the assumption that there is an associative

composition law

◦ : HomC(V,W )× HomC(U, V )→ HomC(U,W ) .

Additionnally, identity morphisms IdX ∈ HomC(X,X) should also exist for each

object X ∈ ObC. An invertible morphism in C is usually called isomorphisms.

Observe that ObC can then be partitioned in isomorphism classes by settingX ∼ Y

whenever there exists an isomorphism betweenX and Y . We usually denote by [X]

the isomorphism class of X ∈ ObC.

The second most fundamental notion is that of functors which are maps between

categories. More precisely, functors are composition preserving maps between

objects of two given categories. When the categories in question have additional

structure e.g. additive, monoidal, braided, etc., one consider subsets of functors that

preserve these additional structures.
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One calls a category skeletal if it has only one object per isomorphism class.

For instance, let R be a complete set of representative of isomorphism classes of a

given category C, we can then sometimes define a skeletal category whose objects

are given by R and whose structure is essentially that of C. In some situations, this

can make some results appear more explicit such as in the analysis of the even lattice

vertex operator algebra of the end of Chapter 2 and [AR 2018].

We move on to additive structures on categories:

Definition B.1. A category C is additive if

• HomC(U, V ) is an abelian group for every pair of objects U, V ∈ Ob(C) and

composition of morphisms is bi-additive,

• C has a zero object 0 such that HomC(0, 0) = 0 is the trivial abelian group,

• C contains finite direct sums (finite coproducts). That is, for every pair of

objects V1, V2 ∈ Ob(C), there exists W = V1 ⊕ V2 ∈ Ob(C) and morphisms

p1 : W → V1, p2 : W → V2, i1 : V1 → W , i2 : V2 → W such that

p1 ◦ i1 = IdV1 , p2 ◦ i2 = IdV2 , and i1 ◦ p1 + i2 ◦ p2 = IdW .

Let F be a field. An additive category C is called F-linear if for each U, V ∈

ObC, HomC(U, V ) is a vector space over F and the composition is F-bilinear.

We then move on to the realm of tensor products and monoidal categories,

central concepts for the study of vertex operator algebras:

A tensor product on a category C is a bifunctor

⊗ : C× C→ C ,

that commutes with finite direct sums. Naturally, one expects such products to be
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associative and so we define associativity constraints to be trinatural isomorphisms

{
aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

}
U,V,W∈Ob(C)

.

An associativity constraint on C satisfies the pentagon axiom if the diagram

(U ⊗ (V ⊗W ))⊗X ((U ⊗ V )⊗W )⊗X

(U ⊗ V )⊗ (W ⊗X)

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

aU,V ⊗W,X

aU,V,W⊗IdX

aU⊗V,W,X

aU,V,W⊗X

IdU ⊗aV,W,X

,

commutes for every choice of objects U, V,W,X ∈ Ob(C).

Another useful notion is that of a unit object (1, ι) where 1 ∈ ObC and ι :

1⊗ 1→ 1. We say that left and right unit constraints are natural isomorphisms

{
lV : 1⊗ V → V

}
V ∈Ob(C)

,{
rV : V ⊗ 1→ V

}
V ∈Ob(C)

.

The unit constraints are said to satisfy the triangle axiom if the following diagram

commutes:

(U ⊗ 1)⊗ V U ⊗ (1⊗ V )

U ⊗ V

aU,I,V

rU⊗IdV IdU ⊗ lV

,

for every pair of objects U, V ∈ ObC. Finally, we can define a monoidal category:

Definition B.2. A monoidal category is a tuple (C,⊗, a−,−,−,1, ι, ℓ−, r−) where C

is a category with tensor product ⊗ with associativity constraint a−,−,−, unit object

(1, ι) and unit constraints r−, l− which satisfy the pentagon and triangle axiom.
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Then we call a functor F : C → C′ monoidal if it comes with binatural isomor-

phisms

JX,Y : F(X)⊗C′ F(Y )
∼=−→ F(X ⊗C Y ) ,

such that F(1C) ∼= 1C′ and successive uses of associatiivity and F on the tensor

product of three objects always commute.

Remark B.3. As noted in [EGNO 2015], a monoidal category can be shown to be

equivalent to a srtict monoidal category or to a skeletal monoidal category, but not

both at the same time.

Let C be a monoidal tensor category. A commutativity constraint on C is a family

{
cU,V : U ⊗ V → V ⊗ U

}
U,V ∈ObC

,

of natural isomorphisms. A braiding structure on C is a commutativity constraint

which also satisfies the hexagon axiom, which is the commutativity of

U ⊗ (V ⊗W ) (V ⊗W )⊗ U

(U ⊗ V )⊗W V ⊗ (W ⊗ U) ,

(V ⊗ U)⊗W V ⊗ (U ⊗W )

cU,V ⊗W

aV,W,U

aU,V,W

cU,V ⊗IdW

aV,U,W

IdV ⊗cU,W

and of the analagous diagram for a−1.

Definition B.4. A braided monoidal category is a monoidal category with a com-

mutativity constraint c satisfying the hexagon axioms.

Braided functors are monoidal functors that preserve braiding isomorphisms.

A twist θ in a braided monoidal category C is a family of natural isomorphisms

{θV : V → V }V ∈Ob(C) ,
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such that the balancing axiom θU⊗V = cV,U ◦ cU,V ◦ (θU ⊗ θV ) holds.

Finally, let’s define duals in a monoidal category C. A left dual for X ∈ ObC is

an object X∗ with duality morphisms

−−→coevX : 1→ X ⊗X∗, −→evX : X∗ ⊗X → 1 ,

which satisfy the relations

rX ◦ (IdX ⊗−→evX) ◦ aX,X∗,X ◦ (−−→coevX ⊗ IdX) ◦ l−1
X = IdX ,

lX∗ ◦ (−→evX ⊗ IdX∗) ◦ a−1
X∗,X,X∗ ◦ (IdX∗ ⊗−−→coevX) ◦ r−1

X∗ = IdX∗ .

If a left dual exists for every V ∈ ObC, the category is called left rigid. Right duals

are defined analogously.

WhenC is a braided monoidal, a left duality morphisms are said to be compatible

with the braiding and twist if they satisfy the additional relation

(θX ⊗ IdX∗) ◦ −−→coevX = (IdX ⊗θX∗) ◦ −−→coevX ,

for all X ∈ ObC.

Definition B.5. A ribbon category is a rigid braided monoidal category where

duality morphisms are compatible with braidings and where (θX)∗ = θX∗ .

B.1.2 Algebra Objects, RepA and Rep0A

This subsection is devoted to defining certain module categoryRep0A for an algebra

object A defined right below. For a more detailed overview of these concepts, see

the book [EGNO 2015].
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This category has a natural braided structure coming from the base category C.

The category Rep0A had first been introduced in [Par 1995]. This point of view has

later been applied to semisimple Representation Theory settings in [KJO 2002] and

more recently in non-semisimple settings for vertex operator algebras [HKJL 2015],

[CKM 2017].

Definition B.6. Let C be a monoidal category with unit 1. An algebra object in C

is a triple (A, µ, u) where µ and u are maps as follows:

µ : A⊗ A −→ A , u : 1 −→ A .

where µ plays the role of a multiplication map in A and u of a unit in A. Moreover,

we require µ to be associative and u to be a unit for the multiplication µ in bot slots.

If C is also braided, then an algebra object A ∈ ObC is said to be commutative

if µ ◦ cA,A = µ.

Definition B.7. Let (A, µ, u) be an associative unital and commutative algebra

object in C. Define RepA to be the category whose objects are given by pairs

(V, µV ) where V ∈ Ob(C) and µV ∈ HomC(A ⊗ V, V ) are subject to the natural

associativity and unit requirement of an action of A.

We define the morphisms between two objects as follows. Let (M,µM), (N,µN)

be two objects of RepA and set

HomRepA (M,N) =

{
f ∈ HomC (M,N)

⏐⏐⏐⏐ f ◦ µM = µN ◦ (IdA⊗f)
}
.

Schematically, a morphism f :M → N in RepA is a morphism of C such that the

following diagram commutes:
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A⊗C M M

A⊗C N N

µM

IdA ⊗f f

µN

.

The next important element is the definition of a natural tensor product ⊗A for

the category of categorical modules RepA.

Definition B.8. Let (X,µX), (Y, µY ) ∈ ObRep0A. Consider the tensor product

X ⊗C (A⊗C Y ) ,

and the following morphisms of C:

mleft = (µX ⊗ IdY ) ◦ cX,A ◦ aX,A,Y : X ⊗C (A⊗C Y ) −→ X ⊗C Y ,

mright = IdX ⊗µY : X ⊗C (A⊗C Y ) −→ X ⊗C Y .

Define the object of the tensor product ⊗A by:

X ⊗A Y =
X ⊗C Y

im(mleft −mright)
. (B.9)

Additionnally, we can define the A-action map on X ⊗A Y as

µV⊗AW = µV ⊗ IdW ◦ a−1
A,V,W : A⊗ (V ⊗A W )→ V ⊗A W ,

since the A-action via µV is identified with the action via µW on the quotient (B.9).

Remark B.10. The tensor product defined as of (B.9) is a coequaliser in terms of

Category Theory vocabular. However it is quite close to the usual notion of tensor

product for two modules M and N of an associative ring R. In the latter more
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familiar case, mleft is just r.(m ⊗ n) = (r.m) ⊗ n while mright is r.(m ⊗ n) =

m ⊗ (r.n). The product M ⊗R N is then defined to be analog of (B.9) where the

rule (r.m)⊗ n = m⊗ (r.n) for every r ∈ R, m ∈M and n ∈ N is imposed.

Remark B.11. As mentioned in [EGNO 2015], the above definition of ⊗A makes it

a right exact bifunctor RepA× RepA→ RepA.

One can show that RepA has natural associativity morphisms and that it is a

monoidal category with unitA ∈ ObRepA [EGNO 2015]. As noted in [Par 1995],

the category RepA might not have a natural braided structure, but a certain subcat-

egory Rep0A always has. We define this category as follows:

Definition B.12. Let (A, µ, ιA) be an associative unital and commutative algebra

object inC. Define Rep0A to be the full subcategory ofRepAwhose objects (V, µV )

satisfy

µV ◦ (cV,A ◦ cA,V ) = µV .

The category Rep0A is often referred to as the category of local or untwisted

A-modules.

Remark B.13. See [Par 1995] for the original setting in whichRep0A first appaered.

This full subcategory of RepA corresponds to those for which the use braidings

in C to define a right module structure gives an equivalent object. For this reason,

Rep0A was sometimes said to be the category of dyslexic A-modules.

One of the key element studied in [CKM 2017] is the following natural induction

functor in relation to Rep0A:

Definition B.14. LetA be a commutative unital algebra object in a braided monoidal
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category C. We have an induction functor

F : C RepA

M
(
A⊗C M , (µ⊗ IdM) ◦AC

A,A,M

) . (B.15)

where (µ ⊗ IdM) ◦ AC
A,A,M : A ⊗C (A ⊗C M) → A ⊗C M is the corresponding

A-action map.

It was proven in [KJO 2002] that F is a monoidal functor in the sense that it

preserves tensor products up to natural isomorphisms [EGH+ 2011]. Moreover,

Theorem 1.6 of [KJO 2002] establishes that F is an exact and adjoint functor.

Further properties of F were studied in Section 2 of [CKM 2017]. Integrating

the observations of [Par 1995], the following notable result was obtained:

Theorem B.16. (Theorem 2.67 of [CKM 2017]) LetC0 denote the full subcategory

of C consisting of objects that induce to Rep0A. Then restricting the induction

functor (B.15) to C0 gives a braided tensor functor

C0 → Rep0A .

Concretely, this means that restricted to C0, (B.15) respects the tensor products

and braidings of C. If in addition one has θA = IdA, then the balancing axiom

for the twists in C show that the same morphisms define a twist isomorphisms on

Rep0A and that the fucntor (B.15) also respects twists.
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B.2 Simple Current Extensions

B.2.1 Extensions and Algebra Objects

A detailed framework to study general types of vertex operator algebra extensions

has been developed in [CKM 2017] following important ideas from [KJO 2002],

[HKJL 2015] and also [Par 1995].

Recall that a vertex operator algebra extension is an inclusion of vertex operator

algebra V ⊆ E where the conformal vectors coincide ωV = ωE . The main result

of [CKM 2017] states that extensions of vertex operator algebra can be studied

within the purely categorical framework of algebra objects reviewed in the preceding

section.

Let V ⊂ E be a vertex algebra extension. When the vertex tensor theory

of Huang-Lepowsky-Zhang [HLZ 2007] applies to a given base category C of V -

modules that contains E ∈ ObC, the larger vertex operator algebra E can be

seen as an algebra object in C category [KJO 2002], [HKJL 2015], [CKM 2017].

In fact, there is a one to one correspondance between algebra objects in C and

vertex operator algebra extensions of V [CKM 2017]. Under this correspondance,

the category Rep0E is braided equivalent to the category of local or untwisted

E-modules as vertex operator algebras [HKJL 2015].

The availability of the categorical methods of [CKM 2017] to study some fea-

tures of the Representation Theory of E is especially valuable when E is a log-

arithmic vertex operator algebra. In such a case, the vertex theoretic framework

provided by [HLZ 2007] is very challenging to apply while this category theoretic

framework is much more easy. Even though checking that a category C of vertex

algebra modules is a difficult task, recent illustrative applications include:
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• the even lattice vertex operator algebra [AR 2018] or Chapter 2, an infinite

order simple current extension;

• Lk

(
osp(1|2)

)
[CFK 2017], a finite extension that is not by simple currents;

• in principle, the Bp logarithmic vertex operator algebra [CR 2013a] [ACKR ],

see also [CRW 2014], [Cre 2017] and [BR 2018];

• in principle, the extended parafermions vertex operator algebras of [ACR 2018]

and Chapters 3 and 4.

B.2.2 Extensions from Simple Currents

We summarise the setup for constructing a special type of extension for a simple

vertex operator algebra V that is widely used in the mathematics and physics liter-

ature: a simple current extension. This can be useful to follow parts of Chapters 2

and 3.

Suppose that V is a vertex operator algebra with a ribbon module category C

containing V and equipped with the vertex tensor structure of Huang-Lepowsky-

Zhang [HLZ 2007]. Following [CKL 2015], we define a simple current as follows:

Definition B.17. A simple current in C is a simple object J which is invertible with

respect to the tensor product. That is, there exists an object J−1 ∈ C satisfying

J ⊗ J−1 ∼= 1.

Remark B.18. In particular, since the vertex operator algebra V is the tensor unit of

C, one can show that the existence of a simple current forces V to be simple. For a

few more details on simple currents, see [CKL 2015].

We will now sketch how to construct a vertex operator algebra extension of V

from a simple current J . In Theorem 1.3 of [CKL 2015], the author consider a
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simple current J ∈ Ob(C) and its powers such that the twists isomophisms satisfy

θJ⊗r = ± IdJ⊗r and θJ⊗r = θJ⊗(r+2) for all r ∈ Z where J0 = V and J⊗−1 = J∗.

Set n = order(J) ∈ N ∪ {∞} and also

G(J) =

⎧⎪⎨⎪⎩ {0, .., n− 1} ↔ Z/nZ if n ∈ N,

Z if n =∞.

Now consider the following:

ES =
⨁
r∈S

J⊗r , (B.19)

where S ≤ G(J) is a subgroup of G(J). By a result of [Li 2001], ES has a

natural structure of a vertex operator algebra if and only if it is integer-graded. See

[CKL 2015] for more explanations.

Remark B.20. If#S =∞, we must seeES as an object of the direct sum completion

C⊕ of C. See Chapter 2 for more details.

Integer-graded objects of type (B.19) are examples of what is called a simple

current extensions of V . In both Chapters 2 and 3, we consider simple currents

extensions as the even lattice vertex operator algebra and the extended parafermion

vertex operator algebras, respectively.
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Appendix C

Explicit Fields and Relations Related

to Ck(sl2)

In this appendix, we explicit the fields {L(z),W3(z),W4(z),W5(z)} that strongly

generate the parafermion operator algebra Ck(sl2) in terms of Lk(sl2) fields and we

give the action of the differential operator (W3)1 on the strong generators modulo

Bk(sl2). The latter is motivated by the study of C2-cofiniteness of [ALY 2014] at

positive integral level.

Remark C.1. The primary fields W3(z),W4(z) and W5(z) below can all be scaled

with a scalar so that we can eliminate any denominators.We chose to leave the de-

nominators here since all our computations have been performed withW3(z),W4(z)

and W5(z) as they are shown below. Indeed, the denominators in the expression

below never vanish for k ∈ A as of line (4.1).
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C.1 Strong Generators of Ck(sl2) From Lk(sl2) Fields

In the following, the products of fields should be interpreted as normally ordered

products. The parafermion generating fields are as follows:

L(z) = −2ke(z)f(z) + h(z)2 + kh(z)′

2k2 + 4k

W3(z) =
1

4

(
− 6f(z)(k − 4)ke(z)′ + 6e(z)(k − 4)kf(z)′

+ 12e(z)f(z)h(z)k + 4h(z)3 + k2h(z)′′ + 6h(z)kh(z)′
)

W4(z) = −
1

16k + 17

(
3k(2k + 3)(36e(z)2f(z)2k3 − 30e(z)2f(z)2k2

+ 12f(z)k4e(z)′′ − 48f(z)k3e(z)′′ + 144f(z)k2e(z)′′ + 144f(z)ke(z)′′

− 12ke(z)′((3k3 − 23k2 + 52k + 48)f(z)′ + f(z)h(z)(5k2 − 33k − 24))

+ 12e(z)k4f(z)′′ − 120e(z)k3f(z)′′ + 204e(z)k2f(z)′′ + 144e(z)kf(z)′′

+ 12e(z)h(z)k(5k2 − 33k − 24)f(z)′ + 132e(z)f(z)h(z)2k2

+ 72e(z)f(z)h(z)2k + 72e(z)f(z)k3h(z)′ − 60e(z)f(z)k2h(z)′

+ 33h(z)4k + 18h(z)4 + h(z)(3)k4 + h(z)(3)k3 + h(z)(3)k2

+ 12h(z)k3h(z)′′ + 12h(z)k2h(z)′′ + 12h(z)kh(z)′′ + 15k3(h(z)′)2

− 18k(h(z)′)2 + 66h(z)2k2h(z)′ + 36h(z)2kh(z)′)

212



W5(z) =
1

128k + 214

(
9k2(6k2 + 17k + 12)(−20e(z)(3)f(z)k5 + 200e(z)(3)f(z)k4

− 160e(z)(3)f(z)k3 + 880e(z)(3)f(z)k2 + 1920e(z)(3)f(z)k

+ 1200e(z)2f(z)2h(z)k3 − 840e(z)2f(z)2h(z)k2 + 60kf(z)′((2k4

− 19k3 + 64k2 − 140k − 288)e(z)′′ + e(z)(e(z)f(z)k(10k2 − 87k + 56)

+ h(z)2(17k2 − 164k − 144)) + e(z)k(9k2 − 80k + 44)h(z)′)

+ 180f(z)h(z)k4e(z)′′ − 900f(z)h(z)k3e(z)′′ + 6480f(z)h(z)k2e(z)′′

+ 8640f(z)h(z)ke(z)′′ − 60ke(z)′(10e(z)f(z)2k3 − 87e(z)f(z)2k2

+ 56e(z)f(z)2k + 2k4f(z)′′ − 29k3f(z)′′ + 151k2f(z)′′ − 196kf(z)′′

− 288f(z)′′ + 8h(z)(k3 − 14k2 + 55k + 72)f(z)′ + 17f(z)h(z)2k2

− 164f(z)h(z)2k − 144f(z)h(z)2 + f(z)(11k2 − 94k + 68)kh(z)′)

+ 20e(z)f(z)(3)k5 − 400e(z)f(z)(3)k4 + 1900e(z)f(z)(3)k3

− 2000e(z)f(z)(3)k2 − 1920e(z)f(z)(3)k + 180e(z)h(z)k4f(z)′′

− 3300e(z)h(z)k3f(z)′′ + 8160e(z)h(z)k2f(z)′′ + 8640e(z)h(z)kf(z)′′

+ 2280e(z)f(z)h(z)3k2 + 1440e(z)f(z)h(z)3k + 240e(z)f(z)k4h(z)′′

− 420e(z)f(z)k3h(z)′′ + 480e(z)f(z)k2h(z)′′ + 2400e(z)f(z)h(z)k3h(z)′

− 1680e(z)f(z)h(z)k2h(z)′ + 456h(z)5k + 288h(z)5 + h(z)(4)k5

+ 3h(z)(4)k4 + 5h(z)(4)k3 + 20h(z)(3)h(z)k4 + 60h(z)(3)h(z)k3

+ 100h(z)(3)h(z)k2 + 210h(z)2k3h(z)′′ + 360h(z)2k2h(z)′′

+ 480h(z)2kh(z)′′ + 540h(z)k3(h(z)′)2 − 720h(z)k(h(z)′)2

+ 1140h(z)3k2h(z)′ + 720h(z)3kh(z)′ + 90k4h(z)′h(z)′′

− 120k2h(z)′h(z)′′)
)
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C.2 Action of (W3)1 on Strong Generators of Ck(sl2)

Mod C2 (Ck(sl2))

Up to re-sclaing, we essentially recover Lemma 4.4 of [ALY 2014]1.

Modulo C2 (Ck(sl2)), the action of the homogeneous linear operator of degree 1

(W3)1 ∈ EndC(Ck(sl2))on the strong generating fields{L(z),W3(z),W4(z),W5(z)}

of Ck(sl2) is given as follows:

(W3)1.x2 = 3x3

(W3)1.x3 =
72 (3k7 + 10k6 − 4k5 − 40k4 − 32k3)

16k + 17
x22 + x4

(W3)1.x4 =
11232 (8k8 + 20k7 − 46k6 − 189k5 − 189k4 − 54k3)

1024k2 + 2800k + 1819
x2x3 + x5

(W3)1.x5 = −
180 (1212k7 + 7550k6 + 17437k5 + 17710k4 + 6680k3)

64k + 107
x4x2

+
1620 (492k7 + 2864k6 + 6247k5 + 6051k4 + 2196k3)

64k + 107
x23

− 6480

1024k2 + 2800k + 1819
(7272k14 + 78756k13 + 350998k12 + 806843k11

+ 932442k10 + 271268k9 − 550472k8 − 610944k7 − 194688k6)x32

In particular, the same conclusion as in [ALY 2014] holds:

Result C.2. As an associative and commutative (Poisson) algebra, the C2-quotient
Ck(sl2)

C2(Ck(sl2))
is generated by

(
(W3)1

)i
(x2) for i ∈ {0, 1, 2, 3} .

Conjecturally, (W3)1 can be used as in [ALY 2014] to better analyse C2-

cofiniteness of Bk(sl2) for negative admissible k as well. I would like to thank

1Note that both our sl2 basis and our scalings of W3,W4 and W5 differ from those of [ALY 2014].
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T. Arakawa for bringing [ALY 2014] to my attention. In the near future, we hope to

explore this avenue for possibly improving the methods of Chapter 4.
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