
�

� �

�

1

1

Field Programmable Gate Arrays

1.1 Overview

Field programmable gate arrays (FPGAs) were invented in the 1980s at Xilinx® as
programmable array logic (PAL) devices [1, 2] and underwent three distinct stages
of evolution each lasting a span of approximately 10 years [3]: Age of Invention,
Age of Expansion, and the Age of Accumulation. Over this 30 year time-span,
FPGAs have increased in logic capacity by a factor of over 10 000 and increased
in speed by over 100; over the same period, their cost and power consumption
per operation decreased by a factor of 1000. These impressive developments in
processor technology led to their expansion into myriad applications [4]. The
fine-grained resolution of logic resources and memory on the FPGA allows
reconfiguring the hardware for a specific user application.

Reconfiguration was made possible due to static random-access memory
(SRAM) based FPGAs, which can be reprogrammed using a configuration
bitstream. The traditional FPGA design flow creates a register transfer level
(RTL) abstraction using a hardware description language (HDL). The HDL code
is translated by a synthesis tool into netlist files that are textual representation
of the logic design. Then place-and-route tool is used to map the netlists to a
specific FPGA device, and bit-generation tool creates a configuration bitstream.
At each stage of the design, simulation can be used to verify the accuracy, timing,
and functionality. While users can emulate any digital logic design on the FPGA,
practical constraints such as the amount of hardware resources consumed, clock
speed, and inputs/outputs (I/Os) need to be observed to achieve a successful
emulation.

Although many-core graphics processing units (GPUs) may be more attractive
for large-scale applications where floating-point computations predominate, algo-
rithms implemented on GPUs must confirm to the single instruction multiple data
(SIMD) paradigm to achieve the most acceleration. In comparison with GPUs,
FPGAs have much lower latencies and higher computational density per watt

Real-Time Electromagnetic Transient Simulation of AC-DC Networks, First Edition.
Venkata Dinavahi and Ning Lin.
© 2021 The Institute of Electrical and Electronics Engineers, Inc. Published 2021 by John Wiley & Sons, Inc.

READ O
NLY

�

� �

�

2 1 Field Programmable Gate Arrays

which is becoming increasingly significant as energy and cooling expenditures
form the major portion of operating cost of high-performance compute (HPC)
facilities. Currently available FPGAs contain millions of programmable logic
gates, high-bandwidth memory, dedicated multiplier blocks, gigabit per second
communication transceivers, and on-chip processors, making the platform very
flexible and extensible for any specific application. FPGA vendors provide families
of devices of various speeds, sizes, and functionality, each employing slightly
different proprietary technologies, to target groups of application domains. In
addition to hardware, vendors provide highly integrated computer-aided design
(CAD) tools such as Vivado® from Xilinx® and Quartus Prime® from Intel®.

The future of the FPGA looks bright, and industry trends point to on-chip
heterogeneous integration of programmable logic with multi-core CPU and
many-core GPU resources to create multi-processing system-on-chip (MPSoC) [5]
and adaptive computing acceleration platform (ACAP) [6] architectures to
address the needs of evolving and diverse applications. FPGAs are currently being
used in a wide range of application domains including consumer electronics,
medical devices, robotics, industrial instrumentation and controllers, wireless
communications, automotive electronics, and aerospace and defense equipment.
Major cloud service providers are now integrating FPGAs [7] into their compute
servers that are used for big data analytics. This chapter briefly introduces some
of the terms and definitions related to FPGA architecture and design flow for
hardware-in-the-loop (HIL) emulation.

1.1.1 FPGA Hardware Architecture

The FPGA is an integrated circuit containing an array of 2-D configurable logic
blocks (CLBs) which are interconnected through wires and programmable switch
matrices. A fundamental CLB is able to implement both combinational and
sequential logic functions, and the programmable switch matrices also help to
achieve hardware reconfigurability. Two typical FPGA hardware architectures
are given in Figure 1.1 [8–10], which shows the I/O blocks connecting the CLBs
and programmable switch matrices are arranged at the periphery of the logic
array. The column-based advanced silicon modular block (ASMBL) architecture
created by Xilinx® offers users a greater convenience in choosing an FPGA device
with proper features for their design. This structure is adopted for the 7-series and
Ultrascale+® FPGA devices. According to Figure 1.1b, the FPGA is composed of
6-input look-up tables (LUTs) based CLBs, on-chip block memory, digital signal
processing (DSP) slices, precise clocking resources, enhanced PCIe® interface
blocks, and the programmable switches interconnected via wires.

The Xilinx® Virtex®-7 FPGA VC707 Evaluation Kit [10] and the Xilinx® Virtex®
Ultrascale+ FPGA VCU118 Evaluation Kit [11] are the two boards used in HIL

READ O
NLY

�

� �

�

1.1 Overview 3

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB CB SB CB SB CB SB

CB CB CB CB

SB CB SB CB SB CB SB

CB CB CB CB

SB CB SB CB SB CB SB

CB CB CB CB

SB CB SB CB SB CB SB

CLB

I/O

SB

Switch

box

CB

Connection

box

CLB

Configurable

logic block

(a) (b)

I/O

RAM

DSP

PCIe

MMCMs

CLB

Switch

Figure 1.1 FPGA hardware: (a) mesh architecture and (b) Virtex®-7 ASMBL architecture.
Source: Kilts [8], Farooq et al. [9]

emulation in many of the chapters of this book. The Virtex®-7 XC7VX485T FPGA
was manufactured with 28 nm process technology, while the Virtex® Ultrascale+
XCVU9P FPGA was manufactured on 16 nm 3D FinFET process technology. A
comparison of the main logic resources on the XC7VX485T and the XCVU9P
devices is presented in Table 1.2 [12, 13].

While the two generations of FPGA boards share many types of resources, the
latest UltraScale+ XCVU9P FPGA is more resource-abundant and efficient in data
exchange than the Virtex®-7 FPGAs. The availability of some of the resources is
significant as it affects the scale of the emulated system for HIL application. Thus,
they are introduced in the following subsections.

1.1.2 Configurable Logic Block

The CLB is the fundamental component in the FPGA for providing basic logic
and arithmetic functions as well as data storage. In the Xilinx® Virtex®-7 series
FPGAs, the CLB contains two side-by-side slices, each of which is composed of
four 6-input LUTs, which has two flip-flops [14, 15]. In addition, a CLB also has
three wide-function multiplexers and the carry chain to perform arithmetic adding
and subtracting operands in its slices.

Figure 1.2 shows the architecture of a CLB. The slices, organized as two individ-
ual columns, are not directly connected to each other. Slice0 is at the bottom of the
CLB and place in the left column, while Slice1 locates at the top and in the right
column of the die.

There are two types of CLB slices: those support data storage using distributed
RAM and data shift with 32-bit registers are categorized as SLICEM, while the
rest are named as SLICEL. Then, a CLB can contain either two SLICEL or one
SLICEL and SLICEM. The LUT in the Virtex®-7 FPGA can be implemented as one
6-input 1-output LUT for 64-bit ROM or two 5-input LUTs with individual outputs

READ O
NLY

�

� �

�

4 1 Field Programmable Gate Arrays

LUT

LUT

LUT

LUT

SET

CLR

SET

CLR

SET

CLR

SET

CLR

SET

CLR

SET

CLR

SET

CLR

SET

CLR

Carrier

chain

Din

Din

Din

Din

CIN

COUT

D

D

D

D

Slice 1

Slice 0

CLB

CIN CIN

COUTCOUT

Q

QS

R

Q

QS

R

Q

QS

R

Q

QS

R

Q

QS

R

Q

QS

R

Q

QS

R

Q

QS

R

Figure 1.2 Configurable logic block architecture.

for 32-bit ROMs. The carrier chain contains multiplexers and an XOR logic gate
for the addition or subtraction operation. As can be seen, the inputs and outputs
of a slice are also its ports.

1.1.3 Block RAM

In Xilinx® Virtex®-7 series and Ultrascale+ FPGAs, the block RAM (BRAM) has
up to 36 kbits data storage capability, and it can be implemented as either 1 RAM
or 2 separate RAMs with each having 18 kbits data [16, 17]. In addition, it also
has the cascaded manner when an adjacent 36 kbits BRAM is implemented, i.e.
1× 64 kbits, and under simple dual-port mode, there are a variety of configura-
tions, e.g. 1× 32 kbits, 2 × 16 kbits, or even 72 × 512bits. Similar configurations are
also available to the two separated 18 kbits RAMs.

Under simple dual-port mode, there is only one read-only port and write-only
port, which has a high degree of independence, e.g. they are controlled by two
clocks, and the data width can also be different, and independent read/write
actions can take place simultaneously. Correspondingly, another BRAM type is
the true dual-port RAM, whose symmetrical configuration is given in Figure 1.3.
It ensures a flexible data access to either or both ports by enabling them to have
an individual address, input/output data, a clock signal, write enable, etc. The
description of those port names is provided in Table 1.1.

1.1.4 Digital Signal Processing Slice

Programmable logic devices are efficient carriers for DSP applications, which use
many binary multipliers and accumulators. Both the 7-series and UltraScale+
FPGAs have a number of dedicated low-power DSP slices, integrating high

READ O
NLY

�

� �

�

1.1 Overview 5

(a) (b)

36kb

Memory

DOA

DOPA

DOB

DOPB

DIA

DIPA

ADDRA

WEA

ENA

CLKA

32

4

16

4

DIA

DIPA

ADDRA

WEA

ENA

CLKA

32

4

16

4

32

4

32

4

DI

DIP

RDADDR

RDCLK

RDEN

REGCE

SSR

WE

WRADDR

WRCLK

WREN

64

8

15

8

15

DO

DOP

64

8

36kb Memory

Figure 1.3 Virtex®-7 series FPGA block memory: (a) simple dual-port RAM and (b) true
dual-port RAM.

Table 1.1 Dual-port RAM description.

Port Direction Description

DI In Data input bus
DIP In Data input parity bus
ADDR In Address bus
WE In Byte-wide write enable

EN In BRAM write enable
CLK In Clock input

DO Out Data output bus
DOP Out Data output parity bus

speed with compact size while at the same time the system design flexibility
is maintained. In addition to DSP, the DSP slices also enable wide dynamic
bus shifters, memory address generators, memory-mapped I/O registers, etc.
On the 7-series FPGA boards, DSP48E1 slice is adopted [18], as shown in
Figure 1.4, while its UltraScale+ counterpart is defined using more advanced
DSP48E2 [19]. As shown in its slice architecture, the DSP48E1 slice includes
25× 18 two’s-complement multiplier, a 48-bit accumulator, 25-bit power-saving
pre-adder, a pattern detector, etc.

READ O
NLY

�

� �

�

6 1 Field Programmable Gate Arrays

48-bit accumulator/logic unitB

A

D

C

Pre-adder

25 × 18

Multiplier

Pattern detector

P

Figure 1.4 Basic DSP48E1 slice functionality.

1.2 Multiprocessing System-on-Chip Architecture

Conventionally, an MPSoC is a device that contains multiple processing elements
(microprocessors) that are heterogenous in nature and address the computing
needs of an application area. In the context of a MPSoC from Xilinx®, the device
consists of a multi-core CPU, many-core GPU, programmable logic (FPGA),
memory, and I/O peripherals. As shown in Figure 1.5, these hardware resources
are divided into two processing domains: processing system (PS) and processing
logic (PL). On the Xilinx® UltraScale+XCZU9EG MPSoC, the PS consists of ARM®
Cortex-A53 quad-core application processing units (APUs), ARM® Cortex-R5
dual-core real-time processing units (RPUs), the ARM® Mali-400 MP2 GPU,
memory, and high-speed connectivity, whereas the PL consists of system logic
resources, memory, high-speed, and general purpose I/O [5, 21]. Within each
APU, various components are available to accelerate computation, such as NEON
(an advanced SIMD architecture), floating point unit (FPU), etc.

The PS communicates with PL using high bandwidth and low-latency Advanced
eXtensible Interface (AXI) channels. Such architecture provides high flexibility
to merge the advantages of the fast sequential calculation and the hardwired
parallelism to meet the requirements of high-performance computing. However,
the logic resources of MPSoC are typically lower than the FPGA device with
the same manufacturing technology. Due to the complex routing and additional
combinational and sequential logics inferred for reconfiguration on FPGA, the
clock frequency of such a device is lower than that of the PS. It is critical to analyze
the characteristics of the application before determining the implementation
platform. The usage of FPGA resources can be low if the implemented functions
are not frequently used. The resources can be a major limitation for the simulation
of complex and large-scale systems on FPGA. A combination of sequential CPU

READ O
NLY

�

� �

�

1.3 Communication 7

Processing system

Programmable logic

Memory

Platform

management unit

Configuration and

security unit

System

management

Power

management

System

functions

Application processing unit

321

ARM®

Cortex™-A53

NEON™

32kb
I-cache
w/parity

Floating point unit

32kb
D-Cache
w/ECC

Memory
management

unit

Embedded
trace

macrocell

4

GIC-400 SCU 1MB L2 w/ECCCCI/SMMU

Config AES

decryption,

authentication,

secure boot

Voltage/temp

monitor

Timers,

WDT, resets,

clocking and debug

High-speed

connectivity

DisplayPort v1.2a

USB 3.0

SATA 3.1

PCIe® 1.0 / 2.0

PS-GTR

General connectivity

DDR4/3/3L,

LPDDR4/3

32/64-Bit w/ECC

256kb OCM

with ECC

Real-time processing unit

21

ARM

Cortex™-R5

Vector floating

point unit

128kb

TCM w/ECC

32kb I-Cache

w/ECC

32kb D-Cache

w/ECC

GIC

Memory Protection

Unit

Graphics processing unit

ARM Mali™-400 MP2

Memory management unit

64kb L2 Cache

Geometry

processor

Pixel

processor 1 2

Functional

safety TrustZone

GigE

CAN

UART

SPI

Quad SPI NOR

NAND

SD/eMMC

USB 2.0

Multichannel

DMA

High-speed connectivity

GTH

100G EMAC

GTY

PCIe Gen3

Interlaken
Storage and signal processing

Block RAM

Ultra RAM

DSP

General-purpose I/O

High-performance HP I/O

High-density HD I/O

System monitor

Figure 1.5 Zynq® Ultrascale+TM MPSoC block diagram. Source: Xilinx [20]. ©2018,
Xilinx, Inc.

and parallel hardware implementation on the MPSoC can be an efficient and
cost-effective compromise in such cases. A summary of the main resources of the
devices used in this work are shown in Table 1.2.

Xilinx® provides the Software Development Kit (SDK) tools for the software
design of the MPSoC device. SDK imports the hardware design from Xilinx®
Vivado® tool and provide the board support package which includes various
fundamental drivers for the resources of both PS and PL.

1.3 Communication

Both Xilinx® VCU118 and ZCU102 boards have plenty of components and
communication interfaces, such as double data rate fourth-generation (DDR4)
memory, quad serial peripheral interface (QSPI) flash, general purpose IO (GPIO),
FPGA mezzanine (FMC) interface, and small form-factor pluggable (SFP) inter-
face. Utilizing these interfaces and communication protocols, data transfer can be
accomplished between multiple boards. For example, the SFP interface of ZCU102
and quad-SFP (QSFP) interface of VCU118 can be interconnected with cable
and the Xilinx® Aurora IP cores can be used to accomplish the communication
between the two boards as shown in Figure 1.6a. The Aurora 64B/66B core is

READ O
NLY

�

� �

�

8 1 Field Programmable Gate Arrays

Table 1.2 Hardware resource comparison.

Resource Virtex®-7 UltraScale+ Zynq UltraScale+

XC7VX485T FPGA XCVU9P FPGA XCZU9EG MPSoC

Logic cells 485 760 2 586 150 600 000
CLB FFs 607 200 2 364 480 548 160

CLB LUT 303 600 1 182 240 274 080
Block RAM (kbits) 37 080 75 900 32 100

Clocking (CMTs) 14 30 4
DSP slices 2 800 6 840 2 520

PCIe® 4 Gen2 6 Gen3× 16/Gen4× 8 —
Transceivers GTX (12.5 Gb/s) 56 GTY (32.75 Gb/s) 120 GTH (16.3 Gb/s) 24

Source: Xilinx [12].

User

application

Aurora

64B/66B

core

GTY

transceivers

User

data

 Encoded

data

User

application

Aurora

64B/66B

core

GTH

transceivers

User

data

 Encoded

data

QSFP

/SFP

(b)

(a)

Application

layer
 Link

layer

Physical

layer

Figure 1.6 Communication process: (a) block diagram and (b) digital signal waveforms.
Source: Xilinx, Inc.

READ O
NLY

�

� �

�

1.4 HIL Emulation 9

a scalable, lightweight, high-data rate, link-layer protocol for high-speed serial
communication, supporting bi-directional transfer of data between devices using
consecutive bonded gigabit transceiver Y (GTY) on VCU118 board and gigabit
transceiver H (GTH) on ZCU102 board [22]. Four transceivers located in ZCU102
SFP and VCU118 QSFP interface can be used to construct four lanes with 64-bit
AXI-4 user data stream transmitting in each lane, which can achieve a throughput
from 500 Mb/s to over 254 Gb/s. Figure 1.6b shows the waveforms of major signals
during the communication process. When CHANNEL_UP signal is asserted,
the Aurora cores have initialized and established four channel lanes for user
applications to pass frames of data. User data are loaded on AXI4_TDATA[0:255]
bus (64 bits× 4 lanes) at each edge of USER_CLK when AXI_TREADY is asserted.
Then user data are transferred into encoded differential serial data (RXP/N[0:3]
and TXP/N[0:3]) and transmitted through the four GTH or GTY transceivers and
the QSFP/SFP cable.

1.4 HIL Emulation

The entire hardware design procedure for HIL emulation is depicted in Figure 1.7.
The whole process can be completed in three stages, summarized as follows:

● Data entry by high-level synthesis.
● Top-level design and simulation with Vivado®.
● Bit file generation and experimental test on FPGA.

Thus, in the following each stage is specified, including tools necessary for the
design, the programming language, and prototype setting.

1.4.1 Vivado® High-Level Synthesis Tool

The Xilinx® high-level synthesis software Vivado HLS® is able to transform
C/C++ functions into an RTL implementation which synthesizes into the
vendor’s FPGAs. During this stage of design, the user can develop a hardware
module using the programming language C/C++, rather than VHDL at the logic
gate level, which greatly facilitates the hardware design. For example, to realize a
complex multiple-input-multiple-output algebraic module, the C/C++ function
can be written as:

void func (float ai, float bi, float *ao, float *bo){
algebraic functions here;

}

READ O
NLY

�

� �

�

10 1 Field Programmable Gate Arrays

Tektronix DPO 7054 Oscilloscope

Xilinx Virtex

Ultrascale +VCU118

FPGA Board

DAC34H84 EVM

USB

IP cores

IP cores connection

FSM

Behavioral Simulation

Synthesis Implementation
Generate bit stream (.bit)

void fun(float a,

float *x)

Vivado

component fun0

port(a: in std_logic_vector (31 downto 0) ;

x: out std_logic_vector (31 downto 0))

S0

S1

S2

S3

S4

S0

S1

S2

S3

S4

Test

bench C, C++,

SystemC

Constraints

/directives

RTL simulation

Vivado HLS

RTL

wrapper
VHDL
Verilog

SystemC

Bit file

RTL export

Sys Gen PCoreIP-XACT

Figure 1.7 Hardware design procedure and experimental setup. Source: Xilinx, Inc.

Note that the variables are defined as a floating point which corresponds to 32
bits because it is more efficient for computation than 64-bit digits. The algebraic
function description could contain potentially parallel operations, and therefore
the design tool offers pipeline structure option in its directives, which greatly facil-
itates programming. Then, the C synthesis function provided by that tool creates
the RTL design of the written function automatically. The syntax is also checked
during this process: an erroneous function would lead to immature termination of
C synthesis. The option Export RTL enables the RTL design to be exported as an

READ O
NLY

�

� �

�

1.4 HIL Emulation 11

intellectual property (IP), which has corresponding input/output ports in VHDL
format:

COMPONENT func
PORT (
ao_ap_vld: OUT STD_LOGIC;
bo_ap_vld: OUT STD_LOGIC;
ap_clk: IN STD_LOGIC;
ap_rst: IN STD_LOGIC;
ap_start: IN STD_LOGIC;
ap_done: OUT STD_LOGIC;
ap_idle: OUT STD_LOGIC;
ap_ready: OUT STD_LOGIC;
ai: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
bi: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
ao: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
bo: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);

)

Since RTL design could be completed by Vivado HLS®, C/RTL co-simulation
is available in the software after writing a corresponding test-bench. The
co-simulation is deemed equivalent to the hardware behavioral simulation, and
the results are a preliminary validation of the hardware design even though it is
C-based.

1.4.2 Vivado® Top-Level Design

A user application or system model may contain a number of subsystems, nor-
mally classified according to their functionality. For HIL emulation, all those sub-
systems are first written as separate C/C++ functions under Vivado HLS® envi-
ronment, and after IP generation and export they can be identified by Vivado® as
VHDL components. Those user-defined IPs are in fact treated as the same as the
default hardware modules in the IP catalog.

In a typical real-time application, signals between VHDL components are
exchanged at the end of each time-step, e.g. a controller sends command signals
to the modeled plant, which returns its sampled voltages and currents. In some
cases, the outputs of a component should be fed into its input ports. All those
data exchanges are not included in the hardware modules designed by C/C++
functions in HLS®. Instead, their connection is achieved in Vivado® using the
programming language VHDL, and the typical syntax is identical for the two

READ O
NLY

�

� �

�

12 1 Field Programmable Gate Arrays

scenarios. Take the above hardware module func for example, when the outputs
need to be sent to its input ports, it can be written as

if clk='1' and clk'event then
if ao_ap_vld='1' then ai$<$=ao; end if;
if bo_ap_vld='1' then bi$<$=bo; end if;
end if;

which can be synthesized into two separate latches, and Figure 1.8 shows the
self-connection of the hardware module func. Once a valid output is generated, the
corresponding data valid signal ao_ap_vld or bo_ap_vld becomes binary 1, which
is taken as the clock signal of the D latch. Therefore, the outputs ao and bo will
be respectively fed to the input ports ai and bi of the same module when the clock
signal ap_clk arrives.

The ap_ctrl port includes four binary ports, among which the start control port
is controlled by the finite state machine (FSM) along with the reset port ap_rst.
Thus, unnecessary calculation by the module which leads to incorrect results can
be avoided with an appropriate operation sequence in the FSM, and in case a rerun
of the emulation is needed for observation of particular power system phenomena,
giving a reset order is sufficient. On the other hand, the other three signals indi-
cating the operation status of the module are taken by the FSM as feedbacks for
state shift judgment, e.g. the emulation remains at the current state till the module
with the largest hardware latency completes calculation and set its binary signal
ap_done to 1.

Since the above design is carried out manually while the RTL design for
Vivado HLS® co-simulation is conducted automatically, the results from the
artificial design are not guaranteed to be correct. Thus, the behavioral simulation
offered by Vivado® is a further validation approach of the top-level hardware
design.

ao_ap_vld

bo_ap_vld

ap_clk

ap_rst

ap_ctrl
ap_start
ap_done

ap_idle

ap_ready

ai[31:0]

bi[31:0]

ao[31:0]

bo[31:0]

Q

QSET

CLR

D

Q

QSET

CLR

D
State 1

S1

S2

State 3

S3

State 5

done = “0”

S0

State 0

FSM
done = “1”

done = “0”

done = “1”

done = “0”

done = “1”

Figure 1.8 Demonstration of top-level hardware design.

READ O
NLY

�

� �

�

1.4 HIL Emulation 13

1.4.3 Number Representation and Operations

For computational programming, the first step is to define the data format and
arithmetic operations. In spite of the dependency of data format and the accu-
racy of computation, number representation also affects the hardware resource
utilization in the FPGA design and programming. Basically, there are two types of
number systems:

1. Fixed-point number:
A fixed-point number is characterized by their word size in bits, binary point,
and their sign. A common representation of a binary fixed-point number, either
signed or unsigned, is shown in Figure 1.9a.
As can be seen, ais are the binary digits, n is the word length in bits, an−1 is
the most significant bit (MSB), and a0 is the least significant bit (LSB), and the
binary point is depicted three bits to the left of the LSB.
It is worth mentioning that the preferred representation of signed fixed-point
numbers is Two’s complement method.

2. Floating-point number:
According to IEEE standard 754, floating-point numbers may be represented in
either single- or double-precision format.
● Single-precision floating-point number:

Any value stored in this representation has 32 bits. It is formatted as depicted
in Figure 1.9b.
A 32-bit floating-point number consists of 1 sign bits, 8 exponent bits, and
23 fraction bits. The single-precision floating-point number is expressed as
follows:

d = (−1)sign × 2(exponent−127) × (1.fraction). (1.1)

The value in this format is approximately in the range of −1038 to 1038.

31

Sign Exponent Fraction

Sign Exponent Fraction

30 23 22 0

63 62 05152

an–1

(b) Bits:

(c) Bits:

(a) Bits: a0a1a2a3a4

MSB LSBBinary point

Figure 1.9 (a) Floating-point number representation, (b) single-precision, and (c)
double-precision.

READ O
NLY

�

� �

�

14 1 Field Programmable Gate Arrays

● Double-precision floating-point number:
Any value stored in this representation has 64 bits. It is formatted as depicted
in Figure 1.9c.
A 64-bit floating-point number consists of 1 sign bits, 11 exponent bits, and
52 fraction bits. The double-precision floating-point number is expressed as
follows:

d = (−1)sign × 2(exponent−1023) × (1.fraction). (1.2)

The value in this format is approximately in the range of −10308 to 10308.

In this thesis, single-precision floating-point is employed for computational
programming of FPGA. It actually offers high-speed computation, dynamic
range of data, and acceptable accuracy. These are the main reasons for choosing
single-precision format for real-time emulation.

1.4.4 FPGA Design Schemes

Parallel and pipeline paradigms are two interesting features for FPGA program-
ming to improve computational speed and throughput. In this section, these two
FPGA design techniques will be explained.

1.4.4.1 Pipeline Design Architecture
In the pipeline technique, a function is divided into the several stages, and the
registers are inserted between the stages in the data path. Thus, data can march
through the registers at every clock cycle. Although pipelining increases the
number of clock cycles per operation, corresponding to the number of stages
in a pipeline path, it improves the computational throughput by increasing
the number of operations per unit of time and also conserves FPGA hardware
resources. As can be seen from Figure 1.10, the pipeline path of FPGA design
has three stages. The first valid results become available after three clock cycles,
and the next results will be ready only after one clock cycle instead of waiting for
another three clock cycles, consequently, the data throughput is one result per
clock cycle.

1.4.4.2 Parallel Design Architecture
Unlike CPUs or DSPs that are sequential computational engines, an FPGA enjoys
its intrinsic parallel architecture for high-speed operations and computations.
Basically, an algorithm can be partitioned into several independent circuits and
computed simultaneously on an FPGA. As can be seen from Figure 1.10, the
operations in the first and second paths are executed concurrently on FPGA,
whereas these two operations must be performed sequentially on CPU.

READ O
NLY

�

� �

�

1.4 HIL Emulation 15

Data path 2

R
eg

ister
R

eg
ister

R
eg

ister

R
eg

ister
R

eg
ister

R
eg

ister

R
eg

ister

Clock

Data path 1

Data path 3

Clock Clock

Logic

gates

Logic

gates

Logic

gates

Figure 1.10 Pipeline and parallel paths of FPGA design.

1.4.5 FPGA Experiment

The HIL emulation results are ultimately expected to be observed on the oscil-
loscope or interfaced with an external device under real-time HIL conditions. To
achieve that goal, the designed top-level needs to be implemented on the FPGA
after following steps in Vivado®:

● Run synthesis: This is a process of transforming an RTL design into a gate-level
representation.

● Run implementation: This includes all necessary stages to place and route the
netlist onto FPGA resources, under various logical, physical, and timing con-
straints.

● Generate bit stream: This implements the embedded design and creates a bit file
that can be downloaded into the targeted FPGA board.

As shown in Figure 1.7, a digital-to-analog conversion medium is mandatory
since the oscilloscope channels receive analog signals. The Texas Instruments®
DAC34H84 quad-channel, 16-bit, digital-to-analog converter (DAC) with a sample
rate as high as 1.25 GSPS is connected to the FPGA or MPSoC board and the
Tektronix® DPO7054 oscilloscope so that the hardware design results can be
displayed as real-time waveforms.

READ O
NLY

�

� �

�

16 1 Field Programmable Gate Arrays

1.5 Summary

This chapter described the fundamental aspects of FPGA architecture, design
flow, tools, and programming technologies. Due to its intrinsic massively parallel
architecture, hardware pipelining computation and custom configuration FPGAs
outperform the general purpose CPU for real-time applications. In addition, the
FPGA manufacturers provide all the necessary environmental support design
software, and well-designed fully-tested IP cores allow the designer to implement
a FPGA-based digital hardware emulator efficiently. Nevertheless, future HPC
technologies are increasingly moving toward MPSoC like co-processing wherein
heterogeneous compute architectures are seamlessly integrated to achieve the
most efficient software and hardware workload distribution.

READ O
NLY

