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4.4.2 Bottom flange loaded with no restraints

Test 32 was tested in a double cantilever configuration. The
bottom flange at the end of the longer cantilever span was loaded, as
shown in Fig. 4.13 to ensure that it was essentially free. The weight
of the heavy object was shared by the beam and the crane. The load
carried by the beam, determined as the difference in the weight of
the heavy object and the load cell reading, was increased gradually
by lowering the crane, reducing the tension in the crane cables.
Because the distance to the crane was large, the lateral restraining

effect of the crane on the specimen was considered to be negligible.
4.4.3 Restraint at the columns

To model the practical situation where, at a column location, an
open-web steel joist is welded to the top fiange of the supporting
beam and has its bottom chord extended and connected to either the
bottom flange of the beam or the column, a fork support was used as
shown in Fig. 4.14. This ensured that the beam cross section was
restrained from twisting and moving laterally whilst remaining free
to warp, to move longitudinally and to rotate about the major and
minor axes. The fork support counsisted of a pair of T-sections, to
which were welded two short cylindrical stubs. The T-sections were
shimmed to just bear against the web on both sides. It was assumed
that longitudinal translation and rotation abcut a lateral axis were
not impeded by the stubs as the normal forces exerted by them and
hence the longitudinal frictionai forces are small and were further

reduced by lubrication.
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When there is no joist at a column, both flanges of the beam
may move laterally. A rigid connection between the bottom flange
and the supporting column provides torsional restraint to the bottom
flange and the buckled shape will be accompanied by web distortion.
This situation was achieved, as shown in Fig. 4.15, by providing a
longitudinal set of rollers under the bottom flange to allow the
bottom flange to move sideways. A pair of load cells was used to
measure the reaction and to provide a sufficiently broad base to
develop the restraining moment on the bottom flange. With the
lateral rollers removed from this location only, a single point of
longitudinal fixity is provided along the length of the beam. The
efficiency of torsional restraint achieved near ultimate loads was
better in the tests with the W310x39 beam than in the tests with the

W360x39 beam because of the broader flange width of the former.

In those tests where the cantilever load was the onmly applied
load, the downward reaction force at the opposite end of the beam
was provided by a reaction beam bolted to columns on both sides of

the pedestal.
4.5 Instrumentation

Five types of instrumentation were used to measure the loads
and reactions, the displacements of the buckled test beams, the

lateral roller movements at supports and strains in the steel.

By using calibrated load cells, as described previously, at each

load and reaction point, statics could be used to verify the loads
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applied. In particular, any unwanted frictional losses in the system
would be identified. Three linearly variable displacement
transducers (LVDTs) were used to measure the vertical movement of
inner frame at the cantilever tip and the roller movements at both
reaction points. When the test beam was allowed to move laterally at
a reaction point, another two LVDTs were used to measure the lateral

movements of the top and bottom flanges at that location.

In order to determine the buckled shape including cross-
sectional distortion, six cable transducers were used at each of three
stations along the test beam, as shown in Fig. 4.16. The details of one
station are shown in Fig. 4.17 where three cable transducers were
attached to each flange. This arrangement of cable transducers was
enough to measure the vertical deflection, lateral displacement and

angle of twist of each flange.

Bending strains about the major and minor axes as well as
warping strains were monitored by four longitudinal strain gauges
mounted on each flange, as shown in Fig. 4.18, at five locations along
the test specimen. Lateral bending strains in the web due to
distortion were monitored by a vertical strain gauge mounted on
each side of the web near the cantilever tip. The sketch of a beam

specimen given in Fig. 4.19 identifies the gauges.

Two dial gauges mounted near the cantilever tip were used to
monitor the lateral deflection of either the top or bottom flange and

the vertical deflection duting the course of a test. The load-deflection
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curves obtained were used to determine the load increments,

particularly as the critical load was being approached.

All electronic measuring devices such as load cells, LVDTs, and

cable transducers were calibrated before use.

The output from electrical resistance strain gauges, LVDTs,
cable transducers, and load cells, amounting to as many as 85
chanuels, were recorded automatically at each step during the test on

the Fluke data aquisition system.
4.6 Testing procedure

Each load was applied by pumping oil manually to the
hydraulic loading jacks (Fig. 4.5). All five interior jacks were supplied
from the same manifold and therefore were at the same pressure.
The jack at the cantilever tip, applying a much greater load, was on a
separate manifold. In all tests, the interior jack load was increased

before the load at the cantilever tip.

The test load was applied in increments, the size of which
depended on the proximity to failure as estimated from the growth
of buckling deformations and from the analytical model. Increments
were generally as large as 10 kN in the early stages of testing and as
small as 0.5 kN near buckling. To decide on the size of a loading
increment and to detect any anomalous restraints, the vertical and
lateral deflections of the unrestrained flange at the cantilever tip
were plotted against the cantilever tip load. In addition, the lateral

deflection of the bottom flange determined from a cable transducer
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station located in the main span was plotted against the cantilever
tip load using an X-Y recorder. Each load was held for few minutes
until all readings indicated that the beam had stabilized. Buckling
was deemed to occur when a load-deflection curve such as the lateral
deflection of ome of the flanges or the rotation of the cross section at
the cantilever tip reached a horizontal asymptote. As the maximum
load was approached, the load was increased only to the extent

required to reach a predefined deformation.

At every load step, a check of static equilibrium was obtained
from the load cell readings, thereby assuring that the system was

functioning properly and that frictional losses were a minimum.
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setup

Fig. 4.2 Overall test



Fig. 4.3 Loading frame

Outer frame

Inner frame
7—*'JW // / rL

7 7 I Roller
/ .~ bearing

I

2350 mm

Test beam

I
I
|
|
|

T Tt
1 I} 1 L
TITTITIT777 {7777 777777 777777

Y y Loading rods

L2440 .

Fig. 4.4 Schematic diagram of a typical loading frame
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Deam
Test no. Loading and restraint diagram Section designation
(95,95)
1 g‘—% —3%  w360x39 3B
(40,40)
2 —%  W360x39 3B
(40)
3 3 W360x39 3B
a {:% =% W360x39 3B
Stiffener
5 g‘(*g f w339 3C
40 @ P/5 (0
“o 38470,
3 W360x39 3A
40 5 @ P/5 (0)
@0, 3PP
7 3 W360x39 3A
(40,40) 5 @ P/5 (0,60)
8 W360x39 3A
95) ?(90)
9 L‘—% —3 W360x39 3K
(275) PR 30,%)
10 E—‘—% = = W360x39 3K
(275) PR (30,90)
11 R = =] W360x39 3K
(205)  P/2(90,90)
12 E:? = 2 W360x39 3K

Note: Loading and restraint symbols are defined in Fig. 4.6.c

Fig. 4.6.a Loading and restraint configurations for tests 1 through 12
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Beam
Testno. Loading and restraint diagram Section designation

O

13 2 W360x39 3K
L P/3 (45.45)

14 g n:e £ W360x39 K
f——; P/3 (0,60

15 3 e —2  W360x39 3K

(40,40)

16 LT; —§  w310x39 3V
P (60)

VI — —%  w3lox39 3V

18 §_§ 3 W310x39 3V
wffener

19 = £ W310x39 3V
P(200) P12 (145.205)

0 == > =% W3l0x39 3T

P (0,60) 5 @ P/5(145,205)

21 M W310x39 T

2 E-,st % w310x39 3T
;(0,60)

23 = % W360x39 3G

P (0,60) § @ P/5 (145,205)
24 M W360x39 3G

Note: Loading and restraint symbols are defined in Fig. 4.6.c

Fig. 4.6.b Loading and restraint configurations for tests 13 through 24



Beam
Test no. Loading and restraint diagram Section designation
£(0,60)
25 = < w3l0x39 3P
P§0,60) E@ P/5 (145,205)
26 e Q W310x39 )
|5 @P/j |
27 & R W310x39 3P
P (0,60) S5 @ P/5(145,205)
i O W W
28 . ? W360x39 3H

@ P/5 (145,205)

29 i ri ! ! ! ! =3 W360x39 3H
P go,a)) 5 @ P/5 (145,205)

30 W360x39 3H

B |
{ | f @ P/5,
31 - 13 2 wW310x39 M
32 ; e ~ W360x39 3D
PO )
33 y W360x39 3D
1219 3657 mm
. (a,b) Height of load application
° Latex:al restramt. and height of lateral restraint
o Torsional restraint above top flange, mm,
" Web stiffener if applicable
av Reaction e Lateral and torsional restraint

Fig. 4.6.c Loading and restraint configurations for tests 25 through 33
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Load

_ Point of load application
and lateral restraint

Test beam
Longitudinal groove of knife-edge
(a)
Load
Point of lateral restraint

Point of load application

T~

Hemispherical or semi- cylindrical rocker

Test beam

(b)

Fig. 4.7 Determination of the height of load application and the
height of lateral restraint
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Fig. 4.9 Top flange loaded freely using ball bearings

Inner frame

B / |
i ! |-—~—L———1

e

/ Symbol

Thrust bearing

Semi-cylindrical / S
longitudinal rocker L Semi-cylindrical
Test specimen lateral rocker

Lateral rollers

Fig. 4.10 Details of lateral restraint condition of top flange



Inner frame
| / l
| |
| |
i i
Lateral
rollers l
Thrust bearin p——q
g \T t .
L ©s Symbol

. specimen
Semi-cylindrical
rocker

Fig. 4.11 Details of lateral and torsional restraint for top flange

Inner frame
/

|
I
|
F
!

Lateral e g

rollers ;ﬁ{legrlstudmal *____i___,
P

Thrust bearing

Test Symbol
specimen

Semi-cylindrical
rocker

Fig. 4.12 Details of torsional restraint for top flange
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Crane cable

Load cell

-

Symbol
Test Specimen

Heavy object EJ%?:

T~

Fig. 4.13 Details of bottom flange loaded with no restraint



Fork support

(T-Sections)
|| T— C o
Short cylindrical
stubs | ———o——
= !L ﬂ S o 4| po -é; é
Semi-cylindrical
lateral rocker Load cell Symbol
. ]
Thrust WJ ]] ™ Lateral
bearing rollers

L

IIIII

A k)]

1 1|
gy ar S B S oy A ar A v S Ay ST AN Ar AT A A A AE AL AR AT Y SX AR A A AT drd

Fig. 4.14 Fork support at column location equivalent to joist
connection with bottom chord extension



Semi-cylindrical
lateral rocker

e T st

specimen Symbol
Load cells

\ Longitudinal
rollers

77 L
A ar AR v IJ7III/IIIf7IIo77777777777717’_:

Fig. 4.15 Details of torsional restraint for bottom flange at column

location.
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Fig. 4.16 Stations for measuring displacements

T

Cable transducer

1

Test specimen

1

Fig. 4.17 Details of a measuring displacement station
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Chapter §

DISTORTIONAL BUCKLING TESTS OF STEEL BEAMS

§.1 Introduction

The results of the full-scale beam tests are presented and
analyzed in this chapter, as are the results obtained from the finite
element analysis used to predict the behaviour of these tests. Thirty
three tcsts were ronducted on a total of 11 beam specimens,
composed of severn ¥/360x39 sections and four W310x39 sections. By
testing a given beam in a sequence of generally increasing restraints,
the beam could be used repeatedly because in the earlier tests it
buckled elastically and returned to its original shape upon unloading.
A specimen was replaced after undergoing inelastic buckling that
resulted in noticeable inelastic deformations, as discussed
subsequently. The 33 tests were performed under different loading
and restraint conditions except for a few tests which were duplicated

in order to rectify some experimental errors.

In cantilever-suspended span construction encountered in
practice, the reaction from a suspended span is usually transferred to
the tips of the cantilever beam through a shear connection between
the webs and near the shear centre of the beam. In these tests, the
cantilever tip loads, as were considered in the finite element
analysis, were applied at or above the top flange. It is recognized
that this test situation represents a more severe loading condition
because of the destabilizing effect of the load applied above the

shear centre.
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5.2 Results of experimental .ad finite element analyses

The experimental and predicted buckling loads applied at the
cantilever tip and the test-to-predicted ratio of the cantilever tip
loads of the tests are given in Tables 5.1.a, b and c. The second line in
both the test and predicted load columns (as in test 6) gives the
magnitude of the additional loads, applied between supports. The
loading and restraint diagrams and other data for each test have
been given in Figs. 4.6.a, b and c. The test loads include the dead
weight of 3 kN of each of the loading frames and thus, the ratios of
interior loads to the cantilever load may not coincide exactly with the
nominal ratios shown in those figures (e.g. P/5) which refer to the

applied jack loads only.

Figs. 5.1 and 5.2 show the finite element meshes used to predict
the buckling loads for tests 1 through 32 and 33, respectively. The
mesh was refined in the vicinity of the column support next the
cantilever span where the bending moment is a maximum and
yielding sometimes occurs. A mesh refinement was also required at
the cantilever tip to model cross-sectional distortions when torsional
restraint is involved. The self-weight of the beam was neglected in
the analysis of all tests except for test 32 where it proved to be
significant because of the special boundary conditions involved. The
finite element analyses are based on the ratio of the loads applied on
the cantilever and back spans observed at failure (assuming that this

ratio remained constant up to the occurrence of buckling), the
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measured material properties, residual stresses and cross-sectional

dimensions.
§.3 General observations
5§.3.1 Test-to-predicted ratios

A measure of the accuracy of both the experimental work and
the analytical method is afforded by computing the test-to-predicted
ratio for each test and the mean value for all the tests. In such a
comparison, experimental errors contribute to deviations from a
value of 1.0 and increase the variation. The results of tests 6 and 8
were considered unreliable, as discussed subsequently, because
unwanted frictional restraints caused higher energy buckling modes.
These tests were repeated in tests 7 and 28. Excluding tests 6 and 8
(indicated by asterisks in Table 5.1), the mean test/predicted ratio
obtained for the remaining 31 tests is 0.99 with a standard deviation
of 0.063. This mean value, for a wide range of boundary conditions,
indicates that the analytical mode' has good predictive capacity. The
coefficient of variation of 0.064 related both to experimental errors
and model simplifications is relatively small. For comparison, Yura et
al. (1978) reported a coefficient of variation of 0.11 for the
uncomplicated tests of determining the fully plastic moment capacity
of steel beams. The variation is considered to be due to variations in
residual stress patterns, yield strengths and moduli of elasticity of
the beam from the measured values, experimental errors in load
measurements and unwanted friction in the reactive devices as well

as model simplifications. Mirza and MacGregor (1982) suggested a
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coefficient of variation of 0.040 to account solely for errors in
measurement when assessing the strength of reinforced and
prestressed concrete beams. If this were applied, the resulting

coefficient of variation would reduce to 0.050.
5.3.2 Effects of residual stresses

The residual stress distributions of the W360x39 and W310x39
cross sections, discussed previously (see Fig. 3.8), are characterized
by significant tensile stresses at the flange-web junctions and
approach zero at the flange tips, ranging from small tensile stresses
for the W360x39 to small compressive stresses for the somewhat
stockier W310x39. A significant portion of both webs is in residual
compression. These findings agree with Bjorhovde (1980), who
expected that the residual stresses of the relatively light beam-type
sections are not as adverse, i.e. not as great in compression at the
flange tips, as those of column shapes, they would be expected
therefore to affect the lateral stability less and in fact, the tensile
residual stresses proved to be beneficial, as discussed subsequently,

in delaying the onset of loss of stiffness.

Based on the mean level of maximum tensile residual stresses
given in Fig. 3.8 of 198 MPa and 74 MPa for the W360x39 and
W310x39 sections, respectively, tensile yielding of the cross section
would be predicted to occur at 0.31 and 0.79My or 0.27 and 0.71M, ,
respectively, where M, is the yield moment and M, is the plastic
moment. For compressive yielding at the flange tips, the mean level

of compressive residual stresses of -0.02 (tensile) and 0.06Fy for the
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W360x39 and W310x39 sections, respectively, would result in values
of 1.02 and 094M, or 0.89 and 0.84M at the onset of cross-
sectional yielding or degradation in lateral stiffness. Nethercot (1974)
suggested that lateral-torsional buckling can be classified as inelastic
only when the level of applied bending stresses equals or exceeds
the level required to initiate yielding at the compression flange tips.
Even though significant yiclding may already have occurred at the
tension flange-web junction, this has little effect on the effective
moment of inertia about the weak axis. Accepting Nethercot's
hypothesis, all tests except for tests 5, 14, 15, 19, 21, 27, 28 and 31,

can be classified as elastic.

To investigate the effects of residual stresses on the stability of
steel beams, two finite element model predictions were obtained for
each test, by considering and neglecting the effects of yielding and
residual stresses. These predictions are called inelastic and elastic,
respectively. Tables 5.2.a, b and c give the critical buckling moment,
occurring at the root of the cantilever for the two predictions as a
fraction of the plastic moment and, as well, the ratio of the two
predictions. In the tests performed on the W360x39 cross section,
where the whole flange is under tensile residual stresses with a peak
value at the flange-web junction of 0.69F,, a significant beneficial
effect is evident in the Nethercot “elastic” tests, with the rato of the
two predictions varying from 1.04 to 1.36. This is because the tensile
residual stresses tend to reduce the compressive stresses of the
compression flange, to increase the geometric stiffness of the flanges

and therefore to delay the onset of lateral instability of the overall
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beam. On the other hand, early yielding at the tension flange-web
junction has comparatively little effect. The tension flange deflects
only slightly during buckling and makes only a small contribution to
the buckling resistance (Trahair 1983b). This phenomenon was also

observed by Kitipornchai and Trahair (1975).

The beneficial effect of residual stresses in the elastic range is
less noticeable for the W310x39 tests than for the W360x39 tests
because the peak tensile residual stress at the flange-web junction of
the W310x39 is only about 0.21F, and moreover, the compressive
residual stresses at the flange tips, although relatively small, have a
detrimental effect. As can be observed in Tables 5.2.b and c, the
beneficial effect of residual stresses is significantly reduced for tests
23, 24, 25, 26, 29 and 30, even though elastic buckling occurred.
Here, the distortional buckling mode is characterized by a significant
web distortion over a considerable length of the beam near the
interior support location. This in turn results in less participation of
the flange in the overall behaviour and consequently a less

stabilizing effect of residual stresses.

For the inelastic tests, again using Nethercot’s definition, the
beneficial effect of residual stresses is reduced significantly because
of yielding at the compression flange tips. In real cantilever-
suspended span construction, it is expected that the depth/width
ratio for the range of beams used would be larger than 1.8, that is
the beam flanges are relatively narrow. Therefore, the residual stress
patterns (Ballio and Mazzolani 1983) would be similar to those

obtained for the W360x39 and W310x39 cross sections with depth to
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width ratios of 2.76 and 1.88, respectively, for which the residual
stresses are beneficial in the elastic range. With these residual stress
patterns, a wide range of beams used in real structures would still
buckle elastically even though the critical buckling moment is just

slightly less than the yield moment.
5.3.3 Double cantilever beams

Tests 32 and 33 (see Fig. 4.6.c) were tested in a double
cantilever configuration to examine the stabilizing effect of a load
applied below the shear centre (test 32) and the effect of span length
(test 33). A single fork support was provided at the common root of
the two cantilevers of unequal span. In test 32, The load at the end
of the long cantilever span was applied 150 mm below the
unrestrained bottom Tlange to model the loading on a monorail beam.
In test 33, the top flange was laterally restrained at both cantilever
tips. The test/predicted load ratios of 1.02 and 1.05 for the two tests
indicate excellent agreement between test and prediction. An end
view of the buckled cross section at the tip of the long span
cantilever in test 33 is given in Fig. 5.3. This shows that the whole
cross section exhibited a significant twisting about the enforced axis
of twist above the top flange, with little evidence of cross-sectional

distortion.
5.3.4 Buckled shapes

The main characteristics of the buckled shape in a distortional
buckling mode are the different lateral deflections and twists of tep

and bottom flanges due to web distortion. The finite element model
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predicts not only the buckling load but also the buckled shape
contained in the eigenvector resulting from the solution of the
governing equation. Because the analytical model is based on the
bifurcation theory, the governing equation does not give the

magnitude of the displacements but a normalized shape only.

The arrangement of twelve cable transducers installed at three
stations along the test specimen (see Figs. 4.16 and 4.17) enabled the
main features of the buckled shape to be discerned. More
information about the displacements was obtained from the restraint
conditions at the supports. When fork supports are provided, no
lateral displacements or twists occur at these locations. In the case
when lateral bracing of the column is omitted at the cantilever root,
lateral deflections of both flanges were monitored throughout the

test and the twisting angle of the top flange was measured at failure.

The measured lateral displacements and twists of both flanges
as well as the vertical displacements of the top flange, at the
maximum test load level, are given in Figs. 5.4 through 5.8 for tests
3, 4, 7, 27 and 28, respectively. The corresponding buckled shapes, as
predicted by the finite element analyses, are given in Figs. 5.9
through 5.13. These shapes show the normalized lateral
displacements of the top flange, the middle of the web and the
bottom flange. These figures show that the measured and predicted
buckled shapes agreed favourably, as can be seen for example in Fig.
5.14 for test 3. The only exception is in test 7, where the top flange
within the cantilever span moved slightly while it was predicted not

to move. Distortion of the web can be deduced from the diagrams
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giving the angles of the two flanges in Figs. 5.4 to 5.8. When no
distortion occurs, the twist angles of the top and bottom flanges are
the same at any point along the length of the beam. Web distortions
can also be inferred from the normalized displacements of the
buckled shapes of Figs. 5.9 to 5.13 by noting that uneven spacing
between the lines representing the top flange, neutral axis and

bottom flange lateral displacements.

In tests 3, 7 and 28, no torsional restraint was involved and the
twist angle of the two flanges in Figs. 5.4, 5.6 and 5.8 are about the
same at any point along the beam. In the corresponding Figs. 5.9,

5.11 and 5.13, the three displacement lines are evenly spaced.

In test 4 (see Fig. 4.6.a) lateral and torsional restraints were
provided to the top flange of the cantilever tip. From Fig. 5.5, the top
flange displaced the least laterally and there was a significant
difference in the angle of twist of the two flanges at the flange tips.
This is also evident in the uneven spacing of the lateral displacement

lines of Fig. 5.10.

In test 27 (see Fig. 4.6.c) torsional restraint was applied to the
top flange at all 6 load points and as well to the bottom flange at the
reaction support. Fig. 5.7 shows significant difference in the twist
angles of the flanges and Fig. 5.12 shows uneven spacing of the three

lateral displacement lines.

A plan view of a portion of the longitudinal buckled shape in
test 5 is given in Fig. 5.15. The figure shows the main span with the

fork support close to the cantilever located near the bottom of the
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photograph. The bottom flange, the top surface of which is painted
white, has undergone a much greater lateral Ceflection than the top
flange, with the maximum rotation occurring near the middle of the

main span, towards the top of the photograph.
5.3.5 Effect of lateral and torsional restraints

In those cases where the only applied load is at the cantilever
tip, and the top flange is laterally restrained at the load point, as in
tests 2 and 16, (see Figs. 4.6.a and 4.6.b) the buckling capacities are
little increased by the lateral restraint as compared to the cases
where the cantilever tip is free as in tests 3 and 17 (Figs. 4.6.a and
4.6.b). The test loads are, respectively, 78.9 and 84.0 for tests 2 and
16 as compared to 77.1 and 77.6 for tests 3 and 17. This is explained
by the different behaviour of cantilever beam with an unrestrained
back span as compared to a cantilever with warping restrained at its
root. In the latter case, the top flange deflects more than the bottom
flange but the opposite is observed, as seen in the buckled shape of
test 3 in Fig. 5.4 for an overhanging beam, where the bottom flange
has the greater lateral deflection at the cantilever tip. Thus, when
only the top flange is restrained laterally, little benefit is gained. The
situation is changed when the back span is restrained laterally at

locations of interior loads.

Test 7 was conducted with five loads, each about one-fifth of the
cantilever load, applied on the back span. This loading configuration
models the limit of the unbalanced condition in which the suspended

span is loaded to the full intensity of a uniformly distributed load
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and the main span is loaded to one half the intensity. However, no
lateral support was provided at any of the load points with lateral
restraint occurring solely from the fork supports. A shorter length of
the bottom flange is in compression in test 7 as compared to test 3,
where the entire bottom flange in compression. Unlike test 3, the
buckled shape of test 7 (Fig. 5.6) showed little bottom flange
movement while the top flange displayed significant lateral
displacements at the interior load points, where it is in compression.
Notwithstanding this, the predicted buckling load for test 3 of 78.4
kN is greater than that for test 7 of 65.6 kN.

The addition of lateral restraint, 205 mm above the top flange,
at all load points in test 28 (Fig. 4.6.c), increased the predicted
buckling strength from 65.6 kN for test 7 to 136.7 kN and greatly
altered the buckled shape, as seen by comparing Figs. 5.6 and 5.8.
This is attributed to the enhancement of strength of the back span by
reason of the fact that most of the top flange within the back span is
under compression and laterally restrained. Test 21, carryed out on a

W310x39, gave similar performance and behaviour to test 28.

Now consider tests 3, 7 and 9, all unrestrained except for the
fork supports provided at support locations. The cantilever tip loads
in tests 3 and 7 were applied at the same height of 40 mm above the
top flange, while in test 9 the height was 95 mm. All of the bottom
flange of the back span in test 3 is in compression while in test 7
only about 0.29 of the bottom flange of the back span is in
compression. However, the predicted buckling load in terms of the

cantilever tip load reduced from 78.4 kN to 65.6 kN because of the
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destabilizing effect of the loads acting on top flange of the back span
in test 7. In test 9, the predicted buckling load was further reduced
to 36.6 kN because both the cantilever tip load ard the interior load
were applied higher above the shear centre and also because of the
shape of bending moment diagram is more critical than in test 7 with

the compression flange in the back span more heavily stressed.

Compare tests 4 and 14, both laterally and torsionally restrained
at the cantilever tip but with lateral restraint also provided to the
top flange at the middle of the back span in test 14. The significant
increase in the predicted buckling load of test 14 to that of 4 (137.1
kN versus 112.6 kN), is due to the change in the shape of the bending

moment diagram and the additional lateral restraint provided.

In spite of the beneficial effects of the lateral restraints and the
shape of bending moment diagram in tests 24 and 26 on W360x39
and W310x39, respectively, as compared to tests 23 and 25
respectively, the predicted buckling strength actually reduced to
43.9 kN from 49.8 kN and to 454 kN from 54.1 kN because the back

span loads were applied higher above the top flange.

In tests 9 through 15, loads were applied at the cantilever tip
and at mid-point of the back span of a W360x39, using various ratios
of the two loads and various restraint conditions. Although the height
of the cantilever tip load and the bending moment diagram are more
severe in test 10 than in test 9, both tending to decrease the failure
load, the test and predicted loads actually increased because of the

lateral restraint provided at the mid-point load in test 10. The
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increase in the cantilever test loads was from 35.5 to 41.1 kN and in
the predicted loads from 36.6 to 40.8 kN. Test 13 showed a slight
increase in predicted strength from 50.4 kN to 52.9 kN compared to
test 12, other things being equal, because of the added torsional

restraint at mid-span in test 13.

One method to investigate the behaviour of an overhanging
beam (Essa and Kennedy 1992) is to consider it as an interaction
buckling problem between the cantilever and back spans, both free
to warp at the common end. Considering all the tests with fork
supports at column locctions, the cantilever span is the critical span
while the back span is the restraining one. Restraining the critical
cantilever span is, in fact, more effective in enhancing the overall
buckling strength than providing restraint to the restraining back
span as is evident from an examination of tests 13 and 14. In these
tests, loads were applied at the cantilever tip and at the mid-point of
the back span. Even though the back span loading condition of test
13 is considered to be less severe than that of test 14 with a shorter
length of unsupported compression flange, providing lateral and
torsional restraints of top flange at the cantilever tip in test 14 is
much more effective in increasing the buckling strength than
providing the same restraint to the top flange of the back span as in
test 13. The predicted buckling loads are 137.1 kN and 52.9 kN with

the test loads in about the same proportion.

Consider tests 16, 17, 18 and 22 as a set with a load applied only
at the cantilever tip of a W310x39. The tests, in order of increasing

restraint at the point of load application are: 17, no restraint, 16,
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lateral restraint only, 18, torsional restraint only and 22, lateral and
torsional restraints. Both the test and predicted loads show an
orderly increase in loads through this progression: 77.6, 84.0, 118.9
and 133.3 kN for the test loads and 78.0, 83.9, 111.5 and 129.6 for
the predicted or theoretical loads. Test 18 was the only test in which
torsional restraint alone was provided without lateral restraint of the
top flange and resulted in a greater strength, in this case, than in test
16 which was provided only with lateral restraint. When both lateral
and torsional restraints were provided as in test 22, there was a
slight improvement in the strength as compared with providing
torsional restraint only. This sequence of tests therefore clearly
demonstrates theoretically and experimentally that torsional
restraint is much more effective than lateral restraint in enhancing

the strength of the beam.
5.3.6 Web distortion and effect of stiffeners

The buckling modes observed in these tests were characterized
in general by changes in the cross-sectional shape, arising from web
distortions. The webs of I-shaped beam cross sections are relatively
thin. Web distortion permits the flanges at a cross section to undergo
different angles of twist about the longitudinal axis. This greater
flexibility tends to reduce the buckling strength of the beam as
compared to that if the web remains rigid. Test observations show
that web distortion is noticeable and critical where: 1) lateral bracing
at column locations is omitted, 2) torsional restraint is provided to
one flange only and 3) load is applied relatively high above the top
flange.
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When lateral bracing at a column is omitted, it is normal practice
to provide torsional restraint to the bottom flange by means of a
rigid connection between the beam and the column. Under practical
loading conditions, as in test 26, the bottom flange is in considerable
compression at the column location. Lateral restraint is provided by
the open-web steel joists to the top flange at the cantilever tip as
well as at the back span loading points, and because of the lateral
stiffness of the top flange to some extent, to the top flange at the
column location. Under such conditions, for the bottom flange to
deflect laterally at column location, significant web distortion must
occur. Fig. 5.16 illustrates the web distortion, observed in test 26, at
the main column and at the cantilever tip. Web distortion can be
reduced at column supports by providing either lateral bracing or
web stiffeners at the supports. The latter are effective only when
they are connected to the beam flanges and there is a moment

connection between the column and the beam.

The increase in the buckling strength due to torsional restraint
applied to the tension flange is reduced due to web distortions. In
cantilever-suspended span construction, lateral and torsional
restraints are provided at discrete locations by means of the open-
web steel joists attached to the top flange. Under practical loading
conditions, web distortion becomes noticeable within the cantilever
span where the top flange is in tension. In Fig. 5.17 for test 4, the top
flange at the cantilever tip has not twisted because of the torsional
restraint, while the twisting of the bottom flange has resulted in

significant web distortion. Although, because of the introduction of
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lateral and torsional restraints in test 4, the test buckling load of that
test (104.9 kN) showed a significant increase as compared to the
unrestrained case of test 3 (77.1 kN), the beneficial effect of the

torsional restraint is not obtained in full because of web distortion.

Web stiffeners can be used to minimize the distortion occurring
in the web and further enhance the buckling capacity. In tests 5 and
19, a web stiffener was used at the load point which was also
laterally and torsionally restrained at the top flange. A significant
improvement in the test buckling loads was obtained in test 5 (125.8
kN) as compared to test 4 (104.9 kN) on the W360x39 and in test 19
(152.6 kN) as compared to test 22 (133.3 kN) on the W310x39. These
four tests indicate, based on the relative values of buckling loads,
that the reduction of buckling capacity due to web distortion

increases with the depth of the cross section.

The elevated point of application of the cantilever load in tests
11 through 13 showed a destabilizing effect which tended to increase
twisting in the top flange and induce a noticeable distortion in the
web. In test 11, the cantilever tip load was applied 275 mm above
the top flange. A view of the cross-sectional deformations is given in
Fig. 5.18, where the top flange has undergone a much greater twist
than the bottom flange and the web is significantly distorted.
Another example of significant web distortion at the cantilever tip is
seen in Fig. 5.19 for test 20, which was conducted using a W310x39
cross section with the load was applied at 200 mm above the top

flange.



103
5.3.7 Effect of lack of lateral restraint at column locations

When lateral restraint is omitted at a column location and only
torsional restraint is provided to the bottom flange through a rigid
moment connection, the web is forced into a distortional buckling
mode. This situation was simulated at the main support in tests 23
through 27 and 29 through 31. In test 23, a W360x39 beam was
loaded and laterally restrained at the cantilever tip. A test load of
45.9 kN was obtained as compared to 78.9 kN in test 2 in which fork
supports (top and bottom bracing) were provided at both columns.
These results clearly indicate that torsional restraint alone at the
column as may be supplied by a rigid connection between the beam
and the column does not compensate for the omission of bracing or

alternatively of web stiffeners.

In test 24 on a W360x39, lateral restraint was provided at all
six load points and the bottom flange of the beam was provided with
torsional restraint at the main support but was free to translate
there. The test load at the cantilever tip was only 40.7 kN as
compared to 128.8 kN obtained in test 28, in which lateral bracing
was supplied at the column but was otherwise identical. A
comparison of parallel tests 23 and 2 on a W360x39 with lateral
restraint at the cantilever tip where the only load was applied but
with only torsional restraint at the column in test 23 and forked
supports in test 2 give test loads of 45.9 kN and 78.9 kN,

respectively.
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The same phenomenon was demonstrated in the companion
tests on W310x39 beams, test 26 similar to test 24 with torsional
restraint at the column only had a test load of 46.7 kN while test 21
with forked supports has a test load of 154.5 kN. In the W310x39
beams with loads at the cantilever tip only (tests 25 and 16), the
respective loads are 55.9 kN and 84.0 kN.

Three conclusions can be drawn from these comparisons. First as
stated previously, torsional restraint of the bottom flange at a
column is not nearly as effective as lateral restraint to both flanges.
Second, the reduction in buckling load for such restraint conditions is
greater when loads are applied to the back span as well as the
cantilever tip because of the destabilizing effect of the back span
loads applied above the top flange (the relative load ratios are
40.7/128.8 = 0.32 and 45.9/78.9 = 0.58 for the W360x39 and
46.7/154.5 = 0.30 and 55.9/84.0 = 0.65 for the W310x39). Third, the
reduction of buckling capacity due to web distortion, as discussed in
section 5.3.6, increases with the depth of the cross section. For tests
with a cantilever tip load only, test 23, on a W360x39, with torsional
restraint only at the column support has only 0.58 of the strength of
test 2 with fork supports while for the parallel tests (tests 25 and
16) on a W310x39, the ratio is 0.67.

Providing torsional restraint to the top flange in addition to
lateral restraint has a significant effect in enhancing the buckling
strength of the beam. Essentially identical tests 27 and 31 with

lateral and torsional restraints at all load points have a test load of
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about 128 kN at the cantilever tip while test 26 with only lateral
restraint at load points but otherwise identical reached a failure load
of only 46.7 kN, only 37% of the former. Again. the only difference
between tests 24 and 29 is that test 29 had lateral and torsional
restraints at the cantilever tip while 24 had lateral restraint only. At
all other load points only lateral restraint was provided. Test 24 had
a failure load of 40.7 kN, only 53% of the 76.3 kN of test 29. Torsional
restraint mobilizes the distortional strength of the web whenever it

is provided and thus enhances the resistance of the beam.

The distortional buckling mode at the cantilever tip in test 31 is
seen in Fig. 5.20. The top flange, restrained intentionally by the
loading system, has remained horizontal while the bottom flange has
rotated and translated laterally, with considerable distortion in the
web. When joist shoes are properly welded to the top flange of the
beam, the joists provide torsional restraint to the beam flange and
enhance the stability of the beam. While in the tests, essentially
complete torsional restraint was obtained, the actual degree of fixity

in practice is proportional to the flexural stiffness of the joists.
5.3.8 Effect of shape of bending moment diagram

To investigate the effect of the shape of the bending moment
diagram on the critical buckling resistance, the finite element
predictions were made for the several restraint and loading
conditions given in Fig. 5.21, for a W360x39 beam. Fig. 5.21a shows
two different restraint conditions: condition A with only fork

supports at the column locations and condition B with fork support at
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the right end, complete torsional restraint only applied to the bottom
flange at the intermediate support location and complete lateral and
torsional restraints applied to the top flange at the cantilever tip. As
indicated in Fig. 5.21b, four different loading configurations are
considered with all the loads being applied at either the shear centre
or the top flange. The corresponding bending moment diagrams are

also given in Fig. 5.21b.

Finite element predictions were obtained for each loading and
restraint condition with the residual stresses being eithar neglected
or considered. The predicted ratios of M. /M, are given in Table 5.3.
For the cases of shear centre loading, the results of both restraint
conditions indicate that the shape of bending moment diagram has
an orderly effect on the buckling resistance increasing in the
following order: case 1V, where the maximum moment occurs at the
centre of the back span, case III, where the maximum moment
occurs at the interior support, case II, where positive moment with a
maximum value of 0.4M covers a significant length of the back span,
and case I, where most of the back span is under a positive moment
with a maximum value of 0.25M. When all the loads are applied at
the top flange the same order of severity of bending moment
diagrams persists except that cases II and III are switched because
the destabilizing effect of the loads applied to the back span is more
pronounced than the effect of the shape of bending moment diagram.
Again, the beneficial effect of residual stresses in restraint condition

B is less noticeable than in restraint condition A. This is attributed to
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the web distortion which reduces the flange participation in the

overall behaviour of the beam.
5.3.9 Load-strain behaviour and strain distributions

The measured flange strains reflect the effects of bending about
both the strong and weak axes and of warping associated with the
deformations due to lateral-‘orsional buckling. The measured vertical
web strains reflect the eff s of bending due to web distortion as
well as the effects of vertical loads. To investigate all of these effects,
four strain gauges were mounted longitudinally on each flange at
every strain gauge station and, as well, a strain gauge was mounted
vertically on each side of the web at the cantilever tip, as shown and

identified in Fig. 4.19.

In Figs. 5.22, 5.23 and 5.24, for test 4 are plotted the test load
versus flange strains of the outer (3 and 6) and inner (4 and 5) strain
gauge pairs on the bottom flange and of outer pair of gauges (7 and
10) on the top flange, respectively, of the station located at 843 mm
from the cantilever tip, about half way between the cantilever tip
load and the main support. The general behaviour of these curves is
the same. At relatively small loads, strains due to the strong axis
bending dominate. The inner and outer bottom flange strains
increase linearly with load and are about the same in compression
and of opposite cign to the top flange strains in tension. As the beam
begins to buckle laterally, the strains on the same flange but on
opposite sides of the webs begin to diverge as lateral bending and

warping take place. Readings of the two strain gauges mounted on
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the same side of the bottom flange, gauges 6 and 5, tend to develop
tensile strains. In all cases, the load versus strain relationship
reaches a horizontal asymptote at the maximum load, indicating that
buckling is imminent. Strain gauge 6 on the bottom flange and strain
gauge 10 on the top flange are on the same side of the web. As
buckling was approached, both showed tensile straining, indicating
that the lateral bending effect, in this case, was more pronounced

than warping.

The load versus mid-height web strains obtained from gauges 1
and 2 in the vertical direction, 233 mm from the cantilever tip and
therefore directly under the load point, for test 4 are given in Fig.
5.25. The diverging strain readings with one gauge in tension and the
other in compression indicates that out of plane bending of the web

or web distortion begins almost immediately on loading.

Fig. 5.26 shows the distributions of normal strains due to major
axis bending, minor axis bending and warping of a cross section
located at 4267 mm from the end support (gauges 38 through 45) for
test 3 at the buckling load. As indicated in this figure, the strains due
to lateral bending exceed that due to major axis bending. The total
strain distribution in bottom flange was obtained using the best-fit
line of the strain readings of the gauges mounted on bottom flange.
For the top flange, the slope of the best-fit line for the strain
readings as well as the strain determined at the bottom flange-web
junction (448 pe) were used to be consistent. Knowing the general
shape of the strain distributions for lateral bending, warping and

major axis bending, the strain values of these distributions at the
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flange tips could be determined from the total strain distribution. As
a check, the maximum major axis bending strain was computed
based on the buckling load, the self-weight, cross-sectional
dimensions and material properties, and a value of 444 ue was

obtained as compared to 448 pe given by the strain distributions.

Figs. 5.27 and 5.28 show the cantilever tip load versus the
strains of the outer pair of gauges mounted on the bottom and top
flanges (gauges 38 and 41 and 42 and 45, respectively, as shown) for
test 21 at a station located about 1/2 way along the back span. The
strains all increase at zero load when the self-weight of the inner
frames is applied at the five intevior load points. The figures show
that the warping had more effect than lateral bending from the
beginning until buckling load was approached. At any intermediate

load le—-' the tensile straining of gauge 38 on the bottom flange
increases .nore rapidly than that of gauge 41 on the opposite side of
the web while the compression straining of gauge 42 on the top
flange and on the side of the web as 38 increases more rapidly than
that of gauge 45 on the opposite side of the web. This is consistent
with warping. At the buckling load, the lateral bending effects
dominated and significant tensile strain increments occurred on the

side of gauges 38 and 42.
5.3.10 Load-deflection behaviour

By monitoring the load-deflection behaviour during the test,
deformation control could be invoked as the buckling load was

approached. Buckling was considered to occur when the load-
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deflection curve reached a horizontal asymptote. In those tests
where the beam behaved elastically and was intended to be used
again, the beam was unloaded shortly after the buckling was
observed in order to eliminate or minimize any permanent
deformations which would magnify initial imperfections. For inelastic
tests, on the other hand, the investigation of the post buckling
behaviour was only restricted by the deformation limit of the loading

or reaction devices such as rockers or knife-edges.

The load-lateral deflection curve for both the loading and
unloading stages of the bottom flange about 1/3 of the back span
from the main support for test 17 is shown in Fig. 5.29. The lateral
deflection increases first slowly and then more rapidly as the
ultimate load is approached. The deformations before buckling were
relatively small, as would be expected from the small measured
initial geometrical imperfections. The unloading curve shows a
nonlinear behaviour which is almost identical to the loading curve
and resulted, at zero load, in a negligible permanent deformation.
Thus, the specimen, which unloaded in a nonlinear elastic manner,

could be used in another test.

The load-lateral deflection curves for tests 5 and 19 in Figs. 5.30
and 5.31, are examples of tests that showed a significant inelastic
behaviour. These curves are piotted for the same location as test 17,
i.e. about 1/3 of the back span from the main support. In test 5, a
relatively little lateral deflection was observed up to the ultimate
load where the load decreased with increasing deformations. When

the load was removed, the lateral deformations decreased rapidly
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but a significant amount of permanent lateral deformation of about
70 mm remained at this location. Comparing Fig. 5.31 for test 19 with
Fig. 5.30 for test 5, it is seen that the effect of initial imperfections is
more pronounced in the early stage of loading in test 19 than in test
5. This is attributed to the fact that the specimen used in test 19,
beam 3V, had already been used in three previous tests and
although care was exercised to minimize any inelastic action in these
tests, they probably contributed to an increase of initial
imperfections. The specimen in test S, beam 3C, was used only in that
test. Notwithstanding this, the test/predicted ratio in test 19 was still
0.95. In test 19, the post buckling behaviour was characterized by
the development of large deformations accompanied by a slight drop
in the loading capacity. The beam was only deflected laterally about
65 mm as compared to 200 min in test 5 and upon unioading, most

of the lateral deflection was recovered.

Fig. 5.32 shows an example of the load-vertical deflection curve
for the cantilever tip of test 5. As would be expected, the vertical
deflection, including the effect of shear deflection, is in a good
agreement with the calculated values based on the linear elastic
theory. Beyond a load of 40 kN where yielding commenced at the
tension flange-web junction due to the presence of residual stresses,
the vertical deflections increase more rapidly than the elastic theory

predicts.
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5.3.11 Experimental errors

In full-scale distortional buckling tests of steel beams, several
factors may contribute to experimental errors. For these tests, the
factors include: (i) errors in calibration of load cells, (ii) incorrect
measurements of the geometry of both the cross section and the
overall specimen, (iii) incorrect assessment of the material properties
of the specimen, (iv) unintentional eccentricity in loading, (V)
reaction and load devices that either do not function properly over
the entire test loading range or introduce unwanted restraint or
friction and (vi) reaction devices that do not provide the restraint

anticipated.

To minimize errors in the calibration of load cells, all load cells
were calibrated and, by measuring each and every reaction and load
point, statics provides an overall check on the calibration. In an
initial test this check revealed an error in the calibration of a load
cell which otherwise would have resulted in a greater scatter of the
test/predicted ratio. Furthermore, as the reactions were measured
directly beneath the beams and the loads were measured only at the
jacks, any frictional losses in the loading apparatus as the inner

loading frame rolls inside the outer loading frame is at once detected.

Errors due to the second two factors listed are minimized or
eliminated by taking sufficient measurements to have samples of
sufficient statistical size. The measures taken to eliminate errors in
factors (ii) and (iii), as related to the beams themselves, are more

fully discussed in Chapter 3. The cross-sectional properties of each
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beam were determined, as discussed, by taking measurements of the
depth, flange width and thickness and web thickness. Initial sweep
and camber were also determined. The overall geometry of each test
setup was checked to eliminate blunders. Special attention was paid
to the determination of the height at which loads were applied as
this is a critical parameter in determining the buckling loads. The
material properties of the various cross sections tested were
established as given in Chapter 3, using redundant measurements. As
in the case of residual stress measurements, the equations of statics

can be used to detect errors.

Errors in factors (i), (ii) and (iii) are as likely to have a positive
effect as a negative effect and are minimized by careful
measurement using statistically significant samples. Unintentional
load eccentricities will reduce the buckling strength and again can

only be minimized by careful experimentation.

Reaction or load devices that do not function properly for the
full range of the test by introducing unwanted restraints or friction
increase the test load. Elimination of these unwanted restraints is the
most difficult challenge for the experimentalist and requires
increased vigilance. Discussion of some of the difficulties encountered

and steps taken to overcome them follow.

Test 1 was performed under the same loading and restraint
conditions of test 2 except that the cantilever tip load was applied 95
mm above the top flange in test 1 and only 40 mm above in test 2.

Test 1, was therefore predicted to have a lesser capacity but actually
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carried a slightly greater load than in test 2. This is attributed to the
use of a longitudinal knife-edge at the cantilever tip, which was
intended to provide the freedom of rotation about the longitudinal
axis but developed a small torsional restraint due to friction. Fig. 5.33
shows the relationship between the load and the lateral displacement
of the bottom flange at the cantilever tip for tests 1 and 2. Because
the top flange was laterally restrained, the lateral displacement of
the bottom flange is an indirect measure of the cross-sectional
twisting at the cantilever tip. In test 1, very little twist occurred
before the maximum load was reached when the bottom flange
abruptly deflected about 45 mm as the load decreased from 84.4 kN
to 75.1 kN. This indicates that the torsional restraint developed due
to friction in the knife-edge was overcome and the load decreased to
about the buckling load consistent with rotational freedom. Taking
this second load as the true value gives a test/predicted ratio for test
1 of 1.05. On the other hand, test 2 displayed a completely different
behaviour. The displacement increased considerably more as the load
approached the buckling value. This indicates that even though the
same type of longitudinal knife-edge was used in both tests, only
that in test 2 functioned properly. It is essential that knife-edge bHe
examined carefully to ensure that no burrs or scratches exist that
will restrain movement even minutely and that movement is not
restrained by the geometry of the knife-edge and its matching

groove.

This problem was encountered again in test 8, when the same

longitudinal knife-edge as used in test 1 was apparently
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inadvertently used again at the cantilever tip. This test was repeated
as test 28 where the longitudinal knife-edge at the cantilever tip was
replaced by a semi-cylindrical rocker and resulted in a test/
predicted ratio of 0.94 instead of 1.33. Fig. 5.33 shows the cantilever
tip load versus the lateral deflection of bottom flange at the
cantilever tip for tests 8 and 28. In test 8, the lateral deflection was
about 5 mm at the buckling load, while in test 28 it exceeded 40 mm.
Thus, the specimen in test 8 rotated less than one degree about the
longitudinal axis at the cantilever tip as compared to about 6 degrees
in test 28. Furthermore in test 8, the fact that the initial tendency of
the specimen to deflect laterally to the left was reversed indicates
that torsional restraint was active. The test/predicted ratios of 0.94
in test 28, which is one of the lower values in all the tests in this
series, is likely partly attributable to an unintentional eccentricity.
Fig. 5.34 shows that on the first increment of load, tie bottom flange
lurched almost 2 mm sideways. This has the opposite effect of

unwanted restraints and tends to reduce the buckling load.

Once again improper functioning of the longitudinal knife-edge
was discovered in test 17, but here when the applied load exceeded
the anticipated buckling capacity and the beam showed no sign of
buckling, the load was removed and the test was repeated with a
semi-cylindrical rocker replacing the longitudinal knife-edge. Fig.
5.35 shows the results of the two loadings of test 17. The excellent
results of the second loading are indicated by a test/predicted ratio
of 0.99 (Table 5.1.b) and as well the lateral deflection at buckling

increased asymptotically. The major difference in behaviour between
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the first and second loadings is that lateral displacement of the
bottom flange did not occur in the first loading. Because buckling was
not observed in the first loading, the result is not reported in Table

5.1.

In test 6, arrays of 13 mm diameter ball bearings were used at
the interior load points in an attempt to provide lateral, longitudinal
and rotational freedom about the vertical axis. Fig. 5.36 shows the
load versus lateral displacement of the top flange near the middle of
the back span for tests 6 and 7. For test 6, almost no displacement
was observed up to the maximum load when a small lateral
disturbing force estimated at 0.6 kN was applied by hand to the top
flange near the middle of the interior span. The load then suddenly
dropped from 94.5 kN to about 71 kN when a significant lateral
displacement and twist was observed. This indicates that a relatively
small amount of friction between the ball bearings and the bearing
plates was enough to restrain the top flange laterally, forcing the
beam into a higher energy buckling mode. Test 7 was a duplicate of
test 6 with the same loading and rest-~int conditions. However, in
test 7 a small lateral disturbing force of about 0.6 kN was applied
after every load step to overcome friction. Buckling occurred with
considerable lateral deflection of the top flange, as indicated by the
load-deflection curve of Fig. 5.36 and in Fig. 5.6. The test/predicted
ratio decreased from 1.47 in test 6 to 1.16 in test 7. It is apparent,
however, that the lateral disturbing force of 0.6 kN was not enough
to climinate the effect of friction completely, as the test/predicted

ratio of 1.16 in test 7 is still too high. The ball bearings were not used
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subsequently. A corollary to the fact that a small amount of
unwanted lateral restraint increases the test buckling load
substantially means that in practice a small amount of unaccounted
for lateral restraint may improve the load carrying capacity of a

structural member considerably.

Test 11 was a duplicate of test 10 because an unintentional
eccentricity of about 2 mm of the cantilever tip load was observed
after buckling occurred in test 10. The buckling load in test 11 was

44.1 kN compared to 41.1 kN in test 10.

Another source of errors in the test series is the incomplete
torsional restraint at column location where lateral restraint is not
provided. In tests 23 and 24, it was attempted to provide torsional
restraint to the bottom flange, while allowing lateral translation to
take place, as shown in Fig. 4.15, by sitting the beam on a relatively
wide plate supported by two load cells to provide a stable base with
the entire assembly free to move laterally on a nest of rollers. For
this system to be effective in providing torsional restraint, the beam
flange must not lift off the supporting plate. The narrow flange width
of 127 mm of the W360x39 was insufficient to completely prevent
the rotation about the longitudinal axis and a slight separation
between the edge of the flange and the supporting assembly was
observed at failure in these two tests. This explains the relatively
low test/predicted ratio obtained in tests 23 and 24 of 0.92 and 0.93,

respectively.
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Test number Buckling loads Test/Predicted
Test Predicted
(kN) (kN)
1 75.1 71.7 1.05
2 78.9 79.0 1.00
3 77.1 78.4 0.98
4 104.9 112.6 0.93
5 1258 136.6 0.92
6 %4.5 64.5 1.47*
21.4 14.6
7 76.1 65.6 1.16
17.1 14.7
8 164.9 124.1 1.33*
35.9 27.0
9 35.5 36.6 0.97
35.0 36.1
10 41.1 40.8 1.01
22.5 223
11 44.1 40.3 1.09
23.8 21.7
12 46.4 50.4 0.92
24.7 26.8

Table 5.1.a Test and predicted buckling loads for tests 1 through 12



Test number Buckling loads Test/Predicted
Test Predicted

(kN) (kN)

13 48.2 529 091
259 284

14 1324 137.1 0.97
46.8 48.5

15 136.8 143.0 0.96
48.5 50.7

16 84.0 83.9 1.00

17 77.6 78.0 0.99

18 118.9 111.5 1.07

19 152.6 160.7 0.95

20 52.7 50.6 1.04
279 26.8

21 154.5 155.4 0.99
33.1 333

22 133.3 129.6 1.03

23 45.9 49.8 0.92

24 40.7 43.9 0.93
9.6 10.4

Table 5.1.b Test and predicted buckling loads for tests 13 through 24
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Test number Buckling loads Test/Predicted
Test Predicted
(kN) (kN)
25 55.9 54.1 1.03
26 46.7 454 1.03
11.2 109
27 127.5 142.8 0.89
26.7 299
28 128.8 136.7 0.94
28.2 29.9
29 76.3 72.4 1.05
17.5 16.6
30 42.2 43.0 0.98
10.7 10.9
31 127.8 143.9 0.89
27.2 30.6
32 72.3 70.9 1.02
33 73.4 70.0 1.05
p=0.99
¢ =0.063
V =0.064

Table 5.1.c Test and predicted buckling loads for tests 25 through 33



Test ~Beam Range Predicted My/M, Ratio M,/M,
number depth

Residual stresses ,
6, considered

Neglected Considered 6, neglected

1 353  elastic 0.362 0.468 1.226
2 353  elastic 0.388 0.516 1.248
3 353  elastic 0.387 0.512 1.244
4 353 elastic 0.614 0.735 1.165
5 353 inelastic 0.852 0.892 1.045
6 353  elastic 0.325 0.421 1.228
7 353  elastic 0.328 0.428 1.234
8 353  elastic 0.628 0.810 1.225
9 353  elastic 0.184 0.239 1.230
10 353  elastic 0218 0.267 1.184
11 353  elastic 0217 0.263 1.175
12 353  elastic  0.265 0.329 1.195

Table 5.2.a Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 1 through 12
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Test Beam Range Predicted Mg/M, Ratio Mo /M,
number depth

Residual stresses .
o, considered

Neglected Considered o, neglected

13 353  elastic 0.286 0.346 1.173
14 353 inelastic 0.779 0.894 1.129
15 353 inelastic 0.838 0.934 1.103
16 310 elastic 0450 0.493 1.087
17 310 elastic  0.407 0.458 1.111
18 310 elastic 0.629 0.655 1.0+
19 310 inelastic 1.126 0.944 v
20 317 elastic 0.272 0.297 1.084
21 310 inelastic 0.909 0.913 1.004
22 310  elastic 0.702 0.761 1.078
23 353  elastic 0.308 0.325 1.052
24 353 elastic 0.272 0.287 1.052

Table 5.2.b Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 13 through 24
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Test Beam Range Predicted M /M, Ratio My/M,
number depth

Residual stresses )
o, considered

Neglected Considered o, neglected

25 310 elastic 0.307 0.318 1.035
26 310 elastic 0.261 0.267 1.022
27 310 inelastic 0.842 0.839 0.996
28 353 inelastic 0.728 0.893 1.185
29 353 elastic 0.454 0.473 1.040
30 353 elastic 0.268 0.281 1.046
31 310 inelastic 1.840 0.845 1.006
32 353 elastic 0.372 0.466 1.202
33 353 elastic 0.296 0.459 1.355

Table 5.2.c Theoretical predictions demonstrating the beneficial effects of
residual stresses on tests 25 through 33
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M,/M,

residual stresses

Restraint Loading  Load position

condition case Neglected Considered
A I Shear centre 1.05 1.000
A 1 Shear centre 0.575 0.731
A I Shear centre 0.482 0.599
A v Shear centre 0.386 0.448
B I Shear centre 0.544 0.578
B I Shear centre 0.535 0.566
B I Shear centre 0.386 0.438
B \Y Shear centre 0.351 0.397
A I Top Flange 0.467 0.641
A I Top flange 0.395 0.513
A I Top flange 0.415 0.538
A v Top flange 0.232 0.291
B I Top flange 0.425 0.468
B I Top flange 0.364 0.428
B oI Top flange 0.385 0.434
B v Top flange 0.220 0.267

Table 5.3 Finite element predictions, effect of shape of bending moment
diagram
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Fig. 5.3 End view of buckled specimen in test 33
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Fig. 5.4 Buckling displacements of test 3
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Fig. 5.5 Buckling displacements of test 4
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Fig. 5.6 Buckling displacements of test 7
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Fig. 5.7 Buckling displacements of test 27
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o Predicted
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Fig. 5.14 Measured and predicted buckled shapes, test 3
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a) Restraint conditions
Loading case Loading diagram Bending moment diagram
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Fig. 5.21 Restraint and loading conditions used to investigate the effect
of bending moment diagrams



140

000¢

0001

{1591 ‘g pue ¢ sogned urens ‘surens a3uefy reurprmiSuoj sns1aA peo] ¢Z's “81d

an

1

urens

0

0001-

000¢-

bo

I'M

*

L /o]

o0

¢ ©

®oo0pt 0o ¢

9 93nen
€ 98nen

| 4

4 08

74

Ne



141

# 1531 ‘G pue ¢ sa8nes urens ‘surens sdueyy feurpraiuoyf snsiaA peo €7'S "3

31 ‘urensg

0 0001~ 000¢-
v ->— . Y v 0
- ‘
. 4 0¢
« ¢ aodnen o ]
“ yadnen a {ov
o«
Pec A
L 2
! 09 (=%
v oS A 2
<G {08
¢ a
¢ o
4 001
]

174



142

000¢

{1591 ‘g pue L safned urens ‘surens a3ueyy jeurprr3uoy snsiaa peo] $7°S 314

31 ‘ureng
0001 0 0001- 000¢-
v T v T v r . 4]
]
- 4 0C
» 0l 98nen o
4
» Lo8nen @
4 O
a
- ) m.
T o 4 09 =3
- 2
38
o8 4 08
- e
L 01
4 001
ocl




143

{159 ‘7 pue | s33ned urens ‘surens qam [EOTLIIA SUSISA PBOT TS 3

31 ‘urensg
0 0001- 000¢-
. »>— . r : 0
> ]
ae 402
o e 7 98nen e )
B ¢ [98nen @ {op
a L
a *
2
] . 09 (=%
B L 4 .._ I
a . ] m
Bm .0
a . 4 08
o] L
B L
]
4 GOl
74|



144

surens
Suipuaq sixe Jofey

€ 159) Jo peo] Surppong Je S YSnonp g sa3nesd wioxy paurelIqo suonnqLusIp urens 9g’s ‘314

surers Suidrep,

3n 64

surens uipuaq jessie]

M7
31 LSS

surens [0 L,

3r $6T1

el

B
31 86¢

POINSBIN -




145

0001

[T 1591 ‘[ pue g¢ sadned ‘surens SNSIdA peo| 7S S

311 ‘ureng
008 009 0ov 002 0
1 T v T v T P o—o—y 0
ﬂ’ﬂ.
ae
g e
podnen o o e )
8¢ 98nen @ B e
Q L J
o . 8¢ I
s 5
o S 4 00t e
B o m
a® o
-A° m [4 2 4
B
e 4 B e ® o ® J
R J
00c




146

1Z 1591 ‘S pue 7 sa8ned ‘surens snsioa peo] 87°S “3Li

31l ‘ureng
oot 0 001- 00¢- 00¢- 00v- 00s- 009-
JI‘TII—% r T v T v T T O
oo
ea
[ 2o
*e 8€ I¥
¢ G
¢ a
¢ a
* a
® a
¢ @ (4204 Yy
e @ 1001 &
L 4 a
Gy a8nen o *e %% m
pa8nen @ oloo.wwﬁav
Bae B ¢eee
00¢




147

0t

L1 151 ‘ueds yoeq jo jutod pinp-ouo je 33ueyy WOROQ JO MNOIARYSQ UONIIJIP [eIe] 67°6 314

WU ‘Uondd[Jap [ele ]

0t ot

=)

3uipeoju) o
duipeo a

09

08

N ‘peo]



148

00¢

¢ 153} ‘ueds yoeq Jo wiod piip-auo 1€ S3ue(y UI0N0Q JO INCIARYSQ UONIIYIP [eINLT 0L'S 81

WW ‘UONI[Jap [eidle]

00t

80 o Eﬂaﬂ

0s

N ‘peo]

001

0S1



149

61 1591 ‘ueds yoeq jo uicd pangi-suo je aduey wWoNOQ 1 INCIABYIQ UOTIIYSP [BIR] 1 £°S 314

WiW "UONOIJIp [rIdE]

09 or 0¢ oo
- o v T v Y ld..“ -

[ =

(]

@ 2 A

o ®
]
o ] e OO—
a
. o o -] ®

00T

0]

‘DR

t
i



150

09

0S

oy

¢ 1591 ‘di} 19A3[NUEBO AU} JO SAIND UOTIII[IP [EITAA-PEOT TE'S "SI

WL ‘UONOS[Jap [BOIIDA

0t

A10941 onse[d Jesul]

0s

N ‘peo]

001

0S1



151

08

Z pue [ 5159 ‘dn Jaas[nues je 33ue(j WI0NOQ JO UONIIYIP [BINET £€°C “SL]

WU ‘UOTII3[Jap [eIdle]

09 ov 0t 0cC-
T M 1 ¢ T Y o
4 0C
T1S3] o 4
[1S9L @
4 Oy ﬂ
=4
| e
.
. 2
° 4 09
L 2
IS
° [ a 9
o ¢ o]
0006600 60 6000030 000 60 SO0 S000090000 $60000BN 0 4 08
00!




152

8 pue g s1s31 ‘dn J9Ad[nued je aduely WONOQ JC UONSIYSP [BIART] HE'S BId

Wit ‘UONd3LJop jeide]

ov 1] 0T 0l 0 E.o
_ — . ::F
o @
® ju
871531 o "
. .
813L @ s e
L J
* ]
o c
* = %
. o 4 001 m
° . o o hd s ° -mw
ﬂF 1
o
002




153

£ 1 1591 Jo sSuipeo] puod3s pue 151t *dn 19A3[AUED 1B 33URY WONOQ JO UORIIPSP [BINET 676 Sy

W *uorIdYJap [e1de]

ov 0t 0c ot 0 ol-
v T v Y v T v W -r 0
d T
]
3uipeo] puodaS e - 4 oz
Suipeo18i] o e
a 4
oa m
e 1 O¥ a
& o
PR Z
L 4 a b
* o
.
¢ 1 09
.
o % ¢ ]
.
. < ¢ o
— 08




154

001

{ pue g s1s3} ‘ueds Ydeq Jo jutod paryi-auo je aduey doj Jo UCNOSYIP [BIMNET 9E°S ‘Big

W ‘UONOJLJIP [eine]

08 09 V) 4 0¢

v T T ™ T T Y ) T

LISAL * a
gunaj =«

®

e
N ‘ped1

0 Rean o o

%




Chapter 6

FINITE ELEMENT ANALYSIS

6.1 General

A significant feature of lateral-torsional buckling of cantilever-
suspended span beams is the possibility of cross-sectional distortion.
Local and lateral buckles combine to produce coupled buckling
modes in which there is simultaneous distortion and deflection of the
cross section. Such instability is called distortional buckling. Joianson
and Will (1974) have suggested the use of two dimensional plate
elements to model both flange and web elements to reflect the cross-
sectional distortion. However, because the flanges of wide flange
beam sections are relatively thick and narrow as compared to the
web, the distortion of the flanges is not as significant as that of the
web, and the model of Johnson and Will may be unnecessarily
complicated introducing more degrees of frcedom than really

required and requiring too much computer time.

The finiie element model adopted here (Albert et al. 1992)
uses 4-node plate elements for the web and 2-node line elements for
the flanges, as shcwn in Fig. 6.1. All nodes are located at the
intersection of the middle surfaces of the flanges and web plates. At
each node, there are three degrees of freedom associated with out of
plane displacements : the lateral displacement, w, along the z-axis;
rotation, 6,, about the x-axis; and rotation, 8,, about the y-axis. The
right-hand rule is used as a sign convention for all rotations. Under a

practical loading condition, three types of in-plane stresses are

1558
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induced in the web: G4, Oy, and T4y as indicated in Fig. 6.1. This model
has been implemented on a micro-computer to predict lateral-
torsional buckling on the basis of bifurcation “eory. It computes the
tangent modulus buckling load based on the extent of yielding just

prior to buckling (Galambos 1968).

The finite element approach presented herein differs from that

adopted by Bradford (1986) in the following three ways:

(1) The solution technique used herein (inverse iteration with shift)
converges faster than the determinant search method used by

Bradford.

(2) Bradford used the consistent approach in which both the
structural and geometric stiffnesses are based on the same
displacement assumptions (cubic displacement shape functions for
the flanges and the web). The present model uses cubic shape
functions for deriving the structural stiffnesses and lower order
polynomials (linear displacement shape functions for the flanges and
bilinear displacement shaj functions for the web) to derive the
geometric stiffnesses. The later approach has been shewn to yield
sufficient accuracy (Clough and Felippa 1968) for plate buckling.
Also. it requires less computational effort and simplifies the

formulation.

(3) In order to account for the destabilizing effect of vertical loads,
Bradford assumed that the slope of the line joining the shear centre

and the point of load application is equal to the angle of twist of the
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top flange. This underestimates the destabilizing effect. The

procedure adopted by the present approach is given in section 6.5.2.

6.2 Basic assumptions

The present finite element approach uses the following

assumptions

(1) The material model is elastic-perfectly plastic and strain
hardening is neglected. Strain hardening only occurs where there is
significant yielding in the cross section. In practice, the critical
bending moment is high. Therefore, if there is a significant yielding
at that location, strain hardening is confined to a short length of the
beam and most of the beam remains elastic. The inclusion of strain
hardening may be useful when the bending moment is nearly
constant over a significant length. However, when the case of a
nearly uniform bending moment is the critical loading condition, it is
likely, for the practical range of beam geometries, that the buckling

load will be elastic and therefore strain hardening is not an issue.

(2) The yield stress is assumed to be the same within the whole cross
section and is taken as that of the flanges. Normally, the yield stress
of thc w=b is higher tha~ that of the flanges. However, since the
effect of web yielding on the loss of lateral stability (governed
mostly by Iy) is small in most cases, it is adequate to adopt a uniform

yield stress over the cros§ section.
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(3) Because the contribution of the fillets to the lateral stability is
small, it is reasonable to exclude the fillets from the geometry of the

cross section.

(4) It is assumed that no distortion occurs in the flanges. This is
justified because the flanges are relatively thick and, therefore, the
distortion of the flanges is ..ot as significant as that of the web. This
assumption has been adopted by Bradford (1986), Bradford and
Trahair (1981, 1982) and Akay et al. (1977). For this reason, local
buckling cannot be predicted using the present model, and must be

computed independently.

(5) Ti. slem of lateral-torsional buckling is treated as a
bifurcation problem, neglecting the effect of initial imperfections. As
given by Galambos (1963), small initial imperfections do not affect

the buckling strength.

(6) Shifting of the shear centre due to different yielding patterns of
the top and bottom flanges is neglected. The significance of this
assumption is related to the fact that the shear centre is the ccntre of
rotation of the cross section. With a beneficial residual stress
distribution, characterized by predominantly tensile stresses in the
flanges, the tension flange yiclds before the compression flange. In
positive sagging moment regions, the shear centre shifts upwards (i.e
towards the compression flange), and tends to decrease the
destabilizing effect of the loads applied above the shear centre. In
cantilever-suspended span construction, yielding likely starts in the

negative moment region of the beam above the column support. The
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effect of shifting of the shear (cntre downward towards the reaction
is again favourable, but becomes insignificant when cross-sectional

twisting is prevented at that location.
6.3 Material properties

Because the finite element model deals with inelastic lateral-
torsional buckling, in which the effec’s of both yielding and residual
stresses are considered, material properties such as the stress-strain
relationship and residual stress distribution, substantially affect the

critical loads.

The elastic-perfectly plastic stress-strain relationship, given in
Fig. 6.2, was used for the analysis. The effect of strain hardening was

neglected as discussed previously.

The shear modulus, G, is assumed to be equal to the elastic
shear modulus in both the elastic and inelastic ranges. As given by
Horne and Ajmani (1973), the retention of an elastic value for G is
justified by two considerations. First, the shear stress is usually small
when inelastic action starts. Secondly, since the beam is torsionally
flexible, large shear stresses cannot be induced in the practical range
of deformations. The relationship between the shear modulus and

the modulus of elasticity is given as

E
2(1+v)

[6.1] G=

where v is Poisson's ratic: which is takeu oo 0.3 for swcel.
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The residual stress model ~wst be flexible enough to enable
the analytical model to rep “«-mt any possible residual stress
distribution which may be en . .ered in hot rolled steel cross
sections. As indicated in Fig , residual stresses are specified at
discrete points spaced at b/8 .sd h'/8 where b is flange width and h'
is the distance between the .- ddle surfaces of the flanges. Because of
cross-sectional symmetry, only ten values are specified. There are
two requirements which must be satisfied by the residual stress
distribution: at the web-flange jumction, the tensile residual stresses
in both the flange and web must be the same; and the residual stress
distribution must be in equilibrium (£ 6,dA = £ o, ydA = Z o 2dA =

0).
6.4 Structural element stiffnesses
6.4.1 Flanges

Flanges are modelled by one dimensional lize elements. Each
element consists of two nodes and a total of six degrees of freedom.
A cubic chape function is used, Akay et al. 1977, to express the

lateral deflection of a flange element as follows
3 2
[6.2] W) =AE +A%E +AsE+Ay

in which & = [2(x - xi)/Lg] -1 (ranging from -1 to 1) and the
coefficients Aj, A2, A3 and A4 are determined in terms of the nodal
displacements by applying the boundary conditions. The resulting

expression for lateral displacement is given as
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[6.3] w(8) = wi f1(§) + 8yi f2(8) + w;jfa(§) + 8y f4(§)
in which

(@)= E14-38 M+1R

GfE)= -L (& ~& £+ 1)8
f3(§)= -& 3/4-6-3§ 4+ 172
f$§)= -L(§ 3+§%§— 1)/8

[6.4]

A linear shape 1 action is assumed for the twisting
displacement across the flange element. After applying the boundary

conditions, the resulting expression is given as
[6.5]) Bx(§) = 0xi(1 - £)/2 + 0,j(1 + &)/2

The strain energy of a flange element is given by

nz '2
[66] Uf='l—'f (Elny +GJf9x)dX
2 JL;

A linear variation of lateral bending rigidity, Elyf, over the

element length is assumed as follows
[67]  Elyg(&) = (Elypi (1 - £)/2 + (Elyp)j (1 + §)/2

where (Eny)i and (Elyf)j re lateral bending rigidities of the flange
section at nodes i and j, respectively, taking into account the extent
of yielding. Under combined bending and residual stresses, yielding
begins at the tips of a compression flange and in the middle of a

tension flange. Numerical integration is used with nine integration
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points across the flange width and two integration points over the
length of the element. Because the modulus of rigidity. G, is assumed
to be the same in both the elastic and inelastic ranges, the torsional

rigidity, GJ¢, at any flange cross section is not affected by yielding

and given as
[6.8] GJE) = b © G/3

Where b is the flange width and t is the flange thickness. Using
Castigliano's first theorem, the strain energy expression in [6.6] and
numerical integration, the structural stiffness of a flange element is

obtained as shown in Fig. 6.4.

6.4.2 Web

The web is modelled using nonconforming rectangular four
node plate bending elements. Unlike the model adopted by Akay et
al. (1977), the plate element used here has only one division over the
depth of the web. With this modelling, the effect of two dimensional
state of stress in the web is included and the vertical stresses, Gy,
which may give rise to local buckling of the web and contribute to

the occurrence of lateral buckling are considered.

As shown in Fig. 6.5 there are twelve degrees of freedom per

plate element. Thus the nodal displacement vector is defined as

(6.9] {r}t=[In] Iyl [ [nl]
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in which [rj]=[ wi 08x; 6yi] and [7j], [fk] and [f1] are defined
similarly. However, from plate theory, Equation [6.9] can be

rewritten as

6.10]  (rt=[[R] [Rj] R [Ri]

in which

6111 Ri=lwi - - Y
ay ox

and [Rj], [Rg] and [R;] are defined similarly.

The two dimensional cubic shape function for the lateral

displacement, w, (Zienkiewicz 1977) can be written as

[6.12] [nl=[[m] [m] [nk] [mi]]
in which
(6.13] il =[(Eo+ 1) Mo+ 1) 2+ & +Mo-E2-n2 )8

bni( Eo + (Mo + D2(Mo - 18 - a&i( §o + D2(&o - (o + 1)/8 ]

where & = (x - xc)/a1 ,m = (¥ - ye)/bi, €0 = & &i and Mo =n ni . The
shape functions [n], [nk] and [nj] are defined similarly. It is now
possible to write the expression for the out of plane displacement, w,

within the element as

[6.14] w(§ ,n) = [n] {r}
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From elastic plate theory, applying equilibrium gives (Brown
1984)

ow
2
x
XM, 3 1 v 0 s
Et
6151 {My=——r |y o |{-2Y
\Mx 120v) 1 o o (v 3
2
28w
oxdy

or {M} = [D] {C} where {C} is the curvature vector for element dxdy:
My, My and My, are moments/unit length as shown in Fig. 6.6; ty is

the web thickness; and [D] is the elastic constitutive matrix. Within

the inelastic range, the constitutive matrix becomes

0O 0 O
6161 @D =|0 0 0
in 3

0 0 Gt,/12

The strain energy of an element dxdy can be expressed as

2 2 2
3 P 3
[6.17] U, =%{-dey( ";)dx - Mydx(——vg—)dy +2My (S )dxdy)
Ix dy oxady

Using [6.15], equation [6.17] can be rewritten as
[6.18] Up = {C}t {M} dxdy/2 = {C}* [D] {C} dxdy/2

However from [6.14], the curvatures can be found such that
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ow
T2
ox
a2
6191  {C}=|-— | =[Bl{r)
ay
2
XL
dy
where [B] is given as
i 2 2 2 2 ]
9] 3yl dlmy]  dny
2 2 2 2
ox ox ox ox
82 82 82 82
[6.20] B1= | - [nz.] ] [nzi dIn ;] 9n ;]
oy oy oy dy
2 2 2 2
2a[ni] 23[11!-] 2a[nk] 28 [ny]
| oxody oxdy oxady oxoy |

The structural stiffness matrix of the web element can be

obtained using [6.18] and [6.19] in the form

[6.21] [k]w=]A [B]l[D] [Bl]dAy

where A, is the web area. Because the resulting form of integrand in
[6.21] cannot be integrated in a closed form, recourse is made to
numerical integration. For elastic solutions, a 3x3 pattern of Gaussian
integration is used. Inelastic solutions use a refined pattern,

featuring 3 points across the length and 9 points across the depth in
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order to represent the extent of yielding in the web. The Gaussian
integration points used for inelastic solutions do not coincide with the
points used in defining the residual stress distribution. In this model,
residual stresses at Gaussian points are obtained by linear
interpolation between the equally spaced points used to define the
residnal stress pattern. As expected, the resulting element stiffness

matrix of the web involves all three degrees of freedom per node.
6.4.3 Stiffeners

Web stiffeners, if present, are modelled as line elements. Each
element consists of two nodes with a total of six degrees of freedom.
It is assumed that the stiffeners extend over the full depth of the
web and are symmetrically arranged on both sides of the web. It is
also assumed that stiffeners are not affected by yielding. The
element stiffness matrix of stiffeners as obtained from Segerlind

(1984) is given in Fig. 6.7.
6.5 Geometric element stiffnesses
6.5.1 Flanges

The geometric stiffness matrix is constructed by differentiating,
with respect to nodal displacements, the work done by in-plane
stresses as component plates shorten during buckling. For a flange
element, the geometric stiffness involves only the lengitudinal
stresses G, . Integrating the work done by an elemental force o,dAf
through a displacement dr, the work done by longitudinal stresses in

a flange element is given by:
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(6.22] wf=f fodifdr
LiAg

where L; and Ar are the element length and cross-sectional area,
respectively. The displacement dr can be obtained by expanding the

arc length, ds, as follows (Galambos 1968):

[6.23] dr=ds -dx ='f1 +(v')2+(w')2 dx - dx
1,2 1, 2
z[l+—§(v) +—2(w) Jdx-dx
2 2
— )7 +(w) T dx

where v' and w' are derivatives with respect to x of the
displacements along the y and z axes, respectively. Substituting the
relationship v=-6,z into [6.23] and differentiating [6.22] with respect

to nodal displacements, w and 84, we obtain:

w t
[6.24] [kg]f=fv v} x ox {¥}xdV

0 2 t
[6.25] [kjf=fv (W} x2z Ox {¥}xdV

where dV = dAgdx, [kz]f and [keg"]f are the geometric stiffness

matrices of a flange element associated with lateral displacements
and rotations about the longitudinal axis, respectively. Commas

denote differentiation with respect to x. The expression {y} is a
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vector of linear shape functions for interpolating the displacements,

w or 6x, between the two nodes of a flange element, which has the

same form as the one used in [6.5]. In evaluating [6.24] and [6.25]. it

is assumed that the integral of the stress terms ox and zzox over the

cross-sectional area vary linearly over the length of a flange element.

Following the above procedure, the geometric stiffness matrix

of a flange element is obtained as given in Fig. 6.8, in which:

[6.26] N=(N;j+N)/2 , B=(B, +B)/2 where

2
[6.27] N=ont dz , B=jzcxt dz
b b

where b is the flange width. The subscripts i and j given in [6.26]
denote the end node of the element at which the indicated function
(N or B) is evaluated. The integrals in [6.27] are computed

numerically.
6.5.2 Web

The geometric stiffness of a web element due to longitudinal

and shear stresses is given by Johnson and Will (1974) as:

t
1 o, 1 {6}.x

[6.28] kKolw= [{«b},x (M,] X "Xy ' ]dV
[J fv Ay, 0 || (01
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where {®) is a vector of bilinear shape functions for interpolating the

lateral displacement w between the four nodes of a web element:
[6.29] (o Jt=[d & dk d1]in which

where £, =& & and no =N Ni. The values of ®j, Pk and @) are defined
similarly. The commas in [6.28] denote differentiation with respect to
the indiceiz ocrdinate (x or y). Rotational displacements, 64 and 0y,
are not includea in the formulx.. -\ ng advantage of a statically
determinatz beam system, the longitudina and shear stresses can be
determined easily from the bending moment and shear diagrams
through ordinary theory of flexure. The distribution of shear stresses
is assumed to be constant over the web depth. Once the stresses, Oy
and T4y, are thus obtained, they can be substituted in [6.28]. The
same Gauss-Legendre numerical integration scheme used for
obtaining the structural stiffness of web element is also used herein.
To determine the longitudinal stress due to bending at a sampling
point, a linear variation of the longitudinal stress is assumed over the
length of a web element, while the shear stress is virtually the same
at all sampling points since loads are applied at longitudinal points

which form the right and left sides of a web element.

The geometric stiffness due to vertical stress, Oy, which results
from vertical loads and reactions, follows from the work done by

vertical forces applied above or below the shear centre as the point
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of application of the forces moves vertically during lateral-torsional

buckling. A simple expression for this work is given by:
[6.31] Wp =P A

where A is the vertical displacement of the load point during twisting
of the cross section due to buckling, as shown in Fig. 6.9.a. For loads
applied above the shear centre but between the flanges, the angle of
twisting rotation, 0, is expressed in terms of the nodal lateral
displacements, w, and wy, of the top and bottom flanges respectively
and the vertical displacement, A, is approximated by the first term of

its polynomial expansion:

2 2
0 W,-W

6.32 A=a(l-cos@.)=2a X=a t b

[6.32] ( ) 5 _2( -

where h' is the distance between the middle surfaces of the flanges
and a is the height of load application with respect to the shear

centre. Using the principle of minimum potential energy, the

. . . 2 . . .
geometric stiffness matrix, [kg]w, due to oy for this case is obtained

as given in Fig. 6.10. Web distortion is ignored in [6.32] since its

effect is less significant for loads applied between the flanges.

For loads applied at distance a; above the top flange, as shown
in Fig. 6.9.b, an additional vertical displacement occurs due to the
effect of web distortion and can be expressed in terms of the nodal

rotation of the top flange about the longitudinal axis, Oxi. The

resulting expression for the vertical displacement is given as:
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2
' . 2
6.33] A--‘-l‘—(w‘ w") +Laje,,

22 h' 2
For this case, the geometric stiffness, [ki]w, due to vertical stresses,
oy, is given in Fig. 6.11.

When loads or reactions are applied at a distance a below the
shear centre but above the bottom flange, as shown in Fig. 6.9.c, the

vertical displacement, A, is approximated as follows (neglecting web

distortion):

(6.34] A=- l(w"w")

Fig. 6.12 gives the geometric stiffness, [k:]w, due to vertical stresses

for this case.

For loads applied at a distance a; below the bottom flange, as
shown in Fig. 6.9.d, the effect of web distortion is significant and
must be taken into account. The expression for total vertical

displacement of the load point is given as:

where ©O4p is the nodal rotation of the bottom flange about

longitudinal axis. The geometric stiffness, [ksg]w, due to vertical

stresses for this case is given in Fig. 6.13.
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In obtaining the geometric stiffnesses of a web element due to
vertical stresses for all the above four cases, it is assumed that the
shear centre is not displaced due to inelastic behaviour. When the
buckling load falls between the yield and plastic capacities of the
beam, the location of shear centre can vary drastically. Shifting of
shear centre is not considered because it leads to instability in the
numerical solution of inelastic beams. The shear centre is therefore
assumed to be located at mid-depth of the doubly symmetric cross

section up to the theoretical plastic moment, if could be reached.
6.6 Restraints

Because the finite element model is designed to simulate the
boundary conditions of beams in cantilever-suspended span
construction, restraints provided either by the columns to the bottom
flange of the beam through a rigid moment connection or by
properly welded open-web steel joists to the top flange of the beam,
must be considered. Generally, a displacement corresponding to a
degree of freedom, rj,is prevented by adding an arbitrarily large
number on the main diagonal of the global structural stiffness matrix
at the address corresponding to rj. A value of 10'% is used to avoid
overflow errors. An elastic restraint of a given stiffness can be
specified by adding the stiffness directly to the global structural
stiffness matrix. This procedure is followed when the restraint is

applied directly to either the top or bottom flange (nodal points).

When lateral restraint is applied at a point other than the top

or bottom flange, as shown in Fig. 6.14, a fictitious 2-node element i-j
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is used with a bending stiffness EI. In order to avoid ill-conditioning
problems due to the use of a too large value of I, it has been found
that a value as large as the weak axis moment of inertia of the flange
is appropriate. The force-displacement relationship for this element
involving forces and displacements at node j is given as

SEIL T ayff W,

F.
[6.36] f M’ =3 2 o
\l ) 83 a} 83 X

where wj is the displacement of node j in the Z direction, Oy; is the

rotation of the node j about the longitudinal axis of the beam, a3 is
the distance between the middle surface of top flange and the

enforced axis of twist while F; and M; are nodal forces as indicated in
Fig. 6.12. The coefticients given in [6.36] are added to the global
structural stiffness matrix as shown in Fig. 6.15. A similar procedure
can be used to simulate the restraint provided by the column to the

bottom flange of the beam.
6.7 Solution technique

The finite element inelastic distortional buckling analysis of a

complete beam can be represented in matrix form by:
(6.37] (K] + [KgD {r}={R}={0})

where [K] and [Kg] are the global structural and geometric stiffness
matrices, respectively, which are functions of the load factor A; {r} is
the vector of out of plane nodal displacements; and {R} is the vector

of (zero) global out of plane forces.
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When the effects of yielding and residual stresses are not

considered (elastic analysis). the geometric stiffness, (K] is a lincar

function of the loading intensity and [6.37] reduces to
(6.38] ((Kl1+ A [Kgl, ) {r}= {0}

where A is a load factor and [Kg], is the global geometric stiffness
matrix computed at a loading intensity corresponding to a maximum

in-plane bending moment along the beam equals to the plastic

moment.

The global matrices, [K] and [Kg]. can be assembled from the
individual element structural and geometric stiffness matrices,
respectively. The values of A which yield a nontrivial solution for (r}
in [6.37]) are the eigenvalues, while the corresponding values of {r}
are the eigenvectors. In general, [6.37] is only solved for the smallest
A since it corresponds to the smallest buckling load. Buckling is
assumed to take place from the initial geometry. Both [K] and [Kg] are
referenced from the initial geometry as well as the stresses that are
used to form [Kg]. Since [6.37] is homogeneous, the buckled mode
shape may be determined while the actual magnitude of

displacements remains undefined.

The eigenvalue problem is solved using a routine for inverse
iteration with shifts (Bathe 1982 and Humar 1990), in which a
loading intensity is assumed and iterations are performed until the
computed intensity agrees with the assumed value. By choosing a

shift point close to the anticipated eigenvalue, a more accurate
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estimate of such eigenvalue as well as of the corresponding
eigenvector can be obtained after a relatively small number of
iterations. As indicated in Fig. 6.16, if the shift point is located
between the eigenvalues Ap and An4gs and p - A, is smaller than
Ap+1 - W, iteration will converge to A, and the rate of convergence
will depend on (i - Ap)/(Apey - H); the smaller this ratio, the faster
the convergence. On the other hand, if Ap4q - M is smaller than p - An
iteration will converge to A,,; and the rate of convergence will
depend on the ratio (Aq4q - w)/(n - Ay). Obviously, rapid convergence
can be achieved if the shift, p, is located close to the desired
eigenvalue.

In the case where an approximate value for the desired
eigenvalue is not known, it is recommended to use the following

scheme:

1. Select a relatively small positive value for the shift, p, as indicated

in Fig. 6.17.

2. If the solution converges to the negative eigenvalue, Ay, try again

with a shift slightly more than 2p -A_j. A positive eigenvalue is

anticipated, which would be the right solution.

3. If the solution converges to a positive eigenvalue, try again with a
slightly reduced shift. A negative eigenvalue is anticipated to confirm

that the obtained positive eigenvalue is the right solution.
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6.8 Computer program
6.8.1 Introduction

A complete list for the distortional buckling finite element
program (FEM) is given in Appendix A. The computer program is
written in BASIC and designed to be implemented on a micro-
computer. The major operations for the main program are given in
Fig. 6.18, which frequently uses the main routine shown in Fig. 6.19.
As indicated in Fig. 6.18, the program allows the user to select an
elastic or an inelastic solution. The elastic solution, which is much
faster, neglects the effects of residual stresses and yielding. In an
inelastic solution, the extent of yielding in the beam is determined at
each cross section iterating on the curvature and neutral axis with
the bisection method. The global structural and geometric stiffness
matrices in an inelastic solution are non-linear functions of the
loading intensity due to the presence of residual stresses and partial
yielding, which are not linearly proportional to the loading intensity.
This renders the problem highly non-linear. The solution is obtained
using the bisection method by specifying an upper and lower limits
for the loading intensity, between which the solution is anticipated,
in the input data. For convenience, all the units used throughout the

program are expressed in terms of Newtons and millimetres.
6.8.2 Mesh characteristics

The first step in solving a specific problem, using the FEM

program, is to select the mesh characteristics. In order to enable the
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finite element model to accurately simulate a beam with two
overhangs which is used typically in cantilever-suspended span
construction, the finite element mesh must be refined in the vicinity
of column supports where the bending moment is a maximum and
yielding is more likely to occur. A mesh refinement is also necessary
at the cantilever tips to model web distortion in the case when
torsional restraint is provided for only the top flange at this location.
Points where loads, reactions, restraints and stiffeners act must be

included in the longitudinal points.

As indicated in Fig. 6.20, the beam is divided into a number of
main divisions. Each main division contains a group of equally spaced
subdivisions. Each longitudinal point should be numbered in a left-
right order. There are two nodes at each longitudinal point located at
mid-surfaces of top and bottom flanges. The nodes should be

numbered in a left-right and bottom-top order.
6.8.3 Input data

The FEM program first reads all the user input data, which are
listed immediately after the main program. All the units are in
Newtons and millimetres The necessary input data required for the

program are as follows:
1. Select the type of solution: O for elastic and 1 for inelastic.
2. Cross-sectional dimensions:

1. Depth, breadth, flange thickness and web thickness.
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3. Mesh characteristics:
1. Number of main divisions.

2. For each subdivision, with a left-right order along the beam,

write the number of subdivisions and their regular spacing.
4. Material properties:
1. Elastic modulus, yield stress and Poisson's ratio.

5. Residual stresses. Positive for tension and negative for
compression (refer to Fig. 6.3). Required only for inelastic solution,

otherwise the zero values should be used to keep the order of data:
1. Flanges: (601, (6¢£)2 » (Of)3 » (Orf)4 and (Oyf)s.
2. Web: (6,y)1> (Orw)2 » (Orw)3 » (Orw)4 and (Ory)s.

6. Loads and reactions:
1. Number of loads and reactions.

2. For each load and reaction, write the longitudinal point
number at which it acts, its magnitude (positive if acts upwards and
vice versa) and height of application (measured upwards from the

shear centre).

7. Bending moment at a selected longitudinal point:
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1. Selected longitudinal point number and magnitude of
bending moment at that point (positive if causing tension at the

bottom surface of the beam and vice versa).

8. Shift, lower bound and upper bound, for the ratios of anticipated
maximum (critical) moment to the plastic moment of the cross
section (lower and upper bounds are used only for inelastic solution,
otherwise they may be taken as zeroes to keep the order of the

data).

9. Nodal restraints (where the reostraints are applied directly to the

nodal points):
1. Number of restrained nodes.

2. For each restrained node, enter the node number, stiffness in
N/mm for lateral restraint, stiffness in Nmm/rad for rotational
restraint  against twisting about the longitudinal axis and stiffness in
Nmm/rad for restraint against rotation about the vertical axis. For

infinite values of stiffnesses, use -1.

10. General restraints (where the restraint is applied at a distance

above the top flange).

In this case, any torsional restraint acting above the top flange
can be assumed to be applied directly to the top flange and,
therefore, can be considered in the last data section. Only lateral

restraints above the top flange are taken into account at this stage.
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1. Number of points which are laterally restrained above the

top flange.

2. For each point, enter the node number nearest to the point

and the height of lateral restraint above the middle surface of top

flange.
11. Initial displacement vector

Inverse iteration solution requires a non-zero initial vector to
start vector iteration. The ideal initial vector will closely resemble
the displacements of the expected buckled shape, ensuring shift
convergence. However, very simple displacement vectors including
the normalized value (usually taken equal to 1) of a single
displacement or rotation at a selected node will also work. It 1is
important to realize that this initial vector does not represent initial

imperfections.
1. Number of nodes at which displacements are specified.

2. For each node, enter the node number, the specified values
for lateral displacement, rotation about the longitudinal axis, and

rotation about the weak axis.
12. Stiffeners
1. Number of stiffeners.

2. For each stiffener, enter the longitudinal point number at

which the stiffener is located, its width, and its thickness.
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6.8.4 Solution methodology

In any practical problem, an approximate value for buckling
load is difficult to estimate because many variables are involved
such as the geometrical properties of the cross section, the material
properties including residual stresses, loading and restraint
conditions. Since an inelastic solution takes a considerable amount of
computer time unless the values of shift, upper and lower bounds
are sufficiently close to the expected buckling load, it is instructive to
start with a quick elastic computer run with relatively small shift
(usually takes about one minute on a 486 personal computer) to get
a rough estimate for that load. Then, an inelastic run is performed

using that estimate. A worked example is given in Appendix B.
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Fig. 6.2 Idealised stress-strain relationship
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applied at different positions
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Fig. 6.15 Addition of restraint conditions to the global structural stiffness
matrix when lateral restraint is applied at a point other than nodal points
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Chapter 7

DESIGN PROCEDURES FOR LATERALLY UNSUPPORTED BEAMS

7.1 Introduction

Several simplified procedures are presented in this chapter for
designing laterally unsupported doubly symmetric I-shaped beams
against lateral-torsional buckling, under different types of support,
loading and restraint conditions. Included is a refined approach for
the design of cantilever beams which avoids the defects of solutions
currently available. Approaches are also proposed for the design of
overhanging beams, suspended beams acted upon by their self-
weight, simply supported beams which are restrained laterally and
torsionally along one flange at discrete locations and cantilever-
suspended span beams. In all cases, the suggested solutions were
checked numerically against analysis made using the distortional

buckling finite element program.
7.2 Built-in cantilever beams

A built-in cantilever is defined as a beam completely fixed at
the root. Three restraint conditions at the cantilever tip are
considered: (i) completely free, (ii) laterally restrained at the top
flange and (iii) laterally restrained at both the top and bottom
flanges. A point load, applied to either the top flange or the shear
centre at the tip, is considered. This represents practical cases and is
more severe than a distributed loading case. The elastic lateral-

torsional buckling resistance is taken as

199
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where X is the beam torsional parameter, defined by [2.9], L is the
span, E is the modulus of elasticity, Iy is the moment of inertia about
the minor axis, G is the modulus of rigidity, J is the Saint Venant
torsional constant and C,, is the warping constant. The effective
length factor, ky in [7.1] which models the effects of the type of
loading, the level of load application and the type of end restraint is
given in Table 7.1 as a function of the beam torsional parameter X.
The effective length factors have been obtained by curve fitting to

the results of the finite element program.
7.2.1 Cantilevers with free tips

Figs. 7.1 and 7.2 show comparisons for a W410x39 cross section
of the finite element method, the proposed method and that given in
the SSRC Guide for top flange and shear centre loadings, respectively.
The upper values of cantilever lengths shown are recognized as being
impractical. Although the SSRC solution is conservative for shear
centre loading condition (Fig. 7.2), it becomes extremely
unconservative for top flange loading with relatively short spans
(Fig. 7.1). The problem arises with the SSRC solution because the
limitation of [2.10] has not been applied.
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Nethercot (1973) chose the range given by [2.10] based on a
study embracing all beam and column sections in the British Steel
Handbook to limit buckling to the elastic range. Subsequently,
Nethercot (1983) stated that the solutions were applicable to the
practical range of beam torsional parameter, X. Equation [2.10] limits
the cantilever span to more than four metres for the W410x39 cross
section. Therefore the SSRC solution is not applicable to a wide range
of spans. From Figs. 7.1 and 7.2, it is observed that the proposed
expressions for effective length factors give results which are in good

agreement with the finite element solution.
7.2.2 Lateral restraint at top flange

Comparisons of the different solutions for top flange and shear
centre loadings are given in Figs. 7.3 and 7.4, respectively, for the
case when lateral restraint provided to the top flange at the
cantilever tip. It is clear that SSRC solutions are conservative by a
factor of up to 1.8. The reason is apparent from Fig. 2.2. While
Nethercot (1973) obtained the solutions for lateral restraint of the
shear centre at the cantilever tip, he (1983) recommended
conservatively the same solution when lateral restraint of the top

flange is provided.
7.2.3 Lateral restraint of top and bottom flanges

In this case, the cross section at the cantilever tip is, in effect,
laterally and torsionally restrained, and the height of load application

at this location is immaterial. Fig. 7.5 show a comparison of the
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different solutions. Again, the SSRC solution is very c -nservative as
can be seen as well from Fig. 2.2. Torsional restraint applied at the
shear centre does not prevent lateral movement of the beam at the

cantilever tip. Lateral restraint of both top and bottom flanges

prevents both lateral movement and twisting.
7.2.4 Effect of load position

As can be seen in Fig. 2.1, the SSRC Guide gives only two load
positions: top flange loading and "all other cases”. As the "all other
cases” was originally based on shear centre loading, it can lead to
unconservative results when the load position is located somewhere

between the top flange and the shear centre.

In practice, a cantilever tip load can be applied at any level by
means of a shear connection. When this level is located at a distance,
h, above the shecar centre, the effective length factor, ki, can be
interpolated between the factors of the two extreme cases of top
flange loading, k,, and the shear centre loading, ks, both obtained

from Table 7.1, as follows

[7.2] kp =1k + (1 - nk;
where

h h
7.3 r=—(1.5+-), and
[7.3] 1 ( d)

d = depth of the cross section

9
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For the case when two loads are applied at the cantilever tip,
say one at the top flange and the other at any level between the
shear centre and the top flange, the effective length factor can be
interpolated between the effective length factors corresponding to

the applied load levels in proportion to the loads.
7.3 Overhanging beams

In practice, a cantilever beam may exist as the cantilever
projection of a simply supported beam over an end support, as
depicted in Fig. 7.6. Predicting the buckling resistance for this type of
beams is much more complicated than for a single built-in cantilever
because many variables, such as the ratio of cantilever span to back
span and the loading and restraint conditions of both the cantilever
and back spans, must be taken into account. In this study, the
restraint conditions considered at the tips of the cantilever spans are:
free; lateral restraint at the top flange or lateral restraint at both the
top and bottom flanges. Also, the back span is assumed to be free

except at the supports.

Without interaction, the buckling resistances of both cantilever
and central segments are based on the free to warp conditions, in
which lateral deflection and twist about a longitudinal axis are
prevented at support locations. However, interaction will occur
between adjacent segments during buckling and the less critically
loaded segment will elastically restrain the more critically loaded
segment. When the back span segment is more critical, Trahair

(1983) has shown that the effects of warping restraints provided by
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the overhanging segments are not significant, and the buckling
resistance of the back span segment can be taken as the overall
buckling resistance of th: overhanging beam. When the overhanging
segments are more critical, the buckling resistance of the overall

overhanging beam can be determined as
[7.4] M, = M. + F(My - M)

where M, is the elastic critical moment of the cantilever segment
which is free to warp at the root, My is the elastic critical moment of
the back span which is ree to warp at both ends and F is the
interaction factor which is a function of the ratio of the back span to

the cantilever span.

When two overhanging cantilevers with either different spans
or different loading conditions are encountered, a conservative
approach is to use the lesser value of M. in [7.4]. The buckling
resistance of a cantilever which is free to warp at its root with either
a free of laterally restrained top flange at the tip for top flange
loading and shear centre loading was found, using the finite element

program for a variety of cross sections, to be closely approximated
by

[7.5] M, =15 GJ/d

and

7.6) M =/EL,G]

c
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where L, = cantilever span, respectively. The equations for free tip

cantilevers are also in good agreement with the results given by

Trahair (1983).

For shear centre loading, the elastic critical moment of the back

span is given by

2 2
n E1,C,

2

L

771  My=—= [ H,GI+

where L is the back span and w; accounts for nonuniform moments.
For the cases when the back span loads are applied at the top flange
level, the finite element program must be used to obtain the elastic

critical moment of the back span.

For the case of overhanging beams with free tip cantilevers
(see Fig. 7.6a), the value of the interaction factor, F, for a particular
ratio of L/L, for a single cantilever overhang configuration with a
concentrated load at the flange tip and with top flange loading was
found by establishing the elastic critical moment using the finite
element program and back computing, knowing M. and M,, from
[7.4]. By repeating this procedure for different ratios of L/L, other
values of F were found. A good approximation for F by curve fitting

is
{7.8] F=-008 +0.18 L/, - 0.009(L/Lc)2

In the case where lateral deflections and longitudinal twisting

are prevented at the support locations and lateral restraint is
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provided for the top flange at the cantilever tips (see Fig. 7.6b),
equations [7.5] and [7.6] are still valid to obtain M; but the

interaction factor F to be used in [7.4] is approximated as

[7.9] F = 0.064 + 0.162 L/L, - 0.009(L/LC)2

The case where lateral deflection and twist are prevented at
both support and cantilever tip locations (see Fig. 7.6c), can be
treated easily using procedures for interaction buckling of latera-iy
continuous segments as given in the SSRC Guide or by Schmitke and

Kennedy (1985).
7.4 Stability of suspended and spreader beams
7.4.1 Suspended beams under self-weight

During the construction process, the need often arises to lift
into place a slender beam acted upon by its self-weight. After placing
the beam bracing or connection to other members stabilizes the
beam u:. <r the imposition of further loading. Therefore, the lifting
process represents one of the most critical stages at which the beam
could buckle under its self-weight. Due to the unusual boundary
conditions involved, the classical buckling formulae (Galambos 1988)
are not applicable in assessing the lateral-torsional buckling strength

of the beam while being lifted.

Dux and Kitipornchai (1989) established a basis for the stability
of suspended beams. They used the finite integral method to obtain
buckling capacity charts in a non-dimensional format to be used for

checking the stability of I-beams when lifted under self-weight for
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different cable angles and attachment positions. Their solutions are
verified herein using the finite element technique and some
simplifications are suggested for the case when the lifting cables are
vertical. This situation occurs when a spreader beam is used. Because
the only restraints are the lateral restraints of the top flange applied
at the loading points, rigid body twisting modes at zero load
represent a potential problem during investigation. This problem is
overcome by using the inverse iteration with shift technique to solve
the eigenvalue problem involved in the finite element analysis.
While both symmetric and anti-symmetric buckling modes are
possible, because the problem is symmetric with regard to loading,
restraint and geometry, it has been observed throughout this study
that the symmetric mode is the critical one. This observation was

also reported by Dux and Kitipornchai (1989).

Consider the flexural member shown in Fig. 7.7, which is lifted
symmetrically by vertical cables and acted upon by its self-weight,
w, applied along the shear centre. As suggested by Dux and
Kitipornchai (1988 and 1989), the critical buckling load can be

approximated as
3
[7.10] wc,=y«/EIy GJ/L

in which y is the non-dimensional elastic buckling load parameter

and L is the length of the member.

The value of the elastic buckling load parameter, y, proved to

be dependent on the location of cables along the lifted member and
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the beam torsional parameter, X, defined in [2.9]. Using the finite
element approach, the curves giving the elastic buckling load
parameter versus different symmetrical arrangements of vertical
cables (Z,/L, where Z, is the distance of cable attachment from the
mid-span as indicated in Fig. 7.7) are given in Fig. 7.8 for X = 0.2, 04,
0.6 and 0.8. These results were obtained using a W360x39 cross
section for the case where the cables are attached directly to the top
flange but subsequently checked against a wide range of other cross
sections and the difference was found to be in all cases less than 5%.
The results of these curves are in good agreement with those
obtained by Dux and Kitipornchai (1989) and indicate that buckling
resistance is greatest when the cables are placed near the quarter
points. In the vicinity of that optimum location, the buckling capacity
is extremely sensitive to the cable attachment position. This indicates
that extra care should be given to insure the right position of the
cables while operating in this region. As the cable attachment
positions move from the optimum location towards either the middle

or the ends, the buckling strength decreases.

For the case where the cable attachment positions are located
between the midspan and the quarter points, the relationship
between y/X and Z,/L reduces to a unique curve as indicated in Fig.
7.9. By curve fitting the available data, the value of the elastic

buckling load parameter, y, can be approximated as
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(7.11] y= 1000 X
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Further simplification for the right hand branch of the curves given
in Fig. 7.8 (where 0.3 < Z,/L < 0.5) proved to be difficult to obtain.
Therefore, it is recommended, for this range, to find the value of by
v by interpolating between the curves as suggested by Dux and
Kitipornchai (1989). The elastic buckling load parameter curves for
Z,/L in the range 0.3 to 0.5 are presented separately with expanded

scale in Fig. 7.10.

In checking the stability of beams under self-weight lifting the

overall safety factor, Fg, can be defined as:
{7.12] Fo=w ¢/ Wy

where wgy,, is the self-weight of the beam. Dux and Kitipornchai
suggested that a value of 2 for the overall safety factor should be
used because elastic buckling results in a catastrophic sudden failure
and to account for dynamic effects and initial imperfections.
Engineers may wish to decide on an appropriate overall safety factor

based on the circumstances at hand.
7.4.2 Spreader beams

In case when the spreader beam is picked up by inclined crane
cables attached at its ends, the spreader beam is designed as a beam-
column. When a spreader beam, as shown in Fig. 7.11, is lifted at

midspan, the lateral-torsional stability must be checked. Neglecting
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the self-weight of the beam and assuming elastic behaviour, Dux and

Kitipornchai (1988) suggested that the critical buckling load, W, be

obtained in the form
2
[7.13] Wc,=y«/EIyGJ/ L

where y is a function of the beam torsional parameter, X. Using the
finite element program and a W360x39 cross section, the values of y
were obtained for different values of X. As given in Fig. 7.12, this

curve is almost a straight line and can be approximated as

[7.14] y=1+ 12X
7.5 Stability of restrained beams

A design procedure is given here for the lateral-torsional
stability of doubly symmetric I-shaped beams laterally and
torsionally restrained by purlins fastened to one flange only. While
the restraint provided by purlins may significantly increase the
moment resistance of the beam, it also increases the difficulty of the
solution. Current standards consider bracing of this type to be
effective only when it is attached to the critical flange, that is the
compression flange except for the case of cantilevers. However, in
cantilever-suspended span construction, only the top flange is
laterally and torsionally braced at discrete locations and the
compression boitom flange, except at column location, is
unrestrained. Under such circumstances, the restraint provided to
the tension flange may be sufficient to preclude lateral-torsional

buckling.
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The proposed solutions presented here are applicable to beam
members, in which axial loads are small and can be neglected. This
situation commonly arises in low rise industrial buildings. It is
assumed that lateral displacements and twists are prevented at each
end and the ends are free to warp. When the beam ends are not
simply supported, warping interaction occurs between the beam
under consideration and the other members, and the solutions tend
to give either the upper or the lower bound prediction of the
buckling resistance, depending on whether the beam in question is

the restraining or the restrained member, respectively.
7.5.1 Simply supported beam under uniform moment

Consider the simply supported beam, shown in Fig. 7.13,
subjected to uniform moment and with discrete braces attached at
equally spaced intervals to the tension flange. The braces exert
complete (infinite) lateral restraint and incomplete (finite) torsional
restraint. Milner (1975) used the energy method to obtain the

following expression for the critical buckling moment

'222E L2
=C:1]+ — 2CW+K§2
dL nnd

[7.15] M.,

where most terms are as defined previously in chapter 2, n is the
number of half waves of the buckled compression flange, which is

selected so as to minimize the critical moment as follows
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(7.16] n

The effective continuous torsional restraint stiffness, K, in [7.15] and
[7.16] is defined as the the equivalent continuous stiffness of the
torsional restraint which is effectively applicd to the compression
flange. Because the actual torsional restraint is applied to the tension
flange at discrete locations, it is transmitted to the compression

flange through the beam-purlin connection as well as the web. The

value of K, depends on: (1) the bending stiffness of the purlins, (2)
the moment-rotation characteristics of the beam-purlin connection,
(3) local web distortion and (4) twisting of the braced flange between
braces. A useful model to account for the effects of all the above

variables is that suggested by Milner (1975). The effective

continuous torsional restraint stiffness, K., is estimated as

[7.17]

where Ky, is the bending stiffness of the purlins divided by the
purlins spacing, K, is the web stiffness, K; is the stiffness of the
beam-purlin connection divided by the purlins spacing and K is the

effective torsional stiffness of the flange.

The web stiffness, K, ,which accounts for the web distortion is

given as
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Et Et
7.18 = hd -
[7.18] Ky 2 d

2
4(1-v )d

where t,, is the web thickness, v is Poisson's ratio and s is the spacing
between purlins. The equivalent continuous stiffness of the beam-
purlin connection, K;, depends on the moment-rotation characteristic
of the connection. Milner (1977a) recommended an infinite value for
Kjin cases of welded and friction grip bolted joints. Milner and Rao
(1978) presented some recommendations for estimating K; for

bolted joints based on experimental tests.

Because the bracing is provided only at discrete locations along
the tension flange, the flange between the braces tends to twist,
causing a reduction in the effectiveness of the torsional restraint of
the overall system. This effect can be taken into account by
considering the torsional stiffness of the portion of the braced flange
between bracing points. The equivalent continuous torsional stiffness
of the flange can be taken as

3
_CGbt

2
S

[7.19] K;

where b is the flange width, t is the flange thickness and C is a
constant which is determined so that tihe results of the present
design model would agree with the finite element solution. Using this

procedure, a value of 7.29 is obtained for C.
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In practice, the bending moment distribution along the beam is
nonuniform. However, Milner (1977a) recommended that the present
design approach could be applied conservatively to check the
stability of a beam element extracted from a complete structure
where the boundary conditions of the basic analysis are reasonably

satisfied, and assuming that a uniform moment equals the maximum

moment.
7.5.2 Simply supported beam under nonuniform moment

The conservative assumption of a uniform moment in the
application of [7.15] may lead to a considerable underestimation of
the buckling resistances. Consider the beam shown in Fig. 7.14, which
is braced laterally and torsionally at discrete locations along the top
flange and is acted upon by end moments as well as a uniform top
flange loading. The beam ends are assumed to be laterally restrained
and free to warp. When the beam is continuous over supports,
warping interaction occurs between the beam under consideration
and the adjacent ones, and the following procedure tends to give
cither the upper or the lower bound predictions of the buckling
resistance, depending on whether the beam is the restraining or the
restrained member, respectively. For the purpose of generalization,
assume f to be the ratio of the end moments and R to be the ratio
between the maximum static moment due to the loads and the
maximum end moment. Lindner (1987) suggested that the critical

buckling moment can be estimated as
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=

[7.20] M =~V ELG)

where k is the effective buckling coefficient, obtained from the finite

r

element analysis, and J* is a modified Saint Venant torsional

constant, given as

[7.21] J*=J+KcL

The design approach given by [7.20] and [7.21] was suggested
by Lindner (1987) to handle the stabilization of I-section beams by
corrugated sheeting. However, it can be used when the bracing
system is as depicted in Fig. 7.14, provided that the effective
continuous torsional restraint stiffness, Ke, is taken as given in [7.17].
Lindner (1987) showed that the effective buckling coefficient, k, is
actually a function of the bending moment diagram as well as the
beam torsional parameter X. In order to understand the correlation
between the solutions given by [7.15] and [7.20], consider the
simplified case of a beam under uniform moment and no torsional
restraint. In this case, equation [7.15] reduces to

2
GJ +2 n EC,

[7.22] M=~

2
dL
Equating [7.20] and [7.22] gives

[7.23; =L (1+2 x5
e T 2X
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As indicated in Fig. 7.15, the effective buckling coefficient, k.
varies considerably with the beam torsional parameter. The
minimum value of k is 4.44, which corresponds to a value of the
beam torsional parameter, X, 0.71. Lindner (1987) showed that for a
wide range of variation in the bending moment distribution, the
minimum values of k occur within the range 0.31 < X < 0.71. It is
important at this stage to define the range of practical values of the
beam torsional parameter. Kirby and Nethercot (1979) presented
graphically the relationship between X2 and L/d for relatively
narrow cross sections and for relatively wide cross sections (column
sections). Using these curves and assuming L/d to be within the
range of 15 to 25, it can be shown that the corresponding range of
variation in the beam torsional parameter is 0.35 to 1, with an

average of 0.68.

As suggested by Lindner (1987), the minimum values of Kk,
corresponding to different bending moment ..istributions, can be
used directly for design. This is justified by its simplicity, which is a
major requirement in any design approach, and the fact that the
practical range of the beam torsional parameter is close enough to
the range within which the minimum values of k are located for a
wide range of bending moment distributions. Fig. 7.16 gives the
minimum values of the effective buckling coefficient, k, for a range
of end moment ratios, B, between 0 and 1 and a range of R values
between 0 and 2. It should be noted that the critical buckling

resistance given by [7.20] corresponds to the critical value of the
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maximum end moment, even though the absolute value of the

maximum positive moment may be larger.

The above procedure tends to overestimate the elastic lateral-
torsional buckling resistances. This occurs because it is assumed that
the increase in Saint Venant torsional constant due to torsional
restraint given by [7.21] is independent of the bending moment
distribution. However, it has been found that [7.21] is only valid for
the case when the whole braced flange is under tension. When the
bending moment distribution is such that a part of the braced flange
is under compression. the nunbraced flange does not tend to buckle
within the part under tension, and the effect of torsional restraint
within that region is reduccd. Therefore, [7.21] tends to overestimate
the modified Saint Venant torsional constant under these
circumstances. However, under such bending moment distributions
and the applied lateral and torsional restraints, the beam buckling is
highly inelastic. Using the empirical inelastic buckling formula given
by CSA Standard CAN/CSA-S16.1-M89 (CSA 1989), the differences
between the inelastic buckling resistance corresponding to the elastic
solution given by [7.20] and that corresponding to the elastic solution

given by the finite element, tend to be only within 2%.

7.7 Design of beams in cantilever-suspended span

construction

Lindner (1972) has shown that the critical buckling moment
for a back span with a single overhang cantilever, restrained

laterally at top flarnge, can be estimated using the same formula for
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the back span that is free to warp (equation [7.20] in which J* is
replaced by the Saint Venant torsional constant), provided that the
span ratios and loading conditions are to be taken into account for
determining the value of the effective buckling coefficient, k. This
concept is used here, together with [7.20] to obtain a design

procedure for steel beams in cantilever-suspended span construction,

Consider the double overhanging beam shown in Fig 7.17.
which is restrained laterally and torsionally at the level of top flange
at joist locations. The boundary conditions at the column supports, as
well as at the cantilever tips are dependent on whether or not joists
with or without bottom chord extension exist at these locations. The
elastic critical buckling moment at the support location is assumed to
be given by [7.20], where L is the length of the back span. The value
of the effective buckling coefficient, k, is dependent on the loading,
geometry and boundary conditions. Because insufficient information
is available about the residual stress patterns in relatively narrow
flange beams, it is recommended that the inelastic reduction formula
given in the CSA Standard CAN/CSA-S16.1-M89 (CSA 1989) be used

when the elastic buckling moment exceeds 0.67 M,. ie,
[7.24] M; = 115 Mp(1 - 0.28 Mp/M,)
where M; is the unfactored inelastic buckling moment resistance.

In order to estimate the modified Saint Venant torsional
constant, J*, using [7.21], the effective continuous torsional restraint

stiffness, Ke can be obtained from
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+L

[7.25] +
Kw Kf

L1
K, Ky
where Ky and Ky are given by [7.18] and [7.19], respectively.
Equation [7.25] is basically the same as [7.17] except that the K; is
considered to assume an infinite value for welded connection (Milner
1977a). The value of Ky is determined as the in-plane bending
stiffness of the brace, Kp, divided by the brace spacing. A simplified
expression for the in-plane bending stiffness of the open-web steel

joists is given in Appendix C. Hence, the value of K can be obtained

as

[7.26] K, = 8_El2
s Lys

where Kp is the in-plane bending stiffness of the joist, Ip is the

moment of inertia of the top chord of the joist about the centroidal

horizontal axis, Lp is the length of the end panel and s 1= : : joists
spacing. Based on a study embracing the practical range i -..is, it is
recommended that a minimum value of 3x107 Nmm/:. . . used for

Kp in cases where no data are available. In the case of interior beams
with joists oi. both sides, the value of K, can be obtained by adding
the contribution of the joists on each side. In the case where the joist
acts compositely a with concrete slab, a significant enhancement of
the torsional stifiness is achieved and the moment of inertia of the
composite section of the concrete and the top chord acting together is
used instead to compute I, in [7.26]. However, the composite action is

effective for the joists on only one side of the beam because when
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the beam tends to rotate, the joists are bent in opposite directions

and the concrete would be in tension on one side.

7.7.1 Basic assumptions

Because the loading, geometry and boundary conditions of the
beams in cantilever-suspended span construction may vary

considerably, it is reasonable to make the following assumptions

1. Symmetric geometry and loading conditions. As indicated in Fig.
7.17, the overhanging cantilever spans are assumed to have the same

length and loading configuration.

2. The ratio of the back span to the cantilever span is assumed to be

within the range of 4 to 6.

3. The load transmitted fr-: the suspended span to the cantilever
tip is assumed to act at a maximum distance of 0.15 the depth of the

beam above the shear centre.

4. The joist loads within the back span are applied at the level of top

flange of the beam.
5. All the joists have the same in-plane bending stiffness.

6. The value of beam torsional parameter, X, based on the back span
length is assumed to be within the range of 0.4 to 1.2. This is based
on Kirby and Nethercot (1978) and was checked using the W-shaped
cross sections given by the Canadian standard for practical range of

beam spans.
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7. The columns are spaced uniformly.
8. All the joist seats are welded to the top flange of the beam.
7.7.2 Critical bending moment diagrams

Two distinct systems may be encountered in cantilever-
suspended span construction, depending on whether or not fork
supports (lateral restraint of both the top and bottom flanges of the
beam at column locations) exist. A fork support, which is the main
feature of the “forked system”, is provided by an open-web steel
joist with its top chord weldcd to the top flange and its bottom chord
extended to either the beam or the top of the column to provide
lateral restraint. The “unforked system” is encountered when no

open-web steel joists exist at either column location.

Consider the forked and unforked systems, with symmetrical
loading and restraint conditions, given in Fig. 7.18. The beam is a
W360x39 cross section having geometrical and material properties as
determined in the test vrogram. For the case when only lateral
restraint is applied to the top flange at loading points and for a given
value of R, the finite element program may be used to determine the
buckling capacity when the effect of residual stresses is taken into
account and when it is neglected. For the forked support system, the

values of M. /M, for a range of R values between 0 and 2 are given

in Fig. 7.19.

In the forked system, as the value of R increases, either the

compressive stresses decrease or the tensile stresses increase within
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a considerable portion of the unrestrained bottom flange within the
back span and, therefore, the critical buckling moment increases. The
critical loading condition for a combination of dead and live loads, as
given in Fig. 7.20, can be obtained by maximizing the negative
moments above the supports and minimizing the static moment

caused by the back span loads.

The critical loading condition in the unforked system is not as
obvious as that in the forked system because, in this case, the critical
buckling moment increases as R increases up to a certain limit, then
decreases up to R=2 and then increases again as shown in Fig. 7.21.
For values of R less than 2, the negative moment over the supports is
the critical moment and for values of R greater than 2, the positive
moment at the middle of the back span is the critical moment. For
small values of R, the beneficial effect of the shape of the bending
moment diagram causes the buckling capacity to increase. Beyond
these values of R up to 2, the buckling capacity is significantly
reduced because the destabilizing effects of both the loads applied at
top flange level of the back span and the reactions are more
pronounced than the beneficial effect of the shape of the bending
moment diagram. The buckling resistance increases for values of R
greater than 2 because the midspan moment, which is larger than

the negative moment, becomes the critical moment.

It can be observed from Fig. 7.19, for the forked system, for
values of R between O and 2, that the beneficial effect of residual
stresses (with the flanges predominantly in tension) is noticeable

throughout the range of R. On the other hand, in the unforked system
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as seen from Fig. 7.21, the effect of residual stresses diminishes as
the value of R increases because the increased web distortion due to
the destabilizing effect of the reactions dominates and flange

participation in the overall behaviour is of secondary importance.

Consider the unforked system given in Fig. 7.18b. Neglecting
the effects of residual stresses, the values of Mc/M, obtained from
the finite element program for a range of R values between 0 and 2
are given in Fig. 7.22 for the case when only lateral restraints and
the case when lateral and torsional restraints with Kp = 3x107
Nmm/rad. are provided. It is "pparent that the apex of the curve is
shifted to the left when torsional restraint is applied. This

corresponds to the practical restraint condition.

Generally, roofs of structures can be classified as either
standard roofs or, simply, roofs in which the only loads considered
are the dead and snow (with rain) loads, or parking roofs, in which
the dead, parking or snow loads are considered. As given in Table
7.2, the ratio of maximum to minimum factored loads for a range of
roof structures with specified loads in accordance with the National
Building Code of Canada (1990) is within the range of 1.08 to 2.2.
Using these results together with the critical loading condition
described in Fig. 7.20 for beam with fork supports, the value of R
(ratio of static moment to the moment at the column location) was

found to be within the range of 0.6 to 1.6.

For beams without fork supports, the two loading conditions of

rull and partial loading shown in Fig. 7.21 need to be investigated.
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Following the same procedure as for the forked system, the

corresponding range of R for the unforked system was found to be
1.3 to 4.

7.7.3 Design of beams with fork supports

This type of beam is encountered in a regular grid system, in
which an open-web steel joist with bottom chord extension exists at
both column locations. Under symmetrical geometry, loading and
boundary conditions, three distinct cases arise. As given in Fig. 7.24,
these cases are: case 1, in which an open-web steel joist with bottom
chord extension exists at each cantilever tip; case 2, in which an
open-web steel joist without bottom chord extension exists at each
cantilever tip; and case 3, in which no open-web steel joist exists
within the cantilever spans. For these cases, the critical loading
condition is that given in Fig. 7.20, where the negative moments at
the column locations are maximized and the sagging moment at the

middle of the back span is minimized.
a) Case 1

In this case (Fig. 7.24a), the beam cross section at the
cantilever tips is in effect laterally and torsionally restrained and the
height of load application at that location is immaterial. Because the
value of the effective buckling coefficient, k, is dependent on many
parameters such as the ratio of the cantilever span to the back span,
the moment ratio, R, and the beam torsional parameter, X, the

procedu . given in section 7.5.2 which uses the minimum values of k
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within the practical range of the beam torsional parameter (0.4 to

1.2) is followed.

Using the finite element program, the minimum values of k
were obtained for a practical range of loading conditions (0.6 < R <
1.6) and practical ratios of cantilever span to the back span (1/6, 1/5
and 1/4) for a W610x82 beam and are given in Fig. 7.25.

To check the general applicability of these design curves,
critical moments were computed using the finite element program
and using the design curves for a broad range of parameters as given

in Table D.1.

The design procedure to determine the factored moment

resistance is as follows

(i) Establish the geometric and material properties of the

assumed beam section,
(ii) From the given loading condition, establish the value of R,

(iii) Determine the web stiffness as

3 3
Et,  Et,

7.1 = .
[7.18] Ky T d

2
4(1-v )d
(iv) Determine the effective torsional stiffness of the flange as

_7.29Gbt

2
)

[7.19] K
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(v) Determine the in-plane bending stiffness, Kg, of the joists
attached to the beam as given in Appendix C. A value of 3x107
Nmm/rad. can be used if no data are available. The value of Kj is

determined as

[7.26] K, = OB
S

where s is the joists spacing,

(vi) Determine the effective continuous torsional restraint

stiffness, K, from

[7.25] 1 r,t,1
Ke Ky Ky K¢

(vii) Determine the modified Saint Venant torsional constant as

2

*
[7.21] J =J+K‘°2L
G

(viii) From Fig. 7.25 establish the value k, interpolating

between the curves of L./L as necessary,

(ix) Determine the value of the elastic critical moment from

VELGI

(x) To determine the factored moment resistance based on the

procedures of the CSA Standard CAN/CSA-S16.1-M89 (CSA 1989), it

[7.20] M, =

(el
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is first necessary to establish an appropriate value of the resistance

factor as discussed subsequently.

Table D.1 shows that there is excellent agreement between the
factored moment resistance obtained using the finite element
program and that obtained using Fig. 7.25 with a mean ratio of the
predicted/design moment (without resistance factors) of 1.002 with

a coefficient of variation of 0.010.
b) Case 2

This case (Fig. 7.24b) corresponds to the existence of open-web
steel joists without bottom chord extensions at the cantilever tip
locations. In this case, the effective buckling coefficient has been
found to be virtually independent of the ratio of the cantilever span
to the back span. For the practical range of torsional restraint
stiffnesses provided by the joists, the effective buckling coefficient,
k, has also been found to be independent of the torsional restraint
stiffness. For practical geometrical conditions in cantilever-
suspended span construction, the ratio of the load transferred from
the suspended span to that applied directly by the joist is within the
range of 0.5 to 1.5. However, this ratio has been found to affect the
critical buckling moment by not more than 5%. The significant
parameters affecting the effective buckling coefficient are the shape
of bending moment diagram and the value of the beam torsional
parameter, X, of the back span. Fig. 7.26 gives the values of k as a

function of these two parameters for this case.
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The general applicability of the design curves of Fig. 7.26 is
confirmed by Table D.2, which gives a ratio of the mean value of the
predicted/design moment of 1.012 with a coefficient of variation of
0.020.

The design procedure to determine the factored moment
resistance is basically the same as in case 1, except for step (viii),

which is as follows:

(viii) Determine the value of the beam torsional parameter as

2
E
[2.9] X = _L.C_“'_

2
GJL

and hence from Fig. 7.26, the value of k interpolating between the

curves of R values as necessary
c) Case 3

In this case (Fig. 7.24c), no open-web steel joist exists at the
cantilever tips and the only loads acting at these locations are
provided by the shear conncctions near the shear centre. The
significant parameters affecting the values of k are the shape of the
bending moment diagram, the beam torsional parameter, X, of the
back span and the ratio of the back span to the cantilever span. Figs.
7.27, 7.28 and 7.29 give the values of k for ratios of the cantilever
span to the back span of 0.25, 0.20 and 0.167, respectively.
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As indicated by Figs. 7.27, 7.28 and 7.29, the value of critical
buckling coefficient, k, decreases as the ratio of the cantilever span to
the back span increases. Table D.3 shows for this case that the design
curves of hese figures are generally applicable. A conservative
simplified approach for design purposes would be to use the values
of k given by Fig. 7.27 and neglect the effect of the ratio of the
cantilever span to the back span. However, this approach results in
as much as 23% conservatism in predicting the elastic critical

buckling moment.
The design procedure followed is the same as for case 2.
d) Resistance factors

It is necessary to develop resistance factors which can be used

with the design procedures given for cases 1, 2 and 3.

Generally, the value of the modulus of elasticity, E, is significant
for elastic buckling, whereas the value of the yield stress, Fy, is
significant for inelastic buckling. Xennedy and Baker {1984) give the

statistics of these material properties for rolled sections as

[7.28] p=1.020, VE=0.012, Pg,=1.060, Vg, =0.051

where p is the ratio of the mean value to the nominal value and V is

the coefficren: of variation. The statistical properties of the material

(pm and V) are taken as those of either E or Fy. The significant

geometric property in beam buckling is taken as the plastic modulus.
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The statistics of this geometric property of rolled sections is also

given in Kennedy and Baker (1984) as

[7.29] pG=0.99,V5=0.038

The value of p, corresponding to the test/design ratio is

obtained as the product
[7.30] PP=Pp1XPp2

where pp; is the mean value of the test/predicted, and ppy is the

mean value of the predicted/design. The corresponding value of V is

given as

J 2 2
[7.31)] Vp=Y¥Vp; +Vpy

As obtained from the test series, the value of p for the
test/predicted ratio is 0.99 with a coefficient of variation of 0.064. In
Appendix D, the finite element predici: .- and the design predictions
(given by the proposed design procedure) for different beam
sections, restraint and loading conditions are given in Tables D.1, D.2
and D.3 for cases 1, 2 and 3, respectively. Also given in these tables
are the mean values and coefficients of variations for the

predicted/design ratios.

The value of p corresponding to the resistance of the member is

given as
[7.32] PR=PGX PMXPP1XPpP2

and the corresponding value of V is given as
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’J 2 2 2 2
[7.33] VrR=VVg+VM+Vp+Vp2

The resistance factor, ¢, is taken as
[7.34] ¢ =pRrexp (-pag VR)

where B is the reliability index, taken as 3.0, and aR is the coefficient

of separation, taken as 0.55.

A resistance factor of 0.90 was found to be appropriate for all
the three cases of a beam with fork supports. This procedure
assumes, in the inelastic range, that the inelastic curves of S16.1 do
not introduce any additional variability, as the residual stresses are
more favourable than assumed in S16.1. However any error is

expected be relatively small.
7.7.4 Design of beams without fork supports

Fig. 7.30 gives the geometry of a beam with symmetric
geometry and boundary conditions, with no joists on the column
lines. The joists are evenly spaced with a joist on each cantilever
span, and with the columns located halfway between two
neighbouring joists. When the top of the column is unbraced, the
bottom flange of the beam can move laterally at the columns but
torsional restraint is provided to the bottom flange due to the rigid

connection of the beam to the column. The support is unforked.

As discussed previously, two loading conditions need to be

investigated for a beam under such boundary conditions (see Fig.
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7.23). As a result of the significant web distortion of the beam near
the columns, a substantial degradation of the critical buckling
capacity is expected in the unforked system as compared to that of
the “orked system. For this reason, this system is not recommended.
v the finite element program, the values of k were obtained as
given in Fig. 7.31. Table D.4 shows that the design curves of Fig. 7.31
result in factored moment resistances in good agreement with the
finite element predictions. It should be noted that the critical
buckling resistance given by [7.20] together with Fig. 7.31
corresponds to the critical value of the maximum negative moment
over the column support, even though the absolute value of the
maximum positive moment may be larger. The design procedure
followed is basically the same as for cases 2 and 3, except that the
inelastic buckling moment resistance is determined based on the
maximum absolute elastic buckling moment along the beam, which is
the negative moment over the support for R < 2 and is the positive
moment at midspan for R > 2. The elastic critical midspan moment

resistance can be estimated from the corresponding value of the

negative moment over the support and the value of R.

Using the procedure described in [7.28] through [7.34],
together with the statistical properties of the predicted/design ratio,

given in Table D.4, a resistance factor of 0.85 is obtained.
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Fig. 7.5 Comparison of design rules with finite
element solution for laterally restrained top and
bottom flanges at tip
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Fig. 7.7 Loading and geometry of suspended flexural member
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Fig. 7.8 Buckling load parameter for different lift points
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Fig. 7.9 Unique curve of buckling load parameter for members lifted
near midspan
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Fig. 7.10 Buckling load parameter for members lifted near ends
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Fig. 7.11 Spreader beam lifted at midspan
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Fig. 7.13 Simply supported restrained beam under uniform moment
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Fig. 7.15 Effective buckling coefficient for beams under uniform moment
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Fig. 7.24 Design cases for beams ... fork supports
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Chapter 8
CONCLUSIONS

8.1 Observations and conclusions

1. Residual stresses were determined using a sectioning technique
in which the gauge length was established betwcen hardened
steel balls pressed into the steel surface. The measuring
procedure gives good repeatable readings and consequently very

reliable results.

2. Based on the determrined residual stress patterns of two
different W-shaped beam cross sections, it is expected that a
wide range of beams used in real structures would buckle
elastically even though the critical buckling moment may be just
slightly iess than the yield moment. This arises because residual
stresses patterns in hot-rolled W-shaped beam sections with
relatively narrow flanges are significantly different from those
in column sections. Most of the flange is in tension and at the
flange tips the residual stresses are either tensile or of small
compressive value. Most of the web is under compression, with
high tensile stresses at the web-flange junciion. Because of the
favourable tensile stresses in the flanges, there is a stabilizing
effect increasing the range of elastic behaviour. The geometric
stiffness of the flanges is increased over inelastic values and the

onset of lateral instabiii.y is delayed.

3. The analytical method modelling web distortion, residual

stresses, and inelastic behaviour is reliable in predicting the
258
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distortional buckling capacity of steel beams under a variety of
loading and restraint conditions, as confirmed by a

test/predicted ratio of 0.99 with a coefficient of variation 0.066

for 31 tests.

The experimental results are very sensitive to unforeseen
restraints. Even a minimal amount of friction will force the beam
into a higher energy buckling mode. In test 6, for example, it
was observed that a relatively small amount of friction between
the ball bearings and the bearing plates was sufficient to
restrain the top flange laterally, forcing the beam into a higher
energy buckling mode. The corollary is that the lateral bracing

force required to restrain a rezl beam is quite small.

Because the bifurcation model predicted the test results closely,
the influence of initial imperfections on the buckling strength
does not appear to be significant so long as the imperfections are

within rolling and fabrication tolerances.

The effects of web distortion are particularly significant for
beams with relatively deep cross sections and thin webs, and
especially when the beam is braced torsionally along one flange
or when the load is applied relatively high above the shear
centre. When a web stiffener is introduced at a section where
one flange is torsionally restrained, the overall stability is
enhanced by eliminating web distortion and preventing twisting

of the cross section about its longitadinal axis.

When open-web steel joists are properly welded to supporting
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beams, they provide both lateral restraint to the top flange and
torsional restraint through their flexural action. The provision of
torsional restraint to the top flange further improves the
buckling strength by forcing the beam into a distortional
buckling mode. The in-plane bending stiffness of open-web steel
joists is relatively large, particularly when the joist acts
compositely with a concrete slab. The torsional restraint
provided to the beam enhances its stability dramatically, even
though it acts at discrete locations only and twisting of the
braced flange between bracing points tends to localize the effect
of torsional bracing. This bracing is considered reliable in

enhancing the beam stability.

8. Both the experimental and theoretical results show that the
restraint conditions dominate the behaviour of steel beams in
cantilever-suspended span construction. At the same time the
shape of the moment diagram, that is to say, which flange and

how much of it is in compression, is significant.

9. When lateral restraint is not supplied to the column at the
cantilever root, otherwise identically loaded and restrained
beams have failure loads reduced to as low as 30% of those when

such restraint is provided.

10. Lateral restraint of the top flange is particularly effective in
increasing the buckling strength when it is provided where that

flange is in compression.

11. For beams with fork supports in cantilever-suspended span
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13.

14.

15.
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construction, the additional conditions that most enhance the
beam stability are joists with bottom chord extensions to provide
lateral support to the bottom flange of the beam at each

cantilever tip.

While the critical loading condition for a beam with fork
supports is obtained by maximizing the negative moment at the
supports and minimizing the positive moment within the back
span, two loading conditions need to be investigated for a beam
without fork supports that can translate at the column supports.

Web distortion predominates in the latter case.

The effective length factors for cantilever beams given by the
SSRC Guide (Galambos 1988) tend to give unreliable results
because the original limitation on the beam parameter was
overlooked and the original restraint assumptions in deriving

these factors are overly conservative.

The effective length factors for overhanging beams given by the
SSRC Guide do not take into account the restraint and loading
conditions of the back span and the ratic of the cantilever to the
back span. This results in inaccurate, and, in some cases,

unconservative designs.

Although the general design procedure for beams in cantilever-
suspended span construction given by the Canadian Institute of
Steel Construction (1989) neglects the beneficial effect of
torsional restraint, unconservatism may result due to the

destabilizing effect of loads applied above the shear centre.
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18.

19.
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When a beam is braced laterally and torsionally along one
flange, the effective length concept is not accurate in predicting

its lateral-torsional buckling resistance.

The design procedures proposed here to predict the lateral-
torsional buckling resistances of cantilever beams are in good

agreement with the finite element results.

The buckling resistance of a beam lifted under self-weight, is
greatest when the cables are placed near the quarter points. In
the vicinity of that optimum location, the buckling resistance is
extremely sensitive to the cable attachment position. The design
procedure to predict the lateral-torsional buckling resistance of
such beams given here is in good agreement with finite element

analyses.

Design procedures are developed for cantilever-suspended span
beams under a variety of loading and restraint conditions based
on the distortional buckling model that is in excellent agreement
with the finite element model, itself corroborated by tests.
Resistance factors proposed for these design procedures range
from 0.85 for the case when the column supports are not
restrained laterally to 0.90 for the case when fork supports are

provided.
Areas of further research

Areas that need further research are:
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Studies are needed to evaluate the residual stress distributions
in a wide range of beam sections with relatively narrow flanges.
Based on these studies, more accurate predictions for the
inelastic lateral-torsional buckling can be developed, taking into
account the expected beneficial effect of residual stresses in

extending the elastic range.

The development of design formulas for single overhanging

cantilever beams in cantilever-suspended span construction.

It is expected that loading conditions which involve wind suction
loads, are not critical because they are countered by the dead
loads and because they act upwards at the level of top flange,
giving a significant stabilizing effect. However, it is
recommended that design formulas be developed for such

loading conditions of cantilever-suspended span beams.

The design approach suggested here, accounting for the effect of
torsional restraint offered by the joists with welded seats should
be extended to joists with bolted seats provided that moment-

rotation characteristics of such connections are established.
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Appendix A

COMPUTER PROGRAM

REM FINITE ELEMENT PROGRAM

CLS : PRINT"BEAM BUCKLING, FINITE ELEMENT SOLUTION":PRINT
DEFDBL A-Z:REM DOUBLE PRECISION

REM *kkkkkdkhhkkhkkhhhkhkkhhdhddhkhhhhkbrrhdhrhrhhkrkdkkkdkdhdr*

REM SOLUTION; BUCKLING MOMENT IS GIVEN AS FRACTION OF Mp
REM DATA INPUT kkkdkhdkhkhkhkkhhhhhhhkhhhhhkhkkhkkkkhhkhhkhisk

REM All UNITS; N, mm

REM SOLUTION TYPE; O FOR ELASTIC AND 1 FOR INELASTIC
READ SOLUT

REM CROSS-SECTIONAL DIMENSIONS

READ D,B,T,W

HP=D-T:H=D-2*T

REM NUMBER OF LONGITUDINAL MAIN DIVISIONS

READ NPART

DIM NAR (NPART,2)

FOR I=1 TO NPART

READ NAR(I,1),NAR(I,2)

NEXT I

NLONG=1

FOR I=1 TO NPART

NLONG=NLONG+NAR(I,1)

NEXT I

DIM XLONG (NLONG)

XLONG (1) =0

COLON=0

cce=1

FOR I=1 TO NPART

CCC=CCC+COLON

COLON=NAR(I, 1)

FOR J=1 TO COLON

XLONG (J+CCC) =XKTLONG (J+CCC-1) +NAR (I, 2)

NEXT J

NEXT I

NUMNP=2 *NLONG: REM NUMBER OF NODES
NEL=NLONG-1:REM NUMBER OF LONGITUSINAL ELEMENTS
NEQ=3*NUMNP:REM NUMBER OF EQUATIONS

HBW=12: REM HALF-BANDWIDTH OF GLOBAL STIFFNESS MATRICES
REM ELMOD=MODULUS OF ELASTICITY IN ELASTIC RANGE
REM FY=YIELD STRESS OF FLANGES

REM NU=POISSON'S RATIO

READ ELMOD, FY,NU

SHMOD=ELMOD/2/ (1+NU)

REM SECTION PROPERTIES

REM COMPUTE MOMENT OF INERTIA ABOUT MAJOR AXIS
IBEAM= (B*T"~3/12+B*T* (HP/2) ~2) *2+H"3*W/12
SSX=IBEAM/ (D/2) :MOYI=SSX*FY

2ZX= (B*T+*HP/2+H/2*W*H/4) *2

MOPL=2ZZX*FY:REM PLASTIC MOMENT
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EY=FY/ELMOD:REM YIELD STRAIN

REM RESIDUAL STRESSES

DIM RESIDF(5),RESIDW (S)

FOR I=1 TO 5:READ RESIDF(I):NEXT I

IF SOLUT=1 THEN 440

FOR J=1 TO 5:RESIDF(I)=0:NEXT I

FOR I=1 TO 5:READ RESIDW(I):NEXT I

IF SOLUT=1 THEN 445

FOR I=1 TO 5:RESIDW(I)=0:NEXT I

REM INTERPOLATE WEB STRESSES AT GAUSSIAN POINTS
DIM RESIDWW(9):IF SOLUT=0 THEN 470
RESIDWW (5) =RESIDW (1)

RESIDWW (6)=RESIDW(2)+.296% (RESIDW (3) ~RESIDW (2
RESIDWW (7)=RESIDW(3)+.452% (RESIDW(4)-RESIDW (3
RESIDWW (8) =RESIDW(4)+.344% (RESIDW(5) -RESIDW (4
RESIDWW (9) =RESIDW(4)+.872* (RESIDW(5) -RESIDW (4
RESIDWW (1) =RESIDWW(9) :RESIDWW (2)=RESIDWW (8)
RESIDWW (3 ) =RESIDWW (7) :RESIDWW (4 )=RESIDWW (6)
REM KV()=STORING VECTOR FOR GLOBAL STRUCT. STIFF. MAT.
REM KGV()=STORING VECTOR FOR GLOBAL GEOM. STIFF. MAT.
TOTA=HBW* (HBW+1) /2+ (NEQ~HBW) *HBW

DIM KEF(6,6),KEW(12,12) ,KGEF (6,6) ,KGEW(12,12) ,KV(TOTA)
DIM KEFS(6,6),0KL(6),QKU(6),KBAR(TOTA) ,KINV (TOTA)

DIM C(12,24),B{3,12),D(3,3),E(12,3),KGV(TOTA)

DIM F(12,12),M(2,12),SIGM(2,2),MTS(12,2) ,MTSM(12,12)
DIM R(NEQ),Y(NEQ),Z(NEQ),VX(NEQ),KGD(6,6),RO(NEQ)

DIM SHEAR(NEL,2) ,SHDIA(NEL,2),BETAT (NLONG)

DIM BEND (NLONG) ,MOMDIA (NLONG) , ENC (NLONG)

DIM ET (NLONG) , EC(NLONG) ,BETAC (NLONG) , ENT (NLONG)

DIM IFC(NLONG),JFC(NLONG), IFT(NLONG) ,JFT (NLONG)

REM LOAD DATA; INCLUDE ALL LOADS AND REACTIONS

READ NNLOAD:REM NUMBER OF LOADS AND REACTIONS

DIM NLOADV (NNLOAD,3) , LOADV (NNLOAD)

REM NLOADV(I,1)=LONGIT. POINT NUMB. OF LOAD OR REACTION
REM NLOADV(I,2)=MAGNITUDE OF LOAD

REM NLOADV(I,3)=HEIGHT OF LOAD APPLIC. ABOVE SH. CENTRE
FOR I=1 TO NNLOAD

READ NLOADV(I,1),NLOADV(I,2),NLOADV(I,3)

NEXT I

READ MMOMLON, MMOMENT

REM CONSTRUCT SHEAR AND MOMENT DIAGRAMS FROM LOADS

FOR I=1 TO NEL

SUM=0

FOR J=1 TO NNLOAD

IF NLOADV(J,1)>I THEN 748

SUM=SUM-NLOADV (J, 2)

NEXT J

SHDIA(I,1)=SUM:SHDIA(I,2)=SUM

NEXT I

FOR I=1 TO NLONG

SUM=0

275



784
786
788
790
792
794
800
802
804
806
807
809
810
830
840
860

870
880
88l
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
909
915
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FOR J=1 TO I-1
SUM=SUM-SHDIA (J, 1) * (XLONG (J+1) ~XLONG (J))

NEXT J

MOMDIA (I)=SUM

NEXT I

MMOOMM=MMOMENT-MOMDIA (MMOMLON)

FOR I=1 TO NLONG : MOMDIA () =MOMDIA (I)+MMOOMM: NEXT I
REM EIGENVALUE SHIFT

READ SHIFT

REM LOWER AND UPPER BOUNDS, INELASTIC SOLUTION

READ GAMMAO,GAMMA1

PLOTINC=2

REM RESTRAINT CONDITIONS

READ NRNOD:REM NUMBER OF RESTRAINED NODES

DIM NODRES (NRNOD, 4)

FOR I=1 TO NRNOD .

REM NODE NUMBER, RESTRAINS AGAINST ¥, THETA-X & THETA-Y
READ NODRES(I,l),NODRES(I,Z),NODRES(I,B),NODRES(I,4)
NEXT I

REM ELASTIC RESTRAINT COEFFICIENTS

READ RAMAD

DIM TOTO1 (RAMAD,2)

NNRESS=3*RAMAD

DIM CCOEFF (NNRESS,3)

EIRAG=ELMOD*B#* (T"3) /12

FOR I=1 TO RAMAD
READ TOTO1(I,1),TOTO1(I,2)
NEXT I

FOR I=1 TO RAMAD

SHAB=TOTO1(I,1)

ADAD=TOTO1 (I,2)

RAGA1=3*EIRAG/ADAD 3

RAGA2=3*EIRAG/ADAD"2

RAGA3=3*EIRAG/ADAD

S0S01=3*SHAB-2

S0S02=3*SHAB-1

CCOEFF (3*I-2,1)=S0S01

CCOEFF (3*I-1,1)=S0S01

CCOEFF (3*I,1)=S0802

CCOEFF (3*I-2,2)=S0S01

CCOEFF (3*I-1,2)=S0S02

CCOEFF (3*I,2)=50S02

CCOEFF (3*1~2,3)=RAGAl

CCOEFF (3*I-1,3)=RAGA2

CCOEFF (3+I,3)=RAGA3

NEXT I

REM INITIAL DISPLACEMENT EIGENVECTOR

READ NDIS:REM NUMBER OF NODES WITH GIVEN INITIAL DISP.
REM READ NODE NUMBER, DISPLACEMENT W, THETA-X, THETA Y
FOR I=1 TO NDIS

READ NODD, RO ( (NODD-1) #3+1) , RO ( (NODD=1)*3+2)



945

950

970

980

890

1000
1010
1020
1040
1050
1060
1070
1080
1090
1100
1105
1110
1112
1115
1120
1130
1140
1142
1144
1146
1148
1150
1152
1154
1155
1156
1157
1158
1159
1160
1165
1170
1190
1200
1230
1260
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

2717

READ RO ( (NODD-1) *
NEXT I ( D-1)*3+3)
REM NSTIF=NUMBER OF STIFFENERS
READ NSTIF:DIM STIFFEN(NSTIF,3)
FggAg=é TO NSTIF
TIFFEN(I,1),STIFFEN(I,2),STIFFEN(I,3
REM LONGITUDINAL POINT NUMBER, WIDTH, éHiC%NESS
DIM KSI(4),ETA(4) :
§SI(l)=—1:KSI(2)=-1:KSI(3)=1:KSI(4)
TA(1)=-1:ETA(2)=1:ETA(3)=-1:ETA(4)
REM SAMPLING POINTS & WEIGHTS
IF SOLUT=1 THEN 1120
ggg XSE(3),YSP(3),WSPX(3),WSPY(3)
¥e (l):-.7745967:XSP(Z)=0:XSP(3)=.7745967
WS;§1{—§SP(1):YSP(2)=XSP(2):YSP(3)=XSP(3)
WSPYElg;&ggi?i?§%gg$X§Zl;.8888889:WSPX(3)=.5555556
WSPY(1) =W : (2)=WSPX(2) :WSPY (3)=WSPX(3)
DIM XSP(3),YSP(9),WSPX(3),WSPY
9
§gg(i)f-.7745967:XSP(Z)=0;XSP(§)L.7745967
YSP( ):-.9681602:YSP(2)=—.8360311:YSP(3)=-.6133714
YSP(g):-.3242534:YSP(5)=0:YSP(6)=-YSP(4)
wsp§ i—:YSP(3):YSP(8)=-YSP(2):YSP(9)=—YSP(1)
wspygl):.5555556:WSPX(2)=.8888889:WSPX(B)=.5555556
WSPY 4):.0812744:WSPY(2)=.1806482:WSPY(3)=.2606107
wspy(7):.3123471:WSPY(5)=.3302394:WSPY(6)=WSPY(4)
Al S HE S S
]
ggg omrrtc] N'S RULE
FS(1)=1/3:COEFS(2)=4/3: = :
§23F5(5;=1;3 (2)=4/3:COEFS(3)=2/3:COEFS(4)=4/3
COEFFICIENTS FCR TRAP '
gIM SoErrIC APEZOIDAL RULE
OEF (1)=.5:COEF(2)=1:COEF(3)=1: 1 ;
: : =1:COEF (4)=1:COEF{5)=.5
dede & 4 N )
igﬁ MAI;****;;;***************************************
IF SOLUT=1 THEN 2230
g%gngz%ﬁcosus 2660
: T "ELASTIC SOLUTION: Mcr =";1AMBDA;"Mp"
REM NORMALIZED BUCKLED SHAPE, EIGENVECTOR Ri) P

1l
1

na

PRINT:PRINT "Normalized buckled "
PRINT:P " ST
PRINT " §E§E‘--§SE§ ....... E ........ ?EEE&:E ------ TE?ETA-Y "

FOR I=1 TO NUMNP

PRINT USING "“###";1;

PRINT “ “.

PRINT U " PR

PRINT nSINf; ##.## ";R((I-1)*3+41);
PRINT US wgH ammay. _ .
PRINT " INﬁ; #.## WSR((I-1)%*342);
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1400 PRINT USING "##.##° "~ "";R((I-1)*3+3)
1405 IF INT((I-15)/20)=((I-15)/20) THEN 1408
1406 GOTO 1410

1408 PRINT:INPUT"PRESS ENTER TO CONTINUE ...";AZ:CLS
1410 NEXT I
1420 PRINT:INPUT"PRESS ENTER TO CONTINUE ...";AZ

1430 REM PLOT BUCKLED SHAPE

1450 CLS:SCREEN 2:KEY OFF

1460 REM NORMALIZED BUCKLED SHAPE SO THAT W-MAX = 1.0
1470 DIM RNORM(NEQ)

1480 ZMAXX=0

1490 FOR I=1 TO NEQ

1500 IF ABS(R(I))>ZMAXX THEN ZMAXX=ABS (R(I)):IMAXX=I
1510 NEXT I

1520 FOR I=1 TO NEQ:RNORM(I)=R(I)/R(IMAXX):NEXT I
1530 LINE(40,70)-(600,70)

1532 LOCATE 1,23:PRINT"NORMALIZED BUCKLED SHAPE, PLAN VIEW"
1534 IF SOLUT=1 THEN 1546

1536 LOCATE 3,23

1538 PRINT"Mcr =";:PRINT USING "“##.####";LAMBDA; : PRINT" Mp"
1545 GOTO 1550

1546 LOCATE 3,23

1548 PRINT"Mcr =";:PRINT USING "##.####";GAMMA; :PRINT" Mp"
1550 REM PLOT EACH LONGITUDINAL DIVISION

1560 FOR I=1 TO NEL

1570 X1=XLONG (I):X2=XLONG (I+1)

1580 XX1=X1/XLONG (NLONG)*560+40:XX2=X2/XLONG (NLONG) *560+40
1590 FOR J=XX1 TO (XX2-PLOTINC) STEP PLOTINC

1600 REM TOP FLANGE

1610 ETA=1:GOSUB 1930

1620 REM MIDDLE OF WEB

1630 ETA=0:GOSUB 1930

1640 REM BOTTOM FLANGE

1650 ETA=-1:GOSUB 1930

1660 NEXT J

1670 NEXT I

1680 REM PLOT FLANGES AND WEB SYMBOLS

1690 FOR I=2 TO NLONG-1

1700 J=XLONG (I)/XLONG (NLONG) *560+40

1710 X1=XLONG (I) :X2=XLONG(I+1)

1720 REM TOP FLANGE

1730 ETA=1:GOSUB 2090

1740 LINE(XPLOT-2,YPLOT+1)-(XPLOT+2,YPLOT~1)

1750 REM MIDDLE OF WEB

1760 ETA=0:GOSUB 2090

1770 LINE(XPLOT,YPLOT-1)~-(XPLOT, YPLOT+1)

1780 REM BOTTOM FLANGE

1790 ETA=-1:GOSUB 2090

1800 LINE(XPLOT-2,YPLOT-1) - (XPLOT+2,YPLOT+1)

1810 NEXT I

1820 REM LEGEND



1830
1840
1850
1860
1870
1880
1890
1900
1901
1929
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2025
2030
2035
2040
2045
2050
2060
2070
2080
2100
2110
2120
2130
2135
2140
2145
2150
2155
2160
2170
2180
2190
2200
2210
2220
2230
2270
2340
2360

LINE(170,124)-(270,124) :LINE(218,125) - (222,123)
LINE(170,140)-(270,140) :LINE(220,139)-(220,141)
LINE(170,156)-(270,156) :LINE(218,155) - (222,157)
LINE(170,172)-(270,172)

LOCATE 16,40:PRINT"TOP FLANGE"

LOCATE 18,40:PRINT"MIDDLE OF WEB"

LOCATE 20,40:PRINT"BOTTOM FLANGE"

LOCATE 22,40:PRINT"INITIAL POSITION"

LOCATE 23,1

END

REM PLOT BUCKLED SHAPE ROUTINE

XPLOT=J : GOSUB 1980 :XPLOT1=XPLOT: YPLOT1=70-22%25
XPLOT=J+PLOTINC:GOSUB 1980:XPLOT2=XPLOT:YPLOT2=70-22%25
LINE (XPLOT1, YPLOT1)~ (XPLOT2, YPLOT2)

RETURN

REM COMPUTE BUCKLED SHAPE WITH INTERPOLATION FUNCTIONS
SUM=0

FOR K=1 TO 4

KSI=(XPLOT-(XX1+XX2)/2)/ ((XX2-XX1)/2)
KSIO=KSI*KSI (K) : ETAO=ETA*ETA (K)
SOKR1=RNORM( (I~1) *6+(K-1) *3+1) * (ETAO+1)

SUM=SUM+ (KSI0+1) * (2+KSIO+ETA0-KSI 2-ETA"2) *SOKR1
SOKR2=RNORM ( (I-1) *6+(K-1) *3+2) * (ETAO-1)
SUM=SUM+HP /2 *ETA (K) * (KSI0+1) * (ETAO+1) ~2*SOKR2
SOKR3=(KSIO-1)* (ETAO+1) *RNORM ( {I-1) *6+ (K=1) *3+3)
SUM=SUM- (X2-X1) /2*KSI (K) * (KSI0+1) ~2*SOKR3

NEXT K

2Z=SUM/8

RETURN

SUM=0

KSI=-1

FOR K=1 TO 4

KSIO=KSI*KSI (K) : ETAO=ETA*ETA (K)

SOKR4= (ETAO+1) *RNORM ( (I-1) *6+ (K-1) *3+1)

SUM=SUM+ (KSI0+1) * (2+KSIO+ETAO-KSI "2-ETA"2) *SOKR4
SOKRS= (ETAO-1) *RNORM( (I-1) *6+(K-1) *3+2)
SUM=SUM+HP/2*ETA (K) * (KSI0+1) * (ETAO+1) “2*SOKRS
SOKR6= (ETAO+1) *RNORM( (I-1) *6+(K-1) *3+3)

SUM=SUM- (X2-X1) /2*KSI (K) * (KSI0+1) “2* (KSI0~1) *SOKR6
NEXT K

2Z=SUM/8

XPLOT=J

YPLOT=70-22%25

RETURN

Rm[ **************************************************
REM ALGORITHS FOR EIGENVALUE SOLUTION, INELASTIC
REM Shift=EIGENVALUE SHIFT

GAMMA=GAMMAO : GOSUB 2660

LAMPPO=LAMBDA-GAMMAO



2370
2372
2374
2378
2380
2382
2400
2410
2420
2424
2426
2428
2430
2432
2440
2450
2460
2470
2480
2490
<500
2510
2520
2530
2540
2550
2560
2570
2580
2600
2610
2640
2650
2660
2730
2740
2750
2755
2760
2780
2800
2810
2850
2860
2870
2880
2900
2910
2920
2930
2940
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PRINT GAMMA, LAMBDA
IF GAMMAO=.01 THEN 2382
IF LAMPPO<O0 THEN 2380
GOTO 2382
PRINT: PRINT"Mcr/Mp < LOWER LIMIT GAMMAO":END
IF LAMPPO<O0 THEN PRINT:PRINT"Mcr = 0":END
GAMMA=GAMMA1:GOSUB 2660
LAMPP1=LAMBDA-GAMMA1
PRINT GAMMA, LAMBDA
IF GAMMA1=.99 THEN 2432
IF LAMPP1>0 THEN 2430
GOTO 2432
PRINT:PRINT "Mcr/Mp > UPPER LIMIT GAMMAL":END
IF LAMPP1>0 THEN PRINT:PRINT "Mcr = Mp":END
IF LAMPPO*LAMPP1>0 THEN PRINT"ERROR":STOP
REM LAMBDA FOR GAMMA2 AT MID-INTERVAL
GAMMA2= (GAMMAO+GAMMA1) /2
GAMMA=GAMMA2 : GOSUB 2660
LAMPP2=LAMBDA-GAMMA2 ‘
PRINT GAMMA, LAMBDA
IF LAMPP2=0 THEN 2580
IF LAMPPO*LAMPP2<0 THEN 2540
LAMPPO=LAMPP2 : GAMMAO=GAMMA?2
GOTO 2550
LAMPP1=LAMPP2 : GAMMA1=GAMMA2
REM CHECK CONVERGENCE
IF ABS(GAMMA1-GAMMAO) /ABS(GAMMAl) <.01 THEN 2580
GOTO 2450
REM FINAL LOAD INTENSITY; END OF PROGRAM
GAMMA=GAMMA? |
CLS:PRINT"INELASTIC SOLUTION: Mcr =";GAMMA;"Mp"
GOTO 1260:REM PLOT BUCKLED SHAPE
Rm khkhkhkhkhhkhkkhkhkhkhkhkhkkhkhkhkhhkhkhkhbhkkkkhhkhhkkkhkhkhkhhkkhhkkhkkkihk
REM FORM ELEMENT STIFFNESS MATRICES
FOR I=1 TO NNLOAD:LOADV(I)=NLOADV(I,2)*GAMMA:NEXT I
REM SHEAR DIAGRAM FOR GIVEN LOAD INTENSITY
FOR I=1 TO NEL:SHEAR(I,1)=GAMMA*SHDIA(I,1)
SHEAR (I, 2)=GAMMA*SHDIA(I,2) :NEXT I
REM MOMENT DIAGRAM FOR GIVEN LOAD INTENSITY
FOR I=1 TO NLONG:BEND(I)=GAMMA*MOMDIA(I) :NEXT I
FOR I=1 TO NLONG
=ABS (BEND(I))
IF SOLUT=0 THEN 2880
IF (ABS(M*HP/D)/SSX+ABS(RESIDF(1)))>FY THEN 2920
IF (ABS(M*HP/D) /SSX+ABS(RESIDF(5)))>FY THEN 2920
REM NO YIELDING
ET (I)=(M/SSX)*HP/D/ELMOD:EC(I)=-ET(I)
GOTO 3400
REM CHECK IF MOMENT EXCEEDS PLASTIC MOMENT
REM COMPUTE PLASTIC MOMENT
IF M>MOPL THEN PRINT"PLASTIC MOMENT IS EXCEEDED":STOP



2980
2990
3010
3030
3050
3060
3080
3100
3120
3170
3142
21TV
3180
3200
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3400
3410
3420
3460
3470
3480
3490
3500
3510
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3650
3660
3670
3680
3690
3700
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CURVO0:=M/ELMOD/ (1.2*IBEAM)
CURV1=:M/ELMOD/ ( . 05* IBEAM)
CURV=0URVO

GOSUD 3420

GOSUB 3980

MMD =MD

CURV:=(.1TRV1

GOSUB 3420

GOSUB 3580

11D 1=MMD

1F MMDO*MMD1>0 THEN PRINT"ERROR":STOP
CURV2= ( CURVO+CURV1) /2
CURV=CUKV?2

GOSUB 3420

GOSUB 3980

MMD2=MMD

IF MMD2=0 THEN 3320

IF MMDO*MMD2<0 THEN 3280
CURVO=CURV?2 : MMDO=MMD2
GOTO 3290
CURV1=CURV2 : MMD1=MMD2
REM CHECK TOLERANCE

IF ABS(CURVO-CURV1) /ABS(CURV1)<.01 THEN 3320
GOTO 3150

ET(I)=ET:EC(I)=EC

NEXT I

GOTO 4050

YBARO=T: YBAR1=D-T

REM EVALUATE TOTAL AXIAL FORCE FOR YBARO
YBAR=YBARO :GOSUB 3660:PO=AXIALF

REM EVALUATE TOTAL AXIAL FORCE FOR YBAR1
YBAR=YBAR] : GOSUB 3660:P1=AXIALF

IF PO*P1>0 THEN PRINT"ERROR":STOP
YBAR2=(YBARO+YBAR1) /2

YBAR=YBAR2 : GOSUB 3660

P2=AXIALF

IF P2=0 THEN 3630

IF PO*P2<0 THEN 3590

P0=P2: YBARO=YBAR2

GOTO 3600

P1=P2:YBAR1=YBAR2

REM CHECK TOLERANCE

IF ABS(YBARO-YBAR1) /ABS (YBAR1)<.01 THEN GOTO 3630
GOTO 3510

YBARF=YBAR2

RETURN

REM SUBROUTINE, TOTAL AXIAL FORCE

REM EXTENT OF YIELDING

GOSUB 3720

REM TOTAL AXIAL FORCE IN SECTION

GOSUB 3920



RETURN

REM STRAINS

REM ECP, ETP ARE STRAINS AT EXTREME FIBERS
ETP=CURV*D/ (1+ (D-YBAR) /YBAR)

ECP=~ETP* (D~YBAR) / YBAR

REM EC, ET ARE STRAINS AT FLANGE MID-FIBERS
EC=ECP* (D-YBAR~T/2) / (D-YBAR) : ET=ETP* (YBAR-T/2) /YBAR
REM SUBROUTINE, COMPUTE TOTAL AXIAL FORCE IN SECTION
REM 9-POINT TRAPEZOIDAL RULE, FLANGES
AXIALC=0:AXIALT=0:FOR KKJ=1 TO 5
STRESSCC=ELMOD*EC+RESIDF (KKJ)

IF STRESSCC<-FY THEN STRESSCC=-FY
STRESSTT=ELMOD*ET+RESIDF (KKJ)

IF STRESSTT>FY THEN STRESSTT=FY
AXIALC=AXIALC+STRESSCC#B/8#T*COEF (KKJ)
AXIALT=AXIALT+STRESSTT#B/8+T*COEF (KKJ)

NEXT KKJ:AXIALC=2*AXIALC:AXIALT=2#*AXIALT

REM AXIAL FORCE, WEB, TRAPEZOIDAL RULE
SUMW=0:FOR KKJ=1 TO 5
SSTRAIN=ET+ (KKJ+3) /8* (EC-ET)
STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW) *FY
SUMW=SUMW+COEF (KKJ) *HP/8 *W*STRESSW

NEXT KKJ:AXIALW=SUMW

SUMW=0:FOR KKJ=1 TO S
SSTRAIN=EC+ (KKJ+3) /8* (ET-EC)
STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW) *FY
SUMW=SUMW+COEF (KKJ) *HP/8 *W*STRESSW: NEXT KKJ
AXIALW=AXIALW+SUMW

AXIALF=AXIALC+AXIALT+AXIALW

RETURN

REM BENDING MOMENT ABOUT MID-FIBER OF BOTTOM FLANGE
MM=AXIALC*HP

REM MOMENT CONTRIBUTION, WEB, SIMPSON'S RULE, 9 POINTS

SUMW=0:FOR KKJ=1 TO =

SSTRAIN=ET+ (KKJ+3) /8% (EC-ET)
STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

IF ABS(STRESSW)>FY THEN STRESSW=SGN (STRESSW) *FY
SUMW=SUMW+COEFS (KKJ) *HP/ 8 *W*STRESSW* ( (KKJ+3) *HP/8)
NEXT KKJ

MM=MM+SUMW

SUMW=0:FOR KKJ=1 TO 5

SSTRAIN=EC+ (KKJ+3) /8* (ET-EC)
STRESSW=ELMOD*SSTRAIN+RESIDW (KKJ)

IF ABS(STRESSW)>FY THEN STRESSW=SGN(STRESSW) *FY
SUMW=SUMW+COEF'S (KKJ) *HP/ 8*W*STRESSW#* ( (5-KKJ) *HP/ 8)
NEXT KKJ

MM=MM+SUMW

MMD=~-MM-M

RETURN



4040
4050
4090
4100
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4125
4130
4150
4170
4180
4190
4195
4197
4199
4200
4203
4204
4206
4208
4210
4360
4370
4380
4390
4430
4440
4450
4470
4480
4490
4500
4510
4520
4530
4550
4560
4590
4600
4610
4620
4630
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REM ®*hkd kA kR AR R AR AR RN AR R AR A AR R RN R AR NN AR AR
REM STRUCTURAL STIFFNESS, FLANGES

ERASE KV,KGV:DIM KV(TOTA),KGV(TOTA)

FOR I=1 TO NLONG

IFC(I)=0:IFT(I)=0:FOR KKJ=1 TO 5
AXZZC=]1:AXZZT=1:STRESSCC=ELMOD*EC(I) +RESIDF (KKJ)
STRESSTT=ELMOD*ET (I) +RESIDF (KKJ)

IF SOLUT=0 THEN 4116 '

IF STRESSCC<-FY THEN AXZ2C=0

IF STRESSTT>FY THEN AXZZT=0
SOKR7=( (KKJ-1) *B/8) “2*AX22C
IFC(I)=IFC(I)+ELMOD*COEFS (KKJ) *B/8*T*SOKR?
SOKR8=( (KKJ~1) *B/8) "2*AX22T
IFT(XI)=IFT(I)+ELMOD*CCEFS (KKJ) *B/8*T*SOKRS
NEXT KKJ

IFC(I)=2*IFC(I):IFT(I)=2*IFT(I)
JFC(I)=SHMOD*B*T"3/3

JFT(I)=SHMOD*B*T"3/3

ENC(I)=0:BETAC(I)=0

ENT(I)=0:BETAT(I)=0

FOR J=1 TO S
STRESSCC=ELMOD*EC (1) +RESIDF (J)
STRESSTT=ELMOD*ET (I)+RESIDF (J)

IF SOLUT=0 THEN 4204

IF STRESSCC<-FY THEN STRESSCC=~FY

IF STRESSTT>FY THEN STRESSTT=FY
ENC(X)=ENC(I)+COEF(J)*B/8*T*STRESSCC
ENT(I)=ENT(I)+COEF(J)*B/8*T*STRESSTT
BETAC(I)=BETAC (I)+COEFS(J)*B/8*T*STRESSCC* ((J-1)*B/8) "2
BETAT(I)=BETAT (I)+COEFS(J) *B/8*T*STRESSTT*((J-1)*B/8) "2
NEXT J

ENC(I)=2*ENC(I) :BETAC(I)=2*BETAC(I)
ENT(I)=2*ENT(I) :BETAT(I)=2*BETAT(I)

NEXT I

FOR I=1 TO NEL

PRINT"[K] flanges",I

LE=XLONG (I+1)~-XLONG(I)

IF BEND(I)<0 THEN 4510

IFI=IFT(I) :IFJ=IFT(I+1)

JFI=JFT(I) :JFJ=JFT(I+1)

GOTO 4530

IFI=IFC(I) :IFJ=IFC(I+1)

JFI=JFC(I) :JFIJ=JFC(I+1)

GOSUB 4560

GOTO 4730

KEF(1,1)=(6*IFI+6*IFJ) /LE"3
KEF(1,3)=(-4*IFI-2*IFJ)/LE"2
KEF(1,4)=(-6*IFI-6*IFJ) /LE"3
KEF(1,6)=(~-2*IFI-4*1IFJ)/LE"2
KEF(2,2)=(JFI/2+JFJ/2) /LE
KEF(2,5)=(-JFI1/2-JFJ/2) /LE



4640
4650
4660
4670
4680
4690
4700

4720 R

4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
5010
5020
5030
5040
5050
5070
5080
5090
5100
5110
5120
5140
5160
5170
5190
5210
5220
5230
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KEF (3,3)=(3*IFI+IFJ) /LE

KEF (3,4)=(4*IFI+2*IFJ) /LE"2

KEF (3,6)=(IFI+IFJ) /LE

KEF (4,4)=(6*IFI+6*IFJ) /LE"3

KEF (4,6)=(2%IFI+4+IFJ) /LE"2

KEF (5,5)=(JFI/2+JFJ/2) /LE

KEF (6,6)=(IFI+3*IFJ) /LE
ETURN

REM ADD TO GLOBAL VECTOR KV()
FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3

REM IKKE, KKE ARE ADDRESSES IN ELEMENT MATRIX
REM IKK, JKK ARE ADDRESSES IN GLOBAL MATRIX
IKKE= (II~1) *3+KK

JKKE= (JJ-1) *3+LL

IF IKKE>JKKE THEN 4860

IKK=( (I-1) *2+(II-1)#*2)*3+KK

JKK= ( (I-1) *2+(JJ-1) *2) *3+LL

REM KGLOBAL=ADDRESS IN GLOBAL VECTOR
GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEF ( IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

IF BEND(I)>=0 THEN 4920

IFI=IFT(I) :IFJ=IFT(I+1)

JFI=JFT(1) :JFI=JFT (I+1) -

GOTO 4940

IFI=IFC(I): IFJ=IFC(I+1)

JFI=JFC(I) :JFI=JFC(I+1)

REM FORM 6x6 MATRIX

GOSUB 4560

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3

IKKE= (II-1) *3+KK

JKKE= (JJ-1) *#3+4LL

IF IKKE>JKKE THEN 5090

IKK=( (I-1)*2+41+(II-1) *2)*3+KK

JKK=( (I-1) *2+1+(JJ~1) *2) *3+LL

GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEF ( IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

NEXT I

REM khkkhhdkhkhkhhkhhhhkhhhhhhkhhkkhhhkhhhkdbhokhkkhhhkhhhhkhkhkhkkkkkk
REM STRUCTURAL STIFFNESS, STIFFENERS
FOR I=1 TO NSTIF

IFS=STIFFEN(I,2) "3*STIFFEN(I,3)/12
JFS=STIFFEN(I,2) *STIFFEN(I,3)"3/3

REM FORM 6x6 MATRIX

KEFS (1,1)=12%ELMOD*IFS/HP"3
KEFS(1,2)=6*ELMOD*IFS/HP"2
KEFS(1,4)=-12*ELMOD*IFS/HP"3



5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5490
5500
5510
5530
5531
5532
5540
5550
5554
5560
5562
5565
5570
5580
5584
5590
5600
5610
5620
5650
5660
5670
5680
5690
5710
5720
5730
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KEFS (1,5) =6 *ELMOD*IFS/HP"2

KEFS (2, 2) =4 *ELMOD* IFS/HP

KEFS (2,4) =-6*ELMOD*IFS/HP"2

KEFS (2,5) =2 *ELMOD* IFS/HP

KEFS (3, 3) =SHMOD*JFS/HP

KEFS (3, 6) =~SHMOD*JFS/HP

KEFS (4,4)=12*ELMOD*IFS/HP"3

KEFS (4,5) ==6*ELMOD*IFS/HP"2

KEFS (5, 5) =4 *ELMOD* IFS/HP

KEFS (6, 6) =SHMOD*JFS/HP

REM ADD TO GLOBAL MATRIX

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE=(II-1)*3+KK

JKKE= (JJ~1) *3+LL

IF IKKE>JKKE THEN 5440

IKK=( (STIFFEN(I,1)~1)*2+(II-1))*3+KK
JKK=( (STIFFEN (I,1)=1)*2+(JJ-1))*3+LL
GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +KEFS ( IKKE , JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II
NEXT I

REM [TIITITITTITIILITEYITSIZYRSRSSSSRES 2SR SR RSR RS R X 2 2 & 83
REM GEOMETRIC STIFFNESS, FLANGES

FOR I=1 TO NEL

PRINT"[Kg] FLANGES",I

LE=XLONG (I+1)-XLONG(I)

IF BEND(I)<O THEN 5562
NI=ENT(I) : BETAI=BETAT(I)

IF BEND(I+1)<0 THEN 5550

NJ=ENT (I+1) : BETAJ=BETAT (I+1) :GOTO 5554
NJ=ENC (I+1) : BETAJ=BETAC (I+1)
NIJ=(NI+NJ) /2:BETAIJ=(BETAI+BETAJ)/2
GOTO 5590

NI=ENC(I) : BETAT=BETAC(I)

IF BEND(I+1)>=0 THEN 5580

NJ=ENC (I+1) : BETAJ=BETAC (I+1) :GOTO 5584
NJ=ENT (I+1) : BETAJ=BETAT (I+1)
NIJ=(NI+NJ)/2:BETAIJ=(BETAI+BETAJ)/2
REM FORM 6x6 MATRIX

GOSUB 5620

GOTO 5730

KGEF(1,1)=NIJ/LE

KGEF(1,4)=-NIJ/LE

KGEF (2,2)=BETAIJ/LE

KGEF(2,5" =-BETAIJ/LE

KGEF (4,4)=NIJ/LE

KGEF (5,5) =BETAIJ/LE

RETURN

REM ADD TO GLOBAL VECTOR
FOR II=1 TO 2:FOR JJ=II TO 2



5740
5770
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5800
5810
5839
5840
5850
5870
5880
5882
5890
5892
5894
5900
5910
5912
5920
5922
5924
5930
5950
5960
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6030
6040
6060
6070
6080
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6110
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FOR KK=1 TO 3:FOR LL=1 TO 3
IKKE= (II-1) *3+KK

JKKE= (JJ-1) *3+LL

IF IKKE>JKKE THEN 5850
IKK=((I-1)*2+(II-1)*2) *3+KK

JKK=( (I-1)*2+(JT-1) *2) *3+LL

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGEF ( IKKE, JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

IF BEND(I)<O THEN 5910

NI=ENC(I) :BETAI=BETAC(I)

IF BEND(I+1)<0 THEN 5892

NJ=ENC (I+1) :BETAJ=BETAC (I+1) :GOTO 5894
NJI=ENT (I+1) : BETAJ=BETAT (I+1)
NIJ—(NI+NJ)/2'BETAIJ=(BETAI+BETAJ)/2
GOTO 5930

NI=ENT (I) :BETAI=BETAT (I)

IF BEND(I+1)>=0 THEN 5922

NJ=ENT (I+1) : BETAJ=BETAT (I+1) :GOTO 5924
NJ=ENC (I+1) : BETAJ=BETAC (I+1)
NIJ=(NI+NJ)/2:BETAIJ=(BETAI+BETAJ) /2
GOSUB 5620

REM ADD TO GLOBAL VECTOR

FOR II=1 TO 2:FOR JJ=II TO 2

FOR KK=1 TO 3:FOR LL=1 TO 3

IKKE=(II-1) *3+KK

JKKE=(JJ-1) *3+LL

IF IKKE>JKKE THEN 6080

IKK=( (I-1)*2+1+(II~1)*2)*3+KK

JKK=( (I-1)*2+1+(JJ-1) *2) *3+LL

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGEF ( IKKE, JKKE)
NEXT LL:NEXT KK:NEXT JJ:NEXT II

NEXT I

REM *%%kdkkdkkhhkdhkhhkhkhhkdkhhkhkhkhhhkdhrhkhhhkhhkhhhhkhhkhkhhkhkhkhkhhtks
REM GEOMETRIC STIFFNESS OF VERTICAL LOADS & REACTIONS
FOR I=1 TO NNLOAD
QET=NLOADV(I,3)-HP/2:IF QET<0 THEN QET=0
QEB=NLOADV(I,3)+HP/2:IF QEB>0 THEN QEB=0
KGD(2,2)=0:KGD(5,5)=0

KGD (1, 1)—LOADV(I)*(NLOADV(I 3)-QET~QEB) /HP"2
KGD(1,4)=-KGD(1,1)

KGD(4,4)=KGD(1,1)
KGD(2,2)=KGD(2,2)+LOADV(I) *QEB
KGD(5,5)=KGD(5,5) +LOADV(I) *QET

REM ADD TO GLOBAL VECTOR KGV()

FOR II=1 TO 6:FOR JJ=II TO 6

IKK= (NLOADV (I, 1)-1) *6+II

JKK=(NLOADV (I,1)~1) *6+JJ

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGD (II,JJ)



287

6260 NEXT JJ:NEXT II

6270 NEXT I

6280 REM hkhkhkkkkhkhkkkkdhkhkhhhkrhkkkhhdkh Ak hkk kb kAR kA kI b hkk Ak khhkkk
6290 REM STRUCTURAL ELEMENT STIFFNESS MATRIX, WEB

6330 FOR I=1 TO NEL

6340 PRINT"([K] web",I

6350 GOSUB 6380

6360 NEXT I

6370 GOTO 7130

6380 AA=(XLONG (I+1)~-XLONG(I))/2

6410 BB=HP/2

6500 REM GAUSS INTEGRATION

6510 REM CLEAR KEW A

6520 ERASE KEW:DIM KEW(12,12)

6530 JGAUSS=3:KGAUSS=3:IF SOLUT=1 THEN JGAUSS=3:KGAUSS=9
6540 FOR J=1 TO JGAUSS

6550 FOR K=1 TO KGAUSS

6570 KSI=XSP(J) :ETA=YSP (K)

6590 WEIGH=WSPX (J) *WSPY (K)

6600 IF SOLUT=0 THEN YIEL=0:GOTO 6660

6620 YIEL=0

6622 IF BEND(I)<0 THEN 6636

6624 KORAN1=ELMOD* (EC(I)~-ET(I))* ((ETA+1)/2)

6630 STRESL=RESIDWW (K)+ELMOD*ET (I)+KORAN1:GOTO 6640

6636 KORAN2: ET(I)-EC(I))* ((ETA+1)/2)

6638 STRESL=RESIDWW (K)+ELMOD*EC (I)+ELMOD*KORAN2

6640 IF BEND(I+1)<0 THEN 6644

6641 KORAN3=ELMOD* (EC(I+1)-ET (I+1))*((ETA+1)/2)

6642 STRESR=RESIDWW (K)+ELMOD*ET (I+1)+KORAN3:GOTO 6646
6644 KORAN4=ELMOD* (ET(I+1)~-EC(I+1))*((ETA+1)/2)

6645 STRESR=RESIDWW (K)-+ELMOD*EC (I+1)+KORAN4

6646 SIGX=STRESL* (.5-KSI/2)+STRESR* (.S+KSI/2)

6648 IF ABS(SIGX)>FY THEN YIEL=1

6660 REM CONSTITUTIVE MATRIX D()

6680 EETT=ELMOD:GGTT=SHMOD:IF YIEL=1 THEN EETT=0

6690 D(1,1)=EETT*W"3/12/(1-NU~2)

6695 D(1,2)=EETT*W-3/12/(1-NU"2)*NU

6700 D(2,1)=D(1,2):D(2,2)=D(1,1)

6710 D(3,3)=GGTT*W"3/12

6720 REM [B] MATRIX

6730 FOR JJ=1 TO 4

6740 KI=KSI(JJ):EI=ETA(JJ) :KO=KSI*KSI (JJ) :EO=ETA*ETA(JJ)
6750 KK=(JJ~-1) *3

6755 KORANS=2% (KO+1) * (E0+1)

6760 B(1,KK+1)=-1/8/AA 2% (2#%KI* (EO+1)* (KI-2*KSI)~-KORANS)
6765 KORANG6=4*AA*KI 3% (KO+1) * (EO+1)

6770 B(1,KK+3)=1/8/AA~2* (2%AA*KI 3% (KO-1) * (EO+1)+KORANG)
6780 B(2,KK+1)=-1/8/BB~2% (2*EI* (KO+1)* (EI~2*ETA) ~KORANS)
6785 KORAN7=4*BB*EI 3% (KO+1) * (EO+1)

6790 B(2,KK+2)=-1/8/BB"~2% (2*BB*EI~3% (KO+1)* (EO~1)+KORAN7)
6795 KORANS=KI*EI*(2+KO+EQ-KSI~2-ETA"2)
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6797 KORAN9=KI* (E0+1) * (EI-2*ETA)+ (KO+1) *EI* (KI-2*KSTI)
6800 B(3,KK+1)=2/8/AA/BB*(KORANS+KORAN9)

6805 KORIA1=2*BB*EI"2*KI*(E0-2-1)+BB*EI 2*KI*(E0+1) "2
6810 B(3,KK+2)=2/8/AA/BB*KORIA1

6815 KORIA2=2*AA*KI 2*EI* (KO~ 2-1)+AA*KI 2*EI* (KO+1) "2
6820 B(3,KK+3)=-2/8/AA/BB*KORIA2

6830 NEXT JJ :

6850 FOR JJ=1 TO 12:FOR KK=1 TO 3:SUM=0:FOR LL=1 TO 3
6860 SUM=SUM+B (LL,JJ) *D(LL, KK)

6870 NEXT LL:E(JJ,KK)=SUM:NEXT KK:NEXT JJ

6880 REM (E] {B] MATRIX PRODUCT, PUT IN (F]

6890 FOR JJ=1 TO 12:FOR KK=1 TO 12:SUM=0:FOR LL=1 TO 3
6900 SUM=SUM+E (JJ,LL)*B(LL,KK)

6910 NEXT LL:F(JJ,KK)=SUM:NEXT KK:NEXT JJ

6940 FOR JJ=1 TO 12:FOR KK=1 TO 12

6950 KEW(JJ, KK)=KEW(JJ,KK) +AA*BB*WEIGH*F (JJ, KK)

6960 NEXT KK:NEXT JJ

6970 NEXT K:NEXT J

6980 REM ADD TO GLOBAL VECTOR

6990 FOR II=1 TO 4:FOR JJ=II TO 4

7000 FOR KK=1 TO 3:FOR LL=1 TO 3

7030 IKKE=(II-1)*3+KK

7040 JKKE=(JJ-1)*3+LL

7050 IF IKKE>JKKE THEN 7110

7060 IKK=((I-1)*2+(II-1))*3+KK

7070 JKK=((I-1)*2+(JJ-1))*3+LL

7090 GOSUB 9670

7100 KV (KGLOBAL)=KV (KGLOBAL) +KEW (IKKE, JKKE)

7110 NEXT LL:NEXT KK:NEXT JJ:NEXT II

7120 RETURN .

7130 REM GEOMETRIC STIFFNESS MATRIX WEB *kkkkkkkkkkkkkkkkhk
7150 FOR I=1 TO NEL

7160 PRINT"([Kg] WEB",I

7170 GOSUB 7200

7180 NEXT I

7190 GOTO 7910

7200 REM SUBROUTINE; GEOMETRIC STIFFNESS ELEMENT MATRIX
7210 AA=(XLONG (I+1)~XLONG(I))/2:BB=HP/2

7220 REM CLEAR KGEW

7230 ERASE KGEW:DIM KGEW(12,12)

7240 REM GAUSS INTEGRATION

7250 FOR J=1 TO JGAUSS

7260 FOR K=1 TO KGAUSS

7270 KSI=XSP(J):ETA=YSP(K) :REM NATURAL COORDINATES
7280 WEIGH=WSPX(J)*WSPY (K)

7290 REM STRESSES AT SAMPLING POINTS

7300 REM SIGMA-X

7310 IF BEND(I)<0 THEN 7350

7320 KORIA3=ELMOD* (EC(I)~ET (I))* ((ETA+1)/2)

7340 STRESL=RESIDWW (K)+ELMOD*ET (I)+KORIA3:GOTO 7390
7350 KORIA4=ELMOD* (ET(I)~EC(I))* ((ETA+1)/2)
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7390
7395
7400
7410
7420
7460
7461
7462
7470
7480
7490
7494
7504
7505
7506
7520
7530
7554
7556
7557
7558
7562
7564
7566
7572
7574
7576
7590
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7630
7710
7720
7740
7745
7760
7770
7780
7810
7820
7830
7840
7850
7870
7880
7890
7900
7910
7920
7930
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STRESL=RESIDWW (K) +ELMOD*EC (I)+KORIA4

IF BEND(I+1)<0 THEN 7410

KORIAS5=ELMOD* (EC(I+1)~ET (I+1)) *( (ETA+1)/2)
STRESR=RESIDWW (K) +ELMOD*ET (I+1)+KORIAS5 :GOTO 7460
KORIA6=ELMOD* (ET (I+1) ~EC(I+1)) *( (ETA+1)/2)
STRESR=RESIDWW (K) +ELMOD*EC (I+1)+KORIA6
SIGX=STRESL* (.5-KSI/2)+STRESR* (.5+KSI/2)

IF SOLUT=0 THEN 7480

IF ABS(SIGX)>FY THEN SIGX=SGN(SIGX)*FY

REM TAU-XY; CONSTANT SHEAR STRESS OVER WEB HEIGHT
TAUXYL=SHEAR(I, 1) /HP/W:TAUXYR=SHEAR(I,2)/HP/W
TAUXY=TAUXYL* (. 5-KSI/2) +TAUXYR* (.5+KSI/2)

SIGY=0

FOR JJ=1 TO 4

KI=KSI(JJ) : EI=ETA(JJ) : KO=KSI*KSI (JJ) : EO=ETA*ETA (JJ)
KK=(JJ~1) *3

M(1,KK+1)=1/4/AA*KI* (EO+1)
M(2,KK+1)=1/4/BB*EI* (KO+1)

NEXT JJ

REM FORM MATRIX [SIGM] 4x4 OF STRESSES
SIGM(1,1)=SIGX:SIGM(1,2)=TAUXY:SIGM(2,1)=TAUXY
SIGM(2,2)=SIGY

FOR II=1 TO 12:FOR JJ=1 TO 2:SUM=0:FOR KK=1 TO 2
SUM=SUM+M (KK, IT) *SIGM (KK, JJ)

NEXT KK:MTS(IXI,JJ)=SUM:NEXT JJ:NEXT II

FOR II=1 TO 12:FOR JJ=1 TO 12:SUM=0:FOR KK=1 TO 2
SUM=SUM+MTS (II,KK) *M (KK, JJ)

NEXT KK:MTSM(II,JJ)=SUM:NEXT JJ:NEXT II

REM ADD CONTRIBUTION TO ELEMENT MATRIX

FOR II=1 TO 12:FOR JJ=II TO 12 .

KGEW (II,JJ)=KGEW(II,JJ)+MTSM(II,JJ)*WEIGH

NEXT JJ:NEXT II

NEXT X

NEXT J

FOR II:-1 TO 12:FOR JJ=II TO 12

KGEW (I:,JJ)=KGEW(II,JJ)*AA*BB*W:NEXT JJ:NEXT II
REM ADD TO GLOBAL VECTOR

FOR II=1 TO 4:FOR JJ=II TO 4

FOR KK=1 TO 3:FOR LL=1 TO 3

IKKE=(II-1) *3+KK

JKKE=(JJ-1) *3+LL

IF IKKE>JKKE THEN 7890

IKK=((I-1)*2+(II-1))*3+KK

JKK=( (I-1)*2+(JJ-1) ) *3+LL

GOSUB 9670

KGV (KGLOBAL) =KGV (KGLOBAL) +KGEW ( IKKE , JKKE)

NEXT LL:NEXT KK:NEXT JJ:NEXT II

RETURN

REM EIGENVALUE ROUTINE Akkkkhkhkhkhkhhkdkhhkhkhkhkhkhkhkhkkhhkhkhkhkkkk
REM INVERSE ITERATION, WITH EIGENVALUE SHIFTING
REM ADD (FIXED) RESTRAINT CONDITIONS TO [K]
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7960
7970
7980
7990
8000
8010
8020
8022
8023
8024
8025
8026
8040
8070
8100
8110
8130
8140
8150
8170
8180
8200
8210
8220
8230
8240
8250
8260
8270
8280
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8300
8310
8320
8340
8350
8360
8370
8400
8410
8420
8440
8450
8480
8490
8500
8510
8520
8530
8540
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FOR I=1 TO NRNOD

FOR J=1 TO 3

IKK= (NODRES (I, 1) ~1) *3+J: JKK=IKK

GOSUB 9670

RESTRAI=NODRES (I,J+1)

IF RESTRAI=-1 THEN RESTRAI=1E+15:REM FIXED RESTRAINT
KV (KGLOBAL) =KV (KGLOBAL) +RESTRAI

NEXT J:NEXT I

REM ADD ELASTIC RESTRAINT COEFFICIENTS

FOR I=1 TO NNRESS
IKK=CCOEFF(I,1) : JKK=CCOEFF (I, 2) :GOSUB 9670

KV (KGLOBAL) =KV (KGLOBAL) +CCOEFF (I, 3)

NEXT I

FOR J=1 TO TOTA:KGV(J)=KGV(J) /GAMMA:NEXT J

FOR I=1 TO TOTA:KBAR(I)=KV(I)+SHIFT*XGV(I):NEXT I
FOR I=1 TO TOTA:KINV(I)=KBAR(I):NEXT I

GOSUB 8960

REM INVERSE ITERATION ROUTINE

REM LAMBDA=EIGENVALUE; LAMBDAP=SHIFTED EIGENVALUE
LAMBDAO=1E+20

REM RO() IS INITIAL ASSUMED DISPLACEMENT EIGENVECTOR
FOR I=1 TO NEQ:R(I)=RO(I):NEXT I

ERASE Y:DIM Y (NEQ)

FOR I=1 TO NEQ

JLIM1=1:JLIM2=I+HBW~1

IF I>HBW THEN JLIM1=I-HBW+1
IF I>NEQ-HBW THEN JLIM2=NEQ
FOR J=JLIM1 TO JLIM2
IKK=T : JKK=J

IF JKK<IKK THEN IKK=J:JKK=I
GOSUB 9670

Y(I)=Y (I)+KGV (KGLOBAL)*R(J)
NEXT J

NEXT I

YYS=0

FOR I=1 TO NEQ
YYS=YYS+Y (I) *Y (I)

NEXT I

YABS=SQR (YYS)

FOR I=1 TO NEQ
Z(T)=Y(I)/YABS

NEXT I

GOSUB 9250

REM RAYLEIGH QUOTIENT
ERASE Y:DIM Y (NEQ)

FOR I=1 TO NEQ
JLIM1=1:JLIM2=I+HBW~-1

IF I>HBW THEN JLIM1=I~KBW+1
IF I>NEQ-HBW THEN JLIM2=NEQ
FOR J=JLIM1 TO JLIM2
IKK=1I : JKK=J
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8630
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9170
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IF JKK<IKK THEN IKK=J:JKK=I
GOSUB 9670
Y(I)=Y(I)+KGV(KGLOBAL)*R(J)
NEXT J

NEXT I

ERASE VX:DIM VX(NEQ)

FOR I=1 TO NEQ
JLIM1=1:JLIM2=I+HBW-1

IF I>HBW THEN JLIM1=I-HBW+1
IF I>NEQ-HBW THEN JLIM2=NEQ
FOR J=JLIM1 TO JLIM2
IKK=1:JKK=J

IF JKK<IKK THEN IKK=J:JKK=I
GOSUB 9670

VX (I)=VX(I)+KBAR(KGLOBAL) *R(J)

NEXT J

NEXT I

PROD1=0

FOR I=1 TO NEQ
PROD1=PROD1+R(I) *VX(I)
NEXT I

PROD2=0

FOR I=1 TO NEQ
PROD2=PROD2+R (1) *Y (I)
NEXT I
LAMBDAP=-PROD1/PROD2
LAMBDA1=LAMBDAP+SHIFT
PRINT "lambda=";LAMBDA1l
REM CHECK CONVERGENCE

IF ABS(LAMBDA1~LAMBDAO) /ABS (LAMBDA1l)<.001 THEN 8920

LAMBDAO=LAMBDA1l

GOTO 8320
LAMBDA=LAMBDA1l

RETURN

REM CROUT REDUCTION ROUTINE
FOR J=2 TO NEQ

Il1=2

IF J>HBW THEN I1=J-HBW+2
FOR I=I1 TO J

SUM=0

Kl=1

IF J>HBW THEN Kl1=J-HBW+1
FOR K=K1 TO I-1
IKK=K:JKK=1

GOSUB 9670:AKI=KINV (KGLOBAL)

IKK=K:JKK=J

GOSUB 9670 :AKJ=KINV (KGLOBAL)

IKK=K:JKK=K

GOSUB 9670 : AKK=KINV (KGLOBAL)

SUM=SUM+AKI*AKJ /AKK
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9190 NEXT K

9200 IKK=I:JKK=J:GOSUB 9670

9210 KINV(KGLOBAL)=KINV (KGLOBAL)-SUM

9220 NEXT I

9230 NEXT J

9240 RETURN

9250 FOR I=2 TO NEQ

9270 SUM=0

9290 Ki=1

9300 IF I>HBW THEN K1=I-HBW+1

9310 FOR K=K1 TO I-1

9330 IKK=K:JKK=I .

9340 GOSUB 9670:AKI=KINV(KGLOBAL)

9360 IKK=K:JKK=K

9370 GOSUB 9670:AKK=KINV (KGLOBAL)

9380 SUM=SUM+AKI*Z (K) /AKK

9390 NEXT K

9400 Z(I)=Z(I)-SUM

9410 NEXT I

9440 ERASE R:DIM R(NEQ)

9450 IKK=NEQ:JKK=NEQ

9460 GOSUB 9670

9470 R(NEQ)=2 (NEQ) /KINV (KGLOBAL)

9480 FOR I=NEQ-1 TO 1 STEP -1

9490 SUM=0

9510 J2=NEQ

9520 IF J>HBW THEN J2=HBW+I-1

9530 IF J2>NEQ THEN J2=NEQ

9540 FOR J=I+1 TO J2

9560 IKK=I:JKK=J

9570 GOSUB 9670:AIJ=KINV(KGLOBAL)

9580 SUM=SUM+AIJ*R(J)

9590 NEXT J

9610 IKK=TI:JKK=I

9620 GOSUB 9670 :AII=KINV(KGLOBAL)

9630 R(I)=(Z(I)-SUM)/AII

9640 NEXT I

9650 RETURN

9660 REM **************************************************
9670 REM SUBROUTINE, ADDRESSES IN GLOBAL VECTORS
9680 IF IKK>JKK THEN 9720

9690 IF JKK>HBW THEN 9710

9700 KGLOBAL=IKK+JKK*(JKK-1)/2:GOTO 9720

9710 KGLOBAL=HBW* (HBW+1) /2+ (JKK-HBW-1) *HBW+IKK- (JKK~HBW)
9720 RETURN

9730 REM DATA STATEMENTS **********************************
9731 REM SOLUTION TYPE (ELASTIC=0, INELASTIC=1)
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9760
9770
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9775
9776
9777
9800
9810
9820
9821
9822
9824
9826
29840
9850
9852
9854
€866
2868
9870
9872
9874
9876
9880
9890
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9899
9900
9901
9902
9903
9905
9906
9909
9912
9915
9923
9924
8926
9928
9930
9932
9980
9981
9985
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DATA 0

REM CROSS-SECTIONAL DIMENSIONS
DATA 353,128,10.7,6.5

REM NUMBER OF MAIN DIFFERENT LONGITUDINAL DIVISIONS
DATA 3

REM NUMBER OF SUBDIVISIONS, SUBDIVIDING INTERVAL
DATA 6,500 ‘

DATA 7,1000

DATA 3,500

REM MATERIAL PROPERTIES

DATA 2E5,300,0.3

REM RESIDUAL STRESSES

REM FLANGES

DATA 200,100,40,20,10

REM WEB

DATA -180,-170,-130,-40,200
REM LOADS AND REACTIONS DATA
DATA 8

DATA 1,-48.5625E3,30

DATA 1,-48.5625E3,231.9

DATA 5,139.617E3,-176.5

DATA 8,-24.2813E3,231.9

DATA 10,-24.2813E3,231.9

DATA 12,-24.2813E3,231.9

DATA 14,127.4765E3,-176.5
DATA 17,-97.125E3,0

REM BENDING MOMENT AT ONE LONGIUDINAL POINT
DATA 1,0

REM SHIFT, GAMMAO, GAMMA1l
DATA 0.2,0,0

REM NODAL RESTRAINTS

DATA 7

data 2,0,1E7,0

data 10,-1,0,0

data 16,0,1E7,0

data 20,0,1E7,0

data 24,0,1E7,0

DATA 27,-1,0,0

DATA 28,-1,0,0

REM GENERAL RESTRAINTS

DATA 4

DATA 2,55.35

DATA 16,55.35

DATA 20,55.35

DATA 24,55.35

REM INITIAL DISPLACEMENT EIGENVECTOR
DATA 1

DATA 1,1.,0,0

10000 REM ST.FFENERS
10010 DATA 1
10012 DATA 5,128,10



Appendix B

WORKED EXAMPLE

Consider the beam with two overhangs shown in Fig. B.1. The
beam geometry, loading and restraint conditions are also shown in
that Figure. The dimensions of the W360x39 cross section used as
well as the residual stress distribution are given in Fig. B.2. The mesh
idealization which was used is shown in Fig. B.3 where the
longitudinal point numbers are indicated by circles and nodal point
numbers are also given. For a quick approximate estimate of the
buckling load, an elastic solution is sought with a small value of the
shift. This solution is used afterwards to estimate the best values of

shift, lower and upper bounds to be used with the inelastic solution.
B.1 Preliminary calculations to prepare input data

1. Determine the plastic moment from the nominal dimensions,

neglecting the fillets:
The plastic modulus Z,:

2
Z, =bt(d-t) +_(_‘_i_l_2flhv.

2
- 3
— 128x10.7(353 - 10.7) +323 2"10'7) 6.5 _647.5x10° mm

3 6
M, =Z F, =647.5x10x300=194.2x10 N.mm

2. The value of P corresponding to a maximum negative

moment, which occurs at left column, equals to the plastic moment is:



(8]
O
i

6
Mp - 19427(10
2x2000 2x2000

3
=48.56x10 N

-
—

3. For lateral restraint above the top flange:

The distance, hh, between the centroid or middle surface of top
flange and the point of lateral restraint (within which a fictitious 2-

node element is introduced).
hh = 50 + 5.35 = 55.35 mm

B.2 Input data
1. Solution type: SOLUT
SOLUT =0 for elastic.
SOLUT =1 for inelastic.
An elastic solution is chosea as a first trial:
DATA O
An inelastic solution is chosen in the final trial:
DATA 1
2. Cross-sectional dimensions: D,B,T,W.
DATA 353,128,10.7,6.5
3. Mesh characteristics

Number of longitudinal main divisions:

DATA 3

For each main division, in a left-right order along the beam, a
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data statement is expressed containing the number of subdivisions

and their regular spacing:
DATA 6,500
DATA 17,1000
DATA 3,500
4. Material properties: elastic modulus (ELMOD), yield stress (FY) and
Poisson's ratio (NU).
DATA 2ES,300,0.3
5. Residual stresses:
Flange ( (o191, (6rp)2, (61£)3, (61£)4, (61)5 ):
DATA 200,100,40,20,10
WEB ( (6w)1> (Orw)2: (Orw)3: (Orw)as (Orw)s ):
DATA -180,-170,-130,-40,200
6. Loads and reactions:
Number of loads and reactions:

DATA 8

The longitudinal point number where the force is applied, the
force (positive upwards and negative downwards) and the height of
application of the force above or below the shear ientre (positive

above and negative below):
DATA 1,-48.5625E3,30

DATA 1,-48.5625E3,231.9
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DATA 5,139.617E3,-176.5

DATA 8,-24.2813E3,231.9

DATA 10.-24.2813E3,231.9

DATA 12,-24.2813E3,231.9

DATA 14,127.4765E3,-176.5

DATA 17,-97.125E3,0

7. Bending moment at a selected longitudinal point:

Longitudinal point number, bending moment (positive if

causing tension on the bottom flange and negative otherwise):
DATA 1,0
8. Shift, lower bound and upper bound.

An elastic solution is first sought with a relatively small shift.

The chosen values for upper and lower bounds are unimportant

DATA 0.2,0,0

After obtaining a value of M /M, = 0.77 an inelastic solution

is sought with the following data statement:
DATA 0.7,0.6,0.99
9. Nodal restraints:

Number of restrained points:
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DATA 8

For each restrained node enter the node number, restraint
against lateral deflection, restraint against twisting rotation and
restraint against rotation about the vertical axis. A value of -1
implies a fixed restraint and a value of O implies no restraint. An
elastic (partial) restraint is specified simply by entering the actual
restraint stiffness. The lateral restraint above nodes 2, 16, 20 and 24
will be considered in the next data section “General restraint”. It is
important to exclude these lateral restraint acting above the nodal
points at this stage. It can be assumed that the torsional rotation
angles above the nodes have the same values at these nodes. The
elastic restraints against twisting applied above nodes 2, 10, 20 and

24 will therefore be specified at these nodes:

DATA 2,0,1E7,0

DATA 9,0.-1,0

DATA 10,-1,0,0

DATA 16,0,1E7,0

DATA 20,0,1E7,0

DATA 24,0,1E7,0

DATA 27,-1,0,0

DATA 28,-1,0,0
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10. General restraints
Number of points restrained above the top flange.
DATA 4

For each restrained point, enter the node number nearest that
point and the height of lateral restraint above the middle surface of

top flange.
DATA 2,55.35
DATA 16,55.35
DATA 20,55.35
DATA 24,55.35
11. Initial displacement vector:
Number of nodes at which displacements are specified:
DATA 1

For each node, enter the specified normalized values for the
lateral displacement, the rotation about the longitudinal axis, and the

rotation about the vertical axis:
DATA 1,1,0,0
12. Stiffeners:

Number of stiffeners:
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DATA 1

For each stiffener, enter the longitudinal point number at
which the stiffener is used, the width of the stiffener, and its

thickness:
DATA 5,128,10
B.3 Output data
1. Normalized buckling displacements at all nodes, given in Fig. B.4.

2. M¢,/Mp, given as 0.8986 in Fig. B.S.

3. Normalized buckled shape, given in Fig. B.5.
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INELASTIC SOLUTION:

Mcr = .8985937499999999 Mp

Normalized buckled shape

Theta-X

Theta-Y

- — — — — . T 55 G W G T W WS Y S R G P M e A W G A et G S S e S S SR S S T W O S e e

-7.27E-04
-6.71E-05
-5.85E-04
-8.09E-05
-4 ,22E-04
-7.63E-05
~-2.26E-04
-4 .87E-05
4 .57E-07
-4 .06E-17
2.33E-04
5.32E-05
4.32E-04
6.79E~-05
6.77E-04

Press ENTER to continue .

7 .98E~-05
7.29E-04
8.54E~-05
6.49E-04
7 .62E~05
5.12E-04
6.02E-05
3.47E-04
4.19E-05
1.71E-04
2.90E-05
1.17E-17
=4 .46E-17
-7.41E-05
-2.58E-05
-1.39E-04
~5.39E-05
-1.98E-04
-8.14E-05

1.95E-06
1.21E-06
1.57E-06
1.36E~06
1.04E-06
9.64E~07
5.31E-07
4.94E-07
-3.97E-15
-2.04E-09
-5.38E-07
-5.17E-07
-1.07E~06
-1.03E-06
-1.82E-06

-1.42E-06
-1.89E-06
-1.88E-06
~1.78E~-06
~1.37E-06
=1.33E-06
<1.34E~-06
~9.36E-07
=7.48E-07
~4.24E-07
-4 ,.22E-07
~4.94E-09
-1.29E-08
1.39E-07
1.30E-07
2.48E-07
2.42E-07
3.11E-07
3.06E-07

~1.41E-07

-8.06E-09
2.65E-08
1.31E-09
1.17E-07
1.40E-08
1.55E-07
1.86E-08
1.73E-07
1.46E-08
1.77E-07
1.66E-08
1.58E-07
4.47E~08
1.38E-07
5.56E-08
1.22E-07
5.59E-08
1.16E-07
5.46E-08

Fig. B.4 Normalized buckling displacements, predicted
for the worked example
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Appendix C

BENDING STIFFNESS OF OPEN-WEB STEEL JOISTS

Fig. C.1 shows an open-web steel joist with a span length L and
end panel length Lp. The top chord at both ends was assumed to
extend a certain distance beyond the end of the the web member to

account for the joist seat. This joist can be modelled as a beam with a

moment of inertia I7 for the central portion between end panels and

a moment of inertia Ip, which is taken equal to that of the top chord

member, for the end panel spans, as indicated in Fig. C.2. Applying an
in-plane bending moment, M, at the end q, and assuming simply

supported end conditions, the end rotation is given as

M

2 2 2 3
=M g -1pa’- 3L +3L-2L/L]
15351 00,1 T i 12X p*3hp - 2Lp/L)

[C.1] o

Because 17 >> I and L >> Lp, the expression for end rotation can
be approximated as

[C2] o =ML,

i EI,

Therefore, the in-plane bending stiffness of the open-web steel

joist is obtained as

El,

[C3 Kp=
) B L,

£z
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Fig. C.1 Open-web steel joist
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Fig. C.2 Equivalent beam model
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Appendix D

The design procedures given in Chapter 7 for cantilever-
suspended span beams are verified here for different cross sections
under a variety of loading, geometry and restraint conditions. These
verifications are given in Tables D.1, D.2, D.3 and D.4 for cases 1, 2
and 3 of beams with fork supports, and for the case of beams
without fork supports, respectively. The yield stress and modulus of
elasticity are taken as 300 MPa and 200000 MPa, respectively. The
elastic values of M¢ /M, are given in the tables for both the
proposed design procedure and the finite element predictions. These
elastic values were reduced according to the CSA standard CAN/CSA-
516.1-M89 (CSA 1989) using equation [7.26] to obtain the inelastic
buckling capacities. The predicted/design ratios of the inelastic
buckling capacities are given in the tables. The ratio P;/P, shown on
Tables D.2 and D.4 indicates the ratio of the load transferred to the
cantilever tip from the suspended span, to the joist load applied at
the top flange level within the cantilever span. It should be noted

that the values of M., given in the tables refer to the maxi m

absolute moment along the beam.
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Secion L m R L./L Ky Elastic M/M,, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) Design
W310x39 6 06 0.25 6E7 3.097  3.285 1.00
W310x39 6 0.6 0.25 3E9 3.591 3.983 1.00
W310x39 6 1.0 0.25 3E9 4062 4917 1.00
W310x39 6 1.0 0.25 6E7 3502  4.276 1.00
W310x39 6 1.6 0.25 6E7 3713 5454 1.00
W310x39 6 1.6 0.25 3E9 4.305 5.602 1.00
W310x39 6 1.6 0.17 3E9 6.398  6.501 1.00
W310x39 6 1.6 0.17 6E7 5517 6.324 1.00
W310x39 6 1.0 0.17 6E7 4720 5.018 1.00
W310x39 6 1.0 0.17 3E9 5474  5.809 1.00
W310x39 6 06 0.17 3E9 4044 4.291 1.00
W310x39 6 0.6 0.17 6E7 3.487  3.557 1.00
W310x39 9 1.0 0.17 6E7 4540 4.162 1.00
W310x39 9 1.0 0.17 3E9 5.371 4.582 1.00
W310x39 9 1.0 0.25 3E9 3410 3.633 1.00
W310x39 9 1.0 025 6E7 2.883  3.337 1.00

Table D.1 Verification of design procedure, Case 1
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Section Lm R L./L Kp Elastic M/M,, I(lgellg?{i)c
Design Predicted predicted
Nmm/rad. (FEM) Design

W360x39 9 06 025 6E7 1.787 1.673 0.99
W360x39 9 06 025 3E9 2.151 1.981 0.99
W360x39 9 1.0 0.25 3E9 2432 2379 1.00
W360x39 9 1.0 025 6E7 2.021 2.149 1.01
W360x39 9 16 025 6E7 2.143 2475 1.00
W360x39 9 16 025 3ES 2.579 2.726 1.00
W360x39 9 16 0.17 3E9 3.831 3.753 1.00
W360x39 9 16 0.17 6E7 3.18¢ 3.315 1.00
W360x39 9 1.0 0.17 6E7 2724 2702 1.00
W360x39 9 10 0.17 3E9 3.278 3.055 1.00
W360x39 9 06 0.17 3E9 2422 2.261 1.00
W360x39 9 06 0.17 6E7 2013 1.870 0.99
Ww360x39 9 06 0.17 1E15 2420 2.272 1.00
W360x39 9 06 0.17 3E7 1.758 1.684 0.99
W360x39 9 06 0.25 3E7 1.563 1.514 0.99
W360x39 9 06 025 1E15 2.159 1.989 0.99

Table D.1 continued
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Secion L,m R L.,/L Kg Elastic Mo/M, I(:éellg?lti)c

Design Predicted pregicted

Nmm/rad. (FEM) W
W410x39 9 06 0.17 6E7 1.670  1.663 1.00
W410x39 9 06 0.17 3E9 1.917 1.881 1.00
W410x39 9 1.0 0.17 3E9 2595 2786 1.00
W410x39 9 10 017 6E7 2261 2548 1.00
W410x39 9 1.6 0.17 6E7 2642 3.057 1.00
W410x39 9 16 017  3E9 3.033 3401 1.00
W410x39 9 16 025 3E9 2.041 2545 1.01
W410x39 9 16 025 6E7 1.778 2323 1.03
W410x39 9 10 025 6E7 1.678  2.039 1.04
W410x39 9 1.0 0.25 3E9 1926 2.206 1.02
W410x39 9 06 025  3E9 1.703  1.678 1.00
W410x39 9 06 025 6E7 1483 1489 1.00
W410x39 10 1.0 0.17 1E15 2440 2835 1.00
W410x39 10 1.0 025 1E15 2.175  2.050 0.99
W410x39 10 1.0 0.25 3E7 1410 1.704 1.04
W410x39 10 06 025 3E7 1244 1256 1.00

Table D.1 continued



Secion Lm R L./L  Kg Elastic My/M, I(xéellg.s;i)c

Design Predicted predicted

Nmm/rad. (FEM) Design

W410x39 7.5 06 0.25 3E7 1484 1.711 1.03
Ww410x39 7.5 0.6 0.17 3E7 1.661 1.835 1.02
Ww410x39 7.5 06 0.17 1E15 2130 2.184 1.00
W410x39 15 1.0 0.17 1E15 1.800 1.745 0.99
W460x74 12 0.6 0.25 6E7 1.718  1.721 1.00
W460x74 12 06 0.25 3E9 2524 2325 1.00
Ww460x74 12 1.0 0.25 3E9 2.855 2.853 1.00
W460x74 12 1.0 0.25 6E7 1.943 2334 1.02
W460x74 12 1.6 0.25 6E7 2060  2.628 1.01
W460x74 12 1.6 0.25 3E9 3.027  3.276 1.00
W460x74 12 1.6 0.17 3E9 4497 4.470 1.00
W460x74 12 1.6 0.17 6E7 3.060 3.426 1.00
W460x74 12 1.0 0.17 6E7 2618  2.864 1.00
Wixdx74 12 1.0 0.17 3E9 3.848  3.651 1.00
wW460x74 12 0.6 0.17 3E9 2.843  2.639 1.00
W460x74 12 0.6 0.17 6E7 1935 1917 1.00
n =64

p = 1.002

Table D.1 continued VvV =0.010
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Section L,m R L./L P/, Ky  Elastic Mg/M, Inelastic
(S16.1)
Design Predicted predicted

Nmm/rad. (FEM) —BC—SIE;—

W310x39 6 06 025 1 3E7 1.348 1.453 1.02
W310x39 6 1.0 025 1 3E7 1.543 1.577 1.01
W310x39 6 16 025 1 3E7 1.867 1.744 0.99
W310x39 9 06 025 1 3E8  1.808 1.803 1.00
W310x39 9 1.0 025 1 3E8 2012 2005 1.00
W310x39 9 16 025 1 3E8 2286 2133 1.00

W360x39 9 06 025 1 3E7  1.205 1.102 ~a7
W360x39 9 10 025 1 3E7 1.33: 1.253 0.98
W360x39 9 16 025 1 3E7 1442 1334 0.98
W360x39 6 0.6 025 1 3E7 1.128 1.180 1.01
W360x39 6 1.0 025 1 3E7 1.266  1.256 1.00
W360x39 6 16 025 1 3E7 1463 1.357 0.98

W360x39 6 06 025 1 IE8  1.348 1.406 1.01
W410x39 12 16 025 2 3E9 1.241 1.367 1.03
W410x39 12 16 025 2 6E7 1.091 1.219 1.04
W410x39 12 16 017 1 6E7 1.091 1.134 1.01

Table D.2 Verification of design procedure, Case 2
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Section L,m R L. /L P/, Kp Elastic M;/M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) m
W410x39 9 0.6 0.25 3E7 0.814 0.888 1.04
W410x39 9 1.0 0.25 3E7 0.908 1.009 1.05
W410x39 9 1.6 0.25 3E7 1.036 1.058 1.01
W410x39 6 0.6 0.25 3E7 0.815 0.892 1.05
W410x39 6 1.0 0.25 3E7 0.933 0.971 1.02
W410x39 6 1.6 0.25 3E7 1.130 1.078 0.98
W410x39 12 0.6 0.25 6E7 0906 0.967 1.03
W410x39 12 06 0.25 3E9 1.031 1.120 1.03
W410x39 12 06 0.25 3E9 1.031 1.157 1.04
W410x39 12 06 0.25 6E7 0906 1.000 1.04
W410x39 12 1.0 0.25 6E7 0989 1.114 1.04
W410x39 12 1.0 0.25 3E9 1.125 1.262 1.04
W410x3¢ 12 1.0 0.25 3E9 1.125  1.207 1.02
W410x39 12 1.0 0.25 6E7 0989 1.063 1.03
W410x39 12 1.6 0.25 6E7 1.091 1.151 1.02
W410x39 12 {6 0.25 3E9 1.241 1.296 1.01

Table D.2 continued
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Secion L,m R L. /L PP, Kg Elastic M/M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) m
W410x39 12 1.6 0.17 3E9 1.241 1.277 1.01
W410x39 12 1.6 0.17 3E9 1.241 1.399 1.03
W410x39 12 1.6 0.17 6E7 1.091  1.239 1.04
W410x39 12 1.0 0.17 6E7 0980 1.110 1.04
W410x39 12 1.0 0.17 3E9 1.125  1.269 1.04
W410x39 12 1.0 0.17 3E9 1.125  1.175 1.01
W410x39 12 1.0 0.17 6E7 0.989 1.032 1.02
W410x39 12 0.6 0.17 6E7 0.906 0.930 1.01
W410x39 12 0.6 0.17 3E9 1.031 1.084 1.02
W410x39 12 0.6 0.17 3E9 1.031 1.149 1.04
W410x39 12 0.6 0.17 6E7 0.906 0.983 1.04
W460x74 12 06 0.17 6E7 1.201 1.159 0.99
W460x74 12 0.6 0.17 3E9 1.765 1.613 0.98
W460x74 12 06 0.17 3E9 1.765 1.718 0.99
W460x74 12 0.6 0.17 6E7 1.201 1.223 1.01
W460x74 12 1.0 0.17 6E7 1.334 1461 1.02

Table D.2 continued
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Section L,m R L. /L P/P, Ky Elastic M,/M, Inelastic
(S16.1)
Design Predicted predicted
Nmm/rad. (FEM) W
Ww460x74 12 1.0 0.17 3E9 1961 1.936 1.00
W460x74 12 1.0 0.17 3E9 1961 1.784 0.98
W460x74 12 1.0 0.17 6E7 1.334 1.353 1.00
Ww460x74 12 1.6 0.17 6E7 1.468 1.440 0.99
W460x74 12 1.6 0.17 3E9 2.157 1.953 0.99
W460x74 12 1.6 0.17 3E9 2157 2.148 1.00
W460x74 12 1.6 0.17 6E7 1.468 1.56% £.02
W460x74 12 1.6 0.25 6E7 1.468 1.:55¢ 1.01
W460x74 12 1.6 0.25 3E9 2157 2.i:T 1.00
W460x74 12 1.6 025 3E9 2.157 1.986 0.99
W460x74 12 1.6 025 6E7 1468 1.446 1.00
W460x74 12 1.0 0.25 6E7 1.334 1.378 1.01
W460x74 12 1.0 025 3E9 1961 1.849 0.99
Ww460x74 12 1.0 025 3E9 1961 1.966 1.00
W460x74 12 1.0 025 6E7 1.334 1474 1.03
Ww460x74 12 0.6 0.25 39 1.765 1.771 1.00

Table .2 continued



Secion L,m R L. /L

317

Kz Elastic M/M,, Inelastic
(S16.1)
Design Predicted predicted

Nmm/rad. (FEM) Design

W460x74 12 0.6 0.25
W460x74 12 0.6 0.25
W460x74 12 0.6 0.25

Table D.2 contitiued

6E7 1.201 1.261 1.01
6E7 1.201 1.205 1.00

3E9 1.765 1.692 0.99

n =67
p=1012
V =0.020
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Section L,m R L /L Kg Elasic Mg/M, Inelastic
(816.1)
Design Predicted predicted
Nmm/rad. (FEM) “Design
Ww310x39 6 0.6 0.25 6E7 1.665  1.646 1.00
Ww3i0x39 6 06 0.25 3E9 1.931 1.879 1.00
W310x39 6 0.6 0.17 6E7 1.876  1.855 1.00
Ww310x39 6 06 0.17 3E9 2.176  2.238 1.00
w310:39 6 1.0 0.17 6E7 2171 2.058 0.99
W310x39 6 1.0 0.17 3E9 2.519  2.398 1.00
W310x39 6 1.0 025 6E7 1.760  1.756 1.00
W310x39 6 1.0 0.25 3E9 2.042 1950 0.99
W310x39 6 1.6 0.25 6E7 1.863  1.893 1.00
W310x39 6 1.6 0.25 3E9 2.160  2.037 0.99
W310x39 6 1.6 0.17 3E9 2.800 2.601 1.00
W310x39 6 1.6 0.17 6E7 2415 2339 1.00
Ww310x39 9 1.0 0.17 6E7 1.691 1.771 1.01
W310x39 9 1.0 0.17 3E9 2.000 1.899 0.99
Ww310x39 9 1.0 025 3E9 1.554 1413 0.98
Ww310x39 9 1.0 025 6E7 1.319 1.362 1.01

Table D.3 Verification of design procedure, Case 3
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Secion Lm R L /L Kg Elastic My/M, Inelastic
(S16.1)

Design Predicted predicted

Nmm/rad. (FEM) m

W360x39 6 06 0.25 6E7 1.114  1.258 1.04
W360x39 6 06 0.25 3E9 1.318  1.331 1.00
W360x39 6 0.6 0.17 3E9 1.632  1.576 0.99
W360x39 6 06 0.17 6E7 1.379  1.460 1.01
W360x39 6 1.0 0.17 6E7 1.569  1.581 1.00
W360x39 6 1.0 0.17 3E9 1.856 1.818 1.00
W360x39 6 1.0 025 3E9 1.395 1.422 1.01
W360x39 6 1.0 025 6E7 1.179  1.309 1.03
W360x39 6 1.6 0.25 6E7 1.216  1.374 1.04
W360x39 6 1.6 025 3E9 1.438  1.467 1.01
W360x39 6 1.6 0.17 3E9 2.002 1.943 0.99
W360x39 6 1.6 0.17 6E7 1.693  1.739 1.01
W360x39 9 1.0 0.17 6E7 1.196  1.250 1.01
W360x39 9 1.0 0.17 3E9 1.439 1344 0.98
W360x39 9 1.0 025 3E9 1.035  0.999 0.99
W360x39 9 10 025 6E7 0.860 0.964 1.05

Table D.3 continued
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Secion L, m R L /L. Kp Elastic M/M,, Inelastic
(S16.1)

Design Predicted predicted

Nmm/rad. (FEM) W

W410x39 8 0.6 0.25 6E7 0.812  0.839 1.02
W410x39 8 0.6 0.25 3E9 0.933  0.885 0.98
W410x39 8 0.6 0.17 3E9 1.146  1.097 0.98
W410x39 8 0.6 0.17 6E7 0.997 1.005 1.00
W410x39 8 1.0 0.17 6E7 1.143  1.166 1.01
W410x39 8 1.0 0.17 3E9 1.314 1.264 0.99
W410x39 8 1.0 0.25 3E9 0.992  0.941 0.98
W410x39 8 1.0 0.25 6E7 0.863  0.899 1.02
W410x39 8 1.6 0.25 6E7 0.880  0.926 1.02
W410x39 8 1.6 0.25 3E9 1.022 0.972 0.98
Ww410x39 8 1.6 0.17 3E9 1412 1.357 0.99
W410x39 8 1.6 0.17 6E7 1.228  1.246 1.00
W410x39 12 1.0 0.25 6E7 0.596 0.617 1.04
W410x39 12 1.0 0.25 3E9 0.678  0.635 0.94
W410x39 12 1.0 0.16 3E9 0.939  0.891 0.98
W410x39 12 1.0 0.16 6E7 0.826 0.841 1.01

Table D.3 continued
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Secion L,m R L /L. Kp Elastic Mz/M, Inelastic
(S16.1)
Design Predicted predicted
Nmim/rad. (FEM) Desi gn
Ww460x74 12 1.0 0.17 3E8 1.542 1.518 1.00
W460x74 12 1.0 0.17 3E9 1.709 1.582 1.00
W460x74 12 1.0 025 3E9 1.240 1.177 0.98
Ww460x74 12 1.0 025 3E8 1.119 1.153 1.01
W460x74 12 06 0.17 3E8 1.430 1.374 0.99
W460x74 12 0.6 0.17 3E9 1.590 1.465 0.98
W460x74 12 06 025 3E8 1.089 1.109 1.01
W460x74 12 0.6 025 3E9 1.206 1.144 0.98
W460x74 12 1.6 0.17 3E8 1.657 1.634 1.00
W460x74 12 1.6 0.17 3E9 1.836 1.691 0.98
W460x74 12 1.6 025 3E9 1.271 1.210 0.99
W460x74 12 1.6 025 3E8 1.147 1.190 1.01
n =60
= 1.000
=0.018

Table D.3 continued
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Secton L,m R L. /LP/P, Kp Elastic Mq/M, I(Iéellg?;i)c

Design Predicted predicted

Nmm/rad. (FEM) W
w310x39 7.2 15 0.17 1 3E7 0.663  0.686 1.03
w310x39 7.2 15 017 1 39 0.875 0.967 1.04
w310x39 7.2 40 0.17 1 39 1.521 1.803 1.04
wW310x39 7.2 40 0.17 1 3E7 1152 1.257 1.03
w310x39 9.6 15 0.17 1 3E7 0842 0.819 0.99
w310x39 9.6 15 0.17 1 39 1116  1.123 1.00
w310x39 9.6 40 0.17 1 3E9 2.004 2.169 1.01
Ww310x39 9.6 40 0.17 1 3E7 1512 1.545 1.01
W360x39 54 15 0.17 1 3E7 0545 0497 0.91
W360x39 54 15 0.17 1 389 0721 0.719 1.00
W360x39 54 40 0.17 1 39 1254 1.329 1.02
W360x39 54 40 0.17 1 3E7 0810 0.888 0.97
W360x39 7.2 15 0.17 1 3E7 0695 0.601 0.87
W360x39 7.2 1.5 0.17 1 3E9 0940 0.851 0.96
W360x39 7.2 4.0 0.17 1 3E9 1.689 1.629 0.99
W360x39 7.2 4.0 0.17 1 3E7 1248 1.104 0.96

Table D.4 Verification of design procedure, Beams without fork supports
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Secion L,.m R L. /L P/, Kp Elastic M /M, I(xéellgts;j)c
Design Predicted predicted
Nmm/rad. (FEM) m‘
W410x39 1491 1.5 017 1 3E7 0.612 0.604 0.99
W410x39 1491 40 017 1 3E7 1.167 1.221 1.01
W410x39 994 15 017 1 3E7 0.479 0.496 1.04
W410x39 994 40 017 1 3E7 0.861 0.939 1.04
W410x39 9.94 40 0.17 1 3E9 1.074 1.287 1.07
W410x39 994 15 017 1 3E9 0.598 0.657 1.10
W410x39 9.94 15 025 1 3E9 0.598 0.708 1.16
W410x39 994 15 025 1 3E7 0479 0.533 1.11
W410x39 994 40 025 1 3E7 0.861 0.996 0.96
W410x39 994 40 025 1 3E9 1.074 1.377 1.08
W410x39 994 15 017 2 3E7 0479 0.524 1.09
W410x39 994 15 017 2 3E9 0.598 0.689 1.14
W250x39 6.27 15 017 1 3E7 1.295 1.128 0.96
W250x39 627 15 017 1 3E9 1.875 1.698 0.98
W250x39 6.27 4.0 017 1 3E9 3366 3.225 1.00
W250x39 6.2/ 4.0 017 1 3E7 2325 2.046 0.99

Table D.4 continued
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Secion L, m R L. /L P/, Kpg Elastic Mo/M, I(Iéellg.slti)c

Design Predicted predicted

Nmmv/rad. (FEM) "Egs’ig;"
W410x39 12 15 025 1 3E7 0.556 0.574 1.03
W410x39 12 15 025 1 3E9 0.685 0.746 1.06
W410x39 12 15 025 2 39 0.685 0.760 1.07
W410x39 12 15 025 2 3E7 0.556 0.589 1.06
W410x39 12 15 017 1 3E7 0556 0.549 0.99
w410x39 12 15 017 1 3E9 0.685 0.708 1.02
W410x39 12 15 017 2 3B9 0685 0.731 1.04
W410x39 12 15 0.17 2 3E7 0556 0.572 1.03
W410x39 12 40 017 1 3E7 1.015 1.072 1.02
W410x39 12 40 0.17 1 3E9 1.251 1.436 1.04
W410x39 12 40 017 2 3E9 1.251 1.471 1.04
wW410x39 12 40 0.17 2 3E7 1.015 1.103 1.03
W410x39 12 40 025 1 3E7 1.015 1.121 1.04
W410x39 12 40 025 1 3E9 1.251 1.516 1.05
W410x39 12 40 025 2 3E9 1.251 1.541 1.05
W410x39 12 40 025 2 3E7 1.015 1.146 1.04

Table D.4 continued
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Secion L, m R L /L. PP, Kg Elastic Mo /M, I(x;ellgfs:i)c

Design Predicted predicted

Nmm/rad. (FEM) m—
W460x74 12 1.5 025 1 3E7 0.664 0.649 0.98
W460x74 12 1.5 025 1 3E9 1.158 1.117 0.99
W460x74 12 1.5 025 2 3E9 1.158 1.149 1.00
W460x74 12 1.5 025 2 3E7 0.664 0.680 1.02
W460x74 12 1.5 0.17 1 3E7 0.664 0.606 091
W460x7+ 12 15 017 1 3E9 1.158 1.048 0.97
W460x74 12 1.5 0.17 3E9 1.158 1.093 0.98
W460x74 12 1.5 0.17 2 3E7 0.664 0.643 0.97
W460x74 12 4.0 0.17 1 3E7 1.211  1.095 0.97
W460x74 12 4.0 017 1 3E9 2112 2.062 1.00
W460x74 12 4.0 0.17 2 3E9 2112 2122 1.00
W460x74 12 4.0 0.17 2 3E7 1.211 1.134 0.98
W460x74 12 4.0 025 1 3E7 1.211  1.152 0.98
W460x74 12 4.0 025 1 3E9 2112 2.184 1.00
W460x74 12 4.0 025 2 3E9 2112 2234 1.00
W460x74 12 4.0 0.25 2 3E7 1.211 1.188 0.99

Table D.4 continued



Section L, m R LC/L P1/P2

Kp

Nmm/rad.

326

Elastic M;/M, Inelastic

(S16.1)

Design Predicted Ppredicted

(FEM)

Design

W610x241 12 1.5 0.17
W610x241 12 1.5 0.17

Table D.4 continued

1

1

3E7
3E9

0.808
1.926

0.607
1.659

0.81

0.97

n =66
u=1.010
V =0.055




