
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity  o f  A lb erta

H i e r a r c h ic a l  P r o b a b i l is t ic  R e l a t io n a l  M o d e l s  f o r  R e c o m m e n d e r  S y s t e m s

by

Jack  N ew ton

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment 
of the requirements for the degree of M aste r o f  Science.

Department of Computing Science

Edmonton, Alberta 
Spring 2005

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



1 * 1
Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington S treet 
Ottawa ON K1A 0N4 
C anada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I’edition

395, rue Wellington 
Ottawa ON K1A 0N4 
C anada

0-494-08127-9

Your file Votre reference 
ISBN:
Our file Notre reference 
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur conserve la propriete du droit d’auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n’y aura aucun contenu manquant

■+i

Canada
R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Only those who risk going too far can possibly find out how far one can go.
T.S. Eliot

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



To my family.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



A bstract

In this thesis we describe an approach to the recommender system problem based on the 

Probabilistic Relational Model framework.

Traditionally, recommender systems have fallen into two broad categories: content-based- 

and collaborative-filtering- based recommender systems, each of which has a distinct set of 

strengths and weaknesses. We present a sound statistical framework for integrating both 

of the above approaches, which allows the strengths of one system to help mitigate the 

weaknesses of the other.

To accomplish this god we apply the framework of Probabilistic Relational Models 

(PRMs) to the recommender system problem domain. We begin by applying standard PRMs 

(sPRMs) to the EaehMovie recommender system dataset, which uncovers several severe 

limitations of the sPRM framework. We then apply an extension of PRMs called Hierarchical 

PRMs (hPRMs) to the recommender problem, which from a theoretical perspective should 

address several of the limitations of sPRMs. We show through empirical results that hPRMs 

do, in fact, achieve superior results on the EaehMovie dataset.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgem ents

First, I would like to thank Russ Greiner for his support as a supervisor, and for allowing 
me to pursue a thesis topic that was new (and, I think, challenging) to both of us. Russ’ 
steady encouragement and keen intellect helped me through some of the tougher parts of 
this work.

Rob Holte has also been a big influence; working for Rob as a  Research Assistant taught 
me many things about running and analyzing experiments. Rob also help put me in touch 
with Lise Getoor, who was an invaluable resource when I was originally learning about 
PRMs. Without Lise’s help, the many complexities and nuances of implementing a PRM 
system likely would have been overwhelming; her willingness to co-operate and her encour­
agement to pursue these experiments helped make this thesis topic a  reality.

Finally, I would like to thank my wife Tonia and my family for their support throughout 
the process of writing this thesis.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C ontents

1 Introduction 1

2 Framework 5
2.1 O v e rv iew ................................................................................................................... 6
2.2 Bayesian N etw orks..................................................................................................  6

2.2.1 Bayesian Network L earn ing .......................................................................  8
2.2.2 Bayesian Network Inference.......................................................................  9

2.3 Probabilistic Relational M odels ................................................................................ 10
2.3.1 Learning P R M s.................................................................................................13
2.3.2 PRM Inference.................................................................................................15

2.4 Hierarchical Probabilistic Relational M odels...........................................................16
2.4.1 O verv iew .......................................................................................................... 17
2.4.2 Learning h P R M s..............................................................................................19

2.5 hPRM In fe re n c e .........................................................................................................19

3 Applying P R M s to  the Recom mender System  Dom ain 20
3.1 O v e rv ie w ..................................................................................................................... 21

3.1.1 Database Connectivity.................................................................................... 21
3.1.2 Schema Metadata .......................................................................................... 22

3.2 Inference........................................................................................................................ 24
3.3 Applying Standard PRMs to the EaehMovie D a ta se t ........................................... 25
3.4 Applying hPRMs to the EaehMovie D a tase t...........................................................26
3.5 The Tadpole S y s te m ...................................................................................................26

4 Empirical R esults 28
4.1 Experimental D esign ...................................................................................................29
4.2 Evaluation C rite ria ......................................................................................................29
4.3 Standard PR M s............................................................................................................ 31
4.4 Hierarchical P R M s ...................................................................................................... 31

5 Literature R eview  33
5.1 Pure Collaborative Filtering Methods .................................................................... 34
5.2 Content-Based M eth o d s ............................................................................................. 37
5.3 Combined A pproaches................................................................................................38

6 Conclusion 40
6.1 Future W o r k ............................................................................................................... 41
6.2 Contributions............................................................................................................... 42

Bibliography 44

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Personalized recommender systems, which recommend specific products (e.g., books, 

movies) to individuals, have become very prevalent — see the success of widely used sys­

tems like Amazon.com’s book recommender and Yahool’s LAUNCHcast music recommender 

system. The main challenge faced by these system is predicting what each individual will 

want.

Recommender systems can be broadly broken up into two categories: content-based- and 

collaborative-filtering- based recommender systems.

A pure content-based recommender will base this on only facts about the products them­

selves and about the individual (potential) purchaser. This enables us to express each possi­

ble purchase as a simple vector of attributes, some about the product and others about the 

person. If we also know who previously liked what, we can view this as a  standard labelled 

data sample, and use standard machine learning techniques [20] to learn a classifier, which 

we can later use to determine whether a  person will like some (novel) item.

To make this concrete, consider a movie recommendation system that tries to determine 

whether a specified person will like a specified movie — e.g., will John like Star Wars (SW)? 

A content-based system could use a  large PersonxMoviexVote database, where each tuple 

lists facts about a person (e.g., age, gender), then facts about a  movie (e.g., genre, box office 

gross), together with a vote of that person, on a  specific movie (e.g., a number between 0 

and 5). We could use this dataset to learn a  classifier that predicts this vote, based on facts 

about a  person and movie — here about John and about SW. There have been a  number 

of such systems based on clustering [2] and Bayesian Models [3], among other technologies. 

Notice this prediction does not explicitly consider other people (especially people “similar” 

to John) or other movies (similar to SW).

The other main class of recommender system, collaborative filtering, addresses this de­

ficiency by using associations: If person P I appears similar to person P2 (perhaps based 

on their previous “liked movies”), and P2 liked X, then perhaps P I will like X as well. A 

pure collaborative filtering-based system would use only a matrix, whose (i, j )  element is the 

vote that person i gives to movie j ,  which could be unknown. The challenge, then, is using 

this matrix effectively, to acquire the patterns that will help us predict future votes. While 

there are a  number of other techniques that have proven effective here, such as clustering, 

PCA, and K-nearest-neighbor [29, 28], notice classical Machine Learning techniques do not 

work here, as there is no simple way to map this matrix into a  simple fixed-size vector of 

attributes.

Of course, we would like to use both content and collaborative information — i.e., include,

2

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



as training data, facts about the people, facts about the movies, and a set of (P, M, V) 

records, which each specifies that person P gave movie M the vote of V. This would not only 

provide a  more complete view of a  user’s preferences, but would also mitigate the inevitable 

failure of a purely vote-based system in the case where a user has voted on zero (or very 

few) items [13]. The challenge is how to use all of this information to predict how John 

will vote on SW. Here, we want to not only use facts about John and about SW, but also to 

find and exploit collaborative properties, that deal with people s im ila r  to John (in terms of 

liking similar movies), and movies similar to SW (in terms of being liked by similar people).

Stepping back, the challenge here is learning a distribution over a  set of relations, de­

scribing sets of people and sets of products, as well as their votes (for those familiar with 

relational database theory, the concept of relations maps nicely to the idea of tables in a 

relational databases, and the tables are linked together in various kinds of relationships). 

This is quite different from the classical machine learning challenge of learning distributions 

over tuples (i.e., individual rows of a single relational database), which are iid. That is, while 

standard techniques seek relationships within a row, (e.g., relating a.Vote to a.PersonGender 

and a.MovieType), our collaborative system needs to reason across rows — e.g., to decide 

that John (described in one row) is sufficiently like George (described in another row) that 

we use facts about George to make inferences about John. Another natural inter-row appli­

cation is based on sets of rows: e.g., we might use the fact that the set of people with some 

characteristic (e.g., Age=teenage, Gender=male) typically like members of a set of movies 

with some other characteristic (e.g., Genre=action). Furthermore, we want to model rela­

tionships between relations; for example, a person’s age may influence his/her vote on an 

fiction movie.

Probabilistic Relational Models (PRMs) [15] provide a cohesive statistical framework 

designed to address exactly this type of relational learning and inference problem. This dis­

sertation shows that PRMs can be successfully applied to this learning scenario, in the con­

text of the Recommendation task. We examine the effectiveness of standard PRMs applied 

to the recommendation task on the EaehMovie [8] dataset, then evaluate the effectiveness 

of an extended version of PRMs called “hierarchical PRMs” (hPRMs) [11]. Our empirical 

results show that standard PRMs can achieve competitive results on the recommendation 

task, and then that hPRMs can outperform standard PRMs here.

Section 2 provides an overview of the probabilistic models we use in this thesis. We begin 

by introducing Bayesian Networks, and describe how we can learn and perform inference 

on Bayesian Networks. We then proceed to describe standard PRMs, and how learning

3

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



and inference apply in this context. Finally, we introduce an extension to standard PRMs, 

hierarchical PRMs, which can enrich the expressiveness and effectiveness of PRMs through 

the use of learned class hierarchies.

In section 3, we describe our implementation of an (h)-PRM learning and inference 

system, which we call tadpole. This dissertation presents the first implementation and 

experiments with hierarchical PRMs. Furthermore, in this section we describe how we apply 

standard and hierarchical PRMs to the recommender system problem, and in particular 

describe how we map these models to  a specific instance of a  recommender system dataset, 

the EaehMovie dataset.

Section 4 presents the results of applying our framework to the EaehMovie dataset, 

and compares standard and hierarchical PRMs with one another, as also presents results 

comparing these algorithms against other recommender system algorithms.

Finally, in section 5, we present an overview of other approaches that have been taking 

in the recommender system domain, and compare and contrast these methods with our own.

4

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 2 

Framework

5

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



S m oker

C an ce r

Smoker P(Smoker)

No 0.75
Ught 0.15

Heavy 0.10

S m o k f P(Cancer)

None Benign Malignant
No 0.96 0.03 0.01

Ugm 0.38 0.08 0.04

Heavy 0.60 0.25 0.15

Figure 2.1: A simple Bayesian Network

2.1 Overview

In this section we will describe the theoretical framework for our work.

We will begin by describing Bayesian Networks in section 2.2, since PRMs can be viewed 

as a relational extension of Bayesian Networks. We will also describe the Bayesian Network 

inference task as well as several well-known inference algorithms, as the algorithms are also 

used to perform inference on models generated by PRMs.

In section 2.3 we will define standard PRMs (sPRMs), and describe how they extend 

the Bayesian Network framework.

Finally, in section 2.4 we will describe Hierarchical PRMs, and show how they improve 

the expressiveness and utility of sPRMs.

2.2 Bayesian Networks

Bayesian Networks (BNs) [23] are a graphical representation of a  joint probability dis­

tribution. Each BN encodes a  compact description of a  joint probability distribution by 

leveraging the conditional independence structure of many problem domains. That is, by 

taking advantage of the fact tha t a  given variable is generally affected by only a handful of 

other variables, we are able to  encode a vastly reduced representation of the dependencies 

described by a joint probability distribution.

Figure 2.1 shows an example of a simple BN.

In general, a  BN B =  {<?,<?} consists of two components. The first component is a 

directed acyclic graph (DAG) Q, representing the dependency structure of the BN. The 

nodes in Q correspond to the attributes A \ , . . .  ,An, which can each be viewed as a  random

6

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Gender

Age

Smoker

Parent with Cancer

Cancer

Figure 2.2: A More Complex Bayesian Network

variable.

In our simple example, we have two attributes: Smoker, and Cancer. Additionally, each 

attribute has a fixed space of possible values, which we denote V(.4j). In our example, 

V(Smoker) =  {No, Light, Heavy}, and V{Cancer) = {None, Benign, M alignant}

The edges in Q represent a  direct dependence of Ai on its parents Pa(Ai). In Figure 2.2 

the Cancer attribute depends directly on three variables: Exposure to Asbestos, Smoker, 

and Parent with Cancer.

The second component of a  BN is the set of parameters 6 that associates a Conditional 

Probability Distribution (CPD) with each node in Q. The CPD for a  node Ai specifies a 

probability distribution over the values of A< for every possible assignment to its parents 

Pa(A,-). Using standard probability notation, we can denote the CPD for a node .4; as 

PiAilPaiA i)).

A CPD can be represented in a  variety of ways. A relatively simple encoding of a CPD 

is a conditional probability table (CPT), as shown in Figure 2.1. In the case of Smoker, 

which has no parent node, the CPT simply encodes the prior probability of the vari­

ous values. For the Cancer node, the probability of every possible outcome enumerated 

for every possible combination of the parent node’s values. For example, in Figure 2.1 

P{Cancer =  Benign\Smoker =  Heavy) =  0.25. Alternative encodings for CPDs are possi­

ble; for example, Conditional Probability Trees encode the probability distribution as a tree, 

which in some cases can reduce storage requirements for the CPD [1].

Typically, Bayesian Networks are significantly more complex than the network depicted 

in Figure 2.1; a BN that extends this model is shown in Figure 2.2 (we have excluded the

7

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



CPDs from this example for simplicity).

The main characteristic of a Bayesian Network that allows it to efficiently encode a 

join probability distribution is the conditional independence assumptions that the graphical 

structure Q encodes: every node Ai is conditionally independent of its non-descendants 

given its parents. For example, in Figure 2.2, the probability of Cancer is conditionally 

independent of Age, Gender, and Education given the value of Smoker.

Together with the parameters S , the conditional independence assumptions encoded by 

Q defines a complete joint distribution by using the chain rule:

n

P s(A u . . . , A n) =  n  P 5 (* |P a(i4 0 ) (2.1)
i=l

2.2.1 Bayesian Network Learning

Learning Bayesian Networks can be looked at as two distinct tasks: learning “optimal” 

parameters (i.e. CPDs) for a fixed network structure, and learning an “optimal” structure 

from data.

Learning Param eters

In a generative framework, learning Bayesian Network parameters, namely the conditional 

probability distributions, for a fixed structure, is a matter of maximizing the likelihood of 

the data (which contains M cases) for each of the n  nodes:

.  n  ML = M  E E log(P(Xi\Pa(Xi), Dm)) (2.2)
i=l m=l

Given complete data (i.e., no data is missing from the training set of data), parameter 

estimation is a  fairly straightforward task (in this thesis, we only consider situations where we 

have complete data; incomplete data could be handled using techniques such as Expectation 

Maximization) [7].

A nice property of the log-likelihood function is that it decomposes in such a  way that 

we axe able to maximize the log-likelihood of each node independently. The maximum 

likelihood estimate for a given CPT also has the nice property that the maximum likelihood 

parameters are simply the frequency counts for a  given value and its parents’ values in the 

data. These frequency counts are also called sufficient statistics.

In some cases the sufficient statistics alone are not informative; for example, consider a 

dataset where a  potential combination of a  child/parent values does not exist - this would 

have a count of 0, and thus create a probability entry of “0.0” in the CPT for that variable.

8

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



However, we need to consider the implication of this: we are saying the given variable 

combination will never occur. Given a limited amount of training data, it could be quite 

likely that a possible event has simply never been observed, and should thus have a small 

(non-zero) probability that becomes vanishingly small as we see more observations that 

prove the event is unlikely.

Dirichlet priors give us a mechanism to handle this uncertainty by defining a prior for 

each variable of interest. We can set up "imaginary” observations for an event, which is our 

prior prediction of the likelihood of an event; as the number of real observations increase, 

the effect of this prior gets “washed out”. For a  more detailed explanation of Dirichlet 

distributions, see [10].

Learning Structure

Learning a Bayesian Network structure is a more challenging proposition than simply finding 

the maximum likelihood parameters for a  fixed network structure.

There is no way of efficiently finding the best model for a given dataset; in general, we 

must resort to searching for a model using a scoring function that informs us how good this 

model is. A common search heuristic is to start with a model with no links between nodes, 

and to begin adding parents with fitted parameters to nodes, and scoring the resulting 

network [26]. Other than just adding arcs to the graph, we could also consider reversing or 

deleting existing arcs. Certain constraints must be placed on this search process, as we must 

avoid introducing cycles into the graph (otherwise the Bayesian Network will not represent 

a well-formed probability distribution).

While it may seem we want to generate a  network with maximum likelihood, optimizing 

against this sole metric will result in a  fully connected network [26]; instead, we must 

somehow balance the likelihood of the model against the model’s complexity. A wide variety 

of metrics that attempt to balance a  model’s likelihood against the model’s complexity have 

been used in practice; for a good overview of these methods see [12] or [30].

2.2.2 Bayesian Network Inference

Given that a Bayesian Network models a  joint probability distribution, one of the frequent 

uses for a Bayesian Network is to determine probabilities for a  given variable (or variables) 

given the value(s) of other variables. Consider our running Smoker example; a typical 

question we may want to ask of this network is ” given that a male individual is a heavy 

smoker, has been exposed to asbestos, and has no parents that smoke, what is the probability 

that he will develop cancer?”

9

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



The processes of arriving at an answer to this kind of question using a Bayesian Network 

is called Bayesian Network Inference. More precisely, Bayesian Network inference calculates 

the posterior probability distribution for a set of query variables (Cancer in this case) given 

assignments to a  set of evidence variables.

For small networks, a wide variety of exact inference algorithms exist [12]. The most 

elementary exact inference algorithm would compute sums of products of conditional prob­

abilities from the network [26]. This basic approach is amenable to many optimizations, 

such as the bucket elimination algorithm, which eliminates variables that are irrelevant to 

the query in order to reduce the overall number of calculations required to perform inference 

[6],

Unfortunately, even with the optimizations that result from leveraging the conditional 

independence encoded by a Bayesian Network, exact inference in an arbitrary Bayesian 

Network for discrete variables is NP-hard [4]. Although certain restricted forms of Bayesian 

Network structures, such as polytrees, are amenable to efficient inference, exact inference in 

large, multiply-connected networks is intractable.

In practice, inference on large, multiply-connected networks is performed using approx­

imate inference methods. These methods are not guaranteed to give the correct answer for 

a  given query, but often return values that are close to the true values [26]. One of the most 

important approximation algorithms is the loopy belief propagation algorithm originally in­

troduced by Pearl [24], This message-passing algorithm has recently been shown to be both 

fast and accurate on very large and highly connected networks [22].

2.3 Probabilistic Relational M odels
A PRM can encode class-level dependencies that can subsequently be used to make infer­

ences about a particular instance of a class. For example, we might connect (the class of) 

teenage boys to (the class of) action movies, then use that to infer that the teenage boy 

John will like the action movie SW. Of course, we could do something like that in a  stan­

dard Belief Network, by first transforming this relational information into a non-structured, 

propositionalized form.

By performing this propositionalization we lose the rich relational structure and intro­

duce statistical skews [11].

To see how this skew is introduced, consider the diagram in Figure 2.3. Although Jim  

only appears once as an object in the relational representation, taking the cross-product 

over all the tables in the relational representation to produce the propositionalized (flat-file)

10

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Relational Representation
Person Purchase Product

Name ProdlD
Jim 1

Jim 1

Jim 1

Sandy 2
Dave 3
Dave 4

Name Age
Jim 20

Sara 29

Sandy 58

Dave 20

ID Description
1 Gloves

2 Jacket

3 Socks
4 Jeans

Flat-File Representation
Name Age Product
Jim 20 Gloves
Jim 20 Gloves
Jim 20 Gloves
Sandy 29 Jacket
Dave 20 Socks
Dave 20 Jeans

Figure 2.3: Propositionalizing relational data

representation results in three occurrences of Jim  in the propositionalized representation. If 

a  simple Bayesian Network were to be learned on this propositionalized dataset, the concept 

of Jim  as a single object would be lost; instead, the learning algorithm would likely learn a  

model that indicates 20 year-olds like gloves; however, this isn’t really the case - Jim  is the 

only 20 year-old that has bought gloves in our database! However, by propositionalizing the 

data we have skewed the data in favour of individuals that have made multiple purchases. 

With a  relational model, we are able to account for the fact that Jim  is a single object in 

our database; since we never need to produce a propositionalized view of our data when 

learning a PRM, we avoid introducing these skews.

Since PRM can be learned directly on a relational database, we are able to retain and 

leverage the rich structure contained therein.

Following [11], we view PRM as a pair II =  (S ,6 s ) defined over a Relational Schema 

Cl = (X.TZ), where S  is the qualitative dependency structure of the PRM and ds is the 

set of associated parameters. Here, X  = { X i,. . .  ,X„} is a set of classes and, for each X , 

TZ{X) =  {pi} is a  set of reference slots that define the relationships between class X  and 

other classes.

Each class X  €  X  is composed of a set of descriptive attributes -A(X) € A , which in turn

11

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



take on a  range of values V(X .A). For example, consider a schema that models movies, 

people, and the votes that people provide for movies. This schema has three classes: Vote, 

Person, and Movie. For the Vote class, the single descriptive attribute is Score with values 

{0,. . . ,5 } ;  i.e., A(Vote) =  Score, and V(Score) = { 0 ,...,5 } ; for Person two sample de­

scriptive attributes are Age and Gender, which take on values {young, m iddle-aged, old} 

and {Male, Female} respectively; and for Movie, one descriptive attribute is Eating, which 

takes on values {G, PG, M, R}. Furthermore, a  class can be associated with a set of ref­

erence slots, 1Z{X) =  {pi, . . . ,  pfc}. The reference slot X.p  defines how objects of class 

X  are related to objects in other classes in the relational schema (in relational database 

terminology, a reference slot is analogous to a foreign key). Continuing our example, the 

Vote class would be associated with two reference slots: Vote.ofPerson, which defines a 

link from a Vote object to a specific Person object; and Vote.ofMovie, which defines a link 

from a  Vote object to  a  specific Movie object. A sequence of one or more reference slots 

can composed to form a  reference slot chain, r  = pi o - • • o pt , and attributes of related 

objects can be denoted by using the shorthand X .t .A, where A is a descriptive attribute of 

the related class. For example, Vote.ofPerson.Gender refers to the gender attribute of the 

Person associated with a  given Vote object. To make this concrete, consider a  Vote object 

with identifier number 254 that describes John's vote on the movie StarWars. In this case, 

Voteo5 4  .o f Person — John, and Voteo^ .o f Movie =  StarW ars

For each instance x  (of type A), and each A  €  A (X ), we view x .A  as a random variable, 

whose distribution is determined by the PRM’s dependency structure S  and parameters Os- 

This dependency structure S , specifies the parents Pa(X.A) for each attribute X .A , where 

each parent is a  descriptive attribute, which can be within the class X, or within another 

class Y that is reachable through a reference slot chain. For example, Figure 2.4(a) shows 

Person.Education has the single parent Person.Age, and Vote.Score has many parents, 

including Vote.ofPerson.Gender (recall Vote.ofPerson refers to the person associated with 

a  particular vote object).

The PRM II =  (5 ,9 s )  also associates a  conditional probability distribution (CPD) with 

each attribute X .A , which specifies the conditional probability of this variable given each 

assignment to its parents Pa(X.A) — i.e., Pn{X.A\Pa(X.A)). Returning to Figure 2.4(a), 

this might state that Pn (Person.Age =  c h ild  | Person-Education =  PhD) =  0.0, and 

Pn (Person.Age =  teenager | Person-Education =  highSchool) =  0.3, etc. (To understand 

this, suppose all we know about (the Person) Fred is that he has Fred.Education=PhD. We 

can then infer Pn (Fred.Age =  c h ild  | Fred.Education =  PhD) =  0.0.) In general, we can

12

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Vote

Person

Gender

Cduestion

Ag* StafWara.ltaBterSatî

JOfuteducadon

8tarWar».Vid«oStBtua

a) b )

Figure 2.4: (a) Standard PRM learned on EaehMovie dataset (6) Ground Bayesian Network 
for one Vote object

view the structure as a Bayesian Net; we will see that the same basic inference process 

applies ( see [23]).

One final comment: In many cases, the parent of a given attribute will take on a  multiset 

of values S  in V (X .t.A). For example, there could be a dependency between a  Person’s 

age on his/her rating of movies in the Children genre. However, we cannot directly model 

this dependency since the user’s ratings on Children’s movies is a  multiset of values: e.g., 

perhaps the user has seen 5 children movies, and given them the (respective) scores of 

{4, 5, 3, 5, 4}. To address this issue, we borrow the notion of a  aggregate operator from 

relational database theory [17]. Examples of such operators are Median and Average, which 

would reduce the vector of values above to 4 and 4.2, respectively. In this dissertation, we 

will always reduce 5  to a  single value using Median. (So we would use 4 in this case.)

2.3.1 Learning PR M s

The algorithms for learning PRMs closely resemble the methods used for learning Bayesian 

Networks, as laid out in 2.2.1. As with Bayesian Networks, there are two fundamental 

elements involved in learning PRMs: learning parameters, and learning structure.

Parameter Estim ation

Like Bayesian Networks, we consider learning PRM parameters where the dependency struc­

ture S  is known. The input to the parameters estimation algorithm is a  dependency struc­

ture, S , along with a  training dataset, I ;  the output is the parameter set Os-

Just as was the case with Bayesian Networks, we attempt to maximize the likelihood of 

the data given the parameters. For a  PRM the likelihood of the data is:

13

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



*-E E E log{P{lx.A\ lPa(X'A)))\ (2.3)
Xi Lxe<r(Xi) -1

Where a{X i) axe the objects that are instantiations of in the database.

This equation, like its Bayesian Network analogue, decomposes into a summation of 

terms:

Xi A€A(X))
- E E E log(P(Ix.A \Z p a {x .A ))) (2.4)

Lx€<7(Xi)

= 53 53 53 53 Cx.*[v,u]-Zos(0„,u) (2.5)
X, A ^ A ( X )) v e V [ X .A ) u€ V( . P a( X . A ) )  

where C x . a [ v i  u] is the count of the number of times we observe 2 x . a  =  v  and I p a (x .A)  =

u.

The set of these counts for the entire data set make up the sufficient statistics required to 

perform maximum likelihood estimation. Again, just as with Bayesian Networks, the values 

of the parameters that maximize the likelihood function are their frequencies in the data. 

(In section 3 we describe how we are able to use relational database queries to efficiently 

generate counts required for this calculation.)

Just as with Bayesian Network, we have the problem where C.v..4 [u, u] will be zero for 

any set of values that do not appear in the training set. Again, we can use a Dirichlet prior 

to help mitigate this effect; we denote the hyperparameters associated with the Dirichlet as 

<*x .a [v , u ].

Structure Learning

As with Bayesian Networks, learning the structure for a  PRM is much more challenging 

than learning parameters.

Recall from section 2.2.1 that any Bayesian Network we learn must be a  directed acyclic 

graph (DAG) in order for the BN to represent a  well- formed probability distribution. 

In section 2.3.2 we will describe how PRM inference is performed by generating a ground 

Bayesian Network from the PRM. Since the instance-level ground Bayesian Network inherits 

the same structure as its parent, class-level PRM, it is necessary tha t the PRM dependency 

structure is a DAG in order to guarantee that the ground Bayesian Network will also be a 

DAG.

For this thesis we assume there are no guaranteed acyclic reference slots [11], which 

are a  special type of reference slot that only appear in specialized domains (for example, a

14

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



grandfather relation linking one Person class to another would be an example of a  guaranteed 

acyclic reference slot). Allowing guaranteed acyclic reference slot complicates the structure 

learning procedure, so for brevity we will only consider the (typical) case where all reference 

slots can potentially introduce cycles. For a complete discussion of guaranteed acyclic 

reference slots see [11].

We designed a PRM structure learning algorithm that closely resembles the Bayesian 

Network learning algorithms described in 2.2.1. That is, we take an initially empty PRM 

structure, and progressively add links between nodes that maximize a  regularized likelihood 

function. However, unlike a  Bayesian Network, links cannot exist between two arbitrary 

nodes (i.e. attributes) in a PRM; the two nodes must either be a) in the same class, or b) 

reachable through a reference slot chain. Finally, just as with Bayesian Networks, we need 

a  scoring metric to measure the "goodness” of a  given model; in this thesis we will use a 

simple extension of the Bayesian score for Bayesian Networks [12]:

i A e A ( X t)
P(I\S,<T) =  n n n D M ({ C x , .a [ v ,  u]}, {axi..4[u, u]})

SieV(Po(A',.A))
(2.6)

where the Dirichlet marginal

r>»,r/r/ir-.n r-r..v>\ r (E „<*M ) TT r (a [u ]  +  C[u])
{aH>)" r(E„(a|»l + c|ii])) n  —r«,[„]) <2-' >

and r (z )  =  f£ ° tx~ le~ldt is the Gamma function.

We adapt the phased learning algorithm presented in [11] for our learning algorithm. We 

use a  straightforward greedy hill-climbing method where we consider all valid operations for 

a  given structure (i.e., add an edge, remove an edge, or delete an edge, subject to DAG 

constraints), score all those operations, and select the highest-scoring operation. We refer 

to this algorithm as a  phased algorithm because we first evaluate all candidate operations 

with a  reference slot chain length of 0 (i.e., all links are intra-class links), then all candidate 

operations with a  reference slot chain length of 1, etc, until we reach a predefined reference 

slot chain length limit (in this thesis we have used a  maximum reference slot chain length 

of 3). Since long reference slot chain length are essentially a  form of graph complexity, this 

phased approach has the desirable side-effect of preferring short reference slot chains over 

long ones.
2.3.2 PR M  Inference

For a  given relational schema Cl, an instance I  of that schema is a collection of objects T(X)  

that are instances of the classes (X) defined in Cl.

15

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Person ,
Person

Name: John Doe
Age: Teenage
Education: High School
Gender Male

M ovie I
Movie I

Movie 
Name: Star Ware 
Theater Statue: SmallScreens 
Video Status: Current 
Genre: Science Fiction

ID:3243
Ranking: 5

Figure 2.5: A sample PRM instance

We denote an instance of class X  as x; for each attribute in A(X)  we have a corresponding 

x.A  and for every reference slot X.p  we have a  corresponding x.p.

For each object x  in the instance I  we use Xx.A  to denote the value of x.A  in I .

For example, consider the example instance as depicted in Figure 2.5. In this example we 

have two people that are instances of the Person class, who have cast five votes (instances 

of the Vote class) on three distinct movies (instances of the Movie class). Each of these 

objects has its own set of attributes values and links to other objects.

To perform PRM inference, we take the PRM structure and parameters, II, together 

with the instance for that schema, T, and generate a ground Bayesian Network, and perform 

inference on this ground Bayesian Network.

This process of generating a  ground Bayesian Network, sometimes called unrolling a 

PRM, is relatively simple. The class-level parameters and dependencies defined by the 

PRM are simply copied down to their instance level peers; i.e., an instance x  of class X  

inherits the parameters defined for X , and has connectivity to other objects in the graph as 

defined by the PRM.

With this ground Bayesian Network defined, we are able to use standard Bayesian Net­

work inference algorithms to answer any query.

2.4 Hierarchical Probabilistic Relational M odels

The collaborative filtering problem reveals two major limitations of PRMs, which in turn 

motivate hPRMs. First, in the above model, Vote.Score can depend on attributes of related 

objects, such as Person.Age, but it is not possible to have Vote.Score depend on itself in any

16

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



way. For example, we may want to have a user’s vote on Action movies somehow influence 

our predicted vote on Thriller movies for that user. This is because the class-level PRM’s 

dependency structure must be a directed acyclic graph (DAG) in order to guarantee that the 

instance-level ground Bayesian Network forms a DAG [9], and thus qualify as a well-formed 

probability distribution. Without the ability to have Vote.Score depend probabilistically on 

itself, we lose the ability to have a user’s rating of an item depend on his rating of other items 

or on other user’s ratings on this movie, which is critical for a collaborative-filtering-based 

recommender system. For example, we may wish to have the user’s ratings of Comedies 

influence his rating of Action movies, or his rating of a  specific Comedy movie influence 

his ratings of other Comedy movies. Second, in the above model, we are restricted to one 

dependency graph for Vote.Score; however, depending on the type of object the rating is 

for, we may wish to have a specialized dependency graph to better model the dependencies. 

For example, the dependency graph for an Action movie may have Vote.Score depend on 

Vote.ofPerson.Gender, whereas a Documentary may depend on Vote.ofPerson. Age.
2.4.1 O verview

To address the problems described above, we introduce a  class hierarchy that applies to our 

dataset, and modify the PRM learning procedure to leverage this class hierarchy in making 

predictions. In general, the class hierarchy can either be provided as input, or can be learned 

directly from the data. We refer to the class hierarchy for class X  as H[X]. Figure 2.6 shows 

a sample class hierarchy for the EachMovie domain. H[X] is a  DAG that defines an IS-A 

hierarchy using the subclass relation -< over a finite set of subclasses C[X\ [11]. For a given 

c,d € C[X], c < d  indicates that X c is a direct subclass of Xd (and X<i is a direct superclass 

of X c)• The leaf nodes of H[X] represent the basic subclasses of the hierarchy, denoted 

6o«ic(/r[Jf]).

In this dissertation we assume all objects are members of a  basic subclass, although this 

is not a  fundamental restriction of hPRMs. Each object of class X  has a  subclass indicator 

X.Class 6 basic(H[X]), which can either be specified manually or learned automatically 

by a supplementary algorithm. By defining a hierarchy for a class X  in a  PRM, we also 

implicitly specialize the classes that are reachable from X  via one or more reference slots. 

For example, if we specialize the Movie class, we implicitly specialize the related Vote table 

into a  hierarchy as well. For example, in Figure 2.7, the Vote class is refined into four 

leaf classes, each associated with one of the hierarchy elements in basic(H[X]). Note we 

have achieved our goal of having one pattern of voting influence other votes: in the above 

example a  predicted vote for a  Thriller movie depends on the user’s average vote on an

17

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Movie

Romantic
Comedy

Comedy ThrillerAction

Slapstick
Comedy

Figure 2.6: Sample class hierarchy

Theater
.Status.Score,

Video
StatusAction-Vote

Romantic- 
Comedy-Movie 
-  /^Video 
^ V w S t a t u s .

Theater
Status...Score,

Theater
Status..Score,

Video
Status

Theater
Status.

.Score,

Video
Status

Person

Education

Gender

Age

Figure 2.7: Example hPRM for EachMovie dataset

18

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Action movie.

More formally, a hierarchical Probabilistic Model is:

D efin ition  1 The components o f a Hierarchical Probabilistic Relational Model (hPRM) 

II// are:

•  A class hierarchy H[X] = (C[X\, -<)

•  A set of basic, leaf-node elements 6asic(ff[X]) C H[X\

•  A subclass indicator attribute X .C lass  € 6asic(H[A’])

•  For each subclass c € C[X] and attribute A  € -/4(X) we have a specialized CPD for c 

denoted P ( X c.A\Pac{X.A)); Pac represents the parent nodes for X .A  in subclass c.

• For every class Y  reachable via a reference slot chain from X , we have a specialized 

CPD fo r e  denoted P{YC ,A\Pac(y.A))

2.4.2 Learning hPR M s

The algorithm for learning an hPRM is very similar to the algorithm for learning a  standard 

PRM. Instead of dealing with the standard set of classes X  when evaluating structure quality 

and estimating parameters, our hPRM algorithm dynamically partitions the dataset into 

the subclasses defined by H[X]. We accomplish this by dynamically modifying the SQL 

queries and views constructed of the database to reflect information th a t applies to the 

hierarchy element of interest.

2.5 hPR M  Inference

Inference for hPRMs is generally performed in the same way that standard PRM inference, 

except that for hPRMs, objects in the instance I  must dynamically be mapped to the 

appropriate hierarchy element 6astc(£f[X]) and the corresponding dependency structure 

and parameter set. For any given instance i of a  class, i’s place in the hierarchy is flagged 

through X.Class; using this flag it is possible to associate the proper CPD with a given class 

instance.

19

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 3

A pplying PR M s to  the  
Recom m ender System  D om ain

20

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 Overview

In this section we describe our implementation of the framework described in the previous 

section, and show how we apply the framework to the recommender system problem domain.

Unlike Bayesian Networks, PRMs are a relatively new research area, and the tools for 

conducting research into PRMs and their relatives are not well-developed. Our search for a 

software package that would allow us to learn PRMs and hPRMs from data identified only 

one contender: the PHROG system developed at Daphne Roller’s group at Stanford [5]. 

While Lise Getoor was kind enough to give us the source code for this package, we found it 

to be extremely specialized in its applicability, and we realized that modifying the PHROG 

system to conduct the kind of research we were interested in would involve a significant 

amount of work.

Thus, rather than risk spending a  large amount of time modifying a  code base that we 

understood poorly (and having no guarantee that this modification would be successful), 

we implemented a PRM and hPRM system called Tadpole. This system is, to the best of 

our knowledge, the first implemented hierarchical PRM learning system
3.1.1 D a tab ase  C onnec tiv ity

We designed Tadpole system so that its structure learning and parameter estimation algo­

rithms can operate directly on a  relational database. This addresses one of the traditional 

weaknesses of machine learning algorithms, which is the impedance mismatch between the 

format most real-world data is stored in and input format required my most machine learn­

ing algorithms. While most real-world data is stored in relational database management 

systems (such as Microsoft SQL Server or Oracle), virtually all machine learning algorithms 

require a  flat-file, propositionalized representation of that data as in input. More specifi­

cally, most machine learning algorithms require that each "object” be represented as a single 

tuple in a data file, where each tuple consists of a fixed set of attribute values.

The task of transforming relational data to a propositionalized format is one that is 

often downplayed as a  "preprocessing” step in many machine learning papers. However, 

transforming data into a propositionalized format not only often represents a large amount 

of effort on the part of the user, but also introduces two potentially serious issues.

First, by flattening the relational domain into a propositionalized format, a large amount 

of valuable structural information is lost from the problem domain. We therefore cannot 

model any statistical relationships that may exist between “linked” or “related” objects.

Second, by flattening the relational model, we may introduce significant statistical skews 

into our propositionalized representation. For example, consider a simple relational database

21

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



consisting of three tables: people, products, and a table enumerating the purchases people 

have made. When propositionalizing this data, a person who makes 100 purchases will 

have 100 tuples in the propositionalized representation, and a  person who only makes 1 

purchases will have one entry. If we are trying to model, for example, which attributes 

of a person influence what objects they buy, the person who purchased 100 items will be 

over-represented, and we will discover spurious dependencies in the dataset.

The fundamental issue here is that by propositionalizing the data, we lose the concept 

of an "object” and relationships that exist among those objects. In our Tadpole system, 

the input to our algorithm is a  database connection, and we learn directly on the relational 

representation of the data, where objects and relationships are first-class citizens.

We implemented Tadpole in the Java programming language, which provides us with 

a  rich substrate of APIs to build upon. In particular, we make extensive use of the Java 

Database Connectivity (JDBC) API to allow our system to connect directly to a  relational 

database that provides a JDBC driver, such as MySQL, Oracle, or Microsoft SQL Server. 

The user simply provides Tadpole with the relevant connection information, such as an IP 

address, username, and password, and Tadpole will automatically construct appropriate 

internal data structures and will dynamically create appropriate SQL queries for the given 

database.
3.1.2 Schema M etadata

In addition to the database JDBC connection information, Tadpole requires some additional 

meta-information about the database. This is because the database connection in isolation 

does not provide enough information for our Tadpole to learn a PRM; other types of infor­

mation, such as the relationships among the tables in the database, need to be provided.

Again, to make our system as extensible as possible, we implemented the schema meta­

data facility as an XML document, which can be easily extended to incorporate additional 

types of information. In its current form, the schema metadata contains the following ele­

ments:

•  Class: Represents a  PRM-level Class item, and provides mapping information 

between the PRM class name and the database name .

-  Attribute-, represents the PRM-level attribute items tha t are contained within a 

Class, defines whether they are a  descriptive attribute or part of the skeleton, 

and provides a  mapping between the PRM Attribute name and the database 

name.

22

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



•  ReferenceSlot: Represents a PRM-level Reference Slot, which defines how the various 

classes of the PRM are related to each other.

-  JoinElement: Related PRM classes map to specific database tables, and every 

ReferenceSlot has one or more JoinElement, which defines which of the 

attributes within the related classes must ” match” in order for two objects of 

the related classes to be linked. In database terminology this metadata item 

defines the ”join” between two tables (and thus two classes).

A sample XML metadata file is show below.

<prm>
<schema name="eachMovie" dbName="eachMovie" description””EachMovie Domain”>
<class name-"Person" dbName-"person" description”"A person">
<attribute name”"id" dbName«"person_id" primaryKey“"true" foreignKey”"false" 
type="Integer" dbType-"INT" description”"ID number"/>

<attribute name”"gender" dbName-"gender" primaryKey”"false" foreignKey”"false" 
type“"String" dbType“"String" description«"Gender"/>

<attribute name“"zipCode“ dbName“"zipcode" primaryKey“"false" foreignKey”"false" 
type”"Integer" dbType="INT“ description“"ZipCode"/>

<attribute name”"age" dbName-”age_int" primaryKey-'false" foreignKey-"false" type-"Integer" 
dbType-"Integer" description-"Age"/>

<attribute name-"education" dbName”"education" primaryKey”"false" foreignKey-"false" 
type-"String" dbType-"String" description-"Education level"/>

</class>
Cclass name““Vote" dbName”"vote" description”"A person’s vote on a movie">
<attribute name-"id" dbName-"vote_id" primaryKey”"true" foreignKey-"false" 
type="Integer" dbType”"INT" description“"Vote ID"/>

<attribnte name”"person" dbName»"person" primaryKey”"false" foreignKey="tme" 
type»"Integer" dbType”"INT" description-"Person"/>

<attribnte name“"movie" dbName””movie" primaryKey«"false" foreignKey-"true" 
type”"Integer" dbType”"INT" description-"Movie"/>

<attribute name”"score" dbName”"score" primaryKey-"false" foreignKey”"false" 
type-"Float" dbType”“Float" description-"Ranfcing of movie"/>

</class>
<class name-"Movie" dbName-"movie" description“"A movie">
<attribute name-"id" dbName“"movie_id" primaryKey-"true" foreignKey“"false" 
type-"Integer" dbType-"INT“ description-"Movie ID"/>

<attribute name-"theaterStatus" dbName-"theater_status" primaryKey-"false" 
foreignKey-"false” type-"String" dbType-"String" description-"Theater status"/> 

<attribute name-"videoStatus" dbName-"video_status" primaryKey-"false" foreignKey»"false" 
type-"String” dbType»"String" description-"Video status"/>

</class>
<referenceSlot name-"voteOfPerson" inverseName-"vote" fromClass-"Vote" toClass-"Person" 
guaranteedAcyclic-"false" type-"ManyToOne">
<joinElement fromAttribute-"person" toAttribute-"id"/>

</ref erenceSlot>
<referenceSlot name-"voteOnMovie" inverseName-"vote" fromClass-"Vote" toClass-"Movie" 
guaranteedAcyclic-"false" type-"ManyToOne">
<JoinElement fromAttribute»"movie" toAttribute»"id"/>

</referenceSlot>

23

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Relational
D ata b ase

o «
Tadpole

PRM (Structure an d  P aram e ters) Ground Bayesian Network

Figure 3.1: Generating a  ground Bayesian Network with the Tadpole PRM/hPRM inference 
system.

</schema>
</prm>

3.2 Inference

In some cases, learning a  PRM from data, and elucidating characteristics of the data from 

the resulting dependency structure, may be the end-point of the Tadpole system. However, 

many cases, one may wish to use the learned PRM to perform some kind of inference. In 

this scenario, one would learn a PRM on a given set of data, then apply the learned PRM 

to a  new set of objects contained in another database to generate a ground Bayesian 

Network. With this ground Bayesian Network in hand, one can then apply the wide 

variety of standard Bayesian Network inference algorithms available to infer the posterior 

probability of certain value assignments to nodes in the ground Bayesian Network (for 

more details see 2.2.2).

We have to perform this kind of inference in many of our experiments, and as such have 

made an easy-to-use mechanism to generate a  ground Bayesian Network from an input 

PRM and an input relational database. The output Bayesian Network can be encoded in a 

variety of formats, such as XBN [31] and used in a  wide variety of Bayesian Network 

inference engines. Figure 3.1 outlines the workflow used to generate a  ground Bayesian 

Network.

24

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 A pplying Standard PR M s to  the EachM ovie
D ataset

PRMs provide an ideal framework for capturing the kinds of dependencies a  recommender 

system needs to exploit. In general, recommender systems try to capture high-level 

patterns in data that provide some amount of predictive accuracy. For example, in the 

EachMovie dataset, one may want to capture the pattern that teenage males tend to rate 

action movies quite highly, and subsequently use this dependency to make inferences 

about unknown votes. PRMs are able to model such patterns as class-level dependencies, 

which can subsequently be used at an instance level to make predictions on unknown 

ratings — i.e., how will John vote on SW.

In order to use a PRM to make predictions about an unknown rating, we must first learn 

the PRM from data. In our experiments we use the PRM learning procedure described 

in [9], together with the hierarchical learning extensions outlined in [11], which provide a 

algorithms for both learning a legal structure for an (h)PRM and estimating the 

parameters associated with that (h)PRM. Figure 2.4(a) shows a  sample PRM structure 

learned from the EachMovie dataset.

We can then use the learned PRM to infer a  new, previously unseen Vote.score. (That is, 

we want to know the distribution of the variable x .score, based on the properties of 

x.ofPerson and x.of Movie (i.e., the values of x .ofPerson.y  and x . of Movie.r, for various 

attributes y and z) as well as other facts — depending on the information specified and 

the structure of the PRM.

To accomplish this task, we leverage the ground. Bayesian Network [11] induced by a 

PRM. Briefly, a  Bayesian Network is constructed from a database using the link structure 

of the associated PRM’s dependency graph, together with the parameters that are 

associated with that dependency graph. For example, for the PRM in Figure 2.4(a), if we 

needed to infer the sco re  value for a  new Vote object, we simply construct a ground 

Bayesian Network using the appropriate attributes retrieved from the associated Person 

and Movie objects; see Figure 2.4(b). The PRM’s class-level parameters for the various 

attributes are then tied to  the ground Bayesian Network’s parameters, and standard 

Bayesian Network inference procedures can be used on the resulting network [11].

25

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Applying hPR M s to  the EachM ovie D ataset

Applying the hPRM framework to the EachMovie dataset first requires a hierarchy to be 

defined, which is then used to build an hPRM that is ultimately used to make predictions 

for unknown votes.

In our experiments we automatically learn a hierarchy to be used in the learning 

procedure. In the EachMovie database, a movie can belong to zero or more of the 

following genre categories: { ac tion , anim ation, a rt_ f oreign, c la s s ic , comedy, drama, 

fam ily, horro r, romance, t h r i l l e r  }.

We let G( x ) denote the set of genres that the movie x  belongs to. For example,

G( WhenHarryMetSally) =  {comedy, drama, romance}. To build our hierarchy 

dynamically, we first enumerate all combinations of genre-sets that actually appear in the 

EachMovie database. Of course, this set (denoted Q) is significantly smaller than the 

entire 2e power-set of all possible subsets of the I  genres. We also store the number of 

movies associated with each element of Q. We then proceed to greedily partition Q (i.e., 

we create as large partitions as possible) based on this quantity, until reaching a 

predefined limit of k  partitions. (Here, we used k  =  11.) We define one additional 

partition that is used for movies that do not fall into one of the predefined partitions. This 

partition, together with the other k  partitions, are used to create a  k + 1-element 

hierarchy. In our experiments, this algorithm created partitions that reflect common 

pairings of movie genres (such as romantic comedies).

Given this hierarchy, the hPRM learning algorithm is applied to the EachMovie dataset, 

using the same algorithm used for learning standard PRMs (Section 3.3), with the 

exception that the learning procedure is modified as outlined above.

3.5 The Tadpole System

The Tadpole system is capable of doing structure and parameter learning for a 

PRM/hPRM directly from data. We wanted to implement Tadpole in the most general 

way possible, so that the system could continue to be used on new problem domains and 

extended in new ways beyond the completion of this thesis.

Figure 3.2 shows the overall inputs and outputs of the Tadpole system.

26

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Relational
Database

Database Metadata o
9

Tadpole

M ovie

PRM (Structure and Parameters)

Figure 3.2: The inputs and outputs of the Tadpole PRM/hPRM learning system.

27

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Empirical R esults

28

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



This section outlines our results in applying both standard PRMs and hPRMs to the 

recommendation task for the EachMovie dataset. We also compare our results to other 

recommendation algorithms.

4.1 Experim ental Design

One of the main challenges in designing an experiment to test the predictive accuracy of a 

PRM model is in avoiding resubstitution error. If a PRM is learned on the entire 

EachMovie database, and subsequently used to make predictions on objects from the same 

database, we are using the same data for testing as we used for training. By using the same 

data for testing and training, we are skewing our estimates of what our generalization error 

will be; a standard tool in machine learning to help mitigate this effect is cross-validation. 

The standard n-fold cross validation algorithm first splits the data into n subsets, trains 

on (n — l ) /n  of the data, and test of the remaining 1/n subset. This simple approach does 

not apply here, as it is impossible to divide the data into “independent” compartments, as 

the movies, people, and votes are intertwined. Hence, the relational learning environment 

is significantly different from the standard, non-relational scenario where each data row is 

independently and identically distributed (iid).

We address this issue by applying a  modified cross-validation procedure to the dataset. 

While the traditional method of dividing data into cross-validation folds cannot be applied 

directly to a relational database, we extend the basic idea to a relational setting as follows. 

For n-fold cross validation, we first create n  new datasets {D \ , . . . ,  Dn} with the 

EachMovie data schema. We then iterate over all the objects in the Person table, and 

randomly allocate the individual to one of £),• 6 {£>1 . . .  £>„}. Finally, we add all the Vote 
objects linked to that individual, and all the Movie objects linked to those Vote objects, to 

Di. This procedure, when complete, creates n  datasets with roughly balanced properties, 

in terms of number of individuals, number of votes per person, etc. In our experiments we 

use n =  5-fold cross validation.

4.2 Evaluation Criteria

In this dissertation we adopt the Absolute Deviation metric [2, 19] to assess the quality of 

our recommendation algorithms. We divide the data into a  training and test set using the 

method described above, and, for each fold, build a  PRM (resp., hPRM) using the training 

data. We then iterate over each user in the test set, allowing each user to become the

29

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



User A 

UserB 

UserC 

UserD 

UserE 

User F 

UserG

S| Observed 

| | To Predict

Figure 4.1: Cross-validation architecture for recommender systems.

active user. For the active user we then iterate over his set of votes, Pa, allowing each vote 

to become the active vote; each of the remaining votes are used in the PRM model.

To make this concrete, consider the example depicted in Figure 4.1. In this example User 

A and User B  constitute the Test fold; the rest of the users are part of the Training set 

that the model will be learned upon. The dark-shaded votes constitute our observed votes 

for the active user, which in this case is User A. The light-shaded votes are the votes that 

our recommender system must predict. The recommender system’s performance on this 

prediction is how we will compare various recommender system implementations.

We let pa.j denote the predicted vote for the active user a on movie j ,  and vaj  denote the 

actual vote. The average absolute deviation, over the m a vote predictions made, is:

S a  = ~ ~  "y ' I P a.j ~  v a ,j I (4-1)
7710 jSPa

The absolute deviation for the dataset as a  whole is the average of this score over all the 

users in the test set of users.

We compare our results using the data and metrics described in [2]. A recent paper, [18], 

achieves an Absolute Deviation (described below) score of 0.962, but the experimental 

setup used varies significantly from that described in [2] (for example, only users who 

have voted on over forty movies are included), and is therefore not included in the 

comparisons to follow.

30

mmmm°  ° h < > h h o 0 1 0 2 |

1 4 2 1 0 0 4 0 2 1 0 0 1 0 3 I

2 0 2 0 0 0 0 0 2 1 0 3 1 0 3 I

0 4 2 1 0 1 0 0 2 1 0 0 1 0 3 I

2 0 2 1 2 0 | 4 0 2 1 0 2 1 0 j j  Traininp Set

3 4 2 1 0  0 2 0 3 1 4 0 0 w

1 0 2 1

OO

0 2 1 0 0 1 0 2 1

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm Absolute Deviation
CR 1.257
BC 1.127
BN 1.143

VSIM 2.113
P R M 1.26

Table 4.1: Absolute Deviation scoring results for EachMovie dataset

Algorithm Absolute Deviation
CR 0.994
BC 1.103
BN 1.066

VSIM 2.136
h P R M 1.060

Table 4.2: Absolute Deviation scoring results for EachMovie dataset

4.3 Standard PR M s

In our experiments with Standard PRMs, we were able to achieve an absolute deviation 

error of 1.26. For comparison. Table 4.3(a) includes the results from [2]: correlation (CR), 

Bayesian Clustering (BC), a Bayesian Network model (BN), and Vector Similarity 

(VSIM). We have elected to include the results from [2] where algorithms were given two 

votes out of the non-active votes to use in making the prediction, since the standard PRM 

model does not have any direct dependency on other Votes.

In this experiment, standard PRMs are able to outperform the VSIM algorithm, and is 

competitive with the correlation-based algorithm. However, both Bayesian Clustering and 

the Bayesian Network model have superior results in this context.

4.4 Hierarchical PR M s

The first part of the experiment for hPRMs was constructing a  class hierarchy from the 

EachMovie dataset. In our experiment we set the size of the hierarchy to be 12. Our 

greedy partitioning algorithm arrived at the following basic classes: { drama, comedy, 

c la s s ic , ac tio n , art+foreignDrama, t h r i l l e r ,  romance+comedy, none, fam ily, horror, 

a c tio n + th r i l le r ,  o th e r  }.

By applying hPRMs to the EachMovie dataset, we are able to reduce the absolute 

deviation error from 1.26 (with standard PRMs) to 1.06. Again, for comparison 

Table 4.4(b) includes results from [2]; however, since hPRMs are able to leverage other 

votes the user has made in making predictions, we use the All-But-One results presented

31

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



in [2], where the prediction algorithm is able to use all of the active user’s votes (except for 

the current active vote) in making a  prediction. Comparing Table 4.3(a) to Table 4.4(b), 

we see that including the additional voting information results in a  substantial reduction 

in error rate for most of the other four algorithms.

hPRMs not only provide a significant performance advantage over standard PRMs, but 

are also able to outperform all but one of the other four algorithms.

32

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 5

Literature R eview

33

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



This section we review literature relevant to our approach to the recommender system 

problem domain.

We first examine the pure collaborative filtering approaches in section 5.1. Next, we 

discuss content-based recommender systems in section 5.2. Finally, in section 5.3 we 

discuss some approaches that have been taken to combining pure collaborative filtering 

approaches with content-based systems.

A seminal work on traditional collaborative filtering algorithms is Breese et al.'s analysis 

of the relative performance of various collaborative filtering algorithms [2]. In this paper 

Breese et al. noted that while there had been a  wide variety of collaborative filtering 

algorithms, there was a  distinct lack of quantitative analysis of the relative performance of

algorithms.

In terms of pure collaborative filtering algorithms, Breese et al. define two major classes: 

memory-based, algorithms and model-based algorithms. Memory-based algorithms operate 

over the entire data set to make predictions. An example of such an algorithm would be a 

vector-similarity based algorithm, which must evaluate a user’s vector of votes in terms of 

its similarity to all the vectors of votes of other users in order to make a prediction. 

Model-based algorithms, on the other hand, use the data set to build a  model of user 

preferences, which is then used to make predictions. An example of this kind of system 

would be a  Bayesian Network whose structure and parameters were learned from the data 

set; future predictions are then made using the Bayesian Network.

Breese et al. consider two memory-based collaborative filtering algorithms in their 

comparison. The first, Correlation, first appeared in the context of the GroupLens project 

[25]. The correlation between users a and i is based on the Pearson correlation coefficient:

where the summations of j  only include items where both users a and j  have votes.

The second memory-based algorithm, Vector Similarity, uses a metric similar to the 

document similarity metric used in the information retrieval field. To assess the similarity

5.1 Pure Collaborative Filtering M ethods

those various algorithms. [2] develops a  taxonomy for categorizing various collaborative 

filtering algorithms, and defines a variety of metrics and test data sets for evaluating those

w(a, i) = (5.1)

between two documents, a  ”bag-of-words” representation is used, where a  document is first

34

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



reduced to a vector of numbers representing how many times various words occurred in 

the document. To assess the similarity between two documents, the cosine of the angle 

between the two word frequency vectors of the respective documents is used [27]. We can 

use this framework in the context of collaborative filtering by regarding each user as a 

document, where the frequency vector instead represents the vector of votes the user 

assigned to various movies. The weight measuring the similarity between user a and user i 

is now:

(the denominator is simply a  normalization term.)

The second major class of algorithms Breese et al. discuss is model-based algorithms. With 

the previously discussed algorithm, we make use of the entire user dataset in order to 

make predictions. With the following model-based algorithms, we instead learn a model 

that (hopefully) models the dependencies present in the dataset; at prediction-time, we 

simply use this model to make a  prediction for a  user.

Breese et al. present two model-based algorithms: a Bayesian Clustering model, and a 

Bayesian Network model. The Bayesian Clustering model is essentially a  multinomial 

mixture model that assumes that users belong to a hidden class that captures their 

preferences and tastes; given this class, their votes on various items are independent. 

However, since this class variable is hidden, the EM algorithm [7] must be used to learn 

the parameters for this model with a fixed number of classes (in order to pick the 

appropriate number of classes, Breese et aL simply used the model that yielded the largest 

approximate marginal likelihood of the data).

The second model-based algorithm Breese et al. employed was a  Bayesian Network model. 

In this model, a user’s vote on a  given item depends probabilistically on his/her votes on 

other specific items; which items it depends on, and the parameters that are associated 

with this model, are learned using a  Bayesian Network learning algorithm described in [3]. 

Finally, Breese et aL applied the above-mentioned algorithms to a set of three datasets 

using two scoring metrics. Both scoring metrics have common evaluation framework: the 

data set of users (and votes) is divided into a  training set and a  test set. The training set 

is used as the collaborative filtering database for memory-based algorithms and used to 

learn the model in model-based algorithms. The test set of users is then iterated over, and 

each user takes a  turn being the active user. The votes for the active user is then 

partitioned into a  set of observed votes, and a set that will be predicted, Pa.

(5.2)

35

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



The first scoring metric, mean absolute deviation, is the most commonly used metric in 

assessing collaborative filtering algorithms, and was also used in the GroupLens project

[25]. For a given user, we simply iterate over the hold-out votes, and measure the absolute 

deviation between the predicted vote and the actual vote (the number of hold-out votes is 

denoted m a):

This score is then averaged over all the users in the test set of users to give the overall 

mean absolute deviation (thus, heavy users - users with many ratings - are weighted the 

same as light users).

The second scoring metric attempts to model how users typically user a recommender 

system. The main assumption is that users are only mainly concerned with the highest 

recommended items in a ranked list of recommendations, and the importance of each 

successive item in the list decays exponentially. The expected utility of a ranked list of 

items (sorted by index j in order of declining vaj )  for a user:

where d is the neutral vote and a  is the viewing halflife, where there is a 50-50 chance the 

user will view the item. The overall ranking of an algorithm using this ranked score 

metrics is

where R™ax is the maximum achievable utility if the predicted order of items matched the 

observed votes ranked by vote value.

Finally, Breese et aL used four different protocols for deciding how many of user’s votes 

were treated as observed votes. These protocols were denoted Given2, GivenS, GivenlO, 

and AllButl, which allocate two, five, 10, and all but one of the user’s votes to the 

observed votes pool (/„), respectively; the remainder of the votes belonged to the pool of 

votes to be predicted (Pa).

Breese et aL tested the above algorithms against three datasets; however, only the 

EachMovie dataset is publicly available. We will focus on the EachMovie dataset in the 

following discussion since it is one of the only widely-used datasets in recommender 

systems, and is the dataset we have used in our experiments. The tables below summarize 

the results of the experiments presented in [2]:

As can be seen in these results, the Bayesian Network and Correlation algorithms 

generally outperform the Bayesian Clustering and Vector Similarity methods.

(5.3)

(5.4)
j

36

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm Given2 Given5 GivenlO AllButl
Correlation 41.60 42.33 41.46 23.16

Vector Similarity 42.45 42.12 40.15 22.07
Bayesian Clustering 38.06 36.68 34.98 21.38
Bayesian Network 28.64 30.50 33.16 23.49

Table 5.1: Ranked score for EachMovie dataset

Algorithm Given2 Given5 GivenlO AllButl
Correlation 1.257 1.139 1.069 0-994

Vector Similarity 2.113 2.177 2.235 2.136
Bayesian Clustering 1.127 1.144 1.138 1.103
Bayesian Network 1.143 1.154 1.139 1.066

Table 5.2: Mean absolute deviation score for EachMovie dataset

5.2 C ontent-Based M ethods

On the opposite extreme of the recommender system spectrum from purely collaborative 

recommender systems is purely content-based methods. Content-based methods build a 

model of what users prefer not by modelling their similarity to other users, but instead by 

trying to find commonalities among the items that a  user prefers. For example, an 

Amazon.com book recommender may, based on a  user’s past purchases, recommend books 

to that user that are of the Murder-Mystery genre and published between 1950 and 1975. 

More generally, a content-based recommender system will build a model of a  user’s 

preferences based on attributes (the content of the items the user is voting upon).

A popular approach to pure content-based recommender systems is based on a 

bag-of-words naive Bayesian text classifier algorithm [20]. This algorithm has been 

employed in the context of book recommender systems [21] and, more recently, on the 

EachMovie dataset [18]. In this framework, the prediction task is viewed as a 

text-categorization problem, where a movie corresponds to the document, the document’s 

content is composed of information retrieved from the Internet Movie Database (IMDB), 

and every document is labelled with the user’s rating of the document.

In [21], Mooney et al. use a  multinomial text model [16], where a document is modelled as 

an ordered sequence of word events drawn from the same vocabulary', V. The naive Bayes 

assumption states that the probability of each word event is dependent on the document 

class but independent of the word’s context (i.e., its position). The probability of a 

document (movie) belonging to a  given class (a given rating) can the be calculated using 

Bayes’ rule; the class with the highest posterior probability is the predicted rating.

37

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Using pure content-based collaborative filtering, Mooney et al. were able to  achieve a 

mean absolute deviation of approximately 1.45 using the GivenS protocol, approximately 

1.40 using the Given5 protocol, and approximately 1.31 using the GivenlO protocol. 

Unfortunately, in these results, Mooney et al. did not use the same experimental 

framework as Breese et al. in [2], and did not present results using the AllButl protocol. 

Furthermore, the EachMovie dataset was not used in an unadulterated form, but was 

rather filtered to only include users that had rated forty movies. This filtering would bias 

the scoring metrics downwards, and are therefore difficult to compare directly to [2].

5.3 Combined Approaches

Recent work on recommender systems, including this thesis, have begun focussing on 

methods to combine aspects of both pure collaborative filtering systems with 

content-based recommender systems.

There are several strong arguments for combining the two approaches. First, with either 

extreme, we are using less information than is available to us; by taking advantage of both 

types of information, we have the opportunity to outperform pure collaborative filtering 

and pure content-based methods. Another strong argument for incorporating content 

information into recommender algorithms is to help mitigate the data sparsity problem 

that is common in collaborative-filtering-based recommender systems. The data sparsity 

problem refers to the fact that most users have not rated most items, and therefore the 

user-item rating matrix is generally extremely sparse. New users to a recommender system 

,for example, typically enter only a few ratings, then want to view what their 

recommendations are. W ith a severe lack of vote information, the content-based methods 

can be viewed as a  safety net of sorts, where the content of a user’s rated movies factors 

very heavily into the prediction process. For example, consider a  user who has only rated 

three movies: True Lies with a rating of 5; Terminator 2 with a  rating of 4; and 

Armageddon with a rating of 5. Given this sparse rating vector, a purely 

collaborative-filtering based system would have a  difficult time making effective 

recommendations, but a  content-based system could easily recommend more movies of the 

Action genre, and in particular Action movies that perhaps star Arnold Schwartzenegger. 

Since this is a new area of research, there has been relatively few publications on methods 

for combining content-based and collaborative filtering based algorithms. In [18], a pseudo 

user-ratings vector is created for every user u  in the database. This pseudo vector is 

composed of the votes the user has actually made, along with votes predicted using a

38

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



content-based recommender system for all the items the user hasn’t voted on. The pseudo 

user-rating vectors for all the users in the system forms a dense pseudo-ratings matrix V, 

and standard collaborative-filtering based methods can be applied to this dense matrix. 

Using a  modified version of the EachMovie dataset, this approach was able to achieve a 

Mean Absolute Deviation score of 0.962.

39

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Conclusion

40

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



In this dissertation we outlined a framework for using PRMs to model the 

recommendation task, and applied it to one of the most-studied recommender tasks, the 

EachMovie dataset. We were able to demonstrate that PRMs provide a  powerful and 

expressive way of modelling the recommender system domain. In our experiments, we 

were able to demonstrate that PRMs and hPRMs, with no further tuning, were able to 

achieve competitive results against algorithms engineered specifically for the recommender 

task. Furthermore, PRMs offer an extensible framework for integrating a wide variety of 

data sources and types in the future. Finally, this dissertation provides a  case study of 

how hPRMs improve the expressiveness and context-sensitivity of standard PRMs, and 

also realize real-world performance benefits.

6.1 Future Work

In this dissertation we presented promising results indicating the applicability of PRMs in 

general to the recommender system problem, and demonstrated the efficacy of statistically 

modelling hierarchical datasets using hierarchical PRMs.

However, it is difficult to make general statements about the overall effectiveness of this 

approach given results from a  single dataset; validation on multiple datasets would be 

more persuasive. This single biggest obstacle here is, unfortunately, a  lack of available 

datasets. The EachMovie dataset is one of the most extensive available, and most other 

interesting datasets are private and not disclosed (for example, the Amazon.com, Yahoo! 

LAUNCHCast, and CDNow! datasets). As such, most of the recommender system 

literature uses the EachMovie dataset as the sole metric for the efficacy of a given 

algorithm, which may result in algorithms that are tailored to perform well against this 

one dataset, but do not perform well in a  more general context.

In the context of learning hPRMs, when we are given a dataset without a predefined 

hierarchy, as was the case with the EachMovie dataset, we used a  greedy, but somewhat 

naive algorithm to learn a hierarchy. Although the learned hierarchy was reasonable and 

similar to a  hierarchy that a human being might design, it would be possible incorporate 

the learning of the hierarchy directly into the PRM learning algorithm, where new- leaf 

nodes are introduced in the hierarchy if that alteration would improve the overall 

likelihood of the model. Various alterations to the hierarchy could be considered at each 

step of the learning algorithm, just as various alterations to the PRM structure are 

considered at each step. The computational cost of this improvement would be high, but 

may lead to significantly improved results.

41

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



To further test the efficacy of hierarchical PRMs, modelling datasets that have intrinsic 

hierarchies would be a valuable experiment. In the case of the EachMovie dataset, we 

learned a hierarchy of the dataset, since a pre-defined hierarchy was not available.

However, some datasets may have implicit hierarchies, and the hPRM could represent this 

hierarchy directly. Many datasets in the field of bioinformatics are emerging that have this 

property. For example, the KDD Cup competition in 2002 [14] featured an extensively 

hierarchical dataset where gene locations and functions were placed in a  hierarchy 

designed by biologists. The task was to predict the function of uncharacterized genes 

based on a  training set of known genes. PRMs, and especially hPRMs, could be applied to 

this, and many other biological datasets, to further study the efficacy of modelling using 

hierarchical versus non-hierarchical probabilistic models.

Finally, most evaluation metrics for recommender systems have tended to be very 

user-centric, where we "leave-one-user-out" and evaluate how we perform on predicting the 

votes for that user. However, we may want to assess various other aspects of performance, 

such as when a “new" movie is introduced to the database; how accurately are we able to 

predict votes for this movie? A typical scenario where this aspect of performance would be 

important for a recommender system is the “opening weekend” for a  movie, where we have 

no history of votes for the movie on which to base predictions; however, users want to go 

see a new release, and we need to  make as accurate a recommendation as possible given 

the information we have. Developing new metrics to assess varying usage scenarios for 

recommender systems is an important direction for future research, 

also evaluate various other perfor

6.2 Contributions

Finally, we will summarize the contributions made by this thesis:

•  The first application of standard and hierarchical PRMs to the recommender system 

problem.

• Validation of the above using the EachMovie dataset. The empirical results from 

this validation show both:

-  The overall efficacy of PRMs and hPRMs in the context of recommender 

systems; results were competitive with similar systems tailored specifically for 

the recommender task.

42

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



-  The superiority of hierarchical PRMs over standard PRMs; results with hPRMs 

were significantly better than with standard PRMs.

•  A complete implementation of PRM and hPRM learning algorithms in the Java 

language called Tadpole The features of this implementation include:

-  The ability to learn a complete PRM given two inputs: a connection to a 

database, and a metadata file describing the relationships between the objects 

modelled in the library. The output of the algorithm is a completely learned 

PRM (structure and parameters)

-  A database interface architecture that allows the PRM learning algorithms to 

operate directly on the database. The data the PRM model is based upon never 

needs to be transformed or exported to an alternate representation, as the PRM 

learning algorithm acts directly on the native, relational representation.

-  A highly abstracted database connectivity layer that allows the user to use 

multiple databases from a variety of vendors; this allows the tadpole system to 

learn models on small-scale MySQL databases or enterprise-sized Oracle 

database. Virtually every relational database product in the market is 

supported by the Tadpole system.

43

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. 
Context-specific independence in Bayesian networks. In Uncertainty in Artificial 
Intelligence, pages 115-123, 1996.

[2] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive 
algorithms for collaborative filtering. In UAI98, pages 43-52, 1998.

[3] David Maxwell Chickering, David Heckerman, and Christopher Meek. A Bayesian 
approach to learning Bayesian networks with local structure, pages 80-89.

[4] Gregory F. Cooper. The computational complexity of probabilistic inference using 
Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.

[5] http:/ / www.robotics.stanford.edu/~koller.

[6] R_ Dechter. Bucket elimination: A unifying framework for structure-driven inference, 
1998.

[7] A.P. Dempster, N.M.Laird, and D.B.Rubin. Maximum likelihood from incomplete 
data via the EM algorithm. Journal Royal Stat. Soc., Series B, 39(1):1-3S, 1977.

[8] http://research.compaq.com/SRC/eachmovie/.

[9] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic 
relational models. In IJCAI-99, pages 1300-1309, 1999.

[10] Dan Geiger and David Heckerman. A characterization of the dirichlet distribution 
with application to learning bayesian networks. In Proceedings of the 1st Annual 
Conference on Uncertainty in Artificial Intelligence (UAI-S5), pages 196-207, New 
York, NY, 1985. Elsevier Science Publishing Comapny, Inc.

[11] L. Getoor. Learning Statistical Models from Relational Data. PhD thesis, Stanford 
University, 2002.

[12] David Heckerman. A Tutorial on Learning With Bayesian Networks. Microsoft 
Research, Redmond, WA, 1995.

[13] Y. Kai, S. Anton, T. Volker, M. Wei-Ying, and Z. HongJiang. Collaborative ensemble 
learning. In UAI-03, 2003.

[14] 2004. http://www.biostat.wisc.edu/~craven/kddcup/tasks.html.

[15] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proc. of the Fifteenth 
National Conference on Artificial Intelligence, pages 580-587, Madison, WI, 1198.

[16] A. McCallum and K. Nigam. A comparison of event models for naive bayes text 
classification, 1998.

[17] Jim Melton and Alan R. Simon. Understanding the new SQL: a complete guide. 
Morgan Kaufmann Publishers Inc., 1993.

44

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.robotics.stanford.edu/~koller
http://research.compaq.com/SRC/eachmovie/
http://www.biostat.wisc.edu/~craven/kddcup/tasks.html


[18] Prem Melville, Raymod J. Mooney, and Ramadass Nagarajan. Content-boosted 
collaborative filtering for improved recommendations. In Eighteenth national 
conference on Artificial intelligence, pages 187-192. American Association for 
Artificial Intelligence, 2002.

[19] Bradley N. Miller, John T. Riedl, and Joseph A. Konstan. Experience with 
GroupLens: Making Usenet useful again. In USENIX, pages 219-233, 1997.

[20] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[21] Raymond J. Mooney and Loriene Roy. Content-based book recommending using 
learning for text categorization. In Proceedings of DL-00, 5th ACM  Conference on 
Digital Libraries, pages 195-204, San Antonio, US, 2000. ACM Press, New York, US.

[22] Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy belief propagation for 
approximate inference: An empirical study. In Proceedings of the 15th Annual 
Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 467-475, San 
Francisco, CA, 1999. Morgan Kaufmann Publishers.

[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. Morgan Kaufmann, 1988.

[24] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. Morgan Kaufmann, San Mateo, 1988.

[25] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open 
Architecture for Collaborative Filtering of Netnews. In Proceedings o f ACM 1994 
Conference on Computer Supported Cooperative Work, pages 175-186, Chapel Hill, 
North Carolina, 1994. ACM.

[26] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modem Approach. 
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[27] G. Salton and M. J. McGill. Introduction to Modem Retrieved. McGraw-Hill Book 
Company, 1983.

[28] L. Ungar and D. Foster. Clustering methods for collaborative filtering. In Proceedings 
of the Workshop on Recommendation Systems, 1998.

[29] L. Ungar and D. Foster. A formal statistical approach to collaborative filtering. In 
CONALD ’98, 1998.

[30] Tim Van Allen and Russ Greiner. Model selection criteria for learning belief nets: An 
empirical comparison. In Proc. 17th International Conf. on Machine Learning, pages 
1047-1054. Morgan Kaufmann, San Francisco, CA, 2000.

[31] http://www.research.microsoft.com/xbn.

45

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.microsoft.com/xbn

