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Abstract

In both computer graphics and computer vision, scenes and objects must be represented mathemati

cally in some way. Representations tailored to ease scene acquisition in vision, may be inefficient to 

render. Likewise, models designed specifically for efficient rendering may be difficult, if not impos

sible, to capture from cameras. In this thesis, we explore potential graphical models which are both 

convenient to acquire from images, and well suited for real-time rendering using modern graphics 

hardware.

Our representation is a hierarchical hybrid image/geometry based model for graphics objects and 

scenes. Each of three scales of detail macro, meso, micro is represented differently in an attempt to 

most efficiently store, render and capture the model. Macro scale is the large scale or overall shape, 

which we represent using a low-resolution polygonal mesh. Meso scale detail, which is defined 

loosely as lying between macro and micro, is represented using displacement mapping, for which 

a novel hardware accelerated rendering algorithm is presented. At the micro scale, light-surface 

interaction properties are represented using a parameterized texture mapping technique called dy

namic texture, where a linear texture basis is precomputed from example images and blended when 

rendering to reproduce different lighting conditions.

A system was built and used to capture this type of model from real-world objects, which were 

then rendered, and integrated into virtual scenes. Additionally, experiments were performed which 

evaluate each subsystem independently.
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Chapter 1

Introduction
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The level of detail attainable by real-time rendering engines is quite incredible, and increasing 

at an astounding rate. Texture mapped triangles have been, and for the most part still are, the basic 

geometric primitive with which these detailed scenes are modeled. However, it is beginning to 

become clear that the continued increase in triangle mesh resolution is no longer the most efficient 

way to increase the realism of such scenes. The main reason for this is that rendering hardware 

has evolved such that most of the processing power power is available at the pixel level. Simply 

increasing geometric resolution does not take full advantage of this hardware.

Recently, video game engines have begun to diverge from the philosophy that more triangles 

necessarily make a more realistic image. The Doom III engine from ID software, for example, 

is heavily focused on realistic shading using per-pixel lighting and bump-mapping on nearly all 

surfaces, and extensive dynamic shadowing [28]. While using relatively few polygons, the realism 

achieved by this game is very impressive.

When graphics models are acquired from real world scenes and objects for the purposes of 

efficient rendering, the same principles should apply. Although it may be possible to capture an 

entire object or scene geometrically with 100 micron precision using a laser scanner, it would be 

both difficult to perform the scan, as well inefficient to render the resulting model. Instead, using 

image data for smaller scale details can be a more effective use of acquisition time, memory, and 

rendering time. Image data could be not only in the form of basic texture-mapped images, but also 

various other image-based representations, such as the parameterized textures that we will describe 

in Chapter 4.

Pure image-based rendering methods take this even further suggesting that entire scenes or ob

jects can be represented solely by image data, but this requires very many images in the same way 

that pure geometric models require so many polygons. Clearly, modeling absolutely everything with 

polygons is not particularly efficient, but it is also problematic to model scenes entirely with images; 

it seems that some mix of geometric and image-based models would be most efficient.

There are three scales that are often discussed separately in computer graphics, as they can be 

most efficiently rendered in different ways: Macro, Meso, and Micro. This is similar to how, in 

physics, problems of a certain scale, like the trajectory of a baseball, can be solved with a simple 

formula (a mathematical model), but when the same problem is scaled up to the trajectory of a 

planet, a more complex model is required. We will illustrate each scale, by referring to how one 

would model a brick wall.

The macro scale is the largest scale, and corresponds to the overall shape of the object, such as 

a single rectangle for our brick wall. This scale is most often represented with polygons, as it will

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



continue to be in this thesis. Other possible structures for macro scale modeling are parametric and 

implicit curved surfaces [18].

In the middle, we have the meso scale. At this scale, we model the details like the indentations 

between bricks, imperfections and cracks in each brick etc. This scale is not strictly defined: the size 

of so called details could vary significantly depending on the application. Most current rendering 

engines mainly use bump mapping to render details of this scale, which approximates the effect 

of small bumps using only shading [2]. Some more advanced techniques, which will no doubt be 

used in future engines, include self shadowing bump mapping [40], parallax mapping [55], and 

displacement mapping [9].

The micro scale is the smallest scale, and represents how light interacts with the surface at a 

microscopic level. This means, given an input light direction, color and intensity, what light color 

and intensity is emitted toward the camera. This is a function called the Bidirectional Reflectance 

Distribution Function (BRDF). Methods for simulating this complex physical process vary widely. 

The simplest, and thus most common, real time methods use some parameterized lighting equations 

such as Phong or Lambertian [48]. Although efficient, these equations are approximate, and it can be 

difficult or impossible to tune the parameters and achieve a desired result. It is possible to compute 

an approximate BRDF from a set of images, but it is quite difficult, since this is a function of five 

dimensions: incoming and outgoing light direction, each of which have two degrees of freedom, 

and light wavelength (which is generally ignored). Acquired BRDF representations may be either 

approximate, or inefficient to store and render, so the use of such models has remained primarily a 

research area, and has not yet made it’s way into commercial systems.

In this thesis, we will present a tiered model which is designed considering both model acquisi

tion from images and efficient real-time rendering. Our system represents each of the macro, meso, 

and micro using different data structures, each of which can be acquired reasonably from images or 

other sources. The method balances well the efficient use of commercial rendering hardware with 

the ease of automated model construction.

We represent the macro scale using a triangular mesh. Two methods are described in Chapter 3 

that we have used for acquiring low resolution meshes from images. Structure from motion (SFM) 

uses feature correspondences over a sequence of video frames to extract scene geometry with no 

camera calibration required. Shape from silhouette (SFS) is a very robust algorithm which uses 

an object’s silhouette in multiple views combined with calibration information for each view to 

compute the visual hull, an approximation to the object’s shape.

Meso scale structure is represented in one of two ways. In our first system, we use a texture pa-

3
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rameterized by viewing direction. Dynamic Textures are used to store and render the parameterized 

texture efficiently as shown in Chapter 4. Although this method works well for very small geometric 

details, it becomes less efficient with more reasonable meso scales, and large ranges of viewing an

gle. The second system stores geometric details in a displacement map: a texture image where each 

element encodes the distance from the macro scale approximation to the true object along the sur

face normal at that point. The displacement mapped surfaces are rendered using a novel algorithm 

for per-pixel hardware accelerated displacement mapping which is described in Chapter 5.

Finally, the micro scale or surface reflectance model is represented using Dynamic Textures. 

Here, we parameterize a texture in terms of lighting conditions. This type of texture variation can 

be represented very efficiently by modulating a basis o f images. We sample large range of lighting 

conditions, but compress the information down into a small texture basis. In Chapter 4, the technique 

is discussed in detail.

M acro Meso Micro

Approximate Triangle Mesh Displacement Map Dynamic Texture Basis

& & &

Renderings with different views and lighting

Figure 1.1: Overview of how the Macro, Meso, and Micro scales are represented, and resulting 
renderings

Two systems were developed. One using a 2 tiered system based on a polygonal mesh combined 

with dynamic textures. The other has three tiers, combining a polygonal mesh with displacement 

mapping and dynamic textures. These systems are presented in Chapter 6. In addition, each tech

nique has also been evaluated individually with experiments shown in their respective chapters.

4
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Thesis Contributions

Parts of this thesis were published in seven papers and presentations in SIGGRAPH [58], Euro- 

Graphics [56,27,7], IEEE Virtual Reality [4, 8], and the IEEE International Conference on Robotics 

and Automation (ICRA) [57].

• Several hardware accelerated dynamic texture rendering algorithms were developed and im

plemented on various examples of consumer graphics hardware. (Section 4.5).

•  Techniques for the acquisition and storage of dynamic textures were developed. (Chapter 4 

and Section 6.1).

•  An easy-to-use system was built for acquiring dynamic textured models from only 2D images 

(Section 6.1).

• A plug-in was built for AliasWavefront’s Maya 3D modeling package. This allows users to 

render and animate our dynamic textured models alongside conventional models. (Section 

4.6)

• A novel displacement mapping algorithm was designed for modern graphics accelerators and 

implemented in hardware as a fragment program (Chapter 5).

• A hierarchical graphical model was designed as the combination of geometry, displacement 

mapping, and dynamic texture. (Chapter 1)

• A system was built to acquire hierarchical models of objects and efficiently render them (Sec

tion 6.2).

5
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Chapter 2

Review: Graphics Modeling
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In computer graphics, mathematical models of the world are required in order to generate syn

thetic images of it. Traditionally, scenes have been represented by a variety of geometric primitives 

such as polygons or curved surface patches. Building these geometric models manually can be time 

consuming, even for experienced artists. More recently, building geometric models automatically 

from images, or even working with models defined by images, with no explicit associated geometry 

has become a popular area of research known as image-based modeling and rendering (IBMR). Al

though commercial graphics software is still largely focused on geometric models, different forms 

of image data, such as texture maps, has been slowly making its way into the traditional graphics 

pipeline.

In this chapter, we very briefly describe conventional methods used for modeling graphics 

scenes. Although we attempt to provide some context in the area of computer graphics model

ing, we do not go into extreme detail. For a more complete overview of image-based and geometric 

models, respectively, see [18] and [5].

2.1 Conventional Models

Traditional graphics models represent the world as some set of geometric constructs. The geometry 

is rendered by simulating or approximating the physical processes that occur when a real photo 

taken.

2.1.1 Polygonal Models

The most commonly used geometric model is the polygonal mesh. Surfaces are represented by a set 

of connected polygons. 3D graphics accelerators and ray-tracing software generally focus on effi

ciently rendering triangles, so any higher order polygons in a model are usually triangulated before 

rendering. For the same reason, curved surfaces are often sampled discretely and also rendered as 

triangular meshes.

Polygonal meshes are often used as piecewise planar approximations to smooth surfaces. For 

lighting purposes, it is assumed that the normal to the true surface is computed by interpolation 

(either spherical or linear) of the surface normals at polygon vertexes. Vertex normals can be de

rived from the function defining a curved surface, but if such a function is unavailable, they are 

approximated by a weighted average of all polygons containing that vertex.

7
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2.1.2 Curved Surface Models

Curved surfaces can be represented as implicit or parametric functions.

Implicit surfaces are of the form S (x ,  y, z  ) =  0. It is simple to represent a sphere, torus, cylinder, 

or other geometric primitives in this way. More complex shapes are usually generated by CSG 

(Constructive Solid Geometry) operations between primitives such as union, intersection, etc. CSG 

operations are simple to implement with implicit surface models, making them popular with some 

modeling software. However, rendering these surfaces is not so simple. With ray-tracing, it is 

possible to simply intersect rays directly with an implicit surface by solving a system o f equations, 

but it is not necessarily efficient. Hardware accelerators only render triangles, so implicit surfaces 

must be converted to triangular meshes before rendering, which can be costly.

Parametric surfaces are formulated as [x, y, z] =  P(p,  q), where p, ge[0,1] parameterize its sur

face. This formulation is popular because of convenience in modeling, as well as simplified ren

dering. Commonly used parametric curves are mostly cubic polynomials: bezier, hermite, NURBS, 

etc. Parametric surfaces form patches which are used together to build an object, similar to how 

polygons are used in polygonal models. It is much easier to convert parametric curved surfaces 

into triangular meshes, making them more useful for real-time use. Most recent graphics hardware 

actually supports tessellation of some kinds of parametric surfaces.

2.1.3 Lighting

In model-based graphics, lighting is usually performed by evaluating a parameterized lighting equa

tion, either at each vertex or each rendered pixel and modulating that result with the surface color.

Ambient Ambient lighting is simply a constant amount of light, used to approximate global illumi

nation effects.

L  = a (2.1)

Here, a is the amount of ambient light.

Diffuse The diffuse or Lambertian lighting equation simulates lighting from rough surface. In this 

model, light incident to the surface is emitted equally in all directions.

L  — a + d(n ■ I) (2.2)

8
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Here, a is the amount of ambient light, d is the amount of diffuse light, 1 is the light direction, and n  

is the surface normal.

Specular Shiny surfaces can be simulated by having some amount of light reflect specularly (like a 

mirror). The Phong lighting equation is an example of such a model.

r =  2 ( n  • l )n — I (2.3)

L  =  a + d{n ■ I) +  s(r  ■ v )n (2.4)

Here, a is the amount o f ambient light, d is the amount of diffuse light, I is the light direction, n  is 

the surface normal, v is the view direction, s is the amount of specularity, r is the reflection vector, 

and n controls the size and intensity of specular highlights.

2.2 Image-Based Models

IBMR (image-based modeling and rendering) research seeks to simplify the modeling process, at 

least for scenes and objects that exist in the real world, which we may simply want to capture for 

re-rendering. There are two categories of IBMR algorithms: methods which simply use images to 

generate a conventional 3D model that is then rendered with standard methods, and methods which 

acquire some other sort o f model which requires specialized code for rendering.

Many algorithms exist for modeling conventional geometry from images. Stereo or multi-view 

stereo imaging computes depth images by finding image point correspondences in two or more 

images from calibrated cameras [47]. Shape from shading and photometric stereo solves for a depth 

image using one or multiple lightings of a scene [59]. Shape from focus acquires depth information 

using multiple images from the same view with different focal settings [43]. Structure from motion 

(SFM), like stereo, uses multiple image point correspondences to build 3D models. However, many 

image frames from a moving camera are used, and camera calibration is not required. A basic SFM 

method is shown in Section 3.1.

Shape from silhouette (SFS) uses the occluding contour of an object in multiple images to con

struct a volume approximating that object: the visual hull. We will discuss SFS in more detail 

in Section 3.2. Photo-consistency methods, use multiple images and the property that a particular 

point on an object should be the same color when viewed from any direction. With this property the 

photo-hull of the object can be “carved” from a volumetric structure [29],

9
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Although the research in modeling from images is extensive, most methods are neither compu

tationally efficient, nor particularly robust. This is part of the motivation behind pure image-based 

rendering, where the intermediate geometric model is eliminated, and novel images are generated 

more directly from sample images.

Most image-based models can be thought of as storing a large database of light rays which are 

acquired from some set of sample images. New images can be generated by finding a ray in the 

database that corresponds to each pixel in the desired image. The set o f all rays through a scene 

with a given origin and direction is called the plenoptic function [41]. Pure image-based methods 

usually take samples of the plenoptic function for a scene or object using many images, where each 

image pixel samples a single ray. Models differ in the way that the large amount of data is organized 

and how the function is approximated between samples. Early methods of this type include lumi- 

graph [20] and light-fields [31], which have led to many different varieties. Rendering new views 

using this type of model can require relatively little computation, but the memory requirements for 

approximating the 5D plenoptic function are very large. To reduce this effect achieving equivalent 

photo-realism, image-based data is often combined with approximate geometric models.

2.3 Hybrid Models

In real systems, pure geometric models are rarely used since it would be difficult, or near impossible, 

to model small scale details such as surface texture using polygons. However, due to their incredible 

storage and acquisition requirements, pure Image-Based Models are not very practical either. Some 

combination is usually used, giving rise to hybrid methods.

Although most conventional modeling and rendering software is geometry-based, texture map

ping is always supported. Texture mapping is where images are simply pasted onto geometric mod

els. This allows small and sometimes repetitive details to be represented much more efficiently 

than with polygons. Texture maps can be thought of as storing spatially varying albedo (or dif

fuse reflectance color). Texture mapping has been extended to vary other parameters in the lighting 

equation, such as surface normal (as in bump maps), specularity, or glow.

On the opposite side of the spectrum, some image-based rendering algorithms are based on 

reprojection of images with depth. This means that at each pixel we know the depth of that part 

of the scene along the camera’s viewing direction, and thus we know some geometric information 

about the scene.

10
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More in the middle lies view-dependent texturing, where different textures are applied to a sur

face depending on the viewing direction. This reduces the visual effect o f slight inaccuracies in 

the geometric model [12]. The bidirectional texture function (BTF) takes this one step further by 

sampling textures for variation in both the viewing direction and the lighting direction. This takes 

quite a bit of memory and acquisition time, but allows a real-world texture to be captured and ap

plied to an arbitrary geometric model [11]. In Chapter 4 we describe our own approach to this type 

of parameterized texture rendering and we detail the storage and rendering optimizations that were 

made.

2.4 Graphics Hardware

The need for specialized graphics hardware grew primarily out of the complexity of a few particu

larly computationally expensive problems such as perspective correct texture-mapping, and visible 

surface determination. Early graphics chips, such as the 3Dfx Voodoo, solved only these problems 

related to the rasterization of triangles. These include texture-mapping, color interpolation, alpha 

blending, and depth buffering.

In the second generation of graphics processors (now called GPUs) vertex transformations, light

ing and triangle clipping were performed in hardware. In the third generation, programmability was 

added to the pipeline. Vertex programs, which allow precise control of how vertexes are trans

formed, and fragment programs which compute the color of each pixel were added. The most recent 

iterations of the GPU have seen primarily an increase in the complexity of fragment and vertex 

programs.

The GPU is an incredibly parallel architecture. Since both vertexes and pixels are not allowed to 

rely on any particular ordering of computation, many vertexes and pixels can be processed at once. 

For example, the NVidia GeForce 7800GTX can process 24 pixels and 8 vertexes simultaneously.

A slightly simplified flow chart of the hardware graphics pipeline is shown in Figure 2.1. The 

following is a brief description of that hardware model. For a more detailed examination of graphics 

hardware see [1].

Vertex data including position, and optionally other attributes such as texture coordinates and 

color, is stored in a vertex buffer. A second buffer called an index buffer stores indexes into the 

vertex buffer indicating which vertexes are connected to form triangles.

The GPU reads vertexes from the vertex buffer and passes them to a vertex program. The vertex 

program usually transforms each vertex from its local object coordinate system into the global world
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Figure 2.1: Simplified view of the graphics pipeline. Programmable components are shaded in gray

coordinate system, and then projects the vertex onto the virtual camera. However, the vertex program 

is written by the user, and can perform any operation desired. The vertex position in camera space 

must be output from the vertex program; a number of additional 4D attribute vectors can be output 

which will be interpolated between triangle vertexes during rasterization.

Vertexes output from the vertex program are then assembled into triangles which are clipped to 

the screen and rasterized. The rasterizer finds each pixel inside a triangle, computes interpolated at

tributes for that pixel, and passes them as parameters to a fragment program. The fragment program 

computes a color - and optionally depth - for each pixel.

The depth of the current pixel is compared against the current value in the depth buffer to see if 

it is visible. If the depth test fails, the pixel is not rendered. If it passes, the depth is written to the 

frame buffer, and the color is sent on to blending. The blending stage reads the color at the current 

pixel location from the framebuffer, combines it with the rendered color, and writes it back to the 

framebuffer. Usually the 4th component o f the color vector, called the alpha, is used as an opacity 

to render translucent surfaces, but other blending functions are available.
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With the rapidly decreasing prices, and increasing quality of consumer grade digital imaging 

devices, geometric modeling from images has become a very active research area. Suddenly, a large 

number of consumers own digital still cameras, video cameras, and web-cams making applications 

of passive vision technology reasonable consumer products. Applications such as personal captured 

custom character models in games, automatic modeling of household objects for use in home design 

software and many others would be commercially viable if they were robust and easy to use. Now 

that the required hardware is affordable, research into how to accomplish these tasks on available 

hardware has suddenly become very interesting.

Here, we describe two algorithms for acquiring geometric structure from images, and show 

results from each method. Structure from motion (SFM) uses corresponding feature points in a video 

sequence to compute geometric information, while shape from silhouette (SFS) uses the silhouette 

of an object in several views to approximate its shape. Some models acquired using each algorithm 

will be shown, and the two methods will be compared and contrasted.

The geometric models acquired by these methods will be used as the first level of detail in our 

hierarchical model, representing the macro scale features. Following chapters will describe how 

micro and meso scale information is represented and rendered.

3.1 Structure from Motion

Structure from motion (SFM) is a method for acquiring geometric information from a sequence of 

images. SFM is similar to stereo methods, but uses multiple images from a single camera rather 

than simultaneous images from multiple cameras. The main advantage of SFM methods is that they 

require little or no camera calibration, which can be tedious. A disadvantage of this method is that, 

due to the difficult task of feature correlation or tracking, the result is a quite sparse geometry. Since 

we only use this as the lowest detail level in our hierarchical model, this is not much o f a problem 

in our case.

Uncalibrated SFM solves for both camera calibration and geometric structure in one step. Such a 

problem is very difficult using an accurate model of the imaging process, but with some approximate 

camera models, the solution is simple.

The simplest camera models are parallel projection models. This type of camera does not model 

the convergence of rays to a focal point in a true perspective camera and is therefore only reason

able in certain situations. In particular, parallel projection models are appropriate for long telephoto 

lenses or when the object of interest is always near the central axis, which is true in our experi-
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ments. Although it is possible to perform SFM using more accurate perspective projection models, 

the parallel projection model is used here for simplicity [24, 45], We will describe in detail the 

implementation of SFM using the orthographic camera model [51], In this type of camera, after 

rotation and translation into the camera’s coordinate system, a 3D point is projected onto the camera 

by simply removing it’s Z coordinate.

First, we must choose a set o f feature points on our object or scene which are all visible in every 

sample image. Then we need to find the 2D positions in each image where these features project. 

This can be done in various ways; we have used visual tracking. Using the XVision2 tracking 

libraries, we track several manually selected feature points in real time during image acquisition 

[30],

We compute the average feature position in each image and subtract it from all the feature points 

in that image so that translations can be ignored. After removing translation, a single point can be 

projected onto image i by multiplying by a 2x3 matrix Pi which is simply a 3D rotation matrix with 

the third row removed.

Pi, 1,1 Pi, 1,2 Pi, 1,3

Pi, 2,1 Pi, 2,2  Pi, 2,3
X i

A set of to  points can be projected onto image i with a single matrix multiplication:

(3.1)

[ Xi,l Xi ,2 • • • Xitm ] =  Pi [ X i  X 2 ■■■ X m ] (3.2)

Finally, all m  points in n  images can also be projected using a single matrix multiplication:

Z l , l Xl,2 * '  P i  '

®2,1 ^2,2 *‘ ’ ,m
=

P2

%n,  1 ^ n ,  2 . P n  .

[  X i  x 2  • • • xm] (3.3)

x  = P X (3.4)

Note that the X j  are 3x1 vectors, the X ij  are 2x1 vectors and the Pi are 3x2 projection matrices.

So, the x  matrix contains our known feature positions in each image after removing translations. 

The rest of the equation is unknown. In order to compute the 3D structure X  and the camera 

orientations P,  x  must be factored. Using SVD, we decompose x  into U S V T . Ideally, using an 

actual orthographic camera, x  would be rank 3 and thus have only 3 non-zero singular values. Due 

to noise and the approximate camera model, this may not be the case, but we still expect the 3
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largest eigenvalue-eigenvector pairs to capture the geometric structure. So we drop all but the first 3 

columns of U S  and all but the first 3 rows of V T . Then X  = V T , and P  =  U S.

This first step is simple, but we are not finished. As stated earlier, each Pi is 2 rows o f a 3x3 

rotation matrix, meaning that those two rows should be orthonormal. The solution found with SVD 

is an affine structure, with no constraints on the P  matrix. However, we can enforce Euclidean 

constraints by using the SVD solution as a starting point for a non-linear optimization algorithm.

First we must convert each matrix Pi into a 3x3 matrix Pi by computing the third row as the 

cross product of the first two. Then we solve for a single 3x3  matrix Q  which, when multiplied by 

any Pi, results in an orthonormal matrix Pi — PiQ. Then the X  matrix is multiplied by the inverse 

of Q, X  =  <2- 1 X , so that P iX  — P iQ Q ~ l X  for all i. To compute Q, we use a non-linear solver 

with an error metric which should be zero when all Pi are orthonormal.

This algorithm gives us a set o f Euclidean 3D points. To form a polygonal model, we have often 

simply performed a delaunay triangulation on the average projected positions of all points. If the 

results are not exactly as desired, the user can manually modify the triangulation. Since the number 

of polygons on this type of model is typically very low, this is not usually a difficult task.

3.1.1 Results

Figure 3.1: A few sample inputs to the SFM algorithm with tracked feature positions

Here is an example of structure captured using this technique. Figure 3.1 shows three of many 

input images with the tracked features marked. A rendering of this house after capturing its geometry 

using SFM is shown in Figure 3.2 along with the triangulation which was generated manually to 

make a 3D surface out of the set of points.

Texture patches are tracked in video to identify correspondences using XVision2, a tracking 

library for C++ [30]. These patches must be sufficiently textured and locally unique in order to track 

robustly. These types of patches are difficult to identify automatically, and sparse on most objects. 

For this reason, we have users manually select points of interest. This results in sparse models, but 

where features lie on important points on the model, such as the corners o f the house in Figure 3.1.
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Figure 3.2: SFM results triangulated geometric structure and a rendering (rendering uses view de
pendent dynamic texture)

3.2 Shape from Silhouette

The silhouette of an object sv is the set of points where the object projects onto an image plane from 

a particular view. A single silhouette contains a large amount of information about the shape of the 

object. Given sv, and camera parameters v  we know that the object is inside the volume that the 

silhouette cone S v defined by all rays from the camera center passing through all points in sv . Since 

this holds for all views, given a set of views V ,  we can constrain the object’s volume further, to the 

intersection o f all silhouette cones: The limit o f this volume as the number o f distinct

views |V | —> oo is known as the visual hull of the object, provided that no views in V  are are 

centered inside the convex hull o f the object. From a finite number of views, the volume acquired is 

called the approximate visual hull, but we will simply refer to it as the visual hull.

The process of computing the visual hull from a set of images is known as shape from silhouette 

(SFS). Intersection of arbitrary shapes can be very expensive, but by taking advantage of some 

key features of silhouette volumes, and the intended application, the visual hull can be computed 

efficiently, in some cases in real time. In the following, we classify methods by image-based (2D to 

2D), model-based (2D to 3D) and by data structure.

3.2.1 Silhouette Extraction

To extract shape information from silhouettes, the silhouettes must first be extracted from images. 

This is the problem of segmenting an object from the background. Two methods are commonly 

used: background subtraction and blue-screening.

We use the following statistical color segmentation method. The user selects some region(s) 

in some example image(s) to identify a set of pixels in the solid colored background. Principle
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components analysis is applied to the selected RGB pixels, giving us a space that is well aligned to 

the statistical properties of the selected background pixels.

We build a matrix C  where every row is formed by subtracting the mean color value c from 

a pixel in the selected set. Then we find the eigenvectors E c  and eigenvalue matrix Ac  of the 

covariance matrix C T C. We then use E q Xq 1 as our new color space. To perform the segmenta

tion, we apply a threshold r  to each pixel’s norm after being transformed into the new color space. 

Background pixels satisfy equation 3.5.

\ E T \ c H c - c ) \ < T (3-5)

Normally, a small number of pixels are misclassified. SFS is very robust to pixels falsely marked 

as foreground by color segmentation. Pixels incorrectly labeled as background would cut holes 

through our results, but other noise is simply removed by silhouette volumes from different views.

3.2.2 Intersection Algorithms

There are three classes of algorithms used in SFS: volumetric methods, polyhedral methods, and 

image-based methods. Volumetric methods use some kind of discretized volume representation, 

such as a voxel grid, and perform intersections discretely in that space. Polyhedral methods perform 

exact intersections of multiple polyhedral meshes. Image-based methods only compute new views 

of the visual hull given input silhouettes.

Polyhedral Methods

The best possible model of the visual hull that we can compute from a set of images is the exact 

polyhedral visual hull. This could be computed naively by forming polyhedra from each silhouette 

and intersecting them all in 3D using a general CSG algorithm. However, due to the projective 

nature of the silhouette volumes, much more efficient algorithms exist. Matusik et al. [39] has 

recently proposed a very efficient algorithm which will be briefly described here.

First, each silhouette image is converted into a set of line segments separating the object from the 

background. These edges form a set of polygons with possible holes, that represent the occluding 

contour. The resolution of the edges is chosen based on curvature, so that regions of higher curvature 

in the contour are represented with more edges than regions of lower curvature. The number of 

polygons in the resulting model can be adjusted by controlling the number of edges in the input 

silhouettes, as well as the number of input silhouettes.
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Each edge generates a 3D polygon of a silhouette cone when it is back-projected with its cor

responding camera parameters. It is important to note that every such polygon will generate one or 

more polygons in the output model. Each polygon is projected onto each image plane, intersected 

with the silhouette polygon for that image (in 2D). Both polygons are possibly non-convex with 

holes. The resulting 2D polygon intersection is projected back onto the plane in 3D.

The resulting set of polygons are the polyhedral visual hull. Each polygon in the resulting model 

has its own copies of all vertices, so, in a final step, duplicate vertices are removed.

Figure 3.3: Polyhedral Visual Hull: the bounding polygons of the volume are calculated

Although this algorithm is very efficient compared to the naive implementation, when using 

large numbers of images, as our we have in most of our experiments, performance would be much 

slower than volumetric methods. Because of this, in addition to the implementation complexity of 

exact polyhedral algorithms, we have favored volumetric methods.

Volumetric Methods

The easiest way to intersect volumes efficiently is by quantization of the 3D space. By representing 

the space as a finite number of basic elements, it becomes easier to enumerate which portions of 

the space are inside or outside the object. The obvious down side is that with quantization comes 

aliasing. If any of the details of the object are smaller than the size of a single volume unit, they 

will be lost. However, quantization is also a means for adjusting the speed vs. quality trade-off by 

changing the quantizing resolution.

This method was first used for SFS by Martin et al. [37] in 1983. They represented the volume 

as a grid of parallel rays with points of volume entry/exit recorded for each ray. It was implemented 

with an orthographic camera model, but easily extends to perspective.

The simplest way to quantize a volume is to split it into a 3D grid of equal-sized cubes, called
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voxels or volume elements. This is the simple 3D extension of the way images are stored as an array 

of pixels. We have used a more processing and memory efficient method for quantization called 

marching intersections [46].

Developed recently by Tarini et al. [46], the marching intersections data structure (MI) was 

initially used for performing boolean operations, fixing errors, and adjusting polygon count in poly

hedral models. It was shown to also be particularly efficient structure for use in SFS [42].

The MI data structure consists of three sets of rays, each parallel to one of the three axes (X Y 

or Z). For each set, there is an NxN grid of rays, so they combine to form an NxNxN cube. Each ray 

stores all points along its path where the object being represented is entered or exited. This repre

sentation contains all the information of a voxel grid, plus it stores exact surface intersection points 

along each ray, yet uses only 0 ( N 2) storage (since each ray only passes through the object a small 

number of times). The reason for the name marching intersections is that this data structure stores 

the exact information necessary to render the surface properly with marching cubes (no interpolation 

necessary) [35].

Boolean operations (such as intersection) on the using the MI data structure are reduced to ID 

operations between rays. So in order to perform silhouette intersections, each silhouette cone can be 

converted to MI, and then all the MI cones can be intersected with each other easily by performing 

intersections on all the rays. In practice, a single MI structure can be updated iteratively to save 

memory.

Efficient intersections of a MI structure with a silhouette cone are performed as follows. Each 

ray is projected onto the image. The rays are “drawn” using the Bresenham line algorithm [3], and 

points where the line crosses from a background pixel to a silhouette pixel, or from a silhouette pixel 

to a background pixel are noted. Each of these intersection points is then back-projected to form a 

ray, which is intersected with the current ray being processed, and the intersection point is stored on 

that ray in the MI data structure.

Further performance increases are achieved by noting that when using a high resolution MI 

data structure (say 512x512x512), many of the parallel rays project to the exact same 2D line in the 

image. Therefore, the 2D intersection points of that line with the image don’t need to be recalculated 

(intersection of the back-projected ray with the 3D ray still does need recalculation). In [42] a cache 

is used to store this data, and the resulting improvement in performance is significant, making the 

method scale much better to higher resolutions than other algorithms.

One of the problems with this method is that the MI data structure can easily become in conflict 

with itself. Errors are the result of floating point error, or aliasing problems as a result of intersecting
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Figure 3.4: Visual hull with marching intersections: ray intersections of a grid pattern with the 
volume are stored

lines with the 2D silhouette image. The problem is that one set of rays may indicate that a point is 

inside the volume, while another ray set says that point is outside the object. This is not a problem 

to identify, but removing such inconsistencies is non-trivial. When rendering a structure with errors, 

the marching cubes algorithm may get to a cube which intersects the surface and should be rendered 

but all the intersection points are not available. In this case, unavailable points must be interpolated 

from available data.

This method was used in combination with dynamic texturing for the system described in Section 

6.1.2. Figure 3.5 shows an example of a model captured with this algorithm.

Image Based Methods

For real time applications, it is often the case that you would like to capture a model, and then display 

it from an arbitrary view-point immediately (possibly after transmission over a network). For these 

applications, as you can imagine, the 3D model can only be viewed from one view-point at a time. 

So every time the 3d model is computed, it is only used once. The idea with image-based methods 

is to generate particular view of the model, without the extra step of creating a 3D representation.

Matusik et al. [38] was the first to develop an image-based SFS. The method is exact to the 

resolution of output image. Each pixel is traced back along a ray, and if that ray intersects the visual 

hull then the pixel is rendered.

The HAVH (hardware accelerated visual hulls) algorithm developed by Li et al. [33] makes 

use of consumer graphics hardware to render arbitrary views of the polyhedral visual hull directly 

from the input silhouettes. Originally, the number of reference images was limited by the number 

of texture units available on the hardware, but with increasing programmability, this is no longer 

a constraint since many images could be placed in one texture, and unlimited texture accesses are
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available in shader model 3.0.

From each silhouette image a 3D cone is generated as a polyhedron. Every polygon on every 

silhouette cone is then rendered. The trick is that all the silhouette images are applied to all the cones 

with projective texture mapping (using the projection matrix from their corresponding cameras). 

These textures have alpha=l inside the object and alpha=0 outside, and are used as a mask that 

eliminates the portions of each cone that do not lie on the surface of the visual hull. All polygons 

are still rendered entirely, but only the correct parts o f them actually generate pixels in the image. 

Some results using this algorithm are shown in Figure 3.6.

3.2.3 Results

■
M

Figure 3.5: An elephant captured using SFS with a stationary camera and turntable. A few of the 
input images are shown on top, and the reconstructed elephant is shown on the bottom.

Figure 3.6: Results using the HAVH on algorithm on a hand with three cameras

Here we show a couple of examples of some objects captured with shape from silhouette. Fig-
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ure 3.5 shows an elephant which was captured on a turntable. Several images were taken from a 

stationary camera as the object was rotated on a turntable. The geometry shown was captured using 

the marching intersections SFS algorithm.

In Figure 3.6 we see a visual hull reconstruction using far fewer images. Only three cameras are 

being used here. However, in this case, the visual hull is being constructed and rendered on the same 

machine in real-time using the HAVH algorithm.

3.3 Discussion and Comparison

Although both SFS and SFM have been used in this research, we have favored the silhouette-based 

approach. For a small object capture system, SFS is much more robust and simpler from a user’s 

perspective. Minimal to no user input is required for a turntable system.

In our SFM system, the user must identify the points to be tracked, then carefully move the 

object or camera around on a tripod, then check the automatic triangulation and potentially change 

it. All that work and you can still only capture a small variation in viewing angle before some of the 

tracked points are lost. With the SFS system, the user simply identifies the background color, and 

the approximate location of the object in two images, and a full rotation around the object can be 

captured. In addition, SFS results in a much more accurate and detailed model.

The SFS system, however, can never be expected to capture a scene, like the interior of a room 

for example, which is possible with SFM. And SFS requires camera calibration in the form of a 

calibration pattern in each image. Each technique has its benefits, but for a small object capture 

system, with potentially unskilled users in mind, we have found SFS to be much more successful.

For the SFS intersection algorithm, we have used the marching intersections method in the sys

tem in Section 6.1.2. This algorithm was chosen for the following reasons: it is nearly as easy to 

implement and efficient as a voxel-based method; it uses less memory (0 ( n 2) vs 0 ( n 3)); resulting 

structure is more accurate due to the exact intersections.
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Chapter 4

Dynamic Texture
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4.1 Previous Work

Conventional graphics represents micro scale detail using parameterized lighting equations which 

attempt to simulate the surface’s reflectance properties. The Phong lighting equation shown in Equa

tion 2.4 is a classic example. More generally, the function being approximated by such models is 

called the bidirectional reflectance distribution function (BRDF). The BRDF gives the proportion 

of light transfered in the direction of the camera, given the direction from the light. For a real ob

ject, the reflectance properties often vary continuously over the surface. The bidirectional texture 

function (BTF) [11] is texture parameterized by viewing and lighting direction, which represents a 

spatially varying BRDF as well as parallax, self-occlusion, and self shadowing effects.

The BTF can be represented by just storing a large database of images. Our method, the dynamic 

texture, is a method for representing and rendering parameterized texture maps, such as the BTF, 

more efficiently [7]. Related work includes polynomial texture maps, which compress parameterized 

textures by storing only the coefficients of a biquadratic polynomial at each pixel in the texture [36], 

Several other methods, including ours, use a linear basis to represent texture variation.

Freeman et al. showed that an image basis can be used to create the perceived effect of motion 

[19]. Jagersand showed how a basis can be used to represent motions as complicated as articulated 

agents (directly in the image plane with no geometry) [25, 26]. Certain types of animated textures 

such as water waves and fire were rendered using a basis and animated in eigenspace by Soatto et 

al. [50,14], These animated textures were also called dynamic textures, but not to be confused with 

our method by the same name.

The eigentexture method uses an image basis to represent lighting on a precise 3D model. 

Tensor-textures use a multilinear basis [52] to store the full BTF, with both view and lighting varia

tion. Tensor-textures are interesting because they separate the lighting and view variation in a way 

that we can use a small number of basis elements for lighting variation, and a large number for view 

variation, resulting in better compression for the same quality. Flowever, to capture a tensor texture, 

a full set of matching lighting conditions is required for every view. This is difficult to achieve with 

a real system, and so their implementation uses only computer generated inputs.

Our method, dynamic textures, can represent both view and lighting variation including lighting, 

self-shadowing, parallax, and self occlusion with a single linear basis. Where other methods often 

use planar material samples or acquire the basis in image space, we acquire our dynamic textures 

directly from real objects using approximate geometric models as shown in Sections 6.1.1 and 6.1.2 

[6, 7]. In addition, our method, achieves additional compression by using the YUV color space as
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described in Section 4.3. Other methods either ignore color, working in grayscale, or use the less 

optimal RGB color space.

4.2 Theory

A simple method for implementing any type of parameterized texture mapping is to store a large 

number of textures, by observations made with different known parameters, and when rendering 

just pick the observed texture with the nearest parameter. A slightly more intelligent method is 

to blend linearly between a few observed images with similar parameters (images observed from 

similar viewpoints in the case of view-dependent textures).

With dynamic texturing, instead of simply storing textures with various known parameters and 

interpolating them, we compute a linear basis from all observed textures, and blend this basis using 

interpolated coefficient vectors to generate new textures. Depending on the texture, the derived basis 

may have far fewer elements than there are observed textures, using much less memory, while still 

spanning the same texture variation.

To motivate the derivation, consider interpolated view dependent texturing as it is described in 

[12]. When rendering a new view with parameters identical to one of the original sample views, Ik, 

the texture derived from image h , T k  = w(Ik),  is used to texture the model, where w  is a warp 

function defined by a 3D triangular mesh with texture coordinates.

At all other viewing positions, some linear blending of near views is used, with a vector of 

weights x  based on their similarity to the current view. This can be expressed mathematically by a 

matrix multiplication, where the columns of T  contain the sample views T  — [I\ , I 2 , I m \-

t — T x  (4.1)

The major variability in T  is due to geometric parallax error and illumination differences. Through 

an analytical derivation, a first order linear basis can be found to represent these types of variability 

[49, 21,7]. This means that for large image sets, we can find a new basis B  with far fewer columns 

than T ,  such that T  «  T  =  B Y .  Textures are then generated as t  =  B Y x ,  and the number of basis 

images, and overall memory consumption is reduced.

While B  could be be computed analytically, given exact geometric knowledge of the scene, cam

era and lighting, this is seldom feasible in image-based approaches. Instead we use the knowledge 

that there exists a subspace spanning T  to obtain the best (in the least square sense) B  through Prin

ciple components analysis. We calculate M  as the eigenvectors of T t T.  A dimensionality reduction
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is achieved by using only the first n  eigenvectors M i..n . Thus, our texture basis is B  = T M i . .n and 

our coefficients are Y  =  M  '[ n .

To estimate the coefficients for intermediate poses, we interpolate between the coefficients of 

sampled poses. For efficient implementation, cubic interpolation is applied during preprocessing, 

and results are stored in a set of 2D look-up tables (one for each basis image) which map view 

direction to blending coefficient. Entries in the blending tables are then bilinearly interpolated during 

rendering.

The benefits of using the dynamic texture basis rather than standard view-dependent texturing, 

is that significantly less storage is required. The down-side is that every element of the texture basis 

will have an effect on the result at any view, instead of only the nearest few. This will require a little 

more work when rendering. However, in current graphics architectures, bandwidth and memory 

limitations are a greater problem than computation when it comes to image based rendering methods.

4.3 Color Space

The mathematics of this section allow for color dynamic textures by flattening entire images, in

cluding color dimensions, into single column vectors. However, we prefer to perform the process 

separately on color channels to improve compression by considering human perception. In gen

eral, we are more sensitive to high frequency intensity changes than we are to high frequency color 

changes, which is exploited by most image compression, video compression, and even analog tele

vision broadcast standards.

We use the YUV color space, where the Y channel is intensity, and U and V are color channels. 

By performing the PCA separately on the Y, U, and V channels, we are free to use both different 

resolutions and different numbers of basis images for each channel. We generally use many high 

resolution basis images for Y, while using few low resolution basis images for U and V. This re

sults in both additional data compression, and improved rendering performance, with little or no 

difference in the resulting image quality.

4.4 Per-Pixel Rendering

When rendering a dynamic textured model with some parameters (viewing direction, light direction, 

etc.) we have some options as to how to set these parameters: we can choose to use the same 

parameter for a whole object; we can compute individual parameters for each polygon on the model; 

or, ideally, each pixel in the final rendered output will have it’s parameter individually computed.
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i  ^

b
Figure 4.1: An example where per pixel dynamic texture rendering is necessary. The solid gray 
object is the true object. The dashed quadrilateral is the approximate geometry that the dynamic 
texture will be applied to. The light gray cameras indicate sampled viewing directions, the black 
camera is the new desired view. Note that none of the sample views can see the entire indentation 
while the new view can.

Consider view-dependent texturing of the object as depicted in Figure 4.4. None of the 4 camera 

views from which sample textures were taken can simultaneously see all sides of the indentation, 

yet the entire indentation is visible in the desired new view. Clearly using one viewing-direction 

parameter for the whole object, or for each individual polygon will not accurately render the new 

image. Per pixel accurate rendering is required. Although this scenario may seem convoluted, and 

appear to be solved by simply adding more cameras, note that if the cameras are distant relative to 

the size of indentations, which is generally the case, this situation will occur often.

To achieve per-pixel rendering, we first assume the sample images are taken from a distant 

camera (this assumption is roughly valid if we use a telephoto lens at capture time). Then, when 

rendering new views, at each pixel, we use the direction of the ray from the virtual camera center 

through the current pixel as the viewing direction parameter to the dynamic texture at that pixel. 

With no rendering speed constraints, this is simple, and our Maya plug-in, discussed in Section 4.6, 

easily accomplishes per pixel rendering. In order to apply this technique in real-time, we can use 

the algorithm shown in Section 4.5.3, which stores coefficient lookup tables in textures, and indexes 

them with the view direction at each pixel.
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4.5 Hardware Accelerated Rendering

Rendering of dynamic textures consists of blending a potentially large basis of images. These oper

ations are very well suited for implementation in graphics hardware. Through the rapid progression 

of graphics hardware during this research, several hardware implementations were developed.

4.5.1 Multi-pass Blending

The first and simplest method is to use frame-buffer blending. This method is supported by even 

very old graphics hardware, but requires the use of RGB color space, not taking advantage of the 

memory benefits of YUV as described in Section 4.3.

Image blending features are intended to enable rendering of transparent surfaces and other ef

fects in standard model-based 3D graphics applications. However, most hardware is capable of 

performing more general blending, including the combination of scaled basis textures required for 

our rendering. However, the rendering hardware used is designed for textures containing positive 

values only, while the spatial basis B  is a signed quantity. We rewrite this as a combination of two 

textures with only positive components:

/( f )  = B +y(t)  -  B ~ y ( t )  +  I q

Here B + contains only the positive elements from B  (and 0 in the place of negative elements) and 

B ~  contains the absolute values of all negative elements from B.  Then, before drawing each basis 

texture, the blending mode can be set to either scale by a coefficient and add to the frame buffer, or 

scale by a coefficient and subtract from the frame buffer (depending on the sign of the coefficient). 

A new view is rendered as in the following pseudo-code:
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/ /  d r a w  t h e  m e a n  
B i n d T e x t u r e ( / )  ;
D r a w G e o m e t r y ( ) ;

/ /  a d d  b a s i s  t e x t u r e s  
f o r ( e a c h  i )
{

S e t B l e n d C o e f  f  i c i e n t  ( | y ; ( f ) | )  ;
B i n d T e x t u r e ( B f )  ;
i f  ( y i(t) >  0 )  S e t B l e n d E q u a t i o n  ( ADD)  ; 
e l s e  S e t B l e n d E q u a t i o n ( S U B T R A C T ) ; 
D r a w G e o m e t r y ( ) ;

B i n d T e x t u r e ( B ~ ) ;
i f  ( y i(t) >  0 )  S e t B l e n d E q u a t i o n  ( S U B T R A C T )  ; 
e l s e  S e t B l e n d E q u a t i o n ( A D D ) ; 
D r a w G e o m e t r y ( ) ;

}

4.5.2 Multi-pass with Programmable Hardware

As the pixel pipeline began to become programmable, with Shader Model 1.0 cards, we took advan

tage of several useful features: Textures could now be stored as signed 8 bit values, cutting memory 

consumption in half; multiple textures could be combined in a single pass, increasing performance, 

and reducing the chance of overflow; enough processing was available to convert between color 

spaces during rendering enabling us to take advantage of YUV color space as described in Section

4.3.

In this implementation, each RGBA texture image represents four basis textures from a single 

color channel (Y,U or V) scaled and biased to fit in the range (0,1). In each rendering pass, as 

many basis images as possible (four times the number of available texture units) are multiplied by 

their coefficients, the results are summed, and multiplied by the row of the color conversion matrix 

that applies to the current color channel. Between passes, we use OpenGL blending to add/subtract 

results with the frame buffer contents. Since signed frame buffer blending is still not supported, we 

are still required to render one pass for addition and one for subtraction for all passes except the first. 

Some simple effects, such as relighting, can easily be achieved in a single pass with just a handful 

of basis vectors.

Three implementations of this algorithm were written: one using the OpenGL shading lan- 

guage(GLSLang), one with ARB_fragment_program 1.0, and one with NVidia’s register combiners. 

The fragment program and GLSlang shaders, which run on shader model 2.0 and 3.0 hardware re

spectively, also benefit from floating point computation within the shader, avoiding any overflow or 

underflow within each pass. The GLSLang shader is shown here:
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uniform vec4 colormat;
u n i f o r m  v e c 4  c o e f f [ g l _ M a x T e x t u r e U n i t s ] ;  
uniform sampler2D tex[gl_MaxTextureUnits] ; 
varying vec2 texcoord;
void main (void)
{ vec4 tval; 
float col=0.0;
for(int i=0;i<gl_MaxTextureUnits;i++)
{ tval = 2.0*(texture2D(tex[i],texcoord)-0.5) ; 
col +=dot(tval,coeff[i]) ;

}gl_FragColor = col*colormat;

P s e u d o - c o d e  f o r  r e n d e r i n g  w i t h  t h i s  s h a d e r  i s  g i v e n  h e r e :

f o r ( e a c h  c o l o r  c h a n n e l  B, y)
{

f o r  ( i  = 1 t o  N /  ( 4 * M a x T e x t u r e U n i t s )  )

{
f o r ( j  = 1 t o  M a x T e x t u r e U n i t s )

S e t S h a d e r C o n s t a n t  ( c o e f  f  [ j  ] , y 4 » ; ( f ) , y 4 » ; + i ( t ) , y 4 » ; + 2 ( i ) , y 4 . * + 3 ( t ) ) ; 
B i n d T e x t u r e  ( j  , B^tiAti+s) ;

}
S e t B l e n d E q u a t i o n ( A D D ) ;
D r a w G e o m e t r y ( ) ;

f o r ( j  = 1 t o  M a x T e x t u r e U n i t s )

S e t S h a d e r C o n s t a n t  ( c o e f  f  [ j  ] , - y 4 . ; ( f ) , - y 4 * i + i ( f )  - - y 4 * < + 2 ( f ) <  - y 4 * i + 3 ( f ) )  ;

}

S e t B l e n d E q u a t i o n ( S U B T R A C T ) ;
D r a w G e o m e t r y ( ) ;

4.5.3 Single Pass Rendering

Although the method in Section 4.5.2 is very efficient even on up-to-date hardware, we have imple

mented a third method which will blend even a large basis in a single pass. Although this method 

is slightly slower, it is cleaner, and easier to use since all blending is done in one place. Overflow 

and underflow are completely avoided since all blending computations take place in floating point. 

It also looks up coefficients per pixel, rather than having the application place them in constants, 

which could be used to vary the interpolation if parameters (viewing, lighting etc.) change per pixel.

Shader model 3.0 hardware has no limits on the number of texture accesses within a shader. 

However, there are limits to the number of textures that can be bound at once, and limits to the num

ber of constants available. To implement blending within a single pass we have tiled basis textures 

and coefficient interpolation tables into six large textures: three for the Y,U and V bases, and three 

for the Y, U, and V interpolation tables. During rendering, an index into the coefficient interpolation
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tables, the number of basis images, and the color matrix are provided by the application, and the

geometry is simply rendered. The GLSlang shader is shown below.

u n i f o r m  m a t 4  c o l o r m a t ;  
u n i f o r m  s a m p l e r 2 D  B [ 3  j 
u n i f o r m  s a m p l e r 2 D  L [ 3 ]  
u n i f o r m  v e c 3  c o u n t ;  
v a r y i n g  v e c 2  t e x c o o r d ;  
v a r y i n g  v e c 2  l u t c o o r d ;

v o i d  m a i n  ( v o i d )
{

v e c 2  t c , t c 2 ;  
v e c 2  l c , l c 2 ;  
i n t  i , j ;
v e c 4  c o l = { 0 , 0 , 0 , 0 } ;  
v e c 2  s c a l e ;  
v e c 4  l u t v a l u e ;  
v e c 4  b a s i s v a l u e ;

for(int channel=0;channel<3;channel++)
{
scale.x=l.0;
scale.y=l.0/count[ j  ] ;

tc=texcoord*scale; 
lc=lutcoord*scale;
for(i=0;iccount[j];i++)
{ lutvalue=2 *texture2D(L[channel],lc)-1; 
basisvalue=2 *texture2D(B[channel, tc)-1; 
col[channel]+=dot(lutvalue,basisvalue); 
tc.y+=scale.y; 
lc,y+=scale.x;

}
}

gl_FragColor = colormat*col; 
gl_FragColor.a=l;

}

4.6 Maya Plug-in

In addition to the various hardware accelerated implementations, a dynamic texture rendering plug

in was implemented in software for Alias Wavefront’s Maya modeling and rendering system. Using 

this plug-in, the user can add any dynamic textured objects to a conventional graphics scene, and 

even use the animation tools to make movies using dynamic textured objects combined with any

thing else Maya can render. Integrating our system into commercial rendering software makes our 

research much more accessible to the mainstream computer graphics community.

This rendering plug-in was used, together with a capture system based on shape from silhouette, 

for rendering view-dependent dynamic textured artifacts in a virtual heritage setting. A set of carv

ings depicting traditional Inuit seal hunting was captured using shape from silhouette with dynamic
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Figure 4.2: Two renderings from Maya that mix dynamic textured objects captured from images 
with conventional hand modeled objects.

textures. The resulting models were then combined with traditional geometric models in Maya and 

animated to tell a historically interesting story [17]. An interactive informational website, and a short 

movie were created using this technology. Figure 4.2 shows two renderings from this project show

ing some carvings captured using our system, and placed into a scene with conventionally modeled 

background objects.

4.7 Experiments

Flere, we describe a few experiments which test the dynamic texture independent from the other 

components of the system presented in this thesis.

4.7.1 Light Variation

Figure 4.3: A face lit using a dynamic texture with five basis images.

A set of images with different known lighting directions can be acquired using a hemispherical 

contraption with flashes mounted at various positions. By synchronized triggering o f the flashes and 

a single camera, images with many different lighting conditions, and identical viewing conditions 

can be captured in a matter o f seconds. Using a set of images captured with such a device, we have 

built a dynamic texture parametrized in lighting direction. Since light variation is easily represented
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by a basis, the renderings shown in Figure 4.3 are generated using only 5 basis images, even though 

there were more than 60 sample images. The renderings were generated in real time very efficiently, 

requiring only two 3-component dot products and one addition per pixel (possible in a single pass 

even in most hardware with two texture units) The basis images and mean image are shown in Figure

4.4.

Figure 4.4: The dynamic texture basis used for lighting the face in Figure 4.3. The mean is shown 
in the upper left. Other elements scaled so that black is -1, white is +1 and gray is 0.

4.7.2 View Variation

The wreath shown in Figure 4.5 is nearly planar, but has small intricate details that could not possibly 

be captured by a simple planar texture map. We have computed a dynamic texture parameterized by 

viewing direction, and compare the results to simple texture mapping.

To build the dynamic texture, first, we warp the set of sample images to a set of square tex

tures using the 4 corners of a rectangle surrounding the wreath which were marked with stickers. 

This warp is achieved accounting correctly for perspective distortion by using projective homogra- 

phies. once we have all views in this common texture space, we perform the PCA on the textures to 

compute the dynamic texture basis.

Figure 4.5 shows renderings from three different views using both simple texture mapping, and 

view dependent dynamic texture mapping. The wireframe box is shown in the figure simply to 

illustrate the viewing direction, only a single quadrilateral is used in the actual rendering. It is clear, 

especially in the view on the far right, that the dynamic texture renderings are much more natural 

looking.
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Figure 4.5: Texturing a rotating quadrilateral with a wreath. Top: by warping a flat texture image. 
Bottom: by modulating a dynamic texture basis which is then warped onto the same quad

We have found that although representing view dependency using basis modulation is possible, 

it becomes inefficient when the range of views is very large. In particular, this problem relates to 

how textures are warped from sample views into a common texture space. When a view is at a 

nearly grazing angle to a polygon, there will be very few samples for the texture on that polygon, 

and when it is warped into texture space, it will generate a very blurred sample. The result of this 

effect is that even if the object being captured is in fact geometrically planar, an image basis will 

be computed which incorporates the effect of blurring the texture at grazing angles. Although there 

will be no visual artifacts caused by this, when combined with texture variation caused by parallax, 

a larger basis is required than one would need for parallax alone. In addition, basis modulation can 

only account for a few pixels of parallax, but when viewed from a grazing angle, any out-of-plane 

variation in depth can be made to generate a very large translation of features in texture space. For 

this reason, we suggest that displacement mapping, which we will describe in Chapter 5, is much 

better suited for representing significant magnitude parallax caused by approximate geometry (or 

what we elsewhere refer to as meso scale structure). However, acquiring dynamic textures is very 

simple and convenient, which in some cases outweighs the inefficiency just mentioned, making their 

use for representing meso scale structures somewhat more attractive. This issue could be somewhat 

improved with some modifications to the acquisition strategy, which are discussed in Section 7.1.
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Chapter 5

Displacement Mapping
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Displacement mapping is a surface representation where objects are coarsely modeled with a 

conventional geometry, and fine details are represented with a displacement function giving a dis

placement to the true surface from each point on the reference surface along the surface normal [9]. 

Displacement mapping is used in our model to represent meso scale details.

Various more approximate methods are available for representing meso structure. With bump 

mapping, the surface normals are modified by a bump map affecting only the lighting of the surface 

[2], Parallax mapping roughly approximates parallax by adjusting texture coordinates along the 

view direction [55]. Displacement mapping, in comparison, accurately renders parallax and self 

occlusion, as well as lighting when combined with a bump map or, in our system, a dynamic texture.

We have developed a novel algorithm for rendering displacement maps using modern graphics 

hardware, which will be presented in this chapter. Although we have designed this model in the 

interest of making it both easily rendered and captured from images, we have thus far focused on 

the rendering and not implemented or developed any algorithm which captures displacement maps 

from images given a macro scale geometric structure. See Section 7.1 for further discussion on this 

topic.

5.1 Previous Work

The concept of displacement mapping has existed for quite some time. Since Cook introduced the 

idea in 1984, [9] techniques for rendering them have been evolving continually. Traditionally, dis

placement maps have been rendered by uniformly subdividing each polygon into micro-polygons, 

and displacing the newly created vertexes using the displacement map [10]. In both ray-tracers and 

real-time systems, these high polygon counts lead to memory/bandwidth inefficiency, and high ge

ometric transformation costs, which limit performance. Even today, offline Tenderers still use this 

method as it is easy to implement and speed is not necessarily an issue. Hardware has recently be

come capable of uniform subdivision displacement mapping by allowing vertex programs to sample 

from textures (an input to the vertex program from texture data in Figure 2.1). However, since it 

is possible for an object to extend from near the viewer to far from the viewer - a ground plane for 

example - uniform subdivision becomes either inefficient or inaccurate: either distant surfaces have 

many triangles smaller than a single pixel, or near surfaces have noticeably coarse resolution.

Adaptive geometric subdivision becomes complicated since higher resolution parts must connect 

to lower resolution parts without forming cracks in geometry. Other difficulties include noticeable 

popping when mesh resolution in an area changes as the camera moves. These problems have been 

well-researched in software systems [34, 15] but due to the complexity of the problem, adoption in
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hardware has not been widespread.

Some image warping algorithms have been adapted from image-based rendering research for dis

placement mapping. Relief textures [44] is an implementation which is suitable for hardware. How

ever, image warping only usually applies to images with depth, or displacement mapped planes. Re

lief textures have recently been generalized to cylinders [16], but generalization to arbitrary meshes 

would be difficult.

Both geometric-subdivision-based algorithms and image-based algorithms perform forward map

pings: geometric methods create triangles and then project them onto the screen, and image-based 

methods directly warp images with depth onto the screen. For a fragment shader based technique, 

we need an inverse mapping, which determines which part of the geometry is visible at each frag

ment. Some approximations of this form exist, such as parallax mapping [55], but the only way to 

get geometrically accurate inverse displacement mapping is by ray-tracing.

Displacement maps have also been directly rendered in ray-tracing, using iterative root-finding 

methods [22] in software rendering. In older hardware, before fragment programs, slicing planes 

were used which approximate ray-tracing by sampling at discrete points a rendering pass for each 

sample [13]. Now, programmable fragment processors are beginning to be used for ray-tracing. 

View-Dependant displacement mapping precomputes all possible ray intersections, and looks them 

up at render time, using large amounts of texture memory [54], Most like our approach is the sample- 

based ray-tracing of displacement maps in [23]. However, our method uses a different method for 

determining exact ray entry and exit points, takes more than twice as many samples per ray, and 

achieves higher frame rates.

Fragment-based solutions benefit from automatic level of detail (LOD): far or small parts of an 

object that appear small on the screen, contain less fragments, rendering more quickly, and large 

or near parts render more accurately. In comparison, achieving this type of LOD geometrically 

would require adaptive tessellation, which is complicated to implement and not available in most 

hardware. In addition, fragment based algorithms benefit from early Z rejection which completely 

avoids processing already occluded fragments.

5.2 Algorithm

We assume that displacements are between 0 and some maximum depth called the displacement 

scale s. Displacements are stored in a grayscale texture image with elements in [0,1], where the 

actual displacement is s times the value stored in the displacement image.
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5.2.1 Planar Displacement

Here, we make some constraining assumptions which simplify the problem, and in Section 5.2.2 we 

will show how to transform the general case into this case. We assume that the reference surface is 

planar and rectangular. We also assume that its texture coordinates form a rectangle in texture space. 

This gives us a simple linear transformation between world space and texture space. It also allows 

us to simply reject intersections outside the texture space rectangle to get correct silhouettes.

From the reference plane, we generate a volume which we will call the displacement volume 

in object space V0 and the corresponding volume in texture space Vt . V0 is the volume created by 

sweeping the reference plane a distance of s along its normal. Vt is the 2D texture rectangle of the 

plane, swept along a 3rd axis from 0 to 1. The transformation matrix that transforms V0 to Vj will 

be called M ot.

The displacement volume is rendered as six quadrilaterals in OpenGL. View rays are first trans

formed into object space, and then transformed by M ot into texture space. The texture space ray 

origin and direction are interpolated and passed to a fragment program. At each fragment we sam

ple the displacement map at N  discrete points along the ray through the displacement volume. N  is 

chosen based on the number of texture accesses available in particular hardware, and the complex

ity of the surface. This type of sampling is used since texture samples whose location depends on 

the results of previous samples (such as in standard iterative root-finding techniques) are expensive 

and limited in current graphics hardware. Sampled displacement values di are compared to the ray 

heights hi at each point to determine which side of the surface the ray is on at each sample position.

view ray secant line
reference surface

displacement

Figure 5.1: Algorithm: d, are shown in blue, hi in green, and the intersection point in red

We take the interval between the sample nearest to the viewer, j ,  where hj > dj and its neigh

boring sample, j  — 1, to contain the intersection o f the ray with the surface (see Figure 5.1). The 

surface is then approximated by the secant line from dj to d j - \ .  Finally, we calculate texture coor

dinates, which are used to index texture and normal maps, as the intersection of this secant line with 

the view ray.

In comparison, using the position of sample j  to index texture and normal maps texture coordi-
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nates, rather than performing the final step, will generate results equivalent to volumetric slicing, as 

in [13], but with a single rendering pass.

5.2.2 Arbitrary Meshes

In the planar case, in order to render silhouettes accurately, we assume that any intersections outside 

of the plane’s rectangle in texture space are not on the plane, and don’t render them. This assumption, 

along with the assumption of planarity, must be removed in order to support arbitrary meshes.

There are two problems when generalizing this algorithm. First, exact entry and exit points 

are required for rays intersecting V0 (the volume generated by displacing a single triangle by the 

maximum displacement). Second, finding a linear transformation that maps rays in V0 into the 

corresponding volume in texture space: Vj.

But what do the volumes V0 and Vt look like? Vt is a triangular prism defined by the texture 

coordinates of the current triangle, with a depth of 1 as shown in Figure 5.2. V0 is more compli

cated. If we were to assume spherical interpolation of normals - as displacement mapping is usually 

implemented in software Tenderers with geometric subdivision - we would get the volume shown 

in Figure 5.3. It would be very difficult to compute entry/exit points into such a volume, and there 

is clearly no linear mapping from this curved volume to a prism. For simplicity, we must assume 

linear interpolation of normals, which generates the volume shown in Figure 5.2.2. Although two 

of the boundaries are now planes, the other three boundaries to this volume are curved bilinear sur

faces. Intersecting rays with those surfaces would still be too complicated, and there is still no linear 

transform between this volume and a prism. Now we choose to approximate V0 by subdividing it 

into volumes with planar boundaries, and for which there exists a linear transformation into texture 

space. We subdivide Vt into three tetrahedrons, and we approximate V0 by three corresponding 

tetrahedrons. In a connected mesh, we must assure that neighboring displacement volumes are split 

into tetrahedrons along the same edges. This can be done simply by reordering all triangle vertexes 

in order of their index into the vertex array as shown in Hirche et al. [23].

Figure 5.3: A dis
placement volume 
in object space 
assuming spheri
cally interpolated 
normals.

w
Figure 5.2: A dis
placement volume 
in texture space (tri
angular prism)

Figure 5.4: A displacement volume in 
object space assuming linearly inter
polated normals, shown shaded on the 
right to emphasize that the volume is 
curved.
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Where our method differs substantially from the tetrahedral Tenderer in [23] is in how we calcu

late entry and exit points through the tetrahedrons. Now that each tetrahedron has a linear mapping 

to texture space, we compute entry and exit points o f each ray by simple line/plane intersections. 

We simplify this further by performing the intersections in axis aligned tetrahedron space where the 

four planes are x  =  0, y  =  0, z  =  0, and x  +  y  +  z  =  1.

Detailed Algorithm Overview

Initialization:

•  generate three tetrahedrons for each triangle

• build transformation matrices from object space to tetrahedron space

• build transformation matrices from tetrahedron space to texture space 

Rendering:

• render all four triangles of each tetrahedron passing vertex position and both matrices to the 

vertex program.

•  The vertex program computes the ray entry point and direction in tetrahedral space and texture 

space, these are interpolated linearly over each triangle and passed to the fragment program.

•  The fragment program intersects the ray, in tetrahedral space, with the the planes of the tetra

hedron. The nearest positive intersection parameter is chosen (ignoring the intersection with 

the face being rendered). This parameter is then used directly on the ray in texture space.

Sample points for the ray-tracing algorithm are computed as:

Pi = r  * q * jv+T 

Pi+i = P i + r  i

Here N  is the number of samples, pi  is the ray entry point in texture space, r  is the ray 

direction in texture space, and q is the exit point intersection parameter. Using these sample 

points, the rest o f the ray-tracing algorithm proceeds as shown in Section 5.2.1
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5.3 Displacement Mapping for LOD

Since the performance and accuracy of this algorithm depends directly on the the number of frag

ments rendered, level of detail (LOD) is automatic: parts of the object appearing larger on the 

screen are rendered in more detail. This makes this method useful for LOD of any object, not just 

ones which would be naturally displacement mapped (such as brick walls). This can be achieved by 

precomputing a displacement map and bump map given a low-polygon and a high-polygon version 

of the same object.

Figure 5.5: A smooth sphere rendered as a low detail sphere plus a displacement map.

Most current game engines already use similar techniques, computing bump-maps to make a 

low-polygon model look almost as good as the high-polygon version. However, a common com

plaint is that the silhouette of the object clearly shows the low resolution of the geometry when bump 

mapping is used. Using true displacement mapping gives much higher quality including correct sil

houettes and parallax effects. Some example renderings of our algorithm being used for LOD are 

shown in Figures 5.5 and 5.9.

5.4 Improving performance
5.4.1 Early Z Rejection

The performance of our technique is bound by fragment processing. Many fragments may be oc

cluded, and do affect the final image, but are processed anyway depending on the order they are 

rendered. Modern GPUs can discard fragments before running the fragment program if the contents 

of the depth buffer indicate that they are already occluded. This means that it is in our best interest 

to render scenes from front to back in scenes with high fragment program costs. Sorting polygons, 

or just tetrahedrons, can save us from this overdraw problem, but introduces extra CPU and band

width load. For opaque objects, another solution is to simply render the reference object - just the
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original low-resolution triangles, not the extruded volumes - into the depth buffer before rendering 

the displaced volumes with the expensive ray-tracing shader. This achieves a similar speed improve

ment without the CPU and bandwidth hit. Note that early z rejection optimization requires that the 

shader does not compute the displaced depth value; this works fine unless it is necessary for the 

intersections of objects to be rendered accurately.

5.4.2 Tight Fitting Displacement Volumes

In our formulation thus far, each displacement volume has been extruded by the same distance along 

the object’s normals. Depending on the displacement map and the tessellated resolution of the mesh, 

all displaced volumes are not likely to contain actual displacements over the full range (0 ,1). We 

can optimize displaced volumes by checking the minimum and maximum displacements for each 

triangle given a certain displacement map. Fitting the displacement volume to actual minimum 

and maximum displacements will improve both performance and accuracy. Ray-tracing through 

tighter bounding volumes means more accurate ray tracing results, since the same number of samples 

are taken over a smaller distance. In addition, smaller volumes means that fewer fragments are 

processed, particularly at grazing angles.

Figure 5.6: A displacement mapped object with full size displacement volumes on the left, tight 
fitting volumes on the right.

There are cases where the accuracy and performance improvements are noticeable. Notice the 

horizontal line in near the center o f the sphere in Figure 5.6. It is not straight on the left due to 

sampling aliasing but in the optimized case it is rendered correctly. LOD displacement maps, as in 

Section 5.3, commonly contain a large range of displacements over the whole object, but not nec

essarily all in a single triangle. Therefore, LOD displacement maps often benefit from performance 

increases with tighter displacement volumes. For the model in Figure 5.6 we have measured frame 

rate increases approximately 65% when using tight fitting displacement volumes over full size ones.
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5.4.3 Variable Sampling Rate

With shader model 3.0 hardware, looping support and conditionals provide us with the possibility 

of taking a variable number of samples depending on the ray. Rays that are nearly normal to the 

surface are vertical in texture space and require few samples. Rays that are nearly parallel to the 

surface polygon are horizontal in texture space and require more samples. Ideally, one sample 

would be taken for each pixel in the displacement map that the ray crosses (when projected on the 

the texture); this would eliminate all aliasing. This could be achieved by separating sample points 

by a uniform distance in the 2D texture plane (1 pixel size), rather than taking a uniform number 

of samples. This would reduce aliasing at grazing angles, where more samples are needed, and 

improve efficiency in direct views. The number of samples taken per fragment would be spatially 

coherent, which is required for current hardware to actually achieve a speed improvement since a 

group of fragments renders only as fast as the slowest fragment. We have not yet implemented this 

method, but it seems that it should improve performance and/or quality.

5.4.4 Silhouette Displacement Mapping

Figure 5.7: True displacement mapping is shown on the left, on the right, only the silhouette regions 
are displacement mapped, the center is simply bump-mapped.

We have tested a more drastic optimization, that we call silhouette displacement mapping, which 

applies full displacement mapping only to polygons near the silhouette of the object. Other polygons 

receive only bump mapping. With geometric-subdivision-based methods, this would be difficult, 

requiring adaptive tessellation to line up the detailed part with the coarse part. With our method, 

we simply reduce the displacement scale s  away from the silhouette. Where s is zero, we render 

only bump-mapped triangles. Parts with s non-zero are near the silhouette and render with full 

displacement mapping.
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5.5 Results

Our algorithm has been implemented using OpenGL with ARB vertex program and fragment pro

gram extensions. The algorithm will run on a wide variety of hardware (anything supporting 

ARB .vertex.program), but has been tested primarily on Radeon 9700/9800 graphics cards. Perfor

mance results given here were measured on a Radeon 9700/Athlon 2500+ system in a full 640x480 

window.

Figure 5.8: Results o f the planar displacement mapping algorithm: upper right object is made from 
six displacement mapped planes rendered in four passes, others are rendered in a single pass with a 
single plane.

For the planar algorithm we have been able to get 15 samples per ray before running out of 

resources (we are limited by ALU instructions) using ARB_fragment_program. To achieve higher 

sampling rates, multiple rendering passes are performed. The single pass planar algorithm gets up 

to 150 fps in with every pixel in a 640x480 window being processed. Results are shown in Figure 

5.8.

Figure 5.10 shows the results o f first (on top) rendering a rock displacement map directly on 

an approximate sphere, and second (on the bottom) blending the LOD displacement map used for 

Figure 5.5 with the rock displacement map to create a much smoother result.

In the generalized algorithm we were able to take 11 samples per ray, with the added overhead 

o f computing ray entry and exit points. Not that this is significantly more than the 4 samples that a
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previous algorithm took [23]. Frame rates vary from model to model with the generalized method, 

since there can be a lot of overdraw. The face model shown in Figure 5.9 renders at 45 fps with, 

the spheres in Figures 5.10 and 5.5 render at minimum 40 fps. Early Z rejection gives the following 

improvement: with no sorting we get 25 fps for the sphere in Figure 5.10; pre-drawing to the depth 

buffer increases the frame rate to 36; sorting tetrahedrons increases the frame rate to 40.

The algorithm proposed here can render displacement mapped planes and arbitrary objects us

ing fragment processing hardware. The method we have described is more efficient than previous 

methods. It is useful for both planes and arbitrary objects, and has also been shown to work well for 

level of detail rendering.
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Figure 5.9: Level of detail rendering with displacement mapping. Two views of an object rendered 
with our algorithm. The overlay on the right shows the coarse geometric resolution of the base mesh.
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Figure 5.10: A coarse sphere displaced by a rock displacement map on the top, and combined 
LOD displacement map and rock displacement map on the bottom. Note how the bottom sphere is 
smoothly curved while the top one has a more polygonal shape.
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Chapter 6

Systems and Experiments
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We have developed two systems for acquiring and rendering different types of hierarchical 

graphics models. The first uses triangle meshes for the macro scale, and represents both the meso 

and micro scale with a dynamic texture. The second system also represents the macro scale using 

a triangular mesh. However, in our second system the meso scale is represented separately with a 

displacement map, and only the micro scale is modeled using a dynamic texture.

6.1 Dynamic Textured Geometry

We have performed many experiments using dynamic textures in combination with rough polygonal 

meshes. Considering that the geometric information acquired by the methods described in Chapter 

3 are often inaccurate and sparse, dynamic textures parameterized in view direction can be used 

to account for small scale geometric inaccuracy (meso scale). In addition, the dynamic texture will 

reproduce complex surface reflectance (micro scale). Unfortunately, in this case, the meso and micro 

information are linked, and both only parameterized in view direction, meaning the light cannot be 

made to move around independently of the view (but can potentially move with respect to the object 

when the view changes if that is how the object was captured). However, a more elaborate setup 

with a rotating camera, and an array of lights could be used to overcome this problem in the future.

Objects modeled in this way are rendered in graphics hardware by modulating the dynamic 

texture basis, as described in detail in Chapter 4. We have implemented two types of geometry 

acquisition in our experiments, structure from motion, and shape from silhouette. The separate 

acquisition systems and results with the two methods will be detailed in the following subsections.

6.1.1 Structure from Motion

SFM acquires geometry based on corresponding feature positions over many views. In order to 

get the feature correspondences, we use tracking. Textured regions are tracked using the XVision2 

tracking libraries which provide very useful and efficient SSD trackers [30]. These trackers work 

best on textured regions that are locally unique. We have features manually selected by the user, 

since trackable regions are often sparse and we prefer to place them in strategic places for modeling 

purposes, such as the apex of a roof for example.

After the user identifies several features in the camera view of the target object. Then, from the 

live video stream, we track the locations of these features in real-time. We record the video stream, 

along with the feature positions while the user rotates the object through various viewing directions. 

We make the simplifying and restrictive assumption that all tracked points are visible in all video 

frames.
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Using the tracked feature positions from many different views, we can compute a rough 3D 

structure using methods described in Section 3.1.

Early experiments, such as the flower in Figure 6.1, use separate dynamic textures for each 

quadrilateral. Each one is warped from each frame of the video sequence, to a square textures.

Figure 6.1: A flower rendered with a very simple geometry of four quadrilaterals (shown on the 
bottom right), each dynamic textured with respect to viewing direction.

In more recent experiments, such as the house shown in Figure 6.3, memory usage was signif

icantly reduced. First, we use only a single dynamic texture. The mapping from image space to 

texture space is defined by assigning each vertex a texture coordinate, which we generate automat

ically as the vertex’s average camera space projection. A set o f triangles is generated for the model 

using Delaunay tessellation of the texture coordinates, and potentially edited manually with our GUI 

shown in Figure 6.2. Each view is warped to texture space by affine warping of the pixels in each 

triangle. Additionally, the dynamic texture is computed in YUV color space as described in Section 

4.3, further reducing memory requirements by allowing reduced number and resolution of U and V 

basis elements.

Figure 6.2: The system built for viewing and editing tracking data.
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In our system, the camera or object could be oriented by hand. However, the best results were 

obtained using a tripod and stick to orbit the camera around the object. This setup achieves uniform 

sampling (if the tripod is moved smoothly), and also keeps the object centered in the camera view, 

which is essential for the structure from motion algorithm. After tracking feature points, the sys

tem allows the user to interact with the data in order to potentially identify and remove or correct 

inaccurately tracked features. Figure 6.2 shows a screenshot of the system’s user interface.

As can be seen, in extreme cases, such as the flower in Figure 6.1, a complex and intricately 

detailed object can be represented with very few polygons at the expense of a large texture basis. 

The polygonal mesh for this flower contains only four quadrilaterals. However, this puts a heavy 

weight on the dynamic texture to account for very large geometric inaccuracies. It was necessary, in 

this case, to use 100 basis images for rendering, and blurriness artifacts were still present.

The house shown in Figure 6.3 has a more reasonable geometric structure, but still requires a 

fairly large basis (50 to 100 elements). In addition, our constrained capture setup which requires the 

visibility of all feature points in all video frames, results in fairly small possible variation in view

ing angle for most objects. The next subsection describes a system which acquires more accurate 

geometry and allows larger variation in viewing direction.

Figure 6.3: 4 new views of a house rendered with dynamic textures (parameterized in viewing 
direction)

6.1.2 Shape from Silhouette

To capture geometry using shape from silhouette, we first place the object on an automatic turntable. 

Using a stationary camera, we take a set o f images from views on a ring around the object. We may 

move the camera to get a second or more rings of views from different heights. A calibration pattern 

on the turntable is used determine the camera’s position and orientation with respect to the object. 

A colored piece of paper is mounted behind the object for use when detecting the silhouette.

We have implemented the method described in 3.2.1 to segment the object from the background, 

giving us a silhouette image. Using the segmented image, our implementation of the marching 

intersections SFS algorithm described in Section 3.2.2 was implemented to compute the visual hull.
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As in the SFM case, we apply a view-dependent dynamic texture to the resulting geometric model 

to account for its inaccuracy. However, applying the dynamic texture is slightly more difficult since 

we have a much larger range of views, and a closed mesh.

Figure 6.4: Texture atlas: on the left is a rendering visualizing the different charts on the object; on 
the right is the texture atlas.

Proper behaviour of our system depends on computing a one-to-one mapping from each point on 

the object’s surface into a 2D texture image. We represent this mapping by a 2D texture coordinate 

stored along with each vertex, and linear interpolation within each triangle. Computing such a set of 

texture coordinates for a general mesh is a very difficult problem. This problem was solved easily in 

the case of SFM in Section 6.1.1 where observed views were restricted to a small range. However, in 

the case of SFS, we have an arbitrary polyhedral mesh, which requires a much more general method 

for automatically generating texture coordinates.

The method from Levy et al. [32] was implemented, and works sufficiently well. This method 

breaks a polygonal mesh into charts using a region growing algorithm. The algorithm segments the 

mesh into the desired number of charts preferring to split along regions of high curvature. Each 

chart is then flattened into 2D using conformal mapping. Conformal mapping preserves angles so 

that the error between the three angles o f each triangle in texture space and the same triangle in 3D 

is minimized (in the least squares sense). We have also implemented a version which uses multi

dimensional scaling (MDS) as described in [60]. MDS works similarly, minimizing the error in 

distance along the surface of the 3D mesh to distance in 2D texture space; results are comparable.

All of the charts are then packed together into a texture atlas. Packing is performed using a 

greedy algorithm, ordering the charts from largest to smallest. Figure 6.4 shows an example where 

the texture atlas is shown next to the object with charts colored uniquely.

After texture coordinates are generated, warping the example views into texture space requires 

an extra trick. Some parts of the model are occluded from some views, so we cannot simply warp 

triangles from the camera views into texture space. We overcome this using a depth buffer. For each 

view, we generate a depth image where each pixel represents the depth from the camera to the visual
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Figure 6.5: Two views of a pig rendered with view Figure 6.6: A scene with several dynamic textured 
dependent dynamic textures. objects (10 dynamic textures in total)

hull. We then warp this depth image into texture space. Now, when we warp the actual image pixels 

into texture space, we interpolate the actual depth of each vertex relative to the camera across each 

triangle. So, at each pixel in the texture, we know the depth of that point on the geometry, and we 

know (from the depth texture) the depth that the pixel we are potentially placing there has. If they 

are not the same (to some tolerance) that element of the texture is occluded. After marking occluded 

areas in the texture for each view, we fill those parts in with the mean value as computed over all 

views where that part was visible. In this way, we can use a single dynamic texture even though 

parts o f it are not visible in every view.
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Fram e buffer blending 

•Add to frame buffer

Vertex Program  
r*Transform vertex position to 
camera space

Fragm ent Program

•Blend 16 basis elements 
•Multiply result by color 
transform vector

compute view direction

for (channel = 1 to 3)

Set color matrix row[channel] to
fragment program constant

for (elem=l to BasisCount[channel]/16)

Sample interpolation table and
set to fragment program constants 

Draw geometry ________________________

CPU

GPU

Figure 6.7: Algorithm overview for rendering geometry with dynamic texture

After this warping step, the computation and rendering of the dynamic texture take place in the 

same way as described in Chapter 4. An overview of how the rendering algorithm is executed on 

the CPU and GPU is given in Figure 6.7. An example object captured with this system is shown in 

Figure 6.5 and a scene filled with several objects is shown in Figure 6.6. On a 3.2 GHz CPU with 

NVidia GeForceFX 6800GT graphics accelerator, the pig model renders at 115 fps, and the scene 

with several dynamic textured models (a total of 10 dynamic textures) renders at 35 fps.

6.2 Geometry, Displacement Mapping, and Dynamic Texture

This thesis is focused on the rendering aspects of graphics models, and since an implementation of 

this type of algorithm was not readily available, we have used other methods in order to test the 

integrated rendering system. Ideally, we would like to use SFS or SFM, in combination with an 

algorithm which computes displacement maps from images such as the method recently proposed 

by Vogiatzis et al [53].

The geometry and texture have been captured in independent steps. First, very detailed geometry 

was captured using a laser scanner. Using 3D modeling software, we performed post-processing on
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the detailed geometry to compute a low-polygon model and corresponding displacement map.

Then, the dynamic texture part of the model was acquired separately and aligned manually with 

the geometric model. To acquire lighting variation in a dynamic texture, we mounted the object and 

camera rigidly on opposite ends of a rod. Next to the object we mount a matte sphere, and the rod is 

attached to a rotating tripod as shown in Figure 6.8.

Object

Camera

_. „ „ _  , . Figure 6.9: Example images taken as shown in,the adjacent
Figure 6.8: The apparatus used tor ac- figure 
quiring light variation

Placing the apparatus in natural, directional light (from the sun), we rotated the tripod manually 

in a grid pattern, while capturing many images. Some example images are shown in Figure 6.9. 

After sampling the images, the user identifies the sphere in a single image.

The light direction is calculated in each image by solving a simple set of linear equations. We 

can compute the normal of each pixel in the sphere, and then by using the standard diffuse lighting 

equation, we relate the normal and pixel color to the light vector by the standard diffuse lighting 

equation c — n  •  I + a, where c is the pixel brightness, n  is the pixel normal, I is the light direction, 

and a is the ambient light. With many pixels, a system of equations is built and solved for I and a. 

Using the light direction as a parameter, we compute a dynamic texture as described in Chapter 2.

A ceramic mask and a model house made from natural wood, bark, etc. were captured using this 

method and the resulting renderings are shown in Figures 6.10 and 6.13, respectively. The algorithm 

used for rendering, and how it is mapped to the CPU and GPU is shown in Figure 6.11. The examples 

render at approximately 100 fps in a 640 by 480 window using NVidia GeForce 6800GT graphics 

hardware and a 3.2GHz CPU.

Representing lighting variation requires very few basis elements. In both the house and face 

examples, only eight grayscale basis images were used, and no basis images were used for color 

information. The first four basis images are shown in Figure 6.12. The hardware rendering imple-
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I .

Figure 6.10: Four views each with four different lightings of a displacement-mapped and dynamic- 
textured Korean face mask from the Shilla period.

mentation for only 8 basis images requires only three texture accesses, two dot products and two 

additions, which allowed it to easily be inserted into the displacement mapping fragment program 

in place of the standard lighting computation. This allows the composite rendering to take place in 

a single pass, and achieve performance approximately equal to the displacement mapping code with 

standard bump-mapped lighting.
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Initialization:
•Build tetrahedrons from low res mesh
•Load displacement map as texture
•Load dynamic texture basis and interpolation tables as textures

•Update light direction and camera position CPU 
•Set light direction fragment program constant 
•Set camera matrix vertex program constant 
•Submit rendering call

I Vertex Program_________
•Transform vertex to camera space 
•Transform view ray to texture space

Fragment Program 1
•Compute ray entry and exit points 
•Sample displacement map 
•Compute intersection point 
•Sample dynamic texture basis 
•Sample interpolation table 
•Modulate basis to compute color

Figure 6.11: Algorithm overview for rendering geometry, displacement map, and dynamic texture.

Figure 6.12: First 4 basis images (of 8) used for lighting the face artifact. Intensities have been 
remapped so that black is -1.0, gray is 0.0 and white is 1.0.
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Figure 6.13: Four views each with three different lightings of a displacement-mapped and dynamic- 
textured model house.
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Chapter 7

Discussion
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7.1 Future Work
7.1.1 Geometric Capture from Images

The system shown in Section 6.1.2, which captures objects using shape from silhouette and view- 

dependent dynamic textures, is based completely on 2D images, and is therefore quite easy to use. 

However, the system used for acquiring geometry, displacement maps, and dynamic texture in Sec

tion 6.2, additionally makes use of 3D input for acquiring displacement map data. Future work 

would be to compute displacement maps from images given an approximate geometry. Some work 

has been done on this problem by making use of the parallax between multiple views [53]. In ad

dition, such a method should be incorporated into a system easy enough to be used by people not 

trained in computer graphics, like the system in Section 6.1.2.

7.1.2 Displacement Mapping

The displacement mapping algorithm shown in Chapter 5 renders in a pixel shader on graphics 

hardware. Recent advances in hardware allow texture accesses during vertex processing, as well 

as hardware-accelerated geometric tessellation. Since both vertex and pixel based methods for dis

placement mapping in hardware are quite new, the performance of these methods should be com

pared, to determine which is actually most efficient using available graphics cards.

7.1.3 Dynamic Texture

In this thesis, we have shown examples which use dynamic textures for representing lighting varia

tion, and others which use dynamic textures for representing view-dependency. However, we have 

yet to use dynamic textures for both effects simultaneously. There are two reasons for this. First, it 

is very time consuming to simultaneously capture many lighting directions and viewing directions, 

since it would mean sampling a 4-dimensional function. Second, interpolation of coefficients in two 

dimensions is simple, but becomes complicated when the number of dimensions increases. Tensor 

Textures have shown how different dimensions of variation can be separated using tensor mathe

matics [52], However, this requires that for each viewing direction there is a set o f images for each 

lighting condition, rather than a random collection of images where each has a view and lighting 

direction. This makes capturing such textures very difficult, which explains why the examples in 

their papers are made from computer renderings, and not real scenes. Allowing tensor texture like 

separation, with more flexible inputs would be a very useful future result.

A problem which was pointed out in Section 4.7 is that when acquiring a view-dependent dy

namic texture, we may warp some grazing angle views containing very few useful pixels into texture
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space, and then end up unnecessarily simulating the resulting blurred image during rendering. The 

problem is that the current method solves for a basis that minimizes the error between recomputed 

texture images (after being projected onto the reduced rank basis) and the original texture images 

for any view. The key to solving this problem is to realize that we do not care about errors between 

texture images. The important error is the difference between an original camera view, and the 

recomputed texture for that view, mapped onto the object and projected onto that camera. A math

ematical reformulation which minimizes this error would achieve much better results with fewer 

basis vectors.

7.2 Conclusions

We have presented a new graphics model based on a hierarchy of scales of detail. The model was 

designed to balance ease of acquisition from images with efficient rendering. The three levels of 

detail - macro, meso, and micro - are represented using triangle meshes, displacement mapping, and 

dynamic textures, respectively. We have shown how this model can be rendered in real time using 

current hardware graphics accelerators. Also, we have presented systems for capturing this type of 

graphics model.

The low resolution macro scale was captured using image-based modeling algorithms. Two 

methods, shape from silhouette and structure from motion, were implemented and described in 

detail. Shape-from-silhouette proved more useful for capturing the full range of views of a small 

object, while structure from motion is more useful for large scenes, where silhouette information is 

not available.

For the rendering of the meso scale, a novel displacement mapping algorithm was developed, 

presented and tested. The method uses modern graphics hardware to ray trace displacement-mapped 

surfaces in real-time.

For the micro scale, we described dynamic textures, which can represent a texture which varies 

with respect to light or view direction. Several efficient dynamic texture Tenderers were designed and 

implemented on various levels of consumer graphics hardware. Dynamic textures parameterized by 

viewing direction were used to represent meso scale structure in some cases. Micro scale structure 

was represented by dynamic textures parameterized in light direction.

An easy to use system was built for capturing models with shape from silhouette and view 

dependent dynamic textures. These models are very easy to capture, but have only two scales, 

geometry and dynamic texture, and cannot be rendered with varying lighting conditions. A plug-in 

was developed for Alias Wavefront’s Maya renderer which can render captured objects of this type

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in scenes which can also contain traditional graphics models.

A second system was built for making the full 3-tiered models. This system uses a laser scanner 

to acquire the geometric structure, from which a low resolution triangle mesh and corresponding 

displacement map are extracted. The lighting variation was captured separately using cameras. The 

final results can be seen in Figures 6.10 and 6.13.

These methods were proven useful in several experiments where real objects were captured and 

rendered. We demonstrated successful rendering of otherwise difficult cases such as flowers and 

other natural materials.
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