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ABSTRACT

The thesis deals mainly with a systematic and
methodological research into the application of nonlinear
finite element methods to analyses of progressive failure
due to strain softening. As a case history, the Carsington
Dam failure is back-analysed. As far as the theoretical
background is concerned, the theory of plasticity for small
strain and deformation is adopted. The research has touched
almost all the main topics from theory to practice. The main
purpose is to enhance the applicability of finite element
analyses to complicated engineering problems. Emphases are
placed on practical applications.

The incremental theory for strain softening materials
is re-examined and strengthened. Within the framework of the
existing theories, no violation of the loading criteria is
the sufficient and necessary conditon for the true solution.
For unstable softening, absurd solutions will be obtained by
neglecting dynamic terms in statics. Such solutions violate
the loading criteria. An extended Coulomb damping model is
developed to better our understanding of finite element
solution behavior. Although no incremental solution can be
obtained for unstable softening, brittle models can be used
to obtain acceptable solutions for engineering judgement.
Theoretical eigenvalue analyses are presented. The obtained
analytical expressions provide guides for correct use of
material paramters, reveal the capacity of the adopted

formulation to capture localized deformations and help



explain solution behavior, Limitations of the adopted
theories are also discussed.

The Carsington dam failure is back-analysed. New
techniques are developed to locate the incipient slip
surface in treating the results. The results are
satisfactory and promising. This reveals the effectiveness
of finite element methods in analysing the failure mechanism
of complex engineering structures. However, accurate
prediction of deformation needs further development of field
investigation and laboratory test techniques. The definition
of factor of safety is also discussed when strain softening
is involved.

Studies on mesh design and iteration methods are also
presented to guarantee reliable solutions. Most conclusions
are problem dependent., However, the case history of the
Carsington Dam failure is quite complicated. Therefore,
conclusions from this case may be of general interest and

helpful to similar engineering problems.

vi



ACKNOWLEDGEMENTS

The author would like to express his gratitude to Dr.
N. R. Morgenstern for his continuous and patient guidance in
completing this thesis. His orientation, ideas and
discussions throughout the research are very much
appreciated.

The first three years of graduate study would not have
been possible without the finacial support of the Institute
of Water Conservancy and Hydro-electric Power, Beijing,
China, nor would the completion of the thesis have been
possible without the support of the Department of Civil
Engineering, the University of Alberta. To the above
sponsors the author is very much indebted.

The author would also like to express his thanks to Dr.
D. H. K. Chan for his valuable suggestions and for his kind
help in using and modifying the program SAGE which is the
main tool in completing the numerical work.,

The author is also grateful to professor Vaughan and
Imperial College and to the Severn Trent Water Authority for
providing material concerning the extensive work on the
Carsington Dam failure. Without their generosity, this
research would not have been possible.

Thanks are given to Dr. De Alancar for his permission
to use the revised version of SAGE, in which, incremental
pore pressure loads and cracking models are incorporated.

The author also wishes to thank his sister Li, brother

Ming, his son Niuniu and all his other family members for

vii



their encouragement and support for his study abroad. The
love of the author's father Yusong and his spirit in
pursuing knowledge have always been a source of strength
during the research. Special thanks are given to his wife
Xinsheng for her great understanding and endurance and for
her typing the thesis.

Finally, the author wishes to dedicate this thesis to
his beloved mother Liang Ju Zhu who died on 1st July 1986,
but whose hope and wish have stimulated the author to

overcome many obstacles in completing his graduate study.

viii



Table of Contents

Chapter Page

1.

3.

INTRODUCTION ......l......‘..‘...........C..(...l.'..l1
1.1 The Problem of Progressive Failure visescsssssnsssl
1.2 problems in Using Finite Element Analyses ........5

1.3 Purpose of the Research and Scope of Each
Chapter .....Otll....l.l.O..‘l..l..t..ll..........?

FINITE ELEMENT FORMULATATION AND SOLUTION FOR
STRAIN SOFTENING MATERIALS S 1

2.1 General Formulation and Material Models cereeanseal2
2.1.1 General formulation I I
2.1.2 Material models tevessssasssssasnsessnscssall
2.1.3 Discussion of cracking models teesseenssess2D

2.2 Implications from Eigenvalue ANalySes ceeeeseeess29
2.2.1 General remarks tevesasescscessssssscnsseas2d
2.2.2 Correct use of material parameters P
2.2.3 The weak direction ..eeeeeecesscesseessosss33
2.2.4 Capture of localized deformation .eeeeeeese3?

2.3 Study on Solution Behavior tesssessevssansssessse3d
2.3.1 INtrodUCtion ..eeeeesecceosscssosencesssees3d

2.3.2 Mechanical model for diagonalized
equilibrium equations vesesssssscssnsssscecd?

2.3.3 Solution behavior of the mechanical model .46

2.3.4 Solution behavior of the global
equilibrium equations teeessssessssssrearseedd

2.4 Summary ....l..l...........I.....'........Ql.....so
I TERATI ON TECHNI QUES AND MESH DESI GN e P 0 00 00O 0 00 00 L) 63
3.1 Iteration Techniques for Material Nonlinearity ..64

3.1.1 Selection of iteration MethodS cecescceoessbd

ix



3.1.2 Evaluation of a2ffectiveness and
efficiency ‘O...lll.....'.......000000.000068

3.1.3 Improvement of iteration methods and
result analyses cceceseccccasccscscsscsnsesll

3.1.4 Conclusions on the iteration techniques ...86
3.2 Mesh Study .ecveveccssssesocssssosscssssesscssssadl
3.2.1 Basic requirements for mesh design ........91
3.2.2 Objectives and methods of mesh study ......94

3.2.3 Comparison of the results from different
meshes ...........'.O......l....'...0......96

3.2.4 Conclusions and recommendations for mesh
design 0....I...0.l....‘.ll‘...ll.........117

4, THE CARSINGTON DAM FAILURE .seccecosesescsnsocesvseslll
4.1 Introduction of the Carsington Dam Failure .....119
4.1.1 Geology and construction ...eeeeeesceseeesll9
4,1,2 Properties of materialsS .ieeecececccssness126
4.1.,2.1 Foundation .ceecececncocrsnncncsesssl26

4.1.2.2 Yellow Clay cevesecscncsconcseenssl2b

4.1.2.3 Core material .c.veeeeecssssssssesl3l

4.1.2.,84 Zone I £ill .s.veeveenennsannnnsaael3dd

4.1.2,5 Zone II fill ..eevevvecenseasesesel3db

4.1.3 Pore pressure and deformation observation 138
4.1.4 Description of failure .eeeesveecscscesess142

4.2 Summary of Previous Reserach ...cceceseovscsssanelbl
4.2.1 Main conclusionS .eeeesevesncesscscssaeassl5l
4.2.2 Brief comments on the previous work ......154

4.2.3 Recommendations for further nonlinear
analyses .l.l..l..l'.l....‘.............00160

5. DEFINING THE CARSINGTON DAM FAILURE FOR FINITE
ELEMENT ANALYSES .........l.......l...'.............162



5.1

Summary of Preliminary Numerical Studies ..ee...163
5.1.1 Trial limit equilibrium analyses .........163

5.1.2 Trial finite element analyses cecessssssss 165

5.2 Defining the Boundary Problem for Back-analyses 178

5.2.1 Feasibility of formulating the problem in
plastiCity .l.....I.I.I.llll............l.178

5.2.2 Evaluating the pore pressure distribution 180
5.2.3 Selecting suitable material models eeeeess 186
5.2.4 Determining material parameters I 11

5.2.4.1 Unit weight and strength
parameter ....'.l..'.....’.l.....'188

5.2.4.2 Poisson's ratio tesessessssssseses 189
5.2.4.3 Elastic modulus teeceasasssssssenslBl

5.2.4.4 Strain softening rate .....seeee0.193

ANALYSES OF THE CARSINGTON DAM FAILURE teesssnesseesl98

6.1

Introduction .........'.....C..'.....l‘..ll'l.ll198

6.2 Techniques for Result Treatment T 1]

6.3

6.4

6.2.1 Creating section Ceeessasassessasassessass200
6.2.2 Interpolation techniques -
6.2.3 Description of instantaneous movement eees203
6.2.4 Locating the critical slip surface cessees206
Results and DiSCUSSIONS .eesevesssvecoasscssaessa208
6.3.1 The critical dam height tesessescesssaesss208

6.3.2 Comparison of typical deformation and
stress quantities 0........‘.......l..l'l.212

6.3.3 The critical slip surface and failure
mechanism ...............I.ll‘............219

6.3.4 Discussion of factors of safety R X Y

Parametric Study .....'.‘..l......'..‘.....'..Q.243

xi



7.

CONCLUSIONS l..ll...Il...l.....'..Q....l..'...'.....248
7.1 Conclusions ....l.l.‘....0.'....’..l.l.'........248

7.2 Recommendations .u.'.cco'...‘l‘.l..ol....‘.0...'253

BIBLIOGRAPHY ooooc.oooo.o..o.ooooo.oooaoocoo.oon000005.05256

A.

B.

APPENDIX - THE MOHR-COULOMB MODEL WITH HYPERBOLIC
STRAIN SOFTENING .........l...0......l.l’!..lﬁ......\..261

APPENDIX - ANALYTICAL EIGENVALUE ANALYSES ...ce000..267

B.1 Eigenvalue Study on Elastic Constitutive
Relationship ...0..‘...l...l...?'l..O‘......l...267

B.2 Eigenvalue Study on Perfect Elastoplastic
Relationship ..0....'.II.I'..l.....'.......00000270

B.3 Eigenvalue Study on Elastoplastic Model with
Strain softening .l...........'.....0.......0000273

B.4 The Impact of Strain Softening on the Global
stiffness Matrix ....0'........l.........l......282

APPENDIX - SOLUTION OF THE ELASTICALLY CONNECTED
COULOMB DAMPING MODEL .....l....lI.I.......l..'..l..zas

APPENDIX - APPLICATION OF BRITTLE MODELS TO
UNSTABLE SOFTENING I...I......5....".'.............295

APPENDIX - INCREMENTAL THEORIES CONCERNING MATERIAL
STABILITY ...I.I....I....'....'...I..........I..l...302

E. 1 Basic Assumptions ® 0 8 0 0 0 0 8 5P O SO SO N DS OO NSO OSSN SSE .302
E.2 Quasi-static State ® 0 65 0 0.0 00 5 00 0000000 SO Oe PSS OeTD .304
E.3 The Loading Criteria ® 8 0 068 060000 00D S S RESIEODSOE SN ‘...307

E.4 The Principle of Potential Energy and the
Uniqueness of SOIUtion lI........I.0000000000000311

APPENDIX - THE AITKEN ACCELERATION METHOD AND
SPARSE QUASI-NEWTON LS & LDU UPDATES .eveevesccccese317

F.1 The Newton-Raphson Iteration Method ..cceaceeese317
F.2 The Aitken Acceleration Method ...cceeeeeseeaees319
F.3 Sparse Quasi-Newton LS & LDU Updates .eeseeesess320

F.3.1 General update formulation ..eeeocecececese320

xii



..000.0323
3256

F' 3 .2 The DM method e e s 8 008 0000 * 5 00 00 0 ¢ %
F.3.3 The Tz method l..l...“..Q..‘..D.....Q....
G. APPENDIX - LIMIT EQUILIBRIUM ANALYSES veceeonsasosas3d3l

xiii



Table
2.1
3.1

3.2

3.3

3.4

List of Tables
Page
Loading Criteria ..'....l........'.........l'..ll'l.17
Performance of the selected methods,
elastoplastic materials under associated
flow law ............l...l...‘...’.......'l...l.l...81
Performance of the selected methods,
elastoplastic materials under the
non-aSSOCiated flow law ...l......'l...l..O...l.....ez

Performance of the selected iteration
method for complex problems ...seessssccecsscssssssseaB3

Influence of the magnitude of load
increments ......l.l...l....l.l.......l00000000.0.0'85

Influnce of the convergence tolerance ...eeeeeceeesss87

Examples of the best iteration method in
certain Situations ......l.."....'...'.....ll0.....88

Table 3.6-continued ......'...I.......ll....‘....‘89

General performances of the selected
iteration methOds 00..'....0....'......O.....'.l....gz

Main features of the MeSheS .cccevocsvcvrecssscncascssdB

Comparison of main results of meshes with
different density ......-...........................99

Comparison of main results of different
foundations .......0...........l.....l.l........l‘.113

Matetials at the dam site .l....‘.'.....'.....Q..'.124
Index properties ...............l.......l......'...127

Reduction of factors of safety due to
different factors l.......l........l...............153

Factors of safety at different sections .....sec0..154
Influence of some material parameters ..ceeeeeeesss 163
Comparison of material models ...eisessscessscsscssl67
Comparison of material parameters ..eeeessccscecees 169
Selected material models ..eeecesossssccosccsccscses 187

Unit weight ..........C.......O....'..'............189

xiv



Table

5.6
6.1

6.2

6.3

G.1
G.2
G.3
G.4
G.5
G.6
G.7
G.8

Page
Strength parameters C' & @' teesesssscessrsennssssaelB9

Factor of safety - effective stress
analyses .l...l........"l...l!Il.........l.‘..!l..238

Factor of safety - total stress
analyseS(a) ..l'..l...l..‘l.......l....‘l..l.0000.0241

Factor of safety - total stress
analYSeS(b) .........05.0.!...00...0.0..'.00000000-241

Complete solution of displacements cecsassssssssess289
Complete solution of node forces cesecscsssssnnssss2d0
Solution behaVior ..'l.l..ll...‘.....l...l.l..l.‘..291

The first dynamic response of Coulomb
damping mOdel O..l...........'....I.Il......‘.'..l.294

Comparison between different methods cecessesssssss33l
Influence of unit weight of Zone II ...ccoevcesses.334
Influence of ¢' in the Yellow Clay eeceecesscessess334
Influence of average €, seeeeeevscssccscsssscncseses33D
Operational undrained shear strengths O X1
Comparison of different peak strengths cessssscsses337
Factor of safety at EL. 198.0m PP X 7

Upper and lower bounds of factors of
safety ....l.....l...........0..'......000000.0000.339

Xv



Figure

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.10
3.1

List of Figures
Page
Loading Criterid seesssevsosesssseccossansscssssccsselB
Cracking model and corner problem ....ccceecevescecesll
Orthogonally anisotropic model ....cceeveocsocncesss23
Weak Airection c..cesesencsccccssssesscssccssssseeseldd

Extended elastically connected Coulomb
damping mOdel '...ll.‘.l....'....l...l.....l..l.....44

Solution of stable strain softening .ceeeeessccoeesed?
Critical minus stiffness contribution ..eveveeeessesd9
Comparison of frictional work ....eeecevecescssccased
Dynamic paths of unstable softening ...ceeeeeeesessa52
Brittle models for unstable softening .eeeveecceessseb3
Unstable nonlinear softening ..cieecencecasceseseesadd

Solution behavior at each degree of
freedom .I...'O....................I....'ll.......l.57

Average computing time of Newton-Raphson
iteration ....I.‘..'.'..'.......I......'.‘......I...70

Construction of an embankment ..ceesesccovccenssccssll

Convergence behavior of the modified N-R
method (A) ............l.ll.....l'........l."......74

Convergence behavior of the modified N-R
metl‘lod (B) ..I.'.....C‘....'...O......I.......l’....75

Convergence behavior of the TZ method ...cceeesseeeslb
Convergence behavior of the DM method ...ccceveeeeee??
Convergence behavior of the Aitken method ..........78
Comparison of different meshes ..iiveceececscensseeassd?

Mesh study - comparison of the maximum
displacement .Qll..l........‘......l‘...50000000.00100

Mesh study - comparison of toe movements ..eceeeeeo102

Mesh study - comparison of horizontal
displacements 0.l.........l.'..l..l...l...l.......l103

xvi



Figure Page

3.12

Mesh study - comparison of vertical
displacements l....ﬂ.....l...l...l.ll.........l....104

Mesh study - comparison of vertical
strains ..ll....t.....'....0..I..ll..'..l..l.l.lll.]OS

Mesh study - comparison of vertical
Stresses .Q....l.l'l.l.l.'............l....l....l..107

Mesh study - very dense mesh -
displacement vector increments P 0 -

Mesh study - dense mesh - displacement
Vector increments .O.....I...I......I.......ll'l...109

Mesh study - coarse mesh - displacement
Vector increments .‘..........l...lll..l.‘.........110

Dense mesh with foundation simulated by
an elastic layer Q..l.....‘................ll.l....112

Study of meshes for foundation -
comparison of the maximum displacement vesesseensselld

Study of meshes for foundation -
comparison of horizontal displacements S I b

Study of meshes for foundation -
comparison of vertical displacements veesssecsssseellb

Plan of the Carsington scheme teesssssessssssnssoesel20

Longitudinal profile of the Carsington

Dam ............0......'.‘..............l....l...l.121

Typical cross-section of the Carsington

Dam .l.......'.....l.....l.."........l....'l......122

Peak Shear strength .....l..........'l....l.....'l.129
Post-peak behavior of intact Yellow Clay eeesseeeesl30

Strength along solifluction shears and
Slip surfaces ..l...‘................I.'...'...I...132

Stress-displacement curves for the Yellow

Clay .0............'......0...l.......'l.'......l..133
Post peak behavior of the core teesesesseessssensesl3b

Shear box drained test curves for Zone II

fill .............C....I..O..I.l..l...I.....U'.....137

xvii



Figure Page

4.10 Piezometric readings prior to failure ..iceeevesess139

4,11 Relation between £ill height and
piezometric height ..l..l..........'.l'.‘.l....l..'140

4,12 Horizontal movement of the upstieam face

vs.’ time .....l....I......I‘..l‘........l.’....'...143

4,13 Observed vertical strains and estimated
horizontal displacements ...seeecocsssscccscsssesssldd

4.14 Plan of the dam during failure ..eeevsececcsssessss 146

4,15 Sudden reduction of pore pressures after
failure .........lllll.....I.....'..0.0Q!..........148

4.16 Investigative section at CH 725 ...ccevevvenccsssss149
4.17 Investigative section at CH 825 ...cceecceencsasess150
4,18 Definition of safety factor .c.ceeseeecsscscccasess 158

5.1 Geometry and mesh for CH 725 in the
REPORT .I...l...l....l'..........(‘...........ll.‘l0166

5.2 Results in REPORT - displatement vector
increments .....l...l.'....‘.'.l...l.l.l.l..ll.....172

5.3 Trial F.E.A.- vertical Stress cONtOUr ciecececoseesl174
5.4 Trial F.E.A.~ peg MOVEMENtS .ceseessecocsscscssnecsesl?b

5.5 Trial F.E.A.- vertical strains in the

core ..'......l....I...........I.............l.....177
5.6 Piezometric observation in Zone I £ill ..ceceeeoess182

5.7 Typical piezometric line for the core and

boot ......"...Q.....‘.........l........I.........185

5.8 Strain softening at point B in the Yellow

Clay ...l.‘.......'C...........'.....Q....'I..I....196

5.9 Assumed post-peak strain softening rate
for the Yellow Clay l..............l...ll...l..l...197

6.1 Kinematically possible slip surface ..ececcesseseec204

6.2 Illustration of yield ratio along a slip
Surface .......O...C......0.0....Il.........l......207

6.3 Finite element mesh for CH 725 .cceeeesccsccscsscsasl09

xviii



Figure

6.4
6.5
6.6
6.7
6.8
6.9
6.10

Page
Comparison of results of peg movements cessesssnsed2ll
Determination of the critical dam height ......e...211
Results of total vertical Stresses ....oceccessesss213
Results of vertical displacements e...eeeseesecsess215
Results of horizontal displacementsS ....cceoeevssss216
Comparison of results with observed data cesesenses2lB

Incremental displacement vectors -
effective stress analyses cesssesssescessnsnssncsse220

Determination of the critical slip
surface - effective stress analyses S 7

I1lustration of stable deformation ceesessnssssnsse2l3

Movement paths in successive loading
steps ......0......'..'..‘.'...O..l....'.'........lzzs

vield status(a) along the critical slip -
effective stress analysis tesessssssssesssscasssess226

Yield status(b) along the critical slip
surface - effective stress analysis ..ceoeeeeeeessse227

Comparison of the critical slip surfaces cecssesess229

vield status along the observed slip
surface - effective stress analysis ..ec.eeeeescsese231

Incremental displacement vectors - total
stress analyses ...........l..l.....".'l......‘...232

Determination of the critical slip
surface - total stress analyses P X T

Yield status along the observed slip
surface - total stress analysis cesessssesssssscese23d

Yield status along the critical slip
surface - total stress analysis tesesccessssssensse236

The assumed pore pressure distribution
along the observed slip surface tessesccvsssseasees240

Hyperbolic strain softening model ..coccesencecseeslb2

Illustration of weak directions eesesvesensassesealBl

xix



Figure Page

C.1 One dimensional strain softening or
hardening .l....ll..D.......l'..l.l.l.'.l...ll.....zee

D.1 Possible errors in using brittle models ..iveosee..298

D.2 Programming flow chart for unstable
strain softening .I....'.O.l..'........l......olo..301

E.1 Criteria for permissible solutions .....ceeeeeee...308
E.2 The maxiumum potential energy .eeeeeecececscsacssss3dl2
E.3 Strain softening in a body ceceeecccscccssscecnecss3dld

G.1 Limit equilibrium analyses by Sarmar's
method ....l.........l..........I'.'.......l..l....332

XX



1. INTRODUCTION
The thesis deals mainly with a systematic study of the
application of nonlinear finite element methods to the
analysis of progressive failure due to strain softening. As
a case history, the Carsington Dam failure is back-analyzed.
Practical applications of the results of the research are

emphasized.

1.1 The Problem of Progressive Failure

Progressive failure is concerned with the failure of
strain softening materials, in which localized failure due
to non-uniform strains eventually leads to an unstable
failure mechanism of a structure.

Strain softening behavior can be found in many rock,
soil and concrete materials. Physically it may be caused by

1. dilation, e.g. in the dense sand;

2. unfavorable particle orientation, e€.g. in a weak
layer or by concentrated straining which starts from
defects of materials;

3. bond break-down of rock bridge.

However, softening behavior may not be related to any of the
above inherent physical reasons. For example, when a soil
tested under the undrained condition, the strength after
peak may decrease due to pore pressure effects, i.e. the
decrease of effective stresses due to the increase of the
pore pressures makes the undrained strength reduce to a

lower shear stress level after peak.



The problem of progressive failure is of general
significance, since strain softening behavior can be found
in many engineering problems. Whenever strain softening is
involved, solutions of bearing capacity, excavation, dam
construction and stability of natural slopes, etc. depend on
our understanding of this topic.

The sudden failure of the Carsington Dam, an
earth-rockfill dam in England, in 1984, has attracted wide
attention. The observation during failure and intensive
field investigation and laboratory tests after failure have
indicated that this was a typical progressive failure
problem due to strain softening. Since abundant observed
data are avaiiable, the case history is valuable for a
methodological study of the application of finite element
analyses.

Only a brief literature review is given below. More
detailed discussion of progressive failure was presented by
Chan (1986). Skempton (1964) pointed out the importance of
non-uniform mobilization of shear strength along slip
surfaces and raised the concept of residual factor to
describe the reduction of strength due to strain softening.
Bjerrum (1967) outlined the basic mechanism of progressive
failure due to softening. He listed three conditions:

1. non-homogeneous strain development with localized

straining sufficient to strain the soil beyond the
failure;

2. distinct strain softening behavior characterized by



rapid decrease in strength after peak;
3. shear stresses have reached the peak along a
continuous slip surface.

Time effects are not a necessary condition for
progressive failure. This distinguishes progressive failure
defined above from the delayed failure, in which pore
pressure redistribution or bond degradation with time may
cause failure. No doubt, time effects can create favorable
conditions for progressive failure. However, as observed in
the field and shown by back-analyses, the case history of
sudden failure of the Carsington Dam was promoted mainly by
strain softening. The research concentrates on this aspect
and no time effects are considered.

Bishop (1967) raised the concept of brittleness index
to measure the amount of strain softening and recognized the
importance of localized deformations or shear bands caused
by strain softening during the developement of progressive
failure. Morgenstern and Tchalenko (1967) observed real
shear bands by means of microscopic techniques.

Theoretical studies, limit equilibrium methods and
finite element methods have all been applied to further an
understanding of progressive failure and shear band.

palmer and Rice (1973) used the concept of J-integral
and stress intensity factor to formulate a criterion for
shear band propagation in a one dimensional case.
Theoretical work can help explain the initiation and

propagation of progressive failure, but cannot be used



directly for real complex situations.

By assuming that strength decrease to the residual
immediately after peak, limit equilibrium methods were used
to analyse progressive failure (Law and lumb, 1978).
Obviously, the so-determined limit load or factor of safety
may be too conservative and the slip surface must be assumed
before analyses. The method cannot reflect the true strength
reduction between the peak and residual, since it neglects
non-uniform straining.

Finite element analyses can follow the developement of
a non-homogeneous strain field and have been proved to be
the most effective means for complex engineering problems.
Hyperbolic elastic models (Lo,1972) were used to simulate
bifurcation in the shear band and pseudo-elastic models
(Gates, 1972) were also used. The elastic bifurcation models
may not be appropiate for many real problems, since
structures often behave elastoplastically. In his Ph.D.
thesis, Chan (1986) studied the possibility of simulating
localized deformations by using elastoplastic models and
reported on the effectiveness of finite element analyses in
tackling real engineering problems. His research revealed
promising directions. The Carsington Dam was also analysed
by using elastoplastic models (Babtie and Skempton, 1985).
Only total stress analyses were carried out and the results
merit re-evaluating. By experience, the finite element
analysis based on the theory of plasticity can find wide

applications in practice. It has been chosen as the main



tool in this research.

1.2 Problems in Using Finite Element Analyses

The proper application of finite element analyses to a
complicated engineering problem includes:

1. to define the problem within the scope of

appropriate theories in solid machanics;

2. to choose suitable material models and reliable
material parameters in describing material behavior;

3. to design a mesh with suitable density in order to
guarantee accuracy and limit computation costs;

4. to use sufficiently small load increments, effective
iteration methods and suitable convergence criteria
to simulate nonlinear stress and strain paths both
in view of the required accuracy and in view of the
available computation budget;

5. to check the reliability of the results by
parametric studies since the input information,
especially that related to deformation, is not
reliable enough in most cases;

6. to interpret the results correctly for practical
use.

It is easy to understand that any mistake or
carelessness in the above complicated procedures may lead to
serious difficulties in computation, wrong solution or
misuse of results. Experience needs to be accumulated to

work out quidelines.



When the constitutive relationship including the strain
softening is adopted, two important problems merit
attention. The first one is related to the fundamental
theory. Due to violation of Drucker's material stability
postulates, negative diagonal elements in the global
stiffness matrix may be encountered, which may lead to a
totally absurd solution. For example, if a strain softening
curve of a sample test is simulated with finite element
methods, it is well known that the correct answer for the
post-peak behavior can be obtained only from displacement
controlled boundary conditions. If external loads are
further applied in the softening direction, numerical
solutions can still be obtained but they are totally absurd.
Unlike simple examples, absurd solutions may be very
difficult to find for a complicated problem involving
complex loading and unloading strain-stress paths.
Therefore, a study of the solution behavior is of great
importance. Both theory and practical methods to cope with
such complex situations have not been well studied up to
now.

The second problem is related to practical use. In
designing embankments or dams or studying the stability of a
slope, engineers need a conventi nal factor of safety, which
is obtained from limit equilibrium analyses. With strain
softening involved, the choice of correct strength
parameters needs the strain distribution along the slip

surface, which can be provided by the finite element



analyses. However, experience is limited in determining and
using the so-determined factor of safety.

In short, no gui‘lines are availble for solving such a
complex engineering problem. There is a long way to go
before engineers can comfortably use finite element analyses
in design with confidence. Therefore, a systematic and
methodclogical study from theory to practice is undoubtedly
necessary.

At present, nonlinear finite element analyses are
expensive and time-consuming. Besides, field investigation
and laboratory tests generally cannot provide sufficient and
reliable information for accurate prediction of
deformations. These two reasons also limit the application
of finite element analyses. However, with the advance of
science and technology, the future of finite element methods

is promising.

1.3 Purpose of the Research and Scope of Each Chapter

The main purpose of this thesis is to enhance the
applicability of finite element analyses to progressive
failure due to strain softening in complex engineering
problems.

In order to achieve this goal, attempts have been made
to complete the fundamental theories concerning the
theoretical eigenvalue analyses of elastoplastic
constitutive relationships and to study the solution

behavior involving negative stiffness. For practical use,



experience has been gained with mesh design, selection of
iteration methods and choice of convergence criteria.
Examples have been presented to give a detailed description
of how to define the problem by appropriate finite element
formulations and how to choose suitable material models and
evaluate the reliability of material parameters. New
techniques for treatment of results have been developed to
interpret the failure mechanism and locate the slip surface.
The failure of the Carsington Dam chosen as the case history
for back-analysis is complex enough to make conclusions and
gain experience of general significance.

The procedures for the application of nonlinear finite
element analyses are complicated and there are flexible
options in designing mesh, using formulations, choosing
models and adopting iteration methods. Therefore, it is not
practical in a simple thesis to work out general guidelines.
The author hopes that the conclusions and experiences
reported here will make successors less confused in
following the complicated precedures and more confident in
using the results.

The finite element program used for the analyses was
the program "Stress Analysis in Geotechnical Engineering”
(SAGE) developed by Chan (1986) and revised by De Alencar
(1988). To cope with the task of the research, the program
has been further modified by adding the selected iteration
methods (Chapter 3), anisotropic models and different models

for cracks (Chapter 2). Other auxiliary programs for



treatment of input data and results have also been compiled

to check the input data, renumber the mesh with an optimized
stiffness matrix length and to help interpret the results by
plotting.

The thesis is divided into seven chapters. Chapter 2
presents a general finite element formulation, describes
main conclusions and implications of the theoretical
eigenvalue analysis and discusses the solution behavior
involving negative stiffness. |

Theoretically speaking, the eigenvalue analysis and the
study of solution behavior are indispensable parts for a
complete theory of plasticity and its finite element
formulation. In the research, both analytical eigenvalue
analyses and theoretical study of solution behavior were
carried out within the scope of the incremental theory and
practical approaches were also suggested to guarantee a
reasonable solution for any complex problem with negative
stiffness inside the body.

In editing Chapter 2, effort was made to obtain clarity
and conciseness. As a result, only the main conclusions are
introduced. The derivation and theoretical discussion are
given in appendices, although there are original ideas and
newly-developed expressions. Firstly, this is because the
derivation and expression of eigenvalues and eigenvectors
are long and complicated. Secondly, no negative diagonal
element is found in analysing the case history. Therefore,

the importance of the study of solution behavior is mainly
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on the theoretical side. Generally speaking, a positive
definite stiffness matrix can often be quaranteed in
simulating the response of a real man-made structure from
low loading level before failure, since the existence of the
structure implies inherent material stability. However, this
does not imply that the theoretical study is less important.
At least, one should answer the question whether the
solution is abnormal or not before one uses the the results
in analysing progressive failure. In the future, when a
badly-designed dam is checked, parametric studies are
carried out or post-failure behavior is simulated, it is
possible that indefinite global stiffness matrices may be
encountered.

In Chapter 3, a mesh study and comparison of iteration
methods are presented to ensure sufficiently accurate
results and to limit the computation budget within an
acceptable range.

The case history of the Carsington Dam failure is
introduced in Chapter 4. The previous work on the case
history is described in detail in a report " Carsington Dam
- the Mechanism of Failure ", which is issued by the Severn
Trent Water Authority (Babtie and Skempton, 1986). For
brevity, we call this report as the ".REPORT ", since its
contents will be quoted frequently. Proprosals for further
analyses are raised by summarizing and reviewing the

previous work.
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In Chapter 5, the Carsington Dam failure is defined for
finite element analyses. Bach link which might affect the
reliability of the results is examined and discussed. The
results from trial limit equilibrium and finite element
analyses are also used to define the problem as clearly and
reasonably as possible.

Chapter 6 presents the results and discussions from
both total and effective stress analyses. New techniques are
introduced to help determine the slip surface. The
approaches to determine the factor of safety with strength
reduction due to strain softening are also discussed.

Conclusions and recommendations for further research

are listed in Chapter 7.



2. FINITE ELEMENT FORMULATATION AND SOLUTION FOR STRAIN
SOFTENING MATERIALS

2.1 General Formulation and Material Models

2.1.1 General formulation

The finite element formulation for elastoplastic models
including strain softening is based on the theory of
plasticity. A good summary of this topic can be found in
Chan (1986). However, the basic assumptions and equations

will be reviewed below.

The basic equations in finite element analyses are the
global equilibrium equations with the nodal displacements as

unknown variables. In incremental form (Bathe, 1983), we

have
[K]1{Au} = {AR} , (2.1)

in which
{Au}, is the incremental displacement vector;

{K] is the global stiffness matrix, with
[x1=j [B1"[C**1[Blav , (2.2)
v

where
[B] is the geometry matrix and [C®] is the

elastoplastic matrix. The integration is with respect to

12



13

the whole volume of the body under consideration;

{AR} is the incremental nodal force vector, and

{AR} = j [N]"{y}dv + J[N]T[N]{P}ds , (2.3)
v St
where
[N] = interpolation function matrix,
{y} = body force vector,
{P} = nodal surface traction vector,

s, = surface subjected to external traction.

Although there is no special requirement for any
correct constitutive relationship in using the equations,
the existence of the minimum potential energy and uniqueness
of the solution require material stability as the sufficient
condition. By Drucker's definition (1956), the condition for

stability in the large is

(oij—a‘;j)de‘;j >0, (2.4)
and for stability in the small is

doy; defy 20 (2.5)

where

0 is the current state of stress,

0f; is the stress state on the yield surface,
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do;; is the increment of stress,
and de;; is the increment of plastic strain.

By introducing strain softening constitutive
relationships into the analysis, inequality (2.4) may be
violated and inequality (2.5) will definitely be violated.
However, the above stability conditions are only sufficient
conditions. Therefore, on the one hand we may still be able
to obtain the true solution with strain softening involved,
but, on the other hand, absurd solutions may also be found.

According to the theory of plasticity, the constitutive
relationship can be derived with the following assumptions:

1. The total strain increment is divided into elastic

and plastic strain increments, i.e.
{de} = {ae®} + {d€°} . (2.6)

2. The change in stress is due to change in elastic

strain alone, i.e.-

{do} = [cF1{ae"} , (2.7)
where
[c®] is the elastic constitutive matrix.
By eqn. 2.6 and 2.7, the elastic and plastic stress

increments are defined as

{do®} = [C®1{de} , (2.8)
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{do’} = {do®} -{de} , (2.9)

3. There exists a plastic potential Q such that

faefy = M$ (2.10)
where
A\ is positive for plastic deformations,
4. There exists a yield function F with the consistency
condition:

F(o,

iy ¢};) > 0 is not permissible,

P

F(o;;, €;;) = 0 for yielding state,

Flo;

iyr €34) < 0 for elastic state. (2.11)
5. The incremental stress and strain path is defined by
the loading criteria, which constitutes an essential
part of the theory of plasticity as described below.
All the possible stress and strain paths can be
classified from the present stress and strain state as
elastic (F<0) and yielding (F=0). Then, for the yielding
state, they can be further sub-classified as loading,
neutral loading and unloading in the next incremental step.
Physically, loading indicates that the plastic strain
continues to increase in the yielding condition, neutral
loading indicates that the plastic strain increment is zero
but the yielding condition does not change, and unloading
indicates that the stress state goes back to the elastic
state. Note that the word "loading" is referred to plastic

deformation, not to external loads. We use the expressions

in the paper of Qu and Yin (1981) to define loading
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criteria. If the yield function are described in both stress

and strain spaces (Fig. 2.1), i.e.

£({e}, {e7}) = FLIC®)({e}-{e"}), {"}] , (2.12)

in which, f is the yield function in the strain space.

We choose
1, = >{d f} = < >{da} ' (2.13)
1, = >{de} = < >{da"’} ' (2.14)
1; = >{d } = < >{da"} (2.15)

as the standard. Equations 2.7 to 2.9 show that they are not

independent and

The criteria associated with 1,, 1, and 1, are listed in
Table 2.1. The importance of the loading criteria lies not
only in the correct choice of constitutive relationship but
also in the determination of unstable softening (Section

2.3.4).
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Table 2.1 Loading Criteria

1,
1, 1,
Hardening| Perfect| Softening
Loading >0 = 0 <0 >0 | >0
Neutral =0 =0 =0 =01]| =0
Unloading <90 <0 <0 <0 =0

From Table 2.1, it can be seen that a rigorous
classification can be given independently only by using 1,.
For convenience 1, and 1, can also be used. Both 1, and 1,
possess clear geometrical meaning in stress and strain
spaces as shown in Fig. 2.1.

The reason why we list these criteria as basic
assumptions is that, in establishing these criteria, besides
other basic assumptions, the yield function is assumed to
expand in the strain space whenever plastic strains are
developing. We do not study the material behavior which
violates this assuﬁption.

Based on the above assumptions, we can obtain the

elastoplastic constitutive relationship in matrix form as

[CEP] = [CE] - [CE]{BQ/30}<3F/30>[CE]
<3F/20>[C%1{90Q/30} - <dF/de >{0Q/00}

(2.17)

The first term of the denominator in the above equation

reflects perfectly plastic deformation and the second term
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reflects strain hardening (or softening) deformation. When

the yield function is expressed in the conventional form:
F = F({o}, {}, ), (2.18)

the second term <——g> {—Q} becomes

BF , 30y _ BF , (dey , BE Dk (30
< p> { } = <aep> {ao } aK a { } ] (2.19)

where the first term represents kinematic hardening and the
second term represents isotropic hardening.

If a singularity exists at the intersection of two or
more different functions in the stress space, the direction
of the plastic strain {e®} cannot be determined uniquely.
This is called the corner problem (Christoffersen and
Hutchinson 1979). One conventional approach is to assume
that the plastic strain increment is the average of those
from either side of a corner. In this research, for corners
defined by two different yield criteria (F, and F,) with two
corresponding potential functions (Q, and Q,), we use

another conventional assumption that:
0Q
{de”} = Liz;-} { } IR W VeI (2.20)

By experience, this assumption is convenient to use for

the corner of the tension criterion and frictional yield



criterion (e.g. the Mokr-Coulomb criterion). Its physical
meaning is that the plastic strain incremental vector is the
resultant of those defined by the two different potential
functions, as shown in Fig. 2.2.

Now, we have an additional unknown number A, in the
assumption (egn. 2.20) as compared with equation 2.10.
However, we have an additional equation (F,=0). The

elastoplastic matrix can be obtained as

[CF] = [C] - [CHILEaet) {52} 10017 izh] (2} 1'rcH,
(2.21)

in which, -1 is for the inverse and
[D]= [{aa}{aa}][C][{ }{30}]
0 0
- [{ 5} { L} 1Tt} a2y 1] . (2.22)

It is easy to extend the above expression for the situations

where three yield functions intersect with each other.

2.1.2 Material models

Failure in earth materials is due to shear but cracks
may also form. In this research, the Mohr-Coulomb criterion’
with hyperbolic strain softening rate is used for effectivé
stress analyses. The von-Mises criterion with hyperbolic
strain softening is adopted for total stress analyses.

Tension criteria with respect to principal stresses are also
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used to simulate cracking failure. The pore pressure
distribution in effective analyses is taken from the
observed data. The reason for the model selections and
determination of material paremeters will be given in detail
in Chapter 5 after introducing the Carsington Dam failure.
Most of the specific expressions of the above models can be
found in the theses of Chan (1986) and de Alancar (1988). In
order to analyse the case history, supplementary work has
been undertaken.

In introducing softening behavior into the Mohr-Coulomb
model, similar hyperbolic functions to those adopted by Chan
are used both for the friction angle ¢ and the cohesion C.
The derivation is straightforward as given in Appendix A.

An orthogonally anisotropic model of the Mohr-Coulomb
type as expressed in the local coordinate system r-s-t in
Fig. 2.3 is useful to capture shear bands in materials with
oriented weak directions and to investigate the influence of
the horizontal deformation modulus iin parametric studies.
I1ts elastic behavior depends on five parameters E,, E,, »,,
v, and G, as marked in Fig. 2.3. Before peak, we have

T E T
<at Og Oy Tgr Tyr 7rs> - [C ]ani<er €5 €¢ Ysr Yir Yrs> ’

and [CF],,; takes the form:



s Peak

residual

goftening

2 2 1
ra( T"+r") /2

Figure 2.3: Orthogonally anisotropic model



'n(1-nvi) nv,(1+»,) n(y,+nvz) 0 0 0 ]
1-p3 nv,(1+r,) 0 0 0
E./B n(t-nr3) O 0 0
mB 0 0
05/2(1+V1) 0
mB |
in which
B = (1+v,)(1-»,-2n02) ,
n =E,/E, ,
m = GZ/EZ’
(2.23)
The yield and potential functions are
F = (r“2+r"2)vz + tan¢o, - C , (2.24)
0 = (r,%+r,2)"? + tanyo, - C , (2.25)
with
oF Tst Trs
- = <0, tang, O, 2 2y1/2 7 0, 2 2\ 1/2 >
ao ( 8r +Tst ) (TI.’S + st ) ’
(2.26)
2 . <o, tany, 0, —2 0, —i= >
= 2 2 2 ’ 2 2 .
90 ' ’ ' (Tsr + st )V ' (Tr52+ st )1/



For strain softening, it can be derived that

BF _ _3cCp ___secé’ad,
9e®  (ag+tbee )’ (a,+b,e")?

’ (2.28)

where the notations can be found in eqn. A.10 and A.14,
Appendix A,

Tort st 2
+7

-___Q 2 2y1/2
0 /5( . + 3tan¢ ) . (2.29)

sr st
With the above expressions, the elastoplastic matrix can be
calculated from the general equation 2.17. Note that
transformation from the local to global coordinate system is
needed for the elastoplastic matrix of anisotropic models.
Failure across the layer may occur and is treated by
using the isotropic yield criteria. Along the weak layer,
the strength is reduced due to pre-shears while no reduction
of strength is considered across the weak plane. In
calculations, the failure along the weak layer is checked
first. If no failure occurs, isotropic yield is then checked

across the layer.

2.1.3 Discussion of cracking models

The slow convergence speed is well known when the
stress tranfer method (Zienkiwicz, 1968) is used to
eliminate tensile stresses for no tension materials. In the
thesis of De Alencar (1988), improved cracking models have

been adopted. The cracking models were originally



established for concrete materials in plane analyses (Chen
and Suzuki, 1980). In fact, we can obtain the constitutive
relation of the cracking model easily by using the general
equations 2.17 and 2.21, For one crack ( F=Q=0, ), the

constitutive relation after cracking is

d01 0 0 d€1
MR
0 1

and for two cracks ( F,=Q;=0, and F,=Q,=0, ),
d01 0 0 d€1
= BE/(1-u?)
do. 0 0 de. (2.31)

By using transformation, it is easy to obtain the
formulations in which <do, do, dr,,> and <de, de, dy,,> are
used. Note that the above expressions are the same as those
derived in De Alencar's or Chen's works.

Let us call the model derived from the general
formulation as the perfect elastoplastic tension model. For
this model, loading criteria still hold during unloading.
Therefore, when the stress changes from tension to
compression, restoration of the elastic modulus is assumed
to be immediate, but the opening still exists because the
plastic strain due to tension is not recoverable under the
basic assumptions. The strain-stress path is shown in Fig.
2.2. The results confict with common sense, since the

stiffness cannot resume its original value immediately if



openings exist. The developers of the cracking model try to
follow another strain-stress path (Fig. 2.2), and so use the
criterion in the strain space to seek the point where a
crack just closes. Before it closes, the elastoplastic
relation still holds, and, after it closes, the original
stiffness (or with a certain reduction) will be resumed.
Theoretically speaking, this is more reasonable.

In practical use, it is often not easy to find the
closing point. Due to the adoption of criteria defined in
both stress and strain spaces, very complex iteration
procedures are required. De Alencar (1988) gave a complete
formulation for computer programming and discussed the
iteration problems. In his opinion, the only way to solve
the iteration problem is to use as small as possible an
incremental load. However, small load increments may not
work when the structure is near failure in a complex
practical problem. If the materials are brittle, no matter
how small the load increment is, excess stresses of finite
magnitude will be released and the solution may oscillate
between tension and compression. To seek the closing point
requires modification of stiffness at every iteration. Any
approximate solution will bring appreciable errors due to
the large difference between the stiffness before and after
closing. Solution by trial and error is often too expensive
to be practical. But, such an unfavorable situation only
appears when the structure is near failure. At lower loading

stages, the cracking model is reasonable and efficient. It



is suggested that the perfect elastoplastic tension model be
used near failure for the whole incremental loading step,
since it is reasonable to assume no healing of cracks at
this stage. Obviously, it will be very efficient for
iterations.

1f one crack develops in an element, the material is,
in fact, in a uniaxial loading condition in the direction
parallel to the crack. Therefore, the shear strength is only
provided by the cohesion. Unlike concrete, soils generally
possess very small amounts of cohesion. Frictional yield
criteria must be introduced, otherwise, unreasonable results
are inevitable. If the Mohr-Coulomb criterion is adopted,
the elastoplastic matrix can be derived from the general
expressions (egn. 2.21 and 2.22)., For example without

softening,

[c*] = [0] . (2.32)

This implies that no more load can be supported by the soil,
and reflects the true situation in a uniaxial loading
condition.

Proper technigues should be used to force the stress
state to satisfy the consistency condition of F=0, if the
calculated stress level is outside both yield surfaces as
shown in Fig. 2.2, Strictly speaking, both yield functions
should be tried in determining the correct yielding point (B

or E) intersected by the stress increment with one of the



two yield functions. Otherwise, the wrong point (B' or E')
will be obtained. The correct stress path for vector OA is
OBD, for OC is OE (Fig. 2.2). After the correct point is
found, integration techniques for the correct stress path
can be found in the literature (e.g. Chan 1986). There is no
need to repeat them.

Another simplified method to treat the corner problem
is to force the stress state A (Fig. 2.2) to decrease to
point G ( the intersection of the tension failure surface
with the residual Mohr-Coulomb yield surface ), then release
excess stresses and assume the elastoplastic matrix to be
near zero. This method is not only efficient but also
reasonable for soils. Mathematically, the error will not be
large with a small value of cohesion, and the results will

be on the safe side.

2.2 Implications from Eigenvalue Analyses

2.2.1 General remarks

The importance of the eigenvalue analysis on the
constitutive relationship of materials has been raised with
the development of the localized deformation theories,
including the study of bifurcation and discontinuity
relations in solid mechanics. In this research, the
eigenvalue study will be carried out only on elastoplastic
constitutive relationships. According to the localized

deformation theories, the development of a shear band may be



considered as an instability in the constitutive
relationship of a material. A general review of the relevent
basic theories was given by Chan(1986).

The instability of materials is defined by the
non-positive definite constitutive relationship tensor. In

matrix form, it is equivalent to the condition

<Ae>[C){ae} < 0 , (2.33)

for at least one non-zero strain tensor in the vector form

{Ae}. In the incremental theory, the strain and stress

follow a linear path in each incremental loadirng step, i.e.
{Ac}= [C®]{Ae}.

Hence, the above condition is equivalent to the condition in

terms of the perturbation energy in a unit volume, which is

defined as

—9;%'—‘ = <Ao>{Ae} = <Ae>[C**1{Ae} . (2.34)
The perturbation energy is a measure of stability of the
materials under certain external disturbance conditions
corresponding to the constitutive relationship [C*"].

The positive definite nature of the perturbation energy
is well known for elastic and strain hardening materials.
For perfect plasticity and strain softening, the specific

perturbation energy will be zero or negative for at least

one non-zero {Ae}, since [C®] has zero (perfect



elastoplastic) or negative eigenvalues (straln sortening,.
The corresponding eigenvector defines a weak direction. For
the strain along the weak direction, no external work will
be needed (for zero eigenvalue) or even excess elastic
energy will be released (for negative eigenvalue) under a
disturbance. The latter case implies the possibility of
progressive failure. In a quasi-static process, the load
increment is arbitrarily small and applied extremely slowly.
I1f the released energy due to failure cannot be consumed by
the internal friction in an element itself, this element
will be unstable and more elastic energy will be released
due to softening, Further, if the excess energy cannot be
dissipated or absorbed by surrounding materials, a series of
unstable softening movements will be triggered and the
movement will be spontaneously accelerated. When this
process has developed in the macro dimension, progressive
failure can be observed and may lead to the complete
collapse of a structure. This may happen even if a
disturbance is infinitesimal and acts only for an
arbitrarily short time length. Therefore, the eigenvalue
analysis is of great importance both to theoretical study
and to practice.

Numerical tests have been carried out on this aspect
(Chan, 1986). In this research, general analytical
eigenvalue analyses will be presented with respect to
elastoplastic constitutive relationships in terms of elastic

parameters and gradients of yield and potential functions in



the principal stress space. Derivations of analytical
expressions of eigenvalues and eigenvectors are long and
complicated as given in Appendix B. In this section, only

the contributions to this research will be described.

2.2.2 Correct use of material parameters

Absurd solutions were obtained in parametric studies
when anisotropic models were used in plane strain conditions
to investigate the influence of the horizontal deformation
modulus. Later, it was found that the elastic matrix was not
positive definite due to an inappropriate use of the
material parameters E,, E,, », and v,. As shown by inequality
B.10 in Appendix B, the condition for three positive

eigenvalues is:
1-v, - 2(—E-1—)v§ >0
E2

This condition is both sufficient and necessary for the
positive definite nature of this anisotropic elastic
constitutive relationship. If the above inequality takes the
equal sign, the material becomes incompressible. In
practice, the condition can help us to check the assumed
Poisson's ratios in carrying out a parametric study or to
check the correctness of the test data, especially for a
higher modulus ratio E,/E,. For example, if E,/E,=4 and
»,=0.30, the maximum value of », for anisotropic deformation

is about 0.295. Both of », and », are much less than 0.5.



Another exgmple is the perfect elastoplastic
constitutive relationship with a non-associated flow law. In
this case, one eigenvalue should be zero and the other two
should be positive. Equation B.19 shows that this requires
the two gradients of the yield and potential functions make
an acute angle in stress space. In this research, our
assumption conforms with the requirement. In short, the
analytical expressions can provide the criteria to check
whether a model is correctly defined by the chosen

parameters.

2.2.3 The weak direction

General analytical expressions for eigenvalues and
eigenvectors defined in the principal stress space are
presented in detail in Appendix B. The main conclusions are
described below.

In the three dimensional stress space, among the three
eigenvalues for the elastoplastic matrix, one is zero while
the other two are different and positive. The three
eigenvectors are orthogonal under the associated flow law as
shown in Fig. 2.4. When the incremental strain is decomposed
in these three directions, the component along the
eigenvector for zero eigenvalue is just in the normal
direction of the yield sﬁrface. According to the principle
of normality, this component is the portion for plastic
strain. The other two components represent elastic strains.

With the eigenvalue being zero, the component of stress
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increment in the the normal direction will be zero, and the
total stress increment will be along a certain direction on
the yield surface to keep the consistency condition of F=0.
Under the non-associated flow law, the weak direction may no
longer be perpendicular to the other two (Fig. 2.4), since
the elastoplastic matrix is generally not symmetric.
However, the three eigenvectors are linearly independent.
Taking them as base vectors, the physical explanation for
the three components of the strain and stress increments are
the same as before, only with the plastic strain increment
along the gradient of the potential function.

Only two dimensional analytical expressions are derived
for strain softening materials. In Appendix B, a method to
illustrate the weak direction in the conventional p-q space
is also given. Here, p=%(o1+03) and q=%(a,-o3). Both
theoretical examination and numerical tests have been
carried out. For practical use, it seems more helpful to
describe the general corslusions:

1. When the determinant of [c®*®] in the equation 2.33
is negative in the two dimensional stress space, one
eigenvalue is negative and the other one is positive
(egqn. B.30, Appendix B). The weak direction is
generally not normal to either the yield surface or
the potential surface.

2. If v tends to 0.5, by taking the limit in egn.
B.35d, we can see that the weak direction will tend

to make an angle of 45° with the principal stress.
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Therefore, if the soil is incompressible the weak
direction is independent of softening rates.

No softening term will be involved in the analytical
expressions if »=0 (egn. B.35a to B.35f). Therefore,
the smaller the value of v is, the smaller is the
influence of softening on the deviation of the weak
direction from that of the perfectly plastic case.
It is easy to understand when the softening rate
tends to zero, the weak direction tends to that of
the corresponding perfect elastoplastic model. Note
that this will also apply to the situation when
plastic strains are highly developed to bring the
strength down near to the residual with a very low
softening rate.

With a moderate softening rate, numerical tests show
that the deviation of the weak plane from that of
the corresponding perfect elastoplastic model is not
large. To measure the softening rate, we use the
softening parameter hP, which may be expressed as
the ratio of the softening term to the perfect term
in egn. 2.17. For example, with a moderate softening
rate h'<-0.5, » between 0.3 and 0.45, the friction
angle being 30°, the deviation of the weak direction
is less than 4.15° away from conventional failure
angle (45° - %gi).

I1f the softening rate tends to become infinite, the

material behavior is independent of the surrounding
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support and the strength will immediately decrease
to its residual value, and so the weak direction is
defined by the corresponding perfect elastoplastic
model with residual strengths. This also applies to
the situation where the large localized deformation
has indicated a local collapse due to unstable
softening (Section 2.3.3).

The above conclusions are illustrated for the

associated flow law in Fig. 2.4.

2.2.4 Capture of localized deformation

The theoretical eigenvalue analyses has shown that the
weak direction is clearly defined by the eigenvector
corresponding to the zero or minus eigenvalue. It is no
doubt that there exist possibilities for elastoplastic
models to capture localized deformation. The weak plane in
failure due to cracks is too obvious for us to discuss. We
only discuss the weak plane due to shear.

The development of strain softening depends on the
surrounding support. If a weak layer exists in the
structure, the initial formation of a shear band
characterized by a high shear strain gradient can be easily
captured.

In isotropic regions, the formation of shear bands may
often develop in a smeared pattern in the beginning, except
that highly concentrated strains develop under certain

loading conditions or special boundary conditions, e.g. near
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a localized weak zone. This is reasonable since the
isotropic assumption implies that the defects of the
material are distributed at random, which restricts the
localized deformation. In reality, localized deformations
will finally develop along the most critical potential slip
surface during failure. However, under the assumption of
deformation continuity, the elastoplastic model is not
capable of simulating further large deformation with macro
separation and dislocation of materials.

Incremental strains are obtained by differentiating
incremental displacements. Therefore, the impact of weak
directions of strain increments should be involved in
directions of incremental displacement vectors. In analysing
the failure mechanism, the potential slip surface may be
approximately integrated by taking directions of incremental
displacement veciors as the tangent. This is because these
vectors at failure present a picture of movements inside a
body. Practical techniques and examples will be given in
Chapter 6. Here, we want to point out that the so determined
critical slip surface is generally approximate as compared
with the observed one in real life. Such fully developed
shear bands along the observed slip surface may not be
simulated under our assumptions as mentioned before. Further
deformations from an incipient failure involve changes of
principal stress and srain directions, hence changes of weak

directions and the location of the critical slip surface.
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In short, although the possibility of capturing
localized deformation is revealed by the eigenvalue
analyses, the assumptions of continuity and small strain and
deformation limit the present formulation to capture the
fully developed shear band. At most, we can only locate the
slip surface in the existing weak layers and the incipient
slip surface in isotropic materials. From the engineering
point of view, the prediction of the incipient slip surface
may be sufficient for the stability analysis of a man-made

structure.

2.3 Study on Solution Behavior

2.3.1 Introduction

The instability caused by unstable softening or
cracking does not definitely imply the failure of a
structure, especially a natural structure. From the
engineering point of view, a cracked reinforced concrete
slab may be safe or acceptable when it used in a grain
container but may be unsafe or unacceptable in a liquid
container. Hence, safety or acceptability is not defined by
pure science, but by engineering judgement. In order to
clarify the concepts, we use local collapse to indicate
cracking or unstable softening and ve use the adjectives
such as abnormal and impermissible. For stable softening, we
use their antonyms. All the above terms are used in the

incremental sense in statics. For engineering judgement, we
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use reasonable, acceptable and safe or their antonyms.

Abnormal solutions may be obtained in finite element
analyses due to unstable strain softening. However,
engineering practice needs reasonable solutions at least due
to the following reasons,

1. The failure mechanism cannot be analysed with

abnormal solutions, e.g. in locating a slip surface.

2. If the degree of safety of a structure is
acceptable, reasonable solutions are needed for
further analyses, even if the solution becomes
abnormal.

3. Finite element analyses will be used more and more
widely in the future. In checking a new design or
doing parametric studies, abnormal solutions may
appear frequently.

Therefore, we have two tasks. One is to judge whether the
solution is abnormal or not, while the other is to continue
an analysis until unacceptable failure appears when abnormal
solutions are found. The first task is of great importance,
because the results cannot be used confidently without
detecting abnormal solutions due to unstable softening.

For practical use, first we study the criteria to
detect abnormal solutions, then, we study how to treat them.
The solutions should be known at first, since there is no
way to judge absurd solutions due to unstable softening

before solving a complex problem.
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The research starts from the study of an equivalent
form of the global equilibrium equations. In the equivalent
form, the global stiffness matrix is transformed into a
diagonal matrix by taking the singular response (if it
exists) as the limit of a non-singular response of the
system, and so the response of each degree of freedom is
uniquely defined by a generalized force.

The response of each degree of freedom can be simulated
by an extended elastically connected Coulomb damping model.
Both the static and dynamic characteristics of softening
behavior as well as its relation with brittle models will be
investigated in detail. And so, the criteria for both normal
and abnormal solutions are presented.

Since the solution behavior for all degrees of freedom
under the generalized force is mathematically the same,
conclusions for the global system can be drawn.

The application of brittle models are described in
order to obtain meaningful results for unstable softening.
No unstable softening is detected before failure in our case
history. The suggested method is described in Appendix D,
since the applicability and validity of the method need to
be proved by case histories.

The loading criteria, existence of the true solution
and its uniqueness for strain softening in continuum
mechanics are re-examined in Appendix E. The study reveals
that violation of the loading criteria at any point inside a

body will cause an absurd solution. In practice, we may
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suppose that there exists a tcue solution, then, we can use
the principle of virtual work to formulate the governing
equations. After solving by introducing the boundary
conditions, we check the solution by the loading criteria.
If the criteria are satisfied, the solution is correct. If

not, it should be discarded.

2.3.2 Mechanical model for diagonalized equilibrium
equations
According to the theory of linear algebra, if the
global stiffness matvix is non-singular, by using elementary
matrix transformations, the global equilibrium equations can

be transformed into the form:
[Kii]{AU} = {ATg} (i =1, n) ) (2.35)

in which [K;;] is a diagonal matrix with all its diagonal
elements retaining their original value. {AT%} is a
generalized force vector under the same transformation.

In nonlinear finite element analyses, the matrix may
become singular. In order to investigate solution behavior,
we use the concept of the limit. The method is to assign an
arbitrary small number to the diagonal element during the
above linear transformation whenever it becomes zero. We
name this arbitrary small number as '0 . The limit will be
studied both with K,;20" and K,;»0 . Now, for any global

stiffness matrix we can complete the above linear
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transformation. The range of K;; is

-~ < K;; <0 and 0" < Ky < +=. (2.36)

By introducing the limit analysis, the above range will
cover all the possible values we may encounter in any
stiffness matrix.

Now the equation at each degree of freedom becomes

K, .Au;

11 1

= AT} . (2.37)

For a known solution,

AT = AT, - ) K, Au, , (2.38)

j

" DNAw

in which K,, is the stiffness coefficient at the related
degrees of freedom as shown in Fig. 2.5.

It should be mentioned that the solution behavior along
any direction from any node can be described in the same
mathematical form of egn. 2.37 and 2.38 by using coordinate
transformation. Therefore, no generality will be lost in the
further study. The meaning of the above equation is
different from the equation derived directly from the
unsolved global equilibrium equation. Here all the Au, are
known. That is to say that we are studying the solution
behavior of each degree of freedom with prescribed

displacement boundary conditions.
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The behavior with any degree of freedom may be
considered as the joint response of negative and positive
stiffness contributions (see detail in section B.4, Appendix
B). For practical use, there is no need to study all the
specific conditions which cause negative contributions to
K,; or even negative K;;. We only need to know that there
exists such a possibility and to know how to cope with it.
Without negative contribution, the solution behavior is well
known. We concentrate our study on the negative
contribution.

As shown in Fig. 2.5, an extended elastically connected
Coulomb damping model is used for this study. The difference
between this model and that original one (Harris, 1976) lies
in that the friction provided in the damping element will
decrease as the relative movement increases between the
piston and shell. Hence, negative stiffness will be
contributed after failure. The elastic element is used to
model the postive contribution. For the convenience,
subscripts ;; or ; and superscript ¥ in studying each degree
of freedom are omitted, and subscripts , or , are used to
indicate the damping and elastic elements.,

Since the global stiffness matrix can be assumed as
constant and it is independent of the past strain-stress
history except the present strain-stress state and loading
directions, the above model is a general model in the
incremental sense, no matter how complex the material models

or loading history might be. In checking an obtained
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solution, all the variables in the discussion below can be
known (see Appendix C). For positive stiffness contribution,
K,>0, with unloading elastic stiffess k,, and if K,=0, no
positive contribution exists (Fig. 2.6); for negative
contribution, K,<0 with unloading elastic stiffness k,.
Notice that k,, k,, K, and K, are constant in an incremental
step.

Now, the basic equation is
AT = KAu = (K,+K,)Au . ' (2,39)

2.3.3 Solution behavior of the mechanical model

A full study of the mechanical model has been carried
out on both the static solution behavior of stable softening
and the dynamic solution behavior of unstable softening.
Since the basic equation 2.39 is very simple, it may be
adequate to elucidate the conclusions by reference to
figures. The corresponding expressions for the solution can
be found in Appendix C.

If K>0, i,e. the positive contribution K, prevails over
the negative contribution K,, strength hardening behavior
dominates. The external loads can be taken along the
direction to promote further softening as shown in solution
A in Fig. 2.6. If K<0, under stable displacement boundary
conditions, AT will be in the unloading direction. The total
external loads will be released, but Au will still be

advanced in the softening direction as shown for solution D
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in Fig. 2.6. Now, strain softening dominates. There exists a
critical negative stiffness K, which makes K,+K,=0. At this
critical negative stiffness (Fig. 2.7), the system behaves
like a perfectly plastic model and the incremental
displacement is infinite.

If K<0 but the external load is still applied along the
further softening direction, the solution will be abnormal.
The load in this direction may be caused by the release of
excessive stresses after failure from the neighboring
Gaussian integvition poirts or by application of further
loads. The reason why we call this snlution abnormal is that
the plastic work becomes negative due t¢ the wrong direction
of the incremental displacement Au as shown in Fig. 2.8.

It is interesting to note that all the requirements for
the true solution are satisfied by an abnormal solution
except the loading criteria (see details in Appendix C).
This is why the true solution can be obtained if the loading
criteria are obeyed. The theoretical background is given in
Appendix E.

In Appendix C, the loading criteria for a degree of
freedom are explained in terms of the generalized forces.
Because the generalized force are generally not recorded and
the stiffness contribution is assembled from each Gaussian
point, it is convenient to check the loading criteria in
Table 2.1 at all Gaussian integration points for a stable

solution.
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In fact, abnormal solutions indicate unstable softening. A
complete solution is a task of dynamics. As shown in
Appendix C, by neglecting the inertial term in dynamic
equations, abnormal solutions will be obtained in statics.
We also call unstable softening local collipce in this
research. Further understanding of this unstable process
needs study by means of this simple system in dynamics. The
solution are also presented in Appendix C.

The solution for linear unstable softening is
jllustrated by the cdynamic strain-stress paths in Fig. 2.9.
Note that we are only taking the response under the action
of external forces in the further softening direction.
Unlike abnormal solutions, the first response of Au is in
the same direction of AT. This conforms with the common
sense. Certainly, after the first response, dispiacement
cannot increase unlimitedly. In our simple linear model, the
dynamic equation will change form until and only until the
strength is lowered down to the residual with K,=0 and
K=K,>0. Then, the motion is governed by the stable dynamic
equation until the final equilibrium position is reached due
to damping (Fig. 2.9)

Since static force eguilibrium should be maintained
when everything comes to rest, this position can be found by
using the brittle model to replace the softening model (Fig.
2.10), if we assume the constitutive relationship is

unchanged.
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From Fig. 2.10 we can see that,

1. the incremental displacement is finite no matter how
small the increment force is.

2. as to the final equilibrium position, there is no
difference between all the softening rates which
make K,+K, less zero.

Generally, the unstable softening process is nonlinear
as shown in Fig. 2.11 in which point C with a tangential
critical negative stiffness indicates the turning point for
the change of governing dynamic equation into stable
pseudo-harmonic type. Although iteration methods can be
formulated to try the secant apparent softening stiffness K,
by assuming a residual strength (Fig. 2.11), it is often too
expensive to be practical for complex problems. Methods to

solve this problem are suggested in Appendix D.

2.3.4 Solution behavior of the global equilibrium equations
Based on the study of the linear model in the last
section, let us investigate the true solution at each degree
of freedom. If K;; or (K,+K,);; is greater than zero, or less

than zero but without local collapse, the displacement
solution at this degree of freedom can be exactly simulated
by the simple model demonstrated in the previous section.
The reason is that the incremental displacements will be
infinitesimal if the incremental external forces are
infinitesimal, and so the linear assumption is valid. Note

that the above conclusion requires normal solutions at all
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the related degrees of freedom.

I1f local collapse takes place, K;; cannot be treated as
constant and (K,);; and (K,);; will be coupled, because finite
or even infinite displacement solutions can be obtained no
matter how small the incremental external force might be.
The loading path of the incremental displacement and
generalized external force will become much more complex
than that illustated for the simple Coulomb damping model.
However, we can still use the simple model to locate the
loading path by changing stiffness coefficients K, and K,.
That is to say, the global stiffness matrix needs to be
re-assembled whenever the constitutive relationship changes
along the loading path.

As shown in Fig. 2.12, the true displacement solutions
at any degree of freedom can be classified into three
groups. In Fig. 2.12, the three groups are marked with A or
D, B and C, subscripts 1 and 2 are for the damping and
elastic elements , K, and K, changes as local collapses take
place and K, is for the critical stiffiness which varies as
K, changes. If elastic models and softening rates are
nonlinear, the straight line segments will be curved, but
this does not affect the discussion.

Group A and D represents the stable solution Au, (K;;>0)
and Ay, (K;;<0). When K,; tends to zero or generalized force
tends to infinity, the displacement will tend to infinity,
vhich is acceptable for engineering judgement. The criterion

for permissible Au, is that AT; should take the opposite
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sign to that of the total generalized force at the end of
the last incremen;al step, while Au, should take the same
sign. Certainly, zero Au, is also permissible. The
compliance of the loading criteria is guaranteed by the
normal solutions of all the related degrees of freedom.
Group B represents constrained local collapse. The
dynamic reponse will follow paths B, and B, with the result
of path B. Turning points along the path B, indicate that
governing dynamic equations of certain related Gaussian
points change into the pseudo-harmonic type. This can be
caused by the following reasons,
1. the strength reaches its residual (linear softening
rate) or the softening rate decreases to the
critical value (nonliuear softening rate};
2. the positive stiffness (simulated by K,) increases
and so the absolute value of critical softening rate
decreases;
3. both 1 and 2.
Therefore, along the loading path, both negative (K,) and
positive (K,) stiffness will change. If the positive
contribution ever exists, finally the system will reach its
new equilibrium position, marked with Au, as shown in Fig.
2.12,

Group C corresponds to the situation where the positive
stiffness vanishes as it changes along the loading path.
Then the solution behavior is the same as element 1. With

any arbitrarily small incremental force, total collapse will
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occur at this degree of freedom. A new equilibrium position
will be certainly reached in a real structure but the
position cannot be determined under the assumption of small
deformations.

Because all degrees of freedom are identical in the
mathematical form, conclusions can be easily drawn for the
whole system as follows.

1. The acceptability of the solution at any degree of
freedom depends on the normal solution behavior of
all the related degrees of freedom and hence depends
on the normal behavior of the whole system.

2. The true solution can be obtained or, at least,
defined in certain permissible solution subspaces if
and only if no loading criteria are violated at any
degree of freedom or at any Gaussian point where
strain softening develops.

3. The solution should be discarded if loading criteria
are violated.

As mentioned before, it is convenient to use the
loading criteria at each Gaussian point to check unstable
softening.

Finally, it should be mentioned that ir.finitesimal load
increments are assumed in this discussion. In real
calculation, iterations may often be needed to satisfy the
consistent condition of yield functions. Therefore, the
global stiffness matrix may also change in a loading step.

The loading criteria should be obeyed in each iteration. The
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change of the stiffness matrix towards singularity may cause

very large incremental displacements at certain nodes.

However, as mentioned before, to determine whether the

structure is safe or not depends on engineering judgement.

2.4 Summary

1.

The general formulation and material models are
introduced for finite element analyses in this
research,

In the conventional framework of elastoplasticity,
the finite element formulation for strain softening
can yield correct solutions if and only if the
loading criteria are obeyed.

Corner problems caused by the intersection of
different expressions of the yield and potential
functions should be properly treated when tension
criteria are used together with frictional yield
criteria.

In principle stress space, for isotropic elastic
constitutive relationships, there exist three
positive eigenvalues with three independent
eigenvectors corresponding to isotropic stress and
pure shear states (Section B.1, Appendix B). For
perfect elastoplastic constitutive relationships,
one eigenvalue is zero while the other two are
positive. The orthogonality of the three

corresponding eigenvectors is maintained under the
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associated flow law but generally vanishes under the
non-associated flow law. For strain softening
materials, only the two dimensional situation is
studied. When the determinant of the elastoplastic
matrix is negative, one eigenvalue is negative and
the other is positive. The orthogonality of the
eigenvectors depends upon the flow laws as mentioned
above. Useful conclusions are summarized for the
weak direction. Under moderate softening rate, the
weak direction will deviate a little bit from that
of the corresponding elastoplastic model. However,
when Poisson's ratio is near 0.5, the slip surface
will make an angle of nearly 45° with the principal
stress during failure in isotropic soils. For » =
0.5, this failure direction is independent of
softening rates.

The capacity to capture localized deformation exists
in the elastoplastic formulation. For the isotropic
region, the initial shear bands often develop in a
smeared pattern except for weak layers or special
loading and boundary conditions. However, the
incipient potential slip surface can be determined
by the direction of incremental displacement vectors
just before failure. Due to the unstable nature
during failure, location of the shear band with
material separation and dislocation will be beyond

the capacity of the elastoplastic model based on the
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incremental theory.

The existence of negative eigenvalues may cause all
the possible unfavorable conditions of the global
stiffness matrix. For a complex problem, at present,
the solution behavior can be investigated only from
the obtained solution. Absurd soiutions can be
obtained even for a very simple problem., Therefore,
no abnormal solution should be guaranteed before any
results are put into use.

Violation of the loading criteria indicates that the
system cannot seek a new equilibrium position in the
vicinity within an infinitesimal distance along the
strain and stress path no matter how small the
disturbance might be. Such an unstahle softening
cannot be treated statically in the incremental
sense. The theoretical background is re-examined and
strengthed in Appendix E.

Brittle models can be used to obtain acceptable
solutions when unstable softening takes place.
However, the solution is approximate since the
dynamic behavior of the materials is generaily not
available. Practical methods are described in

Appendix D.



3. ITERATION TECHNIQUES AND MESH DESIGN

The computation cost is very high in analysing complex
engineering problems by means of nonlinear finite element
analyses. It may be the most important reason to limit wide
applications of the method in practice. Therefore, there are
two problems for u¢ to\study. One is which of the available
iteration methods is efficient and hence economical. The
other is how coarse a mesh can still yield solutions
accurate enough for engineering applications.

The effectiveness and efficiency of the available
iteration method are problem dependent and so are the
guidelines for mesh design. An extensive study is not
intended in this thesis. The discussicn is limited to the
analyses of rock-earthfiil dams and only material
nonlinearity is considered.

One purpose of the study is to gain ecoromical benefits
in analysing the failure mechanism of the Carsington Dam. It
is obvious that experience will be helpful to similar
applications of finite element analyses in dam engineering.
Moreover, certain conclusions on the effectiveness ané
efficiency of the selected iteration methods may not lose
their generality since nearly all complex material
nonlinearity is considered. Improvements of iteration
techniques are¢ also made in the following sections.

Another purpose is to summarize guidelines for the mesh
design in analysing the failwve of the Carsington Dam. They

will guarantee reasonable -t sufficiently accurate
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solutions, and hence, reliable conclusions.

All the numerical tests are carried out by modifying
the program SAGE, which was developed by Chan (1986) as
mentioned in Chapter 1. The formulations of selected

iteration methods can be found in Appendix F.

3.1 Iteration Techniques for Material Nonlinearity

3.1.1 Selection of iteration methcds

The Newton-Raphson or N-R iteration scheme is the
classic method which is generally adupted in non-linear
finite element analyses. In a certain loading step, the

scheme can be expres«-Z as

[K1'"'{au}’ = {R} - {F}'"",
{u}! = {u}'"" + {au}' , (3.1)

in which
[K]*"' is the global stiffness matrix determined by the
stress state of the previous iteration i-1,
{Au}' is the incremental displacement vecto: to be
solved at the ith iteration,
{R} is the external lcad vector,
{F}'"' is the equivalent lcad vector corresponding to
internal stresses at the i-t1 th iterztion,
{u}' and fu}*™’ are total displacement vectors at the

iterations i and i-1.
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In the program SAGE, tolerances of both the relative
error of displacement norm and stress deviations from the
vield surface are adopted to judge the convergence.

The main drawbacks of the standard N-R method are :

1. it is time-consuming and expensive because of
repeated reformation and factorization of the global
stiffness matrix at every iteration.

2. it is not efficient in dealing with sharply changing
stiffness or in determining the critical point at
collapse.

Tremenduus effort has been made in the past twenty
years to develop new jteration methods and improve the
solution techniques. However, a brief literature review
shows that no universal method has been dev-:loped. In
selecting the iteration method, only those suitable for
material nonlinearity are considered. Besides effectiveness
and efficiency, simplicity of formulation.is also a main
factor for the choices evaluated here.

Although there exist other classifications for the
available iteration methods, here, we classify the relevait
methods by the way they improve the standard N-R method.
They can be classified into three categories:

1. acceleration scheme without reformation and
factorization of the global stiffness matrix,

2. update scheme by modifying the original or
factorized global stiffness matrix,

3, techniques to capture the critical point in
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stability analyses.

The acceleration scheme can be expressed in the form of

[K1'{au}' = {R} - {F}',
{ul = {u}'"' + [a,-j]i{Au}i , (3.2)

in which
[K]' has been factorized previously and will not change,
[a.jj]i is a diagonal matrix of the relaxation factors at
the ith iteration. Other notations are the same as in
eqn. 3.1,

Factor matrix [a; ] is used in this scheme to lead the
solution of the displacement vector in a certain favorable
direction, althouéh the methods to determine each factor ay,
may be based on different theories. Taking a;; as unity, we
have the modified N-R method. However. its slow convergent
speed is well known. 2mong a.l the acceleration schemes, the
Aitken method, line search method, gradient method or
conjugate gradient method are often used. However, the
gradient methods are often used in geometrically nonlinear
prok-.ems. By reviewing the literature, it is hard to say
which of the other two is superior. The Aitken method is
chosen for numerical tests because its formulation is
simpler.

The matrix update methods, or the quasi-Newton methods
provide a compromise between the standard and modified N-R

methods. The convergence speed of the modified N-R method i
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slow because the actual change of the stiffness is not
considered during iteration. The matrix update methods help
accelerate the convergence by modifying the global stiffness
matrix and reduce the cost by avoiding reformation at each
iteration. Several techniques have been developed. One of
the famous methods is the BFGS method. It was originally
derived for symmetric matrices and the updated stiffness
matrix still needs to be factorized. Later, improved methods
have been developed. One in common use is the DM method
which was developed by Dennis and Marwil (1982). The other
one we choose is the TZ method which was presented by
Tewarson and Zhang (1987). Those two methods are suitable
for unsymmetric matrices and keep the sparcity of the
factorized matrix. In the DM method for the LU factorization
of [K] (Appendix F), only matrix U is updated. In th TZ
method for the LDU factorization, all the factorized
matrices of L, D and U are updated. If L is updated first,
we call the method T2,. If U is updated first, we call it
TZ,. 1f TZ, and T2, are used alternately, we call it TZy. We
choose TZ methods because it has been reported that they
require approximately 20% fewer iterations than the DM
method.

The formulations of the Aitken, DM and TZ methods are
introduced in detail in Appendix F.

Numerical damping, explicit displacement control and
modified constant arc length methods are often used to solve

the ill-conditioned equations when the system is approaching
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the critical point. Among those methods, the modified
constant arc length method is found to be more effective,
but its fomulation is more complex.

None of the above methods are studied due to the
limited time available. However, the numerical tests show
that the critical elevation can be found in the analyses of
the Carsington Dam failure. By using the restart capacity in
the program SAGE, the numerical solution can discern the
critical elevation just before the failure within a range
not more than 0.3m. This is accurate enough for engineering

judgement, and the computation cost is not very high either.

3.1.2 Evaluation of effectiveness and efficiency

In the following study, we use the solution obtained by
the Newton-Raphson method as the standard in appraising the
selected methods, although the solution is approximate. This
is because no theoretical solution can be found to include
the complex material nonlinearity we are going to deal with.,
Both effectiveness and efficiency will be compared between
different iteration methods. Here, the effectiveness is
refered to the stability of convergence and the acceptable
deviation of the solution from that of the N-R met*od. The
efficiency is measured in the percentage of the computation
time needed by a selected iteration method as compared with
the time requiied by the N-R method.

In the available literature, the efficiency of a

developed method is appraised by comparing iteration number
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or only the computation time required by reformation and
solution of nonlinear equations. The actual efficiency in
finite element analyses should be evaluated by considering
the total time including stress calculation. This is because
computation time for the stress calculation is by no means a
small portion. As shown in Fig. 3.1, even for a very fine
mesh the time needed for stress calculation is still about
30% of the total computation time which cannot be reduced by
using any iteration methods in one iteration. The above
value of 30% is taken on average from more than 200
examples. Therefore, the total computation time for one
loading step is adopted as the base for comparison, and the

efficiency is defined as computation time ratio R,, i.e.

Time for the selected method

R = ~“Time for the N-R method ' (3.3)
in one loading step. The time reducties nzr .. "ege P is also
used and P = (1 - R,).

Obviously, the effectiveness and efficizncy of an
iteration method are dependent on the complexity of the
nonlinearity. It is difficult to define the complexity
quantatively. Reflecting on the intermediate results, the
complexity of nonlinearity is determined by the change of
stiffness, the amount of excess stresses to release after
yield and the number of the elements between which the
released stresses are distributed. Therefore, in view of the

input information, four factors merit attention after tk:
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problem is clearly defined. They are
1. the prescribed reformation frequency of the
stiffness matrix,
2. the total number of elements or the degrees of
freedom,
3. the magnitude of load increments,
4. the error tolerance preset for the required
accuracy.
The study will be carried out around the above four points.

The material nonlinearity includes non-linear elastic
behavior, nonlinear strain-softening after peak, and sharp
decreases of stiffness due to local collapses. The above
non-linear behavior includes the main features of the
meterial properties we may encounter in elastoplastic
analyses.

More than 200 trial calculations have been carried out
for the selected iteration methods. The performances are
investigated through three groups of examples. They include
_ very simple examples of loading tests of soil samples,
simulation of the construction of an embankment as shown ir
Fig. 3.2 and trial analyses of the Carsington Dam failure

which is described in detail in Chaptor &,

3.1.3 Improvement of iteration methoc: #«:.d result analyses
The trial calculations show that the standard
Newton-Raphson method is che most effective and reliable

method although it is generally not efficient. In the case
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of the failure of the Carsington Dam, no convergent solution
can be obtained by any other selected iteration methods if
the standard N-R method leads to divergence.

All other methods are subjected to slow convergence and
even divergence if the nonlinearity is very pronounced. If
we use any selected iteration method as it is, the only way
to improve its performance is to reassemble the global
stiffness matrix in time for certain unfavorable situations.
Fig. 3.4 to 3.7 show the unfavorable situations for the
selected methods. The examples in Fig. 3.4 to 3.7 are
calculated with all other conditions being the same. The
convergence behaviors shown in the above Figures also
indicate that the TZ and DM method are more effective for
unfavorable conditions than the Modified N-R method or
Aitken method. This conclusion has also been supported by
many other examples, €.9g. the performance of the TZ and DM
method for very complex problem as listed in Table 3.3.
without any improvement, direct use of any selected method
is not efficient in unfavorable conditions as compared with
the the N-R method.

Certainly, reformation frenquency can be fixed before
the calculation. However, the suitable frequency is very
difficult to preset. Reassembling the stiffness matrix too
frequently will reduce the efficiency while del=aved
reformation may cause slow convergence or even ¢ivergence.
I1n order to reassemble it in due time, the norms of relative

displacemenrt errors and unbalanced forces ar¢ :‘hosen to
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control the reformation. The above figures also show the
characteristics of these variables in succeeding iterations
under unfavorable conditions., For the TZ, DM and Aitken
method, by experience, the suitable criteria for updating

the global matrix might be

i~1

ei > 1.1e,
in which

e, norm of the relative displacement error,

Fynpt Norm of the unbanlanced load,

i and i-1 denote the ith and (i-1)th iterations.
The above criteria are very strict and only a factor of 1.1
is used to allow undulation of e, and F,,. This is because
no undulation of e and F,, has been found in any efficient
iteration process in all the trial calculations.

As to the modified N-R method, the above criteria are
not generally suitable, because e, and F,, may not undulate
under Some unfavorable situations as shown in Fig. 3.3. For
such cases, the ratio of unbalanced force norm is used to
control the reformation frequency of the stiffness matrix.

The ratio r. is defined as

. F
r; = -—EL (3'5)

in which R,,, is the norm of the total external forces



applied in this loading step. By experiences, if r; > 0.2,
reformation is needed. A large value of r. indicates
pronounced nonlinearity for which the modified N-R method is
not suitable.

After the above techniques were implemented into the
program, all the unfavorable cases have been recalculated.
The results are satisfactory and the computation time ratio
is less than 1.0 for all the selected methods as compared
with the N-R method. Fig. 3.3 to 3.7 also shows the
performance of the selected methods after improvement. The
comparison of results from the trial analyses are listed in
Tables 3.1 to 3.3.

From Table 3.1 to 3.3, it can be seen that the
percentage of time reduction is between 15 to 30% for
simpler problems, and between 10% to 18% for the complex
problems. In the above comparison, we use the computation
time for the whole loading step because it reflects the real
efficiency, although the efficiency for one unfavorable
sub-incremental loading step is much higher than that before
improvement.

In practice, a large number of degrees of freedom is
generally related with a complex stress distribution, and
therefore a fine mesh is needed. Although the time
percentage for stress calculation will decrease (Fig. 3.1),
the efficiency will generally not increase for a fine mesh,
especially for the Aitken or modified N-R method as shown in

the above tables. For complicated problems with fine meshes,
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the DM and TZ methods are more suitable.

Increasing the magnitude of load.increments means
increasing of nonlinearity in each loading or sub-loading
step. In simulating dam construction, the load increment is
controlled by the thickness of each layer. In order to avoid
too fine a mesh, the thickness of each layer cannot be too
small. Layers of 3 to 5 meters high are used in the trial
calculations. The weight of soils of each layer is further
divided into sub-load increments to decrease nonlinearity,
e.g. 20% of weight per a sub-increment with 5 sub-increments
in all. The influence of load increment magnitude is shown
in Table 3.4.

In the further analyses of the Carsington Dam, it is
suggested that at least 3 sub-increments for each layer
should be used when nonlinear behavior has been developed.
Trial calculations also shows that 5 sub-increments are
sufficient to cope with the complexity near failure, if the
thicknegs of each layer is less than 3.5m.

Adoptation of large error tolerances will obviously
decrease the computation time and lead to easy convergence,
but may yield unacceptable solution with excessive errors.
Table 3.5 shows the influence of the error tolerances on the
accuracy of the final results. The influence of the stress
error deviated from the yield function seems very small
within the trial tolerance range between 0.01 kpa to 0.0001
kpa. The main influence is caused by the dispacement error

tolerance. Its suitable range should guarantee a solution
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with acceptable errors, and save computation time. The
relative error of the displacement norm is suggested to be
around 0.001 in this research. The tolerance of 0.0001 will
decrease the efficiency of the selected methods too much,
while tolerance of 0.01 will cause large stress errors of
about 5%, which are generally unacceptable.

As mentioned in the previous chapters, the solution
will be finite and even infinite when local collapses takes
place. For example, stiffnes will change sharply and finite
stresses will be released after cracking even with very
emall load increments. It is not the task of this thesis to
study the convergence conditions of such cases. However,
experience has shown that the standard N-R methods can yield
acceptable solutions for the brittle models. When the
automatic reformation of the global stiffness matrix is
implemented in the computer program, no trouble has been
found in trying other methods. It should be mentioned that
the criteria given in eqn. 3.4 and 3.5 are problem
dependent. Therefore, theoretical study is needed for the
convergence conditions.

Examples of the best selected iteration method are
listed in Table 3.6 and 3.7. It can help us to draw the

conclusions.

3.1.4 Conclusions on the iteration techniques
1. The Aitken, TZ and DM iteration methods are

implemented in the program SAGE., Together with the
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modified Newton-Raphson method, their effectiveness
and efficiency for material nonlinearity have been
investigated by more than 200 trial calculatiors.
Without proper control of the reformation frequency
of the global stiffness matrix, the selected
iteration methods may cause slow convergence or even
divergence in certain complex situations. With the
automatical control, all the above methods work
effectively and efficiently.

I1f the above methods are applied to similar
calculation conditions, the computation time can be
reduced by 10-30% as compared with the time needed
by using the standard Newton-Raphson method.

The suitable convergence tolerance of the norm of
relative displacement errors is suggested to be
about 0.001 and the stress error tolerance is chosen
to be around 0.005 kpa for the effective and
efficient applications of the selected methods.

The magnitude of load increments should be limited
within reasonable range. In simulating the
construction of rock-earthfill dams, the rise of the
dam height, or equivalent rise AH obtained by
dividing the weight should not be too large. The
suitable range of AH is about 0.5 to 1.0 m. This
range is suggested only for cases similar to the
Carsington Dam.

Suitable working conditions for the selected
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iteration method are listed in Table 3.8, Although
summarized from a limited number of examples, it can
guide the selection of suitable iteration methods in

this research.

3.2 Mesh Study

3.2.1 Basic requirements for mesh design

Basic requirements and suggestions for the mesh design

can be found in many early published papers on the finite

element method. The main points are:

1.

suitable types of elements should be chosen for the
problem concerned,

the nodes of each element should be correctly
numbered and its shape should be properly designed,
gradual transition from very small to very large
elements is suggested,

the number of elements should be large enough, or
the mesh should be dense enough to quarantee a
solution with the required accuracy,

it is recommended that the density of the elements
should reflect the change of stress and strain

distribution.

Experience has shown that 8-node isoparametric elements

are suitable for elastoplastic finite element analyses. This

type of element is mainly used in these analyses. A few

6-node curve-sided triangular elements are also used to fit
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geometric boundaries when necessary.

Badly shaped elements will yield zero or negative
values of the Jacobian determinant in local coordinate
transformations and hence yield wrong solutions. In
elastoplastic analyses, if elements are shaped too far away
from a square, even with a positive Jocobian determinant,
the convergence behavior in this element will be abnormal.

Numerical tests have been conducted by Chan(1986) to
determine the limit of aspect ratio for 8-node isoparametric
elements in normal working condition, According to his
conclusion, the relative displacement error would not exceed
2% for an aspect ratio as high as 10,000 when double
precision arithmetic is used. The corner angle and side
curvature of each 6 or 8-node element should be controlled
within certain limits. By experience, those limits are
suggested to be between 15 and 165 degrees for the corner
angles and between 0 to 1/4 for the ratio of arc height to
chord length. Here, the chord length is referred to the
distance between two corner nodes of a curved side, while
the arc height is referred to the distance from the
mid-sided node to the chord. Gradual transition from very
small to large elements can avoid bad shapes and trace the
sharp change of stress and strain distribution.

It is well known that the density of a mesh and the
total number of the elements influence the accuracy of the
solution, Although the relationship between the element

number and obtained accuracy has been studied theoretically



for the linear elastic case, there is no available guideline
in this repect for practical geotechnical engineering
problems such as landslides and dam failures. The density of
the mesh seriously affects the computation time, hence, the
computaticn cest, especially for complex nonlinear problems.
Therefore, it is important to answer the question how coarse
a mesh can still yield an acceptable solution.

1f the density of the elements is arranged according to
the stress distribution, the sharp stress and strain change
can be reflected by a locally densified mesh while
economical benefits in computation time can be gained from a
coarse mesh design in the area where the stresses are
comparatively evenly distributed. However, this technique

needs experience.

3.2.2 Objectives and methods of mesh study

The trial calculation has shown that the analysis of
the Carsington Dam failure is very expensive, The effective
calculation time on the super computer Cyber 205 amounts to
about 9,000 seconds for one working condition of the dam,
which costs about $4500. Considering the adjustment of
parameters and t}ial calculations to catch the critical
point of stability, one analysis needs $10,000. In order to
cut down the budget for further reseach, a mesh study is
designed. The main objective of the mesh study are

1. to investigate the influence of mesh density on the

computational results.



2. to investigate the feasibility of replacement of the
conventional large mesh for the foundation by an
elastic layer with an equivalent elastic modulus.

3. to study gquidelines of mesh design and select
suitable meshes for further research.

It should be mentioned here, the conclusions made from
the above research are not only problem dependent but also
dependent on personal skills in the mesh design. Measures
are taken to eliminate the artificial factors.

All meshes for numerical experiments are designed in
compliance with the basic requirements. The input
information has been checked with a data treatment program
so that neither ill-noded nor badly-shaped elements exist.
However, no special attention has been paid to the gradual
transition from very small to large elements, since
experience needed to be gained.

As far as the mesh information is concerned, the
computation times are dependent on the number of
construction layers designed to simulate the construction
sequence and the length of the global stiffness matrix. This
length is highly dependent on the node numbering skill of
the designers. The CM and RCM methods of band width
optimization are adopted in the above program and the length
of the global stiffness matrix is optimized to be as short
as possible so that the effect on computation time due to

personal skill is basically eliminated.



The main characteristics in the failure of
rock-earthfill dams are chosen for comparison, including

1. the critical height of the dam beyond which it will

fail,

2. displacement and strain distribution,

3. stress distribution,

4, displacement vector increments just before failure.

The very dense mesh used in the first trial calculation
of the Carsington Dam is chosen as the first example. The
same material models and parameters are adopted for the
other less dense meshes. The description of the material
models and parameters can be found in Section 5.1.2. The
material nonliearity is complicated enough to provide useful
guidelines for further calculations. The nonlinearity
includes nonlinear elastic behavior and softening rate,
brittle models. The adopted strengths are on the safe side.

Thus, the calculations until failure can be completed.

3.2.3 Comparison of the results from different meshes

Three meshes with different density are designed for
comparison as shown in Fig. 3.8. The large conventional
foundation is adopted for all meshes but not shown in the
fiqure. It extends 12 times dam height H in both upstream
and downstream directions and 5 times H in depth. The main
features of the three meshes are listed in Table 3.9.

The main results obtained from the three meshes are

listed in Table 3.10 for comparison. The relative error is
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estimated by taking the results from the very dense mesh as
the unity. Since the critical dam heights just before the
failure are different for the three meshes, the critical
loads are also different. Although the difference between
the critical loads is very small, only corresponding to 0.30
to 0.6m thick of the £ill, its influence on the plastic
deformation is appreciable near failure. The relative error
is estimated from the construction stage of EL. 195.0m, at

which the total load is same for all meshes.

Table 3.9 Main features of the Meshes

Density Very Dense Dense Coarse
Element | 521 | 230 | 115
Node | 1521 | 680 | 332
Stiff Matrix
Length 373,210 107,404 29,332
Maximum Aspect
Ratio 35 10 18
Side Curvature | flat | flat | flat
Corner Angle® | 25 to 155 | 25 to 155 | 23 to 157
Element Area good not good in | bad in the
Transition the boot boot

Note: The boot is the extension of the core (Fig. 3.9)

Table 3.10 shows that all the meshes yield acceptable
results when they are used to make engineering judgement,
though the relative strain and displacement errors of the

coarse mesh seem a little bit higher. The computation time



by using the coarse mesh is only 6.1% of the time needed by
using the very dense mesh.

The critical dam height is determined by the sharp
increase of the displacement at node A in the boot as shown
in Fig. 3.9. At lower loading levels at which plastic
deformations are not pronounced, the coarse mesh looks
stiffer since the degrees of freedom are much less. When the
loading level goes higher and higher, the plastic
deformation develops more quickly than in denser meshes.

Table 3.10 Comparison of main results of meshes with
different densities

Density Very Dense Dense Coarse

Computing Time

(sec) 9000 1050 550
Critical Height
Just before EL. 198.0m EL. 197.4m EL. 197.7m
Failure

Relative Error
of Max. Displ. 0.0% 3.8% 6.2%

Relative Error
of Max. Strain 0.0% 4,2% 7.8%

Relative Error
of Max. Stress 0.0% 2.2% 4,6%

As to the dense mesh, displacements increase in the same
manner and are much closer to that obtained from the very
dense mesh. The same situation can be also found in Fig.
3.10, where the toe movements are compared. The critical
height of the coarse mesh is between those of the dense mesh

and very dense mesh. A simple conclusion that a coarser mesh
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causes earlier failure cannot be made. One possible
explanation might be that the three meshes are not
geometrically similar to each other. Obviously, different
arrangements of elements may cause different results.
However, the difference between the critical height is
within 0.6m. For a dam of 25m high, this is acceptable when
used in practice.

Comparison between horizontal and vertical displacement
fields before failure are shown in Fig. 3.11. and Fig. 3.12,
while the comparison of vertical ‘strains along the dam axis
is shown in Fig. 3.13. All the deformation values are taken
from one sub-loading step before failure, corresponding to
0.15m of the dam height. The deformation quantities near the
critical height are less important, Nevertheless, the
deformation patterns are the same for all the meshes, e.q.
high shear strain gradients in the yellow clay layer (Fig.
3.11) and large settlement in the middle of the core (Fig.
3.12) can be clearly observed.

The strain distributicns in Fig. 3.13 are comparable
between the three meshes. The coarser mesh has a less even
strain distribution. Larger strains can be found near the
foundation, while smaller values can be found near the top
of the dam. This also reflects the different response of the
three meshes at different loading levels.

Stress distributions of the three meshes are shown in
Fig. 3.14. The force equilibrium is always maintained

whenever a convergent solution is obtained. The difference



196 L

EL (m)

194 |

Very dense mesh
192 L

Dense mesh

190 |

bl Node B

186 L

184

0 20 40 60 80

Horizontal displacement U, (mm)

Figure 3.10: Mesh study - Comparison of toe movements



103

sjuswadeldsip fejuoztaoy 3o uostaedwo) - Apnis yson

(W) oe 09 oy oz o 0z~ or-
Ty '

2. 'S Y 2 X " i

'y A 4

1€ danbrg

(1] D 001 -~

(=5)00S o [ [rrTT™
P————r—y

0°86t °13

———— e ysaw asaeo)

ysaw asuaqg

~———-—— Yysaw 3suap Laap

Lpnis ysaw

9INTIeJ 310339 sjusawaoserdsip TEIUOCZTIOH *GZL HD

‘weq uojbutsae)

ﬁec-

08t

'064¢
(H)




104

sjuswaderdstip {esr3ada 3o uosixedwo) - Apnis Ysaw :Zyi°¢€ @anbra

09 113 (114 0 oz~ - 09- 08-
A i P A 2 A L A

00t -

e e ——— saw 9saeo

ysaw asuag
———— ysauw 3su3ap Laap
Apnas ysap

2inTtey aioysq SIUBWIORTASIP [EITIAdA °*GZL HD “weq uolzbursae)

o€t

i)

Fost

- 09t

"0Ls

I 081

(W)



105

Mesh study
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between the stress distributions is mainly due to the
capacity of the mesh to reflect the sharp changes of the
stress distribution.

The displacement vector increments near failure are
shown in Fig. 3.15 for the very dense mesh. The
corresponding plots are also illustrated in Fig. 3.16 and
Fig. 3.17 for the dense and coarse mesh. These plots can be
used to ‘etermine incipient slip surface (Section 6.2). The
vectors in the very dense mesh are good enough for this
purpose. But, the vector directions in the dense mesh are at
random in the part of boot where the transition from small
elements to large elements seems too abrupt. The vectors in
the coarse meshes can only predict the tendency where the
slip surface might go, and they are poor in reflecting the
sharp changes of movement directions.

The above comparison shows that an acceptable solution
can be obtazined even from the coarse mesh except for the
displacement vector increment plot which can be used to
locate the slip surface. By counting the element number
along the possible slip surface, it seems 15 to 20 elements
are enough to yield an acceptable solution. In giving the
above number of 20, locally densifying the mesh in the boot
has been considered. It will improve the plot of
displacement vector increments. This number is about two
times the slice number of 10 to 12 in the corresponding

limit equilibrium analyses.
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In the investigation report of the Carsington Dam Failure
(Betie, Shaw, Morton and Skempton, 1986), an elastic layer
of elements is used to replace the large conventional
foundation mesh. As stated in Chapter 1, we simply mention
this report as the "REPORT". The equivalent elastic modulus
of this layer is assumed to be 30xp' with a minimum value of
2000 kpa, where p' is the first invariant of the effective
stress tensor as described in the "REPORT". In Fig. 3.18, a
trial mesh is obtained by deleting most of the foundation
elements in the dense mesh (Fig. 3.8), and is analysed for
comparison with the conventional meshes.

Table 3.10 gives a comparison of the main results, in
which the results obtained from the very dense mesh is still
taken as standard. Although about 20% of computation time
(columns 3 and 4 Table 3.11) can be saved by using an
elastic layer instead of a conventional large foundation,
the relative errors seem too large with respect to the
strains and displacements.

Fig. 3.19 shows that the errors of horizontal
displacements occur from very low loading levels.
Theoretically speaking, by using the assumption of an
isotropic modulus E=30xp' with a minimum value of 2000 kpa,
the horizontal stiffness of the foundation is highly
underestimated at lower loading steps. However, the
horizontal displacements calculated in the "REPORT" are not
so high at the low loading level, but no details of the

calculation can be found in the "REPORT". An anisotropic
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modulus has been tried. Let the ratio of horizontal modulus
to vertical modulus be 2.0, the horizontal displacement will
decrease by 15% to 20% at lower load levels. But, the

assumption here is arbitrary. No further study has been

attempted.

Table 3.11 Comparison of main results of different

foundations
Very Dense Dense Dense
Foundation Conventional| Conventional |Elastic Layer

Foundation Foundation Foundation

Computing Time
(sec) 9000 1250 1050

Critical Height
Just before EL.198.00m EL.197.40m EL.197.25m
Failure
Relative Error
of Max. Displ. 0.0% 3.8% 70% to 130%
Relative Error
of Max. Strain 0.0% 4,2% 53%
Relative Error
of Max. Stress 0.0% 2.2% 6.7%

Fig. 3.20 and Fig. 3.21 illustrate the comparison of
displacement fields before failure. The results from two
kinds of foundations are comparatively close to each other
if the same mesh is used for the dam. In short, the main
features of deformation and stress distribution will be
basically the same if an elastic layer with an equivalent
modulus is used to replace the large conventional
foundation. However, without reasonable control of the

horizontal stiffness, horizontal displacements will be



Study of meshes for foundation

E ot Dense mesh-conventional large foundation
é i/.——/-—_-.—_t____'_?_—__
196 b ‘ Dense mesh-foundation simulated
// by an elastic layer
192 L /
; /
/
188 | / Node A
/
:/
184 L /
[
|
180 A A . —d, e N

0 100 200 300 400 500 600

Horizontal displacement U, (mm)

Figure 3.19: Study of meshes for foundation - comparison
of the maximum displacement
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modulus is not available, this method is difficult to use in

analyses of dams.

3.2.4 Conclusions and recommendations :.r mesh design

1. Three meshes with different density have been
designed to investigate the influence of the density
of the mesh upon the results of nonlinear finite
element stability analyses for rock-earthfill dams.
The feasibility of replacement of the conventional
large mesh by an elastic layer in simulating the
foundation has also been studied.

2. A revised mesh (Fig. 6.3) with its density between
the coarse and dense mesh in Fig., 3.8 is to be
adopted for further analyses. Special attention
should be paid to the gradual transition from very
small to large elements. Reduction of the
computation time by 90% can be expected. It is a
great economical benefit.

3. An elastic layer with equivalent elastic modulus can
be used in simulating the foundation with acceptable
results, if the information is available for both
horizontal and vertical equivalent stiffnesses.
Without the observed data to work out the horizontal
stiffness, the horizontal displacements will be
highly exaggerated by using an isotrcpic model only

to fit observed vertical settlements.



mesh design in analysing the Carsington Dam failure
can be summarized as follows:

(1) Element type: 8-node isoparametric element with
6-node curve-sided triangular elements to fit the
geometric boundary if necessary,

(2) Number of construction layers: nct less than 6-8
for a dam section of 25m to 30m high,

(3) Layer thickness and sub-increment load division:
for lower nonlinearity, 3 to 6 meter thick for one
layer which is further divided into 2 to 4 load
sub-increments with respect to soil density; near
failure, 2 to 3 meter thick with 3 to 5 load
sub-increments in one layer, (the above guideline is
suggested by reviewing Table 3.3 and 3.4),

(4) Element number along the possible slip surface
is suggested to be about 20,

(6) Attention should be paid to gradual transition

from very small to large elements.



The failure of the Carsington Dam in 1984 is a very
important case history for research into progressive failure
due to strain softening. After the failure of the Carsington
Dam, extensive field, laboratory and research work has been
carried out to explore the failure mechanism. The "REPORT"
i.e. "Carsington Dam - The Machanism of Failure" issued by
the Severn Trent Water Authority contains three volumes and
includes nearly all aspects of the above work.

In this chapter, the failure of the Carsington Dam %ill
be introduced and the previous work on this case history is
briefly summarized and disussed. The discussion is focussed

on the contents rzlevant to numerical work.

4.1 Introduction of the Carsington Dam Failure

4.1.1 Geology and construction

The Carsington scheme has been described by Davey and
Eccles (1983). The dam (Fig. 4.1) is situated on the Scow
Brook near the village of Hognaston in Derbyshire, England
and has a maximum design height of 35m. Its longitudinal
profile and typical section are shown in Fig. 4.2 and 4.3.
Placing of £ill at the 1200m long Carsington Dam began in
July, 1982 . By the end of May in 1984, the placing of fill
material was nearly completed to the maximum intended

height. Then, failure over a 500m length occurred on June,

5th.
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Carboniferous age belonging to the Nanurian series, During
the long interval of at least 100,000 years before the onset
of the last (Devensian) glaciation, erosion enlarged the
valley removing most of the glacial deposits which draped
the valley slopes, and the mudstones were weathered.

Devensian ice-sheets never reached the dam site.
Therefore, the site and its surroundings were not glaciated
at this stage but, for a period lasting about 20,000 years,
were subjected to periglacial conditions. As a result the
mudstone was disturbed by cryoturbation to a depth of
several metres and the valley slopes became mantled by Head:
clayey material moving downhill by the freeze-thaw process
of solifluction. On the lower slopes the Head has an average
thickness of about 1.2m. It tends to be thicker at the
bottom of the slopes. The downhill movement caused shears to
develop at, or more typically just below, the base of the
Head.

During the past 10,000 years, since the return of
temperate conditions, there has been further weathering and
the formation of topsoil, and Scow Brook has widened and
deepened its bed, replacing Head and the uppermost weathered
mudstone by its own alluvium, in a flood plain generally 50m
to 80m in width, From trial pits and trenches both under the
dam and in ground beyond the upstream toe, the succession of

foundation strata was established as given in Table 4.1,



Classification and
description

Site
identification

Symbol in
trial pit
logs

Topsoil | Ts | Topsoil

Suksoil ai Head deposits
Stiff brown and
grey friable clay

Firm and stiff light
grey and yellow/orange
mottled clay. Both a;
Yellow | a: and a, contain some
Clay angular/subangular

(a) sand-stone and
limestone fragments,
Yellow and rare rounded quartz
Clay pebbles

Weathered Bedrock

Soft to stiff grey,
Yellow brown & yellow mottled
Clay b, & b clay with rare

(b) sandstone and coal
fragments [Residual
Soill

Soft dark grey and
black clay with some
very weak mudstone
Dark clay b peds. [Highly
brecciated and
completely weathered

mudstone]
Brecciated ba Dark grey laminated,
mudstone highly weathered
mudstone; very weak
Blocky bs Dark grey laminated,
mudstone moderately weathered
mudstone

Although extensive field and lab work have been carried
out after the failure of the dam, only key points relevent
to the back analyses are described

1. Two layers can be recognised in the Head. The lower



clay; similar to b, though slightly more sandy, and
individual samples of a, and b, cannot easily be
differentiated one from another. For geotechnical
purposes they are therefore grouped together under
the name 'Yellow Clay'. The downslope movement of
Head leads to the development of solifluction shear
surfaces, in clay, at or below its base. Such shear
surfaces have been observed to a greater or lesser
extent in all trial pits upstream of the dam, and
are presumably characteristic of the whole site. The
shears are in most cases smooth, gently undulating,
and often gleyed.

The foundation for the dam were intended generally
to be in shallow excavations with removal of only
topsoil and the softer clay over the embankment
area. Unfortunately, the Yellow Clay has not been
removed around the critical section at CH 700 to 750
(CH is for chainage). It constitutes a weak layer
due to the pre-shears as mentioned above. However,
except for this layer, the whole foundation has
proved to be sound enough since no failure of other
foundation materials has been found throughout the
extensive field investigation.

In order to control seepage, at the upstream edge of
the core, a key trench was excavated (Fig. 4.3). Its

centreline was coincident with that of the grout



clay core was formed and is known as the "boot”,
which has acted as a strain concentrator in

promoting the progressive failure.

4.1.2 Properties of materials

4.1.2.1 Foundation

The main materials in the foundation are highly
weathered to moderate weathered mudstones. Since no failure
has been found in the foundation after failure, material
parameters other than the deformation modulus are irrelevent
to the back-analyses. In the finite element analyses given
in the "REPORT", an equivalent nonlinear deformation modulus

was adopted by fitting the observed settlements.

4.1.2.2 Yellow Clay

This material comprises the soft to firm yellow brown
and light grey mottled clays of strata a, and b,, and only a
small difference between the two strata can be found in the
averages from a large number of tests. Mean values of the
index properties of the Yellow Clay are shown in Table 4.2.
These properties are typical of an inorganic clay of high
plasticity with a moderate proportion of kaolinite in the
clay fraction.

The average unit weight is about 20 kN/M;.

For intact Yellow Clay the peak shear strength

parameters are
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difference between various types of test or size of samples.
Curves in shear box tests are shown in Fig, 4.5. With the
polished and striated slip surface placed exactly in the
separation plane of the box, the residual strength is
developed after only a few millimetres displacement, and the
results of all these (fifteen) tests, give the residual
values:

c'=0 and ¢, = 12°.

In nature, the solifluction shears are nearly parallel
to the boundary of the Yellow Clay layer and therefore lie
in a nearly horizontal shape characterised by an angle i=3°,
Hence, at small displacements the equivalent angle of
friction on a horizontal plane will be approximately

6. = ¢, +1i=12+3=15,
Obsevations in the trial pits have shown that the
solifluction shears occupy 40% of this total length(L) on
average. Let shear length be AL and the remaining length
(1-A)L for intact clay with parameters ¢ and ¢, the
strength of the layer as a whole will be given by

c = (1-2)Cc' + 0,

3= (1-0)¢'+ Ao, . (4.1)
Peak and post-peak parameters of the Yellow Clay are thus
reduced and, with A=40%, the "REFORT" gives the average peak

strength as C=6 kpa and $=18°. The triaxial tests on the
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= 60mm sghear box D °
o = 3 e
200F o 100w triaxial © . *
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Figure 4.4: Peak shear strength
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pre-existing shears are shown in Fig. 4.5. Strain scftening
behavior is obvious with a peak strain of about 2%.

The relationships between the mobilized strain and the
reduction strength are not well defined for a soil with
defects. However, as reported, a 1m thick layer containing a
horizontal pre-existing shear surface develops its 'peak'
strength at about 40 to 50 mm displacement (4% to 5% shear
strain) and subsequently falls to the residual after a small

further displacement as shown in Fig. 4.7.

4.1.2.3 Core material

The core (and boot) consists of Yellow Clay (a,+b,) and
Dark Grey clay (b,;) compacted at natural water content.
Average values of the index properties are also listed in
Table 4.2, Numerous tests made during the 1982, 1983 and
1984 construction seasons have shown that the material has
an average unit weight of 18.5 KN/m’ in the main portion, A
value of 20.0 KN/m3 for the fully saturated boot has been
adopted in the "REPORT".

The undrained shear strength C, measured by triaxial
tests on 100 mm undisturbed samples has an average value of
65 kpa.

Peak strength parameters of the intact core material,
in terms of effective stress, are

c' =15 kpa and ¢ = 21°,
Results are plotted on Fig. 4.8.
The residuval strength parameters are

C' =0 kpa and ¢' = 13°,
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+ Solifluction shear - Slip surface
38x76 mm triaxial drained 60x20 mm sh.box drained
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Figure 4.6:

Strength along solifluction shears and
slip surface
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During construction, the peak strength was affected by
rutting shears, inclined at angles from 0° to 60° with the
horizontal direction. Triaxial tests on samples taken
diagonally across a rutting shear develop 'peak' strengths
represented by c'=0 and ¢ =16° at axial strains around 2.5%
and then fall to a residual strength, with ¢;=13° (see Fig.
4.8). A numerical method has been presented in the "REPORT"
to estimate the "bulk" strength including the influences of
rutting shears. The average peak "bulk" strengh parameters
are estimated to be

¢’ = 6 kpa and ¢ = 20° .

similar to the case of Yellow Clay, the relationship
between the post-peak strain and the reduction of strength

parameters can not be yell-defined for the in-situ soil due

to lack of test information.

4.1.2.4 Zone 1 £ill

zone I £ill consists mostly of brecciated Mudstone (b,)
with some Dark Grey Clay (b,), compacted at natural water
content. Only a few tests have been made on this material.
Average values of water content and unit weight are about 25
and 20 KN/m’ respectively.

Peak strength parameters, determined on four 100 mm
diameter samples in triaxial tests with pore measurements,
are approximately

c' = 10 kpa and ¢ = 22°,
Very limited information can be found of the zone I

£111 in the "REPORT". However, as reported, its behavior is
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o,
T
200 38x76 mm triaxial
peak Cu=63 kpa 0.4t drained tests
b . 0,0, 0.3} .
o \L_ \‘(
100- | E— L 1 [
Au 0.2 0 2 4 6
0'1Y: displacement
o 4 : - . 1 L I 1 1
4 8 2 0 [ 8 12
Axial strain e, % Axial strain %
(a) On intact clay (test) (b) On rutting shears (test)

(c) Core with rutting shears at random direction

(numerical modelling)

strength parameters
Condition Axial strain Intact | shears | Resultant
p ct ¢ |c o | E 3
kpa ° |kpa ¢ |kpa o
Peak 3.5 1521 [0 16 | 6 20
6 321]0 15 |1.5 19
Critical state 8 0210 15 [ 0o 19
Residual large 0 13 ]0 13 0 13

Figure 4.8: Post peak behavior of the core
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very similar to zone II fill,

4.1.2.5 Zone II fill

Zone II fill is composed of b; mudstone compacted at
natural water content. Average index properties are also
listed in Table 4.2. The material consists of 'lumps' of
softened mudstone and a 'matrix' of fragments smaller than 5
mm in size. As compared with fresh b; mudstone, the fill has
undergone some weakening. This effect is due partly to
chemical changes and partly to an increase in water content.
The latter is particularly important in the fill placed
below EL. 170.0m in the valley bottom section of the dam but
to a lesser degree is evident throughout.

The unit weight can be taken from 21.5 KN/m® to 21.0
KN/m® from the bottom to the top of the dam as suggested in
the "REPORT".

Tests on undisturbed samples from above EL. 170.0m give
peak strength parameters C'=15 kpa and ¢ =27° and, for the
fill below EL. 170.0m, C =15 kpa and ¢ =25°. One group of
drained test curves are given in fig. 4.9 with slightly
softening behavior after the peak strain of about 12%. Tests
on samples including a polished and striated slip surface in
zone II fill show a residual angle ¢.=14.5°. The peak
strength are also affected by construction defects.
Compaction surfaces have been observed in zone II £fill,
which are nearly horizontal and planar. With an average
value of 10% for A in egn. 4.1, the "bulk" peak strength is

suggested to be
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200F Peak c. 144 10 252

1001

residual

300 400

'n kpa

Figure 4.9: Shear box drained test curves for
Zone II £ill
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¢’ = 13.5 kpa and ¢ = 24°
below EL. 170.0m, where the observed slip surface passes
through this zone.

Also similar to other materials the post peak strength
reduction with respect to strains cannot be accurately
determined from the information in the "REPORT". Since the
peak strain is very high and about 12%, the softening effect
generally can be negelected in back-analyses, particular for
the case where the slip surface did not develop in the

material.

4.1.3 Pore pressure and deformation observation

During construction, instrumentation was incorporated
mainly in four instrumented sections CH 390, 705, 850, 995
and comprised Casagrande type piezometers (foundations),
Bishop type piezometers (dam), USBR vertical settlement
gauges and horizontal magnetic extensometers. Horizontal
displacements of 'pegs' on the upstream face were also
measured from August 1983 at four monitoring station (CH
675, 750, 875, and 1050).

Piezometer levels at CH 705 and 850 are shown in Fig.
4.10 and the relationship between pore pressure and fill
height just before failure is given in Fig. 4.11. In
addition to the final pore pressure distribution, the pore
pressure changes with the vertical stress on typical
sections are also given. This will place the effective

stress analysis on a more realistic base. The main points
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are summarized as follows:

1.

The Core and boot

In the boot and near the base of the core the
material becomes almost full saturated, the
piezometers give du/de, =0.95 .

For the middle portion of the core (between EL.
i75m and EL, 190m), on average, u=(av-ao)g%%, 0,=85
kpa, a-daiveo.ss

For the upper part of core, (above EL. 192m),
the material appears to have been placed at lower
than average water content and piezometers show no
positive pore pressure until newly-placed fill
height reaches 4m to 7m. The final elevation is
about EL., 201m, and so pore pressures built up in
the upper part is very small.

The zone I fill

The final pore pressure pattern shows that the
pore pressures in zone I ranging from small negative
values to roughly half of the mean for the core.

The zone II fill

Because of the rather high content of air voids
in zone II fill (about 5% at end of construction),
there is no evidence that significant pore pressures
were developed at any time when the dam was being
built.

The Yellow Clay
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The observed data of pore pressures in Yellow
Clay layer are not available. The pieozometer heads
show that ground water level nearly coincides with
the base of Yellow Clay and the drainage above it is
effective. Thus it can be assumed that no excessive
pore pressures exist in this thin layer. The
possibility of generation of pore pressures during
loading will be discussed in the next chapter.

Fig. 4.12 shows the horizontal movement of the
upstream face and Fig. 4.13 shows the vertical strain in
the core and horizontal movements along the upstream dam
base. They provide bases for comparison with the results
from back-analyses.

Limited observed data of vertical settlements are
also given in the "REPORT". They have been used to work
out an equivalent deformation modulus (egqn. 5.9 and

5.10).

4.1.4 Description of failure

By the end of May, 1984 the placing of fill material
was nearly complete. Before this date, the observed data
shown that the creep of upstream peg movements is under 1.5
mm/day and the performance of the dam is normal.

Heavy rainfall in the period from 1 to 3, June, 1984,
amounting to approximately 40mm, brought earthmoving to a
standstill. Due to the wet conditions earthfilling had not

commenced on Monday 4 June, 1984 when a crack was reported on
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the dam crest at 07:30 hours. Later a 50 mm crack was
recorded parallel to the dam centreline and 2m into the
downstrecam shoulder. The crack extended from chainage 675m
to 740m with lesser widths beyond. At this time no
noticeable differential vertical movement was apparent.

During this period, sudden increases of upstream peg
movements with the creep rate as high as about 30 mm/day
were observed. Increases of pore pressure between CH 600 and
CH 800, especially the disproportionate increases in the
boot have been reported.

As an emergency measure, enlargement of the existing
berm (Fig. 4.14) beiLween chainagss 650 .ad 950m commenced
at about 15:40 hours on 4, June. By evening {2::00 hours)
the crack widéth rezched 130mm, but still with little
vertical gifferential movements until 7:30 pm, 5, June.

By late afternoon 5th June, the main «¢rack was widening
at a rate of 150mm per hour. The original crack widened to
3m maximum and on the upstream side between chainages 650m
and 800m had dropped 3m by the close of the day's
operations., A second crack 2m downstream of the original
opened rapidly and the wedge between these cracks collapsed.
Fissures also opened on the upstream slope and crumpling was
seen at the toe. Cracks at the dam crest now extended south
to chainage 1050m. Work on the berm enlargement continued
throughout this day.

By the end of this day, the creep rate of upstream peg

movement reached as high as 310 mm/day with a total movement
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of 620 mm at the most critical section (about CH 725). After
the sudden drop of the crest, pore pressures began to drop
sharply as shown in Fig. 4.15.

During the night of 5 to 6, June, the crest dropped 10m
exposing a striated scarp face. Parts of the upstream toe
had moved 13m laterally and had lifted by about 2.5m at
chainage 675m and disruption of the upstream slope was
severe. Although movement of the dam virtually stopped on 6
June, berm enlargement continued for a few days. Horizontal
movements (Fig. 4.12) illustrate the progression from about
chainage 750 to the both sides. During the total collapse of
the upstream portion of the dam, pore pressure in the boot
underwent about a 10 m reduction.

The upstream part of the dam before and after the
failure is illustrated in Fig. 4.16 for CH 725 and in Figq.
4.17 for CH 825. The position and nature of the slip surface
were explored by means of trial pits, shafts excavated
through the upstream shoulder of the dam, and by large
diameter borings through core. Part of the main slip surface
is highly polished and striated, passing through the Yellow
Clay into the boot in the most critical section around CH
725. This indicates that stain softening has taken place to
bring the strength down to a level much lower than the peak,

even near the residuax.
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4,2 Summary of Previous Reserach

The three volumes of "Carsington Dam - The Machanism of
Failure" have described the field investigation and
laboratory tests as well as numerical work in back-analysing
the failure machanism. In order to direct our further
research, it is necessary to identify what they have done,
what results they have obtained and how they arrived at
their conclusions. First, a brief introduction of their main
conclusions is given. Then, a short comment is made and
lastly recommendations for the new work are also discussed.
Emphases are placed only upon the aspect of numerical

analyses.

4.2.1 Main conclusions

Using the unmodified results from laboratory tests
(intact peak strength) on materials taken from Carsington
Dam after Failure, the factor of safety (F) was 1.41 around
the most critical section (CH 725) and was 1.55 in the
valley bottom (CH 850).

Since failure occured, influences reducing the above F
to 1.0 must be identified. The "REPORT" concludes that the
failure is mainly caused by progressive failure due to
strain softening in the core, boot and Yellow Clay layer.
The main influences are

1. solifluction shears pre-existing in the Yellow Clay

layer which is the significant effect,

2. numerous shears in the core and boot caused by
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construction plant which are minor weakening
effects,

3. unscarified nearly horizontal construction surfaces
in the zone I1I which are also minor effects,

4. lateral load transfer which accounts for the
propagation of the failure from the initial failure
section to lateral sections.

The "REPORT" also points out that if shears
(pre~existing or due to construction defects) were taken
into consideration, the factor of safety would be reduced to
1.21 (CH 725) and 1.44 (CH 825). As defined in the "REPORT",
the "critical state of a soil is reached due primarily to an
increase in water content leading to an almost total loss in
C', without any appreciable change in ¢'. The strengths in
this state are used to accommodate strain softening. By
using "critical state" strength: C'=0, ¢'=¢'p ., & further
reduction of SF to 1.07 for CH 725 and to 1.29 for CH 825
can be obtained.

The proportion cf the main influences upon the factor
of safety is evaluated as given in Table 4.3.

Other influences have heen suggested in addition to the
above to explain the mechanism of failure, e.g. the
weakening of material due to chemical changes. But, as
pointed in the "REPORT", they were not required because the
dam would fail in any case without invoking them.

A safe dam can be constructed at the Carsington site

provided that the redesign is based upon the principles
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elucidated in the "REPORT", i.e., the strength parameter
reduction due to defects and pre-existing shears
incorporated, and conventional factors of safety applied.
Limit equilibrium analyses were carried out to give
factors of safety along the dam length without considering
the effect of load transfer. The results are shown in the

Table 4.4.

fable 4.4 Factors of safety at different sections

| Foundation | Chainage | F |
580
600 1.06
North slope Yellow Clay 650 1.02
700 1.06
725 1.00
750 1.05 |Final
extent
Valley bottom| Grey 825 of
weathered 850 1.15 slip
mudstone 900
1000 1.11
South slope Yellow Clay 1050 1.18
1075

The strengths used in above calculation are taken from
the most critical section (CH 725), and F=1.0 is defined for
this section. These results accord with the field records in
the following manner: failure started from around CH 725,
then extended to the north slope, subsequeri%; the south

slope began to fail due to load transfer.

4.2.2 Brief comments on the previous work
Limit equilibrium analyses are the primary means used

in the "REPORT" to draw the conclusions. Multiple-wedge
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analyses were adopted with the interface force inclination
comparable with the results of finite element analyses. The
results have also been compared with those obtained from the
Morgenstern-Price method. The difference is small.
Analyses were carried out in term of effective
stresses. The determination of the pore pressure ratio were
based upon the observed piezometric data.
The principles used in the "REPORT" to estimate
percentage influences of major factors upon the factor of
safety is very simple., First, three values of factor of
safety are defined as:
F, for intact strengths,
F, for peak strengths reduced by construction defects
and pre-existing shears,
F, for strengths further redured by progressive failure
due to strain softening.

Then, it can be obtained that

reduction due to pre-existing shears

(F,-F,) /F,

(F,~F;)/F, = reduction due to progressive failure
(F;-1.0)/F, = reduction due to load transfer
Obviously, these definitions can be extended to consider
other influencing factors. Thus, the conclusions in Table
4.3 can be made. Although the above definitions are simple
in form, it is difficult to apply them in practice.
In the most critical section CH. 725, the factor of

safety is assumed as 1.0 under the assumption of no lateral

load transfer. With F,=1, the influence of progressive
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failure can be easily estimated. However the above
assumption (F=1.0) needs to be checked by analysing the
three dimensional effects. In other sections where safety
factor are greater than 1.0 just before failure, the
operational strengths reduced by progressive failure need to
he estimated from finite element analyses in calculating Fj.

Therefore, if used independently, limit equilibrium
analyses are powerless to discern the influence of various
factors upon the factor of safety. At least two dimensional
finite element analyses are needed to estimate the
operational strength and provide a guide for the assumption
on interface force inclination. In addition, three
dimensional effects should be investigated in estimating the
influence of lateral load transfer.

The only merit of the above method is to give a
conventional basis for comparison of factors of safety.
Never-he zss, the physical meaning here is not clear because
the ore .ational strenyth parameters are not inherent
material properties. Strictly speaking, the degree of safety
cannot be measured by using operational strength parameters.

As we know, spontaneous softening will influence the
degree of safety. Let us examine a very simple example. In
Fig. 4.18, suppose C, ..,=100 kpa, C, resian=50 kpa, the
resultant external force is 75 KN, and this slip surface
length is 1m. Four cases (a, b, c and d) are illustrated
with the same total external force for a, b and c. Due to

different distributions caused by different stress history,
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the difference between the degrees of safety is large. Here,
linear stress distributions are assumed for the sake of
simplicity, but all cases are kinematically possible, in
equilibrium and do not violate the yield criteria.

From case b to ¢, no extra loading is needed
theoretically, while from case a to b both loading and
unloading should be needed. This reflects the influence of
loading history upon the factor of safety.

From case a to d, the shear stress increases uniformly
from 50 to 90 kpa. The factor of safety is reduced to 1.11,
iess than F=1.25 in case b, However, the situation can be
considered more stable than case b.

Case ¢ shows that a small disturbance may reduce the
factor of safety by a certain amount, the extreme situation
i« that the safety factor is reduced to 1.0. For real dams,
this disturbance may be rain water filling some cracks, some
relaxation at the toe, small earthquakes or a layer or two
of fill placed upon the top of dam.

In short, when the above definition of safety factor is
used as a basis for comparison, the same value may not imply
the same degree of stability. To solve this problem, the
only way is to introduce deformation behavior into an
analysis.

At present, one possible and reasonable way to measure
the degree of safety is to reduce the peak-~strength by a
factor of safety according to Bishop's definition, and keep

the residual strength unchanged in finite element analyses.



(a) available strength
ATV 100 peak
pre-peak

50 residual

slip surface T=75 KN
(b) available strength
A\ 100 peak
post-peak ™ -pre-peak
S50 residual
slip surface T=75 KN
(c)
available strength
SF=1.,0

- 1 100 peak
post-peak 1 -~ ‘L-qg . pre-peak

50 residual

slip surface T=7% KN,

(d) available strength
A\ 100 peak
hpre-peak

50 residudl

slip surface T=90 XN

Before peak:
After peak:
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100
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available strength = peak strength

available strength = operational strength

Figure 4.18: Definition of safety factors
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In using the results, there are two choices. One way is to
use the results from finite element analyses alone. For each
sufficiently large strength reduction factor, we can find a
critical height of failure. By trial and error or by
interpolation, the strength reduction factor corresponding
to failure at the designed height can be found and taken as
the factor of safety. However, this method is obviously very
expensive. Another way is tc use the calculated strain
distribution at the design height to work out the
operational strength parameters, then to find a conventional
factor of safety. The factors of safety obtained from the
above two approaches may generaily be different, and
problems in both theory and calculation merit study. More
discussion will be given in Chapter 6.

Three dimensional effects have also been investigated
by ﬁsing a very simple mechanical model. The study yields
the conclusion that the lateral load transfer does not
affect the initial failure at the critical section. In other
words, the factor of safety should be about 1.0 at this
section. The dam is treated as a beam with a uniform section
lying on a horizontal foundation without vertical
settlements., This is far from the reality. It seems that a
sufiicienily accurate estimate can be obtained only by three

dimensional finite element analyses.
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4.2.3 Recommendations for further nonlinear analyses

The main objectives of this research are focussed on
the study of numerical methods in analysing progressive
failure due to strain softening by using the case history of
the Carsington Dam as an example. It is not intended to try
to fit the results with the observed deformation data by
adjusting material parameters. Since the information on
deformation moduli and post-peak behavior is not enough,
little can be gained by varing too many parameters. Only two
dimensional nonlinear analyses will be undertaken.
Therefore, the critical height just before failure for
certain sections may not be entirely accurate. However, the
results from two dimensional analyses are conventZonally
sufficient for dam engineering. Generally speaking, a factor
of safety less than 1.3 is not acceptakle for any isolated
section during the construction of rock-earthfill dams.

The main tasks for the numerical analyses in tkis

research are as follows,

1. Trial finite element and limit equilibrfum analyses
are suggested in order to check the main conclusions
drawn in the "REPORT" and examine the performance cf
program SAGE by comparing with the results obtained
in the "REPORT". Then the program will be revised to
meet the requirements for further analyses. The
influencer of various factors upun the factor of
safety will also estimateé and so parametric studies

can be planned for those important parameters which
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are not well defined in the "REPORT".

The boundary problem for finite element analyses
should be defined as clearly as possible based on
the previous work in the "REPORT" and trial
calculations.

Limited groups of both effective and total stress
analyses are planned for different working
condition: to achieve three main objectives:
firstly, to put the formulations and principles in
theoretical study into practice and prove their
effectiveness; secondly, to make conclusions on the
failure mechanism of Carsington Dam; thirdly, to
investigate the influence of certain major factors
upon the reliability of the final results,

Limit equilibriu. analyses are also to be made to

estimate the Factor of safety.



5. DEFINING THE CARSINGTON DAM FAILURE FOR FINITE ELEMENT
ANALYSES

The finite element method is intended to be used as the
main tool in studying the mechanism of the Carsington Dam
failure, in which progressive failure has played a major
role. If we wish to carry out finite element analyses with
confidence, the following qguestions should be answered:

1. to what extent can the whole process from
construction to the end of failure be formulated in
the framework of the adopted theories,

2. based on the laboratory and field data, which kinds
of material model will fit the behaviour of each
materiai »est,

3, whether the external loads are defined accurately
enough or not,

4. whether or not the material parameters to be adopted
are reliable and accurate enough to obtain
acceptable results,

5. whether or not the mesh design, construction
gequence simulation and solution procedure are
appropriate to quarantee a sufficiently accurate
answer.

The last question has been answered in Chapter 3. In
this chapter, we mainly try tc define the problem of the
Carsington Dam failure for finite element analyses as
cl2arly and reasonably as possible by reviewing the

information available in the "REPORT" and analysing results

162



from trial calculations.

5.1 Summary of Preliminary Numerical Studies

5.1.1 Trial limit equilibrium analyses

Limit equilibrium analyses have been carried out to
check the main conclusions in the "REPORT" and estimate the
influences of various factors upon the factor of safety. The
calculations were carried out by means of Sarma's method.
The results are in good agreement with those given in the
"REPORT" with a relative error less than 1% !f all the
conditions are the same. Hence, the same conclusions can be
drawn. Only some useful iwplications will be mentioned in
this section, the analyses can be found in detail in
Appendix G. In Table 5.1 the influences of certain material

parameters upon factors of safety are listed.

Table 5.1 Influence of some material parameters

Material Parameter Change of |Change of
parameter |F.0.S.

Zone I & II|Unit weight |y | +0.5 kN/M?| +1.0%

Unit weight |y | +0.5 kN/M?| -0.4%
Lore Undrained ' I l

strength (Cu| +5.0 kpa +3,5%

Friction angle|Q' | +17 +4:5%
Yellow Clay|Friction angle|@'| +1°| +4.5%

As shown in Table 5.1, a variation of the unit weight

by 0.5 kN/M’ only leads to a change of SF by no more than



1%. Therefore, the average unit weight can be used with
confidence. The influence of the undrained strength C, is
not small, since an error of 5 or even 10 kpa may not be
avoided in estimating an average value including the effect
of strain softening. In real situations this value depends
on the total stress and pore pressure development. C, is
different at different elevations and is especially
unsuitable for the top construction layers of the dam where
observed pore pressures were zero or very small and the soil
was really not saturated. Hence, it is not reasonable to
determine the main slip surface in the top layers if an
average C, is used. However, for a preliminary study, total
stress analyses are acceptable by experience.

Further limit equilibrium analyses with effective
strength parameters C' and ¢' have been carried out for
comparison. The results show that a 3m reduction of the dam
height from EL. 201m to EL. 198m will cause an increase of
the safety factor by 12% if total stress analyses is used.
However, the corresponding amount will be 16.5% if effective
stress analyses are used. The influence is noticeable. It is
simply because the observed pore pressures at EL. 198m are
considerably smaller than that at EL. 201m. Since the
failure height predicted by two dimensional analyses may not
be correct, an effective stress analysis based on observed
pore pressure data is more reliable.

A decrease of the friction angle has been used in limit

equilibrium analyses in the "REPORT" to study the effect of



the softening process. The influence is important as shown
in Table 5.1. The operational friction angle during
softening is mainly affected by the softening rate and
elastic modulus, if the residual strength is reliable. In
view of the limited information on this aspect, the
influence of their changes within the possible range should
be examined by finite element analyses, before we can use

the results to draw conclusions with confidence.

5.1.2 Trial finite element analyses

The Program SAGE was used for the first run of a two
dimensional analysis at CH 725 of the Carsington Dam.
Limited by the original capacity of the Program SAGE,
comparatively simple material models were adopted. A very
fine mesh was adopted in tiie trial runs as shown in Fig. 3.8
as compared with that used in the "REPORT" (Fig. 5.1).

In Fig. 3.8 a conventional large foundation is used
which is not completely shown as described in fection 3.2.3,
while only a non-linear elastic layer is used in the "
REPORT " to simulate the foundation. Ten construction layers
above the foundation are used to simulate the construction
sequence while six layers have been used in the "REPORT".

All the analyses are in terms of total stresses
including those presented :r the "REPORT". The adopted
models are listed in Table 5.2 for comparison.

Linear elastic wmoduli before the peak and associated

flow laws are adopted for all nonlinear materials in trial
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runs. Failures due to tension have been considered in the

"REPORT", while we assume that all the materials could take

tensile stresses.

Table 5.2 Comparison of Material Models
Material | Present Model | Model in "REPORT"
Core Von Mises, Von Mises,

Associated flow, Non-associated,
Hyperbolic softening|without softening

Yellow Clay |Mohr-Coulomb, Mohr~Coulomb,

Associated flow,
Brittle

Linear softening,
Non-~associated.

Zone 1 & 1II [Mohr-Coulomb, Mohr-Coulomb,
Associated flow, Linear softening,
Brittle Non-associ=2d.

Foundation Large usual mesh, Nonlinear elastic

Linear elastic

cushion

The material parameters as shown in Table 5.3 are
selected from the latest recommendations in the "REPORT". In
Table 5.3, the parameters in the "REPORT" are also given in
the parenthese= for comparison. The strength reduction due
ro the geological pr2-shears or construction defects has
been taken into account in det#rmining the strength
parameters (Section 4.1.2).

The main differences between the two sets of input data
will be described for each material as below.

1. A 'inear elastic foundation is assumed in the trial
run, with an elastic modulus E=125,000 kpa and
Poisson's ratio u=0.35. Therefore, a back-check
against the observed settlement is needed. In the

"REPORT", a nonlinear modulus has be adopted, which



was obtained by fitting the observed settlements.
For the core material, the von-Mises yield criterion
is adopted in both studies. Hyperbolic softening is
assumed in our calculations with the peak undrained
strength C,=52 kpa and the residual strength C, =28
kpa, while no softening for the core was considered
in the "REPORT". An average peak strength (C,=52
kpa) is estimated by following effective elastic
stress paths until they intersect with the
Mohr-Coulomb failure envelope in an elastic
analysis. It is impossible to follow the stress path
during strain softening in an elastic analyis. The
residual strength is roughly estimated by studying
the possible stress paths and pore pressure changes
for a typical element of the core. A moderate
softening rate is selected for the trial
calculation. The initial rate gives a reduction of
peak strength by 10% due to 2.5% principal plastic
strain after the peak. The Poisson's ratio is
assumed to increase from 0.43 at first to 0.49 after
the construction of two 3m layers.

For the Yellow Clay layer and Zone I & Ii fills, a
prittle elastoplastic model with the Mohr-Coulomb
failure criterion and associated f :+ iaw is used in
our calculation. Obviously, in as¥wi.iy an infinite
softening rate, the brittle model gives a lower

bound. However, in th- "REPORT" non-associated flow
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laws with @ zero dilation angle have been used and
strain.softening in the Yellow Clay layer has been
simulated by using a linear relationship between
strength and strain.

4, Average elastic parameters are used in our
calculation. One thing which should be mentioned is
that the elastic modulus of E=40,000 to 80,000 kpa
for the Zone I & II fills seems higher than that in
real situations. In the "REPORT", the elastic
modulus is assumed as a linear function of the first
invariant of the effective stress tensor and
Poisson's Ratio is obtained from a linear function
of the second invariant based on the observed test
or field data. The influence of the unloading
modulus upon the progressive failure has also been
studied in the "REPORT".

Our results show that the dam fails when it reaches

EL. 198.0m, i.e. at the end of the construction of Layer

9 in total 10 layers. It is not strange that our

calculated failure height is about 3 meters lower than

that of EL. 200.95m as calculated in the "REPORT",
because brittle models are used for both the Yellow Clay
layer and Zone I & II fills and the strain softening
process is simulated for the core in our calculation.

Because of the differences between the two sei of input

data, only the comparison between main features cf the

failure mechanism is meaningful.



The settlement of 0.325m was observed under the
core in the foundation at CH 705. The calculated
settlement at the corresponding location at CH 725 is
about 0.3 to 0.33 m. Since no observed distribution of
vertical displacements is available at the dam base, the
value of 125,000 kpa is the best assump-<: - ° could
make for the equivalent elastic modulus

The incremental displacement vector plot may be
used to determine the location of the slip surface.
Kinematically possible slip surfaces can be intsgrated
by taking the incremental direction as the tangent. The
most dangerous slip surface can be discerned among all
the kinematically possible ones (see detail in the next
chapter). Tks incremental displacement field in Fig.
3.11 showr rotational characteristics than that
given in .1:: = SPORT" (Fig. 5.2). Strictly speaking,
neither of th. two vector ' ..s reproduces the observed
fact that the general slip surface goes through the
whole length of the Yellow (Clay layer without
appreciable heave of upstream surface when failure
starts. Because there exist pre-shears in the Yellow
Clay layer, and the shears extend nearly parallel to the
layer boundaries, occupying about 40% of the total
length, the material exhibits anisotropic
characteristics. An isotropic model -  be not good
enoﬁgh to simulate the slip surface parallel to the the

layer boundaries.
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In Fig. 5.3, vertical stresses at the loading stage
of layer 8+9/10 are plotted. The arching action in our
results is highly exaggerated due to higher average
elastic moduli selected for Zone I & II fills. It is
better to use the assumption of nonlinear elastic modul i
which fits the observed settlements.

By examining the output loading history it can be
found that the stress level along the observed slip
surface is past peak in the boot, but it is still
pre-peak at the top portion of the dam. It is easy to
understand that the slip surface cannot be simulated
correctly within the top portion of the dam by doing a
total stress analysis with a constant undrained strength

C.. In the real situation, no pore pressure has been

ue
observed in the top layers and the stress level is very
low. Hence, an effective stress analysis is more
suitable.

The calculated results have shown that the maximum
tension stress is developed in the top layers and
amounts to about 100 kpa under the assumption that all
materials are capable of taking tensile stresses.
Therefore the influence of tension cracks upon the
failure mechanism should not be neglected in the future
calculation.

In Fig. 5.4, the movement of the upsteam peg near

the toe is plotted for comparison. Although the observed

data include deformation due to creep, the dam simulated
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in the trial run still looks much stiffer. In Fig. 5.5,
the calculated vertical strains in the core are compared
with those given in the "REPORT" and with the measured
values in the core at Gauge BS1 at CH 705. The result
presented by us seems of about the same magnitude as the
observed data at EL 198.0m. However the dam fails at EL
198.0m in our case. The predicted deformations are still
much smaller when compared with those observed just
before failure.

As mentioned in the "REPORT", the horizontal moduli
of Zone I and II may be underestimated by comparing the
predicted and observed horizontal displacements. An
anisotropic model can easily simulate this feature.

In conclusion, the trial calculation has shown that
the Program SAGE is capable of tackling the complex
problem in practical engineering projects such as the
the progressive failure of the Carsington Dam, if
necessary revisions are made. The assumed equivalent
elastic modulus for the large conventional foundation is
acceptable. It is better to use the same assumption of
nonlinear elastic moduli in the "REPORT" for zone I and
zone II fills. More suitable material models and
parameters should be adopted in SAGE to cover the main
features influencing the failure mechanism of the
Carsington Dam, including anisotropic models, cracking
models and strain softening models for post-peak

behavior. In addition, effective stress analyses are
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more suitable.

5.2 Defining the Boundary Problem for Back-analyses

In order to simulate the Carsington Dam failure, the
boundary problem is toAbe defined by answering the five
basic questions raised in the beginning of this chapter. The
definition is based on the information given in Chapter 4
and the results gained in the preliminary numerical studies.

The section is chosen at CH 725, where the failure started.

5.2.1 Feasibility of formulating the problem in plasticity

Based on the recorded failure events (Section 4.1.4),
the whole process from the begining of construction to the
total failure of the Carsington Dam can be divide . into the
following stages,

1. the strain-stress level normally developed before
failure as the dam went up nearly to the design
elevation,

2. the creep rate increased suddenly and abnormally and
cracks was observed on the surface of the dam. This
indicated a critical state in stability,

3. starting from the most critical section and
extending longitudinally, large deformation took
place, wedges dropped down, grabens formed and the
upstream dam body was thrusted horizontally along
more than 500m length of the dam. The collapse

movement finally stopped, mainly due to the new
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geometric configuration and the sharp decrease of
pore pressures.

In dam engineering, what we are most concerned vith is
the working performance of the dam and the prediction of the
critical state if the design is not safe.

The deformation before failure was caused by the
gravitational force of newly-built layers and the increase
of pore pressures., Although strain softening processes might
develop in certain regions, they were limited. The observed
creep rate was less than 1.5 mm/day, peg movements were less
than 0.2m and no abnormal behavior of the dam had been
reported during this stage. Generally speaking, it was a
typical quasi-static loading process and the compatibility
conditions were satisfied in the macro sense. According to
the basic theory in Chapter 2, the process before failure
can be formulated in the framework of plasticity with small
strain and deformation assumptions.

At the critical state, the sudden increase of the creep
rate were caused by spontaneous progressive failure due to
certain disturbances in the highly strained arcas along the
potential slip surface. The disturbance might be small pore
pressure changes due to heavy rain or one or two
newly-placed layers of fill. Since no pore pressure changes
were observed in the section without further placing, it is
reasonable to simulate the disturbance only by increasing

the dam height.
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Along the deformation curve, the critical state is
represented only by a point. The Geformation after the peak
will be inevitably involved in the back-analyses. Although
the compability in the most part of the dam body was still
satisfied, it was not so in cracks and might not be so along
certain parts of the most critical potential slip surface,
where local collapses might cause dislocations of materials
in the macro sense. However, we can still formulate the
problem in plasticity by introducing brittle models.

In short, it can be expected to isolate the critical
state by unacceptably large displacements at failure, but
the calculated deformations only indicate failure and their
absolute values are less important.

The failure process to a new equilibrium position
involved exceptionally large deformations without
compability, total break-down of materials and rigid body
motion of separated wedges. Up to now, no effective theories
and methods have been developed to tackle it. However, its
numerical analysis is irrelevant in dam engineering
practice. No further analyses of post-failure behavior are

intended in this research.

5.2.2 Evaluating the pore pressure distribution

The loads for the back analyses during the construction
stage are caused by gravitational body forces and generated
pore pressures. The latter are transformed into equivalent

nodal forces. Since the given density for each material is
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reliable, the task left here is to make reasonable
assumptions of the pore pressure distribution generated
during loading.

Only zero or small pore pressures have been observed in
Zone II. Zero pressures are assumed for this region.

The observed pore pressures just before failure in Zone
I is between -2 to 7 meters on average (Fig. 5.6). However,
at CH 725 the observed general potential slip surface did
not pass through Zone I f£ill but the Yellow Clay layer below
it. Besides, the observed piezometric heights (-2m to 7m)
are much lower than those of 20 to 30m in the adjacent
region of the core. Therefore, the assumption of zero
pressures in zone I fill is reasonable.

As to the Yellow Clay layer, the possibility of pore
pressures being generated during construction has been
discussed in the "REPORT". No fill was placed between
October, 1983 and April, 1984. By using the Terzaghi
consolidation theory and adopting an experimental value of
the parameter C,, the "REPORT" made the conclusion that the
layer was fully consolidated by April 1984. The pore
pressures built up during the 1984 loading, were calculated
by using tested pore pressure parameters and stress changes
obtained from finite element analyses. The estimated pore
pressure takes its maximum value of about 45 kpa (4.5m head)
and decrease sharply below 10 kpa within 25m in the upstream
direction form the boot. The effect on the safety factor is

about 2%. We neglect this minor effect in further
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calculations in view of the limited accuracy of the input
information.

Zero pore pressure is assumed throughout the rest of
foundation, since no failure has ever been found in it.

Because of the above simplifications, only the pore
pressures in the core and boot need to be evaluated. The
pore pressures dissipated during the standstill between Oct.
1983 and April, 1984, During this period, the pore pressure
decreased by 2-3 meters in total height, then went up after
the 1984 loading. This implies not only changes of effective
stress but also changes of volume. At present, it is
impractical to incorporate consolidation into the non-linear
stress analyses for such a complex problem as the Carsington
Dan failure. To simplify the calculation, we assume the pore
presure goes up linearly as the dam height goes up.

Fig. 4.11 shows the simplified linear relationship. A
program has been compiled to give incremental change of pore
pressure at each loading step for finite element analyses.

Thus, we can have

p=20 (H < H;) ,
p = Byy,(H - H;) (H2H), (5.1)
where

p is the generated pore pressure during loading,

B, is an average proportional factor based on observed

data,
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H is the f£ill height above the point in consideration as

the dam goes up,

H, is the average observed intial height above which
pore pressure will be generated,
Y, is the density of water.

and so the incremental expressions will be
Ap = 0 (H<H;) and Ap = B,y AH (H2H;) . (5.2)

For the section at CH 725, B, and H; in eqn. 5.1 and
5.2 are estimated for different elevations with the help of
Fig. 5.7, which is for the nearby section at CH 705. The
calculated pore pressure distribution before failure is
checked against the observed data in Fig. 4.10. At all the
observation points, the errors in head are less than 1,.0m,

Possible error due to the above linear asumption can be
seen from Fig. 5.7. If an average value of B, is used
between zero and final pore pressures, the complex history
of the pore pressure generation and dissipation cannot be
~reflected, Although it is not difficult to follow the
observed unloading curve of pore pressures without further
placing of fill, the results are doubtful. This is because
all the observed data show that deformation continuously
increased. In reality, the soil underwent very complex
processes of pore pressure dissipation and structural
changes which resulted in continuous creep. By neglecting

the time effect, our present approach is powerless to deal
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with this situation.
Due to the complicated process of pore pressure
generation and dissipation, the above evaluation is

approximate. A parametric study of B, is needed in

back-analyses.

5.2.3 Selecting suitable material models

We mainly use effective stress analyses in the further
study and list selected material models and the main reasons
briefly in Table 5.4.

Experience and trial calculations have shown that too
many Gaussian points fail at the very low stress level near
zero when the Mohr-Coulomb model is used, especially when
used together with cracking models. This does not reflect
the real situation in dam construction. Elastic models are
suggested in the first loading step.

Cracking models are to be adopted for all the materials
except the foundation according to the theories introduced
in Section 2.3,

The anisotropic material may fail outside the weak
plane. When this situation is found, an isotropic yield
criterion will be used.

Total stress analyses are theoretically acceptable for
undrained conditions. The pore pressure observation has
shown that most lower parts of the core fulfill this
condition, Except the core material, there is no difference

between total and effective stress analyses, since the pore



187

aanyiej je uolIeTIP ITWIT 03 (L pajeidosse-uou
uotjeuwaojap
vodn ssaujjtris [ejuoziioy jo 323333 (9 (Apnas dotrajauweaed)
§10933p uotr3onijsuod fejuozrioy (gG|dtdoijostue Arreuoboyiao
(s3insai1 teuty)
afqerteae jou aie tinpouw drdoajostue (¢ o1doajost
2100 pue 13alfeg
Keyo mor11a& ur sandoo Afutew ainyrey (g 713 II 3 1 @uoZ
avaataq Ltaybrrs (z butuajljos jnoyita
afqiieae aie ,@ 2 ,D sadjsweaed Afuo (| quoTNOD-IYOKW
wopuel je pajnqiaisip S3ID33ap (¥ otrdoajost
@anTiey 3e uotrjefip 3ITWIT 03 (€ pajetrdosse-uou
jead i933e 913i1ltaq (2 buituajjos otryoqaadiy 810D
arqet(aa aie ,@ 3 ,D sidjaweaed Afuo (| quwoInNo)-IYyon
aanjiej 3e uorjeyip ITWIT 03 (¥ pa23jetdosse-uou
saeays-aid fejuoziioy jo 310a3j3a (g|o1doajostue Ljieuoboyjio
jead aajge at13iltaq (2 butuajjos ortoqiadiy}iaker Aer) moyiax
arqrteae aie ,@ 3 ,D saoajsuweied Afuo (| quoTNOD-IYOKW
uorjernoyed
1eta3 Aq aiqeizdanoe aq o3 paaoad (2
31 Uy aantrey ou (| D131S3Td aeauly uotjepunogd
sajoN 3 burtuoseay | 19pPOW pa3oafas Teraajen

STopow Teraajew pa3al3II[IS

¥°S °1qel



188

pressure is assumed to be zero. Total stress analyses will

also be undertaken for comparison.,

5.2.4 Determining material parameters

Except for unit weights and strength parameters, the
deformation parameters E'(ah) and v'(oh), especially
softening rate a'(ﬁm“) are not well defined and the
available supporting test data are also not sufficient.
Here, "'" denotes the formulation in an effective stress
sense. It is very difficult to evaluate them accurately.
Simplification and rough estimation are unavoidable in
determining their values. The suggested values used in the
"REPORT" will be adopted after reviewing whenever possible.
The discussicn on their reliability will be given in the
next chapter by analysing the results. Obviously, a good
agreement between the calculated deformations and the
observed data cannot be expected. This is because no special
effort has been ever made in the field and laboratory tests
to provide information for deformation prediction by means

of numerical methods.

5.2.4.1 Unit weight and strength parameter

Unit weights and strength parameters for effective
stress are well defined in the "REPORT". They are based on
careful laboratory and field investigation before and after
failure. Therefore, they are reliable as listed in Table 5.5

and Table 5.6.



189

Table 5.5 Unit weight

Material |Foundation|Yellow clay|Core |[Zone IjZone II
layer
Selected 20.0 20.0 18.5 | 20.0 21.3
values
kN/M? kN/M? kN/M3| kN/M? kN/M?

The strength parameters below have included all defects in
the materials.

For the core material, an average undrained strength C,
of 52 kpa is suggested for the peak value while 27 kpa is
suggested for the residual. As mentioned before, they are
not accurate enough to accommodate the complex stress-strain

analyses. A back-check of the results is necessary.

Table 5.6 Strength parameters C' & @'

Material Selected values

Cp' | gp' | Cr' | Or'
Core | 6 kpa | 200 | O | 137
Yellow clay | 6 kpa | 18" | 0 | 12°
Zone I | 13.5 kpa | 24" | 0 | 14.5°
Zone II | 13.5 kpa | 24" | 0 | 14.5°

5.2.4.2 Poisson's ratio

In the "REPORT", Poisson's ratios have been estimated
from the limited test data. For total stress analyses in the
core and boot, an average value of 0.46 was adopted. It was
considered to model the compression of 1% air voids in the

partly saturated f£ill. We change this value to values from
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0.43 at a lower stress level increasing to 0.49 near
failure. This seems more reasonable.

In another expression for Poisson's ratio, the yield
ratio R, is used to measure the extent towards yielding from
an elastic state. R, is equal to 1.0 at peak. The expression

takes a linear form with respect to R, as

v = vo(1-R)) + vy R,
Ry= J/J, for the von-Mises model,

R,=(0,-0;)/(0,-0c;); for the Mohr-Coulomb model, (5.3)

where J is the second stress invariant and subscript
denotes failure. J, and (o0,-0;), can be calculated by
assuming the first stress invariant unchanged.

For isotropic models used in the "REPORT". It is
suggested to adopt

vy = 0.26 , Vpax = 0.49
for the Yellow Clay, and

vo = 0.167 , v, = 0.49
for the Zone I and Zone II fill to fit the volume changes of
limited observed data.

When the anisotropic model is used, the above
assumption is regarded as valid for », which corresponds
with isotropic plane deformation, but, for »,, (v,),,, is
calculated by using condition B.10 so as to keep the elastic
relationship positive definite. In order to evaluate », and

v, by using egn. 5.3, we define
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R, = L , .
¥ o' tan¢g'+C' (5.4)

before peak. After peak we use v=y , with R=1.

5.2.4.3 Elastic modulus

In the "REPORT", linear elastic behavior up to failure
was assumed for the core material in the total stress
analyses. For other materials, non-linear elastic models
were adopted., With zero pore pressure, they also apply to
the effective stress analyses.

For core material, a Young's modulus of 2550 kpa was
adopted in the "REPORT". This gives an axial strain at
failure of 2%, which makes a reasonable fit to the test
data. A value of 2500 kpa is adopted in this research for
total stress analyses.

Information from test curves is not sufficient to
formulate E', »' for the core in effective stress analyses.
Here, approximate methods are used.

To formulate the expressions for the elastic modulus,
at least 3 test curves of (0,-0;) vs. e, are generally needed
for different stress levels, for example, of o;, and the
test is better if performed under plane strain conditions.
The above requirements cannot be met by available data and
therefore we give a rough estimation. As we know, for the
plain strain condition, the tangential modulus takes the

form of
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(1-v2)Aa;—v(1+v)Ao;
E(aij)' = . (5-5)
Ae,

By assuming a linear relationship before peak, and » to be

approximately 0.5, a rough estimate is

(1'V2)(0;—0;)peak . (5.6)

E'(0,) = (0
Further, we suppose (e,),,, is constant for all stress
levels. This assumption is acceptable since the range of
(o;-o;) at peak is not large, being between 35 and 60 kpa in
the core material.

At peak, the relationship between o, and o, can be

found from the Mohr-Coulomb criteria as

a;(1+sin¢') . _2C'CO§¢'

(1-sing¢"') (1-sing') lpeakx * (5.7)

(0,) =
Initially, we assume that a;=0 when fill is first placed.
Then E' can be evaluated with the increasing stress level.

If E' is estimated from triaxial test data

(01_03 )peak

(61)”“ (5.8)

E'(0,) =

The non-linear elastic modulus is adopted for the
Yellow Clay, Zone I and II £fill by fitting the observed
settlement data. In the vertical direction the recommended

expressions in the "REPORT" are
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0'+o|+0'
E, = 20 (——5——) (5.9)

v

for the Yellow Clay and

for 2Zone I and II fill with a minimum value of 2000 kpa.

No observed data are available for the horizontal
modulus E,, E,=E, is assumed in the analyses and E, will be
changed in the parametric study to check the reliability of
the results.

Whenever perfect elastoplastic models are used, the
independent shear modulus G, is assumed as

G, = E,/[2(1+p,)] (5.11)

When softening models in weak layers are used, it is
better to control the peak shear strain y* in the weak
plane. Similar to the isotropic case for the core, we use

T(o;)peak = (o;tan¢'+c')peak (5 12)

G, =
2 Ypeak Ypeak

where, y° is taken as 4% (Fig. 4.7) for the Yellow Clay

layer.

5.2.4.4 Strain softening rate
Because it is impossible to work out softening rates

directly from observed data, estimation of parameter a in
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eqn. A.8, A.10 and A.14 is made for hyperbolic softening
partly from the incomplete information, partly by using the
assumptions made in the "REPORT".

For total stress analyses, a mean value of 0.1 for a is
used in egn. A.8 for the core material. This value
corresponds to a decrease of undrained strength C, by 10%
with 1% plastic axial strain after peak. For effective
stress analyses, mean values of 0.5 for a, and 0.01 for a,
are assumed. The two values are based by fitting the post
peak behavior listed in the Fig. 4.8. As we know, 1/a is an
indicator of softening rate (Fig, A.1), the small mean value
of 0.01 for a, will make the cohesion decrease sharply by
more than 95% within the development of 2 % plastic axial
strain.

It should be mentioned here that the axial strain e, is
not equal to the equivalent strain e in the plane strain
condition. By assuming u to be 0.5, i.e. no volume change
with €,,=0, we have ¢ = 115% ¢,. Within the range of x from
0.40 to 0.50, the difference is under 15% and we neglect
this difference. The reason is that both the peak strain and
the softening rate have been roughly estimated.

The softening rate for the Yellow Clay layer is
obtained by fitting the assumed linear relationship given in
the "REPORT" (Fig. 5.8). The fitting of test data together
with the observed data is illustrated in Fig. 5.9. The
adopted a, is between 0.2 to 0.4. The parameter a, is simply

taken as 0.01 to simulate a quick reduction of the cohesion
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to the residual.
Since the estimated softening rates is very rough, a

parametric study is desirable to investigate possible errors

in the results.
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6. ANALYSES OF THE CARSINGTON DAM FAILURE

6.1 Introduction

In this chapter, finite element analyses are undertaken
to investigate the mechanism of the Carsington Dam failure,
and the effectiveness of the finite element formulation and
material models are evaluated. In addition, efforts are made
to improve the techniques in treating the calculated results
so as to better our understanding of the failure mechanism
and facilitate making reasonable engineering judgements.

In treating the results, one question is how to locate
the most critical slip surface more accurately. New
techniques are developed to determine this critical slip
surface. The relationship between the so-determined critical
surface and the observed one is also discussed.

Another question is how to use the results in
determining factors of safety. For progressive failure due
to strain softening in a complex structure, the available
strength parameters for limit equilibrium methods can be
obtained only from finite element analyses at present.
Therefore, this topic is very important in practice. Methods
to determine factors of safety are discussed.

The calculation is carried out on the critical section
at CH 725 from where the failure of the dam started.
Although effective stress analyses are preferred in
obtaining the final results, total stress analyses are also

carried out for comparison. The adopted material models and

198
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parameters are the same as described in Chapter 5. The
representative results are plotted by using a
newly-developed program RESTRE for treatment of results,
Limited runs for parametric studies have been
performed. The main purpose is to evaluate the reliability
of the presented results. Since many factors are involved in
predicting deformations, no trials have been made to fit the
observed data. Although a much better fit can be obtained by
just modifying one or two parameters after trial
calculations, the results may be of limited implications for
use in design. The true solution depends on the advance of
field investigation and laboratory test procedures. Analyses
in a history-matching mode will be more helpful by changing
deformation parameters based on observations during

construction.

6.2 Techniques for Result Treatment

Programs are available to plot contours of stress and
strain components and displacement vectors, and so provide
visual help in understanding the response of the whole body.
However, those plots are not convenient to examine the
distribution of the variables in concern along a section or
slip surface, especially in comparison with the results
obtained from different runs. Besides, it is very difficult
to locate the critical slip surface accurately from the

incremental displacement vector plot.
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Program RESTRE has been developed to overcome the above
shortcomings. This 4000 sentence program is comparatively
complex in providing many useful and flexible options to
create sections, paths and potential slip surfaces as well
as to give the distribution of any variable output from the
program SAGE. An introduction can be found in the internal
report submitted by the author to the Department of Civil
Engineering, University of Alberta (1989). Here only key

points are briefly introduced.

6.2.1 Creating section

Since variables along a chosen path are interpolated by
using shape function with local coordinates ¢ and 7,
nonlinear equations need to be solved to find ¢ and o from

the given global coordinates x and y with

L]
I

= DN(£,1) x;  (i=1,Node) , (6.1)
= YN(E,m) y;  (i=1,Node) , (6.2)

<
I

in which N, is the shape function, x; and y; are coordinates
of the element nodes. The above nonlinear equations are
solved by linear interpolation. The key point is to find a
good set of initial values, especially when the shape of the
element is far from a square. Here, a half division method
is adopted. The initial values of ¢ and 7 are first searched
in each guarter of a transformed square element in the local

system by comparing the error of global coordinates of the
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corners of this quarter with the given values. Then, similar
procedures are taken for the selected quarter until the
error is less than a tolerance, say 0.10 to 0.05 in the
local system. The search is expensive and so the line

interpolation approach is used for further solution.

6.2.2 Interpolation techniques
The stress and strain components are output at each
Gaussian integration point. Before interpolation by means of
any chosen shape function, the components at nodes are found
by means of the least square smoothing method (Hinton, 1973).
Let G,, 0,,+...0, be the smoothed stress components at
element nodes, then, at any point inside the element, the

smoothed value is
m
5, 1) = ) N, (6.3)

where N, is a suitablly chosen shape function. For 2x2

Gaussian points, we chose

8. = (1-¢)(1-7) §. = 1+ 1-
1 2

= 4 ’ = a ’
R, = (1+§)4§1+'_q) . R, = (1- 4(1+ , (6.4)

The error between the original and the smoothed value is

e(EI n) = O(Er ‘ﬂ) = 5(5, n) . (6-5)



The least square solution of ¢ will make the following

functional take a minimum.
p = J e’(f, n)dxdy .
D

Therefore, it needs

or

' i=1121000m ’

i=1,2,...m .
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(6.6)

(6.7)

(6.8)

Hence, the equations for smoothed values at nodes takes the

form of

J [ (0-3)F,|J|dtdn = 0

r ~

1]
o

(0-3)F,|J|dEdn

F r

1]
o

(0-0)N,;|J|dtdn

]
o

(0-3)F,|J|dtdn

(6.9)

in which, |J| is the Jacobian determinant for coordinate

transformation,
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For 2x2 Gaussian points and the chosen function, the

solution is

'5n11 a b ¢ b 'og"
anz = b a b (o4 ng
ana c b a b Ogg
Ty lb ¢ b a.{a 8
n 9 (6.10)

in which subscript n denotes smoothed values at nodes, g
denotes original values at the Gaussian points and

Y , /3

c=1-7.

The program RESTRE also provides the option to smooth
variables further by averaging the node values among the
related elements. Experience has shown that the so-smoothed
distribution fit the observed data much better, especially

for shear stresses and strains.

6.2.3 Description of instantaneous movement

The incremental displacement vectors represent the
movement tendency of the body subjected to incremental
loads. Similar to the streamline in fluid mechamics, the
nstreamlines” integrated by taking the vectors for
nvelocities" will give a better picture of the movement. Let

us call these "streamlines" movement paths.
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Kinematically possible slip surface obtained
by integrating streamline of incremental

displacement vectors

Figure 6.1: Kinematically possible slip surface
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As shown in Fig. 6.1, in any element, we have the
incremental horizontal and vertical displacements du and dv,
which define the direction of movement. By interpolation
with the shape function, the movement direction of any point

is known. Let the function defining the movement path be

Y = £(X) . (6.11)

Then the basic equation is

dy _ du

dX ~ dv ° (6.12)
Since

a . 2%y

9% = Flar + Pan/Ghar + Fan) (6.13)
e have

dt _ ,3Y _ dudx, ,dudX _ 3Y

dn = (an dvan)/(dvas 5) ' (6.14)

in which Q%,%%,Q%,%% can be easily obtained from derivatives

of the shape functions.

The Runge-Kutta method is adopted and the integrated
paths are shown in Fig. 6.1. To check the error, integration
has been carried out from two different ends of the same
path. The error of local coordinates is less than 107° if 15

steps are used in one element. The results are reliable,
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6.2.4 Locating the critical slip surface

The critical slip surface is determined from the
movement paths just before failure. It is defined as that
movement path which is kinematically possible and along
which the mean yield ratio R, is the highest. The yield
ratio R, at a point is a measure of the extent of the stress
level as compared with the yielding state (R,=1.0) (see eqn.
5.3 and 5.4). Obviously, 0 < R, S 1. For cracks, the yield
ratio is set to be 1.0. For the whole movement path, the

mean yield ratio ﬁy is defined as
R, = | Rs/| as (6.15)
L L

where integration is applied to the whole length.

Fig. 6.2 shows the distribution of R, along a movement
path. It should be noted that R, <1 may not indicate the
elastic state of the whole element, but the elastic state of
at least one Gaussian point inside the element. The cohesion
ratio R, and friction angle ratio R, are also defined to
examine the extent of strain softening. The ratio is defined
as the reduced value over the the peak value. The
interpolated R, and R, will be less than 1.0 if softening is
developed at certain Gaussian points. Examples will be given

in Section 6.3.3 in presenting the final results.
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T.F,-==-- Totally failed

i.e. failed at all Gaussian points

N.T.F,===-~ Not totally failed
i.e. elastic or failed at some but

not all Gaussian points

Figure 6.2: Illustration of yield ratio along
a slip surface
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6.3 Results and Discussions

The mesh for section CH 725 is shown in Fig. 6.3 with
162 8-node elements and 479 nodes. The final results
obtained from the effective and total stress analyses will

be discussed in this section,

6.3.1 The critical dam height

The failure of the dam is indicated by a sudden
increase of the displacement. In Fig. 6.4 and Fig. 6.5, the
horizontal movements of the peg at the upstream toe and at
the edge of the boot are selected to illustrate this
feature.

For the effective stress analysis, the dam fails at EL.
200.1m, about 0.9m lower than that in the real situation. As
far as the reliability of input data is concerned, the error
seems to be caused mainly by the rough estimate of the pore
pressure distribution and the elastic modulus. It is hard to
say which of those is more important. However, the overall
result is certainly satisfactory for a dam of 25 meters
high.

The results obtained from the total stress analysis
shows that the dam does not fail by using the selected model
and parameters. At least two major factors, i.e. undrained
shear strength C, and elastic modulus would affect the
critical dam height, therefore, no further trials by
modifying the material parameters are attempted to fit the

observed critical height. In order to study failure
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Total stress analysis
—————— Effective stress analysis
—--—..— Total stress analysis with strength

deduction factor F,.=1,05
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Horizontal displacement U, (mm)

Figure 6.5: Determination of the critical dam height
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mechanisms, two conventional ways can be chosen to force the
dam to undergo progressive failure.

One way is to apply additional load, e.g. to increase
the design height to an assumed value. The other is to
reduce the strength parameters by a strength reduction
factor F,.., then re-calculate the problem. The latter method
is adopted to conform with the concept of safety factor.
With the strength reduction factor being equal to 1.05, the
dam fails at EL.200.85m, only 0.15m below the real failure
height.

In short, both the effective and total stress analysis
indicate the original design of the Carsington Dam is
unsafe, and the calculated critical height is not far from
the observed one, Hence, the results are acceptable for

practical use.

6.3.2 Comparison of typical deformation and stress

quantities

Except those indicating failure, all the quantities for
comparison are taken from the convergent results before
failure, since divergent results are not reliable. The
distribution of vertical stress along horizontal sections
just before failure is shown in Fig. 6.6. It is not strange
that there is little difference between the results of the
effective and total stress analyses, because the vertical
load is same for both analyses. Another reason will be given

later in discussing the vertical displacement distribution.
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As to the vertical displacement distribution just
before failure, there is also little difference as shown in
Fig. 6.7, although different models with different elastic
moduli have been adopted for the core waterial in the two
analyses. A constant elastic modulus c¢. 2500 kpa is used in
the total stress analysis, while a nonlinear elastic modulus
is adopted in the effective stress analysis, which depends
on the peak strain and peak strength parameters C' and ¢'.
The average elastic modulus is about 3700 kpa before the dam
reaches the horizontal section at EL.186.0m, and about 5200
kpa when the dam reach the critical height. This large
difference of elastic modulus (by about 50% to 110%) in the
core only causes a little difference in the vertical
displacement distribution. The first reason is that the same
elastic foundation is used, which seems to play &
significant part in controlling the settlements. The second
reason is that the materials in most parts of the dam, i.e.
filter and shell are the same and vertically constrained by
the same elastic foundation with comparatively high elastic
modulus.,

In view of the results from other runs in this thesis,
it can be concluded that reasonable models and parameters
will yield similar distributions of vertical displacements
and stresses.

Without constraints in the horizontal direction, the
results of horizontal displacements just before failure

exhibit large differences (Fig. 6.8). From Fig, 6.4 and Figqg.
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6.5, it can be seen that the difference starts from the very
low stress stage just by using the different riodels and
elastic moduli in the core, This reveals the difficulties in
predicting the deformation quantities. However, both sets of
results have truly reflected the high shear deformations in
the Yellow Clay lay:er.

The comparison of the calculated deformation with the
observed data can be found in Fig. 6.4. and Fig. 6.9. Fig.
6.4 shows that elastic moduli in the effective stress
analysis may be too high to predict horizontal displacements
accurately. However, the vertical strain distribution is
acceptable in the average sense for both analyses (Fig.
6.9). In this figure, horizontal displacements along the
clay layer are also compared. Taken as a whole, the
distribution patterns are basically similar, but the
calculated displacements are much smaller than the observed.
The sharp changes in the calculated curve are caused by
cracking near the edge of the boot.

On the one hand, the capacity of finite element
analyses to predict deformations is still low at present. At
ljeast a 50% to 100% relative error may be encountered even
in the average sense. Satisfactory prediction of
deformations in both the vertical and horizontal directions
cannot be expected beforé striking advance of the field
investigation and laboratory techniques. On the other handg,
the predicted deformation patterns generally reflect the

true situation if the input information is reasonable. This
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provides a sound foundation in predicting or back-analyzing
the failure mechanism. If observed data are available during
the construction, they can provide a reliable basis for
adjusting the material parameters. The finite element

analyses would be more effective in a history-matching mode.

6.3.3 The critical slip surface and failure mechanism

Fig. 6.10 shows the incremental displacement vectors
just before failure obtained from the effective stress
analysis. The corresponding increment load is equivalent to
a 0.15m rise of the dam height from EL.199.85m to
EL.200.10m. The integrated movement paths are illustrated in
Fig. 6.11,

It should be mentioned that difficulties may be
encountered in integration, if there exist cracks in the way
of an integration path. Cracks may cause sharp turning of
the movement path, e.g. around the geometrical corner along
the boundary of the boot (marked with A and B in Fig. 6.10).
To cope with this situation, the integration is completed
section by section, then the whole path is smoothed through
the section where cracks exist. Since only two paths have
been so smoothed, and the smoothed length is less than 5% of
the total length, the results can still be considered
reliable for further use. However, it shows that the
recommended integration techniques only apply to failure
dominated by shear. Without cracking, very beautiful smooth

lines can be obtained as shown by most of the paths.
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The mean yield ratios of the potential slip surfaces
are also listed in Fig. 6.11. The critical slip surface can
be located between another two movement paths. One is above
the critical slip surface with a smaller mean yield ratio
although it is kinematically possible, while the other below
the critical one is kinematically impossible. Trial
calculations have shown that it is easy to determine the
location of the critical slip surface as accurately as
required for practical use. The distance between the
critical slip surface and the neighboring two paths is a
little bit large in the figure. It is intended for
visualization in choosing the paths.

It is interesting to investigate the pattern of the
movement paths under lower loading levels. Fig. 6.12 shows
the movement paths, one sub-loading step before failure,
i.e. from EL. 199.80m to EL. 199.95m. All the movement paths
in the lower upstream portion are kinematically impossible
to form a slip surface, while the mean yield ratio of all
those in the upper pcrtion is below 0.6. These features
indicate a typical stable deformation. An additional height
of 0.15m leads the deformation to an unstable pattern (Fig.
6.11). The solution for critical dam height is accurate
enough,

Fig. 6.13 allows us to examine the tendency of the
movement paths to advance through the yellow clay layer so
as to form the slip surface in the successive loading

stages. Similar to the Lagrangian description in fluid
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mechanics, movement paths passing point A at the entrance of
the Yellow Clay are illustrated as the dam goes up. Before
the critical height is reached, no movement path is
kinematically possible and each path goes down into the
elastic foundation just after it enters the Yellow Clay
layer with the mean yield ratio in the core gradually
increasing. The critical slip surface is formed suddenly,
exhibiting a totally different pattern and direction. This
indicates the feature of a sudden failure.

The yield status along the critical slip surface just
before failure is shown in Fig. 6.14., The yield ratio
distribution shows that nearly all the points totally fail
or almost totally fail except for the portion near the toe
berm. As explained in section 5.2.3.4, average observed
softening rates are adopted for the friction angle and very
high values are adopted for the cohesion., Fig. 6.14 shows
that the reduction of friction angle is not appreciable but
the cohesion is reduced by a very large amount where failure
occurs. The reduction distribution of material parameters
will be used to evaluate the conventional factor of safety
later. By examining the intermediate results during the
iteration process just after failure, the failure is still
governed by the shear. Fig. 6.15 shows the further reduction
of the strength parameters and the yielding status. However,
this figure only shows the tendency to progressive failure,
the calculated value cannot be considered reliable due to

the divergence. The distribution is still plotted along the
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surface just before failure, since the reliable slip surface
cannot be obtained by integration from results which are not
convergent.

By reviewing the failure sequence recorded in the
loading history, the failure starts from the contact area of
the boot and the yellow clay layer as shown in Fig. 6.16.,
Especially high straining can be found in this area. Then,
the failure extends both in the direction through the weak
clay layer and in the direction through the core. The cracks
open on the top of the dam, not far from the central line.
The above features agree with the observation during and
after the failure of the Carsington Dam.

The comparison of the location between the calculated
critical slip surface and the observed slip surface is also
shown in Fig. 6.16. The adopted finite element formulation
is effective in simulating the slip surface in Yellow Clay,
since there exists an oriented weak layer. However, the two
slip surfaces do not coincide in the core. If we review the
movement paths in Fig. 6.13, it seems that the critical
surface tends to get close to the observed one as the dam
goes up but cannot reach it. The movement of the failure
plane can be attributed to changes of principle stress
orientations. Theoretically speaking, the observed slip
surface corresponds with large deformations and
discontinuous shear band formation together with opening of
cracks inside the dam. Therefore, limitations of the

assumptions of continuity and small deformation prevent us
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from simulating the whole process of progressive failure.

Since the theoretical formulation for the dislocation
of shear bands and large openings is far from reliable for
practical use, the so-determined critical slip surface may
be the best approximation we can obtain. In fact the
critical slip surface is the most dangerous potential slip
surface at the loading stage just before failure., Fig. 6.17
shows the yield ratio and strength reduction distribution
along the observed slip surface. By comparing Fig. 6.14, it
is easy to see that the degree of yielding level and
strength reduction along the observed surface is really
lower than that along the critical slip surface. Except for
back-analyses, the final slip surface is generally not
available. The above techniques can approximately predict
the final slip surface, if the dam does fail due to the
further disturbance.

Now, let us examine the results from the total stress
analysis. The results are generally acceptable for
engineering use, but not so satisfactory as those from the
effective stress analysis. For brevity, we concentrate the
discussion on the shortcomings of the total stress analysis.

The incremental displacement vectors just before
failure are illustrated in Fig. 6.18. The movement paths are
obtained as shown in Fig. 6.19. It should be born in mind
that the strength parameters used here have been reduced by
=1,05). The mean yield ratis along the

a factor F (F

stg stg

determined critical slip surface is only 0.847, which
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implies the degree of yield is comp:::tively low. In
comparison, a value of 0.913 is obtained in the effective
stress analysis (Fig. 6.11). The location of the critical
slip surface is somewhat further from the observed one and
above that one obtained from the effective stress analysis,
although the development of progressive failure agrees with
the observation too.

Fig. 6.20 shows the yield status just before failure.
Because an average undrained strength C, is used in the
core, the yield ratio is much lower thai: that in the
effective analysis at the corresponding point. Therefore,
the main defect is that the failure process cannot be truly
simulated by using the undrained strength C,, especially in
the upper portion of the core at lower stress levels. The
intermediate results just after failure show that failure is
further promoted not only by shear but also by severe
cracking. This is because progressive failure was further
promoted in the Yellow Clay layer, but frictional failure is
not attainable in the upper core. To accommodate further
deformations, a lot of cracks are developed.

Fig. 6.21 illustrates the yield status along the
observed slip surface. By comparing Fig. 6.19, the yielding
degree is also lower than that along the critical slip
surface. Trial calculations also show the so-determined
critical slip surface is the most dangerous one among the
assumed slip surfaces nearby. The reduction of strength

parameters in the above two figures will be used to
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determine the conventional factor of safety in the next

section.

6.3.4 Discussion of factors of safety

1f the limit equilibrium method is used directly, the
factor of safety is hard to determine for the structure in
which progressive failure due to strain softening develops,
since the reduction of the strength parameters is unknown.
The finite element method can be used to determine the
reduction but provides no factor of safety. When the
estimated reduction of strength from finite element analyses
is used in determining factors of safety, some theoretical
and numerical aspects need to be mentioned.

Experience has shown that the so-determined factor of
safety might be on the unsafe side. Models used in limit
equilibrium analyses corresponds with layered models. The
corresponding defin.tions of failure criteria are generally
different from those used in finite element analyses. For
example, a point which fails under the von-Mises criterion
might not fail in a limit equilibrium analysis when the same
undrained strength is adopted. Besides, we need strain
distributions to estimate strength reduction. However, at
present, prediction of deformation by finite element
analyses is not accurate enough. Finally, the reliable
strength reduction distribution can be taken from the
converged results just before failure and so the error in

determining the critical load may also lead to a factor of
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safety on the unsafe side. Clarification of the above
theoretical and numerical problems is beyond the scope of
this thesis., What is intended here is to give a try and see
what experience we can gain.

The calculations of factors of safety are done by the
Sarma method while the reduction of strength parameters is
based on the corresponding finite element results. The pore
pressure distribution is taken from the interpolated data
output from program RESTRE (Fig. 6.22). The factors of

safety for the effective stress analysis are listed in Table

6.1.

Table 6.1 Factor of safety - effective

stress
analyses
Strength Observed slip | Critical slip
surface surface
Peak(intact) | 1.46 | 1.47
Bulk | 1.16 | 1.17

Reduced due 1.04 1.05
to softening

Critical dam height is EL.200.10m, Fstg=1.00

The bulk strength in Table 6.1 corresponds to the peak
strength used in finite element analyses. The bulk strength
parameters can be found in Table 5.6. In giving those
parameters, all defects in the soils have been considered.
The corresponding factor of safety is lower than that of

1.22 given in the "REPORT" due to the following reasons.
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Firstly, higher pore pressures are adopted by reviewing all
the observed data. Secondly, lower strength parameters are
used in the berm at the toe and in the top of the dam where
cracking develops.

The first experience gained from the results is that
the critical slip surface obtained in finite element
analyses may not be the most critical potential slip surface
in limit equilibrium analyses. This may be mainly due to
differences in defining the failure criteria. In other word,
a point which fails under the two dimensional Mohr-coulomb
criterion in finite element analyses, now, may not fail
under the same one dimensional criterion along the slip
surface.

The expected factor of safety obtained from the reduced
strength due to softening should be 1.0, since the dam fails
at this height. But, the result is about 5% higher than we
expect. Although the possible reasons have been listed at
the beginning it is hard to tell which one is important. It
is better just to consider this difference as an experience,
since we have just done one trial with one set of input
data. It is meaningless in practice to find the factor of
safety at the design height EL,201.0m, since such a design
should be revised.

The factors of safety for the total stress analysis can
be found in Table 6.2 and 6.3. In Table 6.2, the dam does
not fail at the real height EL. 201.0m. With the available

strength, the safety factor is between 1.17 to 1.19, this
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value is totally unreliable. If the strength is reduced by a
factor of 1.17, the dam will fails at an elevation much
lower than EL. 201.0m. In fact, the dam will fail at EL.
200.85m with a strength reduction factor (F, ) of only 1.05

in the finite element analyses.

Table 6.2 Factor of safety - total stress

analyses(a)
Strength Observed slip | Critical slip
surface surface
Bulk | 1.22 | 1.24

Reduced due 1.17 1.19
to softening

Critical dam height is EL.201.00m, Fstg=1.00

It is difficult to estimate an intact peak strength for
the core in total stress analyses. The average bulk strength
for the Core is given as explained in Section 5.2.4.1. For
other materials, defects in soils have been considered in

giving the bulk strength (Table 5.6).

Table 6.3 Factor of safety - total stress

analyses(b)
Strength Observed slip | Critical slip
surface surface
Bulk | 1.18 | 1.20

Reduced due 1.10 1.13
to softening

Critical dam height is EL.200.85m, F, =1,05
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In the Table 6.3, the bulk strength is calculated by
using the reduction factor (F,,=1.05).

After using the reduction factor (F, ) of 1.05 in the
analysis the dam fails and so the expected factor of safety
should be 1.0 in the corresponding limit equilibrium
analyses. Unfortunately, this time, we have an even larger
error of about 0.10 to 0.13 on the unsafe side. Beside other
reasons, another important reason lies in the poor
performance of the total stress analysis in simulating the
yield status in the upper portion of the dam.

It seems much more reliable to find the factor of
safety at EL. 201.0m by interpolation w.il. respect to F.
and the dam height. In other words, only the firnite element
results are used. Since EL., 200.85m is very clouse to EL.
201.00m, no interpolation is needed, a factor of safety can
be taken as about 1.05. This value is still about 5% higher
than the real case. As a general example, suppose that
H,=200.8, if F,,,=1.05, and H=200.2, if F,,=1.07, then, if
H.=201.0, we have

_ 201.0-200.8 _
1.05 + (1.05-1.07) x S55se=2raes = 1.043

(Fstg)EL.ZOI =

Now, the above wvalue of Fgeg Can be taken as an estimated

value of factor of safety.
To use the above estimation, at least, three runs of
finite element analyses are generally needed. It is very

expensive and the error is still about 5% according to our
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experience. However, if it is used with caution, say, with
an allowance of 5%-10% for effective stress analyses, it may
be used safely in practice. It is difficult to explain this
error clearly in view of both the uncertainty in theories
and problems in calculations. If the mobilized strengths
from one finite element analysis are used in limit
equilibrium analyses for the designed height, an allowance
of about 15%-20% may be needed according to our experience.
The true solution of this problem depends on the accumulated

experience in the future.

6.4 Parametric study

Since there exist uncertainties in determining the
material parameters, parametric studies have been done to
evaluate the reliability of the final results described in
the foregoing section. However, computation funds and time
are limited, hence, only a few trial runs have been carried
cut. Within reasonable ranges of the material parameters,
211 runs are successful and the same conclusions on failure
mechanism can be drawn. Certainly the critical dam heights
z. failure are different because different parameters are
used. As shown in Fig. 6.15, all the critical slip surfaces
are located above the observed one in a narrow shaded area
in the core and pass through the Yellow Clay layer. This
implies the effectiveness of the formulation and the
reliability of the final results. Here, only the mairn

implications concerning the reliability of the results are
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described.

Three runs of total stress analyses have been carried
out to test the influence of softening rates. Factors to
increase initial rates are 1.0, 2.0 and 4.0 in sequence. The
dam does not fail at El. 201.0m for factors 1.0 and 2.0 and
fails at EL, 199.20m for a factor of 4.0. By applying
further load on the top of the dam, equivalent to a height
at El. 202.05, the dam will fail for a factor of 1.0. If the
factor is 4.0, the softening rates of any material is beyond
the range given by the limited test data. However, the
influence on the critical height is small. Therefore, the
adopted softening parameters can be considered reliable.
Probably, the small influence can be attributed to the stiff
support provided by the filter and shell materials. On
average, their elastic moduli are 10 to 20 times of that of
the core material. An even stiffer foundation also provides
constraints to limit strain softening.

The influence of the dilation angle y' is also
investigated by changing y' from 0 to ¢'. With ¢' being
equal to ¢', we obtain the associated flow law. The results
of the effective stress analysis for the non-associated flow
law ( i.e. ¥' = 0 ) have been described in detail before,
with the critical height (H;,) reached at EL. 200.1m.
However, with y' = ¢', the critical height is only EL.
195.6m when using cracking models in which closures of
cracks are contidered. But, the height can reach to EL.

197.85m by using perfect elastoplastic tension models in



245

which cracks are assumed to remain open near failure. Severe
cracking can be observed when cracking models are used near
failure. As explained in Chapter 2, oscillation of the
results occurs during iteration, unreasonably high
compressive stresses (-10* to -10° kpa) can be found and
tension spreads quickly to most of the upstream dam body,
leading to a divergent solution., The perfect models yield
better results, but the critical height is still too low as
compared with the observed height at EL. 201.0m,

The above results may be caused by larger dilations,
hence larger strains, which depart from the continuous
deformation in many places in the core and then in the whole
upstream dam body. It may also be caused by poor performance
of iteration methods in treating regional cracking. No
further study has been made. At least, the conclusion that
the non-associated model is suitable can be drawn for cur
case history.

By decreasing all the elastic moduli to half in another
trial effective stress analysis, the critical height is
reached at EL. 198.75m, about 1.35m lower than that in the
recommended results. It is because softer materials provides
less constraint to the development cof the plastic strain in
the core and Yellow Clay layer, hence cause larger reduction
-f material strengths. The horizontal displacements increase
by 2.1 to 2.3 times on average and fit the observed
displacement better. But the vertical deformation,

especially in the core are not satisfactory, e.qg. the
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vertical strains are about 1.4 to 1.7 times higher as
compared with the observed values. If the horizontal elastic
moduli of the filter and shell are decreased to half, both
the horizontal displacements and vertical displacements
agree with the observed data much better, but the critical
height is determined at EL. 198.90m, 1.20m lower than that
of the original one, and 2.10m than the observed height.
There are many other factors which will affect the
deformation quan-ities. Therefore, the above results cannot
be used as a back-analysis of elastic moduli.

The magnitude of the pore pressure affect the results a
great deal. If a factor of 1.1 is used to increase the pore
pressure. The calculated critical dam height is as low as
196.05m, nearly 5m lower than the real situation with a lot
of cracks in the core. A factor of 0.9 make the dam stable
even if a further load increment (equivalent to a 2m high
fill) is applied above the real dam height. It seems that
the adopted pore pressure distribution is acceptable.

Our objective is only to evaluate the reliability of
the results presented in the beginning of this chapter. The
changes of the parameters in the above trial runs, strictly
speaking, are a little bit arbitrary. Therefore, none of the
trial results are plotted and recommended as final results.

In conclusion, the finite element formulation in
Chapter 2 are effective, the mesh and iteration procedures
suggested ip chapter 3 are appropriate, the selected models

and adopted parameters are basically guitable, and all these
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make the recommended results in this chapter satisfactory
and reliable in analysing the failure mechanism of the
Carsington Dam. However, post failure behavior cannot be
simulated due to the limitations of the adopted theories,
and accurate prediction of deformations is not attainable
due to lack of enough information. Effective stress analyses
are superior to total stress analyses and are recommended
whenever pore pressures are available. At present, more
effective applications can be found in a history-matching
mode. By adjnsting material parameters from observed data
during construction, more fruitful results can be obtained
by finite element analyses and useful experiences can be
accumulated for the future. The use of safety factor still
remains as a problem for the structure with strain softening

involved.



7. CONCLUSIONS

7.1 Conclusions

The effectiveness of the nonlinear finite element
analysis to simulate the mechanism of progressive failure
due to strain softening has been proved for such a complex
engineering problem as the Carsington Dam failure. However,
satisfactory prediction of deformations still remains as a
major problem in view of the cost invested for each run on
the computer.

An effective and efficient application of the
non-linear finite element methods comprises a series of
links, including adoption of proper theories for the
formulation, determination of reliable material models and
parameters, design of a mesh with suitable density, division
of sufficiently small load increments, selection of
appropriate iteration methods and accurate enough criteria
for convergence as well as correct interpretation of the
numerical results. The conclusions and implications obtained
from the research will be described below. Although certain
conclusions are problem dependent, they are helpful in
demonstrating a proper way to use the non-linear finite
element analyses and can be used for reference to other
rock-earthfill dams.

The Lagrangian formulation based on the incremental
theory of plasticity for small strain and deformation can

reveal the failure mechanism from low loading stages to the

248
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formation of the incipient slip surface provided that local
collapses due to cracking or dislocation do not occur or are
simulated by brittle models in limited and very small areas.
In the framework of the adopted theory the true solution can
be obtained in the incremental sense if and only if the
loading criteria are obeyed. Brittle models can be used to
avoid absurd solutions when the loading criteria are
violated. The conditions of small strain and deformation are
generally satisfied in a man-made structure. Otherwise,
either the design may be revised if in the design stage or
other theories should be used. The adopted formulation is
powerless to simulate the post-failure mechanism and unable
to reveal the formation of eventual slip surface except in
weak layers. There exists a transition from the incipient
slip surface to the eventual slip surface due to the change
of principle stress orientations under large deformation,
accompanied by dislocations in shear bands and large
openings.

Theoretical eigenvalue analyses are made with respect
to the elastoplastic matrix (Chapter 2, Appendix B). This
helps check the correctness of material parameters in
agreement with the desired behavior and reveals the capacity
of the elastoplastic model to capture localized
deformations. The solution behavior of a system with
negative stiffness inside a body is also studied from theory
to practice(Chapter 2, Appendix D and E). By using the

brittle model, theoretically , any complex problem can be
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solved with reasonable results for engineering judgement, if
it can be defined within the scope of the above theories.
Complex examples or case histories are needed to validate
the theories and recommended methods.

The Mohr-Coulomb model is not suitable at very low
stress levels near zero, especially when no tension analyses
are used. It is better to use an elastic model at the first
incremental step. The stiff foundation and stiff materials
of the filter and shell limit strain softening in our case
history. Therefore, the influence of softening rate is not
appreciable before failure and the hyperbolic softening
model with two parameters is acceptable. More complicated
models which fit the test data better should be adopted when
strain softening plays a greater part. By using both the
criteria for cracks in the stress space and the criteria for
their closure in the strain space, bad convergent speed and
unreasonably high stresses may be encountered because of
tremendous modulus difference before and after closure and
also because of errors in calculating the strain just at
closure. However, the bad performance occurs only when the
structure is near failure and cracks open seriously in a
region., At lower loading levels, the cracking model yields
more reasonable solutions than the model derived only in the
stress space by using elastoplastic theory. The latter seems
more effective when the structure is near failure, since the
cracks remain open in our case history. Neither of the two

cracking models can garantee satisfactory solution for any
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situation. In the final analysis, modelling cracks is beyond
the scope of continuum mechanics. The present treatment of
cracks under the assumption of continuity can only help us
to obtain more reasonable results under the condition that
the failure is dominated by shear.

Effective stress analyses are superior to total stress
analyses in simulating the failure mechanism. The main
reason is the conditions for the tests of undrained strength
C, cannot reflect the real situation in the core, especially
in the upper portion where the stress level is low and the
undrained condition is not maintained. The main shortcomimg
of effective stress analyses is that the pore pressure
distribution must be known or must be calculated from
reliable pore pressure parameters. Effective stress analyses
are recommended whenever possible and effort should be made
both in laboratory tests and field investigation to help
gather necessary data for an engineering project. However,
by experience, the results of total stress analyses are
acceptable and can be used in preliminary study since less
information is needed.

Guidelines for mesh design, division of load
increments, selection of iteration method and criteria for
convergence are given in Chapter 3. They are piubiem
dependent but useful for similar analyses in dam
engineering. For reliable results, considerations of those
links are necessary. Conclusions of general significance are

listed as follows,
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1. Ecnomical benefits can be gained more from a mesh
with suitahle density than from improvement of
iteration methods. For repeated runs on different
working conditions or similar sections, a mesh study
is suggested.

2. The replacement of the conventional large foundation
by an elastic layer with equivalent vertical
deformation modulus may yield similar deformation
patterns and failure mechanism, but errors of
horizontal deformations cannot be controlled without
knowing the equivalent modulus in this direction.

3. The error tolerance for a convergence displacement
solution is important in determining the critical
load just before failure. Trial calculations are
less expensive and should k= carried out to
quarantee reliable results.

The recommended results from the effective and total
stress analyses show that the sudden failure of the
Carsington Dam is promoted by strain softening, starting
from the highly strained boot (Fig. 6.16). The determined
incipient slip surface from an effective stress analysis can
be considered as a good approximation as compared with the
observed one. The error of conventional factor of safety is
less than 2% along these two slip surfaces. The vertical
deformations fit better with the observation data, but
considerable error of 50% to 100% can be found in predicting

horizontal deformations.
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The newly-developed integration techniques (Chapter 6)
are proved to be effective in locating the incipient slip
surface. They only apply to shear failure.

Experience should be accumulated for a confident use of
conventional factors of safety when the reduced strength is
estimated from finite element analyses. The so-determined
factor of safety seems on the unsafe side. Theoretically,
this is because the thoeries backing up the limit
equilibrium and finite element analyses are totally
different. Practically, factors in calculation will also
affect the value of factor of safety. The most important
factors are the division of increment steps and the error
tolerance for convergence. They will influence the critical
dam height, hence the extent of the development of plastic

strains along the slip surface.

7.2 Recoamg.cations

Phe o.certainty of the input information prevents the
nonlinear finite element analysis from finding wider
application in practice. On the one side, techniques of
field investigation and laboratory tests should be improved,
especially in determining the material parameters related to
deformation such as deformation moduli and strain scftening
rates and in clarifying in-situ conditions such as pore
pressure and in-situ stress distributions. On the other
hand, before the design, during and after the construction

of a major project, special effort should be made to gather
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useful information. Otherwise, the situation that case
histories can be rarely found might not be changed. Here,
the cooperation of scientists and engineers are very
important. At present, analyses in history-matching mode
during construction may be more effective and fruitful,
therefore are highly recommended.

Although the research shows promising results in
understanding the progressive failure due to strain
softening, more case histories need to be analysed to obtain
more comprehensive knowledge. Especially, case histories in
which strain softening has fully developed alony the
softening curve needs to be studied.

There exist a lot of case histories in which cracks may
open here and there but the failure is dominated by shear
and the strain and deformation is small except around
cracks. The cracking model may improve the solution, but,
the regional cracking predicted near failure is often not
true. What we observed during failure is two or more
continuous bodies separated by primary cracks and shear
bands which may or may not be dislocated. A combined
solution method with both continuous and discontinuous
models needs to be studied. By using or modifying the
available contact elements, internal degrees of freedom,
re-meshing techniques, or pseudo-dynamic approach, the
solution seems feasible. Although the formulation is more
complicated, no more material parameters are needed and the

results may be more reasonable.
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The transition from the incipient failure to eventual
failure cannot be solved by the present formulation. The
simulation of post-failure behavior is generally not
important for a man-made structure. However, it might be
important for natural structures such as landslides. The
incipient failure is not allowed for any dam, but it might
not cause an unacceptable failure of a natural slope from
the engineering point of view. More complicated formulations
and discontinous models need to be developed to tackle this
interesting problem.

Experience in this research shows that unstable
solutions or slow convergence will occur when cracking
models are used near failure. Little work has been done in
this research to analyse the reasons. Numerical methods may

be improved or other iteration methods may be tried.
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A. APPENDIX - THE MOHR-COULOMB MODEL WITH HYPERBOLIC STRAIN
SOFTENING

Chan (1986) introduced hyperbolic strain softening into
the von-Mises model and gave the specific expressions in
detail. In this model, linear elastic behavior is assumed
before peak, the yield surface will contract in the stress
space, and the decrease of shear strength to its residual is
simulated by a hyperbolic function measured in terms of
equivalent strain as shown in Fig. A.1. Since we need the
basic expressions of this model to extend similar softening
behavior to the Mohr-Coulomb model, we still list them as
follows.

The yield function is defined as

F=q-kx=20, (a.1)
in which
q = v3J, , (a.2)
-e'P
kK = kp(1 - pors_t (A.3)
where

k, is the uniaxial compressive peak strength with the
residual value being k,. For the strength parameters
below, subscripts , and , are for the peak and residual

values respectively. And
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Hyperbolic strain sof:taning model
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¢? = [de® = equivalent plastic strain,
ae® = (2aef,ael))"?,
de}; = def; - dey8;y/3,

de% increment of plastic strain tensors, (A.4)

with a and b being material parameters,

b = 1/(1-x./kp) , (A.5)

or by introducing the brittleness index

_ KpTk,

(A.6)

b = -+ . th.7)

Therefore, b only depends on the peak and resifsl
strengths. The parameter a can be obtain from tne

expression:

Q

K_ _ _(k -p _

a-é-p = (a) ’ at € 0 . (AoB)
This indicates that k,/a is the tangent of the initial slope
for softening just after peak. This model is simple to use
since only one parameter , i.e. a, needs to be determined in

addition to those obtained from conventional laboratory
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tests.

The specific expressions for the Mohr-Coulomb model are
known., We only discuss how to use two extra parameters, &,
for the cohesion C and a, for the friction angle ¢ in
introducing softening behavior into the Mohr-Coulomb model.

Its yield function takes the form:
F = o,8ing + ocosf, - 5§sin¢sin0° - C cos¢ ,
in which

AT o = V3J,;,

Q
Li

1 arsin[ (-3/33,)/237%] . (A.9)

6, 3

By following Chan's definition, we define

€

C = &pl1 - ;::SZ?F—-) , (A.10)
b. = 1/(1-C,/C,) , (A.11)
I,. = (1-C./C,) , (A.12)

and a. can be found from

at € =0. (A.13)
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Then, we define

= ¢p(1- ;::B:gs——) ' (A.14)
b, = 1/(1-¢,/¢,) , (A.15)
Iz, = 1-¢./¢p . (A.16)

and a, can be found from

2 - (&, at &€ =0 . (A.17)

Now, the only task is to derive the specific
expressions of <5—_ {—Q} for the hardening term in the
general egn. 2.17. Here, the conventional assumption for the
potential function Q is adopted by replacing the friction
angle ¢ in egn. A.9 by another angle Y. Its range is defined
as

0 sys ¢ .
I1f y=¢, we have the associated flow law. With a smaller
value of ¥ than ¢, the calculated dilation may fit field or
laboratory observations much better.

By indroducing the equivalent plastic st:ain (eqn.

A.4), i. can be obtained that

oF 90, _doF =
<a_£P >{aa} = EEP—-Q ’ (A.18)
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in which

_/Z2[20 30 _ 120 230 Ji

0 = . (a.19)
Q V3 aaij 90, 3 oo, Od0,,

The derivation of the above expressions and the specific

expression of Q for the Morh-Coulomb model can be found in

the thesis of Chan (1986), while the expressions for {gg%
€

are given as follows. Since

%FEP - _g% %4’_?_ + g_z i;%p , (a.20)
by using egn. A.9, A.10 and A.14, we have
%% = 0,005¢ - ggcos¢sin0° + C sing , (a.21a)
—?é—p = -a,¢./(a,+ b,e*)? , T
g.c_ = -cos¢ , (A.21c)
_?a%p = ~a../ (8t beeti? . (A.21d)
Therefore,
%29 = (o,cos¢ - ggcos¢sin0° + C sing) x
(Liltz")z ] * °°S¢[ (aa::;cz")z ] ' (a.22)



B. APPENDIX - ANALYTICAL EIGENVALUE ANALYSES
The derivations of eigenvalues and eigenvectors are
very long and need certain techniques. For brevity, only
main expressions are listed. However, the proof of the
correctness of the results will be much easier by using

back-subsitutions into basic equations.

B.1 Eigenvalue Study on Elastic Constitutive Relationship
The elastic matrix in principal stress space takes the

form:

1 v/(1-v) v/(1-p)
[cB1 = BE(1-0) /[ (1+0) (1-20) 1| 2/ (1) 1 v/{1-v)

v/(1-v) »/(1-») 1
(B.1)

The equations for eigenvalues are given by the condition

that the following linear equations have non-trival

solutions.
cB.-n B, B, Ae
C§1 C:Ez:ra‘7t CEa be,| = 0
C§1 CEZ C?g-)\ Aea (B.Z)

or the determinant of ([CE]-A[1]) is zero ([I] is identity).

And so we obtain

NepAl+gr+s=0, {B.3)

in which
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p = -3a, q = 3(a’-b?), s = -a(a-b)?(a+2b) ,
E(1-v)/[(1+v)(1-2v)], b=Ev/[ (1+v) (1-20)] .

o
n

By solving the above eguation, we obtain

a+2b = E/(1-2v) ,

>
fl

A, = a-b =E/(1+») ,

A, = a-b =E/(1+») . {B.4)

Since »>0, the sufficient and necessary condition for the
positive definite nature of [c] is -1<»<0.5. 1f »=0.5, the
material becomes “‘compressible. By substituting A, into

eqn. B.2, it ig +o find the corresponding normalized
eigenvetor to u-

T 1 1 T
<Ae, Ae, Ae> = % 7 73 (B.5)

which corresponds to an isotropicelly stressed state.

For the double roots (XA, and 1;), we have
Ae, + Ae, + De; = 0, (B.6)

vhich corresponds to pure shear states wi:’ .t volume

change. Three typical eigenvetors for pure shear are



T

<Ae, Ae, Be> = <-/-§'

<Ae, Ae, Ae3>T = <0

<Ae, Be, Dep>" = <=
V2

Only two of the above three are independent.
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(B.7)

When a new constitutive relationship is adopted, an

eigenvalue analysis is very helpful, even for elastic

models. We take the orthogonally anisotropic model as an

example. In a plane strain problem, the elastic matrix is

abo
bdo in wiich,

0 0G:

The notations of the parameters

eqn. 2.23.
N, = 2(at
;= 5la d) +
A -l(.,. -
, = 3(a+d)
k3=G2.

It is easy to see all the eigenvalues are real. The

It can be found that
1 (a-a)*+p*1"*

3 (a-a)2+p"1"?

E,(1-nvi)/B ,
E,nv,(1+v,)/B ,
E,/(1-v})/B ,

(14»,) (1-»,-20p2) .

(B.8)

are shown in Fig. 2.3 and

(B.9)
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condition for three positive eigenvalues can be found as

- - (l&. 2
1 - v, -2 E2)v2 >0 . (B.10)
Improper selection of elastic parameters may destory the

postive definite nature.

B.2 Eigenvalue Study on perfect Elastoplastic Relationship
First, let us work on the perfect elastoplastic
relationship under the associated flow law, i.e. F=Q. In the
principal stress space, the elastic matrix has been given in
eqn. B.1. We write the gradient of the yield function as
oF 9F OJF <°F

36> = 3o, B0, a03>= <f! £} £4> . (B.11)

By calculation, we have

(£3)2+(£3)2+2vE3 1}

[c®P1 = E,
SYM,
yEL(Ey-E3-£3)-£1£2 pEL(EL-£3-E3)-E£1ES
(£1)2+(£3)2+20E 3£ pEy(£-£3-£3)-£2£)
(£y)2+(£3)2+2vE0 83
(B.12)
in which,

E, = —(—1—%,,—)-/[(1—»)((f;)=+(fa)=+(fs)=)+2v(f',f;+f'zfg,+fgf',)] :
(B.13)
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Here, E, is a stiffness factor and will always be positive

during loading. It can be proved by using the loading

criterion 1, (egn. 2.9, 2.10, 2.15 and Table 2.1). By

solving basic equations, we have

A, =0,
A, = E/(1+0)
A; = Ea(1+V)[(f§)’+(f5)’+(f5)’] ' (B.14)

Both A, and A; are positive, and the corresponding

eigenvectors are

£3 f2-£3 £3(EY-£3)-£3(£5-£3)
£2 fi-£5 £L(E3-£3)-£Y(£3-£2)
£3 £i-£2 EV(EY-£4)-E3(£5-£3)

(B.15)

for A,, \,, and A, respectively (Fig. 2.4a). Normalization is
omited for brevity.

It is easy to prove the orthogonality of the above
three vectors by calculating the dot products.

The derivation for the non-associated case is more
complicated, but same procedure can be followed as above.

Let the gradients of the yield and potential functions be

expressed as

JF BF OF OF . _ pr g1 £1>

<%0 © <aa1 o0, 00,
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Q. _ B0 90 980, _ 4 '
<35> = %0, 30, 303> = <q} 9z q3> - (B.16)

Then, the elastoplastic matrix takes the form:

qrE+abfi+r (QiEiradty)
[cBP] = B |v(-qifi-qifi+aiil)-qif}

v(-qif3-qifi+qifi)-qsfy

»(-qiE3-qifs+qiEd)-qify v (-qifi-qifi*qifi)-qgifs
QiEi+qiEi+r(giEi+astl) v(-qifi-gifi+qifi)-qifs
b (-qyEi-giEi+qiEl)-qify qiEi+qifitv(Qifi+qifi)

B.17)
in which
B = Tr57/[(172) (Ei@i*E3ai+Ead)
+v(q%f5+q%f5+qéf§+q5f5+q5f%+q§f5)] . (B.18)
E is a stiffness factor for the non-associated case and

una

will always be positive during loading as proved for the

associated case.

The three eigenvalues can be solved as

fl
o

M

’

>
~N
n

E/(1+V) ’

A, = B (1+p) (£lqi+E5qi+Eiqs) . (B.19)

una
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It is no doubt that A, is positive. A, should be positive

for the perfect case. This requires that {%5} and {%%} make

an acute angle.

The corresponding eigenvectors are

q} fy-£3 £3(qy-qy)-£3(qi-qi)
aj £y-f} £3(q3-qs)-fi(qi-qz)
as £i-£2 £y(qi-q})-£fi(gi-q}) (B.20)

for A,, A\, and A, respectively. The normalization is also

omitted here.

The first eigenvector <%%> for \,=0 may no longer be
perpendicular to the other two (Fig. 2.4b), since the
elastoplastic matrix is generally not symmetric. However,
the other two eigenvectors together with the gradient of the

yield surface constitute three orthogonal bases in the

- stress space.

B.3 Eigenvalue Study on Elastoplastic Model with Strain

Softening

The study is carried out only in the two dimensional
stress space. The focus is concentrated on the strain
softening materials. For convenience, in egn. 2.17 we define

the perfect elastoplastic term kPt as

kPETE - <%%>[CB]{%%} . (B.21)

The plastic hardening (or softening) parameter h® may be
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expressed as the ratio of the hardening term to the perfect

term, i.e.

P 1 oF 0
h = - ;ﬁﬁ?‘<323> {5%} ' (B.22)

and hardening (or softening) parameter h is defined as

hp
1+h°

h = or n o= o (B.23)

We rewrite the elastic matrix (egn. 2.17) as

gy _ reEq _ (1=h) rE9¢3Q, (BF E
[c*] = [C°] - (perr LC Hge) {351 €] . (B.24)
In a two dimensional stress space, the form of the
elastoplastic matrix including strain softening can be

formulated from egn. B.23 and B.24 with the result:

Ep 1 v/(1-v)
[c®F] = E(1-0)/(1+p) (1-20)
v/(1-1) i
ad bd
- 1/[kpe”f(1+hp)][ ]
ae be (B-25a)

in which, k®'f is the perfect elastoplastic term, hP is the

strength softening parameter, and

a = (1+;=)%T~2p)[(1_1))f!‘+1’f'3] ’ (B.25b)

E ] 1
b = (1+m1_2v)[9f1+(1-l’)f3] ’ (B.ZSC)
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_B_ - v '
d = (1*?)(1‘2V)[(1 V)q1+VQ3] ' (B.25d)

+(1-»)qgil , (B.25e)

__E '
e = (1+v)(1u2u)["q’
Let

ko = (1-») (£iqi+£iqs) + v(figi+fiql) . (B.26)

wWe further define

B
ko (1+h°) (14v) (1-2») (B.27)

which is a stiffness factor for the strain softening case.

Now,

Ciy Caz
[c®F1 = Bylc] = Eh[ ]
C21 C22

By actual calculations, we obtain,

- [(1-v)kohp+(1-2v)f5q5 vkohE-(1-2») £1a}
Cl =

vkohP-(1-22)£}q} (1-2)kohE+(1-20) £1q}
B.28)

The equation for the eigenvalues of [c®®] can be derived as

(%ﬁ»’ - (c”+cn)(§;) + (Cy,Cpy=C1sCs1) = O . (B.29)
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1t can be shown that if

det[C®] = E2(Cy,Cpy = CisCay) < 0 (B.30)

the above equation has two real roots and one is positive

and the other is negative, the expressions of the two roots

are

C,y*C C,y=C
e e A (B.31)
e C,y-C ,
N, = Byl + [(F5—)4C0C 1Y (8.32)

in which A,<0 and A,>0 and expressions of Ey, Cyy C,,, C,; and
C,, can be found in egqn. B.27 to B.28.

If the determinant of [C*] is greater than or equal to
zero, the above expressions may include strain hardening,
strain softening in two directions and perfect case. The
specific conditions depend on many prameters. No further
discussion is given.

By solving the equation for eigenvectors for A\, and A,,

the normlized eigenvectors are

vei9 <cosp sinp>’ and ¥;°= <cosy siny>" , (B.33a)

respectively, in which
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o C,,-C,,
() - [(F5—)"C,Cp0) 17%3/¢,, .  (B.33b)

tang

(of C
—Cp/ (B CCui ) _ (&2t y24c ¢,1771 . (B.33c)

tany

Both B and y are measured from the positive direction of
axis o,. Although the notations used above are convenient
for the derivation, they are not convenient in plotting the
weak direction. The convenient forms can be obtained by
using the directional numbers of {aF} and {—Q} . In the two

dimensional stress space, we use

<cosB, sinB>" and <cosp, sing>" ,
in which
£9 ) f2
(;Qg_.',ﬁf = —R—f—', Slnﬁf = —R_f-' and Rf = [(f!l)z*'(fé)z] '
qi . az_
cosB, = -1%-, sing; = g—» and Ry = [(g})2+(qg})?] .
q q

(B.34)
Then, by using trigonomitric identities, we will obtain
(1-h)ER(R,

- _ 1, ) )
Ao keg( 1+2) (1-20) [{(1 ”)k:th + 2(1 2v)cos(B;=B,)}
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%{(1-2v)zcosz(ﬁq—ﬂf)-4vkmhp[(1-2v)sin(ﬁq+ﬁ:)-vkmhp]}vzl
(B.35a)

(1-h)ER,R
A, = £ [{(1-v)quhp + %(1-2v)cos(ﬁf-ﬁq)} +

keg(1+9) (1-29)

24 1-20)%cos? (B,~B;) ~4vkegh"L 1-2v)sin(Bq+Bf)—vktth]}1/2]

(B.35b)
v9'9= <cosp sing>’ , ¥5'9= <cosy siny>" , (B.35c)
with
tanpg = [{(1—2v)cos(Bt+Bq)} - {(1—2v)2cosz(Bq-Bf%-4vkmhpx

[(1-2v)sin(8q+Bf)-vktth]}1/2]/2[kath-(1-2u)sinB£coqu]
(B.354)
tany = [{(1-2v)cos(pf+ﬂq)} + {(1-20)%cos® (B =B ) ~4vkegh®x

[( 1—2v)sin(Bq+B,)-kaqh"] } '/2]/2[kath- (1-2») sinﬂ,cosﬁq]
(B.35e)

in which
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Keg = (1-v)cos(B,~B;) + vsin(ﬁq+ﬂf) . (B.35f)

Under the associated flow law, the above results for
eigenvectors take much simpler forms due to the symmetry of

matrix [C¥]. With B,=B,, two eigenvectors become orthogonal

and

V?g= <cosf sinp>" , (B.36a)

vil9% <-sing cosp>’ , (B.36b)
with

tan(28) = tan(2f,) - At ZUGE tan (28]

(B.36c)

Since A,#X,, let

[r,] = [¥59 9391, (B.37a)

we have the transformation equation:

[t,17'[c*10T,] = NI, (B.37b)

in which, [A,] is a diagonal matrix with the eigenvalues A,

and A, as the diagonal elements.
Now, let us discuss briefly how to illustrate the weak

direction in plots. For convenience, the weak direction is



defined by angle g in the o,~¢; space (Fig. B.1). B is the
angle measured from the first principal stress o, to the
weak direction. To keep the generality, the generalized
Mohr-coulomb criterion is illustrated in Fig. B.1. It takes

the form of

F=qg+mp~ K, (B.38)
in which
q = %(a,—aa) and p = %(01+03) . (B.39)

According to the incremental theory, m and k are constants
in an incremental loading step. By using the concept of the
apparent friction angle ¢, and cohesion C, as shown in the
Mohr diagram (Fig. B.1), the image of ¢, can be obtained in
the p-q space (marked as a;) and in the o,-0; space (marked
as B;). and, the image of weak direction in the o0,-0,; space
can also be obtained in the p-q Space (marked as a) and in
the Mohr diagram (marked as ¢). The relationships among

angle B, a and ¢ for the weak direction are
tana = sin¢ and a=8+ % . (B.40)
The above relationships also apply to ¢, @ and B;.

1t should be pointed out that the Mohr circle diagram

is not a plot of stress space. Mathematically, the images
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between the Mohr diagram and space 0,70, are not one to one
and the transformation is nonlinear. In soil machanics it is
better to use p-qQ stress space. Between space 0,~0; and p-Q,

the images are one to one and the transformation is linear.

B.4 The Impact of Strain Softening on the Global Stiffness
Matrix
Since the value of h may tend to +» due to very high
softening rate, the eigenvalue A may tends to -« (eqn.
B.35). Its influence on the global stiffness matrix can be
studied as follows. Substituting egn. B.37b into egn. 2.2,
the general expression of the global stiffness matrix

becomes

ne

[K] = Z J 8™[T, 10T, ' [A1[T,I[T,17[B] 42 , (B.41)
e=1 o
in which [T,] is the transformation matrix from the
principal stress space to the stress space defined in the
X-Y-2 system with other notations as mentioned before. When
we use the Gaussian method to integrate the above equation,
for the stiffness matrix [K;;], of each element,
NGP
-1
(Ki5)e =z Wyeno [ Bri (To) i (Ty ) yohan (T ) no (To Y opBpsid 7 (B.42)
NG=1
in which, W, is the weighted factor of the related Gaussian
points with a total number of NGP, d, is the three

dimensional volume factor (or two dimensional area factor),



283

the result inside the square bracket follows the law of
summation by using dummy suffixes with each variable being
the element of the corresponding matrix. Particularly,
A,,=0, if mzn.

The above expression indicates that (K;;). can be
considered as a linear combination of the eigenvalues i.e.

(Ki5)e= Zaghy (B.43)
in which the summation is with respect to the eigenvalues
(A,) of all the related Gaussian points, and a, is a finite
number if the shape of each element is properly designed.
With the related node displacements as prescribed boundary
conditions, the stiffness matrix for each node can be
studied by eigenvalue analyses in checking an obtained
solution. If there is no minus contribution from any related
Gaussian point, the stiffness matrix of this node is
positive definite. Otherwise, by using coordinate
transformation, we can find the stiffness along any
direction, since we already know the displacement solutions.
We still call this stiffness as K;; for simplicity. In
assembling the global stiffness matrix, the minus and

positive contributions will make K;; take the form
K, = (K));; + (Rp)y; (-» <K, S0, 0SK <+=) . (B.44)

Here, we divide the stiffness contribution into two parts
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for the convenience of the further study. (K,);; is negative
taking zero as its limit, and (K,);; is positive also taking
zero as its limit. If the negative part prevails, then K;;
will become negative. Here we only want to point out that

1. No matter how weak the softening process is, the
global stiffness matrix may not remain positive
definite, since softening may exist at an isolated
corner without other support or with regional
softening or cracking developing around the degree
of freedom concerned.

2. The positive definite nature of the global stiffness
matrix may be destoryed even if the strain softening
exists only at one Gaussian point, since the range
of the negative eigenvalue can be between 0 and -=.

Therefore, an indefinite stiffness matrix may be
encountered when strain softening is considered in the

calculation.



C. APPENDIX - SOLUTION OF THE ELASTICALLY CONNECTED COULOMB
DAMPING MODEL

When the system is transformed into a series of
independent degrees of freedom, under the action of
generalized forces defined by prescribed displacement
boundary conditions, each equation is the same in
mathematical form. For convenience, subscripts ;; or ; and
superscript ? for each degree of freedom (Fig. 2.5) are
omitted, and subscripts , or , are used to indicate the

damping and elastic elements. The basic equation is
AT = KAu = (K,+K,)Au . (c.1)

For positive stiffness contribution, K,>0 with
unloading elastic stiffness k,, and if K,=0, no positive
contribution exists (Fig. 2.6); for minus contribution, K,<0
with unloading elastic stiffness k,. We only study the case
with minus contribution. Before we give further discussion,
it should be mentioned that what we are doing is to check an
obtained solution. Therefore, all the expressions below can
be presented. For example, in trying loading directions by
using elastic models, we can obtain the elastic incremental
displacement Auf. After convergence, we have the total
incremental displacement Au and so we can have the
incremental plastic displacement AU’ at each degree of

freedom. By using the principle of virtual work, we can have

285
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the nodal force increments AT, AT® and AT from Ao, Aot and
Ac®. The yield function for the damping element is assumed
to be

F, =T - [T‘fm*h‘?km?l (u, < uy™®)

. (C.2a)
T°*is the nodel force at which strain softening just begins
at one or more related Gaussian integration points.

The global stiffness matrix can be assumed as constant
and it is independent of the past strain-stress history but
depends only on the present strain-stress state and loading
directions. Therefore, the above model is a general model in
the incremental sense, no matter how complex the material
models are or the loading history has been. We use (Ty), to
replace T°** in all the figures and formulations in order
to maintain the generality. Here, (T,), reflects the stress
state at the end of last incremental step.

We use linear assumption in one incremental step. If

the displacement exceeds a residual value ui™®,

F,=T - Ty (u, 2 uy"") . (C.2b)

This residual state is assumed under the linear softening
assumption. However, the obtained implications can be
extended to nonlinear cases as discussed in Section 2.3.4.
In eqgn. C.2a, uf is assumed to be the plastic deformation

and represented by the relative movement between the piston
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and shell (Fig. 2.5), hP is a minus egivalent softening

factor, and k, is used to keep the dimension consistent.

Let,

hP
h, = THP (-» < h, <0 and -1 <h® <0) . (C.3)

The above range is determined by a parametric study (Fig.
C.1). Beyond this range, the model either behaves like a
strength hardening one or the yield surfaée will contract in

the strain space. From the general equation 2,17, it can be

obtained that

K, = hk, (F =0, u <u™) (C.4a)

K, = 0 (F =0, u 2 u™) . (C.4b)

All the possible values of K, and K, will studied to
keep completeness. As shown in Fig. 2.7, there exists a
critical minus stiffness (K,).=-K, or a critical softening
parameter (h,).=-K,/k;, which corresponds with a zero
stiffness of this two element system.

If K<0, under stable displacement boundary conditions,
AT will in unloading direction opposite to that indicated in
the Fig. 2.5, but Au will be in compliance with (1T,), so
that the solution is permissible. However, it is can be

judged only after we have obtained the solution. Therefore,
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a full study on solution behavior is necessary.

Here, we only consider the case of AT in the direction
of (T,),. The complete displacement solutions are listed in
mable C.1. It shows that the consitency condition will

always be satisfied, even if K,+K,<0. The stable solution is

shown in Fig. 2.6.

Table C.1 Complete solution of displacements

Au=AT/(K 1 +K, )

Total Elastic Plastic Consistent
displacement |displacement |displacement condition
System Au h,Au (1-h,)Au  |du=AuP+auf
EL. 1 Au h,Au (1-h,)au  |Au,=du+auf
EL.2 Au Au 0 Au=aub+aud
Consistent condition of the system Au=Au,=Au;

The complete solutions of incremental nodal forces are
listed in Table C.2. The equilibrium conditions are also
satisfied even if K,+K,<0.

I1f we check the energy conservation of element 1, it is

also kept in the mathematical form, because

AW = (T,),Au + %(AT‘)(AU) (extenal work) ,

1 =

(C.5a)

AW = (T,) 80" + %(AT1)(AUP) (plastic work) ,
(C.5b)
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AER = (T,),Au° + %(AT1)(AUE) (elastic energy increment) .

(C.5¢c)
Table C.2 Complete solution of nodal forces
Au=AT/(K1+Kz)
Total Elastic |Plastic |Yield Consistency
Force Force Force condition|condition
System| AT= ATE= ATE = AT=ATE-ATF
(K1+K2)AU (k1+Kz)AU (k1'K1)AU
EL. 1 AT,= ATS= AT, = AF,=0 |AT,=ATE-ATS
K1AU k1AU (k1"K1)AU
EL.2 AT,= ATE= ATS= AT,=ATE-ATS
KzAu kzAu 0
Equilibrium condition of the system AT=AT +AT:

Note: Only element 1 vields. AF=AT1-k,hPAuP

But, if we check the sign of the above three terms, we
will find that for K=K,+K,<0, every thing is wrong. Due to
the impermissible direction of Au, the plastic work (eqgn.
C.5b and Fig. 2.8) is negative. Besides, the strength also
increases due to the increase of elastic deformation.

Since <3E,T in the loading criteria (egn. 2.13 to 2.15)

oo

now is equivalent to g%— with the value 1, 1,=AT, 12=ATE and
1

1,=AT°. It is easy to check out that all the loading

criteria are violated. The solution behavior under further



loading of external forces is listed in Table C.3.

Table C.3 Solution behavior

K,+K2 |h, AulPlastic |Loading |62 (Il)|Strength
work criteria

>0 | h_.<hy<0 | >0| >0 | Rept | >0 |decrease

o h:r +oo >0 Kept 0" |decrease

0 h;t - <0 Violated| 0 |increase

<0 ~e<hy<h_. | <0 <0 Violated| <0 |increase

Note: Superscripts + and - denote the direction of
a limit value,

The above table provides the criteria for us to judge the

solution behaviors.

A further understanding of unstable softening needs
studying this system in dynamics. We use equivalent
gravitational forces to replace the node forces, i.e.

M= T,/9 and AM = AT/g , (C.6)
i1. which g is the gravitational accelaratiom.

Set the initial position of the movement at u=u,, then

the dynamic eguation in the force equilibrium form becomes

(M+AM)AG = (M+*AM)g - T, = T, ,

in which,



T, = (To)y + n’k,au’ and T, = K,Au .

By using T, = (Ty) + K,Au ,

Let

_ oM (c.7)

The physical meaning of a is the accelaration of the mass
(M+AM) under the weight AT, Note that a>0 in this case.
Let

2 Ki*K,
P° = |W| . (c.8)

The dynamic equation will fall into three types according to

the value of K,+K,, ie

Al = a - P’Au (K,*+K, > 0) , (C.9a)
Al = a (K,+K, = 0) , (C.9b)
A = a + P’Au (K,+K, < 0) . (c.9¢c)



All of the above eguations have the same initial conditions:
£=0, Au=0 and t=0, AU=0. The first equation belongs to the
stable pseudo-harmonic type, while the other two are not.

Note that the discontinuity between "0 and 0" vanishes
here, because both egn. C.9a and C.9c take eqgn. C.9b as the
limit. The above equations are of the Coulomb damping type.
A complete solution of these simple equations is far more
complicated than those of the viscous damping type even with
constant Coulomb forces (Den Hartog, 1931). However, only
the first response and final equilibrium position are
necessary for us to interpret the unstable softening
process.

The solutions of the first response are listed in Table
C.4. Ip Fig. 2.9, the dynamic strain-stress paths are also
given for unstable softening. From the above table, we can
clearly see that a stable solution can be obtaned if and
only if K>0 and the final equilibrium position is same as
predicted in statics. Note that we are only taking the
response under the action of external force in the further
softening direction. If KsO, the infinite displacement in
the same direction of AT indicates that a local collapse
wiil occur. By neglecting the inertial term, Au will be
obtained in the wrong direction, which is impermissible in
statics. The above concepts are closely related to the

concept of a quasi-static process (see Appendix E in

detail).



Table C.4 The first dynamic response of Coulomd aamping
model

t=0, Au=0 and t=0, Au=0

Displacement |velocity |Azceleration
x=40u X | dx/dt | d2x/d*t o+
k>0 |ali-cos(pt)l/p* |a sin(pt)/p| a cos(pt) Au=AT/K
K=0 1/2(at?) at a Au-+e
k<0 lalch(pt)-11/p* |[a sh(pt)/p a ch(pt) Au~+e

ch(pt)=1/2(ept+e-pt) and sh(pt)=(1/2)(ept-e—pt)

Certainly, after the first response, displacements
cannot increase unlimitedly. In our simple linear model, the
dynamic equation will change its type until and only until
the strength is lowered down to the residual with K,=0 and
K=K,>0. Then, the motion is governed by the stable dynamic
equation C.9a until the final equilibrium position is

reached due to damping (Fig. 2.9).
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As explained in the section 2.3.3, brittle models can
be used to obtain meaningful results in unstable equilibrium
analyses when local collapses occur inside the structure. In
order to put the idea into practice, we shoud

1. use the loading criteria to judge local unstable
softening;

2. choose appropriate solution methods to eliminate the
possible effects of singularity of the global
equilibrium equation;

3. formulate the procedure for the application of
brittle models;

4, judge whether the results are on the safe side or
not.

In practice, the loading criteria for permissible
solution (Table 2.1) should be set up in the program with
respect to each Gaussian point.

Since all the unfavorable effects may caused by the
minus stiffness contribution, the Gaussian elimination
method by using primary elements is most suitable to
transform the global stiffness matrix into an upper
trianglar matrix. Unfortunately, most of computer programms
do not adopt the above solution procedure for the sake of
ecomomy. Nevertheless, by experience, the Gaussian
elimination method by using diagonal elements can generally

yield a complete solution for further judgement, but the

295



To avoid singularity, the following techniques are suggested

1. do not use any zero modulus in cracking models, but
use a very small postive number (say, 10™ to 10
times elastic modulus)

2. if zero diagonal element is detected during
elimination, assign a very small positive number to
it. In this case, we can not tell 0" from 0 if
softening is present., It can be determined in the
next iteration or incremental step.

After using bittle models, unstable solutions may
vanish, but may not due to collapses or further softening at
other Guass points. If we want to get a solution as accurate
as possible, we have no other choice but to try again and
again until the solution is stable.

Provided that the structure could be considered near
failure, we might use brittle models to all the related
Guassian points round the abnormal degree of freedom. If the
structure does fail, the solution is acceptable, since the
displacement values during failure are of less importance,
but we obtain a reasonable displacement field to study the
failure mechanism, If the structure does not fail, trials
should be made. Obviously, this technique needs experience.

The stiffness contribution (K, and K,) may change
during the local collapse. If all those changes are
incorporated into iterations, we are, in fact, seeking an

equivalent secant stiffness for the system. By experience,
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it is easy to deal with linear relationship, including
constant E and », linear yield or potential function with
respect to principal stress, linear softening (or hardening)
rate. But it is very difficult to deal with nonlinear
relationships. Limited by the computation budget, it is
often impractical to seek the exact equilibrium position
when all the nonlinear relationships are included. It is
suggested that E and » and softening (hardening) rates not
be modified in one incremental step. Therefore, errors will
be caused.

Although a strict theoretical error analysis is too
profound to present in this thesis, Fig. D.1 provides the
basic concepts for us to judge whether the results obtained
from brittle models are on the safe side or not for a bar
system. More general situations may be imagined concerning
the possible deviation of a solution in light of Fig. D.1 as
follows.

1. By using constant elastic parameters E and v, the
dislpacement solution may be on the safe side if E
increases with external loads and » increase as
yield functions tends to zero. Otherwise the results
may be on the unsafe side.

2. The deformation modulus of a strain hardening
material will be decreased after yield. Therefore,
without changing hardening rates, the results may be
on the unsafe side.

3. By using a brittle model to replace a strain
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Figure D.1: Possible errors in using brittle models
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softening model with hyperbolic softening rates, the
results will always be on the safe side, because the

residual strength can never be reached in such

models.

In short, an error analysis may be needed, at least, by

a parametric study. The steps to use brittle models are

listed as follows

1.

Techniques to treat singular and ill-conditioned
global equilibrium equations should be used to
quarantee a complete mathematical solution.

Use the loading criteria to make sure that the
solution is permissible at each Gaussian point. If
the solution is normal, do next incremental step.
Otherwise,

check the correctness of the selected models and the
range of material parameters as well as the
singularities in mesh design. In design stage, check
the design. If something needs revising, redo the
analysis after revision. If nothing needs modifying,
then,

use corresponding brittle models to replace
softening models at all the Gaussian points where
abnormal solutions have been found.

Repeat the calculation until the solutions at all
Gaussian points are normal, then do next step.
Follow the above procedure step by step until the

solution becomes divergent or unacceptable in view
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of the structure safety or the most unfavorable
loads have been applied to their maximum values.

The above steps are illustrated in a flow chart (Fig.

D.2).
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Check the capacity of equation solver against siqularity

‘__________4Revise program]
Not good

Good

Redo the analysis

Analyse strain and stress step by step

Redo the step
with sufficiently small load increment

Check the positiveness of plastic work or loading
criteria at each softening Gaussian point

Not OK --- unstable oK --- stable softening or reascnable
softening ’ approzimation by using brittle models

Safety of the Structure?

Revision of parmeters,

(engineering judgements)

models, geometry or mesh
No need Ok
2 [ B wor o st suepr
Do it EXIT
B?IT
Conclusions Result analysis

Figure D.2: Programming flow chart for unstable

strain softening



E. APPENDIX - INCREMENTAL THEORIES CONCERNING MATERIAL
STABILITY
In light of the study on the solution bevavior of finite
element analyses, the general incremental theory concerning
strain softening is reviewed and studied to deepen our

understanding.

E.1 Basic Assumptions

First, let us review the proof of the existence of the
minimum potential energy and unigueness of the solution in
the incremental theory. We should specially mention one
assumption and one condition behind the complex derivation
and deduction.

The assumption of linear stress strain path enables
linearization in nonlinear finite element analyses. It
provides an arbitrarily small distance along the
strain-stress path in each incremental step. The assumption
of an arbitrarily small distance can be made if and only if
the response can be simplified as a quasi-static process.
Otherwise, all the developed theories on the potential
energy or unigueness of solution are not applicable. Dynamic
theories are needed to describe such a process until the
object becomes stable at the new equilibrium position.

This assumption also is a sufficient condition for the
existence of the minimum potential energy for Drucker's
stable materials. The stable condition of a material may be

expressed as an inequality derived from Drucker's postulate

302
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in the form:

‘2) ()
I“)(OU - 05 )de;; 20 (E.1)
This inequality (Martin,1975) implies that, along any
strain-stress path from state(1) to state(2), the above
integration is non-negative. The equal sign may spoil the
uniqueness of displacements if the travelled distance along
the path is not zero. However, the solution is, at least,
defined in certain solution subspaces. We will not repeat
this note when we mention the uniqueness of solution. In the
incremental theory, the distance between the two integration
1imits should be an arbitrarily small quantity. In the first

order approximation, we have

_[Z:(aij -agg))deij = %<A0U>{Aeﬁ} . (E.2)
Under the assumption of linear paths, it is an exact
expression. Therefore, Martin's condition is equivalent to
that in terms of perturbation energy.

It is easy to prove that Drucker's postulate or
Martin's inequality is both necessary and sufficient
condition for a stable solution, if any kind of incremental
loads are allowed to act on the body under consideration.
Its sufficiency is well known, and it must be necessary,
otherwise, we can always apply a certain form of incremental

loads on the unstable material to destory the quasi-static
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state.

The behavior of strain softening materials violates
Martin's inequality. But, we may have true solution in the
arbitrarily close vicinity of the original equilibrium
position. This arouses our interest to seek narrower
sufficient condition, or further, the necessary and

sufficient condition for true incremental solutions.

E.2 Quasi-static State

In order to raise a narrower condition, let us consider
the condition that the process can be assumed as
quasi-static. As mentioned before, at least, it is a
necessary condition. In a purely mechanical system, it means
that a new equilibrium position should be gradually reached
within an arbitrarily small distance along the strain-stress
path for any point of the body, if external incremental
loads are arbitrarily small and applied or released so
slowly that time effect can be negelected. Therefore,
physically, it is easy to understand that it is also
sufficient for a normal solution.

Take the observed data in construction of an earth dam
as an example. If the dam remains stable, a quasi-static
process is indicated by a displacement-height curve without
minus stiffness and no local collapse found from sudden
increases of observed displacements in any portion of the
dam, although local strain softening of materials may takes

place here and there. Certainly, a stable solution can be
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obtained for such a quasi-static process.

Another example is a sample test for a strain softening
material. A quasi-static state is indicated by the stable
increase of the controlled boundary displacements, which
corresponds with an extremely slow release of the external
load. With stable incremental displacements as boundary
condition, a true solution can also be obtained.

Although the quasi-static condition i{s both necessary
and sufficient, but it is too general and too conceptual in
use. To be more specific, this concept is closely related
with the basic dynamic equations. For a point in the body,

the incremental equilibrium equation in direction i takes

the form:
aZAui
Boyy,; + AFy = P o (E.3)

where tensor expressions are used. The comma in subscripts
means the partial derivative with respect to the direction
indicated by the subscript following it. T is for real time,
p is the density and AF; is the incremental body force.

When displacement increments are taken as unknown, the
above equation becomes
ECjikl(Auk,lj"'Aul'kj) + AF1 = p—a_'I—'r- ’ (E-4)
in which Cy;,, is the constitutive tensor and AF; should be

arbitrarily small in the incremental theory. From the
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dynamic theory, we know that the above equation can be
transformed into independent equations in the eigenvector
directions of Cy;,,. With all the eigenvalues being positive,
the solution can be expressed in a harmonic (if Cyy,is
elastic) or pseudo-harmonic type (if Cyyy is for hardening),
and the amplitude will be arbitrarily small if the
incremental force is arbitrarily smail. Therefore, a
quasi-static condition can be assumed. If the Cj;,, is half
positive definite, the solution will be finite even infinite
in the direction corresponding to the zero eigenvalue.

when strain softening has developed in a certain region
of a body, under further loading, Cy; is indefinite with
minus eigenvalues, the basic motion corresponding to a minus
eigenvalue is in the form of hyperbolic cosine functions,
i.e.

-pT_ PT
By, = [A(S5"5—) + Bl . (E.5)

in which P are real number defined by Cyiy and density p, A
and B is defined by initial conditions. No solution in the
incremental sense can be obtained. But, damping forces will
change the governing equation into stable types at last.
When displacement increments are known, the

quasi-static state can be assumed at a point if and only if
the forced motion is harmonic or pseudo-harmonic. This
requires that the whole structure can be assumed to be

quasi-static.
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In statics, generally, we cannot determine the unstable
softening before the calculation, but we always neglect the
dynamic term. This is the reason why we may obtain absurd

solutions for strain softening materials.

E.3 The Loading Criteria

From now on, where it is convenient we use conventional
expressions in terms of velocity, e.g.
u,=uf+idt, du=udt and so on with dt>0, and we suppose that
dt=1. Here, t is not for real time, but for the convenience
of derivation.

Now let us check the physical meaning of the loading
criteria in terms of energy expressions, For any part of the
body, when the incremental external loads extremely slowly
applied or released, the work AWS*® done by external loads is
equal to the amount of increase of the elastic energy AE"
plus the plastic work AW’ which is always positive in

consuming the energy. i.e.
AW = AE® + AW . (E.6)

Suppose a body is at the equilibrium state(0), then goes to

state(1) in the next incremental step,

(1) (1)
AW = I J F,du,dv + J J T,du,ds , (E.7)
2YJ(0) ST (0)

in which, F, is body forces and T; is surface loads, and we
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omit the term for prescribed displacements since it can be
incorporated into the term for surface loads. The first

order approximation of AW™® is

AR = L(Fiﬁ‘ + dp4)av + J(Tu + 21,0,)ds . (E.8)

By using the principle of virtual work, we have

ext s 1 o e
AW = L(aijeij + 2045 €;5)a82 . (E.%a)
The first order approximation of the elastic energy
increment is

aef = [ (o8 + o (E.9b)
!

The first order approximation of the plastic work is

AW = L(ou .+ 15,585,040 (E.9¢)
With the assumed linear relationship, the above equations
give the exact values. It is easy to see that the energy
conservation will always be kept in the mathematical form.
I1f we review the concepts of loading criteria (Table
2.1 and egn. 2.13 to 2.15) and compare with the above energy
expressions. In Fig. E.1, we can find that the sign of AW™®,
is defined by 11-<aF>{da}, since the contribution of terms

such as a,JIJ can be neglected in determining signs. Image
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Figure E.1: Criteria for permissible solutions



that the yield surface is also expressed in the strain
surface (Fig. E.1) and note that this surface shoulé be
expands during loading, it can be found that the sign of AW®
is determined by l,=<%§>{dep}. Since only two of 1,, 1, and
1, are independent (see details in the explanation of Table
2.1), the loading criteria stipulate a correct mode of
engergy conversion of strain softening in agreement with the
following facts:

1. External forces do positive work,

2. Elastic energy decreases,
3. plastic work is positive, or frictional forces do
positive work.

In a process in compliance with the loading criteria,
all the release elastic energy is consumed in situ, because
the energy conservation is satisfied in any infinitesimal
element. This differentiate the stable and unstable
softening (brittle failure) in statics. It is easy to check
no conservation in situ for brittle models.

Obviously, the loading criteria are necessary
conditions for the true solution. Otherwise, the plastic
work will becomes negative and this is absurd.

No violation of the loading criteria is also a
sufficient condition. This is because all aspects of the
true solution have been guaranted by the adopted incremental
theory except the correct energy conversion mode. The
loading criteria just guarantee the correct energy

conversion. Physically, the process in compliance with the



311

loading criteria reproduces a picture we observed from field
investigation and laboratory tests. Based on the latter, the

constitutive relationship has beeu formulated.

E.4 The Principle of Potential Energy and the Uniqueness of
Solution
As we know, for stable materials, the existence of the
minimum potential energy can be proved by using Martin's
inequality along any strain-stress path for the extremes. A
linear path is such a path. It can also be strictly proved

that the maximum will be reached if Martin's inequality is

violated, i.e.

(2)
'fm(aij - oi)dey; S 0 . (E.10)

Fig. E.2, in fact, provides an example for one
dimensional situation. For the proof of general situations,
the only thing we need to do is to use "less than" sign in
Martin's inequality and to follow the conventional proof for
stable materials. Because all the inequalities derived in
the original proof change signs from "greater than" to "less
than", we will obtain the conclusion of the maximum. The
proof for stable materials can be found in advanced text
books (e.g. Wang, 1982).

When a body consists of both stable and unstable
materials ( Fig. E.3), the extremes may not exist for the

whole body. However, by using the principle of virtual work,
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the global equilibrium equations can still be established,
but the solution needs to be checked.

As to the uniqueness of solution, the proof should be
started from a natural state (i.e. a zero state) for the
first incremental step. Then, the existence of uniqueness
should be assumed at the end of the last incremental step.
When the relationship between o;; and ¢;; is not unique
(imcomprecsible or perfect elastoplastic material), the
uniqueness is refered only to 0.

1f strain softening totally governs in a region, i.e.
inequality £.10 is satisfied everywhere, the unigueness of
solution can be easily proved, no matter the solution is
permissible or not. Two main points in following the
procedure of a conventional proof for stable materials are:

1. by using the principle of virtual work, it can be

obtained that

J (6= i (]~ e5;ham = 0,

n (E.11)
in which (1) and (2) denote two set of complete
solutions. Here, to use the principle of virtual
work only requires a stress field in equilibrium and
a displacement field being kinematically possible.
Therefore, impermissible static solution can be
included.

2. by using inequality E.10, we can have
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For strain softening

* 1. L)
i€ * 30i5€;5)4R > 0 (external work)

(0,65, + %éﬁéh)dﬂ <0 (elastic energy increment)

jAD:ox(oijéfj + %5ij§§,~)dﬂ >0 (plastic work)

(2)
[J (0,5 - aﬁ?)deU]dQ 2 0 (macro stable)
80,

Q; — stable material

Qi°' — unstable material

Figure E.3: Strain softening in a body
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(62- 6l (ef}- &) s 0. (E.12)
This is also because all the inegualities in the
original proof change signs. Here, the derivation
requires incremental linear strain-stress paths.
Certainly, it can include impermissible solutions.
Since egn E.11 applies for any infinitesimal region,
equal sign should be taken in condition E.12.

Therefore, the proof is obvious.

In Fig. E.3, for all the subregion &; or Q:°f, the

uniqueness of solution exists if they are considered

separately. A natural train of thought is that the

uniqueness of solution may exist at least under certain

conditions. No strict proof will be given below. However, it

can be understood like this:

1.

Suppose there exist two sets of complete solutions,
ﬁ?’and ﬁ?) with same loads and same boundry
conditions.

Image that state (2) is reached from state (1), i.e.
along the strain-stress path (2)-(1). The additional
strain-stress path is corresponding to zero body
force, zero external load and zero displacement
boundary conditions on the outside boundary.

1f the 0/2™""" on the joint boundary is zero, the
unigueness can be proved. Since zero stress state is
a solution for each subregion with zero displacement
or load boundary conditions. Thus, ¢¥-¢'" will be

zero due to the uniqueness of solution in each
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subregion.

4, 1If ﬁ?’*‘) is not equal zero, the total potential
energy of all subregions will change due to new
deformation. It generally impossible since no
external work can be provided by zero boundary
conditions and zero body forces. One exceptation is
that the summation of the incremental potential
energy of all subregions is zero. Only for this
exception, there is no uniqueness of solution.

Iin finite element analyses, no aniqueness of solution
corresponds to a zero energy mode of the global stiffness
matrix with respect to certain non-zero displacement
vectors. By using techniques against singularity, acceptable
solution can be obtained for engineering judgement.

In conclusion, theoretical background is reviewed and
strengthened for unstable materials. In practice, we may
suppose that there exist a true solution, then, we can use
the principle of virtual work to formulate the governing
equations. After solving by introducing the boundary
conditions, we check the solutions by the loading criteria.
1f the criteria are kept, we have true solutions. If not,
they should be discarded. As a remedy, we may statically

obtain approximate solutions for the final equilibrium

positions (e.q. using brittle models).



F. APPENDIX - THE AITKEN ACCELERATION METHOD AND SPARSE

QUASI-NEWTON LS & LDU UPDATES

For simplicity, in the following introduction, bolded

letters are used to denote a matrix or a vector.

F.1 The Newton-Raphson Iteration Method
The Newton-Raphson iteration scheme is used most

frequently to solve a system of nonlinear equations:

f(u') = 0 . (F.1)

In nonlinear finite element analyses of this research, u'.is

unknown displacements and

£(u') = "OR(w') - TR (F.2)

in which
t is internal time to indicate the beginning of certa.n
loading step,
t+At is for the end of the loading step,
R is the vector of external nodal forces, which is

independent of of u' under the small strain and

deformation assumptions,

F is the vector of equivalent nodal forces corresponding

to internal stresses in all elements.

317
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By expanding eqn. F.1 to Taylor's series of the first
oder, the (i-1)th approximation during of iterations can be

expressed as
fw) = £+ (Ey@t - ) (F.3)

Substituting eqn. F.2 into the above egquation and using egn.

F.1, and note that R is independent of u, we obtain

t+AtR(i"1) _ t+AtF(i-1) + [__g__t‘:](u‘ - "”“(u)(i"”) =0 . (F.4)

Then, we define
autt =yt - Eet) (F.5)

and recognize that

aﬁ - t+AtK(i-1’) (F.6)

where ttk‘i"" is the tangential stiffness matrix at the

itereation i-1.

And so, by approximation we have the N-R iteration

scheme:

tratg(i-1)g (1) teatp tratpli=t) (F.7)

t:+Atu(i) = t+Atu(i-‘l) + Au(i.) (F.B)
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In the modified N-R method, the factorized stiffness

matrix is stored and unchanged once it assembled.

F.2 The Aitken Acceleration Method

In the Aitken acceleration method, a diagonal relaxion
matrix a is used for the displacement incremental vector to
speed up the convergence of egn. F.7, but the factorized
stiffness matrix remains unchanged as in the modified N-R

method. From the second iteration, the scheme takes the form

of

t+AtK(1)Au(i) = trotp - t+AtF(i-1) (F.9)

’

t+m:u(x) = t:+M’.u(1-1) + aAuh.) (F.10)

In the original version of the Aitken method, the

relaxion factor, i.e. each diagonal element of matrix a is

calculated as

{i-1)
(i=1) 2y (F.11)

= =T .
i Auil )"Au§1)

a

by using successive values of the corresponding element of
the displacement vector.

Obviously, if Au?'” - Au?) in Eqn. F.11 is very small
or zero, the estimated secant stiffess will be very sharp or
even cause singularity. In an improved method developed by

Boyle and Jennings (1973), a scalar factor is adopted for
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all degrees of freedom to avoid sinqularity, i.e. all the
diagonal elements a;; in matrix e« are the same. The scalar
factor a;; is determined by three successive iterations and

the expressions are:

i) = L‘%’i’, 'uif-:)*ll“:i-;: = I— (F.12)
ii [ux -u'? ) ]T[u1 __2“(1 )+u(x)] .

for a symmetric stifness matrix K;

‘- - : - ;
u(x 2) _ u(1 ) (i)qT u(x ) __u(x)

[u -2t 4+t [u —2u " +y't]

(F.13)

for a non-symmetric matrix.

F.3 Sparse Quasi-Newton LS & LDU Updates

F.3.1 General update formulation

In successive iterations to solve eqn. F.1. By using

egn. F.6, we have the approximate expression

and so
f(i) - f(i-1) = K(i)(u(i)- u(i-1) ) . (F.15)

The above equation is called the Quasi-Newton update. It



tries to find an approximate k‘!) for the next iteration and

so the repeated reformations can be saved.

Let

g = g9V 4 g (F.16)
and

f(i) - f(i-1) = Y(i-1) , (F.17)
then,

i o (g 4 ARGy antiY (F.18)
or

Ax(i-nAu(i-n = p(i-1) , (F.19)
in which

p(i-1) = Y(i—1) - K(i-1) Au(i-l) . (F.20)
By assuming £9=0 approximately,

O AL (F.21)

From egn. F.17 and F.20,



Therefore, egn. F.19 now becomes

AR A = g (F.23)

where £'Y) can be calculated by

f(i)(u(i)) = f(i)(u(i-ﬂ + Au(i)) , (F.24)

after (i-1)th iteration. Now, for a problem with the total
number of degrees of freedom equal to N, the task is to find
all the elements of matriz Ak with a total number of N’
(F.23). However, we have only N equations. Conventionally,
the Frobenius norm solution is adopted for matrix ak‘iTY
Then, matrix K“) can be obtained from ean. F.16, and so the
(i)th iteration can go on.

In summary, the Quasi-Newton update scheme can be
expressed as

K(i-!) Au(i-n = R - Fi-1 ,

a = L Au“}
(i) (i) . (i)
£ =R - F(u'), if £'Y < Tolerance, stop, or
Ax(i"l)Au(i"-) - f(i) ,
(i) (i-1) (i-1) . .
K = K + AK ’ then go to next jteration.

(F.25)



1n order to reduce calculation time, the updates should
be carried out on the factorized global stiffness matrix and
keep the sparsity unchanged. The DM and TZ methods have been
developed to meet the above requirements. For simplicity, in
the following introduction, we omit the superscripts for

iteration times.

F.3.2 The DM method
The DM method was developed by Dennis and Marwil

(1982). It is suitable for LS fatorization of matrix K, i.e.

in (i-1)th iteration, in egn. F.21
KAu = LSAu = -f , (F.26)

where L is a lower triangular matrix, § is an upper

trianqular matrix, and in solving egn. F.26, let

(F.27)

n
1
(o]

Lv

’

and

SAu = v , (F.28)
then, both Au and v are needed for the further update. Now,
we can have a new £ in (i)th iteration, and let

K+AK=L(S+AS), i.e. AK=LAS. Thus, egn. F.23 becomes



LASAu = &t , v e
and let

ASAu = z , (F.30)
then

z=Lf . (F.31)

It is convenient to use the notation
el =<000...1...000>
in which, only the ith element is unit and all others are
zero. Now, the ith row of AS can expressed as e]AS, and its

Frobenius norm solution is
eT AS = ziAui'r/(Aui'r Au') (F.32)

in which z; is the ith element of vector z solved from egn.
F.31, and Au' is first solved from eqgn. F.28, then
transformed according to the sparsity of matrix S8, i.e. the
jth element Au§ of vector Au' is set to be zero if the
element S;; of matrix S is zero. Here, S;; is located at ith
row and jth column. Thus, AS can be obtained. The iteration
(i-1)

procedure is the same as eqn. F.25, but K and k' are

replaced by LS and L(S+AS).
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F.3.3 The TZ method

The TZ method was developed by Tewarson and Zhang
(1987), which is suitable for LDU factorization, i.e. K=LDU.
Here, L is a lower triangular matrix , D is a diagonal
matrix and U is an upper triangular matrix. In the TZ
method, L, D and U are all updated. If L is updated first,
we call it T2.; if U is updated first, we call it TZ, and if
L and U are updated alternatively, we call it TZg. Notation
~ denotes to update once and * denotes to update twice.

In TZ,, LDU is updated in the manner:

The procedure is similar to egn. F.25, and the particular
iteration procedure for T2, is as follows.

Solve equations
(LDU)Au = AQ = -f . (F.33)

Let

AQ , (F.34)

(DU)Au = v, Lv

(F.35)

]
<

UAu = w, Dw

Then, solve v, w and Au and so
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u + Au . (F.36)

u
Check the new unbalance term:

£ =f(u) . (F.1)
1f the solution is not convergent, update LDU and repeat the

solution from egn. F.33 to F.36 until convergence.

In updating LD to LD, evaluate

g, = Wi/ (W7 W), (F.37)

1/(w'" &) , (F.38)

(3]
i

where, w' is a vector by zeroing the elements of w (egn.

F.35) according to the sparsity of ith row of matrix L. And,

#' is a vector by setting the jth element of w to zero

accoding to the sparsity of the ith row of matrix L only if
i>j, but set.ing it to zero according to the ith row of
matrix U if i<j.

After g, and r; are obtained, update D and L to D and L
by using the expressions:

d; = 4, + rf W . (r.39)

~

1y = 1;; * (r;f; - 1nrjfj)W§ / 45 - (F.40)
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A
A

In order to update D and L further to D and ﬁ,

determine vector £' with its element

£, = £; - g;f; . (F.41)

1

Solve the vector z from the following equations

Lz = £' . (F.42)
Calculate
r. = Au'"Au’ , (F.43)

1

in which, Au' should be treated according to the sparsity of

the matrix U,
Finnally update Dand L to D and U by using the the
following expressions:

d = d; + r;z;Ay; , (F.44)

1

':’ij =yt r;zi(Au:ii_Aui+Uij) / ai . (F.45)
In the TZ, method, D to U are updated first. Let
DU=DU+AU, then AK=LAU. By using the basic equations, we can

have
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AUAu = L' =z , (F.46)

in which, £ is found from the (i-1)th iteration.

To leave room for the further update of L, we solve the

equations

AUAu = GE = z , (F.47)
in which G is a diagonal matrix with its element

g, = bu''Au’ /(A% Au') (F.48)

where Au; is obtained from Au according to the sparsity of
matrix U, while Al is obtained from Au according to the
sparsity both of matrix L and U (similar to Aw; in eqn.

F.38). Solving egn. F.47 as in the TZ, method, we have

ai =g, + riziAui , (F.49)
in which

r, = (a7 au)” . (F.51)



329

To update L and D further to L and ﬁ, let

>

v=>0'"(v+2), (F.52)

f - Lz . (F.53)

rh>
1l

Here f is the new unbalance term after obtaining Au and
vector z is equal to GZ (egn. F.47). Then, the Frobenius

solution of AL can be obtained from the equations below

ALv = E . (F.54)

The specific expressions for D and L are

i, =4 +riEel, (F.55)

I, = 1, ¢ (holynE)e /&, i<d (F.56)
in which

r; = (viT V)7 (F.57)

1

In short, the procedures of method TZ, are

1, solve egn. F.34 to F.36 for Au and v,
2. evaluate g; and r; by using egn. F.48 and F.51,
3. update D and U to D and U by using egn. F.49 and

F.so'
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4. determine z from egn. F.47 and £ and v from egn.
F.52 to F.54,

5. update D and L to 6 and L by using eqn. F.55 to
F.57.

As mentioned before, TZ, method can be easily

formulated by using methods TZ, and TZ, alternately.



G. APPENDIX - LIMIT EQUILIBRIUM ANALYSES

In the "REPORT", a multiple-wedge method is used and
the results have been compared with those obtained from the
Morgenstern-Price method. Here, Sarma's method is used. By
experience, Sarma's method is also a general method which
has been proved to be effective.

The division of slices is illustrated in Fig. G.1, in
which 11 vertical slices are used and the piezometric head
is estimated from the "REPORT".

Eight groups of results obtained by the Sarma method
will be described. For each group, a short note or comment
is given.

1. Comparison for different methods

Table G.1 Comparison between different methods

Strength Factor of safety SF
Case|Core & | Yellow |Multiple | Sarma |Morgenstern
Boot Clay wedge & Price

c'| ¢'} C'| ¢' SF 6| SF |6°| SF 8°
kpa kpa
a | 0] 19} 0| 20|1.243|8.9|1.21|10|1.267|12.0
b | 51] 0| 0 | 20|1.243|8.8|1.22|10|1.293|11.1
c | o] 19| 0] 15.0|1.000|8.8|0.99|10|1.012|12.0

a | 51| 0] 0 |14.81]1.000]8.6|1.00]10]1.034}10.8

(1) Case a & b : "critical state" of soils.
(2) Case ¢ & d : limit equilibrium state.

331
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In Table G.1, results obtained from the multiple~wedge,
Sarma's and Morgenstern-price methcds are listed.

The parameters which are not listed in the table are:

Strength at toe: c' =0, ¢' = 30°,

Unit weight, 18.5 for Core ,

21.3 for Zone I & II fill .

The above table shows that all the methods are
effective. Our results are close to those from
multiple-wedge method. It is not strange because both of the
_two methods are multiple-wedge methods. The difference may
mainly come from reproducing the geometry by simple
measurements on the available figures, minor difference
among the adopted unit weights, and different number of
slices as well as different values of angles of thrust .iine
8.

The slip surface in Fig. G.1 is simplified from the
observed data. Therefore, it is not the critical one
obtained by searching the slip surface. Errors of factors of
safety (SF) are less than 2% within the searching range.

2. Influence of unit weight

The same unit weight of 18.5 kN/M® for the core are
used throughout the "REPORT", but different unit weights
from 20.5-22 kN/M® are suggested or used in the "REPORT" for
Zone I & II fills. Table G.2 shows the influence of the unit
weight of Zone II on safety factors (SF). The case in Table

G.2 corresponds with case c in Table G.1.
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From the Table G.2, we can see that reduction of the
unit weight by 0.5 kN/M® will reduce SF by about 1%. This is
because normal pressures will be reduced on the Yellow Clay

layer.

Table G.2 Influence of unit weight of
Zone 11

SF | 1.009 | 0.999 | 0.988 | 0.980

3. Influence of the peak friction angle of the Yellow Clay
With zero cohesion, the friction angle ¢' of the Yellow
Clay was varied in the "REPORT" from ¢'=20° (corresponding
to the "critical state" of the material) to ¢'=15°
(corresponding to very large shear strain development).
Table G.3 shows that 1° decrease leads to 4-5% reduction of

safety factors. The influence is very large.
Table G.3 Influence of ¢' in the Yellow Clay
¢' | 20" | 19° | 18" | 17° | 16" | 15°
SF | 1.21 | 1.16 | 1.12 | 1.07 | 1.03 | 1.01

4, Intluence of the undrained shear strength

Table G.4 shows the influence of the average C, upon
factors of safety. Various average values of C, for the core
are suggested or mentioned in the "REPORT", ranging from 65
kpa to 35 kpa. Every 5 kpa reduction leads to 3% reduction
of SF. Because an average C, is difficult to determine, the

error may be not small.
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rTable G.4 Influence of average C,

cu average | 65 | 60 | 55 | 50 | 45 | 40 | 35
SF [1.10]1.07]1.03]1.00]{0.97]0.94]0.90

5. Operational undrained strengths in the core and boot

Corresponding to different cases in Table G.5 (next
page), operational undrained strengths have been
re-estimated in the "REPORT" as compared with effective
stress analyses. Similar calculations by means of Sarma's
method are also done with the results listed in the same
table. The differences between the two group results mainly
come from the uplift pressure calculation. Higher pressures
in the boot are used in the "REPORT".

From this table, we can seeé that the average strength
might be around 43 kpa near the failure, corresponding to
case D with SF = 1.01 to 1.04.

6. Material parameters used in finite element analyses

Two sets of different material models and parameters
have been used in our calculation and in the "REPORT".
Because brittle behaviors and strain-softening models have
been adopted in our calculation and in the "REPORT"
respectively, it is difficult to study the influences of all
parameters. In Table G.6, factors of safety calculated from
two sets of peak strengths are compared.

Two factors of safety obtained from peak strengths are
nearly the same. It is because cohesions is a little bit
larger for the Yellow Clay layer and Zone II £i1l while ¢'

is a little bit smaller in our calculation. Our predicted
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failure height in trial finite element analyses is only at
EL. 198.0m, three meters below the top. This is because we
use brittle model for the Yellow Clay and strain-softening
model for the core, while a strain-softening model is
adopted for the Yellow Clay and a perfectly plastic model is
for the core in the "REPORT". Here, we can see the

importance of the correct simulation of post peak behavior.

Table G.6 Comparison of different peak strengths

Material |Core & Boot|Yellow Clay |Zone I & Il |Factor

of
C' |o' c' ¢'|safety
kpa . o

kpa

Parameter Y ¢ Y
kN/M? * | kN/M2

"REPORT" | 18.5| 50(0| 20 | 0 |20] 22 | 10]25| 1.25
ours | 18.5] 51]0] 18 | 6 |18] 21 [13.5|24] 1.24

Y
IkN/M“

Cu
kpa

Note: Pre-shear and construction defects have been
considered in determining peak strergths.

7. Effective and total stress analyses at EL. 198.0m

In our trial analyses, the dam fails at EL. 198.0m.
Factors of safety are calculated at this elevation for two
cases. The parameters in case ¢ and d (Table G.1) are used.
From observed data, we know that the piezometric heads are
at least 5m-6m lower on average at EL. 198.0m than those at
EL. 201.0m. Decrease of uplift forces due to the change of
elevation is taken into account in effective stress
analyses. Only decrease of the elevation is taken into
account in total stress analyses.

In the above calculations, the same slip surface is

adopted. Although the most critical slip surfaces are not



same for different elevations, cne deviation of one slip
surface from the other is not large and the relative error

of SF between the two surfaces is less than 0.5%.

Table G.7 Factor of safety at EL. 198.0m

Effective stress analysis Total stress
analysis

Case

case C Piez. Piez, Case d Cu

see Head Head see unchanged

Table G.1|unchanged|decreased Table G.1

by 5.5 m

EL. | 201.0 | 198.0 | 198.0 | 201.0 | 198.0
SF | 0.99 | 1.07 | 1.165 | 1.000 | 1.120

Table G.7 shows that the influence of pore presure
changes upon safety factors amounts to about 10% i.e.
1.165-1.07, which cannot be neglected. From EL. 198.0m to
EL. 201.0m, the change of safety factors in the effective
analysis is 4% to 5% larger than the change in the total
stress analysis. It is simply because total analyses do not
reflect the influence of pore pressure changes.

8. Upper and lower bounds of factors of safety

The upper and lower bounds of safety factors for crest
jevel at EL. 201.0m can be found by using peak and residual
strengths. In Table G.8, the results by means of the Sarma's
method are compared with the results taken from the
"REPORT". In the table, the condition "peak, with shears"
means that reductions of the strengths due to pre-shears in

the Yellow Clay and rutting shears in the core have been
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taken into account.

The difference between our and other people's results
are mainly caused by the assumption on pore pressures. The
pore pressures used in the "REPORT" are a little bit greater
than ours. They used pore pressure ratios, r,=0.42 for the
core and r,=0.53 for the boots. Ours are based directly on

the observed data along the slip surface.

Table G.8 Upper and lower bhuinds of factors of

safety
Core Yellow CJay 1 SF

Condition I

A c' | | REPORT | OURS
Peak intact| 15 | 20 | 10 | 2¢ | 1.41 | 1.46
Peak with
shears 6 20 6 1.21 .23
Residual | o | 13 | o | 12 | 0.73

A brief discussion is given below.
Suppose that F=1.0 at EL. 201.0 m,
The total reduction of SF due to pre-shears and

progressive failure will be

1.41-1.0

T T - 29% (in REPORT) ,

1.46-1.0
1.41

The reduction due to pregressive failure will be

31% (ours) .

1—%12%—9 = 14.8% (in REPORT) ,
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l;%%i%;Q = 14.8% (ours) .

Suppose that we can predict the reduction of the
strength due to material defects before the design

The reduction of SF will be

1.2121.0 _ 47,4 (in REPORT) ,
1.21
1.23-1.0 -
=3 = 18.7% (ours) .
1f we use residual strengths, the underestimation of SF
will be
1.0-0.73

T0 = 27% (ours) .
In short, the role of progressive failure is very
important for the case history of the Carsington Dam

failure.



