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Abstract

The recognition performance of Optical Character Recognition (OCR) models

can be sub-optimal when document images suffer from various degradations.

Supervised learning-based methods for image enhancement can generate high-

quality enhanced images. However, these methods require the availability of

corresponding clean images or ground truth text for training. Moreover, the

paired training data used for training these models is usually generated by

adding different types of synthetic noise to clean images. Real-world noise

is more challenging and complex in nature compared to synthetic noise. To

effectively enhance real-world noisy images, the models must be trained using

real noisy images. However, it is infeasible to have corresponding clean images

for real-world noisy images, and creating ground truth text requires manual

effort. Unsupervised methods have been explored in recent years, focusing on

enhancing natural scene images. In the case of document images, preserving

the readability of text in the enhanced images is of utmost importance for

improved OCR performance. In this thesis, we explore the possibility of en-

hancing documents in an unsupervised setting using unpaired training samples.

To this end, we propose a modified architecture for the standard CycleGAN

model to improve its performance in enhancing document images with bet-

ter text preservation. The results indicate that the proposed model leads to

better preservation of text and improved OCR performance compared to the

CycleGAN model and classical unsupervised image preprocessing techniques

like Sauvola and Otsu.
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Chapter 1

Introduction

1.1 Motivation

With the advancements in AI, machine learning and deep learning models

are widely being used by organizations in building data-driven AI solutions.

When dealing with paper documents such as invoices, point-of-sale receipts,

forms, and articles, digitization is necessary to extract the information from

the images. Optical Character Recognition (OCR) technologies are used to

convert the handwritten or printed text in these images into a computer-

understandable electronic form. Over time, OCR engines have significantly

improved in terms of recognition accuracy, multi-language support, and the

ability to handle various handwriting styles [7], [53], [61], [80]. However, these

OCR engines perform optimally when the input document images are free of

noise. In real-world scenarios, noise can be present due to factors such as

uneven illumination during image capture, faded text caused by low printer

ink, or the presence of coffee, or ink stains [5], [16], [18], [115]. Such degra-

dations in the image directly impact the OCR performance. Therefore, it is

crucial to reduce the impact of these degradations on document images before

performing OCR. By enhancing the document images, the OCR recognition

accuracy can be improved, and the extracted information becomes more reli-

able. This thesis addresses the problem of document image enhancement as a

preprocessing step to enhance the performance of OCR engines.

Previous works in deep learning have approached image enhancement as a

supervised learning task [97], [98], [118], [120]. While these approaches have

1



been quite effective at reducing the presence of various noise artifacts from

the images, these models require supervision in the form of clean ground truth

images or ground truth text for training. If these models are trained on noisy-

clean image pairs, the paired training data is usually generated by adding

different types of synthetic noise to clean images. When these models are

utilized for enhancing real-world noisy images, the performance is often sub-

optimal [1], [44], [73], [108]. Real-world noise is more challenging and complex

in nature compared to synthetic noise. To effectively enhance real-world noisy

images, the models must be trained using real noisy images. However, it is

infeasible to have corresponding clean images for every real-world noisy image

to train these supervised models. On the other hand, creating ground truth

text annotation for training is a tedious task requiring manual effort. These

challenges motivated us to explore unsupervised methods for achieving this

task.

Predicted : garde (BEEREH] | Predicted : garlic pepper boefPredicted : getass 200° poet

Noisy Image CycleGAN Proposed

Figure 1.1: Noisy image cleaned by CycleGAN compared with the proposed
model.

With the remarkable success of Generative Adversarial Networks (GANs)

[21], various models have been proposed to achieve image-to-image translation

in an unsupervised setting [24], [43], [70], [113], [121]. These methods have

achieved impressive results in style transfer between natural scenes. The task

of denoising images can also be formulated as an image-to-image translation

task, where the objective is to learn a mapping that transforms an image in

the noisy domain into an image in the clean domain [91]. Previously, models
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for unpaired image translation have been utilized for unpaired image denoising

tasks in natural scene images [31], [41], [90], [107], [112], [114]. However, the

application of these unsupervised methods to enhancing document images has

not been extensively explored. This encouraged us to explore this avenue.

It is important to understand that image-to-image translation for document

images is different from natural scene images due to the presence of textual

content in addition to the visual structure in the images [4], [19]. Effectively

enhancing document images requires not only the elimination of noise but also

preserving the textual content. Degradation of the text during enhancement

would directly impact the OCR performance, even if the background noise is

removed. Therefore, it becomes paramount to focus on preserving the textual

content during the translation from one style to another.

One of the most popular GANs proposed for unpaired image-to-image

translation is CycleGAN [121]. The CycleGAN model has achieved remarkable

performance in various unpaired image style translation tasks, including de-

noising natural scene images. However, we observe that its direct application

for unpaired document image denoising does not yield satisfactory results. We

notice that while the model is capable of eliminating the degradation present

in the document image, it fails to preserve the textual contents of the original

image. As a result, the generated clean image, although free of degradations,

often has distorted text, as shown in Figure 1.1. This distortion of the text

leads to poor OCR performance. Therefore, to utilize the CycleGAN model

effectively for this task, certain improvements are required.

The underlying framework of GANs consists of two networks: the generator

and the discriminator. The goal of the generator is to generate new samples

that match the underlying distribution of the real images. The discriminator,

on the other hand, acts as a classifier to distinguish between real images and

the samples generated by the generator.

Most GANs utilize a Convolutional Neural Network (CNN) in the discrimi-

nator network. While CNNs have strong capabilities for extracting meaningful

features from images [34], [88], [95], we hypothesize that due to the presence

of text in document images, it becomes important to extract stronger features
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that also capture the text well. Image text recognition models [27], [38], [86],

[87] widely adopt a combination of CNN and a sequential network to capture

the local and contextual information present in the image. The local image

features extracted by the CNN are enhanced by a Recurrent Neural Network

(RNN) model that extracts sequential dependencies. This combination has

shown superior results in extracting meaningful features from images for text

recognition in document images. Exploring this combination, previous works,

such as [106], have proposed the integration of a CNN-LSTM-CTC-based text

recognition module alongside the discriminator network as a supervising signal

for preserving the text characters.

1.2 Research Statement

In this thesis, we address the problem of unpaired document image enhance-

ment for OCR using an enhanced CycleGAN model. Our hypothesis is that by

incorporating a Bidirectional Long Short Term Memory network (BiLSTM)

with robust sequential modeling capabilities into the discriminator network of

the standard CycleGAN model, we can enhance the preservation of textual

content during the translation process from noisy to clean document images.

1.3 Contributions

The main contributions of this thesis are as follows:

• We present a framework that is capable of enhancing real-world noisy

documents in an unsupervised setting without the use of noisy/clean

image pairs, ground-truth text, or metadata such as noise type.

• We demonstrate the effectiveness of our proposed discriminator archi-

tecture in better preserving the textual content during the enhancement

and achieving superior performance across three different OCR engines

compared to the standard CycleGAN model and classical unsupervised

image pre-processing techniques like Sauvola and Otsu.
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1.4 Thesis Outline

This thesis is structured into 8 chapters including the introduction. Follow-

ing this outline of this thesis, in Chapter 2, we introduce the readers to the

required deep learning background for understanding the work presented in

this thesis. In Chapter 3, we familiarize the readers with some of the pre-

vious works related to document image preprocessing including conventional

techniques, deep learning-based approaches as well as works utilizing GAN.

In Chapter 4, we describe the details of our proposed model, including the

network architectures, objective functions, and training procedure. Following

this, in Chapter 5, we familiarize the readers with the procedure used in this

work for preparing the data for training and evaluation of our proposed model.

In Chapter 6, we begin by providing details of our experimental setup includ-

ing OCR engines, evaluation metrics as well as hyperparameters and training

details. Next, we present the results and analysis of the performance of our

proposed model, along with comparisons with other baselines. We also high-

light some additional ideas we explored. Finally, in Chapter 7, we conclude

this thesis with a discussion of the limitations of the proposed work, future

directions for this work, and some closing thoughts.
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Chapter 2

Background

This chapter familiarizes readers with the background required to understand

the work presented in this thesis. In Section 2.1, we begin by introducing

Generative Adversarial Networks to provide readers with an overview of these

networks and the key ideas involved. We elaborate on the architecture and

the overall objective function of these networks. Additionally, we also discuss

some challenges involved in training these networks. Next, in Section 2.2, we

provide a detailed explanation of the CycleGAN model. Since our proposed

model builds upon the CycleGAN framework, this section lays the groundwork

for understanding our modifications. Finally, in Section 2.3, we introduce

readers to Bidirectional Long Short Term Memory networks (BiLSTM) and

their utilization in processing sequential data. We use BiLSTM networks as a

key component in our proposed model.

2.1 Generative Adversarial Networks

2.1.1 Overview

Generative Adversarial Networks (GAN) is a type of generative model [21].

The goal of generative models is to generate new samples belonging to a certain

data distribution. GANs have shown a remarkable ability to generate realistic

data for various generative tasks across different modalities such as images

[23], [42], [117], videos [54], [99], [101], audio [9], [48], [56], and text [17], [111],

[119].

The key theory behind GANs is adversarial learning. In an adversarial
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the Gaussian distribution and generates an output G(z). The discriminator

D takes in the real input x and the output of the generator G(z), tries to

distinguish real data from the generated data, and outputs the probability

that the input was real. D(x) represents the probability of D predicting that

x was real and D(G(z)) represents the probability of D predicting that G(z)

was real.

2.1.3 Objective function

Equation 2.1 shows the objective function of the GAN framework.

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

The objective is a minimax function. The first term Ex∼pr(x)[logD(x)]

represents the log probability of D predicting the real data x as real. The

second term Ez∼pz(z)[log(1 − D(G(z)))] represents the log probability of D

predicting the generated data G(z) as not real. During training, D should

learn to accurately predict the real data as real and the generated data as not

real. Hence, the training of D involves maximizing the objective function. On

the other hand, G has to attempt to fool D into predicting generated data

G(z) as real. Therefore, it has to minimize [1 − D(G(z))]. G is therefore

trained to minimize the objective function.

The above equation can be rewritten as:

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ex∼pg(x)[log(1−D(x)] (2.2)

where pr and pg represent the real data and the generated data distributions

respectively. From this equation, for getting the optimal value of D, we need

to maximize L(D,G).

L(G,D) =

∫

x

(pr(x) log(D(x)) + pg(x) log(1−D(x))) dx (2.3)

To maximize L(D,G), we need the best value for D(x) 1.

1Referred from [105]
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f(D(x)) = pr(x) log(D(x)) + pg(x) log(1−D(x)) (2.4)

Calculating d(f(D(x))
d(D(x))

) and equating it to 0, we get D∗ = pr(x)
pr(x)+pg(x)

.

Considering optimal G∗, pr(x) = pg(x), therefore, D
∗ = 1

2
.

Putting these optimal values, we can get the global optimal value for the

objective function as:

L (G∗, D∗) =

∫

x

(pr(x) log (D
∗(x)) + pg(x) log (1−D∗(x))) dx

= log
1

2

∫

x

pr(x)dx+ log
1

2

∫

x

pg(x)dx

= −2 log 2

(2.5)

IfD is optimal, the loss function represents minimizing the Jensen-Shannon

(JS) divergence [55] between the real data distribution and generated data

distribution. To understand this, it is important to understand how generative

models generate data. Generative networks learn by minimizing the difference

between the real data and the generated data distributions. There are different

ways to measure the similarity or difference between the two distributions. One

such measure is Kullback–Leibler (KL) Divergence [47] which calculates the

divergence of one probability distribution from another reference probability

distribution. For two probability distributions p and q, KL divergence of p

from q and q from p is given by:

DKL(p∥q) =

∫

x

p(x) log
p(x)

q(x)
dx (2.6)

DKL(q∥p) =

∫

x

q(x) log
q(x)

p(x)
dx (2.7)

Derived from KL divergence, JS divergence is another measure of similarity

between two probability distributions. For probability distributions p and q,

JS divergence is given by:

DJS(p∥q) =
1

2
DKL (p∥M) +

1

2
DKL (q∥M) (2.8)
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where,

M =
p+ q

2

For pr and pg representing the real data and the generated data distribu-

tions, using Equation 2.5, it can be shown below that for an optimal D, the

training of GANs is equivalent to minimizing the JS divergence between pr

and pg.

DJS (pr∥pg) =
1

2
DKL

(

pr∥
pr + pg

2

)

+
1

2
DKL

(

pg∥
pr + pg

2

)

=
1

2

(

log 2 +

∫

x

pr(x) log
pr(x)

pr + pg(x)
dx

)

+

1

2

(

log 2 +

∫

x

pg(x) log
pg(x)

pr + pg(x)
dx

)

=
1

2
(log 4 + L (G∗, D∗))

L (G∗, D∗) = 2DJS (pr∥pg)− 2 log 2 (2.9)

2.1.4 Pitfalls of GAN

There are several challenges to training a GAN, where two neural networks

are being trained simultaneously with one trying to maximize the objective

function and the other minimizing it. In many cases, the training can be

highly unstable. Instability also arises from vanishing gradients. For a perfect

D, D(x) = 1, ∀x ∈ pr and D(x) = 0, ∀x ∈ pg. This leads to overall loss

becoming 0 in Equation 2.2. Ideally, we want D to be perfect but with loss 0,

the gradients vanish over time and G cannot be updated well. On the other

hand, if D is not perfect, G would not receive accurate feedback to update

itself. Another issue with training GANs isMode Collapse [82]. Mode Collapse

happens when the generator tries to map all the inputs to a small space of

outputs in the target domain for which it can fool the discriminator. With

this, although it accomplishes fooling the discriminator, the generator fails to

learn the data distribution effectively.

10





2.2.2 Cycle consistency

Consider a translation function F1 : X → Y that maps an input x in domain

X to an output y in domain Y and another function F2 : Y → X that

maps an input y in domain Y to an output x in domain X, cycle consistency

enforces that F2(F1(x)) ≈ x and F1(F2(y)) ≈ y. This means that if an image

is transformed from one domain to another and then reverse-transformed, the

generated samples should be close to the source domain. In the absence of

cycle consistency, the generator network can learn to transform the set of

input images to any random set of images in the target domain for which the

output matches the target distribution.

2.2.3 Model architecture

Consider Figure 2.2, there are two generators G : X → Y and F : Y → X.

In the top diagram, the generator G maps an input image from the source

domain X to an output image in the target domain Y . Generator F takes in

the generated image and performs the inverse transformation from the target

domain Y back to the source domain X. The discriminator Dy aims to dis-

tinguish between the real y and the generated image G(x). Cycle consistency

is ensured between x and F (G(x)).

Similarly, in the bottom diagram, the generator F maps an input image

from the target domain Y to an output image in the source domain X. Gener-

ator G takes in the generated image and performs the inverse transformation

from the source domain X back to the target domain Y . The discriminator Dx

aims to distinguish between the real x and the generated image F (y). Cycle

consistency is ensured between y and G(F (y)). Therefore, the bi-directional

conversion for image-to-image translation in CycleGAN is achieved by the use

of two generators and two discriminators.

In the CycleGAN model, the generator network comprises two convolu-

tional layers of stride 2, followed by a few residual blocks, and finally, two

layers of transposed convolutions with stride 1. The discriminator network is

a 70 × 70 CNN-based network called PatchGAN [36], [50], [52] that classifies

12



the 70 × 70 overlapping patches of images as real or fake. PatchGAN provides

the output in the form of an array in which each number signifies whether its

corresponding patch is real or fake. The discriminator output is taken as the

average of the prediction for each patch.

2.2.4 Objective function

The goal is to learn a mapping function between a source domain X to a target

domain Y given the training samples: {xi}
i=1
n , xi ∈ X and {yj}

j=1
m

, yj ∈ Y ,

with distributions x ∼ PX(x) and y ∼ PY (y). The overall objective function

in CycleGAN comprises two losses - the GAN loss that enforces the mapping

of the image style from one domain to another and the cycle consistency loss

that ensures that the contents of the original image remain preserved during

the style transfer. Equations 2.10 and 2.11 shows the two adversarial losses in

CycleGAN.

LGAN(G,DY , X, Y ) = Ey∼pY (y)[log(DY (y))] + Ex∼pX(x)[log(1−DY (G(x))]

(2.10)

LGAN(F,DX , X, Y ) = Ex∼pX(x)[log(DX(x))] + Ey∼pY (y)[log(1−DX(F (y))]

(2.11)

The cycle consistency loss is defined as :

Lcyc(G,F ) = Ex∼pX(x)[||F (G(x))− x||1] + Ey∼pY (y)[||G(F (y))− y||1] (2.12)

Adding the adversarial and cycle consistency loss, the overall objective

function is defined as:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )+LGAN(F,DX , Y,X)+λcycLcyc(G,F )

(2.13)

Here, λcyc controls the weight of cycle consistency loss.

The parameters G,F,DX , DY are learned through optimization of the over-

all objective function as:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ) (2.14)
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Chapter 3

Preprocessing document images
for OCR

This chapter familiarizes the readers with some of the previous methods used

for preprocessing document images for OCR. We discuss some of the conven-

tional and deep learning methods used for image binarization in Section 3.1

and then highlight previous works that have employed GAN for enhancing

degraded document images in Section 3.2. It is important to understand that

there are many tasks involved in preprocessing document images for OCR

based on the type of degradation. Some of these include background noise

removal [16], [37], skew correction [78], [83], [93], watermark removal [85], [91],

[110], super-resolution [49], [72], [79], and deblurring [11], [20], [39], [63]. In

this work, we focus mainly on the degradation in the form of uneven contrast

between background and text, dark spots or ink stains, and faded characters.

3.1 Document image binarization

Conventional methods for preprocessing document images with noise, such as

uneven contrast between the background and text, dark spots or ink stains,

and faded characters, utilize image binarization techniques. These techniques

involve classifying each pixel as text or background based on a certain threshold

value. The threshold can be decided based on global or local image features.

Global thresholding methods apply the same threshold to every pixel in the

image. Otsu’s method [67] performs global thresholding, deciding the thresh-
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old value from the grayscale histogram of an image to minimize the variance

between background and foreground pixels. Local thresholding involves deter-

mining the threshold for each pixel using information from its local neighbors.

Popular thresholding methods like Niblack [64] and Sauvola [84] adopt local

thresholding to generate binarized images. Niblack’s method uses the mean

and standard deviation values of the local pixels within a certain window to

calculate the threshold. Sauvola’s method, an improvement over Niblack’s,

uses adaptive thresholding, adjusting the mean and standard deviation of lo-

cal pixels within the window according to the contrast values. Some meth-

ods, such as [57], [66], utilize a hybrid approach for thresholding, combining

global and local image features. The main drawback of these methods is their

strong dependence on the choice of window size. This parameter needs to

be carefully tuned for each image to obtain the optimal thresholding. Cer-

tain learning-based methods have also been proposed, which use hand-crafted

features. Xiong et al . [109] utilize an SVM model for this task, performing

binarization in three steps. First, the image is divided into regions based on

the window size, and a local contrast adjustment is performed for each re-

gion. Then, a global threshold is selected to binarize each region using an

SVM model. Finally, local adaptive thresholding is performed over the entire

image. However, such learning-based methods often fail to generalize to all

images.

With the growth of CNNs and their strong image feature extraction ca-

pabilities, several works have explored these networks in document image en-

hancement and binarization tasks. Pastor-Pellicer et al . [71] use a CNN to

classify each image pixel as belonging to the background or foreground based

on the intensity values of neighboring pixels within a window. Calvo-Zaragoza

and Gallego [10] utilize a very deep Residual Encoder-Decoder Network (Red-

Net) [59] and propose a selectional auto-encoder (SAE) model that outputs a

selectional value corresponding to each pixel based on whether it belongs to the

background or foreground, using these values for thresholding to generate the

binarized image. Tensmeyer and Martinez [96] propose a model using a fully

convolutional network (FCN) trained with a combination of pseudo-F-measure
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[65] and F-measure loss. Vo et al . [100] propose a hierarchical deep supervised

network that predicts text pixels considering image features at several levels.

3.2 GAN for document image enhancement

With the success of GANs in image-to-image translation tasks [36], [50], [102],

[113], several works have utilized GAN-based models for the enhancement of

document images. DE-GAN [91] shows the effectiveness of a conditional GAN

[36] for document binarization, deblurring, and watermark removal tasks using

paired noisy and corresponding clean images. The generator is conditioned on

the input noisy image. To ensure that the text in the original noisy image is

preserved during the enhancement, a log loss is added between the generated

clean image and the ground truth clean image. The architecture involves the

use of a single generator and discriminator. Later, Ray et al . [77] propose a

framework for document enhancement and recognition jointly using a GAN-

based framework for image enhancement and a bidirectional LSTM and Con-

nectionist Temporal Classification (CTC) based module for text recognition.

The image enhancement model utilizes a fully convolutional RED-Net [59]

for image denoising followed by a deep back projection network (DBPN) [25]

for super-resolution. The CTC loss between the text recognition output and

ground truth text provides the supervision for training the model. Souibgui

et al . [92] along similar lines, proposes integrating a recognizer in the discrim-

inator of a conditional GAN to guide the generator to produce clean images

with readable text. Similarly, Kodym and Hradi [46] propose a text-guided

transformer GAN that uses the target text transcription as a guiding signal

for conditioning the restoration. Later, Poddar et al . [74] propose a GAN-

based framework for text restoration from deformed handwritten documents.

Among all these works, there is a constraint for the availability of either ground

truth text or ground truth clean images for training. As discussed previously,

this requirement limits the direct application of these models in a real-world

setting.

In recent years, several unpaired techniques have also been explored for
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enhancing document images using GANs. Sharma et al . [85] explore the feasi-

bility of applying CycleGAN for document image cleaning. The main advan-

tage of CycleGAN is that it does not require corresponding noisy/clean image

pairs. However, in this particular work, the CycleGAN model is trained using

paired samples. Neji et al . [63] propose Blur2Sharp CycleGAN for the task

of text document deblurring by adjusting the parameters of CycleGAN for ef-

fective document deblurring in an unsupervised setting. However, other types

of degradation are not explored. More recently, Gangeh et al . [19] proposed

a unified single model approach for eliminating four different noise types (salt

and pepper, faded, blurred, and watermarked) by integrating a Deep Mixture-

of-Experts (MOE) [103] model with a CycleGAN model for cleaning document

images without clean/noisy pairs. The results show the effectiveness of their

proposed framework over training separate CycleGANs for each type of noise

or training a CycleGAN sequentially, starting with one type of noise, followed

by others. While the work can handle effectively different types of noise present

in document images, without requiring ground truth text or image, it requires

the metadata about the type of noise present in the image to train the em-

bedder network of the MOE model. Therefore, along with noisy images, a

label specifying the type of noise present in the image is required as input.

Moreover, there is an assumption of the presence of only a single type of noise

in each image. For real-world noisy images, such an assumption is not always

valid. The noisy image can consist of a combination of noise types and it is

difficult to label the type of noise.

These shortcomings are addressed by our proposed model. Following these

works, we propose certain modifications in the standard CycleGAN model to

improve its performance in document image enhancement tasks. Moreover, it

is important to highlight that we achieve this objective without any supervision

in the form of prior knowledge about the type of noise, availability of ground

truth text, or clean ground truth images.
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Chapter 4

Modified CycleGAN with
CNN-BiLSTM discriminator

This chapter provides readers with a detailed description of our proposed

model. We explain the generator network architecture in Section 4.1 followed

by the discriminator network architecture in Section 4.2. Section 4.3 details

the loss functions used for training the proposed model. Finally, in Section

4.4, we explain the overall training algorithm used.

4.1 Generator network

Figure 4.1 shows the overall architecture of the generator used in the pro-

posed model. The architecture is adopted from the CycleGAN generator. The

generator network consists of three parts - an encoder, residual blocks, and a

decoder.

The encoder network maps the input image to a feature vector by per-

forming downsampling. The input grayscale image of shape 256×256×1 is

downsampled by a series of three convolutional layers. The first convolutional

layer has a kernel of size 7×7 and stride 1. The other two convolutional layers

have a kernel of size 3×3 with stride 2 for performing downsampling of input.

All the three convolutional layers are followed by instance normalization and

ReLU activation. The downsampled feature vector has a shape 64×64×256,

where 256 is the number of channels.
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Input Image
256x256x1

Output Image
256x256x1

Conv 7x7, Norm, ReLU

Conv 3x3, Norm, ReLU

Conv 3x3, Norm, ReLU

256x256x64

Upsample, Conv 3x3, Norm, ReLU

Upsample, Conv 3x3, Norm, ReLU

128x128x128

256x256x64

Conv 7x7, Tanh

128x128x128

64x64x256 .....

9 Residual
Blocks

64x64x256

Figure 4.1: Generator network.

The downsampled feature vector is passed through a series of residual

blocks. The main reason behind the use of residual blocks is the problem

of exploding or vanishing gradients in deep convolutional neural networks re-

sulting in the failure in convergence. Residual blocks overcome this by making

use of skip connections that pass the output of a previous layer to another

deeper layer. This connection provides a shortcut path through which gradi-

ents can pass. The residual blocks make use of residual function, where the

output of the residual block H(x) is given by:

H(x) = F (x) + x (4.1)

Here, x is the output from a previous layer and F (x) denotes the residual

function. The residual block consists of a convolutional layer, a normalization

layer, and a ReLU activation followed by another convolution layer and nor-

malization layer. Table 4.1 shows the layers in each residual block used in the

generator. Following the standard CycleGAN implementation, for 256×256

sized images, 9 residual blocks are stacked in the generator.
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Type Configuration Activation Size

Input - 256×256×1
Convolution #maps: 64, k: 7× 7, s: 1, p:3 256×256×64
Convolution #maps: 128, k: 3× 3, s: 2, p:1 128×128×128
Convolution #maps: 256, k: 3× 3, s: 2, p:1 64×64×256
9 Residual blocks Each block :

Convolution #maps: 256, k: 3× 3, s: 2, p:1
Instance normalization+ReLU 64×64×256

Convolution #maps: 256, k: 3× 3, s: 2, p:1
Instance normalization

Upsample scale=2 128×128×128
Convolution #maps: 128, k: 3× 3, s: 1, p:1 128×128×128
Upsample scale=2 256×256×64
Convolution #maps: 64, k: 3× 3, s: 1, p:1 256×256×64
Convolution #maps: 1, k: 7× 7, s: 1, p:3 256×256×1

Table 4.1: Generator network summary. #maps, ’k’, ’s’, and ’p’ represent the
number of channels, kernel size, stride, and padding respectively.

(a) (b)

Figure 4.2: Example of checkerboard pattern observed in the generated image
when using transposed convolution and the generated image free of checker-
board pattern when using upsampling followed by convolution.

The output feature vector after the series of residual blocks is passed to

the decoder network. The decoder network maps the feature vector to an

output image by performing upsampling. The output image has the same

size as the input image. The decoder network consists of two decoding blocks

followed by a final convolution layer to output the generated image. The

CycleGAN model uses fractionally-strided convolutional layers with stride 1
2

as the decoding block. We observed the introduction of a checkerboard pattern
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Type Configuration

Input 256× 256× 1
Convolution #maps: 64, k: 3× 3, s: 1, p:1
MaxPooling Window: 2× 2, s: 2
Convolution #maps: 128, k: 3× 3, s: 1, p:1
MaxPooling Window: 2× 2, s: 2
Convolution #maps: 256, k: 3× 3, s: 1, p:1
Convolution #maps: 256, k: 3× 3, s: 1, p:1
MaxPooling Window: 2× 2, s: 2
Convolution #maps: 512, k: 3× 3, s: 1, p:1
Batch Normalization -
Convolution #maps: 512, k: 3× 3, s: 1, p:1
Batch Normalization -
MaxPooling Window: 2× 2, s: 2
Convolution #maps: 512, k: 3× 3, s: 1, p:1
MaxPooling Window: 2× 2, s: 2
Convolution #maps: 512, k: 3× 3, s: 1, p:0
MaxPooling Window: 2× 2, s: 2
Map-to-Sequence -
Bidirectional-LSTM #hidden units: 256
Bidirectional-LSTM #hidden units: 256
Reshape -
Linear 1536, 512
Linear 512, 128
Linear 128, 1

Table 4.2: Discriminator network summary. #maps, ’k’, ’s’, and ’p’ represent
the number of channels, kernel size, stride, and padding respectively.
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advantages of CNN and BiLSTM networks. The combination has proven its

success in extracting stronger features in text recognition models [27], [38], [40],

[86], [87] which inspired us to utilize this combination in the discriminator net-

work. CNN is used to extract image features from input document images.

The extracted image features are flattened and passed as a one-dimensional

vector to the BiLSTM network. The BiLSTM network utilizes sequential

learning capabilities to generate enhanced features that better represent the

text within the document images.

Figure 4.3 shows the architecture of the proposed discriminator network.

The overall network consists of a CNN and a BiLSTM network followed by fully

connected layers for classification. We adopt the CRNN network from [86].

The CNN network consists of convolutional and max-pooling layers to extract

important local features from the input image. The original CRNN model

takes in an input of sizeW×32, whereW is the width of the image. Since in our

case, we have 256 × 256 size input, we add two additional max-pooling layers

and one convolutional layer. The 256 × 256 × 1 input image is downsampled

to 3 × 3 × 512 feature map. This feature map is reshaped for input to the

RNN network. The RNN network has two BiLSTM layers with 256 hidden

units each. During preliminary experiments, we tried increasing the number

of BiLSTM layers to 4. But the modification was not very useful and only

increased the number of parameters for training. The output from the BiLSTM

layers has shape 3 × 512. As we need to perform classification instead of text

recognition, we remove the transcription layer (maps the output of BiLSTM

to label sequence) and add three fully connected layers that finally output

a single value. The network configuration for the proposed discriminator is

summarized in Table 4.2.

4.3 Objective function

The overall objective function comprises two losses - LGAN and the Lcyc. LGAN

is calculated using Equations 2.10 and 2.11 whereas Lcyc is calculated using

Equation 2.12.
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Following Least Squares GAN (LSGAN) [60], least-squares loss is used to

calculate LGAN . LSGAN helps with the problem of vanishing gradients and

saturation of loss in GAN. It is implemented by changing the loss function

of the discriminator to least squares loss instead of binary cross entropy loss.

In a standard GAN, the discriminator acts as a binary classifier that classifies

whether the generator outputs are generated or real and is trained using binary

cross-entropy loss. Such binary signals do not provide informative feedback to

the generator on how to improve itself.

Least Squares loss ensures that instead of providing binary feedback, the

loss function provides feedback on how accurate or incorrect the predictions

were. The loss is indicative of how close or far the generated images are with

respect to the decision boundary. For generated data that is far from the

decision boundary, the generator is penalized in proportion to the distance.

This provides much more informative feedback to the generator to update

itself.

With least squares loss, for a given GAN loss, LGAN(G,D,X, Y ), the gen-

erator G is trained to minimize Ex∼pdata(x) [(D(G(x))− 1)2] and D is trained

to minimize Ey∼pdata(y) [(D(y)− 1)2] + Ex∼pdata(x) [D(G(x))2].

Cycle consistency loss is calculated using L1 loss. In addition to these

losses, there is an optional identity loss that is used in CycleGANs. The

identity loss ensures that G(y) should be ≈ y and F (x) should be ≈ x. That

means if an input already belongs to the target domain, the generator should

perform an identity mapping ensuring no change. It is calculated as :

Lidentity (G,F ) = Ey∼pdata (y) [∥G(y)− y∥1]

+ Ex∼pdata (x) [∥F (x)− x∥1]
(4.2)

In the CycleGAN paper, it is added with weight λid × λcyc making the

overall objective function:
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L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λcycLcyc(G,F )

+ λidλcycLidentity(G,F )

(4.3)

The value of λid suggested by the CycleGAN paper is 0.5. We also add

this loss while training our model, to ensure that if an input image is already

clean, then the generator should not transform it into a different image but

output it with no changes.

4.4 Training

Algorithm 1 shows the overall training procedure for the proposed model. Un-

paired images a and b are randomly selected from the noisy domain Xnoisy and

clean domain Xclean, respectively. Fake clean image b
′

corresponding to a is

generated using G1 : Xnoisy → Xclean and fake noisy image a
′

corresponding

to b is generated using G2 : Xclean → Xnoisy. Loss LG1
and LG2

are calculated.

Total loss LG is calculated by adding the individual losses for each of the gen-

erators. The parameters for generators G1 and G2 are updated by computing

the gradient of LG. Loss LD1
for D1 and LD2

for D2 are calculated. The

parameters of D1 are updated with respect to the gradient of LD1
and the

parameters of D2 are updated with respect to the gradient of LD2
.
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Algorithm 1 Training steps for proposed model
Input: Xnoisy, Xclean

Initialize: Generator G1(ϕg1) : Xnoisy → Xclean, Generator G2(ϕg2) : Xclean →
Xnoisy, Discriminator D1(θd1), Discriminator D2(θd2), cycle consistency λcyc,
identity mapping λid, number of epochs n

for n do

for a, b ∈ {Xnoisy, Xclean} do

b
′

, a
′

= G1(a), G2(b)

LG1
= MSE(D2(b

′

), targetreal) + λcycL1(G2(b
′

), a) + λidλcyc L1(G1(b), b)

LG2
= MSE(D1(a

′

), targetreal) + λcycL1(G1(a
′

), b) + λidλcyc L1(G2(a), a)

LG = LG1 + LG2

Update ϕg1 using ∇φg1
(LG)

Update ϕg2 using ∇φg2
(LG)

LD2
= MSE(D2(b), targetreal) + MSE (D2(b

′

), targetfake)

LD1
= MSE(D1(a), targetreal) + MSE (D1(a

′

), targetfake)

Update θd1 using ∇θd1
(LD1

)

Update θd2 using ∇θd2
(LD2

)

end for

end for
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Chapter 5

Creating unpaired noisy/clean
training dataset

This chapter provides details about the steps used to prepare the training,

validation, and test sets for the proposed model. The task of document image

enhancement in this work is formulated as an unpaired image-to-image trans-

lation task, where we translate noisy images to clean images. Thus, we need a

set of noisy document images and an unpaired set of clean document images.

In Section 5.1, we discuss the training set that was used to train the proposed

model. Firstly, we elaborate on the different datasets of noisy document im-

ages that were utilized to form the noisy domain. This is followed by details

on the creation of unpaired clean documents to form the clean domain. In

Section 5.2, we provide details on the data used for evaluation.

5.1 Training data

Three document image datasets - the Kaggle Denoising Dirty Documents

dataset [14], the Point-of-Sale (POS) Receipts dataset [76], and the Noisy

OCR Dataset (NOD) [28] are used.

The Kaggle Denoising dataset consists of noisy document images with var-

ious synthetically added noise types, such as wrinkles, stains, and faded spots.

The dataset also includes a variety of text font styles. The POS dataset is

a combined dataset formed from real-world noisy receipt images from three

datasets: the ICDAR SROIE competition dataset [35], the Findit fraud detec-
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Figure 5.1: Sample noisy images from Kaggle Denoising dataset.

Figure 5.2: Sample noisy images from POS dataset.

tion dataset [2], and the CORD dataset [69]. The images in the POS dataset

are extracted patches of size 500 × 400, horizontally cropped from the full-

size receipts. The Noisy OCR dataset comprises pages from old English and

Arabic books with different synthetically added noise types. We select images

with English text and noise in the form of weak ink. Sample noisy images

from these datasets are shown in Figures 5.1, 5.2, and 5.3.

For image-to-image translation, a set of images belonging to the target

domain is also required for training. Since we train our model in an unsuper-

vised setting, the target clean set should consist of unpaired clean document

images. In the case of the Kaggle Denoising dataset and Noisy OCR dataset,

we create this clean set from electronic research papers/books in PDF format.

We extract pages from the PDFs as images. However, for the POS dataset,

our preliminary experiments using pages from research paper PDFs resulted in

unstable results due to the different nature of the images in the two domains.

To ensure that the unpaired target domain images are not completely different

from the noisy receipt images, we prepared our clean unpaired set by generat-

ing fake clean receipt images. These images contain randomly generated text

with different font styles and sizes on a white background. Figure 5.4 shows

samples of images from the clean set.
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Figure 5.3: Sample noisy images from Noisy OCR dataset.

POS
Dataset

Noisy OCR
Dataset

Kaggle
Dataset

Figure 5.4: Sample clean images used for training.
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Figure 5.5: Sample noisy test images from WildReceipt dataset.

The input to the generator is of size 256 × 256. Therefore, non-overlapping

patches of size 256 × 256 are extracted from the noisy and clean images to

form the training data. The images between the two domains, noisy and clean,

are completely unpaired with no overlap in terms of text. The proposed model

is trained on each of the datasets separately.

5.2 Evaluation data

The trained model is evaluated on noisy images in the validation and test set

from the datasets. The validation set is used for selecting the best-performing

model and for hyperparameter tuning. For the Kaggle Denoising dataset and

Noisy OCR dataset, the validation set is created by randomly splitting 10%

of the original dataset provided. For the POS dataset, the validation set is

already available separately. Each of these datasets already has a separate test

set available for inference.

During the evaluation, we input full-scale images into the trained genera-

tor to generate corresponding clean images. This allows us to perform OCR

evaluation on the generated images. Therefore, the images in the validation

set and test set are full-sized and not patches.

Besides these datasets, we also evaluate the generator trained with the POS

receipts dataset on unseen noisy test images from another more challenging
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Dataset Training set Test set
Number of noisy/clean patches Number of full-size images Number of words

Kaggle Denoising 288 60 5392
POS 3676 417 8366
WildReceipt - 472 12707
Noisy OCR 2137 65 18805

Table 5.1: Dataset Summary: Number of noisy/clean image patches in the
training set and the number of images and words in the test set.

and complex receipts OCR dataset - the WildReceipt dataset [94] and report

the performance. Sample images from the WildReceipt dataset are shown in

Figure 5.5.

Table 5.1 provides a summary of the number of noisy/clean image patches

in the training set and the number of images in the test set for each dataset.
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Chapter 6

Experiments and Results

This chapter provides details on the experiments performed in this work and

presents the results. In Section 6.1, we provide information about the OCR

engines used for evaluation, the evaluation metrics and hyperparameters, and

the training setup. In Section 6.2, we present the qualitative and quantitative

results that shows the performance of the proposed model compared to other

baselines. In Section 6.3, we discuss some additional preliminary experiments

performed during the course of this work.

6.1 Experimental setup

6.1.1 OCR engines

Three open-source OCR engines are used for evaluation - Tesseract 1, Easy-

OCR 2 and PaddleOCR 3. Tesseract is a popular open-source OCR engine that

uses an LSTM network for text recognition. We use the Tesseract 4.0.0 version.

EasyOCR is another open-source OCR engine that uses the CRAFT model

[3] as the text detection module. The recognizer module is CRNN based and

consists of feature extraction using ResNet [26], followed by sequence labeling

using BiLSTM networks and transcription using CTC loss. PaddleOCR is a

very lightweight and comparatively newer OCR. We use the latest PP-OCRv3

version. The recognition module uses a Scene Text Recognition with a Single

1https://github.com/tesseract-ocr/tesseract
2https://github.com/JaidedAI/EasyOCR
3https://github.com/PaddlePaddle/PaddleOCR
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Visual Model (SVTR) [13] instead of a CRNN.

6.1.2 Evaluation metrics

OCR based metrics

The primary objective of this work is to enhance noisy images in a way that

improves OCR performance. To evaluate the performance of the proposed

model in achieving this objective, we perform OCR on both the original noisy

images and the generated images by the trained models. The OCR outputs

are then compared with the ground truth text. It is important to note that

the ground truth text is used solely for evaluation purposes and is not used at

any point during training.

For the POS receipt and WildReceipt datasets, the ground truth text in-

cludes bounding boxes with word-level text, which are directly used for evalu-

ation. In the case of the Kaggle Denoising dataset, manual annotation of the

ground truth text was performed as the dataset did not include ground truth

text files. As for the Noisy OCR dataset, document-level ground truth text is

available instead of word-level text.

For POS, WildReceipt, and Kaggle Denoising datasets, we evaluate the

OCR performance in terms of word accuracy and Levenshtein distance [51]

based Character Error Rate (CER). Word accuracy is measured as the ratio

of the words matched with the ground truth to the total number of words in

the ground truth. CER is defined as:

CER = 100× (i+ s+ d)/m (6.1)

where i, s, and d are the number of insertion, substitution, and deletion opera-

tions performed to match the predicted word to the ground truth. m represents

the number of characters in the ground truth. Better performance is indicated

by higher values of word accuracy and lower values of CER.

For the Noisy OCR dataset, in the absence of word-level ground truth

bounding boxes, we evaluate the OCR performance using the Levenshtein

distance over the entire document text. Lower values for Levenshtein distance

indicate better performance.
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No-reference image quality metrics

While the direct performance of the proposed model in effectively enhancing

document images for OCR can be measured using the OCR-based metrics

described above, we also perform an evaluation using image quality metrics.

In the absence of ground truth images, full-reference metrics based on

Peak-Signal-to-Noise Ratio (PSNR) and SSIM [104] cannot be used. Hence,

we utilize two no-reference image quality metrics - Natural Image Quality

Evaluator (NIQE) [62] and Perceptual index (PI) [8]. These metrics have been

used in several GAN-based works [30], [33], [68], [75] to evaluate the quality of

generated images in the absence of ground truth clean images. NIQE measures

the deviations in statistical properties of natural images due to distortions,

while PI is a combination of the metrics proposed by Ma et al . [58] and NIQE.

Ma et al . [58] introduced a no-reference metric for assessing the quality of

super-resolved images using a regression model to predict scores based on

designed statistical features. PI is calculated as 1
2
((10 − Ma) + NIQE). It is

commonly used to assess the no-reference image quality of super-resolution

images [12], [32], [116].

It is important to note that these metrics are based on perceptual image

quality and may not serve as clear indicators of enhanced images for OCR.

The results obtained from these metrics are provided for reference, while the

primary evaluation remains based on the OCR-based metrics.

6.1.3 Hyperparameter and Training details

The proposed model is trained for 40, 100, and 50 epochs for the Kaggle

Denoising, POS, and Noisy OCR datasets respectively. We perform a search

over the hyperparameters of the model for selecting the best values. More

details on hyperparameters are included in Appendix A. Based on the tuning

results, we select λcyc = 10 and identity mapping loss coefficient λid = 0.5,

batch size equal to 1, and Adam optimizer with learning rate equal to 2×10−4.

The proposed model is implemented using the Pytorch framework. It takes

approximately 1.5 hours, 42 hours, and 12 hours to train on Kaggle Denoising,
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POS, and Noisy OCR dataset, respectively using Nvidia Tesla V100 GPU. For

comparison with the standard CycleGAN model, we use the standard Pytorch

implementation as provided by [85], [121]. The same hyperparameter values

as the proposed model are used for training CycleGAN.

6.2 Results and Discussion

The performance of the proposed model is directly compared with standard

CycleGAN to evaluate the impact of the changes proposed in this work. Ad-

ditionally, the proposed model performance is also compared with two other

classical unsupervised image preprocessing techniques - Otsu [67] and Sauvola

[84] discussed in Section 3. As the performance of these techniques is heavily

dependent on the window size, different window sizes are used and the best

results are reported. For both CycleGAN and the proposed model, the results

presented here, reflect the test performance of the best-performing models

selected based on word accuracy on the validation set using Tesseract OCR.

6.2.1 Qualitative results

We illustrate some of the output images generated by the proposed model and

other mentioned baseline preprocessing models. Figure 6.1 shows the enhanced

images generated for a sample noisy image in the Noisy OCR dataset and the

predicted text using Tesseract OCR. The noisy image has degradations in the

form of broken characters in the text. Comparing the various generated im-

ages, it can be observed that the image generated using standard CycleGAN

appears cleaner with darker text. However, upon closer look, it is apparent

that some of the characters are hampered during enhancement. This is un-

desirable and results in incorrect predictions by the OCR for certain words

that were originally identified correctly in the noisy image. For example, the

word “sumptuary” and “arms” were predicted correctly in the original image

but now mispredicted as “soniptuary” and “arpis”. This deterioration nega-

tively impacts the overall OCR performance. On the contrary, the enhanced

image generated by the proposed method avoids further degradation in OCR
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  of laeies--King James and his fondocss for dress and fashton—-
Restrictions and t  soniptuary laws regarding dress—-Side-arpis

of the period.

of tadies—King James and his fondeess for dross and fashion
—Kestrictions and sumptuary laws regarding dress—Side-arms

of the period, 

 of tadies—King James and his fondeess for dross and fashion
—Kestrictions and sumptuary laws regarding dress—Side-arms

of the period,

 of tadies—King James and his fondeess for dross and fashion
—Kestrictions and sumptuary laws regarding dress—Side-arms

of the period,

 of ladies—King James and his fondeess for dross and fashion
—Kestrictians and sumptuary laws regarding dress—Side-arms

of the period,

Noisy (a) Otsu (b) Sauvola (c) CycleGAN (d) Proposed (e)

(a)

(b)

(c)

(d)

(e)

Figure 6.1: Example from the Noisy OCR dataset showing the noisy image and
the generated enhanced images along with the text predictions using Tesseract
OCR.
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Noisy

Otsu

Sauvola

CycleGAN

Proposed

Figure 6.2: Example from the POS dataset showing the noisy image and the
generated enhanced images. Zoomed-in images show the appearance of text
in the images.
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Proposed

Sauvola

Otsu

CycleGAN

Noisy

"61.56"
"wane"
"cones"

"geo 6K"
""

"Af Ae"

"$61.86."
"sate"

"a hee"

"ab. 38"
"i"

"ch hur"

"$61.56"
"Nare"

"CC Nue"

Figure 6.3: Example from the Wildreceipt dataset showing the noisy image and
the generated enhanced images along with the text predictions using Tesseract
OCR.
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Noisy Otsu Sauvola

CycleGAN Proposed

Predicted: " " Predicted: " " Predicted: "Contain Spanis" 

Predicted: "utan" Predicted: "Contain Spanis" 

Figure 6.4: Example from the Kaggle Denoising dataset showing the noisy
image and the generated enhanced images along with the text predictions
using Tesseract OCR.
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performance compared to the original noisy image.

Considering receipt images from POS and WildReceipt dataset, Figures 6.2

and 6.3 highlight that the proposed model has better preservation of characters

in the enhanced images over all the other methods. The proposed model leads

to improved OCR performance with more correctly predicted words compared

to the noisy images. For the Kaggle dataset, we illustrate an example of a

noisy image that contains degradation in the form of a dark patch in Figure

6.4. Clearly, Otsu and CycleGAN models cause a loss of text underneath the

dark patch. As a consequence, OCR engines are unable to predict those words,

causing a decline in performance, despite the visually cleaner appearance of

the images. On the other hand, the proposed model and Sauvola’s method

can preserve the text well. Sauvola’s method, being a binarization technique,

aims to create a binary image by eliminating the dark patch. In contrast, the

proposed model attempts to minimize the intensity of the dark patch while

keeping the grayscale format of the generated image.

6.2.2 Quantitative results

In addition to the qualitative results demonstrating the effectiveness of the

proposed model, we also provide quantitative results using three OCR engines

for each dataset. Table 6.1 provides an overview of the OCR engine perfor-

mance on both the noisy test images and the enhanced images from the Kaggle

Denoising, POS, and Wildreceipt datasets.

For the Kaggle Denoising dataset, the proposed model generates clean im-

ages that increase Tesseract OCR performance in terms of both word accuracy

(81.23%) and CER (18.72). However, for EasyOCR and PaddleOCR engines,

enhanced images have degraded OCR performance when compared to the orig-

inal noisy image. Degradation in performance of EasyOCR and PaddleOCR is

observed even if the same preprocessing improved the performance of Tesser-

act OCR engine. A possible reason for this is that preprocessing techniques

can have different effects on OCR engines depending on their underlying algo-

rithms and architecture. EasyOCR and PaddleOCR are deep learning-based

OCR engines that utilize neural networks to extract text from images. These
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Tesseract EasyOCR PaddleOCR

word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓

Kaggle Noisy 78.18 21.62 73.31 32.12 82.09 14.83

Otsu [67] 76.60 22.59 61.03 40.12 69.50 25.01

Sauvola [84] 79.45 21.00 66.04 35.71 67.90 31.76

CycleGAN [121] 43.44 58.86 33.11 67.42 41.93 58.20

Proposed 81.23 18.72 68.70 34.84 78.28 18.24

POS Noisy 49.58 31.13 41.63 37.01 45.21 29.70

Otsu [67] 46.50 36.89 34.86 43.43 34.96 42.54

Sauvola [84] 55.30 26.31 42.12 33.83 41.07 34.45

CycleGAN [121] 37.82 41.33 27.24 48.03 27.52 47.53

Proposed 61.14 23.18 46.41 31.59 50.49 25.75

Wildreceipt Noisy 29.09 46.02 23.74 49.43 30.08 43.05

Otsu [67] 33.21 41.63 19.62 51.90 27.47 49.31

Sauvola [84] 37.20 33.81 23.66 43.08 30.87 42.33

CycleGAN [121] 09.02 74.02 08.47 76.66 12.07 72.30

Proposed 41.86 32.48 26.40 41.54 34.84 36.47

Table 6.1: OCR performance in terms of word accuracy and CER on the orig-
inal noisy images in the test set and the generated enhanced images compared
with the ground truth text. Better performance is indicated by higher values
of word accuracy and lower values of CER.

Tesseract EasyOCR PaddleOCR

Levenshtein distance ↓ Levenshtein distance ↓ Levenshtein distance ↓

Noisy 65.02 178.03 127.79

Otsu [67] 62.19 192.39 161.20

Sauvola [84] 64.85 192.08 159.54

CycleGAN [121] 88.82 287.23 168.19

Proposed 62.05 181.68 108.63

Table 6.2: OCR performance in terms of Levenshtein distance on the original
noisy images in the test set and the generated enhanced images compared
with the ground truth text for the Noisy OCR dataset. Better performance is
indicated by lower values of Levenshtein distance.
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engines are trained on a wide variety of images, including both clean and de-

graded ones. In some cases, document image enhancement techniques may

alter the characteristics of the input image in a way that is not beneficial for

these OCR engines. It can be possible that the transformations performed by

our proposed model for image enhancement results in images that affect the

performance of the underlying neural network models used by EasyOCR and

PaddleOCR and hence slight degradation in performance is observed.

This degradation in performance is not unique to the proposed model but is

observed across all the enhancement methods. Importantly, OCR performance

across both the metrics is better for the images generated by the proposed

model than images generated by other enhancement methods.

For the POS dataset, the proposed model improves the performance of all

the three OCR engines. Maximum improvement is observed for the Tesseract

OCR engine with an increase from 49.58% to 61.14% in terms of word ac-

curacy and a reduction from 31.13 to 23.18 in terms of CER. Moreover, the

proposed model consistently outperforms all the other methods across all the

OCR engines.

Additionally, as mentioned previously, we also evaluate the performance

of the proposed model originally trained on the POS dataset on noisy images

from the WildReceipt dataset. Here, for comparison, the CycleGAN model is

trained on the POS dataset as well and evaluated for the WildReceipt dataset.

As can be observed, the proposed model consistently leads to improvement in

performance for all OCR engines and also outperforms the baseline methods.

For the Noisy OCR dataset, Levenshtein distance is calculated between

OCR output and the ground truth text for noisy and enhanced images. From

Table 6.2, it can be observed that images enhanced by the proposed model

have improved performance on Tesseract and PaddleOCR engines compared

to the original noisy images. The performance is better than all the other base-

lines. However, for the EasyOCR engine, degradation in OCR performance is

observed for enhanced images generated using any of the enhancement meth-

ods, including the proposed model. However, when considering the extent of

degradation, the proposed model demonstrates comparatively less deteriora-
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tion compared to other baseline methods.

From the results, it can be concluded that the proposed model enhances the

performance of the Tesseract OCR engine consistently across all the datasets.

These results highlight that the proposed model has better text preservation

capabilities during translation compared to the standard CycleGAN. This im-

plies the effectiveness of the proposed modifications.

We report the performance of the generated images on the no-reference

image quality metrics NIQE and PI in Table 6.3. Lower values on these met-

rics indicate better image quality. Across all datasets, the images generated

by the proposed model exhibit superior scores on both metrics compared to

other enhancement methods. While an improvement over the original noisy

images is reported across Kaggle Denoising, POS, and Noisy OCR datasets, a

degradation in quality is observed for the WildReceipt dataset. This is incon-

sistent with the OCR-based metrics which indicate significant improvement

in the performance of all the three OCR engines for the images generated by

the proposed model. Further, Otsu’s and Sauvola’s methods achieve better

performance over the standard CycleGAN model on OCR-based metrics but

have poor performance on these image quality metrics. These observations

suggest that for enhancing document images for OCR, these perceptual image

quality metrics might not be suitable indicators of performance.

6.2.3 Ablation study

We perform experiments on the Kaggle Denoising dataset to analyze the im-

pact of the proposed architectural modifications to the standard CycleGAN

on the overall OCR performance improvement.

Effect of BiLSTM layers in the discriminator

First, we remove the BiLSTM layers from the proposed discriminator (Figure

4.3). The output of the last convolutional layer 3 × 3 × 512 is reshaped to 9 ×

512, where 512 represents the number of channels. Another linear layer with

input size 9 × 512 and output size 3 × 512 is added to make the shape com-

patible with the following set of linear layers in the originally proposed model.
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NIQE ↓ PI ↓

Kaggle Noisy 22.04 7.86

Otsu [67] 21.85 18.73

Sauvola [84] 21.57 19.24

CycleGAN [121] 10.29 7.04

Proposed 9.37 6.10

POS Noisy 23.80 7.53

Otsu [67] 26.65 17.16

Sauvola [84] 22.75 16.55

CycleGAN [121] 14.35 8.67

Proposed 8.65 5.92

WildReceipt Noisy 6.07 6.83

Otsu [67] 23.96 15.70

Sauvola [84] 23.72 15.59

CycleGAN [121] 13.75 8.70

Proposed 11.71 7.19

Noisy OCR Noisy 13.98 9.12

Otsu [67] 22.69 16.34

Sauvola [84] 22.62 16.35

CycleGAN [121] 11.71 7.67

Proposed 8.99 6.43

Table 6.3: NIQE and PI metric values on the original noisy images in the test
set and the generated enhanced images. Better performance is indicated by
lower values for both metrics.

Model1 Model2 Proposed Model

word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓

Tesseract 56.08 40.68 74.39 26.45 81.23 18.72

EasyOCR 40.72 59.54 64.37 39.23 68.70 34.84

PaddleOCR 48.13 48.23 66.47 33.67 78.28 18.24

Table 6.4: Performance comparison between Model1/Model2 and the proposed
model for the Kaggle Denoising dataset. Model1 has the same generator as the
proposed model but the discriminator without the LSTM component. Model2
has the same discriminator network as the proposed model but the generator
network without the proposed changes in the decoder block.
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The rest of the model is kept the same. We call this Model1. This model

is trained with the same set of hyperparameters as the proposed model and

the OCR performance on the generated enhanced images is evaluated. From

Table 6.4, a huge gap in the performance between Model1 and the proposed

model can be observed. OCR performance on images generated by Model1

has significantly lower word accuracy and higher CER as compared to the

proposed model. These results further support the hypothesis that a com-

bined CNN-BiLSTM model in the discriminator network can extract stronger

features from document images and act as a more suitable discriminator than

pure CNN-based discriminators for document image enhancement tasks.

Effect of decoder block modifications in the generator

Next, we analyze the impact of the proposed changes in the Generator archi-

tecture. As mentioned earlier, to reduce the checkerboard artifacts arising in

the generated images, the decoder blocks in the generator network were mod-

ified to have an upsampling operation followed by a convolutional operation

instead of transposed convolutions. We revert this modification in the pro-

posed model and keep the rest of the model unchanged. We call this Model2.

This model is trained with the same set of hyperparameters as the proposed

model and the OCR performance on the generated enhanced images is eval-

uated. Results from Table 6.4 indicate that the modifications performed to

remove the checkerboard artifacts in the proposed model lead to better perfor-

mance. However, it is important to highlight that the effect of the generator

modifications in improving the performance is much lesser compared to the

effect of the proposed discriminator modifications. This explains that much

of the performance improvement is attributed to the proposed discriminator.

This further supports the effectiveness of the proposed discriminator.
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Tesseract EasyOCR PaddleOCR

α word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓ word accuracy% ↑ CER ↓

Kaggle Proposed w/o SSIM 0 81.23 18.72 68.70 34.84 78.28 18.24

Proposed w SSIM 0.8 79.28 20.72 69.55 33.61 78.52 18.31

POS Proposed w/o SSIM 0 61.14 23.18 46.41 31.59 50.49 25.75

Proposed w SSIM 0.5 65.98 17.60 48.72 28.95 51.72 24.70

Levenshtein Levenshtein Levenshtein

Noisy OCR Proposed w/o SSIM 0 62.05 181.68 108.63

Proposed w SSIM 1.0 62.27 209.62 135.12

Table 6.5: Performance comparison between proposed model trained with and
without SSIM component in Lcyc.

where µx, µy is the mean of x and y, σ2
x and σ2

y is the variance of x, y and σxy

is the covariance of x and y and c1, c2, c3 are the small constants.

The SSIM loss is given by:

LSSIM = 1− SSIM(x, y) (6.3)

Combining SSIM loss with L1 loss, the cycle consistency loss Lcyc is calcu-

lated as:

LSSIM+L1 = αLSSIM + (1− α)LL1 (6.4)

Here, α controls the weight for each of the loss components.

We experiment with values of α in the range [0.1, 1]. Table 6.5 shows the

best α values for each of the three training datasets and the corresponding

OCR evaluation performance. While better performance compared to the

proposed model without the SSIM component is achieved on the POS dataset,

with α = 0.5, the same is not observed for the other two datasets. Furthermore,

huge inconsistencies were observed in the results for different values of α in

the defined range.

Figure 6.5 shows the huge inconsistencies in performance for different values

of α on the test set images in the Kaggle Denoising dataset. Given the lack of

clarity regarding the usefulness of this loss component, we made the decision

to exclude it from the final model proposed in this thesis.
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Chapter 7

Conclusion

In this thesis, we focused on document image enhancement as an unsupervised

image-to-image translation task. We present a modified architecture for the

standard CycleGAN model that can significantly improve its performance in

document enhancement tasks. Results illustrate that the combined discrim-

inator network, which utilizes a combination of CNN and BiLSTM, achieves

a significant enhancement in both text preservation and OCR performance

when compared to the standard CycleGAN discriminator network.

Specifically, when evaluating the word accuracy of the Tesseract engine on

real-world noisy receipt images from the POS dataset, the proposed model

showed an improvement of up to 61.66% over the original CycleGAN model.

This significant increase in accuracy confirms our hypothesis that for tasks

involving document images that have the presence of text, the discriminator

network can benefit from the addition of sequential representation learning

capabilities. Moreover, the proposed model improved the performance of the

Tesseract OCR engine by 23.32% in terms of word accuracy compared to

the original noisy receipt images in the POS dataset. Furthermore, the pro-

posed model consistently outperformed other unsupervised classical techniques

across all OCR engines considered.

The benefit of the proposed setting is that it allows for training without

the need for a ground truth clean image, text, or specific information about

the noise type present in the image. This allows training on real-world noisy

images, which is required for practical applications. However, creating the
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unpaired clean set is a challenging task. Our experiments showed that if the

unpaired clean set contains samples that have characteristics different from the

noisy samples, the model training is unstable and the images are not cleaned

properly. This makes it difficult to train the proposed model when noisy images

of diverse nature and with complex degradations are to be used in the training

set. Exploring alternative methods for creating a representative clean set that

better aligns with the characteristics of the noisy images could be useful.

Additionally, as a future extension to this work, it would be worthwhile to

explore different discriminator architectures in this setting to see if the perfor-

mance can be further improved. Particularly, transformer-based architectures

which have superior sequence modeling capabilities than recurrent neural net-

works can be investigated.

While in this thesis, we demonstrate that unpaired translation models such

as CycleGANs can be modified to generate promising results in the context

of unpaired document image enhancement, training can still be unstable due

to the large number of parameters involved. To address this, future research

could explore more stable and powerful generative networks, such as diffusion

models, and investigate their application in the context of unpaired document

image-to-image translation.
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Appendix A

Hyperparameters

In this section, we discuss the different hyperparameters involved in the train-

ing and the steps used for tuning their values. The final values used for training

are provided in Section 6.1.3. The goal of our hyperparameter tuning experi-

ments was to select values such that the images generated have improved OCR

performance. Table A.1 shows the different hyperparameters involved in train-

ing the proposed model. Since there are a large number of hyperparameters

involved and the relationship between these parameters is not clear, we assign

default values to some of the hyperparameters as proposed by the original Cy-

cleGAN paper. However, we performed a set of experiments over parameters

in the objective function - λcyc and λid. We vary λcyc over integer values in the

range [1,10]. This range of values was suggested by the CycleGAN authors for

experimentation. For λid, the search space was defined over the range [0,1].

Hyperparameters Details Default value
Epochs Number of training epochs -
Decay epochs Epoch to start decaying the learning rate Half of the number of training epochs
λcyc Controls the weight for the cycle consistency loss 10
λid Controls the weight for the identity loss. This value is multiplied with the λcyc 0.5
Optimizer Optimization method for G and D Adam [45]
learning rate Step size for updating weights 2× 10−4

Table A.1: Training Hyperparameters.

For selecting the optimal number of training epochs, we train models for 20,

30, 40, 50, and 100 epochs and evaluate the validation set using Tesseract OCR.

The word-accuracy metric is used for selecting the best model. Figure A.1

shows the effect of the number of training epochs on the validation accuracy

for the Kaggle Denoising dataset. The number of decay epochs in each is
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Appendix B

Training Curves

In this section, we present the training curves for the generator loss, cycle con-

sistency loss, and discriminator loss of both the standard CycleGAN model and

the proposed model. Usually, the cycle consistency loss and overall generator

loss tend to decrease during training, indicating improved performance. On

the other hand, the discriminator losses typically oscillate. Our findings align

with this observation, as we observe similar patterns in the training curves.

Specifically, the generator loss for the CycleGAN model shows oscillations

and tends to saturate within a certain range. In contrast, the generator loss

curves for the proposed model display a gradual and continuous decrease be-

yond the limits of the CycleGAN model. The behavior of the cycle consistency

loss follows a similar trend.

As expected, the discriminator loss shows oscillations throughout the train-

ing process. However, it is important to note that the quality of the generated

images should be the primary criteria for assessing the performance of both

the CycleGAN and the proposed model. The training curves, while informa-

tive, cannot directly determine the superiority or inferiority of the models.

It is even emphasized by the authors of the CycleGAN model that training

curves may not be a reliable indicator of results. Ultimately, a comprehensive

evaluation of the generated images is crucial for comparison and assessment

of model performance.
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