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ABSTRACT 

Block caving methods have become desirable underground massive mining techniques as 

close to the surface, high/grade deposits are exhausted, and current open-pit mines reach 

their final mining limits. Block caving mining is the only method that can rival the economies 

and production capacity of open-pit exploitation, offering low operating costs as well as 

reduced environmental impacts in comparison. Some of the disadvantages, however, are high 

capital cost requirements, long development times required, and the operational challenge 

associated with caving mining practices. Block caving mining is based on the undercutting of 

the rock mass, inducing fragmentation on the overlying mass and extract it as it flows 

through a developed opening called drawpoints. The flow component poses a major 

operational challenge as the potential dilution and mixing introduce a large source of 

uncertainty in the economic forecasts for planning purposes. Moreover, geological 

uncertainty in relation with the grade and rock type estimation for the generation of 

numerical deposit models is also an issue. 

This research presents a stochastic optimization model incorporates explicitly geological and 

material flow uncertainty to generate an optimal life of mine schedule for block caving mines 

at a block model scale. The optimization framework works over two steps: it initially 

aggregates the individual blocks into production units based on desired drawpoint spacing, 

representing the draw columns, and mining units based on the minimum draw rate, 

representing the slices that are commonly used in block caving mine planning. The mining 

units then become the basic scheduling unit for the stochastic integer programming 

scheduling model. Uncertainty is characterized by the development of multiple numerical 

deposit simulations. Geological simulations are developed using geostatistical simulation 

techniques, with sequential indicator simulation for rock types and sequential Gaussian 
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simulation for grades. Material flow uncertainty is integrated by the concept of a cone of 

movement. As each mining unit is extracted, it leaves a void that can be filled by any fraction 

of the material on its surroundings based on the flow properties of the broken rock mass. A 

cone, based on potential horizontal displacement and vertical slip angle of the broken rock 

mass is used to generate grade and tonnage mixing scenarios for each mining unit. The cone 

is placed at the bottom of each mining unit, and a random sample of the blocks from the 

deposit model that are contained within it, “filling” the mining unit, is used to update its grade 

and tonnage. This allows for scenarios where each mining unit material could potentially be 

part of fractions of adjacent units as well as waste blocks at the orebody accounting for 

dilution. 

The stochastic mathematical model takes as an input the set of geological and material flow 

simulations to generate a single best schedule that maximizes the expected economic value 

from the uncertainty sources, while minimizes the deviations incurred in production and 

average grade targets due to the variability between the potential scenarios. The operational 

constraints considered in the model include mining capacity targets, average production 

grade, minimum and maximum heights of draw, minimum and maximum vertical draw 

rates, undercut development rate, maximum adjacent relative height of draw, mining 

precedence both horizontal and vertical, and mineral reserves. 

The model was tested in a case study, for which a set of 20 geology simulations were obtained. 

A deterministic, stochastic with only geological uncertainty and stochastic with both 

geological and material flow uncertainty schedules were generated for comparison and 

evaluation purposes. Moreover, the deterministic mine sequence was evaluated over the 

uncertainty scenarios to quantify the impact of the uncertainty in the economics of the project. 

The models were used at different undercut elevations, to identify the most profitable one. The 

deterministic case yields the best undercut at 635m while both stochastic cases find it at 605m, 
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a significant difference. The deterministic schedule, when evaluated over the geological and 

geological and flow scenarios can lead to an expected NPV 8% to 13% lower than those 

reported. Although the stochastic schedules generate an expected NPV that is 3% to 11% lower 

than the reported NPV for the deterministic case, it is a more reliable estimate. Also, larger 

footprints are obtained through the stochastic schedule which could potentially unlock more 

value as more information is obtained. 

Incorporating geological and material flow uncertainty through the approach presented in 

this research can aid decision-makers to make more informed and robust decisions to 

maximize the value of block caving projects at a prefeasibility stage, where little knowledge 

of the behavior of the rock mass is known. 
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CHAPTER 1  

INTRODUCTION 

This chapter explains the background and structure of the study. The definition of the problem 
is presented followed by a summary of the relevant literature. The objectives are defined as 
well as the limitations and scope of the study, and the research methodology is elaborated. 
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1.1 Background 

Underground mining methods are becoming more desirable as innovations in technology 

enable the exploration of deeper mineral resources, environmental and reclamation 

requirements play an increasingly major role in the decision-making process of mining 

projects, and current operating surface mines are reaching their projected final limits. Caving, 

and particularly block-caving, are massive underground production methods that present an 

important alternative to access deep and low-grade mineral resources, with the ability to attain 

high production rates and low operating costs, rivalling the economics of large open-pitopen-

pit mines. The basic concept of caving mining is to undercut the rock mass at a certain elevation 

and breaking the overlying rock, then extracting it below the undercut through a series of 

openings called drawpoints, from which the flow of the broken ore has been shown to follow a 

cylindrical column-wise shape (D. Laubscher, 2000). 

Life-of-mine (LOM) planning is a key step in the development of a mining project, from 

the evaluation to the later operative stages. This process is carried in two sequential steps, first 

determining the economic mining boundaries of the orebody, which define the final mining 

limits, and then the production scheduling within this envelope. This general workflow is 

adapted for both surface and underground mines considering the particular characteristics of 

the method, and different optimization algorithms in commercial software packages have been 

designed to solve the problem of transforming a mineral resource into a mineable reserve with 

a feasible production plan (Alford, 1995; Whittle, 1999). In the area of block caving, GEOVIA 

PCBCTM software package stands as the absolute industry standard (Diering, 2000). 

The construction of a quantitative deposit model representing metal grades and other 

parameters incurs in major estimation uncertainties due to the very low volume of samples 

obtained from exploration programs in relation to the volume of the estimation domains. Mine 

plans are built assuming a single estimated model, which generate unreliable plans with a low 

probability of achieving its expected forecast ( Dimitrakopoulos, et al., 2002). Novel algorithms 

have been developed to tackle this problem, integrating multiple simulated deposit models that 

capture uncertainty on a strategic mine plan ( Dimitrakopoulos, 2011; Dimitrakopoulos & 

Ramazan, 2008; Koushavand, 2014). Additionally, block caving operations rely on the 

gravitational flow of the broken rock mass, a process which is very challenging to model 

accurately. This flow mechanism introduces another major source of uncertainty in the mine 

planning workflow for block caving (F Khodayari & Pourrahimian, 2019). 

This thesis proposes a stochastic programming methodology for the definition of the 

economic mining limits and production scheduling of block caving mines that captures metal 
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grade and material flow uncertainty on a block-model scale, through the use of grade and flow 

simulations. The resulting framework can be used to evaluate the application of caving mining 

methods on mineral deposits at prefeasibility stages, as well as more detailed studies as more 

information becomes available, providing a robust mine plan and economic performance 

estimation. 

1.1 Statement of the Problem 

Traditional mine plans are built using a single estimated deposit model, in which the 

mineral deposit is discretized into blocks. Each block has assigned attributes such as  grade, 

rock type, and density. estimated from samples obtained from drillholes. These values are 

computed usually through geostatistical techniques that account for spatial trends, with 

ordinary kriging (OK) being the most common method. Based on this quantitative model, an 

economic value (EV) can be assigned to each block from its metal content and estimated 

extraction and processing costs, given a market price assumption. The economic block model 

is then optimized to define the final mining limits and a production schedule with certain 

objectives such as maximizing the net present value (NPV) while accounting for different 

constraints representing the mining method and a set of production capacity assumptions 

(Hustrulid, et al., 2013). The output of this process, in terms of economic and production 

forecasts, is used for the decision making process during the different stages of the mine.  

Uncertainty in the estimation of metal grades and rock type modeling that arises due to 

the low volume of samples obtained during exploration programs have a high impact in the 

reliability of the projected cash flows and mining rates, leading to unexpected shortages and 

poor economic performance of the project. Adopting a risk-oriented approach, in which 

multiple simulated orebodies are built to capture the whole range of scenarios based on the 

available data, and building LOM plans that make use of them provide more robust schedules 

that take advantage and quantify geologic uncertainty (Dimitrakopoulos, 2011; Godoy, 2016). 

Figure 1-1 shows a summary and comparison of both approaches to mine planning. 

Moreover, block caving operations rely on the gravitational flow of broken rock as the ore 

is extracted through the drawpoints at a specific elevation. This flow mechanism is related to 

the geotechnical and geological properties of the rock mass as well as the primary 

fragmentation or breakage method, leading to the mixing of the original estimated block model 

grades, which also affects the reliability of the mine plan (Figure 1-2). 
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Figure 1-1. General traditional (deterministic) and risk-oriented (stochastic) approach to mine 
planning. 

 

Figure 1-2. Schematic representation of material flow uncertainty in block caving  (after Khodayari, 
2018). 

Literature shows a lot of emphases, and good results, on the development of algorithms 

and methods to model flow and predict diluted grades based on extraction parameters, 

however, little research has been carried out in the coupling of material flow with mine planning 

algorithms to produce a robust mine plan. Furthermore, these algorithms are built for 

operating mines requiring data and knowledge of the behaviour of the orebody under caving. 
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LOM plans developed at a prefeasibility or feasibility level currently include more basic flow 

algorithms, which fail to capture the major uncertainty inherent to this behaviour when limited 

knowledge of the deposit is available. 

For the purpose of this research, geological uncertainty refers to the uncertainty of the 

grade and rock type estimates of the resource block model due to the scarce number of samples 

and the natural variability of these variables throughout it. To characterize the geological 

uncertainty in the orebody model a set of stochastic conditional simulations are built that are 

as an ensemble represent the variability of the estimation parameters. 

Material flow uncertainty in this research refers to the impact on the grade of the 

production units defined (analogous to slices) due to the mixing of the broken rock as it flows 

throughout the draw column. When an unit is drawn, the estimated grade does not reflect the 

potential mixing of rocks, which is a challenging problem to model in detail at a prefeasibility 

stage. To deal with the mixing uncertainty, a set of scenarios are built where the grade and 

tonnage of each production unit is updated or recalculated based on the sampling of a set of 

blocks that fall within  a cone of movement, that represents the potential horizontal and vertical 

movement of the broken rock as it is drawn from the column. 

The standard workflow for block caving LOM planning starts with the selection of an 

undercut elevation, from which the mineable reserves lie in the overlying caved rock mass. The 

extension of the mining footprint is defined over this level, and the drawpoint excavation layout 

is designed, estimating the best height of draw (BHOD) which serves as the vertical extraction 

limit from each drawpoint. Based on the extraction starting point and mining advancement 

direction, a production plan is constructed for the depletion of each drawpoint up to its BHOD 

and the economic and other performance indicators of the project can be estimated (Rubio, 

2002). This production schedule is built on a column and slice model which aggregates the 

individual blocks from the deposit resource model into vertical slices within cylindrical shapes 

from each drawpoint to represent the block caving extraction scheme (Diering, et al., 2010). 

This assumes knowledge of the mining footprint extensions and drawpoint location and layout, 

however some models can also work directly on a block model scale to provide estimates for 

evaluation at earlier stages of the project (Rodriguez, 2018; Villa, 2014). A summary of the block 

caving LOM planning workflow is presented in Figure 1-3. 

This thesis focuses on step 2 of the general workflow for the LOM planning of block 

caving mines, in which it is of interest to build an initial schedule to define the optimum 

undercut level and caving envelope along with economic performance measures of the project, 
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developed on a block scale rather than column and slice models. However, these blocks are 

aggregated into units which are representative of the caving extraction method to produce more 

accurate results and improve computing times. The selection of the undercut level plays a 

significant role  on the mineable reserves as the underlying rock mass is loss, and is not a 

flexible decision. This along with the defined caving envelope, based on the footprint extension 

and the BHOD, can have an enormous impact in the later stages of the planning workflow, as 

sections of the deposit are discarded, which could be taken advantage of to improve the decision 

making process. In this research, a mathematical programming model is developed to optimize 

this stage incorporating geologic and material flow uncertainty in order to provide a robust and 

near-optimal solution. Figure 1-4 presents a schematic of the problem statement for this 

research thesis.  

 

Figure 1-3. General block caving LOM planning workflow. 
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Figure 1-4. Schematic representation of the problem definition. 

 A mathematical programming framework is developed in this research that maximizes 

the economic value of the project while minimizes the deviations caused in ore production 

tonnage and grade quality due to the potential geological and material flow scenarios. The 

framework incorporates operative constraints including production and grade quality targets, 

undercut development rates, vertical mining rates (draw rate per draw column), mining 

precedence based on the advancement direction and adjacent differential height of draw to 

control the cave profile.  

 The following research question summarizes the problem and purpose of this 

dissertation. 

Is it possible to incorporate geologic and material flow uncertainty into long-term 

mine planning for block caving mines considering adequate operational constraints, 

which improve on current methodologies while providing better control over potential 

production and quality target deviations and more robust economic forecasts? 

1.2 Summary of Literature Review 

Current industry practice regarding the long-term planning of block caving mines is 

based on the methodology described by Diering (2000, 2010) in GEOVIA PCBCTM software, 

which is used by virtually almost every operating block caving mine or potential project. PCBC 

includes the Footprint Finder (FF) module to determine the optimal level of extraction as the 

first step in the designing and planning of a block caving mine. FF takes as an input the deposit 

block model including economic valuation of each block, commonly determined based on the 

estimated mineral grades, mining costs and revenue factors, accounting for dilution with a 

vertical mixing model integrated based on Laubscher model (1994). Each elevation is evaluated 
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independently generating vertical columns based on the block locations. The BHOD for each 

column is calculated as the height that yields the maximum economic benefit, limited by a 

defined maximum height of draw. A discounted economic value is obtained for each column 

independently by adding the economic values of each block starting from the selected undercut, 

discounted by a vertical mining rate usually expressed as meters per year, up to the determined 

BHOD. 

Additionally, development costs can also be included to account for the opening of each 

column. The columns with a positive economic value are considered to be included in the 

mining footprint at the current elevation. The value and ore tonnage of each potential undercuts 

are calculated as the summation of the economic values and ore tonnages of all the columns 

included within the footprint respectively and are used as the main criteria to select the optimal 

level to start the extraction. The practical workflow makes it easy to examine multiple levels 

quickly and choose the best undercut elevation and an initial footprint; however, it does not 

consider the interaction between each column, as a certain cave back slope and relative 

extraction rates are required to maintain a desirable cave shape. Moreover, it does not explicitly 

account for the horizontal mining advancement direction within the undercut and the potential 

effect on the economic value from the discounting associated with the opening of columns at 

different periods. Recent versions have been developed to include a scheduling option within 

the FF module; however, the potential workflow becomes time-consuming as it would be 

required to iteratively formulate multiple scenarios for each undercut, while still not 

guaranteeing an exact optimal solution (Villa, 2014).  

A methodology proposed by Elkington, et al. (2012) uses an integer programming (IP) 

formulation to determine a 3D cave outline over multiple cut-off grades for a deposit block 

model. The objective was built to maximize the metal content above a certain cut-off 

constrained to a minimum mining footprint area, a minimum and maximum column height, a 

maximum adjacent height of draw and a minimum horizontal pillar distance between caves, in 

order to represent the geometrical characteristics of a caving operation. The method allows 

defining alternative caving outlines or grade shells at different cut-offs to aid the planner in 

identifying high-grade areas, guiding the cave development and selecting the best extraction 

level placement. Some of the disadvantages of this method are that it does not maximize 

economic value explicitly, as it maximizes metal content within the different caving outlines. 

Furthermore, no time factor is considered in the model so the economic discounting effect due 

to the extraction sequences of a block caving operation logic is not accounted for.  
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An approach presented by Vargas, et al. (2014) introduced geological uncertainty into the 

process of selecting the elevation and defining the caving outline by building multiple 

realizations of the block model. These conditional simulations are evaluated in GEOVIA 

PCBCTM FF module to determine the best undercut elevation and afterwards a version of the 

final pit limit procedure is adapted to mimic the geometry of the caving outline and define an 

economic envelope. The blocks below the selected elevation are eliminated and the deposit 

block model is turned upside down, where the final pit limit algorithm to calculate a mining 

envelope is used with the added restriction of allowing for vertical walls up to a certain 

percentage of the height of column, then controlling the cave back slopes through the 

precedence constraints for the blocks on top of said percentage. A final step filters the result to 

take out individual columns with no neighbors included in the footprint and smooths the 

outline. The algorithm is repeated for the multiple simulations obtaining the undiscounted 

economic value and ore tonnage of the envelope. A value at risk evaluation is performed to 

quantify and summarize the variability of the economic values and tonnages associated with 

different risk levels to aid the decision maker. The methodology does not account for the 

discounting effect of the vertical, within columns, and horizontal, within the undercut, since 

the method used to calculate the envelope is a variation of the final pit limit optimization 

algorithm which maximizes undiscounted profit. This could lead to a significant difference 

between the envelope value and the actual expected NPV of the project, as well as the shape of 

the estimated caving outline. Furthermore, the methodology allows to quantify the impact of 

uncertainty but does not include it explicitly in the optimization procedure. 

There is a clear gap in the literature regarding the incorporation of geologic uncertainty 

in the planning of block caving mines. The advantages of using stochastic orebody simulations 

and stochastic mine planning is well documented in open-pit mining ( Dimitrakopoulos, 2011; 

Dimitrakopoulos & Ramazan, 2008; Godoy, 2016; Leite & Dimitrakopoulos, 2007), providing 

more robust plans in term of control of potential deviations, as well as adding value to the total 

NPV of the project and reserves. However, in block caving to date, the only documented 

stochastic planning method is the one presented by Dirkx, et al. (2018). In their methodology, 

a stochastic programming model is developed that accounts for multiple geologic simulations 

to minimize the deviations from production targets and incorporate hang-up uncertainties that 

affect the projected overtime during the mine life. 

The flow mechanism of broken rock through drawpoints has been a major area of 

research and development in block caving, due to its large impact on a caving project operation  
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(Kvapil, 1965; Marano, 1980). The investigations in this area are usually done either on full-

scale experiments, pilot tests or numerical models. 

GEOVIA PCBCTM contains a numerical empirical code for the prediction of flow in caving 

based on the analysis of in situ tests in operating mines. The procedure defines draw cones over 

which empirical mixing rules are applied to account for the flow mechanism observed in 

practice, without modeling detail evolution of the draw profile. For better results, it is suggested 

that the inputs required to apply the flow mixing area calibrated to match the behavior of the 

rock mass (Diering, 2000). 

One of the best known numerical models for flow prediction in caving is REBOP (Rapid 

Emulator Based on PFC). REBOP was initially developed by Cundall, et al. (2000) based on 

observations and tests of draw simulations in PFC3D, and studying in detail the mechanism of 

isolated draw offering a powerful tool for flow prediction. Furthermore, Pierce (2010) improved 

it by a detailed investigation of the material properties that govern the movements zones 

evolution, and embedded a procedure to predict stresses under draw within the cave. The 

calibration and validation process for the different material properties and other inputs is key 

in order to guarantee robust results. 

Different stochastic approaches to material flow have been proposed (Alfaro & Saavedra, 

2004; Deserable, 2006). As a general overview, the models discretize the material and estimate 

the probability of movement of each unit based on different parameters, from empirical 

coefficients to material properties. The different simulations can be generated based on these 

probabilities. Castro, et al. (2009) propose a flow simulator based on cellular automata to 

estimate dilution entry, mixing and ore recovery. The model estimates the probability of 

movements for the broken particles based on empirical coefficients and material properties, 

and show good results when implemented in real operating mines. The framework is used for 

flow prediction and draw control in operating caving mines. 

The approaches discussed above provide great tools during the operation of block caving 

mines. However it is of interest to couple flow material mechanisms during the LOM planning 

stage, where knowledge generated from other operating mines can be used to generate a 

representative set of scenarios. Khodayari & Pourrahimian (2019) introduce one of the first 

approaches to incorporate material mixing explicitly within the mine planning workflow for 

block caving. Rather than modeling a detail flow mechanism, it is treated as a source of 

uncertainty reasoning that at this stage little is known about the response of the actual response 

of the rock mass, but multiple representative scenarios can be generated, and an optimization 
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approach over the expected value of this set of potential scenarios can increase the value of the 

project as well as providing a more reliable mine plan. The concept of a cone of movement is 

developed (CoM), based on Alvial (1992) observation on full-scale tests at El Teniente block 

caving mine. Also mentioned in (D. Laubscher, 2000), Alvial marker experiments in El 

Teniente showed that horizontal displacement of particles varies between 2m and 42m, 

averaging 14.5m following a vertical slip angle between 60° and 88°, averaging 80°. They then 

model the potential movement of particles based on these observations as a cone of movement 

defined by a horizontal displacement (HD) and vertical slip angle (VSA). When material is 

drawn from a drawpoint, the void generated can be filled by any of material contained within 

this CoM pertaining the particular drawpoint, and therefore grades and tonnages are updated 

following a random sample from this space. These serve as scenarios to optimize the expected 

value of the project rather than a single estimated model with a premixing algorithm, such as 

(D. Laubscher, 1994). A case study was used where the introduction of flow uncertainty 

generated mine plans with larger value than those generated with a single estimated model with 

premixing algorithms on PCBC. 

This thesis adapts the concept presented in Khodayari & Pourrahimian (2019), coupling 

it with geologic orebody simulations to generate a mine planning workflow that can be used at 

prefeasibility stages on a block model scale, providing robust plans and more reliable 

production and economic forecasts. 

1.3 Objectives of the Study 

The objective of this research is to develop, implement, and verify a theoretical 

optimization framework for the definition of the economic mining limits and LOM production 

schedule for block caving mines, incorporating metal grade and material flow uncertainty. The 

goal of the optimization model is to obtain an optimal economic envelope and schedule that 

maximizes the NPV of the project, under a set of technical and economic parameters, and 

minimizes the ore production and grade quality deviations from defined targets, caused by the 

variability due to the uncertainty in grade estimation and material flow. 

The methodology presented takes multiple conditionally simulated mineral deposit grade 

models based on geostatistical techniques as input, and developes flow scenarios using the 

concept of a cone of movement to generate a near-optimal production schedule.  

As an initial step, the block model is aggregated into production units (PU) based on the 

extraction scheme of block caving mining, to reduce the number of variables needed to obtain 

the LOM plan while still being representative of the method. These units are built using a Binary 
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Integer Programming (BIP) method to optimize the metal content contained within the 

potential mining reserves, and serve as the scheduling basis for the planning algorithm. A 

Stochastic Integer Programming (SIP) model is then formulated to obtain the production 

schedule that maximizes the NPV under the following constraints: mining production capacity 

target, mining advancement direction and extraction precedence, suitable vertical mining rates 

(draw rates), undercut development capacity, cave draw slope control, and blending and grade 

quality target. 

To achieve these goals, this research focuses on: 

 Develop a methodology to generate strategic schedules for block caving projects that 

maximize its economic value while minimizing the deviations caused by the 

uncertainties in metal grade estimation and material flow. 

 Develop techniques that allow the practical implementation of the proposed 

methodology in a reasonable CPU time, while still generating near-optimal solutions. 

 Integrate the optimization framework into the standard workflow for block caving LOM 

planning at early stages, by evaluating its use in the selection of the best level of 

extraction and obtaining relevant KPI’s pertaining a mining production schedule.  

 Evaluate the solutions obtained from the optimization framework using a case study to 

highlight the effects of incorporating grade and flow uncertainty into the LOM planning 

workflow for block caving.  

1.4 Scope and Limitations of the Study 

The following assumptions are made in the development of the methodology: 

 The modelled orebody is considered to be a stationary domain to generate multiple 

grade and rock type scenarios by the use of Sequential Gaussian Simulation (SGS).  

 Material flow is incorporated in the model as multiple scenarios, not dynamically within 

the planning optimization algorithm. Material flow is treated as a mechanism that 

generates different grades scenarios based on a resource model and the common flow 

pattern observed in block caving.  

 The aggregation of the individual blocks into production (PU) and mining units (MU) 

is based on the potential drawpoint spacing at the extraction level, and the minimum 

vertical extraction rate (draw rate) required. The block size of the input deposit model 

will limit the resolution of the aggregation algorithm and selection of its parameters.  



Chapter 1: Introduction                                                                                                                                    13 

 

 

 The scheduling SIP model defines binary decision variables to extract a mining unit on 

a given period or not, rather than a continuous one. The size and tonnage of the unit, 

based on the aggregation parameters, limits the resolution of the production schedule 

solution and selection of its parameters. 

 To solve the SIP model it is converted into its equivalent deterministic MILP model, by 

the introduction of recourse variables and deviation penalty costs. The objective 

function is then reformulated to maximize the expected value of the profit contributions 

from the extraction of each mining unit amongst all the simulated models, which are 

also incorporated in the constraints to minimize deviations from required production 

targets.  

The scheduling is carried over MUs, which are built as an aggregation of individual blocks 

from the deposit model with plan dimensions based on the potential drawpoint spacing and 

height based on the minimum draw rate required for caving the rock mass. This concept is 

aligned with the different aggregation methodologies that have been presented and validated 

for the scheduling of open-pit mines, but representing the extraction scheme in block caving 

mines. Binary decision variables are used since the mathematical modeling of the block caving 

operating constraints using continuous variables require the introduction of a large number of 

extra binary variables, which render the problem unpractical requiring excessive computing 

times. This requires the definition of parameters such as maximum draw rates, maximum 

heights of draw and adjacent relative draw rates to be in line with the block size and mining 

unit size. No detailed scheduling such as drilling and blasting or ventilation are considered, as 

the model addresses a LOM plan.  

 The solution approach to the SIP model is to express it in its equivalent deterministic 

MILP through recourse variables and penalty costs on deviation targets. These penalty costs 

allow the user to define a risk profile on the production schedule. The equivalent MILP is solved 

using IBM CPLEX, which uses a branch-and-cut solution strategy. A sliding time window 

heuristic is implemented to improve the computing time required while still providing near-

optimal solutions. 

1.5 Research Methodology 

The main motivation for the development of this research is to improve block caving 

production scheduling methods by the incorporation of geological and material flow 

uncertainty into an optimization algorithm to maximize the project value, while minimizing 

deviations from production and material quality targets. The scheduling optimization 
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framework works on a block level scale and also makes the decision on the extension of the 

footprint at the undercut level and the BHOD and caving envelope. To reduce the number of 

variables, an initial step aggregates the individual blocks into MUs, representing the column-

wise extraction scheme of block caving, based on a desired drawpoint spacing and planned 

dilution. The aggregation maximizes the metal content of the units, calculated in reference to 

an undercut elevation, in order to cover the deposit while not imposing a boundary within the 

orebody and leaving this decision to the later production scheduling step. 

Geological and material flow uncertainty are characterized by generating multiple 

scenarios. The scheduling algorithm becomes a stochastic optimization model which is 

transformed into its equivalent MILP formulation by the introduction of deviations, or 

recourse, variables. These deviation variables are assigned a cost that gives the user control 

over the risk of over- or under-production from defined targets in both ore tonnage and grade 

quality over the LOM plan. The objective function is reformulated to maximize the expected 

value of the economic profit from the extraction of a unit while minimizing the total cost 

incurred due to deviations from targets over the multiple geological and flow scenarios. The 

following tasks are completed to build the optimization framework: 

 Generate a set of block model realizations of the grade and rock type of a mineral deposit 

using SGS techniques. 

 Develop a BIP model to aggregate the individual blocks into production and mining 

units to reduce the number of variables to schedule while being representative of the 

block caving extraction scheme. The aggregation maximizes the expected metal content 

of the layout considering the multiple geological realizations in order to give the 

boundary and sequencing decisions to the scheduling algorithm. 

 From the set of geological block model realizations, generate material flow simulations 

using the CoM concept based on HD and VSA parameters to represent the 

geomechanical characteristics of the broken rock mass. This mechanism to simulate 

material flow and its incorporation in block caving planning is adapted from Khodayari 

(2018). 

 Develop a SIP model to generate a production schedule and mining envelope from the 

previously generated mining units considering all the potential geological and flow 

scenarios. The SIP is solved by converting it into its MILP equivalent formulation 

defining deviation variables that the user can control to define a risk profile. 
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 Implement the formulation in a MATLAB environment using IBM CPLEX as the 

optimization engine.  

 Test the formulation on a case study to assess the results in terms of the practical 

feasibility and validity of the mining plan. 

 Compare a deterministic version of the model that uses a single estimated deposit 

model with the stochastic version. Quantify and compare the impact of incorporating 

grade and flow uncertainty with respect to the project NPV, production output, grade 

quality output, economic envelope and best elevation for the undercut level. 

The research methodology is summarized in Figure 1-5. The initial step for the building of 

geologic simulations follows the standard workflow for geostatistical simulations widely 

described in the literature (Godoy, 2016; Goovaerts, 1997; Rossi & Deutsch, 2014), and 

developed using the geostatistical software library GSLIB (C. Deutsch & Journel, 1997). 
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Figure 1-5. Summary of the research methodology for this research. 

The general steps towards geologic simulation comprise: 

1. Declustering of the drillhole data to obtain the representative distributions of both rock 

type and metal grade. 

2. Descriptive and multivariate statistical analysis to explore data and relations between 

different variables, define stationary domains. 

3. Determine principle direction of continuity for variogram modeling. 
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4. Normal score transformation of the data. 

5. Variogram modeling. 

6. Definition of simulation parameters including the number of grid nodes in each 

direction and distance between them. 

7. Generate n realization using sequential indicator simulation (SIS) for rock type, and for 

each rock type simulation generate a metal grade realization using SGS.  

Once the n geologic block model realizations have been generated, the next step is to 

aggregate the individual blocks into suitable MUs that represent the block caving extraction 

scheme and reduce the number of variables for the scheduling decisions.  

The first decision is the selection of an undercut elevation, which is evaluated based on the 

total profit obtained by the extraction of the individual blocks at a particular elevation 

discounted based on a vertical mining rate (draw rate), going through a set of candidate 

elevations to select the one that yields the highest economic value. This thesis proposes the use 

of the presented optimization framework to provide a more reliable estimate of the profit for 

each undercut elevation, by evaluating a set of candidate undercuts with the incorporation of 

the discussed sources of uncertainty and more detailed operating parameters.  

For a candidate undercut the individual blocks are aggregated into mining units based on a 

desired drawpoint spacing between drifts (A) and across the minor pillar (B), representing the 

column-wise area of extraction in block caving, with the vertical dimension set based on the 

minimum draw rate (vertical mining rate) required to sustain caving of the rock mass. Figure 

1-6 shows a schematic of the aggregate units. 

 

Figure 1-6. Aggregation of blocks into mining units for scheduling. 
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The aggregation first determines the best arrangement on the plan section of the undercut, 

representing the draw zones or production units, which maximize the expected metal content 

contained in the layout. 

The expected metal content of each production unit is calculated as the summation of the 

average metal contained on the blocks amongst all the realizations, along the vertical column 

spanning from each particular production unit up to a certain dilution percentage. The 

calculation is performed on steps over vertical aggregates based on the draw rate, which later 

become mining units for scheduling purposes, and the dilution is calculated as presented in 

equation (1.1). The blocks within the mining unit with zero average metal content across all 

realizations are considered as waste, and once a unit dilution surpasses an established limit the 

column is terminated, with the calculation going up to a predefined maximum column height. 

This goes along the practice of allowing certain dilution when defining the column draw height 

limits (D. Laubscher, 2000). 

100%
Waste Ton

Waste Ton Ore Ton



 (1.1) 

Metal content is selected rather than economic value at this stage. Due to the vertical 

extraction system in block caving, the economic value of each draw column is calculated up to 

its BHOD, which is the final height at which the column is closed. Traditionally, the selection 

of this height is done before any scheduling by evaluating each column individually and 

selecting the height at which the maximum cumulative economic value is reached (Rubio, 

2002). However, since there is no consideration of the impact of the BHOD over the adjacent 

columns and due to draw control there could be value lost. The extraction of additional material 

from a particular column above its BHOD could allow the draw of more valuable ore at larger 

heights on adjacent columns. This framework leaves the BHOD selection for the cave 

boundaries as an output of the scheduling step, where it decides where to stop and close each 

column to yield the maximum NPV over the life of the project considering the whole resource. 

The boundaries of the cave are output of the production schedule. 

The MUs have a tonnage and average grade for each block model realization, representing 

the geologic scenarios. For each scenario, a material flow simulation is generated. This is 

carried out by adapting the concept of a cone of movement as presented by (F. Khodayari, 2018; 

F Khodayari & Pourrahimian, 2019). When a portion of the broken ore is extracted through a 

drawpoint, an open space is generated along the draw column that can be filled by any mass 

within a certain neighborhood. The modeling of this neighborhood and calculation of 
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probabilities associated with the movement of material within it is a very challenging problem 

that requires a great amount of knowledge of the behavior of the rock mass. Full scale tests 

show that the movement can be thought of as a cone characterized by the horizontal 

displacement (HD) and the vertical slip angle (VSA) of the broken ore movement within it (D. 

Laubscher, 2000). Figure 1-7 presents an example of the concept. In this research, the concept 

is applied over mining units, as these are the smallest scheduling units. 

 

Figure 1-7. Cone of Movement (CoM) concept adapted for the material flow simulation as presented in 
Khodayari (2018). 

 When a mining unit is extracted, the void in the bottom of the drawpoint can be filled 

by any of the units within the neighborhood defined by the CoM. Random scenarios are 

generated to represent the uncertainty in this movement pattern, where each realization takes 

a random unit from the set that falls within the CoM to update the grade and tonnage model. A 

realization is performed for each geologic block model scenario in order to provide coupled 

geologic and flow uncertainty simulations into the scheduling step. The parameters defining 

the CoM (HD and VSA), should be established to be representative of the geomechanical and 

flow behavior of the broken ore. 

 With the flow simulations, now each mining unit has an updated coupled geologic and 

flow average grade and tonnage representing the different potential scenarios. A stochastic 

programming model is developed that takes all the geologic and flow simulations as input to 

provide a robust mine plan that maximizes the expected NPV of the project. 

 The objective function of the optimization model uses binary decision variables to select 

on which period each mining unit is extracted in order to maximize the total expected NPV. To 

reach this objective, the expected NPV from the extraction of each mining unit,u , at each 
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period, t , { }tuE NPV  is calculated considering all the generated geologic and flow scenarios. 

Additionally, the objective function minimizes the expected cost of deviations from ore tonnage 

and grade quality production targets. These deviations are caused due to the variability of the 

orebody amongst the different geologic scenarios, which traditional tools based on a single 

estimated model cannot control.  

 The following constraints are considered to model the block caving operating extraction 

scheme: 

1. Ore tonnage production targets per period. This constraint is defined as a tonnage per 

period production target on the overall mining system. By defining it on a period basis, 

ramp-up and ramp-down periods can be estimated and incorporated. 

2. Grade quality target per period. This constraint forces the model to follow as closely as 

possible an average grade target over the whole mining system on a period basis. This 

implicitly gives the scheduling algorithm the option to explore blending. 

3. Mining precedence. This constraint ensures the sequence is feasible and coherent. It 

controls the vertical direction to limit the extraction of a particular unit only once the 

unit below it has been extracted, and also the opening of columns based on the mining 

advancement direction. 

4. Draw rates and continuous extraction. These constraints ensure that the material 

removed from each production unit does not exceed a required maximum draw rate, 

which is usually defined based on operational and geotechnical parameters. The 

continuous extraction constraint guarantees that once a column is opened, at least one 

unit (representing the minimum draw rate) is extracted each period otherwise it is 

closed. 

5. Undercut development rate. This constraint controls the area in the footprint that can 

be developed and therefore the number of new production units that can be opened on 

each period. 

6. Adjacent relative height of draw. A maximum adjacent relative height of draw between 

columns and its adjacent ones. This constraint allows for a more even draw and 

smoother cave development along the LOM, as well as defining a maximum cave slope 

at the end of the project. 
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1.6 Scientific Contributions and Industrial Significance of the Research 

The contribution of this research lies in the incorporation of coupled grade and material 

flow uncertainty in the LOM planning and scheduling for block caving mines, which can be 

used at early stages for project evaluation and decision making providing more robust and 

reliable mine plans. This expands current capabilities of software and mine planning 

algorithms for block caving. Proto-type software can be developed based on the algorithm 

presented in this research to transfer the generated knowledge to the industry. Chapter 1 of this 

thesis serves as an introduction to the background and structure of the study. The definition of 

the problem is presented followed by a summary of the relevant literature. The objectives are 

defined as well as the limitations and scope of the study and the research methodology is 

elaborated. 

Chapter 2 contains the review of the current state of the literature pertaining block caving 

LOM production scheduling. The general workflow for block caving mine planning is presented 

in detail with current software alternatives and their limitations. Standard techniques to model 

geological uncertainty and material flow are discussed, as well as current methodologies to 

incorporate them into the planning process. A review on mathematical programming methods 

and their application in block caving and mine planning, in general, are presented. This chapter 

highlights some of the limitations of current methods and the rationale for this research.   

Chapter 3 contains the theoretical framework for the proposed optimization framework. 

The workflow for the geostatistical simulation of the deposit metal grades is presented, as well 

as the details for the flow model used to develop the different simulated models to capture the 

uncertainty in the planning process. The optimization framework is detailed starting with the 

aggregation of the individual blocks from the deposit model into production and mining units 

maximizing the metal content within them. The BIP implementation is presented, detailing the 

building of the potential production units and the calculation of the coefficients of the objective 

function (metal content) subject to the desired operational constraints. The SIP formulation is 

presented, commenting also on the deterministic version. The calculation of objective function 

and constraints coefficients area detailed, as well as the matrix structure for computational 

implementation.  

Chapter 4 discusses the application of the model to a copper deposit. Multiple 

geostatistical simulations of the deposit are generated, which are coupled with material flow 

simulations based on a set of assumed geotechnical parameters to test. Production schedules 

are built for the stochastic and deterministic (traditional workflow) versions of the model, and 

compared to highlight the performance of the incorporation of the sources of uncertainty. 
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Finally, summary, contribution of the research and suggestions for future work are 

discussed in chapter 5.   
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

This chapter presents an overview of the operating principles of block caving mines, the 
theory of gravity flow and its influence on different design parameters such as drawpoint 
spacing. A general review of previously developed mathematical programming models to 
solve the production scheduling problem in block caving mines is also provided. Finally, 
current methods that integrate different sources of uncertainty into the block caving mine 
planning process are discussed.  
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2.1 Block Caving 

2.1.1 General Overview 

Block caving is part of a larger set of underground mining methods in which the orebody 

caves naturally after the excavation of an undercut, with the caved rock mass extracted through 

a series of openings called drawpoints. The principle of undercutting the rock mass lies in that 

by the excavation of a horizontal layer at a certain elevation (undercut), the overlying rock mass 

loses it support and continuously caves by gravity as material is drawn and void space is created 

in the cave back (Brannon, et al. 2011; Laubscher, 2011).  

The governing factors on whether a rock mass is suitable for caving methods are caveability 

and fragmentation (Rubio, et al., 2004). Caveability is a term coined to describe the minimum 

undercutting area needed to be opened to induce and sustain caving, and directly affects the 

feasibility of a caving project. A specialized rock mass rating system, MRMR, was developed for 

the purpose of assessing the caveability of a rock deposit (Jakubec & Laubscher, 2000;  

Laubscher, 1990). This system adapts the well-known RMR (Bieniawski, 1976), to introduce 

measures for weathering, orientation of the cave front, induced stress and blasting. Moreover, 

empirical charts have been developed that correlate the MRMR and the size of the undercut 

required to cave the rock mass, expressed as the hydraulic radius (area/perimeter)( Laubscher, 

1994).  

Fragmentation plays a key role insuccessful caving operation. It affects draw control, 

productivity and overall costs. There are two main types of fragmentation: primary and 

secondary. Primary fragmentation refers to the size distribution of the blocks that separate 

from the cave back as the undercut is developed, and it relies on the natural fragmentation and 

stress state of the rock mass. Annavarapu (2019) provided a comprehensive review on this topic 

as well as a practical method to estimate primary fragmentation for a block cave mine. 

Secondary fragmentation refers to the breakage of the blocks as they move down through the 

column to the drawpoints, with its size distribution directly impacting the productivity of each 

drawpoint. Liu (2016) provided a review on methods to characterize the secondary 

fragmentation observed at drawpoints in a block cave mine. 

Block caving is executed usually in two different setups. An approach includes the division 

of the deposit into multiple large production blocks, or a single panel advancing forward 

through the mineral deposit (Fuentes, S. & Villegas, 2014). 

The layout of block caving mines consists of multiple horizontal levels which serve different 

purposes. The undercut level, from which the broken rock flows through openings called draw 
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bells into the extraction level, where it is drawn and transported into a haulage level to transport 

it to the surface (Brannon et al., 2011). Additional levels such as drainage, crushing/reduction 

and other services are present depending on the conditions of the mine.  

 

Figure 2-1. General overview of the layout in a block caving mine (Brannon et al., 2011) 

The design and initiation of the undercut level is closely related to the design of the 

extraction level below, and the chosen method of undercutting. In a post-undercutting strategy, 

the underlying extraction level and drawbells are completed ahead of the blasting of the 

undercut level. The main advantage lies in the fact that the broken material is readily available 

for extraction as the extraction level infrastructure is already there. However, the extraction 

level is subjected to increased abutment stress with substantial damage to the major and minor 

apex reducing the effective life of the drawpoints and drifts (Brannon et al., 2011).  

A pre-undercutting method consists of mining the undercut level ahead of the development 

of the extraction level. The extraction level is then excavated in a de-stressed environment, with 

reduced support required. However, since drawpoints are the only point at which stresses can 

be managed in a caving operation, it offers little flexibility to relieve potential stress situations 

that can be build up in complex geology environments (Laubscher, et al. 2017). 
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Finally, the advance undercut method is the most popular method as it reaches a 

compromise to solve the issues associated with both pre- and post-undercutting strategies. In 

an advance undercut system, the extraction level infrastructure (drawpoints and drawbells) is 

done only after the undercut has passed over by a distance no less than the inter-level spacing. 

Usually, the length between the undercut advance and the extraction level development is kept 

at around the length of one drawbell. The extraction level is then excavated in a de-stressed 

environment while offering flexibility to resolve potential geomechanical issues and quicker 

times for commencing production. However, this method requires high up-front capital 

expenditure and resources, and also a high level of scheduling for the activities within both the 

undercut and extraction level development.  

The extraction level is composed of production drifts developed at regular spacing, from 

which crosscuts are excavated to give access to drawpoints and drawbells, which connect to the 

undercut level above. The design of the extraction level varies depending on different factors, 

most importantly the degree of fragmentation that is expected to be achieved, the undercutting 

strategy, geotechnical conditions and stability, expected production capacity and type of 

equipment to be used. There have been multiple types of layout used in block caving mines in 

the past including incline layouts (Laubscher, 2000); however the most popular designs with 

the introduction of mechanized equipment (LHDs) are the El Teniente, herringbone and offset 

herringbone layouts (Figure 2-2).  

The herringbone layout was one of the earliest most popular designs to accommodate 

mechanized equipment in caving operations, as it is simple and can be mirrored for larger 

footprints. The main disadvantages are the large spans being created between the breakaways 

for each drawpoint, and that the drawpoint crosscut intersects the drawbell at an angle such 

that the material is not drawn uniformly (Laubscher et al., 2017). The offset herringbone 

addresses the stabilities issues with the herringbone layout by placing the breakaways for the 

drawbell crosscuts at an offset. The El Teniente layout was developed at the El Teniente mine 

in Chile. In this layout, the drawpoint crosscuts are developed in straight 60° lines relative to 

the production drifts.  

Esterhuizen & Laubscher (1992) showed through numerical modeling that the El Teniente 

layout offers the best geotechnical stability due to the uniform draw zone spacing. Moreover, 

the drawbell and drawpoint brow positions provide a more uniform draw. From a speed of 

development and preparation point of view, Ahmed, et al. (2014) performed a discrete event 

simulation study based on a representative layout in which they reported that El Teniente 
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layout offers a 9% decrease in time required for development in comparison with the offset 

herringbone layout. 

 
(a) 

 
(b) 

 

(c) 

Figure 2-2. Typical (a) Herringbone, (b) Offset herringbone and (c) El Teniente layouts. 

One of the main operational parameters in block caving mines is the rate of draw from each 

drawpoint. It is imperative to reach a balance in which the caved material is drawn fast enough 

such that it will not consolidate in the column above interrupting cave propagation, without 

leaving an excessive air gap in the cave back that could lead to geotechnical or other problems. 

Draw rates vary throughout the operating life of the drawpoints, with vertical rates at around 

0.1 m to 0.6 m per day (DLaubscher et al., 2017). 

2.1.2 Gravity Flow in Caving 

One of the first theories presented to explain and model the gravity flow of granular material 

with application to caving methods was proposed by Kvapil (1965), building on previous 

empirical knowledge of granular flow in hoppers and silos (Kvapil, 1960, 1964, 1965).  
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This initial theory was based on the observation of simple physical models consisting of 

filled vertical glass sections, where the fill material usually comprised colored sand to keep track 

of the movement pattern. An opening at the bottom of the model is created to simulate the 

extraction opening in the draw columns of caving operations. From these early tests, the 

movement of particles due to the extraction void was identified to follow a defined shape, 

similar to an ellipsoid, denominated the active zone, with certain boundaries from which the 

remaining intact material was usually referred to as the passive zone. 

Further observations by Janelid (1966), along with the result of some in-situ mine tests 

(Janelid, 1975) provided evidence that the ellipsoidal active zone in the caved rock was actually 

made up of two ellipsoidal bodies: the ellipsoid of extraction (EE) and the ellipsoid of loosening 

(EL). After a certain volume of material is extracted, comprising the EE, the remaining material 

has to cover the void created by loosening, and caving, towards the EL. 

The basic geometrical relationships between the EE, the EE, and the extracted material are 

established in (Janelid, 1966) , with empirical evidence suggesting that the volume of the EL is 

about 15 times greater than the volume of the EE and in turn, assuming the same eccentricity 

for both ellipsoids, the height of the EL is about 2.5 times  the height of the EE (Figure 2-3).  

Kvapil (1982) mentions the influence of particle size distribution and shape on the form of 

the ellipsoids. Finer materials, such as the sand used in the early physical models, lead to 

slender EE and EL while coarser material creates a very broad active caving zone. Kvapil (1982) 

also refers to the many characteristics of the broken rock particles, such as roughness, shape 

and density, that influence the behavior or ‘mobility’ of the material and proposes a conceptual 

classification of the mobility of the materials related to the shape and eccentricity of the EE.  

The opening or extraction width also holds a significant influence on the behavior of the 

caved material, as noted in (Kvapil, 1982). A wide enough extraction opening induces a 

phenomenon denominated as mass flow, where the gravity flow zone consists of a central part, 

directly above the opening, that undergoes a downwards movement as a whole column, with 

side sections under normal gravity flow. The mass flow phenomenon provides a more efficient 

way of ore extraction with larger draw rates and less dilution.  
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Figure 2-3. Geometrical relationships in the gravity flow of caved rock (Kvapil, 1982) 

Establishing the diameters of these ellipsoids, which have a direct impact in fragmentation 

and productivity and serve as the basis for key design parameters such as drawpoint spacing, 

have been the focus of multiple experimental research efforts. Most notably, Castro (2006) 

performed large scale experimental tests with coarse gravel, simulating coarse fragmented 

rock, and showed that the extraction zone diameter could reach 28.5 m at around 100 m of 

draw.  

There is not much information on full-scale mine tests of gravity flow at block caving 

operations. Alvial (1992) presented one of the first documented mine test in block caving, which 

was carried out at El Teniente mine with the use of markers, and concluded that the horizontal 

displacement of broken rock in the columns can range between 2 and 42 m, and the vertical 

slip angle, which describes the vertical component of the flow, ranges between 60 to 80 degrees. 

Brunton, et al. (2012) performed another full scale by using smart markers from 2008 to 2010 

and reported that the behavior at the near field of the draw zone is chaotic and highly irregular. 

Garces, et al. (2016) presented interesting results on a full-scale test in a caving block at El 

Teniente mine. Some of the conclusions reached were that the extraction pattern holds a 

significant influence on the flow behavior of caving mines. If the extraction is regular from both 

drawpoints of a drawbell, the extraction zone was found to grow symmetrically, and a low 

percentage of coarse material was reported, while an irregular extraction plan would lead to the 
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development of a preferential flow behavior and a larger fraction of coarse material entering 

the drawpoint. 

2.1.3 Drawpoint spacing in block caving 

Laubscher (1994) discusses the practical design approaches and state of knowledge in cave 

mining at the time, and proposes some of the most well-known guidelines for the selection of 

design variables, most notably drawpoint spacing. Figure 2-4 shows the selection guide for the 

minimum and maximum suggested drawpoint spacing based on drawpoint width and the 

fragmentation size within the draw column. It was suggested that the drawpoint spacing should 

be at least 1.5 times the diameter of the isolated draw zone (IDZ), which is the diameter of the 

draw zone generated by a single drawpoint and is greatly dependent on the broken rock sizes. 

Still, the need for 3D physical models to further continue with the development of what he 

refers as poorly defined principles is strongly remarked by Laubscher. 

 

Figure 2-4. Laubscher drawpoint spacing selection guideline (Laubscher, 1994). 

Halim (2006) states that Laubscher theory and guidelines for drawpoint spacing are not 

applicable to real mining operations, as the physical models used to develop them, based on 

sand, differ too much form the in-situ conditions found in caving mines. By carrying extensive 
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experimental tests on a large 3D physical model, some of the interesting conclusions reached 

were that the Isolated Movement Zone (IMZ), or the ellipsoid of loosening, was wider than the 

IEZ when considering the volume of material drawn. However, the IMZ was narrower that the 

IEZ at the same height of draw. Halim suggested that the drawpoint spacing should be so that 

the overlapping occurs before the draw zones reach the surface, and considering that the IMZ 

was found to be narrower than the IEZ for a particular height of draw, the drawpoint spacing 

must always be less than the width of the IEZ. 

Halim found that with a drawpoint spacing less than the width of the IEZ, the draw zones 

do not overlap but just touch and no overdraw is produced contradicting Laubscher and 

previous hypothesis. Halim also found that the influence of the particle size was negligible at 

small heights, showing some influence after a height of around 50 m, however comments that 

further experimental repetitions are needed. 

More effort was put on the development of 3D physical tests with gravel rather than sand 

to provide more realistic conditions of that on caving mines. Castro et al. (2007) tested crushed 

gravel with a wide (18 mm mean size) and narrow (8 mm mean size) on a large 3D physical 

model to evaluate the effect of the draw height and the drawpoint dimensions on the shape of 

the IEZ and IMZ of an isolated drawpoint. They concluded that the fragmentation size 

distribution and the drawpoint width have little influence on the geometry of the draw zones 

when considering cohesionless material, that is material with a small fraction of fines and no 

presence of water. The parameters that have the most control over the draw zone geometry 

were found to be the mass drawn and the height of draw, and that the IMZ height is controlled 

by the development of a stress arch zone that continuously collapses as the material is drawn. 

The authors, however, reported the need of more experiments with smaller fractions sizes, and 

at constant particle shape and friction angle, would be needed to effectively quantify the 

influence of the particle size fragmentation on the flow mechanism.  

Trueman, et al. (2008) used the same large 3D physical model to study the influence of 

multiple draw zones to evaluate the interactive draw theory proposed by Laubscher. Using 

crushed gravel with a narrow size distribution, 86% within 9.5 – 6.7 mm passing and a mean 

of 8 mm, nine drawpoints were constructed in the model and drawn concurrently spaced at 740 

mm corresponding to 1.2 times the estimated mean width of the IMZ at full height of draw. The 

authors concluded that the condition of uniform draw down and mass flow in the gravel model 

is achieved at a drawpoint spacing of less or equal to the IMZ, and that the previous 

understanding of the expansion of the draw zones would not be achieved at larger distances as 

suggested by Laubscher. The authors provide an explanation citing the development of 
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relatively large vertical stress state in the sand model experiments in conjunction with the fact 

that the shear strength of the sand is less than that of the gravel, as no collapse of unmoved 

zones between the draw zones was observed in the model. 

2.2 Mine Production Scheduling in Block Caving 

2.2.1 Mathematical Programming in Caving Production Scheduling  

Mathematical programming is a branch of operations research that comprises a collection 

of methods and techniques to optimize a system that is modeled through a set of mathematical 

expressions (Sinha, 2006; Williams, 2013). Mathematical programming methods concern the 

optimization (maximization or minimization) of a single or multiple objective functions, 

defined in terms of decision variables, subjected to a set of constraints expressed as 

mathematical inequalities or equalities in terms of the decision variables as well.  

The general form of a mathematical  programming model can be expressed as: 

( )

( ) 0 1,2,...,

0

i

Maximise f X

Subject to g X i m

X

 



  

Where the vector 
1 2( , ,..., )T n

nX x x x R   contains the decision variables and the set of 

constraints ( )ig X are all real-valued functions  of X . If the objective function and set of 

constraints are all expressed as linear equations, it is denominated a linear programming 

model, with variations such as integer programming (integer decision variables), mixed integer 

programming (integer and continuous decision variables) and nonlinear programming (non-

linear objective functions and/or constraints) to provide better representations of certain types 

of systems. 

The applications of operations research techniques in mining date back to the 1960s, with 

linear optimization methods in particular being widely adapted to solve ultimate mining limits 

and production scheduling problems The tractability of mathematical models is one of the main 

concerns as practical applications to scheduling problems or mining systems can easily become 

very complex. With the advances and developments in computing power, the application of 

mathematical programming to solve real mining problems has become more widespread 

(Askari-Nasab, et al. 2011; Newman, et al. 2010).  

One of the first documented applications of mathematical programming is presented in 

Song (1989), in which a MILP model was developed along with a caving simulation process in 
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order to optimize the mining sequence and production schedule with the objective of 

minimizing cost at the Tong Kuang Yu mine in China. Chanda (1990) developed a simulation 

and MILP model to optimize the production scheduling of drawpoints for production at the 

Chingola mine in Zambia. The model was developed at a shift time scale with the objective of 

minimizing the deviation of average grades over the shifts. Guest, et al., (2000) provided a 

scheduling MILP model with insights into its application in an industrial setting. In this model, 

the objective function is to minimize the mining of waste as it is mentioned that this will lead 

to the maximization of the NPV of the mine. The constraints considered in this model are draw 

rates and geotechnical constraints between adjacent columns, ore flow capacity constraints and 

metallurgical constraints. The model was developed for a diamond mine in South Africa.   

Rubio (2002) developed a MILP model that aims for the maximization of the NPV and the 

mine life for block caving mines. The model is applied at a column and slice resolution for long-

term planning. The main constraints considered are the undercut rate, the undercut sequence 

precedence, the opened area at the undercut level, and the draw rate. The concept of 

opportunity cost is also incorporated to account for the concept of definition of reserves, in 

which each column pays an extra cost for the delaying of the opening of adjacent drawpoints. 

Draw control is also introduced by controlling the angle of draw between adjacent columns. 

The algorithms were applied to two different mines obtaining better results relative to a base 

case production schedule. 

Other similar applications of mathematical programming methods in block caving mines 

appear in Alonso-Ayuso et al. (2014); Diering (2004); Khodayari & Pourrahimian (2014); 

Malaki, et al. (2017); Nezhadshahmohammad, et al. (2017); Parkinson (2012); Pourrahimian, 

et al. (2013); Rahal, et al. (2003); Smoljanovic (2012); Weintraub, et al. (2008). 

Different approaches have been proposed to improve the computing times of solving a 

complex mathematical model resulting from the modeling of a block caving mining system. 

Weintraub et al. (2008) developed a priori and a posteriori clustering procedures to reduce the 

problem size while keeping it feasible when disaggregated. The general model structure divides 

the mine into columns, which are then divided in blocks that define the basic unit of extraction. 

A priori aggregation consists of the clustering of blocks according to similarities in tonnage, 

grade and extraction rate, using a K-means clustering algorithm. For a particular mine in Chile, 

they showed that this aggregation procedure reduced the problem size by 90% and the 

execution time by 73,68%. The a posteriori approach consists of the clustering of columns based 

on a fixed weight combination. A posterior approach reduced the problem size by 15% and 

improved the solution time by 88%. 
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Pourrahimian et al. (2013) presented a multi-step clustering procedure to reduce the 

computing times in the long-term planning of block caving mines. Three consecutive “levels” 

or resolution scales were considered, with the solution of each one used to guide the following 

more detailed problem. The mining system considers a production layout at the drawpoint and 

slice model, where the main decision is the definition of the extraction period and tonnage 

drawn from each slice. The initial level clusters the columns based on a similarity index defined 

by tonnage, grade and physical location. A mathematical model is then formulated that 

considers the extraction from each cluster, rather than individual columns. The period at which 

each cluster is opened and the cluster life, are used to define the earliest period and maximum 

life of the drawpoints that are contained within, with some flexibility added. The second level 

considers the drawpoint scale, with no slice division, and uses the solution obtained in the 

previous one to reduce its size. In a similar way, the results obtained at this scale are used to 

guide the third and more detailed level at the drawpoint and slice resolution. This procedure 

significantly reduces the computing time required to solve the model, while preserving the 

feasibility and optimality of the solution. 

Nezhadshahmohammad, et al. (2018) presented a multi-index clustering algorithm to 

reduce the size of MILP models for the long-term planning of block caving mines. Draw 

columns are aggregated into clusters based on the center-by-center distance, grade 

distribution, maximum draw rate and advancement direction. Based on a search radius, each 

draw column is initially considered as a cluster, and similarity values are calculated between 

each cluster based on the mentioned parameters. The most similar pair of clusters is merged 

and the procedure is repeated until a desired maximum number of clusters are reached. The 

procedure reduced the number of variables in the case study presented by 90.4% and the 

solution time (at a 9% optimality gap) and the solution time from 2 hours to 10 seconds, with 

an NPV within less than 1% difference. At tighter optimality gaps the original model was not 

able to reach a solution while the clustering algorithm provided a schedule within 5 minutes. 

2.2.2 Incorporation of Uncertainties in Block Caving Planning 

Incorporation of geological uncertainty in mine planning workflows has been showed to 

offer good results in terms of managing the risk associated with the estimation of geological 

attributes in mineral deposits for life-of-mine and short-term planning ( Dimitrakopoulos, 

2011). 

The stochastic optimization workflow starts with the generation of multiple numerical 

deposit models through the use of, most commonly, SGS techniques (Rossi & Deutsch, 2014). 
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Each realization represents an equi-probable scenario for the variable being modeled, from 

metal grades to density or other characteristics. The multiple scenarios are then used as input 

to produce a single mine schedule that produces the maximum expected economic benefit 

(NPV) subjected to operational constraints. The risk is represented as the potential deviations 

from production and/or material quality targets that can arise with a given extraction plan, due 

to the multiple deposit scenarios. Stochastic mathematical programming techniques are used, 

minimizing these deviations to obtain a robust production schedule (R. Dimitrakopoulos & 

Ramazan, 2008; Ramazan & Dimitrakopoulos, 2013). 

The incorporation of geological uncertainty in block caving planning has been very limited. 

Dirkx et al.( 2018) presented a comparative study for a caving footprint in which a production 

schedule was generated for a deposit model estimated with kriging techniques, a production 

schedule for a set of ten grade realizations for the same deposit simulated with SGS, and 

another schedule scenario for the metal grade simulations adding hangup uncertainty. The 

production schedules were obtained through a stochastic mathematical programming model. 

The results provided suggest that the “conventional” schedule, obtained with the kriging 

estimated deposit, is rendered unfeasible when subjected to the grade and hangup scenarios. 

The incorporation of grade and hangup uncertainty provided a more realistic and feasible 

estimate of the project NPV. 

Sepúlveda, et al. (2018) proposed a methodology to incorporate grade and geometallurgical 

uncertainty in block caving mine planning. Geometallurgical uncertainty is referenced as the 

predicted metallurgical responses (and its uncertainty), such as grindability and recoveries, due 

to the uncertain geological variables as rock types and grades. The optimization framework is a 

bi-objective in which the first goal is to maximize the Net Smelter Return (NSR), including 

penalties for deleterious elements, and different measures of risk were tested as the second 

optimization goal, including volatility, Value at Risk (VaR), Conditional Value at Risk (CVaR) 

and deviations from planned production targets. The framework was solved using a genetic 

algorithm. They concluded that the maximization of the NSR and VaR combination with the 

minimization of the deviations from planned production targets yielded the best results. 

Both studies show the value of incorporating different sources of uncertainties that can 

arise in block caving production schedule to offer a more reliable NPV estimate and production 

schedule. 

There is little documentation on explicit incorporation of material flow and mixing in block 

caving mine planning algorithms. Khodayari (2018) developed a mathematical programming 
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model, analogous to a stochastic optimization, in which multiple scenarios are generated that 

are representative of the potential dilution due to the flow of particles within the caving 

environment. The model is developed for a production layout at a drawpoint and slice scale. 

Material flow simulations are generated based on a cone of movement that is defined from a 

horizontal displacement and vertical slip angles. These parameters are commonly used to 

characterize the flow of broken ore on operating caving mines. Each slice, as it is extracted, 

leaves a void that can be filled by any other slice that is within its cone of movement, therefore 

generating multiple possibilities. Rather than trying to calculate or estimate probabilities, a 

sampling approach is performed and multiple scenarios are generated, each one representing 

the drawpoint and slice model with different grades updated based on the random sample from 

the cone of movement concept. The key points to note are that the flow is modeled based on 

slices, which means that either a full slice is assumed to fill a void or not. No portions or 

percentages of different slices are considered as candidates to update the diluted model. Also, 

since only slices are considered, no waste material in the boundaries of the layout is included 

in the mixing simulation.  

Once a set of scenarios are generated, a MILP model is defined to obtain a schedule that 

maximizes the NPV of the mine while minimizing the deviations in average grade on a period 

basis from a defined target. The model was tested on a case study and benchmarked against a 

PCBC generated schedule, with the same parameters. The incorporation of material flow based 

on this concept produced schedules with an NPV 4% to 11% higher depending on the number 

of constraints and detail considered.   

The impact of geological, material flow and other sources of uncertainty in block caving 

planning is not yet well documented. Moreover the incorporation of these into a single planning 

and scheduling algorithm would help decision makers make more informed decision at earlier 

stages of the project. In this research a method is developed to integrate geological and material 

flow uncertainty in a mathematical optimization model to generate a robust LOM schedule. 

Moreover, the impact of these sources of uncertainty is quantified to get a better understanding. 

2.3 Summary and Remarks 

Block caving mining is presenting itself as a very attractive massive mining method that can 

achieve the economics of large scale open-pit mines, with the possibility of accessing lower 

grade and deeper orebodies thanks to lower operating costs. However, due to the operating 

principles behind the gravity flow of broken rock, block caving projects require careful and 

detailed planning at all stages to provide good estimates and forecasts.  
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A major source of risk in the development of mining projects, and later in the 

underperformance during operation, is the geological uncertainty. This uncertainty is 

unavoidable as the metal content of a mineral deposit is estimated based on very scarce samples 

from exploration programs. The importance of incorporating geological risk in mine planning 

has been widely demonstrated. Block caving projects, in particular, are also subjected to 

uncertainty in the metal content from the ore drawn due to the flow of broken rock through the 

draw columns. 

Mathematical programming has been established as a practical tool to develop optimal 

production schedules and mine plans that maximize a particular objective while considering 

operational constraints. Multiple successful applications of mathematical programming 

models in block caving planning with different levels of detail are documented. Stochastic 

programming, in particular, offers a tool to integrate different sources of uncertainty and 

produce risk resilient schedules. However, the incorporation of uncertainty in block caving 

mine planning workflows is limited. The few documented applications show the value of 

adopting an uncertainty based approach to generate more reliable forecasts and mine plans. 

This research aims to provide a method that incorporates geological and material flow 

uncertainty in the development of block caving boundaries and production schedule at a block 

model scale. 
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CHAPTER 3  

THEORETICAL FRAMEWORK 

 

This chapter contains the mathematical programming formulations for the boundary and 
production scheduling optimization of block caving mines at the block model support 
considering geological and material flow uncertainty. The rationale behind the structure of 
the objective function and the incorporation of multiple deposit simulations to arrive at a 
expected economic value is detailed. The considered operational constraints are explained 
and the structure of the different coefficient matrices is presented. To reduce the computing 
time, two heuristics are implemented: an early start algorithm in which the earliest possible 
extraction period for each MU is defined to eliminate decision variables, and a sliding time 
window heuristics. The production schedule defines the extraction period for each MU to 
maximize the expected NPV while minimizing the deviations incurred in production and 
grade quality targets due to the variability represented in the multiple deposit simulations. 
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3.1  Introduction 

Geological uncertainty has been acknowledged as one the main causes for the 

underperformance of mining projects, and traditional approaches to mine planning fail to fully 

capture it in the development of mine sequences using a single estimated model. Traditional 

mine planning workflow uses the ordinary kriging (OK) estimation to develop a strategic 

schedule and plan. However, it fails to incorporate the inherent uncertainty in this estimation 

process as only a single estimated input is considered. The development of geostatistical 

simulation techniques has proven that mine plans generated considering only the OK deposit 

model have a low probability of actually reaching the forecasted outputs or fail to capitalize 

value (Deutsch, et al. 2015; Dimitrakopoulos et al., 2002) . 

Due to the operating principles of block caving mines, the risk of dilution caused by the 

gravity flow movement of the broken rock mass constitutes a major source of uncertainty as 

well. Mine plans are built based on estimated grades and tonnages, and the profit generated by 

the extraction of ore. However, in block caving mines the extraction of material depends on the 

flow characteristics of the broken rock mass, and the initial deposit model is not representative 

of the actual grades as the “blocks” flow through the draw zone (Castro & Paredes, 2014; 

Esterhuizen & Laubscher, 1992; Pierce, 2010). 

In the following sections, the details of the developed optimization framework for block 

caving mines under geological and material flow uncertainty is presented. 

3.2 Geostatistical Modeling 

The initial step considered for geostatistical modeling is the definition of the stationary 

domains, which is usually done based on rock types or other geology control such as structures 

or mineralized zones. Estimation is then performed separately for each domain. The general 

steps are: 

 Declustering to obtain a representative distribution of the parameters in each 

stationary domain defined. This is due to the preferential sample usually followed 

in exploration programs to target higher-grade areas. 

 Exploratory and multivariate data analysis. Summarize the main characteristics 

of each variable individually to get more insight into its behavior, as well as the 

correlation between multiple variables (when applicable). 

 Transform data into Gaussian units. This step differs from traditional 

geostatistical modeling and is required for the assumptions that sequential 
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gaussian simulation techniques are based on them. A normal score 

transformation is the usual approach, where the cumulative distribution function 

(CDF) of the variables is transformed into a standard normal distribution CDF.  

 Experimental variograms are calculated for the variables to be simulated. These 

quantify the spatial correlation of the variables in different directions. It is 

necessary to establish the direction of maximum continuity. The direction of 

maximum continuity is usually determined based on geological knowledge of the 

deposit, as well as calculating and evaluating variogram in multiple directions. 

For rock type variable (categorical variables), indicator variograms are calculated. 

 A grid is defined for estimation, and the rock type variable is estimated at every 

node by sequential indicator simulation. This algorithm generates a set of rock 

type realizations that serve as the domain for the grade simulation. 

 For each rock type or domain, the grades and other properties such asdensity are 

simulated through the sequential Gaussian simulation at every node of the grid. 

This is performed for each rock type realization, generating a set of conditionally 

simulated deposit models. 

The set of geology realizations have to be checked for histogram and variogram reproduction. 

This ensures that while the set of simulated models represent different equiprobable numerical 

models, they follow the same statistical and spatial behavior. 

In this research, this workflow is applied using the GSLIB software (Deutsch & Journel, 1997). 

3.3 Production Units Aggregation 

In this stage, the blocks are aggregated into mining units (MU), with the objective of 

maximizing the expected metal content contained within, for scheduling purposes. Due to the 

operating conditions of block caving mines, the MU aggregation is on a column-wise scheme 

based on a reference undercut elevation from which the overlying material comprise the 

mineral reserves.  

To simplify this procedure, the columns are represented as production unit (PU) in a plan 

view at the undercut section, based on drawpoint spacings. These PUs span the columns up to 

a certain height, which at this stage is determined either by reaching a predefined maximum 

height, or once a dilution percentage limit is surpassed to account for the deposit ore-waste 

boundaries. Dilution is evaluated based on the potential MU from each PU, as the percentage 

fraction of waste tonnage in relation to the total tonnage of the unit.   
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As mentioned previously, metal content is selected as the optimization objective rather 

than economic value in order to give the later scheduling model the decision of boundaries such 

as BHOD while considering the whole mining system.  

 

Figure 3-1. Schematic representation of the aggregation procedure. 

3.3.1 Model Assumptions and Notation 

The following assumptions are used in the formulation of the BIP model for the layout 

aggregation: 

1. The aggregation is done to the highest integer of the desired drawpoint spacing in 

relation to the block size. Reblocking of the resource model can be performed to achieve 

the desired level of detail. 

2. Each PU contains multiple MU that span vertically up to a certain maximum height or 

maximum dilution %. The metal content and dilution % evaluation is carried out on MU 

aggregates at a time for each column. 

3. No mixing or dilution is considered at this stage. 

4. The expected metal content is calculated as the average metal content amongst all 

realizations, this is used for the coefficient calculation of the stochastic model. For 

kriging mine plans, the kriging metal content is used. 

A general overview of the notation, including indices, sets and decision variables, used in 

the aggregation step is presented in Table 3-1. 
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Table 3-1. Notation used in the aggregation optimization step 

Indices  

  1,...,c C   Index for all possible production units 

  1,...,b B   
Index for all possible blocks in a given undercut level that are 
part of a PU with non zero metal content 

Sets  

bO   Set containing all PUs that overlap with block b, with number of 

elements  bN O   

Parameters  

cM   Metal content of production unit c 

Decision Variables  

  0,1cx  Binary variable. Takes the value of 1 if unit c is included in the 
layout and 0 if not. 

3.3.2 Objective Function 

In initial aggregation step, the objective is to maximize the expected metal content 

contained within the selected mining units, in order for the later scheduling model to decide 

the best extraction sequence and boundaries. As mentioned previously, economic value is not 

considered at this stage to avoid making decisions based on individual columns (BHOD 

selection) that does not consider the whole system.  

The decision variables are considered binary to represent the selection or not of a given PU 

to be included within the potential footprint of the mine.  

 
 
 

1,

0,
c

if PU is selected
x

otherwise
  

Each PU is the aggregation of blocks over the drawpoint spacing between drifts and across 

the minor pillar on a plan view. Then for the scheduling purpose, the MUs are created with   

aggregating blocks inside the PUs  based on the desired minimum draw rate. For a particular 

layout, each PU will contain a certain number of MU that represent the column above it up to 

either a specified maximum height of draw, or the defined maximum acceptable dilution %. 

The expected metal content associated with each MU is then calculated as the sum of the 

expected metal content of the blocks that form the MU (average across all realizations). The 

expected metal content of each PU is calculated as the sum of the expected metal content of all 

the MUs within the PU. The PU metal content serves as the objective function coefficients. 

Equation (3.1) shows the objective function. 
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c c
c

Max E M x  (3.1) 

3.3.3 Constraints 

The main constraints to consider for this model are the maximum and minimum column 

heights, and to generate a layout with no gaps between PUs while selecting only non-

overlapping PUs. 

The maximum and minimum column height considerations are implicitly included during 

the calculation of the metal content of each PU, by setting the total metal content of PUs that 

do not reach the minimum height (due to dilution or geometry of the mineral deposit) to 0. 

To guarantee a continuous layout with no gaps between PUs at the undercut section, all 

individual blocks in the section that are within a PU and has a non zero metal content value 

have to be included. This will guarantee that the whole deposit is considered at this stage, while 

assuring a continuous layout. Equation. 3.2 shows the constraint to avoid overlapping PUs 

while generating a continuous PU layout. 

 

 


  
1

1 1,...,

bN O

c
c

x b B  (3.2) 

3.4 Material Flow Simulation 

Material flow simulation is based on a cone of movement defined by a horizontal 

displacement (HD) and vertical slip angle (VSA) to model the potential movement of broken 

rock mass. This concept is adapted from Khodayari (2018) and Khodayari and Pourrahimian 

(2019). 

For each PU, the cone of movement is initially placed at the bottom of the lowest MU after 

an established point of entry dilution,  the point of entry dilution defines the height at which 

draw interaction between adjacent drawpoints occurs. Figure 3-2 shows the cone of movement 

with the balls representing the center points of the blocks from the resource model. For each 

MU, a set of candidate blocks is defined as those blocks whose center points lie within the cone. 

From this candidate blocks, random blocks are drawn forming a sample set. This sample 

set keeps drawing random blocks from the candidate set until the total tonnage contained 

matches the tonnage of that particular MU (considering a small tolerance to account for density 

differences between ore and waste). This means that the MU has been “filled” with blocks from 
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the resource model that can potentially show up when it is extracted. The procedure is repeated 

for every MU, flagging “used” blocks to avoid having the same individual block fall in MU that 

have overlapping cones (adjacent or overlying ones). 

 

Figure 3-2. Material flow simulation (balls represent center of blocks from the resource model). The 
cone is placed at the bottom of each MU and draw a random set of blocks from those within it, until the 

tonnage of the MU is reached.  

This model also accounts for dilution at the boundaries of the footprint as waste blocks 

outside the potential layout are also considered based on the cone concept. The grade and 

tonnage of each MU are then calculated as the sum of the tonnages, and the tonnage-weighted 

average grade, from the sample set drawn for it.  

In contrast with the formulation presented by Khodayari (2018) and Khodayari and 

Pourrahimian (2019), in this research the material flow simulation is performed at a block 

model scale rather than slice scale to update the aggregated units, which gives more detail to 

the potential mixing within the cave especially at the boundaries. 

Since there is a number of deposit realizations, flow simulations are carried out for each 

of them. Therefore, a set of grade and material flow scenarios at the MU aggregation levelare 

generated for scheduling purposes. 

3.5 Life-of-Mine (LOM) Production Scheduling Incorporating Geological and 
Material Flow Uncertainty  

Each MU has a set of possible tonnages and grades for each geology-material flow simulation 

performed, that represent the uncertainty based on the estimation procedure and behavior of 

block caving mines. The following section details the formulation of an optimization model that 

takes as an input the whole set of grade-tonnage scenarios, rather than a single estimate, and 
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generates a  mine plan that maximizes the NPV of the project while minimizing the potential 

deviations due to the mentioned uncertainties. 

3.5.1 Model Assumptions and Notation 

The following assumptions are made in the production scheduling optimization model. 

 The decision to extract a MU is binary, which means that for each period it will decide 

whether to extract the whole unit or not.  

 No hard-fixed cut-off grade is considered. The optimization model decides whether to 

initiate extraction within a PU and up to which height based on its overall discounted 

expected profit contribution to the mine plan NPV. 

 To estimate expected values in the objective function coefficients,  arithmetic average is 

used due to the assumption that the geological simulations are equi-probable 

realizations.  

 Uncertainty is assumed to impact production targets and grade quality per period, and 

the model is developed to minimize deviations in these outputs only. 

A general overview of the notation including indices, sets, and decision variables is 

presented in Table 3-2. 

Table 3-2. Notation for indices, sets and decision variables. 

Indices 

  1,...,u U   Index for all mining units 

  1,...,t T   Index for all periods 

  1,...,c C   Index for all production units 

  1,...,s S  Index for all geological and material flow realizations 

1

cu   Index for the first or lowest mining unit within the production unit c   

Sets 

cC   Set containing the mining units that are within the production unit c. Each 

set has a total number of elements of  cN C   

,u cV   Single element set containing the mining unit directly below unit u of the 
production unit c. Used for vertical precedence constraints  

,u cH   Set containing the production units that have to be opened before the 
extraction of the mining unit u of the production unit c, based on the 

mining direction. Each set has a total number of elements of
,( )u cN H    
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cA   Set containing all adjacent production units to the unit c for cave back slope 

constraint. Each set has a total number of elements of ( )cN A   

Decision Variables 

  0,1t

uz   Binary variable controlling the decision to extract the mining unit u of 
production unit c in period t 

  , [0, ]t stonDev   Continuous variable representing the ore tonnage “positive deviation” 
(overproduction) incurred on period t  by deposit simulation s   

  , [0, ]t stonDev   Continuous variable representing the ore tonnage “negative deviation” 
(shortage) incurred on period t  by deposit simulation s  

  , [0, ]t sgradeDev   Continuous variable representing the grade quality “positive deviation” 
(over upper bound) incurred on period t  by deposit simulation s  

  , [0, ]t sgradeDev   Continuous variable representing the grade quality “negative deviation” 
(under lower bound) incurred on period t  by deposit simulation s  

Parameters  

MetalPrice   Metal price per ton of metal ($/t) 

p   Cost for positive deviation (overproduction) of ore tonnage ($/t) 

p   Cost for negative deviation (shortage) of ore tonnage ($/t) 

q   Cost for positive deviation (over upper bound) of grade quality range ($/t) 

q   Cost for negative deviation (under lower bound) of grade quality range ($/t) 

Rec   Metallurgical recovery of the processing operations (%) 

ug   Grade of the mining unit u of production unit c (g/t) 

uTon   Tonnage of mining unit u of production unit c (t) 

1
cu

S   Planar surface area of production unit c (m2), based on the first (lowest) MU 
of the PU 

uHeight   Height of mining unit u (m) 

MC   Mining cost per ton of ore in period t ($/t) 

PC   Processing cost per ton of ore in period t ($/t) 

t

cOpCost   Development cost of production unit c, accounted for when extracting the 

first (lowest) MU, 
1

cu , of production unit c ($) 

i   Discount rate (%) 

t

M   Ore production target in period t (t) 

t

G   Average grade upper bound on period t   

t
G   Average grade lower bound on period t   

,DR DR   Minimum and maximum Draw Rate of production units per period (t/period) 

tMaxOpRate   Maximum undercutting rate (m2/period) 
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'c

cMaxAbsDiff   Maximum allowable absolute difference in height between production unit c 

and each member 'c  of its adjacent set cA  to maintain cave back slope 

constraints 

EPGAP Relative gap for the branch and bound MILP solution method 

3.5.2 Objective Function 

Different strategic goals can be considered when building a mine plan. For long-term mine 

plans however, the usual target is to maximize the total NPV of the project. The NPV of the 

mine plan comprises the summation of the discounted profit from the extraction of ore 

throughout the different periods of the mine life.  

Geological and material flow uncertainties are incorporated in the model by the use of 

deviation variables. These deviations have associated costs, set by the user to control the 

flexibility of the outcome mine plan, which is discounted by a rate frequently denominated 

geological discount rate g . The geological discount rate serves a similar role to the economic 

discount rate in that it reduces the cost of production deviations in the later periods of the mine 

life, therefore prioritizing the achievement of targets in the initial stages of the project.  

The stochastic formulation presented in this research takes as an input the generated s  

geological and material flow MU scenarios and generates a single mine plan that maximizes the 

expected NPV of the project while minimizing the incurred deviations in ore production and 

grade quality from their target and bounds respectively. 

The NPV of the extraction of a mining unit u  in period t  is estimated as the revenues, 

Re uv , obtained from selling the metal contained within minus the mining cost, uMC , and 

processing costs, uPC , discounted to that particular period, based on discount rate i  (Equation 

3.3). 

  
  

  
 

  

Re
, Re

(1 )

, otherwise
(1 )

u u u
u ut

t

u

u

t

v MC PC
if v PC

i
NPV

MC

i

 (3.3) 

e Equation 3.4  shows the revenue calculation. 

    Re (MetalPrice SellingCost) Recu u uv g Ton  (3.4) 

Each geological and flow simulation generates a grade and tonnage realization for each MU, 

building a set representing the associated uncertainty. An NPV is calculated for each grade 
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realization, and the average between this set is taken as the expected NPV. Figure 3-3 shows an 

example of the expected NPV calculation for a MU. 

  

Figure 3-3. Expected NPV calculation from the geologicaly and flow simulations of a MU. 

An additional cost is considered to account for the preparation and developing of each PU. 

The “opening” of drawpoints require the excavation of infrastructure such as tunnels for haul 

equipment access as well as the drawbell. In this formulation, the development costhe t of 

production unit c , t

cOpCost , is “charged” to the extraction of its first or lowest MU. This means 

that for cost calculations the model implicitly assumes that once a draw column is developed it 

enters continuous production, and there is no delay between the activities. This development 

cost is an input value and is discounted based on the economic rate.  

Deviation variables are used to account for the impact of the uncertainty scenarios in ore 

production and grade quality. A cost is associated with the deviations incurred from a desired 

ore production target and grade quality bounds, which is input by the user in order to control 

the flexibility and risk profile of the mine. As mentioned previously, these costs are discounted 

by the concept of a “geological discount rate”, g ,  which serves to prioritize the minimization 

of deviations during the early periods of the mine life. The expected deviation cost is considered 

as the average total cost amongst all the S scenarios. Deviation variables are considered for 

both over and under production cases in ore tonnage and grade quality, with costs assigned 

individually giving the user the option to prioritize or ignore any of them. There is a deviation 

variable per each period and scenario as well, to account for the uncertainty over the whole 

mine life. 

The objective function is presented in equation 3.5. The first term is the described expected 

NPV from the extraction of the MU in a particular sequence, the second term comprises the 

opening or development cost for each PU, and the third term accounts for the expected cost 

from the deviations in ore production targets and grade quality bounds amongst the 

realizations. 
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3.5.3 Constraints 

The following set of constraints are included in the formulation: 

 Mining capacity target 

This constraint controls the total mining capacity on a period basis. It ensures that the total 

tonnage of material extracted in each period is as close as possible to the desired target amongst 

all the realizations. 

 Grade blending range 

This constraint ensures that the average grade of the material extracted in each period is 

within the desired range, by the definition of lower and upper bounds, amongst all the 

realizations.  

 Maximum draw rate  

This constraint guarantees that the vertical extraction rate from each PU is less or equal 

than a maximum draw rate established. 

 Undercut development rate 

This constraint controls the number of PU units opened on each period, reflecting the 

maximum undercut area that can be developed based on an established capacity. 

 Maximum adjacent height of draw 

This constraint ensures that the relative height of draw between adjacent columns is within 

a certain specified range, which is established as number of MU in order to be coherent with 

the aggregation level, to control the cave back slope during the mine life. 

 Mining precedence 

This constraint forces the sequence to be feasible based on the starting position and mining 

advancement direction. Two types of precedences are defined: horizontal precedences which 

control the opening of PU on the undercut layout, and vertical precedences which control the 

extraction of MU within each PU. 

 Reserves 
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This constraint ensures that each MU is either extracted once or not extracted at all. 

All the constraints except the production target are built as inequalities defined by a lower 

or upper bound, while the production target constraint is modeled as equality. The general 

structure of the inequality and equality constraint matrices are shown in Figure 3-4 and Figure 

3-5 respectively.  

 

Figure 3-4. Coefficient matrix general structure for the inequality constraints. 

 

Figure 3-5. Coefficient matrix general structure for the equality constraints. 

Each constraint represents a number of rows of the coefficient matrix depending on what it 

is representing. More detail on the coefficients and variables of each individual constraint is 

given in subsequent sections. 
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The constraints coefficient matrices are further divided into different areas based on the 

defined decision variables, and ordered to match the decision variable vector, as shown in 

Figure 3-6. The coefficients for the variables regarding the decision of extraction of a MU, z , 

are placed in the first columns of the constraint coefficient matrix and are structured initially 

by the index for MU,  1,2,...,Uu , then by period,  1,2,...,t T . After this, the deviation 

variables are included starting with ore tonnage deviation and then the grade quality deviation. 

There is a distinct variable for over and under production in both ore and grade quality 

deviations. The deviation variables are structured initially by period,  1,2,...,t T , and then by 

geology and material flow simulation,  1,2,...,s S . The only constraints that have non-zero 

coefficients in the deviation variables are the production target and grade quality, as it is 

assumed that uncertainty affects these two KPIs. The other constraints have zero coefficient 

variables in this section of the matrix. 

 

Figure 3-6. Structure of each variable in the constraint coefficient matrix and decision variable vector. 
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3.5.3.1 Mining Capacity Target 

The mining capacity target forces the solution to be as close as possible to a defined 

production level in a period basis for the mine life. The constraint is implemented for all the 

geological and material flow realizations to represent the uncertainty in the ore tonnage 

estimation,  and is modeled as equality with the implementation of deviation variables to 

balance it. These deviation variables reflect the potential shortage or overproduction due to the 

variability across the simulated deposit models. The constraint is presented in equation (3.6). 

 



     , ,
1

,
U

tt

u u t s t s
u

T z tonDev tonDev M t s  (3.6) 

The constraint forms T S  rows of the equality coefficient matrix, where it is the single 

constraint as all the others are defined as inequalities.  

The definition of the right-hand-side (RHS) values reflect the user desired ore production 

target on a period basis, this gives the flexibility to define ramp-up and ramp-down periods.   

3.5.3.2  Grade Blending 

This constraint ensures that the average grade from the material extracted in a period  is as 

close as possible to the desired range. This user-defined range reflects processing stream 

operating requirements as well as metal content targets on a period basis. The constraint is 

implanted for all the geological and material flow realizations to represent the uncertainty and 

variability in the metal grade estimations. A positive deviation variable is used to control 

average production grades over the desired upper bound, and a negative deviation variable is 

used to control average production grades under the desired lower bound. The constraint upper 

and lower bound are presented in equations (3.7) and (3.8) respectively. 
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The constraint forms T S rows of the inequality coefficient matrix. The deviation variables 

reflect the shortage or overproduction of tonnage of metal, u uTon g ,  in reference to the 

established upper and lower bounds. This assumption eases the computational implementation 

of the constraints. 

3.5.3.3  Maximum Draw Rate  

This constraint ensures that the extraction rate from each PU does not exceed an 

established limit. Drawing at larger rates can lead to operating and safety problems as the air 

gap between the muckpile and the cave back increases rapidly, while drawing at slower rates 

can lead to the consolidation of the material within the column and the requirement of 

secondary breakage methods. The constraint is implemented for the upper bound, as the 

minimum draw rate requirement is already met in the aggregation step of the MU. The 

constraint is presented in equation (3.9). 



  
( )

1

,

cN C
t

u u
c

T z DR c t   (3.9) 

The constraint is applied for each PU at every period, forming C T  rows in the coefficient 

matrix. The maximum draw rate limit is applied to the PU which is the set of two drawpoints 

that draw material from the same drawbell, based on the presented aggregation scheme. 

3.5.3.4 Undercut Development Rate 

This constraint controls the maximum number of PUs that can be opened per period. The 

undercut development rate is a common parameter used in the planning of block caving mines. 

The rate at which the number of PU that can be advanced and opened for production is 

restricted by the development equipment capacity, with geotechnical considerations as well to 

maintain a safe caving environment. The constraint is generated for every period, and works by 

considering the sum of the areas at the undercut layout of the first MU from each PU on the 

period it is extracted, constraining it to a maximum development rate expressed in 2m  of 

excavation per period. The constraint is presented in equation (3.10). 



   1

1
c

C
t t

uu
c

S z MaxOpRate t   (3.10) 

The constraint is applied for each period, forming a total of T  rows in the coefficient matrix. 
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3.5.3.5 Maximum Adjacent Height of Draw 

This constraint limits the maximum relative height of draw between adjacent PU at any 

period in order to control the cave back slope, to ensure a smooth caving profile, and minimize 

dilution and geotechnical risks. The MU heights are used to control the slope profile, rather 

than tonnages drawn, to make it more intuitive and coherent with the model formulation. The 

adjacent units for each PU are defined based on a circular search neighborhood as proposed by 

Nezhadshahmohammad, et al. (2017) to guarantee a tighter control on the adjacent draw 

profile between PU over the production schedule. The radius of this search neighborhood can 

be increased to enforce the draw profile constraint over larger areas around each PU, while the 

minimum suggested value would be equal to the largest dimension of the PU in order to include 

the directly adjacent units. The constraint is presented in equation (3.11). 

 

        '

, '
1 1

[ ] [ ] , '
U U

t t c c

u u u u c c
u u

Height z Height z MaxAbsDiff c t c A  (3.11) 

The constraint is applied for each PU, in reference to the set of adjacent PU defined by the 

search radius, forming a total of C T rows in the coefficient matrix. 

3.5.3.6 Mining Precedence 

This constraint controls the vertical and horizontal precedence of the different MUs and 

PUs respectively. The vertical precedence is controlled by limiting the extraction of a specific 

MU only when the MU directly below has been extracted. The lowest MU from each PU does 

not have vertical precedence. The constraint additionally enforces continuous mining in the 

PU, which is required in caving operations in order to avoid compaction of the columns, with 

each period extracting at least one MU equivalent to the minimum draw rate. The horizontal 

precedence is defined over a convex V-shape mining advancement front, which is common 

industry practice as it has been found that it helps to control the stresses induced as the cave 

front progresses. This horizontal precedence is determined based on a selected starting point 

and the mining front angle, by finding the first V-shape that contains the center of the PU and 

selecting the directly adjacent PU as precedent (Figure 3-7). 
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Figure 3-7. Determination of mining precedences. On the left the horizontal precedence between PUs 
based on the advancement direction and starting point. On the right the vertical precedence of MUs 

within each PU. 

Equations (3.7) and (3.8) shows the vertical precedence and horizontal precedence 

constraints repectively. The mining precedence constraints form U T  and C T  rows in the 

coefficient matrix. 
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3.5.3.7 Reserves  

This constraint ensures that each MU is only extracted once. It also gives freedom to the 

model to decide whether or not a MU is extracted, providing the BHOD for each PU and the 

undercut footprint limits as part of the solution. The constraint is presented in equation (3.12). 
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The constraint is applied for each MU, and forms a total of U  rows in the coefficient 

matrix. 

3.6 Solution Approach 

The model is implemented in a MATLAB environment, using IBM CPLEX optimization 

engine which uses a branch-and-cut method to obtain a solution under a given MILP gap. To 
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further improve, the earliest start algorithm presented by Topal (2008) is implemented. The 

precedence constraints of the mining units, both vertical and horizontal, together with the 

mining capacities, maximum draw rate and relative adjacent height of draw constraints, can be 

used in order to establish the earliest possible period that a mining unit can be extracted. 

Therefore, all variables related to the extraction of the MU at an earlier period can be eliminated 

from the problem.  

A sliding time window heuristic (STWH) is also implemented in order to further reduce the 

computing times and make the optimization framework more useful to mine planners. The 

STWH was first successfully introduced by Cullenbine, et al. (2011) to produce quick solutions 

for the block scheduling problem in open-pit mines, and has been implemented in further 

research efforts on mine sequencing optimization (Dimitrakopoulos and Ramazan, 2008; 

Lamghari and Dimitrakopoulos, 2016; Rimele et al. 2018) including a block caving long-term 

planning application by Dirkx et al. (2018). The STWH works by repeatedly solving a relaxed 

version of the problem, outside of a defined time window for each period, while keeping the 

solutions obtained fixed into the next iteration until the last time period T  is solved.  

A time window of size , with T   , is selected and initially placed on period 1t   . Over 

this time window, the model formulation adds the constraints and variables in the complete 

form described. All the variables relating to time periods outside of the time window are relaxed 

to be continuous with the constraints added in their complete formulation. The model is solved 

for time period t , and the solution obtained for the variables relating to this single period are 

kept and fixed into the next iteration. The time window is now moved to 1t   with the model 

formulation modified accordingly. All variables within the time window  , are again added in 

their regular form, with the variables outside the time window relaxed to be continuous. The 

process is repeated, moving the time window one period at a time until a solution is obtained 

for all periods (Figure 3-8). 
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Figure 3-8. The sliding time window heuristic (STWH) as applied to solve the scheduling optimization 
model. 

3.7 Summary and Conclusion 

In summary, sequential simulation techniques are implemented to model rock type and 

grade uncertainty from drillhole data and generate a set of simulated deposit models. These 

models are initially aggregated into MUs, representing the extraction scheme of block caving 

mines, and material flow simulation is performed by the definition of a cone of movement based 

on horizontal displacements and a vertical slip angle. For each geological realization a material 

flow simulation is done to obtain a set of possible grades for each MU that reflect this behavior. 

A stochastic programming model is formulated to devise a mine plan using the whole set of 

simulations as an input. In order to achieve this, deviation variables are defined to account for 

the whole set of scenarios. The deviations are considered in ore production tonnage targets and 

average grade per period and different costs can be assigned to prioritize or ignore any of them. 

The formulation accounts for operational constraints including mining targets, grade blending, 

maximum draw rate, undercut development rate, mining precedence and maximum adjacent 

height of draw.  

The optimization procedure is implemented in a MATLAB environment using IBM CPLEX 

as the optimization engine. In order to improve computing times, two heuristics are applied. 

Initially, an early start algorithm is used to define, for each MU, its earliest possible extraction 

period. This is done based on the precedences built as well as production targets, maximum 
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draw rate and maximum adjacent height of draw parameters. All the variables related to the 

time period before the earliest start are eliminated. Furthermore, a STWH is applied by solving 

the full optimization model one period at a time, with the rest of the variables being relaxed to 

continuous, while keeping the obtained solutions as the window moves along the mine life. 
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CHAPTER 4  

VERIFICATION, EXPERIMENTS AND 
DISCUSSION OF RESULTS 

 

This chapter presents the application of the developed model in a case study. The case study 
data available comprises a set of drill hole data. The outline for the geostatistical simulation 
workflow is presented, as well as a detailed explanation of the technical and economical 
parameters selected for the implementation. A deterministic LOM schedule,  a stochastic 
model with only geological uncertainty and a stochastic model with both geological and 
material flow uncertainty are generated for comparison and discussion. 
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4.1 Introduction 

The case study comprises the application of the presented workflow in a mineral deposit. 

The mineral deposit presented for testing purposes is a copper deposit in which two rock types, 

ore and waste, are considered for modeling purposes. The methods here presented for 

geostatistical modeling can be extended to more complex deposits.  

A set of geology simulations were generated, as well as an ordinary kriging estimate in order 

to run the optimization model and evaluate the results. Mining operational parameters were 

selected to be representative of an average block caving mine, while economic parameters were 

chosen to be representative of current conditions as well as data released for block caving 

projects. 

The optimization model is evaluated in both a deterministic model, in which only the 

kriging deposit model is used as an input, in geology uncertainty scenarios, in which the rock 

type and grade realizations were used as an input, and finally on the geology and material flow 

uncertainty scenarios. By having these results, the value of incorporating the different sources 

of uncertainty discussed in this research over a single estimated model can be documented and 

analyzed.  

4.2 Geostatistical Modeling 

Two domains are defined as ore and waste rock for geostatistical modeling purposes. 

Copper is the metal of interest and the grade is modeled as %. The dataset contains a total of 

1587 samples from which 837 samples are within the ore rock type. The samples are spaced at 

around 50 m in easting and northing directions, and at around 10 m vertically. It is assumed 

that waste rock is sterile and therefore no grade modeling is performed in this domain, 

assigning a zero Cu grade, however the data is used for rock type modeling and simulation. 

Rock type simulation is carried out initially by the use of sequential indicator simulation, 

assigning a value of 0 for waste rock and 1 for ore. Cu grade modeling and simulation is then 

performed, and the set of rock type and Cu grade simulations are merged to obtain the set of 

geology realizations of the deposit. 

4.2.1 Rock Type Modeling 

The implementation of sequential indicator simulation requires the calculation of 

experimental indicator variograms to quantify the spatial variability of the rock type data. The 

mineralized body follows a N-S trend, extending at about 500 m in this direction and at about 

150 to 200 m in the E-W direction. Based on this, for indicator variograms the major direction 
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of continuity is defined at an azimuth of 0°, therefore the minor direction of continuity is set at 

an azimuth of 90°.  

Experimental indicator variograms were calculated at these two directions, with an 

additional vertical variogram. The parameters for the calculation of the variograms were 

initially set based on the separation and extent of the samples dataset, then modified through 

iteration in order to provide a stable variogram for modeling purposes while avoiding 

oversmoothing the results. The variance of the categorical rock type dataset, assuming 0 for 

waste and 1 for ore, is 0.145 which is used as the sill for variogram modeling. Figure 4-1 shows 

the modeled experimental indicator variograms. 

A single spherical structure is used for the variogram model, a nugget effect of 0.01 was 

used based on the vertical indicator variogram. Equation (4.1) shows the variogram model. 








   major 250
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vertical 300
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(3.15) 

Indicator kriging was used to provide a kriging estimate of the rock type for a kriging deposit 

model. Sequential indicator simulation, through the GSLIB program Blocksis, was used to 

generate a set of 20 rock type simulations. A block size of 10 10 10m m m   was chosen. Figure 

4-2 shows a horizontal slice from the estimated rock type model and a particular realization. 
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Figure 4-1. Indicator variogram modeling at major (a), minor (b) and vertical (c) directions. 

(a) 

 

(b) 

 

(c) 
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Figure 4-2. Horizontal slice of rock type estimation and a particular realization at elevation 635 m. 

4.2.2 Grade Modeling 

A total of 837 samples fall within the ore rock type domain, which are used for copper grade 

modeling. Figure 4-3 shows the histogram and cumulative distribution function for copper 

grades. The mean of the copper grades is 1.48% and the variance is 0.05, which is used to model 

the sill of the variograms.  
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Figure 4-3. Histogram and cumulative distribution function for the copper grades. 

The directions of continuity used for the rock type modeling were tested for the variogram 

modeling of copper grades, along with different directions, and were found to provide the 

directions of maximum continuity as well. The major horizontal direction was set at an azimuth 

of 0° and the minor at an azimuth of 90°. Figure 4-4 shows the variogram models, and equation 

(4.2) the parametrization of the defined variogram model. 
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Figure 4-4. Copper variogram models for the major (a), minor (b) and vertical (c) directions. 

Afterwards, a set of 20 copper grade simulations were generated using the sequential 

Gaussian simulation procedure. The dataset was converted into Gaussian units, following a 

normal score transformation for modeling purposes, and the final model back-transformed. An 

ordinary kriging model was also generated. The block size was defined at 10m×10m× 10m. 

Figure 4-5 shows a horizontal slice for a particular copper grade realization. 

(a) 

 

(b) 

 

(c) 
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Figure 4-5. Horizontal slice of a copper grade realization at elevation 635m. 

4.2.3 Geology Simulations 

The generated rock type and copper grade simulations were to obtain a set of equi-probable 

simulated models of the case study deposit. This was performed using the mergemod program 

from the GSLIB library, which merges multiple geostatistical models of different domains 

together. As mentioned previously, two domains are considered: ore and waste rock. 

Figure 4-6 shows (a) a horizontal slice of a particular realization for the merged rock type 

and copper grade simulation, as well as (b) 3D vies of different realizations of the mineral 

deposit.  

To provide a mean of verification for the deposit realizations, variogram reproduction was 

checked for both rock type and copper grade at the three directions of continuity. Figure 4-7 

shows the variogram reproduction plots. It can be observed that the spatial pattern is 

reproduced throughout the multiple generated realizations. 
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(a) 

 

 

 

(b) 

 

 

Figure 4-6. (a) Horizontal slice of a particular deposit realization at elevation 635m. (b) 3D view of 
different realizations of the deposit.  
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Figure 4-7. Variogram reproduction of copper grades (left) and rock types (right). 
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In Figure 4-8 the reproduction of the declustered copper grade histogram in the ore domain is 

shown, in the original units (%). Realizations are represented in gray lines and the kriging 

model in red. Moreover, the reproduction of the grade-tonnage curves for the deposit is checked 

as well (Figure 4-9). These standard checks: variogram, histogram and grade-tonnage curve 

reproduction allow to verify that the realizations as an ensemble are representative of the 

geological uncertainty throughout the deposit. 

 

Figure 4-8. Declustered Cu histogram reproduction. Geology realizations in gray and kriging model in 
red. 

 

Figure 4-9. Grade-tonnage curve reproduction for the deposit. Geology realizations in gray and kriging 
model in red. 
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4.3 Parameters and Implementation Details 

The technical and economic parameters used for the case study are defined to be representative 

of the current market conditions and to simulate a representative block caving operation based 

on industry reported data (Brown, 2007; D. Laubscher et al., 2017). 

The optimization model proposed in this research takes the simulated block model deposits 

and generates a block caving LOM plan. The initial optimization model automatically 

aggregates the blocks into MU and PU that resemble the slices and columns commonly used to 

represent the rock mass in block caving mines. The second step optimization model deals with 

the production scheduling aspects.  

The aggregation maximizes the expected metal content within the defined units amongst all the 

geological simulations, and varies depending on the undercut elevation that is selected. The 

definition of the undercut elevation is the initial step in the planning and block caving mines 

and as discussed previously constraints the reserves and economic potential of the project. In 

this research, multiple elevations are tested to select the elevation at which the highest NPV is 

obtained based on the stochastic schedule. To simplify this procedure, an initial run between 

all levels is done with the deterministic kriging model (faster computational times) to obtain a 

general idea of a closer range where the optimal undercut elevation lies, and run the stochastic 

schedules to obtain the best caving boundary and LOM plan. Table 4-1 shows a summary of the 

general economic parameters used in the application of the model to the case study. 

Table 4-1. Economic parameters used in the case study. 

Description Parameter Value 

Selling Price ($/t) MetalPricet  6,000 

Mining Cost ($/t) MineCostt  9.3 

Processing Cost ($/t) ProcessCostt  18.4 

Recovery (%) Rec  88.7 

Discount Rate (%) i  12 

Development Cost ($/PU) t

cOpCost  150,000 

This parameters are representative of average current market conditions as well as reported 

caving operating and development costs available. The model can easily accommodate for 

varying prices or costs over time (defined in periods), however, in this case study they are 

assumed to be fixed.  
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Table 4-2 summarizes the technical parameters that were used to simulate the caving operation 

for the case study. These parameters were defined in order to be representative of an average 

block caving project. 

Table 4-2. Technical parameters for the implementation of the optimization framework for the case 
study. 

Description Parameter Value 

PU Dimensions   30m × 20m 

Maximum Column Height  300 m 

Minimum Column Height   60 m 

No. of Periods T  10 

Minimum Draw Rate DR  35 (kton/period) (~20 m/period) 

Maximum Draw Rate DR  100 (kton/period) (~60 m/period) 

Undercut Development Rate tMaxOpRate  12,000 (m2/period) 

Maximum Relative Height of 

Draw 
'c

cMaxAbsDiff  70 (kton/period) (~ 2 MU) 

Mining Starting Point  380 mE, 230 mN 

Mining Direction Azimuth  335º 

Convex Front Angle  170º 

EPGAP  5% 

The PU dimensions chosen were at 30m by 20m, these represent the desired drawpoint 

spacing. This decision is also constrained by the block size, which can be reduced using re-

blocking techniques. The minimum draw rate was set at 35 kton/period, which along with the 

drawpoint spacing would be representative of a vertical extraction rate of about 20 m/period. 

This is also used to aggregate the blocks in the vertical direction into MU, once the optimum 

PU layout has been obtained. The maximum draw rate was set at 100 kton/period which would 

be equivalent to about 60 m/period. 

The minimum column height refers to the minimum extraction height needed after breaking 

the rock mass, to sustain continuous caving conditions along the production life of the draw 

column and its adjacent area. This parameter depends on the geotechnical conditions of the 

orebody, as well as the desired size of the mine, as larger caves would require large columns for 

adequate caving. Current industry practice reports minimum column heights of around 50m to 
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100m (for the largest mines). For the case study, the minimum column height was set at 60m 

to match industry practice and the block height of 10m of the input resource block model. The 

maximum column height sets the extraction limit and vertical boundary for each draw column. 

Current practice determines the best economic height of draw of each column individually 

before any scheduling efforts. The economic height of draw is also bounded by a maximum 

column height as larger columns present more geotechnical risks and need to be controlled to 

sustain caving over their lifespan. Current operating mines report extraction height of 200m to 

250m, with some of the largest projects operating or expected to operate columns over 400m 

height. To establish the maximum column height for the case study, the individual BHOD for 

each production unit was calculated by evaluating the cumulative economic value based on the 

technical and economic assumptions listed. Each production unit has a different BHOD; 

however, the maximum BHOD of all the production units was 300m. Therefore, 300m was 

used as the maximum column height for the building of the mining units. 

The maximum relative height of draw between PUs is used to approximate the cave back slope 

as the extraction progresses to allow for safe extraction and efficient draw control. The  

definition should consider the dimensions of the PU and the approximate height of the MU 

based on the spacing and draw rates evaluated. For the case study, a draw difference of 70 

kton/period was considered, which represents two MU and a maximum cave back angle of 

around 60°.  

The mining direction and starting point were defined based on the methodology proposed by 

Khodayari & Pourrahimian (2015). On a particular undercut elevation, a production block 

economic value (PBEV) was calculated as the economic value obtained after the extraction of 

each PU up to its BHOD, defined up to its maximum economic value, along with its neighbor 

columns based on a search radius. This search radius was set up at 30m based on the PU 

dimensions. The PU with the highest PBEV was defined as the starting position, and the 

direction was defined to move from higher to lower value areas. The direction was set at an 

azimuth of 335° from which a convex front with an angle of 170° is defined. 

Table 4-3 shows the ore production targets and average grade bounds per period. The ore 

production targets account for a ramp-up and ramp-down period, which can be easily modified 

based on particular projects. The production grades ranges can also be modified on a period 

basis however in this case study they remain fixed. 

The average grade bounds can reflect technological constraints such as processing plant 

requirements for good operation, as well as strategic goals set up by management. On the 
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deterministic model, the production schedule would use this targets as a hard constraint. 

However, in the stochastic model the deviation variables allow for the flexibility required to 

manage the risk amongst all the simulated scenarios at a certain cost, whereas having fixed 

constraints would make the unfeasible. 

Table 4-3. Ore production targets and average grade bounds per period for the case study. 

 Period 

 1 2 3 4 5 6 7 8 9 10 

Ore Production Target (Mton) 0.7 2 3.5 3.5 3.5 3.5 3.5 3.5 2 0.7 

Minimum Avg. Grade (%) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Maximum Avg. Grade (%) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

The definition of the deviation costs for both ore production targets and average grade bounds 

is key for the stochastic model as it impacts on the flexibility and cost assigned to the risk-based 

schedules. Higher costs would lead to a more reliable schedule in which all simulated models 

are kept within the defined targets, however potentially achieving a lower expected NPV overall. 

Moreover, costs are defined for positive and negative deviations from targets, as well as ore 

production and average grade individually. Therefore the user has the flexibility to prioritize 

certain aspects of the mine plan. 

To have a reference to define the magnitude of the deviation costs it is of interest to look at how 

it affects the objective function (equation 3.5) and the general economics of the mining project. 

Koushavand (2014) presents a detailed procedure to estimate the optimal deviation costs for 

uncertainty based mine schedules.  

The main principle is to consider that the cost of underproduction of ore tonnage represents 

the lost revenue from that shortfall. Therefore, the cost of deviation from ore production targets 

is related to the average revenue obtained from the extraction of a ton of ore. The deposit 

average grade can serve to provide an initial estimate. Higher values would lead to the 

optimization model to prioritize avoiding shortfalls in ore production amongst all simulations 

rather than obtaining the highest overall NPV. The similar principle applies for the 

overproduction of ore tonnages. Overproduction cost can also be linked to a differential cost 

that can be potentially incurred in order to manage the excess production.  
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The estimation of the cost for positive and negative deviations of average grade sent to mill 

follows a similar principle. However, as presented in equation (3.7) and equation (3.8), the 

grade deviation variables balance the metal content sent to the mill amongst all realization 

based on the defined targets. The cost of shortfall or positive deviation of metal is related to the 

revenue obtained from the selling of one ton of it. The selling cost of the metal of interest serves 

as a reference for an initial estimation for the deviation cost of average grades sent to the mill.  

The geological discount rate is the final parameter related to the uncertainty based production 

scheduling model. This rate serves as a discount factor for the cost associated with the 

deviations due to the variation between the simulated models. High values would prioritize 

minimizing deviations on the initial periods at the cost of potentially lower NPV, while lower 

values would lead to higher deviations allowed in the initial periods. Table 4-4 shows the 

deviation costs assigned for the case study. 

Table 4-4. Deviation costs and geology discount rate assigned for the case study 

Cost for positive deviation (overproduction) of 

ore tonnage ($/t) 

p  60 

Cost for negative deviation (shortage) of ore 

tonnage ($/t) 

p  120 

Cost for positive deviation (over upper bound) 

of grade quality range ($/t) 

q  6000 

Cost for negative deviation (under lower 

bound) of grade quality range ($/t) 

q  12000 

Geological discount rate (%) g  15 

The cost for positive and negative ore tonnage deviations is based on the average revenue 

produced by the extraction and processing of a ton of ore, based on the deposit average grade. 

The cost for overproduction is set at 60 $/t, which matches the mentioned revenue, while the 

cost for underproduction is set at double to prioritize minimizing potential shortfalls in ore 

production targets.  

The cost for positive and negative deviations in average grades sent to mill are based on the set 

selling price of copper. The cost of positive deviation is set at 6000 $/t of copper while the cost 

of negative deviation is set at double to prioritize it. 
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Finally, the geological discount rate is set at 15%, a slight increase over the economic discount 

factor. It is important to analyze the sensitivity of these parameters and their impact on the 

project NPV and ore production and grade risk profiles to get a better understanding. 

In relation to the material flow scenarios, the horizontal displacement was set at 35m and the 

vertical slip angle at 60º. These parameters were defined to be in line with Alvial (1992) 

measurements and were applied to the whole footprint. The point of entry dilution was set at 

40m, which defines the height at which the cone, and therefore mixing scenarios, start being 

evaluated for each PU. 

4.4 Deterministic LOM Schedule with Kriging Estimates 

As mentioned previously, the determination of a LOM plan and economic KPIs for a block 

caving mine depends on the selection of the undercut placement as the extraction is performed 

on the overlying broken rock mass. Multiple undercuts can be considered for multiple lifts, or 

production levels, however, the model developed initially considers only one production level.  

A deterministic version of the model is used to evaluate the NPV and ore tonnage of the 

potential block cave mine. The deterministic version follows the same constraints and objective 

function described above using only the single kriging estimated deposit. This version of the 

model is run over multiple undercut elevations (placed at the based of each horizontal slice of 

the block model) to determine the best in terms of NPV for the deterministic case. Laubscher 

vertical mixing algorithm is used to represent dilution, which has become the standard 

procedure for the evaluation of mine plans at this level of detail. Based on the results obtained 

a smaller range of elevations is selected to run the stochastic versions of the model, as the 

computing times required for the multiple scenarios optimization would be significantly higher.  

Figure 4-10 shows the results for the deterministic case. 

The undercut elevation that yields the highest NPV is 635m, with elevations between 635 to 

605 yielding similar values. Each point in this graph corresponds to one LOM and production 

schedule. For demonstration purposes the highest NPV obtained at 635m was selected, 

however it would be suggested to inspect in more detail the LOM plans at elevations between 

635 to 605 as the values are very close. The range between 645 and 595m was selected to 

evaluate the geological and flow uncertainty schedules. The NPV and ore tonnages obtained at 

this range are shown in Table 4-5. 
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Figure 4-10. NPV and ore tonnage for multiple undercut elevations at the deterministic Kriging deposit 
model. 

Table 4-5. NPV and ore tonnage at the selected undercut elevations. 

 645m 635m 625m 615m 605m 595m 

NPV (M$) 663.632 696.492 682.484 693.939 693.501 674.318 

Tonnage 

(Mt) 
24.621 26.396 24.602 25.466 26.190 24.724 

The caving envelope at 635m undercut elevation is shown in Figure 4-11, within the kriging 

estimated geological model. This caving envelope, footprint limits and height of draw, 

maximizes the NPV from the production schedule based on the parameters and constraints 

mentioned. The undercut opening sequence is presented in Figure 4-12. 

The undercut opening sequence refers to the periods at which the columns are opened for 

production at the undercut level, and defines the mining footprint for the caving project. The 

total footprint area for the deterministic model at 635m undercut is 92,400 m2. 
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Figure 4-11. Block caving reserves envelope for the deterministic model at undercut elevation 635m. 

 

Figure 4-12. Undercut sequence for the deterministic model. 
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Figure 4-13 shows the production schedule for the deterministic model. The ore tonnage 

production, at a total 26.4 Mt meets the production targets established including the ramp-up 

and ramp-down periods. The average grade is shown along with the defined bounds. 

 

Figure 4-13. Production schedule with targets for the deterministic model. 

For the initial seven periods the solution yields an average production grade at the upper bound 

target, with the first period slightly higher due to the resulting profit paying for the over 

production cost. This leads to very low grades, at the lower acceptable bound, for the later 

periods. This type of schedule could lead to operational problems due to the uncertainty in the 

grade estimates. The extraction heights of the caving envelope on a period basis are shown in 

Figure 4-14. This represents the caving profile throughout the LOM of the project. This profiles 

maximizes the NPV, and keeps the cave back slope under the defined parameters. It serves as 

an initial estimate as the caving profile and propagation requires detailed numerical modeling 

to evaluate its feasibility. 

The cumulative NPV and discounted cash flows for the LOM plan are showed in Figure 4-15 

and Figure 4-16 respectively. It can be seen that the highest discounted cash flows are generated 

at the initial periods, with the largest obtained in period three. This is due to the caving 

operation being initiated in the higher grade areas and moving towards the lower grade and 

boundaries in the later periods. This is the ideal case, as practical applications would require 

geomechanical evaluation to define the mining direction that balances the economic value of 

the project with the caveability of the rock mass. 
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Figure 4-14. Extraction heights for the caving project by period for the deterministic model.
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Figure 4-15. Cumulative NPV over the LOM for the deterministic model. 

 

Figure 4-16. Cash Flows over the LOM for the deterministic model. 

The indicators presented above consider the LOM plan generated using a single estimated 

model. On the following sections the impact of the geological uncertainty and the geological 

and material flow uncertainty in this LOM plan are presented.  

4.4.1 Geological Risk Profile 

The obtained sequence for the kriging estimated model is evaluated over the 20 generated 

geological simulations to evaluate the response of the mine plan on the economics of the project 

and the production schedule.  

Figure 4-17 and Figure 4-18 show the uncertainty profile in the cumulative NPV and cash flows 

over the geological scenarios. The gray lines represent the response of each geological 
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realization to the deterministic mine sequence, summarized in the expected value, 10th and 90th 

percentile. 

 

Figure 4-17. NPV uncertainty profile for the deterministic mine plan over the geology scenarios. 

 

Figure 4-18. Cash flow uncertainty profile for the deterministic mine plan over the geology scenarios. 

While the NPV obtained used the deterministic kriging model was 696.492 M$, the expected 

NPV based on the response of the 20 geology realizations of the mineral deposit was 638.326 

M$. The variability and uncertainty due to the grade and rock type estimation process resulted 

in a 8.35% lower expected NPV, or 58.166 M$. Moreover, the 90th percentile of the final NPV 
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distribution due to the geological scenarios was 676.623 M$, still lower than the kriging 

estimated NPV.  

The cash flow uncertainty profile showed a similar behavior, especially at the initial periods 

where the schedule extracts the higher grade areas of the deposit the kriging mine plan estimate 

is higher than the 90th percentile of the geological scenarios response. At the later periods the 

kriging cash flow estimates matches the expected response from the geological scenarios. The 

deterministic model economic forecasts have a very low probability of actually being achievable 

based on the geology uncertainty. 

Geological uncertainty has also impact on the operational aspects of the schedule, especially in 

the ore production and average production grade. Figure 4-19 shows the average production 

grade uncertainty profile for the deterministic kriging mine plan over the geology scenarios. No 

significant differences were found in the ore production tonnage between the geology scenarios 

and the kriging estimated model. 

 

Figure 4-19. Average production grade uncertainty profile for the deterministic plan over the geology 
scenarios. 

The expected average production grade is lower than the forecasted by the deterministic mine 

plan. However for most of the LOM the response of the geology scenarios to the deterministic 

mine plan is within the defined operational limits, with problems occurring at period 9 and 10, 

where the expected average grade is found below the lower operational limit. 
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4.4.2 Geological and Material Flow Risk Profile 

The obtained sequence for the kriging estimated model is evaluated over the 20 genereated 

geological and flow simulations to evaluate the response of the deterministic mine plan on the 

economics of the project and the production schedule.  

Figure 4-20 and Figure 4-21 show the uncertainty profile in the cumulative NPV and cash flows 

over the geological and mixing scenarios. The gray lines represent the response of each 

geological and flow realization to the deterministic mine sequence, summarized in the expected 

value, 10th and 90th percentile. 

While the NPV obtained used the deterministic kriging model was 696.492 M$, the expected 

NPV based on the response of the 20 geology and flow realizations of the mineral deposit was 

557.988 M$. The uncertainty due to the geological estimation and material mixing processes 

resulted in a 19.88% lower expected NPV, or 138.504 M$. This was mainly a result of the 

dilution due to horizontal and vertical mixing especially at the boundaries of the footprint, as 

waste was introduced based on the cone of movement concept presented for the generation of 

the mixing scenarios. Explicit incorporation of the geological and flow scenarios in the 

optimization process is highly desired in order to increase the potential value of the project. 

 

Figure 4-20. Cumulative NPV uncertainty profile for the deterministic mine plan over the geology and 
material flow scenarios. 
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Figure 4-21. Cash flow uncertainty profile for the deterministic mine plan over the geology and material 
flow scenarios. 

The impact of the geological and flow uncertainty scenarios on the average production grade 

based on the deterministic mine plan is presented in Figure 4-22. The response of the 

geology/flow scenarios is on overall lower than the forecasted by the deterministic model, with 

significant problems most probably ocurring from period 7 onwards as the expected average 

production grade falls below the lower bound required.  

 

Figure 4-22. Average production grade uncertainty profile for the deterministic mine plan over the 
geological and flow scenarios. 
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4.5 Stochastic LOM Schedule with Geological Uncertainty 

The stochastic LOM schedule uses the full stochastic formulation described, along with the 20 

geological (grade and rock type) simulations. The expected economic value of each MU was 

used to drive the objective function while minimizing the deviations in ore tonnage and average 

production grades from the desired bounds. 

The model was used in the range of undercut elevations between 595 and 645m that were 

defined as the highest valued caves in the deterministic case, since the cave with the highest 

NPV can be expected to be within this range, and running the stochastic formulation on the full 

resource model would be computationally expensive.  

Table 4-6 shows the NPV and ore tonnage for this range of undercut elevations. 

Table 4-6. NPV and ore tonnage for the stochastic optimization with geological uncertainty at different 
undercut elevations. 

 645m 635m 625m 615m 605m 595m 

NPV (M$) 652.312 667.547 661.894 664.431 672.726 642.876 

Tonnage 

(Mt) 
24.761 26.216 26.445 26.447 26.453 24.583 

For the stochastic optimization with geological uncertainty, the undercut elevation that yielded 

the highest NPV was 605m at 672.726 M$. The most profitable cave when introducing 

geological uncertainty in the optimization process was located 30 m deeper than the one found 

in the deterministic case. The stochastic NPV was just about 3.41% lower when compared to 

the deterministic case, while the difference in ore tonnage was negligible. This highlights the 

value of integrating multiple realizations to obtain a LOM plan that considers the variability 

and uncertainty at the current level of knowledge of the mineral deposit.  

Figure 4-23 shows the caving envelope for the stochastic case with geological uncertainty at 

undercut elevation 605m. For displaying and comparison purposes, the grades shown are the 

expected copper grade from all the geology realizations, and the deposit model is the 

deterministic kriged model. 

The undercut opening sequence is presented in Figure 4-24. The sequence varies from the 

deterministic case to accommodate the variability in grade throughout the multiple 

realizations. The total area for the stochastic case is 106,800 m2, a larger footprint.  
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Figure 4-23. Block caving reserves envelope for the stochastic case with geological uncertainty at 
undercut elevation 605m. 

 
Figure 4-24. Undercut sequence for the stochastic case with geology uncertainty. 
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Figure 4-25 shows the production schedule for the stochastic case with geological uncertainty. 

The ore tonnage production, at a total 26.4 Mt meets the production targets established 

including the ramp-up and ramp-down periods. The average grade is shown along with the 

defined bounds. The average production grade differs from the deterministic case in that it 

follows a more balanced schedule. 

The extraction heights of the caving envelope on a period basis are shown in Figure 4-26. This 

represents the caving profile throughout the LOM of the project. The caving sequence 

maximizes the NPV while minimizing the deviations incurred due to the geological uncertainty 

characterized throughout the multiple realizations. 

 

Figure 4-25. Production schedule for the stochastic case with geological uncertainty. 

The cumulative NPV and discounted cash flows for the LOM plan are shown in Figure 4-27 and 

Figure 4-28 respectively. As mentioned above, the expected NPV for the project under 

geological uncertainty was found at 672.726 M$ with the 10th percentile of its distribution at 

623.632 M$ and the 90th percentile at 712.376 M$. The overall pattern of the economics for the 

project were similar to the one observed at the deterministic case, with the adjustment in the 

sequence to accommodate the variability in ore tonnage and average production grade as the 

main reason for the lower achieved economic value. 
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Figure 4-26. Extraction heights for the caving project by period for the stochastic case with geological uncertainty.
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Figure 4-27. Cumulative NPV over the LOM for the stochastic case with geological uncertainty. 

 

Figure 4-28. Cash Flows over the LOM for the stochastic case with geological uncertainty. 

The average production grade for the multiple geological scenarios is presented in Figure 4-29. 

All realizations are kept within the boundaries throughout the whole LOM as they are explicitly 

included in the optimization process.  
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Figure 4-29. Average production grade for the stochastic case with geology uncertainty. 

4.5.1 Geological and Material Flow Risk Profile 

The stochastic mine plan obtained for the geological uncertainty case was tested against the 

joint geological and material flow scenarios. This allows to have some insights on the impact of 

the material flow and mixing uncertainty on the projects economic and operational forecasts.  

Figure 4-30 and Figure 4-31 show the uncertainty profile in the cumulative NPV and cash flows. 

The gray lines represent the response of each geological and flow realization to the stochastic 

mine sequence under only geological uncertainty, summarized in the expected value, 10th and 

90th percentile. 

The expected NPV obtained at the end of the mine life for the geological stochastic LOM plan, 

over the joint geological and material flow scenarios was 607.828 M$. The incorporation of 

material flow and the resulting dilution would result in an expected NPV 9.64% less than the 

one reported with the stochastic mine plan under solely geological uncertainty. The reported 

NPV for the geology uncertainty was well over the 90th percentile of the NPV distribution for 

the joint geology and flow scenarios, which would result in a very low probability of actually 

achieving it if dilution was considered based on the parameters used to model it. 
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Figure 4-30. Cumulative NPV uncertainty profile for the stochastic mine plan with geological 
uncertainty over the joint geological and mixing scenarios. 

 

Figure 4-31. Cash flow uncertainty profile for the stochastic mine plan with geological uncertainty over 
the joint geological and mixing scenarios. 

The geology and flow uncertainty profile for the average production grade generated by the 

stochastic LOM plan under geological uncertainty is shown in Figure 4-32. The average grades 

are kept within the boundaries for the whole LOM; however the forecasted values differ from 

the expected ones and are well over the 90th percentile of the distribution resulting from the 

incorporation of material flow and mixing. 
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Figure 4-32. Average production grade uncertainty profile for the deterministic mine plan over the 
geological and flow scenarios. 

4.6 Stochastic LOM Schedule with Geological and Flow Uncertainty 

This case incorporates the geological and material flow scenarios directly into the optimization 

framework, to obtain a LOM plan that accounts for both sources of uncertainty. The model was 

used in the range of undercut elevations between 595 and 645m that was defined as the highest 

valued caves in the deterministic case, since the cave with the highest NPV can be expected to 

be within this range, and running the stochastic formulation on the full resource model would 

be computationally expensive. Table 4-7 shows the NPV and ore tonnage for this range of 

undercut elevations. 

Table 4-7. NPV and ore tonnage for the stochastic optimization with geological and material flow 
uncertainty at different undercut elevations. 

 645m 635m 625m 615m 605m 595m 

NPV (M$) 589.290 603.481 596.863 609.694 615.908 591.402 

Tonnage 

(Mt) 
24.673 26.215 26.391 26.411 26.408 24.761 

For the stochastic optimization with geological and flow uncertainty the undercut elevation that 

yielded the highest NPV was 605m at 615.908 M$. The most profitable cave when considering 

both geological and flow uncertainty was located at the same undercut elevation than the one 
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obtained with the stochastic case under only geological uncertainty, and 30m below the one 

determined with the deterministic scenario. The stochastic NPV with geological and flow 

uncertainty is 8.44% lower than the stochastic version with only geological uncertainty, and 

11.56% lower than the reported with the deterministic LOM plan. However, this LOM 

incorporates potential dilution scenarios and adjusts for its impact on the expected economic 

value of the extracted ore.  

Figure 4-33 shows the caving envelope for the stochastic case with geological and flow 

uncertainty at undercut elevation 605m. For displaying and comparison purposes, the grades 

shown are the expected copper grade from all the geology realizations, and the deposit model 

is the deterministic kriged model. 

 

Figure 4-33. Block caving reserves envelope for the stochastic case with geological and flow uncertainty 
at undercut elevation 605m. 

The undercut opening sequence is presented in Figure 4-34. The sequence varies from both the 

deterministic and stochastic case to accommodate for the variability in grade throughout the 
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multiple realizations accounting for the potential of mixing during flow. The total footprint area 

for the stochastic case with geology and flow uncertainty is 109,200 m2.  

 

Figure 4-34. Undercut sequence for the stochastic case with geology and flow uncertainty. 

Figure 4-35 shows the production schedule for the stochastic case with geological and flow 

uncertainty. The ore tonnage production, at a total 26.408 Mt meets the production targets 

established including the ramp-up and ramp-down periods. The average grade is shown along 

with the defined bounds. The overall average production grade decreases throughout the mine 

life, as the mining advancement direction approaches the ore/waste boundaries within the 

different realizations, diluting ore reserves. 

The extraction heights of the caving envelope on a period basis are shown in Figure 4-36. This 

represents the caving profile throughout the LOM of the project. The caving sequence 

maximizes the NPV while minimizing the deviations incurred due to the geological and mixing 

uncertainty characterized throughout the multiple realizations. 
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Figure 4-35. Production schedule for the stochastic case with geological and flow uncertainty. 

The cumulative NPV and discounted cash flows for the LOM plan are showed in Figure 4-37 

and Figure 4-38 respectively. As mentioned above, the expected NPV for the project under 

geological uncertainty was found at 615.908 M$ with the 10th percentile of its distribution at 

577.813 M$ and the 90th percentile at 629.316 M$. 
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Figure 4-36. Extraction heights for the caving project by period for the stochastic case with geological and flow uncertainty.
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Figure 4-37. Cumulative NPV over the LOM for the stochastic case with geological and flow 
uncertainty. 

 

Figure 4-38. Cash Flows over the LOM for the stochastic case with geological uncertainty. 

The average production grade throughout the LOM for the multiple geological and flow 

scenarios is presented in Figure 4-39. All realizations were kept within the boundaries 

throughout the whole LOM as they were explicitly included in the optimization process.  
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Figure 4-39. Average production grade for the stochastic case with geology uncertainty. 

4.7 Comparison of deterministic and stochastic LOM Schedules 

The incorporation of geological and material flow uncertainty lead to different LOM plans and 

economic and operational forecasts for the potential caving project in the case study. One of 

the main differences lies in the undercut elevation placement, where both stochastic 

alternatives suggest 605m as the highest profit undercut which is 30m deeper than the 635m 

obtained by the deterministic model. The placement of the undercut level is not a flexible 

decision and largely constraints the mining reserves in caving as it dictates the footprint and 

economic envelope for the cave. In this particular case, incorporating uncertainty allows the 

decision-makers to make a more informed decision. 

Figure 4-40 shows a comparison between the NPV distribution parameters including the 

expected, 10th and 90th percentiles for the response of the mine plans obtained from the 

deterministic and both stochastic models to the uncertainty scenarios. 
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Figure 4-40. NPV distribution comparison between the deterministic and stochastic cases. 

The deterministic model with the ordinary kriging estimated orebody provides only a single 

NPV value that does not incorporate explicitly any source of uncertainty. In this particular 

application in block caving, the deterministic case yielded the largest NPV forecast, which was 

likely to be unrealistic. The expected NPV for the deterministic mine plan once geological 

uncertainties were considered at the current level of knowledge of the deposit was 8.35% lower, 

and 19.88% lower when material flow and mixing uncertainty was evaluated. Moreover, the 

NPV for the deterministic mine sequence was larger than the 90th percentiles of the distribution 

of its response to the uncertainty scenarios, which would lead to a very low probability of 

actually achieving it. 

The incorporation of the geological scenarios in the optimization process led to an expected 

NPV of 672.726 M$, which was just about 3.41% lower than the reported NPV with the 

deterministic kriging model. However, it was 5.11% higher than the expected response from the 

NPV distribution of the deterministic mine plan to the geological uncertainty scenarios. The 

optimization model, in this case, adjusted the sequence to maximize the expected value of the 

project accounting for the variability throughout all the geological realizations, providing a 

more robust estimate and LOM plan in the presence of grade and rock type uncertainty. The 

geological uncertainty based schedule can be evaluated over the geology and material flow 
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scenarios to get some insight in the impact of the potential mixing on the economics of the 

project. The expected NPV due to the geological and material flow scenarios was 9.41% lower 

than that considering only geological uncertainty. Mixing can potentially have a significant 

impact on the projects economics if not acknowledged. 

The stochastic optimization using the both geological and material flow uncertainties yielded a 

NPV of 615.908 M$, which was 11.56% lower than the reported by the deterministic mine plan, 

and 8.44% lower than the reported by the stochastic mine plan considering only geological 

uncertainty. However, it was on overall higher than the expected NPV from the previous mine 

plans response to the joint geological and material flow scenarios. The mixing model adapted 

in this research with the concept of the cone of movement at a block scale support, allowed the 

potential inclusion of waste and dilution especially at the columns closer to the boundaries of 

the ore deposit, which would result in lower grades and therefore a lower economic potential. 

Although the expected NPV from the mine plan that incorporated the joint geology and flow 

uncertainty was lower than the previous case, it highlighted the impact of potential mixing in 

the economics of a block caving mine and the importance of incorporating it into the LOM 

planning workflow explicitly. 

While literature vastly reports that stochastic optimization provides larger economic values for 

LOM plans when compared to deterministic methods in open-pit mining, block caving 

stochastic mine planning cases are very limited. In Dirkx et al. (2018), the deterministic 

reported NPV was also lower than both the obtained for the mine plan through the geological 

and geological and operational uncertainty based optimization. However it would be an 

unreliable forecast, and in reality it could be expected to be much lower. This could be due to 

the low flexibility of block caving, which potential alternative sequences are much constrained 

by the advancement directions and vertical extraction scheme. 

Table 4-8 shows a comparison of the results for the three alternative cases, including NPV, ore 

tonnages, undercut elevation, footprint area and computing time required to run the model. 

Spaces left in blank represent parameters not applicable for the particular method. 

From the footprint area, it can be seen that the successive incorporation of geological and flow 

uncertainty led to a cave with a larger footprint. The ore tonnage however remained at a similar 

output with very slight variations between each method. The stochastic based schedules favored 

the opening of more columns (larger footprint) at the tradeoff of the lower height of draws. 

Since the cost of opening each PU (column) was already incorporated in the model, the larger 

footprint paid for its development.  
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Table 4-8. Comparison of results for case (1): deterministic schedule, case (2): stochastic schedule with geological uncertainty and case (3): 
stochastic schedule with both geological and material flow uncertainty. Spaces in blank refer to parameters not applicable to that method. 

      Geological Uncertainty Geological/Flow Uncertainty 

 Undercut 

Elev. (m) 

Footprint 

Area (m2)  

NPV 

(M$) 

Ore Ton 

(Mt) 

Comp. Time 

(min) 

E[NPV] 

(M$) 

E[Ore Ton] 

(Mt) 

Footprint 

Area (m2) 

E[NPV] 

(M$) 

E[Ore Ton] 

(Mt) 

Footprint 

Area (m2) 

Case (1) 635 92,400 696.49 26.37 12.31 638.33 26.37 92,400 557.99 26.37 92,400 

Case (2) 605    332.4 672.73 26.45 106,800 607.83 26.45 106,800 

Case (3) 605    985.3    615.91 26.41 109,200 



Chapter 4 : Verification, Experiments, and Discussion of Results                                                          102 

 

 

Having a larger footprint represents an advantage as increased knowledge of the deposit in later 

stages could unlock additional value. Also, this could be an indication that the stochastic 

schedule can potentially unlock larger mineral reserves and therefore value, for which a longer 

time period or larger production rates should be evaluated. 

A major point of interest is the computing time required to run the different models. The 

deterministic model at the most profitable undercut elevations takes about 12.31 minutes to 

run and obtain a solution. However, the incorporation of geology uncertainty in the stochastic 

case increases the computing time required to 332.4 min or 5.54 hours to run, about 27 times 

more than the deterministic case. The stochastic case with both geology and flow uncertainty 

takes about 16.42 hours to run, about 80 times more than the deterministic case and three 

times more than the stochastic with only geology uncertainty. 

The computing times are obtained after the solution strategy based on the early start heuristics 

to reduce the number of variables and the sliding time windows metaheuristics to solve the 

problem. This poses a potential challenge in the application of these models as the computing 

times can be probative, research in the development of alternative strategies to obtain or 

approximate a solution is needed. 

4.8 Summary and Conclusion 

This chapter presented the application of the stochastic model development for the LOM 

planning of block caving mines under geological and material flow uncertainty. The 

geostatistical framework for the geological simulations was detailed, which used SIS to generate 

the rock type realizations and SGS for grade simulations which are later merged.  

A cone of movement concept was used to generate the material flow scenarios, adapted on the 

concept presented by Khodayari (2018). Based on horizontal displacements (m) and a vertical 

slip angle (degrees), the movement of material as ore is drawn can follow multiple scenarios. 

In this research, the cone of movement concept was adapted to a block scale support. For each 

MU, there is a cone defined by the mentioned parameters that contains the individual blocks 

(from itself, other MU and waste in the boundaries of the orebody) that could potentially flow 

into it as it is extracted. A random sampling of these candidate blocks is carried out to “fill” each 

MU and update its ore tonnage and average grade. 

The operational and economic parameters used for the case study were defined to represent an 

average block caving mine based on reported data from operations around the world. The LOM 
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schedule was generated for the deterministic case and for the stochastic case for both only 

geological uncertainty and joint geological and material flow uncertainty.  

The most profitable undercut elevation for the deterministic case was found at 635m, while 

both stochastic alternatives found that 605m yielded the best expected NPV. For the 

deterministic case the NPV was found at 696.49 M$, however when its LOM plan is evaluated 

over the geological scenarios and geological and flow scenarios the expected NPVs were found 

at 8.35% and 19.88% lower respectively. Moreover, the deterministic mine plan NPV is higher 

than the 90th percentile of its distribution over the uncertainty scenarios, which means there is 

little probability of actually achieving it.  

The stochastic optimization with only geological uncertainty yielded an expected NPV of 672.73 

M$, while the expected NPV of the joint geological and material flow optimization model 

generated a mine plan with an expected NPV of 615.91 M$. The incorporation of uncertainties 

in the optimization process generates LOM plans with reduced NPVs in relation to the 

deterministic case, however, it provides more reliable estimates and a sequence adapted to deal 

with the potential variability within the orebody. The expected NPVs obtained in the successive 

stochastic optimization cases are higher than the response of the deterministic LOM schedule 

to the uncertainty scenarios. 

 The lower economic values can also be due to the low flexibility of block caving mines as the 

potential alternative sequences are largely constrained by the mining advancement direction 

and vertical extraction scheme.  

A larger footprint is also observed on the stochastic model in comparison to the deterministic 

case. Since the ore tonnage variation is negligible between each method, the stochastic models 

favor the opening of larger undercut areas on lower height of draws. 

The computing times required to solve the stochastic alternatives are significantly higher than 

the required for the deterministic case. The stochastic schedule with geological uncertainty 

requires a computing time of 5.54 hours and the joint geological and material flow uncertainty 

a total of about 16.42 hours, while the deterministic model takes about 12.31 minutes. This 

could be a prohibitive constraint in large projects, and further research should be aimed in 

finding more efficient solution approaches. 
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

 

Chapter 5 provides the contribution and significance of this research, as well as the 
conclusions reached and some recommendations for further studies.  
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5.1 Summary of Research 

This research presents a mathematical programming model that optimizes the LOM plan 

and defines the boundary of a block caving mine, from a deposit block model scale, under 

geological and material flow uncertainty.  

The optimization framework works over two steps: it initially aggregates the individual 

blocks into production units based on desired drawpoint spacing, representing the draw 

columns, and mining units based on the minimum draw rate, representing the slices that are 

commonly used in block caving mine planning. The mining units then become the basic 

scheduling unit for the stochastic integer programming scheduling model. Uncertainty is 

characterized by the development of multiple numerical deposit simulations. Geological 

simulations are developed using geostatistical simulation techniques, with sequential indicator 

simulation for rock types and sequential Gaussian simulation for grades. Material flow 

uncertainty is integrated by the concept of a cone of movement. As each mining unit is 

extracted, it leaves a void that can be filled by any fraction of the material on its surroundings 

based on the flow properties of the broken rock mass. A cone, based on potential horizontal 

displacement and vertical slip angle of the broken rock mass is used to generate grade and 

tonnage mixing scenarios for each mining unit. The cone is placed at the bottom of each mining 

unit, and a random sample of the blocks from the deposit model that are contained within it, 

“filling” the mining unit, is used to update its grade and tonnage. This allows for scenarios 

where each mining unit material could potentially be part of fractions of adjacent units as well 

as waste blocks at the orebody accounting for dilution. 

The stochastic mathematical model takes as an input the set of geological and material flow 

simulations to generate a single best schedule that maximizes the expected economic value 

from the uncertainty sources, while minimizes the deviations incurred in production and 

average grade targets due to the variability between the potential scenarios. The operational 

constraints considered in the model include mining capacity targets, average production grade, 

minimum and maximum heights of draw, minimum and maximum vertical draw rates, 

undercut development rate, maximum adjacent relative height of draw, mining precedence 

both horizontal and vertical, and mineral reserves. The model was tested on a case study with 

parameters defined to be representative of current practices in caving operations worldwide. 

5.2 Conclusions 

The main conclusions of this research are summarized as follows: 



Chapter 5: Summary and Conclusions                                                                                                         106                  

 

 

 A mathematical programming framework was developed to generate a LOM schedule 

for block caving mines from a block model scale. The framework starts with the 

aggregation of the individual blocks into PU and MU representative of the slice and 

column models used in block caving mine planning, and then scheduling based on 

common operational constraints. This provides a flexible tool that produces results 

including economic and operational KPIs on period basis from the production schedule 

as well as defining the optimal mining boundaries.  

 Geological uncertainty is modeled using geostatistical simulation techniques while the 

material flow uncertainty is modeled using the concept of a cone of movement based on 

the definition of potential horizontal displacement and vertical slip angle to characterize 

the movement of the broken rock mass. It provides a simple procedure to introduce 3D 

mixing as a set of scenarios. 

 A deterministic based LOM plan yields economic forecasts that when evaluated over 

multiple geological and material flow scenarios show a significant overestimation with 

little probability of actually being achievable. For the case study, the deterministic mine 

plan would lead to an expected NPV 8.35% and 19.88% lower than the reported one 

when evaluated under geological and geological and material flow uncertainty. 

Moreover, the average production grade for the deterministic based schedule would 

lead to operational problems when evaluated over uncertainty scenarios as it drops 

below the desired minimum target at later periods. This highlights the problems 

associated to a LOM plan developed using a single estimated model. 

 Stochastic based LOM plans incorporate explicitly the different uncertainty simulations 

to maximize the expected value rather than a single estimate. Also, it allows for better 

control of the operational parameters such as average production grade over the 

multiple realizations. For the case study, the geology uncertainty based schedule yielded 

an expected NPV of 672.73 M$, and the geology and material flow uncertainty based 

schedule an expected NPV of 615.91 M$. The stochastic optimization generates lower 

NPVs than the deterministic case; however these account for the multiple potential 

scenarios and therefore are more reliable forecasts. The lower NPVs could be due to the 

low flexibility in block caving mines. Also, the expected NPV obtained from the 

stochastic schedules is higher than the expected NPV from the deterministic mine plan 

when evaluated over the uncertainty scenarios. 
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 The stochastic based schedules generate a larger footprint area than the deterministic 

case. Since the production rates and life of mine is kept unchanged for the scenarios 

presented, it could be expected that additional reserves can be unlocked with the 

stochastic schedule at a larger life of mine or production rate. 

 The computing time required for the stochastic based optimization tool is significantly 

higher than that required for the deterministic case. This could become a prohibitive 

constraint in larger operations, which should be addressed. 

5.3 Contributions of the Research 

The main contribution of this research lies in an alternative method to define block caving 

LOM production schedules and boundaries that explicitly incorporate geological and material 

flow uncertainty. The results of this thesis can be compiled in prototype software for testing on 

caving projects and assist decision-makers. 

Material flow has been pointed out as a major challenge in the forecasting of the operational 

and economic output of a caving project. This research presents a framework in which 

geological scenarios are generated through geostatistical simulation, and material flow 

scenarios with the concept of a cone of movement. A mathematical programming model is then 

developed that takes as an input a set of geology/flow simulations to generate a LOM plan that 

explicitly incorporates the mentioned sources of uncertainties.  

The main application of the presented technique would be in prefeasibility stage of the 

projects, where an economic and operational valuation is required for a deposit with a little 

level of knowledge. The method allows for operational caving constraints defined in simple 

expressions and provides uncertainty based LOM plans and economics estimates 

representative of a block caving mine. 

5.4 Recommendations for Future Research 

The following suggestions for future research address the limitations and challenges 

presented during the development of this thesis, as well as new potential research areas. 

 Research into a more detailed mixing concept for the development of the material 

flow scenarios. However, the model is aimed to work at a block model scale and for 

prefeasibility evaluations before detailed engineering studies and the available 

mixing algorithms are all aimed at an operational level. Studying the possibility to 

scale back some of these mixing methods to generate a valid representative version 
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at this level of detail would be of interest for the stochastic optimization of block 

caving mines. 

 The research incorporates the mixing uncertainty as a set of scenarios, therefore it 

does not interact or responds with the scheduling decisions. Exploring the possibility 

of developing a tool which can optimize the schedule in a dynamic way with the 

material flow would be of interest. 

 Incorporate additional sources of uncertainty such as price and operational 

parameters to provide a more robust mining schedule. At the moment, the 

formulation allows for geological and material flow uncertainty only and its impact 

on the economic value of the project, and ore production and average grade targets. 

  Extend the model to allow for multiple production lifts scenarios. Although multiple 

lifts could be considered as different problems and the model here presented could 

be used multiple times on the same ore deposit model, a framework that allows for 

the optimization of the placement and envelope of multiple production lift 

operations would be of interest for larger projects. 

 Develop more efficient algorithms and solution approaches to solve the optimization 

problem. The time required to compute a solution for the geological and material 

flow stochastic schedule can be prohibitive. Metaheuristic techniques or other 

computing techniques could be useful to find an approximate solution that is good 

enough at faster processing times. 
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Programming Description 

This appendix includes the MATLAB codes developed for the implementation of the 

optimization framework presented in this research. The codes presented here include the data 

reading and preparation, which is done from Microsoft EXCEL files containing all the desired 

parameters, the construction and solving of the resulting model. Plotting functions were 

developed for personal use on the validation and vertification of the results, these are not 

included here. The code is presented in a series of scripts, which are later run sequentially on a 

main script for the aggregation step and scheduling step. 

The main scripts and the general code presented here is for the full stochastic optimization 

framework (aggregation and scheduling steps) with geological and material flow uncertainty. 

Running the model on deterministic or only geological uncertainty cases would require taking 

off some of the functions presented here.  

The input files required are three Microsoft EXCEL files: the block model file with all the 

information including blocks coordinates, indices and numerical values for all the geological 

realizations; the technical and operational parameters for the caving scenario; the production 

and average grade targets.  
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f1_ readPar 

function f1_readPar(flRoot) 

 
    [parameters,roots]=xlsread(flRoot); 

     
    

params=struct('bHeight',parameters(1),'minHeight',parameters(2),'maxHeight'

,parameters(3),... 
        'xIndexCol',parameters(4),'yIndexCol',parameters(5),... 
        

'zIndexCol',parameters(6),'xCoordCol',parameters(7),'yCoordCol',parameters(

8),... 
        

'zCoordCol',parameters(9),'gradeCol',parameters(10),'tonCol',parameters(11)

,'price',parameters(12),... 
        

'sCost',parameters(13),'mCost',parameters(14),'pCost',parameters(15),'rec',

parameters(16),... 
        

'disRate',parameters(17),'eRate',parameters(18),'S',parameters(19),'oreCode

Col',parameters(22),... 
        

'oreCode',parameters(23),'minDR',parameters(24),'sizeX',parameters(25),'siz

eY',parameters(26),'ped',parameters(27),... 
        'dilution',parameters(28)); 
    params.SimFolderRoot=roots{20,3}; 
    params.KrigBMRoot=roots{21,3}; 

  
     save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat','params') 

     

     
end 
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f2_readSimulations 

function f2_readSimulations 
 

    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat') 
    S=params.S; 
    for s = 1:S 
        blkFile = strcat(params.SimFolderRoot,'\Real',int2str(s),'.xlsx'); 
        data=xlsread(blkFile); 
        noBlocks=length(data); 
        if s == 1 
            

blockModel(noBlocks)=struct('blockIndex',[],'xIndex',[],'yIndex',[],'zIndex

',[],... 
            'xCoord',[],'yCoord',[],'zCoord',[],'grade1',[],'ton1',[]); 
        else 
            blockModel(noBlocks).(strcat('grade',int2str(s)))=[]; 
            blockModel(noBlocks).(strcat('ton',int2str(s)))=[]; 
        end 

        
        for block=1:noBlocks 
            blockModel(block).blockIndex=block; 
            blockModel(block).xIndex=data(block,params.xIndexCol); 
            blockModel(block).yIndex=data(block,params.yIndexCol); 
            blockModel(block).zIndex=data(block,params.zIndexCol); 
            blockModel(block).xCoord=data(block,params.xCoordCol); 
            blockModel(block).yCoord=data(block,params.yCoordCol); 
            blockModel(block).zCoord=data(block,params.zCoordCol); 
            

blockModel(block).(strcat('grade',int2str(s)))=data(block,params.gradeCol); 
            

blockModel(block).(strcat('ton',int2str(s)))=data(block,params.tonCol); 
            blockModel(block).oreCode=data(block,params.oreCodeCol); 
        end 
        fprintf('Finished Reading Block Model Realization %d\n',s)  
    end 
    gradeAvg = zeros(1,noBlocks); 
    tonSum = zeros(1,noBlocks); 
    for s=1:S 
        gradeAvg = 

gradeAvg+([blockModel.(strcat('grade',int2str(s)))].*[blockModel.(strcat('t

on',int2str(s)))]); 
        tonSum = tonSum+([blockModel.(strcat('ton',int2str(s)))]); 
    end 
    temp = num2cell(gradeAvg./tonSum); 
    [blockModel.Egrade] = temp{:}; 
    temp = num2cell(tonSum/S); 
    [blockModel.Eton] = temp{:}; 
    dataKrig=xlsread(params.KrigBMRoot); 
    noBlocks=length(dataKrig); 
    for block=1:noBlocks 
        blockModel(block).grade=dataKrig(block,params.gradeCol); 
        blockModel(block).ton=dataKrig(block,params.tonCol); 
    end 
    fprintf('Finished reading Kriged Block Model') 
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    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\blockModel.mat','blockModel') 
end 
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f3_ucutModel 

function f3_ucutModel(ucutLevel) 

  
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\blockModel.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat') 
    ucutModel=blockModel([blockModel.zIndex]<=ucutLevel); 
    ore=ucutModel([ucutModel.Egrade]>0); 
    minX=min([ore.xIndex]); 
    maxX=max([ore.xIndex]); 
    minY=min([ore.yIndex]); 
    maxY=max([ore.yIndex]); 
    minZ=min([ore.zIndex]); 
    maxZ=max([ore.zIndex]); 
 

    [ucutModel(:).ucutIndex]=deal(0); 
    count=0; 
    for i=1:length(ucutModel) 
        count=count+1; 
        ucutModel(i).ucutIndex=count; 
    end 

     
    level=max([ucutModel.zIndex]); 
    ucut=ucutModel([ucutModel.zIndex]==level); 
    ore=ucut([ucut.Egrade]>0); 
    minX=min([ore.xIndex]); 
    maxX=max([ore.xIndex]); 
    minY=min([ore.yIndex]); 
    maxY=max([ore.yIndex]); 
    ucut=ucut([ucut.xIndex]>=(minX)); 
    ucut=ucut([ucut.xIndex]<=(maxX)); 
    ucut=ucut([ucut.yIndex]>=(minY)); 
    ucut=ucut([ucut.yIndex]<=(maxY)); 

     
    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucutModel.mat','ucutModel') 
    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucut.mat','ucut') 
end 
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f4_buildPU 

function f4_buildPU 

  
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucut.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucutModel.mat') 

     
    xSize=params.sizeX; 
    ySize=params.sizeY; 
    minX=min([ucut.xIndex]); 
    maxX=max([ucut.xIndex]); 
    minY=min([ucut.yIndex]); 
    maxY=max([ucut.yIndex]); 
    bSize=params.bHeight; 
    noBlocksX=ceil(xSize/params.bHeight); 
    noBlocksY=ceil(ySize/params.bHeight); 
    ucutLevel=max([ucutModel.zIndex]); 
    [ucut.layout]=deal(0); 

     
    noBB=(((maxX-minX)+1)-(noBlocksX-1))*(((maxY-minY)+1)-(noBlocksY-1)); 

     
    

bigBlocks(noBB)=struct('x1',[],'x2',[],'y1',[],'y2',[],'xCoord1',[],'xCoord

2',[],'yCoord1',[],'yCoord2',[],'bBlockIndex',[],'oreTon',0,'metalContent',

0,'minHeight',0,'maxHeight',0,'vertCumValue',0); 

     
    count=1; 
    for block=1:length(ucut) 
        if ((ucut(block).xIndex + noBlocksX)-1) > maxX || 

((ucut(block).yIndex + noBlocksY))-1 > maxY 
            continue 
        else 
            

bigBlocks(count)=struct('x1',ucut(block).xIndex,'x2',ucut(block).xIndex+noB

locksX-1,'y1',ucut(block).yIndex,'y2',ucut(block).yIndex+noBlocksY-1,... 
                'xCoord1',ucut(block).xCoord,'xCoord2',ucut(block).xCoord + 

(noBlocksX*bSize),'yCoord1',ucut(block).yCoord,... 
                'yCoord2',ucut(block).yCoord + 

(noBlocksY*bSize),'bBlockIndex',count,'oreTon',0,'metalContent',0,'minHeigh

t',0,'maxHeight',0,'vertCumValue',0); 
            count=count+1;  
        end 
    end 
    [bigBlocks.columnMetalContent]=deal(0); 
    [bigBlocks.columnHeight]=deal(0); 
 

    for b=1:length(bigBlocks) 
        if mod(b,200)==0 
            fprintf('Finished calculating big block %d\n',b) 
        end 
        bBlock=bigBlocks(b); 
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        columns=ucutModel([ucutModel.xIndex]>=bBlock.x1 & 

[ucutModel.xIndex]<=bBlock.x2 & [ucutModel.yIndex]>=bBlock.y1 & 

[ucutModel.yIndex]<=bBlock.y2); 
        columnHeight=0; 
        level=ucutLevel; 
        columnMetalContent=0; 
        flag=0; 
        while columnHeight+(flag*params.bHeight)<=params.maxHeight 
            metalContent=0; 
            columnTon=0; 
            wasteTon=0; 
            totTon=0; 
            flag=0; 
            while columnTon <=params.minDR 
                blocks=columns([columns.zIndex]==level); 
                if columnTon+sum([blocks.Eton])<=params.minDR 
                    columnTon=columnTon+sum([blocks.Eton]); 
                    valid=blocks([blocks.Egrade]>0); 
                    waste=blocks([blocks.Egrade]==0); 
                    wasteTon=wasteTon+sum([waste.Eton]); 
                    totTon=totTon+sum([blocks.Eton]); 

                    

metalContent=metalContent+sum([valid.Eton].*([valid.Egrade]/100)); 
                    flag=flag+1; 
                    level=level-1; 
                else 
                    break 
                end 
            end 
            if metalContent==0 || (wasteTon/totTon)*100 >= params.dilution        
                break 
            elseif columnHeight+(flag*params.bHeight)<=params.maxHeight 
                columnHeight=columnHeight+(flag*params.bHeight); 
                columnMetalContent=columnMetalContent+metalContent; 
            end 
        end 
        if bigBlocks(b).yCoord1 > 100 & bigBlocks(b).xCoord1 >=180 
            bigBlocks(b).columnMetalContent=columnMetalContent; 
            bigBlocks(b).columnHeight=columnHeight; 
            layoutBlocks=columns([columns.zIndex]==ucutLevel); 
        end 
        if bigBlocks(b).columnHeight > params.minHeight 
            for i=1:length(layoutBlocks)  
                

ucut([ucut.blockIndex]==layoutBlocks(i).blockIndex).layout=1; 
            end 
        end 

  
    end 
save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\bigBlocks.mat','bigBlocks') 
    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucut.mat','ucut') 
end 
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f5_objFunctionCoeffAgg 

function f5_objFunctionCoeffAgg 

  
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\bigBlocks.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat') 
    load('Elevation Optimization\Drawpoints COnfiguration 

Opt\MatFiles\ucut.mat') 

     
    noBB=length(bigBlocks); 

    
    f2MetalContent=zeros(1,noBB); 

     
    for b=1:noBB 
        if bigBlocks(b).columnHeight >= params.minHeight 
            f2MetalContent(b)=-bigBlocks(b).columnMetalContent; 
        end 
    end 

         
    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\f2MetalContent.mat','f2MetalContent') 

     
end 
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f6_constAgg 

function f6_constAgg 
 

load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\bigBlocks.mat') 
load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucut.mat') 
load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\params.mat') 

  
nBlocks=length(bigBlocks); 
ore=ucut([ucut.layout]==1); 
ore=ore([ore.xCoord]>=160); 
ore=ore([ore.yCoord]>100); 
nOre=length(ore); 
noX=params.sizeX/params.bHeight; 
noY=params.sizeY/params.bHeight; 

  
c2_continuity=sparse(nOre,nBlocks); 

  
for b=1:nOre 
    x=ore(b).xIndex; 
    y=ore(b).yIndex; 
    bBlocks=bigBlocks([bigBlocks.x1]<=x); 
    bBlocks=bBlocks([bBlocks.x1]>=(x-noX+1)); 
    bBlocks=bBlocks([bBlocks.y1]>=y); 
    bBlocks=bBlocks([bBlocks.y1]<=(y+noY-1)); 
    for j=1:length(bBlocks) 
            c2_continuity(b,bBlocks(j).bBlockIndex)=1; 
    end 
end 

  
c2_rhs_continuity=ones(nOre,1); 

  
save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\c2_continuity.mat','c2_continuity') 
save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\c2_rhs_continuity.mat','c2_rhs_continuity') 
end 
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f7_solveAgg 

function f7_solveAgg 

  
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\Aeq.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\beq.mat') 
    load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\f2MetalContent.mat') 

     
    Cplex.Param.mip.tolerances.mipgap=0.01; 

     
    solution=cplexbilp(f2MetalContent,[],[],Aeq,beq,options); 

     
    save('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\solution.mat','solution') 
end 



Appendix A                                                                                                                                                          127 

 

 

f7_Main_Agg 

fprintf('Reading Data and Preparing Objects...\n') 
f1_readPar ('Elevation Optimization\Drawpoints Configuration 

Opt\Parameters\Parameters_Saha.xlsx') 
fprintf('Finished Reading Parameters File\n') 
f2_readSimulations 

f3_ucutModel(level) 
fprintf('FInished Reading Data and Preparing Objets\n\n') 
fprintf('Building PU...\n') 
f4_buildPU 
fprintf('Building Optimization Problem...\n') 
f5_objFunctionCoeffAgg 
f6_constAgg 
fprintf('Solving Optimization Problem...\n') 
f7_solveAgg 
fprintf('\nPost Processing Solution...\n') 

 
end 
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f1a_readPar 

function f1a_readPar(flRoot,flRoot2) 

  
    parameters=xlsread(flRoot); 
    miningCap=xlsread(flRoot2); 
    

params=struct('price',parameters(1),'sCost',parameters(2),'mCost',parameter

s(3),... 
        

'pCost',parameters(4),'rec',parameters(5),'bHeight',parameters(6),'disRate'

,parameters(7),... 
        

'maxAdjUnits',parameters(8),'minHeight',parameters(9),'maxHeight',parameter

s(10),... 
        

'minMinCap',parameters(11),'maxMinCap',parameters(12),'minDR',parameters(13

),... 
        

'maxDR',parameters(14),'T',parameters(15),'xIndexCol',parameters(16),'yInde

xCol',parameters(17),... 
        

'zIndexCol',parameters(18),'xCoordCol',parameters(19),'yCoordCol',parameter

s(20),... 
        

'zCoordCol',parameters(21),'gradeCol',parameters(22),'tonCol',parameters(23

),... 
        

'uDelCost',parameters(24),'uDelRate',parameters(25),'ped',parameters(26),'x

Start',parameters(27),... 
        

'yStart',parameters(28),'xEnd1',parameters(29),'yEnd1',parameters(30),'xEnd

2',parameters(31),... 
        

'yEnd2',parameters(32),'Vangle',parameters(33),'sizeX',parameters(34),'size

Y',parameters(35),... 
        

'bSize',parameters(36),'S',parameters(37),'gRate',parameters(38),... 
        

'tonOverCost',parameters(39),'tonUnderCost',parameters(40),'gradeOverCost',

parameters(41),... 
        

'gradeUnderCost',parameters(42),'bSizeX',parameters(43),'bSizeY',parameters

(44),'HD',parameters(45),'VSA',parameters(46),... 
        'HIZ',parameters(47)); 

     

  
     save('Elevation Optimization\MatFiles\params.mat','params') 
     save('Elevation Optimization\MatFiles\miningCap.mat','miningCap') 

     

     
end 
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f8_buildMU 

function f8_buildMU 

  
load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\bigBlocks.mat') 
load('Elevation Optimization\Drawpoints Configuration 

Opt\MatFiles\ucutModel.mat') 
load('Elevation Optimization\MatFiles\params.mat') 
sizeX=params.sizeX; 
sizeY=params.sizeY; 
ucutLevel=max([ucutModel.zIndex]); 
ucutElevation=max([ucutModel.zCoord]); 
limit=ucutElevation+params.maxHeight; 
diffLevel=ceil((limit-ucutElevation)/params.bHeight); 
minLevel=ucutLevel-diffLevel; 
[ucutModel(:).columnIndex]=deal(0); 
[ucutModel(:).miningUnitIndex]=deal(0); 
[ucutModel(:).miningUnitTon]=deal(0); 
[ucutModel(:).miningUnitGrade]=deal(0); 
[ucutModel(:).miningUnitHeight]=deal(0); 

  
noBlocks=(ceil(sizeX/params.bHeight))*(ceil(sizeY/params.bHeight)); 

  
ton=mean([ucutModel([ucutModel.Egrade]>0).Eton]); 
height=ceil(params.minDR*1000/(ton*noBlocks)); 

  
nBBlocks=length(find([bigBlocks.solutionConstrained])); 
bigBlocks=bigBlocks([bigBlocks.solutionConstrained]==1); 
cCounter=0; 

  
for b=1:length(bigBlocks) 
        cCounter=cCounter+1; 
        mCounter=0; 
        bBlock=bigBlocks(b); 
        columns=ucutModel([ucutModel.xIndex]>=bBlock.x1 & 

[ucutModel.xIndex]<=bBlock.x2 & [ucutModel.yIndex]>=bBlock.y1 & 

[ucutModel.yIndex]<=bBlock.y2); 
        columnHeight=0; 
        level=ucutLevel; 
        columnMetalContent=0; 
        flag=0; 
        miningUnitIndex=0; 
        while columnHeight+(flag*params.bHeight)<=params.maxHeight 
            metalContent=0; 
            columnTon=0; 
            levelBot=level; 
            flag=0; 
            miningUnitIndex=miningUnitIndex+1; 
            while columnTon <=params.minDR 
                blocks=columns([columns.zIndex]==level); 
                if columnTon+sum([blocks.Eton])<=params.minDR 
                    columnTon=columnTon+sum([blocks.Eton]); 
                    

metalContent=metalContent+sum([blocks.Eton].*([blocks.Egrade]/100)); 
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                    flag=flag+1; 
                    level=level-1; 
                else 
                    break 
                end 
            end 
            if metalContent==0         
                break 
            elseif columnHeight+(flag*params.bHeight)<=params.maxHeight 
                mCounter=mCounter+1; 
                columnHeight=columnHeight+(flag*params.bHeight); 
                columnMetalContent=columnMetalContent+metalContent; 
                columnGrade=(metalContent/columnTon)*100; 

               
            end 
            mBlocks=columns([columns.zIndex]>=level+1 & 

[columns.zIndex]<=levelBot); 
            for mB=1:length(mBlocks) 
                

ucutModel(mBlocks(mB).ucutIndex).miningUnitIndex=miningUnitIndex; 
                ucutModel(mBlocks(mB).ucutIndex).columnIndex=cCounter; 
                ucutModel(mBlocks(mB).ucutIndex).miningUnitTon=columnTon; 
                

ucutModel(mBlocks(mB).ucutIndex).miningUnitGrade=columnGrade; 
                

ucutModel(mBlocks(mB).ucutIndex).miningUnitHeight=columnHeight; 
            end 
        end 
end 
save('Elevation Optimization\MatFiles\ucutModel.mat','ucutModel') 
end 
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f9_updMU 

function f9_updMU 

  
load('Elevation Optimization\MatFiles\ucutModel.mat','ucutModel') 
load('Elevation Optimization\MatFiles\params.mat','params') 
units=ucutModel([ucutModel.columnIndex]>0); 
S=params.S; 
noColumns=max([ucutModel.columnIndex]); 
count=0; 

  
miningUnits(1)=struct('index',[],'x1',[],'x2',[],'y1',[],'y2',[],'xCoord1',

[],... 
            

'xCoord2',[],'yCoord1',[],'yCoord2',[],'xMid',[],'yMid',[],'xCoordMid',[],.

.. 
            

'yCoordMid',[],'columnIndex',[],'miningUnitIndex',[],'zCoord',[],'miningUni

tETon',[],'miningUnitEGrade',[],... 
            'miningUnitGrade',[],'miningUnitTon',[],'miningUnitHeight',[]); 
for s = 1:S 
    miningUnits(1).(strcat('miningUnitGrade',int2str(s)))=[]; 
    miningUnits(1).(strcat('miningUnitTon',int2str(s)))=[]; 
end 
for column=1:noColumns 

     
    columnUnits=units([units.columnIndex]==column); 
    x1=min([columnUnits.xIndex]); 
    y1=max([columnUnits.yIndex]); 
    x2=max([columnUnits.xIndex]); 
    y2=min([columnUnits.yIndex]); 
    xCoord1=min([columnUnits.xCoord]); 
    yCoord1=max([columnUnits.yCoord]); 
    xCoord2=max([columnUnits.xCoord]); 
    yCoord2=min([columnUnits.yCoord]); 
    xMid=((x2-x1)/2)+x1; 
    yMid=((y1-y2)/2)+y2; 
    xCoordMid=(((xCoord2+params.bSize)-xCoord1)/2)+xCoord1; 
    yCoordMid=((yCoord1-yCoord2)/2)+yCoord2; 

     

     
    for unit=1:max([columnUnits.miningUnitIndex]) 
        count=count+1; 
        mUnit = columnUnits([columnUnits.miningUnitIndex]==unit); 
        Eton = sum([mUnit.Eton]); 
        Egrade = sum([mUnit.Eton].*[mUnit.Egrade])/Eton; 
        ton=sum([mUnit.ton]); 
        grade=sum([mUnit.ton].*[mUnit.grade])/ton; 
        miningUnits(count).miningUnitETon = Eton; 
        miningUnits(count).miningUnitEGrade = Egrade; 
        miningUnits(count).miningUnitTon=ton; 
        miningUnits(count).miningUnitGrade=grade; 
        miningUnits(count).miningUnitHeight=mUnit(1).miningUnitHeight; 
        for s=1:S 
            simTon=sum([mUnit.(strcat('ton',int2str(s)))]); 
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simGrade=sum([mUnit.(strcat('ton',int2str(s)))].*[mUnit.(strcat('grade',int

2str(s)))])/ton; 
            miningUnits(count).index = count; 
            miningUnits(count).x1 = x1; 
            miningUnits(count).x2 = x2; 
            miningUnits(count).y1 = y1; 
            miningUnits(count).y2 = y2; 
            miningUnits(count).xCoord1 = xCoord1; 
            miningUnits(count).xCoord2 = xCoord2; 
            miningUnits(count).yCoord1 = yCoord1; 
            miningUnits(count).yCoord2 = yCoord2; 
            miningUnits(count).xMid = xMid; 
            miningUnits(count).yMid = yMid; 
            miningUnits(count).xCoordMid = xCoordMid; 
            miningUnits(count).yCoordMid = yCoordMid; 
            miningUnits(count).columnIndex = column; 
            miningUnits(count).miningUnitIndex = unit; 
            miningUnits(count).zCoord = max([mUnit.zCoord]); 
            miningUnits(count).(strcat('miningUnitTon',int2str(s))) = 

simTon; 
            miningUnits(count).(strcat('miningUnitGrade',int2str(s))) = 

simGrade; 
        end 
    end 
end 
save('Elevation Optimization\MatFiles\miningUnits.mat','miningUnits') 
end 
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f10_mixScenarios 

function f_mixScenarios 

  
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\ucutModel.mat') 

  
    columns=miningUnits([miningUnits.miningUnitIndex]==1); 
    C=length(columns); 
    U=length(miningUnits); 

    [ucutModel.flag]=deal(0); 
    zLevel=min([ucutModel.zCoord])-params.bHeight; 

     
    for c=1:C 
        columnModel=miningUnits([miningUnits.columnIndex]==c); 
        U=length(columnModel); 
        cX=columnModel(1).xCoordMid; 
        cY=columnModel(1).yCoordMid; 
        for u=1:U 
            counter=0; 
            if columnModel(u).miningUnitHeight <= params.HIZ 
                continue 
            else 
                cZ=zLevel+columnModel(u-1).miningUnitHeight; 
                h=params.HD*tand(params.VSA); 
                x=[cX,cY,cZ]; 
                dir=[0,0,1]; 
                r=params.HD; 
                blocksSpace=ucutModel([ucutModel.xCoord]>=cX-r-

(params.bSizeX/2) & [ucutModel.xCoord]<=cX+r-(params.bSizeX/2) & 

[ucutModel.yCoord]>=cY-r+(params.bSizeY/2) & 

[ucutModel.yCoord]<=cY+r+(params.bSizeY/2) & 

[ucutModel.zCoord]>=cZ+(params.bHeight/2) & 

[ucutModel.zCoord]<=cZ+h+(params.bHeight/2)); 
                blocksSpace=blocksSpace([blocksSpace.flag]==0); 
                blockSet=ucutModel([ucutModel.columnIndex]==c & 

[ucutModel.miningUnitIndex]==u); 
                for u2=1:length(blocksSpace) 
                    

p=[blocksSpace(u2).xCoord+(params.bSizeX/2),blocksSpace(u2).yCoord-

(params.bSizeY/2),blocksSpace(u2).zCoord-(params.bHeight/2)]; 
                    cone_dist=dot(p-x,dir); 
                    cone_radius=(cone_dist/h)*r; 
                    orth_dist=length((p-x)-cone_dist*dir); 
                    if orth_dist < cone_radius && 

~ismember(blocksSpace(u2).blockIndex,[blockSet.blockIndex]) 
                        blockSet(end+1)=blocksSpace(u2); 
                    end 
                end 
                cumTon=0; 
                f=fieldnames(blockSet)'; 
                f{2,1}={}; 
                blockSample=struct(f{:}); 
                for s=1:params.S 
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                    while 

cumTon<=columnModel(u).(strcat('miningUnitTon',int2str(s))) 
                        blockSet=blockSet([blockSet.flag]==0); 
                        pos=randi(length(blockSet)); 
                        blockSample(end+1)=blockSet(pos); 
                        blockSet(pos).flag=1; 
                        

cumTon=cumTon+blockSet(pos).(strcat('ton',int2str(s))); 
                    end 
                    mixTon=sum([blockSample.(strcat('ton',int2str(s)))]); 
                    

mixGrade=sum([blockSample.(strcat('grade',int2str(s)))].*[blockSample.(strc

at('ton',int2str(s)))])/mixTon; 
                    miningUnits([miningUnits.columnIndex]==c & 

[miningUnits.miningUnitIndex]==u).(strcat('miningUnitTon',int2str(s)))=mixT

on; 
                    miningUnits([miningUnits.columnIndex]==c & 

[miningUnits.miningUnitIndex]==u).(strcat('miningUnitGrade',int2str(s)))=mi

xGrade; 
                end 
            end 
            counter=counter+1; 
            if mod(counter,100)==0 
                fprintf('\nFinished mixing MU %d',u) 
            end 
        end 
    end 
    save('Elevation Optimization\MatFiles\miningUnits.mat','miningUnits') 
end 
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f11_objFunctionCoeffSch 

function f11_objFunctionCoeffSch 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    T=params.T; 
    S=params.S; 
    f=zeros(1,(length(miningUnits)*params.T)); 
    dCost=164*params.uDelCost; 
    devGrade=zeros(1,2*params.S*params.T); 
    devTon=zeros(1,2*params.S*params.T); 

     
    for t=1:params.T 
        for unit=1:length(miningUnits) 
            blockVals = zeros(1,params.S); 
            for s=1:params.S 
                

revenue=(miningUnits(unit).(strcat('miningUnitGrade',int2str(s)))/100) * 

miningUnits(unit).(strcat('miningUnitTon',int2str(s))) * (params.rec/100) * 

(params.price-params.sCost); 
                

miningCost=miningUnits(unit).(strcat('miningUnitTon',int2str(s)))*(params.m

Cost); 
                

processCost=miningUnits(unit).(strcat('miningUnitTon',int2str(s)))*(params.

pCost); 
                if miningUnits(unit).miningUnitIndex == 1 
                    miningCost=miningCost+dCost; 
                end 
                if revenue>processCost 
                    profit=revenue-(miningCost+processCost); 
                else 
                    profit=-miningCost; 
                end 
                disProfit=profit/((1+(params.disRate/100))^t); 
                blockVals(s)=disProfit; 
            end 
            f(unit+(length(miningUnits)*(t-1)))=mean(blockVals)*-1; 
        end 
    end 
    for s=1:params.S 
        for t=1:params.T 
            devGrade(t+(params.T*(s-

1)))=(params.gradeOverCost/((1+(params.gRate/100))^t)); 
            devGrade((T*S)+t+(params.T*(s-

1)))=(params.gradeUnderCost/((1+(params.gRate/100))^t)); 
        end 
    end 
    for s=1:params.S 
        for t=1:params.T 
            devTon(t+(params.T*(s-

1)))=(params.tonOverCost/((1+(params.gRate/100))^t)); 
            devTon((T*S)+t+(params.T*(s-

1)))=(params.tonUnderCost/((1+(params.gRate/100))^t)); 
        end 
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    end 
    f=[f,devTon,devGrade]; 

     
    save('Elevation Optimization\MatFiles\f.mat','f') 
end 
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f12_constMiningTarget 

function f12_constMiningTarget 

 
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\miningCap.mat') 

     
    noUnits=length(miningUnits); 
    T=params.T; 
    S=params.S; 
    

c1_targetCap=sparse(params.T*S,(noUnits*params.T)+(2*params.T*S)+(2*params.

T*S)); 

     
    for s=1:params.S 
        for t=1:params.T 
            for unit=1:noUnits 
                c1_targetCap(t+(T*(s-1)),unit+(noUnits*(t-

1)))=miningUnits(unit).(strcat('miningUnitTon',int2str(s)));  
            end 
            c1_targetCap(t+(T*(s-1)),(T*noUnits)+t+(T*(s-1)))=-1; 
            c1_targetCap(t+(T*(s-1)),(T*noUnits)+(T*S)+t+(T*(s-1)))=1; 
        end 
    end 

     

     
    c1_rhs_targetCap=ones(t,1).*miningCap(2,:)'*1000; 
    c1_rhs_targetCap=repmat(c1_rhs_targetCap,S,1); 

     
    save('Elevation Optimization\MatFiles\c1_targetCap.mat','c1_targetCap') 
    save('Elevation 

Optimization\MatFiles\c1_rhs_targetCap.mat','c1_rhs_targetCap') 

     
end 
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f13_constReserves 

function f13_constReserves 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 

     
    noUnits=length(miningUnits); 

     
    c2_reserves=sparse(noUnits,(params.T*noUnits)); 

     
    for unit=1:noUnits 
        for t=1:params.T 
            c2_reserves(unit,unit+(noUnits*(t-1)))=1; 
        end 
    end 

     
    c2_rhs_reserves=ones(noUnits,1); 

     
    save('Elevation Optimization\MatFiles\c2_reserves.mat','c2_reserves') 
    save('Elevation 

Optimization\MatFiles\c2_rhs_reserves.mat','c2_rhs_reserves') 

     
end 
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f14_constVertPrec 

function f14_constVertPrec 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 

     
    noColumns=max([miningUnits.columnIndex]); 
    noUnits=length(miningUnits); 

     
    c3_verticalPrecedence=sparse(noUnits*params.T,noUnits*params.T); 

     
    for t=1:params.T 
        for column=1:noColumns 
            columnModel=miningUnits([miningUnits.columnIndex]==column); 
            noUnitsCol=max([columnModel.miningUnitIndex]); 
            for unit=1:noUnitsCol 
                if unit==1 
                    continue 
                else 
                    

uIndex=columnModel([columnModel.miningUnitIndex]==unit).index; 
                    

precIndex=columnModel([columnModel.miningUnitIndex]==(unit-1)).index; 
                    c3_verticalPrecedence(uIndex+(noUnits*(t-

1)),uIndex+(noUnits*(t-1)))=1; 
                    if t>=2 
                        c3_verticalPrecedence(uIndex+(noUnits*(t-

1)),precIndex+(noUnits*(t-1)))=-1; 
                        c3_verticalPrecedence(uIndex+(noUnits*(t-

1)),precIndex+(noUnits*(t-2)))=-1; 
                    end 
                end 
            end 
        end 
    end 

     
    [r,c]=size(c3_verticalPrecedence); 

     
    c3_rhs_verticalPrecedence=zeros(r,1); 

     
    save('Elevation 

Optimization\MatFiles\c3_verticalPrecedence','c3_verticalPrecedence') 
    save('Elevation 

Optimization\MatFiles\c3_rhs_verticalPrecedence','c3_rhs_verticalPrecedence

') 

     
end 
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f15_constMaxDrawRate 

function f15_constMaxDrawRate 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 

     
    noUnits=length(miningUnits); 
    noColumns=max([miningUnits.columnIndex]); 

     
    c4_maxDR=sparse(params.T*noColumns,noUnits*params.T); 

     
    for t=1:params.T 
        for column=1:noColumns 
            columnModel=miningUnits([miningUnits.columnIndex]==column); 
            noUnitsCol=max([columnModel.miningUnitIndex]); 
            for unit=1:noUnitsCol 
                

uIndex=columnModel([columnModel.miningUnitIndex]==unit).index; 
                c4_maxDR(column + noColumns*(t-1),uIndex + noUnits*(t-1)) = 

columnModel([columnModel.miningUnitIndex]==unit).miningUnitETon; 
            end 
        end 
    end 

     
    c4_rhs_maxDR=ones(params.T*noColumns,1)*params.maxDR; 

     
    save('Elevation Optimization\MatFiles\c4_maxDR.mat','c4_maxDR') 
    save('Elevation Optimization\MatFiles\c4_rhs_maxDR.mat','c4_rhs_maxDR') 
end 
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f16_buildHorPrec 

function f16_buildHorPrec 

  
load('Elevation Optimization\MatFiles\miningUnits.mat','miningUnits') 
load('Elevation Optimization\MatFiles\params.mat','params') 

  
columns=miningUnits([miningUnits.miningUnitIndex]==1); 
N=length(columns); 
T=params.T; 

  
Dir1=[xStart,yStart;xEnd1,yEnd1]; 
Dir2=[xStart,yStart;xEnd2,yEnd2]; 
VShapedAngle = Vangle; 
StPoint1 = [Dir1(1,1), Dir1(1,2)];  
EnPoint1 = [Dir1(2,1), Dir1(2,2)];  
StPoint2 = [Dir2(1,1), Dir2(1,2)];  
EnPoint2 = [Dir2(2,1), Dir2(2,2)];  
StepDis = 1;  
PlotStepSize = 5; 
PlotCounter = 0; 
Dir1LineSlop = (EnPoint1(2)-StPoint1(2))/(EnPoint1(1)-StPoint1(1));  
Dir2LineSlop = (EnPoint2(2)-StPoint2(2))/(EnPoint2(1)-StPoint2(1));  
Dir1LineLegnth = sqrt(((EnPoint1(1)-StPoint1(1))^2)+((EnPoint1(2)-

StPoint1(2))^2)); 
Dir2LineLegnth = sqrt(((EnPoint2(1)-StPoint2(1))^2)+((EnPoint2(2)-

StPoint2(2))^2)); 
PrecVShape = zeros(N,2); 
PrecVShape (1:N,1) = 1:N; 
PrecCounter = 1; 
adjPrecedence=zeros(N); 

  
while PrecCounter <= N 
    for iloop = 1:N 

         

     
        if StPoint1(1) == EnPoint1(1) %Vertical Direction (when X_Start == 

X_End) 
            VShape1Point2 = [StPoint1(1) + StepDis*tand(VShapedAngle/2), 

StPoint1(2)]; 
            VShape1Point3 = [StPoint1(1) - StepDis*tand(VShapedAngle/2), 

StPoint1(2)]; 
            if StPoint1(2) < EnPoint1(2) 
                VShape1Point1 = [StPoint1(1), StPoint1(2) + StepDis]; 
            else 
                VShape1Point1 = [StPoint1(1), StPoint1(2)-StepDis]; 
            end 
        elseif StPoint1(2) == EnPoint1(2) %Horizontal Direction (when 

Y_Start == Y_End) 
            VShape1Point2 = [StPoint1(1), StPoint1(2) + 

StepDis*tand(VShapedAngle/2)]; 
            VShape1Point3 = [StPoint1(1), StPoint1(2) - 

StepDis*tand(VShapedAngle/2)]; 
            if StPoint1(1) < EnPoint1(1) 
                VShape1Point1 = [StPoint1(1) + StepDis, StPoint1(2)]; 
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            else 
                VShape1Point1 = [StPoint1(1) - StepDis, StPoint1(2)]; 
            end 
        else 

  
        XVpointDir1Point1 = (StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(1); 

% X coordination of the point in whch the V shape and the Direction Line 

intersect (first situation which means considering + sign for the square 

root calculations of the coordinates) 
        YVpointDir1Point1 = 

Dir1LineSlop*(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(2); % Y 

coordination of the point in whch the V shape and the Direction Line 

intersect (first situation which means considering + sign for the square 

root calculations of the coordinates) 

       
        XVpointDir2Point1 = (StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(1); 

% X coordination of the point in whch the V shape and the Direction Line 

intersect (first situation which means considering + sign for the square 

root calculations of the coordinates) 
        YVpointDir2Point1 = 

Dir2LineSlop*(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint1(2); % Y 

coordination of the point in whch the V shape and the Direction Line 

intersect (first situation which means considering + sign for the square 

root calculations of the coordinates) 

  
        XVpointDir1Point2 = -

(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(1); % X coordination of the 

point in whch the V shape and the Direction Line intersect (second 

situation which means considering - sign for the square root calculations 

of the coordinates) 
        YVpointDir1Point2 = -

Dir1LineSlop*(StepDis/sqrt(1+(Dir1LineSlop^2)))+StPoint1(2); % Y 

coordination of the point in whch the V shape and the Direction Line 

intersect (Second situation which means considering - sign for the square 

root calculations of the coordinates) 

         
        XVpointDir2Point2 = -

(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(1); % X coordination of the 

point in whch the V shape and the Direction Line intersect (second 

situation which means considering - sign for the square root calculations 

of the coordinates) 
        YVpointDir2Point2 = -

Dir2LineSlop*(StepDis/sqrt(1+(Dir2LineSlop^2)))+StPoint2(2); % Y 

coordination of the point in whch the V shape and the Direction Line 

intersect (Second situation which means considering - sign for the square 

root calculations of the coordinates) 

  
        XVpointPerLine1Point1 = 

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2)))))+StPoint1(1)

; % X coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (first point) 
        YVpointPerLine1Point1 = (-

1/Dir1LineSlop)*(((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2

))))))+StPoint1(2); % Y coordination of the point in whch the V shape and 

the Perpendicular line (to the Direction Line) intersect (first point) 

         



Appendix A                                                                                                                                                          143 

 

 

        XVpointPerLine2Point1 = 

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2)))))+StPoint2(1)

; % X coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (first point) 
        YVpointPerLine2Point1 = (-

1/Dir2LineSlop)*(((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2

))))))+StPoint2(2); % Y coordination of the point in whch the V shape and 

the Perpendicular line (to the Direction Line) intersect (first point) 

  
        XVpointPerLine1Point2 = -

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2)))))+StPoint1(1)

; % X coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (second point) 
        YVpointPerLine1Point2 = (-1/Dir1LineSlop)*(-

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir1LineSlop^2))))))+StPoint1(2

); % Y coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (second point) 

  
        XVpointPerLine2Point2 = -

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2)))))+StPoint2(1)

; % X coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (second point) 
        YVpointPerLine2Point2 = (-1/Dir2LineSlop)*(-

((StepDis*tand(VShapedAngle/2))/(sqrt(1+(1/(Dir2LineSlop^2))))))+StPoint2(2

); % Y coordination of the point in whch the V shape and the Perpendicular 

line (to the Direction Line) intersect (second point) 

           
        %Distance Calculator 
        Dis1VpointToVpoint1 = sqrt(((EnPoint1(1)-

XVpointDir1Point1)^2)+((EnPoint1(2)-YVpointDir1Point1)^2)); %Calculating 

the distance between the point of intersection of V shape (and Direction 

Line) and end point in first situation 
        Dis1VpointToVpoint2 = sqrt(((EnPoint1(1)-

XVpointDir1Point2)^2)+((EnPoint1(2)-YVpointDir1Point2)^2)); %Calculating 

the distance between the point of intersection of V shape (and Direction 

Line) and end point in second situation 

         
        Dis2VpointToVpoint1 = sqrt(((EnPoint1(1)-

XVpointDir2Point1)^2)+((EnPoint2(2)-YVpointDir2Point1)^2)); %Calculating 

the distance between the point of intersection of V shape (and Direction 

Line) and end point in first situation 
        Dis2VpointToVpoint2 = sqrt(((EnPoint1(1)-

XVpointDir2Point2)^2)+((EnPoint2(2)-YVpointDir2Point2)^2)); %Calculating 

the distance between the point of intersection of V shape (and Direction 

Line) and end point in second situation 

  
            if Dis1VpointToVpoint1 < Dis1VpointToVpoint2 %Comparing the two 

distances to find the lower one and pick that as the correct point for the 

triangle of the V shape 
                VShape1Point1 = [XVpointDir1Point1,YVpointDir1Point1]; %if 

dis1 < dis2 then dis1 is the correct point 
            else 
                VShape1Point1 = [XVpointDir1Point2,YVpointDir1Point2]; %if 

dis1 > dis2 then dis2 is the correct point 
            end 
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        VShape1Point2 = [XVpointPerLine1Point1,YVpointPerLine1Point1]; 

%Second point of the V shape (triangle) which is the first intersection of 

the V Shape and the Perpendicular Line (Perpendicular to the Direction 

Line) 
        VShape1Point3 = [XVpointPerLine1Point2,YVpointPerLine1Point2]; 

%Third point of the V shape (triangle) which is the second intersection of 

the V Shape and the Perpendicular Line (Perpendicular to the Direction 

Line) 
 %22222222222222222222            
            if Dis2VpointToVpoint1 < Dis2VpointToVpoint2 %Comparing the two 

distances to find the lower one and pick that as the correct point for the 

triangle of the V shape 
                VShape2Point1 = [XVpointDir2Point1,YVpointDir2Point1]; %if 

dis1 < dis2 then dis1 is the correct point 
            else 
                VShape2Point1 = [XVpointDir2Point2,YVpointDir2Point2]; %if 

dis1 > dis2 then dis2 is the correct point 
            end 
        VShape2Point2 = [XVpointPerLine2Point1,YVpointPerLine2Point1]; 

%Second point of the V shape (triangle) which is the first intersection of 

the V Shape and the Perpendicular Line (Perpendicular to the Direction 

Line) 
        VShape2Point3 = [XVpointPerLine2Point2,YVpointPerLine2Point2]; 

%Third point of the V shape (triangle) which is the second intersection of 

the V Shape and the Perpendicular Line (Perpendicular to the Direction 

Line) 
        %for plotting purposes to be used in PlotDPS_starting_Periods.m 

function 
        if StepDis > (Dir1LineLegnth/15) & StepDis < (Dir1LineLegnth/10) 
            Triangle1 = [VShape1Point1;VShape1Point2;VShape1Point3]; 
        else 
        end 
        if StepDis > (Dir2LineLegnth/15) & StepDis < (Dir2LineLegnth/10) 
            Triangle2 = [VShape2Point1;VShape2Point2;VShape2Point3]; 
        else 
        end 
%----------------------------- 
        end 
        xv = [VShape1Point1(1,1), VShape1Point2(1,1), VShape1Point3(1,1), 

VShape2Point1(1,1), VShape2Point2(1,1), 

VShape2Point3(1,1),VShape1Point1(1,1), VShape1Point3(1,1)]; 
        yv = [VShape1Point1(1,2), VShape1Point2(1,2), VShape1Point3(1,2), 

VShape2Point1(1,2), VShape2Point2(1,2), 

VShape2Point3(1,2),VShape1Point1(1,2), VShape1Point3(1,2)]; 
        xvall(StepDis,:) = xv; 
        yvall(StepDis,:) = yv; 
        [in,on] = 

inpolygon(columns(iloop).xCoordMid,columns(iloop).yCoordMid,xv,yv); 

         
        %Check if the drawpoint falls into the V shape (triangle) or not 
        if (in==1 | on==1) && (PrecVShape(iloop, 2) == 0) 
            if iloop==140 
            disp('Hi') 
            end 
            PrecVShape(iloop, 2) = PrecCounter; 
            PrecCounter = PrecCounter + 1; 
            xcCenter=columns(iloop).xCoordMid; 
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            ycCenter=columns(iloop).yCoordMid; 
            radius=max(params.sizeX,params.sizeY); 
            theta=0:0.01:2*pi; 
            xCircle=radius*cos(theta)+xcCenter; 
            yCircle=radius*sin(theta)+ycCenter; 
            for dp=1:N 
                if dp==iloop 
                    continue 
                else 
                if 

inpolygon(columns(dp).xCoordMid,columns(dp).yCoordMid,xv,yv)&&inpolygon(col

umns(dp).xCoordMid,columns(dp).yCoordMid,xCircle,yCircle) 
                    adjPrecedence(iloop,dp)=1; 
                end 
                end 
            end 
       else 
        end         
    end 

     
    StepDis = StepDis + 1; 

     
    if StepDis == PlotStepSize && PlotCounter <= 10; 
            PlotCounter = PlotCounter+1; 
            plot(xv,yv); 
            hold on 
            PlotStepSize = PlotStepSize + 40; 
            MiningDirectionPlotDataX(PlotCounter,:) = xv; 
            MiningDirectionPlotDataY(PlotCounter,:) = yv; 
            else 
    end 
end 
for dp = 1:N 
    DpPrec = PrecVShape(dp,2); 
    counter = 1; %Counting the predecessors of "dp"    

  
    for AdjCount = 1:N %Loop for the Adjacent drawpoints of "dp"....for dp 

1 is 3 
        AdjPrec = PrecVShape(AdjCount,2); 

         
        if (DpPrec == 1) 
           Prec(dp,1) = dp; 
        elseif (AdjPrec + 1 == DpPrec) 
           Prec(dp,1) = AdjCount;  
            counter = counter+1; 

  
        else 

             
        end 
    end 

  
end 

  
[lastvals,idx]=sort(PrecVShape(:,end)); 
sortedPrec=PrecVShape(idx,:); 
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horPrecedence=zeros(N); 

  
for c=2:N 
    horPrecedence(sortedPrec(c,1),sortedPrec(c-1,1))=1; 
end 

         

  
save('Elevation Optimization\MatFiles\horPrecedence.mat','horPrecedence'); 
save('Elevation Optimization\MatFiles\adjPrecedence.mat','adjPrecedence'); 
end 
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f17_constHorPrec 

function f17_constHorPrec 

  
load('Elevation Optimization\MatFiles\miningUnits.mat') 
load('Elevation Optimization\MatFiles\adjPrecedence.mat') 
load('Elevation Optimization\MatFiles\params.mat') 

  
ucutUnits=miningUnits([miningUnits.miningUnitIndex]==1); 
noUnits=length(miningUnits); 
noColumns=length(ucutUnits); 

  
c5_horPrecedence=sparse(noUnits*params.T,noUnits*params.T); 

  
for t=1:params.T 
    for column=1:noColumns            
            prec=find(adjPrecedence(column,:)); 
            if prec 
                uIndex=ucutUnits(column).index; 
                c5_horPrecedence(uIndex+(noUnits*(t-1)),uIndex+(noUnits*(t-

1)))=sum(adjPrecedence(column,:)); 
                for t2=1:t 
                    for i = 1:length(prec) 
                        precIndex=ucutUnits(prec(i)).index; 
                        c5_horPrecedence(uIndex+(noUnits*(t-

1)),precIndex+(noUnits*(t2-1)))=-1; 
                    end 
                end 
            end 
    end 
end 
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f18_constUndercutRate 

function f18_constUndercutRate 

  
load('Elevation Optimization\MatFiles\params.mat') 
load('Elevation Optimization\MatFiles\miningUnits.mat') 

  
base=miningUnits([miningUnits.miningUnitIndex]==1); 
c6_uCutDelRate=sparse(params.T,length(miningUnits)*params.T); 

  
area=((base(1).x2 - base(1).x1 + 1)*params.bHeight)*((base(1).y1 - 

base(1).y2 + 1)*params.bHeight); 

  
for t=1:params.T 
    for unit=1:length(base) 
        c6_uCutDelRate(t,base(unit).index + (length(miningUnits)*(t-

1)))=area; 
    end 
end 

  
c6_rhs_uCutDelRate=ones(params.T,1)*params.uDelRate; 

  
save('Elevation Optimization\MatFiles\c6_uCutDelRate.mat','c6_uCutDelRate') 
save('Elevation 

Optimization\MatFiles\c6_rhs_uCutDelRate.mat','c6_rhs_uCutDelRate') 

  
end 
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f19_constDrawControl 

function f19_constDrawControl 

  
load('Elevation Optimization\MatFiles\miningUnits.mat') 
load('Elevation Optimization\MatFiles\params.mat','params') 
load('Elevation 

Optimization\MatFiles\adjPrecedenceSlope.mat','adjPrecedenceSlope') 

  
maxAdjUnits=params.maxAdjUnits; 
ucutUnits=miningUnits([miningUnits.miningUnitIndex]==1); 
noColumns=max([miningUnits.columnIndex]); 
noUnits=length(miningUnits); 
noEq=length(find(adjPrecedenceSlope(:,:))); 

  
c7_drawControlUB=sparse(noEq*params.T,noUnits*params.T); 
c7_drawControlLB=sparse(noEq*params.T,noUnits*params.T); 

  
distances=zeros(noColumns,1); 
for c=1:noColumns 
    distances(c,1)=sqrt((ucutUnits(c).xCoordMid-params.xStart)^2 + 

(ucutUnits(c).yCoordMid-params.yStart)^2); 
end 

  
[minD,minDindex]=min(distances); 

  
start=ucutUnits(minDindex).columnIndex; 

  
for t=1:params.T 
    count=1; 
    for column=1:noColumns 
        if column==start 
            continue 
        else 
            noPrec=length(find(adjPrecedenceSlope(column,:))); 
            columnPrec=find(adjPrecedenceSlope(column,:)); 

             
            for eq=1:noPrec 
                

columnModel2=miningUnits([miningUnits.columnIndex]==column); 
                precColumn=columnPrec(eq); 
                noUnitsCol2=max([columnModel2.miningUnitIndex]); 
                

columnModel1=miningUnits([miningUnits.columnIndex]==precColumn); 
                noUnitsCol1=max([columnModel1.miningUnitIndex]); 
                for unit=1:noUnitsCol1 
                    

uIndex=columnModel1([columnModel1.miningUnitIndex]==unit).index; 
                    c7_drawControlUB(count+(noEq*(t-1)),uIndex+(noUnits*(t-

1)))=1; 
                    c7_drawControlLB(count+(noEq*(t-1)),uIndex+(noUnits*(t-

1)))=-1; 
                end 
                for unit=1:noUnitsCol2 
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uIndex=columnModel2([columnModel2.miningUnitIndex]==unit).index; 
                    c7_drawControlUB(count+(noEq*(t-1)),uIndex+(noUnits*(t-

1)))=-1; 
                    c7_drawControlLB(count+(noEq*(t-1)),uIndex+(noUnits*(t-

1)))=1; 
                end 
                for t2=1:t 
                    for unit=1:noUnitsCol1 
                        

uIndex=columnModel1([columnModel1.miningUnitIndex]==unit).index; 
                        c7_drawControlUB(count+(noEq*(t-

1)),uIndex+(noUnits*(t2-1)))=1; 
                        c7_drawControlLB(count+(noEq*(t-

1)),uIndex+(noUnits*(t2-1)))=-1; 
                    end 
                    for unit=1:noUnitsCol2 
                        

uIndex=columnModel2([columnModel2.miningUnitIndex]==unit).index; 
                        c7_drawControlUB(count+(noEq*(t-

1)),uIndex+(noUnits*(t2-1)))=-1; 
                        c7_drawControlLB(count+(noEq*(t-

1)),uIndex+(noUnits*(t2-1)))=1; 
                    end 
                end 

                 

                 
                count=count+1; 
            end 
        end 
    end 
end 

  
c7_rhs_drawControlUB=ones(noEq*params.T,1)*maxAdjUnits; 
c7_rhs_drawControlLB=ones(noEq*params.T,1)*maxAdjUnits; 

  
save('Elevation 

Optimization\MatFiles\c7_drawControlUB.mat','c7_drawControlUB') 
save('Elevation 

Optimization\MatFiles\c7_drawControlLB.mat','c7_drawControlLB') 
save('Elevation 

Optimization\MatFiles\c7_rhs_drawControlUB.mat','c7_rhs_drawControlUB') 
save('Elevation 

Optimization\MatFiles\c7_rhs_drawControlLB.mat','c7_rhs_drawControlLB') 

  
end 
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f20_constGradeBounds 

function f20_constGradeBounds 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\miningCap.mat') 

    

     
    U=length(miningUnits); 
    T=params.T; 
    S=params.S; 
    C=max([miningUnits.columnIndex]); 

     
    c8_gradeQUB=sparse(T*S,(U*T)+(4*T*S)); 
    c8_gradeQLB=sparse(T*S,(U*T)+(4*T*S)); 

     
    for s=1:S 
        for t=1:T 
            for u=1:U 
                c8_gradeQUB(t+(T*(s-1)),u+(U*(t-

1)))=((miningUnits(u).(strcat('miningUnitGrade',int2str(s)))-

miningCap(4,t))/100)*miningUnits(u).(strcat('miningUnitTon',int2str(s))); 
                c8_gradeQLB(t+(T*(s-1)),u+(U*(t-1)))=((-

miningUnits(u).(strcat('miningUnitGrade',int2str(s)))+miningCap(5,t))/100)*

miningUnits(u).(strcat('miningUnitTon',int2str(s))); 
            end 
            c8_gradeQUB(t+(T*(s-1)),(U*T)+(2*T*S)+t+(T*(s-1)))=-1; 
            c8_gradeQLB(t+(T*(s-1)),(U*T)+(2*T*S)+(T*S)+t+(T*(s-1)))=-1; 
        end 
    end 

     
    c8_rhs_gradeQUB=zeros(T*S,1); 
    c8_rhs_gradeQLB=zeros(T*S,1); 

     
    save('Elevation Optimization\MatFiles\c8_gradeQUB.mat','c8_gradeQUB') 
    save('Elevation 

Optimization\MatFiles\c8_rhs_gradeQUB.mat','c8_rhs_gradeQUB') 
    save('Elevation Optimization\MatFiles\c8_gradeQLB.mat','c8_gradeQLB') 
    save('Elevation 

Optimization\MatFiles\c8_rhs_gradeQLB.mat','c8_rhs_gradeQLB') 

     
end 
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f21_earlyStart 

function f21_earlyStart 

  
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\ucutModel.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\f.mat') 
    load('Elevation Optimization\MatFiles\miningCap.mat') 
    load('Elevation Optimization\MatFiles\adjPrecedence.mat') 

     
    U = length(miningUnits); 
    C = max([miningUnits.columnIndex]); 
    T = params.T; 

     
    [ucutModel.earlyColumnStart]=deal(0); 
    [miningUnits.earlyColumnStart]=deal(1); 
    [miningUnits.earlyUnitStart]=deal(1); 

     
    columns = miningUnits([miningUnits.miningUnitIndex]==1); 

     
    seq = cell(length(columns)); 

     
    

noBlocks=(ceil(params.sizeX/params.bHeight))*(ceil(params.sizeY/params.bHei

ght)); 
    ton=mean([ucutModel([ucutModel.grade]>0).ton]); 
    unitHeight=(ceil(params.minDR*1000/(ton*noBlocks)))*params.bHeight; 

     
    for c=1:C 
        temp = find(adjPrecedence(c,:)); 
        seq{c,1} = temp; 
        count=1; 
        while ~isempty(temp) 
            temp = []; 
            for i = 1:length(seq{c,count}) 
                seqAdj = find(adjPrecedence(seq{c,count}(i),:)); 
                tempAdj = []; 
                    for j = 1:length(seqAdj) 
                        if ismember(seqAdj(j),cell2mat(seq(c,:))) 
                            continue 
                        else 
                            tempAdj = [tempAdj seqAdj(j)]; 
                        end 
                    end 
                    temp = [temp tempAdj]; 
            end 
            temp = unique(temp); 
            count = count+1; 
            seq{c,count}=temp; 
        end 
    end 

     
    for c=1:C 
        num = length(find(~cellfun('isempty',seq(c,:)))); 
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        colSeq = seq(c,1:num); 
        height = zeros(1,num); 
        seqTon = zeros(1,num); 
        for i = 1:num 
            if i*params.maxAdjUnits*unitHeight > params.maxHeight 
                height(i) = params.maxHeight; 
            else 
                height(i) = i*params.maxAdjUnits; 
            end 
        end 
        for i = 1:num 
            ton = 0; 
            for n = 1:length(colSeq{i}) 
                colTon = 

sum([miningUnits([miningUnits.columnIndex]==colSeq{i}(n)).miningUnitTon]); 
                ton = ton + 

colTon*(height(i)/(length(miningUnits([miningUnits.columnIndex]==colSeq{i}(

n)))*unitHeight)); 
            end 
            seqTon(i) = ton; 
        end 
        totalTon = sum(seqTon); 
        prodTon = 0; 
        p = 1; 
        while (prodTon+(miningCap(3,p)*1000))<=totalTon && p<=T-1 
            prodTon = prodTon + (miningCap(3,p)*1000); 
            p = p+1; 
        end 
        columnModel = miningUnits([miningUnits.columnIndex]==c); 
        for u = 1:length(columnModel) 
            if p == 1 
                miningUnits(columnModel(u).index).earlyColumnStart = p; 

                 
            else 
                miningUnits(columnModel(u).index).earlyColumnStart = p-1; 
            end 
        end 

         
        columnModelUnits = miningUnits([miningUnits.columnIndex]==c); 

         
        ucutColumnModel = ucutModel([ucutModel.columnIndex]==c); 
        for j = 1:length(ucutColumnModel) 
            ucutModel(ucutColumnModel(j).ucutIndex).earlyColumnStart = 

columnModelUnits(1).earlyColumnStart; 
        end 

         
        columnModelUnits = miningUnits([miningUnits.columnIndex]==c); 

     
        dRate = 0; 
        earlyStart = columnModelUnits(1).earlyColumnStart; 
        dCount = 0; 
        columnTon = [columnModelUnits.miningUnitTon]; 
        columnCumTon = cumsum(columnTon); 
        cTon = sum(columnTon); 
        miningUnits(columnModelUnits(1).index).earlyUnitStart = earlyStart; 
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        while dRate < cTon 
            if (dRate+(params.maxDR*1000)) >= cTon 
                dRate = cTon; 
            else 
                dRate = dRate + (params.maxDR*1000); 
            end 
            for i = 2:length(columnCumTon) 
                if dRate <= columnCumTon(i) 
                    unitEarlyStart = earlyStart + (i-2); 
                    miningUnits(columnModelUnits(i).index).earlyUnitStart = 

unitEarlyStart; 
                    break 
                end 
            end 
        end 
    end 
    save('Elevation Optimization\MatFiles\miningUnits.mat','miningUnits') 
    save('Elevation Optimization\MatFiles\ucutModel.mat','ucutModel') 
end 
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f22_concatenateConst 

function f22_concatenateConst 

  
    load('Elevation Optimization\MatFiles\c1_targetCap.mat') 
    load('Elevation Optimization\MatFiles\c2_reserves.mat') 
    load('Elevation Optimization\MatFiles\c1_rhs_targetCap.mat') 
    load('Elevation Optimization\MatFiles\c2_rhs_reserves.mat') 
    load('Elevation Optimization\MatFiles\c3_verticalPrecedence.mat') 
    load('Elevation Optimization\MatFiles\c3_rhs_verticalPrecedence.mat') 
    load('Elevation Optimization\MatFiles\c4_maxDR.mat') 
    load('Elevation Optimization\MatFiles\c4_rhs_maxDR.mat') 
    load('Elevation Optimization\MatFiles\c5_horPrecedence.mat') 
    load('Elevation Optimization\MatFiles\c5_rhs_horPrecedence.mat') 
    load('Elevation Optimization\MatFiles\c6_uCutDelRate.mat') 
    load('Elevation Optimization\MatFiles\c6_rhs_uCutDelRate.mat') 
    load('Elevation Optimization\MatFiles\c7_drawControlUB.mat') 
    load('Elevation Optimization\MatFiles\c7_rhs_drawControlUB.mat') 
    load('Elevation Optimization\MatFiles\c7_drawControlLB.mat') 
    load('Elevation Optimization\MatFiles\c7_rhs_drawControlLB.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\c8_gradeQUB.mat','c8_gradeQUB') 
    load('Elevation 

Optimization\MatFiles\c8_rhs_gradeQUB.mat','c8_rhs_gradeQUB') 
    load('Elevation Optimization\MatFiles\c8_gradeQLB.mat','c8_gradeQLB') 
    load('Elevation 

Optimization\MatFiles\c8_rhs_gradeQLB.mat','c8_rhs_gradeQLB') 
        

Aineq=[c2_reserves;c3_verticalPrecedence;c4_maxDR;c5_horPrecedence;c6_uCutD

elRate;c7_drawControlUB;c7_drawControlLB]; 
    [r,c]=size(Aineq); 
    Aineq=[Aineq,zeros(r,4*params.S*params.T)]; 
    Aineq=[Aineq;c8_gradeQUB;c8_gradeQLB]; 
    

bineq=[c2_rhs_reserves;c3_rhs_verticalPrecedence;c4_rhs_maxDR;c5_rhs_horPre

cedence;c6_rhs_uCutDelRate;c7_rhs_drawControlUB;c7_rhs_drawControlLB;c8_rhs

_gradeQUB;c8_rhs_gradeQLB]; 
    Aeq=[c1_targetCap]; 
    beq=[c1_rhs_targetCap]; 
    save('Elevation Optimization\MatFiles\Aineq.mat','Aineq') 
    save('Elevation Optimization\MatFiles\bineq.mat','bineq') 
    save('Elevation Optimization\MatFiles\Aeq.mat','Aeq') 
    save('Elevation Optimization\MatFiles\beq.mat','beq') 

     
end 
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f23_STWH 

function solution = f23_STWH(n) 

  
    load('Elevation Optimization\MatFiles\f.mat') 
    load('Elevation Optimization\MatFiles\Aineq.mat') 
    load('Elevation Optimization\MatFiles\bineq.mat') 
    load('Elevation Optimization\MatFiles\miningUnits.mat') 
    load('Elevation Optimization\MatFiles\params.mat') 
    load('Elevation Optimization\MatFiles\Aeq.mat') 
    load('Elevation Optimization\MatFiles\beq.mat') 

     
    U = length(miningUnits); 
    C = max([miningUnits.columnIndex]); 
    T = params.T; 
    S=params.S; 
    lb=zeros(length(f),1); 
    ub=[]; 
    sostype=[]; 
    sosind=[]; 
    soswt=[]; 
    Cplex.Param.mip.tolerance.mipgap=0.05; 
    solTimes = zeros(1,T); 
    periodNPV = zeros(1,T); 
    for t = 1:T 
        ctype1 = repmat('B',U*T,1)'; 
        ctype2 = repmat('C',(2*T*S)+(2*T*S),1)'; 
        ctype = [ctype1 ctype2]; 
        fprintf('\nSetting variables for Period %d at binary\n',t) 
        if T - n - t + 1 > 0  

            
            ctype(U*(t-1)+(U*n)+1 : end) = 'C'; 

         
        end 

         
        fprintf('\nFinding Solution for Period %d\n',t) 

Cplex.Param.mip.tolerance.mipgap=0.05; 

 
        solTime = tic; 
        solution = 

cplexmilp(f,Aineq,bineq,Aeq,beq,sostype,sosind,soswt,lb,ub,ctype,options); 
        solTimes(t) = toc(solTime); 
        fprintf('\nSolution for Period %d found after %f 

seconds\n',t,solTimes(t)) 

         
        npv = round(sum(f.*solution')/1000000,3); 
        periodNPV(t) = npv; 
        fprintf('\nNPV for solution at Period %d is %f M$\n',t,npv) 

         
        fprintf('\nSolution for Period %d found\n',t) 

         
        solString = ['Elevation Optimization\MatFiles\Solutions STWH by 

Period\solutionP',num2str(t),'.mat']; 
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        save(solString,'solution') 
        if t < T 
            fprintf('\nFixing solution for period %d into next 

optimization\n',t) 

  
            for u = U*(t-1)+1 : (U*t) 
                r = size(Aeq,1); 
                r2 = size(beq,1); 
                Aeq(r+1,u) = 1; 
                beq(r2+1,1) = solution(u); 
            end 

             

             
            AeqString=['Elevation Optimization\MatFiles\Solutions STWH by 

Period\AeqP',num2str(t),'.mat']; 
            save(AeqString,'Aeq') 
            beqString=['Elevation Optimization\MatFiles\Solutions STWH by 

Period\beqP',num2str(t),'.mat']; 
            save(beqString,'beq') 
        end 
    end 

  
    save('Elevation Optimization\MatFiles\solution.mat','solution') 
    save('Elevation Optimization\MatFiles\solTimes.mat','solTimes') 
    save('Elevation Optimization\MatFiles\periodNPV.mat','periodNPV') 
end 
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f24_Main_Scheduling 

level=l; 

fprintf('Starting Optimization of Layout at Level %d\n',l) 
totTime=tic; 
f7_Main_Agg 
f1a_readPar('Elevation 

Optimization\Parameters\ParametersSaha_TN.xlsx','Elevation 

Optimization\Parameters\MiningTargets_Saha.xlsx') 
fprintf('\nTransferring solution into horizontal/vertical discounting 

optimization\n') 
f8_buildPU 
f9_updPU 
fprintf('\nBuilding Mixing Scenarios\n') 
f10_mixScenarios 
fprintf('\nCalculation Objective Function Coefficients\n') 
f11_objFunctionCoeffSch 
fprintf('\nBuilding Constraints\n') 
fprintf('\nConstraint 1 - Mining Capacity') 
f12_constMiningTarget 
fprintf('\nConstraint 2 - Reserves') 
f13_constReserves 
fprintf('\nConstraint 3 - Vertical Precedence') 
f14_constVertPrec 
fprintf('\nConstraint 4 - Draw Rate') 
f15_constMaxDrawRate 
fprintf('\nConstraint 5 - Horizontal Precedence') 
f16_buildHorPrec 

f17_constHorPrec 
fprintf('\nConstraint 6 - Undercut Development Rate') 
f18_constUndercutRate 
fprintf('\nConstraint 7 - Caving Slope') 
f19_constDrawControl 
fprintf('\nConstraint 8 - Grade Quality') 
f20_constGradeBounds 
f21_concatenateConst 
fprintf('Solving the Optimization Problem\n') 
solution = f22_STWH; 
save('Elevation Optimization\MatFiles\solution.mat','solution') 
save('Elevation Optimization\MatFiles\eTime.mat','eTime') 
totalTime = toc(totTime); 
save('Elevation Optimization\MatFiles\totalTime.mat','totalTime') 

 


