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Abstract

The increasing popularity of Deep Neural Networks (DNN) has led to their ap-

plication to many domains, including Music Generation. However, these large

DNN-based models are heavily dependent on their training dataset, which

means they perform poorly on musical genres that are out-of-distribution

(OOD) for that dataset. This heavily limits these systems’ practical use and

essentially requires the model to be retrained on a large dataset containing a

musical genre in order to recreate it. In many domains, transfer learning has

been effective at adapting an existing model to a new target dataset of much

smaller size by training for a much shorter period. However, such an approach

remains underexplored in the domain of music generation. To investigate the

viability of this approach, we explored different genres that might represent

OOD genres for a DNN-based music generator. Consequently, we identified

Iranian folk music as an example of such a genre of music. This was in line with

the fact that this genre has a melodic structure different from music based on

Western music theory principles. We then proceeded to collect a dataset of Ira-

nian folk music and utilize it to explore different methods of transfer learning

to improve the performance of MusicVAE, a large generative music model with

a DNN architecture. We identify a transfer learning approach that allows us to

efficiently adapt MusicVAE to the Iranian folk music dataset, which indicates

a potential for the future generation of underrepresented music genres.

ii



Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisor, Pro-

fessor Matthew Guzdial. I could not have completed this work without his

guidance and encouragement. I am eternally grateful for the understanding

and unwavering support I was shown during a very challenging time in my

personal life.

Additionally, I would like to extend my thanks to the many people who

have helped me during my journey as a researcher; My committee examiners,

Professor Pierre Boulanger and Professor Levi Lelis as well as Professor Janelle

Harms, whose kind advice helped me navigate my program. Moreover, I am

grateful to the people at Amii who have created a very supportive community

of Artificial Intelligence researchers, of which I have been very fortunate to be

a part . I also would like to acknowledge and thank my friend and fellow UoA

student, Pouneh Gorji, who passed away in the tragic plane crash of January

2020. Without her kind encouragement, I would not have embarked on this

academic journey at the University of Alberta.

Last, I would like to express my appreciation and gratitude for my family

and friends. They have always been my source of strength and motivation. I

have been very fortunate to have their unconditional love and support which

has helped me through all manner of challenges throughout my life.

iii



Contents

1 Introduction 1

2 Background 5
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Recurrent Neural Networks . . . . . . . . . . . . . . . 7
2.1.2 Long Short-Term Memory . . . . . . . . . . . . . . . . 8
2.1.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Variational Autoencoders . . . . . . . . . . . . . . . . 9

2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Conceptual Expansion Monte Carlo Tree Search . . . . . . . . 12
2.4 Music Generation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 MusicVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Data and Preprocessing . . . . . . . . . . . . . . . . . 17
2.5.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Melody Extraction . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Experimental Setup 20
3.1 Task Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 MusicVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Genre Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Iranian Folk Music Dataset . . . . . . . . . . . . . . . . . . . 24
3.5 Transfer Learning Approaches . . . . . . . . . . . . . . . . . . 24

3.5.1 Finetuning All Layers . . . . . . . . . . . . . . . . . . 25
3.5.2 Finetuning the Last Layer . . . . . . . . . . . . . . . . 26
3.5.3 Conceptual Expansion Monte Carlo Tree Search . . . . 26
3.5.4 Non-transfer Baseline . . . . . . . . . . . . . . . . . . . 27

3.6 Zero-shot Baseline . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Experiment Evaluation . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Melody Extraction . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Conclusion 37
4.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Closing Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . 38

References 40

iv



List of Tables

3.1 MusicVAE accuracy on 4 datasets of different genres . . . . . 23
3.2 Training accuracy percentage of each baseline . . . . . . . . . 29
3.3 Test accuracy percentage of each baseline . . . . . . . . . . . . 29
3.4 The note density and average note length for each baseline . . 35

v



List of Figures

2.1 An artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 An LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 MusicVAE’s architecture . . . . . . . . . . . . . . . . . . . . . 17

3.1 Each figure depicts the histogram for the note density of each
sample in a fold. Note density is calculated by dividing the
number of notes in a sample by the total time in seconds. . . . 30

3.2 Visualization of a melody generated by the pre-trained Music-
VAE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Visualization of a melody generated by the non-transfer model 33
3.4 Visualization of a melody generated by the model finetuning all

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Visualization of a melody generated by the model finetuning

the last layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Visualization of a melody generated by the CE-MCTS model . 35

vi



Chapter 1

Introduction

The automatic generation of music by means of computer systems can be

traced back to 1957, when Newman Guttman generated a 17 second long

melody called “The Silver Scale” at the Bell Laboratories. The first score

was composed by a computer in the same year, called “Illiac Suite” at the

University of Illinois Urbana-Champaign (UIUC) [2]. Most of the traditional

automatic music generation systems were algorithmic systems that ultimately

relied heavily on expert musical knowledge, rule/grammar-based [12] algo-

rithms being an example [10]. Stochastic models like Markov chains [19] are

also a traditionally common method. With the reemergence of Neural Net-

works (NNs) in recent years, there has been much interest in revisiting the

task of music generation using such large machine learning models. The hope

is that their superior computational power can learn long-term and high-order

dependencies and also eliminate the need for expert domain knowledge [2].

Characteristically, these models are trained on a very large amount of data.

Yet, realistically no matter how large, these datasets cannot be exhaustive.

Datasets are usually limited to the types of music that are more popular. Par-

ticularly in case of working with symbolic music data, musical performances

need to be transcribed in a particular format. Therefore any large symbolic

dataset is usually gathered from online sources, which naturally results in pop-

ular music genres being more represented. Moreover, new music is constantly

being created and new genres of music will organically emerge. Consequently

this leads to a key weak point; these models are not as successful in generat-
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ing music for genres outside their learned distribution and this distribution is

closely based on their training datasets.

In recent years, there are have been a few prominent approaches to mu-

sic generation, most of which involve the use of neural networks [4]. For

instance, sequence-based approaches are popular in this field due to their abil-

ity to learn long-term dependencies in musical pieces. Multiple studies have

combined sequence-based models such as Long short-term memory (LSTM)

Recurrent Neural Networks with autoencoders and achieved good results [22].

Alternatively, Generative Adversarial Networks (GAN) have been employed to

generate novel music [30]. These approaches have mainly attempted to create

a general generative model, which is not customizable and is highly depen-

dent on the composition of the training dataset. These models typically are

also trained from scratch. However, given the data imbalance across differ-

ent genres, approaches like transfer learning that can adapt knowledge from

one domain to another might be useful. Despite this, few examples of prior

work explore this approach. One such example attempts to test a pre-trained

Generative Adversarial Networks (BinaryMuseGAN) with traditional Scottish

music and improves its performance using finetuning [18]. To the best of our

knowledge, finetuning is the only transfer learning approach that has been

applied to DNN music generation [27].

For the purposes of this thesis, we conducted a study on Google Magenta’s

MusicVAE model [24]. This model is trained on an enormous dataset of about

1.5 million unique MIDI files collected from the web. Observing different

resources for MIDI files, which are usually fan-made annotations of popular

songs, we can see that automatic and indiscriminate data collection would

result in an unbalanced dataset in terms of genre diversity. This is due to the

fact that popular chart-topping songs are much more likely to be annotated in

the MIDI format. Therefore, we could assume that MusicVAE will not be good

at generating more specific and less mainstream genres of music. Exploring

several different genres, we discovered that this is indeed true for Iranian folk

music which was picked due to it being very different than popular Western

music in structure and due to the author’s familiarity with it. Subsequently, we
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surveyed several different methods of transfer learning to adapt MusicVAE to

this particular genre using a minimal amount of new data, such as fine-tuning

and Conceptual Expansion Monte Carlo Tree Search(CE-MCTS) [17]. Based

on the accuracy of the model on reconstructing musical samples, we observed

that CE-MCTS offers an improvement in quality especially in test accuracy.

Finetuning all layers, performed only slightly better than MusicVAE itself and

other methods lead to a poor performance.

Throughout the span of this thesis, pursuing our aforementioned motiva-

tions, we were interested in examining the following research questions:

1. How good are large Deep Learning music generation models at recon-

structing music of different genres?

2. Is it possible to specialize such a model for a specific out-of-distribution

(OOD) genre?

3. More specifically, is it possible to improve MusicVAE’s performance on

Iranian music through transfer learning methods using a small amount

of data?

4. What is the effects of the melody extraction algorithm used, on the

model’s performance?

Based on the results of our research, we can infer that a large music genera-

tion model like MusicVAE struggles in reconstructing music from OOD genres

such as Iranian folk music. Using a CE-MCTS transfer learning approach,

we were able to improve the reconstruction accuracy of MusicVAE on a new

dataset of 100 Iranian folk songs. We also venture that, based on our subjec-

tive opinion, music generated by this approach is more similar to the target

genre in comparison to other methods.

This thesis includes six different chapters. After this Introduction, we

continue with the background information essential to our work in chapter

2. In chapter 3, we introduce the target model of our study, MusicVAE, in

more detail and proceed to explain the different approaches used in this study.

Subsequently, we go through our different experiments and their setup. We
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also discuss various datasets used and our evaluation protocol. We conclude

chapter 3 by presenting the results and following up with their analysis and

comparison. Finally, in chapter 4 we examine the implications of our results

and the conclusions from our experiments and observations. We also discuss

how this work can be expanded upon in the future.
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Chapter 2

Background

This chapter provides the reader with the background information necessary

in understanding the presented work in this thesis. We begin by introducing

artificial neural networks in 2.1. In 2.1.1 and 2.1.2, we introduce recurrent

neural network architectures that enable learning from sequence data. Sections

2.1.3 and 2.1.4, explain autoencoders and their modified version, variational

autoencoders. The MusicVAE [24] model used in this study is a variational

autoencoder that uses LSTMs as its principle components. In 2.2, we introduce

the concept of transfer learning, which is the focus of this research. Next, in

2.3, we cover conceptual expansion Monte Carlo tree search (CE-MCTS) which

is a transfer learning method we employed in our work. In section 2.4, we go

over the basics of music generation and most recent methods for generating

music using deep learning methods and subsequently in 2.5, we detail the Music

Generator used in this research, MusicVAE, its setup and data, prepossessing,

and training processes. Finally in 2.6, we give the reader some background on

Melody extraction.

2.1 Artificial Neural Networks

Artificial Neural Networks(ANN) are the foundations of some of the most

prominent modern developments in the Artificial Intelligence and Machine

Learning fields. These networks, as is apparent by their name, are inspired

by the mechanics of the neurons in the brain. A simple architecture of an

artificial neuron is shown in 2.1.

5



Figure 2.1: An artificial neuron

As it is depicted in 2.1, each neuron receives a number of input values such

as x1, x2, · · · , xn, each with separate weights w1, w2, · · · , wn, and returns an

output y by feeding the weighted sum of the inputs to a function known as

the activation function φ which is usually a non-linear function with certain

properties.

y = φ(
n∑︂

i=1

xi ∗ wi)

A neuron can receive feature data values as its inputs and output the

target prediction or value for a machine learning task such as classification

or regression. However with more complex data the need for more than one

computational unit arises. Artificial Neural Networks consist of a number of

interconnected neurons organized in layers.

A Deep Neural Network (DNN) has at least three layers; an input layer,

at least one hidden layer, and an output layer. The nodes in each layer are

connected to the nodes in the next layer via weighted directed edges hence the

network forms a weighted directed graph.

To use a neural network, we need to first train it. In many cases, a dataset

is first split into three separate sections: a training set, a validation test and

a test set. Then, we feed the training set to the network in small batches.

The output is compared to the expected output using a loss function and

the error is used to update the weights of the network using backpropagation,

which involves the process of calculating and propagating gradients backwards

through the network, starting from the output layer towards the input layer.

6



Gradient refers to the vector of partial derivatives that indicates the direction

and magnitude of the steepest ascent or descent in a multi-dimensional space

during optimization. The methods that can be used to the gradient may differ,

but optimizers like Gradient Descent, Stochastic Gradient Descent, Adagrad

and ADAM are some of the most popular. This process is then repeated for a

number of iterations on the entirety of the training set until the the network

converges to its final weights.

The validation set is used to measure convergence after the training or to

tune the network’s hyperparameters before the training and the test set is

used for the final evaluation of the network on unseen (through the training

process) data.

2.1.1 Recurrent Neural Networks

Conventional neural networks, as introduce in section 2.1, are not well-equipped

to work on sequential data, such as in tasks like translation or word prediction

as they cannot convey the temporal nature of the data. For example When

translating one word in a sentence the previous words in that sentence are

essential in order to make the correct choice for a translated word. Recurrent

Neural Networks (RNNs) are a variation of neural networks in which a neuron

not only receives the current input but also the output from the previous in-

put, which presumably carries knowledge from all the previous inputs in the

sequence.

For training these networks a variation of backpropagation called back-

propagation through time is used which backpropagates the error with respect

to every time step by unfolding the network through time.

The major issue that arises from using gradient-based algorithms to train

an RNN is called the “vanishing gradient”. Since these algorithms backprop-

agate the gradient by multiplication, in a long sequence the gradient could

become so small as to be negligible as it travels back through previous time

steps. Therefore the network is unable to maintain coherency through the full

length of the sequence and retain long-term dependencies in the input.
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2.1.2 Long Short-Term Memory

To remedy the long-term dependency issues of RNNS, a new variation called

Long Short-Term Memory (LSTM) was introduced by Hochreiter et al. in

1997 [11]. LSTMs modify a normal RNN by adding a cell state to it. The

cell state carries essential information that the network needs to remember

throughout the entire sequence and is updated by simple linear operations

that are regulated by different gates. This helps ensure that information can

be carried forward from the beginning to the end of the sequence as needed.

The internal architecture of an LSTM cell is given in figure 2.2.

Figure 2.2: An LSTM cell

When processing input, an LSTM cell first needs to decide how much of

the previous cell state it wants to keep. This is determined by the “forget

gate layer” which is a Sigmoid layer that receives the input and the previous

output. The old cell state is then multiplied by the output of this gate which

falls between 0 (forget everything) and 1 (remember everything).

Next, an LSTM cell decides how much of the input information needs to

be retained in the cell state. This part is comprised of the “input gate layer”

which is another Sigmoid layer which decides which parts of the input the cell

should remember and a tanh layer that creates a vector of the input values

that the input gate will choose from. These two are multiplied and the result

is then added to the cell state.

At last, we need to produce the output from the LSTM cell. Since the

updated cell state now contains the information from the current input and
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the past time steps, the cell state is multiplied by another Sigmoid layer of the

input that again acts as a selector of the parts of the cell state that we want

as the output.

2.1.3 Autoencoders

Autoencoders are a type of neural network that derive a representation of a

dataset by attempting to recreate it. These networks are extremely versa-

tile, used in a variety of tasks such as data compression and dimensionality

reduction, anomaly detection and translation; with their subsequent variants

such as Variational Autoencoders (VAE) and Vector Quantized Variational

Autoencoders (VQ-VAE) used as powerful generative models.

An autoencoder is made out of an encoder and a decoder network. An input

X of N dimensions is fed to the encoder and its output of M dimensions is then

fed to the decoder, which will then calculate an output Y of N dimensions.

Since in many cases reducing the dimensionality of the data is of interest,

M is usually less than N and therefore the output of the encoder is a more

compact representation of X. The output of the encoder is commonly called

the encoding or the latent vector.

Since the network’s objective is to recreate Y from X the loss is essentially

a measure of how well the network has managed to compress the input while

losing minimal information.

2.1.4 Variational Autoencoders

As we discussed in the previous section 2.1.3, autoencoders map each data

point to a point in the latent space. By sampling points close to these en-

codings of data points and feeding them to the decoder we may be able to

generate new samples that resemble our original dataset. However, there is

no guarantee that this will work because decoding a point in the latent space

might not lead to a valid point in the sample space, as the latent space is not

regularized. This greatly diminishes the generative power of the autoencoder.

This however can be solved if we try to impose a regularization constraint on
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the network. This idea led to the development of Variational Autoencoders

(VAEs)[15].

VAEs manage to be extremely powerful tools for generation of data by im-

posing a secondary constraint on a conventional autoencoder; the network not

only wants to accurately recreate a given sample but instead of encoding the

sample as a point in the latent space, it is encoded as a Gaussian distribution.

A point is then sampled from that distribution and fed to the decoder.

To enforce this regularization the loss function includes both a reconstruc-

tion loss and the KL divergence of the distribution, which is a measure of how

close a distribution is to a Gaussian. The trade off between these two terms

are important. Concretely the total loss term of a VAE for N total data points

is
∑︁N

i=1 li and each li is defined as follows,

li(θ, ϕ) = −Ez∼qθ(z|xi) [log pϕ(xi|z)] +KL(qθ(z|xi)∥p(z))

where θ and ϕ are the weights and the biases of the encoder and the decoder

models respectively. The first term is the reconstruction error under the latent

variable z or expected negative log-likelihood of the data point. The second

term is the KL divergence of the encoder’s distribution and p(z) which is a

standard normal distribution.

Ultimately, their highly regularized latent space makes the VAE’s able to

not only generate new samples by randomly sampling from the latent space

but also allows spatial manipulation of these samples or the interpolation of

different samples to have meaningful results.

2.2 Transfer Learning

Transfer Learning is an area of Machine Learning that aims to improve the per-

formance of an ML system in a certain target domain by using the knowledge

extracted from a different yet similar domain called the source domain. This

is especially useful when we do not have enough data in the target domain, or

when we would rather decrease training time by using prior knowledge learnt.
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According to C. Tan et al. [28], we can categorize deep transfer learning

into 4 types:

• Instance-based: In which some instances of the source domain can be

transformed using appropriate weights to approximate instances of the

target domain and used to supplement the training data.

• Mapping-based: In which both instances of the source and the target

domains are mapped into a new domain space, in which the instances of

the two domains may be more similar.

• Adversarial-based: In which an adversarial approach is used to find a new

representation for the data that is ”discriminative for the main learning

task and indiscriminate between the source domain and target domain”

in order to facilitate a good transfer.

• Network-based: In which a network trained on the source domain is fully

or partially reused on the target domain. The basis for this method is

that idea that the front layers of a DNN act as more general feature

extractors, therefore they can be reused. Given a DNN pre-trained on

some source data, the network is then trained on the target data while

a number of the front layers (usually every layer other than the last few

layers) of the network are frozen. This means that their weights remain

unchanged during the transfer and the more fundamental feature extrac-

tors remain intact. We usually say the network pre-trained network was

fine-tuned on the target data. Alternatively we can use parts of the

pre-trained DNN and add new layers to the end before fine-tuning. A

common example is using large image recognition models such as VGG

that have been trained on large image datasets and adding new layers

to finetune this kind of model to a specific image classification task.
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2.3 Conceptual Expansion Monte Carlo Tree

Search

Conceptual Expansion Monte Carlo Tree Search (CE-MCTS) is a model spe-

cialization approach introduced by Mahajan and Guzdial [17] in order to model

a specific individual’s behavior on a certain task. In their case, there is an ini-

tial model predicting behavior for other individuals but there is little to no

data available for the target individual. This approach appears to work better

for this task than standard transfer learning methods while requiring less data.

CE-MCTS makes use of the classic Monte Carlo Tree search (MCTS)

method while using a concept called Conceptual Expansion to define the search

space by combining existing knowledge. Assuming the knowledge is in the form

of a neural network, they use the equation below to create a new network, ex-

panded upon the previous one. Here, CEW is a weight in the new model

and F = f1, f2, . . . , fn represent the weights of the previous model which get

multiplied pairwise by a corresponding alpha value filter.

CEW (F, α) = α1 ∗ f1 + α2 ∗ f2 + · · ·+ αn ∗ fn (2.1)

Note that a particular weight f can appear an arbitrary number of times with

different alphas which means this representation is unbounded.

Subsequently, the aforementioned CE is used iteratively to create and

search a tree structure based on the MCTS algorithm. Each node in this

tree will be a CE representation of a neural network model. Each node has a

fitness score based on a combination of the network’s accuracy on the primary

and secondary tasks. The root node is the initial model.

As with standard MCTS, the algorithm starts by traversing the tree based

on a given policy. This first step is called Selection. In our case, the algorithm

uses an ϵ-greedy policy. This means at each iteration a random number in

the range [0, 1] is generated. If this number is greater that ϵ, the algorithm

traverses to the best child node (e.g. the one with the highest fitness), other-

wise it chooses to explore the space by randomly creating and adding a new

node. The number of steps taken to explore the space resulting in new nodes
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in the tree is adjusted by a parameter called the rollout length. Adding a new

node to the tree is a step called Expansion. After reaching the end of a rollout

a portion of each new child’s fitness is backpropagated to its parent using a

discount factor. This process is repeated for a number of iterations and and

each rollout starts from the root node.

To create a child node, Mahajan and Guzdial employed four functions that

create new models by manipulating the f and α values of the parent node.

The functions are as follows:

• Function 1: Multiply a randomly selected index of a randomly selected

α by a random scalar in the range [−2, 2].

• Function 2: Multiply a randomly selected α by a random scalar in the

range [−2, 2].

• Function 3: Swap the values of two randomly selected α and f .

• Function 4: Add a randomly selected α and f values to the CE approx-

imation.

Ultimately, three of the best performing models are selected and their

average performance is reported. The strategy for the final model selection

can vary based on domain specific information.

2.4 Music Generation

Music generation using machine learning involves using models trained on

music data to generate novel music. There have been different types of music

generation systems in recent years that vary in their generation approach, data

representation used and functionality [14].

Models are mostly designed to use one of three types of input data: wave-

form, spectrogram, or symbolic music data. The type of input not only affects

the choice of the model but also directly affects the results. Models based

on waveform music, assuming it’s not digitally generated, can capture more
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unique characteristics of sound and play, but also may produce more undesir-

able audio artifacts. Spectrograms are visual representations of the waveform

signal through time and enable different types of models and analysis. Sym-

bolic music however can be more precise as notes are discrete events described

by different attributes like tone, length, etc. using a format such as MIDI.

This allows a more particular analysis of melodies and generation results but

at the price of losing the natural sound and more subtle performance quali-

ties. Of course, the training data may also be accompanied by different music

domain information such as chord info, lyrics, etc. to enhance or alter the

generated results. In this work, our focus is on symbolic music in the MIDI

format, because the model we based this research on, MusicVAE is trained

with symbolic data [14].

In terms of generation approaches, more algorithmic and procedural meth-

ods along with rule/grammar-based methods and Markov chains have been

in use for a long time [12]. These methods rely on musical knowledge (music

theory and music composition to varying degrees. In this thesis we are more

interested in the effectiveness of deep learning models for this task. There are

many recent papers applying deep learning models for music generation tasks

with very little need for expert knowledge. However, these methods instead

rely on large amounts of data.

The prevalent neural network and deep learning approaches to music gener-

ation utilize a variety of architectures. WaveNet [21] is a specifically modified

convolutional neural network (CNN) that can generate raw audio waveforms.

The architecture used is inspired by PixelCNN [20] which is a generative net-

work for images. WaveNet was used primarily for text-to-speech achieving

state-of-the-art results, however the researchers utilize the network for other

tasks such as music generation which produces aesthetically pleasing musi-

cal fragments. However as is the case with most music generation models,

WaveNet struggles with creating longer pieces with long-term structure.

Recurrent Neural Networks (RNN) and their variants such as Long Shot-

Term Memory (LSTM) have been heavily utilized in music generation. Due to

the sequential nature of music, these networks seem to be a natural choice for
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researchers, due to their capability to discover latent temporal structures in se-

quential data. Some of the instances of this are Deep Bach [9] and Google Ma-

genta’s Performance RNN [22]. In subsequent research from Magenta, LSTMs

were combined with a Variational Autoencoder (VAE) to create MusicVAE

[24], a network that generates symbolic musical sequences in the MIDI for-

mat and is more successful in creating longer pieces by utilizing a hierarchical

decoding method. We use MusicVAE as the basis of this research, as it is

publicly available and trained on a very large dataset of music. Open AI’s

Jukebox [6] uses a different type of autoencoder called Vector-Quantized Vari-

ational Autoencoder (VQ-VAE) along with Transformer networks in a yet

another hierarchical architecture to generate waveform music. Jukebox can

also generate vocals if provided with unaligned lyrics. A distinct approach has

been the use of Generative Adversarial Networks (GAN), as in MidiNet [30]

and MuseGAN [7], which are feed-forward neural networks trained adversar-

ially to generate music that cannot be distinguished from human generated

music by the network.

Despite the great progress being made in this field, there are still many

challenges remaining. We briefly describe some of these challenges as it relates

to high-level score generation according to [14].

• Structure: Current methods consistently struggle to generate music

with long-term structure. Even though there have been improvements

in generating lengthier pieces of music such as in [24], these pieces still

do not come close to the full length of the song and they lack the pat-

terns and the repetitive structures that are expected in a piece of music.

Importantly this includes having an thematically appropriate closure to

a piece rather than an abrupt one, which rarely occurs in computer-

generated music.

• Creativity: It can be argued that Music generated by highly data-

driven deep learning models does not create novel and interesting music

but an interpolation of the examples in its training dataset. Improving

and even determining the creativity of a ML-generated musical piece
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remains an obstacle in this field.

• Style: The style of computer-generated music in the available systems

remains largely dependant on the style of their training data. Creating

a universal framework for music generation that can be used to generate

music of different genres is desirable but unexplored. This challenge is

central to this thesis.

• Evaluation: Evaluating the quality of generated music is very difficult

due to multiple factors. The metrics used by different researchers are very

diverse, making it hard to compare outputs across different generation

systems. Furthermore, there is no correlation between qualitative and

quantitative metrics of evaluation, causing many discrepancies in the

the implications of these metrics. Finally evaluating music generation

is largely reliant on human subject studies and a broadly agreed upon

automatic evaluation method of music based on computational models

currently does not currently exist.

2.5 MusicVAE

MusicVAE [24] is a hierarchical recurrent variational autoencoder music gen-

eration model developed by Google Magenta. This model generates new

melodies after being trained on melodies extracted from a dataset of sym-

bolic music. For MusicVAE, the authors employ a VAE model as it has been

proven effective in encoding natural data into semantically meaningful latent

representations. However, there lies a challenge in the fact that this type of

model is not often used with sequential data and VAEs struggle to model

sequences with long-term dependencies as is seen in musical data.

A VAE that uses an autoregressive encoder and decoder model such as an

LSTM, can help with the aforementioned problem but can cause “posterior

collapse” [3] in the VAE. This is because the autoregressive decoder is powerful

enough to effectively ignore the latent code. Therefore, the KL divergence term

of the loss function can be trivially set to zero, meanwhile the model is not
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Figure 2.3: MusicVAE’s architecture

functioning as a autoencoder anymore.

MusicVAE circumvents posterior collapse by limiting the effective scope of

the decoder. This is implemented by adding an intermediate LSTM layer called

the “conductor” that receives the latent code and generates an embedding for

each bar. The main LSTM than uses this embedding to decode one bar at a

time. The authors then show that while a flat model would perform well when

generating 2-bar melodies, this hierarchical architecture outperforms it when

generating and reconstructing 16-bar melodies.

Different experimental setups are explore in the paper, including 2-bar

melody, 16-bar melody.

2.5.1 Data and Preprocessing

MusicVAE works with symbolic music in the MIDI format. The data used

to train MusicVAE was collected from the web and is comprised of about 1.5

million unique publicly available MIDI files.

MIDI Format

MIDI is short for Musical Instrument Digital Interface, which is a communica-

tion protocol between hardware/musical instrument and a computer system.

A digital musical device such as a synthesizer that is connected to a computer

via MIDI cables and a MIDI interface can record a performance as a sequence
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of events through the MIDI format. The main events in Standard MIDI are

KeyON, KeyOff and they correspond to the note activation and release on

a virtual keyboard. Control events are also included to capture the changes

in the instrument settings. Each key event has attributes like pitch (0-127;

60=middle C), and velocity (0-127). Each event belongs to one of 16 chan-

nels. Each channel can represent a different instrument allowing MIDI files to

transcribe polyphonic music.

Preprocessing

At the preprocessing stage, files with a non-4/4 time signature are discarded.

Then the notes in each file are quantized to sixteen 16th notes per bar, by tak-

ing the tempo into account. The files in the dataset may be polyphonic (may

contain notes being played at the same time) but a melody is a monophonic

(without overlapping notes) string of notes. Thus, a sliding window on n-

bars (n is either 2 or 16 depending on the setup) is used to extract all unique

monophonic 2-bar sequences that contain a at most one bar of consecutive

rests.

2.5.2 Training

MusicVAE is trained using the Adam optimizer, with a learning rate annealed

from 10−3 to 10−5 with exponential decay rate of 0.9999. The batch size is

512 and the training runs for 50k gradient updates with the 2-bar setup and

100k with the 16-bar setup. The loss is cross entropy against the ground-truth

output with scheduled sampling [1] (This technique randomly replaces some

tokens with model predictions during training to lessen exposure bias) for the

2-bar model and teacher forcing (next step prediction) for the 16 bar model.

2.6 Melody Extraction

A melody is a succession of pitches that forms a tune. Melody is often the

most recognizable and memorable pattern of a song. Most musical pieces

often contain polyphony, meaning that more than one pitch can be heard at a
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time. Melody extraction seeks to extricate the underlying monophonic melody

from the other instrumentation in a song. Melody extraction is considered a

difficult music information retrieval task [13] The bulk of the research on this

topic works with music as a signal. For symbolic data, the most popular

method uses a naive approach called the “skyline algorithm” [29]. This goes

through a polyphonic sequence and at each time step picks the note with

the highest pitch. It also truncates a current high note if it’s sustained long

enough to overlap with an even higher note. This algorithm is predicated on

the assumption that the higher notes have a greater possibility of belonging

to the main melodic line. There are variations to this algorithm but they are

not shown to be particularly superior in their performance. [13]
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Chapter 3

Experimental Setup

In this chapter, we cover the setup and results of our experiments into applying

transfer learning to music generation models. We start with an overview of

the task at hand and our objectives (3.1). In 3.2, we briefly re-introduce

MusicVAE, the model that is the basis for our experiments and research. We

provide details on the data used to train MusicVAE, its preprocessing and

training. Next in 3.3, we expand on our analysis into how MusicVAE works

with different genres or styles of music. We then introduce a new dataset

that we used for our experiments based on the results of that analysis. The

transfer learning approaches used in this research are explained in 3.5, followed

by our evaluation approach and results. In 3.10, we discuss our observations

and qualitative assessments of the resulting generations. 3.11 discusses the

effects of melody extraction on this model. Lastly, we end this chapter with

our takeaways.

3.1 Task Overview

A deep generative model trained on a dataset of musical data is able to gen-

erate new musical sequences. However the type of music used for the training

stage is a significant determinant of the type music the model will generate.

Throughout this work, we examine the ability of a large DNN music generation

system to produce certain out of distribution (OOD) genres of music. With

this in mind, we chose Google Magenta’s MusicVAE as the model on which to

base our study. Next, we analyzed its performance on different genres and in
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order to identify OOD genres. Ultimately, by surveying a number of different

transfer learning methods, we attempted to improve the systems performance

on an OOD genre with minimal new data from that genre.

3.2 MusicVAE

MusicVAE [24] is a VAE-based music generation model by Google Magenta.

We used this model as the basis of our experiments as it has been trained on

an enormous dataset of 1.5 million unique MIDI files and the resulting weights

are publicly available. This model has two modes: 2-bar and 16-bar genera-

tion. For the purposes of this research, we used the 2-bar configuration due to

training speed, and lower requirements in terms of data and computational re-

sources. For this setting, MusicVAE consists of a bidirectional LSTM encoder

and a Categorical LSTM decoder.

3.3 Genre Analysis

MusicVAE as a music generation model boasts a very impressive performance.

Specifically, in the 2-bar melody setup it achieves 95.1% over its test dataset.

As mentioned in 1, we wanted to know how this performance varies across

different types/styles of music. Our hypothesis was that MusicVAE would do

poorly for OOD music, which relates to our first research question from the

introduction.

To examine this question, we analyzed the model’s performance on four

experimental datasets of 10 songs each. Two factors were taken into account

when selecting the MIDI files. All files are fan-made recreations of songs in

MIDI and made publicly available on the web.

First we tried to select music that was created after the publication of

the MusicVAE paper [24]. This ensures they were not used in training the

model. Since the main dataset is not publicly available. We have no other

way of determining this. Second, these datasets should each represent genres

of music that we feel sound decidedly different from a melodic standpoint.
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Melodies can differ in many ways such as contour, range and scale and these

characteristics are different across different genres [5].

Our four datasets are as follows:

• A collection of synth pop songs: These are songs from a 2021 Netflix

comedy special, Inside by Bo Burnham, and musically fall into the synth

pop category. This dataset serves as a comparison point to the others,

since we expect the model to perform well on this genre.

• A collection of Iranian songs: Having arisen from a region with a long

standing history of composing music with independent roots from West-

ern music, Iranian melodies are distinctly different in structure. The

more traditional pieces of Iranian music adhere to a unique musical sys-

tem, which is quite different from modern Western music theory. These

songs were collected from Farsi-speaking internet spaces, therefore we

can assume they were not part of MusicVAE’s training data.

• A collection of video game music: This collection consists of NES (Nin-

tendo Entertainment System) or NES-like video game music. This type

of music has to fit certain criteria. It has limited polyphony as only

3 simultaneous notes can be played on the NES. It is designed to loop

seamlessly so it can be repeated indefinitely, therefore it does not have

arranged beginning and end sections as musical pieces typically do.

• A collection of horror movie scores: Horror movie soundtracks are a great

source of highly diverse music. These are designed to build suspense

and create a sense of foreboding. Musically this genre frequently use

dissonant notes or chords, atonality (not having a clear scale), sudden

changes of tempo, and so on to induce a sense of eeriness and dread.

The main challenge here is that there are very few midi sources in this

category and the ones available are mostly from very famous scores.

Therefore, we cannot be certain that pieces like these were not in the

original MusicVAE dataset.
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Dataset Accuracy(%)

Synth pop 95.83
Iranian folk 43.75
Video game 84.38
Horror score 87.92

Table 3.1: MusicVAE accuracy on 4 datasets of different genres

We include the results in 3.1. In these experiments, we fed melody se-

quences extracted from the songs into the model with pre-trained weights and

reported the accuracy of the reconstruction of those exact sequences. As we

expected, the model performed best on the first dataset both quantitatively

and qualitatively. We observed that the model was able to reconstruct the

melody samples from the synth pop dataset almost perfectly. The 95.83%

accuracy is in line with what was reported for the test accuracy on the origi-

nal MusicVAE dataset. On the other hand, when it came to the other three

datasets, the model often would only produce the very first note of a melodic

sequence followed by a lengthy silence. Incorrect notes were also a frequent

observation. These shortcomings were very pronounced with the Iranian mu-

sic dataset. Predictably, the accuracy is noticeably lower for the other three

datasets, with the Iranian dataset standing at a mere 43%, a major drop in

performance compared to the rest.

Although these datasets are too small to fully represent these genres, the

results signaled that there might be merit in examining them further. We

specifically focused on the Iranian folk music dataset and posed a question:

Is it possible to improve MusicVAE’s performance on Iranian music through

transfer learning methods using a small amount of data? This relates to the

second and third research questions covered in the introduction. In order to

answer these questions, we gathered a new dataset of Iranian folk MIDI files

and attempted to improve the model’s performance via transfer learning, using

this dataset.
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3.4 Iranian Folk Music Dataset

As mentioned in the previous section, we collected an additional dataset of

Iranian folk music. This dataset consists of 100 MIDI files from a variety

of sources. Some songs were gathered from Farsi-speaking websites/forums

and some were downloaded from musescore.com which is a free sheet music

sharing website. These files contain different instruments and varying levels

of polyphony.

3.5 Transfer Learning Approaches

We have employed three different transfer learning approaches to train Music-

VAE to better represent and recreate our Iranian folk music dataset:

• Finetuning all layers

• Finetuning the last layer

• Conceptual expansion Monte Carlo tree search (CE-MCTS)

In the following sections, we go over each method in more detail. These meth-

ods were chosen because they allow us to use available knowledge in the form

of MusicVAE pre-trained weights and adapt it to the domain of Iranian folk

music by using a small dataset, namely the one discussed in the previous

section.

There are many types of transfer learning, such as instance-based, mapping-

based, network-based and adversarial-based (see 2.2). Instance-based learning

would require re-weighting samples from the source domain to fit the target

domain and mapping based learning would require learning a mapping from

both the domains to a third latent space. However, we do not have access to

the source domain data and even if we did, these methods require a similar

amount of target and source data. For many genres of music collecting the

require amount of data in itself would be very challenging. Moreover these

methods do not decrease the training time nor the resources needed for train-
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ing. Similarly, training adversarially would require a significantly large amount

of data, which we lack [28].

Alternatively, we focus on network-based methods. These methods are

predicated on the assumption that much like the human brain, the initial layers

of a deep neural network act as feature extractors of increasing complexity and

that these features are versatile and not limited to a source domain. This would

mean by altering the last layers of a network we can adapt it to a target domain

[28]. In our research, this would suggest that MusicVAE originally extracted

universal features that appear in any genre of music during the initial training

process.

We also employed a knowledge distillation approach called student-teacher

learning [25]. In this approach we trained a MusicVAE (student network) on

Iranian music, by using a combination of its loss and the loss of another Music-

VAE with pre-trained weights (teacher network). Training this model proved

very time consuming and we did not achieve desirable outcomes through it.

Thus we do not include its results.

For comparison to the transfer learning approaches we utilize two evalua-

tion baselines:

• Non-transfer Baseline, for which we train a randomly initialized Music-

VAE on the Iranian music dataset alone.

• Zero-shot approach Baseline, which uses the pre-trained weights of Mu-

sicVAE with no additional training on the Iranian music dataset.

3.5.1 Finetuning All Layers

As explained in 2.2, finetuning is a network-based transfer learning method.

This means instead of training MusicVAE from its initial (random) weights, we

used the pre-trained MusicVAE weights provided for the 2-bar melody setup

and then proceeded to train the full network using the Iranian music dataset.

This could allow us to make use of previously learned knowledge in form of

pre-trained weights and alter them through transfer learning to fit our new

target domain/genre using minimal data and training time. In this baseline,
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we chose to not freeze any of the model’s weights. However, we predicted that

this would likely result in “catastrophic forgetting”, meaning that by allowing

the entire model to be finetuned, the model loses or forgets essential knowledge

that it had previously learned. In this case, it would likely lose the “universal

features” that it learned to reconstruct the original training dataset.

3.5.2 Finetuning the Last Layer

In this baseline, we again finetuned the network using the pre-trained Mu-

sicVAE weights except this time we froze all weights except the last layer.

The intuition behind this is that we would like to keep the low level, “univer-

sal”feature extraction in the initial layers intact, while changing the last layer

which is responsible for producing the final output based on these extracted

features. We hoped that this baseline would be less susceptible to “catas-

trophic forgetting”. This approach to finetuning is more commonplace such

as in [16].

There could be an argument to the contrary, if the datasets are so drasti-

cally different that the features extracted from the initial dataset are not useful

for reconstructing the target data. In our case, this question boiled down to

the musical similarity of Iranian and Western music and which we cannot an-

swer without expert knowledge. We anticipated that our experimental results

could help answer this question empirically.

3.5.3 Conceptual Expansion Monte Carlo Tree Search

In this baseline, we use a model specialization approach called Conceptual

Expansion Monte Carlo Tree Search (CE-MCTS) [17]. As we detailed in 2.3,

this method was introduce to specialize a model trained on general data for an

individual’s behavior and its results surpassed other transfer learning methods

on two different tasks. In this method the search space is represented using

Conceptual Expansion (CE), and searched through using a Monte Carlo tree

search, which results in two properties; (1) The search space is unbounded

and (2) we can take larger steps while exploring the space, unlike normal

finetuning. This is ideal for our task and working on discrete data, it is most
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likely for this method to not get stuck in local optima unlike finetuning. Also,

this approach relies on a smaller amount of data on the secondary task than

is usually common for transfer learning because the researchers developed it

to specialize to one individual at a time. This parallels our problem, given the

size of our Iranian music dataset is proportionally very small in comparison to

MusicVAE’s original training data.

To apply this approach to our task, we used the same four default neighbor

functions. (See 2.3.) Each node in the Monte Carlo Tree Ssearch is a Music-

VAE model, with the root being loaded with pre-trained weights and each

subsequent child being a copy with its weights altered randomly by one of the

neighbor functions. At each iteration there are 10 rollouts and at each rollout

there is an ϵ = 0.5 chance of choosing either exploration or exploitation. If

exploration is chosen the rollout has a length of 5 nodes. The fitness used for

each node is accuracy and at the end of each exploration each child node’s

fitness is added to its parent’s accuracy by a discount factor of 0.3. Since each

node in the tree is a distinct instance of a MusicVAE network, this approach

uses up a lot of memory as it builds out the tree. Due to our limitations, we

set the root to the best node found through exploitation and pruned the tree,

keeping only the subtree of the new node. At the end, we kept the top three

nodes with the highest fitness/accuracy.

3.5.4 Non-transfer Baseline

In this baseline, we trained the MusicVAE model without using the pre-trained

weights. This was done without any transfer learning methods and explores the

possibility of building the music generation model entirely based on our OOD

dataset. However, we expected that this method would prove to be ineffective

due to our significantly smaller dataset of 100 MIDI files, as opposed to the

original ≈ 1.5 million files used to train MusicVAE.
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3.6 Zero-shot Baseline

In this baseline, we use the publicly available pre-trained weights provided for

MusicVAE [24]. This baseline is the only one that does not involve any training

or finetuning on our part and shows the ability of the original MusicVAE model

in reconstructing Iranian folk music.

3.7 Experiment Evaluation

Ultimately, we need to be able to concretely evaluate and interpret each ap-

proach in order to answer the question we previously posed: Will transfer

learning methods help improve the model’s performance on an specific OOD

dataset such as the Iranian folk music dataset? To do so, we randomly split the

dataset (D) into 5 folds of equal size and performed a 5-fold cross-validation.

(
⋃︁5

i=0 Fi = D,
⋂︁5

i=0 Fi = ∅) This means that for each fold Fi, we trained the

model on D − Fi and then tested it on Fi. This is due the fact that given

the small size of the dataset a single random train-test split might coinciden-

tally be a favorable split and lead to in misleading results. The metric used

in the evaluation is the accuracy of the model in correctly reconstructing in-

put sequences, namely classifying the note being played at each step in the

sequence.

It is clear that this method of evaluation ignores the ability of the model

to actually generate new musical sequences, which is the main objective of

such a music generation model. However, evaluating the quality of generation

would require a human subject study. Moreover, given our specific dataset,

the study’s subject would need to be at least familiar with Iranian folk music.

Give this constraint, we lacked the time and resources to conduct such a study.

Nonetheless, the author is familiar with Iranian folk music and therefore can

serve as an initial evaluator (see section 3.10).
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3.8 Experimental Details

The training for every baseline was performed for 2000 steps. The learning rate

is the same as the original MusicVAE at 10−3 for the non-transfer baseline and

5 ∗ 10−4 for the finetuning baselines. The batch size is 8. For the CE-MCTS

baseline, there are 10 iterations with 10 rollout of length 5 each. The discount

factor is 0.3 and the epsilon is 0.5. We keep the number of nodes in the MCTS

tree limited to 100. Other parameters of MusicVAE remain unchanged from

the original paper [24].

3.9 Results

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

MusicVAE 93.75 90.62 84.37 87.50 87.50 88.75 ± 3.56
Non-transfer 68.75 68.75 68.75 68.75 68.75 68.75 ± 0

Finetune (all layers) 87.50 84.37 78.12 78.12 75.00 80.62 ± 5.13
Finetune (last layer) 96.87 90.62 93.75 100.00 100.00 96.25 ± 4.08

CE-MCTS 98.96 94.80 98.97 94.84 100.00 97.52 ± 2.49

Table 3.2: Training accuracy percentage of each baseline

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

MusicVAE 90.62 87.50 75.00 37.50 90.62 76.24 ± 22.60
Non-transfer 37.50 37.00 37.50 6.25 53.12 34.27 ± 17.09

Finetune (all layers) 81.25 68.75 25.00 34.37 65.62 55.00 ± 24.06
Finetune (last layer) 96.87 96.87 65.62 40.62 93.75 78.75 ± 25.04

CE-MCTS 93.75 97.9 83.34 51.07 93.77 83.97 ± 19.17

Table 3.3: Test accuracy percentage of each baseline

Tables 3.2 and 3.3 contain our training and test accuracy results respec-

tively. Overall we can observe that CE-MCTS outperforms other methods

in both training and test accuracy. Finetuning on the last layer is a close

second. Although these two methods perform similarly during training, CE-

MCTS is better at reconstructing the test data. This is especially evident in

fold 4 as CE-MCTS achieves the best test accuracy on this fold out of all the

approaches. Throughout every baseline, the fourth fold consistently proved
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challenging for the models, but upon further examination, we recognized that

only fold 4 clearly has a large number of high note density outliers (shown in

3.1).

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure 3.1: Each figure depicts the histogram for the note density of each
sample in a fold. Note density is calculated by dividing the number of notes
in a sample by the total time in seconds.

As we hypothesized, finetuning on all layers produces inferior results to

finetuning only the last layer. In fact, it seems that the original pre-trained

MusicVAE outperforms this method. This is likely due to catastrophic for-

getting, which means by changing the weights of the entire network we lose

valuable feature extractors that exist in MusicVAE. As for the non-transfer

method, it is not surprising that the small quantity of data available is un-

able to effectively train the network. The initial dataset size used to train

MusicVAE is 15,000 times larger than our dataset.

As previously shown, CE-MCTS outperforms both the pre-trained Music-

VAE and last layer finetuning on test accuracy. Therefore we can deduce by

making bigger changes including changes to the feature extractors in earlier

layers, CE-MCTS is able to create better feature extractors for the target
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dataset and based on the results is not catastrophically forgetting useful fea-

tures. This implies that the feature extractors present in the frozen layer in

the finetuning baseline and the zero-shot learning baseline are not completely

sufficient when working on Iranian folk music. We speculate that CE-MCTS

can accomplish this because it can make more targeted changes to individual

learned features using conceptual expansion. This flexibility allows for more

useful features to be created that may be more helpful for training on Iranian

music.

3.10 Qualitative Analysis

In this section, we provide a qualitative evaluation of each baseline’s genera-

tion results. Below, we provide figures for the examples of generated melodies

by each approach. These examples were chosen by an author with expertise

in Iranian music because they were generally representative of the character-

istics of each baseline’s generations. This is obviously, highly subjective and

susceptible to confirmation bias. As explained in 3.7, a study with expert par-

ticipants is needed to make reliable assertions about the quality of generation.

The examples used were generated by using one of the top performing mod-

els in each category. In each corresponding figure, the x-axis is representing

time in seconds, limited to 4 seconds which is the length of all 2-bar genera-

tions. The y-axis represent the pitch for the notes in the melody in the MIDI

format which is between 0 to 127. Each red rectangle in the figure represents

a continuous note.

Figure 3.2 represents a typical melody generated by using the pre-trained

MusicVAE. The notes in this melody sound harmonious and follow a some-

what cohesive progression. They also gradually move from a higher pitch to

a lower one, spanning somewhat evenly across the melodic range (distance

between the highest and the lowest pitch). In the next Figure 3.3, we observe

a melody generated by the no-transfer model. The differences between these

two melodies are clear. The notes in 3.3 are scattered and disjunct and it

sounds like a random collection of notes being played. This is consistent with
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the results from this baseline as the model does not seem to have learned the

sample space properly. Figure 3.4, shows a melody generated by the model

finetuning all layers. Melodies generated using this model are very sparse and

many times end abruptly at the beginning of the interval. While they do not

sound as arbitrary as the melody in 3.3, they often do not sound very cohesive

or meaningful.

The last two figures 3.5 and 3.6, were generated using the model finetuning

the last layer and the CE-MCTS model respectively. In the author’s subjective

opinion, samples generated by these two models sound more similar to, and

evocative of, the type of melodies present in Iranian folk music. This is hard

to qualify but here we point out a number of characteristics commonly seen

in traditional and folk Iranian (Persian) music according to [8] and [26].

• Melodies has a narrow register (pitch range).

• Melodic movement is often achieve with conjunct steps.

• There is an emphasis on cadence, symmetry, and repetition of musical

motifs at varying pitches.

• Rhythmic patterns are generally kept uncomplicated and rhythmic changes

are infrequent.

• The tempo is often fast, with dense ornamentation. Similar to this, it is

common to see repetitive and rapid use of the same note/pitch.

As it is shown in both figures, the register is more limited locally and patterns

that repeat the same note are prominent in these melodies.

Based on our subjective analysis and some of the characteristics mentioned

above, we predicted that metrics such as a high note density and a low average

note length might be useful in confirming our qualitative views, thus we have

included them in table 3.4. We can see that CE-MCTS and MusicVAE have

the highest note density, with CE-MCTS having a lower standard deviation.

As for average note length, finetuning for all layers has the lowest value by a

proportionally big margin. The other baselines have very similar values, with

CE-MCTS having the least average note length.
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Figure 3.2: Visualization of a melody generated by the pre-trained MusicVAE
model

Figure 3.3: Visualization of a melody generated by the non-transfer model

3.11 Melody Extraction

In this section we discuss one important aspect of MusicVAE’s pipeline that

we were not able to sufficiently evaluate. As mentioned in preprocessing,

melody extraction (See 2.6) is a part of MusicVAE’s data pipeline. From the

reconstruction viewpoint, how melody is extracted may not seem to matter as

the VAE will strive to encode and recreate the same sequence it’s been given.

This is further bolstered by the fact that accuracy is the one quantifiable metric

for the performance of MusicVAE.

However, we argue that the melody extraction algorithm used plays a cru-

cial part in the way musical data is presented to the model and how it generates

novel melodies. Thus it should not be overlooked. This is especially impor-

tant when we are trying to make the generation resemble a certain target genre
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Figure 3.4: Visualization of a melody generated by the model finetuning all
layers

Figure 3.5: Visualization of a melody generated by the model finetuning the
last layer

or style. In this case the quality of generations depend on the ability of the

melody extraction algorithm to pick up the correct notes that form melodies.

In this section, we further examine MusicVAE from this aspect.

MusicVAE uses the skyline algorithm on each channel of the MIDI file

separately. Essentially, extracting melodies for each instrument. However, we

found that extracting from the combination of all channels in one polyphonic

stream resulted in melodies that better represent the piece as a whole. This

is, of course, a purely subjective assessment. Interestingly, while training

the model using this second version of the algorithm, we observed a drop in

performance in reconstructing OOD datasets.

Ultimately, this implies that a more in depth analysis of the effects of differ-

ent melody extraction strategies may benefit the quality and style specificity
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Figure 3.6: Visualization of a melody generated by the CE-MCTS model

Approach note density note length

MusicVAE 2.43± 1.47 0.48± 0.37
Non-transfer 2.01± 1.06 0.47± 0.29

Finetune (all layers) 1.95± 0.85 0.32± 0.15
Finetune (last layer) 2.01± 0.94 0.49± 0.37

CE-MCTS 2.44± 1.28 0.44± 0.31

Table 3.4: The note density and average note length for each baseline

of the generated music and could be explored further in the future. In more

recent works, such as [23] the use of deep learning methods have been used

in extracting melody from waveform data. A similar approach using symbolic

music could be examined, although collecting a dataset of sufficient size for

this task would be challenging and will require domain specific knowledge.

3.12 Takeaways

In this chapter we started by overviewing the music generation task and our

main goal of improving an existing music generation model’s performance on

out-of-distribution (OOD) genres of music using minimal data and training.

After summarizing the structure of the base model used for this research (Mu-

sicVAE), we investigated how it performs on a few OOD genres of music,

discovering that in contrast to its performance on synth pop music, it partic-

ularly struggles with Iranian folk music. We then explored different transfer

learning methods in order to improve MusicVAE’s performance on a newly

collected Iranian folk music dataset. Based on our results, we observed that
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by using CE-MCTS, a new approach based on the combination of conceptual

expansion and Monte Carlo Tree Search, we are able to produce much im-

proved reconstructions of this genre of music. Additionally, even though it is

extremely difficult to conclusively opine on the quality of the model’s generated

music, our qualitative analysis implies subtle improvements and differences in

structures of the generated data.
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Chapter 4

Conclusion

This chapter concludes this thesis by going over its main implications and

takeaways (4.1). 4.2 provides discussion on how this research can be expanded

upon in the future. Lastly, we present our closing thoughts in 4.3.

4.1 Implications

Throughout this work we attempted to improve MusicVAE’s performance on

OOD genres, and through attempting and comparing different transfer learn-

ing methods, discovered that CE-MCTS is better at reconstructing samples

from our dataset of Iranian folk music, particularly if there are a greater num-

ber of high note density outlier samples present. The results of this research

imply two main points. First, that big music generation models are not good

at representing OOD music. These models are very dependant on the diver-

sity of their datasets which for publicly available MIDI files, are very skewed

towards Western mainstream pop music. Second, taking Iranian folk music as

our example of OOD music, we can improve a music generation model’s ability

to generate or reconstruct this type of music by transfer learning using a small

dataset and that non-backpropagation method like CE-MCTS can outperform

finetuning by exploring the search space in larger steps and combining existing

knowledge (in the form of model weights) via Conceptual Expansion.
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4.2 Future Work

Although the results obtained throughout this research are positive, we cannot

make a strong claim that our conclusions hold generally across different genres,

neither can we claim our conclusions hold for different generation systems.

There are many aspects and questions that require further probing, in order

to form more concrete conclusions.

As discussed previously 3.7, to fully evaluate performance for any genre

we would need a study with human experts in that genre. This would be an

essential next step in further expansion of this work.

Moreover, we believe that by doing a more rigorous hyperparameter opti-

mization (e.g. by doing a hyperparameter sweep), we can explore and better

understand the limitations of each transfer learning and how different param-

eter such batch size, learning rate, latent code size, and KL divergence related

parameters may affect the quality of both reconstruction and generation. Also,

MusicVAE offers a larger model that generates 16-bar melodies as opposed to

2-bar. This would indeed be a more computationally costly task and likely

will require more data but on the other hand with a longer sequence length,

it will be much easier to recognize distinct pattern and musical styles which is

extremely difficult and very speculative in a 2-bar setting.

Ultimately, as we discussed in 3.11, melody extraction plays a role in the

quality of generation in a music generation model. A comprehensive explo-

ration of different extraction methods and their subsequent effects will likely

be helpful in improving the model’s ability to generate better representations

of the target genre.

4.3 Closing Thoughts

In this work, we set out to examine the ability of large music generation models

to generate music from out of distribution genres. Our endeavors were focused

on answering a number of questions. (1) We wished to know how different

genres can affect the reconstructive performance of music generation models.

38



Upon evaluating on small datasets of 4 different genres, using MusicVAE as

our model, we observed that these models perform poorly on Horror movie

scores, Video Game music and Iranian folk music. In contrast, the model

performed well on Synth-pop music. (2) Next, we sought to determine if it is

possible to specialize such a model to a specific OOD dataset. We collected an

additional dataset of 100 Iranian folk music songs and utilized this data to im-

prove the model’s performance via transfer learning. We explored a variety of

approaches, and achieved improvements using CE-MCTS. We also wanted to

investigate the effects of the melody extraction algorithm on the model’s per-

formance. Although we made preliminary explorations into melody extraction

methods, we are unable to make assertions without further probing.
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