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Abstract

The recognition performance of Optical Character Recognition (OCR) models
can be sub-optimal when document images suffer from various degradations.
Supervised learning-based methods for image enhancement can generate high-
quality enhanced images. However, these methods require the availability of
corresponding clean images or ground truth text for training. Moreover, the
paired training data used for training these models is usually generated by
adding different types of synthetic noise to clean images. Real-world noise
is more challenging and complex in nature compared to synthetic noise. To
effectively enhance real-world noisy images, the models must be trained using
real noisy images. However, it is infeasible to have corresponding clean images
for real-world noisy images, and creating ground truth text requires manual
effort. Unsupervised methods have been explored in recent years, focusing on
enhancing natural scene images. In the case of document images, preserving
the readability of text in the enhanced images is of utmost importance for
improved OCR performance. In this thesis, we explore the possibility of en-
hancing documents in an unsupervised setting using unpaired training samples.
To this end, we propose a modified architecture for the standard CycleGAN
model to improve its performance in enhancing document images with bet-
ter text preservation. The results indicate that the proposed model leads to
better preservation of text and improved OCR performance compared to the
CycleGAN model and classical unsupervised image preprocessing techniques

like Sauvola and Otsu.
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This thesis is the compilation of the journal paper under submission to the
International Journal on Document Analysis and Recognition (IJDAR), co-
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Chapter 1

Introduction

1.1 Motivation

With the advancements in Al, machine learning and deep learning models
are widely being used by organizations in building data-driven Al solutions.
When dealing with paper documents such as invoices, point-of-sale receipts,
forms, and articles, digitization is necessary to extract the information from
the images. Optical Character Recognition (OCR) technologies are used to
convert the handwritten or printed text in these images into a computer-
understandable electronic form. Over time, OCR engines have significantly
improved in terms of recognition accuracy, multi-language support, and the
ability to handle various handwriting styles [7], [53], [61], [80]. However, these
OCR engines perform optimally when the input document images are free of
noise. In real-world scenarios, noise can be present due to factors such as
uneven illumination during image capture, faded text caused by low printer
ink, or the presence of coffee, or ink stains [5], [16], [18], [115]. Such degra-
dations in the image directly impact the OCR performance. Therefore, it is
crucial to reduce the impact of these degradations on document images before
performing OCR. By enhancing the document images, the OCR recognition
accuracy can be improved, and the extracted information becomes more reli-
able. This thesis addresses the problem of document image enhancement as a
preprocessing step to enhance the performance of OCR engines.

Previous works in deep learning have approached image enhancement as a
supervised learning task [97], [98], [118], [120]. While these approaches have
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been quite effective at reducing the presence of various noise artifacts from
the images, these models require supervision in the form of clean ground truth
images or ground truth text for training. If these models are trained on noisy-
clean image pairs, the paired training data is usually generated by adding
different types of synthetic noise to clean images. When these models are
utilized for enhancing real-world noisy images, the performance is often sub-
optimal [1], [44], [73], [108]. Real-world noise is more challenging and complex
in nature compared to synthetic noise. To effectively enhance real-world noisy
images, the models must be trained using real noisy images. However, it is
infeasible to have corresponding clean images for every real-world noisy image
to train these supervised models. On the other hand, creating ground truth
text annotation for training is a tedious task requiring manual effort. These
challenges motivated us to explore unsupervised methods for achieving this
task.

Noisy Image CycleGAN Proposed

by, — S

Predicted : garde (BEEREH] | Predicted : getass 200° poet Predicted : garlic pepper boef

Figure 1.1: Noisy image cleaned by CycleGAN compared with the proposed
model.

With the remarkable success of Generative Adversarial Networks (GANS)
[21], various models have been proposed to achieve image-to-image translation
in an unsupervised setting [24], [43], [70], [113], [121]. These methods have
achieved impressive results in style transfer between natural scenes. The task
of denoising images can also be formulated as an image-to-image translation
task, where the objective is to learn a mapping that transforms an image in

the noisy domain into an image in the clean domain [91]. Previously, models
2



for unpaired image translation have been utilized for unpaired image denoising
tasks in natural scene images [31], [41], [90], [107], [112], [114]. However, the
application of these unsupervised methods to enhancing document images has
not been extensively explored. This encouraged us to explore this avenue.

It is important to understand that image-to-image translation for document
images is different from natural scene images due to the presence of textual
content in addition to the visual structure in the images [4], [19]. Effectively
enhancing document images requires not only the elimination of noise but also
preserving the textual content. Degradation of the text during enhancement
would directly impact the OCR performance, even if the background noise is
removed. Therefore, it becomes paramount to focus on preserving the textual
content during the translation from one style to another.

One of the most popular GANs proposed for unpaired image-to-image
translation is CycleGAN [121]. The CycleGAN model has achieved remarkable
performance in various unpaired image style translation tasks, including de-
noising natural scene images. However, we observe that its direct application
for unpaired document image denoising does not yield satisfactory results. We
notice that while the model is capable of eliminating the degradation present
in the document image, it fails to preserve the textual contents of the original
image. As a result, the generated clean image, although free of degradations,
often has distorted text, as shown in Figure 1.1. This distortion of the text
leads to poor OCR performance. Therefore, to utilize the CycleGAN model
effectively for this task, certain improvements are required.

The underlying framework of GANs consists of two networks: the generator
and the discriminator. The goal of the generator is to generate new samples
that match the underlying distribution of the real images. The discriminator,
on the other hand, acts as a classifier to distinguish between real images and
the samples generated by the generator.

Most GANs utilize a Convolutional Neural Network (CNN) in the discrimi-
nator network. While CNNs have strong capabilities for extracting meaningful
features from images [34], [88], [95], we hypothesize that due to the presence

of text in document images, it becomes important to extract stronger features
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that also capture the text well. Image text recognition models [27], [38], [86],
[87] widely adopt a combination of CNN and a sequential network to capture
the local and contextual information present in the image. The local image
features extracted by the CNN are enhanced by a Recurrent Neural Network
(RNN) model that extracts sequential dependencies. This combination has
shown superior results in extracting meaningful features from images for text
recognition in document images. Exploring this combination, previous works,
such as [106], have proposed the integration of a CNN-LSTM-CTC-based text
recognition module alongside the discriminator network as a supervising signal

for preserving the text characters.

1.2 Research Statement

In this thesis, we address the problem of unpaired document image enhance-
ment for OCR using an enhanced CycleGAN model. Our hypothesis is that by
incorporating a Bidirectional Long Short Term Memory network (BiLSTM)
with robust sequential modeling capabilities into the discriminator network of
the standard CycleGAN model, we can enhance the preservation of textual

content during the translation process from noisy to clean document images.

1.3 Contributions

The main contributions of this thesis are as follows:

e We present a framework that is capable of enhancing real-world noisy
documents in an unsupervised setting without the use of noisy/clean

image pairs, ground-truth text, or metadata such as noise type.

e We demonstrate the effectiveness of our proposed discriminator archi-
tecture in better preserving the textual content during the enhancement
and achieving superior performance across three different OCR engines
compared to the standard CycleGAN model and classical unsupervised

image pre-processing techniques like Sauvola and Otsu.



1.4 Thesis Outline

This thesis is structured into 8 chapters including the introduction. Follow-
ing this outline of this thesis, in Chapter 2, we introduce the readers to the
required deep learning background for understanding the work presented in
this thesis. In Chapter 3, we familiarize the readers with some of the pre-
vious works related to document image preprocessing including conventional
techniques, deep learning-based approaches as well as works utilizing GAN.
In Chapter 4, we describe the details of our proposed model, including the
network architectures, objective functions, and training procedure. Following
this, in Chapter 5, we familiarize the readers with the procedure used in this
work for preparing the data for training and evaluation of our proposed model.
In Chapter 6, we begin by providing details of our experimental setup includ-
ing OCR engines, evaluation metrics as well as hyperparameters and training
details. Next, we present the results and analysis of the performance of our
proposed model, along with comparisons with other baselines. We also high-
light some additional ideas we explored. Finally, in Chapter 7, we conclude
this thesis with a discussion of the limitations of the proposed work, future

directions for this work, and some closing thoughts.



Chapter 2

Background

This chapter familiarizes readers with the background required to understand
the work presented in this thesis. In Section 2.1, we begin by introducing
Generative Adversarial Networks to provide readers with an overview of these
networks and the key ideas involved. We elaborate on the architecture and
the overall objective function of these networks. Additionally, we also discuss
some challenges involved in training these networks. Next, in Section 2.2, we
provide a detailed explanation of the CycleGAN model. Since our proposed
model builds upon the CycleGAN framework, this section lays the groundwork
for understanding our modifications. Finally, in Section 2.3, we introduce
readers to Bidirectional Long Short Term Memory networks (BiLSTM) and
their utilization in processing sequential data. We use BiLSTM networks as a

key component in our proposed model.

2.1 Generative Adversarial Networks

2.1.1 Overview

Generative Adversarial Networks (GAN) is a type of generative model [21].
The goal of generative models is to generate new samples belonging to a certain
data distribution. GANs have shown a remarkable ability to generate realistic
data for various generative tasks across different modalities such as images
23], [42], [117], videos [54], [99], [101], audio [9], [48], [56], and text [17], [111],
[119].

The key theory behind GANs is adversarial learning. In an adversarial
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learning setting, two players compete against each other in a battle, where
each one is learning to be better than the other, and in this process, even-
tually both these players become better. GANs employ a generator and a
discriminator model, each being a neural network in an adversarial setting.
The goal of the generator is to generate samples closely matching the under-
lying data distribution of the real samples while the discriminator attempts
to distinguish between real and generated samples. Through this two-player
game, eventually, the generator learns to generate samples that closely resem-

ble the real samples.

Noise (z) |

A\

Generator
G

Discriminator
TTTTTTTTmmooTmmmmoomees D

v

| Jog(Dw) 1 log(1-DGE) oo e JesDGE)

Figure 2.1: GAN architecture.

2.1.2 Architecture

Figure 2.1 shows the architecture of the GAN framework. Both G and D are

neural networks. The generator GG takes in a random noise input z following
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the Gaussian distribution and generates an output G(z). The discriminator
D takes in the real input z and the output of the generator G(z), tries to
distinguish real data from the generated data, and outputs the probability
that the input was real. D(x) represents the probability of D predicting that
x was real and D(G(z)) represents the probability of D predicting that G(z)

was real.

2.1.3 Objective function

Equation 2.1 shows the objective function of the GAN framework.

minmax L(D, G) = By, o[log D(x)] + Eevp o log(1 = D(G(2))]  (21)

The objective is a minimax function. The first term E,.p, (2)[{log D(x)]
represents the log probability of D predicting the real data x as real. The
second term E.., (.)[log(1 — D(G(2)))] represents the log probability of D
predicting the generated data G(z) as not real. During training, D should
learn to accurately predict the real data as real and the generated data as not
real. Hence, the training of D involves maximizing the objective function. On
the other hand, G has to attempt to fool D into predicting generated data
G(z) as real. Therefore, it has to minimize [1 — D(G(z))]. G is therefore
trained to minimize the objective function.

The above equation can be rewritten as:
mgn max L(D,G) = Epp, (2)[log D(x)] + Epop, @) [log(1 — D(z)] (2.2)

where p, and p, represent the real data and the generated data distributions
respectively. From this equation, for getting the optimal value of D, we need

to maximize L(D, G).

L(G. D) = / (02 (2)1og(D(2)) + py(e) log(1 — D)) dz  (23)

To maximize L(D, ), we need the best value for D(z) *.

1Referred from [105]



f(D(x)) = pr(x)log(D(x)) + py(x)log(1 — D(x)) (2.4)

d(f(D(z))

)] ) and equating it to 0, we get D* = —2c(®)

~ pr(@)tpg(a)
Considering optimal G*, p,(x) = py(x), therefore, D* = %

Calculating

Putting these optimal values, we can get the global optimal value for the

objective function as:

L(G", D) = / (92 () log (D" (2)) + py(x) log (1 — D*(x))) dz

T

1 1
= log§ /pr($)d$ + 10g§ /pg(x)dx (2.5)

= —2log?2

If D is optimal, the loss function represents minimizing the Jensen-Shannon
(JS) divergence [55] between the real data distribution and generated data
distribution. To understand this, it is important to understand how generative
models generate data. Generative networks learn by minimizing the difference
between the real data and the generated data distributions. There are different
ways to measure the similarity or difference between the two distributions. One
such measure is Kullback-Leibler (KL) Divergence [47] which calculates the
divergence of one probability distribution from another reference probability
distribution. For two probability distributions p and ¢, KL divergence of p

from ¢ and ¢ from p is given by:

= x)lo M x
Dislolle) = [ o) lox 50 (2.6
Drcn(al) = [ ali)tog 2 27)

Derived from KL divergence, JS divergence is another measure of similarity
between two probability distributions. For probability distributions p and ¢,

JS divergence is given by:

Dys(plla) = 5 Dicr (M) + 5 D (gl M) 2.3



where,

For p, and p, representing the real data and the generated data distribu-
tions, using Equation 2.5, it can be shown below that for an optimal D, the

training of GANSs is equivalent to minimizing the JS divergence between p,

Pr+ Dy 1 Pr+ Dy
Dy -D
(H ) )+2 KL(pgn )
logQ—l— )logde)-F

( (z)
<log p + (z) log (x)(x) dm)

Pr+ Dy
(log4 + L(G*,D"))

and p,.

DN | — [\3|>—t [\')Ir—l

Ds (pr||pg)

l\.')lH

L(G*,D*) = 2D s (pr|lpy) — 2log 2 (2.9)

2.1.4 Pitfalls of GAN

There are several challenges to training a GAN, where two neural networks
are being trained simultaneously with one trying to maximize the objective
function and the other minimizing it. In many cases, the training can be
highly unstable. Instability also arises from vanishing gradients. For a perfect
D, D(x) = 1,Vx € p, and D(z) = 0,Vx € p,. This leads to overall loss
becoming 0 in Equation 2.2. Ideally, we want D to be perfect but with loss 0,
the gradients vanish over time and G cannot be updated well. On the other
hand, if D is not perfect, G would not receive accurate feedback to update
itself. Another issue with training GANs is Mode Collapse [82]. Mode Collapse
happens when the generator tries to map all the inputs to a small space of
outputs in the target domain for which it can fool the discriminator. With
this, although it accomplishes fooling the discriminator, the generator fails to

learn the data distribution effectively.
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2.2 CycleGAN

2.2.1 Overview

Generator W
bt G X—Y J »  GK
A Cycle
v consistency
Y
Discriminator Decision
F(G(x;
(G(x) D, [01]
A A
Generator
FiY - X Real
yeyY
Input Generator W N
yeY FiY—X J F»
f Cycle
A\ consistency
A 4
Discriminator Decision
G(F(y)) D), [0,1]
L A
Generator
G X—Y Real
: x€X

Figure 2.2: CycleGAN architecture.

The CycleGAN framework [121] is a specialized type of GAN proposed for
unpaired image-to-image translation tasks. In an image-to-image translation
task, the goal is to transform an input image in the source domain to an output
image in the target domain using paired data samples for training. In certain
use cases, it is challenging to obtain paired data to achieve the translation. To
alleviate this problem, CycleGAN attempts to learn meaningful mappings be-
tween unpaired source and target images by utilizing the transitivity property

in the form of a cycle consistency loss.
11



2.2.2 Cycle consistency

Consider a translation function F; : X — Y that maps an input x in domain
X to an output y in domain Y and another function F, : Y — X that
maps an input y in domain Y to an output x in domain X, cycle consistency
enforces that Fy(Fi(z)) =~ z and Fi(F5(y)) ~ y. This means that if an image
is transformed from one domain to another and then reverse-transformed, the
generated samples should be close to the source domain. In the absence of
cycle consistency, the generator network can learn to transform the set of
input images to any random set of images in the target domain for which the

output matches the target distribution.

2.2.3 Model architecture

Consider Figure 2.2, there are two generators G : X — Y and F : Y — X.
In the top diagram, the generator G maps an input image from the source
domain X to an output image in the target domain Y. Generator F' takes in
the generated image and performs the inverse transformation from the target
domain Y back to the source domain X. The discriminator D, aims to dis-
tinguish between the real y and the generated image G(z). Cycle consistency
is ensured between = and F(G(x)).

Similarly, in the bottom diagram, the generator F' maps an input image
from the target domain Y to an output image in the source domain X. Gener-
ator GG takes in the generated image and performs the inverse transformation
from the source domain X back to the target domain Y. The discriminator D,
aims to distinguish between the real z and the generated image F(y). Cycle
consistency is ensured between y and G(F(y)). Therefore, the bi-directional
conversion for image-to-image translation in CycleGAN is achieved by the use
of two generators and two discriminators.

In the CycleGAN model, the generator network comprises two convolu-
tional layers of stride 2, followed by a few residual blocks, and finally, two
layers of transposed convolutions with stride 1. The discriminator network is

a 70 x 70 CNN-based network called PatchGAN [36], [50], [52] that classifies
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the 70 x 70 overlapping patches of images as real or fake. PatchGAN provides
the output in the form of an array in which each number signifies whether its
corresponding patch is real or fake. The discriminator output is taken as the

average of the prediction for each patch.

2.2.4 Objective function

The goal is to learn a mapping function between a source domain X to a target
domain Y given the training samples: {$i}i:17 x; € X and {yj}fl, y; €Y,
with distributions = ~ Px(z) and y ~ Py (y). The overall objective function
in CycleGAN comprises two losses - the GAN loss that enforces the mapping
of the image style from one domain to another and the cycle consistency loss
that ensures that the contents of the original image remain preserved during
the style transfer. Equations 2.10 and 2.11 shows the two adversarial losses in

CycleGAN.

Lean (G, Dy, X,Y) = Eypy () [l0g(Dy (y))] + Eznpy @) [log(1 — Dy (G())]
(2.10)

Lean(F, Dx, X,Y) = Epnpy(o)[l0g(Dx (2))] + Eypy (n[log(1 — Dx (F(y))]
(2.11)

The cycle consistency loss is defined as :

Leye(G, F) = By [l F(G(2)) = 2[h] + Eypy ) [[|G(F(y)) —ylla]  (2.12)

Adding the adversarial and cycle consistency loss, the overall objective

function is defined as:

L(G,F,Dx,Dy) = Lean(G, Dy, X,Y)+ Laan(F, Dx,Y, X) + AycLoye (G, F)
(2.13)

Here, A,y controls the weight of cycle consistency loss.
The parameters G, F, Dx, Dy are learned through optimization of the over-

all objective function as:

G*, F* = argmin max L(G, F, Dx, Dy) (2.14)
G,F Dx,Dy

13



2.3 Bidirectional Long Short Term Memory
(BiLSTM)

One of the limitations of CNN is the inability to preserve the sequential order
of information during processing. For data that is sequential in nature such
as text, and speech, Recurrent Neural Networks (RNN) are used due to their
capability for sequential modeling [15], [81]. RNNs make use of information
from previous states for processing current state output. This is done with the
use of a hidden state that stores outputs from the previous states. However, for
longer sequences, simple RNNs suffer from the problem of Vanishing gradients
[6]. Long Short-Term Memory Networks (LSTM) overcome this problem and

are more suitable for handling long-range sequential dependencies [29].

LSTM LSTM

Figure 2.3: A simple LSTM module.

Figure 2.3 shows a simple LSTM module. At any time step ¢, we have the
input vector x; as well as the previous step hidden state h;_;. The transmission
of information takes place through the Cell State ¢ running through all the
time steps. Information is added or removed from the cell state using gates.
The first o represents the Forget Gate, which takes in the previous hidden
state and the current input and outputs a value between 0 and 1. If previous
information is no longer useful and should be completely erased, it outputs 0.
If previous information is strongly valuable and should be preserved, it outputs
1. This is multiplied with ¢;_;. The second o represents the Input Gate, that

is used to decide the importance of the current input information z;. x; and
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Figure 2.4: BiLSTM network.
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h;_1 are passed through a tanh activation that clips values between -1 and 1.
A new vector for the new cell state to be updated is created. This is multiplied
by the output of the input gate and added to the cell state. The new cell state
is C; which is passed to the next time step ¢ + 1. The last o represents the
Output Gate, which decides the next hidden state h;. The current cell state
¢; is passed through a tanh activation and multiplied with the output of the
output gate. This decides the information to be carried in the next hidden
state. h; is output for the current step ¢ and is also passed onto to next time
step t + 1.

Bidirectional Long Short Term Memory networks (BiLSTM) [22] is an ex-
tension of LSTM, with the capability of flowing information in both forward
and reverse directions. This makes them more powerful in better understand-
ing the context. These are created by stacking two LSTM layers, one process-
ing information in the forward direction and the other in the reverse direction.
The outputs for each of these two layers are combined through an activation

layer and the final outputs are generated.
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Chapter 3

Preprocessing document images

for OCR

This chapter familiarizes the readers with some of the previous methods used
for preprocessing document images for OCR. We discuss some of the conven-
tional and deep learning methods used for image binarization in Section 3.1
and then highlight previous works that have employed GAN for enhancing
degraded document images in Section 3.2. It is important to understand that
there are many tasks involved in preprocessing document images for OCR
based on the type of degradation. Some of these include background noise
removal [16], [37], skew correction [78], [83], [93], watermark removal [85], [91],
[110], super-resolution [49], [72], [79], and deblurring [11], [20], [39], [63]. In
this work, we focus mainly on the degradation in the form of uneven contrast

between background and text, dark spots or ink stains, and faded characters.

3.1 Document image binarization

Conventional methods for preprocessing document images with noise, such as
uneven contrast between the background and text, dark spots or ink stains,
and faded characters, utilize image binarization techniques. These techniques
involve classifying each pixel as text or background based on a certain threshold
value. The threshold can be decided based on global or local image features.
Global thresholding methods apply the same threshold to every pixel in the
image. Otsu’s method [67] performs global thresholding, deciding the thresh-
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old value from the grayscale histogram of an image to minimize the variance
between background and foreground pixels. Local thresholding involves deter-
mining the threshold for each pixel using information from its local neighbors.
Popular thresholding methods like Niblack [64] and Sauvola [84] adopt local
thresholding to generate binarized images. Niblack’s method uses the mean
and standard deviation values of the local pixels within a certain window to
calculate the threshold. Sauvola’s method, an improvement over Niblack’s,
uses adaptive thresholding, adjusting the mean and standard deviation of lo-
cal pixels within the window according to the contrast values. Some meth-
ods, such as [57], [66], utilize a hybrid approach for thresholding, combining
global and local image features. The main drawback of these methods is their
strong dependence on the choice of window size. This parameter needs to
be carefully tuned for each image to obtain the optimal thresholding. Cer-
tain learning-based methods have also been proposed, which use hand-crafted
features. Xiong et al. [109] utilize an SVM model for this task, performing
binarization in three steps. First, the image is divided into regions based on
the window size, and a local contrast adjustment is performed for each re-
gion. Then, a global threshold is selected to binarize each region using an
SVM model. Finally, local adaptive thresholding is performed over the entire
image. However, such learning-based methods often fail to generalize to all
images.

With the growth of CNNs and their strong image feature extraction ca-
pabilities, several works have explored these networks in document image en-
hancement and binarization tasks. Pastor-Pellicer et al. [71] use a CNN to
classify each image pixel as belonging to the background or foreground based
on the intensity values of neighboring pixels within a window. Calvo-Zaragoza
and Gallego [10] utilize a very deep Residual Encoder-Decoder Network (Red-
Net) [59] and propose a selectional auto-encoder (SAE) model that outputs a
selectional value corresponding to each pixel based on whether it belongs to the
background or foreground, using these values for thresholding to generate the
binarized image. Tensmeyer and Martinez [96] propose a model using a fully

convolutional network (FCN) trained with a combination of pseudo-F-measure
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[65] and F-measure loss. Vo et al. [100] propose a hierarchical deep supervised

network that predicts text pixels considering image features at several levels.

3.2 GAN for document image enhancement

With the success of GANs in image-to-image translation tasks [36], [50], [102],
[113], several works have utilized GAN-based models for the enhancement of
document images. DE-GAN [91] shows the effectiveness of a conditional GAN
[36] for document binarization, deblurring, and watermark removal tasks using
paired noisy and corresponding clean images. The generator is conditioned on
the input noisy image. To ensure that the text in the original noisy image is
preserved during the enhancement, a log loss is added between the generated
clean image and the ground truth clean image. The architecture involves the
use of a single generator and discriminator. Later, Ray et al. [77] propose a
framework for document enhancement and recognition jointly using a GAN-
based framework for image enhancement and a bidirectional LSTM and Con-
nectionist Temporal Classification (CTC) based module for text recognition.
The image enhancement model utilizes a fully convolutional RED-Net [59]
for image denoising followed by a deep back projection network (DBPN) [25]
for super-resolution. The CTC loss between the text recognition output and
ground truth text provides the supervision for training the model. Souibgui
et al. [92] along similar lines, proposes integrating a recognizer in the discrim-
inator of a conditional GAN to guide the generator to produce clean images
with readable text. Similarly, Kodym and Hradi [46] propose a text-guided
transformer GAN that uses the target text transcription as a guiding signal
for conditioning the restoration. Later, Poddar et al. [74] propose a GAN-
based framework for text restoration from deformed handwritten documents.
Among all these works, there is a constraint for the availability of either ground
truth text or ground truth clean images for training. As discussed previously,
this requirement limits the direct application of these models in a real-world
setting.

In recent years, several unpaired techniques have also been explored for
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enhancing document images using GANs. Sharma et al. [85] explore the feasi-
bility of applying CycleGAN for document image cleaning. The main advan-
tage of CycleGAN is that it does not require corresponding noisy/clean image
pairs. However, in this particular work, the CycleGAN model is trained using
paired samples. Neji et al. [63] propose Blur2Sharp CycleGAN for the task
of text document deblurring by adjusting the parameters of CycleGAN for ef-
fective document deblurring in an unsupervised setting. However, other types
of degradation are not explored. More recently, Gangeh et al. [19] proposed
a unified single model approach for eliminating four different noise types (salt
and pepper, faded, blurred, and watermarked) by integrating a Deep Mixture-
of-Experts (MOE) [103] model with a CycleGAN model for cleaning document
images without clean/noisy pairs. The results show the effectiveness of their
proposed framework over training separate CycleGANSs for each type of noise
or training a CycleGAN sequentially, starting with one type of noise, followed
by others. While the work can handle effectively different types of noise present
in document images, without requiring ground truth text or image, it requires
the metadata about the type of noise present in the image to train the em-
bedder network of the MOE model. Therefore, along with noisy images, a
label specifying the type of noise present in the image is required as input.
Moreover, there is an assumption of the presence of only a single type of noise
in each image. For real-world noisy images, such an assumption is not always
valid. The noisy image can consist of a combination of noise types and it is
difficult to label the type of noise.

These shortcomings are addressed by our proposed model. Following these
works, we propose certain modifications in the standard CycleGAN model to
improve its performance in document image enhancement tasks. Moreover, it
is important to highlight that we achieve this objective without any supervision
in the form of prior knowledge about the type of noise, availability of ground

truth text, or clean ground truth images.
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Chapter 4

Modified CycleGAN with
CNN-BiLSTM discriminator

This chapter provides readers with a detailed description of our proposed
model. We explain the generator network architecture in Section 4.1 followed
by the discriminator network architecture in Section 4.2. Section 4.3 details
the loss functions used for training the proposed model. Finally, in Section

4.4, we explain the overall training algorithm used.

4.1 Generator network

Figure 4.1 shows the overall architecture of the generator used in the pro-
posed model. The architecture is adopted from the CycleGAN generator. The
generator network consists of three parts - an encoder, residual blocks, and a
decoder.

The encoder network maps the input image to a feature vector by per-
forming downsampling. The input grayscale image of shape 256x256x1 is
downsampled by a series of three convolutional layers. The first convolutional
layer has a kernel of size 7x7 and stride 1. The other two convolutional layers
have a kernel of size 3 x 3 with stride 2 for performing downsampling of input.
All the three convolutional layers are followed by instance normalization and
ReLU activation. The downsampled feature vector has a shape 64x64x256,

where 256 is the number of channels.
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Input Image Output Image

256x256x1 256x256x1
| - ‘
Conv 7x7, Norm, ReLU Conv 7x7, Tanh
256x256x64 256x256x64
Conv 3x3, Norm, RelL.U Upsample, Conv 3x3, Norm, ReLU
128x128x128 128x128x128
Conv 3x3, Norm, ReLU Upsample, Conv 3x3, Norm, ReLU
\/ U
64x64x256 {: ..... @ 64x64x256
9 Residual

Blocks

Figure 4.1: Generator network.

The downsampled feature vector is passed through a series of residual
blocks. The main reason behind the use of residual blocks is the problem
of exploding or vanishing gradients in deep convolutional neural networks re-
sulting in the failure in convergence. Residual blocks overcome this by making
use of skip connections that pass the output of a previous layer to another
deeper layer. This connection provides a shortcut path through which gradi-
ents can pass. The residual blocks make use of residual function, where the

output of the residual block H(x) is given by:

H(z)=F(x)+x (4.1)

Here, z is the output from a previous layer and F'(x) denotes the residual
function. The residual block consists of a convolutional layer, a normalization
layer, and a ReLLU activation followed by another convolution layer and nor-
malization layer. Table 4.1 shows the layers in each residual block used in the
generator. Following the standard CycleGAN implementation, for 256x256

sized images, 9 residual blocks are stacked in the generator.

21



Type ‘ Configuration ‘ Activation Size

Input - 256x 256 % 1
Convolution #maps: 64, k: 7x 7,s: 1, p:3 256 %256 x 64
Convolution #maps: 128 k: 3 x 3, s: 2, p:1 128128 x 128
Convolution #maps: 256, k: 3 x 3, s 2, p:1 64 %64 %256
9 Residual blocks Each block :

Convolution #maps: 256, k: 3 x 3, s: 2, p:1

Instance normalization+ReLLU 64 x64 %256
Convolution #maps: 256, k: 3 x 3, s: 2, p:1
Instance normalization

Upsample scale=2 128128 x 128
Convolution #maps: 128 k: 3 x 3,s: 1, p:1 128x128x 128
Upsample scale=2 256256 x64
Convolution #maps: 64, k: 3 x 3, s: 1, p:l 256 x256 x 64
Convolution #maps: 1, k: 7x 7,8 1, p:3 256x256x%1

Table 4.1: Generator network summary. #maps, 'k’, ’s’, and 'p’ represent the
number of channels, kernel size, stride, and padding respectively.

wr wr
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Figure 4.2: Example of checkerboard pattern observed in the generated image
when using transposed convolution and the generated image free of checker-
board pattern when using upsampling followed by convolution.

The output feature vector after the series of residual blocks is passed to
the decoder network. The decoder network maps the feature vector to an
output image by performing upsampling. The output image has the same
size as the input image. The decoder network consists of two decoding blocks
followed by a final convolution layer to output the generated image. The
CycleGAN model uses fractionally-strided convolutional layers with stride %
as the decoding block. We observed the introduction of a checkerboard pattern
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in the generated images when using this network. A possible reason for the
appearance of these patterns is due to the transposed convolution operations
causing uneven overlap when kernel size is not a multiple of the stride value .
A way to avoid these patterns is to separate upsampling operation from the
convolutional operation. Following this, we modify the decoder blocks such
that instead of using transposed convolutions, we use an upsampling operation
followed by a convolutional operation. Here, we perform upsampling using the
nearest-neighbor interpolation technique. Figure 4.2 shows the example of the
checkerboard pattern observed in the generated image when using transposed
convolutions and the generated image free of the checkerboard pattern after
the modification. After the two decoding blocks, the final convolution layer
uses a 7x7 kernel followed by a tanh activation. Table 4.1 summarizes the

network configuration for the proposed generator.

4.2 Discriminator network

N\

Feature Sequence

D AWAN
e — ] =
‘.
— Reshape . Reshape Output
512 512 ~

AWAN

12

Input Image

512 512
256 256 1536 512 128

8 Convolutional (3*3) + ReLU D Fully connected

256*256*1 64 I:‘ Max pooling (2,2)

Batch normalization

2 BiLSTM layers

Figure 4.3: Proposed discriminator network.

For document image enhancement, to preserve the text while performing
the translation, the discriminator needs to extract stronger features that cap-
ture text as well in addition to visual features while distinguishing between
real or fake images.

In this work, we replace the CNN-based discriminator network in Cycle-
GAN with a CNN-BILSTM model. The CNN-BiLSTM model combines the

Uhttps:/ /distill.pub,/2016 /deconv-checkerboard/
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Type Configuration

Input 256 x 256 x 1
Convolution #maps: 64, k: 3 x 3,s: 1, p:l
MaxPooling Window: 2 x 2, s: 2
Convolution #maps: 128, k: 3 x 3, s: 1, p:1
MaxPooling Window: 2 x 2, s: 2
Convolution #maps: 256, k: 3 x 3, s: 1, p:1l
Convolution #maps: 256, k: 3 x 3, s: 1, p:1l
MaxPooling Window: 2 x 2, s: 2
Convolution #maps: 512, k: 3 x 3, s: 1, p:1
Batch Normalization -

Convolution #maps: 512, k: 3 x 3, s: 1, p:1
Batch Normalization -

MaxPooling Window: 2 x 2, s: 2
Convolution #maps: 512, k: 3 x 3, s: 1, p:1
MaxPooling Window: 2 x 2, s: 2
Convolution #maps: 512, k: 3 x 3,s: 1, p:0
MaxPooling Window: 2 x 2, s: 2

Map-to-Sequence
Bidirectional-LSTM
Bidirectional-LSTM
Reshape

Linear

Linear

Linear

#hidden units: 256
#hidden units: 256
1536, 512
512, 128
128, 1

Table 4.2: Discriminator network summary. #maps, 'k’, ’s’, and 'p’ represent
the number of channels, kernel size, stride, and padding respectively.
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advantages of CNN and BiLSTM networks. The combination has proven its
success in extracting stronger features in text recognition models [27], [38], [40],
[86], [87] which inspired us to utilize this combination in the discriminator net-
work. CNN is used to extract image features from input document images.
The extracted image features are flattened and passed as a one-dimensional
vector to the BiLSTM network. The BiLSTM network utilizes sequential
learning capabilities to generate enhanced features that better represent the
text within the document images.

Figure 4.3 shows the architecture of the proposed discriminator network.
The overall network consists of a CNN and a BiLSTM network followed by fully
connected layers for classification. We adopt the CRNN network from [86].
The CNN network consists of convolutional and max-pooling layers to extract
important local features from the input image. The original CRNN model
takes in an input of size W x32, where W is the width of the image. Since in our
case, we have 256 x 256 size input, we add two additional max-pooling layers
and one convolutional layer. The 256 x 256 x 1 input image is downsampled
to 3 x 3 x 512 feature map. This feature map is reshaped for input to the
RNN network. The RNN network has two BiLSTM layers with 256 hidden
units each. During preliminary experiments, we tried increasing the number
of BiLSTM layers to 4. But the modification was not very useful and only
increased the number of parameters for training. The output from the BiLSTM
layers has shape 3 x 512. As we need to perform classification instead of text
recognition, we remove the transcription layer (maps the output of BiLSTM
to label sequence) and add three fully connected layers that finally output
a single value. The network configuration for the proposed discriminator is

summarized in Table 4.2.

4.3 Objective function

The overall objective function comprises two losses - Loan and the Leye. Loan
is calculated using Equations 2.10 and 2.11 whereas L., is calculated using

Equation 2.12.
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Following Least Squares GAN (LSGAN) [60], least-squares loss is used to
calculate Lgany. LSGAN helps with the problem of vanishing gradients and
saturation of loss in GAN. It is implemented by changing the loss function
of the discriminator to least squares loss instead of binary cross entropy loss.
In a standard GAN, the discriminator acts as a binary classifier that classifies
whether the generator outputs are generated or real and is trained using binary
cross-entropy loss. Such binary signals do not provide informative feedback to
the generator on how to improve itself.

Least Squares loss ensures that instead of providing binary feedback, the
loss function provides feedback on how accurate or incorrect the predictions
were. The loss is indicative of how close or far the generated images are with
respect to the decision boundary. For generated data that is far from the
decision boundary, the generator is penalized in proportion to the distance.
This provides much more informative feedback to the generator to update
itself.

With least squares loss, for a given GAN loss, Loan (G, D, X,Y), the gen-
erator G is trained to minimize E,., .. [(D(G(z)) — 1) and D is trained
to minimize Eyp,,..) [(D(y) — 1)°] + Evopypra@) [D(G(2))?]-

Cycle consistency loss is calculated using L1 loss. In addition to these
losses, there is an optional identity loss that is used in CycleGANs. The
identity loss ensures that G(y) should be ~ y and F(x) should be ~ z. That
means if an input already belongs to the target domain, the generator should

perform an identity mapping ensuring no change. It is calculated as :

Lidentity (G, ) = Bympgura ) 1G(Y) = yl]

+ Eopana @ 1F(2) = 2(1]
In the CycleGAN paper, it is added with weight \;; x A, making the

(4.2)

overall objective function:
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L(G,F,Dx,Dy) = Lgan (G, Dy, X,Y)
+ Laan (F, Dx,Y, X)
+ )\cycccyc(G7 F)

+ )\id>\cyc£idcntity(G7 F)
The value of \;y suggested by the CycleGAN paper is 0.5. We also add

(4.3)

this loss while training our model, to ensure that if an input image is already
clean, then the generator should not transform it into a different image but

output it with no changes.

4.4 'Training

Algorithm 1 shows the overall training procedure for the proposed model. Un-
paired images a and b are randomly selected from the noisy domain X5, and
clean domain X ..,, respectively. Fake clean image b corresponding to a is
generated using G : Xypisy — Xeean and fake noisy image a corresponding
to b is generated using G : Xejean — Xnoisy- Loss L, and L, are calculated.
Total loss L is calculated by adding the individual losses for each of the gen-
erators. The parameters for generators Gy and G5 are updated by computing
the gradient of L5. Loss Lp, for Dy and Lp, for D, are calculated. The
parameters of Dy are updated with respect to the gradient of £Lp, and the

parameters of Dy are updated with respect to the gradient of Lp,.
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Algorithm 1 Training steps for proposed model
IHPUt: Xnoisy7 Xclean

Initialize: Generator G1(¢y,) : Xnoisy — Xctean, Generator Ga(¢g,) @ Xeiean —
Xnoisy, Discriminator D (6y,), Discriminator Dy(fg,), cycle consistency Agye,
identity mapping \;4, number of epochs n

for n do

for a,b € {Xoisy, Xcican} dO
b,a = Gi(a), Gy(b)
Lo, = MSE(Dy(b'), target, ) + AeyeL1(G2(b'), @) + MiaAeye L1(G1(D), )
L, = MSE(D;(a'), target, u;) + AeyeL1(G1(a'), b) + MiaAeye L1(Go(a), a)
Lo =Lc1+ L2
Update ¢,, using Vg, (Lc)
Update ¢, using Vg (Lc)
Lp, = MSE(D(b), target,.,;) + MSE (DQ(b/),targetfake)
Lp, = MSE(D;(a), target,.,;) + MSE (D;(a’), target o)
Update 0,4, using Ve, (Lp,)
Update 04, using Vy, (Lp,)

end for

end for
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Chapter 5

Creating unpaired noisy/clean
training dataset

This chapter provides details about the steps used to prepare the training,
validation, and test sets for the proposed model. The task of document image
enhancement in this work is formulated as an unpaired image-to-image trans-
lation task, where we translate noisy images to clean images. Thus, we need a
set of noisy document images and an unpaired set of clean document images.
In Section 5.1, we discuss the training set that was used to train the proposed
model. Firstly, we elaborate on the different datasets of noisy document im-
ages that were utilized to form the noisy domain. This is followed by details
on the creation of unpaired clean documents to form the clean domain. In

Section 5.2, we provide details on the data used for evaluation.

5.1 Training data

Three document image datasets - the Kaggle Denoising Dirty Documents
dataset [14], the Point-of-Sale (POS) Receipts dataset [76], and the Noisy
OCR Dataset (NOD) [28] are used.

The Kaggle Denoising dataset consists of noisy document images with var-
ious synthetically added noise types, such as wrinkles, stains, and faded spots.
The dataset also includes a variety of text font styles. The POS dataset is
a combined dataset formed from real-world noisy receipt images from three

datasets: the ICDAR SROIE competition dataset [35], the Findit fraud detec-
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Figure 5.1: Sample noisy images from Kaggle Denoising dataset.
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Figure 5.2: Sample noisy images from POS dataset.

tion dataset [2], and the CORD dataset [69]. The images in the POS dataset
are extracted patches of size 500 x 400, horizontally cropped from the full-
size receipts. The Noisy OCR dataset comprises pages from old English and
Arabic books with different synthetically added noise types. We select images
with English text and noise in the form of weak ink. Sample noisy images
from these datasets are shown in Figures 5.1, 5.2, and 5.3.

For image-to-image translation, a set of images belonging to the target
domain is also required for training. Since we train our model in an unsuper-
vised setting, the target clean set should consist of unpaired clean document
images. In the case of the Kaggle Denoising dataset and Noisy OCR dataset,
we create this clean set from electronic research papers/books in PDF format.
We extract pages from the PDFs as images. However, for the POS dataset,
our preliminary experiments using pages from research paper PDFs resulted in
unstable results due to the different nature of the images in the two domains.
To ensure that the unpaired target domain images are not completely different
from the noisy receipt images, we prepared our clean unpaired set by generat-
ing fake clean receipt images. These images contain randomly generated text
with different font styles and sizes on a white background. Figure 5.4 shows
samples of images from the clean set.
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Figure 5.3: Sample noisy images from Noisy OCR dataset.
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Figure 5.5: Sample noisy test images from WildReceipt dataset.

The input to the generator is of size 256 x 256. Therefore, non-overlapping
patches of size 256 x 256 are extracted from the noisy and clean images to
form the training data. The images between the two domains, noisy and clean,
are completely unpaired with no overlap in terms of text. The proposed model

is trained on each of the datasets separately.

5.2 Evaluation data

The trained model is evaluated on noisy images in the validation and test set
from the datasets. The validation set is used for selecting the best-performing
model and for hyperparameter tuning. For the Kaggle Denoising dataset and
Noisy OCR dataset, the validation set is created by randomly splitting 10%
of the original dataset provided. For the POS dataset, the validation set is
already available separately. Each of these datasets already has a separate test
set available for inference.

During the evaluation, we input full-scale images into the trained genera-
tor to generate corresponding clean images. This allows us to perform OCR
evaluation on the generated images. Therefore, the images in the validation
set and test set are full-sized and not patches.

Besides these datasets, we also evaluate the generator trained with the POS

receipts dataset on unseen noisy test images from another more challenging
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Dataset Training set Test set
Number of noisy/clean patches Number of full-size images Number of words

Kaggle Denoising 288 60 5392
POS 3676 417 8366
WildReceipt - 472 12707
Noisy OCR 2137 65 18805

Table 5.1: Dataset Summary: Number of noisy/clean image patches in the
training set and the number of images and words in the test set.

and complex receipts OCR dataset - the WildReceipt dataset [94] and report
the performance. Sample images from the WildReceipt dataset are shown in
Figure 5.5.

Table 5.1 provides a summary of the number of noisy/clean image patches

in the training set and the number of images in the test set for each dataset.
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Chapter 6

Experiments and Results

This chapter provides details on the experiments performed in this work and
presents the results. In Section 6.1, we provide information about the OCR
engines used for evaluation, the evaluation metrics and hyperparameters, and
the training setup. In Section 6.2, we present the qualitative and quantitative
results that shows the performance of the proposed model compared to other
baselines. In Section 6.3, we discuss some additional preliminary experiments

performed during the course of this work.

6.1 Experimental setup

6.1.1 OCR engines

Three open-source OCR engines are used for evaluation - Tesseract !, Easy-
OCR ? and PaddleOCR 3. Tesseract is a popular open-source OCR engine that
uses an LSTM network for text recognition. We use the Tesseract 4.0.0 version.
EasyOCR is another open-source OCR engine that uses the CRAFT model
[3] as the text detection module. The recognizer module is CRNN based and
consists of feature extraction using ResNet [26], followed by sequence labeling
using BiLSTM networks and transcription using CTC loss. PaddleOCR is a
very lightweight and comparatively newer OCR. We use the latest PP-OCRv3

version. The recognition module uses a Scene Text Recognition with a Single

Thttps://github.com/tesseract-ocr/tesseract
Zhttps://github.com/Jaided Al/EasyOCR
Shttps://github.com/PaddlePaddle/PaddleOCR
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Visual Model (SVTR) [13] instead of a CRNN.

6.1.2 FEvaluation metrics

OCR based metrics

The primary objective of this work is to enhance noisy images in a way that
improves OCR performance. To evaluate the performance of the proposed
model in achieving this objective, we perform OCR on both the original noisy
images and the generated images by the trained models. The OCR outputs
are then compared with the ground truth text. It is important to note that
the ground truth text is used solely for evaluation purposes and is not used at
any point during training.

For the POS receipt and WildReceipt datasets, the ground truth text in-
cludes bounding boxes with word-level text, which are directly used for evalu-
ation. In the case of the Kaggle Denoising dataset, manual annotation of the
ground truth text was performed as the dataset did not include ground truth
text files. As for the Noisy OCR dataset, document-level ground truth text is
available instead of word-level text.

For POS, WildReceipt, and Kaggle Denoising datasets, we evaluate the
OCR performance in terms of word accuracy and Levenshtein distance [51]
based Character Error Rate (CER). Word accuracy is measured as the ratio
of the words matched with the ground truth to the total number of words in

the ground truth. CER is defined as:
CER=100x (i+s+d)/m (6.1)

where 7, s, and d are the number of insertion, substitution, and deletion opera-
tions performed to match the predicted word to the ground truth. m represents
the number of characters in the ground truth. Better performance is indicated
by higher values of word accuracy and lower values of CER.

For the Noisy OCR dataset, in the absence of word-level ground truth
bounding boxes, we evaluate the OCR performance using the Levenshtein
distance over the entire document text. Lower values for Levenshtein distance

indicate better performance.
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No-reference image quality metrics

While the direct performance of the proposed model in effectively enhancing
document images for OCR can be measured using the OCR-based metrics
described above, we also perform an evaluation using image quality metrics.

In the absence of ground truth images, full-reference metrics based on
Peak-Signal-to-Noise Ratio (PSNR) and SSIM [104] cannot be used. Hence,
we utilize two no-reference image quality metrics - Natural Image Quality
Evaluator (NIQE) [62] and Perceptual index (PI) [8]. These metrics have been
used in several GAN-based works [30], [33], [68], [75] to evaluate the quality of
generated images in the absence of ground truth clean images. NIQE measures
the deviations in statistical properties of natural images due to distortions,
while PT is a combination of the metrics proposed by Ma et al. [58] and NIQE.
Ma et al. [58] introduced a no-reference metric for assessing the quality of
super-resolved images using a regression model to predict scores based on
designed statistical features. PI is calculated as ((10 — Ma) + NIQE). It is
commonly used to assess the no-reference image quality of super-resolution
images [12], [32], [116].

It is important to note that these metrics are based on perceptual image
quality and may not serve as clear indicators of enhanced images for OCR.
The results obtained from these metrics are provided for reference, while the

primary evaluation remains based on the OCR-based metrics.

6.1.3 Hyperparameter and Training details

The proposed model is trained for 40, 100, and 50 epochs for the Kaggle
Denoising, POS, and Noisy OCR datasets respectively. We perform a search
over the hyperparameters of the model for selecting the best values. More
details on hyperparameters are included in Appendix A. Based on the tuning
results, we select Ay = 10 and identity mapping loss coefficient \;q = 0.5,
batch size equal to 1, and Adam optimizer with learning rate equal to 2 x 107,
The proposed model is implemented using the Pytorch framework. It takes

approximately 1.5 hours, 42 hours, and 12 hours to train on Kaggle Denoising,
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POS, and Noisy OCR dataset, respectively using Nvidia Tesla V100 GPU. For
comparison with the standard CycleGAN model, we use the standard Pytorch
implementation as provided by [85], [121]. The same hyperparameter values

as the proposed model are used for training CycleGAN.

6.2 Results and Discussion

The performance of the proposed model is directly compared with standard
CycleGAN to evaluate the impact of the changes proposed in this work. Ad-
ditionally, the proposed model performance is also compared with two other
classical unsupervised image preprocessing techniques - Otsu [67] and Sauvola
[84] discussed in Section 3. As the performance of these techniques is heavily
dependent on the window size, different window sizes are used and the best
results are reported. For both CycleGAN and the proposed model, the results
presented here, reflect the test performance of the best-performing models

selected based on word accuracy on the validation set using Tesseract OCR.

6.2.1 Qualitative results

We illustrate some of the output images generated by the proposed model and
other mentioned baseline preprocessing models. Figure 6.1 shows the enhanced
images generated for a sample noisy image in the Noisy OCR dataset and the
predicted text using Tesseract OCR. The noisy image has degradations in the
form of broken characters in the text. Comparing the various generated im-
ages, it can be observed that the image generated using standard CycleGAN
appears cleaner with darker text. However, upon closer look, it is apparent
that some of the characters are hampered during enhancement. This is un-
desirable and results in incorrect predictions by the OCR for certain words
that were originally identified correctly in the noisy image. For example, the
word “sumptuary” and “arms” were predicted correctly in the original image
but now mispredicted as “soniptuary” and “arpis”. This deterioration nega-
tively impacts the overall OCR performance. On the contrary, the enhanced

image generated by the proposed method avoids further degradation in OCR
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Figure 6.1: Example from the Noisy OCR dataset showing the noisy image and
the generated enhanced images along with the text predictions using Tesseract

OCR.
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Figure 6.3: Example from the Wildreceipt dataset showing the noisy image and
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OCR.
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performance compared to the original noisy image.

Considering receipt images from POS and WildReceipt dataset, Figures 6.2
and 6.3 highlight that the proposed model has better preservation of characters
in the enhanced images over all the other methods. The proposed model leads
to improved OCR performance with more correctly predicted words compared
to the noisy images. For the Kaggle dataset, we illustrate an example of a
noisy image that contains degradation in the form of a dark patch in Figure
6.4. Clearly, Otsu and CycleGAN models cause a loss of text underneath the
dark patch. As a consequence, OCR engines are unable to predict those words,
causing a decline in performance, despite the visually cleaner appearance of
the images. On the other hand, the proposed model and Sauvola’s method
can preserve the text well. Sauvola’s method, being a binarization technique,
aims to create a binary image by eliminating the dark patch. In contrast, the
proposed model attempts to minimize the intensity of the dark patch while

keeping the grayscale format of the generated image.

6.2.2 Quantitative results

In addition to the qualitative results demonstrating the effectiveness of the
proposed model, we also provide quantitative results using three OCR engines
for each dataset. Table 6.1 provides an overview of the OCR engine perfor-
mance on both the noisy test images and the enhanced images from the Kaggle
Denoising, POS, and Wildreceipt datasets.

For the Kaggle Denoising dataset, the proposed model generates clean im-
ages that increase Tesseract OCR performance in terms of both word accuracy
(81.23%) and CER (18.72). However, for EasyOCR and PaddleOCR engines,
enhanced images have degraded OCR performance when compared to the orig-
inal noisy image. Degradation in performance of EasyOCR and PaddleOCR is
observed even if the same preprocessing improved the performance of Tesser-
act OCR engine. A possible reason for this is that preprocessing techniques
can have different effects on OCR engines depending on their underlying algo-
rithms and architecture. EasyOCR and PaddleOCR are deep learning-based

OCR engines that utilize neural networks to extract text from images. These
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Tesseract EasyOCR PaddleOCR
word accuracy% 1t CER | word accuracy% 1 CER | word accuracy% t CER |

Kaggle Noisy 78.18 21.62 73.31 32.12 82.09 14.83
Otsu [67] 76.60 22.59 61.03 40.12 69.50 25.01

Sauvola [84] 79.45 21.00 66.04 35.71 67.90 31.76

CycleGAN [121] 43.44 58.86 33.11 67.42 41.93 58.20

Proposed 81.23 18.72 68.70 34.84 78.28 18.24

POS Noisy 49.58 31.13 41.63 37.01 45.21 29.70
Otsu [67] 46.50 36.89 34.86 43.43 34.96 42.54

Sauvola [84] 55.30 26.31 42.12 33.83 41.07 34.45

CycleGAN [121] 37.82 41.33 27.24 48.03 27.52 47.53

Proposed 61.14 23.18 46.41 31.59 50.49 25.75

Wildreceipt Noisy 29.09 46.02 23.74 49.43 30.08 43.05
Otsu [67] 33.21 41.63 19.62 51.90 27.47 49.31

Sauvola [84] 37.20 33.81 23.66 43.08 30.87 42.33

CycleGAN [121] 09.02 74.02 08.47 76.66 12.07 72.30

Proposed 41.86 32.48 26.40 41.54 34.84 36.47

Table 6.1: OCR performance in terms of word accuracy and CER on the orig-
inal noisy images in the test set and the generated enhanced images compared
with the ground truth text. Better performance is indicated by higher values
of word accuracy and lower values of CER.

Tesseract EasyOCR PaddleOCR
Levenshtein distance | Levenshtein distance | Levenshtein distance |
Noisy 65.02 178.03 127.79
Otsu [67] 62.19 192.39 161.20
Sauvola [84] 64.85 192.08 159.54
CycleGAN [121] 88.82 287.23 168.19
Proposed 62.05 181.68 108.63

Table 6.2: OCR performance in terms of Levenshtein distance on the original
noisy images in the test set and the generated enhanced images compared
with the ground truth text for the Noisy OCR dataset. Better performance is
indicated by lower values of Levenshtein distance.
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engines are trained on a wide variety of images, including both clean and de-
graded ones. In some cases, document image enhancement techniques may
alter the characteristics of the input image in a way that is not beneficial for
these OCR engines. It can be possible that the transformations performed by
our proposed model for image enhancement results in images that affect the
performance of the underlying neural network models used by EasyOCR and
PaddleOCR and hence slight degradation in performance is observed.

This degradation in performance is not unique to the proposed model but is
observed across all the enhancement methods. Importantly, OCR performance
across both the metrics is better for the images generated by the proposed
model than images generated by other enhancement methods.

For the POS dataset, the proposed model improves the performance of all
the three OCR engines. Maximum improvement is observed for the Tesseract
OCR engine with an increase from 49.58% to 61.14% in terms of word ac-
curacy and a reduction from 31.13 to 23.18 in terms of CER. Moreover, the
proposed model consistently outperforms all the other methods across all the
OCR engines.

Additionally, as mentioned previously, we also evaluate the performance
of the proposed model originally trained on the POS dataset on noisy images
from the WildReceipt dataset. Here, for comparison, the CycleGAN model is
trained on the POS dataset as well and evaluated for the WildReceipt dataset.
As can be observed, the proposed model consistently leads to improvement in
performance for all OCR engines and also outperforms the baseline methods.

For the Noisy OCR dataset, Levenshtein distance is calculated between
OCR output and the ground truth text for noisy and enhanced images. From
Table 6.2, it can be observed that images enhanced by the proposed model
have improved performance on Tesseract and PaddleOCR engines compared
to the original noisy images. The performance is better than all the other base-
lines. However, for the EasyOCR engine, degradation in OCR performance is
observed for enhanced images generated using any of the enhancement meth-
ods, including the proposed model. However, when considering the extent of

degradation, the proposed model demonstrates comparatively less deteriora-
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tion compared to other baseline methods.

From the results, it can be concluded that the proposed model enhances the
performance of the Tesseract OCR engine consistently across all the datasets.
These results highlight that the proposed model has better text preservation
capabilities during translation compared to the standard CycleGAN. This im-
plies the effectiveness of the proposed modifications.

We report the performance of the generated images on the no-reference
image quality metrics NIQE and PI in Table 6.3. Lower values on these met-
rics indicate better image quality. Across all datasets, the images generated
by the proposed model exhibit superior scores on both metrics compared to
other enhancement methods. While an improvement over the original noisy
images is reported across Kaggle Denoising, POS, and Noisy OCR datasets, a
degradation in quality is observed for the WildReceipt dataset. This is incon-
sistent with the OCR-based metrics which indicate significant improvement
in the performance of all the three OCR engines for the images generated by
the proposed model. Further, Otsu’s and Sauvola’s methods achieve better
performance over the standard CycleGAN model on OCR-based metrics but
have poor performance on these image quality metrics. These observations
suggest that for enhancing document images for OCR, these perceptual image

quality metrics might not be suitable indicators of performance.

6.2.3 Ablation study

We perform experiments on the Kaggle Denoising dataset to analyze the im-
pact of the proposed architectural modifications to the standard CycleGAN

on the overall OCR performance improvement.

Effect of BILSTM layers in the discriminator

First, we remove the BiLSTM layers from the proposed discriminator (Figure
4.3). The output of the last convolutional layer 3 x 3 x 512 is reshaped to 9 x
512, where 512 represents the number of channels. Another linear layer with
input size 9 x 512 and output size 3 x 512 is added to make the shape com-

patible with the following set of linear layers in the originally proposed model.
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NIQE | PI|

Kaggle Noisy 22.04 7.86
Otsu [67] 21.85 18.73

Sauvola [84] 21.57  19.24

CycleGAN [121] 10.29  7.04

Proposed 9.37 6.10

POS Noisy 23.80 7.53
Otsu [67] 26.65 17.16

Sauvola [84] 22.75  16.55

CycleGAN [121]  14.35  8.67

Proposed 8.65 5.92

WildReceipt Noisy 6.07 6.83
Otsu [67] 23.96 15.70

Sauvola [84] 23.72  15.59

CycleGAN [121]  13.75  8.70

Proposed 11.71 7.19

Noisy OCR Noisy 13.98 9.12
Otsu [67] 22.69 16.34

Sauvola [84] 2262 16.35

CycleGAN [121] 11.71  7.67

Proposed 8.99 6.43

Table 6.3: NIQE and PI metric values on the original noisy images in the test
set and the generated enhanced images. Better performance is indicated by
lower values for both metrics.

Modely Model, Proposed Model
word accuracy% © CER | word accuracy% © CER | word accuracy% 1t CER |
Tesseract 56.08 40.68 74.39 26.45 81.23 18.72
EasyOCR 40.72 59.54 64.37 39.23 68.70 34.84
PaddleOCR 48.13 48.23 66.47 33.67 78.28 18.24

Table 6.4: Performance comparison between Model; /Model, and the proposed
model for the Kaggle Denoising dataset. Model; has the same generator as the
proposed model but the discriminator without the LSTM component. Model,
has the same discriminator network as the proposed model but the generator
network without the proposed changes in the decoder block.
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The rest of the model is kept the same. We call this Model;. This model
is trained with the same set of hyperparameters as the proposed model and
the OCR performance on the generated enhanced images is evaluated. From
Table 6.4, a huge gap in the performance between Model; and the proposed
model can be observed. OCR performance on images generated by Modely
has significantly lower word accuracy and higher CER as compared to the
proposed model. These results further support the hypothesis that a com-
bined CNN-BiLSTM model in the discriminator network can extract stronger
features from document images and act as a more suitable discriminator than

pure CNN-based discriminators for document image enhancement tasks.

Effect of decoder block modifications in the generator

Next, we analyze the impact of the proposed changes in the Generator archi-
tecture. As mentioned earlier, to reduce the checkerboard artifacts arising in
the generated images, the decoder blocks in the generator network were mod-
ified to have an upsampling operation followed by a convolutional operation
instead of transposed convolutions. We revert this modification in the pro-
posed model and keep the rest of the model unchanged. We call this Models,.
This model is trained with the same set of hyperparameters as the proposed
model and the OCR performance on the generated enhanced images is eval-
uated. Results from Table 6.4 indicate that the modifications performed to
remove the checkerboard artifacts in the proposed model lead to better perfor-
mance. However, it is important to highlight that the effect of the generator
modifications in improving the performance is much lesser compared to the
effect of the proposed discriminator modifications. This explains that much
of the performance improvement is attributed to the proposed discriminator.

This further supports the effectiveness of the proposed discriminator.
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Figure 6.5: « and the corresponding word accuracy of Tesseract OCR on the
images in the test set from the Kaggle Denoising dataset.

6.3 Additional experiments

6.3.1 Cycle consistency using combination of L1 and
SSIM loss

In the proposed model and the standard CycleGAN model, the cycle consis-
tency loss is calculated using L1 loss. L1 loss calculates the difference in pixel
value between corresponding pixels in the real image and the reconstructed
image. [89] suggests considering perceptual image quality metrics such as
Structural Similarity (SSIM) index loss [104] can generate better quality im-
ages. Exploring this idea, we perform experiments with the modification of
Leye (2.12) to a combination of L1 loss and Structural Similarity (SSIM) in-
dex loss instead of only the L1 loss. The structural similarity (SSIM) index
compares the similarity between two images based on the luminance, contrast,

and structural similarity information. It is calculated as:

(2papty + 1) (200y + 2)
(12 + p2 +c1) (02 + 02 + )
48
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Tesseract EasyOCR PaddleOCR
a  word accuracy% t CER | word accuracy% 1t CER | word accuracy% t CER |

Kaggle Proposed w/o SSIM 0 81.23 18.72 68.70 34.84 78.28 18.24
Proposed w SSIM 0.8 79.28 20.72 69.55 33.61 78.52 18.31
POS Proposed w/o SSIM 0 61.14 23.18 46.41 31.59 50.49 25.75
Proposed w SSIM 0.5 65.98 17.60 48.72 28.95 51.72 24.70
Levenshtein Levenshtein Levenshtein
Noisy OCR  Proposed w/o SSIM 0 62.05 181.68 108.63
Proposed w SSIM 1.0 62.27 209.62 135.12

Table 6.5: Performance comparison between proposed model trained with and
without SSIM component in L.

where g, 1, is the mean of z and y, 02 and OZ is the variance of z, y and oy,
is the covariance of x and y and ¢y, ¢o, ¢c3 are the small constants.

The SSIM loss is given by:
ESSIM =1- SSIM(Z’,y) (63)

Combining SSIM loss with L1 loss, the cycle consistency loss L., is calcu-
lated as:

Lssivirr = aLlgsiy + (1 — o)Ly (6.4)

Here, a controls the weight for each of the loss components.

We experiment with values of « in the range [0.1,1]. Table 6.5 shows the
best a values for each of the three training datasets and the corresponding
OCR evaluation performance. While better performance compared to the
proposed model without the SSIM component is achieved on the POS dataset,
with a = 0.5, the same is not observed for the other two datasets. Furthermore,
huge inconsistencies were observed in the results for different values of « in
the defined range.

Figure 6.5 shows the huge inconsistencies in performance for different values
of v on the test set images in the Kaggle Denoising dataset. Given the lack of
clarity regarding the usefulness of this loss component, we made the decision

to exclude it from the final model proposed in this thesis.
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Chapter 7

Conclusion

In this thesis, we focused on document image enhancement as an unsupervised
image-to-image translation task. We present a modified architecture for the
standard CycleGAN model that can significantly improve its performance in
document enhancement tasks. Results illustrate that the combined discrim-
inator network, which utilizes a combination of CNN and BiLSTM, achieves
a significant enhancement in both text preservation and OCR performance
when compared to the standard CycleGAN discriminator network.

Specifically, when evaluating the word accuracy of the Tesseract engine on
real-world noisy receipt images from the POS dataset, the proposed model
showed an improvement of up to 61.66% over the original CycleGAN model.
This significant increase in accuracy confirms our hypothesis that for tasks
involving document images that have the presence of text, the discriminator
network can benefit from the addition of sequential representation learning
capabilities. Moreover, the proposed model improved the performance of the
Tesseract OCR engine by 23.32% in terms of word accuracy compared to
the original noisy receipt images in the POS dataset. Furthermore, the pro-
posed model consistently outperformed other unsupervised classical techniques
across all OCR engines considered.

The benefit of the proposed setting is that it allows for training without
the need for a ground truth clean image, text, or specific information about
the noise type present in the image. This allows training on real-world noisy

images, which is required for practical applications. However, creating the

20



unpaired clean set is a challenging task. Our experiments showed that if the
unpaired clean set contains samples that have characteristics different from the
noisy samples, the model training is unstable and the images are not cleaned
properly. This makes it difficult to train the proposed model when noisy images
of diverse nature and with complex degradations are to be used in the training
set. Exploring alternative methods for creating a representative clean set that
better aligns with the characteristics of the noisy images could be useful.

Additionally, as a future extension to this work, it would be worthwhile to
explore different discriminator architectures in this setting to see if the perfor-
mance can be further improved. Particularly, transformer-based architectures
which have superior sequence modeling capabilities than recurrent neural net-
works can be investigated.

While in this thesis, we demonstrate that unpaired translation models such
as CycleGANs can be modified to generate promising results in the context
of unpaired document image enhancement, training can still be unstable due
to the large number of parameters involved. To address this, future research
could explore more stable and powerful generative networks, such as diffusion
models, and investigate their application in the context of unpaired document

image-to-image translation.
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Appendix A

Hyperparameters

In this section, we discuss the different hyperparameters involved in the train-
ing and the steps used for tuning their values. The final values used for training
are provided in Section 6.1.3. The goal of our hyperparameter tuning experi-
ments was to select values such that the images generated have improved OCR
performance. Table A.1 shows the different hyperparameters involved in train-
ing the proposed model. Since there are a large number of hyperparameters
involved and the relationship between these parameters is not clear, we assign
default values to some of the hyperparameters as proposed by the original Cy-
cleGAN paper. However, we performed a set of experiments over parameters
in the objective function - A.y. and \;g. We vary A, over integer values in the
range [1,10]. This range of values was suggested by the CycleGAN authors for

experimentation. For )4, the search space was defined over the range [0,1].

Hyperparameters Details Default value

Epochs Number of training epochs -

Decay epochs Epoch to start decaying the learning rate Half of the number of training epochs
Acye Controls the weight for the cycle consistency loss 10

Nid Controls the weight for the identity loss. This value is multiplied with the A 0.5

Optimizer Optimization method for G and D Adam [45]

learning rate Step size for updating weights 2x 1074

Table A.1: Training Hyperparameters.

For selecting the optimal number of training epochs, we train models for 20,
30, 40, 50, and 100 epochs and evaluate the validation set using Tesseract OCR.
The word-accuracy metric is used for selecting the best model. Figure A.1
shows the effect of the number of training epochs on the validation accuracy

for the Kaggle Denoising dataset. The number of decay epochs in each is
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Figure A.1: Effect of number of training epochs on the validation set word-
accuracy for Kaggle Denoising dataset evaluated using Tesseract OCR.
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Figure A.2: Effect of cycle consistency A, on the validation set word-accuracy
for Kaggle Denoising dataset evaluated using Tesseract OCR.
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Figure A.3: Effect of identity mapping A;4 on the validation set word-accuracy
for Kaggle Denoising dataset evaluated using Tesseract OCR.

equal to half of the total number of epochs. Based on the results, we select the
number of training epochs as 40. Next, we perform tuning for A.,., keeping the
default value of 0.5 for \;q. For the values in the search space for L.,., we train
separate models and evaluate them on the validation set. Figure A.2 shows
the validation accuracy for the different values of A, for the Kaggle Denoising
dataset. Based on the figure, it can be observed that having an extremely low
value of Ay, leads to poorer performance, as expected. Consistent with the
results of the CycleGAN paper, we get the optimal value of A,y to be 10 for
our setup as well. Next, fixing the value of A, as 10, we perform a search
over different values of \;; in the defined range. Figure A.3 illustrates the
effect of \;; on the validation accuracy for the Kaggle Denoising dataset. The
figure highlights that in the absence of identity loss, the performance is poor.
Values between 0.5 and 1.0 for \;; have similar performance. Based on similar
experiments for other datasets, these values for A, and \;; were consistent

and yielded good performance.
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Appendix B

Training Curves

In this section, we present the training curves for the generator loss, cycle con-
sistency loss, and discriminator loss of both the standard CycleGAN model and
the proposed model. Usually, the cycle consistency loss and overall generator
loss tend to decrease during training, indicating improved performance. On
the other hand, the discriminator losses typically oscillate. Our findings align
with this observation, as we observe similar patterns in the training curves.

Specifically, the generator loss for the CycleGAN model shows oscillations
and tends to saturate within a certain range. In contrast, the generator loss
curves for the proposed model display a gradual and continuous decrease be-
yond the limits of the CycleGAN model. The behavior of the cycle consistency
loss follows a similar trend.

As expected, the discriminator loss shows oscillations throughout the train-
ing process. However, it is important to note that the quality of the generated
images should be the primary criteria for assessing the performance of both
the CycleGAN and the proposed model. The training curves, while informa-
tive, cannot directly determine the superiority or inferiority of the models.
It is even emphasized by the authors of the CycleGAN model that training
curves may not be a reliable indicator of results. Ultimately, a comprehensive
evaluation of the generated images is crucial for comparison and assessment

of model performance.
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Figure B.1: Overall Generator training loss for the CycleGAN model
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Figure B.2: Overall Generator training loss for the proposed model
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Figure B.3: Cycle consistency training loss for the CycleGAN model
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Figure B.4: Cycle consistency training loss for the proposed model
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Figure B.5: Discriminator D 4 loss for the CycleGAN model
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Figure B.6: Discriminator D4 loss for the proposed model
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Figure B.7: Discriminator Dpg loss for the CycleGAN model
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Figure B.8: Discriminator Dpg loss for the proposed model
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