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Abstract

Fault diagnosis plays an important role in the reliable operation of rotating machinery. Data-

driven approaches for fault diagnosis rely purely on historical data. Depending on how a di-

agnosis decision is made, this thesis divides data-driven fault diagnosis approaches into two

groups: signal-based approaches and machine-learning-based approaches. Signal-based ap-

proaches make diagnosis decisions directly using signal processing techniques. Machine-

learning-based approaches resort to machine learning techniques for decision making. There

are three main tasks in fault diagnosis: fault detection (detect the presence of a fault), fault

isolation (isolate the location/type of the fault), and fault identification (identify the severity

of the fault). This PhD research studies signal-based approaches for fault identification and

machine-learning-based approaches for fault detection, isolation and identification.

In signal-based approaches for fault identification, generating an indicator that mono-

tonically changes with fault progression is a challenging issue. This thesis proposes two

methods to generate such indicators. The first method uses multivariate signal processing

techniques to integrate information from two sensors. The second method uses fuzzy pref-

erence based rough set and principal component analysis to integrate information from any

number of sensors.

In machine-learning-based approaches, feature selection is an important step because

it improves the diagnosis results. For fault detection and isolation, classification is often

used as the machine learning algorithm. In this thesis, a feature selection method based

on neighborhood rough sets is proposed for classification. Coming to fault identification,

classification is not suitable because classification does not utilize the ordinal information

within the different fault severity levels. Therefore, this thesis proposes to use another

machine learning algorithm, ordinal ranking, for fault identification. A feature selection

method based on correlation coefficient is proposed for ordinal ranking as well. Moreover,

an integrated method which is capable of conducting fault detection, isolation and identifi-

cation is proposed by combining classification and ordinal ranking.

The proposed methods are applied to fault diagnosis of impellers in slurry pumps and



fault diagnosis of gears in planetary gearboxes. Experimental results demonstrate the effec-

tiveness of the proposed methods.
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Chapter 1

Introduction

1.1 Background

Rotating machines are widely used in various industries including power, mining, aerospace
and oil sands. Pumps and gearboxes are important types of rotating machinery. A pump is a
device used to move fluids such as liquids or slurries. A gearbox is a device used to provide
speed and torque conversions from one rotating power source to another device. With the
increase of operation time and/or the change of working conditions, the performance of
rotating machines might inevitably encounter an unexpected degradation.

Take slurry pumps in oil sands as an example. As slurries contain abrasive and erosive
solid particles, the slurry pump impellers are subjected to harsh direct impingement [18].
Figure 1.1 shows a damaged impeller of a slurry pump after certain period of operation.
With this damaged impeller, the designed function can not be achieved, e.g. the head of
the pump would drop. If the fault is not detected in advance, it will continue progressing.
As a result, the performance of the pumping system is affected, even unexpected downtime
might be caused along with the economic loss.

Fault diagnosis checks the health condition of rotating machines. More specifically, it
detects a fault, isolates the fault location/type, and identifies the fault severity. The diagno-
sis information is helpful in scheduling preventive maintenance or other actions to prevent
serious consequences. Therefore, fault diagnosis plays an important role in the operation
of rotating machinery, including improving safety, increasing efficiency and lifetime, and
reducing downtime and total cost. The above benefits can be achieved only when fault di-
agnosis provides reliable information on machine health conditions. If incorrect diagnosis
results are generated, ineffective maintenance would be arranged which would result in sys-
tem failure or shutdown. An alarming fact is that one-third to one-half of the maintenance
cost is wasted because of ineffective maintenance [19]. Therefore, there is a need to develop
and improve the quality of fault diagnosis.

Next, the terminology relevant to fault diagnosis is formalized in Section 1.1.1.
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Figure 1.1: A damaged slurry pump impeller (provided by Syncrude Canada Ltd.)

1.1.1 Basic Definitions

In 1991, a Steering Committee called Fault Detection, Supervision and Safety for Technical
Processes (SAFEPROCESS) was created within the International Federation of Automatic
Control (IFAC). In 1993, SAFEPROCESS became a technical committee within IFAC.
One important initiative of this committee was to define a common terminology for fault
diagnosis [20]. In this thesis, the terminology presented in [5, 14, 20, 21] is followed, as
described below.

A “fault” is considered as an unexpected change of system behavior such that it ei-
ther deteriorates the performance of the system or demolishes the normal operation of the
system. The term “failure” indicates a serious breakdown of the whole system. A failure
is usually the result of the progression of a fault over time and could lead to hazardous
consequences.

“Fault diagnosis” refers to detecting faults and diagnosing their locations/types and
severities. In another word, fault diagnosis consists of three tasks which are defined as
follows [5, 14].

• Fault detection: to make a binary decision whether everything is fine (no fault exists)
or something has gone wrong (fault exists).

• Fault isolation: to pinpoint the mode of the fault or its location. Take gears for exam-
ple. Some common fault types for gears are pitting, crack and missing teeth; different
fault locations can be gear A, gear B and gear C. Fault isolation is to make decision
whether the fault is pitting, crack or missing teeth; and/or to determine whether the
fault occurs on gear A, gear B or gear C. It can be seen that fault isolation needs to
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make decision from multiple options (when more than two fault types/locations are
considered), whereas fault detection makes decisions from two options only.

• Fault identification: to estimate the fault severity. The fault severity can be specif-
ically described by the fault size or more generally, the fault level (e.g. slight fault,
moderate fault or severe fault). Fault identification needs to make decision from mul-
tiple options (when more than two fault sizes/levels are considered) as does fault
isolation.

The first two tasks are the first step in fault diagnosis, and are often considered together
as fault detection and isolation (FDI) [5, 22]. The third task (fault identification) assesses
the severity of an identified fault and is also a very important aspect in fault diagnosis. For
the convenience of description, “diagnosis of fault types” is used to indicate fault detection
and isolation, and “diagnosis of fault levels” is used to indicate fault identification. In the
following section, different approaches to conduct fault diagnosis are summarized.

1.1.2 Fault Diagnosis Approaches

There are mainly two approaches for fault diagnosis: model-based and data-driven [5].
“The model-based fault diagnosis can be defined as the determination of the fault in a

system by comparing available system measurements with a priori information represented
by the system’s analytical/mathmatical model, through generation of residual quantities and
their analysis. A residual is a fault indicator that reflects the faulty condition of the moni-
tored system.” [23]. Figure 1.2 shows the two main stages for model-based fault diagnosis:
residual generation and residual evaluation (also called decision making). In the first stage,
a residual is obtained by comparing available system measurements with priori information
represented by the system’s analytical model. In the second stage, the generated residual
is inspected and fault condition is determined by applying a decision rule, e.g. a threshold
test.

The advantage of model-based fault diagnosis is its ability to incorporate the physical
understanding of a system for diagnosis. The disadvantage, however, is that it is difficult to
build a mathematical model for the system with a large number of inputs, outputs and state
variables. A detailed review of model-based fault diagnosis is referred to [21].

Data-driven fault diagnosis relies purely on historical data which include information
on different known health conditions of machinery. There are three categories of historical
data [6]:

• Value type - Data collected at a specific time epoch is a single value, e.g. oil analysis
data and temperature data.

• Waveform - Data collected at a specific time epoch is a time series, e.g. vibration
data and acoustic data.
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Figure 1.2: Model-based fault diagnosis [5, 6]

• Multidimension type - Data collected at a specific time epoch is multidimensional,
e.g. X-ray images.

Among them, waveform data, especially vibration data, are most regularly measured in fault
diagnosis of rotating machinery. A survey [24] shows that, of the 18 commercially available
condition monitoring systems for wind turbines, 12 systems provide vibration monitoring.
In this thesis, only vibration data will be used.

This thesis further divides the data-driven fault diagnosis into two groups, depending on
how a diagnosis decision is made using the historical data. The first group makes decisions
directly based on data analysis results using signal processing techniques, and is called
the signal-based approach in this thesis. The second group resorts to machine learning
techniques for decision making, and is called the machine-learning-based approach in this
thesis. Their block diagrams are given in Figure 1.3.

Data processing is the first step in both groups of methods. In signal-based approaches,
a few fault-sensitive indicators are firstly generated using signal processing techniques. An
indicator is a parameter that represents the health condition of a machine. Then the fault
indicators are checked and compared with certain thresholds for fault diagnosis. If the
indicator values are above certain thresholds, then a fault is said to be presented. This
method is straightforward, and the results are easy to be interpreted. The generation of
effective indicators is the key issue of this method. To achieve this, proper signal processing
techniques need to be used depending on specific objectives. A review on signal processing
techniques will be given in Section 1.2.1.

In machine-learning-based approaches, data processing step usually produces a large
number of features to ensure that health information is fully obtained. A feature describes
the information on machine health conditions. This step is also called feature extraction.
The next step, called feature selection, is used to reduce the number of features so as to
improve the performance of machine learning. Details are given in Section 1.2.2.2. Fi-
nally, a machine learning algorithm is utilized to build a model which maps features in the
feature space to fault conditions in the fault space. This model is used for fault diagnosis.
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Figure 1.3: Data-driven fault diagnosis

Machine-learning-based approaches can achieve automatic fault diagnosis. The disadvan-
tage, however, is that a large number of training samples are needed in order to build a good
model.

This thesis focuses on data-driven fault diagnosis. A literature review on the two kinds
of approaches for data-driven fault diagnosis is provided next.

1.2 Literature Review on Data-Driven Fault Diagnosis

In this section, signal-based approaches and machine-learning-based approaches in data-
driven fault diagnosis are reviewed.

Data processing is used in both signal-based and machine-learning-based approaches,
as shown in Figure 1.3. In Section 1.2.1, the signal-based fault diagnosis is reviewed and
signal processing techniques are discussed. These techniques can be applied for feature
extraction within the machine-learning-based approaches as well.

1.2.1 Signal-Based Fault Diagnosis

There are three main categories of vibration data analysis: the time-domain analysis, the
frequency-domain analysis, and the time-frequency domain analysis. Each of them is dis-
cussed in separate sections next.
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1.2.1.1 Time-domain Analysis

Time-domain analysis is directly based on the time waveform (e.g. vibration on a bearing
casing with respect to time) itself. The most straightforward technique is simply to visually
inspect portions of the time waveform. However, vibration signals produced by a large
machine containing many components may be very complicated when viewed in the time
domain, making it unlikely that a fault be detected by a simple visual inspection.

Instead of visual inspection, the signal can be characterized using some statistical pa-
rameters. These parameters can be compared with predefined thresholds for exceeding (if
exceeding, then a fault is indicated), and/or trended against time for tracking the deteri-
oration of a machine. Statistical measures such as mean, standard deviation, peak, root
mean square (RMS), crest factor, impulse factor, clearance factor, kurtosis, skewness are
commonly used descriptive statistics [6, 25]. Their definitions are given in Equations (1.1)-
(1.9).

The mean, standard deviation, peak and RMS values define the central tendency, the
dispersion, the amplitude spread and the energy of the vibration signal, respectively. RMS
has been used to perform fault detection, e.g. the ISO 2372 (VDI 2056) norms define three
different velocity RMS alarm levels for four different machine conditions. These mentioned
parameters have the same units as the vibration signal, and thus are dimensional.

Crest factor (CF), impulse factor (IF), clearance factor (CLF), kurtosis, and skewness
are dimensionless statistics. The advantage of dimensionless statistics is that they are less
sensitive to the variation of load and speed [26]. Crest factor, clearance and impulse factor
are sensitive to the existence of sharp peaks, so they are often used for faults that involve
impacting, e.g. rolling element bearing wear, gear tooth wear or cavitation in pumps [25].
High-order statistics, such as kurtosis and skewness, describe the shape of the amplitude
distribution of the waveform. Kurtosis expresses an aspect of spikiness of the signal, i.e.
how peaked/float the distribution is. A normal distribution has a kurtosis value of 3. If a
signal contains sharp peaks, then its kurtosis will be higher [14]. Skewness is a measure
of the asymmetry of the distribution. A symmetric distribution results in a skewness of
0. A machine in good condition usually has a Gaussian distribution, whereas a damaged
machine usually has a non-Gaussian distribution [14]. Thus kurtosis and skewness can be
used to indicate the presence of a fault as well.

xmean =
1
N

N∑
k=1

x(k) (1.1)

xstd =

( 1
N − 1

N∑
k=1

(
x(k) − xmean

)2) 1
2

(1.2)

xpeak = max
k

∣∣∣∣x(k)
∣∣∣∣ (1.3)
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xRMS =

√√√
1
N

N∑
k=1

x(k)2 (1.4)

CF =
xpeak√

( 1
N (x(k) − xmean)2)

(1.5)

CLF =
xpeak

( 1
N

∑N
k=1
√
|x(k)|)2

(1.6)

IF =
xpeak

1
N

∑N
k=1 |x(k)|

(1.7)

kurtosis =
1
N

∑N
k=1(x(k) − xmean)4

1
N (

∑N
k=1(x(k) − xmean)2)2

(1.8)

skewness =
1
N

∑N
k=1(x(k) − xmean)3

1
N (

∑N
k=1(x(k) − xmean)2)3/2

(1.9)

In the above equations, x(k) is the vibration amplitude at time point k, xmean is the mean
value of the signal x(k), xpeak is the peak value of the signal and N is the total number of
data points in the signal.

The above statistics are computationally easy. In signal-based approaches, they have
been used as indicators for fault detection and isolation. However, coming to fault identi-
fication (diagnosis of fault levels), they demonstrate poor performance. For example, Sass
et al. [27] reported that the values of statistics including RMS, kurtosis, impulse factor and
crest factor decreased to the level of an undamaged case when the damage was severe. In
other words, they can not distinguish the severe fault and the normal (“no fault”) conditions.

By themselves, these statistics may not be effective for all faults. But they can be used
to reflect certain health information, which makes them useful in machine-learning-based
fault diagnosis. In this thesis, they are calculated and used, together with other features, in
identification of gear pitting levels in Chapter 6.

1.2.1.2 Frequency-domain Analysis

Frequency-domain analysis is based on the transformed signal in the frequency domain.
The frequency-domain analysis reflects a signal’s constituent frequencies. The most widely
used analysis is the spectrum analysis by means of Fast Fourier Transform (FFT).

The amplitude information of the Fourier transform (also known as the Fourier spec-
trum, or frequency spectrum) is mostly investigated in spectrum analysis, and can be used as
fault indicators. Generally, if the amplitudes of characteristic frequencies are below certain
thresholds, then the machine would be considered as normal [28]. Otherwise, if the ampli-
tudes of characteristic frequencies are above certain thresholds, then these frequencies can
be analyzed and related to certain fault types for fault isolation. Besides the amplitudes at
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specific frequencies, the amplitudes can also be checked for particular frequency bands of
interest [29].

The phase information of the Fourier spectrum, though not as popularly used as the
amplitude information, provides important and complementary information. For example,
McFadden [30] used the phase angle of the meshing harmonics to determine the location of
a gear crack.

Based on the Fourier spectrum, other spectra such as power spectrum, cepstrum [31],
bispectrum [32, 33], trispectrum [32], and holospectrum [34] have also been reported for
fault diagnosis of rotating machinery [32, 35]. Power spectrum is the Fourier transform of
a signal’s autocorrelation function. It reflects the energy at a specific frequency. Cepstrum
has several versions of definitions. Among them, power cepstrum (the inverse Fourier spec-
trum of the logarithmic power spectrum) is the most commonly used one. It can reveal
harmonics and sideband patterns in power spectrum. Bispectrum and trispectrum are the
Fourier transforms of the third- and the fourth- order statistics of the waveform. Details on
these spectra are available [6].

The above mentioned spectra deal with one-dimensional signals only. Full spectrum
[8,36] considers two signals measured from two orthogonal directions together when doing
Fourier transform and thus keeps the directivity information of a planar motion. Holospec-
trum [34] considers two or three signals together and integrates information of phase, am-
plitude and frequency of a waveform. Full spectrum and holospectrum have both been
used for diagnosis of rotor faults, and are found to outperform the conventional Fourier
spectrum [34, 37].

In this thesis, Conventional Fourier spectrum and full spectrum are used. Descriptions
on conventional Fourier spectrum and full spectrum will be presented in Section 2.1.2.
Full spectrum is employed for signal-based fault identification in Chapter 5. Conventional
Fourier spectrum is used for feature extraction in machine-learning-based fault diagnosis in
Chapters 4, 6 and 7.

1.2.1.3 Time-frequency Analysis

Time-frequency analysis investigates the vibration signals in both the time domain and
the frequency domain. This analysis captures frequency contents at different time points.
Wavelet Transform (WT) and Empirical Mode Decomposition (EMD) are modern time-
frequency analysis tools.

Wavelet transforms are inner products between signals and the wavelet family, which
are derived from the mother wavelet by dilation and translation. Let ψ(t) be the mother
wavelet which is a zero average oscillatory function centered around zero with a finite en-
ergy. The daughter wavelet is ψa,b(t) = ψ((t− b)/a), where a is positive number and defines
the scale and b is any real number and defines the time shift. By varying the parameters
a and b, different daughter wavelets can be obtained to constitute a wavelet family. The
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continuous wavelet transform is to perform the following operation:

W(b, a) =
1
√

a

∫ +∞

−∞
x(t)ψ∗(

t − b
a

) dt, (1.10)

where ψ∗ is the complex conjugate of ψ. Lin and Zuo [38] used wavelet analysis for the
detection of early tooth crack in a gearbox. A review of the application of wavelet transform
in fault diagnosis is given in [39].

Empirical mode decomposition (EMD) decomposes a signal into a set of intrinsic mode
functions (IMFs). Each IMF stands for a generally simple oscillatory mode. A detailed
introduction of EMD is presented in Section 2.2. EMD has the advantage over WT in
that it does not need a predefined mother wavelet and the decomposition totally depends
on the data itself. Gao et al. [40] investigated an EMD-based fault diagnosis for rotating
machinery, and found that EMD could extract the fault indicators and identify the fault
effectively.

In this thesis, EMD is utilized in signal-based fault identification in Chapter 5.

1.2.1.4 Summary

In literature, majority of signal-based fault diagnosis methods focus on fault detection and
isolation [26,35,41], and recently more attention is given to fault identification [34,42,43].

To conduct fault identification, the signal-based approaches generate a fault indicator
that varies monotonically with the fault progressive. Thus by comparing the value of this
indicator with pre-determined thresholds, the fault severity level can be estimated. How to
generate such an indicator is a challenging issue, especially for complex systems [44]. This
issue will be further illustrated and two indicator generation methods will be proposed in
Chapter 5 .

1.2.2 Machine-Learning-Based Fault Diagnosis

In machine-learning-based fault diagnosis, machine learning algorithms are employed for
decision making (as shown in Figure 1.3). There are two categories in machine learning:
supervised learning and unsupervised learning.

Supervised learning infers a function from a set of training samples. Each sample is a
pair consisting of an input (i.e. a feature vector x) and a label (i.e. a fault condition d). A
supervised learning algorithm produces an inferred function between x and d. The inferred
function can be used to predict the label (d) for any new input (x).

Unsupervised learning discovers the particular patterns that reflect any kind of structure
of the training samples, such as properties of the distribution and relations between samples.
Each training sample is described by a feature vector (x) only, and there is no target label
provided for the sample. The training samples are used to explore the underlying structure
of the data. Clustering is a typical example of unsupervised learning, in which data is
grouped into clusters and each cluster stands for one health condition.
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Supervised learning and unsupervised learning are two ways for solving diagnosis prob-
lems. The choice of the two depends on the data available. If historical information on
health conditions, e.g. fault types and fault levels, are available, supervised learning can be
used. In some cases, it may be extremely difficult to acquire fault data from real systems.
To handle such situations, unsupervised learning can be used. In this thesis, supervised
learning is employed. Unsupervised learning is not discussed; however, it does not mean
that unsupervised learning is not important.

As stated in Section 1.1, machine-learning-based fault diagnosis consists of three steps:
feature extraction, feature selection, and machine learning. The techniques for each of them
are reviewed next.

1.2.2.1 Feature Extraction

Feature extraction is a process of obtaining features, either by direct reading from sensors
(e.g. shaft rotational speed read from a tachometer) or by calculating through signal pro-
cessing techniques. With the development of signal processing techniques, many features
can be extracted. For example, the statistics in the time-domain, the amplitudes at some
frequencies in the frequency-domain, and decomposition results (e.g. wavelet coefficients)
in the time-frequency domain can all be used as features. Signal processing techniques,
from the time-domain, the frequency-domain or the time-frequency domain, have already
been covered in Section 1.2.1, and are not repeated here.

Feature extraction is not the focus of this thesis. Existing techniques from the time-
domain and the frequency-domain are directly used for feature extraction in Chapters 4, 6
and 7.

1.2.2.2 Feature Selection

In machine-learning-based fault diagnosis, the diagnosis results highly rely on the perfor-
mance of the model that is trained using training samples. Each sample is described by a set
of features. The number of features is the dimension of the sample. It might be expected that
the inclusion of an increasing number of features would include more information for build-
ing the model. Unfortunately, that is not true if the number of the training samples doesn’t
also increase rapidly with each additional feature included. This is the so called curse of
dimensionality [45]. The basic idea of the curse of dimensionality is that high-dimensional
data is difficult to work with for several reasons [46]: (1) adding more features can increase
the noise and hence the error; (2) there are not enough samples to get good estimates for
parameters in the model. For example, Silverman [1] provided Table 1.1 illustrating the
difficulty of density estimation in high dimensional space. It can be seen that with the in-
crease of the number of dimension, the required sample size (number of samples) increases
sharply. Dimension reduction is thus desired. There are two ways to conduct dimension
reduction. The first one is transformation-based reduction, which involves an irreversible
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Table 1.1: Required sample size in density estimation [1]

No. of dimensions Required sample size
1 4
2 19
5 786
7 10700

10 842000

transformation (linear or nonlinear) in the reduction process. Principal component analysis
(PCA) can be used as a dimension reduction tool by choosing the first few components and
leaving the rest unimportant principal components. Other commonly used transformation-
based reduction tools include Project Pursuit (PP) [47], Isomap [48], etc. Because of the
linear or nonlinear transformation, the transformation-based reduction cannot preserve the
physical meaning of the original data set. So it is often used in situations where the seman-
tics of the original data set are not needed by any future process.

The second one, called feature selection, keeps the physical meaning of the original
feature set. Instead of creating new features as does transformation-based reduction, fea-
ture selection chooses a feature subset from the original feature set. It removes redundant
features and irrelevant features from the original feature set, so as to improve the learning
ability of a machine learning algorithm. In this thesis, feature selection techniques are used
for dimension reduction.

Methods for feature selection generally fall into three categories: filter, wrapper and
embedded methods [49]. Filter methods firstly rank the features with an ad hoc measure
and then find a feature subset based on that ordering. In wrapper methods, a machine
learning algorithm is used to score features. In embedded methods, feature selection is
performed in the process of training. Compared with the other two categories of feature
selection methods, filter methods are independent of any machine learning algorithms, and
thus are computationally simple and fast. Therefore, this thesis works on filter methods.

Generally speaking, there are two important components in filter methods: (1) a mea-
sure to evaluate the performance of a feature or a feature subset, and (2) a search strategy to
find the best feature subset as defined by the corresponding measure. The two components
are reviewed next.

1.2.2.2.1 Evaluation Measure Measures in filter methods evaluate the performance of
a feature or a feature subset in distinguishing different labels (i.e. fault conditions). The
reported measures can be grouped into distance-based (e.g. Fisher criterion [50] and Relief
[51]), correlation-based (e.g. correlation coefficient [52]), information-based (e.g. mutual
information [53]), and consistency-based (e.g. FOCUS [54, 55] and rough set [55, 56])
measures. In the following, each of them is briefly discussed (see [55,57] for more details).
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(1) Distance-based measures evaluate the difference between samples having different
labels induced by a feature. A feature xi is preferred to another feature x j if xi induces a
greater difference than x j. If the difference is zero, then xi and x j are indistinguishable.
Distance-based measures are employed in [50, 51, 58].

(2) Correlation-based measures quantify the ability of one variable to predict another
variable. Correlation coefficient is a classical correlation measure and can be used to find
the correlation between a feature and the label. If the correlation of feature xi with label d is
higher than the correlation of feature x j with d, then xi is preferred to x j. Correlation-based
measures are employed in [52, 59].

(3) Information-based measures typically determine the information gain from a fea-
ture. The information gain from a feature xi is defined as the difference between the prior
uncertainty and the expected posterior uncertainty in distinguishing different labels using
xi. Feature xi is preferred to x j if the information gain from feature xi is greater than that
from x j. Information-based measures are employed in [53, 60].

(4) Consistency-based measures are characteristically different from the above three
measures because of consistency-based measures’ heavy reliance on the data itself and
use of Min-feature bias in selecting a subset of features [61]. Min-feature bias prefers
consistent hypotheses definable over as few features as possible. These measures find out
the minimal size of the feature subset that satisfies an acceptable consistency. Consistency-
based measures are employed in [10, 54, 55, 62, 63].

The first three types of measures (i.e. distance-based, information-based and correlation-
based) are univariate measures. That is, they check one feature at a time. The consistency-
based measures are multivariate measures which check a set of features at a time. The
consistency-based measure can help remove both redundant and irrelevant features; whereas
the other measures may not be able to do so by themselves [55]. In order to do so, the
maximum relevance and minimum redundancy scheme was proposed in [53]. Under this
scheme, the relevance between a feature and the label, as well as the redundancy between
two features, are evaluated based on the first three types of measures listed above. The se-
lected feature subset is the one that maximizes the relevance and minimizes the redundancy.
Formula (1.11) [53] shows an example to realize this scheme, where C is the original fea-
ture set, S is the selected feature subset with m features, V(xi, d) is the relevance between
feature xi and the label variable d, M(xi, x j) is the redundancy between features xi and x j,
and xi and x j are two features in S . By employing this scheme, the first three types of
measures can remove both redundant and irrelevant features.

max
xi∈S ,S⊂C

1
m

∑
xi∈S

V(x j; d) − 1
m2

∑
xi,x j∈S

M(xi, x j) (1.11)

Correlation coefficient and rough set are two powerful and popularly used tools for fea-
tures selection. The basic ideas of these two techniques are briefed as below. A detailed
introduction on these two techniques will be given in Section 2.4 and Section 2.5, respec-
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tively.
The absolute value of the Pearson correlation coefficient is the most commonly used

correlation-based measure. It evaluates the correlation between two variables. If the two
variables are features, then it evaluates the redundancy between the two features (i.e. M(xi, x j)
in Formula (1.11)); if one variable is a feature and the other is the label, then it evaluates
the relevance between a feature and the label (i.e. V(xi, d) in Formula (1.11)). The absolute
value of the Pearson correlation coefficient takes values between 0 and 1. The value of 1
means the two variables are perfectly correlated; the value of 0 means the two variables are
not related. The optimum feature subset is the one that maximizes the objective function in
Formula (1.11).

Rough set, first described by Zdzislaw I. Pawlak [64], is a formal approximation of a
crisp set (e.g. the set of labels, D) in terms of a pair of sets which give the lower and the
upper approximations of the original set (D). A parameter, called Approximation quality
(also called dependency), is defined to evaluate the approximation ability. A feature subset
which approximates the label set (D) better has higher values of approximation quality. The
selected feature subset is the one that has the highest approximation quality and minimum
number of features.

The Pawlak rough set model is best suited for nominal features which are discrete vari-
ables. In fault diagnosis, it is often the case that numerical features (i.e. real-values), must
be dealt with. To consider this situation, Hu et al. [10] extended the Pawlak rough set model
to a neighborhood rough set model. One problem with applying the neighborhood rough
set model in fault diagnosis is determining the neighborhood size. This problem will be
further discussed and a modification to the neighborhood rough set model will be proposed
in Chapter 4.

Another issue with the existing feature selection methods is that most of them are pro-
posed for classification problems which make them work efficiently for fault detection and
isolation (FDI), but inefficiently for fault identification. The reason lies in the fact that the
types of fault conditions (labels (d)) in fault identificaiton and FDI are different. In FDI,
the labels are nominal variables, whereas in fault identification, the labels (e.g. slight fault,
moderate fault, severe fault) are ordinal variables. This results in two different machine
learning algorithms: the former is classification and the latter is ordinal ranking, as will be
discussed in Section 1.2.2.3.

1.2.2.2.2 Search Strategy Besides evaluation measure, search strategy is the other im-
portant component for filter methods. The aim of the search is to optimize the value of an
evaluation function, such as Formula (1.11). Techniques of search strategy are categorized
into three groups by Doak [65]:

• Exponential (e.g. exhaustive and Branch & Bound (BB) [66]).

• Randomized (e.g. heuristics such as simulated annealing [67], probabilistic hill-
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climbing [68], genetic algorithms (GA) [69], and partial swarm optimization (PSO)
[70]).

• Sequential (e.g. sequential backward, sequential forward and bidirectional [71]).

In exhaustive search, all 2m(m−1) − 1 possible combinations of m input features are used
in the search process. Hence, although exhaustive search ensures an optimal solution, it
is the most computationally expensive approach. The BB approach decreases the search
time by pruning some branches of the search tree. Randomized heuristics further speed up
the search process. These algorithms incorporate randomness into their search procedure
to escape local maxima. For different seeds of the random number generator, randomized
heuristics may give different results. Sequential search adds or removes features sequen-
tially and is computationally fast, but has a tendency to become trapped in local maxima.

The widely used sequential search algorithms are sequential forward selection (SFS),
sequential backward selection (SBS), and bidirectional search (BS) [65]. SFS starts with
an empty set of features (S = ∅). As search starts, features are added into S one at a time.
At each time, the best feature among unselected ones is chosen based on the evaluation
measure (i.e. the criteria in filter methods). S grows until it meets a stopping criterion. The
stopping criterion can be that the number of selected features (say q) is reached, or the value
of the evaluation measure has reached a threshold. SBF begins with a full set of features
and removes one at a time. At each time, the least important feature is removed based on
the evaluation measure. S shrinks until it meets a stopping criterion, e.g. q features are left
or a certain value of the evaluation measure is reached. BS starts in both directions, i.e. two
searches proceed concurrently. SFS is used in the case where the most important feature is
easy to find. SBS is used when the least important feature is easy to find. BS is used when
both the most important and the least important features are easy to find.

The search strategy is not the focus of this thesis. The SFS sequential search is directly
adopted because it is the most computationally economic one [65].

1.2.2.3 Machine Learning

After the feature selection in Section 1.2.2.2, now the third step is machine learning. As
stated in the beginning of Section 1.2.2, this thesis focuses on supervised learning only. A
supervised learning algorithm analyzes the training data and infers a function which rep-
resents the relationship between the input (i.e. a feature vector x) and a label (i.e. fault
condition d). According to the label’s type, a supervised learning problem can be grouped
into three categories. (1) If the label is continuous, the problem is called regression. Oth-
erwise the label is discrete, which results in the last two categories: (2) if the label is a
nominal variable, the problem is called classification; (3) if the label is an ordinal variable,
the problem is called ordinal ranking [72]. A detailed description on different types of vari-
ables are given in Section 2.3. For the convenience of description, we call the label in a
classification problem, class, and the label in an ordinal ranking problem, rank.
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In fault diagnosis, classification algorithms are often used, such as K-nearest neigh-
borhood (KNN) [73], Artificial Neural Network (ANN) [74] and Support Vector Machine
(SVM) [75]. They are briefly described as follows.

K-nearest neighborhood (KNN) is a type of learning algorithm where the inferred func-
tion is only approximated locally. In KNN, a sample is classified by a majority vote of
its neighbors, with the test sample being assigned to the class most common amongst its k

nearest neighbors (k is a positive integer, typically small). Figure 1.4 illustrates the concept
of KNN. The circle point is a test sample. The rectangles and the triangles are training
samples, of which five triangles are from Class A and the six squares are from Class B. If
k = 3, then we examine the 3 nearest neighbors of the test sample. The circle is assigned
to Class A because there are 2 triangles and only 1 square inside the inner circle including
the test sample and its 3 nearest neighbors. If k = 5, it is assigned to Class B (3 squares vs.
2 triangles inside the outer circle). KNN is amongst the simplest of all machine learning
algorithms. One drawback of KNN is that the classes with the more frequent samples tend
to dominate the prediction of the test sample, as they tend to come up in the k nearest neigh-
bors when the neighbors are computed due to their large number. Application of KNN to
fault diagnosis is reported in [73, 76]

Figure 1.4: An example of KNN classification

Artificial neural network (ANN) is a mathematical model that mimics the human brain
structure. A neural network is composed of a large number of highly interconnected pro-
cessing elements (called neurons or nodes). This structure allows the approximation of an
underlying nonlinear function between the input and the output.

There are various types of neural networks. The feed forward neural network (FFNN) is
the first and arguably simplest type of artificial neural network devised. In this network, the
information moves in only one direction, forward, from the input layer, through the hidden
layers (if any) and to the output layer. At each neuron, a function (called an activation
function) of the inputs is computed. Figure 1.5 shows a schematic representation of an
FFNN with one hidden layer where the circles stand for nodes. In this example, the input
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layer contains m nodes: one for each of the m input features of a feature vector. The output
layer has one node meaning that the output d is a scalar. The links carry weights wi j and
w′i j. The weights can be found in the training process by minimizing the mean-square error
(Equation (1.12)) using the Backpropagation (BP) training algorithm.

x

Input

Layer
Hidden Layer

Output

Layer

ijw
ijw 'weights

weights

d

Figure 1.5: Illustration of FFNN

Error =
1
n

n∑
i=1

(di − d′i )
2 (1.12)

In Equation (1.12) n is the total number of training samples, di is the desired output of the ith

sample and d′i is the output by the network. This network is powerful for problems where
the relationships between the input and the output may be quite dynamic or non-linear.
However, it has slow convergence speed and may result in a local minimum value instead
of the global optimal solution.

Probabilistic neural network (PNN) [77] is another type of feed forward neural network.
It has four layers: input layer, pattern layer, summation layer and output layer. Figure 1.6
displays the architecture of a PNN that recognizes 3 classes, but it can be extended to any
number of classes. The input is a three-dimensional feature vector. The pattern nodes are
divided into groups: one group for each of the 3 classes. Each pattern node in the group for

class i corresponds to a Gaussian function (i.e. e−
||x−xi j ||2

σ2 ) centered on its associated feature
vector in the ith class. All of the Gaussian functions in a class feed their values to the same
summation node. There are 3 summation nodes, and each node represents one class. The
output is the class that has the maximum function value. The training process of a PNN is
essentially the act of determining the value of the smooth parameter σ. The PNN offers the
following advantages [78]: rapid training speed and robustness to noisy training samples.
The disadvantage of PNN is that it requires representative training samples.

Application of ANNs to fault diagnosis is reported in [79–81], and it is often used when
many training samples are available.
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Figure 1.6: An example of PNN classification

Support Vector Machine (SVM) maps the original feature space into a higher dimen-
sional space, in which a hyperplane (or a set of hyperplanes) is constructed to achieve linear
separation. Figure 1.7 illustrates the concept of SVM classification. SVM can achieve the
global optimal solution and has good ability in generalization. Application of SVM to fault
diagnosis is reported in [82, 83]. Detailed mathematical explanation of SVM will be given
in Section 2.6.1.

Input feature space Higher dimensional space

separating

hyperplanemapping

Figure 1.7: Illustration of SVM classification [7]
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In this thesis, KNN, PNN and SVM are adopted as classification algorithms for decision
making in fault detection and isolation (diagnosis of fault types).

These classification algorithms, when applied to fault identification (diagnosis of fault
levels), ignore the ordinal information among different fault levels [84]. For example, a
moderate fault is worse than (“<”) a slight fault but is better than (“>”) a severe fault. In
classification, however, the severe, moderate and slight faults are parallel to each other and
are not compared using “>” and “<” operations. The above mentioned ordinal information
is the main characteristic of the fault levels, which makes the fault identification (diagnosis
of fault levels) more complicated than fault detection and isolation (diagnosis of the fault
types). In order to express the ordinal information, this thesis uses another machine learning
technique, ordinal ranking, for fault identification.

b1 bib2 ... br-1

Rank 1 Rank 2

bi-1 bi+1 ...

Rank i Rank i+1 Rank r

f(x)

Figure 1.8: Illustration of ordinal ranking

Ordinal ranking generates a ranking model that expresses the ordinal information con-
tained in the training data. Figure 1.8 shows an example of a ranking model trained by
ordinal ranking. Ordinal ranking finds a f (x) which is calculated using the input features x,
and the value of f (x) changes monotonically with the increase of the fault level. The rank
of a sample can be estimated by checking the value of f (x), that is, if bi−1 < f (x) < bi,
the sample belongs to rank di. A detailed description on ordinal ranking will be given in
Section 2.6.2. Ordinal ranking has been proved to perform better in ranking documents in
the information retrieval field [85], but its application to fault diagnosis hasn’t been reported
yet. This thesis applies ordinal ranking for fault identification in Chapter 6 and Chapter 7.

1.2.2.4 Summary

In machine-learning-based fault diagnosis, classification is often employed for decision
making. In fault detection and isolation (FDI), different fault types are diagnosed. Classi-
fication is able to distinguish different fault types, so it is suitable for FDI. In fault identi-
fication, fault levels are diagnosed. Classification can not express the ordinal information
contained in fault levels, so it is not suitable for fault identification. Ordinal ranking, a
recently studied machine learning algorithm, is able to keep ordinal information, and there-
fore is adopted in this thesis for fault identification in Chapter 6.

Moreover, FDI and fault identification are usually considered separately. An inte-
grated technology which is capable of conducting fault detection, isolation and identifi-
cation (FDII) is more helpful in fault diagnosis [21]. Researchers have used classification
algorithms for FDII [83, 86]. However, as stated earlier, classification ignores the ordinal
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information. So there is a need to combine classification and ordinal ranking techniques for
FDII. This will be present in Chapter 7.

Feature selection plays an important role in improving the performance of machine
learning. There are two issues to be studied for the existing feature selection methods. The
first issue is the determination of certain parameters for some feature selection methods (e.g.
neighborhood size in neighborhood rough set, as stated in Section 1.2.2.2). The second
issue is that the majority of the existing feature selection methods are for classification
problems, which work less efficiently for ordinal ranking problems. In this thesis, two
feature selection methods are proposed for classification and for ordinal ranking in Chapter
4 and Chapter 6, respectively.

1.3 Objectives and Contributions of the Thesis

The objective of the PhD research is to improve the performance of signal-based and
machine-learning-based techniques in fault detection, isolation and identification.

In signal-based approaches, as discussed in Section 1.2.1, generating an indicator for
fault identification is a challenging issue. This indicator needs to show a monotonic trend
with the fault level. To tackle this challenge, two methods of integrating information from
two or more sensors are developed to generate an indicator for fault levels. Specifically, the
two methods are listed below and are detailed in Chapter 5.

• Generating an indicator by processing signals from two sensors together

• Generating an indicator by processing signals from each individual sensor or from
several sensors together and then combining information from different sensors

In machine-learning-based approaches, the problem of fault detection and isolation
(FDI) can be regarded as a classification problem. Feature selection largely affects the
performance of the machine learning algorithms. In this thesis, neighborhood rough set is
adopted for feature selection for a classification problem. The problem of neighborhood
size selection, as discussed in Section 1.2.2.2.1, is solved. Fault identification (i.e. diagno-
sis of fault levels) has an important characteristic, that is, there is ordinal information among
different fault levels. In order to preserve the ordinal information, this thesis proposes to do
fault identification using ordinal ranking as a machine learning algorithm. Moreover, most
feature selection methods are for classification problems, and they work less efficiently for
ordinal ranking problems [60]. In this thesis, a feature selection method based on correla-
tion coefficients is proposed for ordinal ranking. Specifically, the following two topics are
investigated and the results are provided in Chapter 4 and Chapter 6, respectively.

• A feature selection method based on neighborhood rough sets for fault detection and
isolation

• A feature selection method based on correlation coefficients for fault identification
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Furthermore, FDI (diagnosis of fault type) and fault identification (diagnosis of fault
level) are usually considered separately in literature. An integrated methodology which
is capable of conducting fault detection, isolation and identification (FDII) is more useful
in fault diagnosis [21] and worths studying. This thesis proposes a machine-learning-based
method for FDII (diagnosis of both fault type and fault levels). In this method, classification
is used for diagnosis of fault type and ordinal ranking is employed for diagnosis of fault
levels. Thus the last topic of this thesis addressed in Chapter 7 is:

• Fault detection, isolation and identification by combining classification and ordinal
ranking.

1.4 Outline of the Thesis

The organization of this thesis is as follows. Chapter 2 presents the preliminary knowledge
on techniques used in this thesis. Chapter 3 describes the experimental data collection for
the verification of the proposed diagnosis methods. Chapter 4 studies the feature selec-
tion method based on neighborhood rough sets for fault detection and isolation. Chapter 5
presents two signal-based methods to generate indicators for fault identification. Chapter
6 applies ordinal ranking to the machine-learning-based fault identification. A feature se-
lection method for ordinal ranking is proposed, and the advantage of ordinal ranking over
classification is discussed. Chapter 7 proposes a scheme for fault detection, isolation and
identification. Fault detection and isolation is conducted through classification, and fault
identification is achieved through ordinal ranking. Finally, Chapter 8 summarizes the con-
tributions and introduces the possible directions for future work.
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Chapter 2

Background Information for
Techniques Used in This Thesis

As reviewed in Chapter 1, signal processing, feature selection and machine learning are
important components in fault diagnosis. In this chapter, fundamentals of these techniques
are introduced. Two signal processing techniques, Fourier transform and empirical mode
decomposition (EMD), are introduced in Section 2.1 and Section 2.2, respectively. The
selections of feature selection algorithm and machine learning algorithm depend on the
measurement scale of features and fault conditions. So in Section 2.3, different measure-
ment scales are presented first. Then two techniques, correlation coefficient and rough set,
that are often used in feature selection are introduced in Section 2.4 and Section 2.5, re-
spectively. Two machine learning algorithms (classification and ordinal ranking) based on
support vector machine (SVM) are introduced in Section 2.6. The uses of these techniques
in later chapters are summarized in Section 2.7.

2.1 Fourier Transform

Fourier transform is a mathematical operation that decomposes a signal x(k) which is a
function of time into its constituent frequencies, known as a Fourier spectrum X(n). The
discrete Fourier transform of x(k) is defined in Equation (2.1), where N is the total length
of x(k). The amplitude of the frequency spectrum is given by the magnitude of X(n), i.e.
|X(n)|.

X(n) =
N−1∑
k=0

x(k)e− j 2π
N nk, where n = 0, 1, . . . ,N − 1. (2.1)

Let x(k) be a vibration signal from direction X only. x(k) is represented by real numbers
(i.e. x(k) is 1-dimensional), then X(n) is the conventional Fourier spectrum (also called
half spectrum). Let y(k) be the other vibration signal measured from direction Y which
is orthogonal to X. x(k) and y(k) together can be represented by complex numbers, i.e.
z(k) = x(k) + j · y(k) where j is the imaginary unit. The Fourier spectrum of z(k), Z(n), is
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called the full spectrum of x(k) and y(k). Half spectrum and full spectrum are explained in
this section. Materials in this section are from [87] and [8].

2.1.1 Conventional Fourier Spectrum (Half Spectrum)

When Fourier transform is applied to real-valued data (i.e. data measured from one direc-
tion only), the conventional Fourier spectrum is obtained. In this spectrum, the negative
frequency component is the complex conjugate of the positive frequency component. The
positive and negative parts of the spectrum are mirror images of each other. Thus the ampli-
tudes at a positive frequency (e.g. fn) and its corresponding negative frequency (e.g. − fn)
are the same. This is shown in a simple example below.

Let x(k) = 0.5 cos(40πk)+ 0.2 cos(100πk)+ cos(−100πk). The amplitude of its conven-
tional Fourier spectrum (|X(n)|) is plotted in Figure 2.1. It can be seen that the amplitude
values at -20 HZ (respectively -50 Hz) and 20 Hz (respectively 50 Hz) are exactly the same.
Because of this, only the positive frequency components need to be analyzed. Therefore,
the conventional Fourier spectrum is also called half spectrum.
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Figure 2.1: The amplitude of a conventional Fourier spectrum

Conventional Fourier spectrum can be used to analyze a vibration signal measured from
one direction only. If the vibration motion occurs in a plane instead of a single direction,
then two vibration signals can be measured from two orthogonal directions (X and Y). If
the conventional Fourier spectrum is conducted on X and Y motions separately, the phase
correlation between the X and Y motions can not be revealed. To overcome this limitation,
full spectrum analysis needs to be applied.
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2.1.2 Full Spectrum

Full spectrum analyzes vibration signals measured from two orthogonal directions in the
plane of vibration motion together. Let x(k) and y(k) be two signals simultaneously mea-
sured from two orthogonal directions, and z(k) = x(k) + j · y(k) where j is the imaginary
unit. The full spectrum of z(k) can be obtained by replacing x(k) by z(k) in Equation (2.1).
Figure 2.2 shows the detailed procedure. The input of the “FFT” module has two parts (the
direct buffer and the quadrature buffer). The output of the “FFT” module also has two parts
(the direct output and the quadrature output). Simultaneously sampled signals are put into
the direct buffer and the quadrature buffer of the “FFT module”, respectively. The direct
output consists of positive frequency components and the negative frequency components.
So does the quadrature output. Thus the amplitude of a frequency has two parts, one from
the direct output and the other from the quadrature output. Consequently, the positive and
negative frequency components of this FFT are usually not mirror images. In the right half
of the full spectrum plot, the amplitudes of the positive frequency components (also known
as forward frequency components) are shown. In the left half, the amplitudes of the negative
frequency components (also known as backward frequency components) are shown. The
term “forward” means that the rotation of this frequency component is in the direction of
the planar vibration motion. The term “backward” means that the rotation of this frequency
component is in the opposite direction of the planar vibration motion.
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Figure 2.2: Mathematical procedure of obtaining a full spectrum [8]

An example is used to illustrate the characteristic of full spectrum. Let x(k) = 0.5 cos(40πk)+
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Figure 2.3: The amplitude of a full spectrum

0.2 cos(100πk) + cos(−100πk) and y(k) = 0.5 sin(40πk) + 0.2 sin(100πk) + sin(−100πk) be
the two signals measured from horizontal direction and vertical direction, respectively. The
two signals describe a planar motion consisting of three simple motions: (1) a counter-
clockwise rotation at a frequency of 20 Hz with amplitude of 0.5; (2) a counter-clockwise
rotation at 50 Hz with amplitude of 0.2; and (3) a clockwise rotation at 50 Hz with ampli-
tude of 1. x(k) and y(k) are used as the direct buffer and the quadrature buffer, respectively.
So the positive (respectively negative) frequency corresponds to counter-clockwise (respec-
tively clockwise) direction. Figure 2.3 shows the amplitude of the full spectrum. In Figure
2.3, there are three peaks, at -50 Hz, 20 Hz and 50 Hz with amplitude of 1, 0.5 and 0.2, each
of which corresponds to a simple motion. For example, the frequency component at -50 Hz
having amplitude of 1 corresponds to the clockwise rotation at 50 Hz with amplitude of
1. If conventional Fourier transform is conducted on x(k) and y(k) individually, the ampli-
tudes of their Fourier spectra are the same as Figure 2.1. In Figure 2.1, the planar rotation’s
directivity (i.e. clockwise or counter-clockwise) and amplitude cannot be revealed.

It is worth noting that the direction which the forward frequency components corre-
spond to depend on the setting of the direct part and the quadrature part. In the above
example, the forward frequency component corresponds to counter-clockwise direction. To
make the clockwise direction associate with forward frequency components, x(k) and y(k)
must be used as the quadrature buffer and the direct buffer respectively in the calculation of
full spectrum using Figure 2.2.

In this section, Fourier transform, which is a signal processing technique to obtain the
frequency spectrum, is introduced. In the next section, empirical mode decomposition, a
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time-frequency domain analysis technique, is introduced.

2.2 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) decomposes a raw signal into a set of complete and
almost orthogonal components called intrinsic mode functions (IMFs). IMFs represent the
natural oscillatory modes embedded in the raw signal. Each IMF covers a certain frequency
range. Materials and notations in this section follow [9].

There are two types of EMD: standard EMD and multivariate EMD. Standard EMD
deals with a real-valued signal and is introduced in Section 2.2.1. Multivariate EMD deals
with a multivariate signal and is introduced in Section 2.2.2.

2.2.1 Standard Empirical Mode Decomposition

For a real-valued signal, x(k), standard EMD finds a set of IMFs, ci(k), and a residual signal,
r(k), so that

x(k) =
N∑

i=1

ci(k) + r(k). (2.2)

The IMFs are defined so as to have symmetric upper and lower envelopes with the number
of zero crossings and the number of extrema differing at most by one. To extract IMFs, a
sifting algorithm is employed, which is described in Table 2.1.

Table 2.1: Algorithm for standard EMD

Step 1. Find the locations of all the extrema of x(k).
Step 2. Interpolate between all the minima to obtain the lower signal envelope,
emin(k). Interpolate between all the maxima to obtain the upper signal envelope,
emax(k).
Step 3. Compute the local mean,

m(k) = [emin(k) + emax(k)]/2. (2.3)

Step 4. Subtract the mean from x(k) to obtain the “oscillatory mode”, i.e. s(k) =
x(k) − m(k).
Step 5. If s(k) satisfies the stopping criterion, then define c1(k) = s(k) as the first
IMF; otherwise, set new x(k) = s(k) and repeat the process from Step 1.

The same procedure in Table 2.1 is applied iteratively to the residue, r(k) = x(k)−c1(k) ,
to extract other IMFs. The standard stopping criterion terminates the shifting process when
the defined conditions for an IMF is met for a certain number of times [88].

Standard EMD considers only real-valued signals (i.e. signals measured from one uni-
directional sensor only). When dealing with signals from multiple sensors or sensors from
multiple directions, standard EMD needs to decompose signals from each sensor individ-
ually. This may result in unmatched decomposition results in terms of either the number
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or the frequency content [89], because of the local and self-adaptive nature of the standard
EMD. The above statement can be explained by a bivariate signal x(k) which is defined as
follows:

x(k) = x1(k) + j · x2(k), (2.4)

where

x1(k) = 0.5 cos(40πk) + cos(200πk), (2.5)

x2(k) = 1.2 cos(100πk) + 0.5 cos(40πk) + 0.9 cos(200πk). (2.6)

Figure 2.4 shows the decomposition results by applying standard EMD to x1(k) and x2(k),
separately. The first row shows the two raw signals. The last row shows the two residuals.
The middle rows are the IMFs. There are two IMFs obtained for x1(k), and three IMFs
obtained for x2(k). This is an unmatched problem in terms of the number of IMFs. The
second IMF of x1(k), c2x1, is at the frequency of 20 Hz, whereas the second IMF of x2(k),
c2x2, is at the frequency of 50 Hz. This is an unmatched problem in terms of the frequency
content of the same IMF number. To overcome the unmatched problems, multivariate EMD
[9] needs to be employed which is explained in Section 2.2.2.

0 50 100
-2

0

2

0 50 100
-5

0

5

0 50 100
-1

0

1

0 50 100
-1

0

1

0 50 100
-0.5

0

0.5

0 50 100
-2

0

2

0 50 100
-1

0

1

0 50 100
-0.5

0

0.5

0 50 100
-1

0

1

x1 x2

c1x1 c1x2

c2x1

rx1

rx2

c2x2

c3x2
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2.2.2 Multivariate Empirical Mode Decomposition

Standard EMD considers only one-dimensional signals and the local mean is calculated
by averaging the upper and lower envelopes. For multivariate signals, however, the local
maxima and the local minima cannot be defined directly and the notion of “oscillatory
modes” defining an IMF is rather confusing. To deal with these problems, multidimensional
envelopes are firstly generated by taking a signal’s projections along different directions,
and then the average of these multidimensional envelopes are taken as the local mean [9,90,
91]. This calculation of local mean can be considered an approximation of the integral of all
envelopes along the multiple projection directions in an m-dimensional space. The accuracy
of this approximation depends on the uniformity of the chosen direction vectors. Thus, how
to choose a suitable set of direction vectors for the projection becomes the main issue. For
bivariate signals, points can be uniformly selected along a circle (also called 1-sphere) with
the radius of 1, and each point represents a direction vector [90]. For trivariate signals,
points need to be uniformly selected on a sphere (also called 2-sphere) with the radius of
1 [91]. For a general case (m-dimension), points that are uniformly distributed on a (m-1)-
sphere with the radius of 1 needs to be selected. When m is large, the selection of such points
is a problem. Rehman and Mandic [9] proposed to utilize low-discrepancy sequences for
the generation of such points, and generalized the standard EMD to the multivariate EMD.

Before introducing the multivariate EMD, let us first see what are low-discrepancy
sequences and how to generate them. Low-discrepancy sequences are also called quasi-
random or sub-random sequences, due to their common use as a replacement of uniformly
distributed random numbers. The following materials are from [9].

A convenient way of generating a low-discrepancy sequence involves the family of
Halton and Hammersley sequences [9]. Let b1, b2, ..., bm be the first m prime numbers (i.e.
2, 3, 5, 7, 11,. . . ), then the ith sample of a one-dimensional Halton sequence, denoted by rb

i ,
is given by

rb
i =

a0

b
+

a1

b2 +
a2

b3 + ... +
as

bs+1 , (2.7)

where ai is an integer in [0, b-1], and is determined by

i = a0 + a1b + a2b2 + ... + asbs. (2.8)

As an example, a 2-dimensional Halton sequence is generated; one dimension of the
Halton sequence is based on 2 (i.e. b1 = 2) and the other on 3 (i.e. b2 = 3). To generate
the sequence for b1 = 2, we start by let i=1. According to Equation (2.8), we have 1 =
1 + 0 × 2 + 0 × 22 + . . . , thus a0 = 1, a1 = a2 = · · · = 0. Substitute the values of ai into
Equation (2.7), we have r2

1 =
1
2 .

Similarly, when i=2, according to Equation (2.8), 2 = 0 + 1 × 2 + 0 × 22 + . . . , thus
a0 = 0, a1 = 1, a2 = a3 = · · · = 0. Substitute the values of ai into Equation (2.7), we have
r2

2 =
0
2 +

1
22 =

1
4 .
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When i=3, according to Equation (2.8), we have 3 = 1 + 1 × 2 + 0 × 22 + . . . , thus
a0 = 1, a1 = 1, a2 = a3 = · · · = 0. Substitute the values of ai into Equation (2.7), we have
r2

2 =
1
2 +

1
22 =

3
4 . Following the same way, the one-dimensional Halton sequence based on

2 is generated: 1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 , . . . .

In the same way, the one-dimensional Halton sequence for b2 = 3 is 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 , . . . .

When we pair them up, we get a 2-dimensional Halton sequence: ( 1
2 ,

1
3 ), ( 1

4 ,
2
3 ), ( 3

4 ,
1
9 ),

( 1
8 ,

4
9 ), ( 5

8 ,
7
9 ), . . . .

The Hammersley sequence is used when the total number of sequence points, n, is
known a priori; in this case, the ith sample within the m-dimensional Hammersley sequence
is calculated as ( i

n , r
b1
i , r

b2
i , . . . , r

bm−1
i ).

The Hammersley sequence can be used to generate direction vectors, or (equivalently)
points on a (m − 1)-dimensional sphere. Take a 3-dimensional Hammersley sequence as an
example. It is used to find direction vectors on a 2-sphere. First, each dimension is scaled to
be in the range [-1, 1], i.e. ( i

n , r
b1
i , r

b2
i ) −→ (p1, p2, p3) ∈ [−1, 1]× [−1, 1]× [−1, 1]. Second,

each sample is normalized to have the total length of 1, i.e. pi =
pi√

p2
1+p2

2+p2
3

, (i=1, 2, 3).

Figure 2.5 shows the points generated by Hammersley sequence on the 2-sphere. It can be
seen that the points are uniformly distributed.

Figure 2.5: A Hammersley sequence on a 2-sphere [9]

The Halton and Hammersley sequence-based points correspond to a set of direction
vectors, along which projections of an input multidimensional signal are calculated. The
extrema of such projected signals are interpolated component-wise to yield multidimen-
sional envelopes. The multidimensional envelopes, each of which corresponds to a partic-
ular direction vector, are then averaged to obtain the mean of the multi-dimensional signal.
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Let X(k) =
(
x1(k), x2(k), . . . , xm(k)

)
be an m-dimensional signal and Pi =

(
pi

1, pi
2, . . . , pi

m

)
denote the ith direction vector in a direction set, P. The procedure for multivariate EMD is
outlined as follows [9].

Table 2.2: Algorithm for multivariate EMD

Step 1. Choose a suitable set of direction vectors, P.
Step 2. Calculate the ith projection, ok(t), of the input signal X(k) along the ith direc-
tion vector, Pi, for each i (i.e. i=1, 2,. . . , l where l is the total number of direction
vectors in P).
Step 3. Find the time instants, ki

j, corresponding to the maxima of the projected
signal, oi(k), for each i.
Step 4. Interpolate [ti

j, X(ti
j)] to obtain multivariate envelopes, Ei(k), for each i.

Step 5. The mean is estimated by

M(k) =
1
l

l∑
i=1

Ei(k). (2.9)

Step 6. Calculate D(k) = X(k) − M(k). If D(k) fulfills the stopping criterion for a
multivariate IMF, then assign D(k) as an IMF and apply the above procedure from
Step 2 to X(k) − D(k) to extract the next IMF; otherwise, apply it to D(k).

The stopping criterion for multivariate IMFs is similar to that for the standard EMD. The
difference is that the condition for the equality of the number of extrema and the number of
zero crossings is not imposed.

Multivariate EMD is applied to X(k) defined in Equation (2.4). The decomposition
result is shown in Figure 2.6. The first row is the raw signal. The last row is the residual.
Three middle rows represent three IMFs. It can be seen that the numbers of IMFs for the
two components of X(k) are the same. The unmatched problem in terms of the number of
IMF doesn’t exist any more. Furthermore, the signals of the two columns at each row share
the same frequency content. For example, the second IMFs, c2x1 and c2x2, both have the
frequency of 50 Hz; because there is no component in x1(k) having the frequency of 50 Hz,
so the amplitude of c2x1 is really small. This means that the unmatched problem in terms
of the frequency content doesn’t exist any more using multivariate EMD.

In this section, two signal processing techniques are introduced. Before the techniques
on feature selection and machine learning are introduced, different measurement scales are
reviewed in Section 2.3 because the selections of feature selection algorithm and machine
learning algorithm need the information on the measurement scales of features and fault
conditions.
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Figure 2.6: Decomposition results using multivariate EMD

2.3 Measurement Scales and Types of Variables

Steven [92] divided the scales of measurement into four types: nominal, ordinal, interval,
and ratio. The nominal scale is used to describe variables that have two or more categories
but do not have an intrinsic order, e.g. fruits (D={apple, pear, orange}). The categories
in this variable are parallel to each other, that is they cannot be compared using the word
“better” or “worse”. When there are only two categories in this variable, the variable is
called binary (or dichotomous), e.g. gender (D={male,female}). If a variable is measured
in nominal scale, it is called a nominal variable.

The ordinal scale is rank-ordered but does not necessarily have metric information, e.g.
grades of students (D={A+, A, A-, . . . , F}). The variable measured by an ordinal scale has
discrete values (called “ranks” in this thesis). These ranks can be compared qualitatively
using the word “better” or “worse”. That is, there is ordinal information (also called
monotonic relation, preference relation [93]) among the ranks. However a quantitative
comparison between different ranks is impossible. For example, we can say “grade A+ is
better than A-”; but it is improper to say “Grade A+ is 10 times better than A-”. If a variable
is measured in an ordinal scale, it is called an ordinal variable.

The interval scale and the ratio scale are for variables which have metric information.
The difference between the two scales lies in the “zero point”. The “zero point” on an ratio
scale is not arbitrary, and negative values can not be used on this scale. For example, the
Kelvin temperature scale has an absolute zero, which is denoted 0 K. This zero point is
not arbitrary because the particles that compose matter at this temperature have zero kinetic
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energy. On the internal scale, there is no true “zero point” and negative values can be used.
Ratios between numbers on this scale are not meaningful. A typical example is Celsius
temperature scale. We cannot say the 40 °C water is twice hotter than the 20 °C water.
Under the interval or ratio scales, the quantitative comparison is achieved. If a variable is
measured on the interval/or ratio scale, it is called a continuous variable (or numerical
variable). In this thesis, it is called, a continuous variable.

Let us see the measurement scales for features and labels (fault conditions) in fault di-
agnosis. Features extracted from vibration signals are usually continuous variables (e.g.
kurtosis) [73, 94]. Some features, such as the status of a valve (on/off)), are nominal vari-
ables [95, 96].

Fault conditions in fault detection and isolation describes different fault types (e.g. pit-
ting, crack). They are nominal variables and can be regarded as different classes. So fault
detection and isolation can be achieved through classification algorithms.

Fault conditions in fault identification describes different fault levels. They are ordi-
nal variables and can be regarded as different ranks. Fault identification can be achieved
through ordinal ranking algorithms.

The above information is helpful in the description of techniques on feature selection
and machine learning. Next the commonly used tools in feature selection, correlation coef-
ficient, is introduced.

2.4 Correlation Coefficients

Correlation coefficients evaluate the correlation (or dependence) between two variables.
Depending upon the types of variables, different correlation coefficients are defined, some
of which are listed in Table 2.3 [97–99]. The Phi correlation coefficient, the Rank-biserial
correlation coefficient and the Point-biserial correlation coefficient are defined for correla-
tions between two binary variables, between one binary variable and one ordinal variable,
and between one binary variable and one continuous variable, respectively. The Polychoric,
Spearman rank and Kendal rank correlation coefficients are defined for correlations between
two ordinal variables. The Polyserial correlation coefficient is used for the correlation be-
tween one continuous variable and one ordinal variable. The Pearson correlation coefficient,
the most popular one, deals with two continuous variables, and is introduced in Section
2.4.1.

2.4.1 Pearson Correlation Coefficient

The Pearson correlation coefficient between two continuous variables is defined as the co-
variance of the two variables divided by the product of their standard deviations. It evaluates
the linear correlation between two variables. The absolute value of Pearson correlation co-
efficient (|ρxy|) is the most commonly used in feature selection, which is defined in Equation
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Table 2.3: List of correlation coefficients

Types of variables Nominal (binary) Ordinal Continuous
Nominal (binary) Phi Rank-biserial Point-biserial

Ordinal Rank-biserial
Polychoric, Spear-
man rank, Kendal
rank

Polyserial

Continuous Point-biserial Polyserial Pearson

(2.10) where x and y are two continuous variables, x and y are their mean values.

ρxy =

∣∣∣∣∣∣cov(x, y)
σx·σy

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2

∣∣∣∣∣∣ (2.10)

|ρxy| takes values between 0 and 1. The value of 1 means the two variables are perfectly
correlated; the value of 0 means the two variables are not correlated at all. Figure 2.7 shows
two cases with |ρxy = 1| (left) and |ρxy = 0| (right), respectively. It can be seen that y

randomly changes with x when |ρxy = 0|. When |ρxy = 1|, y changes linearly with x. Note
that in this case, y can increase or decrease linearly with x, even though in Figure 2.7, y

increases linearly with x. The above materials are from [97].
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Figure 2.7: Absolute value of Pearson correlation coefficient (|ρxy|): 1 (left) and 0 (right)

Equation (2.10) can be used to evaluate the relevance not only between two continuous
variables, but also between a continuous variable and a nominal variable, or between two
nominal variables. The reason is explained as follows.
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The Point-biserial and the Phi correlation coefficients mathematically equal to the Pear-
son correlation coefficient. According to Table 2.3, Equation (2.10) is also applicable to a
binary and a continuous variable or two binary variables. Furthermore, by using a complete
disjunctive coding [94], Pearson correlation coefficient can evaluate the relevance between
a nominal variable and a continuous variable, and the correlation between two nominal
variables. Disjunctive coding is explained as follows by a nominal variable that has 4 val-
ues. Using the disjunctive coding, this nominal variable is represented by 4 binary variables
C1([1 0 0 0]), C2([0 1 0 0]), C3([0 0 1 0]) and C4 ([0 0 0 1]), respectively. In order to evalu-
ate the correlation between this nominal variable and a continuous variable x, the following
steps are conducted. First, the Point-biserial correlation (mathematically equals to the Pear-
son correlation) coefficient between x and each of the four variables Ci (i = 1, 2, 3, 4) are
calculated. Then the average of the Point-biserial correlation coefficient is taken as the
correlation coefficient between the nominal variable and the continuous variable. Similar
procedure can be applied to two nominal variables.

In the maximum relevance and minimum redundancy scheme of feature selection, the
feature-label relevance and feature-feature redundancy need to be evaluated. In fault diag-
nosis, features are often continuous and/or nominal as stated in Section 2.3. Thus Equation
(2.10) can be used for feature-label relevance and feature-feature redundancy [94,100]. The
Pearson correlation coefficient will be employed for feature selection in Chapters 6 and 7
in this thesis.

2.4.2 Polyserial Correlation Coefficient

Polyserial correlation coefficient evaluates the correlation between a continuous variable
and an ordinal variable. Materials in this section are from [101]. Let x and y be two
continuous variables. In some cases, the continuous variable (e.g. y) could only be mea-
sured in rough categories like low, medium, high, etc, using an ordinal variable z (as shown
in Equation (2.11). Here z1, z2, . . . , zr are known increasing ranks (i.e. zi < zi+1) and
b = (b0, b1, . . . , br) is a vector of known thresholds with b0 = −∞ and br = +∞.

z = zi, i f bi−1 < y < bi, i = 1, 2, . . . , r (2.11)

The Polyserial correlation coefficient between observed data (x and z) is actually an
estimation of the Pearson correlation between x and y. Without the loss of generality, it is
assumed that x ∼ N(µx, σx), y ∼ N(µy, σy), and the joint distribution of x and y follows the
bivariate normal distribution.

p(x, y) =
1

2πσx
√

1 − ρ̃xy
exp(−

(x−µx)2

σ2
x
− 2ρ̃xy xy−µxy

σx
+ y2

2(1 − ρ̃xy
2)

), (2.12)

where ρ̃xy is called the Polyserial correlation coefficient between x and z. There are mainly
two ways to estimate ρ̃xy: the maximum-likelihood estimator and the two-step estimator
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[101]. The latter is computationally simpler than the former, and is used in this thesis. In
the two-step estimator [101], µx and σx in (in Equation (2.12)) are estimated by the sample
mean and the sample covariance of x, and the thresholds b (Equation (2.11)) are estimated
by the normal inverse cumulative distribution function evaluated at the cumulative marginal
proportions of z. For example, if the total number of samples is 200 and z = 1 is observed
for 40 times, then b1 = Φ

−1(40/200) = −0.84 where Φ−1(p) is the inverse cumulative
distribution function and p is the probability. After that, ρ̃xy can be estimated by maximizing
the likelihood of n observations of (x, z) with respect to ρ̃xy only, i.e.

L =
n∏

i=1

p(xi, zi) =
n∏

i=1

p(xi)p(zi|xi), (2.13)

where p(xi) is the probability density function of x, and p(zi|xi) is the conditional probability
density function which is a function of ρ̃xy. For further details, refer to [101]. In this thesis,
the R software is used for the calculation of ρ̃xy.
|ρ̃xy| takes values between 0 and 1. The value of 1 means that two variables are perfectly

monotonically correlated; the value of 0 means that two variables are not correlated at all.
Figure 2.8 shows two cases with |ρ̃xy| = 1 (left) and |ρ̃xy| = 0 (right), respectively. It can be
seen that the rank z randomly changes with x when |ρ̃xy| = 0. When |ρ̃xy| = 1, z changes
monotonically with x. Note that in this case, z can monotonically increase or decrease with
x, even though in Figure 2.8, z increases with x.
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Figure 2.8: Absolute value of Polyserial correlation coefficient (|ρ̃xy|): 1 (left) and 0 (right)

It is worth mentioning that the Pearson correlation coefficient is not suitable for evalu-
ating the relevance between a continuous variable and an ordinal variable. Figure 2.8 shows
a clear monotonic trend between x and z based on Polyserial correlation coefficient. How-
ever, if the Pearson correlation coefficient is used, a value of 0.93 is generated instead of
1.
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The Polyserial correlation coefficient will be employed for feature selection in Chapters
6 and 7 in this thesis.

2.5 Rough Sets

A set (U) is a collection of samples. In a crisp set, the degree of membership of any sample
in the set is either 0 or 1. A rough set is a formal approximation of a crisp set in terms of a
pair of sets which are the lower and the upper approximation of the crisp set. The concept
of rough sets is first proposed by Pawlak [64] in 1991. The rough set model he proposed is
called Pawlak rough set model, which is described as follows [64].

2.5.1 Pawlak Rough Set

An information system is a pair IS = (U, A), where U = {u1, ..., un} is a nonempty finite
set of (n number of) samples and A = {a1, ..., am} is a finite set of descriptors to describe
the samples. In this rough set, the relation between a pair of samples are described by the
equivalence relation (IND). That is if the descriptors’ values for two samples are the same,
then the two samples are in equivalence relation. Mathematically, for a subset B ⊆ A, there
is an associated equivalence relation, IND(B):

IND(B) =
{
(ui, u j) ∈ U × U : f (ui, a) = f (u j, a),∀a ∈ B

}
, (2.14)

where f (ui, a) is the value of descriptor a for sample ui. The relation IND(B) is called a B-
indiscernibility relation. The portion of U is a family of all equivalence classes of IND(B).
With the equivalence relation defined, the following set ([ui]B) is associated with ui. All the
samples in [ui]B have the same value as ui.

[ui]B =
{
u j : f (ui, a) = f (u j, a),∀a ∈ B

}
, (2.15)

Let X ⊆ U be a target set that is used to be represented using B. The target set X can
be approximated using the information contained in B by constructing the B−lower and
B−upper approximations of X as follows:

BX =
∪{

ui : [ui]B ⊆ X
}
, (2.16)

BX =
∪{

ui : [ui]B ∩ X , ∅
}
. (2.17)

X is said to be definable if BX = BX; otherwise, X is a rough set. BN(X) = BX − BX is the
boundary of X.

Example 1 The concept of the Pawlak rough set is illustrated in Figure 2.9. The big rect-

angle represents the universe (U). The samples in U are granulated into a number of

mutually exclusive equivalence information granules shown as the lattices. To describe a

subset X ∈ U (indicated by the circle) with these granules, two subsets of granules: the
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lower approximation (marked in hatch area) and the upper approximation (marked in grey

and hatch area) are to be found. The lower approximation is a minimal subset of granules

which are included in X. The upper approximation is a maximal subset of granules which

includes X.

Figure 2.9: Pawlak rough set [10]

If the descriptors A can be expressed in the form of A = C
∪

D, where C is a set
of features describing the samples’ characteristics, and D is the label which specifies the
samples’ classes or ranks, the information system (U, A) is called a decision table, DT =

(U,C
∪

D). For the convenience of description, C is called features and D is called labels
in this thesis.

Let Dl denotes the set of samples having the same label value l. The lower approxima-
tion and the upper approximation of Dl using B are defined as

BDl =
∪{

ui : [ui]B ⊆ Dl
}
, (2.18)

BDl =
∪{

ui : [ui]B ∩ Dl , ∅
}
, (2.19)

respectively. Assume there are L values in label set D. The lower approximation and the
upper approximation of D using B are defined as

BD =
L∪

l=1

BDl, (2.20)

BD =
L∪

l=1

BDl. (2.21)

The lower approximation (BD) is a modest estimation of D using B. Samples in the
set BD have the same feature values and the same label. The approximation quality (also
called dependency) is defined as

γB(D) =
|BD|
|U | (2.22)

where |· | is the cardinality of a set (i.e. the number of elements in a set). γB(D) can be
interpreted as the portion of samples in a decision table for which it suffices to know the
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features in B to determine the label D. In another word, γB(D) reflects the ability of B to
approximate D. The value of approximation quality ranges from 0 to 1. The feature subset
whose approximation ability is high plays an important role in determining the label.

Pawlak rough set model utilizes the equivalence relation (Equation (2.14)), and thus is
suited for nominal features only. In fault diagnosis, continuous features are often extracted
via vibration analysis. In order to handle continuous features, Hu et al. [10] introduced
neighborhood relation and extended the Pawlak rough set to a neighborhood rough set,
which is described in Section 2.5.2.

2.5.2 Neighborhood Rough Set

In order to handle continuous features, neighborhood rough set replaces the equivalence
relation in Pawlak rough set with neighborhood relation. Before neighborhood relation is
introduced, let us see what is neighborhood.

Given ui ∈ U, and ui is described by a feature subset B, the neighborhood of ui in terms
of B is a set denoted by δB(ui), which is mathematically defined by

δB(ui) =
{
u j : u j ∈ U,∆B(ui, u j) ≤ δ

}
, (2.23)

where δ is the neighborhood size and ∆B(ui, u j) is a distance function that evaluates the
distance between two samples ui and u j in the feature space expanded by B. For nominal
features, the distance function is defined in Equation (2.24). In such a case, the neighbor-
hood rough set is the same as the Pawlak rough set.

NB(ui, u j) =

 1, f (ui, a) , f (u j, a) ∀a ∈ B

0, otherwise
(2.24)

For continuous features, Minkowsky distance (Equation (2.25)) can be used as the distance
function:

∆B(ui, u j) =
[ m∑

k=1

| f (ui, ak) − f (u j, ak))p|
1
p

]
, (2.25)

where m is the total number of features in B, f (ui, ak) and f (u j, ak) are the values of feature
ak for samples ui and u j respectively, and p is a real number. (1) If p = 1, it is called the
Manhattan distance; (2) if p = 2, it is called the Euclidean distance; and (3) if p = ∞, it is
the Chebychev distance.

A neighborhood relation (N) on the universe can be written as a relation matrix, N =

(ri j)n×n, where ri j is the neighborhood relation between two samples ui and u j.

ri j =

 1, u j ∈ δB(ui)

0, otherwise
(2.26)

With the neighborhood relation N defined, the decision table (U,C
∪

D) is called the
neighborhood decision table denoted by NIS = (U,C

∪
D,N). Suppose D1,D2, ...,DL are
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the sets that have labels 1, 2, ..., L, respectively. The neighborhood of ui, δB(ui), is a set
that contains samples within the neighborhood of sample ui generated by the feature subset
B ⊆ C . The lower and upper approximations of decision D with respect to B are defined as

NBD =

L∪
l=1

NBDl, (2.27)

NBD =

L∪
l=1

NBDl, (2.28)

where,

NBDl =
{
ui|δB(ui) ⊆ Dl, ui ∈ U

}
, (2.29)

NBDl =
{
ui|δB(ui) ∩ Dl , ∅, ui ∈ U

}
. (2.30)

With the lower approximation defined, the approximation ability of B in determining D

is defined by Equation (2.31).

γB(D) =
|NBD|
|U | (2.31)

Example 2 Now, an example is used to illustrate the concept of the neighborhood rough

set. Table 2.4 shows nine samples described by two features a1 and a2. The label for each

sample is given in D. A 2-dimensional representation of the samples are given in Figure

2.10. The three values (1,2,3) in D represents three categories of a nominal variable, i.e.

three classes.
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Figure 2.10: Plot of samples
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Table 2.4: Values of features (a1 and a2) and labels (D) for samples

u1 u2 u3 u4 u5 u6 u7 u8 u9

a1 0.10 0.20 0.30 0.31 0.40 0.50 0.51 0.60 0.70
a2 0.20 0.30 0.25 0.10 0.15 0.12 0.45 0.50 0.40
D 1 1 1 2 2 2 3 3 3

The approximation quality defined in neighborhood rough set is calculated to evaluate

the significance of the two features in classifying D. In the following, a1 is taken as an

example. A neighborhood size (i.e. δ in Equation (2.23)) needs to be chosen first. Here

δ = 0.05 is used. The samples whose distance to sample ui is within 0.05 are associated

with δa1(ui). Specifically,

δa1(u1) = {u1},
δa1(u2) = {u2},
δa1(u3) = {u3, u4},
δa1(u4) = {u3, u4},
δa1(u5) = {u5},
δa1(u6) = {u6, u7},
δa1(u7) = {u6, u7},
δa1(u8) = {u8},
δa1(u9) = {u9}.

Let Dl denote the set of samples having label l, thus,

D1 = {u1, u2, u3},
D2 = {u4, u5, u6},
D3 = {u7, u8, u9}.

Then, each δa1(ui) (i = 1, 2, ..., 9) are compared with Dl. According to Equation (2.29),

if δa1(ui) ⊆ Dl, then ui is put into set Na1 Dl. The following sets are associated.

Na1 D1 =
{
u1, u2

}
Na1 D2 =

{
u5

}
Na1 D3 =

{
u8, u9

}
Therefore,

Na1 D =

3∪
i=1

Na1 Dl =
{
u1, u2, u5, u8, u9

}
.
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The approximation quality of a1 is

γa1(D) =
|Na1 D|
|U | =

5
9
= 0.56.

The same procedure is applied for a2, and an approximation quality of γa2(D) = 1.00 is

obtained. Because γa2(D) > γa1(D), a2 is more important than a1 in classifying D. It is

consistent with our intuition. As observed from Figure 2.10, samples are more scattered in

the vertical projection (i.e. feature a2) than in the horizontal projection (i.e. feature a1).

The neighborhood size (δ) largely affects the evaluation results. In the above example,
if δ = 0.0005, then γa2(D) = γa1(D) = 1 meaning that a1 and a2 are equally important. The
choice of the neighborhood size will be discussed in Chapter 4.

Neighborhood rough set deals with classification problems whose labels are nominal
variables. If the labels are ordinal variables, dominance rough set and fuzzy preference
based rough set need to be employed in order to extract the preference structure on the
labels. This is presented in the next two sections.

2.5.3 Dominance Rough Set

In ordinal ranking, the elements in the label (D) has a preference structure. The elements
in D are called ranks. Without loss of generality, d1 ≤ d2 ≤, . . . ,≤ dL are assumed, where
dl is the lth element in D and L is the total number of elements (ranks). Let ui, u j be two
samples in U, a ∈ C be a feature describing the samples, and f (ui, a), f (u j, a) be their values
in terms of a. If a reflects the ordinal information in D clearly, then ui’s rank should not
be worse than u j’s rank when f (ui, a) ≥ f (u j, a). This is different from classification. In
classification, the elements in D are called classes. ui and u j are classified into the same
class, if f (ui)− f (u j) = 0 (in Pawlak rough set) or f (ui)− f (u j) ≤ δ (in neighborhood rough
set).

In order to consider the preference structure, dominance rough set replaces the equiv-
alence relation in Pawlak rough set with the dominance relation. The features describing
the samples are either ordinal or continuous. For ∀ui, u j ∈ U, ui dominates u j with respect
to feature a, if ui is better than u j in terms of the value of feature a, i.e. f (ui, a) ≥ f (u j, a).
The upward dominance relation and downward dominance relation between ui and u j are
expressed as the two equations below, respectively.

r≥i j =

 1, f (ui, a) ≥ f (u j, a),

0, otherwise.
(2.32)

r≤i j =

 1, f (ui, a) ≤ f (u j, a),

0, otherwise.
(2.33)

With the dominance relation defined, the following two sets are associated. The first
set, [ui]≥a , is called a-dominating set. It consists of samples that are not worse than sample
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ui with respect to a. The second set, [ui]≤a called a-dominated set, consists of samples that
are not better than sample ui with respect to a.

[ui]≥a =
{
u j : f (u j, a) ≥ f (ui, a)

}
(2.34)

[ui]≤a =
{
u j : f (ui, a) ≤ f (u j, a)

}
(2.35)

Let D≥l =
∪

p≥l Dp be the set of samples whose ranks are not worse than rank dl, and
D≤l =

∪
p≤l Dp be the set of samples whose ranks are not better than rank dl. The lower

approximations of D≥l and D≤l with respect to feature a are defined with the upward lower
approximation (Equation (2.36)) and the downward lower approximation (Equation (2.37)),
respectively.

a≥
D≥l
=

{
ui : [ui]≥a ⊆ D≥l

}
(2.36)

a≤
D≤l
=

{
ui : [ui]≤a ⊆ D≤l

}
(2.37)

Furthermore, the upward lower approximation of D using feature a is defined with Equation
(2.38). The downward lower approximation of D using feature a is defined with Equation
(2.39).

a≥D≥ =
L∪

l=1

a≥
D≥l

(2.38)

a≤D≤ =
L∪

l=1

a≤
D≤l

(2.39)

There are many ways to estimate the approximation quality of a. In this thesis, the one
(Equation (2.40)) reported in [93] is adopted.

γa(D) =
|a≥D≥ | + |a

≤
D≤ |

2|U | (2.40)

Example 3 Now the same data as in Example 2 are used to illustrate how the dominance

rough set works. The data are listed in Table 2.4 and also plotted in Figure 2.10. The

nine samples are interpreted as nine manuscripts submitted to a journal. Two Features

describe the originality (a1) and writing quality (a2) of each manuscript. Decisions of the

manuscripts are “reject” (rank 1), “revise” (rank 2), and “accept” (rank 3). The impor-

tance of a1 and a2 in the decision making of a manuscript using the dominance rough set

are compared.

Let [ui]≥a j
(respectively [ui]≤a j

) be the sets of samples whose value of feature ai are higher

(respectively smaller) than or equal to the value for sample ui. Take a1 as an example. Using
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Equation (2.34), the following sets are associated.

[u1]≥a1
= {u1, u2, u3, u4, u5, u6, u7, u8, u9}

[u2]≥a1
= {u2, u3, u4, u5, u6, u7, u8, u9}

[u3]≥a1
= {u3, u4, u5, u6, u7, u8, u9}

[u4]≥a1
= {u4, u5, u6, u7, u8, u9}

[u5]≥a1
= {u5, u6, u7, u8, u9}

[u6]≥a1
= {u6, u7, u8, u9}

[u7]≥a1
= {u7, u8, u9}

[u8]≥a1
= {u8, u9}

[u9]≥a1
= {u9}

Let D≥l be the set of samples whose ranks are not less than rank rl. The following sets

are associated.

D≥1 = {u1, u2, u3, u4, u5, u6, u7, u8, u9} (2.41)

D≥2 = {u4, u5, u6, u7, u8, u9} (2.42)

D≥3 = {u7, u8, u9} (2.43)

Now Equation (2.36) is used to compare the set [u j]≥a1
with the set D≥l , and get the upward

lower approximation of D≥l . For instance, set [u1]≥a1
is compared with set a1

≥
D≥1

(because the

rank of sample u1 is rank 1). The two sets meet the condition, [x]≥a1
⊆ D≥1 . Thus u1 is put

into the set a1
≥
D≥1

. The comparison is done for each sample, and the set a1
≥
D≥1

is found.

a1
≥
D≥l
=

{
u1, u2, u3, u4, u5, u6, u7, u8, u9

}
Similarly, the downward lower approximation can be obtained using Equations (2.35),

(2.37) and (2.39).

a1
≤
D≤l
=

{
u1, u2, u3, u4, u5, u6, u7, u8, u9

}
Using Equation (2.40), the approximation quality of a1 in approximating D is thus,

γa1(D) =
|a1
≥
D≥
| + |a1

≤
D≤
|

|U | =
9 + 9
2 × 9

= 1.00. (2.44)

When the above procedure is applied to a2, the approximation quality of 0.61 is ob-

tained. Because γa1(D) > γa2(D), a1 is more important in determining the rank D than

a2. It can be seen from Figure 2.10 that even though different ranks are more separately

scattered using a2, the values of a2 don’t show a monotonic trend with the increase of ranks.

On the other hand, a1 can keep a better monotonic trend with the increase of ranks. Thus

a1 is more significant in expressing the ordinal information in D.
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In dominance rough set, the preference relation is expressed qualitatively. That is, sam-
ple ui is preferred to u j as long as the feature value of the former is larger than that of the
latter (i.e. f (ui, a) ≥ f (u j, a)). It doesn’t matter how much larger ui is than u j. If ui and u j

belong to different ranks but f (ui, a) and f (u j, a) are close to each other, the approximation
quality is sensitive to the their values. For example in the above example, if the value of
a1 for u7 is changed from 0.51 to 0.49, the approximation quality will change from 1.00 to
0.89. To overcome this, fuzzy preference based rough set is proposed in [93] considering
preference relation quantitatively.

2.5.4 Fuzzy Preference Based Rough Set

In dominance rough set, the a-dominating set ([ui]≥a defined by Equation (2.34)) and the
a-dominated set ([ui]≤a defined by Equation (2.35)) of sample ui in terms of feature a are
two crisp sets. A sample u j ∈ U either belongs to a crisp set (i.e. 1) or not (i.e. 0), as
defined by the characteristic functions (i.e. dominance relations shown in Equations (2.32)
and (2.33)).

Non-crisp sets are called fuzzy sets, for which also a characteristic function is defined.
This function is called a membership function. The membership function associates each
sample a grade of membership. In contrast to classical set theory, a membership function
of a fuzzy set can have in the normalized closed interval [0, 1]. Therefore, the membership
function maps samples into real numbers in [0, 1].

In fuzzy preference based rough set, the fuzzy concept is brought in. The dominance
relations (Equation (2.32) and Equation (2.33)) in dominance rough set is replaced by the
fuzzy preference relation. A fuzzy preference relation, R, is expressed as an n × n matrix
R = (ri j)n×n, where ri j is the preference degree of sample ui over sample u j. The value of
ri j is calculated by a membership function, which will be introduced in the next paragraph.
ri j=1 is used to represent that ui is absolutely preferred to u j, ri j=0.5 to represent that there
is no difference between ui and u j, ri j > 0.5 to represent that ui is more likely to be preferred
to u j, and ri j < 0.5 to represent that ui is less likely to be preferred to u j. When ri j = 0, ui

is certainly not preferred to u j.
Let f (u, a) be the value of feature a for sample u. The upward and downward fuzzy

preference relations between samples ui and u j can be computed by

r>i j =
1

1 + e−s( f (ui,a)− f (u j,a)) , and r<i j =
1

1 + e−s( f (u j,a)− f (ui,a)) , (2.45)

respectively. In the above two equations, s is a positive parameter which can be used to
adjust the shape of the membership function and it is determined by specific applications.
r>i j represents how much ui is larger than u j, and r<i j represents how much ui is smaller than
u j. Thus fuzzy preference relations reflect not only whether sample ui is larger/smaller
than u j (qualitatively), but also how much ui is larger/smaller than u j (quantitatively). Let
f (ui, a) and f (u j, a) be the values of feature a for samples ui and u j, respectively. Figure
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2.11 shows ri j for different values of s. Only when the distance between ui and u j reaches to
a certain value, ui is certainly preferred to u j (ri j=1) or certainly not preferred to u j (ri j=0).
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0

0.2

0.4

0.6

0.8

1

s=5

s=50

( , ) ( , )
i j

f u a f u a

s=5

s=50

Figure 2.11: Fuzzy upward preference function with different s values

Let R> and R< be the upward fuzzy preference relation and the downward fuzzy pref-
erence relation induced by feature a, respectively. The memberships of a sample ui to the
lower approximations of D≥l and D≤l can be defined with: the upward fuzzy lower approxi-
mation (Equation (2.46)) and the downward fuzzy lower approximation (Equation (2.47)).

RD≥l
(ui)> = infu j∈Umax

{
1 − R>(u j, ui),D≥l (u j)

}
(2.46)

RD≤l
(ui)< = infu j∈Umax

{
1 − R<(u j, ui),D≤l (u j)

}
(2.47)

Hu et al [93] proved that the above equations are equivalent to the following two equations.

RD≥l
(ui)> = infu j<D≥l

1 − R>(u j, ui) (2.48)

RD≤l
(ui)> = infu j∈D≤l

1 − R<(u j, ui) (2.49)

Equation (2.48) indicates that the membership of ui to the lower approximation of D≥l de-
pends on the samples that do not belong to D≥l and produces the greatest preference over
ui. Equation (2.49) indicates that the membership of ui to the lower approximation of D≤l
depends on the samples that belong to D≥l and produces the greatest preference over ui.

The fuzzy preference approximation qualities (FPAQ) of D with respect to a are then
defined with:

γa(D) =

∑
l
∑

ui∈Dl R<
D≤l

(ui) +
∑

l
∑

ui∈Dl R>
D≥l

(ui)∑
l |D≤l | +

∑
l |D≥l |

(2.50)
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where |D≥l | and |D≤l | are the numbers of samples with ranks dominating and dominated by
Dl, respectively. FPAQ measures the significance of a feature in approximating ranks. The
higher the value is, the more significant the feature is.

Example 4 Now the same data as used in Example 3 are used to illustrate how fuzzy pref-

erence based rough set works. Data are listed in Table 2.4 and also plotted in Figure 2.10.

The importance of two features a1 and a2 are compared in the decision making of the rank

D using fuzzy preference based rough set.

The upward and downward fuzzy preference relations induced by a1 are presented in

Table 2.5 and Table 2.6, respectively, where s = 25.

Table 2.5: Upward fuzzy preference relation (R>) induced by a1

HHHHHHui

u j u1 u2 u3 u4 u5 u6 u7 u8 u9

u1 0.50 0.92 0.99 0.99 1.00 1.00 1.00 1.00 1.00
u2 0.08 0.50 0.92 0.94 0.99 1.00 1.00 1.00 1.00
u3 0.01 0.08 0.50 0.56 0.92 0.99 1.00 0.99 1.00
u4 0.01 0.06 0.44 0.50 0.90 0.99 1.00 0.99 1.00
u5 0.00 0.01 0.08 0.10 0.50 0.92 0.99 0.94 1.00
u6 0.00 0.00 0.01 0.01 0.08 0.50 0.92 0.56 0.99
u8 0.00 0.00 0.01 0.01 0.06 0.44 0.90 0.50 0.99
u7 0.00 0.00 0.00 0.00 0.01 0.08 0.50 0.10 0.92
u9 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.01 0.50

Table 2.6: Downward fuzzy preference relation (R<) induced by a1

HHHHHHui

u j u1 u2 u3 u4 u5 u6 u7 u8 u9

u1 0.50 0.08 0.01 0.01 0.00 0.00 0.00 0.00 0.00
u2 0.92 0.50 0.08 0.06 0.01 0.00 0.00 0.00 0.00
u3 0.99 0.92 0.50 0.44 0.08 0.01 0.00 0.01 0.00
u4 0.99 0.94 0.56 0.50 0.10 0.01 0.00 0.01 0.00
u5 1.00 0.99 0.92 0.90 0.50 0.08 0.01 0.06 0.00
u6 1.00 1.00 0.99 0.99 0.92 0.50 0.08 0.44 0.01
u7 1.00 1.00 0.99 0.99 0.94 0.56 0.10 0.50 0.01
u8 1.00 1.00 1.00 1.00 0.99 0.92 0.50 0.90 0.08
u9 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.99 0.50
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Sets D≥l and D≤l are associated as follows.

D≥1 = {u1, u2, u3, u4, u5, u6, u7, u8, u9} (2.51)

D≥2 = {u4, u5, u6, u7, u8, u9} (2.52)

D≥3 = {u7, u8, u9} (2.53)

D≤1 = {u1, u2, u3} (2.54)

D≤2 = {u1, u2, u3, u4, u5, u6} (2.55)

D≤3 = {u1, u2, u3, u4, u5, u6, u7, u8, u9} (2.56)

The memberships of object ui belonging to the lower approximations of D≥l and D≤l can

be obtained by Equations (2.46) and (2.47). Tables 2.7 and 2.8 show the results. Consider

u1 as an example. The values of R>
D≥1

(u1), R>
D≥2

(u1), and R>
D≥3

(u1) are the memberships that

u1 belongs to sets D≥1 , D≥2 and D≥3 , respectively. And the values of R<
D≤1

(u1), R<
D≤2

(u1), and

R<
D≤3

(u1) are the memberships that u1 belongs to sets D≤1 , D≤2 and D≤3 , respectively.

R>D≥1
(u1) = 1

R>D≥2
(u1) = infu<D2

1 − R>(u, u1)

= inf
{
1 − R>(u1, u1), 1 − R>(u2,u 1), 1 − R>(u3, u1)

}
= inf

{
1 − 0.50, 1 − 0.92, 1 − 0.99

}
= inf

{
0.50, 0.08, 0.01

}
= 0.01

R>D≥3
(u1) = infu<d3

1 − R>(u,u 1)

= inf
{
1 − R>(u1, u1), 1 − R>(u2, u1), 1 − R>(u3, u1), 1 − R>(u4, u1),

1 − R>(u5, u1), 1 − R>(u6, u1)
}

= inf
{
1 − 0.5, 1 − 0.92, 1 − 0.99, 1 − 1.001 − 1.00, 1 − 1.00

}
= inf

{
0.08, 0.50, 0.92, 0, 0, 0

}
= 0

R<D≤1
(u1) = infu<D1

1 − R<(u, u1)

= inf
{
1 − R<(u4, u1), 1 − R<(u5, u1), 1 − R<(u6, u1), 1 − R<(u7, u1),

1 − R<(u8, u1), 1 − R<(u9, u1)
}

= inf
{
1 − 0.01, 1 − 0.00, 1 − 0.00, 1 − 0.00, 1 − 0.00, 1 − 0.00

}
= inf

{
0.99, 1, 1, 1, 1, 1

}
= 0.99

R<D≤2
(u1) = inf

{
1 − R<(u7, u1), 1 − R<(u8, u1), 1 − R<(u9, u1)

}
= inf

{
1 − 0.00, 1 − 0.00, 1 − 0.00

}
= inf

{
1, 1, 1

}
= 1

R<D≤3
(u1) = 1
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Table 2.7: Downward fuzzy lower approximation

HHHHHHHui

R<
D≤l D≤1 D≤2 D≤3

u1 0.99 1.00 1.00
u2 0.94 1.00 1.00
u3 0.56 0.99 1.00
u4 0.00 0.99 1.00
u5 0.00 0.94 1.00
u6 0.00 0.56 1.00
u7 0.00 0.00 1.00
u8 0.00 0.00 1.00
u9 0.00 0.00 1.00

Table 2.8: Upward fuzzy lower approximation

HHHHHHHui

R>
D≥l D≥1 D≥2 D≥3

u1 1.00 0.00 0.00
u2 1.00 0.00 0.00
u3 1.00 0.00 0.00
u4 1.00 0.56 0.00
u5 1.00 0.92 0.00
u6 1.00 0.99 0.00
u7 1.00 0.99 0.56
u8 1.00 1.00 0.92
u9 1.00 1.00 0.99

Using Table 2.7, Table 2.8 and Equations (2.51)-(2.56), the fuzzy preference approxi-

mation quality of D with respect to a1 is obtained by Equation (2.50).

γa1(D) =

∑
l
∑

ui∈Dl R<D≤l
(ui) +

∑
l
∑

ui∈Dl R>D≥l
(ui)∑

l |D≤l | +
∑

l |D≥l |
=

16.97 + 16.93
18 + 18

= 0.94

Similarly, the γa2(D) is calculated and a value of 0.83 is obtained. Because γa1(D) >
γa2(D), a1 is more important in determining the rank D than a2. This is consistent with the

result of dominance rough set (Example 3).

Compared with the dominance rough set, the fuzzy preference approximation quality is

more robust to the change of feature values. For example if the value of a1 for u7 is slightly

changed from 0.51 to 0.49, the approximation quality changes slightly from 0.94 to 0.93.

It is worth mentioning that the approximation qualities defined by the dominance rough
set (Equation (2.40)) and fuzzy preference rough set (Equation (2.50)) can evaluate the
monotonic relevance between a signal feature and the rank. However, they cannot be ap-
plied directly to a set of features, because the monotonic relation is defined between two
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variables (i.e. the feature and the rank) only. When dealing with a set of features, the
features need to be combined into one variable using some mathematical operations (e.g.
picking up the minimum value of these features [93] or choosing the first principle compo-
nent of these features [102]).

In the section, techniques that can be used for feature selection are introduced. In the
next section, the machine learning algorithms are introduced.

2.6 Machine Learning Based on Support Vector Machine

As stated in Section 1.2.2.3, support vector machine (SVM) is a powerful tool for machine
learning. In this section, two machine learning algorithms based on support vector machine
are introduced: one for classification (Section 2.6.1), and the other for ordinal ranking
(Section 2.6.2).

2.6.1 Support Vector Classification

A Support Vector Machine performs classification by constructing a hyperplane that op-
timally separates the data into two classes. In this section, the concept of support vector
classification is introduced. First a technique for constructing an optimal separating hyper-
plane between two perfectly separated classes is discussed, and then it is generalized to the
nonseparable case where the classes may not be separable by a linear boundary. Materials
in this section are from [103].

Given a training data set

T =
{
(X, yi) : xi ∈ Rm, yi ∈ {−1, 1}

}n

i=1
(2.57)

where xi is an m-dimensional input vector, yi is either -1 or 1, indicating two classes, and
n is the total number of data points (samples). In the case of linearly data, it is possible to
determine a hyperplane that separates the given data

f (x) = wTx + b = 0, (2.58)

where w is the normal vector to the hyperplane and b is a scalar. The value |b|
||w|| determines

the offset of the hyperplane from the origin along the normal vector w. Figure 2.12 illus-
trates a linearly separable classification problem in a two-dimensional space. All squares
are labeled “-1” while all circles are labeled “1”. The solid line represents the separating
plane. The two dash lines represent two parallel planes (wTx + b = 1 and wTx + b = −1),
and are called boundaries. The sold squares and the solid circles that are on the boundaries
are called support vectors. The distance between the boundaries is called the margin.

The separating hyperplane that divides the samples having yi = 1 from those having
yi = −1 and creates the maximum margin is called the optimal separating hyperplane. The
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Figure 2.12: A 2-dimensional linearly separable classification problem (SVM Principal
explanation)

margin, that is distance between these two boundaries, is calculated as

D =

∣∣∣∣∣∣ (wTx + b − 1) − (wTx + b + 1)
∥w∥

∣∣∣∣∣∣ = 2
∥w∥ . (2.59)

To maximize the margin, ||w|| needs to be minimized. The norm of w involves a square root,
which is difficult to solve in an optimization problem. So researchers alter the minimization
of ||w|| with the minimization of wTw. Also, data points need to be prevented from falling
into the margin, so the following constraints are added: yi(wTxi + b) ≥ 1. Put this together,
an optimization problem is obtained:

minimize
w,b

1
2

wTw

subject to yi(wTxi + b) ≥ 1, i = 1, 2, . . . , n.
(2.60)

In the nonseparable case, there exist no hyperplanes that can split the “-1” and “1” sam-
ples. In this case, the so called soft margin method that allows for mislabeled samples
needs to be applied [103]. Soft margin method chooses a hyperplane that splits the sam-
ples as clearly as possible, while still maximizing the margin. A slack variable, ξi, which
measures the degree of misclassification of points failing on the wrong side of the margin
is introduced.

yi(wTxi) + b ≥ 1 − ξi, i = 1, 2, ..., n. (2.61)

The optimal separating hyperplane is the one that maximizes the margin and minimizes the
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classification error. It can be obtained by solving the following optimization problem:

minimize
w,b,ξ

1
2

wTw +C
n∑

i=1

ξi

subject to yi(wTxi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, . . . , n.

(2.62)

where ξi represents the distance between a data point lying on the wrong side of the margin
and the boundary in its virtual class side, and C is a non-negative constant, called the error
penalty. The separable case (described as the optimization problem (2.60)) is actually a
special nonseparable case described by (2.62) with C = ∞.

The optimization problem (2.62) is quadratic with linear inequality constraints, hence
it is a convex optimization problem. A quadratic programming solution is described by
introducing Lagrangian multipliers, αi and βi. The Lagrangian primal function is

L =
1
2

wTw +C
n∑

i=1

ξi −
n∑

i=1

αi(yi(wTxi + b) − 1 + ξi) −
n∑

i=1

βiξi, (2.63)

which is minimized with respect to w, b, and ξi. Setting the respective derivatives to zero,
we get

∂L
∂w
= 0 =⇒ w =

n∑
i=1

αiyixi, (2.64)

∂L
∂b
= 0 =⇒

n∑
i=1

αiyi = 0, (2.65)

∂L
∂ξ
= 0 =⇒ αi + βi = C, i = 1, 2, . . . , n. (2.66)

Substituting Equations (2.64) and (2.66) into Equation (2.63), the Lagrangian (Wolfe) dual
objective function is obtained

maximize inf L(α) =
n∑

i=1

αi −
1
2

n∑
i, j=1

αiα jyiy jxT
i x j.

subject to
n∑

i=1

αiyi = 0,

C ≥ αi ≥ 0, i = 1, 2, . . . , n.

(2.67)

By solving the dual optimization problem (2.67), the coefficients αi can be obtained. Then
according to Equation (2.64), w is expressed as

w =
n∑

i=1

αiyixi =

p∑
j=1

α jy jx j, (2.68)

where p is the number of support vectors. Because ai is only nonzero for support vectors,
so the second half part of Equation (2.68) holds. According to Karush-Kuhn-Tucker (KKT)
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conditions, the products of the dual variables and the constraints should be equal to zero for
the support vectors, i.e.

α j(y j(wTx j + b) − 1) = 0, j = 1, 2, . . . , p. (2.69)

Any of these margin points can be used to solve for b, and typically an average of all the
solutions for numerical stability can be used. Thus b can be expressed as:

b =
1
p

p∑
j=1

(y j − wTx j). (2.70)

Once w and b are available, the linear decision function can be given by:

G f (x) = sign[
p∑

i=1

αiyi(xT
i x) + b]. (2.71)

Given a new input data point (x), if G f (x) is positive, then this data point is classified to
class 1 (y = 1); if G f (x) is negative, then this data point belongs to class 2 (y = −1).

The support vector classifier described so far finds linear boundaries in the original
input feature space. By introducing the kernel concept, the support vector classifier can
be extended to nonlinear classifiers [103]. The idea is introducing a mapping function to
project the original input data onto a high dimensional feature space in which the input data
can be linearly separated. The linear boundaries in the high dimensional space translate
to nonlinear boundaries in the original space. Once the mapping function is selected, the
procedure of generating linear boundaries is the same as before. As a result, data points that
can not be separated by a linear function in the input space can be linearly separated in the
high dimensional feature space. The above argument is illustrated in Figure 1.7.

After adopting the mapping, the decision function, Equation (2.71), is modified to be:

G f (x) = sign[
p∑

i=1

αiyi < ϕ(xi)Tϕ(x) > +b], (2.72)

= sign[
p∑

i=1

αiyiK(xi, x) + b]. (2.73)

where ϕ : Rm −→ χ is a mapping function which transforms the original input space into a
high dimensional feature space. The kernel function is defined as the inner product of ϕ(· ),
that is K(xi, x) =< ϕ(xi), ϕ(x) >. It is worth mentioning that the mapping function does not
explicitly affect the decision function, it is the kernel function that matters. Any function
that satisfies Mercer’s theorem [104] can be used as a kernel function. There are different
kernel functions used in SVMs, such as linear, polynomial and Gaussian RBF. They are
defined as follows.

Linear kernel : K(xi, x) = xT
i x, (2.74)

Gaussian kernel : K(xi, x) = exp(
∥x − xi∥2

2σ2 ), (2.75)

Polynomial kernel : K(xi, x) = (xTxi)d, (2.76)
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where σ represents the width parameter of the Gaussian kernel and d is the polynomial
degree. Gaussian kernel and polynomial kernel are often adequate for most applications
[105, 106]. In this thesis, the second degree polynomial kernel function (d = 2) is used.

The above content are for binary classification. Multi-class classification can be achieved
by building binary classifiers which distinguish (i) between one of the classes to the rest
(one-versus-all) or (ii) between every pair of classes (one-versus-one). Classification of
new samples for one-versus-all case is done by a winner-takes-all strategy, in which the clas-
sifier with the highest output function assigns the class. For the one-versus-one approach,
classification is done by a max-wins voting strategy, in which every classifier assigns the
sample to one of the two classes, then the vote for the assigned class is increased by one
vote, and finally the class with most votes determines the sample classification.

2.6.2 Support Vector Ordinal Ranking

As stated in section 1.2.2.3, ordinal ranking is a special kind of machine learning problem
whose label is an ordinal variable. Ordinal ranking is similar to classification in the sense
that the rank is a finite set. Nevertheless, besides representing the nominal variables as
classification labels, ranks of ordinal ranking also carry ordinal information. That is, two
ranks can be compared by the “<” (better) or “>” (worse) operation. Ordinal ranking is
also similar to regression, in the sense that ordinal information is similarly contained in the
label. However, unlike the real-valued regression labels; the discrete ranks do not carry
metric information. That is, it is reasonable to say “rank A > rank B”, but it is hard to say
quantitatively how much larger rank A is.

Ordinal ranking has not been studied as much as in classification. In this section, a
review on ordinal ranking is introduced first. Then a ordinal ranking algorithm is given.

2.6.2.1 Review on Ordinal Ranking

Ordinal ranking was studied from the statistic perspective two decades ago [107]. How-
ever, there is not much study on this problem from the perspective of machine learning
until recently. A commonly used idea to conduct ordinal ranking is to transform the rank-
ing problem to a set of binary classification problems, or to add additional constraints to
traditional classification formulations. Herbrich et al. [108] proposed a loss function be-
tween pairs of ranks which gave a distribution independent bound, and then applied the
principle of maximum margin to solve the ordinal ranking problem. The idea of pairwise
comparison was also adopted in ordinal ranking algorithms proposed by Freund et al. [109]
and Lin and Li [110]. However, because there are O(N2) pairwise comparisons out of N

training samples, the computation complexity will be high when N is large. Crammer and
Singer [111] generalized an algorithm using multiple thresholds to predict r ranks. The fea-
ture space was divided into r parallel equally-ranked regions, where each region stood for
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one rank. With this approach, the loss function was calculated pointwisely and the quadratic
expansion problem could be avoided. Following the same idea, Shashua and Levin [112]
generalized support vector machine (SVM) into ordinal ranking by finding r − 1 thresholds
that divided the real line into r consecutive intervals for the r ranks. Chu and Keerthi [11]
improved the approach in [112] and proposed two new approaches by imposing the ordinal
inequality constraints on the thresholds explicitly in the first approach and implicitly in the
second one. Li and Lin [113] presented a reduction framework from ordinal ranking to
binary classification. Cardoso and Costa [114] transformed the ordinal ranking to a single
binary classifier and also implemented it using SVM and neural networks, respectively. Sun
et al. [115] expanded the kernel discriminant analysis by a rank constraint to solve ordinal
ranking problems.

Among the above methods, SVM-based methods have shown great promise in ordinal
ranking. The algorithm which implicitly adds constraints to SVM proposed in [11] (called
support vector ordinal regression (SVOR)) is straightforward and easy to interpret, and
therefore is adopted in this thesis. The idea of this algorithm is stated next.

2.6.2.2 A Reported Support Vector Ordinal Ranking Algorithm

In an ordinal ranking problem, a certain number of ranks (e.g. L) need to be identified.
The number of ranks in an ordinal ranking problem are not smaller than three (i.e. L ≥
3); otherwise, the ordinal information can not be expressed. Chu et al. [11] proposed an
ordinal ranking algorithm (named “SVOR”) based on SVM. The idea is briefly stated as
follows. The support vector formulation attempts to find an optimal mapping direction w,
and r − 1 thresholds which define r − 1 parallel discriminant hyperplanes for the r ranks
correspondingly, as shown in Figure 1.8. The point (x) satisfying b j−1 < wTϕ(x) < b j are
assigned the rank j. The ranking model is thus

z = (rank ) j, if b j−1 < wTϕ(x) < b j (2.77)

Data points that are located outside the margin of a threshold will be penalized. For a
threshold b j, the function values (wTϕ(xk

i )) of all points from all the lower ranks should be
less than the lower margin b j−1. If data point violates this requirement, then

ξ
j
ki = wTϕ(xk

i ) (2.78)

is taken as the error associated with the point xk
i for b j, where k is the true rank of xk

i and
k ≤ j. Similarly, the function values of all points for the upper rank should be greater than
the boundary b j+1, otherwise,

ξ
∗ j
ki = (b j + 1) − wTϕ(xk

i ) (2.79)

is the error associated with the point xk
i for b j where k > j. Figure 2.13 gives an illustration

of this idea in a 2-dimensional space. For the threshold b1, points in Figure 2.13 with rank

53



Point 1

Point 2

Point 3

Point 4

T( ) ( )f x xw

*1

22

*1

33 *2

33

1

11

2

24

y=1 y=2 y=3

Figure 2.13: Illustration of calculation of slack variables in SVOR algorithm [11]

z = 1 are supposed to locate on the left-hand side of b1 − 1. Point 1 violates this constraint,
so ξ1

11 is associated with this point. Points with ranks higher than 1 (i.e. z = 2 or z = 3) are
supposed to be on the right-hand side of b1 + 1. Points 2 and Points 3 are on the left-hand
side of b1+1, so ξ∗122 and ξ∗133 are associated with Point 2 and Point 3, respectively. Similarly,
for the threshold b2, ξ2

24 is associated with Point 4 because it is not on the left-hand side
of b2 − 1; is associated with Point 3 because it is not on the right-hand side of b2 + 1.
Considering all the error terms associated with all r − 1 thresholds, the primal problem to
find the optimal w and thresholds b are defined as follows:

minimize
w,b,ξ

1
2

wTw +C
L−1∑
j=1

( j∑
k=1

nk∑
i=1

ξ
j
ki +

j∑
k= j+1

nk∑
i=1

ξ
∗ j
ki

)
subject to w · ϕ(xk

i ) − b j ≤ −1 + ξ j
ki,

k = 1, 2, . . . , j and i = 1, 2, . . . , nk

w · ϕ(xk
i ) − b j ≤ +1 + ξ∗ j

ki

k = j + 1, j + 2, . . . , L and i = 1, 2, . . . , nk.

(2.80)

where j runs over 1, 2, . . . , L − 1 and nk is the number of data points with the rank of k.
By solving this optimization problem, the optimal w and b are found, and thus the ranking
model (Equation (2.77)) is built.

2.7 Summary

This chapter provides the fundamentals on techniques that will be used later in this thesis.
The conventional Fourier spectrum and the full spectrum are introduced in Section 2.1.
Empirical mode decomposition is introduced in Section 2.2. Definitions of different types
of variables are given in Section 2.3. Correlation coefficients, including Pearson correlation
coefficient and Polyserial correlation coefficient, are introduced in Section 2.4. Different
rough sets models, including Pawlak rough set, neighborhood rough set, dominance rough
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set and fuzzy preference based rough set, are introduced in Section 2.5. Two machine
learning algorithms, support vector classification and support vector ordinal ranking, are
introduced in Section 2.6.

In machine-learning-based fault diagnosis, fault detection and isolation can be regarded
as a classification problem. Support vector classification is employed for this purpose in
Chapter 4. Neighborhood rough set model is applied for feature selection in classification
problems in this chapter.

Fault identification is studied from signal-based diagnosis point of view in Chapter 5 by
employing Fourier spectrum, empirical mode decomposition and fuzzy preference rough
set.

Fault identification is studied from machine-learning-based diagnosis point of view us-
ing support vector ordinal ranking in Chapter 6. A feature selection method is proposed
based on correlation coefficients in this chapter. In the next chapter, the experimental sys-
tems and the lab experimental data acquisition are described.
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Chapter 3

Experimental Data

This thesis aims to develop effective methods for fault diagnosis of rotating machinery. In
order to examine the effectiveness of the proposed methods in later chapters for industrial
applications, the data collected from two test rigs will be used. These test rigs are: a slurry
pump test rig and a planetary gearbox test rig. The two test rigs were designed and estab-
lished for collaborative research projects between Reliability Research Lab (Department of
Mechanical Engineering, University of Alberta) and Syncrude Research Center. The exper-
iments completed as described in this chapter were conducted by researchers in Reliability
Research Lab of the University of Alberta and engineers of Syncrude Canada Ltd. Tech-
nical reports [2, 3, 13, 15, 16] were prepared by the research team members documenting
these experiments and data collected. The author of this thesis participated in some of these
experiments. However, the author did not design or perform these experiments specifically
for this thesis research. The data collected will simply be used to examine the methods to
be reported later in this thesis. Materials in this chapter are based on [2, 3, 13, 15, 16].

The two test rigs are used, because they are representative rotating machines. The slurry
pump is structurally simple, but the flow inside the pump is complicated and affects the
vibration signals measured on the casing. This causes difficulties in pump fault diagnosis.
The planetary gearbox is structurally complicated , which makes the fault diagnosis of
planetary gearbox a challenging problem. This chapter introduces the two test rigs and
experimental data collected that will be utilized in later chapters of this thesis.

3.1 Slurry Pump Test Rig

Centrifugal pumps are widely used for moving fluids in many applications, such as oil
sands and mining. Figure 3.1 shows the structure of a centrifugal pump. The two main
components of a centrifugal pump are the impeller and the volute. The impeller produces
fluid velocity. The volute converts velocity to pressure. The distance between the impeller
and the volute is the smallest at the cutwater.

As slurries contain abrasive and erosive solid particles, the impeller in a centrifugal
slurry pump is subjected to severe wear. This is a main cause of reduced pump performance
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and eventual failure. Monitoring the wear condition of impellers in pumps provides useful
information for effective pump operation and maintenance [13].

Impeller

Volute

cutwater

Figure 3.1: Structure of a pump [12]

Slurry impellers are more commonly of the closed type as shown in Figure 3.2. The
impeller has side walls on both sides, called hub and shroud, respectively. The impeller
also has several vanes to impart the centrifugal force to the slurries. The center of the
impeller is called the impeller eye. The region near the impeller eye is called vane leading
edge. The region at the rim of the vane is called vane trailing edge. Khalid and Sapuan [116]
analyzed wears on slurry pump impellers and found that wear may occur at both the vane
leading edge and the vane trailing edge. Experience of Syncrude engineers confirmed these
findings.

vane

shroud

hub

vane trailing edge
vane leading edge

Figure 3.2: Structure of an impeller [12]

3.1.1 System Description

The schematic diagram of the experimental test rig at Reliability Research Lab is shown in
Figure 3.3. This rig consists of the following key components [2, 13]:

• Slurry pump: Warman 3/2 CAH slurry pump with a closed impeller having five vanes.
Side view of the impeller is given in Figure 3.4.
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Figure 3.3: Schematic of the laboratory test-rig pump loop [13]

• Motor: 40 HP drive motor complete with variable frequency drive.

• Data acquisition system: 12-channel National Instruments SCXI system.

• PLC control panel: designed to control and monitor the operation of the system.

• Computer: Dell Inspiron 9200 laptop computer for data collection via LabView.

• Others: sensors, seal water pump, inlet pressure control tank, sand addition tank,
safety rupture disk, various valves, pipes, and the glycol cooling system.

hub

shroud

vane

Figure 3.4: Side view of the impeller [2]

With this test rig, three types of experimental data were collected: (1) vibration, (2)
pressure pulsation, and (3) process data. Vibration data were measured by accelerometers.
Four accelerometers were installed, as shown in Figure 3.5 (a). These four accelerometers
were labeled A1, A2, A3, and A5. Accelerometers A1, A2 and A3 are three-axis sensors
which measure vibrations in three co-ordinate directions X, Y and Z. Accelerometer A5
is a uni-directional sensor. Directions of A1, A2 and A3 are given in Figure 3.5 (b). For
the simplicity of description, the channels of these accelerometers will be referred to as
A1-X, A1-Y, A1-Z, A2-X, A2-Y, A2-Z, A3-X, A3-Y, and A3-Z. Pressure pulsations were
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measured by two dynamic pressure transducers located on the pump outlet pipe. They are
labeled PL and PH in Figure 3.6. Process data includes flow rate, motor power, motor
speed, inlet pressure (static), outlet pressure (static), density of the pumping medium and
temperature. The locations of two pressure gauges for the inlet/outlet static pressure are
also shown in Figure 3.6.

(a) Locations of accelerometers

X
Y

Z

X
Z

Y

(A1)

(A2)

going inside
coming out

(b) Directions of accelerometers (A3 is
the same as A2)

Figure 3.5: Locations and directions of three accelerometers [2]

Note that this test rig was designed for other purposes. The data collected were for other
purposes initially. This chapter introduces only the experiments that will be used in later
chapters. Moreover, vibration data measured by three tri-axial accelerometers (A1, A2 and
A3) only will be used in this thesis.

3.1.2 Impeller Vane Leading Edge Damage Experiments

With the vane leading edge damage (LED), the vane length of an impeller is reduced. Ac-
cording to [116], the length reductions of different vanes of an impeller are quite similar.
Field observations also confirmed that the damage was usually uniform on all vanes of an
impeller [2]. The leading edge wear of a vane may reduce the vane length by 40% before
the impeller gets thrown out [2]. Thus in our lab experiments, the severe leading edge dam-
age was designed to be 40% vane length reduction from the leading edge side. The total
vane length of an undamaged impeller is 123 mm. The 40% vane length reduction corre-
sponds to 49.20 mm and the volume reduction of fluid passage in impeller is calculated to
be a certain value, say V . The moderate and slight damage levels were set to the volume
reductions of 1/2 V and 3/4 V , which correspond to 29.3% (36 mm) and 20.3% (25 mm)
reduction in the vane length, respectively. Table 3.1 lists the quantitative values for each
damage level in LED experiments. Figure 3.7 shows an impeller with severe vane leading
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Pressure gauge (inlet)

Pressure gauge (outlet)

Dynamic pressure 

transducer (PL)

Dynamic pressure 

transducer (PH)

Figure 3.6: Locations of two dynamic pressure transducers and two pressure gauges [2]

edge damage.

Table 3.1: Damage levels in terms of vane length for LED [2]

Damage level Reduction in vane length Remaining vane length
Baseline (No Damage) 0 123 mm

Slight Damage 20.3% (25 mm) 123−25=98 mm
Moderate Damage 29.3% (36 mm) 123−36=87 mm

Severe Damage 40% (49.20 mm) 123−49.2=73.8 mm

According to Table 3.1, each of the five vanes of the impeller were artificially shortened
using Electro Discharge Machining (EDM) to get slight damaged, moderate damaged and
severe damaged impellers for LED experiments. The four damage levels mimic the life
cycle of an impeller from normal to failure because of vane leading edge damage. Experi-
ments were conducted using water as the pumping medium. First, the undamaged impeller
is installed. Then three experiments were conducted at each of the three flow rate (70%
BEPQ, 85% BEPQ, and 100% BEPQ where BEPQ is the flow rate corresponding to the
best efficiency point of the pump) when the pump was running 2400 Revolution Per Minute
(RPM). At each flow rate, six-minute vibration data were collected from each of the three
accelerometers (A1, A2 and A3). The sampling frequency is 5 KHz. The same procedures
above were repeated for each of the other three damaged impellers.

3.1.3 Impeller Vane Trailing Edge Damage Experiments

With the trailing edge damage (TED), the vane length of an impeller is reduced. Similar to
LED experiments (Section 3.1.2), design of TED levels are based on the reduction of the
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Figure 3.7: An impeller with severe vane leading edge damage [2]

fluid passage volume. The severe TED level is set to have the same fluid passage volume
reduction as the severe LED, i.e. V , which corresponds to the vane length reduction of
29.3% (i.e 36 mm) from the trailing edge side of the impeller. Slight and moderate damage
levels are set to have the volume reduction of 1/2 V and 3/4 V , respectively. They correspond
to the vane length reduction of 22% (27 mm) and 26% (32 mm), respectively. Table 3.2
lists the quantitative values for each damage level in TED experiments. Figure 3.8 shows
an impeller with severe vane trailing edge damage.

Table 3.2: Damage levels in terms of vane length for TED [2]

Damage level Reduction in vane length Remaining vane length
Baseline (No damage) 0 123mm

Slight damage 22% (27 mm) 123−27=96 mm
Moderate damage 26% (32 mm) 123−32=91 mm

Severe damage 29.3% (36 mm) 123−36=87 mm

Figure 3.8: An impeller with severe vane trailing edge damage [2]

According to Table 3.2, each of the five vanes of the impeller were artificially fabri-
cated using electro discharge machining (EDM) to get slight damage, moderate damage
and severe damage for TED experiments. The four damage levels mimic the life cycle of an
impeller from normal to failure because of TED. Experiments were conducted using water
as the pumping medium. First, the undamaged impeller is installed. Then three experiments
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were conducted at each of the three flow rate (70% BEPQ, 85% BEPQ, and 100% BEPQ)
when the pump was running 2400 Revolution Per Minute (RPM). At each flow rate, six-
minute vibration data were collected from each of three accelerometers (A1, A2 and A3).
The sampling frequency is 5 KHz. The same procedures above were repeated for each of
the three damaged impellers.

In the above experiments, the author participated in the design of different damage levels
and the collection of experimental data. The TED and LED vibration data will be used in
Chapters 4, 5 and 7. In Chapter 4, diagnosis of fault types (i.e. no damage, trailing edge
damage and leading edge damage) is conducted. In Chapter 5, the fault levels (i.e. damage
levels of TED and LED) are identified. In Chapter 7, both fault types and fault levels are
diagnosed. The vibration data collected at three flow rates are used in these chapters, unless
otherwise specified.

3.2 Planetary Gearbox Test Rig

Planetary gearbox is a type of gearbox consisting of one or more planet gears, a sun gear
and a ring gear. Figure 3.9 shows the structure of a planetary gearbox. The four planet gears
are mounted on a carrier which itself may rotate relative to the sun gear. The four planet
gears also mesh with a ring gear. Planetary gearboxes have many advantages, e.g. high
power output, small volume, multiple kinematic combinations, pure torsional reactions and
coaxial shafting [117]. They are widely used in oil sands, helicopters, trucks and other
large-scale machinery.

ring gear

planet gears

sun gear

carrier

Figure 3.9: Structure of a planetary gearbox [14]

Planetary gearboxes are structurally more complicated than fixed-shaft gearboxes, and
possess several unique behaviors [118]. For instance, gear mesh frequencies of planetary
gearboxes are often completely suppressed, and sidebands are not as symmetric as those of
fixed-shaft gearboxes [117]. Therefore, there is a need to develop effective fault diagnosis
methods for planetary gearboxes.
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3.2.1 System Description

The planetary gearbox test rig shown in Figure 3.10 was designed to perform controlled
experiments for developing a reliable diagnosis system for the planetary gearbox. The test
rig includes a 20 HP drive motor, a bevel gearbox, two planetary gearboxes, two speed-
up gearboxes and a 40 HP load motor. The load was applied through the drive motor. A
torque sensor was installed at the output shaft of the second stage planetary gearbox. The
transmission ratios of each gearbox are listed in Table 3.3.

Table 3.3: Specification of the planetary gearbox test rig [3]

Gearbox Number of teeth Ratio

Bevel
input gear 18 4
output gear 72

The first-stage planetary
sun gear 28 6.429

three planet gear 62
ring gear 152

The second-stage planetary
sun gear 19 5.263

four planet gear 31
ring gear 81

The first-stage speed-up

input gear 72 0.133
middle gear 1 32
middle gear 2 80
output gear 24

The second-stage speed-up

input gear 48 0.141
middle gear 1 18
middle gear 2 64
output gear 24

Drive motor

Bevel gearbox

1
st

stage

planetary gearbox
2

nd
stage

planetary gearbox

2
nd

stage

speed-up gearbox

1
st

stage

speed-up gearbox

Load motor

Figure 3.10: The planetary gearbox test rig [3]

Figure 3.11 shows the schematic diagram of the two planetary gearboxes. There are
three planet gears in the 1st stage planetary gearbox and four planet gears in the 2nd stage
planetary gearbox. The 1st stage sun gear is connected to the bevel gear by shaft #1. The
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Figure 3.11: Schematic of the planetary gearbox [3]

Bevel

gearbox1
st

stage

planetary gearbox

2
nd

stage

planetary gearbox

Figure 3.12: Locations of accelerometers [15]

1st stage planet gears are mounted on the 1st stage carrier which is connected to the 2nd

stage sun gear by shaft #2. The 2nd stage carrier is located on shaft #3. Ring gears of the
1st stage and the 2nd stage planetary gearboxes are mounted on the housing of their stages,
respectively.

In this test rig, five accelerometers and two acoustic sensors are installed. Two acoustic
sensors are installed on the casing of the 2nd stage planetary gearbox. One low-sensitivity
accelerometer is installed on the casings of the bevel gearbox. One low-sensitivity ac-
celerometer and one high-sensitivity accelerometer are located on the casing of the 1st plan-
etary gearbox; they are called LS1 and HS1, respectively. One low-sensitivity accelerom-
eter and one high-sensitivity accelerometer are located on the casing of the 2nd planetary
gearbox; they are called LS2 and HS2, respectively. For LS1 and LS2, the sensitivity is
99.4 mV/g, and the measurement frequency range is 0.3 Hz - 8 KHz. For HS1 and HS2,
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the sensitivity is 5.0 V/g, and the measurement frequency range is 0.1 Hz - 300 Hz. The
locations of the accelerometers are shown in Figure 3.12.

Note that this test rig was designed for other purposes, not specifically for this thesis.
This chapter introduces only the experiments that will be used in later chapters. Moreover,
vibration data measured by four tri-axial accelerometers (LS1, LS2, HS1 and HS2) only
will be used in this thesis.

3.2.2 Pitting Experiments

Pitting is a form of extremely localized corrosion that leads to the creation of small holes
in the gear tooth. It occurs due to the repeated loading of tooth surface and the contact
stress exceeding the surface fatigue strength of the material. The pit itself causes stress
concentration and soon the pitting spreads to adjacent region till the whole surface is cov-
ered. Subsequently, higher impact load resulting from pitting may cause fracture of already
weakened tooth [16]. Based on stress calculations [16], the 2nd stage planet gears are highly
stressed and are more likely to suffer from pitting. So pitting was artificially created using
Electro Discharge Machining (EDM) on one of the four planet gears on the 2nd stage plane-
tary gearbox. This section describes the experimental design and data collection for pitting
experiments. Materials in this Section are from [16] and [15].

Figure 3.13: Schematic of pitting damage (slight, moderate and severe - from top to bottom)
on the nth tooth and its neighboring teeth [16]

Based on the literature review [119], the size and number of pits are defined. Circular
holes with the diameter of 3mm and the depth of 0.1mm are created on the planet gear teeth.
The number of pits are varied to mimic the slight, moderate and severe pitting. Figure 3.13
provides a schematic of the pitting levels on gear tooth. Figure 3.14 shows the pits created
on planet gears. The rationales on number of pits for each pitting level are listed below.

1) Slight pitting: three teeth having totally five pits in a gear (three pits on one tooth
and one pit on each of the two neighboring teeth). The percentages of simulated pitted area
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slight

pitting

severe
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moderate

pitting
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Figure 3.14: Planet gears with artificially created pitting damage of different levels [16]

are 2.65%, 7.95%, and 2.65% for the three teeth. This design corresponds to ASM level 2
pitting according to ASM handbook [120] (3%-10% of the tooth surface area).

2) Moderate pitting: five teeth having totally 18 pits in a gear (10 pits on one tooth,
three pits on each of the two immediate neighboring teeth, and one pit on each of the next
neighboring teeth on symmetric sides). The pitting areas of the five teeth are 2.65%, 7.95%,
26.5%, 7.95% and 2.65%, respectively. The most pitted tooth corresponds to ASM level 3
pitting (15%-40% of tooth surface area) [120].

3) Severe pitting: five teeth having totally 50 pits in a gear (24 holes on one tooth,
10 pits on each of the two immediate neighboring teeth and three pits on each of the next
neighboring teeth on symmetric sides). The pitting areas of the five teeth are 7.95%, 26.5%,
63.6%, 26.5% and 7.95%, respectively. The most pitted tooth corresponds to ASM level 4
pitting (50% - 100% of tooth surface area) [120].

There are four planet gears in the 2nd stage planetary gearbox (See Table 3.3). During
the pitting experiments, three normal planet gears and one pitting damaged planet gear are
installed in the test rig. For each pitting level, experiments were conducted on two separate
days. On each day, the experiment was run at four drive motor speeds (300, 600, 900,
and 1200 RPM) and two loading conditions (namely, low load and high load). At the low
load condition, the load motor was off. This does not mean that the planetary gearboxes
encountered a zero load, as there were friction in the two speedup gearboxes and the rotor
in the load motor was also rotating. According to the readings of the torque sensor, at this
low load condition, the load that was applied at the output shaft of the planetary gearboxes
ranged from 191.9 [N-m] to 643.6 [N-m]. The high load condition was selected based on
the gear materials and stress calculation [16]. The loading applied by the load motor was
adjusted to reach an average of 1130 [N-m] as displayed by the torque sensor, so that the
system would run with a comfortable safe margin. The actual readings of the torque sensor
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fluctuated from 812.9 [N-m] to 1455.2 [N-m]. At each combination of the running speed
and the loading condition, five-minute vibration data were collected from each of the five
accelerometers at the sampling frequency of 10 KHz.

3.3 Summary

The slurry pump test rig and the planetary gearbox test rig designed for other purposes were
described in this chapter. The experimental data were collected for other purpose initially,
some of which will be used to examine the effectiveness of fault diagnosis methods to be
investigated in later chapters.

In slurry pump experiments, vibration data for two fault types (i.e. vane trailing edge
damage and vane leading edge damage) and four fault levels (i.e baseline, slight, moderate
and severe) for each fault type will be analyzed. In planetary gearbox experiments, vibration
data for one fault types (i.e. pitting) with four fault levels (i.e. baseline, slight, moderate
and severe) will be analyzed. In Chapter 4, slurry pump data will be employed to validate
a proposed feature selection method for a machine-learning-based diagnosis of faut types.
In Chapter 5, slurry pump data are used to validate two signal-based methods for diagnosis
of fault levels. In Chapter 6, gear pitting data are used to validate a machine-learning based
method for diagnosis of fault levels. In Chapter 7, slurry pump data are used to validate a
machine-learning-based method for diagnosis of both fault types and fault levels.
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Chapter 4

A Feature Selection Method Based
on Neighborhood Rough Set for
Machine-Learning-Based Fault
Detection and Isolation

Fault detection and isolation (FDI) refers to the detection of the presence of a fault and the
determination of the fault type. FDI is the first step in fault diagnosis, and thus is studied
in this chapter. Signal-based methods and machine-learning-based methods are two ways
for fault diagnosis. Based on literature review in Chapter 1, signal-based methods are of-
ten used for detection of the presence of a fault. When there are many fault types involved,
machine-learning-based methods are often used. In this chapter, the machine-learning based
methods are studied for FDI. For the convenience of description, the terminology of diag-
nosis of fault types is used in the place of FDI.

Machine-learning-based methods regard different fault types as different classes, and
use classifiers to determine the fault type for an input data (i.e. a feature vector). A feature
vector is a set of features which are extracted from measured signals (e.g. vibration signals).
Features reflect health information of a monitored system. Classifiers map the information
provided by input features to the fault type. Some features, however, might be irrelevant or
redundant to the fault type. The irrelevant and redundant information would decrease the
performance of a classifier [53]. Thus, selecting features that are relevant to fault types and
are not redundant to each other is an important step for successful diagnosis. This step is
called feature selection.

As discussed in Chapter 1, rough set [64] has been shown to be an effective tool for
feature selection. Its main advantage is that it requires no additional parameters (e.g. the
number of features to be selected) to operate other than the supplied data. The fundamentals
of rough set have been provided in Section 2.5.

The classical rough set model (Pawlak rough set) is best suited to nominal features. In
fault diagnosis of rotating machinery, vibration signals are often measured. Features ex-

68



tracted from vibration signals are often continuous [73, 94–96]. For definitions on nominal
and continuous features, please refer to Section 2.3. Hu et al. [10] proposed a neighborhood
rough set model for continuous feature selection. As shown in Section 2.5.2, neighborhood
size is an important factor that affects feature evaluation. However, a common neighbor-
hood size that works for all features is usually hard to obtain. Thus, determination of the
neighborhood size is a problem to be solved.

In this chapter, the effect of neighborhood size on feature selection is discussed. The
neighborhood rough set model reported in [10] is modified, based on which a feature se-
lection method is proposed. The rest of the chapter is organized as follows. Section 4.1
describes the background on the neighborhood rough set. Section 4.2 proposes the modi-
fied neighborhood rough set. Section 4.3 presents a feature selection method based on the
modified neighborhood rough set. Sections 4.4 applies the proposed method to the diagno-
sis of fault types for impellers in slurry pumps. Summary comes in Section 4.5. The major
contribution of this chapter has been published in [95]. 1

4.1 Background

The neighborhood rough set proposed by Hu et al. [10] is described in Section 2.5.2. Its
concept is illustrated with an example in a two-dimensional feature space shown in Figure
4.1. The set including all samples is denoted by U. Samples labeled with “*” are from
one class (class 1) and samples labeled with “+” are from the other class (class 2). The
neighborhood of ui, denoted by δ(ui), is the set including samples whose Euclidian distances
from ui are less than the neighborhood size, δ. Let D j be the set of samples that belong to
class j and ND j be the lower approximation of D j. If all samples in δ(ui) have the same
label as ui, then ui belongs to ND j. Taking samples ui (i = 1, 2, 3) as examples. By
checking Figure 4.1, it is found that δ(u1) ⊆ D1 and δ(u3) ⊆ D2, whereas δ(u2) ∩ D1 , ∅
and δ(u2)∩D2 , ∅, thus u1 ∈ ND1 and u3 ∈ ND2. The above comparisons are conducted for
each samples, and it is found that samples in Region A1 and A3 are lower approximation of
D1 and D2, respectively. That is ND1 = A1 and ND2 = A3. Let D be the set including labels
for all sample. The lower approximation of D is ND = ND1 ∪ ND2. The approximation
quality, as defined with Equation (2.31), is the ratio between the number of samples in ND

and the total number of samples in U.
The approximation quality can be used in feature selection as a measure to evaluate the

performance of a feature (or a set of features). The higher the approximation quality, the
more significant a feature (or a set of features). The neighborhood rough set model reported
by Hu et al. [10] uses a common neighborhood size (δ) for all features. The neighborhood
size (δ) largely influences the approximation ability of a feature (or a feature set), as shown

1A version of this chapter has been published in “Xiaomin Zhao, Qinghua Hu, Yaguo Lei and Ming J Zuo,
2010. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, 224: 995-1006.”
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Figure 4.1: An example illustrating the concept of neighborhood rough set [10]

in Example 2 in Section 2.5.2.
We now check the physical meaning of neighborhood size. Neighborhood size (δ) can

be interpreted as the level of noise which inevitably contains in features [121]. Take a fea-
ture, that is the amplitude at shaft rotating frequency calculated from a vibration signal of
a pump, for example. It is expected that the feature value represents that health condition
of the pump. However, a precise value can hardly be obtained in practice. In another word,
even the health condition is the same, the value of the feature still inevitably fluctuates,
mainly because of the following two reasons. (1) The ambient environment is not com-
pletely clean during the measurement. That is, the health condition is not the only factor
that affects the vibration signal. There are uncertain factors that influence and cause the
fluctuation of vibration amplitudes, e.g. how components were installed in the pump sys-
tem. Even clear procedures are followed during installation, it is hard to ensure that the
installation of each component is exactly the same as designed. (2) The resolution of the
vibration sensor also affects the precision of the vibration measurement. The resolution
of the sensor is the smallest change the sensor can detect in the quantity that it measures.
Because the resolution can not reach infinitesimal, the real measurement is not exactly the
true physical quantity; thus noise is in the collected vibration signals. Here all the factors
that cause the fluctuation of vibration measurement are referred to as noise.

So, the measured vibration signal, x(t), is actually the true signal (s(t)) added by noise,
e(t), as shown in Figure 4.2. In a 2-D feature space, assume u1 is the feature value obtained
from the measured signal (x(t)), the true feature value is located in the region near u1. The
size of this region is determined by the level of noise. In neighborhood rough set, we call
this region, the neighborhood of u1 and its size is controlled by the neighborhood size (δ).
The above is illustrated in Figure 4.3.

From the above discussion, it can be seen that the neighborhood size depends on the
level of noise. The noise is contributed by the external factors and the sensor itself. In
fault diagnosis, many sensors are often installed for vibration measurement. Each sensor
measures vibration in different locations and directions. The measured vibration signal by
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Figure 4.2: Relationship of a measured signal (x(t)) and noise (e(t)) [10]

u1

Figure 4.3: Neighborhood of a sample (u1) [10]

each sensor is contaminated by different levels of noise. Thus the features obtained from
different sensors are usually subjected to different levels of noise. If the same neighborhood
size is used for two features with different noise levels as did in [10], the significance of
each feature may be wrongly evaluated. Therefore, based on the above understanding, the
modified neighborhood rough set is proposed.

4.2 Modified Neighborhood Rough Set

In this section, the effect of neighborhood size is analyzed, and then a modified neighbor-
hood rough set model is proposed.

4.2.1 Effect of Neighborhood Size

The neighborhood size affects the value of approximation quality which is the measure of
significance of a feature. Here we take two features as an example, say two features a1, a2

with the levels of noise δ1 and δ2, respectively. Assume a2 is noisier than a1, i.e. δ1 < δ2.
The neighborhoods of ui in terms of feature a1 and feature a2 are defined as:

δa1(ui) = {u j|u j ∈ U,∆a1(ui, u j) ≤ δ1}, (4.1)

δa2(ui) = {u j|u j ∈ U,∆a2(ui, u j) ≤ δ2}. (4.2)

If a common neighborhood size, δ, is used to compare the significance of a1 and a2,
when a smaller value is chosen, say δ = δ1, then δ2 > δ thus

δa1(ui)|δ = δa1(ui)|δ1 , (4.3)

δa2(ui)|δ = {u j|u j ∈ U,∆a2(ui, u j) ≤ δ} (4.4)

⊆ {u j|u j ∈ U,∆a2(ui, u j) ≤ δ2} = δa2(ui)|δ2 . (4.5)
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According to Equation (2.29), the lower approximations of Di have the following relation:

Na1 Di|δ = Na1 Di|δ1 , (4.6)

Na2 Di|δ ⊇ Na2 Di|δ2 . (4.7)

According to Equation (2.31), the approximation qualities calculated by different neighbor-
hood sizes have the following relation:

γa1 |δ = γa1 |δ1 , (4.8)

γa2 |δ > γa2 |δ2 . (4.9)

It means that the significance of a2 is overestimated. Otherwise, if δ = δ2 is used as the
common neighborhood size, then γa1 |δ < γa1 |δ1 . This means that the significance of a1 is
underestimated.

Figure 4.4 further illustrates this effect of neighborhood size using a 2-class example.
Circles and squares represent class 1 and class 2, respectively. Each class has three sam-
ples (ui), and each sample is described by the value of feature a1. Let D j be the set of
samples that belong to class j ( j = 1, 2), ND j be the lower approximation of D j, and
ND = ND1

∪
ND2. The three subplots in Figure 4.4 shows the cases with different neigh-

borhood sizes.
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Figure 4.4: Effect of neighborhood size

• Figure 4.4 (1) marks the level of noise for a1, that is δ1. The neighborhood of u1

includes two samples (i.e. u1 and u2), and the two samples are from the same class.
According to Equation (2.29), we have u1 ∈ ND1. For u3, its neighborhood have
two samples u3 and u4 and they are from different classes, so u3 < ND1. The same
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procedure is applied to other samples. Finally we have the lower approximation of
the two classes, i.e. ND1 = {u1, u2}, ND2 = {u5, u6}. Thus ND = {u1, u2, u5, u6} and
according to Equation (2.31), γa1 |δ1 = 4/6 = 0.67.

• In Figure 4.4 (2), a smaller neighborhood size, δ
′
1, is used (δ

′
1 < δ1). The lower

approximation of the two classes is found to be ND = {u1, u2, u3, u4, u5, u6}. Thus
the approximation quality γa1 |δ′1 = 6/6 = 1.00. Because 1.00>0.67, that means a1 is
overestimated when the smaller δ is used.

• In Figure 4.4 (3), a larger neighborhood size, δ
′′
1 , is used (δ

′′
1 > δ1). The lower approx-

imation of the two classes is found to be ND = {u1, u2, u6}. Thus the approximation
quality γa1 |δ′′1 = 3/6 = 0.50. Because 0.50<0.67, that means a1 is underestimated
when the larger δ is used.

Feature ai can be properly estimated only if its neighborhood size equals to the noise
level it suffers. Therefore, it is necessary to apply different neighborhood sizes for different
features based their noise levels. Considering the effect of the neighborhood size as dis-
cussed above, the original neighborhood rough set reported by Hu et al. [10] is modified by
assigning different neighborhood sizes for different features, which is introduced next.

4.2.2 Modified Neighborhood Rough Set Using Multiple Neighborhood Sizes

Given a neighborhood decision system, NIS = (U,C
∪

D,N), where U = {u1, u2, . . . un} is
a nonempty finite set of samples, C = {a1, a2, . . . , am} is a set of features describing each
sample, D = {d1, d2, . . . , dL} is the label specifying the class of each sample, and N = [ri j]
is a matrix describing the neighborhood relation between each pair of samples, ui and u j.
ri j is given by Equation (2.26). In the calculation of ri j, the neighborhood of ui needs to be
defined first. The neighborhood of ui is defined with

δC(ui) =
{
u j : u j ∈ U,

∣∣∣ f (ui, ak) − f (u j, ak)
∣∣∣ ≤ δk for ∀ak ∈ C

}
(4.10)

where f (ui, ak) is the value of feature ak for sample ui, and δk is the neighborhood size for
ak.

The difference between the present work and the original neighborhood rough set [10]
lies in the calculation of neighborhood for continuous features. In the modified neighbor-
hood rough set, Equation (4.10) is used to calculate the neighborhood for sample ui. In
the original neighborhood rough set, Equations (2.23) and (2.25) are used. Take a two-
dimensional feature space for example, i.e. C = {a1, a2}. If p in Equation (2.25) is set as 2
(that is Euclidian distance is calculated), then the neighborhood of ui is calculated by Equa-
tion (4.11) in the original neighborhood rough set; and the neighborhood of ui is calculated
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Figure 4.5: Neighborhood of a sample (ui) in the original and modified neighborhood rough
sets

by Equation (4.12) in the modified one.

δa1∪a2(ui) =
{
u j : u j ∈ U,

( 2∑
k=1

( f (ui, ak) − f (u j, ak))2
) 1

2 ≤ δ
}

(4.11)

δa1∪a2(ui) = (4.12){
u j : u j ∈ U,

∣∣∣ f (ui, a1) − f (u j, a1)
∣∣∣ ≤ δ1

∩∣∣∣ f (ui, a2) − f (u j, a2)
∣∣∣ ≤ δ2

}
Figure 4.5 illustrates the two neighborhoods defined by Equation (4.11) and (4.12). In the
original neighborhood rough set, the neighborhood of ui is a circle. The neighborhood is
rectangle in the modified neighborhood rough set.

Furthermore, Equation (4.12) is mathematically equivalent to

δa1,
∪
,a2(ui) = δa1(ui) ∩ δa2(ui). (4.13)

This means that the neighborhood of ui with respect to a1 and a2 are the intersection of
the neighborhood ui with respect to a1 and the neighborhood of ui with respect to a2. This
characteristic can be extended to more than two features (say m), that is

δa1
∪

a2···
∪

am(ui) = δa1(ui) ∩ δa2(ui) · · · ∩ δam(ui). (4.14)

Equation (4.14) enables us to calculate the neighborhood of each feature independently and
the intersection will be the neighborhood of the set of all features. With the neighborhood
defined, for a feature subset B ⊆ C, the approximation quality of B can be calculated
following the same equation (Equation (2.31)), and is summarized below.

γB(D) =
|NBD|
|U | (4.15)

where,

NBD =

L∪
l=1

NBDl, (4.16)
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NBDl =
{
u j : ∆B(u j) ⊆ Dl, u j ∈ U

}
. (4.17)

As introduced in Section 2.5, the approximation quality reflects the ability of a feature
(or a feature subset) in approximating label D. The approximation quality is often used to
evaluate the performance of a feature (or a feature subset) in feature selection. As stated
in the beginning of this chapter, feature selection is to find a subset of features that are
most relevant to the label and contain less redundant information. A feature subset that
has the minimum number of features and has the higher approximation quality provides
most relevant but less redundant information for machine learning. Rough set achieves
feature selection by finding such a feature subset. A feature selection algorithm based on
the modified neighborhood rough set is discussed below.

4.3 Feature Selection Based on Modified Neighborhood Rough
Set

The approximation quality defined in rough set evaluates the performance of a feature sub-
set in approximating labels (D). Feature selection based on rough set is achieved by search-
ing a feature subset V that produces the highest approximation quality and has the least
number of features.

Hu et al. [10] proposed a feature selection algorithm based on the original neighborhood
rough set and sequential forward search strategy. The determination of the neighborhood
size is a problem for the original neighborhood rough set. Hu et al. [10] suggested to
find the optimum neighborhood size by enumeration. Enumeration has the disadvantage of
being less efficient and time-consuming. Moreover, a common neighborhood size is used
in the original neighborhood rough set, which causes poor estimation of the approximation
quality of a feature (or a feature subset), as illustrated in Section 4.2.1.

In this section, the modified neighborhood rough set is used for feature selection. As
introduced in Section 4.2.2, multiple neighborhood sizes are adopted in the modified neigh-
borhood rough set. First, a neighborhood size should be determined for each feature.

4.3.1 Determination of Neighborhood Size

To determine the neighborhood size for a feature, the noise level that the feature encounters
needs to be estimated. Depending upon how the feature is obtained, its noise level can be
estimated in different ways. Here the vibration signal is taken as an example.

One commonly used type of features in vibration-based fault diagnosis is the ampli-
tudes at some characteristic frequencies from the Fourier spectrum of a vibration signal.
For such features, their noise levels can be approximated by checking the Fourier spec-
trum and estimating the noise amplitude in the frequency range enclosing the characteristic
frequencies. Here the slurry pump data are taken as an example (the pump data will be
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Figure 4.6: Fourier spectrum of a vibration signal from a pump

analyzed in Section 4.4 in detail). The vibration signal measured from the pump at the per-
fectly healthy condition is shown in Figure 4.6. Two amplitudes at the pump frequency and
the vane passing frequency are respectively extracted as two features. It can be seen that
there is white noise contained in the vibration signal because the amplitude values through-
out the frequency range (except the pump frequency and the vane passing frequency) are
equally likely. Thus the noise energy (σ) is estimated by Equation (4.18), where A j is the
amplitude at frequency j, and j is a frequency which is not pump frequency or the vane
passing frequency and the range of j covers the frequencies whose amplitudes are extracted
as features.

σ =

√√√
1
N

N∑
j=1

A2
j (4.18)

For other features, such as kurtosis and skewness, their noise levels can not be directly
obtained as in Equation (4.18). In this case, it is suggested to collect N records of vibration
signals, calculate N feature values and use the standard deviation of the N feature values to
estimated the noise level [122].

4.3.2 A Feature Selection Method

In this section, the feature selection algorithm based on the modified neighborhood rough
set is introduced. The same feature selection algorithm proposed by Hu et al. [10] is fol-
lowed, replacing the approximation quality defined in the original neighborhood rough set
in that algorithm with the approximation quality defined in the modified neighborhood
rough set. The sequential forward search strategy which is also introduced in Section 1.2.2.2
is adopted.
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The feature selection algorithm is presented in Table 4.1. The selection starts with an
empty set, S = ∅. The significance of a feature a added to the feature subset S is evaluated
using Equation (4.19). If S = ∅, then γV (D) = 0. Equation (4.19) is used to evaluate the
significance of each feature that hasn’t been included in S . The feature whose significance
is the highest is added to S . If the significance value is zero for all features that are not
included in S , then the selection stops and S is output.

Ra = γV∪a(D) − γV (D) (4.19)

Table 4.1: A feature selection method based on the modified neighborhood rough set

Input: C- the raw feature set;
D- the set of decisions.

Output: S - the set of selected features

Step 1. S=∅. //Initialization
Step 2. for each ai ∈ C − S , its significance (Rai) is calculated using Equation (4.19).
Step 3. select ak that Rak = max

i
Rai ,

if Rak > 0, then S = S
∪

ak , go to Step 4;
otherwise, go to Step 5.

Step 4. if C = S , then go to Step 5;
otherwise, go to Step 2.

Step 5. return S .

In next section, the feature selection algorithm are applied to diagnosis of pump fault
types.

4.4 Application to Fault Detection and Isolation of Impellers in
Slurry Pumps

In this section, fault detection and isolation (diagnosis of fault types) of impellers in slurry
pumps is studied. As stated in Chapter 3, two fault types, impeller trailing edge damage
(TED) and impeller leading edge damage (LED) are considered in this thesis. Detection of
early fault is the most challenging problem [123]. However it is often desirable to detect
faults as early as possible, so that the fault propagation can be monitored and preventive
maintenance can be scheduled before the fault becomes severe. Therefore, in this chapter,
the initial (slight) damage only is focused. Specifically, there are three fault conditions con-
sidered in this chapter, that is no damage (ND), slight TED and slight LED. Other advanced
damage levels will be studied in Chapters 5 and 7. As described in Section 3.1, vibration
data were collected for each fault type. The vibration data were saved as 54 samples, so
totally there are 162 samples (i.e. 54 samples per fault type × 3 faut types) available.
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As stated in Chapter 1, machine-learning-based fault diagnosis contains three steps:
feature extraction, feature selection and fault classification. They are presented, for this
specific application, in the following subsections. The focus here is feature selection.

4.4.1 Feature Extraction

Conventional Fourier spectrum (half spectrum) is a commonly used tool for feature extrac-
tion of pumps [17]. The mathematical description of conventional Fourier spectrum is given
in Section 2.1. Amplitude at a certain frequency f represents the energy at f , and contains
information on pump health condition [17, 95].

According to the technical bulletin of Warman slurry pump [124], the informative fre-
quencies of a pump are: the pump rotating frequency (1X), its 2nd harmonic (2X), 3rd

harmonic (3X), 4th harmonic (4X) and the vane passing frequency (5X). Zhang et al. [125]
showed that a flow pattern called (jet-wake) which may occur at the impeller outlet results
in the second harmonic of the vane passing frequency (10X). Therefore, the six frequencies
1X, 2X, 3X, 4X, 5X and 10X are chosen as valuable frequencies. The amplitude values
at the six frequencies are extracted as features. The slurry pump test rig has three tri-axial
accelerometers as shown in Figure 3.5. The three tri-axial accelerometers produce nine
channels. Each channel outputs a vibration signal. So the total number of features is 54 (6
features per channel × 9 channels).

4.4.2 Feature Selection

Now features are selected using the algorithm presented in Section 4.3. First, the neigh-
borhood size needs to be determined for each feature. As discussed in Section 4.1, the
neighborhood size reflects the noise level that a feature suffers. As stated in Section 4.3.1,
the noise level for the pump feature (amplitude) obtained from a Fourier spectrum can be
estimated by Equation (4.18) defined in the same Fourier spectrum. Each channel produces
a vibration signal, and therefore a Fourier spectrum. Features from the same channel have
the same neighborhood size. But features from different channels have different neighbor-
hood sizes, because each channel has its own noise level depending on its location and the
sensor characteristic. Samples from perfectly healthy condition are used to estimate the
noise level. The noise levels of these samples are averaged to get the noise level for this
channel. Table 4.2 lists the neighborhood size for each feature (noise level for each chan-
nel). It can be seen that features from different channels have different neighborhood sizes.

With the neighborhood size determined, the feature selection algorithm (Table 4.1) is
applied, and three features are selected as shown in Table 4.3. In the next step, the selected
features are imported into classifiers for diagnosis of impeller fault types.
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Table 4.2: Neighborhood sizes for different features

Channel A1X A1Y A1Z A2X A2Y
Feature No. 1∼6 7∼12 13∼18 19∼24 25∼30

Neighborhood Size 0.0015 0.0013 0.0021 0.0011 0.0021
Channel A2Z A3X A3Y A3Z

Feature No. 31∼36 37∼42 43∼48 49∼54
Neighborhood Size 0.0009 0.0013 0.0010 0.0007

Table 4.3: Feature name and source of each selected feature

Feature No. Feature Name Channel (Sensor-direction)
37 Amplitude at 5X A1-Y
11 Amplitude at 2X A2-X
20 Amplitude at 1X A3-X

4.4.3 Fault Classification

In this step, the selected features are fed into classifiers to diagnose impeller fault types. The
diagnosis result is used to evaluate the performance of selected features. Here the diagnosis
result is expressed as classification error defined in Equation (4.20), where di and d′i are the
true fault type and the predicted fault type of the ith sample respectively.

1
n

n∑
i=1

ti where ti =

 1, di = d′i
0, otherwise

(4.20)

Three-fold cross validation is adopted to generate diagnosis results. Specifically, the whole
data set was evenly split into three subsets, two of them are used as the training set and the
remaining one as the test set. Using the training set, the parameter of a classifier is tuned
to get a classification model. The classification model is then tested with samples in the
test set and a classification error is obtained. The process is repeated three times, with each
of the three subsets used exactly once as the test data. The three classification results are
then averaged to produce a mean classification error. A standard deviation is also calculated
based on the three classification results.

To show that the feature selection method is not classifier-sensitive, three commonly
used classifiers are adopted for fault classification. They are probabilistic neural network
(PNN), K-nearest neighbor (KNN), and support vector machine (SVM). Mechanisms of
these classifiers are given in Section 1.2.2.3. Diagnosis results using the three classifiers are
given next.

4.4.4 Results and Discussions

To illustrate the effect of the features selected by the modified neighborhood rough set, we
compare it with (i) the case that feature selection is not performed (i.e. all 54 features are
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used), and (ii) the case that feature selection is conducted by the original neighborhood
rough set.

When selecting features using the original neighborhood rough set, one common neigh-
borhood size (δ in Equation (2.23)) is used for all features needs to be determined. Hu et
al. [10] stated that the classification error varies with the neighborhood size; however, the
determination of a proper neighborhood size was not reported. They suggested to try dif-
ferent neighborhood size and choose the one that produce the smallest classification errors.
Since the proper value of the neighborhood size for all features is not known, three different
neighborhood sizes are tested: 0.0007, 0.0013 and 0.0021. They are the minimum, mean
and maximum values of the nine noise levels for the nine channels listed in Table 4.2. The
minimum value represents the case where the neighborhood size is smaller than its noise
level for most features; and in this case, the features are likely to be overestimated. The
maximum value represents the case in which the neighborhood size is larger than the noise
level for most features; in this case, the features are likely to be underestimated. The mean
value represents the case where the neighborhood size is closer to the noise level for most
features. Table 4.4 shows the features selected under these three neighborhood sizes (δ).

Table 4.4: Features selected under different neighborhood sizes

Neighborhood size (δ) Selected feature subset
0.0007 No. 37 (Amplitude at 1X from channel A3-X

0.0013
No. 37
No. 20 (Amplitude at 2X from channel A2-X)

0.0021
No. 17 (Amplitude at 5X from channel A1-Z)
No. 35 (Amplitude at 5X from channel A2-Z)
No. 3 (Amplitude at 3X from channel A1-X)

Table 4.5: Classification errors (mean ± standard deviation) generated by different feature
subsets

`````````````̀Feature subset
Classifier

SVM KNN PNN Average

All features 0.111
±0.064

0.045
±0.034

0.101
±0.083

0.086

Features selected by modified
neighborhood rough set

0.015
±0.011

0.043
±0.033

0.083
±0.060

0.047

Features selected by
original neighborhood
rough set

δ=0.0007 0.102
±0.083

0.111
±0.064

0.137
±0.061

0.117
0.109

δ=0.0013 0.028
±0.016

0.059
±0.048

0.099
±0.060

0.062

δ=0.0021 0.150
±0.043

0.124
±0.101

0.168
±0.061

0.147
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1) The effect of feature selection Table 4.5 shows the mean and standard deviation of
three-fold cross validation for each classifier when different feature subsets were used. If all
54 features are used, the mean values of classification errors produced by SVM, KNN and
PNN are 0.111, 0.045 and 0.101, respectively. Using the three features selected by the mod-
ified neighborhood rough set (Table 4.4), the mean classification errors produced by SVM,
KNN and PNN are reduced to 0.015, 0.043 and 0.083, respectively. The corresponding
standard deviations are also reduced. This shows the effectiveness of feature selection.

2) The effect of the neighborhood size The classification error for each feature subset
selected with a certain neighborhood size is also provided in Table 4.5. It can be seen
that different neighborhood sizes generate different feature subsets, and correspondingly
different classification results. Overall, the classification errors are larger than the results of
modified neighborhood rough set.

It can be seen that among the three δ values, δ = 0.0013 gives smallest errors (both mean
and standard deviation) no matter which classifier is used. This is because δ = 0.0013 is
the mean noise level of 54 features, so it represents the noise level better than the minimum
(δ = 0.0007) and the maximum (δ = 0.0021) ones. This supports the idea that the closer
the neighborhood size is to the actual noise level, the higher the classification accuracy.
This, on the other hand, proves the feasibility of Equation (4.18) as a neighborhood size
approximation calculation formula. Even though δ = 0.0013 generates the lowest mean
errors among all three δ values (that is 0.028, 0.059 and 0.099 for SVM, KNN and PNN,
respectively), it is worse than the results generated by the modified neighborhood rough set
(that is 0.015, 0.083 and 0.043 for SVM, KNN and PNN). This is because the modified
neighborhood rough set uses different neighborhood sizes for different features according
to the noise levels these features suffer.

As discussed in Section 4.2.1, when the neighborhood size is smaller than its noise
level, the feature’s significance may be overestimated. Thus the feature selection process
may stop early and miss some good features. For example in Table 4.4, when δ = 0.0007,
only feature No. 37 is selected, meaning that its approximation quality reaches the highest
value (i.e. 1) and therefore feature selection process stops and no other features are selected.
However, Table 4.2 shows that the neighborhood size should be 0.0013, so feature No. 37
is overestimated when δ = 0.0007. When δ = 0.0013, the approximation quality of feature
No. 37 is not 1 anymore and additional features are added to increase the approximation
quality, as can also be seen in Table 4.4. On the other hand, if the neighborhood size
used is larger than the value it should be, the feature’s significance may be underestimated.
This, in turn, results in missing good features or adding bad features. For example, when
δ = 0.0021, most features are underestimated, the approximation quality of feature No. 37
is not the highest anymore so it is not selected. Instead, three features No. 17, No. 35 and
No. 3 are selected, which generates poor classification results as shown in Table 4.5.

From the above discussion, it can be concluded that the modified neighborhood rough
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set performs better than the original neighborhood rough set, because it considers the phys-
ical generation of noise levels and includes this information in the choice of neighborhood
size.

4.5 Summary

This chapter studies feature selection based on neighborhood rough set. Neighborhood size
is a key factor in neighborhood rough set. First the effect of neighborhood size is analyzed,
based on which the problem of using the original neighborhood rough for feature selection
is discussed. That is, features are likely to be wrongly estimated if a constant neighborhood
size is used for all features, when features are obtained from different sources. To overcome
this problem, the original neighborhood rough set model is modified. The modified neigh-
borhood rough sets considers the physical meaning of neighborhood size, i.e. neighborhood
size is the noise level a feature encounters. Thus in the modified neighborhood rough set
model, each features is associated with a neighborhood size that stands for its noise level.

A feature selection method based on the modified neighborhood rough set is proposed
and applied to the diagnosis of pumps. Fourier spectrum are used for feature extraction.
Neighborhood sizes for these features are calculated by checking the Fourier spectrum from
which these features are obtained. Results show that features selected by the modified
neighborhood rough set achieves lower classification errors than do the raw features and
features selected by the original neighborhood rough set. The above statement is supported
by the fault classification results of all three classifiers (i.e. probabilistic neural network,
K-nearest neighbor and support vector machine).

The disadvantage of the proposed method is that in the proposed method, the noise
level of each feature needs to be estimated, which requires the collection of a large set of
samples.
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Chapter 5

Signal-Based Fault Identification

As discussed in Section 1.1.1, fault detection and isolation (FDI) is the first step in fault
diagnosis, through which the fault type is determined. After that, fault identification is
needed. Fault identification refers to the determination of the severity of a fault type. It
plays an important role in maintenance scheduling. Different from FDI, fault identification
has a unique characteristic; that is, the fault severity level has inherent ordinal information
among different levels while fault type doesn’t. For example, “a severe fault” is worse
than “a moderate fault”, and even worse than “a slight fault”. So the severity level is an
ordinal variable (see Section 2.3). This makes the fault identification more complicated
than FDI [73].

Having ordinal information is an important characteristic of fault severity levels. Thus
keeping the ordinal information is a necessary requirement for fault identification. In this
chapter, signal-based fault identification is studied. Machine-learning-based fault identifi-
cation will be studied in Chapter 6.

Signal-based fault identification aims to generate an indicator that monotonically varies
with the fault progression. With such an indicator, the fault severity can be tracked by
monitoring the value of this indicator. Such an indicator is, however, usually not easy to
extract, especially for complex systems. In this thesis, fault diagnosis is studied using vi-
bration signals. Several vibration sensors at different directions/locations are often used to
collect vibration signals. Different sensors may provide health information from different
perspectives. The indicator representing fault progression needs to make use of the infor-
mation from different sensors. Thus, how to efficiently extract an indicator from two or
more sensors becomes a key research issue.

In this chapter, two methods for generating such an indicator are proposed. The rest of
the chapter is organized as follows. Section 5.1 summarizes two ways of integrating infor-
mation from multiple sensors. Following the two ways, two indicator generation methods
are proposed in Section 5.2 and Section 5.3, respectively. The two methods are applied to
the identification of damage levels of impeller vane tailing edge and impeller vane leading
edge, respectively. Finally, a summary is given in Section 5.4. Results in this chapter have
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been published in [44], [102] and [126]. 1

5.1 Background

In order to extract information from more than one sensors, researchers have developed
several techniques. For example, full spectrum [8, 36] overcomes the limitation of con-
ventional Fourier spectrum which deals with one-dimensional signals only. Full spectrum
handles two-dimensional signals measured from two orthogonal sensors. In another word,
conventional Fourier spectrum describes a one-dimensional vibration motion and full spec-
trum describes a two-dimensional (i.e. planar) vibration motion. Detailed descriptions on
conventional Fourier spectrum and full spectrum are given in Section 2.1. Full spectrum re-
veals, not only the amplitude of a frequency component (as does the half spectrum), but also
the directivity of a frequency component with respect to the planar rotational direction. This
gives full spectrum great potential in condition monitoring of rotating machinery [37, 127].
Patel and Darpe [128] used full spectrum to detect the crack depth of a rotor and found
that the positive 2X (twice the rotor rotation speed) frequency component becomes stronger
with the increase of crack depth.

Besides full spectrum, statistical-based methods such as principal component anal-
ysis (PCA) and independent component analysis (ICA) are also widely used for multi-
dimensional signals. Zhang et al. [129] utilized principal component (PC) representations
of features from two sensors to monitor a double-suction pump. Cempel [130] applied sin-
gular value decomposition (SVD) to a set of features, and then proposed an indicator based
on the singular values to track the health condition of a diesel engine.

The reported techniques of integrating information from different sensors fall into two
categories. The first category (e.g. full spectrum and Holospectrum [34]) regards the sig-
nals from different sensors as a multi-dimensional signal, and uses signal processing tech-
niques that are capable of handling multi-dimensional signals directly to analyze this multi-
dimensional signal. The work by Patel and Darpe [128] using full spectrum directly on a
two-dimensional signal (i.e. two signals measured from two orthogonal sensors, respec-
tively) belongs to this category. This way of integrating information from different sensors
is often used when the physical pattern due to a fault is known, and then a proper signal
processing technique is applied to capture this pattern.

The second category regards signals from different sensors as a set of one-dimensional
signals, applies signal processing techniques to the signal from each individual sensor or
some sensors together for feature extraction and then combines features from all sensors.
The work by Cempel [130] applying SVD to features calculated from each individual sen-

1Versions of this chapter have been published in “Xiaomin Zhao, Tejas H Patel and Ming J Zuo, 2011.
Mechanical Systems and Signal Processing, 27:712-728.”, “Xiaomin Zhao, Ming J Zuo and Tejas H Patel,
2012. Measurement Science and Technology. 23:1-11.”, and “Xiaomin Zhao, Ming J. Zuo and R. Moghaddass,
2012. Book Chapter, Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, IGI
Global.”
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sor belongs to this group. However, when using this way to generate an indicator for fault
levels, the selection of sensitive features is an issue to be addressed. Because not all features
have positive contributions to the indicator generation, especially considering the require-
ment that the indicator needs to show a monotonic trend with the fault severity level.

Following the two ways of utilizing information from two or more sensors, two indica-
tor generation methods are proposed in the two sections next, addressing the issues listed
above.

5.2 Method I: Fault Identification Using Multivariate EMD and
Full Spectrum (for two sensors only)

The idea of this method is to integrate information from two sensors by processing sig-
nals from two sensors together using full spectrum. Full spectrum is capable of reveal-
ing the directivity and amplitude of each spectral component in a planar vibration motion.
However, not all the spectral components are sensitive to faults. Selecting the sensitive
(fault-affected) spectral components can help diagnose fault levels more efficiently. Fixed
band pass filtering can be used to choose spectral components in a certain frequency range.
However, prior knowledge on the sensitive frequency range is required before processing
the vibration data. Moreover, the noise contamination inevitably occurred during vibration
data measurements makes the fixed band pass filtering less efficient. If noise is mixed with
the interested frequency range of a true signal, the fixed band pass filtering process will
be ineffective. To overcome this, empirical mode decomposition (EMD) can be used as an
adaptive filter [131].

EMD decomposes a raw signal into a set of complete and almost orthogonal compo-
nents called intrinsic mode functions (IMFs). IMFs represent the natural oscillatory modes
embedded in the raw signal. Each IMF covers a certain frequency range. The IMFs work
as the basis functions which are determined by the raw signal rather than by pre-determined
functions. EMD has been widely used for fault diagnosis of rotating machinery [79, 132].
However, standard EMD has the limitation in that it works only for single real-valued sig-
nals. When dealing with data from multiple sensors, standard EMD needs to decompose
signals measured from each individual sensor separately. However, because of the local
and self-adaptive nature of the standard EMD, the decomposition results of signals from
multiple sources may not match in either the number of IMFs or the frequency content of
an IMF number [89], as described in Section 2.2.1.

To ensure proper decomposition of signals from multiple sources, standard EMD has
recently been extended to the multivariate versions of EMD including those suitable for the
bivariate signals [90], trivariate signals [91] and multivariate signals [9]. The mathematical
description of multivariate EMD is given in Section 2.2.2.

It is worth mentioning that when comparing signals from different health conditions,
the signals from not only all sensors but also all different health conditions need to be com-
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bined together into a multi-dimensional signal before being decomposed by multivariate
EMD. Otherwise, the unmatched problem would occur among signals from different health
conditions. Therefore, even when only two sensors are used, a multi-dimensional signal
needs to be generated and decomposed by multivariate EMD. Using full spectrum and mul-
tivariate EMD, an indicator generation method (method I) is proposed below.

5.2.1 Method Description

For rotating machinery, full spectrum provides information on both energy (i.e. vibration
amplitude) and the directivity of vibration. Depending on the input signal, full spectrum
could reveal whether the vibration is in the direction of rotation (i.e. forward) or in the
opposite direction of rotation (i.e. backward). When a fault occurs, the energy and the di-
rectivity of vibration might change. As not all spectral components (frequency components)
are sensitive to the fault, picking up the most sensitive (fault-affected) spectral component
is important.

Empirical mode decomposition can be used as an adaptive filter to select the most sen-
sitive frequency component [131]. An IMF represents a simple oscillatory mode and serves
as a filter. Moreover, multivariate EMD, the multivariate extension of EMD, is able to find
common oscillatory modes within signals from multiple sensors. Thus a complicated rota-
tion represented by two signals (e.g. x and y) can be decomposed into two sets of IMFs (i.e.
im f x and im f y) using multivariate EMD. Each IMF in set im f x (respectively set im f y)
represents a projection of a simpler rotation in the X direction (respectively Y direction).
That is, a complicated rotation is decomposed into a set of simple rotations. In this way, the
selection of the most sensitive spectral component (i.e. a simple rotation) can be achieved
by selecting the most sensitive IMF.

To select the sensitive IMF, criteria based on the correlation coefficient between an IMF
and its raw signal was used in [133, 134]. Note that the correlation coefficient reflects only
linear relationship between two variables. To account for nonlinear relationship as well,
mutual information [135] is employed and a selection criterion is proposed. The criterion
takes into account two kinds of mutual information: (1) that between the nth IMF and its
raw signal, and (2) that between the nth IMF of a signal with certain health condition and
the nth IMFs of signals with different health conditions. The following example explains
how the criterion works.

Suppose that two signals, x0(t) and y0(t), collected from the X and Y directions under
the normal operation, are denoted by a two-dimensional signal, x0(t)

−→
i + y0(t)

−→
j . Two other

signals, x1(t) and y1(t), collected from the X and Y directions at a fault condition, are
denoted by a two-dimensional signal, x1(t)

−→
i + y1(t)

−→
j . Let cnx0(t), cny0(t), cnx1(t), and cny1

be the nth IMF of x0(t), y0(t), x1(t) and y1(t), respectively, obtained by multivariate EMD.
The proposed criterion (Equation (5.2)) for selecting a sensitive IMF is described in Table
5.1.
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Table 5.1: Proposed method for the selection of sensitive IMF

Step 1. Calculate the mutual information, an, between the nth IMF of a two-
dimensional normal signal, cnx0(t)

−→
i +cny0(t)

−→
j , and the signal itself, x0(t)

−→
i +y0(t)

−→
j .

Step 2. Calculate the mutual information, bn, between the nth IMF of a two-
dimensional fault signal, cnx1(t)

−→
i + cny1(t)

−→
j , and the signal itself, x1(t)

−→
i + y1(t)

−→
j .

Step 3. Calculate the mutual information, en, between cnx1(t)
−→
i + cny1(t)

−→
j and

cnx0(t)
−→
i + cny0(t)

−→
j .

Step 4. Calculate the sensitivity factor, λn, for the nth IMF using

λn =
an + bn

2
− en. (5.1)

In this equation, the first part, (an + bn)/2, represents the average mutual information
between the nth IMFs and their raw signals; the second part, en, represents the mutual
information between the nth IMF of the normal signal and the nth IMF of the signal
under different health conditions (i.e. the fault signal in this example). To ensure that
an IMF is informative enough to represent the original signal, the first part is expected
to be high; to enable the easy detection of the fault, the second part is expected to be
low. Therefore, the sensitive IMF is expected to have a high value of λn.
Step 5. Find the most sensitive IMF (the sth IMF),

λs = max
n
λn. (5.2)

The IMF having the highest value of sensitivity factor is the most sensitive IMF.

After the sensitive IMF is selected, the full spectrum of this IMF is obtained. A full
spectral indicator reflecting the characteristic of planar vibration motion is then extracted
for condition monitoring. This indicator to use is problem specific. As will be illustrated
later for the problem of impeller vane trailing edge damage in a pump, the ratio between
energy of backward components and energy of forward components is used as the indicator.
This was based on the characteristic of the velocity field in the pump, as will be described
in Section 5.2.3. A flowchart of the proposed method is given in Figure 5.1.

5.2.2 Application to Simulation Data

To illustrate how the proposed indicator generation method works, first this method is ap-
plied to simulation data. In the fault diagnosis of rotating machinery, the change of a am-
plitude at a typical frequency [136] and the appearance of a new frequency [137] are two
phenomena that commonly occur when a fault occurs. For this reason, simulation signals
were constructed considering these two effects to illustrate and test the proposed method.

Four signals, namely x0, y0, x1 and y1, are constructed and shown in Equations. (5.3)-
(5.6). The x0, y0 and x1, y1 are two sets of vibration signals measured from the X and
Y orthogonal directions for “normal” and “fault” conditions respectively. The vibration
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Collect vibration data from two orthogonal

directions for different health conditions

Decompose the collected vibration data

using multivariate EMD

Choose the sensitive IMF using the proposed

criterion based on mutual information

Obtain full spectrum of the selected IMF

Extract a full spectral indicator

Figure 5.1: Flowchart of indicator generation method I

signals for normal condition have of two parts: the first part is a counter-clockwise rotation
at a frequency of 20 Hz with amplitude of 0.5; the second part is an counter-clockwise
rotation at 100 Hz with amplitude of 1. Vibration signals for the fault condition consist of
four parts: the first part is the same as the first part of the normal signal; the second part is
an counter-clockwise rotation at 50 Hz with amplitude of 0.2; the third part is a clockwise
rotation at 50 Hz with amplitude of 1; the fourth part is the same as the second part of the
normal signal but with an amplitude of 0.9.

x0 = 0.5 cos(40πt) + cos(200πt) (5.3)

y0 = 0.5 sin(40πt) + sin(200πt) (5.4)

x1 = 0.5 cos(40πt) + 0.2 cos(100πt) + cos(−100πt) + 0.9 cos(200πt) (5.5)

y1 = 0.5 sin(40πt) + 0.2 sin(100πt) + sin(−100πt) + 0.9 sin(200πt) (5.6)

First, standard EMD is applied to x0, y0, x1 and y1, separately; the results are shown
in Figure 5.2. The top row in each column shows the raw signals, the bottom row in each
column shows the residuals, and the middle rows are IMFs. There are two IMFs for each
of x0 and y0, while three for each of x1 and y1. Thus standard EMD results in an unequal
number of IMFs [89], making it impossible to compare normal and fault signals on the 3rd

IMF in Figure 5.2. Moreover, the frequency content of the 2nd IMFs of x0 and y0 (i.e. 20
Hz) is different from that of the 2nd IMFs of x1 and y1 (i.e. 50 Hz). Therefore, the 2nd

IMFs of the normal and fault signals can not be compared directly either. From this simple
simulation example, it can be seen that it would be difficult to capture fault information
from the same IMF number for real vibration signals, because real vibration signals are
much more complicated than those simulated with Equations (5.3) - (5.6).
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Figure 5.2: Decomposition results of simulated data with standard EMD

As stated in Section 2.2.2, the multivariate versions of EMD can ensure the proper de-
composition of signals from multiple sensors. In this example, two signals are measured
at two orthogonal directions for each health condition. If bivariate EMD is applied to nor-
mal signals (i.e. x0(t)

−→
i + y0(t)

−→
j ) and fault signals (i.e. x1(t)

−→
i + y1(t)

−→
j ) separately, the

results will be the same as those shown in Figure 5.2. The problem of unmatched decom-
position in the number of IMFs and the frequency content of an IMF number still exists.
The problem of unmatched decomposition could be avoided by decomposing all the sig-
nals together. First, all the four raw signals (i.e. x0, y0, x1, and y1) are combined to form
a four-dimensional signal, x0(t)

−→
i + y0(t)

−→
j + x1(t)

−→
k + y1(t)−→q . Multivariate EMD is then

conducted to decompose the four-dimensional signal. A set of four-dimensional IMFs,
cnx0(t)

−→
i + cny0(t)

−→
j + cnx1(t)

−→
k + cny1(t)−→q , are obtained, where cnx0, cny0, cnx1, and cny1

represent the nth IMF of x0, y0, x1, and y1, respectively. Results are shown in Figure 5.3.
The top row shows the raw signals. The bottom row shows the residuals. The 1st, 2nd and
3rd IMFs are shown in the second, third and fourth row for frequencies 100 Hz, 50 Hz and
20 Hz, respectively. The 2nd IMFs of x0 and y0 have no element for 50 Hz, therefore their
2nd IMFs are almost 0. Now each row has a common frequency content, which makes the
IMFs of normal and fault signals comparable. It can also be seen that the raw complicated
motion is decomposed into three simple motions, making further inference regarding the
fault-sensitive IMF easier.

The sensitivity factor based on mutual information is then calculated to find the most
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Figure 5.3: Decomposition results of simulated data with multivariate EMD

Table 5.2: Sensitivity factor of each IMF (simulation data)

IMF number Sensitivity factor
1 -1.53
2 0.51
3 -2.51

sensitive IMF which can clearly distinguish the fault condition. Table 5.2 shows the details.
The 2nd IMF gives the highest value and therefore is chosen as the sensitive IMF. This result
is consistent with our intuition because the 2nd IMF, as can be seen from Figure 5.3, shows
a clear difference between normal and fault signals.

To express the fault information, full spectrum is conducted on the sensitive IMF (i.e.
the 2nd IMF). The 2nd IMFs of xm and ym (where m = 0, 1) are used as the direct part and
the quadrature part, respectively. Thus the forward direction corresponds to the counter-
clockwise direction. The full spectra of c2x0

−→
i + c2y0

−→
j (normal) and c2x1

−→
i + c2y1

−→
j (fault)

respectively are shown on the top of Figure 5.4(a) and Figure 5.4(b). The 2nd IMFs of nor-
mal signals are almost zero, so the spectra in the three rows are almost zero for the normal
case (Figure 5.4(a)). To facilitate comparison, the half spectra are also shown in the middle
row (c2x0 and c2x1) and the bottom row (c2y0 and c2y1) of Figure 5.4. The characteristic
of full spectrum can be observed by checking the fault case (Figure 5.4(b)). Full spectrum
clearly indicates the backward (i.e. clockwise) rotation with amplitude of 1 and the forward
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Figure 5.4: Full spectra and half spectra of the 2nd IMFs of simulated data

(i.e. counter-clockwise) rotation with amplitude of 0.2, as defined in Equations (5.5)-(5.6).
The half spectrum doesn’t, however, take rotation directivity into account. Therefore, the
term c2x1, 0.2 cos(100πt) + cos(πt), is simply regarded as 1.2 cos(100πt) and the amplitude
of 1.2 is equally split to the amplitudes at 50 Hz and -50 Hz (i.e. 0.6). The same reasoning
applies to c2y1, 0.2 sin(100πt) + sin(−100πt), at -50 Hz and 50 Hz with amplitudes both
equal to 0.4. Compared to the half spectrum which gives amplitudes of 0.6 for c2x1 and
0.4 for c2y1, the full spectrum with amplitude of 1 at -50 Hz and amplitude of 0.2 at 50 Hz
reveals the fault information more clearly with regard to both directivity and energy.
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The simulated data illustrates the concept of the proposed method I. It shows that the
proposed method can help find the fault-sensitive spectral component, and reveal the char-
acteristic of a planar vibration. Next, the proposed method I is applied to the identification
of damage levels of impeller vane trailing edge.

5.2.3 Application to Identification of Damage Levels of Impeller Vane Trail-
ing Edge

In this section, the proposed method is applied to the identification of damage levels of
impeller vane trailing edge. As introduced in Section 3.1.3, four damage levels are consid-
ered: no damage (level 0), slight damage (level 1), moderate damage (level 2) and severe
damage (level 3). Vibration data were collected from three accelerometers under each of
the four damage levels. Details on experiments refer to Section 3.1.3. In this section, the
data collected at the flow rate of 100% BEPQ only is considered.

5.2.3.1 Analysis on Flow Patterns in Pumps

In pumps, hydrodynamic forces are often the major sources of vibration [17]. The velocity
distribution at the impeller outlet is non-uniform as a result of the finite vane thickness,
the blockage caused by the boundary layers, and possible flow separation. The cutwater
(See Figure 3.2 on the structure of a pump) is thus approached by an unsteady flow induc-
ing alternating hydrodynamic forces on the cutwater. These hydrodynamic forces cause
the vibration of the pump casing. It is believed that the change of geometry at impeller
vane tailing edge affects the velocity and the pressure distributions inside the pump [17].
Consequently, the hydrodynamic forces and therefore the vibrations are affected. To better
understand the variation in the flow field, numerical simulations using the computational
fluid dynamics (CFD) approach [4] are carried out.

ANSYS CFX 12 [138] was used to conduct steady-state simulations. The pump inlet
pipe and the pump outlet pipe were extended to allow possible inlet recirculation and the
elliptic influence of the flow (see Figure 5.5). The boundary conditions were set as follows.

• Inlet: the total pressure was applied in the axial direction.

• Outlet: mass flow was imposed.

• Wall: no-slip wall was adopted.

A reference frame refers to a coordinate system within which the position, orientation,
and other properties of objects in it are measured. Due to the change between the refer-
ence frame of the rotating impeller and the reference frame of the static volute liner, the
interaction between the impeller and the liner was simulated with the Frozen-Rotor inter-
face model [138]. In this model, simulation is preformed for a specific relative position
of the machine components, and then this relative position is changed step by step in a
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Figure 5.5: Domains for pump CFD simulation

Table 5.3: Parameter settings in CFX 12 for pump simulation [4]

Item Settings in CFX 12
pumping medium water

speed 2400 RPM
Domain of simulation Extended inlet + impeller + volute liner

Impeller grid Unstructured 355471 nodes
Volute liner grid Unstructured 296788 nodes

Extended inlet duct grid Unstructured 120853 nodes
Inlet Total Pressure = 45043 Pa

Interface inlet pipe/ impeller Frozen rotor
Interface impeller / volute liner Frozen rotor

Outlet 455 usgpm (100% BEPQ)
Turbulence model K-epsilon

Discretization Second order
Maximum residual convergence criteria 10−4 (RMS)

quasi-steady calculation. The parameters for the pump simulation are summarized in Table
5.3.

Figure 5.6 shows the relative velocity fields near the cutwater under the four health
conditions obtained from our CFD simulations. The direction of the velocity at a certain
location is indicated by the direction of the arrow. The magnitude of the velocity at a
certain location is indicated by the length of the arrow. The direction of impeller rotation
is clockwise. The flow goes out from the impeller into the volute, experiences a certain
degree rotation in the volute, and comes out to the outlet. Thus near the cutwater area, part
of the flow is directed into the volute (we call it forward direction as it is in the direction of
impeller rotation), and the rest is directed to the outlet (we call it backward direction as it
is not in the direction of impeller rotation). At the no damage case, the velocity vectors are
well directed towards the outlet and the volute. This directivity is distorted when damage
occurs at the vane trailing edge. The degree of distortion increases as the level of damage
increases. At the severe case, the flow has a weak trend in the forward direction compared
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to the backward direction.

cutw ater

No Damage Slight Damage

Moderate Damage Severe Damage

volute

outlet

Impeller rotation direction

cutwater

Figure 5.6: Zoomed view of the relative velocity fields near the cutwater area

The vibration sensor labeled as A1 in Figure 3.5 is expected to capture the change of
flow directivity indicated in Figure 5.6, because it is located close to the cutwater. Data from
sensor A1 in the X direction (donated by channel A1-X) and the Y direction (donated by
channel A1-Y) are analyzed because they are in the plane of the main flow (shown in Figure
3.5). Based on the flow patterns shown in Figure 5.6, the forward motion becomes weak
compared to the backward motion. Thus, the ratio between the backward whirling energy
and the forward whirling energy is expected to increase as the damage level increases. A
full spectral indicator in the form of an energy ratio is defined using Equation (5.7) to
represent this. In Equation (5.7), A( f ) represents the value of amplitude at frequency f in a
full spectrum.

Er =

√∑
f<0 A( f )2√∑
f>0 A( f )2

(5.7)

5.2.3.2 Selecting Sensitive Frequency Component

Let x0, x1, x2, and x3 (respectively y0, y1, y2, and y3) denote the signal measured by chan-
nel A1-X (respectively channel A1-Y) for the no damage, slight damage, moderate damage,
and severe damage cases, respectively. Figure 5.6 shows that the impeller rotates clockwise.
To make the forward direction the impeller’s rotation direction, signals from channel A1-X
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Figure 5.7: Full spectra of raw data for different health conditions
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and channel A1-Y are used as the quadrature part and the direct part respectively in the
calculation of full spectrum (See Section 2.1.2). Full spectra of the raw data are shown in
Figure 5.7 under each of the four health conditions and the change in the energy ratio with
the damage level is shown in Figure 5.8. It can be seen that the spectra (Figure 5.7) consist
of many spectral components. Though the spectra are different for different health condi-
tions, there is no monotonic trend observed in Figure 5.7. Empirical mode decomposition
which is capable of filtering spectral components is thus needed.

Although standard EMD could generate the same number (ten in this application) of
IMFs for signals from different sources, there still remains an unmatched property problem.
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Figure 5.9: The 4th IMFs of different signals (standard EMD)

Figure 5.9 shows the 4th IMF as an example. The frequency contents of the 4th IMFs for
different damage levels don’t match. The frequency centers of the 4th IMFs for x0, x1,
and x2 signals are around 1.5X (i.e. 1.5 times the pump rotation frequency); however, the
frequency center of the 4th IMF of x3 signal is around 2X. This inconsistency also exists in
signals measured by A1-Y. At the same damage level, the 4th IMFs of signals measured in
different directions don’t match either. For example, in the no damage case, the frequency
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center of the 4th IMF of x0 signal is 1.5X, whereas the frequency center of the 4th IMF
of y0 signal is 1X. The inconsistency exists in the slight and moderate damage cases too.
To address the unmatched property of IMFs from different sources, multivariate EMD is
applied.
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Figure 5.10: The decomposition results for y0 (a) and y3(b) using multivariate EMD

Eight raw signals (i.e. x0, y0, x1, y1, x2, y2, x3 and y3) are combined into an eight-
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dimensional signal and decomposed together using multivariate EMD algorithm. Figure
5.10 shows the decomposition results for y0 and y3 signals (the results for data associated
with other health conditions are not presented here). The first ten IMFs are obtained for
each signal; the other IMFs have small amplitudes and thus are put into the residual (r). It
can be seen from Figure 5.10 that the corresponding IMFs of y0 and y3 signals carry the
same frequency content. The criterion proposed in Section 5.2.1 is used to evaluate the
significance of each of the ten IMFs. The significance factor of the nth IMF is calculated
using the averaged mutual information between the nth IMF and its raw signal subtracted
by the averaged mutual information between the nth IMF of one health condition and that
of other health conditions. Table 5.4 shows the results. The 4th IMF has the highest value
and is chosen as the sensitive IMF.

Table 5.4: Sensitivity factor of each IMF (pump data)

IMF number Sensitivity factor
1 0.09
2 0.16
3 0.19
4 0.24
5 0.12
6 0.21
7 0.05
8 -0.11
9 -0.35
10 -0.77

5.2.3.3 Indicator Generation

The 4th IMF of xi signal and the 4th IMF of yi signal are used to obtain the full spectrum
for each of the four health states (Figure 5.11). At the no damage condition, the forward
frequency components are dominant. As the health condition worsens, the strength of the
forward components compares unfavorably with that of the backward components. This
is further examined by plotting the energy ratio (Equation (5.7)) values in Figure 5.12. It
can be seen that the ratio between backward components and forward components mono-
tonically increases as the damage level increases. This agrees with the observation from
Figure 5.6. Furthermore, as described at the beginning of Section 5.2.3, the local flow field
near the cutwater is subjected to significant variations each time an impeller vane passes it,
so the vane passing frequency should be the characteristic frequency. Figure 5.11 shows
that the selected IMF is centered around the vane passing frequency (5X). Therefore, this is
consistent with our expectation.

In this section, the indicator generation method (Method I) is proposed. This method
deals with signals measured from only two orthogonal sensors together. So the fault infor-
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Figure 5.12: Energy ratio of the 4th IMF versus damage level (multivariate EMD)

mation is extracted from a planar vibration. For the impeller vane trailing edge damage, the
simulation results show that it affects mostly the main flow plane (a 2D plane). That is why
this method works. The disadvantage of Method I is that it can not deal with signals from
more than two sensors together. For some other fault type, e.g. impeller vane leading edge
damage, the vibration in many locations and directions are affected [17]. Thus more than
two sensors need to be involved in the indicator generation process. To do this, method II
is proposed next.
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5.3 Method II: Fault Identification Using Fuzzy Preference Based
Rough Set and Principal Component Analysis

The idea of this method is to extract features first, and then combine features from all sen-
sors together and output a single indicator. The first step (feature extraction) is achieved by
signal processing techniques including those for one-dimensional signals (e.g. conventional
Fourier spectrum) and for two-dimensional signals (e.g. full spectrum). In the second step,
an indicator that has monotonic trend with the fault levels is generated. How to combine
the health information (features) from all sensors into an indicator that represents the health
condition (i.e. exhibit monotonic trend) is the key issue of this method. To address this is-
sue, 1) a measure to select features exhibiting better monotonic relevance to the fault level;
and 2) a strategy to combine the selected features are needed. Next, these two issues are
discussed and an indicator generation method is proposed.

5.3.1 Method Description

The first issue is discussed first. As discussed in Chapter 1, there exist many measures for
evaluating the significance of a feature in classifying different classes, such as the measures
based on correlation coefficients [94], mutual information [53] and rough sets [95]. These
measures reflect the relevance between a feature and the class label. The labels in classi-
fication problems are nominal variables. But the fault levels (e.g. slight fault, moderate
fault, and severe fault) are ordinal variables, as stated in Section 2.3. The features selected
for generating an indicator are expected to carry the ordinal information among the fault
levels. Thus the evaluation of a feature should base on the ability of this feature in express-
ing the ordinal information. In another word, the measure evaluates the monotonic relation
between the feature and the fault level. Most existing measures, however, do not consider
this monotonic relation.

Rough set has been proved to be an effective tool in selecting important features for clas-
sification problems. Traditional rough sets consider only the equivalence relation which is
suitable for nominal variables. In order to consider the preference relation (monotonic rela-
tion), Greco et al. [139] introduced dominance rough sets to measure the monotonic relation
qualitatively. Hu et al. [93] extended dominance rough sets and proposed fuzzy preference
rough sets which can reflect the monotonicity degree between two variables quantitatively.
The mathematical descriptions on dominance rough sets and fuzzy preference rough sets
are given in Section 2.5.3 and Section 2.5.4, respectively. In this chapter, the global fuzzy
preference approximation quality (global FPAQ (Equation (2.50))) defined in fuzzy prefer-
ence based rough set is used for the evaluation of monotonic relevance.

The second issue is how to combine the information in different features into one single
variable. This process is also called feature fusion. Eigenvalue/Eigenvector analysis has
been widely used as a feature fusion method in condition monitoring [140–142]. Pires
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et al. [141] found a severity index for stator winding fault, and rotor broken bars were
detected from the obtained eigenvalues. Turhan-Sayan [142] used PCA for feature fusion
and obtained a single indicator that can effectively represent the health condition of the
electromagnetic target of concern.

Principal component analysis (PCA) is a simple eigenvector-based multivariate analysis
method. It transforms a number of possibly correlated variables into a number of uncor-
related variables called principal components. Natke and Cempel [140] found that the
non-zero eigenvalues, ordered by their magnitudes, can be regarded as fault ranking indices
which measure the fault intensity. The first principal component corresponds to the largest
eigenvalue, and therefore contains most information on damage conditions. In this chapter,
different fault levels of the same fault type are considered. The first principal component is
used as a single indicator representing the fault levels.

In this section, a method for generating an indicator of fault levels using both fuzzy
preference based rough sets and PCA is proposed. PCA is used to combine information of
a set of features into one variable. The global FPAQ (Equation (2.50)) is used to evaluate
how much useful health information (monotonic relevance) a variable contributes to the
determination of the fault levels. The variable that has the highest value of global FPAQ is
the indicator. The process of searching this indicator is described below. Let D be the set
of fault levels, C be the set of features, S be the set of selected features, Is be the indicator
generated by S , and es represent the monotonic relevance between the indicator and the
fault level. The steps are detailed in Table 5.5.

Table 5.5: Indicator generation method II

Step 1. Extract features using proper signal processing techniques. The features from
all sensors are put together and stored in set C = [a1, a2, . . . , am], where m is the total
number of features from all sensors.
Step 2. Employ Equation (2.50) to evaluate the monotonic relevance between each fea-
ture and D (fault levels). Results are saved as E = [e1, e2, . . . , em], where ei is the
monotonic relevance between feature ai and D.
Step 3. Set S = ∅. Find ak such that ek = max

i
(ei), put ak into S (i.e. S = S

∪
ak), delete

it from C (i.e.C = C − ak) and let Is = ak. and es = ek.
Step 4. For each feature, ai, in C, generate a temporary feature set Ti = S

∪
ai, where

i = 1, 2, . . . , p and p is the total number of features in C.
Step 5. Compute Itempi (Itempi is the first principal component of Ti).
Step 6. Calculate etempi, the monotonic relevance between Itempi and D using Equation
(2.50).
Step 7. Find Tk that corresponds to the highest monotonic relevance, i.e. etempk =

max
i

(etempi).

Step 8. If etempk > es, then let S = Tk, C = C − ak, es = etempk, Is = Itempi and go to Step
4; otherwise, go to Step 9.
Step 9. Output the indicator Is.
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The advantage of this method is that it includes information from all sensors. So it is
useful for the fault type that affects vibration in many locations and directions. Next, this
method is applied to the identification of damage levels of impeller vane leading edge.

5.3.2 Application to Identification of Damage Levels of Impeller Vane Lead-
ing Edge

The impeller vane leading edge damage causes more complicated flow inside the pump than
the impeller vane trailing edge damage. Because the latter is located in the downstream of
the pump flow, so mainly only the volute passage is affected. The former is located in
the upstream of the pump flow, the flow patterns in the whole flow passage (including the
impeller passage as well as the volute passage) are affected.

In the impeller passage, the flow is deflected by 90 degree from the axial entry to the ra-
dial outlet. As the flow progresses, a secondary flow (recirculation from the front shroud to
the rear shroud) builds up owing to centrifugal forces as shown in Figure 5.13(b) [17]. The
change of geometry at impeller leading edge, affects velocity, thus the centrifugal forces,
and therefore the secondary flow in the volute passage. In the volute passage, secondary
flows exist as shown in Figure 5.13(a) [17] due to the curvature of volute geometry. The
flow pattern has the shape of a double vortex. It becomes increasingly asymmetrical with
the growing non-uniformity of the impeller outflow. When there is damage on the impeller
leading edge, the impeller outflow, and thus this double vortex in the volute passage is
influenced.

forwardbackward

(a) Volute passage

 
forward

backward

front

shroud

back

shroud

(b) Impeller passage

Figure 5.13: Secondary flow in the pump flow field [17]

According to Ref. [17], change in flow patterns generates certain kind of hydraulic
excitation forces, that can be sensed through the pump impeller (rotor) and pump casing
vibrations. To capture this information, three tri-axial accelerometers, shown in Figure 3.5,
were mounted on the system. These accelerometers are all affected by the main flow, and
are individually sensitive to certain flow pattern. The tri-axial accelerometer A1 is located
near the outlet, so it (specifically channel A1-Y) is expected to capture the information on
the outlet of the main flow. The tri-axial accelerometer A2 is located on the top of the volute
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casing which is closest to the volute passage, so the flow pattern in the volute passage is
reflected through this acceleromter. Moreover, A2YZ plane (the plane where channel A2-Y
and channel A2-Z are) is believed to be informative, as it is in this plane where secondary
flow in volute passage (Figure 5.13(a)) occurs. The tri-axial accelerometer A3 is located on
the bearing casing which is directly connected to the impeller rotor. So the secondary flow
in the impeller passage can be captured by this accelerometer. Moreover, A3XY plane (the
plane where channel A3-X and channel A3-Y are) is in the plane where the secondary flow
in impeller passage (Figure 5.13(b)) occurs, so it is believed to be informative.

Four damage levels are considered in this section: no damage (level 0), slight damage
(level 1), moderate damage (level 2) and severe damage (level 3). For details on experi-
ments, please refer to Section 3.1.2.

In Method II, there are two steps: feature extraction and indicator generation. The two
steps are conducted one by one in the following.

5.3.2.1 Feature Extraction by Half and Full Spectra

As shown in Chapter 4, conventional Fourier spectrum (half spectrum), more specifically,
the amplitudes at pump rotating frequency (1X), its 2nd harmonic (2X), and vane passing
frequency (5X) carry pump health conditions. Ref. [95] also confirmed that the 2nd har-
monic of vane passing frequency (10X) carry useful information on pump conditions. So
four features (i.e. the amplitudes at 1X, 2X, 5X and 10X) are extracted from each half spec-
trum of a vibration signal. Three tri-axial accelerometers produces nine channels. Each
channel outputs one vibration signal. So there are 36 (4×9) features from half spectrum.

Section 5.2.3 shows that full spectrum captures the change of a planar flow pattern. The
secondary flow (Figure 5.13(a) and 5.13(b)) is believed to contain information on pump
health conditions. To capture this information, full spectrum, as stated in Section 2.1.2 is
applied. As positive and negative halves are not the mirror images of each other, there are
eight features (i.e. amplitude at 1X, 2X, 5X, 10X, -1X, -2X, -5X and -10X) calculated from
each full spectrum. Each tri-axial accelerometer has three orthogonal directions (X, Y, Z),
and produces three plane combinations (i.e. XY plane, YZ plane and XZ plane). As a
result, nine plane combinations from three accelerometers generate 72 features. Therefore,
totally a feature set consisting of 108 (72+36) features are generated. Table 5.6 lists the
vibration signals and their corresponding ranges of feature No. in the feature set.

It is worth noting that in the pump experiments, the fluid flows clockwise (Figure 3.5),
(i.e. A1-Y to A1-X direction). To ensure that the forward components are clockwise,
signals from channels A1-Y and A1-X are used as the direct part and the quadrature part,
respectively in the full spectrum calculation (Figure 2.2). Similar explanation applies to
other tri-axial accelerometers. To make this clear, the signal sources are named, in which
the first two letters stand for the tri-axial accelerometer, the third letter for the direct part and
the fourth letter for the quadrature part. For example, A1XZ means that in the calculation
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of a full spectrum, the direct part is the signal from channel A1-X and the quadrature part
is the signal from channel A1-Y.

Table 5.6: Signal source and the corresponding range of feature No.

Signal source Feature No. Signal source Feature No.
A1XZ 1-8 A1-X 73-76
A1YX 9-16 A1-Y 77-80
A1YZ 17-24 A1-Z 81-84
A2XY 25-32 A2-X 85-88
A2YZ 33-40 A2-Y 89-92
A2ZX 41-48 A2-Z 93-96
A3XY 49-56 A3-X 97-100
A3YZ 57-64 A3-Y 101-104
A3ZX 65-72 A3-Z 105-108

5.3.2.2 Indicator Generation

The monotonic relevances of each of the 108 features with the fault levels are evaluated
using fuzzy preference based rough sets (see Section 2.5.4). Figure 5.14 shows the results.
It can be seen that different features have different monotonic relevance with the fault levels.
Now an indicator is generated based on the 108 features. As described in Table 5.5, feature
selection and feature fusion are used alternately in the indicator generation process. Results
are discussed below.

To reveal the performance of the proposed approach, four methods listed in Table 5.7
are compared. In method-1, the feature that has the highest monotonic relevance with the
fault level is used as a single indicator. Feature fusion is not involved. In method-2, the
feature fusion (i.e. PCA) is applied directly to all 108 features, and no feature selection
is involved. In method-3 and method-4, both feature fusion and feature selection are in-
volved. Dominance rough sets and fuzzy preference based rough sets both selected features
in terms of monotonic relations with the fault levels; the first one is found to reveal quali-
tative information and the latter one is claimed to show quantitative information. To check
the usefulness of the one over the other, method-3 of using PCA on features selected by
dominance rough sets is adopted. The proposed method (method-4) employs PCA on the
features selected through fuzzy preference based rough sets. It is important to note that the
method-2 and method-3 follow the same algorithm shown in Table 5.5. The only difference
is in the feature evaluation method. Methods 2 and 3 uses the approximation qualities de-
fined in “dominance rough sets” (Equation (2.40)) and “fuzzy preference based rough sets”
(Equation (2.50)) for the feature evaluation, respectively. The reason why these methods are
compared are explained as follows. Comparison of method-1 and method-4 shows the lim-
itation of one feature. Comparison of method-2 and method-4 demonstrates the necessity
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of selecting features for the indicator generation. Comparison of method-3 and method-4
shows the importance of measuring the monotonic relevance when selecting features for
indicator generation.

Table 5.7: Different methods to be compared

Method Description
Method-1 Use one single feature (without PCA for feature fusion)
Method-2 PCA applied to all the 108 features
Method-3 PCA applied to features selected by dominance rough sets
Method-4
(proposed method)

PCA applied to features selected by fuzzy preference based rough
sets
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Figure 5.14: Feature evaluation using fuzzy preference based rough sets

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Damage level

R
e

s
u

lt
u

s
in

g
fe

a
tu

re
N

o
.
3

9

Figure 5.15: Trend of the best feature (No. 39 - Amplitude at -5X in full spectrum of A2YZ,
method-1)

Method-1 is checked first. Figure 5.14 shows that feature No. 39 (marked with a small
black square) gives the highest value of monotonic relevance. Figure 5.15 shows the value
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of feature No. 39 for four damage levels. It can be seen that even with the most relevant
feature, the damage levels are still not clearly revealed. The samples for moderate dam-
aged impeller and slight damaged impeller are mixed up. This shows that the monotonic
information is not fully contained in a single feature. Feature fusion is needed to extract the
monotonic information distributed in different features. PCA is employed herein for this
purpose.
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Figure 5.16: The 1st principal component of 108 features Versus damage levels (method-2)

In method-2, PCA is applied directly to all 108 features. The first principal component
of the 108 features is shown in Figure 5.16. In this figure, the monotonic trend is not
observed. The reason is explained as follows. As shown in Figure 5.16, different features
have different performance. The features whose performance values are small give little
contribution to the indicator generation, which in turn results in the lost of monotonic trend.
This shows the necessity of selecting features for indicator generation.

Method-3 uses dominance rough sets for feature evaluation. The results are shown in
Figure 5.17, from which it can be seen that the monotonic trend is now obtained, but the
boundary between slight damage and moderate damage is very small. This is because the
dominance rough sets consider preference relation qualitatively, thus the selected features
are not guaranteed to be the best monotonic ones quantitatively.

Finally, the proposed method (method-4) for indicator generation is tested. Figure 5.18
shows the results, from which different levels are clearly distinguished and more impor-
tantly the indicator monotonically increases with damage levels. By comparing Figures
5.15 - 5.17 with Figure 5.18, it can be seen that the proposed method performs best. It can
not only distinguish different damage levels, but also keeps a clear monotonic trend with the
damage levels. This means that in order to clearly reveal the monotonic trend, quantitative
information which can be revealed through fuzzy preference based rough sets is needed.

In method-4 (the proposed method), five features were finally selected to generate an
indicator. The physical meanings and positions for the chosen five features are listed in

106



0 1 2 3
0

0.2

0.4

0.6

0.8

1

Damage level

R
e

s
u

lt
u

s
in

g
d

o
m

in
a

n
c
e

ro
u

g
h

s
e

ts

Figure 5.17: Results using dominance rough sets and PCA (method-3)
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Figure 5.18: Results using fuzzy preference rough sets and PCA (the proposed method)

Table 5.8. Among the five selected features, two are from A3ZX, one each from A2YZ,
A3XY and A2ZX planes. These are the planes, as stated at the beginning of Section 5.3.2,
that are related to some flow patterns. A2YZ are in the plane of the secondary flow in
the volute passage. A3XY is in the plane of the secondary flow in the impeller passage.
A2ZX and A3ZX are in the plane of the main flow. This is consistent with our expectation
that these planes are sensitive to impeller vane leading edge damage. Moreover, all of the
features are from full spectrum; this shows the effectiveness of full spectrum in revealing
the pump health information embedded in flow patterns.

This application shows that the proposed method successfully generates an indicator
representing the development of damage levels for impeller vane leading edge damage.
Fuzzy preference based rough sets help to select features that have better monotonic rel-
evance with fault levels. PCA fuses the information on selected features. This indicator
contains information from different sensors (i.e. vibration at different locations and direc-
tions). One drawback with this indicator generation method (method II) is that the physical
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Table 5.8: Details on the five selected features

Chosen feature No. Physical meaning Position
39 Amplitude -5X (backward) A2YZ
65 Amplitude 1X (forward) A3ZX
43 Amplitude 5X (forward) A2ZX
53 Amplitude -1X (backward) A3XY
69 Amplitude -1X (backward) A3ZX

meaning of the generated indicator is not as clear as that of method I because of the linear
transformation involved in PCA.

5.4 Summary

In this chapter, two methods of generating indicators for fault levels by integrating infor-
mation from possible sensors are presented.

The first method (method I) regards signals from two sensors and different health con-
ditions as one multivariate signal. Multivariate empirical mode decomposition is adopted
to decompose the multivariate signal into a set of IMFs. The fault-sensitive IMF is chosen
by a criterion based on mutual information. Then a full spectra based indicator is obtained.
The advantage of the indicator generated by method I is that it reveals the characteristic
of a planar vibration motion. So it is useful for tracking the fault levels of the fault type
that causes the changes of planar vibrations, e.g. impeller vane trailing edge damage. The
disadvantage is that it does not work for a fault type that causes a vibration motion in more
than two dimensions.

The second method (method II) extracts features first, and then uses the fuzzy prefer-
ence based rough set to select features having better monotonic relevance with fault levels
and PCA to combine information in selected features into a single indicator. The generated
indicator makes use of information among different sensors and features, and outperforms
each individual feature. This method is general and can work for one, two or more sensors.
Thus it is useful for tracking the fault levels of the fault type that affects vibration in vari-
ous locations and directions. This is the advantage of method II. However, because of the
linear transformation induced by PCA, the generated indicator doesn’t keep the physical
meanings of the original selected features. This is the disadvantage of method II.

The two methods are applied to the identification of damage levels of impeller vane
trailing edge damage and impeller leading edge damage, respectively. The lab experimental
results show that the indicators generated by the two methods effectively and monotonically
represent the damage levels, and therefore are useful in fault identification.

108



Chapter 6

A Machine-Learning-Based Method
for Fault Identification

In Chapter 5, signal-based methods for fault identification are studied. They provide an
indicator that monotonically varies with fault levels, and thus the fault level can be esti-
mated by checking the value of this indicator. Expertise on the mechanisms of the fault
is required for successful fault identification. In this chapter, machine-learning-based fault
identification will be studied. A machine-learning-based method resorts to machine learn-
ing algorithms and builds a model in the training process expressing the relation between
the features and the fault levels. This model is then used for automatic fault identification.

Researchers have used classification algorithms such as K-nearest neighborhood (KNN)
[73] and Neural Network [79] to build a classification model for fault identification. Lei et
al. [73] proposed a weighted KNN method for gear crack level identification. They also
proposed a method using a combination of multiple classifiers to achieve higher accuracy
of gear fault level classification [79]. In [73, 79], the fault level was regarded as a nominal
variable, and the problem of tracking gear fault level was treated as a classification problem.
This approach ignores the ordinal information among different fault levels. For example,
a moderate fault is worse than (<) a slight fault but is better than (>) a severe fault. In
classification, however, the severe, moderate and slight faults are parallel to each other
and cannot be compared using “>” and “<” operations. Ordinal information is the main
characteristic of the fault levels, which makes the diagnosis of fault levels more complicated
than diagnosis of the fault types.

In order to keep the ordinal information among fault levels, some researchers build an
assessment model using technologies such as fuzzy c-mean [143], Self-Organizing Map
(SOM) [144], and Hidden Markov Model (HMM) [145]. The newly collected data is com-
pared with the assessment model and a parameter is produced for estimating of the fault
level for the new data. Qiu et al. [144] employed SOM to build a model and the distance
between a newly collected data and the best matching unit of the SOM model was used for
bearing health assessment. Pan et al. [143] built a model using bearing data collected under
two health states (one is the normal state (i.e. the bearing is healthy) and the other is the
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failure state (i.e. the bearing fails)) using fuzzy c-means. The distance of a newly collected
data to the normal state was checked to estimate the fault level. Li and Limmer [146] built
a linear auto-regression model using vibration data collected under the normal state. The
distance (or difference) between the model output and the newly collected data was used
to estimate the gear damage levels. Ocak [145] utilized a HMM to train a model based on
bearing data collected under the normal state. It was found that the HMM yielded probabil-
ities that decreased consistently as the bearing wore in time. In these methods, the model is
built by utilizing data from one health status (i.e. normal state) or two heath statuses (nor-
mal state and failure state). Information on the intermediate fault levels (e.g. slight fault
and moderate fault) is not included in the model.

Ordinal ranking [72] is a machine learning algorithm which generates a ranking model
that expresses the ordinal information contained in the training data. A detailed description
of ordinal ranking is given in Section 2.6.2.2. Ordinal ranking has been applied in the
information retrieval field [85], but its application to fault diagnosis hasn’t been reported
yet. One issue to be solved in its application to fault diagnosis is feature selection, because
most existing feature selection algorithms are for classification.

The objective of this chapter is to develop an intelligent method for diagnosing the fault
levels using ordinal ranking to reserve the ordinal information among fault levels. The
organization of this chapter is as follows. Section 6.2 introduces the background on ordinal
ranking. Section 6.2 proposes a feature selection method for ordinal ranking. Section 6.3
presents a machine-learning-based method for fault identification. Section 6.4 applies the
proposed method to pitting levels of planet gears in a planetary gearbox. Finally, summary
comes in Section 6.5. The content of this chapter has been published in [84] and submitted
to [147]. 1

6.1 Background

Ordinal ranking generates a ranking model that expresses the ordinal information contained
in the training data. Chu et al. [137] proposed an ordinal ranking algorithm (SVOR) based
on support vector machine. The concept is briefed as follows. First, the original feature
space (x) is mapped into the high dimensional feature space (ϕ(x)). In the feature space
(ϕ(x)), an optimal projection direction w, and L − 1 thresholds which define L − 1 parallel
discriminant hyperplanes for the L ranks correspondingly were found, as shown in Figure
1.8. The points satisfying bi−1 < w· ϕ(x) < bi are assigned the rank i as the label. The
ranking model is thus

d = (rank) i, if bi−1 < w· ϕ(x) < bi. (6.1)

A detailed description on ordinal ranking and the algorithm SVOR are given in Section

1A version of this chapter has been accepted. “Xiaomin Zhao, Ming J Zuo, Zhiliang Liu and Mohammad
Hoseini, 2012. Measurement (in press).”
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2.6.2. Same as for many other machine learning techniques, feature selection is a necessary
procedure for ordinal ranking, particularly because it can enhance accuracy [148]. One
popular and powerful feature selection scheme is to select a feature subset that has max-
imum relevance to the label and minimum redundancy among themselves [53, 100, 148].
Measures are needed to evaluate the relevance between a feature and the label (i.e. feature-
label relevance) and redundancy among features (i.e. feature-feature redundancy), respec-
tively.

However, most existing measures are proposed for classification. Nevertheless, the
measure for evaluating the relevance in classification is not suitable for ordinal ranking
[60, 148], because the label (rank) of ordinal ranking is an ordinal variable, whereas the
label of classification is a nominal variable as stated in Section 2.3. Mukras [60] found
that the standard information gain (mutual information), though worked well in classifica-
tion problems, failed in ordinal ranking problems. Baccianella et al. [149] used the idea of
mutual information and introduced a filter method (called RRIGOR) for text-related appli-
cations of ordinal ranking. RRIGOR involves estimations of probability density functions
which need large a number of samples and is computationally intensive. Correlation coeffi-
cient is conceptually simple and practically effective. In the next section, a feature selection
method using correlation coefficients is proposed for ordinal ranking.

6.2 Proposed Feature Selection Method for Ordinal Ranking

According to the types of variables, several correlation coefficients are defined, as intro-
duced in Section 2.3. The Pearson correlation coefficient evaluates the correlation between
two continuous variables. The Polyserial correlation coefficient evaluates the correlation
between a continuous variable and a ordinal variable. Their definitions are given in Section
2.4. The value of correlation coefficient varies from -1 to 1. A correlation coefficient of 1
means that the two variables are perfectly correlated; -1 means that the two variables are
perfectly inversely correlated; 0 means that the two variables are not correlated. The ab-
solute value of the correlation coefficients range from 0 to 1. If the absolute value of the
correlation coefficient between two variables is closer to 0, then the two variables are less
correlated.

A feature with a higher absolute value of the Polyserial correlation coefficient is more
relevant to the rank, whereas a feature with a lower absolute value contributes little or even
adverse information to the rank. Similarly, two features with large absolute value of the
Pearson correlation coefficient share more redundant information. The proposed feature
selection method follows the maximum relevance and minimum redundancy scheme. Let
T =

{
x1, x2, · · · , xm, d

}
be the data set, C = [x1, x2, · · · , xm]n×m be the set of features which

are represented by a n × m matrix where n is the total number of samples and m is the
total number of features, and d be the variable of ranks for each sample. S is the set of
selected features. V(xi, d) is the relevance between feature xi and the rank d, M(xi, x j) is
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the redundancy between two features xi and x j. The proposed method selects S based on
model (6.2), where t1 and t2 are two thresholds. t1 is selected to avoid features with little
or adverse information being included in S . t2 is set to ensure that the redundancy between
any two arbitrary features is below a certain level. The values of t1 and t2 are determined
by the specific application problems. An example for selecting t1 and t2 will be given in
Section 6.4.2.

maximize F(S ) =
∑

xi∈S , S⊂C

V(xi, d)

subject to V(xi, d) > t1.

M(xi, x j) < t2, ∃ xi, x j ∈ S , i , j.

(6.2)

Table 6.1: The proposed feature selection method for ordinal ranking

Input: T =
{
x1, x2, · · · , xm, d

}
- the data set

t1, t2 (1 ≥ t1, t2 ≥ 0) - thresholds;
Output: S - the set of selected features

Step 1. S = ∅.

Step 2. calculate the relevance vector, p = [p j]1×m, whose element, p j, is the absolute
value of the Polyserial correlation coefficient between the jth feature (i.e. x j) and the
rank (d). j = 1, 2, . . . ,m.

calculate the redundancy matrix Q = [qi j]m×m, whose element, qi j,, is the ab-
solute value of the Pearson correlation coefficient between the ith feature (xi) and the
jth features (x j).i, j = 1, 2, . . . ,m.

Step 3. find the largest element in p, i.e. pr = max(p), then put the corresponding
feature into S (i.e.S = S

∪
xr) and set pr=0.

Step 4. find the features whose redundancy with feature xr are not smaller than t2, i.e.
h|qhr ≥ t2, then set their relevance values to zero (i.e. ph = 0) so that these features
won’t be selected in future steps.

Step 5. check elements in p. If p j ≤ t1 for each j = 1, 2, . . . ,m, then go to Step 6;
otherwise, go to Step 3.

Step 6. return S .

A sequential forward search strategy is used to find the solution to model (6.2), because
it has the lowest computational load compared to other strategies [65]. The proposed feature
selection method is described in Table 6.1. The selection starts with an empty set, S = ∅.
Then the feature whose relevance to the rank is the highest is included into S . The process
stops when the relevance of all unselected features are not larger than t1 or the redundancy
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between all unselected features and features in S are larger than t2. The output is the set of
selected features, S .

Note that in Table 6.1, the Polyserial and the Pearson correlation coefficients are used
for evaluation of feature-label relevance and feature-feature redundancy, respectively, be-
cause the features extracted from vibration data are often continuous variables. In other
applications, proper correlation coefficient can be chosen according to the types of features
(Table 2.3) if the features are not continuous.

6.3 A Fault Identification Method Using Ordinal Ranking

Ordinal ranking can preserve the ordinal information, which makes it helpful in fault iden-
tification. Figure 6.1 shows the flow chart of the proposed fault identification method using
ordinal ranking. Firstly, feature extraction is conducted to express the health information
of the machinery from raw measured signals. Secondly, feature selection is conducted us-
ing the feature selection method proposed in Section 6.4.2. Finally, the selected feature
subset is imported into the ordinal ranking algorithm (SVOR) described in Section 2.6.2 to
diagnose the fault levels, and the output is the diagnosis results.

For the convenience of description, ranks ‘1’, ‘2’, ‘3’, ..., ‘L’ are used to denote the
baseline (‘1’) and progressively higher fault levels in subsequent sections. The larger the
rank value is, the severer the fault is. The diagnosis results will be quantitatively evaluated
using two metrics [11]: the mean absolute (MA) error (Equation 6.3) and the mean zero-one
(MZ) error (Equation 6.4). MA error is affected by how wrongly a sample is diagnosed.
The further the diagnosed rank is from the true rank, the larger the MA error is. If more
ordinal information is preserved in the ranking model, the MA error is more likely to be
smaller. MZ error, commonly used in classification problems, is affected only by whether
a sample is wrongly diagnosed or not. If each rank is more clearly separated from others,
the MZ error is more likely to be smaller. The smaller values of MA and MZ errors mean
a better ranking model. In the two equations, n is the total number of samples, d

′
i is the

diagnosed rank for the ith sample, and di is the true rank for the ith sample.
Mean Absolute Error (MA error):

1
n

n∑
i=1

|d′i − di| (6.3)

Mean Zero-one Error (MZ error):

1
n

n∑
i=1

ti where ti =

 1, d
′
i , di

0, otherwise
(6.4)
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Figure 6.1: Proposed approach for diagnosis of fault levels

6.4 Application to Identification of Pitting Levels for Planetary
Gears

The proposed method was used to identify pitting levels of planetary gears using experi-
mental data collected from the planetary gearbox test rig described in Section 3.2. Four
levels of pitting were considered, i.e. baseline, slight, moderate, and severe pitting. For
details on the experimental design and data collection, refer to Section 3.2.

6.4.1 Feature Extraction

The traditional techniques for vibration-based gear fault diagnosis are typically based on
statistical features of the collected vibration signals. The statistical features are easy to
compute and effective in detecting gear faults, and thus are widely used [150, 151]. For
example, Keller and Grabill [152] found that the two statistical features (sideband index and
sideband level factors) were consistently successful in detecting the presence of a crack on a
carrier. Many statistical features have been proposed and studied for fixed-shaft gearboxes,
however, some of which are not suitable for planetary gearboxes.

For a fixed-shaft gearbox, damage to an individual gear tooth appears in the form of
symmetric sidebands around the gear meshing frequency in the frequency domain. For the
convenience of statistical feature extraction, regular, residual, difference and envelope sig-
nals are defined for fixed-shaft gearboxes [150, 153]. Regular signal is the inverse Fourier
transform of the regular components which are defined as the fundamental shaft frequency,
the fundamental and harmonics of the gear meshing frequency and their first order side-
bands. Difference signal is defined as the time averaged signal excluding the regular mesh
components. Residual signal is similar to difference signal but includes the first-order side-
bands of the fundamental and harmonics of the gear meshing frequency. Envelope signal is
the envelope of the signal band-pass filtered about the gear meshing frequency.

In a planetary gearbox, the dominant frequency component usually does not appear at
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the gear meshing frequency because the planet gears are usually not in phase. In fact, the
gear meshing frequencies are often completely suppressed, and sidebands are not symmet-
ric around the meshing frequency any more. For description convenience, fp,q will be used
to denote the frequency of f = (p· Zr + q)· f c where Zr is the number of ring gear teeth,
f c is the carrier frequency, p and q are integers (p > 0, q > −p·Zr). In an ideal planetary
gearbox, only frequency components that appear at sidebands where p· Zr + q = kNp (Np is
the number of planets) will survive in a vibration signal [152]. Keller and Grabill [152] re-
ferred to the surviving sidebands with two different names: dominant sideband and apparent
sideband. For each group of sidebands with the same value of p, there is one dominant side-
band (donated by RMCp,qd ), which is the one closest to the pth harmonic of gear meshing
frequency. Other surviving sidebands in this group are called apparent sidebands (donated
by RMCp,d). Let RMCs denote the shaft frequency and its harmonics, RMCp,qd+1 denote
the first-order sideband of RMCp,qd . The regular (g(k)), difference (d(k)), residual (r(k))
and envelope (e(k)) signals for a planetary gearbox are then defined in Equations (6.5) -
(6.8) [152]. In these Equations, x(k) is a vibration signal in the time-waveform, F−1 is the
inverse Fourier transform, o(k) is the signal bandpass filtered about the dominant meshing
frequency (RMC1,nd ) and H(o(k)) is the Hilbert transform of o(k).

g(k) = F−1[RMCs + RMCp,q + RMCp,qd + RMCp,qd±1] (6.5)

d(k) = x(k) − g(k) (6.6)

r(k) = x(k) − F−1[RMCs + RMCp,q + RMCp,qd ] (6.7)

e(k) =
∣∣∣o(k) + iH(o(k))

∣∣∣ (6.8)

With signals g(k), d(k), r(k) and e(k) defined, features can now be defined and calcu-
lated for planetary gearboxes. Sixty-three features are extracted from each vibration signal.
These sixty-three features could be divided into three groups: the time-domain features,
the frequency-domain features, and features specifically designed for gear fault diagnosis.
Table 6.2 lists the definitions of the sixty-three features. For details on these features, refer
to [150, 153]. In this table,

(1) The first group contains 18 commonly used time-domain features. They are max-
imum, minimum, average absolute, peak to peak, mean, root mean square (RMS), delta
RMS, variance, standard deviation, skewness, kurtosis, crest factor, clearance factor, im-
pulse factor, shape factor, coefficient of variation, coefficient of skewness, and coefficient
of kurtosis.

(2) The second group contains 30 features from the frequency-domain spectrum. The
first four features are statistical features: mean frequency, frequency center, root mean
square frequency, and standard deviation frequency. The remaining twenty-six features
are amplitudes at frequencies f 1

p,q = (p· Zr1 + q)· f c1 and f 2
p,q = (p·Zr2 + q)· f c2, where

p = 1, q ranges from -6 to 6 with a step of 1, f c1 is the carrier frequency of the 1st stage
planetary gearbox, f c2 is the carrier frequency of the 2nd stage planetary gearbox, Zr1 and
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Zr2 are the number of teeth of ring gears of the 1st stage and 2nd stage planetary gearbox,
respectively.

(3) The third group contains 15 features specifically designed for gearbox fault diagno-
sis. They are energy ratio, energy operator, FM4, M6A, M8A, NA4, NB4, FM4∗, M6A∗,
M8A∗, NA4∗, NB4*, FM0, sideband level factor and sideband index.

Table 6.2: Definations of features for planetary gear fault diagnosis

No. Feature Name Definition
Time-domain features

F1 maximum xmax = max(x(k))
F2 minimum xmin = min(x(k))
F3 average absolute xabs =

1
K

∑K
k=1 |x(k)|

F4 peak to peak xp = max(x(k))-min(x(k))
F5 mean x = 1

K
∑K

k=1 x(k)

F6 RMS xrms =

√
1
K

∑K
k=1 x(k)2

F7 delta RMS
xdrms = x j

rms − x j−1
rms where j is the current

segment of time record and j-1 is the previous
segment

F8 variance xσ2 = 1
K

∑K
k=1(x(k) − x)2

F9 standard deviation xσ =
√

xσ2

F10 skewness xsk =
1
K

∑
k=1 K(x(k)−x)

x3
σ

F11 kurtosis xkur =
1
K

∑
k=1 K(x(k)−x)4

x4
σ

F12 crest factor xcf =
xmax
xrms

F13 clearance factor xclf =
max(|x(k)|)

(xrms)2

F14 impulse factor xif =
max(|x(k)|)

xabs

F15 shape factor xsf =
xrms
xabs

F16 coefficient of kurtosis xcv =
x

xσ

F17 coefficient of skewness xcs =
1
K

∑K
k=1 x(k)3

(xσ)3

F18 coefficient of kurtosis xck =
1
K

∑K
k=1 x(k)4

(xσ)4

Frequency-domain features
F19 mean frequency Xmf=

1
N

∑N
n=1 X(n)

F20 frequency center Xfc =

∑N
n=1( f (n)·X(n))∑N

n=1 X(n)

F21 root mean square frequency Xrmsf =

∑N
n=1( f (n)2·X(n))∑N

n=1 X(n)

F22 standard deviation frequency Xstdf =

∑N
n=1(( f (n)−Xfc)2·X(n))∑N

n=1 X(n)

F23-F35 root mean square frequency
amplitudes at the following frequencies:
f 1
1,p = (Zr1 + p)· f c1 where p=-6, -5, . . . , 6.

116



Table 6.2: (continued)

F36-F48 root mean square frequency
amplitudes at the following frequencies:
f 2
1,p = (Zr2 + p)· f c2 where p=-6, -5, . . . , 6.

Features specifically designed for planetary gearboxes
F49 energy ratio er = RMS(d(k))

RMS(r(k))

F50 energy operator
eo = kurtosis(y(k)) where y(k) = x(k)2− x(k−
1)· x(k + 1)

F51 FM4 FM4=kurtosisd(k)

F52 M6A M6A=
1
K

∑K
k=1(d(k)−d)6

( 1
N

∑N
k=1(d(k)−d)2)3

F53 M8A M8A=
1
K

∑K
k=1(d(k)−d)8

( 1
K

∑K
k=1(d(k)−d)2)4

F54 NA4 NA4=
1
K

∑K
k=1(r(k)−r)4

( 1
M

∑M
j=1( 1

K′
∑K′

k=1(r j(k)−r j)2))2

F55 NB4 NB4=
1
N

∑K
k=1(e(k)−e)4

( 1
M

∑M
j=1( 1

K′
∑K′

k=1(e j(k)−e j)2))2

F56 FM4∗ FM4∗=
1
N

∑K
k=1(d(k)−d)4

( 1
M

∑M
j=1( 1

K′
∑K′

k=1(d j(k)−d j)2))2

F57 M6A∗ M6A∗=
1
N

∑K
k=1(d(k)−d)6

( 1
M′

∑M′
j=1( 1

K′
∑K′

k=1(d j(k)−d j)2))3

F58 M8A∗ M8A∗ =
1
N

∑K
k=1(di−d)8

( 1
M′

∑M′
j=1( 1

K′
∑K′

k=1(d j(k)−d j)2))4

F59 NA4∗ M6A∗ =
1
N

∑K
k=1(r(k)−r)4

( 1
M′

∑M′
j=1( 1

N
∑K′

k=1(r j(k)−rj)2))2

F60 NB4∗ NB4∗ =
1
N

∑K
k=1(e(k)−e)6

( 1
M′

∑M′
j=1( 1

K′
∑K′

k=1(e j(k)−e j)2))2

F61 FM0
FM0=

max(x(k))−min(x(k))∑P
p=1 RMCp,qd

where p is the to-

tal number of harmonics considered
F62 sideband level factor slf =

RMCp,qd−1+RMCp,qd+1

xσ
F63 sideband index si =

RMCp,qd−1+RMCp,qd+1

xσ
2

6.4.2 Feature Selection

Four accelerometers namely LS1, LS2, HS1 and HS2 (shown in Figure 3.12) are used
to collect vibration data. Features calculated from signals measured by each of the four
sensors are combined, and totally 252 features are extracted. Features No.1 - No. 63 are
from sensor LS1 following the order in Table 6.2, and features No. 64 - No. 126, No. 127 -
No. 139, and No. 140 - No. 252 are from sensors LS2, HS1, and HS2, respectively.

The feature-label relevances (i.e. the absolute value of the Polyserial correlation coeffi-
cient) between each individual feature and the ranks (fault levels) are shown in Figure 6.2.
It can be seen from Figure 6.2 that different features have different relevance values, some
of which are very small. A threshold (t1) is employed to determine whether a feature has
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positive contribution to the ranks. Only features with relevance values above t1 are con-
sidered to be useful in learning a ranking model. If t1 is large, only a few really important
features will be kept. If t1 is small, most features will be kept and some might be useless.
The choice of t1 is problem dependent. Generally speaking, t1 can be chosen to be 0.5, so
that more than half information contained in an individual feature is related to the ranks.
In the case that only a few features has the relevance values above 0.5, t1 can be chosen as
a smaller value so as to allow more features to be selected. In this application, t1=0.5 is
chosen. The largest value of the feature-label relevance in Figure 6.2 is 0.765 (feature No.
94), followed by 0.762 (feature No. 31), 0.762 (feature No. 157), and 0.752 (feature No.
220). These top four features (Nos. 94, 31, 157 and 220) are the amplitudes at sideband
(Zr1 + 2)· f c1 from sensors LS2, LS1, HS1 and HS2, respectively. The feature-feature re-
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Figure 6.2: Feature-label relevance between damage levels and each of the 252 features

dundancies (i.e. the absolute value of the Pearson correlation coefficient) between the best
feature (feature No. 94) and each of the 252 features are shown in Figure 6.3. It can be
seen that some features (e.g. Nos. 31, 157 and 220) are highly related to feature No. 94;
this means that a large amount of information in those features is also contained in feature
No. 94. If these features are selected together with feature No.94, there will be redundant
information. A threshold (t2) is chosen to limit the redundancy among selected features.
Features whose redundancy values with selected features are higher than t2 will be omitted.
If t2 is large, only a few features will be omitted and finally most feature will be selected.
If t2 is small, most features will be omitted and finally only a few features will be selected.
The choice of t2 is problem dependent. Generally speaking, t2 should be larger than 0.5, so
that features that share more than half of the information with other selected features will
be omitted. Depending on specific problems, t2 can be increased to keep the number of
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Figure 6.3: Feature-feature redundancy between feature No. 94 and each of the 252 features

selected features to a desired range. By checking Figure 6.3, t2=0.8 is chosen so that the
highly related features (i.e. feature Nos. 31, 157 and 220) are omitted and others can be
further considered in next steps. Using the proposed feature selection method (Section 6.2),
11 features listed in Table 6.3 are selected.

Table 6.3: Eleven features selected by the proposed feature selection method

List Feature No. Physical meaning Sensor
1 94 Amplitude at (Zr1 + 2)· f c1 LS2
2 10 Skewness LS1
3 93 Amplitude at (Zr1 + 1)· f c1 LS2
4 11 Kurtosis LS1
5 172 Amplitude at (Zr2 + 4)· f c2 HS1
6 124 FM0 LS2
7 4 Peak to peak LS1
8 89 Amplitude at (Zr1 − 3)· f c1 LS2
9 192 Average absolute value HS2

10 22 Standard deviation frequency LS1
11 29 Amplitude at Zr1· f c1 LS1

In the above example, the selection of t1 and t2 is based on the visual inspection of
feature-label relevance plot and feature-feature redundancy plot. A more general way of
selecting t1 and t2 is by testing different values of t1 and t2 and choose the values that
generate a feature subset resulting in the smallest diagnosis error. The computational cost
of this way of selection is, however, usually high.
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6.4.3 Identification of Gear Pitting Levels

For the convenience of description, ranks ‘1’, ‘2’, ‘3’, and ‘4’ are used to denote the base-
line, slight pitting, moderate pitting and severe pitting. To test the diagnostic ability of
ordinal ranking, the whole data set is split into two subsets: the training set and the test
set. The training set is for training a ranking model. The test set is for testing the diag-
nostic ability of the trained ranking model. In this chapter, three separate scenarios were
considered to split the whole data set into two subsets, as listed in Table 6.4.

Table 6.4: Distributions of the training set and the test set in three scenarios

Scenario
Training Set Test Set

No. of samples ranks for samples No. of samples ranks for samples
Scenario 1 320 {‘1’, ‘2’, ‘3’, ‘4’} 320 {‘1’, ‘2’, ‘3’, ‘4’}
Scenario 2 480 {‘1’, ‘3’, ‘4’} 160 {‘2’}
Scenario 3 480 {‘1’, ‘2’, ‘3’} 160 {‘4’}

(1) In scenario 1, the whole data set is randomly split into two equal-sized subsets, one
for training and the other for testing. In both the training set and the test set, samples from
ranks ‘1’, ‘2’, ‘3’ and ‘4’ are included. This scenario tests the performance of the ranking
model when the training set covers the whole rank range.

(2) In scenario 2, samples from only ranks ‘1’, ‘3’ and ‘4’ are included in the training
set; and samples from only rank ‘2’ are included in the test set. Practically, it might occur
that data of some fault levels are missed in the training set. This scenario examines the case
when data of slight fault level are not collected for training. It tests the interpolation ability
of the ranking model.

(3) In scenario 3, samples from only ranks ‘1’, ‘2’ and ‘3’ are included in the training
set; and samples from only rank ‘4’ are included in the test set. Similar to scenario 2, this
scenario examines the case when data of severe fault level are not collected for training. It
tests the extrapolation ability of the ranking model.

The algorithm SVOR introduced in Section 2.6.2.2 is employed to train and test the
ranking model. The 2nd degree polynomial kernel was used as the kernel function. During
the training process, the five-fold cross validation method was employed to determine the
optimal value of the regularization cost parameter, C, involved in the problem formulation
(2.80). In the five-fold cross validation, an initial search was done on a coarse grid of the
region {0.1 < C < 100} first, followed by a fine search around the best grid of the initial
search. Diagnosis results are discussed next.
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6.4.4 Results and Discussion

6.4.4.1 Effect of Feature Selection

To check the performance of the proposed feature selection method, five feature subsets are
generated and employed for analyzing the same data in each scenario: (1) all 252 features;
(2) top 38 relevant features; (3) 11 features in Table 6.3 (the proposed method); (4) ran-
domly selected 11 features; (5) 11 features selected by the Pearson correlation coefficient.

Details on how and why these feature subsets are obtained are explained as follows.
Feature subset (1) doesn’t involve feature selection. Feature subset (2) follows the feature
selection scheme that uses top ranking features without considering relationships among
features [73]. Following this scheme, 38 features whose feature-label relevance values are
larger than 0.5 are obtained. Comparison of feature subsets (1) and (2) shows the influence
of irrelevant features. Feature subset (3) is generated by the proposed method following the
feature selection scheme of maximum relevance and minimum redundancy. Comparison of
feature subsets (2) and (3) demonstrates the influence of redundant features. Feature subset
(4) chooses 11 features randomly. Comparison of feature subsets (3) and (4) further em-
phasizes the importance of proper feature selection. Feature subset (5) is generated using
a feature-label evaluation measure (i.e. the Pearson (strictly, Point-biserial) correlation co-
efficient) that is employed in [100] for classification problems. Strictly, this measure is the
Point-biserial correlation coefficient. The Point-biserial correlation coefficient is mathemat-
ically the same as the Pearson correlation coefficient, and the latter is more popularly called.
This chapter follows Ref. [100] and calls measure the Pearson correlation coefficient in the
following space. The generation process for feature subset (5) is the same as the proposed
method except that the rank is regarded as a nominal variable and the Pearson correlation
coefficient is used in evaluation of the feature-label relevance (In the proposed method,
the Polyserial correlation coefficient is used). Comparison of feature subsets (3) and (5)
indicates the proper evaluation measure for feature-label relevance in ordinal ranking.

Each of the five feature subsets is imported into SVOR to diagnose pitting levels in each
scenario. Results are provided in Table 6.5-Table 6.7.

In Scenario 1, the training set and the test set are randomly generated. To reduce the
impact of randomness on the test results, 30 runs are conducted. The average and the stan-
dard deviation of the 30 test errors of the 30 runs are provided in Table 6.5. Using all 252
features, the mean values of MA error and the MZ error are both 0.099. Using the 38 rele-
vant features, the mean values of the MA error and the MZ error are reduced to 0.078 and
0.077, respectively. This shows that irrelevant features have adverse effects on the ranking
model. In the proposed method, some redundant features are further deleted from the 38
features, keeping only 11 features. The mean values of the MA error and the MZ error are
further reduced to 0.073 and 0.072, respectively. This shows that the redundant information
can reduce the performance of the ranking model, and needs to be excluded. Using the
randomly selected 11 features, the mean values of the MA error and the MZ error are 0.229
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Table 6.5: Results of scenario 1 - 320 training samples (ranks ‘1’, ‘2’, ‘3’, ‘4’) and 320 test
samples (ranks ‘1’, ‘2’, ‘3’, ‘4’)

Features used in ordinal ranking
MA Error
(mean±standard
deviation)

MZ Error
(mean±standard
deviation)

all 252 features 0.099±0.022 0.099±0.022
top 38 features 0.078±0.016 0.077±0.016
11 features (the proposed
method)

0.073±0.012 0.072±0.012

11 randomly selected features 0.229±0.025 0.220±0.024
11 features selected using the
Pearson correlation coefficient

0.083±0.020 0.082±0.019

and 0.220 respectively, which are relatively high. The reason is that not enough relevant
information is adopted in these features and there might be redundant information as well.
Using the 11 features selected by the Pearson correlation coefficient, the mean values of the
MA error and the MZ error are 0.083 and 0.082, respectively. Compared with the results
of the proposed method, it can be shown that the Pearson correlation coefficient work less
efficiently than the Polyserical correlation coefficient (the proposed method). The reason is
that the Pearson correlation coefficient cannot properly reflect the relevance between a con-
tinuous feature and an ordinal rank. As a result, relevant features are not correctly selected.
In Scenario 1, the proposed method generates the lowest mean and standard deviation of
the MA error and the MZ error.

Table 6.6: Results of scenario 2 - 480 training samples (ranks ‘1’, ‘3’, ‘4’) and 160 test
samples (rank ‘2’)

Features used in ordinal ranking
No. of samples in predicted ranks

MA
error

MZ
error

‘1’ ‘3’ ‘4’
all 252 features 0 124 36 1.225 1
top 38 features 0 149 11 1.069 1
11 features (the proposed
method)

21 131 8 1.050 1

randomly selected 11 features 0 23 137 1.856 1
11 features selected using the
Pearson correlation coefficient

0 71 89 1.556 1

In Scenario 2, the training samples are from ranks ‘1’, ‘3’ and ‘4’ only. The test samples
(rank ‘2’) are predicted to be one of the three ranks (i.e. ‘1’, ‘3’, and ‘4’). Because rank
‘2’ will never be predicted, the MZ error is always 1. MA errors only are checked and
compared. In the perfect case, the test samples are all predicted to be either rank ‘1’ or ‘3’,
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which are two closest ranks to the true rank (i.e. ‘2’). In this case, the MA error is 1. In the
worst case, the test samples are all predicted to be rank ‘4’, making a MA error of 2. The
diagnosed ranks of 160 test samples, along with their MA and MZ errors under each feature
subset are listed in Table 6.6. With all 252 features, 124 samples are predicted to be rank ‘3’
and the rest 36 samples are predicted to be rank ‘4’, making a MA error of 1.225. Using the
top 38 features, 149 samples are ranked ‘3’ and the rest are ranked ‘4’, resulting in a MA
error of 1.069. It can be seen that after deleting irrelevant features, the MA error is reduced.
This shows that irrelevant features have negative effect on the interpolation ability of the
ranking model. With the proposed method, eight samples are ranked as ‘4’, and others are
ranked as either ‘1’ or ‘3’, generating a MA error of 1.050. This indicates that deleting
redundant features improves the interpolation ability of the ranking model. With randomly
selected 11 features, 137 samples are ranked ‘4’, giving a high MA error of 1.856. This is
because randomly selected features contain irrelevant and redundant information. Using 11
features selected by the Pearson correlation coefficient, 89 samples are ranked as ‘4’ and a
MA error of 1.556 is generated, which means that the interpolation ability of this ranking
model is poor. In Scenario 2, the proposed method demonstrates the best interpolation
ability among the five.

Table 6.7: Results of scenario 3 - 480 training samples (ranks ‘1’,‘2’,‘3’) and 160 test
samples (rank ‘4’)

Features used in ordinal ranking
No. of samples in predicted ranks

MA
error

MZ
error

‘1’ ‘3’ ‘4’
all 252 features 0 76 84 1.475 1
top 38 features 0 34 126 1.215 1
11 features (the proposed
method)

0 12 148 1.075 1

randomly selected 11 features 0 91 69 1.569 1
11 features selected using the
Pearson correlation coefficient

0 47 113 1.294 1

In Scenario 3, the training samples are from ranks ‘1’, ‘2’ and ‘3’ only. The test samples
(rank ‘4’) are predicted to be one of the three ranks (i.e. ‘1’, ‘2’, and ‘3’). Same as in
Scenario 2, the MZ error is always 1 because rank ‘4’ will never be predicted. MA errors
only are checked and compared. In a perfect case, the test samples are all predicted to be
rank ‘3’, which is the closest rank to the true rank (i.e. ‘4’). In this case, the MA error is 1.
In a worst case, the test samples are all predicted to be rank ‘1’, making an MA error of 3.
Table 6.7 shows the detailed results. With all 252 features, around half of the test samples
(76 samples) are ranked ‘2’ and half are ranked ‘3’, making an MA error of 1.475. The
top 38 features put 34 samples in rank ‘2’ and others in rank ‘3’, reducing the MA error to
1.215. This demonstrates that irrelevant features should be excluded in order to improve the
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extrapolation ability of the ranking model. The features selected by the proposed method
further reduce the MA error to 1.075 by eliminating the redundant information. Randomly
selected features put most samples (91) into rank ‘2’ and the rest into rank ‘3’, giving an
MA error of 1.569. This shows that if the relevance and redundant information are not
considered during the feature selection, a good ranking model is hard to achieve. The
11 features selected using the Pearson correlation coefficient give a MA error of 1.294,
indicating a worse extrapolation ability of the ranking model than that of the proposed
method. This is because of the improper evaluation of feature-label relevance during the
feature selection process. In this scenario, the proposed method generates the lowest MA
error, and thus produces a ranking model with the best exploration ability among the five.

Comparisons between results of the proposed method and results of all 252 features,
top 38 features, and randomly selected 11 features prove the benefits of deleting irrelevant
features and redundant features. Comparisons between results of the proposed method and
results of features selected using the Pearson correlation coefficient show the effectiveness
of the Polyserical correlation coefficient (used in the proposed method) in evaluating the
feature-label relevance for ordinal ranking problems. Using the Pearson (Point-biserial)
correlation coefficient, the ranks are regarded as a nominal variable. That is why the Pearson
(Point-biserial) correlation coefficient works well for classification problems not for ordinal
ranking problems. In all of the three scenarios, the proposed method gives the lowest error,
proving its effectiveness in building a ranking model for diagnosis of fault levels.

6.4.4.2 Comparison of Ordinal Ranking and Classification

For comparison purposes, the traditional diagnosis approach [73, 79] which uses a multi-
class classifier to diagnose the fault levels is also applied to each scenario. To avoid the
influence of the learning machine, support vector machine (SVM) is adopted as a classifier
since SVOR (the ordinal ranking algorithm adopted in the proposed diagnosis approach)
is based on SVM. One-against-all strategy [103] was used for multi-class classification
using SVM. The same 2nd degree polynomial kernel was utilized. The same five-fold cross
validation was employed to find the optimal value of regularization cost parameter, C. The
procedure of diagnosing pitting levels is also the same as described in Section 6.3 except
that the ordinal ranking algorithm is replaced by the classification algorithm. Results of
the proposed diagnosis approach (using ordinal ranking) and traditional diagnosis approach
(using classification) for three scenarios are listed in Table 6.8.

In Scenario 1, the MA error of ordinal ranking (0.073) is smaller than that of classi-
fication (0.088), whereas the MZ error (0.072) is larger than that of classification (0.066).
This could be explained as follows. The MZ error treats wrongly ranked samples equally
and the value of MZ error isn’t influenced by how well the ordinal information is kept. The
more separately each rank is classified, the more likely that the MZ error is low. The aim of
classification is to classify each rank as separately as possible; therefore classification gives
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Table 6.8: Comparison of the proposed approach (ordinal ranking) and traditional approach
(classification)

Diagnosis approach
Scenario 1

MA error
MZ
error

proposed approach (ordinal ranking) 0.073 0.072
traditional approach (classification) 0.088 0.066

Scenario 2
No. of samples in
predicted ranks

MA
error

MZ
error

‘1’ ‘3’ ‘4’
proposed approach (ordinal ranking) 21 131 8 1.050 1
traditional approach (classification) 0 80 80 1.500 1

Scenario 3
No. of samples in
predicted ranks

MA
error

MZ
error

‘1’ ‘2’ ‘3’
proposed approach (ordinal ranking) 0 12 148 1.075 1
traditional approach (classification) 25 19 116 1.431 1

a lower MZ error. However, the MA error is influenced by how well the ordinal information
is kept. It penalizes the wrongly ranked samples considering how far a sample is wrongly
ranked from its true rank. The more ordinal information is kept in the ranking model, the
more likely that MA error becomes small. Classification doesn’t guarantee that the ordi-
nal information is kept. Ordinal ranking, on the other hand, aims to express the ordinal
information in the feature space, and therefore the ordinal information is largely preserved.
That is why ordinal ranking produces a smaller MA error than classification. The above
argument is also supported by results in Scenarios 2 and 3. In Scenario 2, the true rank is
‘2’. Using classification, half of test samples (80 samples) are classified into rank ‘3’ and
half into rank ‘4’, generating a MA error of 1.500. Ordinal ranking gives a lower MA error
(1.05). In Scenario 3, the true rank is ‘4’. 25 samples are ranked ‘2’, 19 are rank ‘2’ and
the rest are rank ‘3’, resulting in a MA error of 1.431 using classification. Ordinal ranking
gives a lower MA error of 1.075.

The above comparisons show that the ordinal ranking results in a lower MA error, and
classification generates a lower MZ error. For diagnosis of fault levels, a low MA error is
more important than a low MZ error. The reason is explained as follows. A low MA error
means that the diagnosed fault level of a new sample is close to its true level. A low MZ
error, however, cannot ensure a “closer” distance between the diagnosed fault level and true
level. There are chances that a “severe fault” sample is predicted to be a “no fault” sample,
which needs to be avoided in fault diagnosis. In this sense, ordinal ranking is more suitable
for fault diagnosis than classification. The advantage of ordinal ranking is more obvious
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when data of a certain fault level are missing in the training process, as can be seen from
Scenarios 2 and 3 in Table 6.8.

6.5 Summary

In this chapter, a machine-learning-based method using ordinal ranking is proposed for fault
identification. A feature selection method based on correlation coefficients is developed to
improve the diagnosis accuracy using ordinal ranking. The proposed method selects fea-
tures that are relevant to ranks, and meanwhile ensures that the redundant information is
limited to a certain level. The Polyserial correlation coefficient is employed in evaluating
the relevance between features and ranks. The Pearson correlation coefficient is utilized in
measuring the redundant information between two features. The feature selection method is
applied to the detection of pitting levels of planet gears. Results show that the proposed fea-
ture selection method efficiently reduces the diagnosis errors, and improve the interpolation
and extrapolation abilities of the model trained by ordinal ranking.

The use of ordinal ranking for fault identification (the proposed approach) and the use of
classification for the same task are compared. Classification generates a lower mean zero-
one error than ordinal ranking. However, ordinal ranking has advantages over classification
in terms of lower mean absolute error, better interpolation ability and extrapolation ability.
This is because of the unique properties of ordinal ranking and classification: i.e. ordinal
ranking is designed to search a monotonic trend in the feature space to reflect the change of
ranks; whereas classification is to search a plane to separate each rank. Results on diagnosis
of pitting levels of planet gears in a planetary gearbox show the effectiveness of the proposed
machine-learning-based method.

The proposed feature selection method is based on correlation coefficient, which con-
siders only linear relationship between two variables. Nonlinear relationships between vari-
ables are yet to be investigated.
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Chapter 7

A Machine-Learning-Based Method
for Fault Detection, Isolation and
Identification

Fault detection, isolation, and identification (FDII) are three main tasks in fault diagnosis as
stated in Chapter 1. In Chapter 4, a machine-learning-based method for fault detection and
isolation (i.e. diagnosis of fault types) is studied. In Chapter 6, a machine-learning-based
method for fault identification (i.e. diagnosis of fault levels) is studied. Chapters 4 and 6
consider fault types and fault levels, separately. An integrated method which is capable of
diagnosing both fault types and fault levels (i.e. conducting fault detection, isolation and
identification (FDII) together) is more helpful in fault diagnosis [21]. This chapter studies
this problem.

The organization of this chapter is as follows. Section 7.1 introduces the background.
Section 7.2 proposes an integrated method for FDII. Section 7.3 applies the proposed
method to impeller damage diagnosis in a pump. Summary comes in Section 7.4.

7.1 Background

Reported work on machine-learning-based FDII treats the fault level in the same way as the
fault type, and utilizes classifiers to distinguish them simultaneously [83,86]. Ge et al. [83]
used a support vector machine (SVM) classifier to diagnose faults in sheet metal stamping
operations including three fault types (i.e. misfeed, slug, and workpiece) and three fault lev-
els for the workpiece (i.e. too thick, too thin and missing). Lei et al. [86] used an adaptive
neuro-fuzzy inference system (ANFIS) to classify bearing faults including three fault types
(i.e. outer race, inner race and ball) and two fault levels for each of the three fault types (i.e.
defect size of 0.007 inch and 0.021 inch). However, these methods of using classifiers for
FDII have two shortcomings. The first shortcoming is that a single classification model is
built for diagnosis of fault types and fault levels simultaneously. Thus samples having dif-
ferent fault levels and the same fault type are treated as totally different fault conditions. As
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a result, the information on a fault type is not fully expressed in such a classification model.
Because these samples actually share the same information on that fault type considering
that they have the same fault type (though different fault levels). The second shortcoming
is, as discussed in Chapter 6, classifiers fail to keep inherent characteristics of the fault
level (that is, the ordinal information among different fault levels). In this chapter, a new
integrated diagnosis scheme for FDII is proposed overcoming the two shortcomings.

7.2 A Proposed Method for Fault Detection, Isolation and Iden-
tification (FDII)

The aforementioned two shortcomings of existing methods are further elaborated as fol-
lows. Fault types and fault levels are different in their influences on measured vibration
signals. Fault types refer to different fault locations (e.g. impeller trailing edge and im-
peller leading edge) or different fault modes (e.g. unbalance and misalignment). Each fault
type can be regarded as a source that causes the change of vibration signals. For exam-
ple, different fault types may result in different characteristic frequencies. Unbalance of a
bearing excites 1X (shaft frequency) and parallel misalignment of a bearing excites 2X (the
second harmonic of shaft frequency) [29]. On the other hand, fault levels of the same fault
type can be regarded as the severity of the source that causes the change of the measured
vibration signals. Even though fault levels of the same fault type are different from each
other, they all contain information on the same fault type. For example, different levels of
the impeller trailing edge damage all affect the vane passing frequency as shown in Section
5.2.3. Therefore, fault levels with the same fault type are not totally different fault condi-
tions. It is reasonable to include all fault levels of the same fault type when building the
diagnosis model for the fault type. Considering the effect of fault levels and fault types
as discussed above, a two-step diagnosis method is proposed. In the first step, diagnosis
of fault types is conducted. Samples having the same fault type (regardless of their fault
levels) are diagnosed. After the fault type is known, fault level is diagnosed in the second
step.

Coming to the second shortcoming, from the measurement point of view, the fault type
is a nominal variable and the fault level is an ordinal variable (shown in Section 2.3). So
they need to be treated differently according to their properties. The fault type, because of its
nominal property, can be diagnosed by employing classification techniques, as in Chapter
4. The fault level, if it is diagnosed using classifiers, the ordinal information contained
among different fault levels can not be kept, as shown in Chapter 6. To overcome this,
fault levels can be diagnosed using ordinal ranking techniques, as discussed in Chapter 6.
Ordinal ranking [72] is a recently studied supervised learning algorithm, which is described
in Section 2.6.2 and is not repeated here.
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7.2.1 Method Description

To overcome the two aforementioned shortcomings, an integrated diagnosis method is de-
veloped. In this method, diagnosis of fault types is achieved by classification. For each fault
type, diagnosis of fault levels is conducted by ordinal ranking. A flow chart of the proposed
method is given in Figure 7.1. First, feature extraction is conducted using signal processing
techniques. Second, feature selection is conducted for fault type classification, and for fault
level ranking of each fault type, respectively. Third, the fault types is diagnosed using the
classification model based on selected features. Fourth, the diagnosis results is checked. If
the result shows that there is no fault, then the “no fault” is output, meaning that the ma-
chine is healthy. Otherwise, the fault level of that classified fault type is further diagnosed
using the fault level ranking model of that fault type; the classified fault type and diagnosed
fault level are output.

In Figure 7.1, two types of feature selection are involved, one for improving the per-
formance of fault type classification model and the other for improving the performance
of fault level ranking model of each fault type. The feature selection methods proposed in
Sections 4.3 (for classification) and 6.2 (for ordinal ranking) can be employed, as will be
shown in Section 7.3.

Select features for

fault type

classification

Select features for fault

level ranking of each

specific fault type

Feature extraction

Classification

model for diagnosis

of fault types

Ranking model for

diagnosis of fault

levels of the

specific fault type

measured data

YesIs there a

fault?

No

Output:

no fault

Output:

fault type and

fault level

fault
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Figure 7.1: An integrated method for fault detection, isolation and identification (FDII)
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7.2.2 Measures for Evaluating Diagnosis Results

In FDII, two labels are associated with each sample: the first label is the fault type and
the second label is the fault level. The performance of diagnosis of fault types and the
performance of diagnosis of fault levels should be evaluated differently, because the fault
type and the fault level are different variables. The former is nominal variable and the latter
is ordinal variable. Let dti and dri be the true fault type and the true fault level for the ith

sample, respectively. Let d′ti and d′ri be the diagnosed fault type and fault level for the ith

sample, respectively. The diagnosis results are evaluated using (1) the fault type zero-one
error (TZ error) defined with Equation (7.1) and (2) fault level absolute error (LA error)
defined with Equation (7.2). In these equations, n is the total number of samples, nt is
the total number of samples that meet dti = d′ti. The first measure (TZ error) is actually
classification error. It evaluates the diagnosis error of fault types. The second measure (LA
error) evaluates the diagnosis error of fault levels based on the samples whose fault types
are correctly diagnosed.

(1) fault type zero-one error (TZ error)

TZ =
1
N

N∑
i=1

ti, where ti =

 0, if dti = d′ti
1, otherwise

(7.1)

(2) fault level absolute error (LA error)

LA =
1
Nt

Nt∑
i=1

ti, where ti =

 |dri − d′ri|, if dti = d′ti
0, otherwise

(7.2)

In the following, the proposed method is applied to the fault diagnosis of impellers in
slurry pumps. The experimental design and data collection are given in Section 3.1.

7.3 Application to FDII of Impellers in Slurry Pumps

In this application, three fault types (i.e. no damage (ND), impeller tailing edge damage
(TED) and impeller leading edge damage (LED)) and three fault levels (slight, moderate
and severe) for each fault type are considered. Data collected for each health status are
listed in Table 7.1. The labels representing the fault type and the fault level are listed in
parentheses in the first two columns of Table 7.1.

Same as in Section 5.3.2.1, four features (i.e. amplitudes at 1X, 2X, 5X and 10X) are
extracted from the half spectrum, and eight features (i.e. amplitudes at -1X, -2X, -5X,
-10X, 1X, 2X, 5X and 10X) are extracted from the full spectrum. From three tri-axial
accelerometers, nine half spectra (from nine channels A1X, A1Y, A1Z, A2X, A2Y, A2Z,
A3X, A3Y, A3Z) and nine full spectra (from nine planes A1YX, A1XZ, A1YZ, A2XY,
A2ZX, A2YZ, A3XY, A3ZX, A3YZ) are obtained. So there are totally 108 (4 × 9 + 8 × 9)
features extracted.
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Table 7.1: Number of samples collected for each health condition [2]

Fault types (classes) Fault levels (ranks) Number of samples
No damage (0) No (0) 162

Impeller TED (1)
Slight (1) 162 486

Moderate (2) 162
Severe (3) 162

Impeller LED (2)
Slight (1) 162 486

Moderate (2) 162
Severe (3) 162

Total 1134

To show the effectiveness of the proposed diagnosis method, three methods are com-
pared.

(1) The first method doesn’t treat fault types and fault levels differently and uses a
classifier to distinguish them simultaneously. There is only one single classification model
built for diagnosis. This method is currently commonly used in literature [83, 86].

(2) The second method diagnoses fault types first, and then diagnoses fault levels for
the specific fault type. That is, diagnosis of fault types and fault levels is conducted in two
separate steps. Classification techniques are used in both steps. This method overcomes the
first shortcoming of the commonly used methods as discussed in Section 7.2. But it doesn’t
solve the problem of the second shortcoming, i.e. ordinal information among fault levels
does not kept in diagnosis of fault levels.

(3) The third method diagnoses fault types and fault levels in two separate steps as the
second method does. The fault type is diagnosed using classification, and the fault level is
diagnosed using ordinal ranking. This method follows the proposed diagnosis scheme. It
overcomes the two short shortcomings discussed in Section 7.2.

Comparison of the first method and the second method shows the benefits of diagnosing
fault types and fault levels separately. Comparison of the second method and the third
method shows the benefits of utilizing ordinal ranking but classification for diagnosing fault
levels.

Feature selection is considered in each method. In the first method, diagnosis of fault
types and fault levels is treated as a seven-class classification problem. The feature selection
method for classification introduced in Section 4.3 is applied, and four features are selected.
They are: ‘A3xzf Amp1’, ‘A2z Amp5’, ‘A1y Amp2’, and ‘A2xzf Amp5’. The features are
named in the format of ‘LETTER1 LETTER2’. ‘LETTER1’ stands for the source of this
feature. It consists of three or five letters. If ‘LETTER1’ consists of three letters, then this
feature is from a half spectrum, and ‘LETTER1’ stands for the channel name. If there are
five letters, then this feature is from a full spectrum, the first four letters stands for two
sensors and the last letter stands for forward (‘f’) or backward (‘b’) component in the full
spectrum. The fourth (and five) digits in ‘LETTER2’ stands for certain harmonic of pump
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rotating frequency. For example, ‘A3xzf Amp1’ represents the amplitude at 1X (forward
component) of the full spectrum of two signals measured from channel A3X and channel
A3Z.

In the second method and the third method, diagnosis of fault types and fault lev-
els are conducted separately. So feature selection need to be conducted for diagnosis of
fault types and diagnosis of fault levels, separately. For diagnosis of faut types, the fea-
ture selection method for classification introduced in Section 4.3 is used. Three features
(‘A1y Amp5’, ‘A2xzb Amp1’, and ‘A2yzf Amp5’) are selected. For diagnosis of fault lev-
els, feature selection method for ordinal ranking introduced in Section 6.2 is used. Four
features (‘A1xyf Amp5’, ‘A3xzf Amp5’, ‘A2xzf Amp5’, ‘A1x Amp5’) are selected for the
impeller TED levels, and twelve features (‘A3xzf Amp1’, ‘A3xzf Amp10’, ‘A1y Amp10’,
‘A3xyf Amp5’, ‘A3xzf Amp5’, ‘A1xyf Amp5’, ‘A3xzf Amp2’, ‘A3xyb Amp10’, ‘A1xyb
Amp1’, ‘A2yzb Amp5’, ‘A2xzf Amp5’, ‘A1y Amp2’) are selected for the impeller LED

levels.

Table 7.2: Results (mean ± standard deviation) of diagnosing pump fault types and fault
levels

Method TZ error LA error
(1) Diagnose fault types and fault levels simultane-
ously using classification

0.060 ±0.021 0.105 ±0.072

(2) Diagnose fault types using classification first,
and then diagnose fault levels using classification

0.044 ±0.0126 0.124 ±0.0781

(3) Diagnose fault types using classification first,
and then diagnose fault levels using ordinal ranking
(proposed method)

0.044 ±0.0126 0.050 ±0.005

The diagnosis errors for each of the three methods using their selected features as men-
tioned above are summarized in Table 7.2. The TZ error evaluates the performance of
diagnosis of fault types. The first method produces the highest mean TZ error (0.060). The
second method and the third method reduce the mean TZ error to 0.044. The mean LA
error evaluates the performance of diagnosis of fault levels. The second method uses classi-
fication for diagnosis of fault levels, and generates a high mean LA error (0.124). The third
method uses ordinal ranking for the same, and the mean LA error is reduced to 0.050. The
third method produces the smallest TZ error and LA error (mean and standard deviation).
This shows the effectiveness of the proposed diagnosis method.

The reasons why the proposed method works well are summarized below. The proposed
diagnosis method takes the characteristics of fault types and fault levels into consideration,
and thus overcomes the two shortcomings of the traditional methods as addressed in Section
7.2. Diagnosis of fault types, regardless of fault levels, is conducted first, such that (1) the
information of the fault type is fully expressed, and (2) a complicated problem (i.e. a seven-
class classification problem in this application) is changed to a relatively simple problem
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(i.e. a three-class classification problem). As a result, the diagnosis error of fault types (TZ
error) is reduced. Moreover, diagnosis of fault level is conducted by ordinal ranking. So,
the ordinal information among fault levels is kept. As a result, the diagnosis error of fault
levels (LA error) is reduced.

7.4 Summary

In this chapter, a machine-learning based method is proposed for fault detection, isolation
and identification (i.e. diagnosis of both fault types and fault levels). The different charac-
teristics of fault types and fault levels are analyzed and considered in the proposed method.

In the proposed method, the fault type is diagnosed first. Samples with a specific fault
type and different fault levels are treated as having the same label (i.e. fault type). In such
a way, the information on fault types is fully included in the classification model for fault
types and the classification model is simplified. After the fault type is diagnosed, the fault
level of the specific fault type is diagnosed using ordinal ranking. Application to diagnosis
of impeller damage in slurry pumps shows the effectiveness of the proposed method.

The proposed method does not work for the case where multiple fault types are de-
pendent on one another. That is, it does not consider the interaction among different fault
types.
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Chapter 8

Conclusions and Future Work

Fault diagnosis is of prime importance for the safe operation of mechanical systems. My
research focuses on data-driven fault diagnosis. There are two main approaches in data-
driven fault diagnosis: signal-based and machine-learning-based. Fault diagnosis consists
of three tasks: fault detection, fault isolation and fault identification. Following the two
approaches, this thesis studies the three tasks, with special attention paid to fault identifi-
cation. This chapter summarizes my contributions to data-driven fault diagnosis, describes
some problems that remain to be further addressed, and suggests directions for future work.

8.1 Summary and Conclusion

8.1.1 Signal-Based Fault Identification

In the signal-based approach, fault diagnosis is achieved by checking the values of fault
indicators which are sensitive enough to represent the health condition of machines. The
generation of fault indicators is the key issue in signal-based fault diagnosis. Among the
three tasks of fault diagnosis, the third task (i.e. fault identification or diagnosis of fault
levels) is the most difficult one. Utilizing the ordinal information is essential for fault iden-
tification. In order to do so, the fault indicator for fault identification needs to demonstrate a
monotonic trend with the fault severity levels. Such an indicator, however, is often difficult
to find. This thesis works on this problem and proposes two indicator generation meth-
ods for fault identification of rotating machinery by integrating information from multiple
sensors.

The first proposed method extracts an indicator by processing signals from two sensors
simultaneously. This method was inspired by the fact that the joint information of two sen-
sors might be lost if the signal of each sensor is processed individually. This thesis adopts
the full spectrum technique which processes signals from two sensors simultaneously. In
order to focus on the sensitive frequency range, multivariate empirical mode decomposition
and mutual information are used. Then, full spectrum analysis is applied to the selected
frequency range, from which an indicator is generated. Application of this approach to
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the identification of impeller vane trailing edge damage shows that the generated indicator
clearly reflects the change of flow patterns in pumps, and exhibits a monotonic trend. The
physical explanations of this indicator can be verified using numerical simulations of the
flow fields in pumps through computational fluid dynamics (CFD). The indicator generated
by this method reveals the characteristics of a planar vibration motion. It is useful for track-
ing the fault levels of the fault type that causes changes of planar vibrations. However, this
method can deal with signals from two sensors only.

The second proposed method extracts an indicator integrating information from mul-
tiple sensors (possibly more than two). The idea of this method is to first extract features
from each individual sensor or from two sensors together, and then combine features from
all sensors and output a single indicator. The first step is achieved by signal processing
techniques including those for one-dimensional signals (e.g. conventional Fourier spec-
trum) and for two-dimensional signals (e.g. full spectrum). In the second step, an indicator
that has monotonic trend with the fault level is generated. How to combine the health infor-
mation (features) from all sensors into a single indicator that represents the health condition
(i.e. exhibits monotonic trend) is the focus of this method. The global fuzzy preference
approximation quality defined in a fuzzy preference based rough set is used to evaluate the
performance of features in terms of monotonic relevance with fault levels, and principal
component analysis (PCA) is used to combine the information contained in the selected
features. Application of this approach to the identification of impeller vane leading edge
damage shows that the indicator generated clearly and monotonically reflects the damage
levels of vane leading edge. This method is useful for the fault types that cause vibration in
multiple directions and locations. The disadvantage, however, is that the physical meaning
of the indicator is hard to interpret.

In summary, the contribution of this thesis to the signal-based fault diagnosis (specifi-
cally fault identification) are:

• Developed an indicator generation method for fault identification by integrating in-
formation from two sensors. This method is especially useful for tracking the fault
levels of a certain fault type that causes the changes of planar vibrations.

• Developed an indicator generation method for fault identification by integrating in-
formation from multiple sensors. This method is useful for tracking the fault levels
of a certain fault type that affects vibration in various locations and directions (more
than two).

8.1.2 Machine-Learning-Based Fault Diagnosis

The machine-learning-based fault diagnosis consists of three steps: feature extraction, fea-
ture selection and machine learning. The focus of this thesis is feature selection.

Fault detection and isolation (i.e. diagnosis of fault types) can be regarded as a classifi-
cation problem. Rough set is a powerful tool for feature selection in classification problems.
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In this thesis, feature selection based on neighborhood rough set is studied. Neighborhood
size is a key factor that affects the feature selection results. The effect of neighborhood size
is analyzed, based on which the problem of applying the original neighborhood rough set
for feature selection is discussed. That is, features are likely to be wrongly estimated if only
one neighborhood size is used for all features which are obtained from different sensors. To
overcome this, the original neighborhood rough set is modified with multiple neighborhood
sizes. The modified neighborhood rough set considers the physical meaning of neighbor-
hood size, i.e. neighborhood size is the noise level that the feature encounters. Thus, in
the modified neighborhood rough set, each feature is associated with a neighborhood size
that stands for its noise level. A feature selection algorithm based on the modified neigh-
borhood rough set is then introduced. To test its performance in practical applications, the
feature selection algorithm was applied to the diagnosis of three fault types in slurry pumps.
It is found that the feature selection algorithm based on the modified neighborhood rough
set produced lower classification errors than the feature selection algorithm based on the
original neighborhood rough set.

Fault identification (i.e. diagnosis of fault levels) has an important characteristic, that
is, there is ordinal information among different fault levels. In order to preserve the ordinal
information, fault identification is regarded as an ordinal ranking problem in this thesis. A
feature selection method based on correlation coefficient is proposed for ordinal ranking
problems. Then a diagnosis method is proposed using ordinal ranking and the proposed
feature selection algorithm. The diagnosis method is applied to identify four pitting levels of
planet gears. Results show that the proposed feature selection method efficiently reduces the
diagnosis errors, and improves the interpolation and extrapolation abilities of the ranking
model. The use of ordinal ranking for fault identification (the proposed approach) and the
use of classification for the same task have been compared. It is found that ordinal ranking
has advantages over classification in terms of lower mean absolute error, better interpolation
ability and better extrapolation ability.

Furthermore, an integrated diagnosis scheme that is capable of fault detection, fault
isolation and fault identification is proposed. This proposed diagnosis scheme consists of
two steps. In the first step, only fault type is diagnosed. Samples with a specific fault type
but different fault levels are treated as having the same label (i.e. fault type), and diagnosed
through classification. In such a way, the information on fault types is fully expressed and
the classification model is simplified. In the second step, the fault levels are diagnosed
for each fault type using the ordinal ranking technique. Application to impeller damage
diagnosis in pumps shows that the proposed scheme produces smaller errors compared
with the traditional diagnosis method in which diagnosis of fault types and fault levels is
conducted using classification.

In summary, the contribution of this thesis to the machine-learning-based fault diagnosis
are:
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• Modified the neighborhood rough set considering the physical meaning of neighbor-
hood size, and introduced a feature selection method based on the modified neigh-
borhood rough set for fault detection and isolation.

• Proposed a feature selection algorithm for ordinal ranking, and developed a diagnosis
method for fault identification using ordinal ranking. The proposed diagnosis method
keeps the ordinal information among different fault levels, which has been largely
ignored in the literature.

• Proposed an integrated diagnosis scheme for fault detection, isolation and identifi-
cation. This scheme considers the different characteristics of fault types and fault
levels.

8.2 Future Work

8.2.1 Signal-Based Fault Identification

In this thesis, signal-based fault identification is conducted when only one single fault type
exists. If multiple fault types exist simultaneously, the identifications of the overall fault
level and the fault level for each individual fault type need to be studied. This work is
extremely difficult if different fault types interact with each other.

8.2.2 Machine-Learning-Based Fault Diagnosis

This thesis applies ordinal ranking to fault identification, and finds that ordinal ranking
outperforms classification. The feature selection methods for ordinal ranking, however,
haven’t been well studied in the literature. This thesis proposes a feature selection method
based on correlation coefficients. Other feature selection methods for classification, such as
mutual information [53], FOCUS [54, 55] and Fisher criterion [50], might be generalized
for ordinal ranking, which needs further study.

Moreover, in this thesis, supervised-learning algorithms are used for machine-learning-
based fault diagnosis, because it fully uses the information of historical data. One main
drawback of supervised-learning is that it can only diagnose the fault types / levels that
are included in the training data. Thus, the historical data of all possible fault types and
fault levels must be available for training. However, in some cases, it may be extremely
difficult to acquire data for certain fault types / levels from real systems. To handle such
cases, unsupervised-learning can be used. The combination of supervised learning and
unsupervised learning taking advantage of both can be a direction for machine-learning-
based fault diagnosis.
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