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Abstract

Associative classification is a rule-based approach to classify data relying on asso-

ciation rule mining by discovering associations between a set of features and a class

label. Support and confidence are the de-facto “interestingness measures” used for

discovering relevant association rules. The support-confidence framework has also

been used in most, if not all, associative classifiers. Although support and confi-

dence are appropriate measures for building a strong model in many cases, they are

still not the ideal measures because in some cases a huge set of rules is generated

which could hinder the effectiveness in some cases for which other measures could

be better suited.

There are many other rule interestingness measures already used in machine

learning, data mining and statistics. This work focuses on using 53 different objec-

tive measures for associative classification rules. A wide range of UCI datasets are

used to study the impact of different “interestingness measures” on different phases

of associative classifiers based on the number of rules generated and the accuracy

obtained. The results show that there are interestingness measures that can signifi-

cantly reduce the number of rules for almost all datasets while the accuracy of the

model is hardly jeopardized or even improved. However, no single measure can be

introduced as an obvious winner.
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Chapter 1

Introduction

Associative classification [6, 42, 43] is a rule-based approach recently proposed to

classify data by discovering associations between a set of features and a class label.

To build an associative classification model, association rules whose consequent is

a class label are generated using an association rule mining technique. Research

shows promising results for associative classification and its potential for improve-

ment to a more powerful classification paradigm.

Support and confidence are the default “interestingness measures” universally

used for discovering relevant association rules. The support-confidence framework

is the most common framework used in most association rule mining methods, and

similarly for mining and selecting rules of associative classifiers. Although these

two measures are widely used, they are still not necessarily the ideal measures. This

is because in many situations a huge set of rules is generated which could hinder

the effectiveness in some cases for which other measures could be better suited.

Yet, no systematic study has been done to identify a better framework or the most

appropriate measure.

1.1 Background and Problem Definition

The Associative classifier is an interpretable classifier that uses association rule

mining in order to generate classification rules. The term interpretable means that

the built model is easily human readable and even editable for domain knowledge

injection. To use this classifier, datasets have to be transformed in a transactional
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format. Considering each attribute-value pair in a dataset as an item results in a

transactional dataset in which a row of data looks like a transaction of items. Among

items of each transaction, one is the class label of the related object.

Using an association rule mining technique (e.g., Apriori [4], Eclat [71] or FP-

growths [31]) on the resulting transactional data, frequent itemsets are mined and

the ones of the form {A, c} are extracted where A is a set of features and c is a class

label (A and c are disjoint subsets of items). Among these frequent itemsets, the

confident ones are chosen to build classification rules of the form A → c. Then,

these rules are used to predict class labels for objects with an unknown class.

As mentioned above, the support-confidence framework is the standard frame-

work in association rule mining and inherited by associative classification. For a

rule A → c, support is the fraction of data samples having A and c together (i.e.,

P (Ac)). A rule is frequent if its support is greater than a minimum support thresh-

old. Confidence is the conditional probability that a record is of class c given that it

includes A (i.e., P (c|A)). A rule is confident if its confidence is above a minimum

confidence threshold. To build an associative classifier, only strong rules, i.e., the

rules that are both frequent and confident are used. Having these two constraints,

still a huge set of rules may be generated. Different approaches are used to prune

the rules in the second phase of associative classifiers [17]. Finally, to classify an

object, two different approaches are typically used. The first way is to take into

account only the best rule with choosing the rule with the “highest rank” based on a

defined ordering. The other way is to consider all rules by calculating the “average”

value of the measure used in the defined ordering for the matching rules for each

class label and choose the label with the highest average as prediction.

The associative classification approach can be summarized in three phases.

First, frequent itemsets having a class label are extracted from a training dataset

using an association rule mining technique and only the strong rules that have a

class label as a consequent, are selected. Because of the exhaustive search, there

might be a huge set of rules, most of which may be redundant or leading to mis-

classification. Hence, in the second phase, a pruning technique is required in order

to keep only the accurate rules by eliminating what might be noise. Lastly, in the
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third phase, for each object with an unknown class, a class label is assigned based

on the rules that apply to the object. Support and confidence are obviously used in

the first phase, but also in the third phase.

1.1.1 Why Associative Classifiers?

There are many different classification methods vastly used in different problem

domains, each being useful and accurate for some specific domains and not useful

or not accurate for other domains. Rule-based classifiers are preferred by most of

domain experts because of their interpretability. The classifiers built based on rules

are highly expressive and easy to understand. Their interpretability also makes

it possible for the domain specialists to modify the rules based on their previous

knowledge in order to have a more accurate classifier.

Besides from associative classifiers, decision trees are also well-known rule-

based classifiers. Decision trees [13, 53] are simple and easy to understand and they

can also be built relatively fast. For constructing a model base on decision trees, a

greedy search is used to heuristically select the most promising features. However,

this greedy (local) search may prune the important rules. Veloso et al. [64] have

shown that the rules derived from decision trees are a subset of rules generated

from associative classifiers based on information gain assuming a reasonable low

minimum support threshold, and associative classifiers make better or at least equal

predictions compared to decision trees according to the information gain principle.

This is because associative classifiers exhaustively search for rules that satisfy some

constraints. Although this method searches for rules globally, the search is done in a

controlled manner using computationally efficient algorithms such as Apriori, Eclat

or FP-growth. Hence, the rules are still generated fast enough to make it a better

choice compared to decision trees.

1.1.2 Disadvantages of Support and Confidence

The antimonotonicity of support makes the support-confidence framework an ap-

propriate approach for building a strong model in many cases, however, they are

still not the ideal measures. This framework has been criticised by many authors
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[14, 15, 2, 1]. For example, choosing a large minimum support may lead to having

only rules that contain obvious knowledge and missing exceptional cases that are

interesting. On the other hand, assigning a low minimum support yields a huge

number of rules which could be redundant or noisy. Therefore, support is not an

appropriate measure and is difficult to tune.

Similarly, confidence is not a perfect measure as it considers nothing beyond the

conditional probability of rules. An example clarifies this claim: the confidence of

the rule A→ c is 90% in the case that N(A) = 10, N(c) = 9, 000, N(Ac) = 9 and

N = 10, 000 where N is the size of data and N(X) denotes the frequency of X .

Although, the confidence is very high, A and c are statistically independent because

P (Ac) = P (A)P (c). The rule is not interesting at all because 90% is exactly the

support (probability) of c regardless of A. Finally, this confident rule is very rare

with the support of 0.0009 indicating that it might be originating from noise. Cases

can also abound in which a rule is not rare but still suffers from the afore mentioned

drawback.

Brin et al. [14] show that with high support and confidence, a rule can even

have negative correlation between its antecedent and consequent. Table 1.1 shows

an example for this problem. In this example, rule t → c have 20% support and

80% confidence which make it a strong rule. However, if we calculate the lift for

this rule it is equal to P (tc)
P (t)P (c)

= 0.89. The fact that this value is less than 1 indicates

that this rule is negatively correlated; however, using only support and confidence,

this characterization of the rule will remain hidden.

c ¬c row total
t 20 5 25
¬t 70 5 75

col total 90 10 100

Table 1.1: An example to show negative correlation for a strong rule, t→ c [14]

1.2 Approach

There are many rule interestingness measures already used in machine learning,

data mining and statistics. Many different measures are introduced in the field of
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association rule mining as filters or rankers to weed-out the least relevant rules. All

those measures can be directly applied to associative classifiers as well, although

never tested or reported in the literature. This work focuses on probability-based

objective rule interestingness measures for associative classification. Using these

interestingness measures, there are two questions that should be answered:

First, can “interestingness measures” have any effect on the associative classi-

fiers on its three different phases: rule generation, pruning and selection, so that the

mining algorithm improves both in terms of increasing classification accuracy and

decreasing the number of rules?

Second, if there are any improvements, is it possible to probe the best measure

or measures which can beat the other measures for improving the results base on

either the accuracy or the number of rules in all cases? There is a possibility that

no one measure can be found to be effective in all circumstances. In this case, are

there any relevant dataset characteristics or measure properties that can help build

a classifier in order to predict an efficient measure for a dataset?

To answer the above questions 20 different UCI datasets are used with 53 dif-

ferent measures to study the impact of “interestingness measures” on associative

classifiers.

1.3 Thesis Statements

Associative classifiers form an important new paradigm competing with other clas-

sification paradigms. They still use a support-confidence framework. Yet, the ex-

istence of many different interestingness measures used in association rule mining

and other data mining tasks, leads us to postulate the following three hypothesis:

Hypothesis 1 Support-confidence is not the ideal framework for associative clas-

sifiers. There are other interestingness measures that can have impact on

associative classifiers, both in the term of number of rules and classification

accuracy.

Hypothesis 2 There is no specific measure that can be the best measure for all

different datasets. Different measures are appropriate in different contexts.
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Hypothesis 3 There should be learning method that can find a relationship between

some dataset characteristics and efficient interestingness measures.

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows: Chapter 2 describes in-

terestingness measures and their properties and introduces 53 different probability-

based objective measures reportedly used in association rule mining. In Chapter

3 some related works using different interestingness measures both in association

rule mining and associative classifiers are studied. At the end of this chapter, differ-

ent properties for each measure and a study on clustering measures based on their

properties are explained. The methodology of using interestingness measures in the

three different phases of an associative classifier is discussed in Chapter 4. Exper-

imental results, comparing the impact of interestingness measures on classification

accuracy and the number of generated classification rules, are illustrated in Chapter

5. The paper is concluded in Chapter 6 with reference to future work.
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Chapter 2

Interestingness Measures

Generating rules in association rule mining or with associative classifiers can lead to

a huge set of rules which make it impossible for users or domain specialists to study.

Sifting through thousands or even millions of rules is impractical. Thus, users lose

the opportunity to interpret the results, find interesting rules or even modify them

for having a more accurate model. To solve this problem, interestingness measures

can be used for filtering or ranking association or classification rules.

There are many different rule interestingness measures widely used in machine

learning, data mining and statistics. However, to the best of our knowledge, there is

still no formal definition of “interestingness”. In a study of 38 different measures,

Geng and Hamilton [25] have brought together 9 different criteria which specify

the interestingness of a pattern. These 9 criteria are as follows:

1. Conciseness. To be concise, a pattern should be easy to understand, hence, it

should contain a small set of items (attribute-value pairs).

2. Generality. To be general, a pattern should be able to cover a large subset of

instances. For example, support is a measure for evaluating generality.

3. Reliability. To be reliable, a pattern should show an association that appears

in a large subset of related instances. Confidence is a measure for evaluating

reliability.

4. Peculiarity. To be peculiar, a pattern should be extracted from a part of data

that have a large difference from the rest of the data (i.e., outlier instances).
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5. Diversity. To be diverse, elements of a pattern should differ significantly.

6. Novelty. To be novel, a pattern should give new information that was not

known to the user before and it is not deducible from other patterns.

7. Surprisingness. To be surprising, a pattern should describe a relationship

which contradicts a user’s existing knowledge or another more general pat-

tern.

8. Utility. To be of utility, a pattern should contribute to reach a specific goal.

9. Actionability. To be actionable in a domain, a pattern should make future

decision makings possible in that domain.

The definition of these criteria may have overlaps or conflicts with others. For

example, usually a concise pattern, because of its simplicity, can also be general and

generality may also lead to reliability. On the other hand, generality is in conflict

with peculiarity and novelty.

In addition to the mentioned criteria that can define the interestingness of a mea-

sure, there are 3 main categories that classify interestingness measures: objective,

subjective and semantics-based measures [25]. Objective measures are those that

are not application-specific or user-specific and depend only on raw data. Sub-

jective measures are those that consider users’ background knowledge as well as

data. As a special type of subjective measures, semantic-based measures take into

account the explanation and the semantic of a pattern which are, like subjective

measures, domain specific. In practice, the combination of both objective and sub-

jective measures should be used [22]. First, an objective measure can be use to only

keep the rules that are potentially interesting. Then, depending on the domain, a

subjective measure can be used as a final filter to retain only the truly interesting

rules. However, for simplicity, our work only focuses on objective measures.

2.1 Objective Interestingness Measures

There is a large number of objective interestingness measures available in the lit-

erature. 53 different examples of probability-based objective rule interestingness
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measures are shown in Table 2.2. The formula of each measure can be find in Table

2.3. The measures described in this table are defined based on frequencies of a 2×2

contingency table shown in Table 2.1. Descriptions of some of these measures for

a rule in the form of A→ c are as follows: Support or global support is the fraction

of all records containing A and c together. Local support measures the support of

the rule only in that part of data that has the same class label as the rule’s label.

Local support is favorable when finding frequent rules from the minority class in

an imbalanced data is required. Accuracy measures the support of the rule plus the

support of its contraposition (i.e., ¬A → ¬c). Confirm-descriptive measures the

difference between the support of A → c and A → ¬c. Complement class support

measures the support of the rule A → ¬c. However here the reverse of it is used.

Hence, the lower the support of the complement class, the higher the value of its

reverse and the more interesting the rule.

Confidence is the conditional probability of having A and c together given A.

Confidence-causal adds the confidence of rule’s contraposition to the confidence

of the rule. Confirmed-confidence-descriptive measures the difference between the

confidence of rule A → c and rule A → ¬c. Confirmed-confidence-causal mea-

sures the same thing for confidence causal. Laplace is a variation of confidence

that estimates the confidence and becomes more pessimistic as the support of the

antecedent decreases. Ganascia is another variation of confidence.

Correlation coeffitient(φ) indicates the strength and the direction of a linear re-

lationship between the antecedent and consequent of a rule. This measure is closely

related to chi-square (χ2 = φ2 × N ). However, chi square is often used for good-

ness of fit testing rather than being a measure for association because it depends

on the size of dataset. Lan et al. [38] believe that chi-square is suitable only when

the distributions of row total and column total are close. Dilated chi-square is in-

troduced to overcome this drawback by adjusting chi-square to a more uniform and

fare situation.

Lift measures the dependency between A and c. The value of 1 means that A

and c are independent. Values above 1 shows the positive correlation between A

and c. Class correlation ratio uses lift to measure how much more positively A
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c ¬c
A N(Ac) N(A¬c) N(A)
¬A N(¬Ac) N(¬A¬c) N(¬A)

N(c) N(¬c) N

Table 2.1: Frequencies shown in a 2× 2 contingency table for rule A→ c

is correlated to c relative to ¬c. Conviction is somehow similar to lift. However,

it measures the dependency between A and ¬c. Values above 1 shows negative

correlation between A and ¬c which leads to positive correlation between A and c.

Leverage calculates the deviation of A and c from independence. Cosine calculate

the geometric mean between lift and support to measure the correlation between

the antecedent and consequent of the rule. Other variations of lift are added value,

certainty factor, collective strength and Piatetsky-Shapiro.

If two variables are highly dependent and the value of one of them is known,

then the error in predicting the other variable would be small. Goodman-Kruskal

measures the amount of reduction in the prediction error.

Odds ratio can be used to determine the degree to which antecedent and conse-

quent of the rule are associated with each other. Yule’s Q and Yule’s Y are normal-

ized variants of odds ratio.

Mutual information is an entropy-based measure for calculating the dependen-

cies between variables. Entropy is large for a uniform distribution and is small for

a skewed distributions. Mutual information calculates the amount of reduction in

entropy. If the variables are strongly associated this amount is high. J-measure and

Gini index are other measures based on the probability distribution of variables.

Kappa measures the agreement between a pair of variables. The more the vari-

ables agree, the higher the values for P (Ac), P (¬A¬c), and consequently kappa.

Jaccard is used to measure the overlap thatA and c share in records. And finally,

relative risk is a ratio of risk in exposed and unexposed groups.
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Table 2.2: A list of objective rule interestingness measures,
their abbreviations and references.

No. Measure Abbreviation Ref
1 1-way support 1waySup [67, 25]
2 2-way support 2waySup [67, 25]
3 2-way support variation 2waySupVar [25]
4 Accuracy Acc [25]
5 Added value AddVal [56, 25]
6 Certainty factor CerFac [58, 25]
7 Chi-square Chi2 [60]
8 Class correlation ratio CCR [65]
9 Collective Strength CollStr [2, 25]

10 Complement class support CCS [7]
11 Confidence Conf [25]
12 Confidence causal ConfC [35]
13 Confirm causal CnfrmC [35]
14 Confirm descriptive CnfrmD [35]
15 Confirmed-confidence causal CCC [35]
16 Confirmed-confidence descriptive CCD [35]
17 Conviction Conv [14, 25]
18 Correlation coefficient Corr [5, 25]
19 Cosine/IS Cos [60, 25]
20 Dilated chi-square D-Chi2 [38]
21 Example and counterexample rate Ex&Cex [25]
22 F-measure FM [51]
23 Ganascia Gan [23, 37]
24 Gini index Gini [13, 25]
25 Goodman-Kruskal GK [27, 25]
26 Hyper confidence HConf [29]
27 Hyper lift HLift [29]
28 Implication index ImpInd [41, 40]
29 Information gain InfoGain [25]
30 Intensity of implication IntImp [38]
31 Interestingness Weighting Dependency IWD [28, 25]
32 Jaccard Jacc [54, 25]
33 J-measure JM [59, 25]
34 Kappa Kappa [19, 61]
35 Klosgen Klos [34, 25]
36 K-measure KM [51]
37 Laplace correlation Lap [18, 25]
38 Least contradiction LC [9, 25]

Continued on next page
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Table 2.2 – continued from previous page
No. Measure Abbreviation Ref
39 Leverage Lev [25]
40 Lift/interest Lift [15, 25]
41 Loevinger Loe [44, 25]
42 Normalized mutual information MutInfo [25]
43 Odd multiplier OddMul [25]
44 Odds ratio OddR [49, 25]
45 Piatetsky-Shapiro PS [52, 25]
46 Recall/local support LocSup [25]
47 Relative risk RelRisk [25]
48 Sebag-Schoenauer SS [57, 25]
49 Specificity Spec [25]
50 Support/global support GlbSup [3, 25]
51 Yule’s Q YulQ [69, 25]
52 Yule’s Y YulY [70, 25]
53 Zhang Zhang [72, 25]

Table 2.3: Objective rule interestingness measures for a rule
in the form of A→ c, where P (X) = N(X)

N
and P (X|Y ) =

P (XY )
P (Y )

No. Measure Formula
1 1waySup P (c|A)× log P (Ac)

P (A)P (c)

2 2waySup P (Ac)× log P (Ac)
P (A)P (c)

P (Ac)× log P (Ac)
P (A)P (c)

3 2waySupVar +P (¬A¬c)× log P (¬A¬c)
P (¬A)P (¬c)

(modified)1 −P (A¬c)× log P (A¬c)
P (A)P (¬c)

−P (¬Ac)× log P (¬Ac)
P (¬A)P (c)

4 Acc P (Ac) + P (¬A¬c)
5 AddVal P (c|A)− P (c)

6 CerFac P (A|c)−P (c)
1−P (c)

7 Chi2 N ×
(

P (Ac)−P (A)P (c)√
P (A)P (c)P (¬A)P (¬c)

)2

8 CCR N(Ac)(N(A¬c)+N(¬A¬c))
N(A¬c)(N(Ac)+N(¬Ac))

Continued on next page

1The modified measures are different from their original version that is cited so that it can satisfy
the interestingness for a classification rule.
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Table 2.3 – continued from previous page
No. Measure Formula
9 CollStr P (Ac)+P (¬c|¬A)

P (A)P (c)+P (¬A)P (¬c)
×1−P (A)P (c)−P (¬A)P (¬c)

1−P (Ac)−P (¬c|¬A)

10 CCS N(¬c)
N(A¬c)

(modified)
11 Conf P (c|A)

12 ConfC 0.5×
(
P (Ac)
P (A)

+ P (¬A¬c)
P (¬c)

)
13 CnfrmC P (Ac) + P (¬A¬c)− 2× P (A¬c)
14 CnfrmD P (Ac)− P (A¬c)
15 CCC 0.5× (P (c|A) + P (¬A|¬c))− P (¬c|A)
16 CCD P (c|A)− P (¬c|A)

17 Conv P (A)P (¬c)
P (A¬c)

18 Corr P (Ac)−P (A)P (c)√
P (A)P (c)P (¬A)P (¬c)

19 Cos P (Ac)√
P (A)P (c)

( N
lmax(χ2)

)α × Chi2

20 DChi2 lmax(χ2) =
(n1n2)2×N

P (A)P (¬A)P (c)P (¬c)

n1 = min(min(P (A), P (¬A)),min(P (c), P (¬c)))

n2 = min(max(P (A), P (¬A)),max(P (c), P (¬c)))

α = 0.5

21 Ex&Cex 1− P (A¬c)
P (Ac)

22 FM 2×P (c|A)P (A|c)
P (c|A)+P (A|c)

23 Gan 2× P (c|A)− 1
P (A) (P (c|A)2 + P (¬c|A)2)

24 Gini +P (¬A)(P (c|¬A)2 + P (¬c|¬A)2)
−P (c)2 − P (¬c)2

25 GK
∑

i
maxjP (Aicj)+

∑
j
maxiP (Aicj)−maxiP (Ai)−maxjP (cj)

2−maxiP (Ai)−maxjP (cj)

Ai ∈ {A,¬A}, cj ∈ {c,¬c}

P (CAc < N(Ac)) =
N(Ac)−1∑
i=0

P (CAc = i)

26 HConf

P (CAc = r) =

(
N(c)
r

)(
N −N(c)
N(A)− r

)
(

N
N(A)

)
Continued on next page
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Table 2.3 – continued from previous page
No. Measure Formula

N(Ac)
Qδ(CAc)

27 HLift find the minimum value for Qδ(CAc)

where P (CAc < Qδ(CAc)) < δ , δ = 0.99

28 ImpInd
√
N(P (A)P (¬c)−P (A¬c)√

P (A)P (¬c)
)

29 InfoGain log( P (Ac)
P (A)P (c))

30 IntImp 1−
N(A¬c)∑
k=0

λk

k!
e−λ

λ =
N(A)(N−N(c))

N

31 IWD
((

P (Ac)
P (A)P (c)

)k
− 1

)
× P (Ac)m

k = m = 1

32 Jacc P (Ac)
P (A)+P (c)−P (Ac)

33 JM P (Ac)log
(
P (c|A)
P (c)

)
−

(modified) P (A¬c)log
(
P (¬c|A)
P (¬c)

)
34 Kappa P (Ac)+P (¬A¬c)−P (A)P (c)−P (¬A)P (¬c)

1−P (A)P (c)−P (¬A)P (¬c)
35 Klos

√
P (Ac)(P (c|A)− P (c))

P (c|A)log
(
P (c|A)
P (c)

)
+

P (¬(c|A))log
(
P (¬(c|A))
P (¬c)

)
−

36 KM P (c|A)log
(
P (c|A)
P (¬c)

)
−

P (¬(c|A))log
(
P (¬(c|A))
P (c)

)
37 Lap N(Ac)+1

N(A)+2

38 LC P (Ac)−P (A¬c)
P (c)

39 Lev P (c|A)− P (A)P (c)

40 Lift
P (Ac)

P (A)P (c)

41 Loe P (A)P (¬c)
P (A¬c) − 1

(modified)

42 MutInfo
∑

i

∑
j
P (Aicj)×log2

P (Aicj)

P (Ai)P (cj)

−
∑

i
P (Ai)×log2P (Ai)

Ai ∈ {A,¬A}, cj ∈ {c,¬c}

43 OddMul
P (Ac)P (¬c)
P (A¬c)P (c)

44 OddR
P (Ac)P (¬A¬c)
P (A¬c)P (¬Ac)

45 PS P (Ac)− P (A)P (c)

Continued on next page
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Table 2.3 – continued from previous page
No. Measure Formula
46 LocSup P (A|c)

47 RelRisk
P (c|A)
P (c|¬A)

48 SS P (Ac)
P (A¬c)

49 Spec P (¬c|¬A)
50 GlbSup P (Ac)

51 YulQ P (AB)P (¬A¬c)−P (¬Ac)P (A¬c)
P (AB)P (¬A¬c)+P (¬Ac)P (A¬c)

52 YulY
√
P (AB)P (¬A¬c)−

√
P (¬Ac)P (A¬c)√

P (AB)P (¬A¬c)+
√
P (¬Ac)P (A¬c)

53 Zhang P (Ac)−P (A)P (c)
max(P (Ac)P (¬c),P (A¬c)P (c))

2.2 Properties of Objective Interestingness Measures

To be able to analyze the objective measures, some properties are proposed for these

measures in the literature. In this section, four sets of properties are considered for

objective interestingness measure M for a rule in the form of A→ c.

Piatetsky-Shapiro [52] has proposed the three main properties which are desir-

able for any objective interestingness measures. These properties are as follows:

P1. M = 0 if A and c are independent, that is P (Ac) = P (A)P (c). This property

states that if A and c are independent in an association rule, then the measure

should show the least interest which is zero. However, some researchers have

relaxed this property, hence, if A and c are independent it is enough that the

value for M be a constant [61].

P2. M monotonically increases with P (Ac) when P (A) and P (c) remain the same.

This property states that, the greater the support of Ac, the more interesting

the rule while the supports of A and c remain fixed. In other words, the more

positive correlation A and c have, the more interesting the rule.

P3. M monotonically decreases with P (A) (or P (c)) when P (Ac) and P (c) (or

P (A)) remain the same. This property states that if the supports of Ac and A
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(or c) stay the same, the rule is more interesting if the support of c (or A) gets

smaller.

Major and Mangano [45] added the forth property to those three above:

P4. M monotonically increases with P (A) when P (c), P (¬c) and the confidence

of the rule (P (c|A)) remain the same. This property states that if the con-

fidence of a rule remains fixed, then, the greater the support of A, the more

interesting the rule.

Tan et al. [61] have proposed five properties that unlike Piatetsky-Shapiro properties

are not actually desirable. Instead, these properties can help to categorize interest-

ingness measures. These five properties are proposed based on a 2× 2 contingency

table (Table 2.1):

T1. M is symmetric under variable permutation. This property states that using

measure M the value for rule A → c and rule c → A should be the same.

variable permutation of a contingency table is shown in Figure 2.1(a).

T2. M is the same when we scale any row or column by a positive factor. This

property requires invariant with any row or column scaling which is shown in

Figure 2.1(b).

T3. M becomes −M if either the rows or the columns are permuted. This prop-

erty states that by swapping either the rows or the columns in contingency

table, the value of the measure should change its sign (i.e., M(A → c) =

−M(¬A → c) = −M(A → ¬c)). By having this property, the measure

is able to identify both positive and negative correlations. Row and column

permutations are shown in Figure 2.1(c) and (d).

T4. M remains the same if both rows and columns are permuted. This property

is a special case of property T3 which states M(A → c) = M(¬A → ¬c).

permuting both rows and columns simultaneously is shown in Figure 2.1(e).

T5. M should remain the same with the count of records that do not contain A and

c. This property states that measureM should not change withN(¬A¬c) and
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should only take into account the records that contain A, c or both. Figure

2.1(f) shows the situation when N(¬A¬c) increases.

Lence et al. [39, 40] have proposed five properties for evaluating association mea-

sures:

L1. M is constant if there is no counterexample to the rule. This property states that

if P (A¬c) = 0, then the value of the measure should be constant or infinity.

In other words, if the confidence of a rule is one the measure should have the

same interestingness value, regardless of support. This property somehow is

in contradiction with property P4 which states that if the confidence is fixed,

the greater the support the more interesting the rule.

L2. M decreases with P (A¬c) in a linear, convex or concave fashion around 0+.

This property describes the manner that a measure decreases when a few

counterexamples are added. the desired manner depends to the problem do-

main and the user. If a few counterexample records can be tolerated, then

a concave decrease is desired. If a strict confidence of 1 is required, the a

convex decrease is desired.

L3. M increases as the total number of records increases. This property states

that the value of the measure increases with N (total number of records),

assuming that P (A), P (c) and P (Ac) remain fixed.

L4. The threshold is easy to fix. For a measure that has this property, it is easy to

find a threshold that can separate the interesting from uninteresting rules.

L5. The semantics of the measure are easy to express. This property describes that

the semantics of the measure is easily understandable by the user.

Geng and Hamilton [25] have also proposed two properties to evaluate the relation-

ship between a measure and support and confidence:

G1. M should be an increasing function of support if the margins in the contin-

gency table are fixed. Assuming that the margins of contingency table are

fixed (i.e., N(A) = a,N(¬A) = N − a,N(c) = b,N(¬c) = N − b), if
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support is equal to x then P (Ac) = x, P (¬Ac) = b
N
− x, P (A¬c) = a

N
− x

and P (¬A¬c) = 1 − a+b
N

+ x. By substituting these formulas in measures,

functions with the variable x is obtained. The function should be increasing

by x. This property is exactly the same as property P2.

G2. M should be an increasing function of confidence if the margins in the contin-

gency table are fixed. Like G1, by assuming the margins of contingency table

to be fixed and confidence is equal to y, then P (Ac) = ay
N

, P (¬Ac) = b−ay
N

,

P (A¬c) = a(1−y)
N

and P (¬A¬c) = 1− a+b
N

+ ay
N

. Again by substituting these

formulas in measures, functions with variable y is obtained. The function

should be increasing by y.

All these properties are introduced in the context of association rule mining. They

can be used for finding similar measures or to find the appropriate measure for a

problem domain if the required measure properties for that domain are known.
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c ¬c A ¬A
A p q =⇒ c p r
¬A r s ¬c q s

(a) Variable Permutation Operation

c ¬c c ¬c
A p q =⇒ A k3k1p k4k1q
¬A r s ¬A k3k2r k4k2s
(b) Row and Column Scaling Operation

c ¬c c ¬c
A p q =⇒ A r s
¬A r s ¬A p q

(c) Row Permutation Operation

c ¬c c ¬c
A p q =⇒ A q p
¬A r s ¬A s r

(d) Column Permutation Operation

c ¬c c ¬c
A p q =⇒ A s r
¬A r s ¬A q p

(e) Inversion Operation

c ¬c c ¬c
A p q =⇒ A p q
¬A r s ¬A r s+ k

(f) Null Addition Operation

Figure 2.1: Operations on a contingency table [62]
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Chapter 3

Related Work

Interestingness measures are used in different aspects of data mining. McGarry et

al. [47] have used these measures to evaluate the worth of rules extracted from

neural networks to discover their internal operation. Buntine [16] took advantage

of these measures in probabilistic graphical model. Romao et al. [55] have used in-

terestingness measures in a genetic algorithm that optimizes expert beliefs to rank

the interestingness of fuzzy prediction rules. Hilderman et al. [32] compared the

various diversity measures used for ranking data summaries. Kononenko [36] dis-

covered the properties of measures used in decision trees. And Gavrilov et al. [24]

and Zhao et al. [73] compared objective functions used in clustering approaches.

One of the main purposes of using interestingness measures is to reduce or

rank the patterns (e.g., association rules, classification rules, sequential patterns,

contingency tables and summaries) in order to find the interesting ones. The focus

of this work is on objective measures for association and classification rules, hence,

only the works related to these two areas are introduced in this section.

3.1 Interestingness measures in association rule min-
ing

Bayadro and Agrawel [11] have proposed an algorithm to mine optimized rules

under partial ordering of the rules (≤sc) based on support and confidence (instead

of the typical total ordering on rules). For rules r1 and r2, this partial ordering is

defined as follows:
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Group Objective measures
1 Odds ratio, Yule’s Q and Yule’s Y
2 Cosine and Jaccard
3 Support and Laplace
4 Correlation, Collective strength and Piatetsky-Shapiro
5 Gini index and Goodman-Kruskal
6 Lift, Added value and Klosgen
7 Mutual information, Certainty factor and Kappa

Table 3.1: Groups of objective measures with similar properties [62]

• r1 <sc r2 if and only if:

– sup(r1) ≤ sup(r2) ∧ conf(r1) < conf(r2)

– or sup(r1) < sup(r2) ∧ conf(r1) ≤ conf(r2)

• and r1 =sc r2 if and only if: sup(r1) = sup(r2) ∧ conf(r1) = conf(r2).

Based on this ordering, a sc-optimal rule r is a rule in the upper border for which

there is no other rule r′ such that r ≤sc r′. In this work, it is shown that from a set

of rules which the consequent of them are the same, the most interesting rule that is

selected using a monotonic interestingness measure in both support and confidence

(e.g., support, confidence, conviction, lift, gain), is an sc-optimal rule. However,

this property is useful when the consequent of the rules are identical and the user is

only interested in a single most interesting rule.

Tan et al. [61, 62] have introduced five key properties that should be consid-

ered for selecting the right interestingness measure for a specific application. These

properties are based on operations on contingency tables and are described in Sec-

tion 2.2 (Properties T1-T5). To study these properties, 21 different objective rule

interestingness measures have been used. Using these five properties as well as

three properties introduced by Piatetsky-Shapiro [52] (properties P1-P3 in Section

2.2), Tan et al. have grouped some of these measures based on the correlation be-

tween their property vectors. Table 3.1 shows these groups.

In the same work, two different consequences of using support are described.

Support has been widely used in association rule mining because of its anti-monotonic

property which makes it efficient to search by pruning the search space. In addition
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to this property, Tan et al. have illustrated two other effects of using support. First,

it is shown that under certain support constraints, many measures become consis-

tent with each other. To show this, a synthetic data set with 10,000 contingency

tables were used. These contingency tables are ranked using 21 different measures

and then the similarity between the ranking vectors of each measure has been cal-

culated using the Pearson’s correlation. The results show that by forcing a tighter

bound for support many measures become highly correlated. In this experiment,

by having the support to be between 5% and 30%, which the authors believe is a

reasonable range of support for most application domains, most of the measures be-

come correlated to each other with correlations higher than 0.85. The second effect

of using support that is shown in this work is that by having a minimum support

threshold, most of uncorrelated or negatively correlated contingency tables will be

eliminated. This is because when a contingency table represented for rule A → B

has low support, there should be high support for at least one of the rules A→ ¬B,

¬A→ B or ¬A→ ¬B. If the support of either A→ ¬B or ¬A→ B is high, then

A and B are weakly or negatively correlated. Another situation where the rankings

of all measures become identical is using standardized [49], positively correlated

contingency tables.

The work of Tan et al. also addresses finding the best measure for specific ap-

plication domains using experts. Having a set of patterns, different measures can be

used to rank the patterns and then using a similarity measure, like Pearson correla-

tion, the similar rankings and consequently the similar measures can be found. To

find the best interestingness measure for patters of a specific domain, first a domain

specialist should rank a set of patterns in that domain manually. Then the most sim-

ilar ranking using different measures shows the best measure that can be used for

that specific application domain. In cases where there is a huge number of patterns,

only those having high standard deviation on the evaluation of different measures

are chosen to present a small and still diverse set of patterns to domain experts.

Lenca et al. [39] use a different way to find the best measure for a domain. They

rank the measures based on their properties rather than using a set of patterns. For

each application domain, a specialist assigns weights to each property of measures
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(e.g., symmetric property). Each weight shows the importance of that property in

the given domain. Then using all properties and also the weights assigned to each

of them, measures are ranked by applying a multi-criteria decision process. The

measure with the highest rank can be selected to be used in that specific domain.

In another work, Lenca et al. [40] have compared interestingness measures

based on formal definitions (i.e., measure properties) and experimental results. 5

interestingness measure properties have been described in this work that are ex-

plained in Section 2.2 (properties L1-L5). Three of these properties along with three

other properties (properties P1-P3 in Section 2.2) were used to group 20 different

interestingness measures. 5 different groups have been obtained with a hierarchal

ascendant clustering using the average linkage and Manhattan distance. Another

clustering has been done based on experimental results from 10 different datasets

utilizing an experimentation tool called Herbs [63]. A pre-order agreement coef-

ficient, τ1, which is derived from Kendall’s τ [26], is used to find the similarity

between two different rankings done by two different measures. These similarities

are used to cluster the measures. They have found 5 main clusters using 10 differ-

ent datasets. Finally, they compare these two clusterings to show that most of the

measures are in the same group. The comparison of these two groups are shown in

Table 3.2.

Also, there are some application specific research done in this area. Merceron

and Yacef [48] have tried 3 different interestingness measure which are cosine, lift

and added value on association rules and found the impact of these measures on

educational data. The data contains information of 84 students to study the positive

impact of additional resources provided for students. In another work, Ohsaki et al.

[51] have applied 16 different interestingness measures on mining association rules

to examine the usefulness of these measures for finding interesting rules extracted

from clinical data. A dataset of the medical test results on viral chronic hepatitis was

used for this study and the results were evaluated by a medical expert. They found

Chi-square, recall and accuracy to have the highest performances and also observed
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Experimental
Class E1 Class E2 Class E3 Class E4 Class E5

Fo
rm

al

Conf,
Class F1 SS,

Ex&Cex
Class F2 Lap GlbSup,

LC
OddMul,

Class F3 Conv,
Loe,

Zhang
Lift, Corr,

Class F4 InfoGain, Kappa,
AddVal PS

Entropic IntImp,
Class F5 IntImp1 ImpInd,

ProbDiscInd 1

Table 3.2: Comparing clusterings based on measure properties and experimental
results [40]

the usefulness of combining interestingness measure for finding interesting rules.

In addition to these related works, there are two surveys [25, 46] having many

useful information about interestingness measures in general.

3.2 Interestingness measures for associative classifiers

In an effort to present better alternatives to confidence in Classification Based on

Associations (CBA) [43], Lan et al. [38] have proposed two novel interestingness

measures, intensity of implication and dilated chi-square. These measures, which

are used to sort generated rules, statistically reveal the interdependence between

the antecedent of a rule and its class. These two measures are used instead of

confidence in CBA to build two other classifiers. The results are compared with the

original CBA, C4.5 and Naı̈ve Bayes and is based on error rate. The experiments

on 16 UCI datasets show the impact of these measures on having a more accurate

and more compact set of rules. The error rate was improved between 1% and 4%

1Entropic IntImp (entropic intensity of implication) and ProbDiscInd (probabilistic discriminant
index) are not included in the list of measures in this dissertation because of their complexity.
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and the rules could be pruned up to 90% of the number of rules in CBA.

After showing that even confident rules can have negative correlations, Arunasalam

and Chawla [7] propose a new measure called Complement Class Support (CCS)

which guarantees rules to be positively correlated. Then, an algorithm called Clas-

sification using CCS (CCCS) is described based on the anti-monotonic property of

CCS and the fact that “good” rules have low CCS values using a row enumeration

algorithm [20]. A rule is considered in the classifier only if it is positively corre-

lated (i.e., CCS < support). For classification, the best rule is considered as the

rule with the highest Score Strength which is a combination on confidence, local

support and CCS. 8 UCI datasets with three different imbalanced versions of each

is used for this study. The results are compared with CBA and are based on error

rate and true positive rate. The results show that CCCS is a more suitable choice

than CBA for imbalanced datasets.

SPACCC [65], an associative classifier, was introduced by Verhein and Chawla.

This classifier utilizes the Fisher Exact Test’s (FET) ρ-value to extract only sta-

tistically significant rules. They also use a new measure called Class Correlation

Ratio(CCR) to select only the rules that are more positively correlated to the class

they predict rather than the other classes. The search strategy used for generating

the rules is a bottom up item enumeration. To avoid examining all the rules, the

antimonotonicity feature of the concept of being potentially interesting is taken

into account-i.e., A → c is considered potentially interesting if and only if all

{A′ → c|A′ ⊂ A} have been found to be potentially interesting. Three different

approaches that have this feature are used in this work:

• Aggressive-S- This is an approach borrowed from Webb [66] where a rule

A→ c is potentially interesting only if for all immediate generalizations of it

(i.e., A− {b} → c), adding {b} will make a significant positive contribution.

• Simple-S- This approach uses FET and forces to be antimonotonic-i.e., if and

only if all rules in the form of A− {b} → c are statistically significant, then

the significance of rule A→ c is tested.

• Support- This approach considers a rule as potentially interesting if the sup-
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port of that rule is above a minimum support threshold.

In the next phase, interesting rules are selected from potentially interesting rules by

checking two criteria. A rule is interesting if it is statistically significant based on

FET and if its value for CCR is greater than 1. For classifying, they use a strength

score to rank the rules. This score is a combination of ρ-value, confidence and CCR.

6 balanced datasets from UCI and also imbalanced variations of them are used for

this study. The results are compared with CBA, Classification based on Multiple

Association Rules (CMAR) [42], CCCS and C4.5 and is based on accuracy, true

positive rate, number of rules, search space and time. The results show that they

can outperform other algorithms when using Aggressive-S in most of the cases.

Azevedo and Jorge [10] have compared 10 different interestingness measures

in selecting phase of associative classifier. Two different selecting approaches have

been used in this study. One is selecting the best rule using an ordering similar to

the rule ordering in CMAR [42]. R1 > R2 if:

• M(R1) > M(R2)

• or M(R1) = M(R2) ∧ supp(R1) > supp(R2)

• or M(R1) = M(R2) ∧ supp(R1) = supp(R2) ∧ length(R1) < length(R2)

where M is an interestingness measure. The other approach is weighted voting

which selects a rule by assigning a specific weight to the label of each rule. χ2

has been used for filtering potentially trivial rules. The comparisons were done

using 17 different datasets from UCI repository. Each measure has a rank for each

dataset based on error rate. It is demonstrated by the results that the “best rule”

strategy leads to lower error rate and consequently higher rank in almost all the

cases. Results also show that using conviction with “best rule” has the best mean

rank. Over all, conviction, confidence and Laplace were the only measures that

could produce competitive classifiers. The authors believe that the reason that other

measures could not build a strong classifier is that almost all of them are symmetric

measures.
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In another part of the same work by Azevedo and Jorge, utilizing dataset fea-

tures as meta features to find the best measure in the selecting phase of associative

classification has been studied. Confidence, conviction and Laplace are three mea-

sures used for classifying 17 different datasets. The two dataset features selected

for this study are number of classes and normalized class entropy, which measures

the balance of class distributions. Because of the small set of datasets, there are no

obvious patterns to explain the success of each measure. The only observation is

that for most unbalanced datasets, conviction is the best measure to be use.

These related works show that there are a wide range of interestingness mea-

sures being used in many different studies for association rule mining and different

interestingness measures are also being used in associative classifiers in order to

improve their performance. However, most of them are studies only about the se-

lection phase of these classifiers. To the best of our knowledge there are no previous

studies for comparing different interestingness measures in the pruning phase of as-

sociative classifiers.

3.3 Formal Comparison of Measures

In Section 2.2, 16 different properties for probabilistic objective interestingness

measures were explained. One way of comparing different measures is to use these

formal explanations of measures’ properties and find the similar measures based

on them. As it was explained in Section 3.1, Tan et al. [62] have clustered 18

different measures using 8 different properties. Lenca et al. [40] have also clustered

20 different measures using six different properties. The aim of this section is to

cluster all 53 measures introduced in Table 2.2 in a similar way as Lenca et al. ’s

work. However, instead of using only six properties, 14 different properties are

used.

3.3.1 Properties of Different Measures

Table 3.3 shows 14 different properties mentioned in Section 2.2 for all 53 mea-

sures. Properties L4 and L5 are excluded because they are subjective properties and
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depend on the user and problem domain. For property P3, “A” means the measure

monotonically decreases with P (A), “C” means it monotonically decreases with

P (c), “B” means it monotonically decreases with both P (A) and P (c) and “N”

means it does not decrease with either P (A) or P (c). For property T3, “R” means

the sign of the measure changes with row permutation, “C” means the sign of mea-

sure changes with column permutation,“B” means the sign of measure changes

with both row and column permutations and “N” means the sign of measure does

not change with row or column permutations. For property L2, numbers from 0 to

6 are used which represent respectively convex decrease, linear decrease, concave

decrease, decrease but the manner depends on parameters,invariant, increase,and

depends on the parameters. For properties G1 and G2, numbers from 0 to 3 are

used which represent respectively increase, invariant, decrease, and depending on

parameters. For other properties, “Y” means the measure has that property and “N”

means the measure does not have that property.

Table 3.3: Properties of objective rule interestingness mea-
sures

No. Measure P1 P2 P3 P4 T1 T2 T3 T4 T5 L1 L2 L3 G1 G2

1 1waySup Y N A N N N N N N N 6 N 3 3
2 2waySup Y N B N Y N N N N N 6 N 3 3
3 2waySupVar Y N N N Y N B Y N N 3 N 3 3
4 Acc N Y B N Y N N Y N N 1 N 0 0
5 AddVal Y Y B N N N N N N N 1 N 0 0
6 CerFac N Y B N N N N N N N 0 N 0 0
7 Chi2 Y N N Y Y N N Y N Y 6 Y 3 3
8 CCR Y Y B N N N N N N N 3 N 0 0
9 CollStr N Y A N N N N N N N 6 N 0 0

10 CCS N Y B N N N N N N Y 0 N 0 0
11 Conf N Y C N N N N N Y Y 1 N 0 0
12 ConfC N Y B N N N N N N Y 0 N 0 0
13 CnfrmC N Y B N N N N N N N 1 N 0 0
14 CnfrmD N Y C N N N C N N N 1 N 0 0
15 CCC N Y B N N N N N N Y 0 N 0 0
16 CCD N Y C N N N C N Y Y 1 N 0 0
17 Conv Y Y B N N N N N N Y 0 N 0 0
18 Corr Y Y B N Y N B Y N N 3 N 0 0

Continued on next page
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Table 3.3 – continued from previous page
No. Measure P1 P2 P3 P4 T1 T2 T3 T4 T5 L1 L2 L3 G1 G2

19 Cos N Y B Y Y N N N Y N 2 N 0 0
20 DChi2 Y N N N N N N N N N 6 Y 3 3
21 Ex&Cex N Y C N N N N N Y Y 2 N 0 0
22 FM N Y B Y Y N N N Y N 2 N 0 0
23 Gan N Y C N N N N N Y Y 1 N 0 0
24 Gini Y N N Y N N N Y N N 6 N 3 3
25 GK Y Y N N Y N N Y N N 6 N 3 3
26 HConf N N N N N N N N N N 6 Y 3 3
27 HLift N N N N N N N N N N 6 Y 3 3
28 ImpInd Y Y B N N N N N N N 0 Y 0 0
29 InfoGain Y Y B N Y N N N N N 2 N 0 0
30 IntImp N N N N N N N N N N 6 Y 3 3
31 IWD Y N B N Y N N N N N 6 N 3 3
32 Jacc N Y B Y Y N N N Y N 1 N 0 0
33 JM Y N A N N N C N N N 6 N 3 3
34 Kappa Y Y B N Y N N Y N N 3 N 0 0
35 Klos Y N B N N N N N N N 6 N 3 3
36 KM N N N N N N N N N N 6 N 3 3
37 Lap N Y C N N N N N Y N 1 Y 0 0
38 LC N Y C N N N N N Y N 2 N 0 0
39 Lev N Y B N N N N N N N 1 N 0 0
40 Lift Y Y B N Y N N N N N 2 N 0 0
41 Loe Y Y B N N N N N N Y 0 N 0 0
42 MutInfo Y N N N N N N Y N N 6 N 3 3
43 OddMul Y Y B N N N N N N Y 3 N 0 0
44 OddR Y Y B N Y Y N Y N Y 0 N 0 0
45 PS Y Y B N Y N B Y N N 1 N 0 0
46 LocSup N Y A Y N N N N Y N 2 N 0 0
47 RelRisk Y Y B N N N N N N N 1 N 0 0
48 SS N Y C N N N N N Y Y 0 N 0 0
49 Spec N Y B N N N N N N N 4 N 0 0
50 GlbSup N Y N Y Y N N N N N 1 N 0 0
51 YulQ Y Y B N Y Y B Y N Y 3 N 0 0
52 YulY Y Y B N Y Y B Y N Y 3 N 0 0
53 Zhang Y Y B N N N N N N N 3 N 0 0
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3.3.2 Clustering Measures Based on Their Properties

Using the properties in Table 3.3, the measures are clustered with an agglomerative

hierarchical clustering algorithm [33] with average linkage. Having each measure

as a vector of properties, the distance of two measures is based on the Hamming

distance [30]. Figure 3.1 shows different levels of this clustering till the maximum

distance among measures in each cluster is 0.25. From this figure, measures with

similar properties can be inferred. The aim of this clustering is to find out whether

the similar measures based on their properties have the same behaviour in different

phases of associative classifiers. This will be evaluated in Section 5.7.

The above clustering can be compared with the work done by Tan et al. [62]

or Lenca et al. [40]. However, since Tan et al. have not revealed their clustering

method, any comparison with their work may not be fair. Hence, we only report the

comparison results of our clustering with that of Lenca et al. .

To find out how similar a clustering, V is to another clustering U , three different

evaluation measures can be used. The first evaluation measure is Adjusted Rand

Index (ARI) [68] which is based on true positive (TP), false positive (FP), true

negative (TN) and false negative (FN). TP is equal to the number of item pairs that

are in the same cluster in V and also in the same cluster in U . TN is the number of

item pairs that are not in the same cluster in V and also not in the same cluster in

U . FN is the number of item pairs that are not in the same cluster in V but are in

the same cluster in U . FP is the number of item pairs that are in the same cluster in

V but not in the same cluster in U . Having these four values, ARI is computed as:

ARI =
2(TP × TN − FP × FN)

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)

The second way is to find the f-measure using the same TP, TN, FP, and FN ex-

plained above. Based on these values, f-measure is equal to 2PR
R+P

where R =

TP
TP+FN

and P = TP
TP+FP

.

The third way is to use f-measure but with different definitions for TP, TN,

FP, and FN. To compare two clusterings based on this evaluation method, first,

a mapping should be done between the clusters of two groups. A cluster from

V is mapped to a cluster from U when they have the highest similarity. Here,
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the similarity is defined as the size of the intersection of two clusters. Then, the

equivalent clusters (one mapped to the other) are labeled the same. Finally, TP, TN,

FP, and FN and consequently the f-measure is calculated based on this mappings.

18 out of 20 measures used by Lenca et al. [40] are included in this clustering.

Table 3.4 shows the comparison of the above clustering with the clustering done by

Lenca et al. for these 18 measures. The results show that there are some differences.

There reason can be because the space is extended , both in term of number of

measures and number of properties in our case. Hence, there are some measures

that appear to be in different clusters in the two clusterings. In this comparison,

ARI = 0.36, FmeasureitemPairs = 0.46 and Fmeasuremapping = 0.73. If we

only choose this 18 measures with only the properties that are used in Lenca et

al.’s work, almost the same clusters are obtained. However, there are still some

small differences. The reason is because we have split property P3 into two sub

properties. The comparison of this clustering with the work done be Lenca et al. is

show in Table 3.5. In this comparison, ARI = 0.67, FmeasureitemPairs = 0.74

and Fmeasuremapping = 0.88 which is reasonable.

Our clustering
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Table 3.4: Comparing our clustering with the clustering done by Lenca et al. [40]
based on measure properties.
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Our sub clustering
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Table 3.5: Comparing our sub clustering using only the properties and measures
used by Lenca et al. [40] with the clustering done by them based on measure prop-
erties.
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Figure 3.1: An agglomerative hierarchical clustering of measures based on their
properties
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Chapter 4

Interestingness Measures in
Associative Classifiers

As mentioned in Section 1.1.2, support and confidence are not necessarily the ideal

measures for associative classifiers. In addition, different interestingness measures

have been used to improve association rule mining. Hence, with a high probability,

these interestingness measures can also improve associative classifiers if a proper

interestingness measure is used.

This chapter addresses the problem of how interestingness measures can be used

in three phases of a simple associative classifier: rule generating, rule pruning and

rule selection.

4.1 Interestingness Measures in Rule Generation Phase

In the first step of an associative classier, using an association rule mining tech-

nique, rules with class labels as consequent are generated. For generating rules, an

anti-monotonic measure, am, and a threshold, ta, is required to prune the search

space and make the searching algorithm efficient. Then, all the conflicting rules are

eliminated. For removing the conflicting rules, confidence is the simplest measure

that can be used. Here, confidence is used with the lowest possible threshold(%51)

only to eliminate conflicting rules. Algorithm 1 shows the pseudo code of this

phase.

Only measures with anti-monotonic property can be used in this phase. This

property for measures listed in Table 2.2 is not known, however, in most of the
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cases, it is obvious that the measure is not anti-monotone. Hence, in this study, only

support (global support) and local support are used for this phase. Local support

is usually used for imbalanced datasets. This way, the rules that do not have high

support in all the dataset but are frequent in their own class also have the chance to

be generated. Although this measure may improve the accuracy of the classifier, it

generates more rules than global support.

4.2 Interestingness Measures in Rule Pruning Phase

One of the main problems of using association rule mining is that it generates a

huge set of rules even for reasonable minimum support thresholds. In associative

classifiers, different approaches are used to prune the rules to make a more compact

model with higher accuracy. These pruning approaches are redundancy removal,

pruning based on minimum confidence threshold, chi-square test, database cover-

age and pessimistic error rate [17]. In the first two approaches, an interestingness

measure, which is confidence, is used. Hence, redundancy removal and confidence-

based pruning are the two pruning approaches that are considered in this study.

These two pruning methods can be generalized in order to utilize different interest-

ingness measures.

Redundancy removal pruning

Having a rule set R and an ordering on R, <or, the rules in R can be pruned as

follows: for rules ri : Ai → c and rj : Aj → c, if ri is said to be a general rule

of rj or in other words, Ai ⊂ Aj , and rj <or ri, rj is removed as a redundant

rule. This redundancy is relative and pruning a rule depends on existent of some

other rules in the rule set. The ordering used in this method should be the same

as the ordering used in the selection phase to remove the rules that are never used

for predicting. This approach can only be safely used when the highest ranked rule

is considered in the selection phase. When the prediction is based on the average

of the measures used in ordering, this pruning method can change the accuracy

because the rules that were pruned are not really redundant in this case. Algorithm
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2 shows the pseudo code of this pruning method.

Measure-based pruning

Having a rule set R, an interestingness measure, pm, and a minimum threshold,

tp, rule ri is removed if pm(ri) < tp. In fact by defining pm as the interesting-

ness measure, all rules that are not interesting based on this definition are removed.

Pruning a rule using this method is independent of other rules. Algorithm 3 shows

the pseudo code of this pruning method.

Chiusano and Garza [17] have introduced three properties for pruning tech-

niques: Idempotency, transparency and commutativity. A pruning technique is

idempotent if it always provides the same rule set as it is applied one or multi-

ple times on a specific rule set. A pruning approach is said to be transparent if it

only removes the redundant rules and does not change the accuracy of the classifier.

Having two different pruning approaches, they are said to be commutative if the

same rule set is provided independently of the order of pruning methods applied.

Redundancy removal pruning and measure-based pruning both satisfy the idem-

potency property. Redundancy removal pruning satisfies the transparency property

only if the selection phase is based on the highest ranked rule rather than the average

of measures of all matchable rules. However, measure-based pruning is not trans-

parent. If the interestingness measure used in measure-based pruning is the same

as the one used in selection phase, then the accuracy of the pruned rule set is less or

equal to the accuracy of the original rule set. The accuracy decreases here only if

for predicting an object, the rule that could match the object is pruned from the orig-

inal rule set. In this case, the prediction will be the majority class which may not

be the same a the object’s class. If the measure used for measure-based pruning is

not the same as the one for predicting, the accuracy may either decrease or increase

in compare to the accuracy of the original rule set. The accuracy may decrease if

some rules that are essential in predicting are pruned as uninteresting rules. On the

other hand, the accuracy may increase in some cases if some misleading rules that
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are used for prediction are removed in this pruning.

These two pruning methods can be combined in order to prune even more rules.

To study the commutativity property of these two pruning methods, different situa-

tions should be considered. Let ri and rj be two rules in rule setR where they have

the same consequent and ri is the general rule of rj . Using the ordering <or for

redundancy removal and measure pm with minimum threshold of tp for measure-

based pruning, four different cases can happen:

• If pm(rj) < pm(ri)∧rj <or ri, rj is removed if redundancy removal pruning

is applied. If measure-based pruning is applied, either both ri and rj , or

only rj or none of them are removed depending on tp and there is no way

that rj remains in the rule set but ri gets eliminated. Hence, applying both

redundancy removal pruning and measure-based pruning in any order, does

not change the final pruned rule set.

• If pm(ri) < pm(rj) ∧ ri <or rj , none of the rules are removed using re-

dundancy removal. Using measure-based pruning, either both rules, or only

ri, or none of the rules are eliminated depending on tp. However, because

redundancy removal pruning is ineffective in this case, the order of pruning

methods does not change the final result.

• If pm(ri) > pm(rj) ∧ ri <or rj , like previous case, the redundancy removal

pruning is ineffective. Hence, the order of these two pruning methods does

not change the final result.

• If pm(rj) > pm(ri)∧rj <or ri, rj is removed if redundancy removal pruning

is applied. Measure-based pruning removes either both rules, or only ri, or

none of the rules depending on tp. This case, is the only case where the order

of pruning application can change the final result. Assuming that measure-

based pruning removes only ri, if redundancy removal pruning is applied

first, rule rj is removed. Then, if the measure-based pruning is applied after

that, rule ri is also eliminated. On the other hand, if measure-based pruning

is applied first, rule ri is removed and then, if redundancy removal pruning is

applied because rj does not have any general rule, will remain in the rule set.
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To summarize, redundancy removal and measure-based pruning are commu-

tative only if they use the same interestingness measure or the measure used in

measure-based pruning is an increasing function of the ordering used in redundancy

removal pruning. Otherwise, the commutativity of these two pruning methods are

not guaranteed.

In this study, we only consider one of the orderings, i.e., measure-based pruning

and then redundancy removal pruning. The reason is that measure-based pruning

removes uninteresting rules and the pruning is independent from other rules in the

rule set but redundancy removal pruning eliminates redundant rules depending on

the other rules in the rule set. Hence, as the four situations described above, if

the last case happens, applying redundancy removal pruning before measure-based

pruning may prune an interesting rule because a more general rule for that with a

higher rank based on the defined ordering exists in the rule set which is not interest-

ing. This uninteresting rule, that has removed an interesting rule, is also removed

by measure-based pruning afterwards.

4.3 Interestingness Measures in Selection Phase

The last phase of an associative classifier is to select a rule or a set of rules for

predicting a calss label of an object. For classifying a new object, an ordering

should be defined. In this work, an ordering similar to the rule ordering in CMAR

[42] is used. However, instead of confidence, any interestingness measure can be

used. Let sm be an interestingness measure. Based on this ordering and considering

the highest ranked rule, rj <or ri (ri gets a higher rank than rj), if:

• sm(rj) < sm(ri)

• or sm(rj) = sm(ri) ∧ support(rj) < support(ri)

• or sm(rj) = sm(ri)∧support(rj) = support(ri)∧ length(ri) < length(rj)

Where sm is the selecting measure, support is the support of the rule, and length

denotes the length of the rule which is equal to the number of attribute-value pairs

in the antecedant.
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To take into account the interestingness measure average of all rules that apply,

first all rules that apply to the unknown object should be grouped based on their

class labels. IfRc denotes a rule set which all rules have the class label c, based on

this ordering,Rc <orAvg R′c′ , if:

• Avgrj∈Rc{sm(rj)} < Avgri∈R′c′{sm(ri)}

• or Avgrj∈Rc{sm(rj)} = Avgri∈R′c′{sm(ri)} ∧

Avgrj∈Rc{support(rj)} < Avgri∈R′c′{support(ri)}

• or Avgrj∈Rc{sm(rj)} = Avgri∈R′c′{sm(ri)} ∧

Avgrj∈Rc{support(rj)} = Avgri∈R′c′{support(ri)} ∧

Avgri∈R′c′{length(ri)} < Avgrj∈Rc{length(rj)}

Both these approaches are used in this study. If no rule can match the object,

the dominant class is assigned to it. Algorithms 4 and 5 show the pseudo code of

these two selecting approaches.
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Algorithm 1: Generating classification rules
input : D, am, ta.
// D: a transactional dataset.1

// am: an anti-monotonic measure2

// ta: a minimum threshold for am3

output: A classification rule set.

begin4

// generate frequent itemsets using any frequent5

itemset mining technique.
I ← FrequentSetMining(D, am, ta)6

I ← ∅7

// select all classification rules that do not8

conflict.
foreach rule i in I do9

if i is in the form of {A, c}, where A is a set of attribute-value pair10

and c is a class label then
r ← (A→ c)11

if conf(r) ≥ 0.51 then12

R ← R+ {r}13

end14

end15

end16

returnR17

end18
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Algorithm 2: Redundancy removal pruning
input :R, <or.
// R: a classification rule set.1

// <or: an ordering definition2

output: A classification rule set.

begin3

R′ ← ∅4

foreach rule r : A→ c inR do5

isRedundant← false6

foreach rule r′ : A′ → c′ inR′ do7

if r <or r
′ and A′ ⊂ A and c = c′ then8

// r is redundant9

isRedundant← true10

break11

end12

else if r′ <or r and A ⊂ A′ and c = c′ then13

// r’ is redundant14

R′ ← R′ − {r′}15

end16

end17

// if r is not redundant so far, it should be18

added to the new rule set
if not isRedundant then19

R′ ← R′ + {r}20

end21

end22

returnR′23

end24
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Algorithm 3: Measure-based pruning
input :R, pm, tp.
// R: a classification rule set.1

// pm: a pruning measure measure2

// tp: a minimum threshold for pm3

output: A classification rule set.

begin4

foreach rule r inR do5

if pm(r) < tp then6

R ← R− {r}7

end8

end9

returnR10

end11

Algorithm 4: Classifying a new object based on the highest ranked rule
input :R, <or, obj.
// R: a classification rule set.1

// <or: an ordering definition2

// obj: an object with unknown class label3

output: A class label

begin4

bestRule← null5

foreach rule r : A→ c inR do6

if obj ⊆ A and bestRule <or r then7

bestRule← r8

end9

end10

if bestRule = null then11

return dominant class12

end13

return the class label of bestRule14

end15
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Algorithm 5: Classifying a new object based on the average of measures of
applied rules

input :R, <orAvg, obj.
// R: a classification rule set.1

// <orAvg: an ordering relation which compares two2

rule sets based on the average of metrics used in
the ordering definition.
// obj: an object with unknown class label, Aobj3

denotes the attributes of the object.
output: A class label

begin4

foreach class label ci do5

labelToRuleset[ci] = ∅6

end7

foreach rule r : A→ c inR do8

if Aobj ⊆ A then9

labelToRuleset[c]← labelToRuleset[c] + {r}10

end11

end12

if labelToRuleset[ci] = ∅ ∀i then13

return dominant class14

end15

bestLabel← null16

foreach class label ci do17

if labelToRuleset[bestLabel] <orAvg labelToRuleset[ci] then18

bestLabel← ci19

end20

end21

return bestLabel22

end23
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Chapter 5

Experimental Results

Experimental results are shown in this chapter to study the impact of interestingness

measures based on classification accuracy and number of rules in all three phases

of associative classifiers: rule generation, rule pruning and rule selection. Figure

5.1 shows the three different phases in associative classifiers. Any path from start to

end point is a matter of discussion in this study such that best possible measures for

each phase is to be investigated. First the impact of using different interestingness

measures is explored individually for each phase. Then, the combination of the best

measures in each phase is also studied.

First, the datasets and the evaluation method used in this study are introduced.

Then, the results of each phase are illustrated.

5.1 Datasets

20 datasets having different of characteristics, have been chosen from the UCI

repository [8] to observe the impact of using diverse interestingness measures on

them. These datasets are commonly used in literature for classification and in par-

ticular associative classifiers. To be able to convert the relational datasets into trans-

actional datasets, all numeric attributes are discretized. The same entropy-based

discretization method [21] used in CBA [43] is used to categorize the continues

attributes. This method is a supervised top-down approach which discritizes the

values with no parameters. First, the available values are sorted all being in one

interval. Then the potential cut points are selected from the points on boundaries
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No. Datasets # of avg # of # of avg max cls stdev
att-val # itm trans mxs mxs mxs cls

1 Anneal 70 13.31 898 397 11.74 16 5 0.32
2 Breast 25 8.98 699 257 6.84 10 2 0.22
3 Census 149 12.87 32,561 2,385 7.36 13 2 0.37
4 Colic 61 14.52 368 9,550 7.90 14 2 0.18
5 Credit 54 14.90 690 8,510 8.96 16 2 0.08
6 Diabetes 17 7.00 768 287 6.15 8 2 0.21
7 German 57 15.00 1,000 19,215 8.06 13 2 0.28
8 Glass 20 7.00 214 48 6.52 8 6 0.14
9 Heart 28 10.98 303 1,939 7.27 12 2 0.06

10 Hepatitis 35 16.14 155 1,038 12.39 18 2 0.42
11 Iris 13 4.00 150 23 4.78 5 3 0.00
12 Labor 33 8.40 57 47 9.79 15 2 0.21
13 Led7 14 7.00 3,200 132 4.38 8 10 0.00
14 Pima 17 7.00 768 287 6.15 8 2 0.21
15 Tictactoe 27 9.00 958 2,882 5.27 6 2 0.22
16 Vote 32 15.10 435 8,127 8.95 17 2 0.16
17 Vowel 62 13.00 990 1,022 7.63 11 11 0.00
18 Waveform 107 19.00 5,000 19,245 4.45 9 3 0.00
19 Wine 36 13.00 178 518 9.58 14 3 0.06
20 Zoo 132 17.00 101 53 15.85 17 7 0.13

Table 5.1: 20 different datasets from UCI repository [8]. The columns for each
dataset shows name of the dataset, number of attribute-value pairs, average number
of items per transactions, number of transactions, number of maximal rules, average
size of maximal rules, maximum size of maximal rules, number of classes and
standard deviation of class distributions respectively.

where the class label changes. Each time, the best cut point is selected based on

entropy and this procedure continues recursively until no “good” cut point is found.

The datasets and some of their properties and characteristics are shown in Table

5.1. These characteristics may help in finding suitable interestingness measures for

a dataset. The first column after the name of the dataset shows the total number of

attribute-value pairs (items) after discretizing the continues attributes. After that,

the average number of items per transaction and total number of transactions are

shown. The three next columns show some characteristics of the datasets while

generating the maximal rules using global support with minimum support threshold

of 1%. The first one shows the total number of maximal rules generated. The second

and third columns show the average and the maximum size of these maximal rules

46



respectively. The information about the maximal rules can help to find density-

based characteristics of a dataset. The more the number of maximal sets, the higher

the number of groups of items that occur frequently, and the higher the average

size of the maximals, the larger the groups of items that occur frequently. The

last two columns show the number of classes and the standard deviation of class

distributions. The more imbalanced the dataset, the higher the value for standard

deviation. These characteristics were collected in the hope they could help identify

the best characteristics of a dataset that would determine the suitable interestingness

measure for that dataset (Hypothesis 3).

5.2 Evaluation Method

Different measures are defined to evaluate the accuracy of a classifier. Some of

them are accuracy, micro f1-measure and macro f1-measure. The following defines

these measures:

• Accuracy, also known as overall accuracy, is the fraction of data which is

correctly classified: Acc = TruePrediction
N

, where N is the number of data

instances to be classified.

• F1-measure, unlike accuracy, takes into account the prediction of classes sep-

arately. For example, a naı̈ve classifier that classifies any data as the majority

class can reach the overall accuracy of 90% in an imbalanced data where 90%

of the data belongs to the majority class. In spite of a high accuracy, this clas-

sifier is not considered “good” because it has never learned other classes. The

f1-measure, however, considers this deficiency by evaluating the prediction

power for all classes.

The f1-measure with respect to the positive class is based on the confusion

matrix which is shown in Table 5.2. Precision, recall and f1-measure is de-

fined as:

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN
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F1measure(FM) =
2PR

P +R
=

2TP

2TP + FP + FN

The definition above for the f1-measure can only be used for binary class

classifications. For an m-class classifier where m > 2, macro and micro

average f1-measures are used. These two measures take into account the

confusion matrix of the classifier with respect to each class i (1 ≤ i ≤ m),

where class i is the positive class and all other classes are put in the negative

class. Using Table 5.3,

MacroF1measure = average1≤i≤mFMi

MicroF1measure =
2
∑m

(i=1) TPi

2
∑m

(i=1) TPi +
∑m

(i=1) FPi +
∑m

(i=1) FNi

Predicted
Positive Negative

R
ea

l Positive TP FN
Negative FP TN

Table 5.2: Confusion matrix

Class Confusion Matrix F-measure
1 TP1 TN1 FP1 FN1 FM1

. . . . . . . . .
i TPi TNi FPi FNi FMi

. . . . . . . . .
m TPm TNm FPm FNm FMm

Total
∑m
i=1 TPi

∑m
i=1 TNi

∑m
i=1 FPi

∑m
i=1 FNi

Table 5.3: Confusion matrix of all classes

Theorem 5.1 Micro f1-measure is equal to accuracy.

Proof Assume that the real label of a data instance is Ci and its predicted label is

Cj . This is a true prediction (TP or TN) with respect to all classes iff i = j, but

when i 6= j, it is a false positive (FP) with respect to class j, and a false negative

(FN) with respect to class i. With respect to other classes, both i and j become

negative and it is considered a true negative (TN). In total, per each prediction,
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∑m
i=1 FPi and

∑m
i=1 FNi either remain unchanged or both are incremented by 1.

Hence,
∑m
i=1 FPi =

∑m
i=1 FNi and

MicroF1measure =
2
∑m
i=1 TPi

2
∑m
i=1 TPi +

∑m
i=1 FPi +

∑m
i=1 FNi

=

∑m
i=1 TPi∑m

i=1 TPi +
∑m
i=1 FPi

=
TruePrediction

True&FalsePrediction

=
TruePrediction

N
= Accuracy

To evaluate our work, each classifier is evaluated based on the number of rules

its model contains, macro average f1-measure, accuracy and maximum possible

accuracy. Henceforth, f-measure refers to macro average f1-measure.

The maximum possible accuracy shows the maximum accuracy that is achiev-

able if for each test object, the right rule is selected from the set of available rules.

Hence, if for a test object there exists at least one rule that applies to that object with

the same class label, that object is considered as a correct classification, otherwise,

it is a misclassification. This evaluation measure is useful to evaluate the pruning

and see whether the essential rules are pruned or preserved.

All the results in this chapter are based on 10-fold cross validation and the folds

used for all classifiers are the same for each dataset.

5.3 Global vs. Local Support in Rule Generation Phase

To generate the rules, Borgelt’s implementation [12] of Eclat [71] is used with some

modifications in order to only generate classification rules. Local and global sup-

ports with a threshold of 1% are used as anti-monotonic measures to prune the

search space. To remove the conflicting rules, a minimum confidence threshold of

51% is used. No pruning method is used here and the measure used in the selection

phase is confidence with two different approaches, selecting based on the “highest

ranked rule” and based on the “average of rules”. Rule sets generated only using

local/global support and confidence are called “original rule sets”. All other results

are compared with the results of these rule sets. The results of the original rule sets

using global support is shown in Table 5.4 and the same results using local support

49



Highest Average
Datasets # of rules Max acc % FM% Acc% FM% Acc%
Anneal 309,828 98.11 64.32 88.98 66.64 89.76
Breast 6,936 100.00 94.55 95.12 96.08 96.42
Census 63,226 98.35 65.11 81.69 73.50 83.89
Colic 188,278 98.63 62.48 72.57 80.36 82.57
Credit 299,311 99.42 74.55 76.68 87.64 87.97
Diabetes 923 97.79 66.87 73.83 68.54 74.09
German 223,508 99.00 48.80 71.50 43.62 70.10
Glass 1,599 88.51 55.35 69.31 54.85 66.97
Heart 41,096 100.00 66.05 70.27 80.37 80.85
Hepatitis 1,150,690 100.00 44.26 79.42 67.17 83.65
Iris 108 99.33 95.19 95.33 91.06 91.33
Labor 44,203 100.00 50.10 68.67 82.02 82.33
Led7 473 86.98 73.26 74.00 70.97 72.00
Pima 988 97.53 66.96 74.35 68.64 74.48
Tictactoe 7,398 100.00 70.30 78.72 88.06 90.19
Vote 955,659 99.77 85.17 87.12 95.69 95.87
Vowel 18,501 87.88 61.00 62.73 56.24 58.38
Waveform 35,626 100.00 79.98 80.32 75.57 76.54
Wine 185,942 100.00 76.76 79.87 95.60 95.48
Zoo 971,581 100.00 66.00 81.16 91.26 94.99
Average 225,294 97.56 68.35 78.08 76.69 82.39

Table 5.4: Results on 20 datasets using global support with threshold of 1%, with
selecting based on the highest ranked rule and the rules’ average of measures. “Max
acc” denotes the maximum possible accuracy, “FM” denotes the macro average f-
measure and “Acc” denotes the accuracy of the classifier.

is shown in Table 5.5 in terms of number of rules, maximum possible accuracy,

f-measure and accuracy.

The results of the original rule sets show that using local support yields a very

large number of generated rules, especially when the class labels are imbalanced

(i.e., when the standard deviation of class distributions is high), but it also creates

more accurate models for this kind of datasets as it also finds frequent patterns in

small classes. Figure 5.2 shows the f-measure using local and global supports with

selecting either the highest ranked rule or the rules’ average of measures for pre-

diction. An observation from this figure is that using “rules’ average of measures”

leads to more accurate classifiers in most datasets.
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Highest Average
Datasets # of rules Max acc % FM% Acc% FM% Acc%
Anneal 791,998 99.78 82.28 91.65 88.59 93.33
Breast 11,338 100.00 94.22 94.84 95.74 96.13
Census 139,508 98.89 72.14 84.00 75.44 84.74
Colic 794,762 99.72 61.49 72.02 79.46 80.98
Credit 868,705 100.00 65.83 71.04 86.92 87.25
Diabetes 1,133 97.79 67.20 73.70 68.26 73.70
German 512,204 99.90 51.65 72.20 61.89 73.00
Glass 2,779 88.51 53.08 69.82 50.64 63.19
Heart 62,833 100.00 64.74 69.94 79.40 79.87
Hepatitis 1,150,690 100.00 44.26 79.42 67.17 83.65
Iris 132 99.33 94.48 94.67 91.73 92.00
Labor 44,203 100.00 50.10 68.67 82.02 82.33
Led7 989 87.38 73.25 74.01 71.49 72.44
Pima 1,201 97.53 67.64 74.47 68.50 74.22
Tictactoe 19,534 100.00 53.44 70.46 97.21 97.49
Vote 1,539,000 99.77 84.82 86.89 95.69 95.87
Vowel 1,176,990 99.70 74.67 75.25 72.28 72.32
Waveform 489,169 100.00 72.90 74.10 79.49 80.14
Wine 479,564 100.00 74.79 77.58 92.51 92.60
Zoo 971,581 100.00 66.00 81.16 91.26 94.99
Average 452,916 98.41 68.45 77.79 79.78 83.51

Table 5.5: Results on 20 datasets using local support with threshold of 1%, with
selecting based on the highest ranked rule and the rules’ average of measures. “Max
acc” denotes the maximum possible accuracy, “FM” denotes the macro average f-
measure and “Acc” denotes the accuracy of the classifier.

From now on, only the results for rule sets generated with global support are

shown in this chapter. The results for local support can be seen in Appendix B.

5.4 Using Redundancy Removal Pruning

Redundancy removal pruning can be used in order to eliminate the redundant rules.

While using the highest ranked rule in selection phase, this pruning can be used

to remove the rules that are never used in predicting. Hence, the f-measure and

accuracy does not change. Table 5.6 shows a huge percentage of rule reduction

while using the redundancy removal pruning on original rule sets generated with

global support. On the other hand, using this pruning method while predicting
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Figure 5.2: F-measure using original rule sets.

based on the rules’ average of measures, changes the number of rules as well as

f-measure and accuracy. The percentage of change in f-measure and accuracy are

also shown in Table 5.6. The results show large reduction of f-measure in some

datasets. Hence, although redundancy removal pruning can reduce a large number

of rules, it is not safe to be used while predicting is based on the rules’ average of

measures because it may decrease the f-measure as well.

5.5 Using Different Measures for Measure-based Prun-
ing

Measure-based pruning can be used to filter uninteresting rules. Three different

experiments are conducted to find the impact of using 53 different measures in

measure-based pruning. Two of these experiments are based on rule reduction.

In the first experiment, the goal is to find the minimum number of rules without

jeopardizing the f-measure. In the second experiment, the aim is to find the mini-

mum number of rules without changing the maximum possible accuracy. The goal

of the last experiment is to eliminate the misleading rules in order to improve the
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Datasets RR % FC% AC%
Anneal 99.86 -38.98 -9.78
Breast 95.23 -1.18 -1.04
Census 92.49 -22.09 -5.43
Colic 96.69 -8.23 -4.24
Credit 97.62 -1.68 -1.64
Diabetes 83.42 -2.51 -0.88
German 95.36 -5.61 -0.14
Glass 82.47 -12.11 -10.86
Heart 96.72 -0.03 +0.33
Hepatitis 99.74 -34.10 -5.06
Iris 69.65 +0.90 +0.73
Labor 99.23 -8.19 -6.88
Led7 31.85 -0.30 -0.78
Pima 83.47 -2.20 -0.88
Tictactoe 69.79 -49.92 -25.81
Vote 99.53 -6.21 -5.29
Vowel 88.52 -6.23 -6.75
Waveform 71.58 -3.57 -2.85
Wine 99.14 -13.73 -11.69
Zoo 99.77 -32.45 -21.31

Table 5.6: Percentage of rule reduction while using redundancy removal pruning
on rule sets generated with global support as well as the change of f-measure and
accuracy while the rules’ average of measures are used for prediction. RR, FC
and AC are short forms for rule reduction, f-measure change and accuracy change
respectively.

f-measure. The selecting measure used for these experiments is confidence.

5.5.1 Rule reduction without jeopardizing the f-measure while
using measure-based pruning

The first experiment is to show the impact of different measures on reducing the

number of rules while f-measure is not jeopardized. For this experiment, the best

measures are found for each dataset that can have the most rule reduction while

keeping the f-measure above 95% of its original f-measure. As it is shown in Tables

5.7 and 5.9, in all datasets the number of rules decreases significantly and even in

some datasets, the f-measure also improves. Another observation from these tables

are that the maximum possible accuracy decreases significantly as well, but the f-
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Datasets RR % FC% AC% MPAC% Measure
Anneal -93.04 7.91 1.77 -21.05 Klos (0.1)
Breast -99.94 -2.22 -1.95 -69.54 2WaySup (0.4)
Census -99.95 10.74 -1.58 -85.81 IWD (0.1)
Colic -99.99 -0.63 -0.04 -25.06 CF (0.7)
Credit -99.99 14.65 11.50 -58.60 CCR (9)
Diabetes -99.73 -0.14 -8.12 -74.31 Kappa (0.3)
German -99.99 -2.16 -0.28 -89.90 GK (0.1)
Glass -80.22 -3.07 -2.59 -15.89 LC (0.3)
Heart -99.99 19.88 14.64 -65.78 CnfrmC (0.7)
Hepatitis -99.99 0.00 0.00 -25.75 CnfrmD (0.6)
Iris -92.90 -1.50 -1.40 -6.04 Acc (0.95)
Labor -99.99 2.68 -0.97 -80.00 GK (0.5)
Led7 -57.56 -1.43 -1.15 -0.40 CF (0.6)
Pima -99.66 -0.34 -9.11 -72.36 Kappa (0.3)
Tictactoe -99.99 -4.84 -11.18 -79.96 CF (0.01)
Vote -99.99 4.80 5.34 -66.31 Kappa (0.9)
Vowel -54.63 -3.85 -6.60 -30.92 Gan (0.6)
Waveform -98.74 -4.47 -5.08 -31.84 SS (13)
Wine -99.64 5.59 1.19 -40.48 IWD (0.5)
Zoo -99.09 3.81 4.29 -13.69 CnfrmC (0.99)

Table 5.7: Percentage of rule reduction, f-measure change, accuracy change, maxi-
mum possible accuracy change and the measure with the minimum threshold used
to get the minimum number of rules with measure-based pruning without jeopar-
dizing the f-measure. Global support is used for rule generation and the selection
phase is based on the highest ranked rule. RR, FC, AC and MPAC are short forms
for rule reduction, f-measure change, accuracy change and maximum possible ac-
curacy change respectively.

measure does not change that much. The reason is that by this pruning, most of the

majority class rules are eliminated. Hence, no rules are available to be applied to

the test objects with the majority class, and they are classified as the majority class,

which is correct.

Using the same results, the measures are ranked for each dataset based on the

percentage of rule reduction. Two measures get the same rank if their percentage

of rule reduction is equal up to three decimal places. The rankings are available in

Appendix A. Then, the measures are clustered using theses rankings. To cluster

the measures, an agglomerative hierarchical clustering algorithm [33] with average

linkage is used. Having each measure as a vector of rankings, the correlation be-
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Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift
2 2WaySup, Klos, Corr, Kappa, IWD, ImpInd, Gini, Acc
3 2WaySupVar, JM, HLift
4 CF, MutInfo, LC, Cos, FM, Jacc, Spec
5 Chi2, IntImp
6 CCR, RelRisk, CnfrmC
7 CollStr
8 ConfC, Lev, Lap
9 CnfrmD, HConf
10 CCC, CCD, Gan, Conf, Ex&Cex, SS, Zhang, CCS, Conv, Loe,

LocSup, KM, OddMul, OddR, YulQ, YulY
11 DChi2
12 PS, GK
13 GlbSup

Table 5.8: Clusters of measures with similar behaviour in finding the most rule
reduction without jeopardizing the f-measure using measure based pruning.Global
support is used for rule generation and the selection phase is based on the highest
ranked rule.

tween two measures is based on the Spearman’s rank correlation coefficient [50].

The clusters are shown in Tables 5.8 and 5.10 for using the highest ranked rule

and the average of rules in selection phase respectively. To find the measures that

can have the most impact in rule reduction, the number of times a measure ranked

between 1 and 3 are counted. Based on these counts, IWD, Kappa, GK, Corr,

Klos, 2WaySup, CF, Gini, and Spec are measures that have the most high ranks

and 2WaySupVar, ConfC, CCD, Ex&Cex, JM, Lev, OddMul, OddR, YulQ, YulY,

Zhang, LocSup, GlbSup, Conf, MutInfo, and CCS are the measures that could not

get a top rank in even one dataset.

5.5.2 Rule reduction without changing the maximum possible
accuracy while using measure-based pruning

The second experiment is to see how much measure-based pruning can reduce the

rules before the maximum possible accuracy decreases. Tables 5.11 and 5.12 show

the maximum rule reduction before the maximum possible accuracy changes along

with the percentage of change in f-measure and accuracy. The results show that a
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Datasets RR % FC% AC% MPAC% Measure
Anneal -93.04 1.34 0.02 -21.05 Klos (0.1)
Breast -99.94 -3.78 -3.27 -69.54 2WaySup (0.4)
Census -99.95 -1.90 -4.17 -85.81 IWD (0.1)
Colic -99.99 4.70 3.98 -73.27 Gini (0.2)
Credit -99.99 -2.47 -2.81 -58.60 CCR (9)
Diabetes -99.73 -2.57 -8.44 -74.31 Kappa (0.3)
German -99.99 9.46 1.71 -89.90 GK (0.1)
Glass -80.22 -1.01 -3.02 -15.89 LC (0.3)
Heart -99.99 -1.49 -0.37 -65.78 CnfrmC (0.7)
Hepatitis -99.99 -4.04 -3.75 -92.95 Gini (0.1)
Iris -92.90 2.97 2.92 -6.04 Acc (0.95)
Labor -99.99 -0.49 4.86 -75.00 IWD (0.3)
Led7 -57.56 -1.24 -1.26 -0.40 CF (0.6)
Pima -99.66 -2.78 -9.27 -72.36 Kappa (0.3)
Tictactoe -99.57 3.01 1.01 -38.04 Klos (0.1)
Vote -99.99 -0.24 -0.24 -57.20 Acc (0.95)
Vowel -65.77 -4.08 -10.38 -42.99 AddVal (0.8)
Waveform -99.66 -4.81 -4.91 -15.91 Klos (0.1)
Wine -98.27 -4.55 -4.69 -6.21 Jacc (0.6)
Zoo -89.80 -4.44 -1.35 0.00 CF (0.6)

Table 5.9: Percentage of rule reduction, f-measure change, accuracy change, maxi-
mum possible accuracy change and the measure with the minimum threshold used
to get the minimum number of rules with measure-based pruning without jeopar-
dizing the f-measure. Global support is used for rule generation and the selection
phase is based on the rules’ average of measures. RR, FC, AC and MPAC are
short forms for rule reduction, f-measure change, accuracy change and maximum
possible accuracy change respectively.

huge number of rules can be eliminated before the maximum possible accuracy is

reduced. While using the highest ranked rule for predicting, the f-measures also

have significant increase in some of the datasets. However, when the rules’ average

of measures is used for predicting, there are some cases with significant decrease in

f-measure. The reason might be because some of the rules that have positive impact

on predicting are eliminated but there still exist some misleading rules in the rule

set. In this case, a better selection measure is needed in order to select the right

rules for predicting.

The measures are ranked and then clustered based on the percentage of rule

reduction similar to what was explained in Section 5.5.1. The clusters are shown
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Group Objective measures
1 1WaySup, AddVal, InfoGain, KM, Lift
2 2WaySup, ImpInd, Corr
3 2WaySupVar
4 CF, Spec
5 Chi2, IntImp
6 CCR, RelRisk
7 CollStr
8 ConfC, Lev, MutInfo
9 CnfrmC

10 CnfrmD, PS
11 CCC, CCD, Gan, Ex&Cex, SS, Conv, Loe, Conf, Lap
12 Cos, FM, Jacc, Acc
13 DChi2, LocSup, CCS
14 Gini, Klos
15 HConf
16 HLift, GK
17 IWD, Kappa
18 JM
19 LC
20 OddMul, OddR
21 YulQ, YulY
22 Zhang
23 GlbSup

Table 5.10: Clusters of measures with similar behaviour in finding the most rule
reduction without jeopardizing the f-measure using measure based pruning.Global
support is used for rule generation and the selection phase is based on the rules’
average of measures.

in Tables 5.13. It is obvious that the amount of rule reduction without changing

the maximum possible accuracy is independent from the strategy used in selection

phase. Hence, predicting based on the highest ranked rule or the rules’ average

of measures has no effect on the measures’ rankings. The rankings are available

in Appendix A. Based on these rankings, the measures that achieved top ranks

(between 1 and 3) in more datasets than the others are FM, Cos, Jacc, CollStr, Acc,

and Spec and there are 29 measures that could not get a top rank even in one dataset.
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Datasets RR % FC% AC% Measure
Anneal -89.75 10.24 2.01 GK (0.01)
Breast -87.60 -1.97 -1.65 FM (0.4)
Ccensus -87.93 9.34 1.78 CCR (1.5), RelRisk (1.5), Spec (0.5)
Colic -61.39 4.46 -9.72 Acc (0.5)
Credit -58.31 0.16 -2.30 Spec (0.5)
Diabetes -89.84 -5.79 -1.42 FM (0.3)
German -93.62 35.34 -2.38 Acc (0.5)
Glass -44.74 11.37 2.71 FM (0.2)
Heart -99.94 8.47 4.65 CF (0.3)
Hepatitis -95.16 43.48 0.65 CollStr (1.5)
Iris -69.37 -0.75 -0.70 CF (0.2)
Labor -99.89 73.12 31.07 LC (0.3)
Led7 -4.31 0.00 0.00 CCS (17)
Pima -89.15 -5.60 -1.92 FM (0.3)
Tictactoe -98.97 -2.70 -4.67 CollStr (1.5)
Vote -99.16 11.45 9.24 FM (0.6)
Vowel -9.24 -0.48 -0.48 Zhang (0.9)
Waveform -89.96 -6.21 -5.33 HConf (0.2)
Wine -96.41 12.85 9.02 PS (0.1)
Zoo -98.43 14.41 9.46 Spec (1)

Table 5.11: Percentage of rule reduction, f-measure change, accuracy change and
the measure with the minimum threshold used to get the minimum number of rules
while the maximum possible accuracy does not change at all. Global support is
used for rule generation and the selection phase is based on the highest ranked rule.
RR, FC and AC are short forms for rule reduction, f-measure change and accuracy
change respectively.

5.5.3 F-measure improvement while using measure-based prun-
ing

The last experiment shows the impact of using measures in measure-based pruning

on improving the f-measure. Each row in Tables 5.14 and 5.16 shows the maximum

percentage of f-measure improvement and the measure used for this achievement.

The results show that there are some significant improvements in f-measure spe-

cially when the selection phase is based on the highest ranked rule. In addition,

there are some significant rule reductions as well.

The measures are ranked based on their f-measure improvements for each dataset

in Appendix A, and are clustered based on these rankings in Tables 5.15 and 5.17.
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Datasets RR % FC% AC% Measure
Anneal -89.75 -5.48 -2.10 GK (0.01)
Breast -87.60 -1.71 -1.48 FM (0.4)

RelRisk (1.5),
Census -87.93 -31.00 -7.44 CCR (1.5),

Spec (0.5)
Colic -61.39 1.17 1.00 Acc (0.5)
Credit -58.31 -3.55 -3.12 Spec (0.5)
Diabetes -89.84 -4.59 -0.53 FM (0.3)
German -93.62 -5.61 -0.14 Acc (0.5)
Glass -44.74 2.19 -3.25 FM (0.2)
Heart -99.94 -19.93 -15.11 CF (0.3)
Hepatitis -95.16 -30.13 -4.26 CollStr (1.5)
Iris -69.37 2.39 2.19 CF (0.2)
Labor -99.89 6.55 6.88 LC (0.3)
Led7 -4.31 -0.54 -0.26 CCS (17)
Pima -89.15 -4.68 -0.88 FM (0.3)
Tictactoe -98.97 -53.34 -26.97 CollStr (1.5)
Vote -99.16 -2.67 -2.41 FM (0.6)
Vowel -9.24 -0.56 -0.69 Zhang (0.9)
Waveform -89.96 -8.26 -7.21 HConf (0.2)
Wine -96.41 -1.16 -1.06 PS (0.1)
Zoo -98.43 -14.35 -5.31 Spec (1)

Table 5.12: Percentage of rule reduction, f-measure change, accuracy change and
the measure with the minimum threshold used to get the minimum number of rules
while the maximum possible accuracy does not change at all. Global support is
used for rule generation and the selection phase is based on the average of rules.
RR, FC and AC are short forms for rule reduction, f-measure change and accuracy
change respectively.

The measures that achieved top ranks more than the others are Lev, Kappa, Zh-

nag, Acc, GK, 1WaySup, CF, Cos, FM, LC, and Spec when the selection phase is

based on the highest ranked rule and Chi2, Ex&Cex, FM and SS when the selection

phase is based on the rules’ average of measures. LocSup and GlbSup are the only

measures that did not achieve any top ranks.

5.6 Using Different Measures in Rule Selection Phase

The effect of using different selecting measures, in the third phase of the asso-

ciative classifier, are also studied. This effect is only on the improvement of the
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Group Objective measures
1 1WaySup, AddVal, InfoGain, YulQ, YulY, JM
2 2WaySup, IWD, Corr, Kappa, ImpInd
3 2WaySupVar
4 CF, MutInfo
5 Chi2, FM
6 CCR, RelRisk, Acc
7 CollStr, IntImp
8 ConfC, Lev
9 CnfrmC

10 CnfrmD, Gini, LC
11 CCC, CCS, Ex&Cex, LocSup, GlbSup, KM, CCD, Gan, SS
12 Conv
13 Cos, Jacc, PS
14 DChi2
15 HConf
16 HLift, OddMul, OddR
17 Klos, Spec
18 Lap, Conf
19 Lift
20 Loe, Zhang
21 GK

Table 5.13: Clusters of measures with similar behaviour in finding the minimum
number of rules while the maximum possible accuracy does not change using
measure-based pruning.Global support is used for rule generation and the selection
phase is based on the highest ranked rule.

f-measure. There is no change in the number of rules per-se. Table 5.18 shows

the best measures for f-measure improvement for each dataset. From the results, it

can be inferred that there are some significant improvements in f-measure, specially

when predicting is based on the highest ranked rule.

The measures are ranked based on the f-measure improvements in each dataset.

The ranks can be found in Appendix A. The measures are clustered based on this

rankings in Tables 5.19 and 5.20. OddMul, CCS, CnfrmC, Conv, Lap, Loe, and

Zhang are the measures with the most top ranks when the highest ranked rule is

used for selecting and ConfC, CCC, Lev, Conv, CCS, Loe and Ex&Cex are the

measures with the most top ranks when the rules’ average of measures are used

in selection phase. There are 5 measures that did not achieve any top ranks with
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Datasets RR % FC% AC% MPAC% Measure
Anneal -16.51 21.64 7.27 -1.81 KM (0.1)
Breast -9.67 1.84 1.52 -1.43 Lev (0.8)
Census -55.70 18.64 3.03 -17.99 Zhang (0.8)
Colic -99.99 34.81 18.32 -72.98 2WaySup (0.3)
Credit -69.82 17.63 14.54 -5.38 Lap (0.9)
Diabetes -40.43 8.44 1.40 -19.04 AddVal (0.2)
German -93.62 35.34 -2.38 0.00 Acc (0.5)
Glass -44.74 11.37 2.71 0.00 FM (0.2)
Heart -99.87 28.01 20.68 -0.67 CollStr (9)
Hepatitis -99.86 62.66 1.68 -0.59 CF (0.05)
Iris -58.67 0.80 0.70 -0.67 Klos (0.2)
Labor -1.11 85.92 35.92 -1.67 Lev (0.9)
Led7 -16.86 0.70 0.76 -0.07 HConf (0.9)
Pima -40.13 9.00 1.05 -18.97 AddVal (0.2)
Tictactoe -98.91 40.91 25.97 -0.84 Corr (0.2)
Vote -99.91 12.35 10.02 -0.92 CF (0.4)
Vowel -8.90 0.15 0.16 -2.76 CCD (0.1), Gan (0.1)
Waveform -33.55 0.15 0.15 -0.02 Zhang (0.7)
Wine -10.57 19.42 14.71 -0.53 Lev (0.95)
Zoo -94.30 19.44 10.50 0.00 LC (0.7)

Table 5.14: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the maximum f-measure using measure-based pruning. Global support is
used for rule generation and the selection phase is based on the highest of rules.
RR, FC, AC and MPAC are short forms for rule reduction, f-measure change, accu-
racy change and maximum possible accuracy change respectively.

selecting based on the highest ranked rule. However, this number goes up to 32

when selection is based on the average of the rules.

5.7 Comparing Different Clusterings

In previous sections, many measures were introduced that can have impact on im-

proving the f-measure or reducing the number of rules. These results show that

there is no one measure that wins in all datasets. Some measures are winners for

some datasets and do not have any impact for other datasets. The question is how to

find suitable measures for a dataset? One way is to find patterns that show the rela-

tion between dataset characteristics and their suitable measures. Some experiments
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Group Objective measures
1 1WaySup, AddVal, InfoGain, OddMul, OddR, Lift
2 2WaySup, Klos
3 2WaySupVar, MutInfo
4 CF, Cos, Jacc, LC, FM
5 Chi2, IntImp, CnfrmC
6 CCR, RelRisk, KM
7 CollStr
8 ConfC, Conf, CCC, CCD, Gan, Ex&Cex, SS, Lap, Conv, Loe
9 CnfrmD, HConf

10 Corr, Kappa, Acc
11 DChi2, HLift
12 Gini, IWD
13 JM
14 Lev
15 PS
16 Spec, GK
17 YulQ, YulY
18 Zhang
19 LocSup
20 GlbSup
21 ImpInd
22 CCS

Table 5.15: Clusters of measures with similar behaviour in finding the maximum
f-measure using measure-based pruning.Global support is used for rule generation
and the selection phase is based on the highest ranked rule.

were studied to find the relationship between the characteristics of datasets shown

in Table 5.1 and the best measures found for each dataset. However, it seems that

these characteristics are not proper or maybe not enough for this purpose. Hence,

further characteristics of datasets should be studied.

Another way is to find similar measures by clustering them based on their be-

haviour on different datasets. Using this information, if a suitable measure is known

for a dataset, other possible suitable measures can be found. The clusterings shown

in previous sections can be used for this purpose. By comparing these clusterings

some interesting information can be found. The following measures are found to

be in the same cluster in all the above clusterings:

• 1WaySup, AddVall, and InfoGain
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Datasets RR % FC% AC% MPAC% Measure
Anneal -16.51 10.78 4.34 -1.81 KM (0.1)
Breast -2.05 0.00 0.00 -0.14 CollStr (1)
Census -98.19 4.50 -0.93 -5.81 GK (0.05)
Colic -99.99 4.81 3.98 -72.98 2WaySup (0.3)
Credit -0.88 0.01 0.00 0.00 IntImp (0.2)
Diabetes -40.43 5.34 0.87 -19.04 AddVal (0.2)
German -99.56 45.78 -5.71 -79.90 1WaySup (1.1)
Glass -8.37 9.46 5.85 -2.11 Ex&Cex (0.3)
Heart -98.30 2.83 2.79 0.00 Cos (0.5)
Hepatitis -99.01 10.27 -2.76 -1.25 GK (0.1)
Iris -58.67 5.38 5.11 -0.67 Klos (0.2)
Labor -99.40 13.16 13.36 0.00 Jacc (0.2)
Led7 -33.69 3.11 2.52 -4.39 Lift (7)
Pima -60.72 5.09 0.01 -35.38 1WaySup (0.5)
Tictactoe -98.91 12.49 9.96 -0.84 Corr (0.2)
Vote -4.46 0.43 0.49 0.00 Loe (0.9)
Vowel -36.19 5.26 4.33 -16.32 1WaySup (2)
Waveform -95.87 3.48 2.32 -13.18 OddMul (15)
Wine -92.96 1.17 1.27 0.00 GK (0.2)
Zoo -60.02 1.88 0.88 0.00 CF (0.2)

Table 5.16: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the maximum f-measure using measure-based pruning. Global support is
used for rule generation and the selection phase is based on the rules’ average of
measures. RR, FC, AC and MPAC are short forms for rule reduction, f-measure
change, accuracy change and maximum possible accuracy change respectively.

• Cos and Jacc

• CCR and RelRisk

• CCD, Gan, and Ex&Cex

• YulQ and YulY

There are also some measures that appear together only when either the highest

ranked rule or the rules’ average of measures are used in the selection phase. When

the highest ranked rule is used, the measures are:

• Corr and Kappa
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Group Objective measures
1 1WaySup, AddVal, InfoGain, KM, Zhang
2 2WaySup, Corr, JM
3 2WaySupVar, MutInfo
4 CF, HConf
5 Chi2, PS, Gini
6 CCR, RelRisk, CnfrmC, HLift
7 CollStr, Cos, FM, Jacc, Acc
8 ConfC, CCC, Lev
9 CnfrmD, IntImp

10 CCD, Gan, Ex&Cex, SS, Conf, Lap
11 Conv, OddR
12 DChi2, Spec, LocSup
13 IWD, Kappa, ImpInd
14 Klos, GK, LC
15 Lift, GlbSup
16 Loe, YulesQ, YulesY
17 OddMul, CCS

Table 5.17: Clusters of measures with similar behaviour in finding the maximum
f-measure using measure-based pruning. Global support is used for rule generation
and the selection phase is based on the average of rules.

• CCS and SS (These two measures appear in the same cluster as CCD, Gan,

and Ex&Cex)

and the measures in the same cluster, while using the rules’ average of measures,

are:

• ConfC and Lev

• IWD and Kappa.

Among these clusters, {Cos, Jacc} , {CCD, Gan, and Ex&Cex} and {YulQ and

YulY} are the only measures that also appear in the same cluster shown in Figure

3.1 which is based on measure properties. All the properties used in this clustering

were introduced in the context of association rule mining. Having only 7 measures

from 53 measures in the same clusters shows that there may exist some proper-

ties related to associative classifiers that are different from that of association rule

mining that should be studied.
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5.8 Using Interestingness Measures in Both Pruning
and Selection Phases

The impact of using different interestingness measures on each individual phase of

the associative classifier is studies in previous sections. In this section, the goal

is to study the impact of using different interestingness measure both in pruning

and selection phases together. For this reason, the best measures found in measure-

based pruning are combined with the best measure found in selection phase for each

dataset. For cases where the highest ranked rule is used for predicting, redundancy

removal is also used after the measure-based pruning. The results for f-measure

changes are shown in Tables 5.21- 5.26. In these tables, the percentage of f-measure

changes using measure-based pruning and using different measures in selection

phase are compared with that of the combination of these two phases. However, the

results show that not only combining the best interestingness measure of each phase

does not improve the f-measure, but also, there are some cases with significant

decrease in f-measure. Hence, a suitable selecting measure based on an original

rule set is not necessarily a suitable selecting measure for a pruned version of that

rule set. The tables for rule reduction are not shown for simplicity. However, the

redundancy removal could even prune more rules from rule sets already pruned by

measure-based pruning.
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Highest Average
Datasets FC% AC% Measure FC% AC% Measure
Anneal 20.25 6.02 Klos, 11.45 2.85 ConfC
Breast 0.72 0.47 Lev, 0.68 0.59 ConfC
Census 19.99 3.74 CCS, 5.21 -0.08 ConfC
Colic 30.74 14.21 IntImp, 0.89 0.35 ConfC, Lev
Credit 15.77 12.84 Lap, 0.00 0.00 CCD, Conf, Gan
Diabetes 8.64 0.86 DChi2, 6.45 0.86 CCS
German 35.97 -0.56 Klos, 32.87 3.71 Conv, Loe
Glass 6.84 -1.45 Lev, 8.25 4.01 ConfC
Heart 25.21 17.91 IntImp, 1.57 1.23 ImpInd
Hepatitis 63.74 -0.89 DChi2, 6.95 -1.45 ConfC

1WaySup, Loe, Conv,
CCC, CCD, Lev,

Iris 0.80 0.70 Conv, ConfC, 4.54 4.38 Loe,
InfoGain, Lift, OddMul,
OddMul, Gan, SS

Labor 77.68 30.58 IntImp, 1.48 5.26 Lap
Led7 0.31 0.33 CnfrmC, 1.73 1.60 SS
Pima 8.37 -0.36 OddMul, 7.09 1.22 Lev
Tictactoe 40.91 25.97 IntImp, 8.93 6.83 ConfC

ConfC, CCC,
Vote 12.65 10.30 CnfrmC, 0.00 0.00 CCD, Lev,

Conf, Gan
Vowel 0.90 0.64 CCS, 6.98 5.36 CCS
Waveform 0.02 0.02 Lev, 4.36 3.55 CCS
Wine 14.35 10.50 Lap, 0.04 0.07 Ex&Cex
Zoo 19.49 11.53 CnfrmC, 0.14 0.00 Ex&Cex

Table 5.18: Percentage of f-measure change, accuracy change and the measure used
in selection phase to get the maximum f-measure. Global support is used for rule
generation and the selection phase is based on both the highest ranked rule and
rules’ average of measures. FC and AC are the short forms for f-measure change
and accuracy change respectively.
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Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift, KM
2 2WaySup, Gini, 2WaySupVar, JM, IntImp, Klos, ImpInd, IWD,

Chi2, Corr, Kappa, PS, GK
3 CF, LocSup
4 CCR, RelRisk, Spec
5 CollStr, MutInfo
6 ConfC, CCC, CCD, Gan, Ex&Cex, SS, Conf, Conv, Loe,

OddMul, CCS, Zhang
7 CnfrmC, Acc, Cos, FM, Jacc, LC
8 CnfrmD
9 DChi2
10 HConf
11 HLift
12 Lap
13 Lev
14 OddR, YulQ, YulY
15 GlbSup

Table 5.19: Clusters of measures with similar behaviour in selection phase in find-
ing the maximum f-measure .Global support is used for rule generation and the
selection phase is based on the highest ranked rule.

67



Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift, Zhang, HLift
2 2WaySup, PS, ImpInd
3 2WaySupVar, CF, MutInfo, Cos, FM, Jacc, LocSup, GlbSup
4 Chi2, Gini
5 CCR, RelRisk
6 CollStr
7 ConfC, CCC, Lev
8 CnfrmC, Acc, GK, Spec
9 CnfrmD

10 CCD, Conf, Gan, Ex&Cex, Lap
11 Conv, Loe, CCS, OddMul, SS, OddR
12 Corr, IWD, Kappa
13 DChi2
14 HConf
15 IntImp
16 JM, KM
17 Klos
18 LC
19 YulQ, YulY

Table 5.20: Clusters of measures with similar behaviour in selection phase in find-
ing the maximum f-measure .Global support is used for rule generation and the
selection phase is based on the rules’ average of measures.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal Klos Klos 7.91 20.25 6.86
Breast 2waySup Lev -2.22 0.72 -2.22
Census IWD ccs 10.74 19.99 10.74
Colic CF IntImp -0.63 30.74 -34.89
Credit CCR Lap 14.65 15.77 14.65
Diabetes Kappa DChi2 -0.14 8.64 -0.14
German GK Klos -2.16 35.97 -2.16
Glass LC Lev -3.07 6.84 -6.28
Heart CnfrmC IntImp 19.88 25.21 19.88
Hepatitis CnfrmD DChi2 0.00 63.74 0.00
Iris Acc ConfC -1.50 0.80 -1.50
Labor GK IntImp 2.68 77.68 2.68
Led7 CF CnfrmC -1.43 0.31 -2.02
Pima Kappa OddMul -0.34 8.37 -0.34
Tictactoe CF IntImp -4.84 40.91 -4.84
Vote Kappa CnfrmC 4.80 12.65 4.80
Vowel Gan ccs -3.85 0.90 -7.82
Waveform SS Lev -4.47 0.02 -4.49
Wine IWD Lap 5.59 14.35 5.59
Zoo CnfrmC CnfrmC 3.81 19.49 3.81

Table 5.21: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without jeopardizing the f-measure, the
best measure used in selection phase, and the combination of these two measures.
Global support is used for rule generation and the selection phase is based on the
highest ranked rule. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal Klos ConfC 1.34 11.45 2.52
Breast 2waySup ConfC -3.78 0.68 -3.78
Census IWD ConfC -1.90 5.21 -1.90
Colic Gini ConfC 4.70 0.89 4.70
Credit CCR Gan -2.47 0.00 -2.47
Diabetes Kappa ccs -2.57 6.45 -2.57
German GK Conv 9.46 32.87 9.46
Glass LC ConfC -1.01 8.25 -2.31
Heart CnfrmC ImpInd -1.49 1.57 -2.13
Hepatitis Gini ConfC -4.04 6.95 -4.04
Iris Acc Lev -1.91 4.54 -1.13
Labor IWD Lap -0.49 1.48 -0.49
Led7 CF SS -1.24 1.73 -0.59
Pima Kappa Lev -2.78 7.09 -2.78
Tictactoe Klos ConfC 3.01 8.93 3.01
Vote Acc ConfC -0.24 0.00 -0.24
Vowel AddVal ccs -4.08 6.98 -6.86
Waveform Klos ccs -4.81 4.36 -5.44
Wine Jacc Ex&Cex -4.55 0.04 -4.55
Zoo CF Ex&Cex -4.44 0.14 -6.52

Table 5.22: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without jeopardizing the f-measure, the
best measure used in selection phase, and the combination of these two measures.
Global support is used for rule generation and the selection phase is based on the
average of rules. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal GK Klos 10.24 20.25 -7.43
Breast FM Lev -1.97 0.72 0.27
Census CCR ccs 9.34 19.99 -0.23
Colic Acc IntImp 4.46 30.74 30.74
Credit Spec Lap 0.16 15.77 13.10
Diabetes FM DChi2 -5.79 8.64 5.27
German Acc Klos 35.34 35.97 34.78
Glass FM Lev 11.37 6.84 4.36
Heart CF IntImp 8.47 25.21 -32.86
Hepatitis CollStr DChi2 43.48 63.74 63.36
Iris CF 1WaySup -0.75 0.80 0.05
Labor LC IntImp 73.12 77.68 81.10
Led7 ccs CnfrmC 0.00 0.31 0.31
Pima FM OddMul -5.60 8.37 7.72
Tictactoe CollStr IntImp -2.70 40.91 -5.75
Vote FM CnfrmC 11.45 12.65 12.65
Vowel Zhang ccs -0.48 0.90 0.38
Waveform HConf Lev -6.21 0.02 -6.22
Wine PS Lap 12.85 14.35 14.35
Zoo Spec CnfrmC 14.41 19.49 13.72

Table 5.23: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without changing the maximum possible
accuracy, the best measure used in selection phase, and the combination of these
two measures. Global support is used for rule generation and the selection phase is
based on the highest ranked rule. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal GK ConfC -5.48 11.45 -16.90
Breast FM ConfC -1.71 0.68 -0.13
Census CCR ConfC -31.00 5.21 -11.62
Colic Acc ConfC 1.17 0.89 -2.07
Credit Spec CCD -3.55 0.00 -3.55
Diabetes FM ccs -4.59 6.45 1.14
German Acc Conv -5.61 32.87 32.43
Glass FM ConfC 2.19 8.25 7.41
Heart CF ImpInd -19.93 1.57 -13.54
Hepatitis CollStr ConfC -30.13 6.95 -4.55
Iris CF Lev 2.39 4.54 2.39
Labor LC Lap 6.55 1.48 4.34
Led7 ccs SS -0.54 1.73 2.16
Pima FM Lev -4.68 7.09 3.47
Tictactoe CollStr ConfC -53.34 8.93 -22.03
Vote FM ConfC -2.67 0.00 -2.33
Vowel Zhang ccs -0.56 6.98 4.60
Waveform HConf ccs -8.26 4.36 -5.74
Wine PS Ex&Cex -1.16 0.04 -3.05
Zoo Spec Ex&Cex -14.35 0.14 -16.75

Table 5.24: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without changing the maximum possible
accuracy, the best measure used in selection phase, and the combination of these
two measures. Global support is used for rule generation and the selection phase is
based on the rules’ average of measures. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal KM Klos 21.64 20.25 17.62
Breast Lev Lev 1.84 0.72 0.72
Census Zhang ccs 18.64 19.99 19.77
Colic 2waySup IntImp 34.81 30.74 24.82
Credit Lap Lap 17.63 15.77 15.58
Diabetes AddVal DChi2 8.44 8.64 9.23
German Acc Klos 35.34 35.97 34.78
Glass FM Lev 11.37 6.84 4.36
Heart CollStr IntImp 28.01 25.21 22.64
Hepatitis CF DChi2 62.65 63.74 39.37
Iris Klos 1WaySup 0.80 0.80 0.80
Labor Lev IntImp 85.92 77.68 91.54
Led7 HConf CnfrmC 0.70 0.31 0.31
Pima AddVal OddMul 9.00 8.37 10.16
Tictactoe Corr IntImp 40.91 40.91 40.91
Vote CF CnfrmC 12.35 12.65 12.08
Vowel CCD ccs 0.15 0.90 1.09
Waveform Zhang Lev 0.15 0.02 0.09
Wine Lev Lap 19.41 14.35 18.69
Zoo LC CnfrmC 19.44 19.49 19.49

Table 5.25: Comparing the changes of f-measure with the best measure used in
measure-based pruning for f-measure improvement, the best measure used in selec-
tion phase, and the combination of these two measures. Global support is used for
rule generation and the selection phase is based on the highest ranked rules. FC is
the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal KM ConfC 10.78 11.45 10.40
Breast CollStr ConfC 0.00 0.68 0.35
Census GK ConfC 4.50 5.21 3.53
Colic 2waySup ConfC 4.81 0.89 4.81
Credit IntImp Conf 0.01 0.00 0.01
Diabetes AddVal ccs 5.34 6.45 7.17
German 1WaySup Conv 45.78 32.87 45.78
Glass Ex&Cex ConfC 9.46 8.25 7.94
Heart Cos ImpInd 2.83 1.57 -0.52
Hepatitis GK ConfC 10.27 6.95 2.19
Iris Klos Lev 5.38 4.54 4.66
Labor Jacc Lap 13.16 1.48 7.75
Led7 Lift SS 3.11 1.73 2.76
Pima 1WaySup Lev 5.09 7.09 5.09
Tictactoe Corr ConfC 12.49 8.93 12.49
Vote Loe ConfC 0.43 0.00 3.53
Vowel 1WaySup ccs 5.26 6.98 70.85
Waveform OddMul ccs 3.48 4.36 4.05
Wine GK Ex&Cex 1.17 0.04 0.09
Zoo CF Ex&Cex 1.88 0.14 1.88

Table 5.26: Comparing the changes of f-measure with the best measure used in
measure-based pruning for f-measure improvement, the best measure used in selec-
tion phase, and the combination of these two measures. Global support is used for
rule generation and the selection phase is based on the rules’ average of measures.
FC is the short form for f-measure change.
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Chapter 6

Conclusion

Associative classification is a relatively new paradigm for classification relying on

association rule mining and naturally inherits the most commonly used interesting-

ness measures, support and confidence. These are not necessarily the best choice

and no systematic study was undertaken to identify the most appropriate measures

from the myriad measures already used as filters or rankers for relevant rules in

different fields.

This study is to answer the question whether other measures are more suited

for the different phases of the associative classifier, and an attempt to identify the

best measure for each phase. The results clearly indicate that many interestingness

measures can indeed provide a better set of classification rules (i.e. a drastic reduc-

tion in the number of rules) and a more accurate classifier. However, there was no

single measure that was consistently impacting the rule set for all datasets tested,

even though for each dataset, some interestingness measure was successful in re-

ducing the rule set or improving the effectiveness of the classifier. These measures

are introduced for each individual phase. The results show that the measures that

are the best in one phase are not necessarily the best measures for the other phase.

Another observation is that using the combination of the best measures in prun-

ing and selection phases does not improve the accuracy of the classifier which

means that the best selecting measure for an original rule set is not the best for

the pruned version of that rule set. This observation shows that there might exist

some rule set characteristics that have effect on selecting the best measure. Hence,

for each pruned rule set, the appropriate selecting measure should be investigated
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separately.

All the measures were clustered in different experiments. Some of the measures

behave similarly in all the cases. Hence, in future work, selecting only one measure

from each group as a representative, should be sufficient.

Some experiments were conducted to find the relationships between the dataset

characteristics and the suitable interestingness measures. However, no evident fea-

ture was found that could provide discriminant power to distinguish winning mea-

sures for specific datasets. An interesting future study would be to identify the

relevant features of a dataset or a rule set that would help indicate the appropriate

interestingness measure to use, and in this way exploit these features to build a pre-

dictor for best measure to use in the associative classifier given a specific training

set.
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Appendix A

Measures Rankings

A.1 Measures Rankings With Global Support

Table A.1: Measure rankings based on percentage of rule re-
duction without jeopardizing the f-measure while using measure-
based pruning with global support in generation phase and the
highest ranked rule in selection phase. Instead of datasets’ names,
datasets’ numbers are shown in the table. Tot shows the total num-
ber of high ranks for each dataset. The measures are sorted based
on this number.

Datasets

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

IWD 6 4 1 1 1 3 2 2 1 1 9 1 24 3 1 1 29 33 1 5 13

Kappa 9 1 8 1 1 1 1 3 1 1 14 1 9 1 1 1 30 25 2 4 13

GK 5 2 6 1 1 6 1 13 1 1 4 1 3 8 1 1 15 11 3 1 12

Corr 8 1 7 1 1 6 2 10 1 1 15 1 12 5 1 1 30 32 3 2 11

Klos 1 2 2 1 1 9 1 14 1 1 17 2 29 10 2 1 27 26 9 12 11

2WaySup 2 1 5 1 1 5 1 18 1 1 13 1 29 6 1 1 30 34 13 8 10

CF 10 2 42 1 1 45 29 9 1 1 3 1 1 43 1 1 30 39 6 6 10

Gini 14 1 12 1 1 2 3 43 2 1 10 1 28 2 12 1 26 18 14 9 10

Spec 11 5 1 1 1 26 6 4 1 1 2 1 14 28 1 1 30 39 17 3 10

RelRisk 7 3 10 1 1 18 2 11 1 1 16 1 35 20 3 1 8 31 10 18 9

CCR 7 3 10 1 1 18 2 11 1 1 11 1 29 20 4 1 8 31 10 17 8

CnfrmC 13 8 17 1 1 24 3 16 1 10 7 1 41 26 19 1 12 38 2 1 8

LC 15 9 15 1 1 14 27 1 2 1 6 1 10 30 5 1 17 14 4 1 8

PS 21 12 16 1 1 7 1 41 2 3 20 1 5 9 1 1 30 19 15 13 8

CollStr 12 5 25 1 1 8 18 6 1 1 44 1 42 7 1 3 16 35 7 14 7

Cos 19 7 21 1 1 20 11 8 1 1 5 1 23 23 6 1 14 20 10 1 7

FM 16 6 19 1 1 21 9 5 1 1 4 1 20 24 7 1 24 21 8 1 7

Jacc 18 10 22 1 1 23 12 7 2 1 8 1 26 26 11 1 30 24 5 1 7

Acc 13 2 18 1 1 4 6 25 3 12 1 1 39 4 18 1 30 39 5 11 7

Continued on next page
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Table A.1 – continued from previous page
Datasets

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

ImpInd 20 11 14 1 1 17 5 22 1 1 23 1 21 19 9 2 28 22 18 15 6

CnfrmD 38 14 38 1 1 43 26 47 3 1 18 4 32 41 23 1 30 23 12 16 5

addedvalue 3 17 3 6 8 15 1 32 11 8 37 7 31 16 10 19 9 16 29 31 3

Chi2 17 20 39 3 5 19 4 17 6 2 24 1 42 21 13 7 30 36 19 19 3

HConf 40 13 42 2 2 45 29 49 4 1 12 13 18 11 26 5 30 39 11 7 3

HLift 26 33 42 5 4 10 3 37 8 5 19 9 2 13 1 4 21 39 22 29 3

Lap 36 18 36 2 3 39 24 33 5 6 22 1 30 38 8 6 4 4 16 20 3

1WaySup 4 15 4 7 6 11 1 34 9 8 40 7 33 12 10 17 10 17 32 33 1

CCC 28 24 31 12 12 36 23 39 16 16 30 11 10 32 17 12 2 15 24 25 1

Conv 32 28 29 12 14 33 17 31 18 17 33 11 37 31 17 14 7 2 27 26 1

DChi2 25 34 30 9 19 41 25 44 22 11 41 3 40 39 24 20 30 29 33 23 1

InfoGain 35 16 11 16 7 15 2 42 10 9 36 7 42 16 10 18 30 27 34 35 1

IntImp 24 25 41 4 11 27 7 12 7 4 26 1 41 27 15 8 19 28 20 10 1

KM 29 23 13 12 12 22 14 19 16 17 27 11 11 18 17 12 3 10 24 25 1

Lift 37 32 9 17 18 16 2 46 12 13 43 8 6 17 22 21 13 30 35 36 1

Loe 31 27 28 12 13 32 16 20 17 17 31 11 16 31 17 13 7 3 26 25 1

SS 33 29 33 13 15 35 21 35 19 20 35 11 13 36 21 15 11 1 28 27 1

Gan 29 24 32 12 12 37 22 24 16 17 34 11 15 33 17 12 1 9 24 25 1

2WaySupVar 29 23 17 12 12 12 14 38 16 17 29 11 4 14 17 12 30 39 25 28 0

ConfC 27 22 35 11 12 42 19 45 15 15 27 10 17 40 17 11 20 7 24 24 0

CCD 29 23 32 12 12 35 22 24 16 17 34 11 15 33 17 12 7 9 24 25 0

Ex&Cex 29 23 33 12 12 34 20 30 16 17 27 11 13 35 17 12 11 5 24 25 0

JM 29 23 28 12 12 13 14 36 16 17 27 11 7 15 17 12 30 39 24 25 0

Lev 22 21 34 10 9 38 10 40 13 7 25 6 27 37 16 10 6 6 23 21 0

OddMul 33 31 27 15 17 25 16 21 20 18 38 11 22 22 20 16 22 13 30 30 0

OddR 34 30 24 14 16 28 15 26 21 19 39 11 38 25 20 16 23 11 31 32 0

YulQ 29 23 23 12 12 30 15 23 16 17 28 11 25 25 17 12 18 8 25 28 0

YulY 29 23 26 12 12 31 14 29 16 17 32 11 34 25 17 12 25 12 25 28 0

Zhang 23 19 20 8 10 29 8 28 14 14 21 5 8 29 14 9 5 5 21 22 0

LocSup 40 36 42 19 21 45 29 49 24 22 44 13 42 43 26 23 30 39 37 37 0

GlbSup 40 36 42 19 21 45 13 49 24 22 44 13 42 43 26 23 30 39 37 37 0

Conf 30 26 37 12 12 40 22 27 16 17 34 11 30 34 17 12 7 9 24 25 0

MutInfo 29 23 42 12 12 45 29 15 16 17 28 11 19 43 17 12 30 39 25 28 0

CCS 39 35 40 18 20 44 28 48 23 21 42 12 36 42 25 22 30 37 36 34 0
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Table A.2: Measure rankings based on percentage of rule re-
duction without jeopardizing the f-measure while using measure-
based pruning with global support in generation phase and the
rules’ average of measures in selection phase. Instead of datasets’
names, datasets’ numbers are shown in the table. Tot shows the to-
tal number of high ranks for each dataset. The measures are sorted
based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Klos 1 2 2 1 1 8 1 44 1 1 17 2 32 9 1 1 34 1 14 30 12

Gini 8 1 8 1 1 2 3 38 2 1 10 1 31 2 11 1 33 21 13 29 10

IWD 32 3 1 1 1 3 2 8 1 24 9 1 27 3 26 1 13 7 10 12 10

GK 4 2 3 1 1 6 1 7 5 1 4 1 3 7 26 1 26 17 1 16 10

2WaySup 32 1 32 1 1 5 1 46 1 24 13 1 32 6 2 1 36 31 2 10 9

CF 32 4 32 1 1 44 22 3 2 24 3 1 1 46 26 1 36 36 11 1 9

Kappa 32 1 32 1 1 1 1 12 2 24 14 1 14 1 26 1 17 16 4 9 9

Corr 6 1 32 1 1 6 1 13 1 24 15 1 17 5 5 1 16 8 7 14 7

FM 13 6 12 1 1 10 17 18 3 10 4 1 23 13 17 1 32 24 3 2 7

LC 9 9 10 1 1 13 7 1 2 4 6 1 15 17 6 1 8 2 5 17 7

Spec 7 5 1 1 1 43 8 2 8 24 2 1 19 45 26 2 36 36 10 4 7

Acc 7 2 32 1 1 4 22 19 3 7 1 1 39 4 26 1 36 36 12 7 7

Jacc 10 10 14 1 1 21 22 20 2 5 8 1 29 24 18 1 36 26 1 5 6

PS 32 20 11 1 1 7 1 47 2 9 20 1 5 8 13 1 21 22 8 31 6

CCR 5 4 29 1 1 27 2 4 11 22 11 12 32 32 4 1 20 30 9 3 5

CnfrmC 7 8 31 1 1 23 3 10 1 24 7 7 41 24 20 3 23 35 19 33 5

RelRisk 5 4 29 1 1 27 2 4 11 22 16 12 36 32 3 1 20 30 9 8 5

ImpInd 32 13 32 1 1 18 5 40 1 24 22 1 24 20 9 2 35 13 15 18 5

Chi2 12 18 22 3 3 19 4 11 9 2 24 1 42 21 12 7 36 33 17 11 4

CollStr 30 5 29 1 1 33 1 47 1 19 23 5 42 39 26 4 27 32 16 6 4

CnfrmD 28 12 21 1 1 16 19 43 3 8 18 4 33 19 23 1 8 25 13 33 4

Cos 11 7 13 1 1 20 21 6 4 6 5 1 26 23 7 1 25 23 6 13 4

addedvalue 2 16 4 12 24 14 1 36 23 24 37 12 8 16 10 23 1 6 31 32 3

HLift 17 35 32 10 16 9 1 27 17 3 19 8 2 11 26 8 29 36 27 28 3

1WaySup 3 14 6 11 23 15 1 24 24 24 29 12 34 12 10 24 22 20 30 32 2

HConf 32 11 32 2 2 44 22 47 6 24 12 12 21 10 26 5 36 36 39 33 2

Conv 22 30 19 11 20 31 12 42 20 22 33 11 9 33 19 17 2 4 29 32 1

DChi2 15 34 20 9 22 37 18 39 16 6 41 3 40 41 24 18 36 28 22 19 1

InfoGain 27 15 7 11 25 14 2 37 25 24 36 12 42 16 10 25 15 5 31 30 1

IntImp 31 24 25 4 4 24 9 9 10 11 26 2 41 27 15 9 28 27 18 15 1

KM 20 23 9 6 28 22 12 33 15 24 27 11 16 22 19 28 9 3 33 32 1

Lift 32 33 5 13 26 17 2 41 27 24 27 12 6 18 26 26 24 29 38 32 1

Loe 21 29 18 11 13 30 12 35 18 24 31 11 9 31 19 17 4 3 24 31 1

YulY 20 22 32 6 17 25 12 21 15 24 32 11 35 30 19 19 3 4 32 28 1

2WaySupVar 20 22 32 6 5 11 12 28 15 12 28 11 4 14 19 28 18 15 21 24 0

Continued on next page
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Table A.2 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

ConfC 18 26 30 5 11 39 12 15 13 17 38 10 20 42 19 17 9 12 34 22 0

CCC 19 28 27 6 12 36 12 16 15 14 30 11 15 35 19 13 9 6 25 25 0

CCD 20 27 24 6 7 34 12 25 15 13 27 11 10 34 19 14 10 14 27 23 0

Ex&Cex 20 25 26 6 8 38 12 29 15 16 27 11 18 38 19 15 5 10 27 22 0

JM 20 22 32 6 6 12 12 5 15 24 27 11 12 15 19 11 14 18 23 29 0

Lap 26 17 24 8 9 42 16 23 7 19 21 12 7 37 8 6 6 9 21 26 0

Lev 14 19 28 6 10 40 10 14 14 18 25 9 30 43 16 16 9 11 26 25 0

OddMul 24 36 15 11 18 32 14 31 19 22 39 11 25 25 22 21 30 19 36 33 0

OddR 25 32 16 11 19 26 13 22 21 21 40 12 38 26 26 22 31 17 37 28 0

SS 24 31 24 7 8 38 15 25 22 13 35 12 18 34 21 12 5 5 33 22 0

YulQ 20 22 32 6 14 28 12 30 15 24 28 11 28 29 19 22 12 13 26 28 0

Zhang 16 21 17 15 21 29 6 34 12 24 27 6 13 28 14 10 19 10 20 20 0

LocSup 32 38 32 15 28 44 22 47 28 24 43 12 42 46 26 28 36 36 39 33 0

GlbSup 32 38 32 15 28 44 11 47 28 24 43 12 42 46 26 28 36 36 39 33 0

Conf 23 25 24 6 15 35 12 32 15 23 34 11 11 40 19 20 11 14 28 27 0

MutInfo 20 22 32 6 5 44 12 17 15 24 28 11 22 46 19 28 7 36 39 21 0

Gan 20 27 24 6 7 34 12 26 15 15 27 11 10 36 19 14 4 14 27 23 0

CCS 29 37 23 14 27 41 20 45 26 20 42 12 37 44 25 27 36 34 35 27 0

Table A.3: Measure rankings based on percentage of rule reduc-
tion without changing the maximum possible accuracy while using
measure-based pruning with global support in generation phase
and the highest ranked rule in selection phase. Instead of datasets’
names, datasets’ numbers are shown in the table. Tot shows the to-
tal number of high ranks for each dataset. The measures are sorted
based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

FM 7 1 8 2 4 1 5 1 2 2 2 2 12 1 3 1 6 4 2 8 12

Cos 10 3 23 11 30 2 28 5 3 18 4 2 12 2 2 3 6 3 7 9 8

Jacc 5 2 27 11 30 4 32 2 3 3 3 1 12 4 4 2 6 5 4 5 7

CollStr 32 16 5 11 3 16 2 17 36 1 40 4 12 19 1 39 5 17 3 39 5

Acc 2 7 1 1 2 16 1 17 9 10 19 12 12 7 9 18 6 27 19 11 5

Spec 2 21 1 11 1 15 26 17 5 11 15 12 12 15 43 17 6 27 17 1 4

CF 32 21 27 11 30 16 32 17 1 39 1 26 12 19 43 39 6 27 6 3 3

Chi2 4 5 20 3 7 3 6 8 11 7 7 8 12 3 6 13 6 22 15 17 3

PS 32 21 27 11 30 6 32 3 7 14 6 17 12 6 7 7 6 2 1 38 3

CCR 2 6 1 8 19 15 23 17 16 10 34 22 12 18 23 27 6 27 21 12 2

Kappa 3 21 7 11 10 16 3 6 8 8 5 7 12 19 5 5 6 6 8 4 2

Continued on next page
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Table A.3 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

LC 27 4 27 11 30 8 32 17 13 16 8 1 8 10 41 2 6 27 10 4 2

RelRisk 2 6 1 8 19 15 23 17 16 10 34 22 12 18 23 27 6 27 20 14 2

GK 1 21 27 11 30 16 32 17 10 4 16 26 8 5 43 16 6 27 13 2 2

CnfrmC 6 21 2 11 26 14 24 17 36 10 36 14 4 14 10 19 6 26 18 13 1

CnfrmD 32 11 27 11 30 16 32 17 14 31 12 3 12 19 31 6 6 27 9 39 1

CCC 29 21 25 11 30 15 32 17 36 33 35 18 2 15 36 38 6 19 30 25 1

DChi2 12 12 21 4 9 7 19 17 23 5 23 13 3 8 37 25 6 8 38 23 1

HConf 32 21 27 11 30 16 32 17 4 39 40 26 12 19 43 4 6 1 42 7 1

IWD 9 21 3 11 30 16 32 11 12 6 11 6 12 19 14 9 6 10 11 10 1

KM 32 21 27 11 30 16 32 13 36 39 32 26 5 19 15 39 3 16 37 25 1

Loe 22 21 15 11 14 16 20 17 29 28 28 18 6 19 27 28 2 14 27 25 1

Zhang 13 21 14 11 8 16 8 10 27 19 29 11 11 19 19 22 1 14 22 20 1

CCS 31 21 24 11 25 11 27 16 36 32 39 25 1 13 42 39 6 25 41 35 1

1WaySup 25 21 17 11 16 16 14 15 30 27 33 22 12 19 16 26 6 15 36 34 0

2waySup 11 21 4 11 30 16 32 11 6 17 9 6 12 19 18 8 6 11 5 16 0

2waySupVar 15 9 27 11 30 16 32 17 20 20 18 21 12 19 11 21 6 27 24 28 0

AddVal 24 21 16 11 20 16 18 17 28 29 28 23 12 19 17 31 6 20 35 32 0

ConfC 28 21 26 11 29 15 31 16 36 37 37 19 12 17 39 39 6 27 32 24 0

CCD 31 17 27 11 23 16 32 13 34 35 32 18 7 19 34 34 6 16 28 25 0

Conv 22 20 19 7 21 16 25 17 32 28 38 19 12 11 30 29 6 14 28 26 0

Corr 8 21 9 11 22 16 7 9 15 9 14 8 12 19 8 11 6 9 8 6 0

Ex&Cex 30 18 27 10 26 13 32 12 33 36 29 18 7 16 33 33 4 13 28 25 0

Gini 32 8 27 11 30 5 32 17 17 12 10 15 12 4 43 10 6 27 9 15 0

HLift 19 16 27 6 17 9 13 14 24 22 27 19 10 9 25 24 6 27 23 30 0

InfoGain 21 21 18 11 21 16 17 17 29 28 30 22 12 19 21 28 6 18 39 36 0

IntImp 32 10 22 5 6 16 9 17 36 4 17 5 12 19 20 15 6 7 16 19 0

JM 18 21 6 11 5 16 4 4 21 21 22 20 12 19 12 20 6 27 26 25 0

Klos 20 21 12 11 15 16 21 17 22 13 21 16 12 19 38 14 6 27 11 22 0

Lap 32 19 27 11 30 16 32 17 36 34 31 10 12 19 40 32 6 27 14 29 0

Lev 31 21 26 11 27 12 30 17 36 38 35 21 12 14 32 39 6 26 25 21 0

Lift 26 20 19 11 18 16 22 14 31 30 40 24 9 19 22 37 6 27 40 37 0

OddMul 23 20 19 7 24 10 15 16 28 24 32 20 12 12 28 30 6 27 33 31 0

OddR 16 15 10 9 11 15 16 17 26 23 26 19 12 15 29 23 6 27 34 33 0

SS 31 19 27 11 28 16 29 13 35 35 32 18 8 19 38 36 6 23 29 27 0

YulQ 17 13 10 11 11 16 10 17 26 25 24 20 12 19 24 23 6 21 31 28 0

YulY 17 14 11 11 12 16 11 17 25 26 25 20 12 19 26 23 6 24 30 28 0

LocSup 32 21 27 11 30 16 32 17 36 39 40 26 12 19 43 39 6 27 42 39 0

GlbSup 32 21 27 11 30 16 32 17 36 39 40 26 12 19 43 39 6 27 42 39 0

Conf 32 20 27 11 30 16 32 17 36 36 32 18 12 19 35 35 6 27 28 25 0

MutInfo 32 21 27 11 30 16 32 17 19 20 20 26 12 19 43 39 6 27 27 28 0

Gan 31 17 27 11 23 16 32 13 34 35 32 18 7 19 34 34 6 16 28 25 0

ImpInd 14 21 13 11 13 16 12 7 18 15 13 9 12 19 13 12 6 12 12 18 0
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Table A.4: Measure rankings based on percentage of rule reduc-
tion while using measure-based pruning with global support in
generation phase and the rules’ average of measures in selection
phase. Instead of datasets’ names, datasets’ numbers are shown
in the table. Tot shows the total number of high ranks for each
dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

FM 7 1 8 2 4 1 5 1 2 2 2 2 12 1 3 1 6 4 2 8 12

Cos 10 3 23 11 30 2 28 5 3 18 4 2 12 2 2 3 6 3 7 9 8

Jacc 5 2 27 11 30 4 32 2 3 3 3 1 12 4 4 2 6 5 4 5 7

CollStr 32 16 5 11 3 16 2 17 36 1 40 4 12 19 1 39 5 17 3 39 5

Acc 2 7 1 1 2 16 1 17 9 10 19 12 12 7 9 18 6 27 19 11 5

Spec 2 21 1 11 1 15 26 17 5 11 15 12 12 15 43 17 6 27 17 1 4

CF 32 21 27 11 30 16 32 17 1 39 1 26 12 19 43 39 6 27 6 3 3

Chi2 4 5 20 3 7 3 6 8 11 7 7 8 12 3 6 13 6 22 15 17 3

PS 32 21 27 11 30 6 32 3 7 14 6 17 12 6 7 7 6 2 1 38 3

CCR 2 6 1 8 19 15 23 17 16 10 34 22 12 18 23 27 6 27 21 12 2

Kappa 3 21 7 11 10 16 3 6 8 8 5 7 12 19 5 5 6 6 8 4 2

LC 27 4 27 11 30 8 32 17 13 16 8 1 8 10 41 2 6 27 10 4 2

RelRisk 2 6 1 8 19 15 23 17 16 10 34 22 12 18 23 27 6 27 20 14 2

GK 1 21 27 11 30 16 32 17 10 4 16 26 8 5 43 16 6 27 13 2 2

CnfrmC 6 21 2 11 26 14 24 17 36 10 36 14 4 14 10 19 6 26 18 13 1

CnfrmD 32 11 27 11 30 16 32 17 14 31 12 3 12 19 31 6 6 27 9 39 1

CCC 29 21 25 11 30 15 32 17 36 33 35 18 2 15 36 38 6 19 30 25 1

DChi2 12 12 21 4 9 7 19 17 23 5 23 13 3 8 37 25 6 8 38 23 1

HConf 32 21 27 11 30 16 32 17 4 39 40 26 12 19 43 4 6 1 42 7 1

IWD 9 21 3 11 30 16 32 11 12 6 11 6 12 19 14 9 6 10 11 10 1

KM 32 21 27 11 30 16 32 13 36 39 32 26 5 19 15 39 3 16 37 25 1

Loe 22 21 15 11 14 16 20 17 29 28 28 18 6 19 27 28 2 14 27 25 1

Zhang 13 21 14 11 8 16 8 10 27 19 29 11 11 19 19 22 1 14 22 20 1

CCS 31 21 24 11 25 11 27 16 36 32 39 25 1 13 42 39 6 25 41 35 1

1WaySup 25 21 17 11 16 16 14 15 30 27 33 22 12 19 16 26 6 15 36 34 0

2waySup 11 21 4 11 30 16 32 11 6 17 9 6 12 19 18 8 6 11 5 16 0

2waySupVar 15 9 27 11 30 16 32 17 20 20 18 21 12 19 11 21 6 27 24 28 0

AddVal 24 21 16 11 20 16 18 17 28 29 28 23 12 19 17 31 6 20 35 32 0

ConfC 28 21 26 11 29 15 31 16 36 37 37 19 12 17 39 39 6 27 32 24 0

CCD 31 17 27 11 23 16 32 13 34 35 32 18 7 19 34 34 6 16 28 25 0

Conv 22 20 19 7 21 16 25 17 32 28 38 19 12 11 30 29 6 14 28 26 0

Corr 8 21 9 11 22 16 7 9 15 9 14 8 12 19 8 11 6 9 8 6 0

Ex&Cex 30 18 27 10 26 13 32 12 33 36 29 18 7 16 33 33 4 13 28 25 0

Gini 32 8 27 11 30 5 32 17 17 12 10 15 12 4 43 10 6 27 9 15 0

Continued on next page
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Table A.4 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

HLift 19 16 27 6 17 9 13 14 24 22 27 19 10 9 25 24 6 27 23 30 0

InfoGain 21 21 18 11 21 16 17 17 29 28 30 22 12 19 21 28 6 18 39 36 0

IntImp 32 10 22 5 6 16 9 17 36 4 17 5 12 19 20 15 6 7 16 19 0

JM 18 21 6 11 5 16 4 4 21 21 22 20 12 19 12 20 6 27 26 25 0

Klos 20 21 12 11 15 16 21 17 22 13 21 16 12 19 38 14 6 27 11 22 0

Lap 32 19 27 11 30 16 32 17 36 34 31 10 12 19 40 32 6 27 14 29 0

Lev 31 21 26 11 27 12 30 17 36 38 35 21 12 14 32 39 6 26 25 21 0

Lift 26 20 19 11 18 16 22 14 31 30 40 24 9 19 22 37 6 27 40 37 0

OddMul 23 20 19 7 24 10 15 16 28 24 32 20 12 12 28 30 6 27 33 31 0

OddR 16 15 10 9 11 15 16 17 26 23 26 19 12 15 29 23 6 27 34 33 0

SS 31 19 27 11 28 16 29 13 35 35 32 18 8 19 38 36 6 23 29 27 0

YulQ 17 13 10 11 11 16 10 17 26 25 24 20 12 19 24 23 6 21 31 28 0

YulY 17 14 11 11 12 16 11 17 25 26 25 20 12 19 26 23 6 24 30 28 0

LocSup 32 21 27 11 30 16 32 17 36 39 40 26 12 19 43 39 6 27 42 39 0

GlbSup 32 21 27 11 30 16 32 17 36 39 40 26 12 19 43 39 6 27 42 39 0

Conf 32 20 27 11 30 16 32 17 36 36 32 18 12 19 35 35 6 27 28 25 0

MutInfo 32 21 27 11 30 16 32 17 19 20 20 26 12 19 43 39 6 27 27 28 0

Gan 31 17 27 11 23 16 32 13 34 35 32 18 7 19 34 34 6 16 28 25 0

ImpInd 14 21 13 11 13 16 12 7 18 15 13 9 12 19 13 12 6 12 12 18 0

Table A.5: Measure rankings based on percentage of f-measure
improvement while using measure-based pruning with global sup-
port in generation phase and the highest ranked rule in selection
phase. Instead of datasets’ names, datasets’ numbers are shown
in the table. Tot shows the total number of high ranks for each
dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Lev 31 1 18 12 6 30 33 21 13 3 1 1 4 21 3 3 2 1 1 8 9

Kappa 12 6 22 22 15 21 13 5 3 4 1 11 2 16 1 2 2 2 9 2 8

Zhang 3 11 1 18 4 2 18 2 16 27 1 14 4 3 8 7 4 1 3 14 8

Acc 10 3 15 24 19 23 1 3 9 11 1 15 4 10 1 2 2 2 17 6 8

GK 16 2 19 22 19 22 5 3 9 5 1 16 2 13 20 2 2 2 7 2 8

1WaySup 5 6 2 26 8 3 4 13 27 17 1 2 4 2 6 14 2 2 24 24 7

CF 26 12 35 22 19 36 40 8 6 1 2 3 1 31 23 1 2 9 11 3 7

Cos 18 8 29 7 11 33 32 6 2 16 1 8 2 29 2 2 2 2 7 4 7

FM 21 8 28 13 12 32 24 1 4 16 1 2 2 29 6 2 2 2 12 4 7

LC 20 8 29 15 13 33 36 3 10 22 1 13 2 29 7 2 2 2 8 1 7

Spec 9 2 11 24 19 26 2 3 29 14 1 19 1 23 22 5 2 2 20 6 7

Continued on next page
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Table A.5 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

2WaySup 28 10 26 1 16 9 21 32 10 13 1 6 2 7 18 3 2 2 11 16 6

AddVal 4 9 4 26 8 1 6 17 31 15 1 2 4 1 13 22 2 2 22 22 6

CnfrmC 15 3 17 13 13 5 3 11 12 11 1 4 4 11 14 3 2 2 16 6 6

Corr 14 9 24 22 19 10 12 7 4 6 1 11 2 5 1 2 2 2 14 5 6

IWD 17 10 12 1 17 16 14 5 7 7 1 11 2 22 17 2 2 2 16 6 6

Jacc 20 8 29 12 11 32 35 4 5 20 1 13 2 29 7 2 2 2 8 1 6

KM 1 2 5 26 20 7 9 18 30 15 1 2 4 9 4 9 1 2 4 11 6

Chi2 11 4 29 25 16 19 7 3 13 2 1 9 4 23 12 15 2 2 23 12 5

CCR 7 2 10 24 19 11 10 10 28 18 1 21 2 5 5 5 2 2 20 7 5

OddMul 2 11 1 16 4 7 22 12 20 23 1 4 4 6 11 13 2 2 22 21 5

YulQ 23 11 14 21 10 6 21 19 25 28 1 7 4 3 7 1 2 1 25 26 5

2WaySupVar 30 11 31 20 12 14 35 29 30 33 1 7 2 14 7 2 2 8 25 26 4

CollStr 25 7 27 21 7 30 19 25 1 8 4 15 5 24 16 8 3 3 2 23 4

CCC 33 11 21 6 3 31 34 23 21 29 1 7 4 26 7 10 1 1 5 13 4

CCD 35 11 29 1 4 34 34 24 22 29 1 7 4 29 7 10 1 2 5 13 4

Conv 19 11 9 11 3 17 27 27 17 29 1 4 4 12 7 13 1 1 10 10 4

Gini 13 5 23 2 19 20 13 16 8 9 1 9 2 17 12 2 5 5 15 16 4

InfoGain 8 7 3 23 8 4 11 9 25 17 1 5 4 4 14 18 2 2 26 26 4

JM 34 7 28 20 10 15 28 29 30 21 1 4 2 25 7 5 2 2 5 13 4

Klos 18 7 8 12 18 18 8 32 15 10 1 17 2 18 17 6 2 2 18 25 4

Lap 35 11 29 8 1 34 34 32 18 32 1 20 4 29 9 17 2 1 5 20 4

Loe 18 11 7 10 2 13 25 22 13 26 1 4 4 12 7 12 1 2 6 10 4

OddR 22 11 13 20 9 8 20 8 26 24 1 15 4 3 10 23 2 1 26 26 4

RelRisk 7 2 10 24 19 11 10 10 28 18 1 21 4 5 5 5 2 2 20 17 4

SS 35 11 29 5 3 34 34 25 17 30 1 7 4 29 15 19 2 2 13 15 4

YulY 23 11 14 19 9 7 21 15 19 25 1 4 4 8 7 1 2 1 25 26 4

Gan 35 11 29 1 4 34 34 24 22 29 1 7 4 29 7 10 1 2 5 13 4

ImpInd 32 10 22 24 14 16 23 31 11 20 1 6 2 19 6 11 2 2 20 19 4

CCS 27 11 16 3 4 13 31 5 14 29 1 4 4 13 21 16 2 2 22 18 4

ConfC 33 11 20 4 6 27 34 23 23 29 1 4 4 20 7 4 2 1 5 13 3

CnfrmD 36 11 32 2 10 34 37 32 6 30 1 18 3 29 22 7 8 4 19 26 3

DChi2 31 11 25 31 23 28 29 32 33 11 1 12 4 27 22 24 2 2 27 26 3

Ex&Cex 35 11 29 6 5 34 34 20 22 29 1 7 4 29 7 4 2 2 5 13 3

HLift 6 11 36 29 22 12 15 14 32 12 1 10 4 10 19 20 2 2 26 26 3

IntImp 24 7 30 27 21 24 17 30 24 19 1 6 4 28 18 21 2 3 21 19 3

Lift 35 11 6 30 8 25 16 9 26 31 1 5 4 15 14 20 2 2 26 26 3

Conf 35 11 29 14 4 34 34 26 22 29 1 7 4 29 7 4 3 2 5 13 3

MutInfo 37 11 34 28 20 37 38 28 30 33 1 7 2 32 7 1 6 10 25 26 3

HConf 38 13 36 9 13 35 39 34 18 33 3 22 1 30 24 6 9 7 19 9 2

PS 29 10 33 17 14 29 26 33 10 20 1 4 4 28 7 2 7 6 10 26 2

LocSup 39 14 36 32 24 38 41 35 34 34 5 23 6 33 25 25 10 12 28 27 0

GlbSup 39 14 36 32 24 38 30 35 34 34 5 23 6 33 25 25 10 11 28 27 0
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Table A.6: Measure rankings based on percentage of f-measure
improvement while using measure-based pruning with global sup-
port in generation phase and the rules’ average of measures in se-
lection phase. Instead of datasets’ names, datasets’ numbers are
shown in the table. Tot shows the total number of high ranks for
each dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Chi2 24 2 11 3 2 13 5 16 3 2 2 9 15 5 2 3 26 13 4 5 8

Ex&Cex 4 1 16 11 1 22 15 1 17 14 3 18 3 19 2 3 4 7 6 6 7

FM 27 1 19 9 1 22 38 18 2 13 3 2 10 21 18 3 23 15 1 5 7

SS 5 1 16 18 1 22 15 6 17 14 3 23 3 23 3 3 7 2 6 6 7

1WaySup 20 9 3 20 11 2 1 7 15 20 5 25 12 1 15 4 1 10 6 3 6

CnfrmC 28 2 21 5 1 7 3 9 18 14 2 23 15 16 19 3 19 15 3 5 6

DChi2 20 1 8 17 3 18 36 14 6 3 3 16 15 12 17 3 26 14 6 3 6

Jacc 27 1 19 9 1 22 38 25 4 9 3 1 15 20 20 3 26 15 1 5 6

CCC 10 2 20 13 1 24 20 10 21 14 7 18 2 27 6 3 7 10 3 5 5

CCD 5 1 15 18 1 22 16 3 17 14 5 18 5 23 5 3 10 3 6 6 5

Conv 23 1 14 18 1 20 29 10 7 11 3 18 14 23 10 2 11 1 6 5 5

Cos 27 1 19 4 1 22 38 28 1 10 3 4 10 23 20 3 22 15 6 5 5

KM 1 10 3 24 17 3 11 12 26 23 5 18 3 4 10 12 4 2 6 5 5

Lev 11 2 18 16 1 21 25 10 21 14 10 12 13 23 8 3 7 2 3 5 5

OddMul 5 1 2 18 1 8 17 9 16 14 9 20 8 9 20 3 5 1 6 5 5

OddR 26 1 19 18 1 10 18 15 17 11 2 23 15 14 20 3 10 3 6 5 5

Acc 27 1 19 12 1 22 38 21 8 14 3 21 15 8 20 3 26 15 1 6 5

GK 20 18 1 14 4 25 27 24 8 1 2 22 10 15 23 5 3 9 1 6 5

Gan 6 1 15 15 1 22 16 3 17 14 5 18 5 23 5 3 14 3 6 6 5

CCR 13 1 19 16 1 15 10 8 12 11 3 23 15 19 4 3 20 15 6 4 4

CnfrmD 8 4 12 2 3 23 24 19 19 6 2 14 17 25 11 2 29 12 6 6 4

IntImp 30 3 17 11 1 27 22 12 14 12 5 8 19 24 3 3 19 8 6 6 4

Lap 3 1 19 15 1 22 6 13 19 8 5 23 12 23 6 3 13 7 6 6 4

Loe 18 7 13 21 11 16 26 8 7 22 3 18 8 28 10 1 2 4 6 3 4

RelRisk 13 1 19 16 1 15 10 8 12 11 3 23 15 19 4 3 20 15 6 6 4

Spec 27 2 19 16 1 22 35 27 9 14 4 17 15 23 20 3 26 15 6 2 4

YulY 12 2 25 20 10 11 18 11 12 23 2 18 10 19 10 4 9 2 6 3 4

CCS 16 2 19 13 1 15 37 4 21 14 11 23 13 22 20 3 25 15 3 5 4

2WaySup 37 15 29 1 7 6 28 28 3 27 3 10 15 11 21 7 26 11 6 6 3

AddVal 9 9 7 20 10 1 2 6 15 20 7 25 8 2 15 4 9 12 6 5 3

ConfC 15 1 19 13 1 22 23 11 21 14 9 12 6 23 7 3 6 5 6 5 3

Corr 29 11 27 7 8 9 13 28 10 19 2 10 14 3 1 5 26 4 5 5 3

Gini 32 8 6 2 7 12 13 26 18 5 2 9 16 17 2 5 16 11 6 5 3

HLift 21 1 35 18 1 17 8 20 11 14 6 23 9 8 20 3 17 15 6 6 3
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Table A.6 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

IWD 34 14 23 1 6 20 12 28 9 21 2 15 8 29 22 5 26 9 1 5 3

Kappa 35 17 28 10 4 30 4 28 12 18 3 3 14 31 25 5 26 15 3 5 3

YulQ 14 5 26 21 11 8 18 9 12 23 2 18 4 18 10 4 12 1 6 3 3

Conf 7 7 24 19 6 30 19 2 20 14 5 18 12 30 9 3 9 2 7 7 3

CollStr 22 1 19 17 1 21 38 29 11 14 13 6 21 25 20 5 27 15 6 8 2

Lift 39 7 5 22 13 26 9 11 18 28 3 26 1 13 24 4 15 15 6 5 2

Zhang 2 7 4 25 12 5 14 5 18 25 7 5 6 7 14 5 12 6 2 5 2

2WaySupVar 25 4 32 24 11 28 33 23 24 15 2 18 15 33 10 12 26 17 8 5 1

CF 36 13 34 14 14 32 40 23 23 24 4 24 17 35 26 8 26 19 9 1 1

InfoGain 25 7 7 21 11 4 7 9 7 20 3 25 15 6 15 4 21 6 6 5 1

JM 31 10 31 24 9 14 34 28 13 23 3 18 15 26 10 9 26 15 6 6 1

Klos 19 12 10 4 7 29 21 26 11 16 1 19 15 25 16 6 18 9 6 5 1

LC 17 6 22 8 5 28 39 28 11 7 3 7 9 23 12 5 8 9 6 6 1

PS 33 14 9 5 3 19 31 30 5 4 8 11 18 10 18 5 30 16 6 6 1

MutInfo 27 3 33 23 16 33 32 22 25 17 4 18 11 36 10 11 28 20 10 9 1

ImpInd 38 7 30 6 4 23 32 17 6 26 2 13 7 34 13 4 24 5 6 5 1

HConf 40 16 35 11 15 31 40 31 22 29 12 27 20 32 27 10 31 18 11 10 0

LocSup 41 19 35 26 18 34 41 32 27 30 14 28 22 37 28 13 32 22 12 11 0

GlbSup 41 19 35 26 18 34 30 32 27 30 14 28 22 37 28 13 32 21 12 11 0

Table A.7: Measure rankings based on percentage of f-measure
improvement while using different measures in selection phase
with global support in generation phase and the highest ranked rule
in selection phase. Instead of datasets’ names, datasets’ numbers
are shown in the table. Tot shows the total number of high ranks
for each dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

OddMul 3 3 2 9 13 2 11 11 24 20 1 26 5 1 10 12 2 3 7 10 8

CCS 5 3 1 11 14 3 12 3 27 20 2 26 11 2 11 12 1 5 7 10 7

CnfrmC 26 3 16 6 3 25 28 4 9 19 5 23 1 19 29 1 8 13 3 1 6

Conv 6 3 2 12 12 4 14 9 26 20 1 26 3 5 10 12 2 2 7 10 6

Lap 25 9 16 5 1 19 21 16 2 18 4 6 3 17 2 5 7 2 1 13 6

Loe 6 3 2 12 12 4 14 9 26 20 1 26 3 5 10 12 2 2 7 10 6

Zhang 2 2 2 8 7 2 10 10 25 20 4 20 5 2 6 10 5 3 5 7 6

ConfC 8 2 11 12 11 11 19 7 26 20 1 26 3 11 12 12 2 2 7 10 5

CCC 9 2 13 12 11 15 19 6 26 20 1 26 3 12 12 12 2 2 7 10 5

Cos 27 16 24 2 3 36 26 25 30 20 3 14 18 32 24 2 21 20 17 3 5

FM 27 18 24 2 3 38 26 26 29 20 3 16 18 32 23 2 25 23 16 3 5

Continued on next page
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Table A.7 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

IntImp 7 13 19 1 2 9 9 32 1 11 5 1 25 7 1 8 16 10 5 17 5

Jacc 27 18 24 2 3 38 26 26 29 20 3 16 18 32 23 2 25 23 18 3 5

Kappa 16 7 14 4 3 23 3 22 10 14 3 12 16 17 13 3 23 22 13 3 5

LC 27 14 24 2 3 37 26 19 28 20 3 10 12 31 25 2 14 16 9 3 5

Lev 4 1 10 7 9 12 15 1 18 9 7 22 3 10 3 15 4 1 8 8 5

GK 14 6 23 3 3 20 13 26 16 7 3 8 18 13 20 3 13 15 18 3 5

ImpInd 13 6 5 3 3 6 8 31 3 11 5 3 19 4 5 2 20 16 6 18 5

CCD 10 4 15 12 11 17 20 6 26 20 1 26 3 13 12 12 2 2 7 10 4

Corr 18 7 17 4 3 14 5 21 5 4 3 4 17 12 7 3 18 18 11 2 4

Ex&Cex 10 4 15 12 11 17 20 6 26 20 2 26 3 13 12 12 2 2 7 10 4

Klos 1 10 4 3 3 7 1 28 4 15 5 5 10 4 4 9 17 14 4 15 4

PS 28 6 24 3 3 21 16 36 7 16 3 12 27 16 18 3 26 18 29 24 4

SS 10 4 15 12 11 17 20 6 26 20 2 26 3 13 12 12 2 2 7 10 4

Conf 10 4 15 12 11 17 20 6 26 20 2 26 3 13 12 12 2 1 7 10 4

Gan 10 4 15 12 11 17 20 6 26 20 1 26 3 13 12 12 2 2 7 10 4

2WaySup 12 10 6 4 3 16 4 33 8 12 3 2 23 14 8 7 24 21 22 19 3

AddVal 21 15 16 17 15 5 22 2 20 19 2 25 4 6 21 24 2 4 15 11 3

Chi2 17 7 22 4 3 13 7 21 5 4 3 4 17 12 7 3 18 18 11 5 3

Gini 11 7 22 4 3 13 7 35 5 4 3 4 21 12 7 3 18 18 19 22 3

Acc 27 8 18 4 3 30 27 12 11 13 3 11 8 25 29 3 15 17 11 4 3

1WaySup 21 19 16 18 16 10 25 5 19 19 1 28 6 9 22 25 2 6 24 12 2

2WaySupVar 35 17 21 3 3 24 18 38 21 5 10 12 28 20 14 16 31 24 28 30 2

CCR 35 26 3 5 3 32 28 20 15 19 13 15 24 26 27 18 12 12 32 29 2

CollStr 29 5 20 13 8 26 24 23 23 3 16 13 22 22 17 11 22 28 2 27 2

DChi2 19 11 9 4 8 1 17 14 12 1 5 7 9 8 16 4 11 11 12 5 2

InfoGain 23 24 16 22 17 29 28 14 22 19 1 29 7 24 28 27 2 8 27 20 2

IWD 20 12 8 4 3 22 2 24 6 17 5 9 15 15 9 14 19 18 10 6 2

Lift 23 24 16 22 17 29 28 14 22 19 1 29 7 24 28 27 3 8 27 20 2

OddR 35 25 7 10 13 8 11 13 24 20 11 26 9 3 10 12 7 3 25 29 2

RelRisk 35 26 3 5 3 32 28 20 15 19 13 15 24 26 27 18 12 12 32 29 2

YulQ 15 15 7 10 13 8 11 13 24 20 12 26 9 3 10 12 7 3 25 29 2

YulY 15 15 7 10 13 8 11 13 24 20 12 26 9 3 10 12 7 3 25 29 2

CnfrmD 35 29 24 16 4 39 26 34 31 20 3 31 13 33 26 13 14 15 20 25 1

HLift 24 23 25 14 10 28 23 15 14 2 4 27 10 23 19 26 10 9 14 16 1

JM 30 21 12 4 3 18 6 37 13 10 9 8 26 18 15 20 30 19 31 23 1

KM 22 24 16 24 21 33 28 8 37 19 6 24 2 27 29 28 9 7 26 9 1

Spec 31 20 16 15 3 33 28 27 17 19 13 21 31 27 29 23 26 25 33 28 1

CF 32 27 24 20 5 27 26 18 33 6 15 19 29 21 18 22 28 30 33 26 0

HConf 34 22 25 19 18 31 26 29 32 20 14 30 14 29 26 19 6 27 21 21 0

LocSup 35 28 24 21 6 34 26 17 35 20 13 18 29 28 18 17 27 29 33 29 0

GlbSup 35 29 24 23 20 40 26 39 36 20 13 32 30 33 26 21 28 27 30 30 0

MutInfo 33 15 24 21 19 35 26 30 34 8 8 17 20 30 18 6 29 26 23 14 0
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Table A.8: Measure rankings based on percentage of f-measure
improvement while using different measures in selection phase
with global support in generation phase and the rules’ average of
measures in selection phase. Instead of datasets’ names, datasets’
numbers are shown in the table. Tot shows the total number of
high ranks for each dataset. The measures are sorted based on this
number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

ConfC 1 1 1 1 2 2 3 1 7 1 3 5 5 2 1 1 6 6 1 3 15

CCC 7 3 4 2 3 5 10 2 5 3 5 3 5 5 3 1 6 8 1 2 10

Lev 2 5 3 1 2 3 8 3 5 5 1 6 7 1 2 1 6 7 4 4 10

Conv 3 7 5 13 21 4 1 5 16 20 1 18 2 3 7 10 3 3 13 11 7

CCS 4 7 2 13 21 1 2 4 18 20 2 18 3 4 7 10 1 1 13 11 7

Ex&Cex 10 3 7 5 4 7 13 9 2 6 6 2 7 8 6 2 11 12 1 1 6

Loe 6 7 6 13 21 4 1 5 16 20 1 18 2 3 7 10 3 3 13 11 6

CCD 8 4 8 4 1 8 14 8 4 7 7 2 6 7 4 1 7 9 1 2 5

Lap 11 6 9 3 3 9 16 16 2 8 4 1 6 8 5 4 8 10 3 5 5

Conf 8 4 8 4 1 8 14 8 4 7 7 2 6 7 4 1 7 9 1 2 5

Gan 8 4 8 4 1 8 14 8 4 7 7 2 6 7 4 1 7 9 1 2 5

SS 9 8 10 14 21 11 11 6 19 20 1 18 1 9 8 10 3 2 13 11 4

OddMul 5 7 11 12 21 6 2 7 16 20 1 18 4 6 7 10 3 4 13 11 3

Zhang 18 2 17 9 7 13 26 13 6 14 6 8 8 11 29 6 11 16 2 6 2

Cos 27 28 17 23 25 33 1 29 27 9 24 17 25 24 10 24 24 33 31 25 1

HConf 37 19 40 21 28 15 18 25 26 19 12 23 39 23 22 13 2 44 14 24 1

Klos 12 10 22 18 10 17 25 31 3 17 11 20 16 16 21 11 19 22 16 9 1

LC 19 27 32 10 15 29 18 20 20 2 13 9 14 26 9 15 15 25 21 10 1

OddR 38 26 12 12 21 10 2 10 16 20 9 18 6 7 7 10 4 5 22 38 1

YulY 31 24 13 6 5 12 9 14 8 4 16 6 13 10 11 3 6 15 6 8 1

ImpInd 14 9 23 16 9 18 15 32 1 12 14 4 21 15 18 8 20 26 19 17 1

1WaySup 20 12 18 17 11 16 31 12 10 17 5 20 6 14 33 10 5 13 8 12 0

2WaySup 18 16 25 24 22 19 24 36 22 15 19 10 29 17 20 23 25 32 28 30 0

2WaySupVar 42 41 38 34 37 41 7 41 35 24 33 31 36 35 31 34 37 41 37 40 0

AddVal 13 11 19 15 8 16 30 7 9 17 7 16 6 14 32 7 7 14 7 7 0

CF 35 39 37 26 34 40 19 39 37 21 28 30 35 34 25 29 31 42 35 36 0

Chi2 34 34 21 22 13 26 22 26 14 17 13 12 19 20 17 21 22 29 24 16 0

CCR 38 29 15 37 18 25 31 22 15 17 21 22 30 19 33 27 14 20 23 38 0

CollStr 36 30 14 19 26 28 17 37 28 16 29 28 37 21 13 18 29 36 12 35 0

CnfrmC 21 13 15 34 27 22 31 15 23 17 4 22 11 13 33 19 12 21 15 15 0

CnfrmD 38 31 34 7 19 35 18 37 21 19 13 24 15 30 22 9 17 24 27 31 0

Corr 25 14 24 28 14 21 28 27 13 17 17 14 20 17 28 20 21 27 20 21 0

DChi2 40 40 37 20 31 38 20 21 8 17 11 20 38 33 26 14 34 43 18 13 0
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Table A.8 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

FM 28 32 27 30 29 30 6 34 29 13 25 26 28 25 16 31 28 39 36 29 0

Gini 33 34 21 22 13 26 22 35 14 17 13 12 24 20 17 21 22 28 25 18 0

HLift 22 18 40 11 12 20 29 18 4 17 10 21 9 18 27 12 18 11 9 23 0

InfoGain 16 20 20 35 17 25 31 11 12 17 8 22 10 19 33 16 9 19 10 22 0

IntImp 39 37 31 29 32 37 23 43 38 25 27 13 40 31 35 26 32 42 30 34 0

IWD 24 15 25 27 20 20 27 24 17 17 14 19 18 17 24 24 23 30 21 20 0

Jacc 29 33 28 31 35 32 4 28 30 11 23 25 26 26 14 30 27 38 34 26 0

JM 41 42 35 39 40 34 32 42 34 23 31 31 32 28 36 35 36 37 40 40 0

Kappa 26 17 26 32 24 23 31 30 25 17 20 15 22 17 30 25 26 33 29 27 0

KM 43 41 39 40 41 42 32 38 36 24 30 31 12 36 36 36 33 25 39 40 0

Lift 21 20 15 33 16 25 31 11 11 17 7 22 9 19 33 17 7 18 11 22 0

PS 15 23 30 25 23 27 12 40 24 13 22 11 31 22 12 22 30 34 33 32 0

RelRisk 38 29 15 37 18 25 31 22 15 17 21 22 30 19 33 27 14 20 23 38 0

Spec 23 21 15 38 36 25 31 23 31 17 26 22 35 19 33 27 30 35 32 33 0

YulQ 32 25 16 8 6 14 21 19 4 10 18 7 17 12 19 5 10 17 5 14 0

Acc 23 22 15 38 36 25 31 17 31 17 13 22 16 19 33 27 16 31 17 28 0

LocSup 30 36 29 36 39 31 5 33 32 12 28 27 34 27 15 33 31 40 38 37 0

GlbSup 38 35 33 41 38 36 18 44 33 18 28 29 33 29 23 32 31 40 37 39 0

MutInfo 44 38 36 26 33 39 19 45 37 22 32 30 27 32 25 28 35 42 35 40 0

GK 17 22 14 38 30 24 31 23 31 17 15 20 23 19 34 27 13 23 26 19 0

A.2 Measures Rankings With Local Support

Table A.9: Measure rankings based on percentage of rule re-
duction without jeopardizing the f-measure while using measure-
based pruning with local support in generation phase and the high-
est ranked rule in selection phase. Instead of datasets’ names,
datasets’ numbers are shown in the table. Tot shows the total num-
ber of high ranks for each dataset. The measures are sorted based
on this number.

Datasets

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

IWD 6 4 1 1 1 3 2 2 1 1 9 1 24 3 1 1 29 33 1 5 13

Kappa 9 1 8 1 1 1 1 3 1 1 14 1 9 1 1 1 30 25 2 4 13

GK 5 2 6 1 1 6 1 13 1 1 4 1 3 8 1 1 15 11 3 1 12

Corr 8 1 7 1 1 6 2 10 1 1 15 1 12 5 1 1 30 32 3 2 11

Klos 1 2 2 1 1 9 1 14 1 1 17 2 29 10 2 1 27 26 9 12 11

2WaySup 2 1 5 1 1 5 1 18 1 1 13 1 29 6 1 1 30 34 13 8 10

Continued on next page
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Table A.9 – continued from previous page
Datasets

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

CF 10 2 42 1 1 45 29 9 1 1 3 1 1 43 1 1 30 39 6 6 10

Gini 14 1 12 1 1 2 3 43 2 1 10 1 28 2 12 1 26 18 14 9 10

Spec 11 5 1 1 1 26 6 4 1 1 2 1 14 28 1 1 30 39 17 3 10

RelRisk 7 3 10 1 1 18 2 11 1 1 16 1 35 20 3 1 8 31 10 18 9

CCR 7 3 10 1 1 18 2 11 1 1 11 1 29 20 4 1 8 31 10 17 8

CnfrmC 13 8 17 1 1 24 3 16 1 10 7 1 41 26 19 1 12 38 2 1 8

LC 15 9 15 1 1 14 27 1 2 1 6 1 10 30 5 1 17 14 4 1 8

PS 21 12 16 1 1 7 1 41 2 3 20 1 5 9 1 1 30 19 15 13 8

CollStr 12 5 25 1 1 8 18 6 1 1 44 1 42 7 1 3 16 35 7 14 7

Cos 19 7 21 1 1 20 11 8 1 1 5 1 23 23 6 1 14 20 10 1 7

FM 16 6 19 1 1 21 9 5 1 1 4 1 20 24 7 1 24 21 8 1 7

Jacc 18 10 22 1 1 23 12 7 2 1 8 1 26 26 11 1 30 24 5 1 7

Acc 13 2 18 1 1 4 6 25 3 12 1 1 39 4 18 1 30 39 5 11 7

ImpInd 20 11 14 1 1 17 5 22 1 1 23 1 21 19 9 2 28 22 18 15 6

CnfrmD 38 14 38 1 1 43 26 47 3 1 18 4 32 41 23 1 30 23 12 16 5

addedvalue 3 17 3 6 8 15 1 32 11 8 37 7 31 16 10 19 9 16 29 31 3

Chi2 17 20 39 3 5 19 4 17 6 2 24 1 42 21 13 7 30 36 19 19 3

HConf 40 13 42 2 2 45 29 49 4 1 12 13 18 11 26 5 30 39 11 7 3

HLift 26 33 42 5 4 10 3 37 8 5 19 9 2 13 1 4 21 39 22 29 3

Lap 36 18 36 2 3 39 24 33 5 6 22 1 30 38 8 6 4 4 16 20 3

1WaySup 4 15 4 7 6 11 1 34 9 8 40 7 33 12 10 17 10 17 32 33 1

CCC 28 24 31 12 12 36 23 39 16 16 30 11 10 32 17 12 2 15 24 25 1

Conv 32 28 29 12 14 33 17 31 18 17 33 11 37 31 17 14 7 2 27 26 1

DChi2 25 34 30 9 19 41 25 44 22 11 41 3 40 39 24 20 30 29 33 23 1

InfoGain 35 16 11 16 7 15 2 42 10 9 36 7 42 16 10 18 30 27 34 35 1

IntImp 24 25 41 4 11 27 7 12 7 4 26 1 41 27 15 8 19 28 20 10 1

KM 29 23 13 12 12 22 14 19 16 17 27 11 11 18 17 12 3 10 24 25 1

Lift 37 32 9 17 18 16 2 46 12 13 43 8 6 17 22 21 13 30 35 36 1

Loe 31 27 28 12 13 32 16 20 17 17 31 11 16 31 17 13 7 3 26 25 1

SS 33 29 33 13 15 35 21 35 19 20 35 11 13 36 21 15 11 1 28 27 1

Gan 29 24 32 12 12 37 22 24 16 17 34 11 15 33 17 12 1 9 24 25 1

2WaySupVar 29 23 17 12 12 12 14 38 16 17 29 11 4 14 17 12 30 39 25 28 0

ConfC 27 22 35 11 12 42 19 45 15 15 27 10 17 40 17 11 20 7 24 24 0

CCD 29 23 32 12 12 35 22 24 16 17 34 11 15 33 17 12 7 9 24 25 0

Ex&Cex 29 23 33 12 12 34 20 30 16 17 27 11 13 35 17 12 11 5 24 25 0

JM 29 23 28 12 12 13 14 36 16 17 27 11 7 15 17 12 30 39 24 25 0

Lev 22 21 34 10 9 38 10 40 13 7 25 6 27 37 16 10 6 6 23 21 0

OddMul 33 31 27 15 17 25 16 21 20 18 38 11 22 22 20 16 22 13 30 30 0

OddR 34 30 24 14 16 28 15 26 21 19 39 11 38 25 20 16 23 11 31 32 0

YulQ 29 23 23 12 12 30 15 23 16 17 28 11 25 25 17 12 18 8 25 28 0

YulY 29 23 26 12 12 31 14 29 16 17 32 11 34 25 17 12 25 12 25 28 0

Zhang 23 19 20 8 10 29 8 28 14 14 21 5 8 29 14 9 5 5 21 22 0

Continued on next page
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Table A.9 – continued from previous page
Datasets

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

LocSup 40 36 42 19 21 45 29 49 24 22 44 13 42 43 26 23 30 39 37 37 0

GlbSup 40 36 42 19 21 45 13 49 24 22 44 13 42 43 26 23 30 39 37 37 0

Conf 30 26 37 12 12 40 22 27 16 17 34 11 30 34 17 12 7 9 24 25 0

MutInfo 29 23 42 12 12 45 29 15 16 17 28 11 19 43 17 12 30 39 25 28 0

CCS 39 35 40 18 20 44 28 48 23 21 42 12 36 42 25 22 30 37 36 34 0

Table A.10: Measure rankings based on percentage of rule re-
duction without jeopardizing the f-measure while using measure-
based pruning with local support in generation phase and the rules’
average of measures in selection phase. Instead of datasets’ names,
datasets’ numbers are shown in the table. Tot shows the total num-
ber of high ranks for each dataset. The measures are sorted based
on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Gini 34 1 4 1 1 2 22 17 2 1 10 1 15 2 6 1 23 3 6 29 10

Kappa 11 1 38 1 1 1 1 1 2 24 14 1 4 1 23 1 5 6 4 9 10

Klos 24 1 2 1 1 7 22 10 1 1 17 2 16 9 8 1 1 8 3 30 10

LC 1 7 6 1 1 11 5 3 2 4 6 1 6 14 3 1 23 2 1 17 10

GK 34 2 3 1 1 5 22 13 4 1 4 1 2 7 23 1 23 1 2 16 10

IWD 34 3 1 1 1 3 22 4 1 24 9 1 13 3 23 1 23 14 5 12 9

CF 34 4 38 1 1 42 22 5 2 24 3 1 1 44 23 1 23 31 7 1 8

FM 2 5 8 1 1 9 22 6 2 10 4 1 11 12 23 1 5 13 3 2 8

Jacc 3 8 9 1 1 19 22 2 1 5 8 1 14 23 19 1 23 30 2 5 8

Corr 26 1 38 1 1 5 22 8 1 24 15 1 7 5 2 1 23 11 5 14 7

Acc 8 1 38 1 1 4 22 20 2 7 1 1 36 4 23 1 23 31 12 7 7

2WaySup 34 1 38 1 1 5 22 40 1 24 13 1 16 6 23 1 4 12 6 10 6

CCR 7 4 35 1 1 30 18 21 30 22 11 12 18 31 1 1 17 29 3 3 6

Cos 4 6 9 1 1 8 12 7 3 6 5 1 12 21 16 1 23 19 3 13 6

PS 34 14 7 1 1 6 22 46 1 9 19 1 3 8 23 1 23 31 8 31 6

ImpInd 21 11 38 1 1 13 22 14 1 24 21 1 11 18 5 1 2 4 13 18 6

CnfrmC 9 7 34 1 1 23 3 19 1 24 7 7 43 28 22 2 21 31 11 33 5

RelRisk 7 4 35 1 1 30 18 21 30 22 16 12 20 31 1 1 17 29 3 8 5

Spec 8 4 37 1 1 41 22 12 7 24 2 1 9 43 23 1 23 31 9 4 5

Chi2 5 13 32 2 4 16 2 15 8 2 24 1 42 20 6 6 7 25 14 11 4

CollStr 32 4 36 1 1 29 19 11 1 19 22 5 44 32 23 3 5 10 10 6 4

CnfrmD 34 10 20 1 1 12 22 18 2 8 18 4 17 15 9 1 23 4 4 33 4

HConf 34 9 38 1 2 42 22 46 5 24 12 12 10 10 23 4 23 31 25 33 2

IntImp 12 17 31 3 6 21 17 9 9 11 25 2 38 26 7 7 4 26 15 15 2
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Table A.10 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

DChi2 10 34 24 5 10 36 6 35 10 6 36 3 40 40 13 9 23 24 17 19 1

HLift 23 36 38 6 9 10 22 38 14 3 23 8 29 11 23 23 23 31 20 28 1

Lap 31 12 28 9 3 35 15 16 6 19 20 12 22 37 4 5 6 20 16 26 1

GlbSup 34 39 5 4 5 42 4 46 31 24 40 12 44 44 10 28 3 9 25 33 1

1WaySup 18 32 11 10 22 18 22 37 24 24 28 12 37 13 23 20 20 18 21 32 0

2WaySupVar 34 19 38 15 7 14 22 39 11 12 27 11 5 16 23 28 8 7 25 24 0

addedvalue 17 16 10 9 26 17 22 36 22 24 35 12 24 19 23 25 19 17 25 32 0

ConfC 27 31 26 8 24 39 14 28 27 17 27 10 32 41 18 24 14 7 22 22 0

CCC 21 24 27 9 19 33 8 29 21 14 29 11 27 34 12 11 15 7 23 25 0

CCD 23 22 29 7 11 37 7 24 16 13 32 11 30 33 11 13 11 7 22 23 0

Conv 15 26 23 12 17 32 22 23 25 22 31 11 39 30 23 17 22 28 25 32 0

Ex&Cex 22 27 22 8 13 38 11 27 19 16 27 11 28 38 17 15 9 7 21 22 0

InfoGain 26 15 17 9 25 17 22 43 26 24 34 12 44 19 23 22 23 22 24 30 0

JM 19 19 38 15 8 15 22 22 12 24 27 11 8 17 23 10 18 7 19 29 0

KM 13 20 12 15 29 22 22 30 31 24 27 11 27 24 23 28 11 7 21 32 0

Lev 20 18 25 8 20 34 10 25 18 18 26 9 33 36 14 18 15 7 22 25 0

Lift 30 33 14 10 27 20 22 44 29 24 27 12 23 22 23 26 12 27 25 32 0

Loe 14 25 21 8 14 31 22 42 18 24 30 11 31 30 23 12 12 16 23 31 0

OddMul 16 37 19 9 23 26 21 32 25 22 37 11 32 25 22 21 19 21 24 33 0

OddR 28 30 16 9 18 28 20 33 15 21 38 12 34 27 21 21 15 23 24 28 0

SS 29 29 22 11 15 38 7 27 16 13 33 12 28 33 11 16 9 15 21 22 0

YulQ 25 21 15 9 18 25 22 31 15 24 27 11 21 27 23 19 13 7 24 28 0

YulY 25 23 18 9 21 27 22 34 23 24 27 11 26 27 23 19 16 7 25 28 0

Zhang 6 35 13 15 16 24 22 23 13 24 27 6 25 29 23 8 10 5 18 20 0

LocSup 34 39 38 15 29 42 22 46 31 24 40 12 44 44 23 28 23 31 25 33 0

Conf 23 28 30 13 12 37 13 41 20 23 32 11 35 39 15 14 19 7 24 27 0

MutInfo 34 19 38 15 29 42 22 26 11 24 27 11 19 44 23 28 23 7 25 21 0

Gan 23 22 29 7 11 37 9 24 17 15 27 11 30 35 12 13 11 7 22 23 0

CCS 33 38 33 14 28 40 16 45 28 20 39 12 41 42 20 27 23 31 23 27 0
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Table A.11: Measure rankings based on percentage of rule reduc-
tion without changing the maximum possible accuracy while us-
ing measure-based pruning with local support in generation phase
and the highest ranked rule in selection phase. Instead of datasets’
names, datasets’ numbers are shown in the table. Tot shows the to-
tal number of high ranks for each dataset. The measures are sorted
based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

FM 25 1 23 8 20 1 31 1 2 2 2 2 1 1 3 1 4 4 2 8 12

Jacc 25 2 21 8 20 4 31 2 3 3 3 1 2 4 4 1 4 5 3 5 9

Cos 21 3 23 6 20 2 31 4 3 18 4 2 10 2 2 2 4 3 5 9 8

Acc 2 10 1 1 2 15 1 17 9 10 17 12 16 7 21 15 4 34 16 11 5

Spec 2 24 1 8 1 14 23 17 5 11 14 12 10 15 33 15 4 34 14 1 4

CF 25 24 23 8 20 15 31 17 1 39 1 26 16 19 33 37 4 34 5 3 3

Chi2 4 5 17 3 6 3 7 8 11 7 7 8 12 3 6 11 4 19 12 17 3

CollStr 25 20 18 8 20 15 26 17 37 1 39 4 16 19 1 37 4 8 2 39 3

Kappa 8 24 3 8 20 15 2 5 8 8 5 7 5 19 5 3 4 6 7 4 3

PS 25 24 23 8 20 6 31 3 7 14 6 17 16 6 7 5 4 2 1 38 3

CCR 2 9 1 7 11 14 21 17 18 10 33 22 16 18 28 27 4 27 17 12 2

CnfrmC 3 24 2 8 18 12 22 17 37 10 35 14 13 14 21 16 4 34 15 13 2

HConf 25 24 23 8 20 15 31 17 4 39 39 26 16 19 33 2 4 1 32 7 2

LC 20 4 23 8 20 7 31 17 13 16 7 1 16 8 30 1 4 34 8 4 2

RelRisk 2 9 1 7 11 14 21 17 18 10 33 22 16 18 28 27 4 27 17 14 2

Zhang 25 24 10 8 3 15 5 12 26 19 28 11 14 19 14 17 3 30 19 20 2

GK 1 24 23 8 20 15 31 17 10 4 15 26 16 5 33 14 4 34 10 2 2

2waySupVar 25 11 23 8 20 15 31 17 21 20 20 21 3 19 18 20 4 34 22 28 1

CnfrmD 25 7 23 8 20 15 31 17 14 31 11 3 16 19 15 4 4 34 7 39 1

Corr 6 24 11 8 13 15 3 9 15 9 13 8 8 19 9 9 4 9 6 6 1

DChi2 7 13 4 2 5 8 10 17 20 5 19 13 11 9 29 18 4 15 18 23 1

JM 25 24 23 8 20 15 31 10 22 21 22 20 7 19 18 19 1 12 22 25 1

Loe 15 24 12 8 8 15 17 17 30 28 27 18 16 19 18 24 3 21 23 25 1

OddR 10 15 5 8 7 14 14 17 25 23 25 19 16 15 19 21 2 33 27 33 1

1WaySup 18 24 14 8 10 15 12 16 31 27 32 22 16 19 24 26 4 22 28 34 0

2waySup 25 24 23 8 20 15 31 7 6 17 8 6 4 19 10 6 4 10 4 16 0

AddVal 17 24 13 8 11 15 16 17 27 29 27 23 16 19 25 33 4 28 25 32 0

ConfC 22 24 20 8 20 13 30 17 37 37 36 19 16 17 17 37 4 31 22 24 0

CCC 23 24 22 8 20 13 25 17 37 33 34 18 16 15 18 35 4 23 22 25 0

CCD 24 16 23 7 15 15 28 14 35 35 31 18 16 19 18 29 4 17 22 25 0

Conv 15 23 16 5 12 15 17 17 33 28 37 19 16 11 18 25 4 25 23 26 0

Ex&Cex 24 17 23 8 18 12 27 13 34 36 28 18 16 16 18 28 4 25 22 25 0

Gini 25 6 23 8 20 5 31 17 16 12 9 15 16 4 33 8 4 34 7 15 0

HLift 12 18 23 4 16 9 11 15 23 22 26 19 15 10 23 22 4 34 20 30 0

InfoGain 14 24 15 8 12 15 15 17 29 28 29 22 16 19 26 32 4 24 29 36 0

Continued on next page
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Table A.11 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

IntImp 25 8 9 5 17 15 19 17 37 4 16 5 16 19 12 13 4 20 13 19 0

IWD 5 24 23 8 20 15 31 11 12 6 10 6 9 19 11 7 4 11 8 10 0

Klos 13 24 7 8 4 15 18 17 19 13 18 16 16 19 31 12 4 34 8 22 0

KM 25 24 23 8 20 15 31 14 37 39 31 26 16 19 18 37 4 18 22 25 0

Lap 25 19 23 8 20 15 31 17 37 34 30 10 16 19 22 23 4 14 11 29 0

Lev 24 24 22 8 19 11 29 17 37 38 34 21 16 14 16 37 4 16 21 21 0

Lift 19 23 16 8 11 15 20 14 32 30 39 24 16 19 27 36 4 24 30 37 0

OddMul 16 23 16 5 14 10 13 17 28 24 31 20 16 12 19 31 4 32 26 31 0

SS 24 21 23 8 19 15 29 14 36 35 31 18 16 19 20 34 4 25 24 27 0

YulQ 11 12 5 8 7 15 8 17 25 25 23 20 16 19 18 21 4 26 22 28 0

YulY 11 14 6 8 7 15 9 17 24 26 24 20 16 19 18 21 4 29 22 28 0

LocSup 25 24 23 8 20 15 31 17 37 39 39 26 16 19 33 37 4 34 32 39 0

GlbSup 25 24 23 8 20 15 4 17 37 39 39 26 16 19 13 37 4 7 32 39 0

Conf 25 22 23 8 20 15 31 17 37 36 31 18 16 19 18 30 4 18 22 25 0

MutInfo 25 24 23 8 20 15 31 17 21 20 21 26 16 19 18 37 4 34 22 28 0

Gan 24 16 23 7 15 15 28 14 35 35 31 18 16 19 18 29 4 17 22 25 0

ImpInd 9 24 8 8 9 15 6 6 17 15 12 9 6 19 8 10 4 13 9 18 0

CCS 24 24 19 8 16 11 24 16 37 32 38 25 12 13 32 37 4 34 31 35 0

Table A.12: Measure rankings based on percentage of rule reduc-
tion while using measure-based pruning with local support in gen-
eration phase and the rules’ average of measures in selection phase.
Instead of datasets’ names, datasets’ numbers are shown in the ta-
ble. Tot shows the total number of high ranks for each dataset. The
measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

FM 25 1 23 8 20 1 31 1 2 2 2 2 1 1 3 1 4 4 2 8 12

Jacc 25 2 21 8 20 4 31 2 3 3 3 1 2 4 4 1 4 5 3 5 9

Cos 21 3 23 6 20 2 31 4 3 18 4 2 10 2 2 2 4 3 5 9 8

Acc 2 10 1 1 2 15 1 17 9 10 17 12 16 7 21 15 4 34 16 11 5

Spec 2 24 1 8 1 14 23 17 5 11 14 12 10 15 33 15 4 34 14 1 4

CF 25 24 23 8 20 15 31 17 1 39 1 26 16 19 33 37 4 34 5 3 3

Chi2 4 5 17 3 6 3 7 8 11 7 7 8 12 3 6 11 4 19 12 17 3

CollStr 25 20 18 8 20 15 26 17 37 1 39 4 16 19 1 37 4 8 2 39 3

Kappa 8 24 3 8 20 15 2 5 8 8 5 7 5 19 5 3 4 6 7 4 3

PS 25 24 23 8 20 6 31 3 7 14 6 17 16 6 7 5 4 2 1 38 3

CCR 2 9 1 7 11 14 21 17 18 10 33 22 16 18 28 27 4 27 17 12 2

CnfrmC 3 24 2 8 18 12 22 17 37 10 35 14 13 14 21 16 4 34 15 13 2

Continued on next page
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Table A.12 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

HConf 25 24 23 8 20 15 31 17 4 39 39 26 16 19 33 2 4 1 32 7 2

LC 20 4 23 8 20 7 31 17 13 16 7 1 16 8 30 1 4 34 8 4 2

RelRisk 2 9 1 7 11 14 21 17 18 10 33 22 16 18 28 27 4 27 17 14 2

Zhang 25 24 10 8 3 15 5 12 26 19 28 11 14 19 14 17 3 30 19 20 2

GK 1 24 23 8 20 15 31 17 10 4 15 26 16 5 33 14 4 34 10 2 2

2waySupVar 25 11 23 8 20 15 31 17 21 20 20 21 3 19 18 20 4 34 22 28 1

CnfrmD 25 7 23 8 20 15 31 17 14 31 11 3 16 19 15 4 4 34 7 39 1

Corr 6 24 11 8 13 15 3 9 15 9 13 8 8 19 9 9 4 9 6 6 1

DChi2 7 13 4 2 5 8 10 17 20 5 19 13 11 9 29 18 4 15 18 23 1

JM 25 24 23 8 20 15 31 10 22 21 22 20 7 19 18 19 1 12 22 25 1

Loe 15 24 12 8 8 15 17 17 30 28 27 18 16 19 18 24 3 21 23 25 1

OddR 10 15 5 8 7 14 14 17 25 23 25 19 16 15 19 21 2 33 27 33 1

1WaySup 18 24 14 8 10 15 12 16 31 27 32 22 16 19 24 26 4 22 28 34 0

2waySup 25 24 23 8 20 15 31 7 6 17 8 6 4 19 10 6 4 10 4 16 0

AddVal 17 24 13 8 11 15 16 17 27 29 27 23 16 19 25 33 4 28 25 32 0

ConfC 22 24 20 8 20 13 30 17 37 37 36 19 16 17 17 37 4 31 22 24 0

CCC 23 24 22 8 20 13 25 17 37 33 34 18 16 15 18 35 4 23 22 25 0

CCD 24 16 23 7 15 15 28 14 35 35 31 18 16 19 18 29 4 17 22 25 0

Conv 15 23 16 5 12 15 17 17 33 28 37 19 16 11 18 25 4 25 23 26 0

Ex&Cex 24 17 23 8 18 12 27 13 34 36 28 18 16 16 18 28 4 25 22 25 0

Gini 25 6 23 8 20 5 31 17 16 12 9 15 16 4 33 8 4 34 7 15 0

HLift 12 18 23 4 16 9 11 15 23 22 26 19 15 10 23 22 4 34 20 30 0

InfoGain 14 24 15 8 12 15 15 17 29 28 29 22 16 19 26 32 4 24 29 36 0

IntImp 25 8 9 5 17 15 19 17 37 4 16 5 16 19 12 13 4 20 13 19 0

IWD 5 24 23 8 20 15 31 11 12 6 10 6 9 19 11 7 4 11 8 10 0

Klos 13 24 7 8 4 15 18 17 19 13 18 16 16 19 31 12 4 34 8 22 0

KM 25 24 23 8 20 15 31 14 37 39 31 26 16 19 18 37 4 18 22 25 0

Lap 25 19 23 8 20 15 31 17 37 34 30 10 16 19 22 23 4 14 11 29 0

Lev 24 24 22 8 19 11 29 17 37 38 34 21 16 14 16 37 4 16 21 21 0

Lift 19 23 16 8 11 15 20 14 32 30 39 24 16 19 27 36 4 24 30 37 0

OddMul 16 23 16 5 14 10 13 17 28 24 31 20 16 12 19 31 4 32 26 31 0

SS 24 21 23 8 19 15 29 14 36 35 31 18 16 19 20 34 4 25 24 27 0

YulQ 11 12 5 8 7 15 8 17 25 25 23 20 16 19 18 21 4 26 22 28 0

YulY 11 14 6 8 7 15 9 17 24 26 24 20 16 19 18 21 4 29 22 28 0

LocSup 25 24 23 8 20 15 31 17 37 39 39 26 16 19 33 37 4 34 32 39 0

GlbSup 25 24 23 8 20 15 4 17 37 39 39 26 16 19 13 37 4 7 32 39 0

Conf 25 22 23 8 20 15 31 17 37 36 31 18 16 19 18 30 4 18 22 25 0

MutInfo 25 24 23 8 20 15 31 17 21 20 21 26 16 19 18 37 4 34 22 28 0

Gan 24 16 23 7 15 15 28 14 35 35 31 18 16 19 18 29 4 17 22 25 0

ImpInd 9 24 8 8 9 15 6 6 17 15 12 9 6 19 8 10 4 13 9 18 0

CCS 24 24 19 8 16 11 24 16 37 32 38 25 12 13 32 37 4 34 31 35 0
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Table A.13: Measure rankings based on percentage of f-measure
improvement while using measure-based pruning with local sup-
port in generation phase and the highest ranked rule in selection
phase. Instead of datasets’ names, datasets’ numbers are shown
in the table. Tot shows the total number of high ranks for each
dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

KM 1 3 3 21 21 10 1 29 30 15 2 2 5 9 2 11 6 10 4 11 7

CF 32 17 30 25 18 35 35 6 6 1 2 3 2 33 27 1 26 32 10 3 6

Kappa 9 9 19 25 14 23 14 5 3 4 1 11 3 17 3 2 21 20 8 2 6

Lev 7 1 15 10 10 28 23 35 10 3 2 1 5 21 3 4 7 6 1 8 6

1WaySup 5 8 2 26 19 3 4 23 27 17 2 2 5 1 6 15 11 14 26 24 5

Corr 10 12 20 25 18 12 2 7 4 6 1 11 3 7 3 2 21 17 12 5 5

Cos 14 12 20 12 10 32 32 2 2 16 1 8 3 29 4 2 22 21 6 4 5

FM 9 12 20 17 11 32 15 1 4 16 1 2 3 29 8 2 22 14 11 4 5

Jacc 11 12 20 16 9 32 32 3 5 20 1 13 3 29 9 2 23 22 7 1 5

Zhang 3 14 1 15 12 2 9 8 15 27 2 14 5 4 6 9 6 7 3 14 5

AddVal 4 16 4 26 19 1 5 31 28 15 2 2 5 1 14 22 10 5 24 22 4

InfoGain 8 10 2 24 19 4 3 16 23 17 2 5 5 3 22 19 15 13 27 26 4

IWD 13 12 21 6 17 17 2 5 7 7 1 11 3 24 17 2 23 18 15 6 4

LC 11 12 22 19 12 32 32 4 9 22 1 13 3 29 9 2 21 24 7 1 4

Acc 6 2 11 27 18 22 32 10 8 11 1 15 5 12 1 2 21 31 17 6 4

MutInfo 28 15 29 30 21 37 27 27 30 33 3 7 3 35 5 1 3 10 29 26 4

GK 27 6 13 25 18 24 22 4 8 5 1 16 3 10 23 2 19 26 6 2 4

2WaySupVar 26 16 25 22 20 15 25 36 30 33 2 7 3 14 5 3 4 10 28 26 3

Chi2 7 5 20 28 16 20 2 4 12 2 1 9 5 26 13 16 21 31 22 12 3

CollStr 17 10 20 23 3 29 20 11 1 8 4 15 6 27 16 10 18 12 2 23 3

CCD 19 15 20 2 3 32 26 33 21 29 2 7 5 29 5 12 8 5 5 13 3

Conv 16 16 5 9 3 16 21 38 16 29 2 4 5 14 5 15 8 2 13 10 3

Gini 31 7 26 7 18 21 18 9 7 9 1 9 3 18 13 2 25 19 15 16 3

OddMul 2 15 1 13 10 7 10 21 19 23 2 4 5 6 12 15 13 16 25 21 3

SS 25 15 20 4 2 32 29 38 16 30 2 7 5 29 15 20 7 3 14 15 3

YulQ 23 16 10 18 19 6 7 25 25 28 2 7 5 2 5 1 8 7 29 26 3

Gan 20 15 20 2 3 32 26 33 21 29 2 7 5 29 5 12 6 5 5 13 3

2WaySup 25 13 24 6 15 11 11 28 9 13 1 6 3 8 19 5 24 10 11 16 2

CCR 21 6 8 27 18 14 32 12 31 18 2 21 3 5 7 7 16 31 20 7 2

ConfC 19 16 16 1 7 27 27 38 22 29 2 4 5 16 5 6 8 8 5 13 2

CnfrmC 6 2 14 17 12 5 32 19 11 11 1 4 5 12 21 4 12 25 16 6 2

CCC 20 16 17 5 6 31 27 32 20 29 2 7 5 23 5 12 8 2 5 13 2

HConf 35 18 31 14 12 34 34 39 17 33 3 22 1 32 29 8 29 29 19 9 2

HLift 12 16 31 32 24 12 16 13 33 12 2 10 5 11 24 5 2 31 29 26 2

JM 15 10 23 22 19 18 24 36 30 21 2 4 3 22 5 7 6 10 5 13 2

Klos 18 9 12 16 17 19 8 34 14 10 1 17 3 19 18 7 22 11 18 25 2
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Table A.13 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Lap 29 14 20 11 1 32 32 24 17 32 1 20 5 29 11 18 14 7 5 20 2

Loe 16 15 4 8 5 13 19 33 12 26 2 4 5 13 5 14 9 1 8 10 2

OddR 23 16 9 22 19 9 12 14 26 24 2 15 5 2 11 23 18 15 29 26 2

PS 33 13 28 20 13 30 30 26 9 20 1 4 5 30 9 2 27 23 9 26 2

Spec 20 4 10 27 18 25 32 10 29 14 1 19 2 21 27 7 21 31 20 6 2

YulY 23 15 10 16 19 8 6 20 18 25 2 4 5 8 5 1 5 4 29 26 2

GlbSup 24 19 7 31 23 36 13 40 32 34 5 23 7 34 10 25 1 3 31 27 2

Conf 20 15 20 12 3 32 27 33 21 29 2 7 5 29 5 6 5 6 5 13 2

ImpInd 29 13 20 27 13 17 15 18 10 20 1 6 3 20 8 13 22 9 20 19 2

CCS 22 16 14 3 13 10 28 22 13 29 2 4 5 11 25 17 20 27 23 18 2

CnfrmD 34 14 27 7 8 33 33 21 6 30 1 18 4 31 26 9 28 13 19 26 1

DChi2 18 16 18 34 25 25 32 37 34 11 1 12 5 25 28 24 21 30 30 26 1

Ex&Cex 19 16 20 5 4 32 27 30 21 29 2 7 5 29 5 6 7 6 5 13 1

IntImp 30 11 21 29 22 26 17 15 24 19 1 6 5 28 20 21 17 31 21 19 1

Lift 29 14 6 33 19 26 31 17 23 31 2 5 5 15 22 21 14 28 27 26 1

RelRisk 21 6 8 27 18 14 32 12 31 18 2 21 4 5 7 7 17 31 20 17 1

LocSup 36 20 31 35 26 38 36 41 35 34 6 23 8 36 30 26 30 33 32 27 0

Table A.14: Measure rankings based on percentage of f-measure
improvement while using measure-based pruning with local sup-
port in generation phase and the rules’ average of measures in se-
lection phase. Instead of datasets’ names, datasets’ numbers are
shown in the table. Tot shows the total number of high ranks for
each dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Chi2 3 3 11 3 1 12 9 6 10 2 2 9 11 6 3 2 2 1 3 5 11

DChi2 2 2 8 16 5 18 6 29 9 3 3 16 10 8 7 3 8 12 11 3 6

FM 9 2 17 11 6 25 16 2 2 13 2 2 11 19 11 7 4 14 1 5 6

IntImp 21 3 16 14 1 28 12 1 17 12 4 8 12 21 4 5 2 3 5 6 5

Jacc 9 2 18 10 6 24 16 3 4 9 2 1 11 18 10 7 8 17 1 5 5

InfoGain 18 8 10 19 11 3 30 22 11 20 3 25 11 7 25 1 8 2 11 5 4

GK 22 17 1 15 5 26 26 24 5 1 2 22 11 12 21 8 7 8 1 6 4

1WaySup 18 8 7 19 11 2 30 15 17 20 5 25 9 1 26 4 8 4 11 3 3

2WaySup 26 15 31 1 7 8 31 36 3 27 2 10 13 11 19 6 5 18 8 6 3

CnfrmD 28 4 23 2 2 22 27 5 17 6 2 14 17 23 12 5 16 20 6 6 3

Corr 17 9 28 8 9 10 21 6 13 19 2 10 11 3 1 4 8 6 4 5 3

Cos 6 2 17 4 6 21 15 8 1 10 2 4 11 21 11 7 8 11 7 5 3

Ex&Cex 5 2 13 21 5 25 1 9 22 14 3 18 5 19 8 7 7 14 11 6 3
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Table A.14 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Gini 29 8 12 2 8 11 21 7 16 5 2 9 15 17 3 8 13 19 6 5 3

IWD 23 13 26 1 7 20 20 12 7 21 2 15 9 28 20 6 8 15 1 5 3

Kappa 18 16 29 12 4 31 18 11 9 18 2 3 11 29 22 6 4 12 2 5 3

Loe 10 7 17 19 11 13 25 20 15 22 2 18 10 25 18 2 6 9 11 3 3

OddMul 9 2 2 16 5 7 16 20 19 14 9 20 7 11 11 1 7 11 11 5 3

OddR 9 2 17 16 5 9 16 23 24 11 1 23 11 13 11 1 8 10 11 5 3

SS 5 2 14 22 6 25 3 16 22 14 2 23 5 22 9 7 7 13 11 6 3

YulQ 16 8 25 20 11 5 29 28 17 23 1 18 2 14 18 4 8 7 11 3 3

ImpInd 17 7 32 7 5 22 33 4 14 26 2 13 9 31 14 4 2 2 6 5 3

AddVal 15 8 4 19 11 1 30 25 14 20 6 25 9 2 26 4 8 8 11 5 2

CCR 9 2 17 16 5 16 16 31 17 11 2 23 11 16 5 4 8 14 11 4 2

CollStr 14 1 18 16 5 23 14 30 8 14 11 6 19 24 11 8 3 14 6 8 2

ConfC 7 2 17 22 6 25 10 22 22 14 4 12 11 22 2 7 8 14 11 5 2

CnfrmC 9 3 19 6 6 6 14 13 23 14 2 23 10 15 11 7 7 14 11 5 2

CCD 5 2 13 22 6 25 2 9 22 14 5 18 10 22 9 7 7 13 11 6 2

Conv 9 2 17 18 5 21 16 32 20 11 3 18 10 22 11 4 7 9 11 5 2

HLift 8 2 34 17 5 14 16 25 20 14 5 23 2 7 11 4 8 14 11 6 2

KM 12 10 3 27 18 4 29 24 30 23 5 18 3 4 18 13 7 11 11 5 2

Lift 16 7 6 19 10 27 34 26 18 28 3 26 1 10 24 4 8 14 11 5 2

RelRisk 9 2 17 16 5 16 16 31 17 11 2 23 11 16 5 4 8 14 11 6 2

Spec 9 3 17 16 6 24 16 35 7 14 4 17 11 22 11 7 8 14 11 2 2

YulY 16 6 24 20 11 10 29 28 17 23 1 18 8 16 18 4 8 4 11 3 2

Acc 9 2 17 16 6 25 16 35 6 14 2 21 11 8 11 6 8 14 9 6 2

Gan 5 2 13 22 6 25 2 9 22 14 5 18 10 22 9 7 7 13 11 6 2

CCS 1 1 18 16 5 17 13 10 22 14 10 23 8 13 11 7 7 14 11 5 2

2WaySupVar 25 5 27 27 16 22 22 34 26 15 2 18 13 25 18 13 11 8 14 5 1

CF 27 12 33 15 14 33 35 17 27 24 4 24 16 32 23 10 14 24 13 1 1

CCC 9 1 18 21 6 26 5 19 25 14 6 18 4 26 8 7 8 14 11 5 1

JM 20 11 27 26 13 15 24 14 12 23 2 18 13 19 18 9 9 9 11 6 1

Klos 21 11 22 5 8 30 19 33 13 16 1 19 11 23 15 4 8 14 10 5 1

Lap 9 2 17 22 6 25 7 16 16 8 5 23 11 22 11 7 8 14 11 6 1

LC 11 4 15 9 8 29 17 13 8 7 2 7 10 20 13 5 8 5 7 6 1

Lev 4 3 17 22 6 22 8 21 25 14 8 12 11 22 6 7 8 14 11 5 1

PS 30 14 21 5 3 19 32 37 4 4 7 11 17 9 16 8 15 22 6 6 1

Zhang 19 7 5 25 10 4 23 18 23 25 6 5 6 5 17 2 8 7 12 5 1

GlbSup 22 18 9 24 12 34 11 39 31 30 13 28 20 33 12 14 1 16 17 11 1

Conf 13 3 20 23 9 31 4 12 29 14 5 18 14 27 8 7 10 17 13 7 1

MutInfo 24 5 30 26 17 35 28 27 28 17 2 18 11 34 18 12 12 21 16 9 1

HConf 31 16 34 13 15 32 35 38 21 29 12 27 18 30 27 11 17 23 15 10 0

LocSup 32 19 34 28 19 36 36 40 32 30 14 28 21 35 28 15 18 25 18 11 0
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Table A.15: Measure rankings based on percentage of f-measure
improvement while using different measures in selection phase
with local support in generation phase and the highest ranked rule
in selection phase. Instead of datasets’ names, datasets’ numbers
are shown in the table. Tot shows the total number of high ranks
for each dataset. The measures are sorted based on this number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

CCS 3 4 2 10 12 2 13 3 27 20 2 26 1 1 17 12 5 9 8 10 7

Lap 30 9 15 5 1 19 15 15 2 18 2 6 5 19 2 5 9 1 1 13 6

Zhang 1 4 3 7 9 1 10 8 25 20 2 20 7 3 13 11 3 5 6 7 6

CnfrmC 23 1 19 6 3 24 25 5 9 19 4 23 4 21 27 1 10 12 3 1 5

Cos 31 18 25 2 3 35 18 25 30 20 2 14 18 34 20 2 21 19 19 3 5

FM 31 20 25 2 3 37 18 27 29 20 2 16 17 34 16 2 24 22 18 3 5

IntImp 10 13 12 1 2 8 8 32 1 11 4 1 11 8 1 8 17 4 5 17 5

Jacc 31 20 25 2 3 37 18 27 29 20 2 16 17 34 16 2 24 22 19 3 5

Kappa 16 7 17 4 3 22 3 22 10 14 2 12 15 19 8 3 23 21 15 3 5

LC 31 14 25 2 3 36 18 18 28 20 2 10 12 33 21 2 15 15 10 3 5

OddMul 2 4 3 8 11 1 13 10 23 20 1 26 7 2 17 12 8 8 8 10 5

GK 12 5 24 3 3 18 9 27 15 7 2 8 17 15 14 3 14 14 19 3 5

ImpInd 26 6 8 3 3 5 7 31 3 11 4 3 19 6 4 2 20 14 7 18 5

2WaySup 24 10 9 4 3 16 3 33 8 12 2 2 23 16 6 7 24 20 22 19 4

Corr 14 7 18 4 3 13 4 21 5 4 2 4 16 14 5 3 18 17 12 2 4

HLift 18 25 26 15 8 27 21 19 24 2 3 27 3 25 19 26 4 3 9 16 4

Klos 5 10 7 3 3 6 1 28 4 15 4 5 11 6 3 9 17 11 4 15 4

PS 31 5 25 3 3 20 11 36 7 16 2 12 26 18 12 3 25 17 30 24 4

Chi2 13 7 23 4 3 12 6 21 5 4 2 4 16 14 5 3 18 17 12 5 3

CollStr 27 2 21 11 7 25 17 23 21 3 13 13 21 24 11 10 22 29 2 27 3

DChi2 17 11 14 4 7 3 20 13 12 1 4 7 9 7 18 4 13 2 14 5 3

Gini 21 7 23 4 3 12 6 35 5 4 2 4 22 14 5 3 18 17 20 22 3

Acc 25 8 20 4 3 30 23 6 11 13 2 11 10 27 27 3 16 16 13 4 3

2WaySupVar 36 19 22 3 3 23 14 38 18 5 8 12 27 22 9 15 28 25 28 30 2

AddVal 19 17 19 19 13 6 22 2 19 19 2 25 6 5 22 24 6 23 23 11 2

ConfC 6 3 8 9 11 10 12 9 26 20 2 26 5 11 17 12 7 8 8 10 2

CCC 7 3 10 9 11 14 12 8 26 20 1 26 5 12 17 12 7 8 8 10 2

Conv 4 4 1 9 11 4 13 11 26 20 1 26 5 4 17 12 7 8 8 10 2

HConf 35 24 26 16 16 29 18 30 32 20 7 30 2 30 23 18 1 28 16 21 2

IWD 15 12 11 4 3 21 2 24 6 17 4 9 14 17 7 14 19 17 11 6 2

Lev 8 6 6 14 10 11 16 1 17 9 4 22 5 10 15 20 2 10 17 8 2

Loe 4 4 1 9 11 4 13 11 26 20 1 26 5 4 17 12 7 8 8 10 2

1WaySup 20 21 19 20 14 9 24 7 20 19 1 28 7 9 24 25 7 24 25 12 1

CCR 36 28 5 5 3 31 25 20 14 19 10 15 24 28 25 17 11 6 33 29 1

CnfrmD 36 31 25 13 4 38 18 34 31 20 2 31 13 35 23 13 15 14 21 25 1

CCD 9 4 13 9 11 15 12 8 26 20 1 26 5 13 17 12 7 7 8 10 1
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105



Table A.15 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Ex&Cex 9 4 13 9 11 15 12 8 26 20 2 26 5 13 17 12 6 7 8 10 1

InfoGain 22 26 19 22 15 28 25 12 22 19 1 29 8 26 26 27 8 24 29 20 1

JM 32 23 16 4 3 17 5 37 13 10 8 8 25 20 10 19 27 18 32 23 1

Lift 22 26 19 22 15 28 25 12 22 19 1 29 8 26 26 27 8 24 29 20 1

RelRisk 36 28 5 5 3 31 25 20 14 19 10 15 24 28 25 17 11 6 33 29 1

SS 9 4 13 9 11 15 12 8 26 20 2 26 5 13 17 12 7 7 8 10 1

Spec 29 22 19 12 3 32 25 26 16 19 10 21 30 29 27 23 25 26 34 28 1

Conf 9 4 13 9 11 15 12 8 26 20 2 26 5 13 17 12 6 7 8 10 1

Gan 9 4 13 9 11 15 12 8 26 20 1 26 5 13 17 12 8 7 8 10 1

CF 33 29 25 17 5 26 19 17 33 6 12 19 28 23 12 22 25 31 34 26 0

KM 28 26 19 23 19 32 25 4 37 19 5 24 6 29 27 28 12 13 27 9 0

OddR 36 27 4 9 11 7 13 14 23 20 9 26 10 4 17 12 8 8 26 29 0

YulQ 11 16 4 9 11 7 13 14 23 20 11 26 10 4 17 12 7 8 26 29 0

YulY 11 16 4 9 11 7 13 14 23 20 11 26 10 4 17 12 7 8 26 29 0

LocSup 36 30 25 18 6 33 18 16 35 20 10 18 28 31 12 16 25 30 34 29 0

GlbSup 36 31 25 21 18 39 18 39 36 20 10 32 29 35 23 21 25 28 31 30 0

MutInfo 34 15 25 18 17 34 18 29 34 8 6 17 20 32 12 6 26 27 24 14 0

Table A.16: Measure rankings based on percentage of f-measure
improvement while using different measures in selection phase
with local support in generation phase and the rules’ average of
measures in selection phase. Instead of datasets’ names, datasets’
numbers are shown in the table. Tot shows the total number of
high ranks for each dataset. The measures are sorted based on this
number.

Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

ConfC 2 1 1 1 3 2 1 2 4 1 2 5 2 1 4 2 7 1 2 3 16

CCC 4 1 3 2 1 5 3 7 7 3 6 3 5 4 1 2 8 3 2 2 12

Lev 5 2 2 3 4 3 2 6 6 5 1 6 6 2 2 3 8 2 3 4 11

Ex&Cex 3 3 7 1 2 9 6 9 5 6 6 2 5 10 5 1 3 6 1 1 9

CCD 1 4 5 4 1 8 5 11 7 7 6 2 7 7 3 1 9 4 1 2 7

Conf 1 4 5 4 1 8 5 11 7 7 6 2 7 7 3 1 9 4 1 2 7

Gan 1 4 5 4 1 8 5 11 7 7 6 2 7 7 3 1 9 4 1 2 7

CCS 7 6 9 12 24 1 10 1 20 20 1 18 1 3 10 13 13 20 15 11 5

Lap 9 5 6 2 3 10 8 16 1 8 5 1 6 9 6 5 10 5 7 5 4

SS 8 7 4 14 25 7 9 3 21 20 1 18 3 8 10 13 15 21 15 11 3

CnfrmC 16 12 14 38 28 21 31 14 26 17 3 22 11 14 29 22 1 27 13 15 2

Conv 6 6 6 12 25 4 10 4 18 20 1 18 4 3 10 13 15 22 15 11 2
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Table A.16 – continued from previous page
Datasets

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Tot

Loe 6 6 8 12 25 4 10 4 18 20 1 18 4 3 10 13 15 22 15 11 2

OddMul 7 6 10 13 25 6 10 5 18 20 1 18 2 5 10 13 15 22 15 11 2

Zhang 12 3 16 10 8 13 30 10 12 14 6 8 8 12 26 7 3 12 4 6 2

CCR 36 27 14 39 17 24 31 22 17 17 19 22 22 23 29 30 2 15 21 38 1

Klos 21 9 20 15 9 18 18 30 3 17 9 20 20 18 17 10 19 16 17 9 1

LC 18 26 32 6 20 28 16 20 22 2 12 9 17 31 12 17 18 23 25 10 1

RelRisk 36 27 14 39 17 24 31 22 17 17 19 22 22 23 29 30 2 15 21 38 1

ImpInd 11 8 17 9 7 18 12 31 2 12 11 4 26 17 13 8 23 18 20 17 1

1WaySup 13 11 18 35 12 17 31 15 14 17 7 20 6 16 29 12 9 10 9 12 0

2WaySup 22 14 22 19 19 20 11 39 24 15 18 10 28 21 14 24 27 30 30 30 0

2WaySupVar 42 40 39 29 36 38 23 43 37 24 32 31 35 40 22 37 35 40 35 40 0

AddVal 10 10 19 28 11 16 31 8 13 17 6 16 5 15 27 9 9 9 8 7 0

CF 34 39 38 30 33 37 22 41 40 21 27 30 32 39 19 34 34 40 31 35 0

Chi2 31 33 26 18 14 25 13 28 16 17 12 12 23 24 11 23 21 26 22 16 0

CollStr 33 28 12 20 26 26 7 35 30 16 28 28 36 26 9 20 26 35 11 36 0

CnfrmD 36 29 34 7 22 33 16 38 23 19 12 24 16 35 18 11 17 19 26 31 0

Corr 20 13 24 21 13 20 27 27 16 17 16 14 24 20 25 21 24 24 24 21 0

Cos 24 30 28 11 27 31 21 32 29 9 23 17 27 28 15 28 25 31 35 25 0

DChi2 39 38 38 26 30 36 19 21 8 17 10 20 37 38 23 15 20 41 18 13 0

FM 26 31 31 24 32 30 21 37 31 13 24 26 26 29 20 32 31 37 37 29 0

Gini 32 33 26 18 14 25 13 36 16 17 12 12 26 24 11 23 21 25 27 18 0

HConf 35 15 41 23 29 15 16 25 28 19 4 23 38 25 18 16 11 43 10 24 0

HLift 14 16 41 17 10 19 29 19 11 17 8 21 12 22 24 14 12 7 14 23 0

InfoGain 16 18 21 39 15 24 31 9 15 17 6 22 9 23 29 18 5 14 12 22 0

IntImp 38 36 36 33 30 35 24 44 41 25 26 13 39 36 28 29 33 42 29 34 0

IWD 19 12 23 22 18 22 14 26 19 17 13 19 23 21 16 26 22 28 23 20 0

Jacc 27 32 30 25 31 30 19 29 32 11 22 25 26 32 21 31 30 36 36 26 0

JM 40 41 35 32 39 32 25 45 36 23 31 31 30 33 31 38 35 45 40 40 0

Kappa 23 17 25 27 23 22 26 34 27 17 20 15 25 19 23 27 28 33 33 27 0

KM 41 40 40 34 39 39 25 40 38 24 29 31 14 41 31 39 32 44 40 40 0

Lift 16 18 14 39 16 24 31 9 15 17 6 22 10 23 29 19 9 13 12 22 0

OddR 36 25 11 13 25 11 10 12 18 20 8 18 13 6 10 13 14 22 19 38 0

PS 28 24 27 16 21 27 4 42 25 13 21 11 29 27 7 25 28 32 32 32 0

Spec 17 19 14 39 35 24 31 23 33 17 25 22 34 23 29 30 29 34 34 33 0

YulQ 30 23 15 8 6 14 28 17 9 10 17 7 19 13 23 6 4 11 5 14 0

YulY 29 22 13 5 5 12 15 13 10 4 14 6 15 11 8 4 6 8 6 8 0

Acc 17 20 14 39 34 24 31 18 33 17 12 22 18 23 29 30 17 29 16 28 0

LocSup 25 34 29 37 38 29 20 33 34 12 27 27 33 30 22 36 31 38 38 37 0

GlbSup 37 35 33 36 37 34 17 46 35 18 27 29 31 34 18 35 31 39 39 39 0

MutInfo 43 37 37 31 33 36 22 47 39 22 30 30 25 37 19 33 36 40 34 40 0

GK 15 21 16 39 32 23 31 24 33 17 15 20 21 23 30 30 16 17 28 19 0
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Appendix B

Impact of Measures While Using
Local Support

B.1 Rule Reduction While Using Redundancy Removal
Pruning

Datasets RR % FC change% AC change%
Anneal 99.90 -28.57 -10.85
Breast 96.01 -0.28 -0.30
Census 94.05 -15.82 -4.38
Colic 98.79 -4.00 -0.33
Credit 98.83 -1.98 -1.99
Diabetes 84.84 -1.62 -0.17
German 95.42 -33.47 -4.11
Glass 86.65 -5.65 -6.02
Heart 97.47 +0.80 +1.16
Hepatitis 99.74 -34.10 -5.06
Iris 71.58 +0.16 0.00
Labor 99.23 -8.19 -6.88
Led7 53.96 -0.74 -1.11
Pima 84.77 -1.74 -0.54
Tictactoe 77.76 -52.37 -30.73
Vote 99.65 -6.74 -5.77
Vowel 98.94 -9.34 -9.22
Waveform 78.34 -4.04 -3.29
Wine 99.60 -12.00 -10.32
Zoo 99.77 -32.45 -21.31

Table B.1: Percentage of Rule reduction while using redundancy removal prun-
ing on rule sets generated with local support as well as change of f-measure and
accuracy while using redundancy removal pruning with average of rules for predic-
tion using the same rule sets. RR, FC and AC are short forms for rule reduction,
f-measure change and accuracy change respectively.
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B.2 Rule Reduction Without Jeopardizing F-measure
While Using Measure-based Pruning

Datasets RR % FC% AC% MPAC% Measure
Anneal -91.39 0.20 -1.46 -5.98 Corr (0.3)
Breast -99.96 -1.88 -1.65 -69.54 2WaySup (0.4)
Census -99.98 -0.06 -4.29 -85.89 IWD (0.1)
Colic -99.99 0.96 0.72 -25.88 CF (0.7)
Credit -99.99 29.85 20.35 -58.84 CCR (9)
Diabetes -99.78 -0.63 -7.96 -74.31 Kappa (0.3)
German -99.99 -0.52 -6.23 -58.26 2WaySup (0.1)
Glass -94.19 -2.86 -11.26 -30.10 CollStr (7)
Heart -99.99 22.30 15.17 -65.78 CnfrmC (0.7)
Hepatitis -99.99 0.00 0.00 -25.75 CnfrmD (0.6)
Iris -96.73 -3.18 -2.11 -10.74 CF (0.9)
Labor -99.99 2.68 -0.97 -80.00 GK (0.5)
Led7 -79.68 -1.42 -1.15 -0.86 CF (0.6)
Pima -99.72 -1.34 -9.27 -72.36 Kappa (0.3)
Tictactoe -99.99 25.19 -0.76 -79.96 CF (0.01)
Vote -99.99 5.23 5.62 -66.31 Kappa (0.9)
Vowel -82.74 -4.95 -4.30 -5.27 IntImp (0.95)
Waveform -99.99 -1.35 -2.48 -26.08 LC (0.2)
Wine -99.86 8.37 4.18 -40.48 IWD (0.5)
Zoo -99.09 3.81 4.29 -13.69 CnfrmC (0.99)

Table B.2: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the minimum number of rules with measure-based pruning without jeopar-
dizing the f-measure. Local support is used for rule generation and the selection
phase is based on the highest ranked rule. RR, FC, AC and MPAC are short forms
for rule reduction, f-measure change, accuracy change and maximum possible ac-
curacy change respectively.
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Group Objective measures
1 1WaySup, InfoGain, AddVal, 2WaySup, Lift
2 2WaySupVar, JM
3 CF, CnfrmD, CCR, RelRisk, Spec
4 Chi2, IntImp, CollStr
5 ConfC, Lev, MutInfo
6 CnfrmC, Acc
7 CCC, CCD, Gan, Ex&Cex, Conf, Zhang, LocSup, GlbSup, Conv, Loe,

KM, YulQ,YulY, OddMul, OddR, SS, CCS
8 Corr, GK, IWD
9 Cos, Jacc, LC, FM
10 DChi2
11 Gini, PS, Kappa
12 HConf
13 HLift
14 Klos
15 Lap
16 ImpInd

Table B.3: Clusters of measures with similar behaviour in finding the most rule
reduction without jeopardizing the f-measure using measure based pruning.Local
support is used for rule generation and the selection phase is based on the highest
ranked rule.
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Datasets RR % FC% AC% MPAC% Measure
Anneal -74.38 -2.63 -0.74 -0.78 LC (0.05)
Breast -99.96 -3.44 -2.97 -69.54 2WaySup (0.4)
Census -99.98 -4.43 -5.13 -85.89 IWD (0.1)
Colic -99.99 5.88 6.03 -73.56 Gini (0.2)
Credit -99.99 -1.66 -2.01 -58.84 CCR (9)
Diabetes -99.78 -2.18 -7.96 -74.31 Kappa (0.3)
German -99.99 -2.96 -5.34 -46.35 Kappa (0.2)
Glass -89.59 -2.48 -5.04 -37.70 Kappa (0.5)
Heart -99.99 -0.29 0.85 -65.78 CnfrmC (0.7)
Hepatitis -99.99 -4.04 -3.75 -92.95 Gini (0.1)
Iris -94.15 -2.62 -1.45 -6.04 Acc (0.95)
Labor -99.99 -0.49 4.86 -75.00 IWD (0.3)
Led7 -79.68 -1.95 -1.86 -0.86 CF (0.6)
Pima -99.72 -2.58 -8.96 -72.36 Kappa (0.3)
Tictactoe -99.74 0.93 0.86 -67.02 RelRisk (3)
Vote -99.99 -0.24 -0.24 -57.20 Acc (0.95)
Vowel -72.23 -0.62 -0.28 -3.75 Klos (0.05)
Waveform -99.75 -4.59 -5.19 -1.94 GK (0.05)
Wine -99.75 -4.88 -5.25 -6.77 LC (0.7)
Zoo -89.80 -4.44 -1.35 0.00 CF (0.6)

Table B.4: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the minimum number of rules with measure-based pruning without jeopar-
dizing the f-measure. Local support is used for rule generation and the selection
phase is based on the rules’ average of measures. RR, FC, AC and MPAC are
short forms for rule reduction, f-measure change, accuracy change and maximum
possible accuracy change respectively.
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Group Objective measures
1 1WaySup, AddVal, InfoGain, KM, YulQ, YulY, Lift
2 2WaySup, Corr, ImpInd
3 2WaySupVar
4 CF, Spec
5 Chi2, IntImp, DChi2
6 CCR, RelRisk
7 CollStr
8 ConfC, Lev, CCC, Conf, CCD, Gan, Ex&Cex, SS,

LocSup, CCS, GlbSup
9 CnfrmC

10 CnfrmD, Gini, IWD, GK, PS
11 Conv
12 Cos, Jacc, LC
13 FM
14 HConf
15 HLift, Acc
16 JM, Kappa
17 Klos
18 Lap
19 Loe, Zhang
20 OddMul, OddR
21 MutInfo

Table B.5: Clusters of measures with similar behaviour in finding the most rule
reduction without jeopardizing the f-measure using measure based pruning.Local
support is used for rule generation and the selection phase is based on the rules’
average of measures.
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B.3 Rule Reduction Without Changing The Maximum
Possible Accuracy While Using Measure-based
Pruning

Datasets RR % FC% AC% Measure
Anneal -49.61 -0.45 -3.74 GK (0.01)
Breast -92.42 -1.63 -1.36 FM (0.4)

RelRisk (1.5),
Census -58.14 4.96 0.43 CCR (1.5),

Spec (0.5)
Colic -32.46 -23.27 -30.57 Acc (0.5)
Credit -47.32 0.03 -5.37 Spec (0.5)
Diabetes -91.73 -6.25 -1.25 FM (0.3)
German -60.70 -8.25 -33.80 Acc (0.5)
Glass -61.98 14.78 0.71 FM (0.2)
Heart -99.96 10.65 5.14 CF (0.3)
Hepatitis -95.16 43.48 0.65 CollStr (1.5)
Iris -74.77 0.00 0.00 cf (0.2)
Labor -99.89 73.12 31.07 LC (0.3)
Led7 -14.93 0.01 0.00 FM (0.1)
Pima -91.07 -6.55 -2.09 FM (0.3)
Tictactoe -99.61 28.01 6.50 CollStr (1.5)
Vote -99.48 11.92 9.52 FM (0.6)
Vowel -2.62 -0.27 -0.27 JM (0.01)
Waveform -99.27 2.90 2.62 HConf (0.2)
Wine -98.61 15.82 12.24 PS (0.1)
Zoo -98.43 14.41 9.46 Spec (1)

Table B.6: Percentage of rule reduction, f-measure change, accuracy change and
the measure with the minimum threshold used to get the minimum number of rules
while the maximum possible accuracy does not change at all. Local support is
used for rule generation and the selection phase is based on the highest ranked rule.
RR, FC and AC are short forms for rule reduction, f-measure change and accuracy
change respectively.
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Datasets RR % FC% AC% Measure
Anneal -49.61 -5.29 -3.68 GK (0.01)
Breast -92.42 -1.36 -1.18 FM (0.4)

RelRisk (1.5),
Census -58.14 -21.93 -5.73 CCR (1.5),

Spec (0.5)
Colic -32.46 -1.36 -1.64 Acc (0.5)
Credit -47.32 -1.19 -1.00 Spec (0.5)
Diabetes -91.73 -4.20 0.00 FM (0.3)
German -60.70 -23.57 -3.97 Acc (0.5)
Glass -61.98 11.60 1.95 FM (0.2)
Heart -99.96 -18.95 -14.07 CF (0.3)
Hepatitis -95.16 -30.13 -4.26 CollStr (1.5)
Iris -74.77 1.65 1.45 CF (0.2)
Labor -99.89 6.55 6.88 LC (0.3)
Led7 -14.93 0.10 0.04 FM (0.1)
Pima -91.07 -4.48 -0.53 FM (0.3)
Tictactoe -99.61 -57.73 -32.44 CollStr (1.5)
Vote -99.48 -2.67 -2.41 FM (0.6)
Vowel -2.62 -1.91 -2.09 JM (0.01)
Waveform -99.27 -12.78 -11.38 HConf (0.2)
Wine -98.61 2.14 2.03 PS (0.1)
Zoo -98.43 -14.35 -5.31 Spec (1)

Table B.7: Percentage of rule reduction, f-measure change, accuracy change and
the measure with the minimum threshold used to get the minimum number of rules
while the maximum possible accuracy does not change at all. Local support is used
for rule generation and the selection phase is based on the average of rules. RR, FC
and AC are short forms for rule reduction, f-measure change and accuracy change
respectively.
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Group Objective measures
1 1WaySup, Lift, AddVal, InfoGain, YulQ, YulY, OddR, Loe
2 2WaySup, IWD, JM, Cos, FM, Jacc, PS
3 2WaySupVar, CnfrmD
4 CF, MutInfo
5 Chi2, HLift
6 CCR, RelRisk, Acc, DChi2, Conv, OddMul
7 CollStr, IntImp
8 ConfC, CCC, Lev
9 CnfrmC
10 CCD, Gan, SS, Ex&Cex, KM
11 Corr, ImpInd, Kappa
12 Gini, LC, GK
13 HConf
14 Klos, Spec
15 Lap, Conf
16 Zhang
17 LocSup, CCS
18 GlbSup

Table B.8: Clusters of measures with similar behaviour in finding the minimum
number of rules while the maximum possible accuracy does not change using
measure-based pruning.Local support is used for rule generation.
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B.4 F-measure Improvement While Using Measure-
based Pruning

Datasets RR % FC% AC% MPAC% Measure
Anneal -7.66 13.66 6.09 -1.34 KM (0.1)
Breast -13.01 2.05 1.67 -1.43 Lev (0.8)
Census -43.39 8.97 0.64 -16.08 Zhang (0.8)
Colic -16.09 39.28 20.75 -2.70 ConfC (0.9)
Credit -89.60 33.22 23.62 -5.93 Lap (0.9)
Diabetes -36.82 8.69 2.11 -18.91 AddVal (0.2)
German -59.69 31.65 -0.28 -1.90 KM (0.4)
Glass -61.98 14.78 0.71 0.00 FM (0.2)
Heart -99.92 30.58 21.24 -0.67 CollStr (9)
Hepatitis -99.86 62.66 1.68 -0.59 CF (0.05)
Iris -65.96 1.57 1.41 -0.67 Klos (0.2)
Labor -1.11 85.92 35.92 -1.67 Lev (0.9)
Led7 -59.65 0.71 0.75 -0.39 HConf (0.9)
Pima -36.67 8.12 0.87 -18.70 AddVal (0.2)
Tictactoe -57.10 87.14 41.93 0.00 Acc (0.4)
Vote -99.95 12.81 10.31 -0.92 CF (0.4)
Vowel -1.57 10.62 9.93 -0.51 GlbSup (0.05)
Waveform -92.82 10.89 9.48 -2.60 Loe (9)
Wine -4.10 22.56 18.10 0.00 Lev (0.95)
Zoo -94.30 19.44 10.50 0.00 LC (0.7)

Table B.9: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the maximum f-measure while using measure-based pruning. Local support
is used for rule generation and the selection phase is based on the highest ranked
rule. RR, FC, AC and MPAC are short forms for rule reduction, f-measure change,
accuracy change and maximum possible accuracy change respectively.
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Group Objective measures
1 1WaySup, InfoGain, AddVal, OddMul, OddR, Lift
2 2WaySup, Gini, IWD
3 2WaySupVar, MutInfo, YulQ, YulY
4 CF, Cos, Jacc, LC, FM
5 Chi2, IntImp
6 CCR, RelRisk, Spec, GK
7 CollStr
8 ConfC, CCC, CCD, Gan, Ex&Cex, Conf, SS, Conv, Loe
9 CnfrmC

10 CnfrmD, Lap
11 Corr, Kappa, Acc
12 DChi2
13 HConf
14 HLift
15 JM, KM
16 Klos
17 Lev
18 PS
19 Zhang
20 LocSup
21 GlbSup
22 ImpInd
23 CCS

Table B.10: Clusters of measures with similar behaviour in finding the maximum
f-measure using measure-based pruning.Local support is used for rule generation
and the selection phase is based on the highest ranked rule.
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Datasets RR % FC% AC% MPAC% Measure
Anneal -1.01 1.68 1.31 -0.22 CCS (13)
Breast -1.26 0.18 0.15 -0.14 CollStr (1)
Census -77.31 3.24 -1.05 -0.69 GK (0.01)
Colic -100.00 5.99 6.03 -73.28 2WaySup (0.3)
Credit -90.38 0.79 0.65 -0.73 IntImp (0.99)
Diabetes -36.82 5.94 1.59 -18.91 AddVal (0.2)
German -30.07 8.78 -3.70 -0.70 Ex&Cex (0.6)
Glass -45.13 12.31 11.31 -0.56 IntImp (0.5)
Heart -98.89 4.08 4.05 0.00 Cos (0.5)
Hepatitis -99.01 10.27 -2.76 -1.25 GK (0.1)
Iris -65.96 4.62 4.35 -0.67 Klos (0.2)
Labor -99.40 13.16 13.36 0.00 Jacc (0.2)
Led7 -35.66 2.02 1.61 -4.80 Lift (7)
Pima -56.36 5.49 0.53 -34.98 1WaySup (0.5)
Tictactoe -99.59 1.90 1.71 -0.84 Corr (0.2)
Vote -1.03 0.97 0.97 0.00 InfoGain (0.05),

OddMul (1.1)
Vowel -42.86 5.19 5.45 -1.11 GlbSup (0.2)
Waveform -45.83 1.96 1.50 0.00 Chi2 (19)
Wine -97.27 4.54 4.43 0.00 GK (0.2)
Zoo -60.02 1.88 0.88 0.00 CF (0.2)

Table B.11: Percentage of rule reduction, f-measure change, accuracy change, max-
imum possible accuracy change and the measure with the minimum threshold used
to get the maximum f-measure while using measure-based pruning. Local support
is used for rule generation and the selection phase is based on the rules’ average
of measures. RR, FC, AC and MPAC are short forms for rule reduction, f-measure
change, accuracy change and maximum possible accuracy change respectively.
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Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift, KM, Zhang
2 2WaySup, HConf
3 2WaySupVar
4 CF
5 Chi2, IntImp
6 CCR, RelRisk, OddR
7 CollStr
8 ConfC, Lev, CCC, Conf, CCD, Gan, Ex&Cex, SS, Lap
9 CnfrmC
10 CnfrmD, Gini, PS
11 Conv
12 Corr, JM
13 Cos, FM, Jacc
14 DChi2, Spec
15 HLift, CCS
16 IWD, Kappa, ImpInd
17 Klos
18 LC
19 Loe, YulQ, YulY
20 OddMul
21 Acc
22 LocSup
23 GlbSup
24 MutInfo
25 GK

Table B.12: Clusters of measures with similar behaviour in finding the maximum
f-measure using measure-based pruning.Local support is used for rule generation
and the selection phase is based on the rules’ average of measures.
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B.5 F-measure Improvement While Using Different
Measures in Selection Phase

Highest Average
Datasets FC% AC% Measure FC% AC% Measure

CCD,
Anneal 9.02 4.26 Zhang 0.00 0.00 Conf, Gan
Breast 0.48 0.31 CnfrmC 0.70 0.60 ConfC
Census 9.64 1.09 Conv, Loe 4.44 -0.26 ConfC
Colic 32.83 15.08 IntImp 1.79 1.70 Ex&Cex
Credit 31.12 21.79 Lap 0.01 0.00 CCC
Diabetes 7.61 0.69 oddMul, Zhang 6.27 0.87 CCS
German 29.44 -1.25 Klos 8.53 -0.55 ConfC
Glass 8.41 -4.14 Lev 9.62 12.75 CCS
Heart 27.73 18.46 IntImp 2.02 2.07 Lap
Hepatitis 63.74 -0.89 DChi2 6.95 -1.45 ConfC

1WaySup, CCC, Conv,
CCD, Conv, Lev,

Iris 0.81 0.70 InfoGain, 3.78 3.62 Loe,
Lift, Loe, oddMul,
oddMul, Gan SS, CCS

Labor 77.68 30.58 IntImp 1.48 5.26 Lap
Led7 2.08 1.43 CCS 2.31 1.43 CCS
Pima 7.82 0.88 CCS 7.53 1.40 ConfC
Tictactoe 85.39 40.74 IntImp 0.50 0.43 CCC

Conf, Gan
Vote 13.12 10.59 CnfrmC 0.00 0.00 CCD, Ex&Cex,
Vowel 3.42 2.95 HConf 1.88 2.23 CnfrmC
Waveform 9.67 8.18 Lap 0.31 0.27 ConfC

Conf, Gan
Wine 17.36 13.76 Lap 0.00 0.00 CCD, Ex&Cex,
Zoo 19.49 11.53 CnfrmC 0.14 0.00 Ex&Cex

Table B.13: Percentage of f-measure change, accuracy change and the measure
used in selection phase to get the maximum f-measure in selection phase. Local
support is used for rule generation and the selection phase is based on both the
highest ranked rule and rules’ average of measures. FC and AC are short forms for
f-measure change and accuracy change respectively.
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Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift, KM, Lev
2 2WaySup, 2WaySupVar, JM, Gini, PS, Chi2, Corr, Kappa, GK, IWD,

IntImp, Klos,ImpInd
3 CF, LocSup
4 CCR, RelRisk, Spec
5 CollStr, MutInfo
6 ConfC, Ex&Cex, Conf, SS, CCC, CCD, Gan, Conv, Loe,

OddMul, CCS, Zhang
7 CnfrmC, Acc
8 CnfrmD
9 Cos, LC, FM, Jacc

10 DChi2
11 HConf, HLift
12 Lap
13 OddR, YulQ, YulY
14 GlbSup

Table B.14: Clusters of measures with similar behaviour in selection phase in find-
ing the maximum f-measure .Local support is used for rule generation and the se-
lection phase is based on the highest ranked rule.

Group Objective measures
1 1WaySup, AddVal, InfoGain, Lift, Zhang, HLift, CCR, RelRisk
2 2WaySup, PS, IWD
3 2WaySupVar, CF, MutInfo, GlbSup, CollStr
4 Chi2, Gini, IntImp
5 ConfC, Lev
6 CnfrmC, Acc, GK, Spec
7 CnfrmD
8 CCC, CCD, Conf, Gan, Ex&Cex
9 Conv, Loe, OddMul, CCS, SS

10 Corr, Kappa
11 Cos, LC, FM, Jacc, LocSup
12 DChi2
13 HConf
14 JM, KM
15 Klos, Lap, ImpInd
16 OddR
17 YulQ, YulY

Table B.15: Clusters of measures with similar behaviour in selection phase in find-
ing the maximum f-measure .Local support is used for rule generation and the se-
lection phase is based on the rules’ average of measures.
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B.6 Using Interesting Measures in Both Pruning and
Selection Phases

Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal Corr Zhang 0.20 9.02 -3.49
Breast 2waySup CnfrmC -1.88 0.48 -1.88
Census IWD Conv -0.06 9.64 -0.06
Colic CF IntImp 0.96 32.83 -33.85
Credit CCR Lap 29.85 31.12 29.85
Diabetes Kappa OddMul -0.63 7.61 -0.63
German 2waySup Klos -0.52 29.44 -0.52
Glass CollStr Lev -2.86 8.41 -4.27
Heart CnfrmC IntImp 22.30 27.73 22.30
Hepatitis CnfrmD DChi2 0.00 63.74 0.00
Iris CF CCC -3.18 0.81 0.81
Labor GK IntImp 2.68 77.68 2.68
Led7 CF ccs -1.42 2.08 -2.07
Pima Kappa ccs -1.34 7.82 -1.34
Tictactoe CF IntImp 25.19 85.39 25.19
Vote Kappa CnfrmC 5.23 13.11 5.23
Vowel IntImp HConf -4.95 3.42 -3.06
Waveform LC Lap -1.35 9.67 -1.35
Wine IWD Lap 8.37 17.36 8.37
Zoo CnfrmC CnfrmC 3.81 19.49 3.81

Table B.16: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without jeopardizing the f-measure, the
best measure used in selection phase, and the combination of these two measures.
Local support is used for rule generation and the selection phase is based on the
highest ranked rule. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal LC CCD -2.63 0.00 -2.63
Breast 2waySup ConfC -3.44 0.70 -3.44
Census IWD ConfC -4.43 4.44 -4.43
Colic Gini Ex&Cex 5.88 1.79 5.88
Credit CCR CCC -1.66 0.01 -1.66
Diabetes Kappa ccs -2.18 6.27 -2.18
German Kappa ConfC -2.96 8.53 2.38
Glass Kappa ccs -2.48 9.62 -0.22
Heart CnfrmC Lap -0.29 2.02 -0.29
Hepatitis Gini ConfC -4.04 6.95 -4.04
Iris Acc Lev -2.62 3.78 -1.84
Labor IWD Lap -0.49 1.48 -0.49
Led7 CF ccs -1.95 2.31 -0.97
Pima Kappa ConfC -2.58 7.53 -2.58
Tictactoe RelRisk CCC 0.93 0.50 0.93
Vote Acc CCD -0.24 0.00 -0.24
Vowel Klos CnfrmC -0.62 1.88 -7.23
Waveform GK ConfC -4.59 0.31 -4.61
Wine LC CCD -4.88 0.00 -4.88
Zoo CF Ex&Cex -4.44 0.14 -6.52

Table B.17: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without jeopardizing the f-measure, the
best measure used in selection phase, and the combination of these two measures.
Local support is used for rule generation and the selection phase is based on the
average of rules. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal GK Zhang -0.45 9.02 -23.95
Breast FM CnfrmC -1.63 0.48 0.48
Census CCR Conv 4.96 9.64 -12.06
Colic Acc IntImp -23.27 32.83 32.83
Credit Spec Lap 0.03 31.12 28.09
Diabetes FM Zhang -6.25 7.61 6.80
German Acc Klos -8.25 29.44 27.76
Glass FM Lev 14.78 8.41 7.66
Heart CF IntImp 10.65 27.73 -31.51
Hepatitis CollStr DChi2 43.48 63.74 63.36
Iris CF Conv 0.00 0.81 0.00
Labor LC IntImp 73.12 77.68 81.10
Led7 FM ccs 0.01 2.08 1.72
Pima FM ccs -6.55 7.82 8.82
Tictactoe CollStr IntImp 28.01 85.39 24.01
Vote FM CnfrmC 11.92 13.11 13.11
Vowel JM HConf -0.27 3.42 2.75
Waveform HConf Lap 2.90 9.67 2.82
Wine PS Lap 15.82 17.36 17.36
Zoo Spec CnfrmC 14.41 19.49 13.72

Table B.18: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without changing the maximum possible
accuracy, the best measure used in selection phase, and the combination of these
two measures. Local support is used for rule generation and the selection phase is
based on the highest ranked rule. FC is the short form for f-measure change.
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Datasets Pruninng Selecting FC % FC % FC %
measure measure prune select combine

Anneal GK CCD -5.29 0.00 -5.29
Breast FM ConfC -1.36 0.70 0.22
Census CCR ConfC -21.93 4.44 -15.91
Colic Acc Ex&Cex -1.36 1.79 0.28
Credit Spec CCC -1.19 0.01 -0.42
Diabetes FM ccs -4.20 6.27 1.54
German Acc ConfC -23.57 8.53 -56.57
Glass FM ccs 11.60 9.62 10.03
Heart CF Lap -18.95 2.02 -18.64
Hepatitis CollStr ConfC -30.13 6.95 -4.55
Iris CF Lev 1.65 3.78 1.65
Labor LC Lap 6.55 1.48 4.34
Led7 FM ccs 0.10 2.31 1.57
Pima FM ConfC -4.48 7.53 1.00
Tictactoe CollStr CCC -57.73 0.50 -36.66
Vote FM CCD -2.67 0.00 -2.67
Vowel JM CnfrmC -1.91 1.88 0.12
Waveform HConf ConfC -12.78 0.31 -11.02
Wine PS Ex&Cex 2.14 0.00 0.18
Zoo Spec Ex&Cex -14.35 0.14 -16.75

Table B.19: Comparing the changes of f-measure with the best measure used in
measure-based pruning for rule reduction without changing the maximum possible
accuracy, the best measure used in selection phase, and the combination of these
two measures. Local support is used for rule generation and the selection phase is
based on the rules’ average of measures. FC is the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal KM Zhang 13.66 9.02 11.61
Breast Lev CnfrmC 2.05 0.48 -4.96
Census Zhang Loe 8.97 9.64 9.62
Colic ConfC IntImp 39.28 32.83 28.61
Credit Lap Lap 33.22 31.12 30.90
Diabetes AddVal OddMul 8.69 7.61 8.07
German KM Klos 31.65 29.44 17.30
Glass FM Lev 14.78 8.41 7.66
Heart CollStr IntImp 30.58 27.73 25.11
Hepatitis CF DChi2 62.65 63.74 39.37
Iris Klos 1WaySup 1.57 0.81 1.57
Labor Lev IntImp 85.92 77.68 91.54
Led7 HConf ccs 0.71 2.08 -1.52
Pima AddVal ccs 8.12 7.82 9.14
Tictactoe Acc IntImp 87.14 85.39 38.15
Vote CF CnfrmC 12.81 13.11 12.55
Vowel GlbSup HConf 10.62 3.42 3.79
Waveform Loe Lap 10.89 9.67 9.97
Wine Lev Lap 22.56 17.36 22.56
Zoo LC CnfrmC 19.44 19.49 19.49

Table B.20: Comparing the changes of f-measure with the best measure used in
measure-based pruning for f-measure improvement, the best measure used in selec-
tion phase, and the combination of these two measures. Local support is used for
rule generation and the selection phase is based on the highest ranked rules. FC is
the short form for f-measure change.
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Datasets Pruning Selecting FC % FC % FC %
measure measure prune select combine

Anneal ccs Conf 1.68 0.00 1.68
Breast CollStr ConfC 0.18 0.70 1.04
Census GK ConfC 3.24 4.44 -11.96
Colic 2waySup Ex&Cex 5.99 1.79 5.99
Credit IntImp CCC 0.79 0.01 0.33
Diabetes AddVal ccs 5.94 6.27 7.58
German Ex&Cex ConfC 8.78 8.53 4.14
Glass IntImp ccs 12.31 9.62 15.28
Heart Cos Lap 4.08 2.02 4.08
Hepatitis GK ConfC 10.27 6.95 2.19
Iris Klos ccs 4.62 3.78 2.33
Labor Jacc Lap 13.16 1.48 7.75
Led7 Lift ccs 2.02 2.31 3.03
Pima 1WaySup ConfC 5.49 7.53 5.49
Tictactoe Corr CCC 1.90 0.50 1.90
Vote OddMul Conf 0.97 0.00 0.97
Vowel GlbSup CnfrmC 5.19 1.88 2.05
Waveform Chi2 ConfC 1.96 0.31 2.03
Wine GK Gan 4.54 0.00 4.54
Zoo CF Ex&Cex 1.88 0.14 1.88

Table B.21: Comparing the changes of f-measure with the best measure used in
measure-based pruning for f-measure improvement, the best measure used in selec-
tion phase, and the combination of these two measures. Local support is used for
rule generation and the selection phase is based on the rules’ average of measures.
FC is the short form for f-measure change.
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