

Strain Based Analysis for Dented Pipelines

by

Mahyar Mehranfar

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Structural Engineering

 Department of Civil and Environmental Engineering

University of Alberta

 © Mahyar Mehranfar, 2022

ii

Abstract

It is easier and cheaper to transmit oil and gas by pipeline, but their failure can cause considerable

environmental and societal consequences. The denting of pipelines is one of the significant

challenges faced by those in the oil and gas industry. The formation of dents in the wall of the

pipeline can cause lower pressure capacity. Analytical and numerical models, such as the finite

element method (FEA), can predict this issue.

The traditional way for recognizing the seriousness of the dent is to test the dent depth. But

unfortunately, this method cannot predict the probability of failure accurately. Based on previous

research, there are two ways to assess the seriousness of the dents. The first method is to model

the pipe by finite element method. While very accurate, the finite element method is very

computationally demanding and time consuming. The second method utilizes the dent profile to

perform strain-based analysis. While very fast, the method suffers from lack of accuracy

particularly in predicting the strains in the longitudinal direction.

The first objective of this research was to develop a technique that takes into consideration the

membrane strains in the longitudinal direction. The second objective was to test the performance

of the new technique on a variety of pipeline dents. The developed method is based on the three-

dimensional mathematical model proposed by Okoloekwe et al.

In the original model proposed by Okoloekwe et al, it was assumed that the displacement in the

mid-line of the pipeline is zero, but we found this displacement and added it to the displacement

in the horizontal direction. Our study found that the modification yielded significantly better

longitudinal strain distribution than the conventional procedure. The newly developed methods

provide an increase in accuracy and speed of the analytical process without sacrificing accuracy.

iii

A number of two-dimensional and three-dimensional models were examined to verify the method.

Contrary to the longitudinal results, these results were very accurate in the circumferential

direction. With respect to the FEA results, our proposed technique is much faster, more accurate,

and more reliable than previously developed analytical methods.

iv

Preface

This thesis is an original work by Mahyar Mehranfar.

My responsibilities included collecting data, analyzing it, and developing the manuscript. Both

S. Adeeb and Nader Yoosef-Ghodsi contributed to concept creation, provided technical support,

and reviewed the manuscript, while S. Adeeb also worked as the primary supervisor. During and

outside of class as well as our academic meetings, I have learned quite a bit from his guidance.

v

Acknowledgements

Throughout my research, I have received the continuous support and guidance of my supervisor,

Samer Adeeb. During and outside of class as well as our academic meetings, I have learned quite

a bit from his guidance.

I would like to thank the Faculty of Graduate Studies at the University of Alberta, for providing me

the right environment for my research.

For providing me with the ideal research environment, I would like to thank the Faculty of

Graduate Studies at the University of Alberta.

Enbridge Inc. also deserves appreciation for the financial support, onsite training, and valuable

data access that enabled the study to be completed more rapidly and with more rigor.

In closing, I would like to thank my wife Yasaman, my family, and friends for all their love and

support during the years I spent studying.

vi

TABLE OF CONTENTS

Abstract..ii

Preface..iv

Acknowledgements..v

Table of Contents..vi

List of Figures...viii

List of Tables..xi

CHAPTER 1: INTRODUCTION ...1

1.1 Background and Problem Statement..1

CHAPTER 2: The improvement of A strain-based modeling approach for analyzing dented

pipeline severity in the longitudinal direction...7

2.1 Abstract..8

2.2 Introduction ..9

2.3 Method ..16

2.3.1 Modeling of Dents ...16

2.3.2 Dent Profile Interpolation ..29

2.3.3 Loading Step.. 29

2.3.4 Displacement Discretization.. 30

2.4 Results ...34

2.4.1 Numerical Models ... 35

2.4.2 Strain Analysis .. 40

2.5 Discussion..46

2.6 Conclusions ...47

vii

2.7 Acknowledge...47

CHAPTER 3: The improvement of A strain-based modeling approach for analyzing dented

pipeline severity in the circumferential direction ...48

3.1 Introduction ...49

3.2 Method.. 50

3.2.1 Modeling of Dents in the circumferential direction... 50

 3.2.2 Displacement Discretization………………………..53

3.3 Results..56

3.3.1 Numerical Models ..56

3.3.2 Strain Analysis... 57

3.4 Conclusion.. 62

CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH ...64

4.1 Summary and Conclusions..65

4.2 Future Research...67

 REFERENCES ..68

viii

List of Tables

Table 1: Acceptability limits for plain dents... 2

Table 2: Specification of the models for the first category... 21

Table 3: Specification of the models for the second category.. 21

Table 4: Specification of the models for the third category.. 22

Table 5: Specification of the models for the fourth category..23

Table 6: Specification of the models for the fifth category.. 24

Table 7: Specification of the models for the sixths category.. 25

Table 8: Specification of the models for the seventh category... 26

ix

List of Figures

Figure 1: Strain components in the pipe wall..11

Figure 2: Dent geometry ..12

Figure 3: Coordinate system and displacement...14

Figure 4: 2D model of wall thickness ...17

Figure 5: a) 3D model of wall thic.. 18

Figure 5: b) 3D model of wall thic.. 18

Figure 6: 3D model of indenter... 20

Figure 7: internal pressure direction... 26

Figure 8: maximum operating pressure direction... 27

Fig. 9-a Element types in 2D direction..27

Fig. 9-b Element types in 3D direction..28

Figure 10: displacement along the longitudinal direction..29

Figure 11: Loading steps ... 30

Figure 12: cylindrical coordinate System... 30

Figure 13: displacement along the circumferential direction... 31

Fig. 14 displacement in the mid-line of the pipe in the longitudinal direction

Figure 15: Numerical Models .. 35

Figure 16: U1 Displacement in the longitudinal direction in 0mm Height.................................. 36

Figure 17: U1 Displacement in the longitudinal direction in 1mm Height.................................. 36

Figure 18: U1 Displacement in the longitudinal direction in 2mm Height.................................. 37

Figure 19: U1 Displacement in the longitudinal direction in 3mm Height...................................37

Figure 20: U1 Displacement in the longitudinal direction in 4mm Height.................................. 38

x

Figure 21: U1 Displacement in the longitudinal direction in 5mm Height.................................. 38

Figure 22: U1 Displacement in the longitudinal direction in 6mm Height.................................. 39

Figure 23: U1 Displacement in the longitudinal direction in 7mm Height.................................. 39

Figure 24: U1 Displacement in the longitudinal direction in 8mm Height.................................. 40

Figure 25: The average ratio of the LE33 in modified and original method to FEA method...... 41

Figure 26: The standard deviation ratio of the LE33 in modified and original method to FEA

method.. 41

Figure 27: Plots of the LE11 in the longitudinal direction in the 0 mm height of the pipe...........42

Figure 28: Plots of the LE11 in the longitudinal direction in the 1 mm height of the pipe.......... 42

Figure 29: Plots of the LE11 in the longitudinal direction in the 2 mm height of the pipe.......... 43

Figure 30: Plots of the LE11 in the longitudinal direction in the 3 mm height of the pipe ……. 43

Figure 31: Plots of the LE11 in the longitudinal direction in the 4 mm height of the pipe.......... 43

Figure 32: Plots of the LE11 in the longitudinal direction in the 5 mm height of the pipe…...... 44

Figure 33: Plots of the LE11 in the longitudinal direction in the 6 mm height of the pipe…...... 44

Figure 34: Plots of the LE11 in the longitudinal direction in the 7 mm height of the pipe.......... 44

Figure 35: Plots of the LE11 in the longitudinal direction in the 8 mm height of the pipe…...... 45

Figure 36: a) 2D model of wall thickness in the circumferential direction……………...............50

Figure 36: b) 2D model of wall thickness in the circumferential direction.................................. 50

Figure 37: 3D model of wall thickness in the circumferential direction...................................... 51

Figure 38: cylindrical coordinate System... 53

Figure 39: displacement along the circumferential direction... 54

Figure 40: Numerical Models .. 56

xi

Figure 41: Ratio of the LE11 in the top of the pipe in the circumferential direction in 3D

model.. 57

Figure 42: Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 3D

model... 57

Figure 43: Ratio of the LE11 in the bottom of the pipe in the e circumferential direction in 2D

model with pressure.. 58

Figure 44: Ratio of the LE11 in the top of the pipe in the circumferential direction in 2D model

with pressure... 58

Figure 45: Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 2D

model without pressure... 59

Figure 46: Ratio of the LE11 in the top of the pipe in the in the circumferential direction in 2D

model with pressure ..59

Figure 47: Average ratio of the LE11 in the bottom of the pipe in the circumferential

direction in 3D model..60

Figure 48: Standard deviation of the LE11 in the bottom of the pipe in the circumferential

direction in the3D model.. 60

Figure 49: Average ratio of the LE11 in the circumferential direction in 2D

model... 61

Figure 50: Standard deviation of the LE11 in the circumferential direction in 2D

model... 61

1

CHAPTER 1: INTRODUCTION

1.1 Background and Problem Statement

In the third quarter of 2019, compared to a day in the previous quarter, worldwide demand

increased from 435,000 barrels a day to 1.1 million barrels a day (i.e., more than double)

(www.cnbc.com, 2019). Although pipelines are the easiest and cheapest way of transporting oil

and gas, their failure might have dire environmental and societal consequences. One of the

significant challenges faced by those in the Oil and Gas industry is denting of pipelines. Dents are

defined as a severe disturbance of the circular cross-section of the pipes which are formed by

contact with an external body (Cosham & Hopkins, 2004, Makhlouf, A. S. H., & Aliofkhazraei,

M. (Eds.), 2015). A dent is a permanent deformation of the pipe's circular cross section caused by

the plastic deformation. Dents distort the cross section of the pipe significantly (Cosham and

Hopkins, 2003). The following terminology is used for classifying dents.

1. Smooth dents are caused by a smooth change in the shape of the pipe wall.

2. Kinked dents as a result of an abrupt change in the curvature of the pipe wall.

3. Plain dents lead to a smooth dent without any thickness reductions.

4. Constrained dents are defined as dents are prevented from rebounding and re-rounding as a

result of the persistent surface to surface contact with indenter.

5. Unconstrained dents result from a situation in which a dent is permitted to rebound and re-round

elastically when the indenting body is removed.

2

There are many leading causes for mechanical damages that can cause dents in pipelines; such as

human activities in transportation or installation, mechanical third-party line strikes, or natural

disasters like earthquakes and landslides.

The traditional way for recognizing the seriousness of the dent is to test the depth. Dents

acceptance criteria in various codes and standards are based on the dent depth. Table 1-1 provides

acceptance criteria for dents according to their dent depth. For example, for pipes with an outside

diameter (OD) more than 101.6, plain dents deeper than 6% of the (OD) according to CSA Z662-

19 (CSA,2026) are not acceptable. For other pipelines, CSA Z662-19 states that the dent should

not be deeper than 6mm. On the other hand, when using depth-based judgments, this sometimes

leads to unnecessary excavation or mischaracterization for dents less than 6% OD. For example,

the National Energy Board reported a leak at a crack within a dent with a maximum depth of 0.51%

of the pipe OD, demonstrating the unreliability of this approach (National Energy Board Safety

Advisory 2010). A new approach for solving the problems of depth-based criteria, is strain-based

assessment (Noronha et al., 2005, Okoloekwe, C., 2017).

Table 1-1. Acceptability limits for plain dents (Race, et al., 2010).

PLAIN DENTS

Constrained

Unconstrained

ASME B31.8 Up to 6% OD or strain level up to 6%

ASME B31.4
Up to 6% OD in pipe diameters > NPS4”

3

 Table 1 Acceptability limits for plain dents

There is a good connection between the shape of a dent and the associated mechanical strain; strain

can be predicted by the analytical and numerical models with regard to size and location. Finite

Element Analysis (FEA) is an acceptable tool for analyzing the mechanical behavior of pipelines

subjected to various mechanical disturbances such as dents and gouges. On the other hand, FEA

is costly and time-consuming, so it is ineffectual for analyzing numerous dents (Okoloekwe, C.,

Kainat, M., Langer, D., Hassanien, S., Roger Cheng, J., and Adeeb, S., 2018). A quick and accurate

evaluation of dents requires the employment of an analytical approach. The non-mandatory

equations presented in Appendix R of the ASME B31.8 2018 (ASME, 2016) codes evaluate strains

based on the minimum radius of curvature of each dent in the axial and circumferential direction.

It is specified that the limitation for strain value for both the inner and outer sides of plain dents in

the pipelines is 6%.

Furthermore, in the presence of stress concentration like cold worked areas and seam welds, this

limitation will be diminished (ASME, 2016). On the other hand, with ASME equations, the length

Up to 6 mm in pipe diameters < NPS 4”

 API 1156 Up to 6% OD but > 2% OD requires a fatigue assessment

 EPRG ≤ 7% OD at a hoop stress of 72% SMYS

 PDAM Up to 10% OD Up to 7% OD

 CSA Z662 Up to 6 mm for ≤ 101.61 mm OD, or < 6% OD for > 101.6 mm OD

4

of a dent, which is needed for strain analysis, is not well defined. The length corresponding to half

depth of the dent is suggested as a familiar way of settling the length of the dent. Although the

previous method is straightforward, the research by Noronha et al. (Noronha et al., Martins, R.R.,

Jacob, B.P. and Souza, E., 2005) shows that compared to the FEA method, this solution would

underestimate the values of the longitudinal strain. Plus, there are no agreed upon accurate methods

for approximating the size of the radius of curvature of the dented pipe, which is the paramount

parameters used by the ASME equations to estimate the maximum strain within the dented region.

Also, the ASME equations assume that the maximum strain will occur at the peak of the dent

which is not always the case. Okoloekwe et al. (Okoloekwe, C et al., 2018) proposed to solve these

problems by applying piecewise spline functions to interpolate the dent topology accompanied by

equations to calculate the radius of curvature of a dented pipe.

The ASME equations yield a sensible prediction of the bending component of the strain, which is

reported by applying this technique. An analytical method based on the interpolation of the dented

geometry of pipelines to gauge the strains in dented pipes is the latest evaluation by Okoloekwe et

al. (Okoloekwe, C et al., 2018). By comparing the results of their method with the strains predicted

by FEA, Okoloekwe et al. showed that there is a reasonable agreement between both. Whereas the

FEA model for dent with 12% OD depth and 35 mm indenter diameter, in contrast, the model

magnifies the value of the maximum equivalent plastic strain (PEEQ) by about 14% (Li, Y.,

Hassanien, S., Okoloekwe, C., & Adeeb, S., 2019).

The first objective for this thesis is to enhance the strain computational technique developed by

Okoloekwe et al., for application by pipeline operators in order to increase the accuracy of the

model. My preliminary analysis has shown that membrane strains in the longitudinal direction

need to be accounted for in any model. Furthermore, by including the horizontal movement of the

5

neutral axis in the Okoloekwe et al.’s model, accurate results that are comparable to the finite

element analysis simulation results were obtained for all indentation depths. Continually in the

second objective, we will suggest a new method on how to increase the accuracy of the original

method for predicting the stain in the dented pipeline. For calibrating the upgraded models, we

will use the profiles that we obtained from ILI tools.

Canada is a world leader with respect to dent evaluation techniques in pipelines integrity programs.

Consequently, the result of this project will set Canada apart as a leader in design advancement

and fundamental knowledge for training highly qualified engineers and researchers. What is

planned in the first objective in regard to upgrading the accuracy of Okoloekwe et al. is an available

mathematical method for strain analysis of the dented pipelines. In our introductory results, what

is mentioned in the last part reveals that for upgrading the correctness of Okoloekwe et al.’s

method, we should add the longitudinal displacement of the neutral axis. That will be found by the

first objective, an analytical prediction for relative horizontal movement associated with

membrane stain in the longitudinal direction of the dented pipeline.

To achieve the thesis objective, we will create a series of verified 3D and 2D nonlinear FE models

in different situations, such as various indenter shapes and different dent depths. By using the

developed method, for predicting the horizontal membrane displacement of the neutral axis of the

dented pipelines, a general estimation equation will be developed and added to the strain

computational method developed by Okoloekwe et al.

For the second objective, we will create a series of nonlinear FE models with numerous dent depths

and shapes. We will try to predict the dent’s length and determine the longitudinal strain according

to the ASME equations based on the generated form. Subsequently, we will try to gain and

6

compare results that we obtain from FE models with ASME equations for increasing the accuracy

of analytical models.

7

Chapter 2 - The improvement of A strain-based modeling approach for

analyzing dented pipeline severity in the longitudinal direction.

8

2.1 Abstract

Canada is ranked as the 3rd highest country of oil reserve with 9.8% of the world share of oil, and

the 4th oil producer in 2019 with a significant increase in oil production in last few years (British

Petroleum. https://www.bp.com/. 2019). Although pipelines are the easiest and cheapest method

of transmitting oil and gas, their failure will cause a disaster. The denting of pipelines is one of the

significant challenges faced by those in the oil and gas industry. Dents can cause a lower pressure

capacity in the pipeline because of forming in the pipe wall. Analytical and numerical models can

predict this issue, such as finite element analysis (FEA), which can analyze the pipelines based on

the strain. The time problem with an FEA model can be solved with a quick and accurate evaluation

of dents that urges the employment of an analytical approach. The non-mandatory equations

presented in Appendix R of the ASME B31.8 2007 codes evaluate strains based on the minimum

radius of the curvature of each dent in longitudinal and circumferential directions. The three-

dimensional mathematical model which is presented by Okoloekwe et al. allows operators of

pipelines to rapidly determine the severity of a dent by selecting the strain measurement that allows

the model to remain consistent with its governing assumptions or use an assumed free formulation

to account for the nonlinearity associated with the deformation. As it is known, in comparison to

FEA, the model developed by Okoloekwe et al. predicts strain much more quickly than the FEA

method. Consequently, this chapter seeks to improve the process by increasing the accuracy of the

current model in the longitudinal direction.

Keywords:

pipe, FEA, dent, pressure, and strain

9

2.2 Introduction

More than 840,000 km of pipelines are in operation in Canada. Essentially, energy products from

natural sources are transported across vast distances via these pipelines, which are by far the

cheapest and most convenient mode of transport for those products, but also the most complicated.

Additionally, there are over 100,000 workers employed by the oil and gas sector in Canada

(https://thecanadianencyclopedia.ca/en/article/pipeline). Pipelines can be harmed by denting,

cracking, and loss of metal or their combination as a result of these problems (Kiefner & Leewis,

2011). Dents with no corrosion, gouges, cracks, welds or other areas of increased stress are known

as plain dents. According to the National Standard of Canada for oil and gas systems (CSA

Z662:19), plain dents are deeper than 6 mm for pipe 101.6 mm outer diameter (OD) or smaller or

deeper than 6% of OD. Plain dents are created by mechanical damage without changing the

thickness of the wall. It is also possible that these dents can threaten or lead to the growth of

the Potential corrosion or corrosion that already exists. As a result, these pipes will most likely

crack in the areas where deformation has taken place. According to the CSA Z662:19 standard,

the traditional way of judging the seriousness of the dents is based on their depth. Focusing on

determining the severity of the dent based on the depth method can cause problems for both

harmful and unnecessary dents, leading to unnecessary excavation for deep dents regarding

repairing or neglecting moderate dents which can be dangerous for pipe safety because of their

overall size and sharpness (Gao & McNealy, 2008). Strain-based models for dent assessment have

shown that using the depth of the dent can be dangerous because of not caring about the sharpness

of the dent profile which can lead to high local plastic strains. ASME B31.8-2018 estimates local

strains as a function of the dent depth and length measured along the axis of the pipe. Based on

ASME methods, recent research at the University of Alberta evaluated an alternative method for

10

estimating the stress component of a pipe without the need to use finite elements (Okoloekwe,

2018). Using spline functions, Okoloekwe (2018) demonstrated how one can estimate the radius

of curvature of a dented surface from which the localized strain can be calculated anywhere in a

dented section of a pipeline. Okoloekwe (2018) demonstrated that their analysis approach was both

accurate and conservative when compared to FEA (Woo, 2019). According to the last version of

the American pipeline standard ASMEB31.8-2018 (Fig. 1), strains comprise two main components

in longitudinal and circumferential directions for the pipe wall. Two separate bending and

membrane strains exist for each direction.

Pipe wall strain has two main components: longitudinal and circumferential components. Each of

them can be further divided into membrane strains and bending strains. From bottom to top, the

membrane strain is the constant calculated by averaging the strain over the cross section, while the

bending component is the linear fit of the strain after subtracting the membrane strain. A major

challenge is determining membrane strains, as calculations must be made. In terms of bending

components, the process is straightforward. As a result of the wall thickness of the pipe and the

curvature of the dent, the maximum bending strain will be available on the pipe wall surface. From

the measured dent shape, both axial and circumferential curvatures can be calculated

(Lukasiewicz, Czyz, Sun, & Adeeb, 2006; Noronha et al., 2010).

11

 Fig. 1 Strain components in the pipe wall

In ASME B 31.8-2018, the following equations are assumed for circumferential bending (ε1),

longitudinal bending (ε2), longitudinal membrane (ε3) strains and the strain for inside and

outside of the pipe surface. The ASME B 31.8-2018 ignores the membrane strain for the

circumferential direction.

ε1 = (
t

2
) (

1

R0
−

1

R1
) (1)

ε2 =
t

(2R2)
 (2)

ε3 = (
t

2
) (

d

L
)
2

 (3)

R0 is the initial pipe surface radius.

L indicates the length of the dent.

t represents the thickness of the pipe.

d denotes the dent depth.=

12

As displayed in Fig. 2, there are non-reentrant and reentrant positions for dents. For the non-

reentrant dent, the surface of the dent is in the same direction as the surface of the pipe.

Otherwise, the dent is assumed reentrant. R1is positive and negative for non-reentrant and

reentrant dents, respectively (Fig. 2).

Fig. 2 Dent geometry

To calculate a dented section's equivalent total strain based on these strain components, combine

them accordingly

𝜀𝑖 = √𝜀1
2 − 𝜀1(𝜀3 + 𝜀2) + (𝜀3 + 𝜀2)2

𝜀𝑜 = √𝜀1
2 + 𝜀1(𝜀3−𝜀2) + (𝜀3 − 𝜀2)2

The strain around the inner and outer surfaces of the pipe wall is equal to 𝜀𝑖 and 𝜀𝑜. Positive and

negative values should be considered for ε1 and ε2 regarding calculating the combined strain on

the inside and outside pipe surface.

13

Noronha et al. (2005) estimated strain levels by using fourth-order B-spline curves for

interpolating the dent contour and concluded that the results have various differences with those

of the finite element method (FEM) for a small number of sensors. The obtained results using a

high-resolution tool presented a high match with the FEM. Using a low-resolution caliper tool

might result in large strain mispredictions if bending strains are predicted from the equations in

the region closest to the dent apex. Moreover, the B31.8 standard does not provide a definition of

length, which complicates the estimation of global longitudinal membrane strain, since

longitudinal strain depends significantly on length.

In addition, Lukasiewicz et al. (2006) asserted that the B31.8 code equation for the longitudinal

membrane strain is simply inaccurate, which calculates the component of the membrane strain in

the longitudinal direction. The calculation of this method relies on neglecting the circumferential

strain. It was also presented that the estimation of longitudinal strains using their method is highly

simple and comes up with an alternative method for evaluating the strain by calculations based on

radial displacement. In this method, 2 degrees of freedom results per node are compared with the

large elastoplastic method in the FEM by the three-dimensional (3D) shell pipe model for 5 degrees

of freedom for the node. The bending strain is calculated in both directions by the following

equations.

 εx
−b =

t

2

∂2w

∂x2
 (5)

 εy
−b =

t

2

∂2w

∂y2
 (6)

where t denotes the pipe wall thickness.

14

Fig. 3 Coordinate system and displacement

The equations for membrane strains are as follows:

 εx
m =

∂u

∂x
+

1

2
(
∂w

∂x
)
2

+ εx
0 (7)

 εy
m =

∂v

∂y
−

w

R
+

1

2
(
∂w

∂y
)
2

+ εy
0 (8)

where εx
m and εy

m are membrane strains in longitudinal and circumferential directions,

respectively.

The shear strain is:

 γxy =
∂u

∂y
+

∂v

∂x
+ (

∂w

∂x
) (

∂w

∂y
) (9)

The maximum values for strains in longitudinal and circumferential directions are:

 εx = εx
m ± εx

−b (10)

 εy =εy
m ± εy

−b (11)

15

where positive and negative signs are used for the outer and inner side of the pipe. The

equivalent strain is a function of longitudinal and circumferential strains.

 εeq =
2

√3
√(𝜀𝑥

2 + εx𝜀𝑦 + 𝜀𝑦
2) (12)

Noronha et al. (2005) Assert that by assuming circumferential and longitudinal directions as

main directions, radial and circumferential strains are negligible compared to other strains. The

equivalent strain is presented by:

 𝜀𝑒𝑞𝑣 =
1

1+ν
√

1

2
[(𝜀𝐼 − 𝜀𝐼𝐼)2 + (𝜀𝐼𝐼 − 𝜀𝐼𝐼𝐼)2 + (𝜀𝐼𝐼𝐼 − 𝜀𝐼)2 (13)

By using ν = 0.5, and ignoring the elastic strain as it is negligible compared to the plastic strain,

the last equation can be rewritten as:

 𝜀𝑒𝑞𝑣 =
√2

3
√[(𝜀𝐼 − 𝜀𝐼𝐼)2 + (𝜀𝐼𝐼 − 𝜀𝐼𝐼𝐼)2 + (𝜀𝐼𝐼𝐼 − 𝜀𝐼)2 (14)

16

where 𝜀𝐼 represents the principal strain in the longitudinal direction.

𝜀𝐼𝐼 is the principal strain in the circumferential direction.

𝜀𝐼𝐼𝐼 indicates the principal strain in the radial direction.

By assuming the radial strain as a combination of longitudinal and circumferential strains the

following equation is obtained:

 𝜀𝐼 + 𝜀𝐼𝐼 + 𝜀𝐼𝐼𝐼 = 0 (15)

 By inserting that in Eq. (14), it will precisely resemble Eq. (15).

Woo et al. (2017) assured that a connection exists between the obtained results from ASME B31.8

and finite element analysis (FEA) models. In this method, FEA results are based on run inline

inspection (ILI) tools. 22 models were created in their research. Using the ASME B31.8 equations

is computationally robust. On the other hand, FEA results provided lower strains compared to

ASME B31.8, especially for sharper dents. Likewise, Okoloekwe et al. (2018) evaluated a

comprehensive strain-based model for determining the severity of dents in the pipe while ignoring

the initial imperfection of the pipe, the stress concentrator, discontinuities, and internal pressure

cycles. The present study aims at improving the non-destructive model presented by Okoloekwe

et al. In order to overcome this problem, a simple method was developed to enhance the previous

method in the longitudinal direction and obtain results that are very close to those obtained through

using finite element software (ABAQUS).

2.3 Method

2.3.1 Modeling of Dents

17

By finite element analysis, we can solve complicated problems by fragmenting them into smaller

units. The literature has published several studies using FEA to validate full-scale denting tests,

compare results with analytical models, and develop new methods of assessing dent severity (Woo,

2019).

The intended pipeline model in this study was created using the commercial finite element

software ABAQUS (version 2019). Instead of analyzing the entire pipe, the lagrangian strain

distribution along the thickness of the wall will be studied numerically and analytically.

Fig. 4 and 5 illustrates a 2D and 3D model of the wall thickness generated along the longitudinal

plane of the symmetry of a pipe.

Fig. 4 2D model of wall thickness

Fig. 5-a 3D model of wall thicknes

18

 Fig. 5-b 3D model of wall thickness

Fig. 5 illustrates a 2D model of the wall thickness generated along the longitudinal plane of the

symmetry of a pipe. The pipe had a length of 300 mm. The 300 mm length was utilized to ensure

that the formed dent would be a localized deformity and no interaction would happen between the

end boundary condition and the dent.

Fig. 6 illustrates a 3D model of the wall thickness generated along the longitudinal plane of the

symmetry of a pipe. We examined 159 different models (the work took more that 600 hours to

complete) in 7 categories, in the first category the pipe had a length of 600, 900, 1200, 1500, 1800,

2100, 2400, 2700, 3000, 3300, 3600 and 4000 mm with the OD of 762 mm. In addition, the wall

thickness is 7.14 mm. The second category is the same as the first one. For the third category, the

length of the pipe is 1250 mm with an OD of 762 mm and for each indentation depth, we have

used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm. For the fourth

category, the length of the pipe is 2500 mm with an OD of 762 mm and for each indentation depth,

we have used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm. For the

19

fifth category, the length of the pipe is 2500 mm with an OD of 762 mm and for each indentation

depth we have used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm

with the different indentation depth compared to the previous category. For the sixths category,

the length of the pipe is 1100 mm with an OD of 323.8 mm and for each indentation depth, we

have used these three-wall thicknesses for the pipeline, 6.052, 6.35, and 6.649 mm. For the sixths

category, the length of the pipe is 1100 mm with an OD of 323.8 mm and for each indentation

depth we have used these three-wall thicknesses for the pipeline, 6.052, 6.35, and 6.649 mm with

the different indentation depth compared to the previous category.

For the 2D model, a 2D analytical rigid shell was used to model the indenter. The indenter had a

spherical shape and was 100 mm in diameter. Four bilinear nodes and plane stress elements with

reduced integration and hourglass control were employed to mesh the studied model. The

restrained translation was applied for both sides of the pipeline. In addition, a surface-to-surface

(standard) interaction was considered for this model between the indenter and the pipe, and the

degree of smoothing for the master surface was 0.2. Further, isotropic hardening plasticity was

defined for the pipe material, a penalty was used for friction formulation instead of the Lagrange

multiplier (standard). The pipe material was modeled as the elastic-plastic material with Young’s

modulus of 200 GPa and a poisons ratio of 0.3, and the pipe was an X-52 with a yield stress of 345

MPa. For steel materials, Poisson’s ratio was approximately assumed to be 0.3.

20

Fig. 6 3D model of indenter

For the 3D model as, it is presented in Fig 6, the indenter shapes investigated were, a spherical

indenter, the radius of the indenter in the longitudinal section, and the circumferential section for

the first to the seventh category is 25mm and for the sixth and seventh category is 10mm. 15.24 is

being conducted as a dent depth for the first and second categories of the 3D model. For the third

category, three dent depths have been used which are 12.74, 15.24, and 17.74mm. A total of three

dent depths were used for the fourth category, which were 5.12, 7.62, and 10.12mm. Three types

of dent depth have been used in the fifth category, which are 27.98, 30.48, and 32.98mm. Dent

depths of 2.35, 4.85, and 7.35mm were used for the sixth category. And finally, for the seventh

category, three dent depths have been used which are 5.02, 7.52, and 10.02mm.

In the following tables the specifications of these models are presented.

21

Table 2. Specification of the models for the first category

Table 3. Specification of the models for the second category

22

Table 4. Specification of the models for the third category

23

Table 5. Specification of the models for the fourth category

24

Table 6. Specification of the models for the fifth category

25

Table 7. Specification of the models for the sixths category

26

Table 8. Specification of the models for the seventh category

 Fig. 7 internal pressure direction

For the 2D model, the study was performed on unpressurized and pressurized pipes with restrained

dents. For the pressurized condition, the internal pressure effect was applied as an upward

distributed line load with an intensity rate of 8 MPa along the lower edge of the model (Fig. 7).

Overall, 10 parameters were evaluated, including 10 different dent depths (i.e., 0.5, 1, 1.5, 2, 2.5,

3, 3.5, 4, 4.5, and 5% OD) for 9 various levels along the thickness of the pipe (i.e., 0, 1, 2, 3, 4, 5,

6, 7, and 8 mm).

27

In the 3D model for the first to the fifth model, the maximum operating pressure is 5.38 MPa, and

operating pressure ILI is 2.01MPa and for the sixth and seventh categories are 11.25 and 4.22 MPa.

Fig. 8 maximum operating pressure direction

The assumption used in 2D analysis was plane stress and the element types in 2D and 3D

analyses are presented in the following figures.

 Fig. 9-a Element types in 2D direction

28

 Fig. 9-b Element types in 3D direction

Where ARSSE is Analytic rigid surface (extruded), CPS4R is 4-node bilinear, reduced integration

with hourglass control, RNODE2D is Reference node (two-dimensional). Also, the elements in

the 3D direction are C3D8 which is a general-purpose linear brick element, fully integrated (2x2x2

integration points), C3D20 is a general-purpose quadratic brick element (3x3x3 integration points),

C3D20R element is a general-purpose quadratic brick element, with reduced integration (2x2x2

integration points) and S4 is a fully integrated, general-purpose, finite-membrane-strain shell

element

2.3.2 Dent Profile Interpolation

The data points representing the dented pipe were extracted from numerical models. The profiles

in Fig. 10 depict displacements along the longitudinal direction.

29

Fig. 10 displacement along the longitudinal direction

2.3.3 Loading Step

Pressurization, denting, and removal of the indenter were applied in a sequence designed to

simulate an unconstrained dent that forms during operation. Different pressure values were

considered for the experiment's pressurization phase to simulate the pressurized fluid moving in

a pipeline at real-life operating pressures.

FEA followed with an indentation step, which involved translating the indenter downwards to

create different depths of indentation. As a final step, the indenter was shifted vertically upward

so that it was no longer in contact with the pipe. The loading sequence is depicted in Figure 11.

30

 Fig. 11 Loading steps

2.3.4 Displacement Discretization

In order to construct a 3D model of the morphology of the pipeline, we should make use of a

cylindrical coordinate system, which allows the determination of the deformed pipeline

coordinates, as explained in (Okoloekwe, et al., 2019).

Fig. 12 cylindrical coordinate System

In a cylinder coordinate system, the global displacement field can be expressed by Equation (16):

u = urer + uθeθ + uzez (16)

with components in the radial, circumferential, and longitudinal local directions.

The gradient of the displacement vector can be computed taking into consideration that the basis

vectors er and eθ are dependent upon the angle and ez is not dependent upon the angle.

Mathematically, the displacement gradient is represented by equation (17).

31

𝛻𝑢 =

[

∂ur

∂R

∂ur

R ∂θ
−

uθ

R

∂ur

∂z
∂uθ

∂R

ur

R
+

∂uθ

R ∂θ

∂uθ

∂z
∂uz

∂R

∂U2

R∂θ

∂uz

∂z]

 (17)

A deformed pipeline's mid surface is defined by its radius R.

There is a great deal of difficulty in deriving a theoretical solution for local deformations of a

pipeline without simplifying assumptions associated with geometrical and material nonlinearities.

In the original method, the the pipe wall's mid surface is assumed to be straight and uniform before

deformation. To gain better strain results we will add mid-surface displacement to the results. The

hypothetical radius of the mid surface of the deformed pipe is evaluated by:

 Rhyp(z) = ∫
 Rm(θ,z)∂θ

2π

π

−π

 (18)

where 𝑅𝑚 is the radius of the mid surface of the deformed pipeline and 𝜙 is the angular distortion of

the deformed pipeline.

Fig. 13 displacement along the circumferential direction

Based on the assumption that displacements along the thickness of the pipe wall are linearly

distributed, the longitudinal deformations associated with the indentation are

32

evaluated. Therefore, longitudinal displacement is simulated with large displacements and

rotations as a function of longitudinal slope, θz, of the pipe wall as shown in equation (19).

The longitudinal displacement is given by:

 uz = tvSin(θz) (19)

Where uz is the longitudinal displacement and θz is the slope of the deformed pipe wall in the

longitudinal direction

The circumferential displacement is given by:

 uθ = RmSin(∅) − tvSin(∅ − θθ) (20)

Where uθ is the circumferential displacement,θθ is the slope of the deformed pipe wall in the

circumferential direction and ∅ is the angular distortion of the deformed pipe.

The radial displacement:

 ur = Rm(θ, z)Cos(∅) − Rhyp(z) (21)

Where ur is the radial displacement.

In Okoloekwe’s original method, it was assumed that the horizontal displacement in the middle

layer, as shown in the figure below, was zero, and that each of the nodes shifted vertically when

the dent was created. To find the horizontal displacement of the middle layer, first we found its

primary location and then their secondary location, then we found the displacement of each part

and by collecting the displacement of all parts, the displacement of the middle layer was obtained.

As will be shown in the results, adding the displacement of the mid surface of the pipe significantly

improves the accuracy of prediction, therefore, Eq. (22) is modified as follows:

33

 uz = tvSin(θz) +um (22)

Fig. 14 displacement in the mid-line of the pipe in the longitudinal direction

where um and tv indicate the displacement of the mid surface in the deformed pipe and the

coordinate normal to the mid surface of the pipe, respectively. Additionally, t and tv are the

thickness of the pipe and along with that (
−t

2
< t_v <

t

2
), respectively.

The slopes along the circumference and the longitudinal axis across the circumference are

calculated using Eqs. (23) and (24), respectively

 θθ = ArcTan (
∂Rm

Rm ∂θ
) (23)

 θz = ArcTan (
∂ur

∂z
) (24)

34

For strain measurement in the circumferential direction, it is assumed that the linear strain or the

small strain is calculated by using Eq. (25):

 εL =
1

2
(∇u + ∇uT) (25)

For large deformations and rotations that result from strain, the Lagrangian strain measure

includes nonlinear terms. In Lagrangian strain analysis, the expression represents by

 εNL =
1

2
(∇u + ∇uT + ∇u∇uT) (26)

Using the results obtained from the FEA, the equation ArcTan (
∂ur

∂z
) in Mathematica was used to

calculate the θz in the original method and the displacement of the nodes in the horizontal direction

was obtained. By obtaining U1, the amount of Lagrangian strain in different layers of pipes was

computer. And their diagrams were drawn, an example of which will be displayed in the result

section.

 Also, Mathematica software was used for interpolating the graphs. Moreover, Gaussian Filter was

applied to remove the noise effect (i.e., flatting and decreasing noisy points), especially at 4 and 5

mm height of the pipe.

2.4 Results:

An example of a numerical model for the deformed pipes and the indenter is illustrated in figure

15.

35

Fig. 15 Numerical Models

2.4.1 Numerical Models

Deformation Analysis:

Fig. 15 to 23 show the graphs representing the longitudinal displacement (U1) in 9 different Levels

(0 to 8 mm) of the pipe from inside to outside of the 2D model subjected to a 10mm dent. It is

observed that without adding the mid surface displacement to the original expression there are

considerable differences between the “true” displacement, which is calculated by the FEA model,

and the original method. The horizontal axis in the graphs represents the longitudinal length of the

pipe and the vertical axis represents the U1 in the longitudinal direction for the pipe. The graphs

shows that the U1 displacement is concentrated between the apex of the dent and supports. As can

be seen in Fig. 16-24 in the different layers of the pipe, after adding U1 displacement in the mid

surface which is used in Eq.22, the prediction of the two methods (modified and FEA methods)

became very close.

36

Fig. 16 U1 Displacement in the longitudinal direction in 0mm Height

Fig. 17 U1 Displacement in the longitudinal direction in 1mm Height

-1.5

-1

-0.5

0

0.5

1

1.5

U
1

 D
is

p
la

ce
m

e
n

t(
m

m
)

Longitudinal Length

U1 Displacement in 0mm Height

FEA Original Method Modified Method

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 1mm Height

FEA Original Method Modified Method

37

Fig. 18 U1 Displacement in the longitudinal direction in 2mm Height

Fig. 19 U1 Displacement in the longitudinal direction in 3mm Height

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 2mm Height

FEA Original Method Modified Method

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 3mm Height

FEA Original Method Modified Method

38

Fig. 20 U1 Displacement in the longitudinal direction in 4mm Height

Fig. 21 U1 Displacement in the longitudinal direction in 5mm Height

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 4mm Height

FEA Original Method Modified Method

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 5mm Height

FEA Original Method Modified Method

39

 Fig. 22 U1 Displacement in the longitudinal direction in 6mm Height

Fig. 23 U1 Displacement in the longitudinal direction in 7mm Height

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
1

 D
is

p
la

ce
m

e
n

t
(m

m
)

Longitudinal Length

U1 Displacement in 6mm Height

FEA Original Method Modified Method

-1.5

-1

-0.5

0

0.5

1

1.5

U
1

 D
is

p
la

ce
m

en
t

(m
m

)

Longitudinal Length

U1 Displacemeent in 7mm Height

FEA Original Method Modified Method

40

Fig. 24 U1 Displacement in the longitudinal direction in 8mm Height

2.4.2 Strain Analysis

As mentioned in the previous sections, the159 different 3D models in 7 different categories are

used to verify a new method to predict the Lagrangian strain in the longitudinal direction. To

determine the efficiency of the new method we obtained the ratio of logarithmic strain (LE 33) in

the longitudinal direction in the original and modified method to the results that came from FEA and

used the average and standard deviation of the data in each category as the criteria for evaluating

the new method. By understanding that a closer average to 1 and a smaller standard deviation to 0

represent more accurate results, the greater the level of confidence in the results. The below graphs

show an example of the results in nine different layers

-1.5

-1

-0.5

0

0.5

1

1.5
U

1
 D

is
p

la
ce

m
e

n
t

(m
m

)

Longitudinal Length

U1 Displacement in 8mm Height

FEA Original Method Modified Method

41

Fig. 25 The average ratio of the LE33 in modified and original method to FEA method

Fig. 26 The standard deviation ratio of the LE33 in modified and original method to FEA

method

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 r
at

io
 o

f
th

e
LE

3
3

 in
 m

o
d

if
ie

d
 a

n
d

o

ri
gi

n
al

 m
et

h
o

d
 t

o
 F

EA

Numbers of Layers

Original Method Modified Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9

SD
 o

f
th

e
ra

ti
o

 o
f

LE
3

3
 o

ri
gi

n
al

 a
n

d

m
et

h
o

d
 t

o
 F

EA

Layers Numbers

Original Method Modified Method

42

The logarithmic strain (LE11) in the longitudinal direction distributions for the 2D model are

presented in Figs. 27 to 35. The horizontal axis in the graphs represents the longitudinal length of

the pipe and the vertical axis represents the strain in the longitudinal direction for the pipe (the first

50 mm and the last 50 mm of the pipe have been removed because the critical points are in the

middle part). For the pressurized dented pipes, the maximum strain concentrations are in the center

and toward the shoulders of the dent. Unlike the previous situation for the dented pipe without

pressure, the maximum strain considerations are just in the center part of the pipe.

 Fig. 27 Plots of the LE11 in the longitudinal direction in the 0 mm height of the pipe

 Fig. 28 Plots of the LE11 in the longitudinal direction in the 1 mm height of the pipe

-0.01

0.04

0.09

0.14

St
ra

in

Longitudinal length

1mm Height dent

FEA Original Method Modified Method

-0.04

0.01

0.06

0.11

0.16

0.21

St
ra

in

Longitudinal length

0mm Height dent

FEA Original Method Modified Method

43

 Fig. 30 Plots of the LE11 in the longitudinal direction in the 3 mm height of the pipe

 Fig. 31 Plots of the LE11 in the longitudinal direction in the 4 mm height of the pipe

Fig. 29 Plots of the LE11 in the longitudinal direction in the 2 mm height of the pipe

-0.035

-0.015

0.005

0.025

0.045

0.065

0.085

0.105

0.125

St
ra

in

Longitudinal length

2mm Height dent

FEA Original Method Modified Method

-0.03

0.02

0.07

St
ra

in

Longitudinal length

3mm Height dent

FEA Original Method Modified Method

0

0.01

0.02

0.03

0.04

0.05

St
ra

in

Longitudinal length

4mm Height

FEA Original Method Modified Method

44

Fig. 33 Plots of the LE11 in the longitudinal direction in the 6 mm height of the pipe

 Fig. 34 Plots of the LE11 in the longitudinal direction in the 7 mm height of the pipe

-0.04

-0.02

0

0.02

0.04

St
ra

in

Longitudinal length

5mm Height

FEA Original Method Modified Method

-0.08

-0.03

0.02

St
ra

in

Longitudinal length

6mm Height

FEA Original Method Modified Method

-0.11

-0.06

-0.01

0.04

St
ra

in

Longitudinal length

7mm Height

FEA Original Method Modified Method

Fig. 32 Plots of the LE11 in the longitudinal direction in the 5 mm height of the pipe

45

 Fig. 35 Plots of the LE11 in the longitudinal direction in the 7 mm height of the pipe

2.5 Discussion

According to the results from around 180 different two-dimensional and three-dimensional models

the use of the modified method can produce comparably more accurate strains. According to

Figures 27 to 35, the results obtained for strain in all layers appear to be much more accurate and

closer to the FEA results than in previous studies. Moreover, it is worth noting that the prediction

of the strain is a little bit more accurate than the previous results, which will improve reliability.

According to Woo et al’s discussions about this issue in their research, they confirm that although

Okoloekwe results are more accurate than ASME B31.8, they do not have enough correlation with

the results obtained from FEA. There is a notable difference between layers, especially in the

middle and upper ones. As a result of making changes to this method, we achieved significant

results. In other words, the results obtained by this method are more consistent with those obtained

by the FEA method. Moreover, the reliability of these results exceeds one, which infers that they

are reliable.

-0.15

-0.1

-0.05

0

0.05

St
ra

in

Longitudinal length

8mm Height

FEA Original Method Modified Method

46

The new developed method for measuring strain is much faster than FEA. which takes a long time

to run. For example, to run a 3D model requires at least two and a half hours. Depending on the

circumstances, this time may increase. It should be noted that this time is unacceptable in industrial

activities where time is a very important element. However, this method has succeeded in

calculating the strain results from the displacement of the nodes in a very short time, and as

mentioned in the first part, the results are close to reality and have significant reliability. As

Okoloekwe et al. emphasized if the dent profile is not aligned with the most severe peak (off axis

peaks), a three-dimensional analysis of dented pipelines will be necessary. It would be feasible to

have these analyses carried out by smart inline inspection devices by using algorithms which are

readily programmable, thus reporting a strain estimate instantly. This information can be used by

operators to determine where they should focus their resources for dent management.

2.6 Conclusion

Through an analytical approach across all aspects of pipeline strain analysis, we are developing an

effective strategy for allocating pipe dent repair resources. According to the present study, the

modified method generated significantly better longitudinal strain distribution in the longitudinal

direction than the conventional procedure. The new developed method provides a substantial

improvement in in terms of accuracy without compromising the speed of the analytical method.

According to these findings, a similar level of accuracy can be achieved by using this method to

predict the maximum strains in dented regions as that achieved with FEA whose accuracy has been

shown by other researchers. This convenient new method is feasible for system-wide

implementation from both a time and resource standpoint which means operators would be able to

assess a large number of dents with high reliability in a short period of time.

47

2.7 Acknowledge:

The authors acknowledge the financial support from Enbridge Pipelines Inc.

48

Chapter 3 - The improvement of A strain-based modeling approach for

analyzing dented pipeline severity in the circumferential direction.

49

3.1 Introduction

Pipelines are the primary means of transporting many petroleum products and natural gas in North

America and throughout the world. Approximately 700,000 km of energy pipelines are in service

in Canada alone (Yukon Government, 2011). This is why maintaining and repairing these pipelines

is becoming more and more important every day. As revealed in the previous chapter of possible

pipeline damage, the dent is one of the biggest dangers facing pipelines. As is mentioned, FEA is

a reliable method for analyzing stresses and strains within a dented region, though it is inefficient

for analyzing many dent models as each is computationally costly (Woo et al., 2019).

In the previous chapter, after obtaining strain and displacement results from the FEA method, as

well as Okoloekwe et al.’s strain base method (which will be called as original method), we

concluded that changes should be made in this method in the longitudinal direction to obtain

acceptable results. In this chapter, the main objective is to first examine whether or not the original

method in the circumferential direction is acceptable based on criteria and standards, by using

different 2D and 3D models in different conditions. In this way, it would be unnecessary to model

each dent with FEA, though it would benefit from obtaining an accurate result from FEA.

Comparing the results based on the original method with the results from the FEA method will

then be done.

50

3.2 Method

3.2.1 Modeling of Dents in the circumferential direction

In this study, ABAQUS (version 2019) subroutine was used to create the 3D pipeline models. In

Appendix A, you will find scripts for generating models and also in Appendix B you will find

Mathematica code which is used for extracting results. Instead of analyzing the entire pipe,

numerically and analytically we will investigate the lagrangian strain distribution along with its

thickness. Fig. 36 and 37 show how the thickness of a pipe's wall is represented in a 2D and 3D

model on the circumferential plane of the symmetry.

 Fig. 36-a 2D model of wall thickness in the circumferential direction

51

 Fig. 36-b 2D model of wall thickness in the circumferential direction

An illustration of the wall thickness of a pipe, generated along the circumferential plane by a two-

dimensional modeling technique, is shown in Fig. 33. A 300-mm-long pipe had a 216-mm outer

diameter (OD) and the ratio of the outer diameter to the thickness is 27. To ensure that the formed

dent would be a localized deformity, the 300 mm length was chosen to ensure that there would be

no interaction between the dent and the end boundary condition.

52

 Fig. 37 3D model of wall thickness in the circumferential direction

In Fig. 37, the wall thickness generated along a circumferential plane is visualized in a 3D model.

In order to verify the main method, more than 40 two-dimensional models in different conditions

and 159 three-dimensional models have been performed to evaluate the reliability of this method.

Among the models presented in the following table, for example in the fourth category, these

models have been studied in certain types along a certain length of pipe with different thicknesses

and different types of steels at different indentation depths and at certain pressures to obtain very

comprehensive and reliable results. Running the models for each of which took about three hours

and a total of about 600 hours.

53

3.2.2 Displacement Discretization

As outlined in the previous chapter, a cylindrical coordinate system was used for the analytical

modelling of the dented pipe, which allows the determination of the deformed pipeline coordinates,

as explained in (Okoloekwe, et al., 2019).

54

Fig. 38 cylindrical coordinate System

In a cylinder coordinate system, the global displacement field can be expressed by Equation (27):

 u = urer + uθeθ + uzez (27)

The displacement gradient is represented by equation (28).

 𝛻𝑢 =

[

∂ur

∂R

∂ur

R ∂θ
−

uθ

R

∂ur

∂z
∂uθ

∂R

ur

R
+

∂uθ

R∂θ

∂uθ

∂z
∂uz

∂R

∂U2

R∂θ

∂uz

∂z]

 (28)

A deformed pipeline's mid surface is defined by its radius R.

There is a great deal of difficulty in deriving a theoretical solution for local deformations of a

pipeline without the simplifying assumptions associated with geometrical and material

nonlinearities.

In the original method, the pipe walls’ mid surface is assumed to be straight and uniform prior to

deformation. To gain better strain results we will add mid-surface displacement to the results. The

hypothetical radius of the mid surface of the deformed pipe is evaluated by:

55

 Rhyp(z) = ∫
 Rm(θ,z)∂θ

2π

π

−π

 (29)

where 𝑅𝑚 is the radius of the mid surface of the deformed pipeline and 𝜙 is the angular distortion of

the deformed pipeline.

Fig. 39 displacement along the circumferential direction

The circumferential displacement:

56

 uθ = RmSin(∅) − tvSin(∅ − θθ) (30)

For strain measurement in the circumferential direction, it is assumed that the linear strain or the

small strain is calculated by using Eq. (31):

 εL =
1

2
(∇u + ∇uT) (31)

3.3 Results:

The analysis for this direction can be produced by solving the expression 30 along its

circumferential axis. In order to calculate Rm (the radius after deformation), we obtained the

coordinates of each node and then calculated Rm by using the √𝑥2 + 𝑦2.

3.3.1 Numerical Models

An example of a numerical model for the deformed pipes and the indenter is illustrated in figure

40.

57

Fig. 40 Numerical Models

3.3.2 Strain Analysis

It was already mentioned that 159 unique 3D models are used to test an original method for

determining the logarithmic strain (LE11) in the circumferential direction and 40 different 2D

models are also examined. We used the average and standard deviation of the data in each

category as the criteria to correctly diagnose the efficiency of the original method and we

calculated the ratio of LE11 in the original method to the FEA results. It is more reasonable to

have higher levels of confidence in the results of the analysis if the average is closer to 1 and the

standard deviation is close to 0. The graphs below show an example of these results.

58

Fig. 41 Ratio of the LE11 in the top of the pipe in the circumferential direction in 3D model

Fig. 42 Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 3D model

0.75

0.8

0.85

0.9

0.95

1

1.05

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al
 m

et
h

o
d

to

 F
EA

 m
et

h
o

d

number of the experiment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al
 m

et
h

o
d

 t
o

 F
EA

m

et
h

o
d

number of the experiment

59

Fig. 43 Ratio of the LE11 in the bottom of the pipe in the e circumferential direction in 2D

model with pressure

Fig. 44 Ratio of the LE11 in the top of the pipe in the circumferential direction in 2D model

with pressure

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al

m
et

h
o

d
 t

o
 F

EA
 m

et
h

o
d

Height of the dent

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al

m
et

h
o

d
 t

o
 F

EA
 m

et
h

o
d

Height of the dent

60

Fig. 45 Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 2D

model without pressure

Fig. 46 Ratio of the LE11 in the top of the pipe in the in the circumferential direction in 2D

model with pressure

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al
 m

et
h

o
d

 t
o

FE

A
 m

et
h

o
d

Height of the dent

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
at

io
 o

f
th

e
LE

1
1

 in
 t

h
e

o
ri

gi
n

al

m
et

h
o

d
 t

o
 F

EA
 m

et
h

o
d

Height of the dent

61

In the following graphs the average ratio and standard deviation ratio for different categories of

the pipe is presented.

Fig. 47 Average ratio of the LE11 in the bottom of the pipe in the circumferential

direction in 3D model

Fig. 48 Standard deviation of the LE11 in the bottom of the pipe in the circumferential

direction in the3D model

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5 6 7 AllA
ve

ra
ge

 r
at

io
 o

f
th

e
LE

1
1

 in

o
ri

gi
n

al
 m

et
h

o
d

 t
o

 F
EA

 m
et

h
o

d

Numbers of Categories

Bottom Top

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 All

St
an

d
ar

d
 d

ev
ia

ti
o

n

Numbers of Categories

Bottom Top

62

Fig. 49 Average ratio of the LE11 in the circumferential direction in 2D model

Fig. 50 Standard deviation of the LE11 in the circumferential direction in 2D model

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

Bottom Top Bottom by Pressure Top by Pressure

A
ve

ra
ge

 r
at

io
 o

f
th

e
LE

1
1

 in
 o

ri
gi

n
al

m

et
h

o
d

 t
o

 F
EA

 m
et

h
o

d

0

0.005

0.01

0.015

0.02

0.025

0.03

Bottom Top Bottom by Pressure Top by Pressure

St
an

d
ar

d
 d

ev
ia

ti
o

n

63

3.4 Conclusion

A brief summary of the conclusion of this chapter follows the detailed discussion in previous

sections. As part of the process of verifying the method, two-dimensional and three-dimensional

models were examined. It was found that the results in this section were very accurate in contrast

with the longitudinal results discussed in Chapter 2. In other words, the current method is much

faster than the FEA method, and the accuracy and reliability of the results are acceptable based on

the FEA results. Graphs 40 through 43 show that in the original method and the FEA method, the

average ratio is very close to one, which indicates the method's high accuracy. Where for the 3D

models the ratio quantity was reported as 0.978 +/- 0.0837, 1.014 +/- 0.088, 0.975 +/- 0.0871,

1.009 +/- 0.0847, 1.001 +/- 0.0851, 1.000 +/- 0.0848, 1.0026 +/- 0.0848 for the first to seventh

categories in the bottom side of the pipeline and for all of them is 0.999 +/- 0.0849. And for the

top side of the pipe in the 3D models are 0.946 +/- 0.0239, 0.947 +/- 0.0247, 0.958 +/- 0.0239,

0.961 +/- 0.0245, 0.945 +/- 0.0252, 0.967 +/- 0.0246, 0.953 +/- 0.0273 and for all of them is 0.955

+/- 0.0315. And also, for 2D models the ratio quantities are 0.975 +/- 0.020, 0.947 +/- 0.0268 for

the bottom and top sides of the pipeline without pressure. As well as 0.960 +/- 0.022, 0.948 +/-

0.0219 for the bottom and top side of the pipeline under pressure.

64

CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH

65

4.1 Summary and Conclusions

Our main goal is to further develop a strain-based modeling approach for assessing the severity of

dented pipelines. Many factors determine how vulnerable pipes are to dent-related risks. As has

been stated many times since the first introduction, material and the length of the pipe are involved

in this case. In addition, shape, size location, interaction with pipe features, and operation

properties are the important factors for determining the severity of the dent. Having an accurate

method to perform dents integrity assessments will increase the reliability of pipelines while

ensuring that resources are utilized efficiently. Finite element analysis has been proposed for

assessing dents, but this method requires a significant amount of computing time and can only be

used in very limited contexts. Therefore, a useful method is that solves the time problem (with

which the FEA has a problem) and can avoid spending too much time analyzing models while

being accurate enough to be believable in the industry. Developing such a method was the purpose

of this thesis.

In the second chapter of this thesis, we focused on improving the results of a method that had

previously been developed. First, the results were examined in the longitudinal direction, for

which different models in different conditions were considered. By adding the displacement of

the middle layer to the displacement of the other layers in the horizontal direction, the logarithmic

strains reached considerable reliability because, in the previous method, the amount of these strains

was less than the amount estimated by the FEA method. While in the developed method, all the

maximum strains obtained are more than the results obtained in the FEA method. All of the results

pass these conditions since the difference between them is up to 6%.

66

Using code in Mathematica, as outlined in the Appendix section, the displacements in the

horizontal direction were first determined by using the vertical displacements and then compared

graphically with the FEA results. Based on displacement, the logarithmic strain results were

calculated in the longitudinal direction for both the original and modified method and compared

to FEA results.

Finally, in the third chapter, the original method was first verified by 159 different 3D models in

7 categories and 40 2D models. The results obtained and their comparison with the FEA results

revealed that there was no need to modify the original method as opposed to the longitudinal

direction results which required changes to the method.

According to these results, both the modified method in the longitudinal direction and the original

method in the circumferential direction can provide similar results to what is already known about

FEA, which is already proven to be an accurate representation of reality by other researchers.

These methods are useful because they allow users to achieve results in a shorter amount of time

than using FEA alone and might be feasible for system-wide use from both a time and resources

perspective.

4.1.1 Accomplishments

The following are the most important achievements of this research.

1- Propose and accurate and realistic method by adding the horizontal displacement in the middle

layer of the pipe to the horizontal displacement in other levels.

2- Illustrating the function of and accuracy of the modified method and the original method in

the longitudinal and circumferential direction by using multiple models in different conditions.

67

3- Achieving results with acceptable speed compared to FEA method.

4.2 Future Research

This study has proven that it is possible to assess dents in the longitudinal direction by using the

modified method and the circumferential direction by using the original method. There are many

different types of dent types and pipe properties found on pipeline systems, but the research did

not examine all of them.

Efficiencies and accuracy of the proposed methods may be further improved through future

research.

In the future, it would be better to focus on improving the accuracy of horizontal displacement

predictions than to bring results closer to reality. The results of the FEA method were also used as

a way to contribute to the horizontal displacement of other layers in the modified method for

horizontal displacement in the middle layer, which had been viewed as zero in the original method.

It is recommended that future research on horizontal displacement prediction in the middle layer

be based on ILI data. This makes the modified method of predicting horizontal displacement in

the middle layer complete.

68

Bibliography

Kiefner J, Leewis K. Pipeline Defect Assessment – A Review & Comparison of Commonly

Used Methods. Worthington, Ohio, USA: Kiefner and Associates, Inc.; 2011. 238 p. Report No.:

PR-218-05405.

Gao, M., McNealy, R., Krishnamurthy, R., and Colquhoun, I., 2008, “Strain-Based Models for

Dent Assessment—A Review,” ASME Paper No. IPC2008-64565.

ASME, 2016, “Gas Transmission and Distribution Piping Systems,” American Society of

Mechanical Engineers, New York, Standard No. ASME B31.8-2016.

Lukasiewicz, S. A., Czyz, J. A., Sun, C., and Adeeb, S., 2006, “Calculation of Strains in Dents

Based on High Resolution In-Line Caliper Survey,” ASME Paper No. IPC2006-10101.

Noronha, D. B. Jr, R. Martins, B.P. Jacob, E. Souza, “The use of B- Splines in the Assessment of

Strain Levels with Plain Dents”. Proceedings of the Rio Pipeline Conference and Exposition 2005,

Rio de Janeiro.

Rosenfeld, M. J., Porter, P. C., and Cox, J. A., 1998, “Strain Estimation Using Vetco Deformation

Tool Data,” ASME Paper No. IPC1998-2047.

Noronha, D. B., Martins, R. R., Jacob, B. P., and de Souza, E., 2010, “Procedures for the Strain

Based Assessment of Pipeline Dents,” Int. J. Pressure Vessels Piping, 87(5), pp. 254–265.

Woo, J., Muntaseer, K., and Adeeb, S., 2017, “Development of a Profile

Matching Criteria to Model Dents in Pipelines Using Finite Element Analysis,” ASME Paper No.

PVP2017-65278.

Okoloekwe, C., Kainat, M., Langer, D., Hassanien, S., Roger Cheng, J., and Adeeb, S. (May 14,

2018). "Three-Dimensional Strain-Based Model for the Severity Characterization of Dented

69

Pipelines." ASME. ASME J Nondestructive Evaluation. August 2018; 1(3):

031006. https://doi.org/10.1115/1.4040039

J. Woo, M. Kainat, C. Okoloekwe, S. Hassanien and S. Adeeb. Integrity Analysis of Dented

Pipelines using Artificial Neural Networks. Pipeline Science and Technology. 2019; 3(2): 92–104.

https://doi.org/10.1115/1.4040039

70

APPENDIX A: Python Scripts for Model Generation and Results Extraction

There are Python code examples in the appendix that can be run in Abaqus to automatically

generate FEA model, extract profiles from FEA output files, and extract the maximum, LE11, and

LE33 from FEA output files.

The code for the first category:

from abaqus import *

from abaqusConstants import *

import __main__

import regionToolset

import section

import regionToolset

import displayGroupMdbToolset as dgm

import part

import material

import assembly

import step

import interaction

import load

import mesh

import optimization

import job

import sketch

import visualization

71

import xyPlot

import displayGroupOdbToolset as dgo

import connectorBehavior

import sketch

import sys, math

from numpy import *

File location of Input Variables text file

file_path = 'D:/To Mahyar5/'

input_file = open(file_path + 'Input_Variables.txt')

for line in input_file:

 # Read input variables from file - each row of the input file

is a new model

 extracted_line = line

 extracted_list = extracted_line.split()

 modelname = '' + str(extracted_list[0])

 line_number = str(extracted_list[1])

 segment = str(extracted_list[2])

 feature_ID = str(extracted_list[3])

 outer_radius = float(extracted_list[4])

 wall_thickness = float(extracted_list[5])

 length_of_pipe = float(extracted_list[6])/2

 steel_grade = '' + str(extracted_list[7])

 length_of_partition = float(extracted_list[8])

72

 radius_of_indenter_l = float(extracted_list[9])

 radius_of_indenter_c = float(extracted_list[10])

 indentation_depth = float(extracted_list[11])

 restrained_or_unrestrained = float(extracted_list[12])

 max_op_pressure = float(extracted_list[13])

 op_pressure_ILI = float(extracted_list[14])

 indentation_dist_1 = float(extracted_list[15])

 indentation_dist_2 = float(extracted_list[16])

 shellMesh_1 = float(extracted_list[17])

 shellMesh_2 = float(extracted_list[18])

 solid1Mesh_thick = int(extracted_list[19])

 solid1Mesh_esz = float(extracted_list[20])

 solid2Mesh_thick = int(extracted_list[21])

 solid2Mesh_esz1 = float(extracted_list[22])

 solid2Mesh_esz2 = float(extracted_list[23])

 solid3Mesh_thick = int(extracted_list[24])

 solid3Mesh_esz1 = float(extracted_list[25])

 solid3Mesh_esz2 = float(extracted_list[26])

**

**

**

 # MODEL

73

 # Create the model

 Model = mdb.Model(name=modelname)

**

**

**

 # MATERIALS

 # Create 1: X48 Mean material

 X48Mean = Model.Material(name='X48-Mean')

 X48Mean.Elastic(table=((210000,0.3),))

 X48Mean.Plastic(table=((250, 0), (300, 0.0002849), (325,

0.0008025), (350, 0.0020044), (364, 0.0032307), (380, 0.0054378),

(400, 0.010094), (420, 0.018156), (440, 0.0317562), (460,

0.0541619), (480, 0.0902838), (500, 0.1473745), (520, 0.2359729),

(540, 0.3711686), (560, 0.5742716)))

 # Create 2: X48-2SD material

 X48Minus2SD = Model.Material(name='X48-2SD')

 X48Minus2SD.Elastic(table=((210000,0.3),))

 X48Minus2SD.Plastic(table=((250, 0), (300,

0.000705970961777676), (325, 0.00198858019837109), (338.516,

0.00329883738975704), (350, 0.00496687543845044), (360,

0.00700047897053932), (370, 0.00976036237883449), (380,

0.0134751561461588), (400, 0.0250132234118651), (420,

0.0449911312849774), (440, 0.0786929187369147), (460,

0.134214963714089), (480, 0.223726383436636), (500,

74

0.365198888944934), (520, 0.58474878843564), (540,

0.919768321764559), (560, 1.42306437177443)))

 # Create 3: X48+2SD material

 X48Plus2SD = Model.Material(name='X48+2SD')

 X48Plus2SD.Elastic(table=((210000,0.3),))

 X48Plus2SD.Plastic(table=((250, 0), (300,

0.000121781127099019), (325, 0.000343033284647601), (350,

0.000856794006841056), (370, 0.00168367821871355), (389.484,

0.00312993030620379), (400, 0.00431482129492429), (420,

0.00776104255555761), (440, 0.0135746551308026), (460,

0.0231522972467571), (480, 0.0385931612089181), (500,

0.0629973960954917), (520, 0.100870107102088), (540,

0.158661515783046), (560, 0.245480894416341), (580,

0.374030182526673)))

 # Create 4: X52 (Modern) Mean material

 X52ModernMean = Model.Material(name='X52-Modern-Mean')

 X52ModernMean.Elastic(table=((210000,0.3),))

 X52ModernMean.Plastic(table=((250, 0), (300,

0.000108749400313421), (350, 0.000765108984090265), (386,

0.00250790249168916), (400, 0.00385309480590589), (425,

0.00799018025619187), (450, 0.0158785213016368), (475,

0.0303922268704767), (500, 0.0562560817910754), (525,

0.101038773636097), (550, 0.176585060648352), (575,

0.301043870179888), (600, 0.501693625474847)))

 # Create 5: X52 (Modern)-2SD material

 X52ModernMinus2SD = Model.Material(name='X52-Modern-2SD')

 X52ModernMinus2SD.Elastic(table=((210000,0.3),))

75

 X52ModernMinus2SD.Plastic(table=((250, 0), (300,

0.000379379749836455), (350, 0.00266913522415045), (355.768,

0.00325794158634255), (375, 0.00617017858484425), (400,

0.0134417857877633), (425, 0.0278742924375295), (450,

0.0553933117959858), (475, 0.10602537019849), (500,

0.196253203927263), (525, 0.352480699253238), (550,

0.616029108579458), (575, 1.05021221109713), (600,

1.75019265925738)))

 # Create 6: X52 (Modern)+2SD material

 X52ModernPlus2SDMaterial = Model.Material(name='X52-

Modern+2SD')

 X52ModernPlus2SDMaterial.Elastic(table=((210000,0.3),))

 X52ModernPlus2SDMaterial.Plastic(table=((300, 0), (350,

0.000208969884082084), (375, 0.000528485497630174), (400,

0.00119211396421991), (425, 0.00250926737883032), (430.232,

0.00291227908278148), (450, 0.00502073480401995), (475,

0.00964156680721831), (500, 0.0178760268475106), (525,

0.0321338119930988), (550, 0.0561860224429583), (575,

0.0958108616982069), (600, 0.159693156009829), (625,

0.260658912802615), (650, 0.417346755971966)))

 # Create 7: X52 (Vintage) Mean material

 X52VintageMean = Model.Material(name='X52-Vintage-Mean')

 X52VintageMean.Elastic(table=((210000,0.3),))

 X52VintageMean.Plastic(table=((300, 0), (325,

0.000243343470806226), (350, 0.000808401541595963), (375,

0.00204445005495397), (386.55, 0.00300842511484258), (400,

0.00461170168451115), (425, 0.00970711940734048), (450,

0.0194227497102881), (475, 0.0372984724789057), (500,

0.069153542026477), (525, 0.1243098892775), (550,

0.217356043233442), (575, 0.370645026859678), (600,

0.617774154719637)))

76

 # Create 8: X52 (Vintage)-2SD material

 X52VintageMinus2SD = Model.Material(name='X52-Vintage-2SD')

 X52VintageMinus2SD.Elastic(table=((210000,0.3),))

 X52VintageMinus2SD.Plastic(table=((250, 0), (300,

0.000592760847717716), (325, 0.00166968975773868), (343.29,

0.00329040530421609), (350, 0.00417038299704368), (375,

0.00964057857621192), (400, 0.0210020812703612), (425,

0.0435521116293746), (450, 0.086549127812528), (475,

0.165659048342813), (500, 0.306635279235096), (525,

0.550732500043958)))

 # Create 9: X52 (Vintage)+2SD material

 X52VintagePlus2SD = Model.Material(name='X52-Vintage+2SD')

 X52VintagePlus2SD.Elastic(table=((210000,0.3),))

 X52VintagePlus2SD.Plastic(table=((300, 0), (350,

0.000211589268884013), (386, 0.000773409973880419), (400,

0.00120705681215113), (425, 0.00254072041267275), (429.81,

0.00291379978767979), (450, 0.00508366844873115), (475,

0.00976242141587416), (500, 0.0181000983363231), (525,

0.0325366012233866), (550, 0.0568903000660922), (575,

0.0970118266893791), (600, 0.161694869451273), (625,

0.263926206545354), (650, 0.422578092317531)))

 # Create 10: X70 Mean material

 X70Mean = Model.Material(name='X70-Mean')

 X70Mean.Elastic(table=((210000,0.3),))

 X70Mean.Plastic(table=((400, 0), (450, 0.000256613102790624),

(500, 0.00111823835026017), (531, 0.00238891341903746), (550,

0.00368596371377681), (575, 0.00634181640181685), (600,

0.010623523690843), (625, 0.017390748028355), (650,

0.0278927421634957), (675, 0.0439181340326769), (700,

0.0679928987112506), (750, 0.155710854525954), (800,

0.337899549041618), (850, 0.699503176923773)))

77

 # Create 11: X70-2SD material

 X70Minus2SD = Model.Material(name='X70-2SD')

 X70Minus2SD.Elastic(table=((210000,0.3),))

 X70Minus2SD.Plastic(table=((350, 0), (400,

0.00016864952235037), (425, 0.000394595341202337), (450,

0.00082541498423713), (475, 0.00161807714428539), (493.84,

0.0026058444457115), (500, 0.00303062468504242), (525,

0.00547641946035201), (550, 0.00960235978363681), (575,

0.0163996444834247), (600, 0.0273580773723157), (625,

0.0446778446382285), (650, 0.0715562345329387), (675,

0.112570990905168), (700, 0.174186994811403), (750,

0.398688873865535), (800, 0.864975438358521), (850,

1.79044951237618)))

 # Create 12: X7+2SD material

 X70Plus2SD = Model.Material(name='X70+2SD')

 X70Plus2SD.Elastic(table=((210000,0.3),))

 X70Plus2SD.Plastic(table=((450, 0), (475,

0.000127696364806613), (500, 0.000355255084223991), (525,

0.000749267965892302), (550, 0.00141394909645165), (568.16,

0.00215465085781429), (575, 0.00250897871999982), (600,

0.00427436139425718), (625, 0.00706454292508614), (650,

0.011394600362419), (675, 0.0180019995245585), (700,

0.027928220440992), (750, 0.0640950457196469), (800,

0.139212923480197), (850, 0.28830503476204)))

 # Create 13: X46 Mean material

 X46Mean = Model.Material(name='X46-Mean')

 X46Mean.Elastic(table=((210000,0.3),))

 X46Mean.Plastic(table=((239, 0.0), (250, 0.00005), (278,

0.00018), (300, 0.00047), (325, 0.00126), (350, 0.003095), (364,

78

0.004967), (380, 0.008337), (400, 0.015446), (420, 0.027755),

(440, 0.04852), (460, 0.08273), (480, 0.13788), (500, 0.225044),

(520, 0.3603156), (540, 0.566731), (560, .876826),(580, 1.33597)))

 # Create 14: X46-2SD material

 X46Minus2SD = Model.Material(name='X46-2SD')

 X46Minus2SD.Elastic(table=((210000,0.3),))

 X46Minus2SD.Plastic(table=((230, 0),(250, 0.00012), (300,

0.00119), (325, 0.00314),(338, 0.00504), (350, 0.00767), (360,

0.01077), (370, 0.01497), (380, 0.02062), (400, 0.03818), (420,

0.06859), (440, 0.11988), (460, 0.20438), (480, 0.34061), (500,

0.55592), (520, 0.89006), (540, 1.4),(550, 1.74475)))

 # Create 15: X46+2SD material

 X46Plus2SD = Model.Material(name='X46+2SD')

 X46Plus2SD.Elastic(table=((210000,0.3),))

 X46Plus2SD.Plastic(table=((250, 0.0), (300, 0.00019), (325,

0.000529),(340, 0.000923), (364, 0.002119), (380, 0.0035638),

(400, 0.006612), (420, 0.01189), (440, 0.020795), (460, 0.035464),

(480, 0.0591135), (500, 0.0965), (520, 0.1545), (540, 0.24301),

(560, 0.37599), (580, .57287),(600, .8604853),(610, 1.04927),(625,

1.4044)))

**

**

**

 # SECTIONS

79

 Model.HomogeneousSolidSection(name='Solid Section',

material=steel_grade, thickness=None)

 Model.HomogeneousShellSection(name='Shell Section',

preIntegrate=OFF, material=steel_grade, thicknessType=UNIFORM,

thickness=wall_thickness, thicknessField='',

nodalThicknessField='', idealization=NO_IDEALIZATION,

poissonDefinition=DEFAULT, thicknessModulus=None,

temperature=GRADIENT, useDensity=OFF, integrationRule=SIMPSON,

numIntPts=9)

**

**

**

 # PARTS

 # Basic Calculations

 ang_rad = length_of_partition/outer_radius

 ang_deg = ang_rad*(math.pi/180)

 r1 = outer_radius

 r2 = outer_radius-wall_thickness

 # Create Pipe Shell Part

 pipeShellSketch = Model.ConstrainedSketch(name='Pipe Shell

Sketch',sheetSize=outer_radius*2)

 pipeShellSketchg = pipeShellSketch.geometry

 midRadius = outer_radius-(0.5*wall_thickness)

80

 createSShellCircle =

pipeShellSketch.CircleByCenterPerimeter(center=(0.0,0.0),

point1=(0.0,midRadius))

 pipeShellSketch.ConstructionLine(point1=(0.0,0.0),

angle=90.0)

 trimShellCurve1 = pipeShellSketchg.findAt((midRadius,0),)

 pipeShellSketch.autoTrimCurve(curve1=trimShellCurve1,

point1=(outer_radius,0))

 pipeShellPart = Model.Part(name='Pipe Shell Part',

dimensionality=THREE_D,type=DEFORMABLE_BODY)

 pipeShellPart.BaseShellExtrude(sketch=pipeShellSketch,

depth=length_of_pipe)

pipeShellPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE,

offset=length_of_partition)

pipeShellPart.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE,

offset=midRadius*math.cos(ang_rad))

 f = pipeShellPart.faces

 pickedFaces = f.getSequenceFromMask(mask=('[#1]',),)

 d1 = pipeShellPart.datums

 pipeShellPart.PartitionFaceByDatumPlane(datumPlane=d1[2],

faces=pickedFaces)

 f = pipeShellPart.faces

 pickedFaces = f.getSequenceFromMask(mask=('[#1]',),)

 d2 = pipeShellPart.datums

 pipeShellPart.PartitionFaceByDatumPlane(datumPlane=d2[3],

faces=pickedFaces)

81

 f = pipeShellPart.faces

 pipeShellPart.RemoveFaces(faceList = f[1:2],

deleteCells=False)

 e1 = pipeShellPart.edges

 pipeShellPart.RemoveRedundantEntities(edgeList = e1[3:4])

 v1 = pipeShellPart.vertices

 pipeShellPart.RemoveRedundantEntities(vertexList = v1[4:5])

 # pipeShellPart.checkGeometry()

 session.viewports['Viewport:

1'].partDisplay.geometryOptions.setValues(datumPlanes=OFF)

 # Set-up pipe sketch

 pipeSolidSketch = Model.ConstrainedSketch(name='Pipe Solid

Sketch',sheetSize=outer_radius*2)

 pipeSolidSketchg = pipeSolidSketch.geometry

 # Sketch the pipe section using circle tool

 createSolidCircle1 =

pipeSolidSketch.CircleByCenterPerimeter(center=(0.0,0.0),

point1=(0.0,outer_radius))

 createSolidCircle2 =

pipeSolidSketch.CircleByCenterPerimeter(center=(0.0,0.0),

point1=(0.0,outer_radius-wall_thickness))

 # Createconstruction lines

 pipeSolidSketch.ConstructionLine(point1=(0.0,0.0),

angle=90.0)

82

 pipeSolidSketch.ConstructionLine(point1=(0.0,0.0), point2=(-

r1*math.sin(ang_rad), r1*math.cos(ang_rad)))

 # Auto-trim the circle so semi-circle (left-hand side) remains

 trimSolidCurve1 = pipeSolidSketchg.findAt((r1, 0.0),)

 trimSolidCurve2 = pipeSolidSketchg.findAt((r2, 0.0),)

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve1,

point1=(r1, 0.0))

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve2,

point1=(r2, 0.0))

 trimSolidCurve3 =

pipeSolidSketchg.findAt((r1*math.sin(0.018), -

r1*math.cos(0.018)),)

 trimSolidCurve4 =

pipeSolidSketchg.findAt((r2*math.sin(0.018), -

r2*math.cos(0.018)),)

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve3,

point1=(r1*math.sin(0.018), -r1*math.cos(0.018)))

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve4,

point1=(r2*math.sin(0.018), -r2*math.cos(0.018)))

 trimSolidCurve5 = pipeSolidSketchg.findAt((-

r1*math.sin(ang_rad+0.15), r1*math.cos(ang_rad+0.15)),)

 trimSolidCurve6 = pipeSolidSketchg.findAt((-

r2*math.sin(ang_rad+0.15), r2*math.cos(ang_rad+0.15)),)

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve5,

point1=(-r1*math.sin(ang_rad+0.15), r1*math.cos(ang_rad+0.15)))

 pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve6,

point1=(-r2*math.sin(ang_rad+0.15), r2*math.cos(ang_rad+0.15)))

83

 # Add connecting lines to close the sketch

 pipeSolidSketch.Line(point1 =(0.0, r1), point2=(0.0, r2))

 pipeSolidSketch.Line(point1 =(-r1*math.sin(ang_rad),

r1*math.cos(ang_rad)), point2=(-r2*math.sin(ang_rad),

r2*math.cos(ang_rad)))

 # pipeSolidSketch.Line(point1 =(-

(outer_radius*math.sin(ang_rad)),

outer_radius*math.cos(ang_rad)), point2=(-((outer_radius-

wall_thickness)*math.sin(ang_rad)), (outer_radius-

wall_thickness)*math.cos(ang_rad)))

 # Create a 3D deformable part named "Pipe" by extruding the

sketch

 SolidPart = Model.Part(name='Solid Part',

dimensionality=THREE_D,type=DEFORMABLE_BODY)

 SolidPart.BaseSolidExtrude(sketch=pipeSolidSketch,

depth=length_of_partition)

 # Cone 1 Generation

 cone_ang_1 = math.atan(indentation_dist_1/outer_radius)

 firstConeSketch = Model.ConstrainedSketch(name='First Cone

Sketch',sheetSize=(outer_radius+20)*2)

 firstConeSketchg = firstConeSketch.geometry

 firstConeSketch.setPrimaryObject(option=STANDALONE)

 firstConeSketch.ConstructionLine(point1=(0.0, -

(outer_radius+20)), point2=(0.0, (outer_radius+20)))

 firstConeSketch.FixedConstraint(entity=firstConeSketchg[2])

84

 firstConeSketch.Line(point1=(0.0, 0.0), point2=(0.0,

(outer_radius+20)))

 firstConeSketch.Line(point1=(0.0, (outer_radius+20)),

point2=((outer_radius+20)*math.tan(cone_ang_1),

(outer_radius+20)))

firstConeSketch.Line(point1=((outer_radius+20)*math.tan(cone_ang

_1), (outer_radius+20)), point2=(0.0, 0.0))

 FirstConePart = Model.Part(name='First Cone',

dimensionality=THREE_D, type=DEFORMABLE_BODY)

 FirstConePart.BaseSolidRevolve(sketch=firstConeSketch,

angle=360.0, flipRevolveDirection=OFF)

 f1 = FirstConePart.faces

 FirstConePart.RemoveFaces(faceList = f1[0:1],

deleteCells=False)

 # Cone 2 Generation

 cone_ang_2 = math.atan(indentation_dist_2/outer_radius)

 secondConeSketch = Model.ConstrainedSketch(name='Second Cone

Sketch',sheetSize=(outer_radius+20)*2)

 secondConeSketchg = secondConeSketch.geometry

 secondConeSketch.setPrimaryObject(option=STANDALONE)

 secondConeSketch.ConstructionLine(point1=(0.0, -

(outer_radius+20)), point2=(0.0, (outer_radius+20)))

secondConeSketch.FixedConstraint(entity=secondConeSketchg[2])

85

 secondConeSketch.Line(point1=(0.0, 0.0), point2=(0.0,

(outer_radius+20)))

 secondConeSketch.Line(point1=(0.0, (outer_radius+20)),

point2=((outer_radius+20)*math.tan(cone_ang_2),

(outer_radius+20)))

secondConeSketch.Line(point1=((outer_radius+20)*math.tan(cone_an

g_2), (outer_radius+20)), point2=(0.0, 0.0))

 secondConePart = Model.Part(name='Second Cone',

dimensionality=THREE_D, type=DEFORMABLE_BODY)

 secondConePart.BaseSolidRevolve(sketch=secondConeSketch,

angle=360.0, flipRevolveDirection=OFF)

 f2 = secondConePart.faces

 secondConePart.RemoveFaces(faceList = f2[0:1],

deleteCells=False)

 rootAssembly1 = Model.rootAssembly

 rootAssembly1.Instance(name='First Cone-1',

part=FirstConePart, dependent=ON)

 rootAssembly1.Instance(name='Second Cone-1',

part=secondConePart, dependent=ON)

 rootAssembly1.Instance(name='Solid Part-1', part=SolidPart,

dependent=ON)

 rootAssembly1.InstanceFromBooleanMerge(name='Pipe Solid

Part', instances=(rootAssembly1.instances['Solid Part-1'],

rootAssembly1.instances['First Cone-1'],

rootAssembly1.instances['Second Cone-1'],),

keepIntersections=ON, originalInstances=DELETE, domain=GEOMETRY)

86

 pipeSolidPart = Model.parts['Pipe Solid Part']

 f3 = pipeSolidPart.faces

 pipeSolidPart.RemoveFaces(faceList = f3[0:1]+f3[6:7],

deleteCells=False)

 del rootAssembly1.features['Pipe Solid Part-1']

 pipeSolidPart_1 = Model.Part(name='Pipe Solid Part-1',

objectToCopy=Model.parts['Pipe Solid Part'])

 pipeSolidPart_2 = Model.Part(name='Pipe Solid Part-2',

objectToCopy=Model.parts['Pipe Solid Part'])

 pipeSolidPart_3 = Model.Part(name='Pipe Solid Part-3',

objectToCopy=Model.parts['Pipe Solid Part'])

 del Model.parts['Solid Part']

 del Model.parts['Pipe Solid Part']

 del Model.parts['First Cone']

 del Model.parts['Second Cone']

 f1 = pipeSolidPart_1.faces

 pipeSolidPart_1.RemoveFaces(faceList =

f1[0:1]+f1[1:5]+f1[7:9]+f1[11:13]+f1[14:16], deleteCells=False)

 f1 = pipeSolidPart_2.faces

 pipeSolidPart_2.RemoveFaces(faceList =

f1[1:2]+f1[3:4]+f1[6:12]+f1[13:15], deleteCells=False)

 f1 = pipeSolidPart_3.faces

 pipeSolidPart_3.RemoveFaces(faceList =

f1[2:3]+f1[4:7]+f1[9:11]+f1[12:14]+f1[15:16], deleteCells=False)

87

 # Assign sections to shell part

 f = pipeShellPart.faces

 faces = f.getSequenceFromMask(mask=('[#1]',),)

 region = pipeShellPart.Set(faces=faces, name='Set-1')

 pipeShellPart.SectionAssignment(region=region,

sectionName='Shell Section', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

 # Assign sections to solid parts

 c = pipeSolidPart_1.cells

 cells = c.getSequenceFromMask(mask=('[#1]',),)

 region = pipeSolidPart_1.Set(cells=cells, name='Set-1')

 pipeSolidPart_1.SectionAssignment(region=region,

sectionName='Solid Section', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

 c = pipeSolidPart_2.cells

 cells = c.getSequenceFromMask(mask=('[#1]',),)

 region = pipeSolidPart_2.Set(cells=cells, name='Set-1')

 pipeSolidPart_2.SectionAssignment(region=region,

sectionName='Solid Section', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

 c = pipeSolidPart_3.cells

 cells = c.getSequenceFromMask(mask=('[#1]',),)

 region = pipeSolidPart_3.Set(cells=cells, name='Set-1')

88

 pipeSolidPart_3.SectionAssignment(region=region,

sectionName='Solid Section', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

 # Ring Indenter

 # Re-define input variables ("longitudinal" radius variable

must always be larger than "circumferential" radius variable for

geometry to work)

 if radius_of_indenter_l < radius_of_indenter_c:

 radius_of_indenter_l = float(extracted_list[10])

 radius_of_indenter_c = float(extracted_list[9])

 else:

 radius_of_indenter_l = float(extracted_list[9])

 radius_of_indenter_c = float(extracted_list[10])

 # Set-up the indenter sketch

 indenterSketch = Model.ConstrainedSketch(name='Indenter

Sketch-1', sheetSize = radius_of_indenter_l*2)

 indenterSketchg = indenterSketch.geometry

 # Define geometry of indenter

 indenterSketch.ConstructionLine(point1=(0.0, -

radius_of_indenter_l), point2=(0.0, radius_of_indenter_l))

89

indenterSketch.FixedConstraint(entity=indenterSketchg.findAt((0,

radius_of_indenter_l),))

 # Sketch circle based on radius of indenter in longitudinal

and circumferential direction

indenterSketch.CircleByCenterPerimeter(center=(radius_of_indente

r_l - radius_of_indenter_c,0.0), point1=(radius_of_indenter_l -

radius_of_indenter_c,radius_of_indenter_c))

 # Set up center point of circle

 centerX = radius_of_indenter_l - radius_of_indenter_c

 # Use if statement because different curves will have to be

trimmed based on size of indenter

 if centerX >= radius_of_indenter_c:

 # If the difference between the two radii is greater than

the radius of the shorter side

 # Use construction line and auto-trim so only the right

side of the circle and less than half remains

 indenterSketch.ConstructionLine(point1=(centerX + 5,0.0),

angle=90.0)

 # Trim excess parts of circle

 trimLeft = indenterSketchg.findAt((centerX-

radius_of_indenter_c,0),)

90

 indenterSketch.autoTrimCurve(curve1=trimLeft,

point1=(centerX-radius_of_indenter_c, 0))

 trimTop =

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),)

 indenterSketch.autoTrimCurve(curve1=trimTop,

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001)))

 elif centerX == 0:

 # If longitudinal radius = circumferential radius:

indenterSketch.ConstructionLine(point1=(radius_of_indenter_l/2,0

.0), angle=90.0)

 # Trim excess parts of circle

 trimLeft = indenterSketchg.findAt((-

radius_of_indenter_l,0),)

 indenterSketch.autoTrimCurve(curve1=trimLeft, point1=(-

radius_of_indenter_l, 0))

 trimTop =

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),)

 indenterSketch.autoTrimCurve(curve1=trimTop,

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001)))

91

 trimBottom =

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),-radius_of_indenter_c*math.cos(0.00001)),)

 indenterSketch.autoTrimCurve(curve1=trimBottom,

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),-

radius_of_indenter_c*math.cos(0.00001)))

 else:

 # If the difference between the two radii is less than the

radius of the shorter side

 # Create construction line 5 mm to the right of centerX

 indenterSketch.ConstructionLine(point1=(centerX + 5,0.0),

angle=90.0)

 trimLeft = indenterSketchg.findAt((centerX-

radius_of_indenter_c,0),)

 indenterSketch.autoTrimCurve(curve1=trimLeft,

point1=(centerX-radius_of_indenter_c, 0))

 trimTop =

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(-

0.00001),radius_of_indenter_c*math.cos(-0.00001)),)

 indenterSketch.autoTrimCurve(curve1=trimTop,

point1=(centerX+radius_of_indenter_c*math.sin(-

0.00001),radius_of_indenter_c*math.cos(-0.00001)))

 trimTop2 =

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),)

92

 indenterSketch.autoTrimCurve(curve1=trimTop2,

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001)))

 trimBottom = indenterSketchg.findAt((centerX,-

radius_of_indenter_c),)

 indenterSketch.autoTrimCurve(curve1=trimBottom,

point1=(centerX,-radius_of_indenter_c))

 # Create a 3D analytical rigid part named "Indenter" by

revolving the sketch

 indenterPart=Model.Part(name='Indenter',

dimensionality=THREE_D, type=ANALYTIC_RIGID_SURFACE)

 indenterPart.AnalyticRigidSurfRevolve(sketch=indenterSketch)

 # Insert reference point on ring indenter

 RP1 = indenterPart.ReferencePoint(point=(-

radius_of_indenter_l,0,0))

 RP1ID = RP1.id

**

**

**

 # MESHING

93

 meshDim_1 =

int(round(0.5*math.pi*indentation_dist_1/solid1Mesh_esz))

 # Meshing Pipe Solid Part 1

 e = pipeSolidPart_1.edges

 pickedEdges = e.getSequenceFromMask(mask=('[#5]',),)

 pipeSolidPart_1.seedEdgeByNumber(edges=pickedEdges,

number=meshDim_1, constraint=FIXED)

 pickedEdges = e.getSequenceFromMask(mask=('[#1d0]',),)

 pipeSolidPart_1.seedEdgeBySize(edges=pickedEdges,

size=solid1Mesh_esz, deviationFactor=0.05, constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#2a]',),)

 pipeSolidPart_1.seedEdgeByNumber(edges=pickedEdges,

number=solid1Mesh_thick, constraint=FINER)

 c = pipeSolidPart_1.cells

 pickedRegions = c.getSequenceFromMask(mask=('[#1]',),)

 elemType1 = mesh.ElemType(elemCode=C3D20,

elemLibrary=STANDARD)

 pipeSolidPart_1.setMeshControls(regions=pickedRegions,

technique=STRUCTURED)

 pickedRegions1 =(pickedRegions,)

 pipeSolidPart_1.setElementType(regions=pickedRegions1,

elemTypes=(elemType1,))

 pipeSolidPart_1.generateMesh()

 # Pipe Solid Part 2

 e = pipeSolidPart_2.edges

 pickedEdges = e.getSequenceFromMask(mask=('[#300]',),)

94

 pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges,

number=meshDim_1, constraint=FIXED)

 pickedEdges = e.getSequenceFromMask(mask=('[#5]',),)

 pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges,

number=meshDim_1, constraint=FIXED)

 pickedEdges = e.getSequenceFromMask(mask=('[#8d0]',),)

 pipeSolidPart_2.seedEdgeByBias(biasMethod=SINGLE,

end1Edges=pickedEdges, minSize=solid2Mesh_esz1,

maxSize=solid2Mesh_esz2, constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#42a]',),)

 pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges,

number=solid2Mesh_thick, constraint=FINER)

 c = pipeSolidPart_2.cells

 pickedRegions = c.getSequenceFromMask(mask=('[#1]',),)

 elemType1 = mesh.ElemType(elemCode=C3D20R,

elemLibrary=STANDARD)

 pipeSolidPart_2.setMeshControls(regions=pickedRegions,

technique=STRUCTURED)

 pickedRegions1 =(pickedRegions,)

 pipeSolidPart_2.setElementType(regions=pickedRegions1,

elemTypes=(elemType1,))

 pipeSolidPart_2.generateMesh()

 # Pipe Solid Part 3

 eleDim_1 = (0.5*math.pi*indentation_dist_2)/meshDim_1

 e = pipeSolidPart_3.edges

 pickedEdges = e.getSequenceFromMask(mask=('[#5]',),)

 pipeSolidPart_3.seedEdgeByNumber(edges=pickedEdges,

number=meshDim_1, constraint=FIXED)

95

 # pipeSolidPart_3.seedEdgeBySize(edges=pickedEdges,

size=solid3Mesh_esz1, deviationFactor=0.02, constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#1860]',),)

 pipeSolidPart_3.seedEdgeBySize(edges=pickedEdges,

size=eleDim_1, deviationFactor=0.02, constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#590]',),)

 pipeSolidPart_3.seedEdgeByBias(biasMethod=SINGLE,

end1Edges=pickedEdges, minSize=eleDim_1, maxSize=eleDim_1,

constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#620a]',),)

 pipeSolidPart_3.seedEdgeByNumber(edges=pickedEdges,

number=solid3Mesh_thick, constraint=FINER)

 c = pipeSolidPart_3.cells

 pickedRegions = c.getSequenceFromMask(mask=('[#1]',),)

 elemType1 = mesh.ElemType(elemCode=C3D8,

elemLibrary=STANDARD)

 pipeSolidPart_3.setMeshControls(regions=pickedRegions,

technique=SWEEP)

 pickedRegions1 =(pickedRegions,)

 pipeSolidPart_3.setElementType(regions=pickedRegions1,

elemTypes=(elemType1,))

 pipeSolidPart_3.generateMesh()

 # Pipe Shell Part

 e = pipeShellPart.edges

 pickedEdges = e.getSequenceFromMask(mask=('[#3]',),)

 pipeShellPart.seedEdgeBySize(edges=pickedEdges,

size=shellMesh_1, deviationFactor=0.1, constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#24]',),)

96

 pipeShellPart.seedEdgeByBias(biasMethod=SINGLE,

end1Edges=pickedEdges, minSize=shellMesh_1, maxSize=shellMesh_2,

constraint=FINER)

 pickedEdges = e.getSequenceFromMask(mask=('[#18]',),)

 pipeShellPart.seedEdgeBySize(edges=pickedEdges,

size=shellMesh_2, deviationFactor=0.1, constraint=FINER)

 elemType1 = mesh.ElemType(elemCode=S4, elemLibrary=STANDARD,

secondOrderAccuracy=OFF)

 f = pipeShellPart.faces

 faces = f.getSequenceFromMask(mask=('[#1]',),)

 pickedRegions =(faces,)

 pipeShellPart.setElementType(regions=pickedRegions,

elemTypes=(elemType1,))

 pipeShellPart.setMeshControls(regions=faces, elemShape=QUAD)

 pipeShellPart.generateMesh()

**

**

**

 # ASSEMBLY

 pipeAssembly = Model.rootAssembly

 pipeAssembly.Instance(name='Pipe Shell Part',

part=pipeShellPart, dependent=ON)

 pipeAssembly.Instance(name='Pipe Solid Part 1',

part=pipeSolidPart_1, dependent=ON)

97

 pipeAssembly.Instance(name='Pipe Solid Part 2',

part=pipeSolidPart_2, dependent=ON)

 pipeAssembly.Instance(name='Pipe Solid Part 3',

part=pipeSolidPart_3, dependent=ON)

 # Set up assembly - position indenter in relation to pipe

 pipeAssembly.Instance(name='Pipe Indenter',

part=indenterPart, dependent=ON)

 pipeAssembly.rotate(instanceList=('Pipe Indenter',),

axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 0.0, 1.0), angle=-

90.0)

 # If circumferential radius is larger than longituindal

radius, the indenter will have to rotated 90 degrees around the y-

axis

 radius_of_indenter_l = float(extracted_list[9])

 radius_of_indenter_c = float(extracted_list[10])

 if radius_of_indenter_c >= radius_of_indenter_l:

 pipeAssembly.rotate(instanceList=('Pipe Indenter',),

axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0),

angle=90.0)

 pipeAssembly.translate(instanceList=('Pipe Indenter',),

vector=(0.0, radius_of_indenter_c + outer_radius+2, 0))

 else:

 # Translate the first indenter to its correct relative

position along the pipe segment

 pipeAssembly.translate(instanceList=('Pipe Indenter',),

vector=(0.0, radius_of_indenter_l + outer_radius+2,0))

98

 # session.viewports['Viewport:

1'].assemblyDisplay.geometryOptions.setValues(datumAxes=OFF,

datumPlanes=OFF)

 # session.viewports['Viewport:

1'].view.setValues(nearPlane=1546.33, farPlane=2960.54,

width=1853.66, height=884.252, viewOffsetX=154.7,

viewOffsetY=14.2564)

**

**

**

 # COUPLING

 # Connecting the Shell and the Solid parts

 s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#40]',),)

 region1=pipeAssembly.Surface(side1Faces=side1Faces1,

name='s_Surf-1')

 s1 = pipeAssembly.instances['Pipe Shell Part'].edges

 side1Edges1 = s1.getSequenceFromMask(mask=('[#1]',),)

 region2 = pipeAssembly.Surface(side1Edges=side1Edges1,

name='m_Surf-1')

 Model.ShellSolidCoupling(name='Shell-Solid Constraint-1',

shellEdge=region2, solidFace=region1,

positionToleranceMethod=COMPUTED)

 s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces

99

 side1Faces1 = s1.getSequenceFromMask(mask=('[#20]',),)

 region1=pipeAssembly.Surface(side1Faces=side1Faces1,

name='s_Surf-2')

 s1 = pipeAssembly.instances['Pipe Shell Part'].edges

 side1Edges1 = s1.getSequenceFromMask(mask=('[#2]',),)

 region2 = pipeAssembly.Surface(side1Edges=side1Edges1,

name='m_Surf-2')

 Model.ShellSolidCoupling(name='Shell-Solid Constraint-2',

shellEdge=region2, solidFace=region1,

positionToleranceMethod=COMPUTED)

 # Connecting Solid parts together

 s1 = pipeAssembly.instances['Pipe Solid Part 1'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#1]',),)

 region1=pipeAssembly.Surface(side1Faces=side1Faces1,

name='m_Surf-3')

 s1 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#8]',),)

 region2=pipeAssembly.Surface(side1Faces=side1Faces1,

name='s_Surf-3')

 Model.Tie(name='Solid-Solid Constraint-1', master=region1,

slave=region2, positionToleranceMethod=COMPUTED, adjust=ON,

tieRotations=ON, thickness=ON)

 s1 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#1]',),)

 region1=pipeAssembly.Surface(side1Faces=side1Faces1,

name='m_Surf-4')

 s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces

100

 side1Faces1 = s1.getSequenceFromMask(mask=('[#1]',),)

 region2=pipeAssembly.Surface(side1Faces=side1Faces1,

name='s_Surf-4')

 Model.Tie(name='Solid-Solid Constraint-2', master=region1,

slave=region2, positionToleranceMethod=COMPUTED, adjust=ON,

tieRotations=ON, thickness=ON)

**

**

**

 # BOUNDARY CONDITIONS

 # Set up X-Symmetry boundary condition

 e1 = pipeAssembly.instances['Pipe Shell Part'].edges

 edges1 = e1.getSequenceFromMask(mask=('[#28]',),)

 f2 = pipeAssembly.instances['Pipe Solid Part 3'].faces

 faces2 = f2.getSequenceFromMask(mask=('[#10]',),)

 f3 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 faces3 = f3.getSequenceFromMask(mask=('[#2]',),)

 f4 = pipeAssembly.instances['Pipe Solid Part 1'].faces

 faces4 = f4.getSequenceFromMask(mask=('[#10]',),)

 region = pipeAssembly.Set(edges=edges1,

faces=faces2+faces3+faces4, name='BC-XSym-Set')

 Model.XsymmBC(name='X-Symmetry', createStepName='Initial',

region=region, localCsys=None)

101

 # Set up Z-Symmetry boundary condition

 f1 = pipeAssembly.instances['Pipe Solid Part 1'].faces

 faces1 = f1.getSequenceFromMask(mask=('[#2]',),)

 f2 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 faces2 = f2.getSequenceFromMask(mask=('[#20]',),)

 f3 = pipeAssembly.instances['Pipe Solid Part 3'].faces

 faces3 = f3.getSequenceFromMask(mask=('[#4]',),)

 e4 = pipeAssembly.instances['Pipe Shell Part'].edges

 edges4 = e4.getSequenceFromMask(mask=('[#4]',),)

 region = pipeAssembly.Set(edges=edges4,

faces=faces1+faces2+faces3, name='BC-ZSym-Set')

 Model.ZsymmBC(name='Z-Symmetry', createStepName='Initial',

region=region, localCsys=None)

 # Set up Bottom boundary condition

 e1 = pipeAssembly.instances['Pipe Shell Part'].edges

 edges1 = e1.getSequenceFromMask(mask=('[#8]',),)

 region = pipeAssembly.Set(edges=edges1, name='BC-FixedBase-

Set')

 Model.DisplacementBC(name='Bottom-Vrtcl-Fix',

createStepName='Initial', region=region, u1=UNSET, u2=SET,

u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET,

distributionType=UNIFORM, fieldName='', localCsys=None)

 # Set up Indenter-Translation boundary condition

 indenterRP = pipeAssembly.instances['Pipe

Indenter'].referencePoints

102

 indenterRefRegion =

regionToolset.Region(referencePoints=(indenterRP[RP1ID],))

 Model.DisplacementBC(name='Indenter-Translation',

createStepName='Initial', region=indenterRefRegion, u1=SET,

u2=SET, u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET,

distributionType=UNIFORM, fieldName='', localCsys=None)

 # Create reference point in center of pipe (on ends away from

indenter)

 RPC2 =

pipeAssembly.ReferencePoint(point=(0,0,length_of_pipe))

 RPCid_2 = RPC2.id

 # Create cylindrical coordinate system for boundary condition

 datumCreate = pipeAssembly.DatumCsysByThreePoints(name='Datum

csys-2', coordSysType=CYLINDRICAL, origin=(0.0, 0.0, 0.0),

line1=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0))

 datumID = datumCreate.id

 datumCylind = pipeAssembly.datums[datumID]

 # Select reference point for coupling condition

 refPoints = pipeAssembly.referencePoints

 refPoints2=(refPoints[RPCid_2],)

controlPoint=regionToolset.Region(referencePoints=refPoints2)

 # Select surface for coupling condition

 s1 = pipeAssembly.instances['Pipe Shell Part'].edges

 side1Edges1 = s1.getSequenceFromMask(mask=('[#10]',),)

103

 couplingFacesRegion =

pipeAssembly.Surface(side1Edges=side1Edges1, name='s_Surf-5')

 datumCoupling = pipeAssembly.datums[datumID]

 # Create coupling boundary condition and allow freedom in the

U1 (radial direction)

 Model.Coupling(name='End-Condition-Coupling-Constraint',

controlPoint=controlPoint, surface=couplingFacesRegion,

influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC,

localCsys=datumCoupling, u1=OFF, u2=ON, u3=ON, ur1=ON, ur2=ON,

ur3=ON)

 # Set up fixed ends boundary condition (encastre)

 encastreRP = (refPoints[RPCid_2],)

 encastreRegion =

regionToolset.Region(referencePoints=encastreRP)

 Model.EncastreBC(name='Fixed-Ends', createStepName='Initial',

region=encastreRegion, localCsys=None)

**

**

**

 # INTERACTIONS

 # Set up interaction properties

 Model.ContactProperty('IntProp-1')

 Model.interactionProperties['IntProp-

1'].TangentialBehavior(formulation=PENALTY,

directionality=ISOTROPIC, slipRateDependency=OFF,

104

pressureDependency=OFF, temperatureDependency=OFF,

dependencies=0, table=((0.5,),), shearStressLimit=None,

maximumElasticSlip=FRACTION, fraction=0.005,

elasticSlipStiffness=None)

 Model.interactionProperties['IntProp-

1'].NormalBehavior(pressureOverclosure=HARD, allowSeparation=ON,

constraintEnforcementMethod=DEFAULT)

 # Define master surface - Indenter-1

 s1 = pipeAssembly.instances['Pipe Indenter'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#1]',),)

 masterSurface = pipeAssembly.Surface(side1Faces=side1Faces1,

name='m_Surf-7')

 # Define slave surface

 s1 = pipeAssembly.instances['Pipe Solid Part 1'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#4]',),)

 s2 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 side1Faces2 = s2.getSequenceFromMask(mask=('[#10]',),)

 slaveSurface =

pipeAssembly.Surface(side1Faces=side1Faces1+side1Faces2,

name='s_Surf-7')

 # Update interaction properties

 Model.SurfaceToSurfaceContactStd(name='Int-1',

createStepName='Initial', master=masterSurface,

slave=slaveSurface, sliding=FINITE, thickness=ON,

interactionProperty='IntProp-1', adjustMethod=NONE,

initialClearance=OMIT, datumAxis=None, clearanceRegion=None)

105

 # Introduce contact controls, initializations and

stabilizations

 Model.StdContactControl(name='ContCtrl-1',

stabilizeChoice=AUTOMATIC)

 Model.StdInitialization(name='CInit-1')

 Model.StdStabilization(name='CStab-1')

**

**

**

 # STEPS & LOADS & OUTPUT SETTINGS

 Model.StaticStep(name='Initial-Pressure', previous='Initial',

timePeriod=1, initialInc=1, minInc=1.5e-05, maxInc=1, nlgeom=ON)

 s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces

 side1Faces1 = s1.getSequenceFromMask(mask=('[#8]',),)

 s2 = pipeAssembly.instances['Pipe Solid Part 2'].faces

 side1Faces2 = s2.getSequenceFromMask(mask=('[#4]',),)

 s3 = pipeAssembly.instances['Pipe Solid Part 1'].faces

 side1Faces3 = s3.getSequenceFromMask(mask=('[#8]',),)

 s4 = pipeAssembly.instances['Pipe Shell Part'].faces

 side2Faces4 = s4.getSequenceFromMask(mask=('[#1]',),)

 pressureRegion =

pipeAssembly.Surface(side1Faces=side1Faces1+side1Faces2+side1Fac

es3, side2Faces=side2Faces4, name='Surf-1')

106

 Model.Pressure(name='Pressure', createStepName='Initial-

Pressure', region=pressureRegion, distributionType=UNIFORM,

field='', magnitude=0.1, amplitude=UNSET)

 # Set up field output and history output requests

 Model.fieldOutputRequests['F-Output-

1'].setValues(variables=('S', 'PEEQ', 'LE', 'EE', 'IE', 'U', 'P',

'CNAREA', 'CSTATUS'), frequency=1)

 Model.historyOutputRequests['H-Output-

1'].setValues(variables=('MASS',), frequency=LAST_INCREMENT)

 # Set up Indentation-Mean step

 Model.StaticStep(name='Indentation-Mean', previous='Initial-

Pressure', maxNumInc=500, initialInc=0.01, minInc=1e-05,

maxInc=0.1, nlgeom=ON)

 Model.boundaryConditions['Indenter-

Translation'].setValuesInStep(stepName='Indentation-Mean', u2=-

(2+indentation_depth))

 # Set up Removal step

 Model.StaticStep(name='Removal', previous='Indentation-Mean',

maxNumInc=500, initialInc=0.1, minInc=1e-05, maxInc=0.1,

nlgeom=ON)

 Model.boundaryConditions['Indenter-

Translation'].setValuesInStep(stepName='Removal', u2=5.0)

 # Set up Pressure-MOP step

 Model.StaticStep(name='Pressure-MOP', previous='Removal',

timePeriod=1, initialInc=0.05, minInc=1.5e-05, maxInc=0.2,

nlgeom=ON)

107

 Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

MOP', magnitude=max_op_pressure)

 # Set up Pressure-Zero

 Model.StaticStep(name='Pressure-Zero', previous='Pressure-

MOP', initialInc=0.05, minInc=1.5e-05, maxInc=0.2, nlgeom=ON)

 Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

Zero', magnitude=0)

 # Set up P-ILI step

 Model.StaticStep(name='Pressure-ILI', previous='Pressure-

Zero', timePeriod=1, initialInc=0.05, minInc=1.5e-05, maxInc=0.2,

nlgeom=ON)

 Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

ILI', magnitude=op_pressure_ILI)

 # Suppress removal step if the dent is specified to be

restrained

 if restrained_or_unrestrained == 1:

 Model.steps['Removal'].suppress()

**

**

**

 # JOB

 job_ID = modelname

108

 mdb.Job(name=job_ID, model=modelname, description='',

type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0,

queue=None, memory=90, memoryUnits=PERCENTAGE,

 getMemoryFromAnalysis=True, explicitPrecision=SINGLE,

nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF,

contactPrint=OFF, historyPrint=OFF, userSubroutine='',

scratch='',

 resultsFormat=ODB, multiprocessingMode=DEFAULT,

numCpus=6, numDomains=6, numGPUs=1)

input_file.close()

APPENDIX B: Mathematica code in the Longitudinal Direction and Result

Extraction.

Clear[AbaqusDisplacementData,LP0mmX,LP0mmU1,LP0mmU2,LP1mmX,LP1mm

U1,LP1mmU2,LP2mmX,LP2mmU1,LP2mmU2,LP3mmX,LP3mmU1,LP3mmU2,LP4mmX,

LP4mmU1,LP4mmU2,LP5mmX,LP5mmU1,LP5mmU2,LP6mmX,LP6mmU1,LP6mmU2,LP

109

7mmX,LP7mmU1,LP7mmU2,LP8mmX,LP8mmU1,LP8mmU2, LE110mm,LE111mm,

LE112mm,LE113mm, LE114mm,LE115mm, LE116mm,LE117mm,LE118mm,

PE110mm,PE111mm, PE112mm,PE113mm, PE114mm,PE115mm,

PE116mm,PE117mm,PE118mm,LP0mmU1co,LP0mmU2co,LP1mmU1co,LP1mmU2co,

LP2mmU1co,LP2mmU2co,LP3mmU1co,LP3mmU2co,LP4mmU1co,LP4mmU2co,LP5m

mU1co,LP5mmU2co,LP6mmU1co,LP6mmU2co,LP7mmU1co,LP7mmU2co,LP8mmU1c

o,LP8mmU2co];

AbaqusDisplacementData=Import["C:\\Users\\mahya\\Desktop\\Mahyar

Project\\For 2 mm dent depth\\FinalResults2.xlsx"];

Clear[RowIndex];

RowIndex=3;

(*Path at the 0mm depth*)

LP0mmX={};

LP0mmU1={};

LP0mmU2={};

LE110mm={};

PE110mm={};

 (*Path at the 1mm depth*)

LP1mmX={};

LP1mmU1={};

LP1mmU2={};

LE111mm={};

PE111mm={};

(*Path at the 2mm depth*)

LP2mmX={};

LP2mmU1={};

LP2mmU2={};

LE112mm={};

PE112mm={};

(*Path at the 3mm depth*)

LP3mmX={};

LP3mmU1={};

LP3mmU2={};

LE113mm={};

PE113mm={};

(*Path at the 4mm depth*)

LP4mmX={};

LP4mmU1={};

LP4mmU2={};

LE114mm={};

PE114mm={};

(*Path at the 5mm depth*)

LP5mmX={};

LP5mmU1={};

LP5mmU2={};

LE115mm={};

PE115mm={};

110

(*Path at the 6mm depth*)

LP6mmX={};

LP6mmU1={};

LP6mmU2={};

LE116mm={};

PE116mm={};

(*Path at the 7mm depth*)

LP7mmX={};

LP7mmU1={};

LP7mmU2={};

LE117mm={};

PE117mm={};

(*Path at the 8mm depth*)

LP8mmX={};

LP8mmU1={};

LP8mmU2={};

LE118mm={};

PE118mm={};

(*Putting the data for Longitudinal Path at different heights in

respective paths*)

While[

 True,

 If[AbaqusDisplacementData[[1]][[RowIndex]][[1]]!="",

 (*Reading all the 0mm depth data*)

 LP0mmX=

AppendTo[LP0mmX,AbaqusDisplacementData[[1]][[RowIndex]][[1]]];

 LP0mmU1 =

AppendTo[LP0mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[2]]];

 LP0mmU2=

AppendTo[LP0mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[3]]];

LE110mm=AppendTo[LE110mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[4]]];

PE110mm=AppendTo[PE110mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[5]]];

 (*Reading all the 1mm depth data*)

 LP1mmX=

AppendTo[LP1mmX,AbaqusDisplacementData[[1]][[RowIndex]][[7]]];

 LP1mmU1 =

AppendTo[LP1mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[8]]];

 LP1mmU2=

AppendTo[LP1mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[9]]];

LE111mm=AppendTo[LE111mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[10]]];

111

PE111mm=AppendTo[PE111mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[11]]];

 (*Reading all the 2mm depth data*)

 LP2mmX=

AppendTo[LP2mmX,AbaqusDisplacementData[[1]][[RowIndex]][[13]]];

 LP2mmU1 =

AppendTo[LP2mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[14]]];

 LP2mmU2=

AppendTo[LP2mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[15]]];

LE112mm=AppendTo[LE112mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[16]]];

PE112mm=AppendTo[PE112mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[17]]];

 (*Reading all the 3mm depth data*)

 LP3mmX=

AppendTo[LP3mmX,AbaqusDisplacementData[[1]][[RowIndex]][[19]]];

 LP3mmU1 =

AppendTo[LP3mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[20]]];

 LP3mmU2=

AppendTo[LP3mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[21]]];

LE113mm=AppendTo[LE113mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[22]]];

PE113mm=AppendTo[PE113mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[23]]];

 (*Reading all the 4mm depth data*)

 LP4mmX=

AppendTo[LP4mmX,AbaqusDisplacementData[[1]][[RowIndex]][[25]]];

 LP4mmU1 =

AppendTo[LP4mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[26]]];

 LP4mmU2=

AppendTo[LP4mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[27]]];

LE114mm=AppendTo[LE114mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[28]]];

PE114mm=AppendTo[PE114mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[29]]];

 (*Reading all the 5mm depth data*)

 LP5mmX=

AppendTo[LP5mmX,AbaqusDisplacementData[[1]][[RowIndex]][[31]]];

 LP5mmU1 =

AppendTo[LP5mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[32]]];

112

 LP5mmU2=

AppendTo[LP5mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[33]]];

LE115mm=AppendTo[LE115mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[34]]];

PE115mm=AppendTo[PE115mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[35]]];

 (*Reading all the 6mm depth data*)

 LP6mmX=

AppendTo[LP6mmX,AbaqusDisplacementData[[1]][[RowIndex]][[37]]];

 LP6mmU1 =

AppendTo[LP6mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[38]]];

 LP6mmU2=

AppendTo[LP6mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[39]]];

LE116mm=AppendTo[LE116mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[40]]];

PE116mm=AppendTo[PE116mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[41]]];

 (*Reading all the 7mm depth data*)

 LP7mmX=

AppendTo[LP7mmX,AbaqusDisplacementData[[1]][[RowIndex]][[43]]];

 LP7mmU1 =

AppendTo[LP7mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[44]]];

 LP7mmU2=

AppendTo[LP7mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[45]]];

LE117mm=AppendTo[LE117mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[46]]];

PE117mm=AppendTo[PE117mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[47]]];

 (*Reading all the 8mm depth data*)

 LP8mmX=

AppendTo[LP8mmX,AbaqusDisplacementData[[1]][[RowIndex]][[49]]];

 LP8mmU1 =

AppendTo[LP8mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[50]]];

 LP8mmU2=

AppendTo[LP8mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[51]]];

LE118mm=AppendTo[LE118mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[52]]];

PE118mm=AppendTo[PE118mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[53]]];

113

 RowIndex=RowIndex+1;

 ,

 Break[];

];

];

LP0mmU1co=GaussianFilter[LP0mmU1,20];

LP0mmU2co=GaussianFilter[LP0mmU2,5];

LP1mmU1co=GaussianFilter[LP1mmU1,3];

LP1mmU2co=GaussianFilter[LP1mmU2,1];

LP2mmU1co=GaussianFilter[LP2mmU1,3];

LP2mmU2co=GaussianFilter[LP2mmU2,1];

LP3mmU1co=GaussianFilter[LP3mmU1,3];

LP3mmU2co=GaussianFilter[LP3mmU2,1];

LP4mmU1co=GaussianFilter[LP4mmU1,5];

LP4mmU2co=GaussianFilter[LP4mmU2,5];

LP5mmU1co=GaussianFilter[LP5mmU1,3];

LP5mmU2co=GaussianFilter[LP5mmU2,1];

LP6mmU1co=GaussianFilter[LP6mmU1,2];

LP6mmU2co=GaussianFilter[LP6mmU2,1];

LP7mmU1co=GaussianFilter[LP7mmU1,2];

LP7mmU2co=GaussianFilter[LP7mmU2,1];

LP8mmU1co=GaussianFilter[LP8mmU1,2];

LP8mmU2co=GaussianFilter[LP8mmU2,1];

(*Create a Table with x and U1 data*)

Clear[LP0mmXU1Data,LP1mmXU1Data,LP2mmXU1Data,LP3mmXU1Data,LP4mmX

U1Data,LP5mmXU1Data,LP6mmXU1Data,LP7mmXU1Data,LP8mmXU1Data];

LP0mmXU1Data=Table[{LP0mmX[[i]],LP0mmU1co[[i]]},{i,1,Length[LP0m

mX]}];

LP1mmXU1Data=Table[{LP1mmX[[i]],LP1mmU1co[[i]]},{i,1,Length[LP1m

mX]}];

LP2mmXU1Data=Table[{LP2mmX[[i]],LP2mmU1co[[i]]},{i,1,Length[LP2m

mX]}];

LP3mmXU1Data=Table[{LP3mmX[[i]],LP3mmU1co[[i]]},{i,1,Length[LP3m

mX]}];

LP4mmXU1Data=Table[{LP4mmX[[i]],LP4mmU1co[[i]]},{i,1,Length[LP4m

mX]}];

LP5mmXU1Data=Table[{LP5mmX[[i]],LP5mmU1co[[i]]},{i,1,Length[LP5m

mX]}];

LP6mmXU1Data=Table[{LP6mmX[[i]],LP6mmU1co[[i]]},{i,1,Length[LP6m

mX]}];

LP7mmXU1Data=Table[{LP7mmX[[i]],LP7mmU1co[[i]]},{i,1,Length[LP7m

mX]}];

LP8mmXU1Data=Table[{LP8mmX[[i]],LP8mmU1co[[i]]},{i,1,Length[LP8m

mX]}];

114

(*Create a Table with x and U2 data*)

Clear[LP0mmXU2Data,LP1mmXU2Data,LP2mmXU2Data,LP3mmXU2Data,LP4mmX

U2Data,LP5mmXU2Data,LP6mmXU2Data,LP7mmXU2Data,LP8mmXU2Data];

LP0mmXU2Data=Table[{LP0mmX[[i]],LP0mmU2co[[i]]},{i,1,Length[LP0m

mX]}];

LP1mmXU2Data=Table[{LP1mmX[[i]],LP1mmU2co[[i]]},{i,1,Length[LP1m

mX]}];

LP2mmXU2Data=Table[{LP2mmX[[i]],LP2mmU2co[[i]]},{i,1,Length[LP2m

mX]}];

LP3mmXU2Data=Table[{LP3mmX[[i]],LP3mmU2co[[i]]},{i,1,Length[LP3m

mX]}];

LP4mmXU2Data=Table[{LP4mmX[[i]],LP4mmU2co[[i]]},{i,1,Length[LP4m

mX]}];

LP5mmXU2Data=Table[{LP5mmX[[i]],LP5mmU2co[[i]]},{i,1,Length[LP5m

mX]}];

LP6mmXU2Data=Table[{LP6mmX[[i]],LP6mmU2co[[i]]},{i,1,Length[LP6m

mX]}];

LP7mmXU2Data=Table[{LP7mmX[[i]],LP7mmU2co[[i]]},{i,1,Length[LP7m

mX]}];

LP8mmXU2Data=Table[{LP8mmX[[i]],LP8mmU2co[[i]]},{i,1,Length[LP8m

mX]}];

(*BSpline Functions*)

Clear[Y0mmU1,Y1mmU1,Y2mmU1,Y3mmU1,Y4mmU1,Y5mmU1,Y6mmU1,Y7mmU1,Y8

mmU1];

Clear[Y0mmU2,Y1mmU2,Y2mmU2,Y3mmU2,Y4mmU2,Y5mmU2,Y6mmU2,Y7mmU2,Y8

mmU2];

(*Interpolate to get the functions for U1*)

Y0mmU1=Interpolation[LP0mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y1mmU1=Interpolation[LP1mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y2mmU1=Interpolation[LP2mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y3mmU1=Interpolation[LP3mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y4mmU1=Interpolation[LP4mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y5mmU1=Interpolation[LP5mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y6mmU1=Interpolation[LP6mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y7mmU1=Interpolation[LP7mmXU1Data,Method->

"Spline",InterpolationOrder->3];

Y8mmU1=Interpolation[LP8mmXU1Data,Method->

"Spline",InterpolationOrder->3];

115

(*Interpolate to get the functions for U2*)

Y0mmU2=Interpolation[LP0mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y1mmU2=Interpolation[LP1mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y2mmU2=Interpolation[LP2mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y3mmU2=Interpolation[LP3mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y4mmU2=Interpolation[LP4mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y5mmU2=Interpolation[LP5mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y6mmU2=Interpolation[LP6mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y7mmU2=Interpolation[LP7mmXU2Data,Method->

"Spline",InterpolationOrder->3];

Y8mmU2=Interpolation[LP8mmXU2Data,Method->

"Spline",InterpolationOrder->3];

(*Discretized U2 Values*)

(*LP0mmU2DataDiscretized=Table[Y0mmU2Raw[LP0mmXDiscretized[[i]]]

,{i,1,Length[LP0mmXDiscretized]}];

LP0mmU2DataDiscretized0=Table[Y0mmU2Raw[LP0mmX[[i]]],{i,1,Length

[LP0mmX]}];

LP0mmU2DataDiscretized

LP0mmU2DataDiscretized0

LP0mmU2

Y0mmU2Raw[LP0mmX[[Length[LP0mmX]-1]]]*)

Clear[X10mm,X11mm,X12mm,X13mm,X14mm,X15mm,X16mm,X17mm,X18mm];

Clear[Theta0mmU2,Theta1mmU2,Theta2mmU2,Theta3mmU2,Theta4mmU2,The

ta5mmU2,Theta6mmU2,Theta7mmU2,Theta8mmU2];

(*Compute Theta Values based on U2 vallues*)

(*Theta0mmU2=ArcTan[D[Y0mmU2[X10mm],X10mm]];

Theta1mmU2=ArcTan[D[Y1mmU2[X11mm],X11mm]];

Theta2mmU2=ArcTan[D[Y2mmU2[X12mm],X12mm]];

Theta3mmU2=ArcTan[D[Y3mmU2[X13mm],X13mm]];*)

Theta4mmU2=ArcTan[D[Y4mmU2[X14mm],X14mm]];

(*Theta5mmU2=ArcTan[D[Y5mmU2[X15mm],X15mm]];

Theta6mmU2=ArcTan[D[Y6mmU2[X16mm],X16mm]];

Theta7mmU2=ArcTan[D[Y7mmU2[X17mm],X17mm]];

Theta8mmU2=ArcTan[D[Y8mmU2[X18mm],X18mm]];*)

(*Original Position Fields*)

Clear[X0mm,X1mm,X2mm,X3mm,X4mm,X5mm,X6mm,X7mm,X8mm];

Clear[Qz0mm,Qz1mm,Qz2mm,Qz3mm,Qz4mm,Qz5mm,Qz6mm,Qz7mm,Qz8mm];

116

Clear[x0mm,x1mm,x2mm,x3mm,x4mm,x5mm,x6mm,x7mm,x8mm];

X0mm={X10mm,X20mm};

X1mm={X11mm,X21mm};

X2mm={X12mm,X22mm};

X3mm={X13mm,X23mm};

X4mm={X14mm,X24mm};

X5mm={X15mm,X25mm};

X6mm={X16mm,X26mm};

X7mm={X17mm,X27mm};

X8mm={X18mm,X28mm};

(*

(*Rotation Matrices*)

Qz0mm={{Cos[Theta0mmU2],Sin[Theta0mmU2]},{-

1*Sin[Theta0mmU2],Cos[Theta0mmU2]}};

Qz2mm={{Cos[Theta2mmU2],Sin[Theta2mmU2]},{-

1*Sin[Theta2mmU2],Cos[Theta2mmU2]}};

Qz4mm={{Cos[Theta4mmU2],Sin[Theta4mmU2]},{-

1*Sin[Theta4mmU2],Cos[Theta4mmU2]}};

Qz6mm={{Cos[Theta6mmU2],Sin[Theta6mmU2]},{-

1*Sin[Theta6mmU2],Cos[Theta6mmU2]}};

Qz8mm={{Cos[Theta8mmU2],Sin[Theta8mmU2]},{-

1*Sin[Theta8mmU2],Cos[Theta8mmU2]}};

(*Final Position Fields*)

x0mm=Qz0mm.X0mm;

x2mm=Qz2mm.X2mm;

x4mm=Qz4mm.X4mm;

x6mm=Qz6mm.X6mm;

x8mm=Qz8mm.X8mm;

(*Displacement Values*)

U0mm=x0mm-X0mm;

U2mm=x2mm-X2mm;

U4mm=x4mm-X4mm;

U6mm=x6mm-X6mm;

U8mm=x8mm-X8mm;

*)

(*Modify Uz *)

Clear[U0mm,U1mm,U2mm,U3mm, U4mm,U5mm, U6mm,U7mm,

U8mm,U0mmmodify,Newfunc0mm,InterNewfunc0mm,U1mmmodify,Newfunc1mm

,InterNewfunc1mm,

U2mmmodify,Newfunc2mm,InterNewfunc2mm,U3mmmodify,Newfunc3mm,Inte

rNewfunc3mm, U4mmmodify,Newfunc4mm,

InterNewfunc4mm,U5mmmodify,Newfunc5mm,InterNewfunc5mm,U6mmmodify

,Newfunc6mm,InterNewfunc6mm,U7mmmodify,Newfunc7mm,InterNewfunc7m

m,

117

U8mmmodify,Newfunc8mm,InterNewfunc8mm,U1FE0mm,U1FE0,PInterNewfun

c0,InterNewfunc0,U1FE1mm,U1FE1,PInterNewfunc1,InterNewfunc1,U1FE

2mm,U1FE2,InterNewfunc2,PInterNewfunc2,U1FE3mm,U1FE3,PInterNewfu

nc3,InterNewfunc3,U1FE4mm,U1FE4,InterNewfunc4,PInterNewfunc4,U1F

E5mm,U1FE5,PInterNewfunc5,InterNewfunc5,U1FE6mm,U1FE6,InterNewfu

nc6,PInterNewfunc6,U1FE7mm,U1FE7,PInterNewfunc7,InterNewfunc7,U1

FE8mm,U1FE8,InterNewfunc8,PInterNewfunc8];

U0mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->-4.0},{i,1,Length[LP4mmX]}];

Newfunc0mm=Table[{LP4mmX[[i]],U0mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE0mm=Table[(Y0mmU1[X10mm])/.{X10mm->

LP0mmX[[i]]},{i,1,Length[LP0mmX]}];

U1FE0=ListLinePlot[Table[{LP0mmX

[[i]],U1FE0mm[[i]]},{i,1,Length[LP0mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc0=ListLinePlot[Table[{LP4mmX

[[i]],U0mmmodify[[i]]},{i,1,Length[LP0mmX]}], PlotStyle->Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -4mm

HEIGHT"];

Show[PInterNewfunc0,U1FE0,PlotRange->All,ImageSize->1100]

U1mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->-3.0},{i,1,Length[LP4mmX]}];

Newfunc1mm=Table[{LP4mmX[[i]],U1mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE1mm=Table[(Y1mmU1[X11mm])/.{X11mm->

LP1mmX[[i]]},{i,1,Length[LP1mmX]}];

U1FE1=ListLinePlot[Table[{LP1mmX

[[i]],U1FE1mm[[i]]},{i,1,Length[LP1mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc1=ListLinePlot[Table[{LP4mmX

[[i]],U1mmmodify[[i]]},{i,1,Length[LP1mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -3mm

HEIGHT"];

Show[PInterNewfunc1,U1FE1,PlotRange->All,ImageSize->1100]

118

U2mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->-2.0},{i,1,Length[LP4mmX]}];

Newfunc0mm=Table[{LP4mmX[[i]],U0mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE2mm=Table[(Y2mmU1[X12mm])/.{X12mm->

LP2mmX[[i]]},{i,1,Length[LP2mmX]}];

U1FE2=ListLinePlot[Table[{LP2mmX

[[i]],U1FE2mm[[i]]},{i,1,Length[LP2mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc2=ListLinePlot[Table[{LP4mmX

[[i]],U2mmmodify[[i]]},{i,1,Length[LP2mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -2mm

HEIGHT"];

Show[PInterNewfunc2,U1FE2,PlotRange->All,ImageSize->1100]

U3mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->-1.0},{i,1,Length[LP4mmX]}];

Newfunc2mm=Table[{LP4mmX[[i]],U2mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE3mm=Table[(Y3mmU1[X13mm])/.{X13mm->

LP3mmX[[i]]},{i,1,Length[LP3mmX]}];

U1FE3=ListLinePlot[Table[{LP3mmX

[[i]],U1FE3mm[[i]]},{i,1,Length[LP3mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc3=ListLinePlot[Table[{LP4mmX

[[i]],U3mmmodify[[i]]},{i,1,Length[LP3mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -1mm

HEIGHT"];

Show[PInterNewfunc3,U1FE3,PlotRange->All,ImageSize->1100]

U4mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->0.0},{i,1,Length[LP4mmX]}];

Newfunc4mm=Table[{LP4mmX[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE4mm=Table[(Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]]},{i,1,Length[LP4mmX]}];

U1FE4=ListLinePlot[Table[{LP4mmX

[[i]],U1FE4mm[[i]]},{i,1,Length[LP4mmX]}], PlotLegends-

>{"U1FE"}];

119

PInterNewfunc4=ListLinePlot[Table[{LP4mmX

[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mmX]}], PlotStyle->Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 0mm HEIGHT"];

Show[PInterNewfunc4,U1FE4,PlotRange->All,ImageSize->1100]

U5mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->1.0},{i,1,Length[LP4mmX]}];

Newfunc5mm=Table[{LP4mmX[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE5mm=Table[(Y5mmU1[X15mm])/.{X15mm->

LP1mmX[[i]]},{i,1,Length[LP5mmX]}];

U1FE5=ListLinePlot[Table[{LP5mmX

[[i]],U1FE5mm[[i]]},{i,1,Length[LP5mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc5=ListLinePlot[Table[{LP4mmX

[[i]],U5mmmodify[[i]]},{i,1,Length[LP5mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 1mm HEIGHT"];

Show[PInterNewfunc5,U1FE5,PlotRange->All,ImageSize->1100]

U6mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->2.0},{i,1,Length[LP4mmX]}];

Newfunc6mm=Table[{LP4mmX[[i]],U6mmmodify[[i]]},{i,1,Length[LP4mm

X]}];

U1FE6mm=Table[(Y6mmU1[X16mm])/.{X16mm->

LP6mmX[[i]]},{i,1,Length[LP6mmX]}];

U1FE6=ListLinePlot[Table[{LP6mmX

[[i]],U1FE6mm[[i]]},{i,1,Length[LP6mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc6=ListLinePlot[Table[{LP4mmX

[[i]],U6mmmodify[[i]]},{i,1,Length[LP6mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 2mm HEIGHT"];

Show[PInterNewfunc6,U1FE6,PlotRange->All,ImageSize->1100]

U7mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->3.0},{i,1,Length[LP4mmX]}];

Newfunc7mm=Table[{LP4mmX[[i]],U7mmmodify[[i]]},{i,1,Length[LP7mm

X]}];

U1FE7mm=Table[(Y7mmU1[X17mm])/.{X17mm->

LP7mmX[[i]]},{i,1,Length[LP7mmX]}];

U1FE7=ListLinePlot[Table[{LP7mmX

[[i]],U1FE7mm[[i]]},{i,1,Length[LP7mmX]}], PlotLegends-

>{"U1FE"}];

120

PInterNewfunc7=ListLinePlot[Table[{LP4mmX

[[i]],U7mmmodify[[i]]},{i,1,Length[LP6mmX]}], PlotStyle-> Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 3mm HEIGHT"];

Show[PInterNewfunc7,U1FE7,PlotRange->All,ImageSize->1100]

U8mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm->

LP4mmX[[i]],X24mm->4.0},{i,1,Length[LP4mmX]}];

Newfunc8mm=Table[{LP4mmX[[i]],U8mmmodify[[i]]},{i,1,Length[LP8mm

X]}];

U1FE8mm=Table[(Y8mmU1[X18mm])/.{X18mm-

>LP8mmX[[i]]},{i,1,Length[LP8mmX]}];

U1FE8=ListLinePlot[Table[{LP8mmX

[[i]],U1FE8mm[[i]]},{i,1,Length[LP8mmX]}], PlotLegends-

>{"U1FE"}];

PInterNewfunc8=ListLinePlot[Table[{LP4mmX

[[i]],U8mmmodify[[i]]},{i,1,Length[LP8mmX]}], PlotStyle->Black,

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE AT 4mm

HEIGHT"];

Show[PInterNewfunc8,U1FE8,PlotRange->All,ImageSize->1100]

(*Displacement Values - Equations based on Chike's code*)

Clear[U0mm,U1mm,U2mm,U3mm,U4mm,U5mm,U6mm,U7mm,U8mm];

(*U0mm={Y0mmU1[X10mm],Y0mmU2[X10mm]+X20mm*(Cos[Theta0mmU2]-

1.0)};

U1mm={Y1mmU1[X11mm],Y1mmU2[X11mm]+X21mm*(Cos[Theta1mmU2]-1.0)};

U2mm={Y2mmU1[X12mm],Y2mmU2[X12mm]+X22mm*(Cos[Theta2mmU2]-1.0)};

U3mm={Y3mmU1[X13mm],Y3mmU2[X13mm]+X23mm*(Cos[Theta3mmU2]-

1.0)};*)

U4mm={(-

1.0*X24mm*Sin[Theta4mmU2])+Y4mmU1[X14mm],Y4mmU2[X14mm]+X24mm*(Co

s[Theta4mmU2]-1.0)};

(*U5mm={Y5mmU1[X15mm],Y5mmU2[X15mm]+X25mm*(Cos[Theta5mmU2]-

1.0)};

U6mm={Y6mmU1[X16mm],Y6mmU2[X16mm]+X26mm*(Cos[Theta6mmU2]-1.0)};

U7mm={Y7mmU1[X17mm],Y7mmU2[X17mm]+X27mm*(Cos[Theta7mmU2]-1.0)};

U8mm={Y8mmU1[X18mm],Y8mmU2[X18mm]+X28mm*(Cos[Theta8mmU2]-

1.0)};*)

(*Displacement Gradient*)

Clear[DelU0mm,DelU1mm,DelU2mm,DelU3mm,DelU4mm,DelU5mm,DelU6mm,De

lU7mm,DelU8mm];

(*DelU0mm=Table[D[U0mm[[i]],X0mm[[j]]],{i,1,2},{j,1,2}];

121

DelU1mm=Table[D[U1mm[[i]],X1mm[[j]]],{i,1,2},{j,1,2}];

DelU2mm=Table[D[U2mm[[i]],X2mm[[j]]],{i,1,2},{j,1,2}];

DelU3mm=Table[D[U3mm[[i]],X3mm[[j]]],{i,1,2},{j,1,2}];*)

DelU4mm=Table[D[U4mm[[i]],X4mm[[j]]],{i,1,2},{j,1,2}];

(*DelU5mm=Table[D[U5mm[[i]],X5mm[[j]]],{i,1,2},{j,1,2}];

DelU6mm=Table[D[U6mm[[i]],X6mm[[j]]],{i,1,2},{j,1,2}];

DelU7mm=Table[D[U7mm[[i]],X7mm[[j]]],{i,1,2},{j,1,2}];

DelU8mm=Table[D[U8mm[[i]],X8mm[[j]]],{i,1,2},{j,1,2}];*)

Clear[GreenStrain0mmEqn,GreenStrain1mmEqn,GreenStrain2mmEqn,Gree

nStrain3mmEqn,GreenStrain4mmEqn,GreenStrain5mmEqn,GreenStrain6mm

Eqn,GreenStrain7mmEqn,GreenStrain8mmEqn];

(*GreenStrain0mmEqn=0.5*(DelU0mm+Transpose[DelU0mm]+(Transpose[D

elU0mm].DelU0mm));

GreenStrain1mmEqn=0.5*(DelU1mm+Transpose[DelU1mm]+(Transpose[Del

U1mm].DelU1mm));

GreenStrain2mmEqn=0.5*(DelU2mm+Transpose[DelU2mm]+(Transpose[Del

U2mm].DelU2mm));

GreenStrain3mmEqn=0.5*(DelU3mm+Transpose[DelU3mm]+(Transpose[Del

U3mm].DelU3mm));*)

GreenStrain4mmEqn=0.5*(DelU4mm+Transpose[DelU4mm]+(Transpose[Del

U4mm].DelU4mm));

(*GreenStrain5mmEqn=0.5*(DelU5mm+Transpose[DelU5mm]+(Transpose[D

elU5mm].DelU5mm));

GreenStrain6mmEqn=0.5*(DelU6mm+Transpose[DelU6mm]+(Transpose[Del

U6mm].DelU6mm));

GreenStrain7mmEqn=0.5*(DelU7mm+Transpose[DelU7mm]+(Transpose[Del

U7mm].DelU7mm));

GreenStrain8mmEqn=0.5*(DelU8mm+Transpose[DelU8mm]+(Transpose[Del

U8mm].DelU8mm));*)

Clear[GreenStrain0mmMatrixValues,GreenStrain1mmMatrixValues,Gree

nStrain2mmMatrixValues,GreenStrain3mmMatrixValues,GreenStrain4mm

MatrixValues,GreenStrain5mmMatrixValues,GreenStrain6mmMatrixValu

es,GreenStrain7mmMatrixValues,GreenStrain8mmMatrixValues];

GreenStrain0mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> -4.0},{i,1,Length[LP0mmX]}];

GreenStrain1mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> -3.0},{i,1,Length[LP1mmX]}];

GreenStrain2mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> -2.0},{i,1,Length[LP2mmX]}];

GreenStrain3mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> -1.0},{i,1,Length[LP3mmX]}];

GreenStrain4mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> 0.0},{i,1,Length[LP4mmX]}];

GreenStrain5mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> 1.0},{i,1,Length[LP5mmX]}];

122

GreenStrain6mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> 2.0},{i,1,Length[LP6mmX]}];

GreenStrain7mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> 3.0},{i,1,Length[LP7mmX]}];

GreenStrain8mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm->

LP4mmX[[i]],X24mm-> 4.0},{i,1,Length[LP8mmX]}];

Clear[GreenStrain0mm11,GreenStrain1mm11,GreenStrain2mm11,GreenSt

rain3mm11,GreenStrain4mm11,GreenStrain5mm11,GreenStrain6mm11,Gre

enStrain7mm11,GreenStrain8mm11];

GreenStrain0mm11=Table[GreenStrain0mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain0mmMatrixValues]}];

GreenStrain1mm11=Table[GreenStrain1mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain1mmMatrixValues]}];

GreenStrain2mm11=Table[GreenStrain2mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain2mmMatrixValues]}];

GreenStrain3mm11=Table[GreenStrain3mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain3mmMatrixValues]}];

GreenStrain4mm11=Table[GreenStrain4mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain4mmMatrixValues]}];

GreenStrain5mm11=Table[GreenStrain5mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain5mmMatrixValues]}];

GreenStrain6mm11=Table[GreenStrain6mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain6mmMatrixValues]}];

GreenStrain7mm11=Table[GreenStrain7mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain7mmMatrixValues]}];

GreenStrain8mm11=Table[GreenStrain8mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain8mmMatrixValues]}];

(*

Print["Green Strain 11 at Path 0mm = ",GreenStrain0mm11];

Print["Green Strain 11 at Path 2mm = ",GreenStrain2mm11];

Print["Green Strain 11 at Path 4mm = ",GreenStrain4mm11];

Print["Green Strain 11 at Path 6mm = ",GreenStrain6mm11];

Print["Green Strain 11 at Path 8mm = ",GreenStrain8mm11];

*)

(*Comparative Plots*)

(*At 0mm position - Inner surface of the pipe*)

XLE110mmTable = Table[{LP0mmX

[[i]],LE110mm[[i]]},{i,1,Length[LP0mmX]}];

XPE110mmTable = Table[{LP0mmX

[[i]],PE110mm[[i]]},{i,1,Length[LP0mmX]}];

XGreenStrain0mm110mmTable = Table[{LP0mmX

[[i]],GreenStrain0mm11[[i]]},{i,1,Length[LP0mmX]}];

P01=ListLinePlot[XLE110mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

123

PROFILE AT 0mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}];

P02=ListLinePlot[XPE110mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 0mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P03=ListLinePlot[XGreenStrain0mm110mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 0mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11"}];

Show[P01,P02, P03, PlotRange-> All,ImageSize->1100]

(*At 1mm position - Inner surface of the pipe*)

XLE111mmTable = Table[{LP1mmX

[[i]],LE111mm[[i]]},{i,1,Length[LP1mmX]}];

XPE111mmTable = Table[{LP1mmX

[[i]],PE111mm[[i]]},{i,1,Length[LP1mmX]}];

XGreenStrain1mm111mmTable = Table[{LP1mmX

[[i]],GreenStrain1mm11[[i]]},{i,1,Length[LP1mmX]}];

P11=ListLinePlot[XLE111mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 1mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}];

P12=ListLinePlot[XPE111mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 1mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P13=ListLinePlot[XGreenStrain1mm111mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 1mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P11,P12, P13, PlotRange-> All,ImageSize->1100]

(*At 2mm height from inner surface*)

XLE112mmTable = Table[{LP2mmX

[[i]],LE112mm[[i]]},{i,1,Length[LP2mmX]}];

XPE112mmTable = Table[{LP2mmX

[[i]],PE112mm[[i]]},{i,1,Length[LP2mmX]}];

XGreenStrain2mm112mmTable = Table[{LP2mmX

[[i]],GreenStrain2mm11[[i]]},{i,1,Length[LP2mmX]}];

P21=ListLinePlot[XLE112mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 2mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}];

124

P22=ListLinePlot[XPE112mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 2mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P23=ListLinePlot[XGreenStrain2mm112mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 2mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P21,P22, P23, PlotRange-> All,ImageSize->1100]

(*At 3mm position - Inner surface of the pipe*)

XLE113mmTable = Table[{LP3mmX

[[i]],LE113mm[[i]]},{i,1,Length[LP3mmX]}];

XPE113mmTable = Table[{LP3mmX

[[i]],PE113mm[[i]]},{i,1,Length[LP3mmX]}];

XGreenStrain3mm113mmTable = Table[{LP3mmX

[[i]],GreenStrain3mm11[[i]]},{i,1,Length[LP3mmX]}];

P31=ListLinePlot[XLE113mmTable, PlotStyle-

>{{Black,Thickness[0.01]},Thickness[0.01]},PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 3mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends->{"LE11

(Abaqus)"}];

P32=ListLinePlot[XPE113mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 3mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P33=ListLinePlot[XGreenStrain3mm113mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 3mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P31,P32, P33, PlotRange->All,ImageSize->1100]

(*At 4mm height from inner surface*)

XLE114mmTable = Table[{LP4mmX

[[i]],LE114mm[[i]]},{i,1,Length[LP4mmX]}];

XPE114mmTable = Table[{LP4mmX

[[i]],PE114mm[[i]]},{i,1,Length[LP4mmX]}];

XGreenStrain4mm114mmTable = Table[{LP4mmX

[[i]],GreenStrain4mm11[[i]]},{i,1,Length[LP4mmX]}];

P41=ListLinePlot[XLE114mmTable, PlotStyle-

>{{Black,Thickness[0.01]},Thickness[0.01]},PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 4mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"LE11(Abaqus)"}];

125

P42=ListLinePlot[XPE114mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 4mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P43=ListLinePlot[XGreenStrain4mm114mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 4mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P41,P42, P43, PlotRange-> All,ImageSize->1100]

(*At 5mm position - Inner surface of the pipe*)

XLE115mmTable = Table[{LP5mmX

[[i]],LE115mm[[i]]},{i,1,Length[LP5mmX]}];

XPE115mmTable = Table[{LP5mmX

[[i]],PE115mm[[i]]},{i,1,Length[LP5mmX]}];

XGreenStrain5mm115mmTable = Table[{LP5mmX

[[i]],GreenStrain5mm11[[i]]},{i,1,Length[LP5mmX]}];

P51=ListLinePlot[XLE115mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 5mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}];

P52=ListLinePlot[XPE115mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 5mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P53=ListLinePlot[XGreenStrain5mm115mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 5mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P51,P52, P53, PlotRange-> All,ImageSize->1100]

(*At 6mm height from inner surface*)

XLE116mmTable = Table[{LP6mmX

[[i]],LE116mm[[i]]},{i,1,Length[LP6mmX]}];

XPE116mmTable = Table[{LP6mmX

[[i]],PE116mm[[i]]},{i,1,Length[LP6mmX]}];

XGreenStrain6mm116mmTable = Table[{LP6mmX

[[i]],GreenStrain6mm11[[i]]},{i,1,Length[LP6mmX]}];

P61=ListLinePlot[XLE116mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 6mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}];

P62=ListLinePlot[XPE116mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 6mm HEIGHT", AxesLabel-

126

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P63=ListLinePlot[XGreenStrain6mm116mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 6mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P61,P62, P63, PlotRange-> All,ImageSize->1100]

(*At 7mm position - Inner surface of the pipe*)

XLE117mmTable = Table[{LP7mmX

[[i]],LE117mm[[i]]},{i,1,Length[LP7mmX]}];

XPE117mmTable = Table[{LP7mmX

[[i]],PE117mm[[i]]},{i,1,Length[LP7mmX]}];

XGreenStrain7mm117mmTable = Table[{LP7mmX

[[i]],GreenStrain7mm11[[i]]},{i,1,Length[LP7mmX]}];

P71=ListLinePlot[XLE117mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 7mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}];

P72=ListLinePlot[XPE117mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 7mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

P73=ListLinePlot[XGreenStrain7mm117mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 7mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P71,P72, P73, PlotRange-> All,ImageSize->1100]

(*At 8mm height from inner surface*)

XLE118mmTable = Table[{LP8mmX

[[i]],LE118mm[[i]]},{i,1,Length[LP8mmX]}];

XPE118mmTable = Table[{LP8mmX

[[i]],PE118mm[[i]]},{i,1,Length[LP8mmX]}];

XGreenStrain8mm118mmTable = Table[{LP8mmX

[[i]],GreenStrain8mm11[[i]]},{i,1,Length[LP8mmX]}];

P81=ListLinePlot[XLE118mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 8mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}];

P82=ListLinePlot[XPE118mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 8mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}];

127

P83=ListLinePlot[XGreenStrain8mm118mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN

PROFILE AT 8mm HEIGHT", AxesLabel->{"Longitudinal Distance

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}];

Show[P81,P82, P83, PlotRange->All,ImageSize->1100]

128

APPENDIX C: Mathematica code in the Circumferential

Direction and Result Extraction.

DataR = Import["C:\\Users\\mahya\\OneDrive\\Desktop\\Excell

files\\4mm.xlsx"];

(*Sorts the input data*)

AllData = Table[DataR[[1, i]], {i, 2, 327}];

LongAxis = Table[AllData[[i, 1]], {i, 1, 301}];

LongDisp = Table[AllData[[i, 2]], {i, 1,301}];

CircAxis = Table[AllData[[i, 3]], {i, 1, Length[AllData]}];

CircDisp = Table[AllData[[i, 4]], {i, 1, Length[AllData]}];

DataL = Table[{LongAxis[[i]], LongDisp[[i]]}, {i,

Length[LongAxis]}];

DataC = Table[{CircAxis[[i]], CircDisp[[i]]}, {i,

Length[CircAxis]}];

(*To further sort Data-Suppresed for this case*)

(*DataL=Table[DataL[[i]],{i,1,Length[DataL],1}];

DataC=Table[DataC[[i]],{i,1,Length[DataC],1}];*)

(*Input Variables*)

t = 8;

ro = (16*25.4) - t;

129

rom = (16*25.4) - t/2;

(*Resolution of tool; 64 arms in the circ direction and readings

at 5mm intervals on the longitudinal axis*)

CircRes = 64;

LongRes = 5;

(*Axial Start and End Positions*)

start = 100;

end = 100;

(*Interpolation*)

ri = Interpolation[DataC, Method -> "Spline", InterpolationOrder

-> 3];

yfunc = Interpolation[DataL, Method -> "Spline",

InterpolationOrder -> 3];

(*Data Wrangle*)

yi = yfunc[x] /. x -> Table[i, {i, -100, 100, LongRes}];

xi = Table[i, {i, -100, 100, LongRes}];

DataL = Table[{xi[[i]], yi[[i]]}, {i, 1, Length[yi]}];

rt = ri[th] /. th -> Table[i, {i, 0, 3.14, Pi/64}];

the = Table[i, {i, 0, 3.14, Pi/64}];

DataC = Table[{the[[i]], rt[[i]]}, {i, 1, Length[rt]}];

130

ri = Interpolation[DataC, Method -> "Spline", InterpolationOrder

-> 3];

yfunc = Interpolation[DataL, Method -> "Spline",

InterpolationOrder -> 3];

PolarPlot[ri[th], {th, 0, 3.14}, PlotRange -> All, AxesOrigin ->

{0, 0}, FrameLabel -> {" X (mm)", "Y (mm) "}, BaseStyle ->

Directive[Bold, 20], Frame -> True, GridLines -> Automatic]

Plot[yfunc[x], {x, -100, 100}, PlotRange -> All, AxesOrigin -> {0,

0}, FrameLabel -> {" Axial Distance (mm)", "Radial Displacement

"}, BaseStyle -> Directive[Bold, 20], Frame -> True, GridLines ->

Automatic]

(*Deformation Gradient in the Longitudinal Axis*)

Theta1 = ArcTan[D[yfunc[x], x]];

u1 = {-x2*Sin[Theta1], yfunc[x] + x2*(Cos[Theta1] - 1), 0};

ua1 = u /. x2 -> t/2;

ua2 = u1 /. x2 -> t/2;

X = {x, x2, x3};

Gradu1 = Table[D[u1[[i]], X[[j]]], {i, 1, 3}, {j, 1, 3}];

(*Green Strain Matrix*)

GreenStrain = 0.5*(Gradu1 + Transpose[Gradu1] +

1*Transpose[Gradu1].Gradu1);

GSB = GreenStrain[[1, 1]] /. x2 -> -t/2;

131

GST = GreenStrain[[1, 1]] /. x2 -> t/2.;

(*same as from ABAQUS, with-3.14 correspomding to 180deg, and 3.14

*)

thstart = DataC[[Length[DataC], 1]];

thend = DataC[[1, 1]];

(*The following angles aren't used*)

perpangle = ArcTan[D[ri[th], th]/ri[th]];

perpanglesmall = D[ri[th], th]/ri[th];

(*First approximation of the radius of the midsurface*)

rm = ri[th] + t/2*Cos[perpangle];

rmsmall = ri[th] + t/2*Cos[perpanglesmall];

(*Arc Length as theta varies from start to end in the deformed

configuration*)

lmtablesmall = Table[NIntegrate[rmsmall, {th, thstart, DataC[[i,

1]]}], {i, 1, Length[DataC]}];

romest = NIntegrate[rmsmall, {th, 0, Pi}]/(Pi);

(*Arc Length as th varies from start to end in the undeformed

configuration*)

Oldlmtable = Table[NIntegrate[rom, {th, thstart, DataC[[i, 1]]}],

{i, 1, Length[DataC]}];

132

(*Table showing the value of th in the undeformed config and the

coresponnding value in the deformed config*)

thtablesmall = Table[{DataC[[i, 1]], lmtablesmall[[i]]/romest +

thstart}, {i, 1, Length[Oldlmtable]}];

thnewsmall = Table[{thtablesmall[[i, 2]], thtablesmall[[i, 1]]},

{i, 1, Length[thtablesmall]}];

(*Interpolation Function relating the undeformed and the deformed

values of theta*)

rsmall = rmsmall + tv;

thnewintsmall = Interpolation[thnewsmall, Method -> "Spline",

InterpolationOrder -> 3];

perpanglesmall = D[rmsmall, th]/rmsmall;

(*midline radial displacement *)

urmsmall = (rmsmall /. th ->

thnewintsmall[thold])*Cos[thnewintsmall[thold] - thold] - romest;

uthmsmall = (rmsmall /. th ->

thnewintsmall[thold])*Sin[thnewintsmall[thold] - thold];

cc = uthmsmall /. thold -> 0;

uthmsmall = uthmsmall - cc;

133

(*radial displacement*)

ursmall = urmsmall - tv + tv*Cos[perpanglesmall /. th ->

thnewintsmall[thold]];

(*circumferential displacement*)

uthsmall = uthmsmall - tv*Sin[perpanglesmall+0.00375/. th ->

thnewintsmall[thold]];

rsmall = (rmsmall /. th -> thnewintsmall[thold]) + tv;

SU = {{D[ursmall, tv], D[ursmall, thold]/rsmall -

uthsmall/rsmall}, {D[uthsmall, tv], 1*ursmall/rsmall +

1/rsmall*D[uthsmall, thold]}};

(*Small Strain Matrix*)

SStrain = 0.5*(SU + Transpose[SU]);

SStrainT = SStrain[[2, 2]] /. tv -> t/2;

SStrainB = SStrain[[2, 2]] /. tv -> -t/2;

epsCB = SStrainB /. thold ->0;

epsCT = SStrainT /. thold -> 0;

epsCB

