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Abstract

Many applications�from planning and scheduling to problems in molec�
ular biology�rely heavily on a temporal reasoning component� In this
paper� we discuss the design and an empirical analysis of algorithms for
a temporal reasoning system based on Allen�s in�uential interval�based
framework for representing temporal information� At the core of the sys�
tem are algorithms for determining whether the temporal information is
consistent� and� if so� �nding one or more scenarios that are consistent
with the temporal information� Two important algorithms for these tasks
are a path consistency algorithm and a backtracking algorithm� For the
path consistency algorithm� we develop techniques that can result in up
to a ten�fold speedup over an already highly optimized implementation�
For the backtracking algorithm� we develop variable and value ordering
heuristics that are shown empirically to dramatically improve the perfor�
mance of the algorithm� As well� we show how the backtracking search
problem can be reformulated to reduce the time and space requirements of
the backtracking search� Taken together� the techniques we develop allow
a temporal reasoning component to solve problems that are of practical
size�
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� Introduction

Temporal reasoning is an essential part of many arti�cial intelligence tasks� It
is desirable� therefore� to develop a temporal reasoning component that is use�
ful across applications� Some applications� such as planning and scheduling�
can rely heavily on a temporal reasoning component and the success of the
application can depend on the e�ciency of the underlying temporal reasoning
component� In this paper� we discuss the design and an empirical analysis of
two algorithms for a temporal reasoning system based on Allen�s ��	 in
uen�
tial interval�based framework for representing temporal information� The two
algorithms� a path consistency algorithm and a backtracking algorithm� are
important for two fundamental tasks� determining whether the temporal infor�
mation is consistent� and� if so� �nding one or more scenarios that are consistent
with the temporal information�
Our stress is on designing algorithms that are robust and e�cient in practice�

For the path consistency algorithm� we develop techniques that can result in up
to a ten�fold speedup over an already highly optimized implementation� For the
backtracking algorithm� we develop variable and value ordering heuristics that
are shown empirically to dramatically improve the performance of the algorithm�
As well� we show how the backtracking search problem can be reformulated to
reduce the time and space requirements of the backtracking search� Taken
together� the techniques we develop allow a temporal reasoning component to
solve problems that are of realistic size� As part of the evidence to support
this claim� we evaluate the techniques for improving the algorithms on a large
problem that arises in molecular biology�
The software discussed in this paper is available from the authors� The

algorithms were implemented in C on a Sun�Unix platform�

� Representing Temporal Information

In this section� we review Allen�s framework ��	 for representing relations be�
tween intervals� We then discuss the set of problems that was chosen to test the
algorithms�

��� Allen�s framework

There are thirteen basic relations that can hold between two intervals see
Fig� �� ��� �	�� In order to represent inde�nite information� the relation between
two intervals is allowed to be a disjunction of the basic relations� Sets are used
to list the disjunctions� For example� the relation fm�o�sg between events A and
B represents the disjunction�

A meets B� � A overlaps B� � A starts B��
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Relation Symbol Inverse Meaning

x before y b bi
x y

x meets y m mi
x y

x overlaps y o oi
x

y

x starts y s si
x
y

x during y d di
x
y

x �nishes y f �
x
y

x equal y eq eq
x
y

Figure �� Basic relations between intervals

Let I be the set of all basic relations� fb�bi�m�mi�o�oi�s�si�d�di�f���eqg� Allen
allows the relation between two events to be any subset of I�
We use a graphical notation where vertices represent events and directed

edges are labeled with sets of basic relations� As a graphical convention� we
never show the edges i� i�� and if we show the edge i� j�� we do not show the
edge j� i�� Any edge for which we have no explicit knowledge of the relation is
labeled with I� by convention such edges are also not shown� We call networks
with labels that are arbitrary subsets of I� interval algebra or IA networks�

Example �� Allen and Koomen ��	 show how IA networks can be used
in non�linear planning with concurrent actions� As an example of representing
temporal information using IA networks� consider the following blocks�world
planning problem� There are three blocks� A� B� and C� In the initial state� the
three blocks are all on the table� The goal state is simply a tower of the blocks
with A on B and B on C� We associate states� actions� and properties with
the intervals they hold over� and we can immediately write down the following
temporal information�

Initial Conditions Goal Conditions

Initial fdg ClearA� Goal fdg OnA�B�
Initial fdg ClearB� Goal fdg OnB�C�
Initial fdg ClearC�

There is an action called �Stack�� The e�ect of the stack action is Onx� y��
block x is on top of block y� For the action to be successfully executed� the
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Figure �� Representing qualitative relations between intervals

conditions Clearx� and Cleary� must hold� neither block x or block y have
a block on them� Planning introduces two stacking actions and the following
temporal constraints�

Stacking Action Stacking Action

StackA�B� fbi�mig Initial StackB�C� fbi�mig Initial
StackA�B� fdg ClearA� StackB�C� fdg ClearB�
StackA�B� ffg ClearB� StackB�C� ffg ClearC�
StackA�B� fmg OnA�B� StackB�C� fmg OnB�C�

A graphical representation of the IA network for this planning problem is
shown in Fig� �a� Two fundamental tasks are determining whether the temporal
information is consistent� and� if so� �nding one or more scenarios that are
consistent with the temporal information�
An IA network is consistent if and only if there exists a mapping M of

a real interval M u� for each event or vertex u in the network such that the
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relations between events are satis�ed i�e�� one of the disjuncts is satis�ed��
For example� consider the small subnetwork in Fig� �a consisting of the events
OnA�B�� OnB�C�� and Goal� This subnetwork is consistent as demonstrated
by the assignment� M OnA�B�� � ��� �	� M OnB�C�� � ��� �	� and M Goal�
� ��� �	� If we were to change the subnetwork and insist that OnA�B� must
be before OnB�C�� no such mapping would exist and the subnetwork would be
inconsistent�
A consistent scenario of an IA network is a non�disjunctive subnetwork

i�e�� every edge is labeled with a single basic relation� that is consistent� In
our planning example� �nding a consistent scenario of the network corresponds
to �nding an ordering of the actions that will accomplish the goal of stacking
the three blocks� One such consistent scenario can be reconstructed from the
qualitative mapping shown in Fig� �b�

Example �� Golumbic and Shamir ���	 discuss how IA networks can be
used in a problem in molecular biology� examining the structure of the DNA of
an organism ��	� The intervals in the IA network represent segments of DNA�
Experiments can be performed to determine whether a pair of segments is either
disjoint or intersects� Thus� the IA networks that result contain edges labeled
with disjoint fb�big�� intersects fm�mi�o�oi�s�si�d�di�f���eqg�� or I� the set of
all basic relations�which indicates no experiment was performed� If the IA
network is consistent� this is evidence for the hypothesis that DNA is linear in
structure� if it is inconsistent� DNA is nonlinear it forms loops� for example��
Golumbic and Shamir ���	 show that determining consistency in this restricted
version of IA networks is NP�complete� We will show that problems that arise
in this application can often be solved quickly in practice�

��� Test problems

We tested how well the heuristics we developed for improving path consistency
and backtracking algorithms perform on a test suite of problems�
The purpose of empirically testing the algorithms is to determine the perfor�

mance of the algorithms and the proposed improvements on �typical� problems�
There are two approaches see ���	 for an interesting discussion�� i� collect a
set of �benchmark� problems that are representative of problems that arise in
practice� and ii� randomly generate problems and �investigate how algorithmic
performance depends on problem characteristics ��� and learn to predict how an
algorithm will perform on a given problem class� ���� p� �	�
For IA networks� there is no existing collection of large benchmark problems

that actually arise in practice�as opposed to� for example� planning in a toy
domain such as the blocks world� As a start to a collection� we propose an
IA network with ��� intervals that arose from a problem in molecular biology
��� pp� �������	� see Example �� above�� The proposed benchmark problem is
not strictly speaking a temporal reasoning problem as the intervals represent
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segments of DNA� not intervals of time� Nevertheless� it can be formulated as
a temporal reasoning problem� The value is that the benchmark problem arose
in a real application� We will refer to this problem as Benzer�s matrix�
In addition to the benchmark problem� in this paper we use two models of

a random IA network� denoted Bn� and Sn� p�� to evaluate the performance
of the algorithms� where n is the number of intervals� and p is the probability
of a non�trivial� constraint between two intervals� Model Bn� is intended
to model the problems that arise in molecular biology as estimated from the
problem discussed in ��	�� Model Sn� p� allows us to study how algorithm
performance depends on the important problem characteristic of sparseness of
the underlying constraint graph� Both models� of course� allow us to study how
algorithm performance depends on the size of the problem�
For Bn�� the random instances are generated as follows�

Step �� Generate a �solution� of size n as follows� Generate n real
intervals by randomly generating values for the end points of the inter�
vals� Determine the IA network by determining� for each pair of intervals�
whether the two intervals either intersect or are disjoint�

Step �� Change some of the constraints on edges to be the trivial con�
straint by setting the label to be I� the set of all �� basic relations�
This represents the case where no experiment was performed to determine
whether a pair of DNA segments intersect or are disjoint� Constraints are
changed so that the percentage of non�trivial constraints approximately
�� are intersects and ��� are disjoint� and their distribution in the graph
are similar to those in Benzer�s matrix�

For Sn� p�� the random instances are generated as follows�

Step �� Generate the underlying constraint graph by indicating which of
the possible 

n

�� edges is present� Let each edge be present with probability
p� independently of the presence or absence of other edges�

Step �� If an edge occurs in the underlying constraint graph� randomly
chose a label for the edge from the set of all possible labels excluding the
empty label� where each label is chosen with equal probability� If an edge
does not occur� label the edge with I� the set of all �� basic relations�

Step �� Generate a �solution� of size n as follows� Generate n real
intervals by randomly generating values for the end points of the intervals�
Determine the consistent scenario by determining the basic relations which
are satis�ed by the intervals� Finally� add the solution to the IA network
generated in Steps ����

Hence� only consistent IA networks are generated from Sn� p�� If we omit
Step �� it can be shown both analytically and empirically that almost all of the
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di�erent possible IA networks generated are inconsistent� That an IA network
is inconsistent is often easily detected� thus potentially making even the most
naive algorithm for solving the problem look promising� To avoid this potential
pitfall� we test our algorithms on consistent instances of the problem� This
method appears to generate a very reasonable test set for temporal reasoning
algorithms with problems that range from easy to hard�

� Path Consistency Algorithm

Path consistency or transitive closure algorithms ��� ��� ��	 are important for
temporal reasoning� Allen ��	 shows that a path consistency algorithm can be
used as a heuristic test for whether an IA network is consistent sometimes the
algorithm will report that the information is consistent when really it is not�� A
path consistency algorithm is useful also in a backtracking search for a consistent
scenario where it can be used as a preprocessing algorithm ���� ��	 and as an
algorithm that can be interleaved with the backtracking search ���� ��	� see
the next section�� In this section� we examine methods for speeding up a path
consistency algorithm�
The idea behind the path consistency algorithm is the following� Choose any

three vertices i� j� and k in the network� The labels on the edges i� j� and j� k�
potentially constrain the label on the edge i� k� that completes the triangle� For
example� consider the three vertices StackA�B�� OnA�B�� and Goal in Fig� �a�
From StackA�B� fmg OnA�B� and OnA�B� fdig Goal we can deduce that
StackA�B� fbg Goal and therefore can change the label on that edge from I�
the set of all basic relations� to the singleton set fbg� To perform this deduction�
the algorithm uses the operations of set intersection �� and composition �� of
labels and checks whether Cik � Cik �Cij �Cjk� where Cik is the label on edge
i� k�� If Cik is updated� it may further constrain other labels� so i� k� is added
to a list to be processed in turn� provided that the edge is not already on the
list� The algorithm iterates until no more such changes are possible� A unary
operation� inverse� is also used in the algorithm� The inverse of a label is the
inverse of each of its elements see Fig� � for the inverses of the basic relations��
We designed and experimentally evaluated techniques for improving the e��

ciency of a path consistency algorithm� Our starting point was the variation on
Allen�s ��	 algorithm shown in Fig� �� For an implementation of the algorithm
to be e�cient� the intersection and composition operations on labels must be
e�cient Steps � � ���� Intersection was made e�cient by implementing the
labels as bit vectors� The intersection of two labels is then simply the logical
AND of two integers� Composition is harder to make e�cient� Unfortunately�
it is impractical to implement the composition of two labels using table lookup
as the table would need to be of size ��� � ���� there being ��� possible labels�
We experimentally compared two practical methods for composition that

have been proposed in the literature� Allen ��	 gives a method for composition
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Path�ConsistencyC� n�

�� L� fi� j� j � � i � j � ng
�� while L is not empty�
�� do select and delete an i� j� from L
�� for k� � to n� k �� i and k �� j
�� do t� Cik �Cij �Cjk

�� if t �� Cik�
�� then Cik � t
�� Cki �Inverset�
�� L� L � fi� k�g
��� t� Ckj �Cki �Cij

��� if t �� Ckj�
��� then Ckj � t
��� Cjk �Inverset�
��� L� L � fk� j�g

Figure �� Path consistency algorithm for IA networks

which uses a table of size ��� ��� The table gives the composition of the basic
relations see ��	 for the table�� The composition of two labels is computed by
a nested loop that forms the union of the pairwise composition of the basic
relations in the labels� Hogge ���	 gives a method for composition which uses
four tables of size �� � ��� �� � ��� �� � ��� and �� � ��� The composition of
two labels is computed by taking the union of the results of four array refer�
ences H� Kautz independently devised a similar scheme�� In our experiments�
the implementations of the two methods di�ered only in how composition was
computed� In both� the list� L� of edges to be processed was implemented using
a �rst�in� �rst�out policy i�e�� a stack��
We also experimentally evaluated methods for reducing the number of com�

position operations that need to be performed� One idea we examined for im�
proving the e�ciency is to avoid the computation when it can be predicted that
the result will not constrain the label on the edge that completes the triangle�
Three such cases we identi�ed are shown in Fig� �� Another idea we examined�
as �rst suggested by Mackworth ���� p� ���	� is that the order that the edges are
processed can a�ect the e�ciency of the algorithm� The reason is the following�
The same edge can appear on the list� L� of edges to be processed many times
as it progressively gets constrained� The number of times a particular edge ap�
pears on the list can be reduced by a good ordering� For example� consider the
edges �� �� and �� �� in Fig� �a� If we process edge �� �� �rst� edge �� �� will
be updated to fo�oi�s�si�d�di�f���eqg and will be added to L k � � in Steps �����
Now if we process edge �� ��� edge �� �� will be updated to fo�s�dg and will be
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The computation� Cik � Cij � Cjk� can be skipped when it is known that the
result of the composition will not constrain the label on the edge i� k��

a� If either Cij or Cjk is equal to I� the result of the composition will be I
and therefore will not constrain the label on the edge i� k�� Thus� in Step
� of Fig� �� edges that are labeled with I are not added to the list of edges
to process�

b� If the condition�

b � Cij 	 bi � Cjk� � bi � Cij 	 b � Cjk� � d � Cij 	 di � Cjk��

is true� the result of composing Cij and Cjk will be I� The condition is
quickly tested using bit operations� Thus� if the above condition is true
just before Step �� Steps ��� can be skipped� A similar condition can be
formulated and tested before Step ���

c� If at some point in the computation of Cij �Cjk it is determined that the
result accumulated so far would not constrain the label Cik� the rest of
the computation can be skipped�

Figure �� Skipping techniques

added to L a second time� However� if we process edge �� �� �rst� �� �� will be
immediately updated to fo�s�dg and will only be added to L once�
Three heuristics we devised for ordering the edges are shown in Fig� �� The

edges are assigned a heuristic value and are processed in ascending order� When
a new edge is added to the list Steps � � ���� the edge is inserted at the
appropriate spot according to its new heuristic value� There has been little work
on ordering heuristics for path consistency algorithms� Wallace and Freuder
���	 discuss ordering heuristics for arc consistency algorithms� which are closely
related to path consistency algorithms� Two of their heuristics cannot be applied
in our context as the heuristics assume a constraint satisfaction problem with
�nite domains� whereas IA networks are examples of constraint satisfaction
problems with in�nite domains� A third heuristic due to B� Nudel ���	� closely
corresponds to our cardinality heuristic�
All experiments were performed on a Sun ���� with �� megabytes of mem�

ory� We report timings rather than some other measure such as number of
iterations as we believe this gives a more accurate picture of whether the re�
sults are of practical interest� Care was taken to always start with the same
base implementation of the algorithm and only add enough code to implement
the composition method� new technique� or heuristic that we were evaluating�
As well� every attempt was made to implement each method or heuristic as
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e�ciently as we could�
Given our implementations� Hogge�s method for composition was found to

be more e�cient than Allen�s method for both the benchmark problem and the
random instances see Figures ����� This much was not surprising� However�
with the addition of the skipping techniques� the two methods became close
in e�ciency� The skipping techniques sometimes dramatically improved the
e�ciency of both methods� The ordering heuristics can improve the e�ciency�
although here the results were less dramatic� The cardinality heuristic and
the constraintedness heuristic were also tried for ordering the edges� It was
found that the cardinality heuristic was just as costly to compute as the weight
heuristic but did not out perform it� The constraintedness heuristic reduced
the number of iterations but proved too costly to compute� This illustrates the
balance that must be struck between the e�ectiveness of a heuristic and the
additional overhead the heuristic introduces�
For Sn� p�� the skipping techniques and the weight ordering heuristic to�

gether can result in up to a ten�fold speedup over an already highly optimized
implementation using Hogge�s method for composition� The largest improve�
ments in e�ciency occur when the IA networks are sparse p is smaller�� This is
encouraging for it appears that the problems that arise in planning and molec�
ular biology are also sparse� For Bn� and Benzer�s matrix� the speedup is
approximately four�fold� Perhaps most importantly� the execution times re�
ported indicate that the path consistency algorithm� even though it is an On��
algorithm� can be used on practical�sized problems�
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� Backtracking Algorithm

Allen ��	 was the �rst to propose that a backtracking algorithm ���	 could be
used to �nd a consistent scenario of an IA network� In the worst case� a back�
tracking algorithm can take an exponential amount of time to complete� This
worst case also applies here as Vilain and Kautz ���� ��	 show that �nding a
consistent scenario is NP�complete for IA networks� In spite of the worst case
estimate� backtracking algorithms can work well in practice� In this section� we
examine methods for speeding up a backtracking algorithm for �nding a consis�
tent scenario and present results on how well the algorithmperforms on di�erent
classes of problems� In particular� we compare the e�ciency of the algorithm
on two alternative formulations of the problem� one that has previously been
proposed by others and one that we have proposed ���	� We also improve the
e�ciency of the algorithm by designing heuristics for ordering the instantiation
of the variables and for ordering the values in the domains of the variables�
As our starting point� we modeled our backtracking algorithm after that of

Reinefeld and Ladkin ���	 as the results of their experimentation suggests that
it is very successful at �nding consistent scenarios quickly� Following Reinefeld
and Ladkin our algorithm has the following characteristics� preprocessing us�
ing a path consistency algorithm� static order of instantiation of the variables�
chronological backtracking� and forward checking or pruning using a path con�
sistency algorithm� In chronological backtracking� when the search reaches a
dead end� the search simply backs up to the next most recently instantiated
variable and tries a di�erent instantiation� Forward checking ���	 is a technique
where it is determined and recorded how the instantiation of the current vari�
able restricts the possible instantiations of future variables� This technique can
be viewed as a hybrid of tree search and consistency algorithms see ���� ��	��
See ��	 for a general survey on backtracking��

Alternative formulations� Let C be the matrix representation of an IA
network� where Cij is the label on edge i� j�� The traditional method for
�nding a consistent scenario of an IA network is to search for a subnetwork S
of a network C such that�

a� Sij 
 Cij�

b� jSij j � �� for all i� j� and

c� S is consistent�

To �nd a consistent scenario we simply search through the di�erent possible S�s
that satisfy conditions a� and b��it is a simple matter to enumerate them�
until we �nd one that also satis�es condition c�� Allen ��	 was the �rst to
propose using backtracking search to search through the potential S�s�
Our alternative formulation is based on results for a restricted class of IA

networks ���	� denoted here as SA networks� In IA networks� the relation be�
tween two intervals can be any subset of I� the set of all thirteen basic relations�
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In SA networks� the allowed relations between two intervals are only those sub�
sets of I that can be translated� using the relations f�� �� �� �� �� ��g� into
conjunctions of relations between the endpoints of the intervals� For example�
the IA network in Fig� �a is also an SA network� As a speci�c example� the
interval relation �A fbi�mig B� can be expressed as the conjunction of point re�
lations� B� � B��	 A� � A��	 A� � B��� where A� and A� represent the
start and end points of interval A� respectively� See ���� ��	 for an enumeration
of the allowed relations for SA networks��
Our alternative formulation is as follows� Rather than search directly for a

consistent scenario of an IA network� as in previous work� we �rst search for
something more general� a consistent SA subnetwork of the IA network� That
is� we use backtrack search to �nd a subnetwork S of a network C such that�

a� Sij 
 Cij�

b� Sij is an allowed relation for SA networks� for all i� j� and

c� S is consistent�

In previous work� the search is through the alternative singleton labelings of an
edge� i�e�� jSijj � �� The key idea in our proposal is that we decompose the labels
into the largest possible sets of basic relations that are allowed for SA networks
and search through these decompositions� This can considerably reduce the size
of the search space� For example� suppose the label on an edge is fb�bi�m�o�oi�sig�
There are six possible ways to label the edge with a singleton label� fbg� fbig�
fmg� fog� foig� fsig� but only two possible ways to label the edge if we decompose
the labels into the largest possible sets of basic relations that are allowed for
SA networks� fb�m�og and fbi�oi�sig� As another example� consider the network
shown in Fig� �a� When searching through alternative singleton labelings� the
worst case size of the search space is C�� � C�� � � � � � C�� � ��� the edges
labeled with I must be included in the calculation�� But when decomposing
the labels into the largest possible sets of basic relations that are allowed for
SA networks and searching through the decompositions� the size of the search
space is �� so no backtracking is necessary in general� the search is� of course�
not always backtrack free��
To test whether an instantiation of a variable is consistent with instantiations

of past variables and with possible instantiations of future variables� we use an
incremental path consistency algorithm in Step � of Fig� � instead of initializing
L to be all edges� it is initialized to the single edge that has changed�� The result
of the backtracking algorithm is a consistent SA subnetwork of the IA network�
or a report that the IA network is inconsistent� After backtracking completes�
a solution of the SA network can be found using a fast algorithm given in ���	�

Ordering heuristics� Backtracking proceeds by progressively instantiating
variables� If no consistent instantiation exists for the current variable� the search
backs up� The order in which the variables are instantiated and the order in
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Weight� The weight heuristic is an estimate of how much the label on an edge
will restrict the labels on other edges� Restrictiveness was measured for each
basic relation by successively composing the basic relation with every possible
label and summing the cardinalities of the results� The results were then suitably
scaled to give the table shown below�

relation b bi m mi o oi s si d di f � eq

weight � � � � � � � � � � � � �

The weight of a label is then the sum of the weights of its elements� For example�
the weight of the relation fm�o�sg is �  �  � � ��

Cardinality� The cardinality heuristic is a variation on the weight heuristic�
Here� the weight of every basic relation is set to one�

Constraint� The constraintedness heuristic is an estimate of how much a
change in a label on an edge will restrict the labels on other edges� It is de�
termined as follows� Suppose the edge we are interested in is i� j�� The con�
straintedness of the label on edge i� j� is the sum of the weights of the labels
on the edges k� i� and j� k�� k � �� ���� n� k �� i� k �� j� The intuition comes
from examining the path consistency algorithm Fig� �� which would propagate
a change in the label Cij� We see that Cij will be composed with Cki Step ��
and Cjk Step ���� k � �� ���� n� k �� i� k �� j�

Figure �� Ordering heuristics

which the values in the domains are tried as possible instantiations can greatly
a�ect the performance of a backtracking algorithm and various methods for
ordering the variables e�g� ��� �� ��	� and ordering the values e�g� ��� ��� ��	�
have been proposed�
The idea behind variable ordering heuristics is to instantiate variables �rst

that will constrain the instantiation of the other variables the most� That
is� the backtracking search attempts to solve the most di�cult most highly
constrained� part of the network �rst� Three heuristics we devised for ordering
the variables edges in the IA network� are shown in Fig� �� For our alternative
formulation� cardinality is rede�ned to count the decompositions rather than
the elements of a label� The variables are put in ascending order� In our
experiments the ordering is static�it is determined before the backtracking
search starts and does not change as the search progresses� In this context� the
cardinality heuristic is similar to a heuristic proposed by Bitner and Reingold
��	 and further studied by Purdom ���	�
The idea behind value ordering heuristics is to order the values in the do�

mains of the variables so that the values most likely to lead to a solution are tried
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Figure ��� E�ect of decomposition method on average time sec�� of backtrack�
ing algorithm� ��� tests each on random instances of IA networks drawn from
Bn�

�rst� Generally� this is done by putting values �rst that constrain the choices for
other variables the least� Here we propose a novel technique for value ordering
that is based on knowledge of the structure of solutions� The idea is to �rst solve
a small set of problems from a class of problems without using value ordering�
Once we have a set of solutions� we examine the solutions and determine which
values in the domains are most likely to appear in a solution and which values
are least likely� This information is then used to order the values in subsequent
searches for solutions to problems from this class of problems� This technique
can be used whenever something is known about the structure of solutions�

Experiments� All experiments were performed on a Sun ���� with �
megabytes of memory�
The �rst set of experiments� summarized in Fig� ��� examined the e�ect of

problem formulation on the execution time of the backtracking algorithm� We
implemented two versions of the algorithm that were identical except that one
searched through singleton labelings and the other searched through decompo�
sitions of the labels into the largest possible allowed relations for SA networks
denoted SI and SA in Fig� ���� Both methods solved the same set of random
problems drawn from Bn� and both methods were also applied to Benzer�s
matrix denoted  and � in Fig� ���� For each problem� the amount of time
required to solve the given IA network was recorded� As mentioned earlier� each
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Figure ��� E�ect of variable and value ordering heuristics on time sec�� of
backtracking algorithm� Each curve represents ��� tests on random instances
of IA networks drawn fromS���� ���� where the tests are ordered by time taken
to solve the instance� The backtracking algorithm used the SA decomposition
method�

IA network was preprocessed with a path consistency algorithm before back�
tracking search� The timings include this preprocessing time� The experiments
indicate that the speedup by using the SA decomposition method can be up
to three�fold� As well� the SA decomposition method was able to solve larger
problems before running out of space n � ��� versus n � �����
The second set of experiments� summarized in Fig� ��� examined the e�ect

on the execution time of the backtracking algorithm of heuristically ordering
the variables and the values in the domains of the variables before backtracking
search begins� For variable ordering� all six permutations of the cardinality� con�
straint� and weight heuristics were tried as the primary� secondary� and tertiary
sorting keys� respectively� As a basis of comparison� the experiments included
the case of no heuristics� Fig� �� shows approximate cumulative frequency curves
for some of the experimental results� Thus� for example� we can read from the
curve representing heuristic value ordering and best heuristic variable ordering
that approximately ��� of the tests completed within �� seconds� whereas with
random value and variable ordering only approximately �� of the tests com�
pleted within �� seconds� The curves are truncated at time � ���� ��� hour��
as the backtracking search was aborted when this time limit was exceeded�
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In our experiments we found that S���� ���� represents a particularly dif�
�cult class of problems and it was here that the di�erent heuristics resulted
in dramatically di�erent performance� both over the no heuristic case and also
between the di�erent heuristics� With no value ordering� the best heuristic
for variable ordering was the combination constraintedness�weight�cardinality
where constraintedness is the primary sorting key and the remaining keys are
used to break subsequent ties� Somewhat surprisingly� the best heuristic for
variable ordering changes when heuristic value ordering is incorporated� Here
the combination weight�constraintedness�cardinality works much better� This
heuristic together with value ordering is particularly e�ective at �
attening out�
the distribution and so allowing a much greater number of problems to be solved
in a reasonable amount of time� For S���� p�� where p � �� ���� ���� and ����
the problems were much easier and all but three of the hundreds of tests com�
pleted within �� seconds� In these problems� the heuristic used did not result
in signi�cantly di�erent performance�
The experiments indicate that a good heuristic orderings can be essential to

being able to �nd a consistent scenario of an IA network in reasonable time� The
experiments also provide additional evidence for the e�cacy of Reinefeld and
Ladkin�s ���	 algorithm� Nevertheless� even with all of our improvements� some
problems still took a considerable amount of time to solve� On consideration�
this is not surprising� After all� the problem is known to be NP�complete�

� Conclusions

Temporal reasoning is an essential part of tasks such as planning and schedul�
ing� In this paper� we discussed the design and an empirical analysis of two key
algorithms for a temporal reasoning system� The algorithms are a path consis�
tency algorithm and a backtracking algorithm� The temporal reasoning system
is based on Allen�s ��	 interval�based framework for representing temporal infor�
mation� Our emphasis was on how to make the algorithms robust and e�cient
in practice on problems that vary from easy to hard� For the path consistency
algorithm� the bottleneck is in performing the composition operation� We de�
veloped methods for reducing the number of composition operations that need
to be performed� These methods can result in almost an order of magnitude
speedup over an already highly optimized implementation of the algorithm� For
the backtracking algorithm� we developed variable and value ordering heuris�
tics and an alternative formulation of the problem that can considerably reduce
the time taken to �nd a solution� The techniques allow an interval�based tem�
poral reasoning system to be applied to larger problems and to perform more
e�ciently in existing applications�
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