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Abstract 

Interactions between proteins and DNA/RNA play vital roles in many cellular processes 

and yet many of them remain to be found and characterized. Many computational 

methods have been developed to predict from protein sequences which parts of the 

proteins (so called interacting residues) are involved in these interactions. These methods 

can be used to find protein-RNA and protein-DNA interactions for the vast number of 

uncharacterized proteins. We review a comprehensive set of 30 such computational 

methods. We summarize them from several significant perspectives including their 

design, outputs and availability. We also perform empirical assessment of a subset of 

these methods that offer webservers using a new benchmark dataset characterized by a 

more complete annotation of interactions compared to the existing datasets. We show that 

the predictors of DNA-binding (RNA-binding) residues offer relatively strong predictive 

performance but they are unable to properly separate DNA- from RNA-binding residues. 

This substantial weakness motivates our research. Since the existing methods 

substantially vary in their architectures and predictions, they can be combined together to 

build consensuses that perhaps can offer improved predictive performance compared to 

the individual methods. We design and empirically assess several types of consensuses. 

We demonstrate that machine learning (ML)-based consensuses provide the improved 

predictive performance. We also formulate and execute first-of-its-kind study that targets 

combined prediction of DNA- and RNA-binding residues, with the goal of substantially 

reducing the cross predictions between DNA and RNA binding residues. We design and 

test three types of these novel consensuses and conclude that the approach that relies on 
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ML design provides better predictive quality than individual predictors and it also 

substantially improves discrimination between the two types of nucleic acids. As the only 

solution to solve the cross-prediction problem, this consensus is hard to use and time 

consuming to execute, given that it relies on the predictions from 8 methods that require 

long runtime. To this end, we develop a novel high-throughput method, DRNApred, that 

accurately and specifically predicts only DNA-binding and only RNA-binding residues 

from protein sequences. DRNApred is implemented using a new dataset with both DNA- 

and RNA-binding proteins, weight-based mechanism to penalize cross-predictions, and 

two-layered architecture. The predictions generated in both layers are based on logistic 

regression models constructed using a comprehensive set of sequence-derived 

information. We demonstrate that the novel design ideas utilized in DRNApred raise its 

predictive quality. DRNApred outperforms the other state-of-the-art representative 

methods for the prediction of DNA- or RNA-binding residues. Based on empirical test on 

a test dataset we show that our method substantially reduces the cross predictions. The 

false positives predicted by DRNApred have higher quality, since they are located nearby 

the native binding residues. Moreover, DRNApred outperforms the other methods for the 

prediction of DNA- or RNA-binding proteins. Application in human proteome confirms 

that DRNApred outperforms the only other runtime efficient existing method that can 

process such large number of proteins, BindN+, by substantially reducing the cross 

predictions. We show that the novel putative binding proteins predicted by DRNApred 

share similarities with the known annotated binding proteins indicating that DRNApred 

can be used to accurately discover novel DNA and RNA binding proteins in human.  
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Chapter 1  

Introduction 

Interplay of proteins and the two types of nucleic acids: DNA and RNA, is very 

important since it defines and regulates many crucial cellular functions. DNA-binding 

proteins (i.e., proteins that interact with DNA) are driving regulation of gene expression 

and DNA transcription, replication and repair [1, 2]. The RNA-binding proteins that 

interact with several types of RNAs, such as mRNA, tRNA and rRNA, are involved in a 

variety of cellular functions including protein synthesis, regulation of gene expression, 

posttranscriptional modifications and posttranscriptional regulation [3-5]. The protein-

nucleic acids interactions are studied primarily using structures of the corresponding 

complexes that are derived experimentally, typically with X-ray crystallography and 

nuclear magnetic resonance (NMR). Unfortunately, experimental methods are technically 

challenging and relatively expensive and thus only a small fraction of these interactions 

was characterized so far. In Protein Data Bank (PDB) database [6], which is the 

worldwide repository of structures of proteins and proteins in complex with other 

molecules, as of March 2016 there are only 5,438 structures on protein-DNA/RNA 

complexes. This is a low number compared to the several orders of magnitude larger 

number of known proteins, DNAs and RNAs. As of March 2016, the NCBI’s RefSeq 

database [7] includes over 14 million of DNA and RNA transcripts and about 61 million 

non-redundant proteins from 58,776 organisms (source: 

http://www.ncbi.nlm.nih.gov/refseq/). To put these data into a context, the fraction of 

DNA-binding proteins among all proteins is relatively substantial and was estimated to be 

on average close to 3% in eukaryotic organisms and 5% in animals, which translates to 

about 800 proteins per an animal organism [2]. Similarly, the fraction of RNA-binding 

proteins was estimated to range between 2 and 8% of proteins in eukaryotic organisms 

[5]. A simple math reveals that assuming the most conservative estimates of 2% we 

should know 2% of 61 million = 1,220 thousand proteins that bind RNA and 3% of 61 
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million = 1,830 thousand proteins that bind DNA. The substantial and growing gap 

between the number of known and the number of yet to be learned DNA and RNA 

binding proteins motivates the need to increase the pace of the characterization of 

protein–DNA and protein–RNA interactions. 

To this end, the existing experimental data are being used to develop time- and cost-

efficient computational models that are utilized to perform automated prediction of these 

interactions for the millions of the uncharacterized proteins. Over the past several years a 

number of computational methods have been developed for the prediction of the protein-

nucleic acids interactions. These methods can be categorized into two types according to 

the input information that they use: structure-based methods which predict the binding 

based on a known protein structure, and sequence-based methods which make the 

prediction solely from the protein sequence. Structure-based methods utilize input 

information derived from protein structure, typically based on shape and biophysical 

characteristics of the protein surface. However, structure is unknown for most of the 

proteins which limits utility of the structure-based methods. As of March 2016, there are 

only 117,240 protein structures in PDB, which is only a small fraction of the available 

sequence data. Therefore, it is necessary to develop reliable computational methods to 

identify binding from the sequence. There are two types of relevant sequence-based 

methods: those that predict DNA- or RNA- binding proteins and those that predict DNA- 

or RNA- binding residues in a protein sequence. The former type concerns a simple two-

state prediction of whether a given protein sequence binds to DNA/RNA or not, while the 

latter is more useful and goes further by locating the binding residues (residues in contact 

with DNA/RNA) in the input sequence. Therefore, our focus is on the computational 

prediction of DNA- and RNA-binding residues from protein chains. These methods can 

be used to find the binding proteins in the vast sequence databases and to indicate sites of 

these interactions. A couple dozen of sequence-based methods that predict the DNA- or 

RNA- binding residues have been already published. 
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1.1 Motivation 

The existing sequence-based methods are designed to predict either DNA-binding or 

RNA-binding residues. In other words, there are no methods that combine prediction of 

both DNA-binding and RNA-binding residues. Given that these methods were developed 

on dataset with only one type of binding residues, perhaps surprisingly they were never 

tested how well they differentiate the two types of the nucleic acid binding residues. 

Since DNA and RNA binding residues share similar biochemical properties, i.e., they are 

positively charged and have strong propensity to interact with the negatively charged 

phosphate backbone of DNA or RNA [8, 9], it is likely that these methods cross predict 

the other type of binding residues, i.e., methods for the prediction of the RNA-binding 

residues also predict DNA-binding residues and vice versa. This is an important problem 

because DNA and RNA binding residues carry out different cellular function and they 

should not be confused. Besides, most of the existing methods require a substantial 

amount of runtime, which makes it very difficult to apply them on large scale of 

thousands of proteins (human has ~70 thousand unique proteins). This necessitates the 

development of high-throughput (characterized by a low runtime) methods that 

specifically predicts one type of the nucleic acid-binding residues. 

Moreover, the existing methods are designed on different datasets and assessed with 

different evaluation criteria, which makes it difficult for end users to understand and 

compare their predictive performance. Several efforts have been made to comparatively 

review the published predictors of the DNA-binding residues and the RNA-binding 

residues [10-14]. However, these reviews only summarize a small number of published 

methods and cover interactions with just one of the two nucleic acids types (Chapter 3 

provides more details on this topic). Similarly, these comparative analyses focus solely 

on the prediction of one type of the nucleic acid-binding residues. Consequently, these 

studies do not consider how well the predictive methods separate between DNA and 

RNA interactions. Another drawback of the prior reviews is that their comparative 

analyses utilize datasets that are characterized by incomplete annotations of binding 

residues. This is because the annotations are based on a single structure of protein–DNA 

or protein–RNA complex, which could be incomplete if only a fragment of DNA or RNA 
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is considered in a given complex or if the same protein is involved in other binding 

events with nucleic acids.  

Although many predictors exist, not much effort was made to exploit consensus 

designs, i.e., meta-methods that combine multiple predictors together. The use of 

consensuses was shown to result in an improved predictive performance when compared 

to the use of individual methods in related research area, such as the sequence-based 

prediction of secondary structure and intrinsic disorder [15-20]. The already considered 

consensuses of predictors of nucleic acids-binding residues [12, 14] use only simple 

designs (like a simple weighted average). These works did not compare and explore 

different ways to generate the consensus but just demonstrated that a given, one design is 

successful. Once again, these studies also did not investigate the potential problem with 

the cross prediction between DNA-binding and RNA-binding residues.  

1.2 Goals 

The overall objective of my thesis is to accurately and in high-throughput predict 

protein-nucleic acid interactions from protein sequences, particularly focusing on 

differentiating between DNA- and RNA-binding residues. To achieve this goal we 

address the following four goals: 

1. Assessment of predictive performance of existing sequence-based DNA- and 

RNA- binding residue predictors. We review a comprehensive set of the sequence-

based DNA-binding residue and RNA-binding residue predictors, access predictive 

quality of all available to the end user methods on new benchmark dataset with both 

DNA- and RNA- binding proteins, and focus our analysis on how well these predictors 

separate between DNA and RNA interactions. (Chapter 3) 

2. Development of novel consensus-based predictors to improve accuracy of the 

prediction of DNA- and RNA- binding residues. Motivated by the availability of many 

predictors and success of consensuses in other related areas, we investigate the 

development of consensus predictors with the aim of improving the predictive 

performance. We consider a wide range of designs to build consensus-based predictor of 
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DNA-binding residues and another consensus for the RNA-binding residues by 

combining prediction from the available DNA- and RNA-binding residues methods, 

respectively. We also design a novel consensus for the combined prediction of DNA- and 

RNA-binding residues to improve discrimination between DNA- and RNA-binding 

residues. (Chapter 4) 

3. Development of DRNApred, a new high-throughput method that accurately 

and specifically predicts only DNA-binding and only RNA-binding residues. Using 

information derived from the protein sequence, we design a new high-throughput 

predictor of the DNA- and RNA-binding residues. DRNApred is designed to offer good 

predictive performance and to solve the problem of cross prediction between DNA-

binding and RNA-binding residues. Our method is also runtime efficient and can be 

applied on proteomic scale. (Chapter 5)  

4. Identification of known and novel DNA- and RNA-binding residues/proteins 

on proteomic-scale. We apply the new high-throughput method to preform predictions 

on the entire set of all human proteins (human proteome). We assess predictive 

performance of our method by quantifying whether our method specifically targets each 

of the two types of nucleic acid binding residues. We also generate new putative RNA 

and DNA binding proteins and assess whether they are predicted accurately. (Chapter 6). 

1.3 Thesis organization 

This thesis is organized into seven chapters:  

Chapter 2 introduces the sequence-based computational method for the prediction of 

DNA- and RNA-binding residues. It includes biological background concerning proteins, 

DNA, RNAs and their interactions. It also covers technologies that are used to determine 

the protein-DNA/RNA interactions, focusing on the recent studies that predict protein-

DNA/RNA interactions from protein sequence. Finally, this chapter also includes the 

computational background, such as the principles of the design and evaluation of 

computational methods.  
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Chapter 3 provides a comprehensive assessment of predictive performance of the 

existing sequence-based DNA- and RNA-binding residues predictors focusing on the 

methods that are conveniently available to end users as webservers. In particular, we 

assess these methods based on how well they perform on datasets with just DNA-binding 

proteins, just RNA-binding proteins and both DNA and RNA binding proteins. 

Chapter 4 concerns the design and evaluation of a consensus-based predictor that 

combines results of the DNA (RNA) binding residue predictors to improve predictive 

performance. It explores a comprehensive range of designs of consensuses including a 

simple logic based combination of methods, majority vote consensus, a more 

sophisticated machine learning based consensus, and a combined prediction of DNA- and 

RNA- binding residues. The predictive performance of these various consensuses is 

assessed on datasets with DNA-binding or RNA-binding proteins, as well as on a dataset 

with both DNA-binding and RNA-binding proteins.  

Chapter 5 introduces a new method, DRNApred, which accurately, specifically, and 

in high throughput fashion predicts DNA-binding and RNA-binding residues. We 

describe the novel dataset that we collected to design this method, summarize how this 

method was designed, and evaluate the predictive quality and runtime of our method.  

Chapter 6 summarizes results of a large scale application of our method to identify 

DNA- and RNA-binding residues/proteins in the entire human proteome. We assess 

predictive quality of these results using the already known binding proteins and the newly 

predicted binding proteins.  

Chapter 7 summarizes the thesis and lists conclusions and major contributions.  
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Chapter 2  

Background 

2.1 DNA, RNAs and proteins 

Deoxyribonucleic acid (DNA) is a double-stranded macromolecule that stores genetic 

information. It is composed of four types of nucleotides: adenine (A), guanine (G), 

cytosine (C) and thymine (T). Gene is a segment of DNA that contains the genetic 

information that defines a protein. There are between several and over a dozens of 

thousands of genes in a given DNA molecule, depending on a complexity of the 

corresponding organism. To encode proteins, gene information is transcribed into a 

messenger RNA (mRNA) in a process called transcription, see Figure 2.1.  

 

Figure 2.1. Diagram that summarizes how proteins are generated from the information encoded 

in genes (source: http://www.contexo.info/DNA_Basics/Protein_synthesis.htm).  
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Ribonucleic acid (RNA) is a single-stranded macromolecule. Similar to DNA, RNA 

is also made up of four nucleotides, but thymine (T) is replaced with uracil (U). RNA is 

more versatile than DNA and it comes in a variety of shapes and types. The three most 

known types of RNA are: messenger RNA (mRNA), transfer RNA (tRNA), and 

ribosomal RNA (rRNA). mRNA carries the genetic information copied from genes. 

tRNA helps to translate the nucleotide sequence from mRNA into amino acid sequence 

that makes up proteins. rRNA associates with a set of proteins to form ribosome that 

implements the translation process (process of translating mRNA into proteins). As 

shown in Figure 2.1, with ribosome moving along the mRNA, amino acids are added one 

by one to form an amino acid chain of the corresponding protein. The different order of 

nucleotide sequences in genes translates to different sequences of amino acid that are 

held together by peptide bounds. 

Table 2.1. Table of 20 amino acids along with their abbreviation names and selected 

physiochemical properties. 

Amino acid  
Abbreviation 

Charge Polarity Hydrophobicity 
3-letter 1-letter 

Alanine Ala A neutral nonpolar hydrophobic 

Arginine Arg R positive polar hydrophilic 

Asparagine Asn N neutral polar hydrophilic 

Aspartic Acid Asp D negative polar hydrophilic 

Cysteine Cys C neutral nonpolar hydrophobic 

Glutamic Acid Glu E negative polar hydrophilic 

Glutamine Gln Q neutral polar hydrophilic 

Glycine Gly G neutral nonpolar hydrophobic 

Histidine His H positive polar hydrophilic 

Isoleucine Ile I neutral nonpolar hydrophobic 

Leucine Leu L neutral nonpolar hydrophobic 

Lysine Lys K negative polar hydrophilic 

Methionine Met M neutral nonpolar hydrophobic 

Phenylalanine Phe F neutral nonpolar hydrophobic 

Proline Pro P neutral nonpolar hydrophobic 

Serine Ser S neutral polar hydrophilic 

Threonine Thr T neutral polar hydrophobic 

Tryptophan Trp W neutral nonpolar hydrophobic 

Tyrosine Tyr Y neutral polar hydrophobic 

Valine Val V neutral nonpolar hydrophobic 
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Proteins are macromolecules consisting of one or more sequences (linear chains) of 

amino acids. There are 20 types of amino acids and each has different chemical structure 

and properties. Table 2.1 lists the names of the 20 amino acids, their three- and one-letter 

abbreviations, and some of their physiochemical properties, such as charge, polarity and 

hydrophobicity. Different linear combination of the 20 amino acids fold into different 

three-dimensional shapes, which in turn define how these proteins interact with other 

molecules to carry out their functions. There are four distinct levels of protein structure. 

The primary structure is defined by the order of amino acids in the protein sequence. The 

secondary structure refers to spatially local arrangements of the sequences into three 

major types of regular structures: alpha-helix, beta-sheet and coil. The alpha-helix 

structure looks like a coiled spring, where the protein chain is assembled along a helical 

path. The beta-sheet structure is composed of pairs of strands (linear segments of protein 

chain) that lie alongside each other to form as a sheet. The coil is highly dynamic and 

does not have one specific and stable structure like the alpha-helix or beta-sheet. Its 

primary role is to connect the helices and sheets together. The tertiary structure is a 

spatial arrangement of these secondary structures and is defined by position of each 

amino acid (and all its atoms) in the three-dimensional space. Multiple sequences can 

aggregate together to form the quaternary structure. The primary and secondary structures 

determine the tertiary structure, i.e., a protein with a given primary and secondary 

structure will always fold into the same tertiary structure. In turn, a given tertiary 

structure determines what other molecules (such as nucleic acids, other proteins, 

nucleotides, peptides, etc.) can interact this this protein. Some proteins are characterized 

by lack of a fixed or stable secondary and tertiary structure, and they are called 

intrinsically disordered proteins. Many of these disordered proteins can undergo 

transitions to ordered states upon interacting with (binding) other molecules (e.g. DNA, 

RNA). The structural flexibility of disordered proteins facilitates their ability to form 

multiple conformations (three-dimensional shapes) and the corresponding ability to bind 

to different targets. Thus, the disordered proteins are usually enriched in proteins 

participating in binding related functions. Another structural property of proteins is the 

solvent accessibility (SA). Some amino acids are buried inside a protein, while some 

other amino acids are on the surface of a protein. Since proteins inhabit aqueous 
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environment the amino acids on their surface are exposed to the solvent. Solvent 

accessibility measures the area of the exposed surface of each amino acid in a given 

protein. Relative solvent accessibility (RSA) is the relative exposure calculated by 

normalizing the solvent accessibility of the amino acid in the structure by the maximal 

possible solvent accessibility that this amino acid can take. Both SA and RSA can be 

used to identify amino acids as being either exposed to solvent or buried in the structure. 

These are important structural properties as the binding sites (site of the interaction with 

the other molecules) are typically on the protein surface and thus they are composed of 

the solvent exposed amino acids. 

2.2 Protein-DNA/RNA interactions 

Proteins implement and regulate all cellular processes but they rarely act alone. Vast 

majority of protein functions happens via interactions with other molecules, like DNA, 

RNA, and other proteins. Protein-DNA interactions (a protein binds either a single or 

double stranded DNA) play essential roles in a variety of biological processes, such as 

activation or repression of gene expression, and chromosome packaging in the cell 

nucleus that involves interactions between DNA and histone proteins. Figure 2.2 shows 

the sequence (primary structure) together with the annotation of binding residues and the 

corresponding three-dimensional structure of the DNA-binding protein Hnt3. This protein 

is involved in repair of breaks in single-stranded and double-stranded DNA and base 

excision repair [21]. The protein-RNA interactions (a protein binds either single or 

double stranded RNA) are more diverse compared to the protein-DNA interactions. This 

is because the structure of RNA varies more widely than that of DNA. Protein-RNA 

interactions play key roles in the post-translational processes, such as splicing, mRNA 

transcript stability, mRNA localization and translation. 

Given the importance of the protein-DNA/RNA interactions, various techniques have 

been developed to study them. Determining whether proteins interact with DNA/RNA or 

not and which amino acid in the interacting protein bind to DNA/RNA are vital to 

understanding principles underlining protein-nucleic acid binding and help us to 

understand the various roles these interactions play in regulating cellular processes. 
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A     B  

Figure 2.2. Interaction of DNA with aprataxin ortholog Hnt3 (PDB ID: 3SPD).  

Panel A shows the protein-DNA interaction in the primary structure. Protein Hnt3 has 200 (disordered regions are 

omitted) amino acids coded with single-letter. We split the sequence into three rows where the first line is the residue 

number, second line is the amino acid sequence, and third line gives annotation of DNA-binding residues where B is 

for binding residue and – for nonbinding residue. Panel B shows the interaction between protein and DNA in the 3D 

molecular view. DNA is shown in purple and protein is shown in bronze.  

 

2.2.1 Experimental technologies to determine protein-DNA/RNA interactions  

A number of wet lab techniques have been developed to study the complex 

interactions of proteins with DNA/RNA. They include electrophoretic mobility shift 

assays (EMSAs) [22], conventional chromatin immunoprecipitation (ChIP) [23], 

MicroChIP [24, 25], Fast ChIP [26], X-ray crystallography [27], and nuclear magnetic 

resonance (NMR) spectroscopy [28]. The most definitive way to identity and study 

protein-DNA and protein-RNA interactions is to determine the structure of their complex 

using X-ray crystallography.  

The X-ray crystallography determines the coordinates of all atoms of a crystal in 3D 

space. This technique usually involves three steps as shown in Figure 2.3. The first step is 

to generate the protein crystal. A crystal is a solid form in which all atoms are arranged in 

a highly ordered structure. A protein crystal that includes a large number of protein 

molecules arranged into a regular structure is required since single protein molecule is far 

too small to be detected in the X-ray diffraction experiment. Crystal is used to magnify 

the signal since multiple copies of the same molecule can be used to increase accuracy. 

This step is the most challenging part of X-ray crystallography as growing protein crystal 

requires quite pure protein samples and highly restricted aqueous environment. In the 

next step, an intense beam of X-ray is shot through a protein crystal diffracting it into 

many specific directions, and consequently producing a specific diffraction pattern on a 
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film. A crystal is rotated so that X-ray hits all its sides and all angles of diffraction 

patterns can be recorded. These recorded data are combined into a 3D diffraction pattern. 

Finally, the electron density map is calculated based on the diffraction pattern to 

reconstruct the crystal structure. This map is a plot the electron clouds that can be used to 

determine average positions of atoms in the crystal. Next, these atomic positions 

combined with the underlying knowledge of the amino acid sequence and exact atomic 

composition of each amino acid, are utilize to derive 3D atomic model of the protein. A 

series of refinements are often further carried out to perfect the model. Resolution 

measured in unit of Angstrom (Å) is a primary measurement of the accuracy of the 

model. The higher the resolution is (lower value in Å), the more precise the model 

structure is. X-ray crystallography is widely used to generate protein-DNA and protein-

RNA complexes since it can provide a highly detailed atomic view of the two interacting 

molecules. This is the main method that was used to generate structures in PDB that we 

use in this work. However, determination of structures of these complexes is costly 

(between about $20 thousand to a few hundreds of thousands of dollars, depending on the 

size and complexity of the complex) and time consuming. The number of protein-DNA, 

protein-RNA complexes in the PDB has grown rapidly in recently years, but still lags far 

behind the number of known protein sequences. Hence, there is a pressing need to 

develop accurate computational methods to predict protein-RNA and protein-DNA 

binding residues from protein sequences, which are cheaper and faster to use compared to 

the X-ray crystallography. 
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Figure 2.3. The workflow of how X-ray crystallography is used to solve the 3D structure of a 

protein molecule (source: https://en.wikipedia.org/wiki/X-ray_crystallography).  

2.3 Prediction of protein-DNA/RNA binding residues  

The experimentally solved protein-DNA/RNA complex structures provide a rich 

source of data that can be are used to analyze structural and sequence characteristics of 

the interacting residues (interface). These findings are in turn used to build and test 

computational method that predicts DNA- or RNA- binding residues in unbound proteins. 

Based on the input information used, there are two types of computational methods: 

structure-based methods and sequence-based methods. 

2.3.1 Structure-based method 

Structure-based methods perform prediction by employing knowledge of protein 

structure, in particular surface of the protein, to find whether this protein interacts with a 
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nucleic acid. The methods utilize information concerning charge on the surface, 

evolutionary conservation (some residues are preserved in the sequences of the same 

protein in different organisms, which points to their functional importance), geometry of 

the surface, contacts (spatial proximity) between residues on the surface, etc. In principle, 

there are two types of structure-based methods for the prediction of the DNA- or RNA-

binding residues. The template-based methods utilize structural alignment protocols to 

detect significant structural similarity between the query protein structure and a set of 

proteins that are known to bind DNA/RNA. The premise here is that similar proteins 

share similar functions. An example method, SPOT-struc that was developed by Zhou 

and colleagues [29], aligns structure of the input/query protein to a library of structures of 

proteins that are known to bind RNA, and the query protein is predicted to bind RNA if 

the structural similarity between the query and any protein from the library is higher than 

a certain threshold. The second type of the structure-based methods is template-free. The 

template-free methods do not perform a direct structural comparison but instead they use 

structural features extracted from the structure of the query protein and machine-learning 

algorithms to scan the surface of the query protein and predict surface residues as either 

binding or non-binding. Various machine learning (ML) methods are used in the 

template-free methods including SVM [30-32], neural network [33], and random forest 

[34]. Research concerning the structure-based method is outside of the scope of this 

thesis, so we do not further elaborate on this class of methods. Additional details can be 

found in recent review papers on this topic [11, 35-37]. These review articles summarize 

the existing structure-based methods and discuss the corresponding benchmark datasets, 

architectures of these methods (structural features and machine learning algorithms), 

evaluation protocols, and assessment of their predictive performance.  

2.3.2 Sequence-based method 

Sequence-based methods perform the predictions solely from the sequence, without 

the need for the expensive and time-consuming process of experimental determination of 

protein structure. The sequence-based prediction methods are the only choice for majority 

of the proteins that do not have structures. This is why we focus on the analysis and 

development of this class of methods. We review the existing sequence-based predictors 
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of DNA- and RNA-binding residues. We discuss how they define binding residues, 

overview their predictive models and summarize their outputs.  

The sequence-based methods published before 2015 include 14 methods for the 

prediction of DNA-binding residues and 16 for the RNA-binding residues; they are 

summarized in Table 2.2. Perhaps their most striking characteristic is that these predictors 

define binding residues in different ways. We note that binding residues are typically 

defined based on the structure of the protein-RNA or protein-DNA complexes, but only 

the sequence is used to perform predictions. Virtually all predictors, except for 

DNABindR [38, 39] and PRINTR [40], define a given residue as binding if at least one of 

its atoms is closer than a cutoff distance from an atom of the RNA/DNA molecule. 

However, the cutoff values vary widely between 3.5 Å and 6 Å. The most commonly 

used value is 3.5 Å and such close proximity typically involves a formation of a bond 

between protein and nucleic acid. Similarly, prior comparative reviews [10-14] also most 

often considered values of 3.5 Å and 5.0 Å. Consequently, we define the binding residues 

based on the 3.5 Å cutoff. 

The existing predictive models can be divided into two types: ‘sequence-only’ models 

that perform predictions using solely the sequence and sequence-derived one-dimensional 

descriptors [41], such as secondary structure and solvent accessibility; and ‘template-

based’ models that rely on a library of structural templates. The latter group of methods 

uses the input sequence to find a structure in complex with DNA or RNA that has similar 

sequence, and they use this structure to perform predictions. The two ‘template-based’ 

approaches, DBD-Threader [42] for the prediction of DNA-binding residues and SPOT-

Seq [43] for the RNA-binding residues provide accurate predictions but they also require 

relatively long runtime; our tests using their webservers show runtime values up to 

several hours per protein for DBD-Threader and 20 min to a few hours for SPOT-Seq. 

Interestingly, SPOT-Seq was shown to discriminate between RNA- and DNA-binding 

proteins [43]. In the next chapter we investigate whether this could be also accomplished 

with the sequence-only models. 
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Table 2.2. Summary of predictors of DNA- and RNA- binding residues. Methods used in our empirical assessment are shown in bold. 

  Method Year Ref1 Cut-
off 

Considered types of input features2 

Prediction 
model3 

Webserver4 

AC PP PA PS SA PSSM 
Max 
Hom 

Wild 
Span 

StL SeL WS URL 
Output 

bin pr 

P
re

d
ic

to
rs

 o
f 

D
N

A
 b

in
d

in
g

 r
es

id
u

e
s DBS-pred 2004 [44] 3.5  

         
3 NN www.abren.net/dbs-pred/   

DBS-PSSM 2005 [45] 3.5 
     

 
    

5 NN dbspssm.netasa.org   

BindN 2006 [46] 3.5 
 

 
        

11 SVM bioinfo.ggc.org/bindn/   

Ho et al. 2007 [47] 3.5 
     

 
    

7 SVM N/A 
 

 

DP-Bind 2006,2007 [8, 48] 4.5 
     

 
    

7 SVM, KLR, PLR lcg.rit.albany.edu/dp-bind   

DISIS 2007 [49] 6.0 
  

   
 

 
   

3, 9 NN & SVM cubic.bioc.columbia.edu/services/disis* 
 

 

DNABindR 2006,2008 [38, 50] 1.05 
 

         
21 Naïve Bayes turing.cs.iastate.edu/PredDNA/index.html* 

 
 

BindN-RF 2009 [51] 3.5 
 

 
  

  
    

11 RF bioinfo.ggc.org/bindn-rf/* 
 

 

DBindR 2009 [39] 3.5  
  

 
 

 
    

11 RF www.cbi.seu.edu.cn/DBindR/DBindR.htm* 
 

 

DBD-
Threader 

2009 [42] 4.5 
        

 
 

N/A Template-based 
cssb.biology.gatech.edu/skolnick/webservice/ 

DBD-Threader/index.html 
  

ProteDNA 2009 [52] 4.56 

     
 

   
 11 SVM protedna.csie.ntu.edu.tw/method.php   

BindN+ 2010 [53] 3.5 
 

 
  

  
    

11 SVM bioinfo.ggc.org/bindn+/   

NAPS 2010 [54] 4.5   
   

 
    

7 C4.5 proteomics.bioengr.uic.edu/NAPS/* 
 

 

DNABR 2012 [55] 3.5   
   

 
    

9 RF www.cbi.seu.edu.cn/DNABR/*   

P
re

d
ic

to
rs

 o
f 

R
N

A
 b

in
d

in
g

 r
es

id
u

e
s Jeong et al.  2004 [56] 6.0  

  
 

      
41 NN N/A 

 
 

Jeong et al.  2006 [57] 6.0 
     

 
    

15 NN N/A 
 

 

BindN  2006 [46] 3.5 
 

 
        

11 SVM bioinfo.ggc.org/bindn/   

PRINTR 2008 [58] ENTANGLE 
  

 
 

 
    

15 SVM 210.42.106.80/printr/* 
 

 

RISP 2008 [59] 3.5 
     

 
    

7 SVM grc.seu.edu.cn/RISP* 
 

 

Pprint 2008 [60] 6.0 
     

 
    

11,13,15 SVM www.imtech.res.in/raghava/pprint/   

RNAProB 2008 [40] 6, 5,3.5 
     

 
    

25 SVM N/A 
 

 

BindN+ 2010 [53] 3.5 
 

 
  

  
    

11 SVM bioinfo.ggc.org/bindn+/   

PiRaNhA 2009,2010 [61, 62] 3.9 
 

  
  

 
    

23 SVM www.bioinformatics.sussex.ac.uk/PIRANHA* 
 

 

NAPS 2010 [54] 4.5   
   

 
    

7 C4.5 proteomics.bioengr.uic.edu/NAPS* 
 

 

ProteRNA 2010 [63] 5.0 
   

 
 

 
 

 
  

23 SVM N/A 
 

 

RBRpred 2010 [64] 6.0  
 
  

 
 

    
15 SVM N/A 

 
 

Wang et al 2011 [65] 6.0 
 

  
  

 
    

15 SVM N/A 
 

 

PRBR 2011 [66] 3.5 
 

 
 

 
 

 
    

11 RF www.cbi.seu.edu.cn/PRBR/*   

SPOT-Seq 2011 [43] 4.5 
        

 
 

N/A Template-based sparks.informatics.iupui.edu   

RNABindR 2006,2007,2012 [9, 13, 67] 5.0 
     

 
    

25 SVM einstein.cs.iastate.edu/RNABindR/   
 

1 Ref – reference 

2 AC – amino acid composition; PP – physiochemical properties of amino acids; PA – predicted solvent accessibility (ASA); PS – predicted secondary structure; SA – sequence alignment; 

PSSM – position-specific scoring matrix; MaxHom – MaxHom algorithm [68]; WildSpan – WildSpan algorithm[69]; StL –template library of structures; SeL –template library of 

sequences; WS – window size;  

3 NN – neural network; SVM – support vector machine; KLR – kernel logistic regression; PLR – penalized logistic regression; RF – random forest; C4.5 – decision tree 

4 bin – outputs binary prediction; pr – outputs numeric propensity score; 

5 An amino acid is a DNA-binding residue if its ASA computed in the protein-DNA complex using NACCESS is smaller than its ASA in the unbounded protein by at least 1Å 

6 A residue is regarded as involved in sequence-specific binding with the DNA if one or more heavy atoms in its side chain fall within 4.5Å from the nucleobases of the DNA 

* Webserver was not available as of December 2013 when the predictions were collected. 
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The predictive strategy used by the ‘sequence-only’ methods consists of two steps. 

First, each residue in the input protein sequence is encoded into a vector of numerical 

features. Next, these features are used as inputs to a predictive model that outputs a 

binary value (binding versus nonbinding) and, for some methods, also a numeric score 

that quantifies propensity for the binding (Table 2.2). The information used to compute 

features for a given residue is collected from a window of residues that are adjacent to 

this residue in the sequence. The sizes of this window vary widely between methods, 

ranging from 3 (one residue on each side of the predicted residue) to 41; the most 

frequently used value is 11 (Table 2.2). The sequence-only predictors use a variety of 

designs that vary both on the information that is used to generate the features and the 

predictive models used. The input features include information derived directly from the 

protein sequence including amino acid composition (counts of specific types of amino 

acids), and physiochemical properties of the input amino acids, such as pKa value of side 

chains, hydrophobicity, molecular mass and charge. Some features are also computed 

from one-dimensional structural characteristics that are predicted from the sequence, such 

as secondary structure and solvent accessibility. The most common input is based on the 

results of multiple sequence alignment of the input chain into a large sets of protein 

sequences (such as the nr database), primarily in the form of the evolutionary profile 

quantified with the position-specific scoring matrix (PSSM). This is related to the fact 

that PSSM can be used to quantify conservation of residues and the binding residues were 

shown to be conserved in the sequence [68, 70, 71]. Two predictors substitute PSSM with 

another way to find conserved residues. ProteRNA method [63] uses the WildSpan 

algorithm [69], while DISIS [49] uses MaxHom [68] algorithm. The predictive models 

are exclusively implemented based on a variety of ML algorithms (described in detail in 

section 2.4) including neural networks, SVMs, Naïve Bayes and decision trees. The SVM 

is used most often, which is motivated by empirical results that demonstrate that this type 

of model usually provides strong predictive performance [12, 46]. However, we note that 

different methods were trained and tested on different datasets, which vary in terms of 

their release date, size, resolution of structures used to generate annotation of binding, 

sequence similarity within the dataset and definition of binding annotation. Moreover, 

they were evaluated using different protocols (e.g. using test datasets and a variety of 
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cross-validation types) and the predictive performance was assessed using different 

measures. Therefore, we could not use the results reported in the original articles to 

directly compare predictive quality of these methods. Our tests of methods that offer 

webserver indicate that DBS-pred [44] and BindN [46] are among the fastest methods 

that complete the prediction of DNA-, RNA-binding residues for an average-sized protein 

with about 200 amino acids in <1 s. 

Recent studies also investigated development of consensus approaches, which 

combine multiple predictions into one prediction. The premise is that if individual 

predictions are different from each other and they complement each other, then 

combining them together would lead to an improved predicting performance when 

compared to each of the individual methods. Si [14] have implemented a consensus 

method MetaDBSite that integrates predictions from six DNA-binding predictors: DBS-

pred [44], BindN [46], DP-Bind [48], DISIS [49], DNABindR [38] and BindN-RF [51]. 

The results of these predictors are combined using the SVM model, and the resulting 

consensus was shown to outperform each individual predictor. Similarly, Puton [12] 

assessed predictive quality of seven sequence-based methods for prediction of RNA-

binding residues and developed a consensus that combines predictions from the top three 

predictors: PiRaNhA [62], Pprint [60] and BindN+ [53]. The outputs of these methods 

were merged together using weighted average where the weights correspond to the 

predictive quality of these methods on a benchmark dataset. Again, their empirical results 

show that their consensus outperforms the results generated by each of the three single 

predictors. These results motivated us to further investigate feasibility of building 

accurate consensus-based approaches.  

2.4 Computational background 

Generally speaking, computational prediction of the DNA- or RNA- binding residues 

usually considers prediction as a binary classification problem, i.e., each amino acid in 

the input protein sequence is classified as either binding or nonbinding. This involves two 

steps: construction of a classification model and use of this model to perform predictions. 

First, a set of labelled amino acids (binding vs. non-binding) is used by a machine 



19 

 

learning algorithms to generate a classification model by exploiting the underlining data 

patterns (amino acid properties that distinguish binding from non-binding). Next, the 

model is used to make classifications/predictions on new data (amino acid) whose class 

label information is unknown. Some models also produce a probability/confidence that is 

associated with the binary prediction or which is used to generate the binary prediction. 

In the latter case the residues with confidence > given threshold are assumed as binding 

and otherwise they are assumed as nonbinding.  

2.4.1 Development of computational methods for the prediction of protein-

DNA/RNA interactions 

As shown in Figure 2.4, the development of a prediction model includes two main 

activities: training and testing. First, the experimental data (experimentally solved 

DNA/RNA-binding protein sequences and their corresponding binding annotations) are 

split into training and test sets to train and to test the prediction model, respectively. The 

data is split per protein, i.e., all residues from a given protein are placed into one of these 

two datasets. During the training process, the prediction model learns to distinguish 

between the already known binding residues (binding class) and nonbinding residues 

(nonbinding class) using a training dataset of proteins. Each amino acid in the training 

protein sequence is encoded with a set of numerical features. These numerical features 

are utilized as input that is fed into a machine learning algorithm to build the prediction 

model. Then the model is used to generate prediction output. Prediction accuracy is 

assessed by comparing the prediction output with the actual/true output, and this 

information is used to guide the learning process to maximize prediction accuracy. Often, 

this process involves finding a well-performing set of features and parameterization of 

machine learning algorithm. This is performed to maximize predictive performance on 

the training dataset, and to avoid overfitting a cross validation is applied. Overfitting 

means the model fits (memorizes) the training data very well but fails to generalize on 

new data. This may happen when the model is large and complex, and as a result it ends 

up describing noise or errors rather than the underlying data patterns in the training 

dataset. We use cross validation, which is discussed in section 2.4.3, to reduce a chance 

of overfitting the training dataset. During the testing, we apply our trained on the training 
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dataset predictive model to generate prediction for the test sequences. Next, the predicted 

outcomes are compared with the actual/true outcomes for these test proteins to measure 

predictive performance of the method. 

 

Figure 2.4. Flowchart of the process to develop and test the computational prediction methods.  

 

A typical training process consists of the following three steps: 

1. Feature generation 

First, one needs to design a set of features that represent the input data. In this study, 

each input amino acid is encoded with numerical features that quantify structural and 

physicochemical properties of these amino acids that can be potentially used to 

discriminate between binding and non-binding amino acids. Based on the underlying 

feature type, these features can be grouped as binary (e.g. “exposed” or “buried” that 

denote the solvent accessibility state), categorical (e.g. “Helix”, “Strand”, or “Coil” that 

represent the secondary structure state) and real-valued (e.g. area of solvent accessible 
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surface). These features are derived either directly from the input protein sequence (e.g. 

the type of amino acid) or computed using outputs generated by other software that 

predicts structural or functional characteristics of the protein from the sequence (e.g. 

predicted secondary structure).  

2. Feature selection 

The number of the generated features could be large and some of them might be 

redundant or irrelevant to a given classification task. If not removed, they might harm 

predictive performance (model would describe the weak or noisy information from the 

irrelevant features) and will unnecessarily increase the runtime required to build the 

model. Feature selection aims to select a subset of relevant and non-redundant features. 

We consider two types of feature selections, depending on how feature selection search is 

combined with the construction of the prediction model: filter methods and wrapper 

methods. The filter methods treat the feature subset selection as independent of the model 

construction. They typically involve computation of a score for each feature that 

measures usefulness of that feature for the prediction. A commonly used filter technique 

uses correlation-based score. It estimates relevance of a given feature using its correlation 

with the outcome (class label). We use the point biserial correlation coefficient (PBC) 

which is suitable to quantify correlation of our features with our binary outcome: binding 

vs. non-binding class labels. Features with low values of the correlation (irrelevant 

features) are removed. Next, we remove the redundant features by using Pearson 

correlation coefficient (PCC) that quantifies correlation between features. We remove 

one of the features (the one with lower PBC) in each pairs of features that have high PCC 

value; this way we remove redundant features. The filter methods are usually 

computationally fast. The wrapper methods embed the model construction within the 

feature selection process. They explore various subsets of features that are generated 

using a search algorithm. Each considered subset of features is used to train and test the 

prediction model. The feature subset that returns the best prediction performance on the 

training set is selected. Wrapper methods are computational more expensive when 

compared to the filter methods, but they also tend to provide a feature set that secures 

better predictive performance on the training dataset.  
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3. Model training 

Using the selected set of features, a machine learning algorithms learns a mapping of 

the values of these features into the corresponding output (class labels). Many machine 

learning algorithms can be used including Support Vector Machine (SVM), Logistic 

Regression, Neural Network, Naïve Bayes, and Random Forest, among others. In this 

study, we use logistic regression which is described in detail in the next section. This type 

of algorithm has been already successfully used in a related study [72]. Moreover, further 

motivation to use this particular type of algorithm is because it generates simple linear 

models, which are less likely to overfit training dataset compared to more complex 

models that use a larger number of parameters. This algorithm is also fast to generate the 

model on the training dataset, which is an important advantage given a relatively large 

size of our dataset. Finally, models generated by regression are also fast to make 

prediction on new data, which is crucial given our goal to developing a runtime efficient 

(high throughput) predictor. Most of the machine learning algorithms require the user to 

determine values of certain control parameters. These parameters can be used to optimize 

the predictive performance and generalize the resulting model, so that it performs well on 

test dataset. Determining the best set of values of these parameters, called 

parameterization of the learning algorithm, is important. A popular method to select 

parameters is grid search. This is an exhaustive search through a manually specified grid 

of parameters. One train the algorithm with each set of considered parameter values from 

the grid using a given training dataset and evaluates the corresponding predictive 

performance. The set of parameter values which returns the best prediction performance 

is selected. The easy of this parameterization is another advantage of the logistic 

regression as this algorithm uses only one parameter: the ridge λ (detail information see 

in section 2.4.2). Most other algorithms use multiple parameters, which results in much 

larger computational cost of the parameterization. With the regression, we first define a 

set of considered ridge values λ ∈ {10−10, 10−9, … , 105}. After using the grid search we 

compute predictive performance for each ridge value on the training dataset, we select 

ridge value with the best predictive performance.  
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After the entire training process is completed, the designed predictive model (using 

selected features and parameters of the algorithm) is generated using the training dataset 

and applied to make predictions on new unseen test data.  

2.4.2 Logistic regression 

Logistic regression is a type of regression that predicts the probability of occurrence 

of an event by fitting data to a logistic function. Suppose that we have m observations (in 

our study these are amino acids) represented by (𝑋, 𝑌), where 𝑌 = [𝑌1, 𝑌2, … , 𝑌𝑚] and 

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑚]. For each observation (amino acid), 𝑌𝑖 ∈ {0,1} is the binary outcome 

representing the binding vs. non-binding state of this amino acid, and 𝑋𝑖  is an n-

dimensional vector of input features. Logistic regression finds a linear fit of 𝑋𝑖: 

𝑓(𝑋𝑖) = 𝜃0 + 𝜃1𝑋𝑖
1 + ⋯ + 𝜃𝑛𝑋𝑖

𝑛 = ∑ 𝜃𝑘𝑋𝑖
𝑘𝑛

𝑘=0 = 𝜃𝑇𝑋𝑖 , 

where 𝜃 = [𝜃0,  𝜃1, … ,  𝜃𝑛]  is an n-dimensional vector of coefficients that need to be 

calculated, 𝑓(𝑋𝑖)  is the decision boundary according to which input data 𝑋𝑖  can be 

assigned to one of the two outcomes:  

𝑌𝑖 = 1, 𝑖𝑓 𝑓(𝑋𝑖) > 0 

𝑌𝑖 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Then we apply logistic function on 𝑓(𝑋𝑖):  

ℎ(𝑋𝑖) = 𝑔(𝑓(𝑋𝑖)) =
1

1+𝑒−𝜃𝑇𝑋𝑖
 , 

so that the function value ℎ(𝑋𝑖) is bound to unit interval [0, 1], and could be interpreted 

as the probability of 𝑌𝑖 = 1 knowing 𝑋𝑖, that is:  

𝑃(𝑌𝑖 = 1|𝑋𝑖; 𝜃) = ℎ(𝑋𝑖) 

𝑃(𝑌𝑖 = 0|𝑋𝑖; 𝜃) = 1 − ℎ(𝑋𝑖) 

Combining them together, the probability function can be written as:  

𝑃(𝑌𝑖|𝑋𝑖; 𝜃) = (ℎ(𝑋𝑖))𝑌𝑖(1 − ℎ(𝑋𝑖))1−𝑌𝑖 
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Finding the optimal 𝜃 is usually done using the maximum likelihood estimation with the 

input data points (training dataset). The likelihood function is then 

𝐿(𝜃) = ∏ 𝑃(𝑌𝑖|𝑋𝑖; 𝜃)
𝑚

𝑖=1
= ∏ (ℎ(𝑋𝑖))𝑌𝑖(1 − ℎ(𝑋𝑖))1−𝑌𝑖

𝑚

𝑖=1
 

Log-likelihood function turns products into sums: 

𝑙(𝜃) = 𝑙𝑜𝑔𝐿(𝜃) =  ∑ 𝑌𝑖 log ℎ(𝑋𝑖)
𝑚

𝑖=1
+ (1 − 𝑌𝑖) log(1 − ℎ(𝑋𝑖)) 

Log-likelihood function with penalty is defined as 

𝑙𝜆(𝜃) = 𝑙(𝜃) − 𝜆‖𝜃‖2 

where the ridge parameter 𝜆 controls the amount of shrinkage of the norm of 𝜃. The 

quality of the fit of ridge logistic regression depends on the selection of proper ridge 

parameter λ. 

2.4.3 Cross validation 

Cross validation is a method that is used to evaluate predictive model. It aims to 

mimic testing on the test dataset (use of data were not used in model building to test a 

given model) using the training dataset. This method is used to estimate predictive 

performance that is in turn used during the training process to guide the feature selection 

and machine learning algorithm parameterization. There are several types of cross 

validation: holdout method (2-fold cross validation), k-fold cross validation where 2 < k < 

m and leave-one-out cross validation where k = m. In the k-fold cross validation, the 

whole training dataset is randomly split into k equally sized subsets (also called folds). 

One fold is used as a test set, and all the remaining k-1 folds are combined together to 

form a training set. The training set is used to train a model, while the test set is utilized 

to perform the evaluation of this model. This is repeated k times, and each time we 

choose a different fold as the test set. Eventually, we average the prediction performance 

over all the k test folds to produce a single result which gives an estimate of how well this 

model performs over the entire training dataset.  
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2.4.4 Evaluation criteria 

Evaluation of predictive quality is performed for the two types of predictions: binary 

prediction (binding vs. nonbinding) and the real-valued scores that quantify the 

propensity that a given residue binds a given type of nucleic acid. The binary predictions 

can be assessed using the following four measures: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity = 
𝑇𝑁

𝐹𝑃+𝑇𝑁
 

Matthews correlation coefficient (MCC) = 
𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃

√(𝑇𝑃+𝐹𝑁)×(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
 

where TP is the number of true positives (correctly predicted binding residues), FN is the 

number of false negatives (incorrectly predicted binding residues), FP is the number of 

false positives (incorrectly predicted nonbinding residues) and TN is the number of true 

negatives (correctly predicted nonbinding residues). These four measures were used in 

similar works that addressed prediction of DNA or RNA binding residues [10-14, 38, 53, 

59]. 

The predicted propensities are evaluated using receiver operating curve (ROC), which 

is a plot of false-positive rate (FPR), which equals 1-specificity, against the true-positive 

rate (TPR), which is the same as sensitivity. These two rates are computed by binarizing 

the propensities using thresholds (we use all unique values of the predicted propensities 

as thresholds). We report the area under the ROC curve (AUC) and the same value was 

reported in other studies [12, 13, 53, 55]. In our training dataset the fraction of the DNA-

(RNA-) binding residues is 8.2% (4.8%), i.e., majority of the residues are nonbinding. 

Thus, even a small FPR = 0.2 corresponds to the prediction where the binding residues 

are over-predicted 2.5 (4) times compared to their actual number. Therefore, we focus our 

assessment of the predictive performance on the part of the ROC where number of FPs is 

no bigger than the number of actual positives (native binding residues). This corresponds 
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to the lower (left side) part of ROC where FPR≤8.2% for DNA and ≤4.8% for RNA. 

Consequently, we also report the area under this lower part of curve (AULC). 

Since DNA-binding and RNA-binding residues share similar biochemical properties, 

it is likely that the existing methods cross-predict between these two types of nucleic acid 

binding residues, i.e., method for prediction of RNA-binding residues also predict DNA-

binding residues and vice versa. We introduce a new measure, called Ratio, to quantify 

the amount of cross-prediction between DNA- and RNA-binding residues. Ratio is 

defined as the fraction of native DNA-binding residues that are predicted as RNA-

binding, and the fraction of native RNA-binding residues that are predicted as DNA-

binding. Moreover, we introduce a Ratio curve, which is a plot of Ratio against the TPR. 

These two values are calculated by binarizing the propensities using thresholds (we use 

all unique values of the predicted propensities as thresholds). We report the area under 

the entire Ratio curve (AURC). Given the low numbers of binding residues, we also 

quantify the area under the lower part of the curve where TPR≤0.5 (AULRC). The larger 

values of TPR are less interesting because such prediction would generate very high FPR. 

2.4.5 Statistical test 

We used statistical tests to assess whether differences in two sets of numeric results 

are significant. The null hypothesis was defined as the median or mean of the two sets of 

results being equal. The difference is identified as statistically significant if the null 

hypothesis is unlikely to be observed at a given level of significance. In this study, we 

apply statistical tests to evaluate the significance of differences in predictive quality 

between the best-performing prediction method and each of the other considered 

methods. First, we estimate the predictive quality (e.g. MCC) on a representative and 

sufficiently large sample of the input data (proteins). We cannot compare the results 

using individual proteins since a single protein does not offer a sufficient amount of 

information to calculate the predictive quality. For instance, some proteins do not have 

positives (binding residues) and some will have very few positives. This is the case in the 

prediction of DNA-binding residues, where all residues in the RNA-binding proteins do 

not bind DNA. Therefore, instead of comparing results on individual proteins, we 

compare pairs of methods on several randomly selected datasets of proteins. More 
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specifically, we randomly select 70% of proteins in a given test dataset and measure the 

predictive quality for the considered methods. The choice of 70% allows us to have 

sufficiently large dataset to obtain high-quality estimates of predictive performance while 

still generating substantially diverse subpopulations of the complete test dataset. We 

repeat this process 10 times and collect the 10 results for each method. Next, we compare 

the 10 pairs of results. If the results follow normal distribution, as tested using the 

Anderson–Darling test [73] with 0.05 significance, we use the paired t-test to investigate 

significance; otherwise we use the Wilcoxon rank sum test (described in detail in the 

following sections). The difference between a given pair of predictors is assumed 

statistically significant if p-value <0.05. 

Student’s t-test (paired) 

A paired student’s t-test is used to compare two groups of data (values of predictive 

performance) in which individual data points in one group are paired with data points in 

the other group (predictive performance for two methods in the same randomly chosen 

dataset), and determine whether their means are significantly different from each other. 

Student’s t-test is commonly applied when data in each group follow a normal 

distribution.  

Suppose we have two groups of data with size 𝑛 (n = 10 in our work),  

𝑋1 = [

𝑥1,1

𝑥1,2

⋮
𝑥1,𝑛

] ,        𝑋2 = [

𝑥2,1

𝑥2,2

⋮
𝑥2,𝑛

] 

where 𝑥1,𝑖 and 𝑥2,𝑖 are the matched pairs for 𝑖 ∈ [1, 𝑛]. For example, 𝑥1,𝑖 is the value of 

MCC of one method on a given randomly chosen dataset, and 𝑥2,𝑖 is the value of MCC of 

the other method on the same dataset and 𝑖 = 1,2, … ,10 is the index of the dataset. Paired 

t-test is carried out by first setting the null hypothesis: 

𝐻0: the means of the two groups are equal. 

Then the t value is calculated:  
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𝑡 =
�̅�𝐷

𝑠𝐷

√𝑛

, 

𝑑. 𝑓. = 𝑛 − 1, 

where �̅�𝐷 =  ∑ (𝑥1,𝑖 − 𝑥2,𝑖
𝑛
𝑖=1 )/𝑛 is the average difference of all pairs of data, 𝑠𝐷 is the 

standard deviation of those differences, and 𝑑. 𝑓. is the degree of freedom.  

Once the t value is calculated, a p-value can be determined from a table of values 

from the student’s t-distribution using the corresponding 𝑑. 𝑓.  value. P-value is the 

probability of obtaining a result equal to or more extreme than what was actually 

observed, assuming the null hypothesis is true. A low p-value (typically <0.05) suggests 

that the data provides enough evidence to reject the null hypothesis and to accept an 

alternative hypothesis that is there is a significant difference between the means of the 

two groups of data. 

Wilcoxon rank test 

The Wilcoxon rank-sum test is a nonparametric alternative to the paired t-test in the 

case when the data is not normally distributed. It is used to determine the difference 

between the medians of two groups of data (values of predictive performance). Wilcoxon 

test is used to test the null hypothesis: 

𝐻0: the median of the two groups are equal. 

This test is carried out in the following steps: 

a) Calculate the difference for each pair of data, 𝑑𝑖 = 𝑥1,𝑖 − 𝑥2,𝑖, 𝑖 ∈ [1, 𝑛]. 

b) Exclude the pairs where 𝑑𝑖=0, which leaves 𝑛𝑟 difference. 

c) Rank the absolute difference, |𝑑𝑖|, from smallest to largest for the remaining pairs, 

assign rank 1 to the smallest |𝑑𝑖|, rank 2 to the next, etc. 

d) Add sign to each rank according to the sign of 𝑑𝑖. Assign a “+” sign when 𝑑𝑖>0, 

and a “-“sign when 𝑑𝑖<0. 

e) Calculate 𝑊, which is the sum of the signed ranks. It includes: 𝑊+, the sum of the 

ranks of the positive 𝑑𝑖, and 𝑊−, the sum of the ranks of the negative 𝑑𝑖.  
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f) Choose 𝑊 = min (𝑊+,  𝑊−) 

g) Find the p-value for the computed 𝑊 from Wilcoxon reference table.  

If the p-value is smaller than a threshold (typically 0.05), then we reject the null 

hypothesis 𝐻0 and support an alternative hypothesis that the median between these two 

groups of data differ significantly from each other. 

Anderson-Darling test 

The selection of the student’s t-test or Wilcoxon rank test is based on the normality of 

the underlying data, which we determine with the Anderson-Darling test [73]. This test 

checks whether a given group of data came from a specific distribution (e.g. normal, 

lognormal, exponential, etc.). In this study, we consider the normal distribution. Suppose 

we have a group of data 𝑋 with size n, the null hypothesis of the Anderson-Darling test is 

𝐻0: The data follows a normal distribution. 

To compute the test, we first sort all data in X from smallest to largest, 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑛, and then calculate 

𝐴2 = −𝑛 − 𝑆, 

where 

𝑆 = ∑
(2𝑖 − 1)

𝑛
[ln (𝐹(𝑥𝑖)) + ln (1 − 𝐹(𝑥𝑛+1−𝑖))],

𝑛

𝑖=1
 

and F is the cumulative distribution function of the normal distribution. Then the test 

statistic 𝐴 is compared against critical values from the table for normal distribution. If the 

p-value found in the table is bigger than a threshold (typically 0.05), then we accept the 

null hypothesis that the data are from a normal distribution, otherwise we reject the null 

hypothesis. 
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Chapter 3  

Goal 1: Assessment of predictive 

performance of existing sequence-

based DNA- and RNA- binding 

residue predictors 

Many methods predicting the protein–DNA/–RNA interactions from the protein 

sequence and structure have been published and reviewed in the literature over the past 

several years [11, 74-76] Table 3.1 summarizes recent comparative reviews of the 

predictors of DNA-binding residues [10, 14] and RNA-binding residues [11-13]. These 

comparative analyses provide useful clues about the predictive performance of various 

predictors and help the end users to select a suitable method from among many available 

choices. However, these reviews and the corresponding predictive models focus solely on 

the prediction of interactions with just one of the two nucleic acids types. They do not 

consider how well they separate between DNA and RNA interactions, which is an 

important oversight. Another drawback of the prior comparative reviews is that they 

consider datasets with incomplete annotations of binding residues. This is because the 

annotations are based on a single structure of protein–DNA or protein–RNA complex, 

which could be partial if only a fragment of DNA or RNA is considered in a given 

complex or if the same protein is involved in other binding events. 
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Table 3.1. Summary and comparison of recent reviews concerning prediction of DNA- and RNA- binding residues from protein sequences. 

Review article 

(year 

published) 

Scope of descriptive component Scope of empirical component 

Coverage # 

methods 

Year 

published 

of newest 

method 

Defines 

binding 

Discusses 

outputs of 

methods 

Benchmark dataset used Considers cross 

prediction (RNA-

binding on DNA-

binding proteins 

and vice versa) 

Evaluates 

consensus 

methods 

Considers 

combined 

DNA and 

RNA binding 

prediction 

Year 

collected 

# 

proteins 

Cutoff(s) 

to define 

binding 

Complete 

annotations 

of binding 

This study 
DNA and 

RNA 

30 

(14+16) 
2012 yes yes 2013 531 3.5; 5 yes yes yes yes 

[11] (2013) RNA 10 2011 no no 2012 106 undefined no no no no 

[10] (2013) DNA 11 2011 no no 2012 301 3.5 no no no no 

[13] (2012) RNA 13 2011 yes no 2010 198 5 no no no no 

[12] (2012) RNA 7 2011 no no 2011 44 3.5 no no yes no 

[14] (2011) DNA 6 2009 yes no 2010 232 
3.5; 4; 4.5; 

5; 5.5; 6 
no no yes no 
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We perform empirical assessment of methods that offer webservers using a new 

benchmark dataset characterized by a more complete annotation that includes binding 

residues transferred from the same or similar proteins. We also investigate the ability of 

these methods to discriminate DNA-binding residues from RNA-binding residues. The 

complete review was published in [77], while here we discuss a selection of arguably the 

most interesting findings. 

3.1 Benchmark datasets 

Similar to other studies [10-14], our benchmark datasets were extracted from 

structures of protein–DNA and protein–RNA complexes collected from PDB [6]; these 

data were obtained in September 2013. The definitions of the binding residues differ 

between prior studies in this area, with the most prevalent approach based on the cutoff 

distance [44]. Table 3.1 [‘cutoff(s) to define binding’ column] and Table 2.2 (‘cutoff’ 

column) reveal that 29 of 30 predictors of binding residues use this definition, although 

the cutoff values used vary considerably. We apply 3.5 Å to define binding, since this 

cutoff value is used most often when designing the prediction methods (13 of 30 methods 

in Table 2.2). We collected total of 1082 high-quality X-ray structures (resolution better 

than 2.5 Å) of protein–DNA complexes, 271 protein–RNA complexes and 4 complexes 

that include both DNA and RNA. These complexes are split into chains and the chains 

that have no binding residues or are shorter than 30 amino acids in length are removed. 

As a result, we obtained 1935 DNA-binding chains and 981 RNA-binding chains for 

distance cutoff of 3.5 Å. 

Motivated by a recent work that evaluated predictive quality of methods that find 

small ligand binding pockets on the protein surface [78], we improve the annotations of 

binding residues by transferring these annotations between similar proteins. This 

similarity stems from the fact that the structures of protein–DNA and protein–RNA 

complexes could concern paralogs, similar or the same proteins in different organisms, 

and structures of the same proteins solved at different resolutions or with different co-

factors. Using the procedure introduced in [78], we first find proteins that are similar in 

their structure and sequence. The structural similarity is expressed with the template 
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modeling (TM) score [79]. The similarity in the sequence is measured with the sequence 

identity expressed as a fraction of aligned residues over the length of the shorter 

sequence, where the alignment is calculated using bl2seq [80] with default parameters; 

we only consider the aligned proteins for which e-value <0.001. The two similarity scores 

are used to perform clustering of protein chains where two chains are assigned into the 

same cluster if their TM score >0.5 and the sequence identity >80% [78]. The chains in 

the same cluster are assumed to be sufficiently similar and are represented by one chain 

with the largest number of binding residues. The annotations of binding residues of the 

remaining chains in the same cluster are transferred into this chain. This is done based on 

the alignment with bl2seq (e-value <0.001) where annotations are transferred for 

positions that are matched in the alignment. As a result of the transfer, the numbers of 

annotated DNA-binding residues and RNA-binding residues were enlarged by 13.7 and 

9.7%, respectively. 

The original redundant datasets were reduced after the clustering to the non-

redundant (proteins are different from each other in both sequence and structure) dataset 

of 356 DNA-binding proteins, and 175 RNA-binding proteins. The non-redundancy is 

important since this way we avoid a bias towards certain overrepresented types of 

proteins. We split them into training and test proteins based on their release date. We 

observe that the datasets used by the considered predictors of DNA- and RNA-binding 

residues were collected before September 2010. Correspondingly, the binding proteins 

released before September 2010 constitute the training set, which we use to select and 

compute consensuses. The proteins released after September 2010 are less likely to be 

used to train the published methods. Furthermore, we reduce this set of proteins by 

excluding those that are similar to the training proteins. Using CD-HIT [81], we clustered 

all training and test protein chains sharing ≥30% sequence similarity and we removed all 

test proteins that are in the same cluster with any of the training chains. The remaining 

test proteins share <30% sequence similarity with training proteins; this assures that these 

test proteins are sufficiently different from proteins used to build predictive models to 

perform unbiased tests. Consequently, our training dataset contains 293 DNA-binding 

proteins and 149 RNA-binding proteins. The test proteins were used to establish the 

following datasets: ‘DNA_T’ test dataset that includes 47 DNA-binding proteins, 
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‘RNA_T’ test dataset that contains 17 RNA-binding proteins, and the combined 

‘COMB_T’ test dataset that has 64 nucleic acid-binding proteins; ‘T’ denotes the fact that 

the annotations were transferred. 

3.2 Selection of methods included in the empirical assessment 

The empirical assessment includes sequence-based methods for the prediction of 

DNA- and RNA-binding residues that were selected from the comprehensive list of 30 

methods shown in Table 2.2. We selected nine predictors that were available as 

webservers as of December 2013 when the predictions were collected and which are 

runtime-efficient, i.e. they predict an average size protein sequence with 200 residues in 

under 10 min; this assures that we cover methods that are convenient to use for the end 

users. We use the most recent versions of methods that have multiple versions. We 

include four predictors of DNA-binding residues, DBS-PSSM [45], DP-Bind [8, 48], 

ProteDNA [52] and BindN+ [53], and three for the predictions of RNA-binding residues, 

Pprint [60], BindN+ [53] and RNABindR [9, 13, 67]. DP-Bind implements a family of 

methods that includes three ML models, support vector machine (SVM), kernel logistic 

regression (KLR) and penalized logistic regression, and two types of consensuses of 

these models [48]. We consider the default KLR classifier-based model, DP-Bind(klr), 

and the default majority-vote-based consensus, DP-Bind(maj). ProteDNA offers 

predictions in two modes, one with high-precision and another balanced; we use the latter 

version, ProteDNA(B), that provides a better balance between sensitivity and specificity 

[52]. We also consider two recent consensus-based approaches, which combine 

predictions of multiple methods: MetaDBSite [14] for the DNA-binding and the 

consensus by Puton et al. [12] for the RNA-binding. In total we examine 10 predictors, 

including three consensus-based approaches, which cover a comprehensive range of 

designs. These methods include a variety of predictive algorithms (Table 2.2), such as 

neural networks, SVMs, regression, Bayesian classifiers and consensuses, and they make 

use of several different types of inputs, such as evolutionary profiles, sequence 

alignment, composition of amino acids and physiochemical properties of amino acids. 
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From the list of recent methods we exclude DBS-pred [44] and BindN [46], which 

were superseded by DBS-PSSM and BindN+, respectively; DBD-Threader [42] and 

SPOT-Seq [43] that rely on libraries of structures of protein–DNA and protein–RNA 

complex and took excessive amount of time to run; and several methods that do not offer 

a webserver including the predictor by Ho [47], by Jeong [56, 57], RNAProB [40], 

ProteRNA [63], RBRpred [64], and method by Wang [65]. We also could not consider 

DISIS [49], DNABindR [38, 50], BindN-RF [51], DBindR [39], NAPS [54], DNABR 

[55], PRINTR [58], RISP [59], PiRaNhA [61, 62] and PRBR [66] because their 

webservers were either no longer maintained or unavailable at the time of our 

experiment. 

3.3 Results and discussion 

We perform empirical assessment of the 10 selected computationally efficient 

sequence-only predictors that are available as webservers on the test datasets: DNA_T 

(with DNA-binding proteins only), RNA_T (with RNA-binding proteins only) and 

COMB_T (with DNA- and RNA-binding proteins). These datasets include binding 

annotations that were transferred between similar proteins, which results in a more 

complete set of annotations when compared to prior comparative studies. 

3.3.1 Predictive performance on the datasets with DNA-binding or RNA-

binding proteins 

Table 3.2 reveals that predictive performance of the individual predictors of DNA-

binding residues [DBS-PSSM, DP-Bind(maj), DP-Bind(klr) and BindN+] on the DNA_T 

dataset is relatively similar, with MCC values ranging between 0.293 and 0.307, and 

AUC ranging between 0.795 and 0.797. The only exception is the ProteDNA method that 

is characterized by lower predictive quality on this test dataset. A likely explanation is the 

fact that this method was designed to find binding residues specifically in the 

transcription factors, which are a subset of our dataset that also includes other types of the 

DNA-binding proteins protein. This is corroborated by the relatively low value of 

sensitivity that was obtained by this predictor. Interestingly, the MetaDBSite consensus is 



36 

 

also underperforming when compared with the results reported by the authors [14]. The 

reason is that four methods that this consensus was originally designed to use are no 

longer maintained. Consequently, instead of combining results of six predictors the 

current version of MetaDBSite is a simple ensemble of BindN and DP-Bind based on the 

logical AND, i.e., a given residue is predicted as DNA-binding if both methods predict it 

as such. Analysis of the results concerning prediction of the RNA-binding residues leads 

to similar observations (Table 3.2). Predictive performance of the three considered 

predictors (BindN+, RNABindR and Pprint) vary between 0.141 and 0.219 in MCC, and 

between 0.681 and 0.738 in AUC on the RNA_T test dataset. The Meta2 consensus is not 

performing as well as previously reported [12]. This is because some of the methods 

Meta2 was originally designed to combine are no longer available. 

Table 3.2. Results of empirical assessment of predictors of the DNA- or RNA-binding residues 

on the DNA_T or RNA_T datasets, respectively. 

Significance of the difference in MCC and AUC values between the best performing method and other methods on a 

given dataset was assessed based on 10 tests that utilize 70% of randomly chosen proteins; + (=) in the Sig column 

denotes that the difference was (was not) significant at p-value <0.05. AUC values could not be computed for DP-

Bind(maj), MetaDBSite, ProteDNA(B), Meta2, and the four new consensuses since these methods provide only the 

binary predictions. Methods are sorted by the MCC value. 

Datasets Methods Sensitivity Specificity MCC Sig AUC Sig 

DNA 

binding on 

DNA_T 

dataset 

Machine learning consensus 0.478 0.916 0.354 
 

0.831 
 

Majority vote (BindN+(DNA), DBS_PSSM, ProteDNA(B)) 0.447 0.907 0.314 + 
  

DBS-PSSM 0.721 0.753 0.307 + 0.796 + 

Logic consensus (BindN+ AND DBS-PSSM) 0.424 0.912 0.305 + 
  

DP-Bind(maj) 0.598 0.823 0.301 + 
  

DP-Bind(klr) 0.590 0.824 0.297 + 0.795 + 

BindN+ 0.482 0.879 0.293 + 0.797 + 

MetaDBSite consensus 0.325 0.935 0.267 + 
  

ProteDNA(B) 0.093 0.982 0.142 +   
 

RNA 

binding on 

RNA_T 

dataset 

Machine learning consensus 0.242 0.962 0.234 
 

0.755 
 

BindN+ 0.399 0.891 0.219 = 0.738 + 

Majority vote (BindN+(RNA), RNAbindR, Pprint) 0.457 0.854 0.212 + 
  

Meta2 consensus 0.526 0.812 0.211 + 
  

Logic consensus (BindN+ AND RNABindR AND Pprint) 0.244 0.950 0.203 + 
  

RNABindR 0.575 0.739 0.178 + 0.724 + 

Pprint 0.433 0.796 0.141 + 0.681 + 

 



37 

 

Overall, we conclude that methods for the prediction of DNA-binding (RNA-binding) 

residues are characterized by relatively good predictive performance measured by their 

values of MCC and AUC when tested on the dissimilar (in the sequence) proteins that 

bind DNA (RNA). Their AUC is at about 0.8 (0.7), and their predictions have modest 

correlation with the native annotations at about 0.3 (0.2). They offer relatively high 

specificity coupled with modest sensitivity, which means that they predict a subset of 

native binding residues with high predictive quality while missing the remaining binding 

residues. 

3.3.2 Predictive performance on the dataset with DNA- and RNA-binding 

proteins 

We are the first to comprehensively assess predictive performance of the considered 

predictors on the COMB_T dataset that combines DNA- and RNA-binding proteins, see 

Table 3.3. We observe a drop in MCC when compared with the results in Table 3.2. This 

is a universal pattern, irrespective of whether we assess predictors of DNA- or RNA-

binding residues, and it reveals that these methods confuse the two types of binding 

residues. Sensitivity stays the same, as the annotation of the binding residues does not 

change compared with when we consider prediction of DNA- or RNA-binding residues; 

we just introduce additional nonbinding residues. 

Considering individual predictors of the DNA-binding residues, the MCC on the 

COMB_T dataset (Table 3.3) is lower by 3.8–5.5% when compared with the results on 

the DNA_T dataset (Table 3.2). The only exception is ProteDNA, which has low 

sensitivity and MCC and which predicts a relatively small number of residues that 

selectively bind transcription factors. Ratio, which quantifies fraction of RNA-binding 

residues that are predicted to be DNA-binding, reveals that at least 28.9% and as many as 

48.7% of the RNA-binding residues are mispredicted. Similarly, assessment of the 

predictors of the RNA-binding residues on the COMB_T dataset demonstrates that the 

results are worse when compared with the results on the RNA_T dataset. Specifically, 

MCC is lower by 5.7–10.5%; AUC by 1.2–3.1%; and specificity by 1.4–3.7%. Most 

importantly, the identical sensitivity coupled with the lower specificity indicates that 

predictors of RNA-binding residues mispredict the DNA-binding residues as RNA-
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binding, which is further confirmed by the large values of Ratio. Ratio tells that these 

methods mispredict between 47.8 and 64.3% DNA-binding residues as RNA-binding.  

Table 3.3. Results of empirical assessment of predictors of the DNA- or RNA-binding residues 

on the COMB_T dataset. 

Significance of the difference in MCC and AUC values between the best performing method and other methods on a 

given dataset was assessed based on 10 tests that utilize 70% of randomly chosen proteins; + (=) in the Sig column 

denotes that the difference was (was not) significant at p-value <0.05. AUC values could not be computed for DP-

Bind(maj), MetaDBSite, ProteDNA(B), Meta2, and the four new consensuses since these methods provide only the 

binary predictions. Methods are sorted by the MCC value. 

Binding 

type 
Methods Sensitivity Specificity Ratio MCC Sig AUC Sig 

DNA 

binding  
Machine learning consensus 0.478 0.922 0.267 0.311 

 
0.841 

 
Majority vote (BindN+(DNA), DBS_PSSM, ProteDNA(B)) 0.447 0.916 0.232 0.277 + 

  
Logic consensus (BindN+ AND DBS-PSSM) 0.424 0.919 0.232 0.267 + 

  
DBS-PSSM 0.721 0.774 0.487 0.266 + 0.810 + 

BindN+ 0.482 0.888 0.289 0.256 + 0.806 + 

DP-Bind(maj) 0.598 0.823 0.467 0.247 + 
  

DP-Bind(klr) 0.590 0.828 0.445 0.246 + 0.794 + 

MetaDBSite consensus 0.325 0.933 0.230 0.221 + 
  

ProteDNA(B) 0.093 0.990 0.000 0.158 +   
 

RNA 

binding  
Machine learning consensus 0.242 0.945 0.240 0.128 

 
0.730 

 
Majority vote (BindN+(RNA), RNAbindR, Pprint) 0.457 0.821 0.551 0.116 + 

  
Meta2 consensus 0.526 0.774 0.616 0.116 + 

  
BindN+ 0.399 0.854 0.498 0.114 + 0.706 + 

Logic consensus (BindN+ AND RNABindR AND Pprint) 0.244 0.933 0.279 0.113 + 
  

RNABindR 0.575 0.718 0.643 0.105 + 0.712 + 

Pprint 0.433 0.782 0.478 0.084 + 0.667 + 

 

The results on the COMB_T, DNA_T and RNA_T datasets (Tables 3.2 and 3.3) 

indicate that current methods that predict DNA-binding or RNA-binding residues are 

characterized by good predictive performance. However, although these predictors 

perform well on their own type of binding, they also substantially overpredict the other 

type of binding residues, i.e. predictors of RNA-binding (DNA-binding) residues also 

predict a large number of DNA-binding (RNA-binding) residues as RNA-binding (DNA-

binding). This means that they tend to predict nucleic acids-binding residues rather than 

more specific DNA- or RNA-binding residues. 
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3.4 Conclusions 

In this chapter we performed a comparative evaluation of predictive quality of 

runtime-efficient and conveniently available as webservers predictors of the DNA-

binding (RNA-binding) residues on well-designed benchmark datasets of the DNA-

binding (RNA-binding) proteins. Our empirical assessment reveals that they are 

characterized by acceptable levels of predictive performance. They have AUCs at about 

0.7–0.8 and MCCs between 0.1 and 0.3 when measured on a hard dataset of proteins 

characterized by low sequence similarity to the proteins used to design these methods. 

However, when tested on the test data set that include both RNA- and DNA-binding 

proteins, we found that these predictors are guilty of substantial amounts of cross 

prediction, i.e. they predict RNA-binding residues as DNA-binding and vice versa. In 

other words, they are unable to properly separate DNA from RNA binding residues. This 

is likely the results of use of similar input features by the predictors of DNA and RNA 

binding residues and the fact that these methods were trained based on data sets that use 

either only DNA-binding or only RNA-binding proteins. The two existing consensus 

methods, MetaDBSite and Meta2, are underperforming on the corresponding DNA-

binding and RNA-binding proteins respectively. This is because some of the individual 

methods utilized in these consensus methods are no longer available, which directly 

affects the predictive quality of the resulting consensus. Besides, the two consensus 

methods also have the cross prediction problem introduced by the individual methods 

when tested on both DNA-binding and RNA-binding proteins. They mis-predict a large 

fraction of RNA- (DNA-) binding residues as DNA- (RNA-) binding residues.  



40 

 

Chapter 4  

Goal 2: Development of novel 

consensus-based predictors to 

improve accuracy of the prediction of 

DNA- and RNA- binding residues 

Review of the existing sequence-based methods in Table 2.2 reveals that the current 

methods differ in their inputs and predictive models. Empirical assessment of their 

predictive performance (Tables 3.2 and 3.3) shows that these methods make different 

predictions on the same datasets of proteins, e.g., their values of sensitivity and 

specificity are widely different. These substantial differences in their designs and their 

predictions can be exploited to build consensus-based approaches. The articles that have 

introduced the two existing consensuses report that they offer improved predictive 

performance when compared to the use of the corresponding individual methods [12, 14]. 

However, to date no effort has been made to explore and empirically compare different 

ways to generate consensuses. Moreover, the current consensuses also cross predict DNA 

and RNA binding resides, as shown in Table 3.3 (high value of Ratio in the MetaDBSite 

and Meta2 lines). Consequently, we designed and empirically assessed several types of 

consensus approaches. These results were published in [77, 82], and here we summarize 

these findings. 

4.1 Methods 

The datasets used to build and test the consensuses are described in detail in Section 

3.1. They include the training dataset that is used to select designs that offer the highest 

predictive performance, and the test dataset that is used to compare the selected design 
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with the existing methods including the predictors that constitute inputs to our 

consensuses.  

We consider a comprehensive range of designs of consensuses and empirically assess 

their predictive performance. We are the first to investigate logic-based consensuses, 

which are selected as the best-performing (according to the MCC score on the training 

dataset) combination of k methods, k = 1, 2,…, N where N is the total number of 

predictors of RNA- or DNA-binding residues that we consider in our empirical 

assessment; selection of the considered methods is described in Section 3.2. The 

predictions of the k methods are combined using two logic-based approaches, based on 

logical OR and logical AND operators. Specifically, the AND-based consensus assumes 

that a given residue is predicted as binding only if all k methods predict it as binding; 

otherwise this residue is predicted as nonbinding. The OR-based approach predicts a 

given residue as binding if any of the k methods predict it as binding. We also considered 

a majority vote-based consensus predictor. This consensus predicts a residue as binding 

only if over half of the input methods predict so. This design generates the number of 

predicted binding residues that is lower than a consensus that uses only the logical OR 

and higher than if only the logical AND is used given that the same input predictors are 

used. These types of consensuses are simple to implement by an end user and do not 

involve any parameterization, which reduces risk of over-fitting into a given training 

dataset. 

We also extend these relatively simple consensuses to a more sophisticated ML 

consensus using linear logistic regression. This meta-model implements weighted 

average of the input predictions and uses both the binary predictions and the propensity 

scores generated by the individual DNA-binding or RNA-binding predictors. We 

generate the regression model on the training dataset and assess its predictions on a given 

test dataset. Since the number of the nonbinding residues is substantially larger than the 

number of the binding residues in our training set, we under-sampled the nonbinding 

residues. For each training chain, we randomly sampled without replacement 25% (15%) 

of the nonbinding residues, and as a result, their number is about twice larger than the 

number of DNA-binding (RNA-binding) residues. The propensity scores generated by 
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the regression model are binarized using the cutoff that corresponds to the maximal 

values of MCC on the training dataset. 

DNA and RNA binding amino acids share similar biochemical properties, but the 

corresponding interactions are associated with very different cellular functions. Thus, a 

given predictor should be able to separate DNA-binding residues from the RNA-binding 

residues. This is perhaps as crucial as the ability to separate RNA-/DNA-binding residues 

from the nonbinding residues. We are the first to consider the prediction with four 

outcomes: DNA&RNA-binding residue that binds to both DNA and RNA, DNA-binding 

residue (which does not bind to RNA), RNA-binding residue (which does not bind to 

DNA) and nonbinding residue. Such setup for the prediction should potentially address 

the cross-prediction between DNA and RNA binding residues. The results of the two-

outcome-based predictions of the DNA binding and of the RNA binding can be combined 

to obtain the four outcomes as shown in Table 4.1. We implement and empirically test 

first-of-its-kind method for the predictions of DNA- and RNA-binding residues based on 

the four outcomes. We considered three different approaches: ‘single consensus’, 

‘multiple consensus’ and ‘machine learning consensus’. The ‘single consensus’ combines 

outputs generated by a single DNA-binding predictor and a single RNA-binding 

predictor. We use the best-performing, according to the MCC score on the training 

dataset, predictors and apply the rules from Table 5 to merge their predictions. Since 

consensuses of RNA-binding (DNA-binding) predictors outperform individual predictors 

on the training dataset, the ‘multiple consensus’ approach extends the single consensus 

by integrating results of multiple predictors of RNA-binding residues or multiple 

predictors of DNA-binding residues. In other words, this approach combines outputs 

generated by a consensus of DNA-binding predictors and a consensus of RNA-binding 

predictors. We examine the combination of the two logic-based consensuses (multiple 

consensus logic) and two majority-vote-based consensuses (multiple consensus majority 

vote). Also, we combine the DNA-binding residue predictions with the RNA-binding 

residue predictions generated by the corresponding two ML consensus predictors 

(multiple consensus ML). Finally, we design and test a novel consensus that combines 

predictions generated by all considered predictors of DNA-binding and RNA-binding 

residues using the logistic regression model (DNA and RNA ML consensus). This is a 
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single regression model rather than a combination of two regression models that is 

implemented in the multiple consensus ML. All these consensuses were build using only 

the training dataset, i.e., the specific combinations of methods used in the multiple 

consensuses were selected based on maximizing the MCC value on the training dataset, 

and the regression model for the DNA and RNA ML consensus was also generated on the 

training dataset. 

Table 4.1. The conversion of the prediction of DNA-binding residues and the prediction of RNA-

binding residues into the combined prediction of the DNA- and RNA-binding residues. 

Outcome 
Two outcome predictions of RNA binding 

RNA-binding Nonbinding 

Two outcome 

predictions of DNA 

binding 

DNA-binding DNA&RNA-binding DNA-binding only 

Nonbinding RNA-binding only Nonbinding 

4.2 Results and discussion 

First, we assess our consensuses and compare them with existing predictors on test 

datasets that include either DNA or RNA-binding proteins. Next, we perform tests on the 

dataset that includes both DNA and RNA-binding proteins to assess the extent of cross-

prediction between RNA and DNA binding residues. Finally, we evaluate our novel 

design of the consensus that combines prediction of DNA and RNA binding to find out 

whether this approach results in a reduced cross-prediction, when compared to the other 

designs of consensuses and other existing predictors. 

4.2.1 Predictive performance of the consensus-based predictors of DNA-

binding and RNA-binding residues on the datasets with DNA-binding or 

RNA-binding proteins 

We designed two types of consensuses: logic-based consensus, which combines 

individual predictors of DNA-binding residues (BindN+, DBS-PSSM, DP-Bind and 

ProteDNA) using all permutations of logical OR and logical AND operators; and 

majority vote consensus, which combines them using a majority voting rule. The best 

logic-based consensus on the training dataset (consensus that secures the highest MCC on 

the training dataset) combines BindN+ and DBS-PSSM using logical AND, which means 
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that a given residue is predicted as binding only if both methods predict it as binding. The 

best majority vote consensus on the training dataset combines BindN+, DBS-PSSM and 

ProteDNA, which means that a given residue is predicted as binding only if at least two 

of these methods predict it as binding. The results show that although the logic-based and 

majority vote consensuses improve the prediction performance on the training dataset, 

they do not deliver these improvements on the test dataset (Table 3.2). The logic-based 

approach provides similar MCC when compared with the best-performing individual 

predictor, DBS-PSSM, on the test dataset. Majority vote consensus only slightly 

improves MCC by 0.7%. The reason for the lack of improvement is that the test dataset is 

dissimilar to the training dataset (<30% sequence similarity) and such simple 

combinations of individual predictors did not translate well between these two datasets. 

Motivated by this, we extended these designs of the consensuses into a more advanced 

ML consensus that applies linear logistic regression. The ML consensus outperforms all 

single predictors by at least 4.7% in MCC, 3.4% in AUC, and these differences are 

statistically significant (Table 3.2). Analysis of the results concerning prediction of the 

RNA-binding residues leads to similar observations (Table 3.2). The logic-based 

consensus, which outperforms other considered consensuses on the training dataset, 

integrates predictions from BindN+, RNABindR and Pprint using logical AND. The 

majority vote consensus also combines these three individual predictors. Similar to the 

results for the DNA-binding, these two types of simple consensuses do not perform well 

on the test dataset. They only achieve equivalent or slightly worse MCC compared with 

the best-performing predictor, BindN+, on this dataset. However, the ML-based 

consensus outperforms all the individual predictors. More specifically, its MCC is higher 

by at least 1.5%, AUC by at least 1.8% and specificity by at least 7.2%. 

To sum up, our analysis reveals that a simple consensus based on majority vote or 

logic does not improve predictive performance when applied to predict proteins that are 

dissimilar to the proteins that were used to develop this consensus. However, a more 

sophisticated logistic regression-based consensus outperforms all individual methods in 

the prediction of DNA-binding and RNA-binding residues, even for the dissimilar protein 

chains.  
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4.2.2 Predictive performance of the consensus-based predictors of DNA-

binding and RNA-binding residues on the dataset with DNA- and RNA-

binding proteins 

Evaluation of the predictors of the DNA-binding residues shows that the majority 

vote and logic consensuses do not offer improved MCC when compared with their input 

methods on this test dataset that includes both DNA and RNA-binding proteins, but their 

Ratio values are reduced to 23.2% (see the upper half of Table 3.3). This means that the 

individual predictors do not agree on the misprediction of the RNA-binding residues as 

DNA-binding for a substantial number of cases, i.e. they mispredict different residues. 

The ML-based consensus that we designed again outperforms all other predictors on this 

dataset, i.e., it provides improvements on the datasets with only RNA or only DNA 

binding proteins and on the dataset with both RNA and DNA binding proteins. It secures 

the highest MCC equal 0.311 and also the highest AUC of 0.841, and these 

improvements are statistically significant (Table 3.3). Figure 4.1A shows the ROCs for 

the ML consensus and all the individual predictors that generate the propensity scores on 

the COMB_T datasets. Notably, the TPR of our ML consensus is higher than the TPR of 

any individual predictors for almost the entire range of FPR values. However, this 

consensus still has a problem of substantial levels of mispredictions between DNA and 

RNA binding residues, which is demonstrated by the moderate values of Ratio (Table 

3.3). We attempt to solve this problem by proposing a new design of the ML consensus 

that combines prediction of both DNA- and RNA-binding residues. 

Similarly, assessment of the predictors of the RNA-binding residues on the COMB_T 

dataset demonstrates that logic-based and majority vote consensuses do not improve 

predictive performance when compared with their input predictors on this dataset, the 

former consensus provides relatively low values of Ratio (see lower half of Table 3.3). 

However, the ML-based consensus outperforms all the individual predictors. It secures 

the highest MCC, AUC and specificity and the lowest (best) Ratio. The ROCs of this 

consensus and all the individual predictors are shown in Figure 4.1B. Overall, the ML 

consensus achieves the best performance when considering the entire range of FPR 

values. Pprint performs well at low FPR (<0.05) value, while its TPR drops substantially 
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for higher values of FPR. RNABindR curve overlaps with our ML consensus curve at 

larger values of FPR, but this method has lower TPR when FPR <0.45. The only 

weakness of the ML consensus is the relatively high values of Ratio, in spite of the fact 

that it is lower than the Ratio of the other methods. 

 

A                                                          B 

Figure 4.1. The ROCs for the machine learning consensuses and the individual predictors of 

DNA- and RNA-binding residues on the COMB_T dataset.  

Panels A and B compare the DNA-binding predictors and the RNA-binding predictors, respectively.  

 

4.2.3 Predictive performance of the consensus-based combined predictor of 

DNA- and RNA-binding residues 

The published predictors were designed specifically to target either protein–DNA or 

protein–RNA interactions. The results on the COMB_T, DNA_T and RNA_T datasets 

(Tables 3.2 and 3.3) indicate that these methods are characterized by good predictive 

performance. However, although these predictors perform well on their own type of 

binding, they also overpredict the other type of binding residues, i.e. predictors of RNA-

binding (DNA-binding) residues also predict a large number of DNA-binding (RNA-

binding) residues as RNA-binding (DNA-binding). This means that they tend to predict 

nucleic acids-binding residues rather than more specific DNA- or RNA-binding residues. 
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One way to potentially alleviate this drawback is to redefine these two prediction tasks as 

a single prediction with four outcomes: DNA&RNA-binding, DNA-binding, RNA-

binding and nonbinding residue. We are the first to design such predictors and 

comprehensively assess their predictive performance. As we explain in section 4.1, our 

designs integrate multiple predictors of DNA- and RNA-binding residues based on three 

types of consensuses: single consensus, multiple consensus and ML consensus. The 

single consensus combines the best-performing (i.e. providing the highest MCC) on the 

training dataset predictor of DNA-binding residues, BindN+ (DNA version), with the 

best-performing predictor of RNA-binding residues, BindN+ (RNA version). The 

multiple consensus approach combines multiple predictors of DNA-binding residues and 

RNA-binding residues. We consider three designs of the multiple consensuses: multiple 

consensus logic, multiple consensus majority vote and multiple consensus ML. 

Moreover, the DNA and RNA ML consensus combines predictions generated by all 

considered predictors of DNA-binding and RNA-binding residues using the logistic 

regression model. We assess these methods on the COMB_T test dataset. There are no 

DNA&RNA-binding residues in this dataset, so we cannot compute sensitivity and MCC 

for this outcome. 

All multiple consensuses outperform the single consensus in MCC for the combined 

prediction of DNA and RNA binding (Table 4.2). Moreover, the single consensus 

substantially overpredicts the RNA&DNA outcome with the corresponding specificity at 

0.908. The multiple consensuses reduce this overprediction obtaining specificities 

between 0.922 and 0.957. The result of this overprediction for both single and multiple 

consensuses is the relatively low sensitivity for the prediction of DNA binding and the 

prediction of RNA binding, i.e. many of the RNA or DNA binding residues are predicted 

to bind both RNA and DNA. However, the RNA and DNA ML consensus, which is 

inherently designed to predict the four outcomes, correctly does not predict the 

DNA&RNA binding residues (specificity = 1) and secures high values of specificity and 

MCC. Its MCC is higher by 7 and 3.4% for the prediction of DNA-binding residues and 

RNA-binding residues, respectively, when compared with the best multiple consensus. 

This result demonstrates that the RNA and DNA ML consensus provides improved 

predictive performance when compared with the other consensuses. 
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Table 4.2. Results of empirical assessment of consensus-based methods on the COMB_T dataset when considering prediction of combined DNA- 

and RNA-binding residues and individual prediction of DNA- or RNA-binding residues. 

There are no DNA&RNA binding residues in this dataset and thus we cannot compute sensitivity and MCC for this outcome. Values of Ratio cannot be computed for the 

combined prediction of RNA and DNA binding. The “multiple consensus logic” utilizes the two best-performing logic-based consensuses that we built for the prediction of DNA-

binding residues and RNA-binding residues, respectively; “multiple consensus majority vote” combines the two best-performing majority vote-based consensuses for the 

prediction of DNA- and RNA-binding residues, respectively; “multiple consensus machine learning” is the combination of the two machine learning consensus for the prediction 

of DNA- and RNA-binding residues, respectively; and ”DNA and RNA machine learning consensus” combines predictions generated by all considered predictors of DNA-binding 

and RNA-binding residues using logistic regression model.  

  

Prediction of DNA and RNA binding Prediction of DNA or RNA binding 

DNA&RNA DNA RNA non-DNA & non-RNA DNA vs. non-DNA RNA vs. non-RNA 

Sensitivity 

Single consensus N/A 0.101 0.164 0.839 0.482 0.399 

Multiple consensus logic N/A 0.207 0.103 0.899 0.424 0.244 

Multiple consensus majority vote N/A 0.085 0.259 0.821 0.447 0.457 

Multiple consensus machine learning N/A 0.261 0.078 0.914 0.478 0.242 

RNA and DNA machine learning consensus N/A 0.392 0.125 0.929 0.392 0.125 

Specificity 

Single consensus 0.908 0.962 0.942 0.552 0.888 0.854 

Multiple consensus logic 0.957 0.951 0.974 0.438 0.919 0.933 

Multiple consensus majority vote 0.922 0.976 0.895 0.590 0.916 0.821 

Multiple consensus machine learning 0.955 0.956 0.986 0.451 0.922 0.945 

RNA and DNA machine learning consensus 1.000 0.941 0.981 0.409 0.941 0.981 

MCC 

Single consensus N/A 0.074 0.072 0.277 0.256 0.114 

Multiple consensus logic N/A 0.159 0.076 0.281 0.267 0.113 

Multiple consensus majority vote N/A 0.086 0.081 0.280 0.277 0.116 

Multiple consensus machine learning N/A 0.220 0.084 0.318 0.311 0.128 

RNA and DNA machine learning consensus N/A 0.290 0.118 0.315 0.290 0.118 

Ratio 

Single consensus N/A N/A N/A N/A 0.289 0.498 

Multiple consensus logic N/A N/A N/A N/A 0.232 0.279 

Multiple consensus majority vote N/A N/A N/A N/A 0.232 0.551 

Multiple consensus machine learning N/A N/A N/A N/A 0.267 0.240 

RNA and DNA machine learning consensus N/A N/A N/A N/A 0.183 0.064 
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We applied the considered consensuses to predict DNA-binding residues and RNA-

binding residues separately (the two right-most columns in Table 4.2). The predictions of 

the consensuses that consider four outcomes are converted into prediction of DNA-

binding residues as follows: ‘DNA&RNA-binding’ and ‘DNA-binding’ are assigned as 

‘DNA-binding’; ‘RNA-binding’ and ‘nonbinding’ are assigned as ‘nonbinding’. For the 

prediction of RNA-binding residues, the conversion assumes ‘RNA-binding’ for the 

‘DNA&RNA-binding’ and ‘RNA-binding’ predictions, and ‘nonbinding’ for the ‘DNA-

binding’ and ‘nonbinding’ predictions. Table 4.2 shows that the two ML consensuses 

outperform the other types of consensuses having higher values of MCC and specificity. 

The main observation is that the RNA and DNA ML consensus offers substantially 

reduced values of Ratio, at 0.183 and 0.064 for the DNA and for the RNA binding, 

respectively, compared with the second best Ratios of 0.232 and 0.240. This means that 

this novel type of consensus generates predictions with lower rate of mispredictions 

between DNA- and RNA-binding residues. 

We compare results generated by the two ML consensuses for the prediction of DNA-

binding residues with the considered predictors of DNA-binding, see Figure 4.2. The 

DNA and RNA ML consensus obtains MCC of 0.290, which is lower than MCC of 0.311 

of the multiple consensus ML for the prediction of DNA-binding residues (black bars in 

Figure 4.2). However, the former consensus has by far the lowest values of Ratio at only 

0.183 (gray bars in Figure 4.2), except for the ProteDNA that predicts a small subset of 

DNA-binding residues and has the lowest MCC. Similar conclusions are true when 

considering prediction of the RNA-binding residues (Figure 4.2). The DNA and RNA 

ML consensus secures MCC of 0.118, which is lower compared with the best MCC of 

0.128 obtained by the multiple consensus ML. It also boasts the lowest value of Ratio at 

0.064 compared with the second lowest value at 0.240. Most importantly, the novel DNA 

and RNA ML consensus improves over all individual predictors having higher MCC 

while providing much lower Ratio for prediction of the RNA and the DNA binding 

residues (Figure 4.2). These results suggest that the development of consensuses for the 

combined prediction of DNA- and RNA-binding residues could offer a viable solution to 

generate high-quality prediction of DNA- or RNA-binding residues where the cross-

predictions are substantially reduced. 
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Figure 4.2. Comparison between the DNA and RNA machine learning (ML) consensus that 

targets combined prediction of DNA- and RNA-binding residues and the considered predictors of 

DNA- or RNA-binding residues on the COMB_T test dataset.  

The predictors of DNA- or RNA-binding residues include the two machine learning based DNA- or RNA- binding 

consensuses. The evaluation considers prediction of DNA-binding residues (left side of the figure) and prediction of 

RNA-binding residues (right side of the figure) on the COMB_T test dataset.  

4.3 Case studies 

We illustrate predictions of the most successful in our tests ML consensuses and all 

considered individual predictors of DNA- and RNA-binding residues on two proteins 

selected from the test dataset. The overall predictive performance measured with MCC 

for the consensuses on these two proteins is similar to the value on the whole test dataset. 

Figure 4.3A compares predictions for the DNA-binding aprataxin ortholog Hnt3 (PDB 

ID: 3SPD). We observe that virtually all binding regions (except for the residues near 

position 160) were captured by most predictors. Both ML consensuses for the prediction 

of DNA-binding residues filter FP predictions (nonbinding residues predicted as binding) 

at both termini (shown using boxes in Figure 4.3A). These boxed regions are relatively 

far away from the native binding regions. Moreover, they annotate a few binding residues 
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that were predicted by a subset of individual predictors (shown in bold and underline in 

Figure 4.3A) which are either correct predictions or immediately adjacent to the native 

binding residues. The RNA and DNA ML consensus reduces some of the FP generated 

by the multiple consensus ML, particularly near position 135. The best performing in our 

tests individual method that predicts RNA-binding residues (last line in Figure 4.3A) 

generate FP that generally line up with the location of the DNA binding residues. 

However, the ML consensuses, in particular the novel DNA and RNA ML consensus, 

substantially reduce these mispredictions. Similar observations are true for the 

predictions for the RNA-binding polyadenylate-binding protein 1 (PDB ID: 4F02) shown 

in Figure 4.3B. The two ML consensuses filter out FP generated by the individual 

predictors of RNA binding residues in the boxed regions that are relatively far from the 

native binding regions. They also correctly locate binding residue at position 36 that was 

missed by one of the individual RNA-binding predictors. Moreover, the best performing 

in our tests predictor of the DNA binding residues incorrectly predicts relatively many 

DNA binding residues (last line in Figure 4.3B) which again align with the native RNA 

binding residues. The ML approaches for the prediction of DNA binding residues reduce 

the number of these mispredictions by a large factor. 

Overall, the case studies demonstrate that the ML consensuses successfully reduce 

some of the FP generated by the individual predictors and correctly predict binding 

residues even if some of the individual predictors do not. The novel DNA and RNA ML 

consensus further reduces some of the FP generated by the multiple consensus ML. 
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aprataxin ortholog Hnt3 (PDB ID 3SPD) 

residue number          1         2         3         4         5         6         7         8         9         10        11        12        13        14        15        16        17        18        19        20 

sequence  SFRDNLKVYIESPESYKNVIYYDDDVVLVRDMFPKSKMHLLLMTRDPHLTHVHPLEIMMKHRSLVEKLVSYVQGDLSGLIFDEARNCLSQQLTNEALANYIKVGFHAGPSMNNLHLHIMTLDHVSPSLKNSAHYISFTSPFFVKIDTPTSNLPTRGTLTSLFQEDLKCWRCGETFGRHFTKLKAHLQEEYDDWLDKSVSM 

native DNA binding -B------------------------------B-B-------------------------------------------------------------------------BBB-----------------B--BB-------------------------B--B--------------BBBB-------------------- 

native RNA binding -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

DNA and RNA ML-consensus B-B--------------------------B----B--------------------------------------------------------------------------B------------------BBBBBB-B----------------------------------------B---B-B----------------- 

multiple consensus ML DNA BBB--------------------------B----B----------------------------------------------------------------------B---B--B---------------BBBBBBBBB-B---------------B---------------------B---B-B----------------- 

DBS-PSSM  BBBB-------------------------B----B---B-----B-------B------------------------------------------------B-BBB-B-B--B-------------B-BBBBB---BBBB--------------BB----------B--BB-----BB-BB-B-B--------------- 

BindN+ for DNA B-BB--B----------------------B----BBB-------------------------------------------------------------------BB--BB--B---------------BBBBBBBBB-B---------------B-B-------------------B---B-B-------------B-B- 

DP-Bind(maj) for DNA B-B---B-B---BB---------------B-BBBBBB-------B----B------------------------------------------------B--B-B-----B----------------BBBBBBBBBBBBB------------------B----------BB--B----B----B----------------- 

DP-Bind(klr) for DNA --B---B-----BB---------------BBBBBBBBB-----BBB---B------------------------------------------------B--B-------B----------------BBBBBBBBBBB-B------------------B----------BB--B----B-B--B-B-----------B--- 

ProteDNA(B) for DNA ---------------------------------------------------------------------------------------------------------------------------------------------------------2-2------------------------B------------------- 

 

DNA and RNA ML-consensus ---------------------------------B--B------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

multiple consensus ML RNA B--------------------------------B--B---------------------------------------------------------------------------B----------------B---------------------------------------------------------------------- 

BindN+ for RNA B-B---B----------------------B-BBBBBB----------------------------------------------------------------B---B--BBBBB-------------B-BBBBBB-B--------------------------------B-------B-----B---------------B- 

A 
polyadenylate-binding protein 1 (PDB ID 4F02) 

residue number          1         2         3         4         5         6         7         8         9         10        11        12        13        14        15        16        17    

sequence  MASLYVGDLHPDVTEAMLYEKFSPAGPILSIRVCRDMITRRSLGYAYVNFQQPADAERALDTMNFDVIKGKPVRIMWSQRDPSLRKSGVGNIFIKNLDKSIDNKALYDTFSAFGNILSCKVVCDENGSKGYGFVHFETQEAAERAIEKMNGMLLNDRKVFVGRFKSRKEREAEL 

native DNA binding ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

native RNA binding ----B--------------------------B--BBB-----B-B-B-B--------------------------BBBBB----B-----B-B-BB---------------------B----------BBB-B-B---------------------------BBBBB--B---- 

 

DNA and RNA ML-consensus -------------------------------B--BBB-----BBB-B-B---------------------B--B-BBBBB------------B-BB-----------------------B-----BBBB-B-B-B------------------------B-BBBBBB--B---- 

multiple consensus ML RNA --B----------------------------B--BBB-BBBBBBB-B-B---------------------B--B-BBBBB------------B-BB-----------------------------BBBBBB-B-B------------------------B-BBBBBBB-B---- 

BindN+ for RNA --B-B-BB-----------------------B--BBBBBBBBBBB-B-B---------------------B--B-BBBBB------------B-BB--B------------------B-B---BBBBBBBB-B-B------------------------B-BBBBBBB-B--BB 

RNABindR for RNA B-B-------------------B--BB--BBB-BB-B-BBBBBBBBB-B-BB-----------------BBB-BBBBBBBBBBBBBBBB-BBB-BB-B----B------B---BB-BBB------BBBBBBBB-B-------------------BBBBBBBBBBBBBBBBB-B- 

Pprint for RNA B-B-B-BBBBBB----------------BBBBBBBBBB-BBBBBB-B-B-----------------B---BB-BBBBBBBBBBBBBB---B-BBBBB-BB----------------BBBBBBBBBBBBBBB-B-B-----------------BB--B--B-BBBBBBBBBBBBB 

 

DNA and RNA ML-consensus --B-----------------------------------BBBB---------------------------------------------------------------------------------------B-------------------------------------------- 

multiple consensus ML DNA --B-------------------------------B---BBBBB-B----------------------------B----------------B------------------------------------BBBB-------------------------------B---B--B---- 

DBS-PSSM for DNA B-B-B-B---------------B-----BB-BB-B----BBBBBB-B-B--B------------------BB-B---B-B--B-BBBBBBB-B-BB------B---------BBB-BBBB-------BBBBBB-B------------B-BB---B----B--BBBBBB-B---- 

B 

Figure 4.3. Two case studies that illustrate the working of the machine learning consensuses. Panel A concerns the DNA-binding aprataxin 

ortholog Hnt3 (PDB ID: 3SPD) and Panel B show the RNA-binding polyadenylate-binding protein 1 (PDB ID: 4F02).  

‘B’ denotes binding residues and ‘-‘ denotes the non-binding residues. Boxes and bold denote results that are discussed in the text. Disordered regions in these two proteins 

(regions with no coordinates) are omitted. Panel A includes the following lines (from top to bottom): residue number, sequence, native annotation of DNA binding residues, native 

annotation of RNA-binding residues, blank line, predictions from the DNA and RNA machine learning model for the DNA binding residues, machine learning model for DNA-

binding, DBS-PSSM, BindN+(DNA), DP-Bind(maj), DP-Bind(klr), ProteDNA(B), blank line, predictions from the DNA and RNA machine learning model for the RNA binding 

residues, machine learning model for the RNA-binding residues, and the best individual RNA-binding residue predictor BindN+(RNA). Panel B includes the following lines (from 

top to bottom): residue number, sequence, native annotation of DNA binding residues, native annotation of RNA-binding residues, blank line, predictions from the DNA and RNA 

machine learning model for the RNA binding residues, machine learning model for the RNA-binding residues, BindN+, RNABindR, Pprint, blank line, predictions from the DNA 

and RNA machine learning model for the DNA binding residues, machine learning model for the DNA-binding residues, and the best individual DNA-binding residue predictor 

DBS-PSSM.  
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4.4 Conclusions 

Motivated by the prior success in building consensus-based predictors, we designed 

and empirically tested simple logic-based consensuses based on combinations of logical 

OR and logical AND operators, a majority vote consensus, and a more sophisticated ML 

consensus. We show that the logic and majority-vote-based consensuses do not offer 

improvements when tested on the hard (dissimilar to the training dataset) test dataset. 

However, the ML consensuses provide improved predictive performance when compared 

with the individual methods for the prediction of DNA-binding residues and for the 

prediction of RNA-binding residues on the same hard test dataset. We also performed 

first-of-its-kind study concerning combined prediction of DNA- and RNA-binding 

residues. We designed three types of consensuses to address this prediction, including a 

ML-based approach. The ML consensus offers strong predictive performance in the 

combined prediction and, most importantly, also for the prediction of DNA-binding or 

RNA-binding residues individually. We empirically show that this consensus provides 

higher values of MCC compared with the best-performing individual predictors while it 

also substantially reduces the cross-prediction. Finally, we illustrate these empirical 

results using two case studies. They demonstrate that the ML consensuses filter out false 

predictions of the binding residues generated by individual predictors that are located 

relatively far from the native binding residues. 
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Chapter 5  

Goal 3: Development of DRNApred, a 

new high-throughput method that 

accurately and specifically predicts 

only DNA-binding and only RNA-

binding residues 

In Chapter 3 we found that cross prediction between RNA and DNA binding residues 

is a widespread and substantial problem. Although the ML-consensuses for the prediction 

of DNA/RNA-binding residues built in Chapter 4 help to improve the predictive quality 

in term of AUC and MCC, they still confuse DNA-binding with RNA binding residues. 

The DNA and RNA ML-consensus (consensus with the 4 outcomes) is so far the only 

approach that provides a working solution to reduce the amount of these mis-predictions. 

However, this consensus is inconvenient to use and is not runtime efficient since it 

combines 8 individual predictors (5 for DNA and 3 for RNA) for which the predictions 

have to be retrieved from webservers. To this end, in this chapter we aim to build a new 

high-throughput method that offers good predictive quality and solves the problem of 

cross prediction between DNA-binding and RNA-binding residues. 

5.1 Benchmark dataset 

We collected new DNA/RNA-binding complexes from PDB to expand our existing 

datasets that were described in Section 3.1. We collected complexes that were solved 

with resolution <2.5 Å and that were released after the date that the existing datasets have 

been collected. They include 564 protein-DNA, 72 protein-RNA, and 16 protein-DNA-
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RNA binding complexes. After extracting protein chains, we have 892 DNA-binding and 

145 RNA-binding sequences. We combine these new chains with our existing datasets 

and consequently obtain total of 2827 DNA-binding and 1125 RNA-binding chains. 

Next, following the same protocol as described in Section 3.1 we transfer binding 

annotations between similar proteins. We cluster proteins that share ≥80% sequence 

similarity and ≥0.5 TM scores, and then transfer annotations between proteins in the 

same cluster. However, this time we first combine DNA-binding and RNA-binding 

sequence together and then cluster them. Note that in Chapter 3 we transferred 

annotations separately for the DNA binding proteins and separately for the RNA binding 

proteins, which is less accurate compared to transferring annotations for the combined set 

of DNA and RNA binding proteins. In this way a given cluster may contain both DNA-

binding and RNA-binding proteins. We transfer both types of annotations from all chains 

into the representative chain (with the largest number of binding residues) in each cluster. 

We also update the deposition date of the representative chain to the earliest release time 

among all chains in the same cluster. We split all resulting representative chains into 

training and test datasets by the deposition dates. We observe that the data sets used by 

the considered existing predictors of DNA- and RNA binding residues were collected 

before November 2010. Correspondingly, the binding proteins released before November 

2010 are assigned into the training dataset, and proteins released after November 2010 

which are less likely to be used to train the published methods are assigned into the test 

dataset. To reduce the sequence similarity between training set and test dataset, we filter 

the test set by removing sequences that share >30% sequence similarity with any training 

sequence; this is based on pairwise sequence similarity between a given test sequence and 

each training sequence that we computed with the bl2seq program. We further remove 5 

and 3 proteins with length ≥1000 residues in the training and test dataset, respectively, 

since some of the input methods utilized to develop our model and some of the existing 

predictors of DNA and RNA binding residues we compare with cannot complete their 

predictions for such long proteins. Finally, our training dataset contains 488 DNA- and/or 

RNA-binding proteins, 7823 DNA-binding residues, 95161 nonDNA-binding residues, 

4699 RNA-binding residues, and 98241 nonRNA-binding residues. The independent test 

dataset (i.e., sharing low sequence similarity with the training dataset) includes 82 DNA- 
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and/or RNA-binding chains, 968 DNA-binding residues, 17926 nonDNA-binding 

residues, 808 RNA-binding residues, and 18074 nonRNA-binding residues. Residues 

with missing coordinates in training and test dataset (disordered residues for which we 

cannot compute annotation of binding) are excluded from our evaluation. Since there are 

substantially more negative samples (nonbinding residues) than the positive samples 

(binding residues), we balance the training dataset by under-sampling the nonbinding 

residues. Among the nonbinding residues, a small fraction (similar to the number of 

binding residues) binds to the other type of nucleic acid. i.e., these are DNA binding 

residues when the positive binding residues are RNA binding and vice versa. These 

residues are important for the predictive model to learn how to discriminate between 

DNA and RNA binding residues. Therefore, we keep all of these non-binding residues in 

the training dataset. We under-sample 25% (15%) of the remaining nonbinding residues 

that do not bind to either DNA or RNA molecule. As a result, the number of the non-

binding residues is about twice larger than the number of the DNA-binding (RNA-

binding) residues.  

We also develop a negative set of proteins that are unlikely to bind either DNA or 

RNA. Similar to the way the negative dataset was developed in [77], we consider human 

proteins from the complete human proteome collected from the UniProt database. We 

include proteins that satisfy the following stricter, compared to [77], seven conditions: (1) 

their subcellular location is not in nucleus, chromosome, or nucleoplasm; (2) their 

functional annotations expressed with the gene ontology (GO) terms do not include 

DNA, RNA, nucleotide, nucleic acid, DNA binding, RNA binding, or nucleotide binding; 

(3) protein names do not contain DNA, RNA, nucleic acid, nucleotide, or ribosomal; (4) 

their function annotated in UniProt does not include DNA binding, RNA binding, nucleic 

acid binding, or nucleotide binding function; (5) their UniProt records do not have the 

following keywords: DNA, RNA, nucleic acid, nucleotide, ribosomal, ribosome, 

ribosomal protein, or chromosome; (6) they are not annotated as interacting with DNA, 

RNA, or nucleotide; and (7) they were reviewed in UniProt (i.e., these proteins 

underwent manual evaluation that assures higher quality of the annotations compared to 

the un-reviewed proteins). Using these criteria we collect a set of 5996 human proteins 

that are unlikely to bind either DNA or RNA. Based on the protocol in [77], we further 
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filter these proteins by removing the sequences that share ≥30% sequence similarity with 

each other or with any sequence in the training dataset. This reduces the redundancy 

among the dataset and also reduces the possibility of these proteins to bind to DNA or 

RNA given that proteins in the training dataset bind to these nucleic acids. To reduce 

computational cost of evaluation on the negative dataset, particularly given the high 

runtime of some of the existing predictors, we selected at random 82 proteins from the 

resulting dataset. These 82 proteins form the negative dataset of the nonbinding proteins. 

5.2 Development of the DRNApred predictor 

 

Figure 5.1. Architecture of DRNApred predictor 
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DRNApred generates DNA (RNA)-binding residue predictions using a 2-layer 

design, see Figure 5.1. The first predictive layer includes three steps. First, a variety of 

physicochemical and biochemical properties (15 and 8 for the prediction of DNA and 

RNA binding, respectively) together with the putative intrinsic disorder, secondary 

structure and solvent accessibility are calculated and predicted from the input protein 

sequence. Second, these inputs are processed using a sliding window to generate a set of 

41 (31) numeral features which are combined with the 30 features based on the 

evolutionary profile HMM generated with the HHblits method to encode the input 

sequence. This small set of features was empirically selected using the training dataset 

from a large set of considered numerical features that were generated from inputs 

collected in the first step of the first layer. Third, the combined set of 71 (61) features is 

input into a logistic regression model that generates predictions of the DNA (RNA)-

binding residues. Selection of logistic regression is motivated by several factors: (1) this 

model has been already successfully used in a related study [72]; (2) it is a simple linear 

models, which reduces likelihood of overfitting the training dataset compared to more 

complex models that use a larger number of parameters; (3) it is fast to generate on the 

training dataset, which is an important advantage given a relatively large size of our 

dataset; (4) it is fast to make prediction using this model, which is crucial given our goal 

to develop a runtime efficient (high throughput) predictor; (5) it provides good predictive 

performance when used to implement consensus-based prediction of RNA and DNA 

binding residues [82] (in that application we have utilized five different popular types of 

machine learning algorithms including logistic regression, SVM, C4.5 decision tree, k-

nearest neighbor and Naïve Bayes and the consensus implemented using the logistic 

regression has secured the best predictive quality); and (6) we initially also considered 

SVM, compared it with logistic regression on the training dataset and these preliminary 

results favored logistic regression model. The second predictive layer re-predicts the 

predictions generated in the first layer to improve predictive performance. In this layer, 

we explore information about the putative binding of adjacent residues, including 

putative annotations of both RNA and DNA binding. Intuitively, residues surrounded by 

a large number of putative DNA binding residues are more likely to bind DNA compared 

to residues surrounded by fewer or no DNA binding residues. Also, residues surrounded 
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by many putative DNA binding residues are less likely to be predicted as RNA binding 

even if they are also surrounded by a modest number of putative RNA binding residues, 

compared to the residues that are not surrounded by the DNA binding residues. We use 

the predictions of the DNA-binding and RNA-binding residues generated in the first layer 

as input to compute 3 (3) numerical features using a sliding window; these features were 

empirically selected from a larger set of features using the training dataset. These 3 (3) 

features are then inputted into two logistic regression models that re-predict the DNA-

binding and RNA-binding residues respectively. 

Feature-based encoding of the input protein sequence 

We apply a shotgun approach by generating a large variety of structural and 

physiochemical properties of the input sequence and encoding them into a large number 

of numerical features utilizing sliding windows of different sizes. Next, a smaller subset 

of predictive and non-redundant features is empirically selected from this large set of 

considered features. 

In the first step of the first layer, we consider a comprehensive set of properties of the 

input sequence including amino acid (AA) type, information derived from putative 

intrinsic disorder, secondary structure (SS) and solvent accessibility (SA), AA indices 

that quantify physicochemical properties of residues in the input protein sequence, and 

evolutionary profile of that sequence. These properties have already been successfully 

used in the previous studies that focused on the prediction of DNA or RNA binding, 

which were reviewed in ref. [77]. Specifically, intrinsic disorder is predicted by the 

IUPred [83] and Espritz [84] methods. SS is predicted with the fast version of PSIPRED 

that does not use sequence alignment [85]. SA is predicted by the fast version of 

PROFphd [86], NETASA [87] and RVP-net [88] methods. We note that the above 

mentioned predictions were performed using runtime-efficient methods to ensure that our 

predictor is also computationally efficient. AA indices are collected from the AAindex 

database [89]. Some of these indices are redundant with each other (they quantify similar 

properties) and some may not be relevant to the prediction of the RNA and DNA binding. 

Therefore, we empirically select a subset of non-redundant and predictive AA indices. 

Specifically, we remove the indices that are incomplete (with missing values) and those 
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that are not predictive (lack correlations with the prediction outcomes) or redundant (have 

high mutual correlation with other indices). We compute the point-biserial correlation 

(PBC) of each index with the DNA-binding annotations and RNA-binding annotations in 

the training dataset to quantify whether these indices are predictive. Indices with PBC 

<0.05, which indicates that they offer low predictive power, were removed. Next, we 

remove the redundant indices among the remaining indices. The indices were sorted 

based on PBC values in the descending order. We start from the top ranked index, and the 

next ranked index is added into the pool of retained indices only if its Pearson correlation 

(PCC) with each of the indices in the pool is ≤ 0.9. As a result, we selected 164 indices 

that are predictive and non-redundant for the prediction of the DNA-binding residues and 

105 indices for the prediction of the RNA-binding residues. Finally, the evolutionary 

profile HMM is generated using HHblits method [90] with the default parameter settings 

on the nr database. The profile is in the form of 𝑁 ∗ 30 matrix, where 𝑁 is the length of 

the input protein sequence. For each position 𝑛𝑖 , 𝑖 = 1, … 𝑁, in the input sequence, this 

profile provides 30 scores including 20 scores representing the frequencies to observe 

each of the 20 amino acids at this particular position 𝑛𝑖  in homologous proteins, 7 

transition frequency scores indicating the probabilities to observe a match, insertion or 

deletion after this position, and the 3 local diversity values that quantify the diversity of 

the aligned sequences in a region around this position. 

In the second step of the first layer, the input properties are further processed using 

sliding windows to generate a large set of numerical features. Sliding window is centered 

on the residue that we want to predict to accommodate for the bias introduced by adjacent 

residues. For each type of input property, we consider two types of features: features 

computed for each residue in the window (per residue features) and features computed by 

aggregation of information coming from multiple residues in the window (aggregated 

features):  

 We calculate the per residue features by considering each residue in a window 

individually. We apply a sliding window of size 3 to include the information about 

the residue 𝑎𝑖 that we want to predict and its left and right neighbors. Thus, the 

feature vector for the residue 𝑎𝑖 is represented by [𝑉𝑖−1, 𝑉𝑖, 𝑉𝑖+1], where 𝑉 is the input 
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information that includes the AA type and predicted disorder, SS, and SA. For the 

residues at the either termini of the sequence (C-terminus and N-terminus) where 

there is no neighbor on either left or right side, we fill the corresponding information 

with default values.  

 Motivated by the recent work in [72], we also aggregate the input information over 

the sliding window. The considered information includes AA types, values of 

selected AA indices, and predicted disorder, SS, and SA. We aggregate their values 

over the whole sliding window. Moreover, we filter the positions in the window using 

the SA predictions, and calculate the aggregated values only for the solvent exposed 

residues in the window. We vary the window size from 9 to 21 with a step of 2. We 

also compute the same aggregated values for the entire protein chain.  

Detailed description of the calculation of the per-residue features and the aggregated 

features is given in Table 5.1. In total, we generate 4580 features for the prediction of the 

DNA-binding residues, and 3990 features for the prediction of RNA-binding residues.  
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Table 5.1. Description of features that were considered in the design of the DRNApred method.  

Exposed residues are determined using the prediction from the PROFphd method. For the aggregated feature that were computed for the exposed residues, we calculate the average 

value in two ways: sum of the information for the exposed residues divided by the number of the exposed residues in the window, and sum of the information for the exposed 

residues divided by the size of the window. The standard deviation is only calculated in the first case. Since the AA indices utilized in the DNA-binding and RNA-binding 

predictions are different, the corresponding aggregated features are different. Consequently, the number of features for the DNA-binding prediction is shown first and is followed 

by the number of features for the prediction of RNA-binding that is given inside brackets. 

Feature 

type 
Input type Description Window size 

number of 

features 

Per residue Amino acid type 20 dimensional binary vector to encode the amino acid type w=3 60 

Disorder, SS, RSA We include probability and binary values from 9 methods (5 disorder + 3 RSA + SS).  w=3 90 

HMM profile 20 amino acid emission frequencies + 7 transition frequencies +3 local diversities NA 30 

Aggregated 

All 

residues 

Amino 

acid type 

amino acid composition (20 values for each window size) 
w={9,11,13,15,17,19,

21, protein length} 
160 

Amino acids are divided into 3 groups based on their properties (e.g. charge, hydrophobicity, 

etc.) [91]. We calculate the composition/transition/distribution of the amino acids in each group.  

w={9,11,13,15,17,19,

21, protein length} 
1176 

Disorder, 

SS, RSA 

content of binary predictions over the window of size w w={9,11,13,15,17,19,

21, protein length} 
328 

average value and standard deviation of the probability predictions over the window of size w 

AA indices average value and standard deviation of AA indices over the window of size w w={9,21} 656(420) 

Exposed 

residues 

Amino 

acid type 

amino acid composition of the exposed residues 
w={9,11,13,15,17,19,

21, protein length} 
320 

composition of the exposed amino acids in each group 
w={9,11,13,15,17,19,

21, protein length} 
336 

Disorder, 

SS, RSA 

content of binary predictions of the exposed residues over the window of size w 
w={9,11,13,15,17,19,

21, protein length} 
440 average value and standard deviation of the probability predictions of the exposed residues over 

the window of size w 

AA indices 
average value and standard deviation of AA indices of the exposed residues over the window of 

size w 
w={9,21} 984(630) 
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Feature selection and parameterization of the predictive models in the first layer 

To implement the second step of the first layer, we need to select a subset of non-

redundant and predictive features which are useful to discriminate between binding 

residues and non-binding residues. There are two types of non-binding residues in our 

dataset: the non-binding residues that do not bind to either DNA or RNA and the non-

binding residues that do not bind to the target type of nucleic acid but bind to the other 

type. For example, in the prediction of the DNA-binding residues, the nonDNA-binding 

residues can be further divided as non-binding residues that do not bind to either DNA or 

RNA, and the RNA-binding residues. The DNA-binding and RNA-binding residues share 

similar biochemical properties, thus they are likely to be confused by a predictive model. 

Hence, our aim is to select features that are not only useful to differentiate between 

binding and non-binding residues, but also to minimize the number of DNA-binding 

residues that are confused for RNA-binding and vice versa. To do this we assign weights 

to the residues in our training dataset. By default, the residues have a weight of 1. We 

assign weight >1 to the residues that could be cross predicted, e.g. the RNA-binding 

residues for the dataset we used to develop DNA-binding prediction method, and the 

DNA-binding residues for the dataset we used to develop RNA-binding prediction 

method. Next, the weight values are passed along with the value of the features to the 

logistic regression model. When building the model, the prediction errors for the 

instances (residues) with weight >1 are adjusted (increased) compared to the prediction 

errors for the instances with weight of 1. This way the regression will minimize the mis-

prediction of residues with weights > 1. We select the best weight value by considering 

values ranging from 1 to 4 with step of 0.2. For each of the considered weight value, we 

empirically select a subset of predictive and non-redundant features from the original set 

of considered features using a two-step feature selection. We perform the selection 

exclusively using the training dataset with the 5-fold cross validation protocol. The 

training proteins were divided into 5 folds such that protein chains in a given test fold are 

dissimilar to the training sequences (sequences in the training folds). This simulates the 

tests on the test dataset. We cluster the chains in the training dataset using CD-HIT at 

30% sequence identity, and assign the proteins that are clustered in the same group to the 

same cross-validation fold. In the first step of feature selection, we apply a wrapper-based 
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approach to rank the features. For each feature, we calculate its predictive performance 

(measured by AULC) when used as an input to univariate logistic regression model based 

on the 5-fold cross validation on the training dataset. In the second step, we execute the 

best first search-based feature selection using the wrapper with logistic regression model 

to select a subset of predictive and non-redundant features. Starting with the top ranked 

feature, we accept the next best-ranked feature into a selected set of features only if the 

addition of this feature improves AULC by at least 0.0001 based on the 5-fold cross 

validation on the training dataset when compared with the feature set before this addition; 

to compare, the AULC of a random predictor = 0.003. We go through the sorted list of 

features once to select the subset of features. Depending on the weight values (we repeat 

the selection for each considered value of weight), we select between 28 (23) and 41 (31) 

features for the prediction of DNA (RNA)-binding residues. Using the weight = 1.8 (3.6) 

as an example, Figure 5.2 shows the improvement of AULC by gradually (one by one) 

adding the 41 (31) selected features into the feature subset along the feature selection 

process. We observe a steady increase in the predictive performance as additional 

features are added into the set of selected features. 

Figure 5.3 compares the predictive quality of the logistic regression models trained by 

using different weight values and the corresponding selected feature subsets. The 

predictive quality is measured by AULRC on the training dataset based on the 5-fold 

cross validation; this measure quantifies the amount of cross prediction between RNA 

and DNA binding residues. We select the weight value of 1.8 (3.6) with the 

corresponding subset of 41 (31) features that secures the best predictive quality (lowest 

AULRC). These parameters are utilized to implement the predictor of the DNA (RNA)-

binding residues. We combine the selected features with the 30 features that compose the 

evolutionary profile. This leads to an additional improvement in predictive quality, as 

shown in Figure 5.2. We input the resulting 71 (61) features into logistic regression to 

build the two prediction models, one for the prediction of DNA-binding and one for 

RNA-binding. 
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A  

B  

Figure 5.2. Improvement in the value of AULC through the feature selection based on 5-fold 

cross validation on the training dataset. Panel A is for the prediction of DNA-binding residues 

with the weight value = 1.8. Panel B is for the prediction of RNA-binding residues with the 

weight value = 3.6. 

X-axis is the number of features added through the best first search in the feature selection. Last index on the x-axis 

‘HMM’ represents addition of the entire HMM profile that includes 30 features.  
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Figure 5.3. Predictive performance measured by AULRC on the training dataset based on 5-fold 

cross validation for the models that use different weights.  

AULRC (0.25) is equivalent to AULRC but using a smaller cutoff on TPR at 0.25. Lines represent the results for the 

prediction of DNA-binding residues, and dotted lines indicate the results for the prediction of RNA-binding residues.  

 

Design of the predictive models in the second layer 

The binding residues predicted by the models from the first layer cluster together in 

the sequence. We observe that the predictions for the correct type of nucleic acid binding 

have higher density than the predictions for the other type of binding, i.e., if the currently 

predicted protein binds DNA, usually the number of predicted DNA binding residues is 

higher than the number of predicted RNA binding residues. Consequently, if we consider 

the predictions for the DNA and RNA binding residues in the same protein together, they 

can be re-predicted to improve predictive performance. In particular, we can reduce the 

amount of cross-predictions between DNA and RNA binding residues, i.e., we can reduce 

the number of predicted RNA binding residues based on the high number of predicted 

DNA binding residues and vice versa. Motivated by this, we design predictive models in 
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a second layer (meta-predictor) that re-predict the outputs of the two models from the 

first layer.  

We first generate a set of per residue features and aggregated features using a sliding 

window from the predictions of the two models from the first layer. For the per residue 

features, we set the window size to 3 to include the predictions of the DNA-binding and 

RNA-binding for the current residue and its two adjacent neighbors. We also calculate 

the aggregated information over the window including the content of predicted DNA-

binding and RNA-binding residues, average and standard deviation of the predicted 

propensities for DNA-binding and RNA-binding over the window. We use windows with 

varying sizes between 3 and 21 with a step of 2. We also calculate the same aggregated 

values for the whole sequence. This totals to 122 features. 

We then select a subset of predictive and non-redundant features using the same 

feature selection procedure as for the first layer. We first rank features based on the 

predictive quality (measured by AULC) of the corresponding univariate logistic 

regression models on the 5-fold cross validation on the training set. Then starting from 

the top ranked features, we accept the next ranked feature into our feature set if the 

AULC value is not worse by more than 0.0001 compared to the prediction obtained with 

the model from the first layer, and the AULRC is better by (drops by) at least 0.001 when 

compared to the prediction using feature set before the addition. As a result, we select 3 

(3) features for the prediction of DNA (RNA)-binding residues. Each of these two sets of 

three features is input into the corresponding logistic regression model to generate the 

final predictions. 

To sum up, the design of our model implements three novel approaches to reduce the 

mis-prediction between the two types of nucleic acid binding residues: (1) we use the 

training dataset that includes both DNA-binding and RNA-binding proteins to train the 

model (the existing methods were developed using datasets that include only DNA 

binding or only RNA binding proteins); (2) we use weights >1 for the residues that could 

be cross predicted; and (3) we introduce the second predictive layer.  
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5.3 Results and discussion 

We test and compare various designs of our predictive model on the test dataset to 

demonstrate that the novel strategies introduced to design DRNApred help to improve its 

predictive quality. Next, we comprehensively compare results generated by DRNApred 

with the results of the existing methods for the prediction of DNA (RNA)-binding 

residues. As part of this comparison, we compare predictive quality of DRNApred on the 

test dataset with the predictive quality of the existing methods. We also analyze the 

binding residues predicted by DRNApred and compare them with those generated by the 

existing methods. Moreover, we apply and compare DRNApred and the other considered 

predictors of DNA (RNA)-binding residues on the test dataset for the prediction of the 

DNA (RNA)-binding proteins. Lastly, we estimate and compare the runtime of our 

method and with the runtime of the other methods.  

5.3.1 Improvement in predictive performance due to the use of novel design 

features 

We have introduced three novel strategies in the design of our model to reduce the 

cross prediction. We compare the results obtained by our predictive model with the 

results obtained when designing the model without the use of these strategies to quantify 

their impact on the predictive performance. We consider the following four scenarios: (1) 

the model developed on the training dataset with just one target type of nucleic acid 

binding proteins (referred as only DNA (RNA) binding data); (2) the model trained on the 

combined dataset of both DNA-binding and RNA-binding proteins (referred as combined 

data); (3) the model designed on the combined dataset and using the weights to minimize 

the cross predictions (referred as combined data with penalty); and (4) the complete 

model implemented using 2 layers based on the combined dataset and weight (referred as 

second layer). The latter is utilized to implement our predictor of the DNA (RNA) 

binding residues. 
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Figure 5.4. Comparison of predictive performance using different designs of the models for the 

prediction of DNA-binding (RNA-binding) residues on the test dataset.  

Bars for the AUC and AURC are associated with the y-axis on the left side while lines for the AULC and AULRC are 

quantified with the scale on the y-axis on the right. The ‘only DNA-binding data’ (‘only RNA-binding data’) scenario 

is the model for the prediction of DNA-binding (RNA-binding) residues designed on the dataset with just DNA-binding 

(RNA-binding) proteins; the ‘combined data’ scenario is for the model built on the combined dataset with both DNA-

binding and RNA-binding proteins; the ‘combine data with penalty’ scenario is for the model that uses combined 

dataset and weights that are used to penalize the cross predictions; the ‘second layer’ scenario considers model that 

extends the ‘combine data with penalty’ scenario with the second layer.  

 

We evaluate the predictive performance for these four scenarios on the test dataset. 

The results are shown in Figure 5.4. For the DNA-binding models, the predictive quality 

measured by AUC and AULC is very similar across the four scenarios, while the cross 

predictions quantified by AURC and AULRC decrease dramatically as we improve our 

design by adding additional strategies. Learning from the dataset with both DNA-binding 

and RNA-binding proteins (the ‘combined data’ scenario) the model for prediction of 

DNA-binding residues substantially improves over the ‘only DNA-binding data’ 

scenario. This improvement involves reducing the cross prediction measured with AURC 

(AULRC) by 10% (25%), while maintaining similar overall predictive quality measured 

with AUC and AULC. The model based on the ‘combined data with penalty’ scenario 



70 

 

that uses weights further decreases AURC and AULRC by 12% and 20%, respectively, 

while maintaining similar AUC and AULC. The last ‘second layer’ scenario provides the 

best predictive performance by achieving similar AUC and AULC, and decreasing the 

cross prediction, as evidenced by lower values of AURC and AULRC, when compared to 

the ‘combined data with penalty’ scenario. The same observations are true for the models 

that predict RNA-binding residues. The model based on the ‘second layer’ scenario 

maintains the overall predictive quality measured with AUC and AULC and substantially 

reduces the cross prediction measured with AURC and AULRC when compared to the 

other three scenarios. The two models that use all four strategies are utilized to build the 

DRNApred method for the prediction of the DNA-binding and RNA-binding residues. 

5.3.2 Predictive performance for the prediction of the DNA/RNA binding 

residues 

We test the DRNApred method on the prediction of DNA-binding residues and the 

prediction of RNA-binding residues on the test dataset. We compare these results with 

the results generated by existing methods that predict DNA or RNA binding residues. We 

include the methods that were assessed in a recent relevant comparative review [77], 

where one of the main selection criteria was availability of webservers and short runtime. 

We include 5 methods for the prediction of DNA-binding residues and 3 methods for the 

prediction of RNA-binding residues. Results are shown in Table 5.2.  

DRNApred evaluated on the prediction of DNA binding residues is shown to secure 

comparable overall predictive quality quantified with AUC and AULC values when 

compared to the other predictors of DNA binding residues. AULC is the area under the 

ROC curve where FPR has low values <5.4%. The 5.4% is the fraction of positives in the 

test dataset and the corresponding part of the curve covers predictions where the numbers 

of false positives (incorrectly predicted binding residues) is smaller than the number of 

positives (native binding residues). In other words, this is where the predictor does not 

over predict the binding residues (see detailed definition in section 2.4.4). The AUC 

value of DRNApred is lower than that of the best method BindN+ and comparable to the 

other considered methods. However, DRNApred’s AULC value is the highest and 

significantly better than the AULC values of all other methods. The corresponding ROC 
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curves are shown in Figure 5.5A. An insert in the bottom right corner of this Figure 

focuses on a part of the curve that is used to compute AULC where the FPR<5.4%. The 

complete ROC curves of the six predictors of the DNA-binding residues are relatively 

similar. The curves of BindN+ and DBS-PSSM are better than the curve of DRNApred 

when FPR values are high and worse for the arguably more practical range with the lower 

values of FPR<5.4% (see the insert). Importantly, the TPR of DRNApred is about 6 times 

higher than its FPR at FPR = 5.4%, and close to 30% of the native DNA-binding residues 

can be found at this low FPR. This means that DRNApred correctly locates a large 

fraction of native binding residues when mis-predicting a relatively low fraction of the 

native non-binding residues. Specifically, at FPR = 5.4%, the number of TP = 290 and 

the number of FP = 968. Although the number of FPs is three times higher than the 

number of TPs, this rate is much lower compared to an expected rate that equals 19 (there 

are 19 time more non-binding residues than the number of binding residues). Moreover, 

although the number of FPs that we predicted at FPR = 5.4% is high, some of them could 

potentially correspond to binding residues. This is because the annotation of binding 

residues in our test dataset is incomplete and because some of the FPs are close (in the 

sequence) to the native binding residues. In the latter case they are likely to be TPs given 

the fact that we define binding residues using a somehow arbitrary threshold (more 

details in Section 5.3.3). We binarize the propensities generated by the considered 

methods to classify each residue as binding (propensity > threshold) and non-binding 

(propensity ≤ threshold). The threshold is determined to ensure that the number of 

predicted binding residues equals to the number of native binding residues in the test 

dataset. These binarized predictions are assessed with sensitivity and MCC; specificity is 

virtually identical for different methods given how the threshold was selected. We 

observe that DRNApred offers slightly higher sensitivity and comparable MCC when 

compared to the other considered predictors of DNA binding residues.  

Although the overall predictive performance for the prediction of the DNA binding 

residues of DRNApred is similar to the other methods, our predictor significantly reduces 

the cross prediction between DNA and RNA binding residues. This is measured with 

AURC (area under the ratio curve) and AULRC (area under the lower range of the ratio 

curve where TPR<0.5) values. DRNApred obtains the lowest AURC and AULRC values 
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which are lower by (0.35-0.26)/0.35 = 25.7% and (0.069-0.039)/0.069 = 43.5%, 

respectively, compared to the second best BindN+ predictor. Figure 5.6A which plot of 

the values of ratio against TPR, further validates this conclusion. It shows that 

DRNApred is substantially better than the other methods (achieves the lowest ratio) over 

the entire range of TPR values. Comparison of the ratio based on the binary predictions 

also shows that our method significantly reduces the cross predictions. It obtains the 

lowest ratio value which is lower by (0.13-0.06)/0.13 = 53.8% compared to the second 

best BindN+. 

Table 5.2. Comparison of the predictive performance of DRNApred with the other methods for 

the prediction of the DNA- (RNA-) binding residues on the test dataset.  

Sensitivity, MCC and ratio are calculated from the binary predictions which are converted from the probability 

prediction using threshold that sets the number of predicted binding residues to be equal to the number of native 

binding residues in the test dataset. Significance of the difference in MCC, ratio, AULC and AULRC values between 

the best performing method and other methods was assessed based on 10 repetitions that utilize 70% of randomly 

chosen from the test dataset proteins; + (=) in the Sig column denotes that the difference was (was not) significant at p-

value <0.05. Methods are sorted by their AULRC value. 

 Methods Sensitivity MCC Sig ratio Sig AUC AULC Sig AURC AULRC Sig 

DNA 

binding 
DRNApred 0.25 0.21  0.06  0.77 0.010  0.26 0.039  

BindN+ 0.22 0.18 + 0.13 + 0.79 0.008 + 0.35 0.069 + 

DP-Bind(svm) 0.24 0.20 = 0.14 + 0.75 0.009 + 0.43 0.087 + 

DP-Bind(klr) 0.24 0.20 = 0.15 + 0.76 0.009 + 0.43 0.087 + 

DP-Bind(plr) 0.22 0.18 + 0.16 + 0.74 0.008 + 0.44 0.093 + 

DBS-PSSM 0.21 0.17 + 0.18 + 0.77 0.008 + 0.41 0.095 + 

RNA 

binding 
DRNApred 0.16 0.12  0.02  0.67 0.005  0.25 0.029  

Pprint 0.15 0.11 = 0.1 + 0.66 0.005 = 0.51 0.121 + 

RNABindR 0.14 0.10 + 0.16 + 0.73 0.004 + 0.51 0.135 + 

BindN+ 0.12 0.08 + 0.2 + 0.67 0.003 + 0.63 0.195 + 
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A  

B  

Figure 5.5. Comparison of ROCs of DRNApred and the other considered predictors of the DNA 

and RNA binding residues on the test dataset.  

The insert in the bottom right corner focuses on the ROC curve where FPR<5.4% for the DNA binding (<4.5% for the 

RNA binding). AULC is calculated as the area under that part of the ROC curve. Panel A is for the prediction of DNA-

binding residues, and panel B for the prediction of RNA-binding residues.  
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A                                                        B 

Figure 5.6. Comparison of the ratio curves for DRNApred and the considered predictors of the 

DNA and RNA binding residues on the test dataset.  

The ratio curve is the plot of Ratio against TPR values. The curve that is closer to the x-axis for the same TPR 

corresponds to better predictions, i.e., lower amount of cross-predictions between RNA and DNA binding residues. 

Panel A is for the prediction of DNA-binding residues, and Panel B for the prediction of RNA-binding residues.  

 

Similar observations are true for DRNApred for the prediction of RNA-binding 

residues (Table 5.2). When compared with the other predictors, DRNApred offers 

comparable overall predictive quality measured with AUC, AULC values and more 

importantly, significantly lower amounts of cross predictions that are quantified with 

AURC and AULRC values. The DRNApred’s AURC and AULRC are substantially 

lower by (0.51-0.25)/0.51 = 51% and (0.121-0.029)/0.121 = 76%, respectively, compared 

to the second best Pprint methods. ROC curves in Figure 5.5B shows that RNABindR is 

better than other predictors when FPR is relatively high, but it is outperformed by 

DRNApred when FPR<4.5%, i.e., when the number of false positives (incorrectly 

predicted non-binding residues) is lower than the number of native positives (native RNA 

binding residues). Ratio curve in Figure 5.6B further confirms the conclusion that our 

method significantly reduces the cross-prediction and demonstrates that this is true over 

the whole range of the TPR values. Comparison of the binary predictions when setting all 

methods to generate similar FPRs (number of predicted positives is set to equal the 

number of positives) reveals that DRNApred provides slightly higher sensitivity and 
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MCC, and much smaller ratio. The ratio of our predictor is lower by (0.1-0.02)/0.1 = 80% 

when compared to the second best Pprint method. 

To sum up, DRNApred substantially reduces the cross predictions between DNA-

binding and RNA-binding residues while maintaining similar overall predictive quality 

when compared to the existing methods. We explain significance of this result in Section 

5.3.3. Moreover, the new predictor correctly predicts the largest number of DNA-binding 

or RNA-binding residues when the number of predicted binding residues is reasonably 

low and no larger than the number of native binding residues. 

We also assess the considered methods on the negative dataset composed on proteins 

that are unlikely to bind nucleic acids. Since there are no positive data (binding residues) 

in this negative dataset, we quantify the predictive quality with the FPR. The results 

reveal that all methods obtain comparable and low FPR values that range between 2 to 

5% (2 to 4%) for the prediction of DNA (RNA)-binding residues. Among the predictors 

of the DNA-binding residues BindN+, DP-Bind_S, DP-Bind_K, and DBS-PSSM secure 

FPR = 3%, DP-Bind_P has FPR = 4%, and DRNApred obtains FPR = 5%. Considering 

the predictors of the RNA-binding residues, DRNApred and BindN+ generate predictions 

characterized by FPR = 2%, while Pprint has FPR = 4%. 

5.3.3 Analysis of the predicted binding residues  

We observe that native RNA and DNA binding residues tend to cluster together in the 

protein sequence. This is because close proximity in the sequence implies proximity in 

the corresponding structure and regions on the protein surface that interact with the 

nucleic acids tend to be relatively large given the large size of the RNA and DNA 

molecules. Moreover, the annotation of the binding residues suffers inaccuracies given 

how they are defined. The use of a distance between atoms in protein and nucleic acids 

results in somehow arbitrary inclusion or exclusion of binding residues that are close to 

the cut-off value used to define binding. This means that some of the non-binding 

residues adjacent to the annotated binding residues could be in fact involved in binding. 

Altogether, these observation points to a conjecture that residues that are in close 

proximity in the sequence to the annotated binding residues are more likely to in fact bind 
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DNA/RNA compared to residues that are far away. In other words, false positives 

localized close to the native binding residues are more desirable (more likely to be true 

positives) compared to the false positives that are far away from the binding residues.  

We analyze the binding residues predicted by different methods to compare how 

close they are from the native binding residues. For each method, we count the number of 

correctly predicted binding residues (there residues have distance of 0 from the native 

binding residue), and incorrectly predicted binding residues that are ≤1, ≤2, … residues 

away from the nearest native binding residue. The corresponding fractions of these 

predicted binding residues out of the total number of the predicted binding residues are 

plotted in Figure 5.7. The total number of the predicted binding residues for each method 

is set to be the same and equal to the number of the native binding residues. The fraction 

of the putative binding residues predicted in the incorrect type of binding proteins can be 

read from the gap between the value of 1 and the value of the fraction at the end of a 

given curve. For example, Figure 5.7A shows that about 20% and 35% of the DNA 

binding residues identified by DRNApred and BindN+ were predicted in the RNA 

binding proteins, respectively. We argue that DRNApred predicts higher quality false 

positives compared to the other considered methods since they are localized closer to 

native binding residues. This is true for the prediction of both DNA and RNA binding 

residues. Figure 5.7 reveals that 31% (16%) of the putative DNA (RNA)-binding residues 

generated by DRNApred are correctly predicted and 51% (46%) are close to the nearest 

native binding residues (≤5 residues away). To compare, 24% (15%) of the predicted 

DNA (RNA)-binding residues are correctly identified by the best existing predictor and 

44% (33%) are close to the native binding residues. The observation that DRNApred 

correctly predicts more binding residues is in consistent with its higher MCC and 

sensitivity (Table 5.2). Moreover, as the distance increases the DRNApred’s curve 

saturates faster and reaches a much higher value compared to the curves from the other 

methods. This means that our model cross predicts much less than the other methods. 

Specifically, analysis of the far right end of the curves in Figure 5.7 demonstrates that 

DRNApred mis-predicts 20% (18%) of DNA (RNA)-binding residues in the RNA 

(DNA)-binding proteins, compared to the 35% (44%) by the second best BindN+ (Pprint) 

methods. Overall, DRNApred correctly finds more binding residues and captures more 
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putative binding residues that are likely to bind to DNA (RNA) although they lack such 

annotation in the test dataset. Importantly, our model generates much fewer heavy mis-

predictions that are defined as the putative RNA binding residues identified in the DNA 

binding proteins and the putative DNA binding residues found in the RNA binding 

proteins.  

We also evaluate how predictive quality measured with MCC and TPR would change 

if the predicted binding residues which are 0, ≤1, ≤2, and ≤3 residues away from the 

nearest native binding residue would be considered as correctly predicted, see Figure 5.8. 

We argue that the corresponding false positives that we re-consider as true positives 

could be in fact interacting with the nucleic acids or be useful to identify the nearby 

binding residues. As expected, both MCC and TPR for all considered methods improve 

as we include additional true positives. Interestingly, inclusion of just the adjacent 

positions (distance = 1 on the x-axis) results in a substantial increase in TPR of 

DRNApred by about 8% for both DNA and RNA binding, given the TPR is 25% for 

DNA and 16% for RNA at the distance = 0 (only the native binding residues are 

considered). The MCC also registers a very large increase from 0.21 to 0.31 for the DNA 

binding and from 0.12 to 0.22 for RNA binding. At distance = 3, our method achieves the 

TPR = 0.38 (0.31) and MCC = 0.39 (0.31) for the prediction of the DNA (RNA)-binding 

residues. Moreover, DRNApred secures the largest increases in both MCC and TPR 

when compared to the other methods. This again demonstrates that our predictor is better 

at finding desirable, high quality false positives that could be in fact relevant to the 

nucleic acid binding.  
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A  

B  

Figure 5.7. Summary of the distance measured by the number of residues in the sequence 

between the predicted binding residues and the nearest native binding residues.  

The summary is quantified with fractions of binding residues that are ≤ a given distance, shown on the x-axis, away 

from the nearest native binding residue. The fraction is defined as the count of residues up to a given distance away 

divided by the total number of the putative binding residues. The curves do not reach the fraction of 1 because the 

remaining residues are predicted in proteins that do not have the corresponding native binding residues (the distance to 

the nearest native binging residue is undefined). These are putative RNA binding residues that are predicted in the 

DNA binding proteins and vice versa. Panel A summarizes results for the prediction of the DNA-binding residues and 

panel B for the prediction of the RNA-binding residues. 
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A  

B  

Figure 5.8. Comparison of MCC and TPR values for DRNApred and other considered predictors 

of DNA and RNA binding residues when reconsidering putative binding residues that are close to 

native binding residues as true positives. The predicted binding residues that are no farther than 0, 

1, 2, and 3 positions (x-axis) in the sequence from the closest native binding residue are 

considered as correct predictions. 

TPR values are shown using bars and the y-axis on the left. MCC values are shown using lines and the y-axis on the 

right. Panel A is for the predictors of the DNA-binding residues while Panel B is for the predictors of the RNA-binding 

residues. 
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5.3.4 Predictive performance for the prediction of the DNA/RNA-binding 

proteins 

We test performance of DRNApred and the other predictors of the DNA and RNA-

binding residues for the predictions of the DNA and RNA-binding proteins on the test 

dataset. In contrast to the residue-level predictions, in this case we assess whether a given 

protein is correctly identified as binding to a specific nucleic acid. A protein is annotated 

as binding to DNA (RNA) if at least one residue in this protein is annotated as binding to 

DNA (RNA). A protein is assumed to be predicted as binding to DNA (RNA) if the 

number of predicted DNA (RNA)-binding residues in this protein is larger than a small 

threshold. This is to accommodate for the predicted false positives. The threshold is set so 

the FPR of a given method on the test set equals 5%. Table 5.3 summarizes the results. 

DRNApred outperforms other methods for the prediction of both DNA and RNA-binding 

proteins by a wide margin. DRNApred’s MCC is statistically significantly better than 

MCCs of the other methods. The TPR of our predictor is 5 and 6 times higher than FPR 

for the DNA and RNA binding, respectively, and is also much higher than the TPR 

values of the other predictors. 

Table 5.3. Comparison of predictive performance of DRNApred and the other considered 

methods for the prediction of DNA and RNA-binding proteins on the test dataset.  

Binding type Methods TPR MCC Sig AUC Sig 

DNA DRNApred 0.27 0.26  0.68  

DP-Bind(svm) 0.06 0.00 + 0.54 + 

DP-Bind(klr) 0.04 -0.05 + 0.53 + 

BindN+ 0.12 0.10 + 0.52 + 

DP-Bind(plr) 0.02 -0.10 + 0.45 + 

DBS-PSSM 0.00 -0.19 + 0.44 + 

RNA DRNApred 0.30 0.32  0.65  

Pprint 0.24 0.26 + 0.63 = 

RNABindR 0.12 0.11 + 0.59 + 

BindN+ 0.00 -0.16 + 0.45 + 

 

Besides evaluating the predictions at the low FPR, we vary the threshold (the minimal 

number of the predicted binding residues that corresponds to prediction of a binding 

protein) using the complete range. We plot relation between the corresponding TPR and 



81 

 

FPR values (ROC curve) in Figure 5.9. The plot shows that DRNApred improves over 

the other methods for small and modest values of FPR. Predictions when TPR values are 

high are arguably less interesting since they would lead to a substantial overprediction of 

the DNA or RNA binding proteins. These results are in agreement with the fact that our 

predictor secures the highest AUC values (Table 5.3). By tuning the threshold, 

DRNApred achieves maximal MCC = 0.31 and 0.36 for the prediction of the DNA and 

RNA-binding proteins, respectively, compared to the second best method DP-Bind_S 

with MCC = 0.23 and RNABindR with MCC = 0.28. The main reason why the other 

methods lack in predictive quality is that they cross-predict between DNA and RNA 

binding residues. In other words, their correct predictions of DNA binding proteins are 

coupled with the incorrect predictions of RNA binding proteins as DNA binding, 

resulting in high FPRs and low AUC and MCC values. 

 

A                                                                               B 

Figure 5.9. Comparison of ROCs for DRNApred and the other predictors for the prediction of 

DNA and RNA-binding proteins on the test dataset.  

Panel A is for the prediction of the DNA-binding proteins and Panel B is for the prediction of the RNA-binding 

proteins. The dotted black diagonal line represents a random prediction.  
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5.3.5 Comparative evaluation of runtime 

 

Figure 5.10. Comparison of runtime in the function of protein length for DRNApred and the 

other predictors of the DNA and RNA binding residues on the test dataset. 

The y-axis is the runtime in seconds shown using base 10 logarithmic scale. The x-axis is the protein length. We sorted 

proteins by their sequence length and divided them into 10 equally sized sets that include proteins with increasing size. 

The plot reports the median runtime (markers) and the 25th and 75th centiles (error bars) against the median protein 

length for each of the 10 protein sets. The measurements were made using a modern desktop computer with i7-CPU 

and 23GB RAM. Lines show polynomial fit into the measured data. 

 

Besides predictive quality runtime is a key factor that determines whether a given 

predictor can be applied in a high-throughput manner to annotate a large collection of 

proteins, such as a complete proteome. The considered predictors, except for DRNApred, 

utilize PSI-BLAST to derive evolutionary profile that they use as one of their inputs. The 

calculation of the profile is the main computational cost of these methods. We 

approximate lower bound of their runtime by the time to run PSI-BLAST. Based on the 

database and the number of iterations that each of these methods used to run PSI-BLAST, 

we divide them into three groups: methods that use the ‘nr’ database with 1 iteration 

(referred to as PSIBlast on ‘nr’ (1 iteraction)), the ‘nr’ database with 3 iterations (referred 

to as PSIBlast on ’nr’ (3 iterations)), and ‘uniprot’ database with 3 iterations (referred to 
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as PSIBlast on ‘uniprot’ (3 iterations)). Figure 5.10 compares the runtime of DRNApred 

and the other methods based on predictions on the test dataset. Although the absolute 

value of the runtime depends on computer hardware used, we focus on relative 

differences which are hardware independent. DRNApred is at least 3 orders of magnitude 

faster than the other methods that utilize PSI_BLAST run with the ‘nr’ database. Our 

runtime is comparable to the runtime of BindN+ which utilizes PSI-BLAST on a much 

smaller UniProt database. Both methods predict an average size protein in about 10 

seconds using a modern desktop computer.  

We fit the measured runtime using polynomials for DRNApred, BindN+ and the 

other methods that use PSI_BLAST with the ‘nr’ database (see lines in Figure 5.10). We 

use these polynomials to estimate the total runtime to predict the complete human 

proteome that has 69178 proteins; this is the largest proteome among all species. The 

DRNApred is estimated to take about 48 days, BindN+ 21 days, while the other methods 

take substantially more time, with 531 to 1475 days which translates into 1.5 to 4 years. 

These estimates are based on computations with a single processor (i7-CPU and 23GB 

RAM). We note that our estimate is similar to the actual runtime of 55 days that we 

measured when using DRNApred to predict the human proteome. We performed 

calculations using 8 processors by processing a different subset of proteins on each 

processor, which cut down the time to 7 days. These results suggest that DRNApred is 

sufficiently fast to perform genome-wide predictions using a desktop computer. 

In the nutshell, the runtime of DRNApred is relatively low and comparable to the 

fastest current method, allowing for genome-wide predictions, while our predictor offers 

substantially better predictive performance. 

5.4 Conclusions 

Although many methods for the prediction of the DNA and RNA-binding residues 

from the protein sequence have been published, their weakness is that they cross-predict a 

substantial number of the nucleic acid binding residues (DNA-binding residues are 

predicted as RNA-binding as vice versa) and require relatively high runtime. Motivated 

by this, we developed a new high-throughput (runtime-efficient) method that accurately 
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and specifically predicts only DNA-binding and only RNA-binding residues. We 

designed the DRNApred method by considering a comprehensive set of features 

extracted from diverse sequence-derived information including amino acid type, 

physiochemical properties of amino acids, evolutionary profiles, and putative intrinsic 

disorder, secondary structure, solvent accessibilities using a dataset with both DNA-

binding and RNA-binding proteins. We implemented a weight-based mechanism to 

penalize cross-predictions, performed empirical selection of a subset of predictive and 

non-redundant features, and used logistic regression algorithm to produce the predictive 

model. To further reduce the cross-predictions, our method uses a two-layer design where 

initial predictions generated by the regression in the first layer are fed into another 

regression-based model in the second layer that re-predicts the DNA-binding and RNA-

binding residues. We empirically demonstrate that the three novel design ideas (use of the 

combined dataset with RNA and DNA binding proteins, use of penalties, and use of the 

second layer) contribute to improving the predictive quality by reducing the amount of 

cross predictions. We comparatively tested DRNApred on the test dataset for the 

prediction of the DNA and RNA-binding residues and proteins. We show that 

DRNApred substantially reduces the cross predictions (measured with AURC and 

AULRC) for the prediction of the binding residues while maintaining similar overall 

predictive quality (measured with AUC and AULC) when compared to the existing 

methods. Importantly, empirical analysis reveals that our predictor finds arguably higher 

quality false positives that are located nearby the native binding residues. It also predicts 

substantially fewer DNA binding residues in the RNA binding proteins and vice versa 

when compared with the other considered predictors. We also compared predictive 

performance for the prediction of the DNA and RNA-binding proteins. We show that 

DRNApred secures the highest AUCs and outperforms the other methods by correctly 

predicting more DNA and RNA-binding proteins at the same false positive rate. 

Moreover, empirical tests demonstrate that DRNApred is computationally efficient, at 

least 3 orders of magnitude faster than majority of the other methods, excluding BindN+. 

We show that DRNApred and BindN+ have similar runtime profiles, that both can be 

used to perform genome-wide predictions on a desktop computer, while DRNApred 

provides better predictive performance and lowest levels of cross predictions. 
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Chapter 6  

Goal 4: Identification of known and 

novel DNA- and RNA-binding 

residues/proteins on proteomic-

scale 

A significant amount of effort has been made to annotate the DNA and RNA binding 

proteins in the human proteome. Several databases with the annotated DNA and RNA 

binding proteins have been developed, such as the RBPDB database of RNA-binding 

proteins [92], animalTFDB of DNA-binding transcription factors [93, 94], and the 

UniProt [95] database that includes annotations of nucleic acids binding via the gene 

ontology (GO) terms. These databases annotate 4.7% and 1.8% of the human proteins as 

DNA-binding and RNA-binding, respectively. These fractions are low compared to the 

estimated number of the nucleic acid binding proteins. For instance, the fraction of 

transcription factors alone (a subset of the DNA-binding proteins that transcribe DNA 

into RNA) in human was estimated to be 7.9% [94]. Similarly, the number of RNA-

binding proteins was recently estimated to be at least 7.5% [96]. We take advantage of 

the runtime efficiency of our method and apply it to perform prediction of the nucleic 

acid binding proteins and residues on the entire human proteome to facilitate finding of 

the still missing DNA and RNA binding proteins and to find out how well our method 

predicts the already known DNA and RNA binding proteins.  

We apply the time-efficient DRNApred method to perform large-scale predictions on 

the complete human proteome that includes about 70000 proteins. We assess its 

predictive performance by measuring whether it specifically predicts only the target type 

of binding proteins/residues in the known binding proteins from the human proteome, 
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e.g. whether its predictions of the DNA-binding residues target primarily the known 

DNA-binding proteins and how many of these predictions are in the known RNA-binding 

proteins, and vice versa. We compare these results with the predictions generated with 

BindN+ to validate whether DRNApred outperforms BindN+ (as we have shown that 

using a test dataset in Chapter 5) by reducing the cross predictions. We also assess 

whether novel binding proteins that are predicted with DRNApred (predicted binding 

proteins that not overlap with the known binding proteins) are likely to be correctly 

predicted. We use indirect evidence by comparing subcellular localization of these novel 

binders with the subcellular localization of the known binding proteins and by estimating 

the charge of the residues in the novel binders that putatively interact with the nucleic 

acids. A significant overlap in the localization would suggest that the novel nucleic acids 

binding proteins are correctly predicted. Knowing that DNA/RNA binding residues are 

positively charged to bind to the negatively charged DNA/RNA molecule, we compare 

the fraction of positively charged residues among the predicted binding and nonbinding 

residues in the known and novel binding proteins. Again, similar levels of charge 

between the known and putative binders, and similar levels of differences from the 

charge of the nonbinding residues would suggest that the novel putative nucleic acid 

binders are likely correctly predicted. 

6.1 Material and methods 

Datasets of native DNA and RNA binding proteins in human 

We collect 69178 human proteins that constitute the complete human proteome 

published in the UniProt database. We annotate the known RNA and DNA binding 

proteins in the human proteome using the databases utilized in [72] including the gene 

ontology (GO) terms in UniProt [95], RBPDB database of RNA-binding proteins [92], 

and animalTFDB of DNA-binding transcription factors [93, 94]. A protein is annotated as 

a known RNA binding and/or DNA binding protein if it is included in any of the 

corresponding databases. As a result, 3229 proteins (4.7% of the human proteome) are 

annotated as the DNA-binding proteins and 1276 proteins (1.8% of the human proteome) 

are annotated as the RNA-binding proteins.  
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Prediction of the DNA and RNA binding residues and proteins in human 

We apply DRNApred and BindN+ to predict the RNA and DNA binding residues and 

the RNA and DNA binding proteins in the human proteome. We compare with the results 

generated by BindN+ because this is the only runtime efficient method that could provide 

predictions on such large scale (Figure 5.10) and since it offers good levels of predictive 

performance (Table 5.2). We use the predicted DNA and RNA binding residues 

generated by both methods to define predicted DNA and RNA binding proteins, 

respectively. The predicted binding proteins have the number of the corresponding 

predicted binding residues higher than a threshold that corresponds to the FPR of the 

binding protein predictions on the test dataset equals 5% (detail are given in section 

5.3.4). This is to accommodate for spurious predictions that are associated with the false 

positive predictions inherent in the outputs of the predictive models. 

Assessment of predictive performance 

We evaluate the extent of the cross predictions of the native DNA and RNA binding 

proteins for DRNApred and BindN+ on the human proteome. In other words, we evaluate 

whether these methods specifically predict only the desired one target type of binding 

proteins without confusing DNA-binding and the RNA-binding proteins. We calculate 

the ratio of the fraction of correct predictions to the fraction of the incorrect cross 

predictions among the known binding proteins. For example, for the prediction of the 

DNA-binding proteins, we calculate the ratio of the fraction of the correctly predicted 

known DNA-binding proteins to the fraction of the predicted DNA-binding proteins 

among the known RNA-binding proteins. This ratio quantifies the ability of a given 

method to predict the correct type of binding proteins while maintaining low rate of mis-

prediction of the incorrect type of binding proteins. A random predictor would attain the 

ratio = 1, i.e., its fraction of correct predictions in the correct type of nucleic acid is equal 

to the fraction of incorrect predictions in the other type of the nucleic acid. The ratio > 1 

indicates better than random prediction, with the higher number corresponding to a more 

accurate method.  
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Moreover, we also compare the cross predictions at the residue level. That is, we 

assess whether DRNApred and BindN+ specifically predict the target type of binding 

residues without confusing the DNA-binding and RNA-binding residues. The proteins in 

the human proteome are annotated per sequence. That means that we have the 

information whether a given protein binds to DNA or RNA, but not which amino acids in 

that protein bind to DNA or RNA. Thus, we perform the tests at the residue level 

indirectly by investigating whether the predicted binding residues are located in the target 

type of binding proteins. We calculate the ratio of the fraction of predicted binding 

residues in the correct type of binding proteins to the fraction of the predicted binding 

residues in the incorrect type of binding proteins using the set of known binding proteins. 

For example, for the prediction of the DNA-binding residues, we calculate the ratio of the 

fraction of the predicted DNA-binding residues in the known DNA-binding proteins to 

the fraction of the predicted DNA-binding residues in the known RNA-binding proteins. 

A random predictor would secure ratio = 1. The ratio > 1 indicates that a given method is 

better than random and higher values correspond to stronger predictive performance. 

Validation of novel DNA and RNA binding proteins and residues predicted by 

DRNApred 

We analyze the novel DNA and RNA-binding proteins and residues predicted by 

DRNApred method. These residues and proteins do not overlap with the known DNA 

and RNA-binding proteins.  

First, we investigate and compare the subcellular localization between the novel and 

known binding proteins. A pattern of similar localization would indicate a high likelihood 

that the novel binding proteins are in fact correctly predicted. The subcellular location is 

annotated based on the (GO Cellular Components (CC) terms collected from the UniProt 

resource for the human proteome. We use all proteins for which this information is 

complete. Our goal is to find out whether the GO-CC terms associated with the known 

binding proteins are similar to the GO-CC terms of the novel putative binding proteins. 

First, for each GO-CC term we calculate its fraction of occurrence (defined as number of 

occurrences divided by the number of proteins) among the known binding proteins. We 

also calculate the fraction of occurrence of this GO-CC term in the whole human 
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proteome to establish a point of reference. The GO-CC term is assumed to be enriched in 

the known binding proteins if the fraction of occurrence in these proteins is much higher 

(at least 100% increase) than the fraction in the whole proteome. Next, we investigate 

whether each enriched GO-CC term is also enriched in the novel putative binding 

proteins. We calculate the fraction of their occurrence among the novel predicted binding 

proteins, and compare them with the corresponding points of reference (fractions in the 

whole proteome excluding the known binding proteins). We consider a given GO-CC 

term as enriched in the novel putative binding proteins if its fraction of occurrence in 

these proteins is much higher (by at least 100%) compared to the reference. We 

hypothesize that the putative novel DNA and RNA binding proteins are correctly 

predicted if their enriched GO-CC terms cover most of the GO-CC terms enriched in the 

known binding proteins.  

Second, we analyze and compare the residue level predictions between the novel and 

known binding proteins. We compare the levels of the positively charged residues 

(Arginine and Lysine) between the binding and nonbinding residues. This is motivated by 

the observation that DNA and RNA binding residues are positively charged in order to 

bind to the negatively charged phosphate backbone of the DNA or RNA molecule. We 

expect and empirically confirm that the fractions of the putative positively charged 

binding residues (number of positively charged putative binding residues divided by the 

number of putative binding residues) among the known DNA and RNA binding proteins 

are substantially higher than the fractions among the putative non-binding residues in 

these proteins and among the residues in the human proteins. We also compute the same 

fractions among the novel putative DNA and RNA binding proteins. We hypothesize that 

the putative novel DNA and RNA binding residues are likely predicted correctly if their 

fractions are much higher than the fractions for the non-binding residues in these proteins 

and in the non-binding human proteins, while being comparable to the corresponding 

fractions for the known binding proteins.  
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6.2 Results and discussion 

6.2.1 Assessment of predictive performance on the known DNA and RNA 

binding proteins in the human proteome 

We assess predictive quality of DRNApred and BindN+ on the human proteome by 

comparing their cross predictions of the DNA and RNA binding proteins in the sets of 

known DNA-binding and RNA-binding proteins. In particular, we calculate and compare 

their ratio of the fraction of the correctly predicted known binding proteins to incorrectly 

cross predicted known binding proteins. The results are shown using black bars in Figure 

6.1. Both DRNApred and BindN+ generate better than random results for the prediction 

of the DNA-binding proteins; their ratio values are above 1. BindN+ obtains ratio =1.5, 

which means that it predicts 1.5 times higher fraction of DNA-binding proteins in the 

known DNA-binding proteins than in the known RNA-binding proteins. DRNApred 

outperforms BindN+ by securing the ratio = 2, a 50% improvement. Moreover, BindN+ 

secures ratio  1 for the prediction of the RNA-binding proteins. This reveals that this 

method substantially cross-predicts the DNA-binding proteins as RNA binding. The 

predictions of the RNA-binding proteins by DRNApred are substantially better, with the 

ratio = 3. This means that DRNApred predicts three time more correct RNA binding 

proteins compared to the incorrectly cross predicted DNA binding proteins. Overall, 

these results demonstrate that DRNApred provides specific predictions of the DNA 

binding and the RNA binding proteins. 

We also assess the predictive quality of DRNApred and BindN+ by comparing their 

cross predictions of the predicted binding residues in the sets of known DNA-binding and 

RNA-binding proteins. We calculate the ratio of the fraction of the predicted binding 

residues among the correct type of known binding proteins to the fraction of the putative 

binding residues in the cross predicted type of known binding proteins. The results are 

shown using grey bars in Figure 6.1. DRNApred achieves ratio of 2.1 for the prediction 

of the DNA-binding residues, which means that it predicts over two times higher fraction 

of DNA-binding residues in the known DNA-binding proteins than in the known RNA-

binding proteins. To compare, BindN+ obtains ratio = 1.3, which suggests that it cross 
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predicts a more substantial number of DNA binding residues. DRNApred also 

outperforms BindN+ when considering the prediction of RNA-binding residues. BindN+ 

obtains a ratio at about 1 indicating that it predicts similar fraction of RNA binding 

residues in both known DNA-binding and RNA-binding proteins. DRNApred secures a 

high ratio = 6.2. The observation that DRNApred accurately and specifically predicts 

each type of the nucleic acid binding on the human proteome is consistent with the 

conclusions that we have reached on the test dataset (see Section 5.3.2). 

 

Figure 6.1. Predictive performance of DRNApred and BindN+ for the prediction of binding 

proteins and residues in the known binding proteins from the human proteome. 

The y-axis shows ratio between the fraction of predictions on the correct type of known binding proteins and the 

fraction of predictions on the cross predicted type of known binding proteins. Random predictor would return ratio =1 

and higher ratio indicates a smaller amount of cross predictions. Black (gray) bars summarize comparison for the 

prediction of the binding proteins (residues).  

 

6.2.2 Evaluation of novel putative RNA and DNA binding proteins  

We investigate the degree of an overlap in subcellular localizations, which are 

annotated based on the gene ontology cellular component (GO-CC) terms, between the 

novel binding proteins and the known binding proteins. We create a list of the GO-CC 

terms that are substantially enriched in the known binding proteins, by at least three folds, 

when compared to their abundance in the whole proteome. These terms are significantly 

associated with the localization of the DNA binding and the RNA binding proteins. Next, 
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we calculate the fraction of these terms that are substantially enriched, by at least 100%, 

in the novel binding proteins. A high fraction indicates that both known and novel 

putative RNA and DNA binding proteins share similar subcellular localization. Results 

are shown in Figure 6.2. The x-axis shows the minimal level of enrichments of the 

considered GO-CC terms in the known binding proteins. The numbers of these terms, 

which are shown above the bars, are fairly high indicating that they can be used to 

pinpoint the subcellular localization of the native binders. As the required enrichment of 

the GO-CC in the known binders grows from at least 3 to 10 folds so does the fraction of 

these terms that are also significantly enriched in the novel putative binders. These 

fractions start at 65% and 78% for the DNA and RNA binding proteins, respectively, 

when considering the over 100 terms that are enriched by at least 3 folds in the native 

binders. Given that we use 42 and 69 terms that are enriched by at least 10 folds in the 

DNA and RNA binding proteins, respectively, 100% and 90% of them are also enriched 

in the novel putative binders. This revels that virtually all of the subcellular localizations 

that are significantly associated with the native RNA and DNA binding proteins are also 

significantly enriched in the novel RNA and DNA binding proteins that were predicted 

by DRNApred. In other words, the localizations of the putative and native RNA and 

DNA proteins are in agreement, suggesting that the novel binding proteins are likely 

predicted correctly. 
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Figure 6.2. Fraction of the gene ontology cellular component (GO-CC) terms associated with the 

known binding proteins that are also enriched by at least 100% in novel putative binding proteins.  

The enrichment in the GO-CC terms is computed against their abundance in the proteome. The x-axis shows the 

minimal level of enrichments of the GO-CC terms in the known binding proteins, the corresponding numbers of 

significantly enriched terms are shown above the bars. Grey (black) bars summarize results for the RNA (DNA) 

binding proteins. 

 

We analyze whether the predicted binding residues in the novel binding proteins are 

similar to the binding residues in the native binding proteins. Since one of the hallmarks 

of the DNA and RNA binding is inclusion of charged residues, we compare the fractions 

of the positively charged residues among the predicted binding and nonbinding residues 

in these proteins with the fractions in the known binding proteins and in the whole 

proteome. Results are summarized in Figure 6.3. Overall, about 11% of residues in the 

human proteome are positively charged. There are 3.4 and 2.7 (1.9 and 1.8) times more 

positively charged residues among the predicted DNA-binding (RNA-binding) residues 

in the known and novel putative DNA-binding (RNA-binding) proteins, respectively, 

when compared to the proteome. This is expected for the native binders while the similar 

levels of the enrichment in the novel putative binders suggest that they are likely 

correctly identified by DRNApred. Moreover, the fraction of the positively charged 

residues among the putative nonbinding residues in both known and putative DNA and 

RNA binding proteins is similar to the level of the positively charged residues in the 

proteome. The differences in the levels of the positively charged residues between the 
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putative binding and nonbinding residues support our claim that the putative binding 

residues generated by DRNApred are likely to bind the two nucleic acids. This 

observation is consistent for both native and novel putative DNA and RNA binding 

proteins. 

 

Figure 6.3. Fraction of the positively charged residues among the binding and nonbinding 

residues in the known and novel binding proteins and among the residues in the entire human 

proteome.  

Grey (black) bars summarize results for the RNA (DNA) binding proteins. The hollow bar shows the results for the 

human proteome. 

6.3 Conclusions 

A substantial number of the DNA and RNA binding proteins are yet to be discovered 

in the human proteome. To this end, we apply our time-efficient DRNApred method to 

perform large-scale prediction and assessment of the DNA and RNA binding proteins and 

binding residues in the human proteome. We compare predictive quality, in particular 

focusing on the cross prediction between RNA and DNA binding in the known binders, 

between DRNApred and BindN+. We show that DRNApred substantially reduces the 

cross predictions at both residue and protein levels when compared to BindN+. It obtains 

a higher ratio of the fraction of correctly predicted known binding proteins and residues 

to the incorrectly cross predicted known binding proteins and residues, respectively. 

These observations are consistent with our conclusions from Section 5.3.2 that are based 
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on the test dataset. We also analyze whether the novel binding proteins share similarities 

with the native binding proteins. We show that their subcellular localizations and content 

of positively charged residues among their binding residues are similar. This provides 

support to the claim that DRNApred can be used to accurately discover novel DNA and 

RNA binding proteins in human.  
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Chapter 7  

Summary, major contributions, 

conclusions and future work  

This thesis is focused on the development and validation of novel predictive models 

which accurately and specifically predict DNA-binding and RNA-binding residues from 

protein sequences in the high-throughput fashion. Our focus is primarily on the ability of 

these models to differentiate between DNA- and RNA-binding residues while offering 

state-of-the-art overall predictive performance. 

In goal 1 we comprehensively reviewed 14 sequence-based methods for the 

prediction of DNA-binding residues and 16 methods for the prediction of RNA-binding 

residues. We summarized how they define binding residues and discussed the variety of 

their designs, defined in terms of how they encode the input amino acids, predictive 

model that they apply, and format of their outputs. Although these methods vary in their 

design, many of them share certain design elements like the use evolutionary information 

and sliding windows to encode inputs and the use of SVM as the predictive model. The 

input features used to predict DNA-binding residues are similar to the inputs used by the 

predictors of RNA-binding residues, which is not surprising given the chemical similarity 

between DNA and RNA. We also empirically assessed a selected set of conveniently 

available to the end user predictors of the DNA-binding and RNA-binding residues on a 

test dataset with the DNA-binding and RNA-binding proteins, respectively. Our results 

demonstrate that these predictors provide good predictive quality when separating RNA 

binding residues from nonbinding residues and DNA binding residues from nonbinding 

residues. Their AUCs range between around 0.7 and 0.8 and MCCs between around 0.1 

and 0.3; these results are based on a new and challenging test dataset characterized by 

low sequence similarity to the datasets used to design these methods. We also assessed 

how these predictors differentiate between different types of nucleic acid binding 
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residues by testing them on the test dataset that includes both DNA and RNA binding 

proteins; this was never done before. We found that these methods substantially cross 

predict the binding residues, which means that they mis-predict RNA-binding residues as 

DNA-binding and vice versa. This is likely the results of use of similar input features and 

the fact that these methods were trained based on data sets that use either only DNA-

binding or only RNA-binding proteins. These results that were published online in May 

2015 [77] were very recently confirmed by a more recent study that was released in 

December 2015 [35]. The high amounts of cross predictions prompted us to investigate 

the development of methods that would reduce these amounts, including consensus-based 

approaches and new predictors. 

In goal 2 we investigated a comprehensive set of designs of consensus-based methods 

with the underlying goal to improve predictive performance and reduce the cross 

predictions. These consensuses include simple logic-based and majority vote-based 

consensuses and a more sophisticated machine learning (ML) consensus. Our empirical 

evaluation have shown that the logic-based consensus that combines several predictors 

with logic AND and logic OR operators, and a simple majority vote consensus do not 

offer improvements when compared with the individual input methods on a challenging 

test dataset. Moreover, while we demonstrate that the ML consensus offers improved 

predictive quality; neither consensus type solves the cross prediction problem. To this 

end, we attempted to address the cross prediction by conducting a first-of-its-kind study 

in which we designed novel consensuses for the combined prediction of DNA- and RNA-

binding residues. We designed three types of such consensuses including a ML based 

approach. We empirically show that this ML consensus offers strong predictive 

performance in the combined prediction and also for the prediction of DNA-binding or 

RNA-binding residues individually. It provides higher values of MCC compared with the 

best-performing individual predictors. Most importantly, it also substantially reduces the 

cross-prediction. However, this consensus is hard to use, given that the end user would 

have to collect predictions from 8 methods, and is not runtime efficient since these 

predictors are relatively slow. 
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In goal 3 we address the weaknesses of the consensus-based solution by developing a 

novel high throughput (low runtime) method DRNApred that accurately and specifically 

predict only DNA-binding and only RNA-binding residues from protein sequences. The 

three main novel features of our design are the application of a new in this area 

architecture with two layers, and use of a new dataset with both DNA-binding and RNA-

binding proteins and a weight-based mechanism to penalize cross predictions. In the first 

layer, we considered a comprehensive set of numerical features to encode the input 

sequence. They include the amino acid type, physiochemical properties of amino acids, 

evolutionary profiles, and putative intrinsic disorder, secondary structure, solvent 

accessibility. We introduced the weight-based mechanism into the model training process 

that includes empirical selection of a subset of predictive and non-redundant features and 

computation of a logistic regression-based predictive model. The second layer includes 

regression-based predictive model which takes DNA-binding and RNA-binding 

predictions from the first layer as input and redoes predictions to further reduce the cross 

predictions. Our empirical results show that the three novel design ideas results in 

substantial reduction of the cross predictions. We compared DRNApred with selected 

state-of-the-art existing methods on a challenging test dataset that shares low sequence 

similarity with proteins used to build these predictive tools. This empirical comparison 

demonstrates that DRNApred secures similar overall predictive quality (measured with 

AUC and AULC) when compared to the other methods and it also dramatically reduces 

the cross predictions (measured with AURC and AULRC) for the prediction of both 

DNA-binding and RNA-binding residues. DRNApred also finds arguably higher quality 

false positives (novel putative binding residues) that are located close to the native 

binding residues. We also compared DRNApred and the other considered methods for the 

prediction of DNA-binding and RNA-binding proteins. The results show that DRNApred 

outperforms these methods. It secures the highest AUC value and correctly predicts more 

binding proteins at low false positive rates. We also demonstrate that DRNApred is 

computationally efficient and could be applied on the proteomic scale.  

In goal 4 we applied the runtime efficient DRNApred and BindN+ methods to 

perform a large scale prediction on the entire human proteome. We compared the 

predictive quality of these two methods for the prediction of RNA and DNA binding 
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proteins and residues among the known DNA and RNA binding proteins. Results show 

that DRNApred outperforms BindN+ by substantially reducing the cross predictions. 

More importantly, we analyze the novel binding proteins that are predicted by 

DRNApred. We compare the subcellular localizations between these novel binding 

proteins and the known binding proteins. Results show that these two sets of proteins 

share similar localizations which suggest that our novel binding proteins are likely to be 

correctly predicted. We also analyze the binding residues predicted with DRNApred. 

Using one of the hallmarks of the protein-nucleic acids binding, we compare the fraction 

of the positively charged residues among the predicted binding and nonbinding residues 

in the novel and known binding proteins. The results show that the predicted binding 

residues have higher fraction of positively charged residues compared to the predicted 

nonbinding residues in both known and novel binding proteins. This further validates our 

claim that the predicted binding residues are likely to be correct.  

7.1 Major contributions 

 Goal 1: Assessment of predictive performance of existing sequence-based 

DNA- and RNA- binding residue predictors. 

o Comprehensive review of 30 sequence-based predictors of DNA-binding 

and RNA-binding residues. This review covered aspects of their design, 

outputs and availability. Compared to the previous reviews that consider 

only methods for prediction of one type of nucleic acid binding, our 

review analyzes both the DNA-binding and RNA-binding residue 

predictors, and includes several recently published methods. 

o Development of a new benchmark dataset characterized by a more 

complete annotation of RNA and DNA binding residues. Our dataset was 

published and is the first to contain both DNA-binding proteins and RNA-

binding proteins for which the binding annotation is improved by 

transferring annotation from the same or similar proteins. 
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o Empirical assessment of predictors of the DNA-binding (RNA-binding) 

residues on RNA-binding (DNA-binding) proteins to quantify the extent 

of cross predictions. 

o Introduction of a new measure, ratio, that quantifies the amount of cross 

predictions for the binary predictions.  

 Goal 2: Development of novel consensus-based predictors to improve 

accuracy of the prediction of DNA- and RNA- binding residues. 

o Comprehensive study of different types of consensuses including simple 

consensuses and machine learning consensus for the prediction of 

DNA/RNA-binding residues. We demonstrate that the machine learning 

based consensus provides improved predictive performance when 

compared with the individual predictors of DNA/RNA-binding residues. 

o First-of-its-kind study to design a method for the combined prediction of 

DNA- and RNA- binding residues to solve the cross prediction between 

DNA-binding and RNA-binding residues. We show that our approach 

substantially reduces the cross prediction problem. 

 Goal 3: Development of DRNApred, a new high-throughput method that 

accurately and specifically predicts only DNA-binding and only RNA-

binding residues. 

o Development of a novel high-throughput method that accurately and 

specifically predicts only the DNA-binding and RNA-binding residues 

from protein sequence. Our method is developed using three novel ideas 

including use of a combined dataset of both DNA and RNA binding 

proteins, use of a penalty for the cross predictions, and using a second 

predictive layer. 

o Introduction of a new measure, AURC, that quantifies the amount of cross 

predictions for the propensity predictions.  
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o First-of-its kind analysis of the predicted binding residues. We analyze 

how close they are from the native binding residues, and how the 

predictive quality would change if the predictions in a close proximity of 

the native binding residues were considered as correctly predicted. 

o First-of-its kind analysis of the predictive performance of DRNApred and 

the considered predictors of the DNA/RNA-binding residues for the 

prediction of the DNA/RNA-binding proteins.  

o First-of-its kind comparison of the runtime of DRNApred and the 

considered predictors of the DNA and RNA binding residues. 

 Goal 4: Identification of known and novel DNA- and RNA-binding 

residues/proteins on proteomic-scale. 

o Prediction of the DNA and RNA binding proteins in human proteome 

using DRNApred and BindN+.  

o Assessment of how specifically DRNApred and BindN+ predict target 

type of binding proteins/residues in the human proteome.  

o Validation of the novel binding proteins/residues predicted by DRNApred. 

7.2 Conclusions 

The major conclusions from this thesis as are follows. First, the current methods for 

the prediction of the DNA and RNA binding residues offer good predictive performance 

when tested on the corresponding type of the nucleic acid. However, these methods 

substantially cross predict between DNA and RNA binding residues. Second, simple 

consensus methods do not offer improvements compared to individual predictors of the 

DNA and RNA binding residues. Third, machine learning-based consensuses that address 

prediction of DNA or RNA residues offer improved predictive performance but they also 

suffer high rates of cross predictions. Four, a novel type of consensus combining 

predictions of DNA and RNA binding residues offers strong predictive performance and 

reduces the cross predictions. However, these consensuses are difficult to implement and 
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are characterized by long runtime. Five, accurate prediction combined with low cross 

prediction, low runtime and convenient to run architecture is possible with the help of 

novel predictor DRNApred. Six, DRNApred generates accurate predictions on proteomic 

scale that can be used to accurately find novel putative DNA and RNA binding proteins. 

7.3 Future work 

Given the contents of the datasets that were used to develop our and other methods in 

this area, these methods are designed to predict the DNA and RNA binding residues in 

the structured protein and protein regions. This is because these datasets are derived from 

structures of the protein-RNA and protein-DNA complexes. However, research shows 

that protein-DNA and protein-RNA interactions frequently occur also in the intrinsically 

disordered regions and intrinsically disordered proteins (Section 2.1 discusses intrinsic 

disorder) [97-100]. A time efficient method disoRDPbind [72] that predicts nucleic acid 

binding residues in the disordered regions was recently published. Thus, one interesting 

extension of this work would be to combine the predictions of DNA and RNA binding 

residues in the structured regions (by DRNApred) with the predictions in the disordered 

regions (by disoRDPbind). This would lead to the development of a more complete set of 

putative DNA and RNA binding proteins and residues.  

Given the arguably high predictive quality of the putative results generated by 

DRNApred and DisoRDPbind, another practical extension would be to predict DNA and 

RNA binding proteins and residues on large scale of multiple proteomes (species) and 

make these results accessible to the end users as a convenient web-based database. 

Similar efforts have been already made to provide access to putative annotations of 

intrinsic disorder on the scale of thousands of proteomes: the MobiDB [101, 102] or D2P2 

[103] databases. These databases are widely used, which is evident based on their high 

citations counts, relative to when they were published and the venue where they were 

published. D2P2 and MobiDB that were published in 2013 and 2012, respectively, were 

already cited 90 times each (source: Google Scholar as of May 2016; the 90 citations for 

MobiDB include 56 citations for version 1 and 36 for version 2). A large-scale database 

of putative DNA and RNA binding would ease access to this information for the less 
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computer-savvy biologists who would be able to retrieve pre-computed results using a 

web browser.  

Both of these future advances would potentially have substantial impact. Analysis of 

the DNA and RNA binding predictions across different proteomes/species might provide 

novel insights into the evolution and cellular functions of the corresponding proteins. It 

may also help us to better understand the molecular-level mechanisms underlying the 

protein DNA/RNA interactions. 
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