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Abstract 

It is easier and cheaper to transmit oil and gas by pipeline, but their failure can cause considerable 

environmental and societal consequences. The denting of pipelines is one of the significant 

challenges faced by those in the oil and gas industry. The formation of dents in the wall of the 

pipeline can cause lower pressure capacity. Analytical and numerical models, such as the finite 

element method (FEA), can predict this issue. 

The traditional way for recognizing the seriousness of the dent is to test the dent depth. But 

unfortunately, this method cannot predict the probability of failure accurately. Based on previous 

research, there are two ways to assess the seriousness of the dents. The first method is to model 

the pipe by finite element method. While very accurate, the finite element method is very 

computationally demanding and time consuming. The second method utilizes the dent profile to 

perform strain-based analysis. While very fast, the method suffers from lack of accuracy 

particularly in predicting the strains in the longitudinal direction. 

The first objective of this research was to develop a technique that takes into consideration the 

membrane strains in the longitudinal direction. The second objective was to test the performance 

of the new technique on a variety of pipeline dents. The developed method is based on the three-

dimensional mathematical model proposed by Okoloekwe et al. 

In the original model proposed by Okoloekwe et al, it was assumed that the displacement in the 

mid-line of the pipeline is zero, but we found this displacement and added it to the displacement 

in the horizontal direction. Our study found that the modification yielded significantly better 

longitudinal strain distribution than the conventional procedure. The newly developed methods 

provide an increase in accuracy and speed of the analytical process without sacrificing accuracy. 
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A number of two-dimensional and three-dimensional models were examined to verify the method. 

Contrary to the longitudinal results, these results were very accurate in the circumferential 

direction. With respect to the FEA results, our proposed technique is much faster, more accurate, 

and more reliable than previously developed analytical methods. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Problem Statement 
 

In the third quarter of 2019, compared to a day in the previous quarter, worldwide demand 

increased from 435,000 barrels a day to  1.1 million barrels a day (i.e., more than double) 

(www.cnbc.com, 2019). Although pipelines are the easiest and cheapest way of transporting oil 

and gas, their failure might have dire environmental and societal consequences. One of the 

significant challenges faced by those in the Oil and Gas industry is denting of pipelines. Dents are 

defined as a severe disturbance of the circular cross-section of the pipes which are formed by 

contact with an external body (Cosham & Hopkins, 2004, Makhlouf, A. S. H., & Aliofkhazraei, 

M. (Eds.), 2015). A dent is a permanent deformation of the pipe's circular cross section caused by 

the plastic deformation. Dents distort the cross section of the pipe significantly (Cosham and 

Hopkins, 2003). The following terminology is used for classifying dents.      

1. Smooth dents are caused by a smooth change in the shape of the pipe wall.  

2. Kinked dents as a result of an abrupt change in the curvature of the pipe wall.  

3. Plain dents lead to a smooth dent without any thickness reductions.  

4. Constrained dents are defined as dents are prevented from rebounding and re-rounding as a 

result of  the persistent surface to surface contact with indenter. 

5. Unconstrained dents result from a situation in which a dent is permitted to rebound and re-round 

elastically when the indenting body is removed. 
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There are many leading causes for mechanical damages that can cause dents in pipelines; such as  

human activities in transportation or installation, mechanical third-party line strikes, or natural 

disasters like earthquakes and landslides. 

The traditional way for recognizing the seriousness of the dent is to test the depth. Dents 

acceptance criteria in various codes and standards are based on the dent depth. Table 1-1 provides 

acceptance criteria for dents according to their dent depth. For example, for pipes with an outside 

diameter (OD) more than 101.6, plain dents deeper than 6% of the (OD) according to CSA Z662-

19 (CSA,2026) are not acceptable. For other pipelines, CSA Z662-19 states that the dent should 

not be deeper than 6mm. On the other hand, when using depth-based judgments, this sometimes 

leads to unnecessary excavation or mischaracterization for dents less than 6% OD. For example, 

the National Energy Board reported a leak at a crack within a dent with a maximum depth of 0.51% 

of the pipe OD, demonstrating the unreliability of this approach (National Energy Board Safety 

Advisory 2010). A new approach for solving the problems of depth-based criteria, is strain-based 

assessment (Noronha et al., 2005, Okoloekwe, C., 2017). 

Table 1-1. Acceptability limits for plain dents (Race, et al., 2010). 

 

 

PLAIN DENTS 

Constrained 

 

Unconstrained 

 

ASME B31.8 Up to 6% OD or strain level up to 6% 

ASME B31.4 
Up to 6% OD in pipe diameters > NPS4” 
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 Table 1 Acceptability limits for plain dents 

There is a good connection between the shape of a dent and the associated mechanical strain; strain 

can be predicted by the analytical and numerical models with regard to size and location. Finite 

Element Analysis (FEA) is an acceptable tool for analyzing the mechanical behavior of pipelines 

subjected to various mechanical disturbances such as dents and gouges. On the other hand, FEA 

is costly and time-consuming, so it is ineffectual for analyzing numerous dents (Okoloekwe, C., 

Kainat, M., Langer, D., Hassanien, S., Roger Cheng, J., and Adeeb, S., 2018). A quick and accurate 

evaluation of dents requires the employment of an analytical approach. The non-mandatory 

equations presented in Appendix R of the ASME B31.8 2018 (ASME, 2016) codes evaluate strains 

based on the minimum radius of curvature of each dent in the axial and circumferential direction. 

It is specified that the limitation for strain value for both the inner and outer sides of plain dents in 

the pipelines is 6%. 

Furthermore, in the presence of stress concentration like cold worked areas and seam welds, this 

limitation will be diminished (ASME, 2016). On the other hand, with ASME equations, the length 

 

Up to 6 mm in pipe diameters < NPS 4” 

   API 1156 Up to 6% OD but > 2% OD requires a fatigue assessment 

     EPRG ≤ 7% OD at a hoop stress of 72% SMYS 

    PDAM Up to 10% OD Up to 7% OD 

  CSA Z662 Up to 6 mm for ≤ 101.61 mm OD, or < 6% OD for > 101.6 mm OD 



4 

 

of a dent, which is needed for strain analysis, is not well defined. The length corresponding to half 

depth of the dent is suggested as a familiar way of settling the length of the dent. Although the 

previous method is straightforward, the research by Noronha et al. (Noronha et al., Martins, R.R., 

Jacob, B.P. and Souza, E., 2005) shows that compared to the FEA method, this solution would 

underestimate the values of the longitudinal strain. Plus, there are no agreed upon accurate methods 

for approximating the size of the radius of curvature of the dented pipe, which is the paramount 

parameters used by the ASME equations to estimate the maximum strain within the dented region. 

Also, the ASME equations assume that the maximum strain will occur at the peak of the dent 

which is not always the case. Okoloekwe et al. (Okoloekwe, C et al., 2018) proposed to solve these 

problems by applying piecewise spline functions to interpolate the dent topology accompanied by 

equations to calculate the radius of curvature of a dented pipe. 

The ASME equations yield a sensible prediction of the bending component of the strain, which is 

reported by applying this technique. An analytical method based on the interpolation of the dented 

geometry of pipelines to gauge the strains in dented pipes is the latest evaluation by Okoloekwe et 

al. (Okoloekwe, C et al., 2018). By comparing the results of their method with the strains predicted 

by FEA, Okoloekwe et al. showed that there is a reasonable agreement between both. Whereas the 

FEA model for dent with 12% OD depth and 35 mm indenter diameter, in contrast, the model 

magnifies the value of the maximum equivalent plastic strain (PEEQ) by about 14% (Li, Y., 

Hassanien, S., Okoloekwe, C., & Adeeb, S., 2019). 

The first objective for this thesis is to enhance the strain computational technique developed by 

Okoloekwe et al., for application by pipeline operators in order to increase the accuracy of the 

model. My preliminary analysis has shown that membrane strains in the longitudinal direction 

need to be accounted for in any model. Furthermore, by including the horizontal movement of the 
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neutral axis in the Okoloekwe et al.’s model, accurate results that are comparable to the finite 

element analysis simulation results were obtained for all indentation depths. Continually in the 

second objective, we will suggest a new method on how to increase the accuracy of the original 

method for predicting the stain in the dented pipeline. For calibrating the upgraded models, we 

will use the profiles that we obtained from ILI tools.  

Canada is a world leader with respect to dent evaluation techniques in pipelines integrity programs. 

Consequently, the result of this project will set Canada apart as a leader in design advancement 

and fundamental knowledge for training highly qualified engineers and researchers. What is 

planned in the first objective in regard to upgrading the accuracy of Okoloekwe et al. is an available 

mathematical method for strain analysis of the dented pipelines. In our introductory results, what 

is mentioned in the last part reveals that for upgrading the correctness of Okoloekwe et al.’s 

method, we should add the longitudinal displacement of the neutral axis. That will be found by the 

first objective, an analytical prediction for relative horizontal movement associated with 

membrane stain in the longitudinal direction of the dented pipeline. 

To achieve the thesis objective, we will create a series of verified 3D and 2D nonlinear FE models 

in different situations, such as various indenter shapes and different dent depths. By using the 

developed method, for predicting the horizontal membrane displacement of the neutral axis of the 

dented pipelines, a general estimation equation will be developed and added to the strain 

computational method developed by Okoloekwe et al.  

For the second objective, we will create a series of nonlinear FE models with numerous dent depths 

and shapes. We will try to predict the dent’s length and determine the longitudinal strain according 

to the ASME equations based on the generated form. Subsequently, we will try to gain and 
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compare results that we obtain from FE models with ASME equations for increasing the accuracy 

of analytical models.  
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Chapter 2 - The improvement of A strain-based modeling approach for 

analyzing dented pipeline severity in the longitudinal direction. 
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2.1 Abstract 

 
Canada is ranked as the 3rd highest country of oil reserve with 9.8% of the world share of oil, and 

the 4th oil producer in 2019 with a significant increase in oil production in last few years (British 

Petroleum. https://www.bp.com/. 2019). Although pipelines are the easiest and cheapest method 

of transmitting oil and gas, their failure will cause a disaster. The denting of pipelines is one of the 

significant challenges faced by those in the oil and gas industry. Dents can cause a lower pressure 

capacity in the pipeline because of forming in the pipe wall. Analytical and numerical models can 

predict this issue, such as finite element analysis (FEA), which can analyze the pipelines based on 

the strain. The time problem with an FEA model can be solved with a quick and accurate evaluation 

of dents that urges the employment of an analytical approach. The non-mandatory equations 

presented in Appendix R of the ASME B31.8 2007 codes evaluate strains based on the minimum 

radius of the curvature of each dent in longitudinal and circumferential directions. The three-

dimensional mathematical model which is presented by Okoloekwe et al. allows operators of 

pipelines to rapidly determine the severity of a dent by selecting the strain measurement that allows 

the model to remain consistent with its governing assumptions or use an assumed free formulation 

to account for the nonlinearity associated with the deformation. As it is known, in comparison to 

FEA, the model developed by Okoloekwe et al. predicts strain much more quickly than the FEA 

method. Consequently, this chapter seeks to improve the process by increasing the accuracy of the 

current model in the longitudinal direction. 

Keywords: 

pipe, FEA, dent, pressure, and strain 
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2.2 Introduction 

More than 840,000 km of pipelines are in operation in Canada. Essentially, energy products from 

natural sources are transported across vast distances via these pipelines, which are by far the 

cheapest and most convenient mode of transport for those products, but also the most complicated. 

Additionally, there are over 100,000 workers employed by the oil and gas sector in Canada 

(https://thecanadianencyclopedia.ca/en/article/pipeline). Pipelines can be harmed by denting, 

cracking, and loss of metal or their combination as a result of these problems (Kiefner & Leewis, 

2011). Dents with no corrosion, gouges, cracks, welds or other areas of increased stress are known 

as plain dents. According to the National Standard of Canada for oil and gas systems (CSA 

Z662:19), plain dents are deeper than 6 mm for pipe 101.6 mm outer diameter (OD) or smaller or 

deeper than 6% of OD. Plain dents are created by mechanical damage without changing the 

thickness of the wall. It is also possible that these dents can threaten or lead to the growth of 

the Potential corrosion or corrosion that already exists. As a result, these pipes will most likely 

crack in the areas where deformation has taken place. According to the CSA Z662:19 standard, 

the traditional way of judging the seriousness of the dents is based on their depth. Focusing on 

determining the severity of the dent based on the depth method can cause problems for both 

harmful and unnecessary dents, leading to unnecessary excavation for deep dents regarding 

repairing or neglecting moderate dents which can be dangerous for pipe safety because of their 

overall size and sharpness (Gao & McNealy, 2008). Strain-based models for dent assessment have 

shown that using the depth of the dent can be dangerous because of not caring about the sharpness 

of the dent profile which can lead to high local plastic strains. ASME B31.8-2018 estimates local 

strains as a function of the dent depth and length measured along the axis of the pipe. Based on 

ASME methods, recent research at the University of Alberta evaluated an alternative method for 
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estimating the stress component of a pipe without the need to use finite elements (Okoloekwe, 

2018). Using spline functions, Okoloekwe (2018) demonstrated how one can estimate the radius 

of curvature of a dented surface from which the localized strain can be calculated anywhere in a 

dented section of a pipeline. Okoloekwe (2018) demonstrated that their analysis approach was both 

accurate and conservative when compared to FEA (Woo, 2019). According to the last version of 

the American pipeline standard ASMEB31.8-2018 (Fig. 1), strains comprise two main components 

in longitudinal and circumferential directions for the pipe wall. Two separate bending and 

membrane strains exist for each direction. 

Pipe wall strain has two main components: longitudinal and circumferential components. Each of 

them can be further divided into membrane strains and bending strains. From bottom to top, the 

membrane strain is the constant calculated by averaging the strain over the cross section, while the 

bending component is the linear fit of the strain after subtracting the membrane strain. A major 

challenge is determining membrane strains, as calculations must be made. In terms of bending 

components, the process is straightforward. As a result of the wall thickness of the pipe and the 

curvature of the dent, the maximum bending strain will be available on the pipe wall surface. From 

the measured dent shape, both axial and circumferential curvatures can be calculated 

(Lukasiewicz, Czyz, Sun, & Adeeb, 2006; Noronha et al., 2010).     
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 Fig. 1   Strain components in the pipe wall 

 

In ASME B 31.8-2018, the following equations are assumed for circumferential bending (ε1), 

longitudinal bending (ε2), longitudinal membrane (ε3) strains and the strain for inside and 

outside of the pipe surface. The ASME B 31.8-2018 ignores the membrane strain for the 

circumferential direction. 

ε1 = (
t

2
) (

1

R0
−

1

R1
)                             (1) 

 

ε2 =
t

(2R2)
                                           (2) 

 

ε3 = (
t

2
) (

d

L
)
2

                                     (3) 

 

R0 is the initial pipe surface radius. 

L indicates the length of the dent.  

t represents the thickness of the pipe. 

d denotes the dent depth.= 
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As displayed in Fig. 2, there are non-reentrant and reentrant positions for dents. For the non-

reentrant dent, the surface of the dent is in the same direction as the surface of the pipe. 

Otherwise, the dent is assumed reentrant. R1is positive and negative for non-reentrant and 

reentrant dents, respectively (Fig. 2). 

 

 

 

 

 

Fig. 2 Dent geometry   

To calculate a dented section's equivalent total strain based on these strain components, combine 

them accordingly 

𝜀𝑖 = √𝜀1
2 − 𝜀1(𝜀3 + 𝜀2) + (𝜀3 + 𝜀2)2 

𝜀𝑜 = √𝜀1
2 + 𝜀1(𝜀3−𝜀2) + (𝜀3 − 𝜀2)2 

The strain around the inner and outer surfaces of the pipe wall is equal to 𝜀𝑖 and 𝜀𝑜. Positive and 

negative values should be considered for ε1 and ε2 regarding calculating the combined strain on 

the inside and outside pipe surface. 
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Noronha et al. (2005) estimated strain levels by using fourth-order B-spline curves for 

interpolating the dent contour and concluded that the results have various differences with those 

of the finite element method (FEM) for a small number of sensors. The obtained results using a 

high-resolution tool presented a high match with the FEM.  Using a low-resolution caliper tool 

might result in large strain mispredictions if bending strains are predicted from the equations in 

the region closest to the dent apex. Moreover, the B31.8 standard does not provide a definition of 

length, which complicates the estimation of global longitudinal membrane strain, since 

longitudinal strain depends significantly on length. 

In addition, Lukasiewicz et al. (2006) asserted that the B31.8 code equation for the longitudinal 

membrane strain is simply inaccurate, which calculates the component of the membrane strain in 

the longitudinal direction. The calculation of this method relies on neglecting the circumferential 

strain. It was also presented that the estimation of longitudinal strains using their method is highly 

simple and comes up with an alternative method for evaluating the strain by calculations based on 

radial displacement. In this method, 2 degrees of freedom results per node are compared with the 

large elastoplastic method in the FEM by the three-dimensional (3D) shell pipe model for 5 degrees 

of freedom for the node. The bending strain is calculated in both directions by the following 

equations. 

                                       εx
−b =

t

2

∂2w

∂x2
                                                           (5) 

                                        

                                        εy
−b =

t

2

∂2w

∂y2
                                                   (6) 

where t denotes the pipe wall thickness. 

 



14 

 

 

 

Fig. 3 Coordinate system and displacement 

 

The equations for membrane strains are as follows: 

 

                                        εx
m =

∂u

∂x
+

1

2
(
∂w

∂x
)
2

+ εx         
0                                                     (7) 

 

                                         εy
m =

∂v

∂y
−

w

R
+

1

2
(
∂w

∂y
)
2

+ εy
0                          (8) 

where εx
m and εy

m are membrane strains in longitudinal and circumferential directions, 

respectively. 

The shear strain is: 

                                    γxy =
∂u

∂y
+

∂v

∂x
+ (

∂w

∂x
) (

∂w

∂y
)                          (9) 

 

The maximum values for strains in longitudinal and circumferential directions are: 

 

                                    εx = εx
m ± εx

−b                                             (10) 

 

                                    εy =εy
m ± εy

−b                                               (11) 
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where positive and negative signs are used for the outer and inner side of the pipe. The 

equivalent strain is a function of longitudinal and circumferential strains.  

                                                               

 

                                   εeq =
2

√3
√(𝜀𝑥

2 + εx𝜀𝑦 + 𝜀𝑦
2)                     (12) 

 

 

Noronha et al. (2005) Assert that by assuming circumferential and longitudinal directions as 

main directions, radial and circumferential strains are negligible compared to other strains. The 

equivalent strain is presented by: 

                        

                       𝜀𝑒𝑞𝑣 =
1

1+ν 
√

1

2
[(𝜀𝐼 − 𝜀𝐼𝐼)2 + (𝜀𝐼𝐼 − 𝜀𝐼𝐼𝐼)2 + (𝜀𝐼𝐼𝐼 − 𝜀𝐼)2            (13) 

 

 

By using ν = 0.5, and ignoring the elastic strain as it is negligible compared to the plastic strain, 

the last equation can be rewritten as:  

 

                       𝜀𝑒𝑞𝑣 =
√2

3 
√[(𝜀𝐼 − 𝜀𝐼𝐼)2 + (𝜀𝐼𝐼 − 𝜀𝐼𝐼𝐼)2 + (𝜀𝐼𝐼𝐼 − 𝜀𝐼)2                 (14) 

 

 



16 

 

where 𝜀𝐼 represents the principal strain in the longitudinal direction. 

𝜀𝐼𝐼 is the principal strain in the circumferential direction. 

𝜀𝐼𝐼𝐼 indicates the principal strain in the radial direction. 

By assuming the radial strain as a combination of longitudinal and circumferential strains the 

following equation is obtained: 

 

                                                𝜀𝐼 + 𝜀𝐼𝐼 + 𝜀𝐼𝐼𝐼 = 0                        (15) 

 

 By inserting that in Eq. (14), it will precisely resemble Eq. (15).  

Woo et al. (2017) assured that a connection exists between the obtained results from ASME B31.8 

and finite element analysis (FEA) models. In this method, FEA results are based on run inline 

inspection (ILI) tools. 22 models were created in their research. Using the ASME B31.8 equations 

is computationally robust. On the other hand, FEA results provided lower strains compared to 

ASME B31.8, especially for sharper dents. Likewise, Okoloekwe et al. (2018) evaluated a 

comprehensive strain-based model for determining the severity of dents in the pipe while ignoring 

the initial imperfection of the pipe, the stress concentrator, discontinuities, and internal pressure 

cycles. The present study aims at improving the non-destructive model presented by Okoloekwe 

et al. In order to overcome this problem, a simple method was developed to enhance the previous 

method in the longitudinal direction and obtain results that are very close to those obtained through 

using finite element software (ABAQUS). 

2.3 Method 

2.3.1 Modeling of Dents 
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By finite element analysis, we can solve complicated problems by fragmenting them into smaller 

units. The literature has published several studies using FEA to validate full-scale denting tests, 

compare results with analytical models, and develop new methods of assessing dent severity (Woo, 

2019).  

The intended pipeline model in this study was created using the commercial finite element 

software ABAQUS (version 2019). Instead of analyzing the entire pipe, the lagrangian strain 

distribution along the thickness of the wall will be studied numerically and analytically.  

Fig. 4 and 5 illustrates a 2D and 3D model of the wall thickness generated along the longitudinal 

plane of the symmetry of a pipe. 

 

Fig. 4 2D model of wall thickness 

 

Fig. 5-a 3D model of wall thicknes 



18 

 

                                                   

  

                                                   Fig. 5-b 3D model of wall thickness 

Fig. 5 illustrates a 2D model of the wall thickness generated along the longitudinal plane of the 

symmetry of a pipe. The pipe had a length of 300 mm. The 300 mm length was utilized to ensure 

that the formed dent would be a localized deformity and no interaction would happen between the 

end boundary condition and the dent. 

Fig. 6 illustrates a 3D model of the wall thickness generated along the longitudinal plane of the 

symmetry of a pipe. We examined 159 different models (the work took more that 600 hours to 

complete) in 7 categories, in the first category the pipe had a length of 600, 900, 1200, 1500, 1800, 

2100, 2400, 2700, 3000, 3300, 3600 and 4000 mm with the OD of 762 mm. In addition, the wall 

thickness is 7.14 mm. The second category is the same as the first one. For the third category, the 

length of the pipe is 1250 mm with an OD of 762 mm and for each indentation depth, we have 

used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm. For the fourth 

category, the length of the pipe is 2500 mm with an OD of 762 mm and for each indentation depth, 

we have used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm. For the 
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fifth category, the length of the pipe is 2500 mm with an OD of 762 mm and for each indentation 

depth we have used these three-wall thicknesses for the pipeline, 6.8044, 7.14, and 7.4756 mm 

with the different indentation depth compared to the previous category. For the sixths category, 

the length of the pipe is 1100 mm with an OD of 323.8 mm and for each indentation depth, we 

have used these three-wall thicknesses for the pipeline, 6.052, 6.35, and 6.649 mm. For the sixths 

category, the length of the pipe is 1100 mm with an OD of 323.8 mm and for each indentation 

depth we have used these three-wall thicknesses for the pipeline, 6.052, 6.35, and 6.649 mm with 

the different indentation depth compared to the previous category. 

For the 2D model, a 2D analytical rigid shell was used to model the indenter. The indenter had a 

spherical shape and was 100 mm in diameter. Four bilinear nodes and plane stress elements with 

reduced integration and hourglass control were employed to mesh the studied model. The 

restrained translation was applied for both sides of the pipeline. In addition, a surface-to-surface 

(standard) interaction was considered for this model between the indenter and the pipe, and the 

degree of smoothing for the master surface was 0.2. Further, isotropic hardening plasticity was 

defined for the pipe material, a penalty was used for friction formulation instead of the Lagrange 

multiplier (standard). The pipe material was modeled as the elastic-plastic material with Young’s 

modulus of 200 GPa and a poisons ratio of 0.3, and the pipe was an X-52 with a yield stress of 345 

MPa. For steel materials, Poisson’s ratio was approximately assumed to be 0.3. 
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Fig. 6 3D model of indenter 

For the 3D model as, it is presented in Fig 6, the indenter shapes investigated were, a spherical 

indenter, the radius of the indenter in the longitudinal section, and the circumferential section for 

the first to the seventh category is 25mm and for the sixth and seventh category is 10mm. 15.24 is 

being conducted as a dent depth for the first and second categories of the 3D model. For the third 

category, three dent depths have been used which are 12.74, 15.24, and 17.74mm. A total of three 

dent depths were used for the fourth category, which were 5.12, 7.62, and 10.12mm. Three types 

of dent depth have been used in the fifth category, which are 27.98, 30.48, and 32.98mm. Dent 

depths of 2.35, 4.85, and 7.35mm were used for the sixth category. And finally, for the seventh 

category, three dent depths have been used which are 5.02, 7.52, and 10.02mm. 

In the following tables the specifications of these models are presented. 
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Table 2. Specification of the models for the first category 

 

Table 3. Specification of the models for the second category 
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Table 4. Specification of the models for the third category 
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Table 5. Specification of the models for the fourth category 
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Table 6. Specification of the models for the fifth category 
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Table 7. Specification of the models for the sixths category  
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Table 8. Specification of the models for the seventh category  

 
                                               

                                                   Fig. 7 internal pressure direction 

 

For the 2D model, the study was performed on unpressurized and pressurized pipes with restrained 

dents. For the pressurized condition, the internal pressure effect was applied as an upward 

distributed line load with an intensity rate of 8 MPa along the lower edge of the model (Fig. 7). 

Overall, 10 parameters were evaluated, including 10 different dent depths (i.e., 0.5, 1, 1.5, 2, 2.5, 

3, 3.5, 4, 4.5, and 5% OD) for 9 various levels along the thickness of the pipe (i.e., 0, 1, 2, 3, 4, 5, 

6, 7, and 8 mm). 
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In the 3D model for the first to the fifth model, the maximum operating pressure is 5.38 MPa, and 

operating pressure ILI is 2.01MPa and for the sixth and seventh categories are 11.25 and 4.22 MPa. 

 

Fig. 8 maximum operating pressure direction 

 

The assumption used in 2D analysis was plane stress and the element types in 2D and 3D 

analyses are presented in the following figures. 

 

 Fig. 9-a Element types in 2D direction 
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                                                    Fig. 9-b Element types in 3D direction 

Where ARSSE is Analytic rigid surface (extruded), CPS4R is 4-node bilinear, reduced integration 

with hourglass control, RNODE2D is Reference node (two-dimensional). Also, the elements in 

the 3D direction are C3D8 which is a general-purpose linear brick element, fully integrated (2x2x2 

integration points), C3D20 is a general-purpose quadratic brick element (3x3x3 integration points), 

C3D20R element is a general-purpose quadratic brick element, with reduced integration (2x2x2 

integration points) and S4 is a fully integrated, general-purpose, finite-membrane-strain shell 

element  

 

2.3.2 Dent Profile Interpolation 

The data points representing the dented pipe were extracted from numerical models. The profiles 

in Fig. 10 depict displacements along the longitudinal direction.  
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Fig. 10 displacement along the longitudinal direction 

 

2.3.3 Loading Step 

Pressurization, denting, and removal of the indenter were applied in a sequence designed to 

simulate an unconstrained dent that forms during operation. Different pressure values were 

considered for the experiment's pressurization phase to simulate the pressurized fluid moving in 

a pipeline at real-life operating pressures. 

FEA followed with an indentation step, which involved translating the indenter downwards to 

create different depths of indentation. As a final step, the indenter was shifted vertically upward 

so that it was no longer in contact with the pipe. The loading sequence is depicted in Figure 11. 
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                                                                         Fig. 11 Loading steps    

2.3.4 Displacement Discretization 

In order to construct a 3D model of the morphology of the pipeline, we should make use of a 

cylindrical coordinate system, which allows the determination of the deformed pipeline 

coordinates, as explained in (Okoloekwe, et al., 2019). 

 

 

Fig. 12 cylindrical coordinate System 

In a cylinder coordinate system, the global displacement field can be expressed by Equation (16): 

u = urer + uθeθ + uzez                          (16) 

with components in the radial, circumferential, and longitudinal local directions. 

The gradient of the displacement vector can be computed taking into consideration that the basis 

vectors er and eθ are dependent upon the angle and ez is not dependent upon the angle. 

Mathematically, the displacement gradient is represented by equation (17). 
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                              (17) 

A deformed pipeline's mid surface is defined by its radius R. 

There is a great deal of difficulty in deriving a theoretical solution for local deformations of a 

pipeline without simplifying assumptions associated with geometrical and material nonlinearities. 

In the original method, the the pipe wall's mid surface is assumed to be straight and uniform before 

deformation. To gain better strain results we will add mid-surface displacement to the results. The 

hypothetical radius of the mid surface of the deformed pipe is evaluated by: 

                                                  Rhyp(z) = ∫
   Rm(θ,z)∂θ

2π

π

−π

                          (18) 

 

where 𝑅𝑚 is the radius of the mid surface of the deformed pipeline and 𝜙 is the angular distortion of 

the deformed pipeline. 

 

Fig. 13 displacement along the circumferential direction 

Based on the assumption that displacements along the thickness of the pipe wall are linearly 

distributed, the longitudinal deformations associated with the indentation are 
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evaluated.  Therefore, longitudinal displacement is simulated with large displacements and 

rotations as a function of longitudinal slope, θz, of the pipe wall as shown in equation (19). 

The longitudinal displacement is given by:  

 

                                                      uz = tvSin(θz)                                         (19) 

 

Where uz is the longitudinal displacement and θz is the slope of the deformed pipe wall in the 

longitudinal direction 

The circumferential displacement is given by: 

 

                                                      uθ = RmSin(∅) − tvSin(∅ − θθ)            (20) 

 

Where uθ is the circumferential displacement,θθ is the slope of the deformed pipe wall in the 

circumferential direction and ∅ is the angular distortion of the deformed pipe. 

The radial displacement: 

 

                                                     ur = Rm(θ, z)Cos(∅) − Rhyp(z)              (21) 

 

Where ur is the radial displacement. 

In Okoloekwe’s original method, it was assumed that the horizontal displacement in the middle 

layer, as shown in the figure below, was zero, and that each of the nodes shifted vertically when 

the dent was created.  To find the horizontal displacement of the middle layer, first we found its 

primary location and then their secondary location, then we found the displacement of each part 

and by collecting the displacement of all parts, the displacement of the middle layer was obtained. 

As will be shown in the results, adding the displacement of the  mid surface of the pipe significantly 

improves the accuracy of prediction, therefore, Eq. (22) is modified as follows: 
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                                                               uz = tvSin(θz) +um                               (22) 

 

 
Fig. 14 displacement in the mid-line of the pipe in the longitudinal direction 

where um and tv indicate the displacement of the mid surface in the deformed pipe and the 

coordinate normal to the mid surface of the pipe, respectively. Additionally, t and tv are the 

thickness of the pipe and along with that (
−t

2
< t_v <

t

2
), respectively. 

The slopes along the circumference and the longitudinal axis across the circumference are 

calculated using Eqs. (23) and (24), respectively  

                                                 θθ = ArcTan (
∂Rm

Rm ∂θ
)                               (23) 

           

              θz = ArcTan (
∂ur

∂z
)                                   (24) 

 



34 

 

For strain measurement in the circumferential direction, it is assumed that the linear strain or the 

small strain is calculated by using Eq. (25):  

                                                 

                                                  εL =
1

2
(∇u + ∇uT)                                  (25) 

 

For large deformations and rotations that result from strain, the Lagrangian strain measure 

includes nonlinear terms. In Lagrangian strain analysis, the expression represents by 

 

                                                 εNL =
1

2
(∇u + ∇uT + ∇u∇uT)                  (26) 

 

Using the results obtained from the FEA, the equation ArcTan (
∂ur

∂z
) in Mathematica was used to 

calculate the θz in the original method and the displacement of the nodes in the horizontal direction 

was obtained. By obtaining U1, the amount of Lagrangian strain in different layers of pipes was 

computer. And their diagrams were drawn, an example of which will be displayed in the result 

section. 

 Also, Mathematica software was used for interpolating the graphs. Moreover, Gaussian Filter was 

applied to remove the noise effect (i.e., flatting and decreasing noisy points), especially at 4 and 5 

mm height of the pipe.  

2.4 Results: 

An example of a numerical model for the deformed pipes and the indenter is illustrated in figure 

15. 
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Fig. 15 Numerical Models 

2.4.1 Numerical Models 

Deformation Analysis: 

Fig. 15 to 23 show the graphs representing the longitudinal displacement (U1) in 9 different Levels 

(0 to 8 mm) of the pipe from inside to outside of the 2D model subjected to a 10mm dent. It is 

observed that without adding the mid surface displacement to the original expression there are 

considerable differences between the “true” displacement, which is calculated by the FEA model, 

and the original method. The horizontal axis in the graphs represents the longitudinal length of the 

pipe and the vertical axis represents the U1 in the longitudinal direction for the pipe. The graphs 

shows that the U1 displacement is concentrated between the apex of the dent and supports. As can 

be seen in Fig. 16-24 in the different layers of the pipe, after adding U1 displacement in the mid 

surface which is used in Eq.22, the prediction of the two methods (modified and FEA methods) 

became very close. 



36 

 

 

Fig. 16 U1 Displacement in the longitudinal direction in 0mm Height 

 

 

Fig. 17 U1 Displacement in the longitudinal direction in 1mm Height 
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Fig. 18 U1 Displacement in the longitudinal direction in 2mm Height 

 

 

Fig. 19 U1 Displacement in the longitudinal direction in 3mm Height 
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Fig. 20 U1 Displacement in the longitudinal direction in 4mm Height 

 

 
 

Fig. 21 U1 Displacement in the longitudinal direction in 5mm Height 
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 Fig. 22 U1 Displacement in the longitudinal direction in 6mm Height 

 

 
 

Fig. 23 U1 Displacement in the longitudinal direction in 7mm Height 
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Fig. 24 U1 Displacement in the longitudinal direction in 8mm Height 

2.4.2 Strain Analysis 

As mentioned in the previous sections, the159 different 3D models in 7 different categories are 

used to verify a new method to predict the Lagrangian strain in the longitudinal direction. To 

determine the efficiency of the new method we obtained the ratio of logarithmic strain (LE 33) in 

the longitudinal direction in the original and modified method to the results that came from FEA and 

used the average and standard deviation of the data in each category as the criteria for evaluating 

the new method. By understanding that a closer average to 1 and a smaller standard deviation to 0 

represent more accurate results, the greater the level of confidence in the results. The below graphs 

show an example of the results in nine different layers 
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Fig. 25 The average ratio of the LE33 in modified and original method to FEA method  

 

Fig. 26 The standard deviation ratio of the LE33 in modified and original method to FEA 

method  
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The logarithmic strain (LE11) in the longitudinal direction distributions for the 2D model are 

presented in Figs. 27 to 35. The horizontal axis in the graphs represents the longitudinal length of 

the pipe and the vertical axis represents the strain in the longitudinal direction for the pipe (the first 

50 mm and the last 50 mm of the pipe have been removed because the critical points are in the 

middle part). For the pressurized dented pipes, the maximum strain concentrations are in the center 

and toward the shoulders of the dent. Unlike the previous situation for the dented pipe without 

pressure, the maximum strain considerations are just in the center part of the pipe. 

 

   Fig. 27 Plots of the LE11 in the longitudinal direction in the 0 mm height of the pipe 

          

   Fig. 28 Plots of the LE11 in the longitudinal direction in the 1 mm height of the pipe   
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        Fig. 30 Plots of the LE11 in the longitudinal direction in the 3 mm height of the pipe 

    

         Fig. 31 Plots of the LE11 in the longitudinal direction in the 4 mm height of the pipe  

 

Fig. 29 Plots of the LE11 in the longitudinal direction in the 2 mm height of the pipe 
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Fig. 33 Plots of the LE11 in the longitudinal direction in the 6 mm height of the pipe  

            Fig. 34 Plots of the LE11 in the longitudinal direction in the 7 mm height of the pipe 
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Fig. 32 Plots of the LE11 in the longitudinal direction in the 5 mm height of the pipe 
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             Fig. 35 Plots of the LE11 in the longitudinal direction in the 7 mm height of the pipe 

 

2.5  Discussion 

According to the results from around 180 different two-dimensional and three-dimensional models 

the use of the modified method can produce comparably more accurate strains. According to 

Figures 27 to 35, the results obtained for strain in all layers appear to be much more accurate and 

closer to the FEA results than in previous studies. Moreover, it is worth noting that the prediction 

of the strain is a little bit more accurate than the previous results, which will improve reliability. 

According to Woo et al’s discussions about this issue in their research, they confirm that although 

Okoloekwe results are more accurate than ASME B31.8, they do not have enough correlation with 

the results obtained from FEA. There is a notable difference between layers, especially in the 

middle and upper ones. As a result of making changes to this method, we achieved significant 

results. In other words, the results obtained by this method are more consistent with those obtained 

by the FEA method. Moreover, the reliability of these results exceeds one, which infers that they 

are reliable. 
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The new developed method for measuring strain is much faster than FEA. which takes a long time 

to run. For example, to run a 3D model requires at least two and a half hours. Depending on the 

circumstances, this time may increase. It should be noted that this time is unacceptable in industrial 

activities where time is a very important element. However, this method has succeeded in 

calculating the strain results from the displacement of the nodes in a very short time, and as 

mentioned in the first part, the results are close to reality and have significant reliability.  As 

Okoloekwe et al. emphasized if the dent profile is not aligned with the most severe peak (off axis 

peaks), a three-dimensional analysis of dented pipelines will be necessary. It would be feasible to 

have these analyses carried out by smart inline inspection devices by using algorithms which are 

readily programmable, thus reporting a strain estimate instantly. This information can be used by 

operators to determine where they should focus their resources for dent management. 

2.6 Conclusion 

Through an analytical approach across all aspects of pipeline strain analysis, we are developing an 

effective strategy for allocating pipe dent repair resources. According to the present study, the 

modified method generated significantly better longitudinal strain distribution in the longitudinal 

direction than the conventional procedure. The new developed method provides a substantial 

improvement in in terms of accuracy without compromising the speed of the analytical method. 

According to these findings, a similar level of accuracy can be achieved by using this method to 

predict the maximum strains in dented regions as that achieved with FEA whose accuracy has been 

shown by other researchers. This convenient new method is feasible for system-wide 

implementation from both a time and resource standpoint which means operators would be able to 

assess a large number of dents with high reliability in a short period of time. 
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Chapter 3 - The improvement of A strain-based modeling approach for 

analyzing dented pipeline severity in the circumferential direction. 
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3.1 Introduction 

Pipelines are the primary means of transporting many petroleum products and natural gas in North 

America and throughout the world. Approximately 700,000 km of energy pipelines are in service 

in Canada alone (Yukon Government, 2011). This is why maintaining and repairing these pipelines 

is becoming more and more important every day. As revealed in the previous chapter of possible 

pipeline damage, the dent is one of the biggest dangers facing pipelines. As is mentioned, FEA is 

a reliable method for analyzing stresses and strains within a dented region, though it is inefficient 

for analyzing many dent models as each is computationally costly (Woo et al., 2019). 

In the previous chapter, after obtaining strain and displacement results from the FEA method, as 

well as Okoloekwe et al.’s strain base method (which will be called as original method), we 

concluded that changes should be made in this method in the longitudinal direction to obtain 

acceptable results. In this chapter, the main objective is to first examine whether or not the original 

method in the circumferential direction is acceptable based on criteria and standards, by using 

different 2D and 3D models in different conditions. In this way, it would be unnecessary to model 

each dent with FEA, though it would benefit from obtaining an accurate result from FEA. 

Comparing the results based on the original method with the results from the FEA method will 

then be done. 
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3.2 Method 

3.2.1 Modeling of Dents in the circumferential direction  

In this study, ABAQUS (version 2019) subroutine was used to create the 3D pipeline models. In 

Appendix A, you will find scripts for generating models and also in Appendix B you will find 

Mathematica code which is used for extracting results. Instead of analyzing the entire pipe, 

numerically and analytically we will investigate the lagrangian strain distribution along with its 

thickness. Fig. 36 and 37 show how the thickness of a pipe's wall is represented in a 2D and 3D 

model on the circumferential plane of the symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 36-a 2D model of wall thickness in the circumferential direction  
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                 Fig. 36-b 2D model of wall thickness in the circumferential direction 

 

An illustration of the wall thickness of a pipe, generated along the circumferential plane by a two-

dimensional modeling technique, is shown in Fig. 33. A 300-mm-long pipe had a 216-mm outer 

diameter (OD) and the ratio of the outer diameter to the thickness is 27. To ensure that the formed 

dent would be a localized deformity, the 300 mm length was chosen to ensure that there would be 

no interaction between the dent and the end boundary condition. 
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                      Fig. 37 3D model of wall thickness in the circumferential direction 

In Fig. 37, the wall thickness generated along a circumferential plane is visualized in a 3D model.  

In order to verify the main method, more than 40 two-dimensional models in different conditions 

and 159 three-dimensional models have been performed to evaluate the reliability of this method.  

Among the models presented in the following table, for example in the fourth category, these 

models have been studied in certain types along a certain length of pipe with different thicknesses 

and different types of steels at different indentation depths and at certain pressures to obtain very 

comprehensive and reliable results. Running the models for each of which took about three hours 

and a total of about 600 hours. 
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3.2.2 Displacement Discretization 

As outlined in the previous chapter, a cylindrical coordinate system was used for the analytical 

modelling of the dented pipe, which allows the determination of the deformed pipeline coordinates, 

as explained in (Okoloekwe, et al., 2019). 
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Fig. 38 cylindrical coordinate System 

In a cylinder coordinate system, the global displacement field can be expressed by Equation (27): 

      u = urer + uθeθ + uzez                          (27) 

The displacement gradient is represented by equation (28). 

     𝛻𝑢 =

[
 
 
 
 
∂ur

∂R

∂ur

R ∂θ
−
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∂ur
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ur

R
+

∂uθ

R∂θ

∂uθ

∂z
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∂R

∂U2

R∂θ

∂uz

∂z ]
 
 
 
 

                              (28) 

A deformed pipeline's mid surface is defined by its radius R. 

There is a great deal of difficulty in deriving a theoretical solution for local deformations of a 

pipeline without the simplifying assumptions associated with geometrical and material 

nonlinearities. 

In the original method, the pipe walls’ mid surface is assumed to be straight and uniform prior to 

deformation. To gain better strain results we will add mid-surface displacement to the results. The 

hypothetical radius of the mid surface of the deformed pipe is evaluated by: 
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                                                  Rhyp(z) = ∫
   Rm(θ,z)∂θ

2π

π

−π

                          (29) 

 

where 𝑅𝑚 is the radius of the mid surface of the deformed pipeline and 𝜙 is the angular distortion of 

the deformed pipeline. 

 

Fig. 39 displacement along the circumferential direction 

The circumferential displacement: 
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                                                    uθ = RmSin(∅) − tvSin(∅ − θθ)            (30) 

 

 

For strain measurement in the circumferential direction, it is assumed that the linear strain or the 

small strain is calculated by using Eq. (31):  

                                                 

                                                       εL =
1

2
(∇u + ∇uT)                                  (31) 

 

 

3.3 Results: 

The analysis for this direction can be produced by solving the expression 30 along its 

circumferential axis. In order to calculate Rm (the radius after deformation), we obtained the 

coordinates of each node and then calculated Rm by using the √𝑥2 + 𝑦2.  

3.3.1 Numerical Models 

An example of a numerical model for the deformed pipes and the indenter is illustrated in figure 

40. 
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Fig. 40 Numerical Models 

 

3.3.2 Strain Analysis 

It was already mentioned that 159 unique 3D models are used to test an original method for 

determining the logarithmic strain (LE11) in the circumferential direction and 40 different 2D 

models are also examined. We used the average and standard deviation of the data in each 

category as the criteria to correctly diagnose the efficiency of the original method and we 

calculated the ratio of LE11 in the original method to the FEA results. It is more reasonable to 

have higher levels of confidence in the results of the analysis if the average is closer to 1 and the 

standard deviation is close to 0. The graphs below show an example of these results. 
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Fig. 41 Ratio of the LE11 in the top of the pipe in the circumferential direction in 3D model 

 

Fig. 42 Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 3D model 
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Fig. 43 Ratio of the LE11 in the bottom of the pipe in the e circumferential direction in 2D 

model with pressure 

 

Fig. 44 Ratio of the LE11 in the top of the pipe in the circumferential direction in 2D model 

with pressure     
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Fig. 45 Ratio of the LE11 in the bottom of the pipe in the circumferential direction in 2D 

model without pressure     

 

Fig. 46 Ratio of the LE11 in the top of the pipe in the in the circumferential direction in 2D 

model with pressure     
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In the following graphs the average ratio and standard deviation ratio for different categories of 

the pipe is presented. 

 

Fig. 47 Average ratio of the LE11 in the bottom of the pipe in the circumferential                                                                                

direction in 3D model 

 

Fig. 48 Standard deviation of the LE11 in the bottom of the pipe in the circumferential                                                                                

direction in the3D model 
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Fig. 49 Average ratio of the LE11 in the circumferential direction in 2D model 

 

Fig. 50 Standard deviation of the LE11 in the circumferential direction in 2D model 
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3.4 Conclusion 

A brief summary of the conclusion of this chapter follows the detailed discussion in previous 

sections. As part of the process of verifying the method, two-dimensional and three-dimensional 

models were examined. It was found that the results in this section were very accurate in contrast 

with the longitudinal results discussed in Chapter 2. In other words, the current method is much 

faster than the FEA method, and the accuracy and reliability of the results are acceptable based on 

the FEA results. Graphs 40 through 43 show that in the original method and the FEA method, the 

average ratio is very close to one, which indicates the method's high accuracy. Where for the 3D 

models the ratio quantity was reported as 0.978 +/- 0.0837, 1.014 +/- 0.088, 0.975 +/- 0.0871, 

1.009 +/- 0.0847, 1.001 +/- 0.0851, 1.000 +/- 0.0848, 1.0026 +/- 0.0848 for the first to seventh 

categories in the bottom side of the pipeline and for all of them is 0.999 +/- 0.0849. And for the 

top side of the pipe in the 3D models are 0.946 +/- 0.0239, 0.947 +/- 0.0247, 0.958 +/- 0.0239, 

0.961 +/- 0.0245, 0.945 +/- 0.0252, 0.967 +/- 0.0246, 0.953 +/- 0.0273 and for all of them is 0.955 

+/- 0.0315. And also, for 2D models the ratio quantities are 0.975 +/- 0.020, 0.947 +/- 0.0268 for 

the bottom and top sides of the pipeline without pressure. As well as 0.960 +/- 0.022, 0.948 +/- 

0.0219 for the bottom and top side of the pipeline under pressure. 
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CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH 
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4.1 Summary and Conclusions 

Our main goal is to further develop a strain-based modeling approach for assessing the severity of 

dented pipelines. Many factors determine how vulnerable pipes are to dent-related risks. As has 

been stated many times since the first introduction, material and the length of the pipe are involved 

in this case. In addition, shape, size location, interaction with pipe features, and operation 

properties are the important factors for determining the severity of the dent. Having an accurate 

method to perform dents integrity assessments will increase the reliability of pipelines while 

ensuring that resources are utilized efficiently. Finite element analysis has been proposed for 

assessing dents, but this method requires a significant amount of computing time and can only be 

used in very limited contexts. Therefore, a useful method is that solves the time problem (with 

which the FEA has a problem) and can avoid spending too much time analyzing models while 

being accurate enough to be believable in the industry. Developing such a method was the purpose 

of this thesis. 

In the second chapter of this thesis, we focused on improving the results of a method that had 

previously been developed.  First, the results were examined in the longitudinal direction, for 

which different models in different conditions were considered.  By adding the displacement of 

the middle layer to the displacement of the other layers in the horizontal direction, the logarithmic 

strains reached considerable reliability because, in the previous method, the amount of these strains 

was less than the amount estimated by the FEA method. While in the developed method, all the 

maximum strains obtained are more than the results obtained in the FEA method. All of the results 

pass these conditions since the difference between them is up to 6%. 
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Using code in Mathematica, as outlined in the Appendix section, the displacements in the 

horizontal direction were first determined by using the vertical displacements and then compared 

graphically with the FEA results. Based on displacement, the logarithmic strain results were 

calculated in the longitudinal direction for both the original and modified method and compared 

to FEA results. 

Finally, in the third chapter, the original method was first verified by 159 different 3D models in 

7 categories and 40 2D models.  The results obtained and their comparison with the FEA results 

revealed that there was no need to modify the original method as opposed to the longitudinal 

direction results which required changes to the method. 

According to these results, both the modified method in the longitudinal direction and the original 

method in the circumferential direction can provide similar results to what is already known about 

FEA, which is already proven to be an accurate representation of reality by other researchers. 

These methods are useful because they allow users to achieve results in a shorter amount of time 

than using FEA alone and might be feasible for system-wide use from both a time and resources 

perspective. 

4.1.1 Accomplishments 

The following are the most important achievements of this research.   

1- Propose and accurate and realistic method by adding the horizontal displacement in the middle 

layer of the pipe to the horizontal displacement in other levels. 

2- Illustrating the function of and accuracy of the modified method and the original method in 

the longitudinal and circumferential direction by using multiple models in different conditions.  



67 

 

3- Achieving results with acceptable speed compared to FEA method. 

4.2 Future Research 

This study has proven that it is possible to assess dents in the longitudinal direction by using the 

modified method and the circumferential direction by using the original method. There are many 

different types of dent types and pipe properties found on pipeline systems, but the research did 

not examine all of them. 

Efficiencies and accuracy of the proposed methods may be further improved through future 

research. 

In the future, it would be better to focus on improving the accuracy of horizontal displacement 

predictions than to bring results closer to reality. The results of the FEA method were also used as 

a way to contribute to the horizontal displacement of other layers in the modified method for 

horizontal displacement in the middle layer, which had been viewed as zero in the original method. 

It is recommended that future research on horizontal displacement prediction in the middle layer 

be based on ILI data. This makes the modified method of predicting horizontal displacement in 

the middle layer complete. 
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APPENDIX A: Python Scripts for Model Generation and Results Extraction 

There are Python code examples in the appendix that can be run in Abaqus to automatically 

generate FEA model, extract profiles from FEA output files, and extract the maximum, LE11, and 

LE33 from FEA output files. 

The code for the first category: 

from abaqus import * 

from abaqusConstants import * 

import __main__ 

 

import regionToolset 

import section 

import regionToolset 

import displayGroupMdbToolset as dgm 

import part 

import material 

import assembly 

import step 

import interaction 

import load 

import mesh 

import optimization 

import job 

import sketch 

import visualization 
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import xyPlot 

import displayGroupOdbToolset as dgo 

import connectorBehavior 

import sketch 

import sys, math  

from numpy import *  

 

# File location of Input Variables text file  

file_path = 'D:/To Mahyar5/' 

input_file = open(file_path + 'Input_Variables.txt') 

 

for line in input_file: 

     

    # Read input variables from file - each row of the input file 

is a new model  

    extracted_line = line 

    extracted_list = extracted_line.split() 

    modelname = '' + str(extracted_list[0]) 

    line_number = str(extracted_list[1]) 

    segment = str(extracted_list[2]) 

    feature_ID = str(extracted_list[3]) 

    outer_radius = float(extracted_list[4]) 

    wall_thickness = float(extracted_list[5]) 

    length_of_pipe = float(extracted_list[6])/2 

    steel_grade = '' + str(extracted_list[7]) 

    length_of_partition = float(extracted_list[8]) 
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    radius_of_indenter_l = float(extracted_list[9]) 

    radius_of_indenter_c = float(extracted_list[10]) 

    indentation_depth = float(extracted_list[11]) 

    restrained_or_unrestrained = float(extracted_list[12]) 

    max_op_pressure = float(extracted_list[13]) 

    op_pressure_ILI = float(extracted_list[14]) 

    indentation_dist_1 = float(extracted_list[15]) 

    indentation_dist_2 = float(extracted_list[16]) 

    shellMesh_1 = float(extracted_list[17]) 

    shellMesh_2 = float(extracted_list[18]) 

    solid1Mesh_thick = int(extracted_list[19]) 

    solid1Mesh_esz = float(extracted_list[20]) 

    solid2Mesh_thick = int(extracted_list[21]) 

    solid2Mesh_esz1 = float(extracted_list[22]) 

    solid2Mesh_esz2 = float(extracted_list[23]) 

    solid3Mesh_thick = int(extracted_list[24]) 

    solid3Mesh_esz1 = float(extracted_list[25]) 

    solid3Mesh_esz2 = float(extracted_list[26]) 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # MODEL 
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    # Create the model 

    Model = mdb.Model(name=modelname) 

 

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # MATERIALS 

     

    # Create 1: X48 Mean material 

    X48Mean = Model.Material(name='X48-Mean') 

    X48Mean.Elastic(table=((210000,0.3), )) 

    X48Mean.Plastic(table=((250, 0), (300, 0.0002849), (325, 

0.0008025), (350, 0.0020044), (364, 0.0032307), (380, 0.0054378), 

(400, 0.010094), (420, 0.018156), (440, 0.0317562), (460, 

0.0541619), (480, 0.0902838), (500, 0.1473745), (520, 0.2359729), 

(540, 0.3711686), (560, 0.5742716))) 

     

    # Create 2: X48-2SD material  

    X48Minus2SD = Model.Material(name='X48-2SD') 

    X48Minus2SD.Elastic(table=((210000,0.3), )) 

    X48Minus2SD.Plastic(table=((250, 0), (300, 

0.000705970961777676), (325, 0.00198858019837109), (338.516, 

0.00329883738975704), (350, 0.00496687543845044), (360, 

0.00700047897053932), (370, 0.00976036237883449), (380, 

0.0134751561461588), (400, 0.0250132234118651), (420, 

0.0449911312849774), (440, 0.0786929187369147), (460, 

0.134214963714089), (480, 0.223726383436636), (500, 
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0.365198888944934), (520, 0.58474878843564), (540, 

0.919768321764559), (560, 1.42306437177443))) 

     

    # Create 3: X48+2SD material  

    X48Plus2SD = Model.Material(name='X48+2SD') 

    X48Plus2SD.Elastic(table=((210000,0.3), )) 

    X48Plus2SD.Plastic(table=((250, 0), (300, 

0.000121781127099019), (325, 0.000343033284647601), (350, 

0.000856794006841056), (370, 0.00168367821871355), (389.484, 

0.00312993030620379), (400, 0.00431482129492429), (420, 

0.00776104255555761), (440, 0.0135746551308026), (460, 

0.0231522972467571), (480, 0.0385931612089181), (500, 

0.0629973960954917), (520, 0.100870107102088), (540, 

0.158661515783046), (560, 0.245480894416341), (580, 

0.374030182526673))) 

     

    # Create 4: X52 (Modern) Mean material  

    X52ModernMean = Model.Material(name='X52-Modern-Mean') 

    X52ModernMean.Elastic(table=((210000,0.3), )) 

    X52ModernMean.Plastic(table=((250, 0), (300, 

0.000108749400313421), (350, 0.000765108984090265), (386, 

0.00250790249168916), (400, 0.00385309480590589), (425, 

0.00799018025619187), (450, 0.0158785213016368), (475, 

0.0303922268704767), (500, 0.0562560817910754), (525, 

0.101038773636097), (550, 0.176585060648352), (575, 

0.301043870179888), (600, 0.501693625474847))) 

     

    # Create 5: X52 (Modern)-2SD material  

    X52ModernMinus2SD = Model.Material(name='X52-Modern-2SD') 

    X52ModernMinus2SD.Elastic(table=((210000,0.3), )) 
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    X52ModernMinus2SD.Plastic(table=((250, 0), (300, 

0.000379379749836455), (350, 0.00266913522415045), (355.768, 

0.00325794158634255), (375, 0.00617017858484425), (400, 

0.0134417857877633), (425, 0.0278742924375295), (450, 

0.0553933117959858), (475, 0.10602537019849), (500, 

0.196253203927263), (525, 0.352480699253238), (550, 

0.616029108579458), (575, 1.05021221109713), (600, 

1.75019265925738))) 

     

    # Create 6: X52 (Modern)+2SD material  

    X52ModernPlus2SDMaterial = Model.Material(name='X52-

Modern+2SD') 

    X52ModernPlus2SDMaterial.Elastic(table=((210000,0.3), )) 

    X52ModernPlus2SDMaterial.Plastic(table=((300, 0), (350, 

0.000208969884082084), (375, 0.000528485497630174), (400, 

0.00119211396421991), (425, 0.00250926737883032), (430.232, 

0.00291227908278148), (450, 0.00502073480401995), (475, 

0.00964156680721831), (500, 0.0178760268475106), (525, 

0.0321338119930988), (550, 0.0561860224429583), (575, 

0.0958108616982069), (600, 0.159693156009829), (625, 

0.260658912802615), (650, 0.417346755971966))) 

     

    # Create 7: X52 (Vintage) Mean material  

    X52VintageMean = Model.Material(name='X52-Vintage-Mean') 

    X52VintageMean.Elastic(table=((210000,0.3), )) 

    X52VintageMean.Plastic(table=((300, 0), (325, 

0.000243343470806226), (350, 0.000808401541595963), (375, 

0.00204445005495397), (386.55, 0.00300842511484258), (400, 

0.00461170168451115), (425, 0.00970711940734048), (450, 

0.0194227497102881), (475, 0.0372984724789057), (500, 

0.069153542026477), (525, 0.1243098892775), (550, 

0.217356043233442), (575, 0.370645026859678), (600, 

0.617774154719637))) 
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    # Create 8: X52 (Vintage)-2SD material  

    X52VintageMinus2SD = Model.Material(name='X52-Vintage-2SD') 

    X52VintageMinus2SD.Elastic(table=((210000,0.3), )) 

    X52VintageMinus2SD.Plastic(table=((250, 0), (300, 

0.000592760847717716), (325, 0.00166968975773868), (343.29, 

0.00329040530421609), (350, 0.00417038299704368), (375, 

0.00964057857621192), (400, 0.0210020812703612), (425, 

0.0435521116293746), (450, 0.086549127812528), (475, 

0.165659048342813), (500, 0.306635279235096), (525, 

0.550732500043958))) 

     

    # Create 9: X52 (Vintage)+2SD material  

    X52VintagePlus2SD = Model.Material(name='X52-Vintage+2SD') 

    X52VintagePlus2SD.Elastic(table=((210000,0.3), )) 

    X52VintagePlus2SD.Plastic(table=((300, 0), (350, 

0.000211589268884013), (386, 0.000773409973880419), (400, 

0.00120705681215113), (425, 0.00254072041267275), (429.81, 

0.00291379978767979), (450, 0.00508366844873115), (475, 

0.00976242141587416), (500, 0.0181000983363231), (525, 

0.0325366012233866), (550, 0.0568903000660922), (575, 

0.0970118266893791), (600, 0.161694869451273), (625, 

0.263926206545354), (650, 0.422578092317531))) 

     

    # Create 10: X70 Mean material  

    X70Mean = Model.Material(name='X70-Mean') 

    X70Mean.Elastic(table=((210000,0.3), )) 

    X70Mean.Plastic(table=((400, 0), (450, 0.000256613102790624), 

(500, 0.00111823835026017), (531, 0.00238891341903746), (550, 

0.00368596371377681), (575, 0.00634181640181685), (600, 

0.010623523690843), (625, 0.017390748028355), (650, 

0.0278927421634957), (675, 0.0439181340326769), (700, 

0.0679928987112506), (750, 0.155710854525954), (800, 

0.337899549041618), (850, 0.699503176923773))) 
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    # Create 11: X70-2SD material  

    X70Minus2SD = Model.Material(name='X70-2SD') 

    X70Minus2SD.Elastic(table=((210000,0.3), )) 

    X70Minus2SD.Plastic(table=((350, 0), (400, 

0.00016864952235037), (425, 0.000394595341202337), (450, 

0.00082541498423713), (475, 0.00161807714428539), (493.84, 

0.0026058444457115), (500, 0.00303062468504242), (525, 

0.00547641946035201), (550, 0.00960235978363681), (575, 

0.0163996444834247), (600, 0.0273580773723157), (625, 

0.0446778446382285), (650, 0.0715562345329387), (675, 

0.112570990905168), (700, 0.174186994811403), (750, 

0.398688873865535), (800, 0.864975438358521), (850, 

1.79044951237618))) 

     

    # Create 12: X7+2SD material  

    X70Plus2SD = Model.Material(name='X70+2SD') 

    X70Plus2SD.Elastic(table=((210000,0.3), )) 

    X70Plus2SD.Plastic(table=((450, 0), (475, 

0.000127696364806613), (500, 0.000355255084223991), (525, 

0.000749267965892302), (550, 0.00141394909645165), (568.16, 

0.00215465085781429), (575, 0.00250897871999982), (600, 

0.00427436139425718), (625, 0.00706454292508614), (650, 

0.011394600362419), (675, 0.0180019995245585), (700, 

0.027928220440992), (750, 0.0640950457196469), (800, 

0.139212923480197), (850, 0.28830503476204))) 

     

    # Create 13: X46 Mean material 

    X46Mean = Model.Material(name='X46-Mean') 

    X46Mean.Elastic(table=((210000,0.3), )) 

    X46Mean.Plastic(table=((239, 0.0), (250, 0.00005), (278, 

0.00018), (300, 0.00047), (325, 0.00126), (350, 0.003095), (364, 
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0.004967), (380, 0.008337), (400, 0.015446), (420, 0.027755), 

(440, 0.04852), (460, 0.08273), (480, 0.13788), (500, 0.225044), 

(520, 0.3603156), (540, 0.566731), (560, .876826),(580, 1.33597))) 

     

    # Create 14: X46-2SD material 

    X46Minus2SD = Model.Material(name='X46-2SD') 

    X46Minus2SD.Elastic(table=((210000,0.3), )) 

    X46Minus2SD.Plastic(table=((230, 0),(250, 0.00012), (300, 

0.00119), (325, 0.00314),(338, 0.00504), (350, 0.00767), (360, 

0.01077), (370, 0.01497), (380, 0.02062), (400, 0.03818), (420, 

0.06859), (440, 0.11988), (460, 0.20438), (480, 0.34061), (500, 

0.55592), (520, 0.89006), (540, 1.4),(550, 1.74475))) 

     

    # Create 15: X46+2SD material 

    X46Plus2SD = Model.Material(name='X46+2SD') 

    X46Plus2SD.Elastic(table=((210000,0.3), )) 

    X46Plus2SD.Plastic(table=((250, 0.0), (300, 0.00019), (325, 

0.000529),(340, 0.000923), (364, 0.002119), (380, 0.0035638), 

(400, 0.006612), (420, 0.01189), (440, 0.020795), (460, 0.035464), 

(480, 0.0591135), (500, 0.0965), (520, 0.1545), (540, 0.24301), 

(560, 0.37599), (580, .57287),(600, .8604853),(610, 1.04927),(625, 

1.4044))) 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # SECTIONS 
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    Model.HomogeneousSolidSection(name='Solid Section', 

material=steel_grade, thickness=None) 

    Model.HomogeneousShellSection(name='Shell Section', 

preIntegrate=OFF, material=steel_grade, thicknessType=UNIFORM, 

thickness=wall_thickness, thicknessField='', 

nodalThicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT, thicknessModulus=None, 

temperature=GRADIENT, useDensity=OFF, integrationRule=SIMPSON, 

numIntPts=9) 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

 

    # PARTS 

     

    # Basic Calculations 

    ang_rad = length_of_partition/outer_radius 

    ang_deg = ang_rad*(math.pi/180) 

    r1 = outer_radius 

    r2 = outer_radius-wall_thickness 

     

    # Create Pipe Shell Part 

    pipeShellSketch = Model.ConstrainedSketch(name='Pipe Shell 

Sketch',sheetSize=outer_radius*2) 

    pipeShellSketchg = pipeShellSketch.geometry 

    midRadius = outer_radius-(0.5*wall_thickness) 
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    createSShellCircle = 

pipeShellSketch.CircleByCenterPerimeter(center=(0.0,0.0), 

point1=(0.0,midRadius)) 

    pipeShellSketch.ConstructionLine(point1=(0.0,0.0), 

angle=90.0) 

    trimShellCurve1 = pipeShellSketchg.findAt((midRadius,0),) 

    pipeShellSketch.autoTrimCurve(curve1=trimShellCurve1, 

point1=(outer_radius,0)) 

    pipeShellPart = Model.Part(name='Pipe Shell Part', 

dimensionality=THREE_D,type=DEFORMABLE_BODY) 

    pipeShellPart.BaseShellExtrude(sketch=pipeShellSketch, 

depth=length_of_pipe) 

     

    

pipeShellPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, 

offset=length_of_partition) 

    

pipeShellPart.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, 

offset=midRadius*math.cos(ang_rad)) 

     

    f = pipeShellPart.faces 

    pickedFaces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

    d1 = pipeShellPart.datums 

    pipeShellPart.PartitionFaceByDatumPlane(datumPlane=d1[2], 

faces=pickedFaces) 

    f = pipeShellPart.faces 

    pickedFaces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

    d2 = pipeShellPart.datums 

    pipeShellPart.PartitionFaceByDatumPlane(datumPlane=d2[3], 

faces=pickedFaces) 
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    f = pipeShellPart.faces 

    pipeShellPart.RemoveFaces(faceList = f[1:2], 

deleteCells=False) 

    e1 = pipeShellPart.edges 

    pipeShellPart.RemoveRedundantEntities(edgeList = e1[3:4]) 

    v1 = pipeShellPart.vertices 

    pipeShellPart.RemoveRedundantEntities(vertexList = v1[4:5]) 

    # pipeShellPart.checkGeometry() 

    session.viewports['Viewport: 

1'].partDisplay.geometryOptions.setValues(datumPlanes=OFF) 

     

    # Set-up pipe sketch  

    pipeSolidSketch = Model.ConstrainedSketch(name='Pipe Solid 

Sketch',sheetSize=outer_radius*2) 

    pipeSolidSketchg = pipeSolidSketch.geometry 

     

    # Sketch the pipe section using circle tool 

    createSolidCircle1 = 

pipeSolidSketch.CircleByCenterPerimeter(center=(0.0,0.0), 

point1=(0.0,outer_radius)) 

    createSolidCircle2 = 

pipeSolidSketch.CircleByCenterPerimeter(center=(0.0,0.0), 

point1=(0.0,outer_radius-wall_thickness)) 

     

     

    # Createconstruction lines 

    pipeSolidSketch.ConstructionLine(point1=(0.0,0.0), 

angle=90.0) 
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    pipeSolidSketch.ConstructionLine(point1=(0.0,0.0), point2=(-

r1*math.sin(ang_rad), r1*math.cos(ang_rad))) 

     

    # Auto-trim the circle so semi-circle (left-hand side) remains 

    trimSolidCurve1 = pipeSolidSketchg.findAt((r1, 0.0),) 

    trimSolidCurve2 = pipeSolidSketchg.findAt((r2, 0.0),) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve1, 

point1=(r1, 0.0)) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve2, 

point1=(r2, 0.0)) 

     

    trimSolidCurve3 = 

pipeSolidSketchg.findAt((r1*math.sin(0.018), -

r1*math.cos(0.018)),) 

    trimSolidCurve4 = 

pipeSolidSketchg.findAt((r2*math.sin(0.018), -

r2*math.cos(0.018)),) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve3, 

point1=(r1*math.sin(0.018), -r1*math.cos(0.018))) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve4, 

point1=(r2*math.sin(0.018), -r2*math.cos(0.018))) 

     

    trimSolidCurve5 = pipeSolidSketchg.findAt((-

r1*math.sin(ang_rad+0.15), r1*math.cos(ang_rad+0.15)),) 

    trimSolidCurve6 = pipeSolidSketchg.findAt((-

r2*math.sin(ang_rad+0.15), r2*math.cos(ang_rad+0.15)),) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve5, 

point1=(-r1*math.sin(ang_rad+0.15), r1*math.cos(ang_rad+0.15))) 

    pipeSolidSketch.autoTrimCurve(curve1=trimSolidCurve6, 

point1=(-r2*math.sin(ang_rad+0.15), r2*math.cos(ang_rad+0.15))) 
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    # Add connecting lines to close the sketch 

    pipeSolidSketch.Line(point1 =(0.0, r1), point2=(0.0, r2)) 

    pipeSolidSketch.Line(point1 =(-r1*math.sin(ang_rad), 

r1*math.cos(ang_rad)), point2=(-r2*math.sin(ang_rad), 

r2*math.cos(ang_rad))) 

    # pipeSolidSketch.Line(point1 =(-

(outer_radius*math.sin(ang_rad)), 

outer_radius*math.cos(ang_rad)), point2=(-((outer_radius-

wall_thickness)*math.sin(ang_rad)), (outer_radius-

wall_thickness)*math.cos(ang_rad))) 

     

    # Create a 3D deformable part named "Pipe" by extruding the 

sketch 

    SolidPart = Model.Part(name='Solid Part', 

dimensionality=THREE_D,type=DEFORMABLE_BODY) 

    SolidPart.BaseSolidExtrude(sketch=pipeSolidSketch, 

depth=length_of_partition) 

     

    # Cone 1 Generation 

    cone_ang_1 = math.atan(indentation_dist_1/outer_radius) 

    firstConeSketch = Model.ConstrainedSketch(name='First Cone 

Sketch',sheetSize=(outer_radius+20)*2) 

    firstConeSketchg = firstConeSketch.geometry 

     

    firstConeSketch.setPrimaryObject(option=STANDALONE) 

    firstConeSketch.ConstructionLine(point1=(0.0, -

(outer_radius+20)), point2=(0.0, (outer_radius+20))) 

    firstConeSketch.FixedConstraint(entity=firstConeSketchg[2]) 
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    firstConeSketch.Line(point1=(0.0, 0.0), point2=(0.0, 

(outer_radius+20))) 

    firstConeSketch.Line(point1=(0.0, (outer_radius+20)), 

point2=((outer_radius+20)*math.tan(cone_ang_1), 

(outer_radius+20))) 

    

firstConeSketch.Line(point1=((outer_radius+20)*math.tan(cone_ang

_1), (outer_radius+20)), point2=(0.0, 0.0)) 

     

    FirstConePart = Model.Part(name='First Cone', 

dimensionality=THREE_D, type=DEFORMABLE_BODY) 

    FirstConePart.BaseSolidRevolve(sketch=firstConeSketch, 

angle=360.0, flipRevolveDirection=OFF) 

    f1 = FirstConePart.faces 

    FirstConePart.RemoveFaces(faceList = f1[0:1], 

deleteCells=False) 

     

    # Cone 2 Generation 

    cone_ang_2 = math.atan(indentation_dist_2/outer_radius) 

    secondConeSketch = Model.ConstrainedSketch(name='Second Cone 

Sketch',sheetSize=(outer_radius+20)*2) 

    secondConeSketchg = secondConeSketch.geometry 

     

    secondConeSketch.setPrimaryObject(option=STANDALONE) 

    secondConeSketch.ConstructionLine(point1=(0.0, -

(outer_radius+20)), point2=(0.0, (outer_radius+20))) 

    

secondConeSketch.FixedConstraint(entity=secondConeSketchg[2]) 
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    secondConeSketch.Line(point1=(0.0, 0.0), point2=(0.0, 

(outer_radius+20))) 

    secondConeSketch.Line(point1=(0.0, (outer_radius+20)), 

point2=((outer_radius+20)*math.tan(cone_ang_2), 

(outer_radius+20))) 

    

secondConeSketch.Line(point1=((outer_radius+20)*math.tan(cone_an

g_2), (outer_radius+20)), point2=(0.0, 0.0)) 

     

    secondConePart = Model.Part(name='Second Cone', 

dimensionality=THREE_D, type=DEFORMABLE_BODY) 

    secondConePart.BaseSolidRevolve(sketch=secondConeSketch, 

angle=360.0, flipRevolveDirection=OFF) 

    f2 = secondConePart.faces 

    secondConePart.RemoveFaces(faceList = f2[0:1], 

deleteCells=False) 

     

     

    rootAssembly1 = Model.rootAssembly 

    rootAssembly1.Instance(name='First Cone-1', 

part=FirstConePart, dependent=ON) 

    rootAssembly1.Instance(name='Second Cone-1', 

part=secondConePart, dependent=ON) 

    rootAssembly1.Instance(name='Solid Part-1', part=SolidPart, 

dependent=ON) 

    rootAssembly1.InstanceFromBooleanMerge(name='Pipe Solid 

Part', instances=(rootAssembly1.instances['Solid Part-1'], 

rootAssembly1.instances['First Cone-1'], 

rootAssembly1.instances['Second Cone-1'], ), 

keepIntersections=ON, originalInstances=DELETE, domain=GEOMETRY) 
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    pipeSolidPart = Model.parts['Pipe Solid Part'] 

    f3 = pipeSolidPart.faces 

    pipeSolidPart.RemoveFaces(faceList = f3[0:1]+f3[6:7], 

deleteCells=False) 

    del rootAssembly1.features['Pipe Solid Part-1'] 

     

    pipeSolidPart_1 = Model.Part(name='Pipe Solid Part-1', 

objectToCopy=Model.parts['Pipe Solid Part']) 

    pipeSolidPart_2 = Model.Part(name='Pipe Solid Part-2', 

objectToCopy=Model.parts['Pipe Solid Part']) 

    pipeSolidPart_3 = Model.Part(name='Pipe Solid Part-3', 

objectToCopy=Model.parts['Pipe Solid Part']) 

     

    del Model.parts['Solid Part'] 

    del Model.parts['Pipe Solid Part'] 

    del Model.parts['First Cone'] 

    del Model.parts['Second Cone'] 

     

    f1 = pipeSolidPart_1.faces 

    pipeSolidPart_1.RemoveFaces(faceList = 

f1[0:1]+f1[1:5]+f1[7:9]+f1[11:13]+f1[14:16], deleteCells=False) 

    f1 = pipeSolidPart_2.faces 

    pipeSolidPart_2.RemoveFaces(faceList = 

f1[1:2]+f1[3:4]+f1[6:12]+f1[13:15], deleteCells=False) 

    f1 = pipeSolidPart_3.faces 

    pipeSolidPart_3.RemoveFaces(faceList = 

f1[2:3]+f1[4:7]+f1[9:11]+f1[12:14]+f1[15:16], deleteCells=False) 
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    # Assign sections to shell part 

    f = pipeShellPart.faces 

    faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region = pipeShellPart.Set(faces=faces, name='Set-1') 

    pipeShellPart.SectionAssignment(region=region, 

sectionName='Shell Section', offset=0.0, 

offsetType=MIDDLE_SURFACE, offsetField='', 

thicknessAssignment=FROM_SECTION) 

     

    # Assign sections to solid parts 

    c = pipeSolidPart_1.cells 

    cells = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region = pipeSolidPart_1.Set(cells=cells, name='Set-1') 

    pipeSolidPart_1.SectionAssignment(region=region, 

sectionName='Solid Section', offset=0.0, 

offsetType=MIDDLE_SURFACE, offsetField='', 

thicknessAssignment=FROM_SECTION) 

     

    c = pipeSolidPart_2.cells 

    cells = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region = pipeSolidPart_2.Set(cells=cells, name='Set-1') 

    pipeSolidPart_2.SectionAssignment(region=region, 

sectionName='Solid Section', offset=0.0, 

offsetType=MIDDLE_SURFACE, offsetField='', 

thicknessAssignment=FROM_SECTION) 

     

    c = pipeSolidPart_3.cells 

    cells = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region = pipeSolidPart_3.Set(cells=cells, name='Set-1') 
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    pipeSolidPart_3.SectionAssignment(region=region, 

sectionName='Solid Section', offset=0.0, 

offsetType=MIDDLE_SURFACE, offsetField='', 

thicknessAssignment=FROM_SECTION) 

         

     

    # Ring Indenter 

    # Re-define input variables ("longitudinal" radius variable 

must always be larger than "circumferential" radius variable for 

geometry to work) 

     

    if radius_of_indenter_l < radius_of_indenter_c: 

        radius_of_indenter_l = float(extracted_list[10]) 

        radius_of_indenter_c = float(extracted_list[9]) 

     

    else: 

        radius_of_indenter_l = float(extracted_list[9]) 

        radius_of_indenter_c = float(extracted_list[10]) 

     

    # Set-up the indenter sketch 

    indenterSketch = Model.ConstrainedSketch(name='Indenter 

Sketch-1', sheetSize = radius_of_indenter_l*2) 

    indenterSketchg = indenterSketch.geometry 

     

    # Define geometry of indenter  

    indenterSketch.ConstructionLine(point1=(0.0, -

radius_of_indenter_l), point2=(0.0, radius_of_indenter_l)) 
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indenterSketch.FixedConstraint(entity=indenterSketchg.findAt((0,

radius_of_indenter_l),)) 

     

    # Sketch circle based on radius of indenter in longitudinal 

and circumferential direction 

    

indenterSketch.CircleByCenterPerimeter(center=(radius_of_indente

r_l - radius_of_indenter_c,0.0), point1=(radius_of_indenter_l - 

radius_of_indenter_c,radius_of_indenter_c)) 

     

    # Set up center point of circle  

    centerX = radius_of_indenter_l - radius_of_indenter_c 

     

    # Use if statement because different curves will have to be 

trimmed based on size of indenter 

     

    if centerX >= radius_of_indenter_c: 

     

        # If the difference between the two radii is greater than 

the radius of the shorter side  

        # Use construction line and auto-trim so only the right 

side of the circle and less than half remains  

        indenterSketch.ConstructionLine(point1=(centerX + 5,0.0), 

angle=90.0) 

     

        # Trim excess parts of circle  

        trimLeft = indenterSketchg.findAt((centerX-

radius_of_indenter_c,0),) 



90 

 

        indenterSketch.autoTrimCurve(curve1=trimLeft, 

point1=(centerX-radius_of_indenter_c, 0)) 

     

        trimTop = 

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),) 

        indenterSketch.autoTrimCurve(curve1=trimTop, 

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001))) 

         

    elif centerX == 0: 

     

        # If longitudinal radius = circumferential radius:  

        

indenterSketch.ConstructionLine(point1=(radius_of_indenter_l/2,0

.0), angle=90.0) 

         

        # Trim excess parts of circle  

        trimLeft = indenterSketchg.findAt((-

radius_of_indenter_l,0),) 

        indenterSketch.autoTrimCurve(curve1=trimLeft, point1=(-

radius_of_indenter_l, 0)) 

     

        trimTop = 

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),) 

        indenterSketch.autoTrimCurve(curve1=trimTop, 

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001))) 
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        trimBottom = 

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),-radius_of_indenter_c*math.cos(0.00001)),) 

        indenterSketch.autoTrimCurve(curve1=trimBottom, 

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),-

radius_of_indenter_c*math.cos(0.00001))) 

         

    else: 

         

        # If the difference between the two radii is less than the 

radius of the shorter side  

        # Create construction line 5 mm to the right of centerX 

        indenterSketch.ConstructionLine(point1=(centerX + 5,0.0), 

angle=90.0) 

         

        trimLeft = indenterSketchg.findAt((centerX-

radius_of_indenter_c,0),) 

        indenterSketch.autoTrimCurve(curve1=trimLeft, 

point1=(centerX-radius_of_indenter_c, 0)) 

         

        trimTop = 

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(-

0.00001),radius_of_indenter_c*math.cos(-0.00001)),) 

        indenterSketch.autoTrimCurve(curve1=trimTop, 

point1=(centerX+radius_of_indenter_c*math.sin(-

0.00001),radius_of_indenter_c*math.cos(-0.00001))) 

         

        trimTop2 = 

indenterSketchg.findAt((centerX+radius_of_indenter_c*math.sin(0.

00001),radius_of_indenter_c*math.cos(0.00001)),) 
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        indenterSketch.autoTrimCurve(curve1=trimTop2, 

point1=(centerX+radius_of_indenter_c*math.sin(0.00001),radius_of

_indenter_c*math.cos(0.00001))) 

         

        trimBottom = indenterSketchg.findAt((centerX,-

radius_of_indenter_c),) 

        indenterSketch.autoTrimCurve(curve1=trimBottom, 

point1=(centerX,-radius_of_indenter_c)) 

         

    # Create a 3D analytical rigid part named "Indenter" by 

revolving the sketch 

     

    indenterPart=Model.Part(name='Indenter', 

dimensionality=THREE_D, type=ANALYTIC_RIGID_SURFACE) 

    indenterPart.AnalyticRigidSurfRevolve(sketch=indenterSketch) 

     

    # Insert reference point on ring indenter 

    RP1 = indenterPart.ReferencePoint(point=(-

radius_of_indenter_l,0,0)) 

    RP1ID = RP1.id 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # MESHING 
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    meshDim_1 = 

int(round(0.5*math.pi*indentation_dist_1/solid1Mesh_esz)) 

    # Meshing Pipe Solid Part 1 

    e = pipeSolidPart_1.edges 

    pickedEdges = e.getSequenceFromMask(mask=('[#5 ]', ), ) 

    pipeSolidPart_1.seedEdgeByNumber(edges=pickedEdges, 

number=meshDim_1, constraint=FIXED) 

    pickedEdges = e.getSequenceFromMask(mask=('[#1d0 ]', ), ) 

    pipeSolidPart_1.seedEdgeBySize(edges=pickedEdges, 

size=solid1Mesh_esz, deviationFactor=0.05, constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#2a ]', ), ) 

    pipeSolidPart_1.seedEdgeByNumber(edges=pickedEdges, 

number=solid1Mesh_thick, constraint=FINER) 

    c = pipeSolidPart_1.cells 

    pickedRegions = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    elemType1 = mesh.ElemType(elemCode=C3D20, 

elemLibrary=STANDARD) 

    pipeSolidPart_1.setMeshControls(regions=pickedRegions, 

technique=STRUCTURED) 

    pickedRegions1 =(pickedRegions, ) 

    pipeSolidPart_1.setElementType(regions=pickedRegions1, 

elemTypes=(elemType1, )) 

    pipeSolidPart_1.generateMesh() 

     

    # Pipe Solid Part 2 

    e = pipeSolidPart_2.edges 

    pickedEdges = e.getSequenceFromMask(mask=('[#300 ]', ), ) 
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    pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges, 

number=meshDim_1, constraint=FIXED) 

    pickedEdges = e.getSequenceFromMask(mask=('[#5 ]', ), ) 

    pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges, 

number=meshDim_1, constraint=FIXED) 

    pickedEdges = e.getSequenceFromMask(mask=('[#8d0 ]', ), ) 

    pipeSolidPart_2.seedEdgeByBias(biasMethod=SINGLE, 

end1Edges=pickedEdges, minSize=solid2Mesh_esz1, 

maxSize=solid2Mesh_esz2, constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#42a ]', ), ) 

    pipeSolidPart_2.seedEdgeByNumber(edges=pickedEdges, 

number=solid2Mesh_thick, constraint=FINER) 

    c = pipeSolidPart_2.cells 

    pickedRegions = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    elemType1 = mesh.ElemType(elemCode=C3D20R, 

elemLibrary=STANDARD) 

    pipeSolidPart_2.setMeshControls(regions=pickedRegions, 

technique=STRUCTURED) 

    pickedRegions1 =(pickedRegions, ) 

    pipeSolidPart_2.setElementType(regions=pickedRegions1, 

elemTypes=(elemType1, )) 

    pipeSolidPart_2.generateMesh() 

     

    # Pipe Solid Part 3 

    eleDim_1 = (0.5*math.pi*indentation_dist_2)/meshDim_1 

    e = pipeSolidPart_3.edges 

    pickedEdges = e.getSequenceFromMask(mask=('[#5 ]', ), ) 

    pipeSolidPart_3.seedEdgeByNumber(edges=pickedEdges, 

number=meshDim_1, constraint=FIXED) 
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    # pipeSolidPart_3.seedEdgeBySize(edges=pickedEdges, 

size=solid3Mesh_esz1, deviationFactor=0.02, constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#1860 ]', ), ) 

    pipeSolidPart_3.seedEdgeBySize(edges=pickedEdges, 

size=eleDim_1, deviationFactor=0.02, constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#590 ]', ), ) 

    pipeSolidPart_3.seedEdgeByBias(biasMethod=SINGLE, 

end1Edges=pickedEdges, minSize=eleDim_1, maxSize=eleDim_1, 

constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#620a ]', ), ) 

    pipeSolidPart_3.seedEdgeByNumber(edges=pickedEdges, 

number=solid3Mesh_thick, constraint=FINER) 

    c = pipeSolidPart_3.cells 

    pickedRegions = c.getSequenceFromMask(mask=('[#1 ]', ), ) 

    elemType1 = mesh.ElemType(elemCode=C3D8, 

elemLibrary=STANDARD) 

    pipeSolidPart_3.setMeshControls(regions=pickedRegions, 

technique=SWEEP) 

    pickedRegions1 =(pickedRegions, ) 

    pipeSolidPart_3.setElementType(regions=pickedRegions1, 

elemTypes=(elemType1, )) 

    pipeSolidPart_3.generateMesh() 

     

    # Pipe Shell Part 

    e = pipeShellPart.edges 

    pickedEdges = e.getSequenceFromMask(mask=('[#3 ]', ), ) 

    pipeShellPart.seedEdgeBySize(edges=pickedEdges, 

size=shellMesh_1, deviationFactor=0.1, constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#24 ]', ), ) 
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    pipeShellPart.seedEdgeByBias(biasMethod=SINGLE, 

end1Edges=pickedEdges, minSize=shellMesh_1, maxSize=shellMesh_2, 

constraint=FINER) 

    pickedEdges = e.getSequenceFromMask(mask=('[#18 ]', ), ) 

    pipeShellPart.seedEdgeBySize(edges=pickedEdges, 

size=shellMesh_2, deviationFactor=0.1, constraint=FINER) 

    elemType1 = mesh.ElemType(elemCode=S4, elemLibrary=STANDARD, 

secondOrderAccuracy=OFF) 

    f = pipeShellPart.faces 

    faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

    pickedRegions =(faces, ) 

    pipeShellPart.setElementType(regions=pickedRegions, 

elemTypes=(elemType1, )) 

    pipeShellPart.setMeshControls(regions=faces, elemShape=QUAD) 

    pipeShellPart.generateMesh() 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # ASSEMBLY 

         

    pipeAssembly = Model.rootAssembly 

    pipeAssembly.Instance(name='Pipe Shell Part', 

part=pipeShellPart, dependent=ON) 

    pipeAssembly.Instance(name='Pipe Solid Part 1', 

part=pipeSolidPart_1, dependent=ON) 
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    pipeAssembly.Instance(name='Pipe Solid Part 2', 

part=pipeSolidPart_2, dependent=ON) 

    pipeAssembly.Instance(name='Pipe Solid Part 3', 

part=pipeSolidPart_3, dependent=ON) 

     

    # Set up assembly - position indenter in relation to pipe  

    pipeAssembly.Instance(name='Pipe Indenter', 

part=indenterPart, dependent=ON) 

    pipeAssembly.rotate(instanceList=('Pipe Indenter', ), 

axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 0.0, 1.0), angle=-

90.0) 

 

    # If circumferential radius is larger than longituindal 

radius, the indenter will have to rotated 90 degrees around the y-

axis 

    radius_of_indenter_l = float(extracted_list[9]) 

    radius_of_indenter_c = float(extracted_list[10]) 

    if radius_of_indenter_c >= radius_of_indenter_l: 

        pipeAssembly.rotate(instanceList=('Pipe Indenter', ), 

axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), 

angle=90.0) 

        pipeAssembly.translate(instanceList=('Pipe Indenter', ), 

vector=(0.0, radius_of_indenter_c + outer_radius+2, 0)) 

     

    else: 

        # Translate the first indenter to its correct relative 

position along the pipe segment  

        pipeAssembly.translate(instanceList=('Pipe Indenter', ), 

vector=(0.0, radius_of_indenter_l + outer_radius+2,0)) 
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    # session.viewports['Viewport: 

1'].assemblyDisplay.geometryOptions.setValues(datumAxes=OFF, 

datumPlanes=OFF) 

    # session.viewports['Viewport: 

1'].view.setValues(nearPlane=1546.33, farPlane=2960.54, 

width=1853.66, height=884.252, viewOffsetX=154.7, 

viewOffsetY=14.2564) 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # COUPLING 

     

    # Connecting the Shell and the Solid parts 

    s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#40 ]', ), ) 

    region1=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='s_Surf-1') 

    s1 = pipeAssembly.instances['Pipe Shell Part'].edges 

    side1Edges1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region2 = pipeAssembly.Surface(side1Edges=side1Edges1, 

name='m_Surf-1') 

    Model.ShellSolidCoupling(name='Shell-Solid Constraint-1', 

shellEdge=region2, solidFace=region1, 

positionToleranceMethod=COMPUTED) 

     

    s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces 
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    side1Faces1 = s1.getSequenceFromMask(mask=('[#20 ]', ), ) 

    region1=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='s_Surf-2') 

    s1 = pipeAssembly.instances['Pipe Shell Part'].edges 

    side1Edges1 = s1.getSequenceFromMask(mask=('[#2 ]', ), ) 

    region2 = pipeAssembly.Surface(side1Edges=side1Edges1, 

name='m_Surf-2') 

    Model.ShellSolidCoupling(name='Shell-Solid Constraint-2', 

shellEdge=region2, solidFace=region1, 

positionToleranceMethod=COMPUTED) 

     

    # Connecting Solid parts together 

    s1 = pipeAssembly.instances['Pipe Solid Part 1'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region1=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='m_Surf-3') 

    s1 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#8 ]', ), ) 

    region2=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='s_Surf-3') 

    Model.Tie(name='Solid-Solid Constraint-1', master=region1, 

slave=region2, positionToleranceMethod=COMPUTED, adjust=ON, 

tieRotations=ON, thickness=ON) 

     

    s1 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region1=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='m_Surf-4') 

    s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces 
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    side1Faces1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 

    region2=pipeAssembly.Surface(side1Faces=side1Faces1, 

name='s_Surf-4') 

    Model.Tie(name='Solid-Solid Constraint-2', master=region1, 

slave=region2, positionToleranceMethod=COMPUTED, adjust=ON, 

tieRotations=ON, thickness=ON)     

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # BOUNDARY CONDITIONS 

     

    # Set up X-Symmetry boundary condition 

     

    e1 = pipeAssembly.instances['Pipe Shell Part'].edges 

    edges1 = e1.getSequenceFromMask(mask=('[#28 ]', ), ) 

    f2 = pipeAssembly.instances['Pipe Solid Part 3'].faces 

    faces2 = f2.getSequenceFromMask(mask=('[#10 ]', ), ) 

    f3 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    faces3 = f3.getSequenceFromMask(mask=('[#2 ]', ), ) 

    f4 = pipeAssembly.instances['Pipe Solid Part 1'].faces 

    faces4 = f4.getSequenceFromMask(mask=('[#10 ]', ), ) 

    region = pipeAssembly.Set(edges=edges1, 

faces=faces2+faces3+faces4, name='BC-XSym-Set') 

    Model.XsymmBC(name='X-Symmetry', createStepName='Initial', 

region=region, localCsys=None) 
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    # Set up Z-Symmetry boundary condition 

    f1 = pipeAssembly.instances['Pipe Solid Part 1'].faces 

    faces1 = f1.getSequenceFromMask(mask=('[#2 ]', ), ) 

    f2 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    faces2 = f2.getSequenceFromMask(mask=('[#20 ]', ), ) 

    f3 = pipeAssembly.instances['Pipe Solid Part 3'].faces 

    faces3 = f3.getSequenceFromMask(mask=('[#4 ]', ), ) 

    e4 = pipeAssembly.instances['Pipe Shell Part'].edges 

    edges4 = e4.getSequenceFromMask(mask=('[#4 ]', ), ) 

    region = pipeAssembly.Set(edges=edges4, 

faces=faces1+faces2+faces3, name='BC-ZSym-Set') 

    Model.ZsymmBC(name='Z-Symmetry', createStepName='Initial', 

region=region, localCsys=None) 

     

    # Set up Bottom boundary condition 

    e1 = pipeAssembly.instances['Pipe Shell Part'].edges 

    edges1 = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 

    region = pipeAssembly.Set(edges=edges1, name='BC-FixedBase-

Set') 

    Model.DisplacementBC(name='Bottom-Vrtcl-Fix', 

createStepName='Initial', region=region, u1=UNSET, u2=SET, 

u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM, fieldName='', localCsys=None) 

     

    # Set up Indenter-Translation boundary condition  

    indenterRP = pipeAssembly.instances['Pipe 

Indenter'].referencePoints 
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    indenterRefRegion = 

regionToolset.Region(referencePoints=(indenterRP[RP1ID], )) 

    Model.DisplacementBC(name='Indenter-Translation', 

createStepName='Initial', region=indenterRefRegion, u1=SET, 

u2=SET, u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET, 

distributionType=UNIFORM, fieldName='', localCsys=None) 

     

    # Create reference point in center of pipe (on ends away from 

indenter) 

    RPC2 = 

pipeAssembly.ReferencePoint(point=(0,0,length_of_pipe)) 

    RPCid_2 = RPC2.id 

     

    # Create cylindrical coordinate system for boundary condition 

    datumCreate = pipeAssembly.DatumCsysByThreePoints(name='Datum 

csys-2', coordSysType=CYLINDRICAL, origin=(0.0, 0.0, 0.0), 

line1=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0)) 

    datumID = datumCreate.id 

    datumCylind = pipeAssembly.datums[datumID] 

     

    # Select reference point for coupling condition 

    refPoints = pipeAssembly.referencePoints 

    refPoints2=(refPoints[RPCid_2], ) 

    

controlPoint=regionToolset.Region(referencePoints=refPoints2) 

     

    # Select surface for coupling condition 

    s1 = pipeAssembly.instances['Pipe Shell Part'].edges 

    side1Edges1 = s1.getSequenceFromMask(mask=('[#10 ]', ), ) 
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    couplingFacesRegion = 

pipeAssembly.Surface(side1Edges=side1Edges1, name='s_Surf-5') 

    datumCoupling = pipeAssembly.datums[datumID] 

    # Create coupling boundary condition and allow freedom in the 

U1 (radial direction) 

    Model.Coupling(name='End-Condition-Coupling-Constraint', 

controlPoint=controlPoint, surface=couplingFacesRegion, 

influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, 

localCsys=datumCoupling, u1=OFF, u2=ON, u3=ON, ur1=ON, ur2=ON, 

ur3=ON) 

     

    # Set up fixed ends boundary condition (encastre) 

    encastreRP = ( refPoints[RPCid_2], ) 

    encastreRegion = 

regionToolset.Region(referencePoints=encastreRP) 

    Model.EncastreBC(name='Fixed-Ends', createStepName='Initial', 

region=encastreRegion, localCsys=None) 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # INTERACTIONS 

     

    # Set up interaction properties  

    Model.ContactProperty('IntProp-1') 

    Model.interactionProperties['IntProp-

1'].TangentialBehavior(formulation=PENALTY, 

directionality=ISOTROPIC, slipRateDependency=OFF, 
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pressureDependency=OFF, temperatureDependency=OFF, 

dependencies=0, table=((0.5, ), ), shearStressLimit=None, 

maximumElasticSlip=FRACTION, fraction=0.005, 

elasticSlipStiffness=None) 

    Model.interactionProperties['IntProp-

1'].NormalBehavior(pressureOverclosure=HARD, allowSeparation=ON, 

constraintEnforcementMethod=DEFAULT) 

     

    # Define master surface - Indenter-1 

    s1 = pipeAssembly.instances['Pipe Indenter'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 

    masterSurface = pipeAssembly.Surface(side1Faces=side1Faces1, 

name='m_Surf-7') 

     

    # Define slave surface  

    s1 = pipeAssembly.instances['Pipe Solid Part 1'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#4 ]', ), ) 

    s2 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    side1Faces2 = s2.getSequenceFromMask(mask=('[#10 ]', ), ) 

    slaveSurface = 

pipeAssembly.Surface(side1Faces=side1Faces1+side1Faces2, 

name='s_Surf-7') 

     

    # Update interaction properties  

    Model.SurfaceToSurfaceContactStd(name='Int-1', 

createStepName='Initial', master=masterSurface, 

slave=slaveSurface, sliding=FINITE, thickness=ON, 

interactionProperty='IntProp-1', adjustMethod=NONE, 

initialClearance=OMIT, datumAxis=None, clearanceRegion=None) 
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    # Introduce contact controls, initializations and 

stabilizations 

    Model.StdContactControl(name='ContCtrl-1', 

stabilizeChoice=AUTOMATIC) 

    Model.StdInitialization(name='CInit-1') 

    Model.StdStabilization(name='CStab-1') 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # STEPS & LOADS & OUTPUT SETTINGS 

     

    Model.StaticStep(name='Initial-Pressure', previous='Initial', 

timePeriod=1, initialInc=1, minInc=1.5e-05, maxInc=1, nlgeom=ON) 

     

    s1 = pipeAssembly.instances['Pipe Solid Part 3'].faces 

    side1Faces1 = s1.getSequenceFromMask(mask=('[#8 ]', ), ) 

    s2 = pipeAssembly.instances['Pipe Solid Part 2'].faces 

    side1Faces2 = s2.getSequenceFromMask(mask=('[#4 ]', ), ) 

    s3 = pipeAssembly.instances['Pipe Solid Part 1'].faces 

    side1Faces3 = s3.getSequenceFromMask(mask=('[#8 ]', ), ) 

    s4 = pipeAssembly.instances['Pipe Shell Part'].faces 

    side2Faces4 = s4.getSequenceFromMask(mask=('[#1 ]', ), ) 

    pressureRegion = 

pipeAssembly.Surface(side1Faces=side1Faces1+side1Faces2+side1Fac

es3, side2Faces=side2Faces4, name='Surf-1') 
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    Model.Pressure(name='Pressure', createStepName='Initial-

Pressure', region=pressureRegion, distributionType=UNIFORM, 

field='', magnitude=0.1, amplitude=UNSET) 

     

    # Set up field output and history output requests  

    Model.fieldOutputRequests['F-Output-

1'].setValues(variables=('S', 'PEEQ', 'LE', 'EE', 'IE', 'U', 'P', 

'CNAREA', 'CSTATUS'), frequency=1) 

    Model.historyOutputRequests['H-Output-

1'].setValues(variables=('MASS', ), frequency=LAST_INCREMENT)     

             

    # Set up Indentation-Mean step          

    Model.StaticStep(name='Indentation-Mean', previous='Initial-

Pressure', maxNumInc=500, initialInc=0.01, minInc=1e-05, 

maxInc=0.1, nlgeom=ON) 

    Model.boundaryConditions['Indenter-

Translation'].setValuesInStep(stepName='Indentation-Mean', u2=-

(2+indentation_depth)) 

     

    # Set up Removal step         

    Model.StaticStep(name='Removal', previous='Indentation-Mean', 

maxNumInc=500, initialInc=0.1, minInc=1e-05, maxInc=0.1, 

nlgeom=ON) 

    Model.boundaryConditions['Indenter-

Translation'].setValuesInStep(stepName='Removal', u2=5.0) 

     

    # Set up Pressure-MOP step          

    Model.StaticStep(name='Pressure-MOP', previous='Removal', 

timePeriod=1, initialInc=0.05, minInc=1.5e-05, maxInc=0.2, 

nlgeom=ON) 
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    Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

MOP', magnitude=max_op_pressure) 

         

    # Set up Pressure-Zero 

    Model.StaticStep(name='Pressure-Zero', previous='Pressure-

MOP', initialInc=0.05, minInc=1.5e-05, maxInc=0.2, nlgeom=ON) 

    Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

Zero', magnitude=0) 

             

    # Set up P-ILI step          

    Model.StaticStep(name='Pressure-ILI', previous='Pressure-

Zero', timePeriod=1, initialInc=0.05, minInc=1.5e-05, maxInc=0.2, 

nlgeom=ON) 

    Model.loads['Pressure'].setValuesInStep(stepName='Pressure-

ILI', magnitude=op_pressure_ILI) 

        

    # Suppress removal step if the dent is specified to be 

restrained  

    if restrained_or_unrestrained == 1: 

        Model.steps['Removal'].suppress() 

     

# 

****************************************************************

****************************************************************

****************************************************************

*********** 

     

    # JOB 

     

    job_ID = modelname 
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    mdb.Job(name=job_ID, model=modelname, description='', 

type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, 

queue=None, memory=90, memoryUnits=PERCENTAGE,  

            getMemoryFromAnalysis=True, explicitPrecision=SINGLE, 

nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, 

contactPrint=OFF, historyPrint=OFF, userSubroutine='', 

scratch='',  

            resultsFormat=ODB, multiprocessingMode=DEFAULT, 

numCpus=6, numDomains=6, numGPUs=1) 

     

input_file.close() 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: Mathematica code in the Longitudinal Direction and Result 

Extraction. 

Clear[AbaqusDisplacementData,LP0mmX,LP0mmU1,LP0mmU2,LP1mmX,LP1mm

U1,LP1mmU2,LP2mmX,LP2mmU1,LP2mmU2,LP3mmX,LP3mmU1,LP3mmU2,LP4mmX,

LP4mmU1,LP4mmU2,LP5mmX,LP5mmU1,LP5mmU2,LP6mmX,LP6mmU1,LP6mmU2,LP
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7mmX,LP7mmU1,LP7mmU2,LP8mmX,LP8mmU1,LP8mmU2, LE110mm,LE111mm, 

LE112mm,LE113mm, LE114mm,LE115mm, LE116mm,LE117mm,LE118mm, 

PE110mm,PE111mm, PE112mm,PE113mm, PE114mm,PE115mm, 

PE116mm,PE117mm,PE118mm,LP0mmU1co,LP0mmU2co,LP1mmU1co,LP1mmU2co,

LP2mmU1co,LP2mmU2co,LP3mmU1co,LP3mmU2co,LP4mmU1co,LP4mmU2co,LP5m

mU1co,LP5mmU2co,LP6mmU1co,LP6mmU2co,LP7mmU1co,LP7mmU2co,LP8mmU1c

o,LP8mmU2co]; 

AbaqusDisplacementData=Import["C:\\Users\\mahya\\Desktop\\Mahyar 

Project\\For 2 mm dent depth\\FinalResults2.xlsx"]; 

Clear[RowIndex]; 

RowIndex=3; 

(*Path at the 0mm depth*) 

LP0mmX={}; 

LP0mmU1={}; 

LP0mmU2={}; 

LE110mm={}; 

PE110mm={}; 

  (*Path at the 1mm depth*) 

LP1mmX={}; 

LP1mmU1={}; 

LP1mmU2={}; 

LE111mm={}; 

PE111mm={}; 

(*Path at the 2mm depth*) 

LP2mmX={}; 

LP2mmU1={}; 

LP2mmU2={}; 

LE112mm={}; 

PE112mm={}; 

(*Path at the 3mm depth*) 

LP3mmX={}; 

LP3mmU1={}; 

LP3mmU2={}; 

LE113mm={}; 

PE113mm={}; 

(*Path at the 4mm depth*) 

LP4mmX={}; 

LP4mmU1={}; 

LP4mmU2={}; 

LE114mm={}; 

PE114mm={}; 

(*Path at the 5mm depth*) 

LP5mmX={}; 

LP5mmU1={}; 

LP5mmU2={}; 

LE115mm={}; 

PE115mm={}; 
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(*Path at the 6mm depth*) 

LP6mmX={}; 

LP6mmU1={}; 

LP6mmU2={}; 

LE116mm={}; 

PE116mm={}; 

(*Path at the 7mm depth*) 

LP7mmX={}; 

LP7mmU1={}; 

LP7mmU2={}; 

LE117mm={}; 

PE117mm={}; 

(*Path at the 8mm depth*) 

LP8mmX={}; 

LP8mmU1={}; 

LP8mmU2={}; 

LE118mm={}; 

PE118mm={}; 

 

(*Putting the data for Longitudinal Path at different heights in 

respective paths*) 

While[  

  True, 

  If[AbaqusDisplacementData[[1]][[RowIndex]][[1]]!="", 

    (*Reading all the 0mm depth data*) 

    LP0mmX= 

AppendTo[LP0mmX,AbaqusDisplacementData[[1]][[RowIndex]][[1]]]; 

    LP0mmU1 = 

AppendTo[LP0mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[2]]]; 

    LP0mmU2= 

AppendTo[LP0mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[3]]]; 

    

LE110mm=AppendTo[LE110mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[4]]]; 

    

PE110mm=AppendTo[PE110mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[5]]]; 

    (*Reading all the 1mm depth data*) 

    LP1mmX= 

AppendTo[LP1mmX,AbaqusDisplacementData[[1]][[RowIndex]][[7]]]; 

    LP1mmU1 = 

AppendTo[LP1mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[8]]]; 

    LP1mmU2= 

AppendTo[LP1mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[9]]]; 

    

LE111mm=AppendTo[LE111mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[10]]]; 
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PE111mm=AppendTo[PE111mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[11]]]; 

    (*Reading all the 2mm depth data*) 

    LP2mmX= 

AppendTo[LP2mmX,AbaqusDisplacementData[[1]][[RowIndex]][[13]]]; 

    LP2mmU1 = 

AppendTo[LP2mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[14]]]; 

    LP2mmU2= 

AppendTo[LP2mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[15]]]; 

    

LE112mm=AppendTo[LE112mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[16]]]; 

    

PE112mm=AppendTo[PE112mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[17]]]; 

    (*Reading all the 3mm depth data*) 

    LP3mmX= 

AppendTo[LP3mmX,AbaqusDisplacementData[[1]][[RowIndex]][[19]]]; 

    LP3mmU1 = 

AppendTo[LP3mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[20]]]; 

    LP3mmU2= 

AppendTo[LP3mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[21]]]; 

    

LE113mm=AppendTo[LE113mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[22]]]; 

    

PE113mm=AppendTo[PE113mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[23]]]; 

    (*Reading all the 4mm depth data*) 

    LP4mmX= 

AppendTo[LP4mmX,AbaqusDisplacementData[[1]][[RowIndex]][[25]]]; 

    LP4mmU1 = 

AppendTo[LP4mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[26]]]; 

    LP4mmU2= 

AppendTo[LP4mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[27]]]; 

    

LE114mm=AppendTo[LE114mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[28]]]; 

    

PE114mm=AppendTo[PE114mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[29]]]; 

    (*Reading all the 5mm depth data*) 

    LP5mmX= 

AppendTo[LP5mmX,AbaqusDisplacementData[[1]][[RowIndex]][[31]]]; 

    LP5mmU1 = 

AppendTo[LP5mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[32]]]; 
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    LP5mmU2= 

AppendTo[LP5mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[33]]]; 

    

LE115mm=AppendTo[LE115mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[34]]]; 

    

PE115mm=AppendTo[PE115mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[35]]]; 

    (*Reading all the 6mm depth data*) 

    LP6mmX= 

AppendTo[LP6mmX,AbaqusDisplacementData[[1]][[RowIndex]][[37]]]; 

    LP6mmU1 = 

AppendTo[LP6mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[38]]]; 

    LP6mmU2= 

AppendTo[LP6mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[39]]]; 

    

LE116mm=AppendTo[LE116mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[40]]]; 

    

PE116mm=AppendTo[PE116mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[41]]]; 

    (*Reading all the 7mm depth data*) 

    LP7mmX= 

AppendTo[LP7mmX,AbaqusDisplacementData[[1]][[RowIndex]][[43]]]; 

    LP7mmU1 = 

AppendTo[LP7mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[44]]]; 

    LP7mmU2= 

AppendTo[LP7mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[45]]]; 

    

LE117mm=AppendTo[LE117mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[46]]]; 

    

PE117mm=AppendTo[PE117mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[47]]]; 

    (*Reading all the 8mm depth data*) 

    LP8mmX= 

AppendTo[LP8mmX,AbaqusDisplacementData[[1]][[RowIndex]][[49]]]; 

    LP8mmU1 = 

AppendTo[LP8mmU1,AbaqusDisplacementData[[1]][[RowIndex]][[50]]]; 

    LP8mmU2= 

AppendTo[LP8mmU2,AbaqusDisplacementData[[1]][[RowIndex]][[51]]]; 

    

LE118mm=AppendTo[LE118mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[52]]]; 

    

PE118mm=AppendTo[PE118mm,AbaqusDisplacementData[[1]][[RowIndex]]

[[53]]]; 



113 

 

    RowIndex=RowIndex+1; 

    , 

    Break[]; 

    ]; 

  ]; 

 

LP0mmU1co=GaussianFilter[LP0mmU1,20]; 

LP0mmU2co=GaussianFilter[LP0mmU2,5]; 

LP1mmU1co=GaussianFilter[LP1mmU1,3]; 

LP1mmU2co=GaussianFilter[LP1mmU2,1]; 

LP2mmU1co=GaussianFilter[LP2mmU1,3]; 

LP2mmU2co=GaussianFilter[LP2mmU2,1]; 

LP3mmU1co=GaussianFilter[LP3mmU1,3]; 

LP3mmU2co=GaussianFilter[LP3mmU2,1]; 

LP4mmU1co=GaussianFilter[LP4mmU1,5]; 

LP4mmU2co=GaussianFilter[LP4mmU2,5]; 

LP5mmU1co=GaussianFilter[LP5mmU1,3]; 

LP5mmU2co=GaussianFilter[LP5mmU2,1]; 

LP6mmU1co=GaussianFilter[LP6mmU1,2]; 

LP6mmU2co=GaussianFilter[LP6mmU2,1]; 

LP7mmU1co=GaussianFilter[LP7mmU1,2]; 

LP7mmU2co=GaussianFilter[LP7mmU2,1]; 

LP8mmU1co=GaussianFilter[LP8mmU1,2]; 

LP8mmU2co=GaussianFilter[LP8mmU2,1]; 

 

(*Create a Table with x and U1 data*) 

Clear[LP0mmXU1Data,LP1mmXU1Data,LP2mmXU1Data,LP3mmXU1Data,LP4mmX

U1Data,LP5mmXU1Data,LP6mmXU1Data,LP7mmXU1Data,LP8mmXU1Data]; 

LP0mmXU1Data=Table[{LP0mmX[[i]],LP0mmU1co[[i]]},{i,1,Length[LP0m

mX]}]; 

LP1mmXU1Data=Table[{LP1mmX[[i]],LP1mmU1co[[i]]},{i,1,Length[LP1m

mX]}]; 

LP2mmXU1Data=Table[{LP2mmX[[i]],LP2mmU1co[[i]]},{i,1,Length[LP2m

mX]}]; 

LP3mmXU1Data=Table[{LP3mmX[[i]],LP3mmU1co[[i]]},{i,1,Length[LP3m

mX]}]; 

LP4mmXU1Data=Table[{LP4mmX[[i]],LP4mmU1co[[i]]},{i,1,Length[LP4m

mX]}]; 

LP5mmXU1Data=Table[{LP5mmX[[i]],LP5mmU1co[[i]]},{i,1,Length[LP5m

mX]}]; 

LP6mmXU1Data=Table[{LP6mmX[[i]],LP6mmU1co[[i]]},{i,1,Length[LP6m

mX]}]; 

LP7mmXU1Data=Table[{LP7mmX[[i]],LP7mmU1co[[i]]},{i,1,Length[LP7m

mX]}]; 

LP8mmXU1Data=Table[{LP8mmX[[i]],LP8mmU1co[[i]]},{i,1,Length[LP8m

mX]}]; 
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(*Create a Table with x and U2 data*) 

Clear[LP0mmXU2Data,LP1mmXU2Data,LP2mmXU2Data,LP3mmXU2Data,LP4mmX

U2Data,LP5mmXU2Data,LP6mmXU2Data,LP7mmXU2Data,LP8mmXU2Data]; 

LP0mmXU2Data=Table[{LP0mmX[[i]],LP0mmU2co[[i]]},{i,1,Length[LP0m

mX]}]; 

LP1mmXU2Data=Table[{LP1mmX[[i]],LP1mmU2co[[i]]},{i,1,Length[LP1m

mX]}]; 

LP2mmXU2Data=Table[{LP2mmX[[i]],LP2mmU2co[[i]]},{i,1,Length[LP2m

mX]}]; 

LP3mmXU2Data=Table[{LP3mmX[[i]],LP3mmU2co[[i]]},{i,1,Length[LP3m

mX]}]; 

LP4mmXU2Data=Table[{LP4mmX[[i]],LP4mmU2co[[i]]},{i,1,Length[LP4m

mX]}]; 

LP5mmXU2Data=Table[{LP5mmX[[i]],LP5mmU2co[[i]]},{i,1,Length[LP5m

mX]}]; 

LP6mmXU2Data=Table[{LP6mmX[[i]],LP6mmU2co[[i]]},{i,1,Length[LP6m

mX]}]; 

LP7mmXU2Data=Table[{LP7mmX[[i]],LP7mmU2co[[i]]},{i,1,Length[LP7m

mX]}]; 

LP8mmXU2Data=Table[{LP8mmX[[i]],LP8mmU2co[[i]]},{i,1,Length[LP8m

mX]}]; 

 

(*BSpline Functions*) 

Clear[Y0mmU1,Y1mmU1,Y2mmU1,Y3mmU1,Y4mmU1,Y5mmU1,Y6mmU1,Y7mmU1,Y8

mmU1]; 

Clear[Y0mmU2,Y1mmU2,Y2mmU2,Y3mmU2,Y4mmU2,Y5mmU2,Y6mmU2,Y7mmU2,Y8

mmU2]; 

(*Interpolate to get the functions for U1*) 

Y0mmU1=Interpolation[LP0mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y1mmU1=Interpolation[LP1mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y2mmU1=Interpolation[LP2mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y3mmU1=Interpolation[LP3mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y4mmU1=Interpolation[LP4mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y5mmU1=Interpolation[LP5mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y6mmU1=Interpolation[LP6mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y7mmU1=Interpolation[LP7mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y8mmU1=Interpolation[LP8mmXU1Data,Method-> 

"Spline",InterpolationOrder->3]; 
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(*Interpolate to get the functions for U2*) 

Y0mmU2=Interpolation[LP0mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y1mmU2=Interpolation[LP1mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y2mmU2=Interpolation[LP2mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y3mmU2=Interpolation[LP3mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y4mmU2=Interpolation[LP4mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y5mmU2=Interpolation[LP5mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y6mmU2=Interpolation[LP6mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y7mmU2=Interpolation[LP7mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

Y8mmU2=Interpolation[LP8mmXU2Data,Method-> 

"Spline",InterpolationOrder->3]; 

 

(*Discretized U2 Values*) 

(*LP0mmU2DataDiscretized=Table[Y0mmU2Raw[LP0mmXDiscretized[[i]]]

,{i,1,Length[LP0mmXDiscretized]}]; 

LP0mmU2DataDiscretized0=Table[Y0mmU2Raw[LP0mmX[[i]]],{i,1,Length

[LP0mmX]}]; 

LP0mmU2DataDiscretized 

LP0mmU2DataDiscretized0 

LP0mmU2 

Y0mmU2Raw[LP0mmX[[Length[LP0mmX]-1]]]*) 

 

Clear[X10mm,X11mm,X12mm,X13mm,X14mm,X15mm,X16mm,X17mm,X18mm]; 

Clear[Theta0mmU2,Theta1mmU2,Theta2mmU2,Theta3mmU2,Theta4mmU2,The

ta5mmU2,Theta6mmU2,Theta7mmU2,Theta8mmU2]; 

(*Compute Theta Values based on U2 vallues*) 

(*Theta0mmU2=ArcTan[D[Y0mmU2[X10mm],X10mm]]; 

Theta1mmU2=ArcTan[D[Y1mmU2[X11mm],X11mm]]; 

Theta2mmU2=ArcTan[D[Y2mmU2[X12mm],X12mm]]; 

Theta3mmU2=ArcTan[D[Y3mmU2[X13mm],X13mm]];*) 

Theta4mmU2=ArcTan[D[Y4mmU2[X14mm],X14mm]]; 

(*Theta5mmU2=ArcTan[D[Y5mmU2[X15mm],X15mm]]; 

Theta6mmU2=ArcTan[D[Y6mmU2[X16mm],X16mm]]; 

Theta7mmU2=ArcTan[D[Y7mmU2[X17mm],X17mm]]; 

Theta8mmU2=ArcTan[D[Y8mmU2[X18mm],X18mm]];*) 

 

(*Original Position Fields*) 

Clear[X0mm,X1mm,X2mm,X3mm,X4mm,X5mm,X6mm,X7mm,X8mm]; 

Clear[Qz0mm,Qz1mm,Qz2mm,Qz3mm,Qz4mm,Qz5mm,Qz6mm,Qz7mm,Qz8mm]; 
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Clear[x0mm,x1mm,x2mm,x3mm,x4mm,x5mm,x6mm,x7mm,x8mm]; 

X0mm={X10mm,X20mm}; 

X1mm={X11mm,X21mm}; 

X2mm={X12mm,X22mm}; 

X3mm={X13mm,X23mm}; 

X4mm={X14mm,X24mm}; 

X5mm={X15mm,X25mm}; 

X6mm={X16mm,X26mm}; 

X7mm={X17mm,X27mm}; 

X8mm={X18mm,X28mm}; 

(* 

(*Rotation Matrices*) 

Qz0mm={{Cos[Theta0mmU2],Sin[Theta0mmU2]},{-

1*Sin[Theta0mmU2],Cos[Theta0mmU2]}}; 

Qz2mm={{Cos[Theta2mmU2],Sin[Theta2mmU2]},{-

1*Sin[Theta2mmU2],Cos[Theta2mmU2]}}; 

Qz4mm={{Cos[Theta4mmU2],Sin[Theta4mmU2]},{-

1*Sin[Theta4mmU2],Cos[Theta4mmU2]}}; 

Qz6mm={{Cos[Theta6mmU2],Sin[Theta6mmU2]},{-

1*Sin[Theta6mmU2],Cos[Theta6mmU2]}}; 

Qz8mm={{Cos[Theta8mmU2],Sin[Theta8mmU2]},{-

1*Sin[Theta8mmU2],Cos[Theta8mmU2]}}; 

 

(*Final Position Fields*) 

x0mm=Qz0mm.X0mm; 

x2mm=Qz2mm.X2mm; 

x4mm=Qz4mm.X4mm; 

x6mm=Qz6mm.X6mm; 

x8mm=Qz8mm.X8mm; 

 

(*Displacement Values*) 

U0mm=x0mm-X0mm; 

U2mm=x2mm-X2mm; 

U4mm=x4mm-X4mm; 

U6mm=x6mm-X6mm; 

U8mm=x8mm-X8mm; 

*) 

 

(*Modify Uz *) 

Clear[U0mm,U1mm,U2mm,U3mm, U4mm,U5mm, U6mm,U7mm, 

U8mm,U0mmmodify,Newfunc0mm,InterNewfunc0mm,U1mmmodify,Newfunc1mm

,InterNewfunc1mm, 

U2mmmodify,Newfunc2mm,InterNewfunc2mm,U3mmmodify,Newfunc3mm,Inte

rNewfunc3mm, U4mmmodify,Newfunc4mm, 

InterNewfunc4mm,U5mmmodify,Newfunc5mm,InterNewfunc5mm,U6mmmodify

,Newfunc6mm,InterNewfunc6mm,U7mmmodify,Newfunc7mm,InterNewfunc7m

m, 
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U8mmmodify,Newfunc8mm,InterNewfunc8mm,U1FE0mm,U1FE0,PInterNewfun

c0,InterNewfunc0,U1FE1mm,U1FE1,PInterNewfunc1,InterNewfunc1,U1FE

2mm,U1FE2,InterNewfunc2,PInterNewfunc2,U1FE3mm,U1FE3,PInterNewfu

nc3,InterNewfunc3,U1FE4mm,U1FE4,InterNewfunc4,PInterNewfunc4,U1F

E5mm,U1FE5,PInterNewfunc5,InterNewfunc5,U1FE6mm,U1FE6,InterNewfu

nc6,PInterNewfunc6,U1FE7mm,U1FE7,PInterNewfunc7,InterNewfunc7,U1

FE8mm,U1FE8,InterNewfunc8,PInterNewfunc8]; 

 

 

 

U0mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->-4.0},{i,1,Length[LP4mmX]}]; 

Newfunc0mm=Table[{LP4mmX[[i]],U0mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE0mm=Table[(Y0mmU1[X10mm])/.{X10mm-> 

LP0mmX[[i]]},{i,1,Length[LP0mmX]}]; 

U1FE0=ListLinePlot[Table[{LP0mmX 

[[i]],U1FE0mm[[i]]},{i,1,Length[LP0mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc0=ListLinePlot[Table[{LP4mmX 

[[i]],U0mmmodify[[i]]},{i,1,Length[LP0mmX]}], PlotStyle->Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -4mm 

HEIGHT"]; 

Show[PInterNewfunc0,U1FE0,PlotRange->All,ImageSize->1100] 

 

 

U1mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->-3.0},{i,1,Length[LP4mmX]}]; 

Newfunc1mm=Table[{LP4mmX[[i]],U1mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE1mm=Table[(Y1mmU1[X11mm])/.{X11mm-> 

LP1mmX[[i]]},{i,1,Length[LP1mmX]}]; 

U1FE1=ListLinePlot[Table[{LP1mmX 

[[i]],U1FE1mm[[i]]},{i,1,Length[LP1mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc1=ListLinePlot[Table[{LP4mmX 

[[i]],U1mmmodify[[i]]},{i,1,Length[LP1mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -3mm 

HEIGHT"]; 

Show[PInterNewfunc1,U1FE1,PlotRange->All,ImageSize->1100] 
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U2mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->-2.0},{i,1,Length[LP4mmX]}]; 

Newfunc0mm=Table[{LP4mmX[[i]],U0mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE2mm=Table[(Y2mmU1[X12mm])/.{X12mm-> 

LP2mmX[[i]]},{i,1,Length[LP2mmX]}]; 

U1FE2=ListLinePlot[Table[{LP2mmX 

[[i]],U1FE2mm[[i]]},{i,1,Length[LP2mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc2=ListLinePlot[Table[{LP4mmX 

[[i]],U2mmmodify[[i]]},{i,1,Length[LP2mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -2mm 

HEIGHT"]; 

Show[PInterNewfunc2,U1FE2,PlotRange->All,ImageSize->1100] 

 

 

U3mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->-1.0},{i,1,Length[LP4mmX]}]; 

Newfunc2mm=Table[{LP4mmX[[i]],U2mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE3mm=Table[(Y3mmU1[X13mm])/.{X13mm-> 

LP3mmX[[i]]},{i,1,Length[LP3mmX]}]; 

U1FE3=ListLinePlot[Table[{LP3mmX 

[[i]],U1FE3mm[[i]]},{i,1,Length[LP3mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc3=ListLinePlot[Table[{LP4mmX 

[[i]],U3mmmodify[[i]]},{i,1,Length[LP3mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE -1mm 

HEIGHT"]; 

Show[PInterNewfunc3,U1FE3,PlotRange->All,ImageSize->1100] 

 

 

 

U4mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->0.0},{i,1,Length[LP4mmX]}]; 

Newfunc4mm=Table[{LP4mmX[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE4mm=Table[(Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]]},{i,1,Length[LP4mmX]}]; 

U1FE4=ListLinePlot[Table[{LP4mmX 

[[i]],U1FE4mm[[i]]},{i,1,Length[LP4mmX]}], PlotLegends-

>{"U1FE"}]; 
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PInterNewfunc4=ListLinePlot[Table[{LP4mmX 

[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mmX]}], PlotStyle->Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 0mm HEIGHT"]; 

Show[PInterNewfunc4,U1FE4,PlotRange->All,ImageSize->1100] 

 

U5mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->1.0},{i,1,Length[LP4mmX]}]; 

Newfunc5mm=Table[{LP4mmX[[i]],U4mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE5mm=Table[(Y5mmU1[X15mm])/.{X15mm-> 

LP1mmX[[i]]},{i,1,Length[LP5mmX]}]; 

U1FE5=ListLinePlot[Table[{LP5mmX 

[[i]],U1FE5mm[[i]]},{i,1,Length[LP5mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc5=ListLinePlot[Table[{LP4mmX 

[[i]],U5mmmodify[[i]]},{i,1,Length[LP5mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 1mm HEIGHT"]; 

Show[PInterNewfunc5,U1FE5,PlotRange->All,ImageSize->1100] 

 

 

U6mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->2.0},{i,1,Length[LP4mmX]}]; 

Newfunc6mm=Table[{LP4mmX[[i]],U6mmmodify[[i]]},{i,1,Length[LP4mm

X]}]; 

U1FE6mm=Table[(Y6mmU1[X16mm])/.{X16mm-> 

LP6mmX[[i]]},{i,1,Length[LP6mmX]}]; 

U1FE6=ListLinePlot[Table[{LP6mmX 

[[i]],U1FE6mm[[i]]},{i,1,Length[LP6mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc6=ListLinePlot[Table[{LP4mmX 

[[i]],U6mmmodify[[i]]},{i,1,Length[LP6mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 2mm HEIGHT"]; 

Show[PInterNewfunc6,U1FE6,PlotRange->All,ImageSize->1100] 

 

U7mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->3.0},{i,1,Length[LP4mmX]}]; 

Newfunc7mm=Table[{LP4mmX[[i]],U7mmmodify[[i]]},{i,1,Length[LP7mm

X]}]; 

U1FE7mm=Table[(Y7mmU1[X17mm])/.{X17mm-> 

LP7mmX[[i]]},{i,1,Length[LP7mmX]}]; 

U1FE7=ListLinePlot[Table[{LP7mmX 

[[i]],U1FE7mm[[i]]},{i,1,Length[LP7mmX]}], PlotLegends-

>{"U1FE"}]; 
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PInterNewfunc7=ListLinePlot[Table[{LP4mmX 

[[i]],U7mmmodify[[i]]},{i,1,Length[LP6mmX]}], PlotStyle-> Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE 3mm HEIGHT"]; 

Show[PInterNewfunc7,U1FE7,PlotRange->All,ImageSize->1100] 

 

 

U8mmmodify=Table[(-

1.0*X24mm*Sin[Theta4mmU2]+Y4mmU1[X14mm])/.{X14mm-> 

LP4mmX[[i]],X24mm->4.0},{i,1,Length[LP4mmX]}]; 

Newfunc8mm=Table[{LP4mmX[[i]],U8mmmodify[[i]]},{i,1,Length[LP8mm

X]}]; 

U1FE8mm=Table[(Y8mmU1[X18mm])/.{X18mm-

>LP8mmX[[i]]},{i,1,Length[LP8mmX]}]; 

U1FE8=ListLinePlot[Table[{LP8mmX 

[[i]],U1FE8mm[[i]]},{i,1,Length[LP8mmX]}], PlotLegends-

>{"U1FE"}]; 

PInterNewfunc8=ListLinePlot[Table[{LP4mmX 

[[i]],U8mmmodify[[i]]},{i,1,Length[LP8mmX]}], PlotStyle->Black, 

PlotLegends->{"U1Chike"},PlotLabel->"U1CHIKE AND FE AT 4mm 

HEIGHT"]; 

Show[PInterNewfunc8,U1FE8,PlotRange->All,ImageSize->1100] 

 

 

 

(*Displacement Values - Equations based on Chike's code*) 

Clear[U0mm,U1mm,U2mm,U3mm,U4mm,U5mm,U6mm,U7mm,U8mm]; 

(*U0mm={Y0mmU1[X10mm],Y0mmU2[X10mm]+X20mm*(Cos[Theta0mmU2]-

1.0)}; 

U1mm={Y1mmU1[X11mm],Y1mmU2[X11mm]+X21mm*(Cos[Theta1mmU2]-1.0)}; 

U2mm={Y2mmU1[X12mm],Y2mmU2[X12mm]+X22mm*(Cos[Theta2mmU2]-1.0)}; 

U3mm={Y3mmU1[X13mm],Y3mmU2[X13mm]+X23mm*(Cos[Theta3mmU2]-

1.0)};*) 

U4mm={(-

1.0*X24mm*Sin[Theta4mmU2])+Y4mmU1[X14mm],Y4mmU2[X14mm]+X24mm*(Co

s[Theta4mmU2]-1.0)}; 

(*U5mm={Y5mmU1[X15mm],Y5mmU2[X15mm]+X25mm*(Cos[Theta5mmU2]-

1.0)}; 

U6mm={Y6mmU1[X16mm],Y6mmU2[X16mm]+X26mm*(Cos[Theta6mmU2]-1.0)}; 

U7mm={Y7mmU1[X17mm],Y7mmU2[X17mm]+X27mm*(Cos[Theta7mmU2]-1.0)}; 

U8mm={Y8mmU1[X18mm],Y8mmU2[X18mm]+X28mm*(Cos[Theta8mmU2]-

1.0)};*) 

 

 

(*Displacement Gradient*) 

Clear[DelU0mm,DelU1mm,DelU2mm,DelU3mm,DelU4mm,DelU5mm,DelU6mm,De

lU7mm,DelU8mm]; 

(*DelU0mm=Table[D[U0mm[[i]],X0mm[[j]]],{i,1,2},{j,1,2}]; 



121 

 

DelU1mm=Table[D[U1mm[[i]],X1mm[[j]]],{i,1,2},{j,1,2}]; 

DelU2mm=Table[D[U2mm[[i]],X2mm[[j]]],{i,1,2},{j,1,2}]; 

DelU3mm=Table[D[U3mm[[i]],X3mm[[j]]],{i,1,2},{j,1,2}];*) 

DelU4mm=Table[D[U4mm[[i]],X4mm[[j]]],{i,1,2},{j,1,2}]; 

(*DelU5mm=Table[D[U5mm[[i]],X5mm[[j]]],{i,1,2},{j,1,2}]; 

DelU6mm=Table[D[U6mm[[i]],X6mm[[j]]],{i,1,2},{j,1,2}]; 

DelU7mm=Table[D[U7mm[[i]],X7mm[[j]]],{i,1,2},{j,1,2}]; 

DelU8mm=Table[D[U8mm[[i]],X8mm[[j]]],{i,1,2},{j,1,2}];*) 

 

Clear[GreenStrain0mmEqn,GreenStrain1mmEqn,GreenStrain2mmEqn,Gree

nStrain3mmEqn,GreenStrain4mmEqn,GreenStrain5mmEqn,GreenStrain6mm

Eqn,GreenStrain7mmEqn,GreenStrain8mmEqn]; 

(*GreenStrain0mmEqn=0.5*(DelU0mm+Transpose[DelU0mm]+(Transpose[D

elU0mm].DelU0mm)); 

GreenStrain1mmEqn=0.5*(DelU1mm+Transpose[DelU1mm]+(Transpose[Del

U1mm].DelU1mm)); 

GreenStrain2mmEqn=0.5*(DelU2mm+Transpose[DelU2mm]+(Transpose[Del

U2mm].DelU2mm)); 

GreenStrain3mmEqn=0.5*(DelU3mm+Transpose[DelU3mm]+(Transpose[Del

U3mm].DelU3mm));*) 

GreenStrain4mmEqn=0.5*(DelU4mm+Transpose[DelU4mm]+(Transpose[Del

U4mm].DelU4mm)); 

(*GreenStrain5mmEqn=0.5*(DelU5mm+Transpose[DelU5mm]+(Transpose[D

elU5mm].DelU5mm)); 

GreenStrain6mmEqn=0.5*(DelU6mm+Transpose[DelU6mm]+(Transpose[Del

U6mm].DelU6mm)); 

GreenStrain7mmEqn=0.5*(DelU7mm+Transpose[DelU7mm]+(Transpose[Del

U7mm].DelU7mm)); 

GreenStrain8mmEqn=0.5*(DelU8mm+Transpose[DelU8mm]+(Transpose[Del

U8mm].DelU8mm));*) 

 

Clear[GreenStrain0mmMatrixValues,GreenStrain1mmMatrixValues,Gree

nStrain2mmMatrixValues,GreenStrain3mmMatrixValues,GreenStrain4mm

MatrixValues,GreenStrain5mmMatrixValues,GreenStrain6mmMatrixValu

es,GreenStrain7mmMatrixValues,GreenStrain8mmMatrixValues]; 

GreenStrain0mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> -4.0},{i,1,Length[LP0mmX]}]; 

GreenStrain1mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> -3.0},{i,1,Length[LP1mmX]}]; 

GreenStrain2mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> -2.0},{i,1,Length[LP2mmX]}]; 

GreenStrain3mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> -1.0},{i,1,Length[LP3mmX]}]; 

GreenStrain4mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> 0.0},{i,1,Length[LP4mmX]}]; 

GreenStrain5mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> 1.0},{i,1,Length[LP5mmX]}]; 
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GreenStrain6mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> 2.0},{i,1,Length[LP6mmX]}]; 

GreenStrain7mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> 3.0},{i,1,Length[LP7mmX]}]; 

GreenStrain8mmMatrixValues=Table[GreenStrain4mmEqn/.{X14mm-> 

LP4mmX[[i]],X24mm-> 4.0},{i,1,Length[LP8mmX]}]; 

 

Clear[GreenStrain0mm11,GreenStrain1mm11,GreenStrain2mm11,GreenSt

rain3mm11,GreenStrain4mm11,GreenStrain5mm11,GreenStrain6mm11,Gre

enStrain7mm11,GreenStrain8mm11]; 

GreenStrain0mm11=Table[GreenStrain0mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain0mmMatrixValues]}]; 

GreenStrain1mm11=Table[GreenStrain1mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain1mmMatrixValues]}]; 

GreenStrain2mm11=Table[GreenStrain2mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain2mmMatrixValues]}]; 

GreenStrain3mm11=Table[GreenStrain3mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain3mmMatrixValues]}]; 

GreenStrain4mm11=Table[GreenStrain4mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain4mmMatrixValues]}]; 

GreenStrain5mm11=Table[GreenStrain5mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain5mmMatrixValues]}]; 

GreenStrain6mm11=Table[GreenStrain6mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain6mmMatrixValues]}]; 

GreenStrain7mm11=Table[GreenStrain7mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain7mmMatrixValues]}]; 

GreenStrain8mm11=Table[GreenStrain8mmMatrixValues[[i]][[1,1]],{i

,1,Length[GreenStrain8mmMatrixValues]}]; 

(* 

Print["Green Strain 11 at Path 0mm = ",GreenStrain0mm11]; 

Print["Green Strain 11 at Path 2mm = ",GreenStrain2mm11]; 

Print["Green Strain 11 at Path 4mm = ",GreenStrain4mm11]; 

Print["Green Strain 11 at Path 6mm = ",GreenStrain6mm11]; 

Print["Green Strain 11 at Path 8mm = ",GreenStrain8mm11]; 

*) 

 

(*Comparative Plots*)  

(*At 0mm position - Inner surface of the pipe*) 

XLE110mmTable = Table[{LP0mmX 

[[i]],LE110mm[[i]]},{i,1,Length[LP0mmX]}]; 

XPE110mmTable = Table[{LP0mmX 

[[i]],PE110mm[[i]]},{i,1,Length[LP0mmX]}]; 

XGreenStrain0mm110mmTable = Table[{LP0mmX 

[[i]],GreenStrain0mm11[[i]]},{i,1,Length[LP0mmX]}]; 

 

P01=ListLinePlot[XLE110mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 
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PROFILE AT 0mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}]; 

P02=ListLinePlot[XPE110mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 0mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P03=ListLinePlot[XGreenStrain0mm110mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 0mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11"}]; 

Show[P01,P02, P03, PlotRange-> All,ImageSize->1100] 

 

(*At 1mm position - Inner surface of the pipe*) 

XLE111mmTable = Table[{LP1mmX 

[[i]],LE111mm[[i]]},{i,1,Length[LP1mmX]}]; 

XPE111mmTable = Table[{LP1mmX 

[[i]],PE111mm[[i]]},{i,1,Length[LP1mmX]}]; 

XGreenStrain1mm111mmTable = Table[{LP1mmX 

[[i]],GreenStrain1mm11[[i]]},{i,1,Length[LP1mmX]}]; 

 

P11=ListLinePlot[XLE111mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 1mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}]; 

P12=ListLinePlot[XPE111mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 1mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P13=ListLinePlot[XGreenStrain1mm111mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 1mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P11,P12, P13, PlotRange-> All,ImageSize->1100] 

 

(*At 2mm height from inner surface*) 

XLE112mmTable = Table[{LP2mmX 

[[i]],LE112mm[[i]]},{i,1,Length[LP2mmX]}]; 

XPE112mmTable = Table[{LP2mmX 

[[i]],PE112mm[[i]]},{i,1,Length[LP2mmX]}]; 

XGreenStrain2mm112mmTable = Table[{LP2mmX 

[[i]],GreenStrain2mm11[[i]]},{i,1,Length[LP2mmX]}]; 

 

P21=ListLinePlot[XLE112mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 2mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}]; 
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P22=ListLinePlot[XPE112mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 2mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P23=ListLinePlot[XGreenStrain2mm112mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 2mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P21,P22, P23, PlotRange-> All,ImageSize->1100] 

 

(*At 3mm position - Inner surface of the pipe*) 

XLE113mmTable = Table[{LP3mmX 

[[i]],LE113mm[[i]]},{i,1,Length[LP3mmX]}]; 

XPE113mmTable = Table[{LP3mmX 

[[i]],PE113mm[[i]]},{i,1,Length[LP3mmX]}]; 

XGreenStrain3mm113mmTable = Table[{LP3mmX 

[[i]],GreenStrain3mm11[[i]]},{i,1,Length[LP3mmX]}]; 

 

P31=ListLinePlot[XLE113mmTable, PlotStyle-

>{{Black,Thickness[0.01]},Thickness[0.01]},PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 3mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends->{"LE11 

(Abaqus)"}]; 

P32=ListLinePlot[XPE113mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 3mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P33=ListLinePlot[XGreenStrain3mm113mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 3mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P31,P32, P33, PlotRange->All,ImageSize->1100 ] 

 

(*At 4mm height from inner surface*) 

XLE114mmTable = Table[{LP4mmX 

[[i]],LE114mm[[i]]},{i,1,Length[LP4mmX]}]; 

XPE114mmTable = Table[{LP4mmX 

[[i]],PE114mm[[i]]},{i,1,Length[LP4mmX]}]; 

XGreenStrain4mm114mmTable = Table[{LP4mmX 

[[i]],GreenStrain4mm11[[i]]},{i,1,Length[LP4mmX]}]; 

 

P41=ListLinePlot[XLE114mmTable, PlotStyle-

>{{Black,Thickness[0.01]},Thickness[0.01]},PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 4mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"LE11(Abaqus)"}]; 
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P42=ListLinePlot[XPE114mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 4mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P43=ListLinePlot[XGreenStrain4mm114mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 4mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P41,P42, P43, PlotRange-> All,ImageSize->1100] 

 

(*At 5mm position - Inner surface of the pipe*) 

XLE115mmTable = Table[{LP5mmX 

[[i]],LE115mm[[i]]},{i,1,Length[LP5mmX]}]; 

XPE115mmTable = Table[{LP5mmX 

[[i]],PE115mm[[i]]},{i,1,Length[LP5mmX]}]; 

XGreenStrain5mm115mmTable = Table[{LP5mmX 

[[i]],GreenStrain5mm11[[i]]},{i,1,Length[LP5mmX]}]; 

 

P51=ListLinePlot[XLE115mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 5mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}]; 

P52=ListLinePlot[XPE115mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 5mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P53=ListLinePlot[XGreenStrain5mm115mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 5mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P51,P52, P53, PlotRange-> All,ImageSize->1100] 

 

(*At 6mm height from inner surface*) 

XLE116mmTable = Table[{LP6mmX 

[[i]],LE116mm[[i]]},{i,1,Length[LP6mmX]}]; 

XPE116mmTable = Table[{LP6mmX 

[[i]],PE116mm[[i]]},{i,1,Length[LP6mmX]}]; 

XGreenStrain6mm116mmTable = Table[{LP6mmX 

[[i]],GreenStrain6mm11[[i]]},{i,1,Length[LP6mmX]}]; 

 

P61=ListLinePlot[XLE116mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 6mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}]; 

P62=ListLinePlot[XPE116mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 6mm HEIGHT", AxesLabel-
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>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P63=ListLinePlot[XGreenStrain6mm116mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 6mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P61,P62, P63, PlotRange-> All,ImageSize->1100] 

 

(*At 7mm position - Inner surface of the pipe*) 

XLE117mmTable = Table[{LP7mmX 

[[i]],LE117mm[[i]]},{i,1,Length[LP7mmX]}]; 

XPE117mmTable = Table[{LP7mmX 

[[i]],PE117mm[[i]]},{i,1,Length[LP7mmX]}]; 

XGreenStrain7mm117mmTable = Table[{LP7mmX 

[[i]],GreenStrain7mm11[[i]]},{i,1,Length[LP7mmX]}]; 

 

P71=ListLinePlot[XLE117mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 7mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11 (Abaqus)"}]; 

P72=ListLinePlot[XPE117mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 7mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 

P73=ListLinePlot[XGreenStrain7mm117mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 7mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P71,P72, P73, PlotRange-> All,ImageSize->1100] 

 

(*At 8mm height from inner surface*) 

XLE118mmTable = Table[{LP8mmX 

[[i]],LE118mm[[i]]},{i,1,Length[LP8mmX]}]; 

XPE118mmTable = Table[{LP8mmX 

[[i]],PE118mm[[i]]},{i,1,Length[LP8mmX]}]; 

XGreenStrain8mm118mmTable = Table[{LP8mmX 

[[i]],GreenStrain8mm11[[i]]},{i,1,Length[LP8mmX]}]; 

 

P81=ListLinePlot[XLE118mmTable, PlotStyle-

>{Black,Thickness[0.01]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 8mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"LE11(Abaqus)"}]; 

P82=ListLinePlot[XPE118mmTable,PlotStyle->Blue,PlotRange-

>Full,PlotLabel->"STRAIN PROFILE AT 8mm HEIGHT", AxesLabel-

>{"Longitudinal Distance [mm]","Strain"},PlotLegends-

>{"PE11(Abaqus)"}]; 
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P83=ListLinePlot[XGreenStrain8mm118mmTable,PlotStyle-

>{Red,Thickness[0.003]},PlotRange->Full,PlotLabel->"STRAIN 

PROFILE AT 8mm HEIGHT", AxesLabel->{"Longitudinal Distance 

[mm]","Strain"},PlotLegends->{"GreenStrain11 (Chike)"}]; 

Show[P81,P82, P83, PlotRange->All,ImageSize->1100] 
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APPENDIX C: Mathematica code in the Circumferential 

Direction and Result Extraction. 

DataR = Import["C:\\Users\\mahya\\OneDrive\\Desktop\\Excell 

files\\4mm.xlsx"]; 

(*Sorts the input data*) 

AllData = Table[DataR[[1, i]], {i, 2, 327}]; 

LongAxis = Table[AllData[[i, 1]], {i, 1, 301}]; 

LongDisp = Table[AllData[[i, 2]], {i, 1,301}]; 

CircAxis = Table[AllData[[i, 3]], {i, 1, Length[AllData]}]; 

CircDisp = Table[AllData[[i, 4]], {i, 1, Length[AllData]}]; 

DataL = Table[{LongAxis[[i]], LongDisp[[i]]}, {i, 

Length[LongAxis]}]; 

DataC = Table[{CircAxis[[i]], CircDisp[[i]]}, {i, 

Length[CircAxis]}]; 

 

 

(*To further sort Data-Suppresed for this case*) 

 

(*DataL=Table[DataL[[i]],{i,1,Length[DataL],1}]; 

DataC=Table[DataC[[i]],{i,1,Length[DataC],1}];*) 

 

(*Input Variables*) 

 

t = 8; 

ro = (16*25.4) - t; 

 



129 

 

rom = (16*25.4) - t/2; 

 

(*Resolution of tool; 64 arms in the circ direction and readings 

at 5mm intervals on the longitudinal axis*) 

CircRes = 64; 

LongRes = 5; 

 

(*Axial Start and End Positions*) 

start = 100; 

end = 100; 

 

(*Interpolation*) 

ri = Interpolation[DataC, Method -> "Spline", InterpolationOrder 

-> 3]; 

yfunc = Interpolation[DataL, Method -> "Spline", 

InterpolationOrder -> 3]; 

 

(*Data Wrangle*) 

yi = yfunc[x] /. x -> Table[i, {i, -100, 100, LongRes}]; 

xi = Table[i, {i, -100, 100, LongRes}]; 

DataL = Table[{xi[[i]], yi[[i]]}, {i, 1, Length[yi]}]; 

 

rt = ri[th] /. th -> Table[i, {i, 0, 3.14, Pi/64}]; 

the = Table[i, {i, 0, 3.14, Pi/64}]; 

DataC = Table[{the[[i]], rt[[i]]}, {i, 1, Length[rt]}]; 
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ri = Interpolation[DataC, Method -> "Spline", InterpolationOrder 

-> 3]; 

yfunc = Interpolation[DataL, Method -> "Spline", 

InterpolationOrder -> 3]; 

 

PolarPlot[ri[th], {th, 0, 3.14}, PlotRange -> All, AxesOrigin -> 

{0, 0}, FrameLabel -> {" X (mm)", "Y (mm) "}, BaseStyle -> 

Directive[Bold, 20], Frame -> True, GridLines -> Automatic] 

 

Plot[yfunc[x], {x, -100, 100}, PlotRange -> All, AxesOrigin -> {0, 

0}, FrameLabel -> {" Axial Distance (mm)", "Radial Displacement 

"}, BaseStyle -> Directive[Bold, 20], Frame -> True, GridLines -> 

Automatic] 

 

 

(*Deformation Gradient in the Longitudinal Axis*) 

Theta1 = ArcTan[D[yfunc[x], x]]; 

u1 = {-x2*Sin[Theta1], yfunc[x] + x2*(Cos[Theta1] - 1), 0}; 

ua1 = u /. x2 -> t/2; 

ua2 = u1 /. x2 -> t/2; 

X = {x, x2, x3}; 

Gradu1 = Table[D[u1[[i]], X[[j]]], {i, 1, 3}, {j, 1, 3}]; 

 

(*Green Strain Matrix*) 

GreenStrain = 0.5*(Gradu1 + Transpose[Gradu1] + 

1*Transpose[Gradu1].Gradu1); 

 

GSB = GreenStrain[[1, 1]] /. x2 -> -t/2; 
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GST = GreenStrain[[1, 1]] /. x2 -> t/2.; 

 

(*same as from ABAQUS, with-3.14 correspomding to 180deg, and 3.14 

*) 

 

thstart = DataC[[Length[DataC], 1]]; 

thend = DataC[[1, 1]]; 

 

(*The following angles aren't used*) 

perpangle = ArcTan[D[ri[th], th]/ri[th]]; 

perpanglesmall = D[ri[th], th]/ri[th]; 

 

(*First approximation of the radius of the midsurface*) 

rm = ri[th] + t/2*Cos[perpangle]; 

rmsmall = ri[th] + t/2*Cos[perpanglesmall]; 

 

(*Arc Length as theta varies from start to end in the deformed 

configuration*) 

lmtablesmall = Table[NIntegrate[rmsmall, {th, thstart, DataC[[i, 

1]]}], {i, 1, Length[DataC]}]; 

 

romest = NIntegrate[rmsmall, {th, 0, Pi}]/(Pi); 

 

(*Arc Length as th varies from start to end in the undeformed 

configuration*) 

Oldlmtable = Table[NIntegrate[rom, {th, thstart, DataC[[i, 1]]}], 

{i, 1, Length[DataC]}]; 
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(*Table showing the value of th in the undeformed config and the 

coresponnding value in the deformed config*) 

 

thtablesmall = Table[{DataC[[i, 1]], lmtablesmall[[i]]/romest + 

thstart}, {i, 1, Length[Oldlmtable]}]; 

thnewsmall = Table[{thtablesmall[[i, 2]], thtablesmall[[i, 1]]}, 

{i, 1, Length[thtablesmall]}]; 

 

 

(*Interpolation Function relating the undeformed and the deformed 

values of theta*) 

rsmall = rmsmall + tv; 

thnewintsmall = Interpolation[thnewsmall, Method -> "Spline", 

InterpolationOrder -> 3]; 

 

perpanglesmall = D[rmsmall, th]/rmsmall; 

 

(*midline radial displacement *) 

 

urmsmall = (rmsmall /. th -> 

thnewintsmall[thold])*Cos[thnewintsmall[thold] - thold] - romest; 

 

uthmsmall = (rmsmall /. th -> 

thnewintsmall[thold])*Sin[thnewintsmall[thold] - thold]; 

cc = uthmsmall /. thold -> 0; 

uthmsmall = uthmsmall - cc; 
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(*radial displacement*) 

 

ursmall = urmsmall - tv + tv*Cos[perpanglesmall /. th -> 

thnewintsmall[thold]]; 

(*circumferential displacement*) 

 

uthsmall = uthmsmall - tv*Sin[perpanglesmall+0.00375/. th -> 

thnewintsmall[thold]]; 

 

rsmall = (rmsmall /. th -> thnewintsmall[thold]) + tv; 

 

SU = {{D[ursmall, tv], D[ursmall, thold]/rsmall - 

uthsmall/rsmall}, {D[uthsmall, tv], 1*ursmall/rsmall + 

1/rsmall*D[uthsmall, thold]}}; 

 

(*Small Strain Matrix*) 

 

SStrain = 0.5*(SU + Transpose[SU]); 

 

SStrainT = SStrain[[2, 2]] /. tv -> t/2; 

SStrainB = SStrain[[2, 2]] /. tv -> -t/2; 

 

epsCB = SStrainB /. thold ->0; 

epsCT = SStrainT /. thold -> 0; 

 

epsCB 


