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ABSTRACT i

The temperature dependence of the longitu—
\ o . » 4
dinal sound velocity in single crystals ot hop He

was measured from 75 K to the melting point agsso

bar and 120 bar with a 5 MUz lonqx:udinal]y—mxi,

quartz transducer., In the high temperature region
- ,

the velocity obeys o simple power law,  JTtsdirection

AN
£y . . et R
of changye is (?()nt,rw) that prudi(}ud by a reduced
equation of state. At w {‘u - 1o T =~ ()()/2() a ;iaharp:
A

anomaly or "knee" is obscrved. The resulting plateau. .-

(the velﬁcity changes only slightly in this region)

B ’ ' _ i "a, s
extends to lowest temperatures. We feel this plateau

is evidence of the long sought coupling between first

-

and sécond sound veléciti;g.
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- CHAPTER 1 L

-
’

1 INTRODUCTION

-531id helium was first studied in"the hope of

- finding the simplest and most ideal of solids. These
edriy experimengs indicated that, in gross respects,
helium was a solid 1ike dll Other solids. However
~detailed quantltatlve btudlc€ of the solid produced
results remarkably dlfferent from the theories of the)
day.

The helium atom is quite light, and in the weak
van-der-Waals. potential well of its neighbors in the

solid,h;s a large }ero—point motion. This quantum-1like
. Lt

behavior has led to investigations of helium and similar

materials‘under the general name quantum solids. All

modern theories of solid helium difectly take into

account the quantum nature ‘of the solid and have explained

1many observed ‘anomalles , although many unanswerbdrl

.< _ ‘o ' | &
ques,tlor:s remain. - \ L -
" There are two stable lSOtOpeS of hellum,ﬂe3

- and He4, In the llquld stkate the two 1sot0pes behave
‘\drastlcaﬁgy dlfferent This 1s due to the fact that
,He4 has even spmn (2 neuxrons plus 2 protons plus 2
electrons) and' thus obeys bose—elnsteln statlstlcs,t
h'whereas He3 has odd sp1n (l neutron prhs 2 protons plus‘
e

2 electrons) and thus obeys ferml—dlrac statlstlcs.

'These statxstlcal effects come from overlap of the

i
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' d -
. . MR ’

> lnleldUdl wave funoti@hs In the soliaq, fhé\pdrtlgles

£ ”

are highly localizen: 31th very 1ittlé oveplap The' over-
/

lap, “however., is large¥enough to lead to some quantum

effects such ag spin exchange in lfe3 and short range

coreelation in both isotopes. ' %g’
All our experiments were performed on' He

-

© because chemical and isotopic purity can be obtained
using simple and inexpensive techniques. Transpokt
y 1 . . 2
quantities, such as ﬁgFOﬂd sound and thermal conductivity

are influenced dramatically by 'small- contentrations of

impurities. 1In solid helium, second sdund can be
propagated in a lightly damped'modé.while the thermal
'¢hﬂ, conductivity exhibits a largé umpklapp maximum and a

‘well defined phonon-Poiseuille flow region. Tnds is
experimental évidence,that_sampie§mof'ﬂé4 low in
5’ impurities can bexproduced
The e;perlments reported on here mark the

~

: , 7 : C e :
second stage'of work to determine the temperature,

pressure, and frequency dependence of the attenuat;on

"

|

of‘&hxst sound in He4. Although some.qualitatioe

ﬁ.ebservations were made, an accurate determlnatlon of

s v

athe attenuatlon proved too difficult w1th the present

' state of technology. ‘%% o

/ | However, measurements ,of. the temperature

dependence of the veloc1€;7showed anomalous behavlor.‘

Thls anomalous behévior appears to b ev1dence for

i =
¢ -

coupllng bet(een flrst and second sound The ma1n

|
i




purposce of thils work 15 to report on these tanding:s,
Thi s ﬂHJmJlUHH behavior has boeen seen bebtore in Licuad
a ’
4 . 2" i R '
Hes (Wb tney and Chasoe (1967))  and prodictoed as a
coupling between Lirst and second souhd by many authors,

Lncluding Niklanson (]6bﬂj 1970, 1971) and Guraevich and

tifros (1906, 1967) . .

£



cHAPIER 2

THEEORY

£
SO much work has bean done on the theory of
-

A

solid hel i?;lﬂl on both lattice dynamios and sound

velocity that 1 will mention here only some of the
raview articloes recently published.
[ ;

A
P’

Claspical lattice dynamigs ?WG treated extens.
{

, S 1'_77
sively in several books, 1 have relied mainly on

the paper by Musgrave (19549 and the series Physical
Acoustics edited by Mason (1965). Lattice dynamics
of solid helium aro well covered in the review papers

by Werthamer (1969) and Guyer (1969)

5 -

2llert s

b00k  (1969) and Trickey et

K

it

Y

P

temperature dependence theories were

irr

consultation to Bhatia's book (1967) and the series
by Niklasson (1968, 1969, 1970, 1972).

[

2.1 Classical Lattice Dynamics

We shéll present here a short inﬁrodﬂction to g
classical lattice dynamics based oﬁ Ziman (1965).
Althoﬁgh thig\formﬁlation is not sufficient to solve
the special prObiems of solid helium, the initial steps

and broad treatment are identical.



(Val

A

p &
[f we have a lattice with identical atoms of
: . . . . » >
mass moaat oguilibriuam lattice sites ¢ and where u

iss the displacement of cach atom from that dite, then

the kinetho energy of the crystal is 1
] 1 L2 - '
T = 5 mo) u . (2.1-1)
Ao N §
4

Wae will now write potential energy in a faylor

. . . * :
series expansion in terns of the u  s0 that

o Y - L A
VooV ui ) Tt y u% u; Y STt e
' - au- st .. £ £ oul du”.
(2.1-2)
where j represents the cartesian companents of 375 If

[

'b@Vé)! we

o
Wi

N L 0 . N
we truncate the.series after three terms (:

all this the harmonic approximation. - Note that the

@]

first term is unimportant, and the second term vanishes
for small oscillations about the equilibrium position
in the bottom of the potential well.

If we use Laéranges formulas we can write the
| : .

equatﬁons of motion as ‘ '
JA' '2V T N 4 E
mal = - 3 [ e e
I ,’Iljl du_ gu -{ * ‘

J H
(AR A | :
If now we let_GJJ represent the elements of theY
: 1
dynamical matrix G, then ~ /

;

§ - .,
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BPCT A N ST
G- = [37V/3u agu ] (2.1-4)
& {Q’ . { {' o

Assuming translationdl invariance, we must have

ol LGy where, R - (20149
X A : o
hpnce '
R TT SCE  AN  V TS, . (2.1-6)
I | |
’\

Tpoéu severdl equations must satisfy the Bloch condi-

[
tion
: W () = eIy () el E (2.1-7)
o ¢ o »
' w7 ! ’ q&
hence, with the origin as arbihraryl
ma) =~ ) I oid-h J |
.4 Ej' ZD q ”
E & %?é f ij!(a) . ui; . (2.1-8)
13 ji q
We now ‘assume a plane wave solution of, the form
u, = u_ et ~ o (2,1-9)
a o - F e ' <
' and we get in (2.1-8) | ?
. : e \ ! . ;
) c S S = _
I@ @ cme?s, pud (@ =0 . (2.1-10)
j=1 J3 © .

' .& Lt



2.2 Lattice Dynamics of Solid He:X

" . )
Bl

“The above equation has a solution if and only if
the secular (guatzon (the equation of the detefminant of

the set of equatLOns coefficients set to zero) has a

‘solution. -Thi% secaalar equation has ‘3n solutions where

&

Lhe n repreqents the number of partxcles 1n a upit cell

and Lho three repre%ents the ‘three modes or polarizat;ons

6f . vlbratlon (two transverse and one ipnqltudlnal) The

sound velorlty Cj(q) is gxyeﬁ by

PR

D Sr | o
el@ = gy (@ L (2,1i11>

We usually only use ti® term 'sound’ in the 1limit
A kol A .
e, : 5 - i . . i

w * 0. 1In this,region '

i
-
e

e,

ws (@)

where j represents the mode. %hg‘dispersion in wj(a)

is negligible until one reaches frequencies of order
109 Hz.
We note, also, that the elements of the'dynamicai

I3

matrixﬂare closely related to the’élastic‘constants in

-the long wave length limit (4 » 0). This will be further

dealt with in section 2.3,

.

The classlcal theory of lattlce dynamlcs fails

dramatlcalry for solld hellum.

Z



. . . Q .
It one chooses the interaction potential
between two helium atoms to be a Lennard-Jones of

the type
Vir) = 4 [ (o/0) M - /et | (2.2-1)

and derives ( and o from the virial coefficients of
He4 gas, the classica} theory of lattice dynamicg
predicts a molar volumé of 10 cm3 (too small by a
factor 2), a compressibility too small by a factor 39,
and a sound velocity too large by a factor 4 when
compared to hcp Hgd at 0K and 26 bar the minimum pres-
sure of solidificakion! Even worse, when De Wette and
Nijkoer (1965) attempted to calculate the_éhonon fre:
quencies and sound velocities using the aforementioned
fhéory: they calculated imaginary frequehciég for molar
volumes greater than 12 cm3/méle'(eVén though the
~lattice is stable up to holér voluﬁes of 21 QmB/mole)!
‘ On the' other hand,'thermal conductivity, éla;—
ticity and heat capacity measurements showed heligm

to behave quite normally. -

The major cause of these deviations from classi-
cal behaviog is the large zero-point motionAofasolid
helium atoms, The attractive-poéential’betweén helium

atoms .is the relativély weak Van der Waals intetaction ﬁﬁ

Ly 'l
i
-

‘which' produces a vefy;narr¢w potential welI Estimat-

ing the zero-point motion from the indeterminacy
. \ | AT

;
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"

2%
An,
™

10
%

principle yields. for its kinetic enerqgy

. 2 2
2ma

where a is the lattice spacing. ¢

This large zero~point;mogion, combined with a
narrow potential well, means that the mean position
of the helium atom is not at the bottom of the wgll,
but‘disPIacea to iﬁcrcasevthq lattice spacing. This
-@eaﬁé that the molar volume will be larger than
expecﬁed as will thé;Compressibilityi

| Figure 1 shows the position of a helium 4 atom
in,the well of its néareét neighbots, The cross-~
hatched aréa represents an approxXimate wave function
for He4. Notice ;hat the He4 atom sits at a relative
maximum in the well which accouqts for'theﬁimaginary
frequencies obtained by any classicéi caldulatioh.
Thus, the wave fuhction has ‘two peaks corresponding
to the minima of the well. One can think of the atom
@s moving in a spherical shell about‘its mean ppéi@ion.

« The motion of any atom apout its site will" !

‘change the position of the poténtial well of its n

. neighbor. Thus the neighbors motion will/ge correlated

*;in such a way that theQQave functioﬁs‘overlap as little

as'possiblé.. We cali correlations of‘this kind short

.xange correlations. o \
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FIGURE 1

| | L 1 1 1 !
¢ 1 2 3 4 5 7
r (TO_]Qm )

‘He4 atom in potential well of nearest
neighbors (Guyer (1969)).



S

1t phonons exist in a solid, they are evidence
of long range correlations in the solid. Any theory
must therefore take into account the large zero-point
motion, short range correlations and long rangé& corre~
i
‘ { . Ce . . O
& lations if it expects to explain the behavior of solid
hedium to any accuraély.
There are several theoretical approaches to the
, A2
problem of lattice dynamics in helium. lnfﬁﬁnéral
they can be divided into theories that use a single
particle approach and those which use a many-body
approach.
The" single particle picture (Nosanow (1964),
§

Fredkin and Werthamer {1965)) assumes a Jastrow type

L4

. ey

wave, function (Jastrow (1955) of the type |

+,

‘ . LS ﬁ‘.;l\.
L E ) a e B - £R, - E B2 2y
v (3 sé-T) : N £y 7k (£ = L) Eed - 3 )

v

. . W % .
g ROV
ere ¢  are the single particle wave functlhysngzzq-
‘ > VR
5 ) desé;lﬁgg

lized at lattice sites Ii while f(;
5 aéd X. Wé?kg@w

the gérrela‘tion between particle
e : > ]
something about the form of the correlation function

f(?). For example,  at large T it must be unity while
. f - / .

at r=0 it must vanish because of the hard core.

Also there should be a maximum in f about where the

minimum in the Lenna nes potential V(r) occurs.

.
”

' A simple analytic form for f(r) is thus

12



4

{cel/mole)
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_FIGURE 2

INTERNAL ENERGY

6 p—
HCP Hed
4 - R '('5\!?-5
2
SINGLE PARTICLE
0k
-2 -
. COULLECTIVE
.-4 -
&
\ v
’6 —
aB - .
EXPERIMENT \
-]O b—
-]2 -
N 1 L 1 1 R
17 . 8 19 20 . 21 . 22

- 'MOLAR VOLUME " {cm3 /mole)

[

Internal energy as a function of molar volume
‘comparing theory and experiment (sipngle par-
ticle Nosanow (1966) and Hetherington et al

- (1967); collective - Gillis et al (1968).-

- ,
0
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”

e e
gff(r) = o V(D) (2.2-4) ..

oy
whepe'c is a variational parameter. Although there
\[[ . '
are/many possible forms for f(r) consistent with the
i ‘ .
abave criteria, they must be easily subject to varia-

TR

tional analysis or they are too difficult to use.
!

& Assuming an initial value for C, we can cal-

culate the ground state energy,EO. If hl is the one

particle hamiltonian and h, the two particle hamil-"

2

tonian we can write Eo in a cluster expansion

RS 1N ST E RN <3lhy ) 15>
; B"il + ,.2_! §k [ —_

<jk|h2(jk)|jk>
j”v <j| 3>

o

<jk|ik> <jli>

;-

- P S

ek [key o <dkelhg(ke) [3Kes
- _ "‘l. " ]* o Z [ o 1
<k|k>

<jkg|ike>

A Ve £
- two body terms + one body terms . (2.2—5)
\ : . 4

\Ys

‘ 4 , . . . A ’ T
‘where j is the ]th particle wave function of y.
i g L. . { ' .
By ‘ !
X; ’ ! We truncate
. - /

after one term, minimize the equa-

" . tion for E to get E_
L. ‘*-' .

nd thep solve for |3> = y.

RN
v

gaussian (as for the ground‘stéte,offthe simplé/parmo- .

It turns on'tha« &o\is roﬁghly-a‘spherical~~;

. nié ¢§éillator)
s/ ' . ' .

1 ' , ) re : ; }

A,\ E Y " Q “ ). “ ...A . , . ) . . . ,
A Caheg = e z . o (2.2-6)
: Q Hr : ‘ : : e S

)
\ B " ,' L@ Y ' . . . L e (R . tUh i . d

\ 4 ¢ . TR : ' AN o) oo . . . il ERRU ‘

\/ ' . ' RN S . oo e - . Vo (R . .




where one minimizes E) f(n‘@ given C. One then s<lf—
¢

Conslstently minimizes C and A to obtain the lowest
E .
O N
\ .
One can then take the cluster expansion to )

higher terms in E, although to my knowlege the

“e— . . R ! .
expansion has not been carried past thr%e terms .

Using many bedy techniques, Fredkin and
Werthamer (1965) have shown how to. calculate. the
phonon frequencies from these single particle wave -

n

/7 functions.

A

me_u(a) = ) (1- elq'h) Ajﬁﬁj—m-<0|veff(r—r'+h)lo>3(a)
£ Jdu :ou
} PR 2
at 1 = 0, where V_ ef f is
g
2
v A%k 2 ~2kV(r)

(2.2~7)

s

eff = [V(r) +'_ra'" v V(r)]e

and V(r) %EWEBS Lennard-~Jones potentiai. 'This above
A v T ‘\

i?algglatlon is the same as u51ng v eff in a Hartree

cadculatlonrand taking no correlatlons into account.
‘ ,»»
Q’

Maﬁy calculatﬁbns have been done, but so far no cdl—

culétlons have ‘been done tor hcp He |

I

In the theorles empha3121ng colJ;ctlve phenomena, ‘

one usually examlnﬁi the response of a,crystal to an

| 'externally applled dlsturbance.,(These thcalled self—

LN

‘conslstent theories (Hoot“ (1958), Bernades (1960),

T
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~ gmccura and Sarma (196%), Raninger (1965), Koehler
(1%0, 1967, 1968), Choquard (1967), Horner (1971))
consider the phénons as the basic co—ordinates.of the
" solid. Essentially the result of these theories is
that’the spring constant between a pair of atoms is
the second derivative ot the interaction potential
averaged over the motion of the atoms. Short range -
correlations mugt be added in later. These theories

appear much better suited for numerical analysis.

If we say that the hamiltonian of our solid can

be approximated by f

H=7Fr@) + § v.. o (2.2-8) -
i i#]j '

solved for varlatlonally. The energy is minimized’

(Koehler (1968)) byA' |
33 D I : " . |
G~ = <QIV v IO : l (2.2-9)
SR A S | L

Aén‘d; ‘the 'gro.un‘d sg:a'te eigénfunction is given by’

o5 = expt- % a7
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’ } .
[r;; J : 5% . “;ﬁ - (2.2-10)
2 B f
: :

Hence dinstead of averaging 'with respect to the single

particle wave functions, wo here ara averaging with

~

respect to the phonon ground state.

A third approach (Guyer (1969)) treats both
. i
short and long range interactions equally hy using
: ’ . ! ;—.

.

a Rayl L itgqh-sSchrocedinger pert uz‘pa't ion apprbach. ‘I'his

: A o c A
theory offers a fair dedcciption of He in lowest order

5
»
DA

R A ’\ » . - ' R . -
with a4 well dofined method for‘g(’)inq to higher orders.

' . . B TP N ‘ ,
Take the hamiltonjan of the system to bé

-

by

7 5 N " ﬁ\
v =g Y

1 5 ; :
L) ' . ;

a

;u ) H*

2
O]

where V{ij) = v(ij) - u, (i) and v(i)) is “the pair

intetaction and b5 (19) is the interaction between this

{]\
O\
Qi

HJ

pair and the rest @t the ?afEiClésgi One is alléwiﬂq

>
o}

t of

('Eh

a se€ one, two, three or

'with each other in the Hartree fieﬁa,of the dther par-

tigles .
f ! ’ o . i _
e i ’ ,
: ﬂoﬁ ¢>O‘(l..,N) ?"Eg“"ﬁd‘;ﬁ(l...l\l) (2.2-12)

where ¢F is the ground state wéve function.

3

The Rayleigh~ Schroedxpger p ;fgg%tion (Brueckner -




r
Lol S V. b VG Ve 4 VG VG Vet L, (2.2-13)
) ) ) ) O [®] (@
G TR TR
O ) )
¢ lt'()(;'()
i we assume
b VG Vg 2, mfv(ij)G Q(ij)¢,
I I A M e IR GRS L)
"b()‘po o Ly 13 ¢olo
1 X' fﬁOY;(L?)(;DV’(lj)ipO
2 ' R
T Poto
which is ideptical to solving the squation
= B ~ s N " (2.,2-15)
*;3¢;3(1 - (2,2-15)

This is just our hamiltonian including two body terms

, only. To include three body terms

= ) [ev 6 vy - <T(13)Gv (49) >

- V(K6 TV (ik) > = <V (FR)G v (3K)>]

“.

where v, = v(ij + v(3k) + V(ik)
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and/s

romly‘.i

consistent phonon theory with no short range correla-
tions. The two body term is the self-consistent phonon
theory with two body correlations. ‘I'his theory then

is able to treat long and short range correlations in

a coherent’ systematie manner .
i

2.3 V)Ld@\i(i Propagation 1n Ideal Elastic Sol i‘L_LF)

YThe elastic constants Cijki describe the stresses
11 "in various directions in thL crystal in tvrr of !
strains ¢, , applied in various other directions
» , 7
0,4 = }){? Cijki"ik . (2.3~1)
. | " ) g -
712 is the force acting on plane i in direction j and

the strain ¢ is defined in terms of the displacement

kﬁl

as

B

& =

1 duk dug’
k& 2

— 4
dxg dxk
Equation (2.3-1) is simply Hook's law.

The equation of motion,K for an elementary cube

is thus ‘ e



w, in units of e

. FIGURE 3
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‘Phonon dispersion curves in.the Basal‘pléhe

for the collective picture as calculated by
Gillis et al (1968) compared . to experimentall

data of Lipshunz-&ﬁ al (1967).
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Cdx ) ik dx dx
] ! ik I ¢

This has a plane wave solution of form
t
I

u < (2.3-4)
from which _ @

)u)zu = ). Q ' C u 2.3-5)

hw Uy Like 439 0 Ve - G

jk2

)
We now may detérminé the sound veloci¥®ies by solving
the seccular equation for (.

If we now apply symmetry and thermodynamic aréu~
me5ts for hexagonal crystals, Cijki has only 5 independent
components Cll, C12, é13, Cyqr c44(where wg have used
;hgzshortened gégation of Voigt Cllllé Cllz Cll?? = Cl?’
CllBB = Cy3r Cp3p3 = Cy4) - Isotrqpic crystals have only
two, namelyi c) and Cip @5 Cyy = E(Cll‘ C1p) s €137 Sy

éll = ¢ The matrix c,  for hexagonal symmetry is

33 ik




“11 “12

/“12 “11

“13 “12

Cik 0 0
0 0

0 0

Several authors (Zener (1936),

0

0 0

0 0

0 Q

0 0

0 0

aa O
2(117¢)2

)

Gold

(2.3-6)

(1950),

Musgrave (1954)) have explicitly solved the secular

equation for hexagonal symmetry.

~

They find velocity

22

»

surfaces (which are completely determined by the elastic
7

constants and the density) have cylindrical symmetry

about the “c¢" axis and hence the, velocities can be

expressed in terms of one angle;"y" the angle between

propagation and the

L

e t2

v = (Cg‘/p);i

.

. [
L
v, = (ctz/p) \

ot

-where

£

C

v, = (ctl/b)i

axis.

@

1

"They find:

"

.
_ 1 ’ .2 ‘ : 2 o
¢ = glleg +o )sin™y + (cyytc, ) cos™y *QQ(Y)Q "

[

1



FIGURE 4

Gillis et al (1968) for hcp He

Cc-axis

Velocity as.a function of orientation accord-
ing to a collective picture ca%culatlon by

at 80 bar.
The curves have’ cyllndrlcal symmetry about

,‘the 'C'—axls.

23
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1 .2 2
C = E((cll+c44)sln Y + (c33+c44)cos Y ~ ¢(y)}

2 2 . 4 y
" (y) = (Cll—c44)zsln y 4 (C}Bﬁc44)ZCOS4Y +

. 2 2 p
~t+ 2sin"y cos Yl(cll~c44)(C44—c33)+2(c13+c44)21

For the special case of propagation along the "c"

axis (y = 0)

» e T 933
(2.3-9)
ctl = S, T %44
and in the basal plane (y = 90°)
“ b T “1n
c, = A(c. ~ c..) ; (2.3-10)
t 2 11 12 )
t, T a4 . '
For an isotropic crystal
€ T 1 |
A _ (2.3-11)
c, =2c¢C = l(c - ¢ ) . :
t1 ta 2711 12
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Velocity surfaces are plotted in fiqure 4 accord-
Ing to Gilles et al (1968) for hcp He4 at 80 bar.

Now, 1in general, sound velocities do not propagate
perpendicular to the transducer, but may, in fact, deviate
quite dramatically from a normal direction. Figure 5 shows
the calculated deviation for the elastic constants cal-
culation by Cillis‘éi al (1968). The method of determining
these deviations is given in an appendix in the form of a
computer program.

For purely transverse waves, the disturbance must
be perpendicular to the difection of propagation. For purely
longitudinal waves, the disturbance must beialong the direc-
tion of motion. For héxagonal crystals, only one of the
transverse modes is a pure mode, the other two being mixed.
That is,the disturbance moves at an angle to the direction
of prOpagatidnrthat is a fuﬁction of orientation. The two
modes are always péfpéndicular to one another at any
orientation and one is predominantly longitudinal while the
~Other is pgedominantly transverse. We call these modes

quasi~longitudinal and quasi-transverse respectively.

{

2.4 Belated Quantities i
= :
If the elastic constants of a crystal are known,

then several other quantities can be determined

'

Debye Temperature BD R

Thg;Debye tempergtdre at 0k is (Alers (1965))

L% =k {3 vm} Vb
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C-axis
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—
>

wave norraal

transducer?

!

FIGURE 5  Propagation direction schematic.



where
v, = (v-} + v~3 + v—j) du 1
D 2 t, t . 127
h = Planck constant
k = Boltzmann constant
N = Avogadros npnumber
Nm = Molar volume
. A computer program in the appendix for both
cubic and hexagonal crystals is given. The Op cal-

culated in this way should be identical to the
calorimetric Debye temperature at temperatures below

0,,/50.

=

Compressibility

For hexagonal crystalss, the isothermal compres- °

sibility is (Nye (1964)) ! S

: v 1
(), b
lT - PP),  V .
- s s 5 s .
o = fut 12" 495 2%,
s s 8 s 8 _ s :
C33 + C1,%33 2cy 3 _

€11°33

One must remember, however, that the compres-

sibility caldulated from elastic constants is adiabatic.

v
n



!

The difference between these two values is discussed

thoroughly in sections 2.5 and 2.6, but is of order
(

where Sp and ¢, are the heat capacities at constant

pressure and volume.

Phonon Spectrum

9

In the long wave length limit (w << 10 hz), the

sound velocity is equal to the phase velocity

V’;§ w(é) Ew(gi)
d 19

, =
Second Sound A

-

For an isotropic material, the velocity of second

sound is (Niklasson 61970))

. -3 -3
: 11 3 (V—S + ZV—S) e

L Tt ‘ e

-

For heka&?nél materials, the second soﬁnd‘velociv'

ty is not so easily obtained. Meuller et al (1973)

have assumed & :

o
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which is an over-simplification. e
The phase velocity of second sound in hexagonal
crystals 1is given by a theory in Appendix A2,
»

The velocity CH(E) for this theory is

-

-1 . 2 1 2 ,-%
Cypo) = {a- sin“e 4 53— cos 8}
1 2
where , >
a ) BZ(O) .
1 Yz A
B (0)
a =
2 Y A
X
I 3., . . N
B, (0) = {] f sin 87d6° s 6, (e)}
3 c;(6")
J
n cosze'de' ;
Bz(e) = Z {2 f — sin®' cos 6§.(9)} ¢
( 3 o cj(ﬁ') J
iy oy JH sin’p’de’
b X j ‘o cs(6')
J
. JH éoszﬁ’ sing* de
Yz - ‘Z oo
o c (6 )

‘ no_r
A = T2 j sin6'de"
j o c.KB')

where j is the mode (longltudlnal trénsverse), and @
.'1s the or;entatlon 6 (6) is E?e deviation of the pulse‘v
-,from travel perpendlcular to the tranducer.

' These lntegr ls have been a@é}ved at qssum;ng ‘a
harmonic sol:.d with linear disPersion using a Debye
approximation. i’ |
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2.5 Sound Velocity as a Function of Temperature from

Thermodynamic Arguments

Let us assume that it is possible to represent the
temperature change in the sound velocity in terms of

the adiabatic compressibility

1 2 ,
v(T) = IEF;TTTI (2.5-1)
where p is the deﬂsity and'KS(T) i ~(3 &n V/BP)S the

adiabatic compressibility. We can write

2 S | 1 1 )

Vi(T) -~ v°(0) = 5'[R;777 - R;TETJ (2.5-2)

< Or

Kp (1) (BP/aV)s " . |

K. =~ Gp/avy, - Lo (2.5-3) N
s . T ' ; v “

AR A

3VS CV aVT

so that .

KT CP CP—CV' 9

K= ~—o  *1
S v v .

" .

o), [

P v aT.V oT p

i théﬂderivatipn of the abdvé7relatiqn-f0r cp-cy; is given.

invthe‘abpendix}‘hencé,f



2y

o8
k=

S g
N

\:X ,
o 1 aF aV
K. = gLt — () (7=) }
| h[ - ey YT v y T p
Now ‘
nv] [3V} {oP) APJ
L I fad - VK
[aT p aPf (0T, T(3T),, ‘
\
orv )
TVKL () 2 ]
K (1) = KS(T)[l + wfeg;m= (3T)v] (2.5-6)
hence ) -
i -
KT(T) Z;Ks(T> for all T
equation (2.5-6) can also be written
7 - . }
I 4 IV [QE]Z ' (285-6a)
Ko (D) o K () 7 e, (0D)  ° ' *

Now we have experimental data at several voluhes for

H 3 a\s 4 7 P 7 s 2o <
the xright hand side, so let us write the above as

L2l 2 1 1 1 v 3P
v~V <0>=—[ Ty " Pt Gp |- (2.5-7)
R S EP A Y CI AR CONRE |

If we calculate this J%iue we find VZ(T)—VZ(O) is

always negative and of'téﬁ,fonm I

)
2.0 2.4 !
vi(T) - vi(0) = ar® ) o

(B

‘where ni~ 4 and.A < 0 (Jarvis et al (1968)).

’ » . ! o : A : K “ . ¢
[ < : : '
e . - ,



(2.5-1) assuming a

One can also proceed from

reduced equation of state
(2.5~8)

. A
S(T.¢(V)) = 85(x)
" ’ o)

1s usually related to the Debye Theta by

where ¢ (V)
1
(V) = o
D
Y but we will not specify thiS(LA
Now '
7 T v oV T
Py . .
which leads to |
LA,
Y NQ_T Vie e 3V2>T
or A
~ Y . i
), - (2
ITL V), av?)
or
el et ], < v(55)
?T KT T) v 3V2 .
Using (2.6~8) we have
C e _ 38| 5x X,
s = d"””‘x‘[('ﬁ’v a9, d") 3%

=3q§WMTWNuV )
¢ T

32

(2.5~-9)

29 (V dV]

/

A
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ds - [,$J ar 4+ [%é] av
Yy S
henee

asJ a6

i = o= (V)

3[; v X

98] a5 _fagpv)| p 38 3¢ (V)

sv}T T Ox v Jr Y [BT}V PYY "
98 N I\2)

oV “v Y .

’l\ Il\

Now our assumption also makes -

cy = oy (Trplv))

hence
[»sz 2en 9 (v) [Bcv] 9 ko ¢
3\72 . \Y i)V’2 :§v Jp oV
T N
A)C — %(:):é:,,’ 3
vl '@ v 8¢ (V)

(502 ey (e, (2462

[azs‘ _ o Py T[BCV) .[8 2n Q(V)}z |
!3V2 . \ oy 2 © (9T ]y LoV o)
Now if we combin&’'(2.5~9) and (2.5-10) and_inte~

grate over T at constant V.and if we recall ¢ (V) and dits
* . t

t

derivatives are approximately temperature independent, then



T 2
N U U W U B 50 B
VoK (T KT(O B v 2
0 ¢ T
T 2 L ac
J RM c. dT + MD___‘R T ___V. AT
')V2 Y v " 3T
‘ T 0 0
and intggrating by parts
2 A
1 1 1 4 &n ¢
v [KT(T) KT(O)] = [ 3\:2 ] j cydT
< T O
) ) T
" 9 n ) _
4 [Ti} [’I‘cv - I CVdT}
0
let
* {I) n J y
\ tn V T
\
'\§ 7 f 7
) &n ¢ Y.
oV, TV
: T
\'\! 7 '
O IS 0N Y § ‘(?_I) - X
\ el A ) Y4 w2
. 2 v T v
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FIGURE 6 .Comparison of the temperature déﬁéﬁd@ﬁée of

the sound velocity using isotheérmal compres—
sibilities as found by Edwards and Pandorf’
(1965) assuming a reduced equation of state,

1 and by Jarvis et al from (BP/aT) measures=

ments (1968)
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This is identical to a result obtained by kdwards and

Pandorf (196%) if ay/sV = 0

2
1 1 v Y 9 ;
( = AU [6 + X\"/‘ - %\X/‘] = agAu . (2.5-12)

L3
If we make the association of ¢ = 1/6 , then y is just

the Gruneisen vy ”

y ~ 1.01 + 0,083 Vv (Ahlers, 1970) ,

Y
hence O
}
VZ(T) - vo(0) = % [pAu]l » 0O ) for V < 24.2 cc/mole
o ;
A i
~ AT for A > 0 .

This result contradicts (2.5-~7) which says A < 0.

Our experimental results agree quite well with' (2.5~7)
(see section 4.3~2, figure 6). arThus a reduced:equa«
t%on of state should only be used with extreme care for

solid helium.

2.6 Temperature Depenaence of the Sound,yelocity'from

Elasticity and Thermodynamic Arguments

By definition, the adiabatic elastic constants

are written

P Bom . . )
c = [5——] (using Voight notation) (2.6-1)
m €n) o . o s
S
~



and the isothermals are

The work W is given by

dw = - (11\
m

Here o,e as subscripts mean
_constant. Let |
. .

(2.6-2)
(2.6-3)
hence
dQ = 1dS = du -~ o de
m m
or
dU = TdS + g de
m m
and 1f \
A = U ~- IS
then
L]
dA = - 8dT + o de (2.6-4)
4G = ~ 0. € ) =~ 84T ~ g ¢
d(A Omgm) ) sS4t Lmdﬁ
- hence
o = (Qé— g j
m N oE
m
aG
y € 0= (= (2.6-5)
m 80m ke
P
y
QA 3G
s=~ (25) = (& :
y 0T e, 3T -
%W o )

holding all g,e

37



.o m) (a8
m e de
t m/
I
) d{.m‘ _ 9s
ﬁl'n ()T Jo
0

where g ~is the thermal expansion tensor.

'is the dilatation.

Hence,

¢ .and T are independent and s and g are dependent
variables
da_ - J0
T m m
= . = — "l m = + r
(1om Cmndg, l‘mdl [l)t.n} dtn {’——‘“;)T ) , ar
T “n
ds = [?S ) dc, 4 [%%} ar = F de  + (c_/T)ar
dLmKT € ~
if c = T{g%}
[ () I
for an isotropic crystal,
Fy=Fp = Fy =k, FprFg=Fom=0,
‘hence
do = ap + 2¢T de - par (m=1.,2,3)
m 12 447 %m ' e
do_ = ¢t de (m=4,5,6)
m 44 m ) ’ 14
“v
ds ="Fda + T ar
wherei ! .
3
A= ] ¢ *
i=1 1 " A

38

(2.6~6)

(2.6~7)

if

(2.6-8)

(2.6-10)
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NOw

9_9‘ 3 ,rds = VZ’I‘
dt dt XV

where y is the thermal conductivity, or

U e 940 . 40T o e
xVor o= ”(;at) ("V([)ﬂt) R (2.6-11)
Now in general the equation of motion is
L2 , ‘ ‘
o :;i J()-i
p o~ -~ —42 = : (2.6-12)
3t2 DX,

where si(x) denotes the ith component of the displacement
of the particles at point x. By suPsEituting the above

into (2.7-12) wg'get:

5

IO Uy
2
K

T
}l W
]

0

(<%l
r*

Notice eqn. (2.7-11) already says that if dA = 0, then
there are no losses to heat - thus truly transverse

waves will propagate without heat losses.

Lets try a plane wave solution to (2.7-10) of the form

8, = 8, exp{iwtjkxl} S,= 8,= 0 A = --1ksi

and © T = T, + Ty exp{i(wt-kxl)} ;/// (2.6-14)
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but first as

ds = FdA + (c_/T)dT

3] as ()ﬂ
5 = o . o "o i o0 "

d (F/V)dV + (Lt/l)dl (W)T dav + (57 v di1

we see that ¢ = ¢, , similarly ¢ = «
t v 0 P

~c, + C() = CP— CV = Tﬁ%:,r . (2.6-15)
where

g = 3g°

leééﬁz =By =B By =By =By =0

Foo= BBT.
where

I S K

Bp = 3 (613 * 2¢),)
the isothermal bulk modulus. Now plugging in (2.7-14)
into (2.7-11) and (2.7-13) we have

2 1~ (ik%x)/we |

. 2 pw ‘ Vv . : .

k® = T S T —> . (2.6-16)
u, ‘1 glcn/on) - O /eey

Now %gt.k‘= kl— 1k2, where k2 << kl' so that
k2 = ki‘— Ziklkz, then we can'Write the velocity v and

. the attenuation a as

o, .
)
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s 2 2
. c. £f° + f
vl R l
)
f VAt FLE
5
2 C - C f £
" sq‘vz(f) [(All 1, 2 ] (2.6-17)
v (0) cll £f7+ £
where
2 s
c,, V c”.
£ o= (2n) * 11
X X T
11

e i
x = xc v2: T (2.6-18)

where 1 is the relaxation time. putting (2.7-18) into’.

the expression for fX we get

s
‘a1,
CT ' 21t

1

&

f = (21) %

j=

Hence,fx is related to the thermal rel@xation time, Thus
at high T the ve10c1ty will be adiabatic and at low. T
isothermal, as TN 2 xlOéész (e/T) Oor at high fre=-
quenciés tﬁe velocity isfisothermal and at 16w fregueﬁ—
cies, adiabétic. \
AN

P g

These formulas are easily made valld for Cuh%C\
: materlals by replac:.ng c11 with c12 + 2c44, however to. :

‘make it numerlcally valld for: hcp materials is dlfflcult

[

because F  and B are matrlces. SO \

s ; B oy
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' o

2.7 SounM@felocity as a Function of Te@ggréture When
NN

Cgupled“to the Localized Temperature Field

The following is a brief description of a series
of papers by Niklassan and Sjolander (1968), and
Niklasson (1970) giving a theory of transport quaﬁti~
ties in anharmonic crystal using quantum statistical
mechanics. Niklasson derives, and then solves a gen-~
eralized transport equation (2.6~1) similar to the

Boltzmann-Peierls equation
‘ ) \\

kY
A
\

A (q:m)
(200-M; (1) 4m, (17 )14«—4— n(w)n’*n(w)hj(q,wiQ Q)

Y

+ iia(qﬁ)gaj=¥2Aj(q,w)n(w)[ifn(w)]H?(qw;QQ)<qu,Q)>
. , N\ e\
5 7 \ (2.7-1)
T \
where  is thé energy of a phonon of momentum q;
B '
2 'is the energy of a disturba§ce of wave vector Q;

tranéVerse): ’;
N

V(l) and (l ) stand for (q+%Q,w+&p) an@\(q %Q{ w=%8)
\} " \

3 1s the mode (longitudinal

respectlvely,

~

A (g,w) is the generallzed sPectral functlon

‘J".\, v

n(w) is the gqu111bf_

occupatlon number;

aj(qm:QQ) is;the devigtion from equ%liﬁ{ium occupé—

'tion‘number’

~

, Hj (qw.QQ) glves the coupllng between thermal mot

/

tlons and lattlce deformatlon, ' ”,' N

L%
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A[.(Q,Q) is the generalized collision operator;
<u(Q,) > is the lattice deformation;
Mj(l) is the diagonal part of the time-ordered

equilibrium self energy. .

We will only be solving this equation in the
limit of low frequencies in the harmonic approximation.
In the harmonic approximation, wj(q) are the harmonic

phonon energies for mode j and momentum a,

N

A5(@0) = 3 16wty (@) + 6 (u- wi(@)) - (2.7-2)

n(Q) = [exp {Hw/kT} - l]“l

. and if we specify @ «< 1_1 << w, wherg/1 is a typical ’ t <\

phonon relaxation time .and w, a typicdl phonon energy,

: then * /

] 2 ’ : :
(1 = w I ‘ o (2.7-
MJ(lf wJ(Q) " , Qk%: ( 3)

o&at@r

: ' ;4 (q) ‘. b
. . °o0 _ih w , 33
H (quiQe) = i (qwaﬂ) = Fﬁﬁ*ia—* Q'g ‘YQB(Q)GB &
Y ' . C a * to ' ! . ‘ ¢

where yJJ is related to the generallzed @}CIOSCOPIC

I , the collis i

L (Q,9) =L,(0,0
aﬁj(pn_) {J( 0)

. e R

Grunelsen constant yj(q) by

| h - . e |
S ) = i3 ;___é_ R ( (2.7~4)
g Y3 gﬁ YaB Q An V. o L

4




kil
q

T

. .
where u 15 the dilatation and V is the volume. For

a3 .

a pure expansion or compression

i

. ] -
) = 3 Tr SNV
Now define the inper product of f and g by -
' .
- : 9 ] da - - - 2
“flgl’ = } J g\-}i J' ,%(l\i) A'j (cp,w) n(w) (,]'*n(u)))f*g - (2.7~5)

Fipally we will separate a function into g, w

and j dependences by the projection operator onto ,w
, Jee :,

as
e oo Jwere] S
. b oKW w> A2.7-6)
) .
then we can write o .
E R -+ “+ .
. ﬁj = jor = lwfaéﬁfiq?,a + (1=P) |a> (2.7-7)
- - .
" fand rééritiﬂq (2.6=1)
, 5 . o -
:ilow "= AG + AT) [;piu \ (2.7~1a)

where G is a’flow term, I' a collision term. Now in our

approximation r , : . | |
4 p) ~ . S s
o 7 : G " 0 w . (q) #J (,'.) 6 \ ) )
= =0~ L2 - ;
Q of Te A
n ‘ ) .
o / ,

¥
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where ¢ - VL (@) the phase velocity . (2.7-8)

g "

It woe now detine

Koo e (60 41 ) (1-p)

and

1

R (AR Gt i) (e

\ B
. ) i . 7 i . . ,
(note: R’ does not exist when operating on |ga> or |w»>

states; in fact Rxllm7 = Rhl]q? = 0 = Rlw>» = R|q>),

then we can formally solve 2_71 by - '
PN | [Nll];"l Fl : ?
% 7 oo mfgf'— 11 ;i o "~ Y "
. N ~ NTTA [N - N
(2.7~9)
\ . . {
I B S A S IR W *
whare - ¢ i: f e
N m[ﬂil*’}ﬁlb)lm’
nto < N01=<ch(1—‘R“l(c+irz))1§é
NS gl arh i - kK er irY) ) g
F_ '= <w| 1 - GR“1|H5> . ' T

1 o » .ou, -1 ‘
F’' = <q!%} - (G-flro)R |§6>
as? - oo : ‘ ?
N v ‘ , '
) & FO = I‘() + 'F:: .
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where

[' I(A) o= )
O

N, »
" 1qgq» =~ Q
NE

u . . :
thus lO represents resistive (momentum non-conservation)
scattering. If we further realize |' > G, in our region
(collision dominated regime)

1 ~1 =1 -1~

T DTS G WS U . —
R [ (1 I)lo(l Py IO IO IID PIO if pI' P \FO

o
(2.7~10)
hence for cubic oxr isotropic crystals (hcp is dealt with

in the appendix)

11 - | 2 u I -
N = [(u+:?f)0ﬁ6 t dopy Z Taﬁ;youyuéjququj
u v8
P = M oBewwa i ' -
L] L]
F =

aB %% Ye11 H‘EG TOLB;’Y<3Q\(Q<.‘S'(<“’l‘*’:qul,q.x>)'32

where
cwlwrc? 1% = %cj(q)wr(Q)r[(l*P)F (1-2) 17w (@) ¢ (@) »
NS S ¢ eI R o T j x :
o
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2 IS
ququ:}clll(l[ﬁ'” = ? {;qu Vm C;{IR I(‘ lq >+
W sow
2 ) 1y .J 2
qu - (,élR ILY wlqt‘/J
2
‘AI ' . 1 () j) Til
((('1‘5(1(‘{)(:“‘“!“”> Cll‘yl«xlﬁ;‘w\ N ’Z{ q(x w (‘YI |YB(\ W !
SIS IT S SNGb I
“(1(1 W Lﬁll( IYﬁY w
RS 0 -1 "
<q ]q e ;qxll'o{l - R o) ]qxz,
\l . ’
(ca [dur<wlwr ) e = ccd (@uw, (@) ] 1~ R Y g
< le x? w { w7 JII My q (;\)j q I Foqu/
) 2 j .
"fu)lm'?f’Y = "fw_i] (Q)I’YJ (q) > - , !
Now 1 i r" p Tfﬁ . arerdifférent averages over the

ision operator and are about the same mag-

nd ¢

e

is the umklapp relaxatiom times. These constants are
calculated for the isotropic and hcp cases for He? in
the appendix.

I1f we define

" <\ 1 ' f o w .o
Q) = S ) Q0 QT L. .
Q4 0By a By 6 aBivd
and
o 1
T (Q) == } @ Q Q 1! (2.7-12)
Lo
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’ o, o . 2 2
then we can write to first order 1in C]IQ the
b
generalized heat conductivity
9%6} 00
! Lt —— i
. 2 2 u o )
Q.x (@) .Q = de,e7,Q 0 SV (2.7-13)
0+ —— 4 1LIIQ T (Q)
' 1
u ’
which in the static case becomes
3 = Q C2 (1 *TOO) (2.7"‘14)
O vV It u )
Notice there is no Poiseuille Flow as we have ignored
multiple scattering effects. The second sound velo-
city, if T <« Tyr Ls.
3 e’
e (q)w,(q) |a, > 13 ]
CIT: X - - Kl;: = ‘3‘ im:g‘ for isotropic case
(’iwlw?*’;qxqu?) i Z CJ
] (2.7-(15)
\

Flnally@ the tebult we need, is the propagation of
flrst sound with coupllng to the localized temperature

for the isotropic case,

2 2
(el (@17

, . K(is) » kCP DX N (Q0)
: = .+ ~— —_—— X .{(Q,f§
%) @? et v )
) = : ’ (2.7-16)
(1-s )[c(ls(Q)lejA+ arg (Q) (Q)

N.(Q,Q) =
_ J(Q Q)

(1-5%) 21§10 (@1%0% + alrg(@n’
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This theory essentially presumes that around

some localized distortion of the lattice, will appedr
a local distortion of the phonon spectrum. These
phonons will be travelling in general with some
group drift velocity v and decaying by various modes
to equilibrium.

The drift velocity in general is characterized

by the following equation

0 gl

_ (,,.&”m w> );2 i o ;f‘ Q)
o <q,fa, > \\ T “n%T

+ 1C 0 ETff%SQ_Q<<UV(Q,Q)>T
I B;YG aBy87y"8 B

. 1 2 ¢ " - A
(=12 4 —] v _(0,8) + c ] Tapy 62y QVg (Q,9)

where the term in 1/Tu is resistive losses, the term

in 1" is diffusive losses, the term in T is coherent
heat flow losses, and the term in ©' is losses due to

coupling between the drift velocity and the lattice

Ld

deformation.
The generalized heat conductivity is

NOO~N01-{N"]QI‘N10}‘

<mlw>

Q--x-0Q=1c/a-

If we use eqﬁations (2.7-12)

50



where

{is)

i Q)

s = ull/(

Qj is the part of the wave that is dilatational;

) 1 y y "o, .
Yg(Q) = §{%* + GfTQZ[lOU+1 (Q)]1} the attenuation of second
u
sound;
QZ
Oy = LA 2 2 oviad o 2 e )
rj(u) sl cQ7t Q) <..1]Qo,jlj(Q) ;
u Q b
K(ls) - % [C‘lS) + ZCS}S)] where supersceript (is) means
: 3 11 12
isothermal;
c = gﬂgﬁﬁfm]m? the heat capacity at constant volume,
\Y% ' 2 |
Mk T
If we assume { ~ Qc}ls), then (1 -~ 52) = %
a) tor gt o, &Tu << 1
2,.2
L ~ ™))" +
g ( ! ' ?g i ] o
Nj - ‘ ~ 1 (2.7-17)
a-sHh2 g2 L
Ta
hence propagation is adiabatic.
b) for Qv << 1 << ﬂTu
‘ 2,2
NS (2 sle -3 \ (2.7-18) -
(1 ~ sT)R” '



Hence propagation is enhanced due to coupling to second

sound.

c) for 1 ~<« SZlu, a1

N U - @) 2.7-19)
J (“%% o))
As 1" (Q) ~ 1'(Q), then Nj(Ql is usually negative.
For Nj = 0; 1"(Q) = 21'(Q) produces isothermal pro-
paqatién (usually Nj < 0 and we never have isothermal
propagation). (Note: for pure transverse modes Qj = 0,

hence N, = 0 and propagation is always isothermal or

2lwave adiabatic as . o _
always adiabatic as 17 Cll)"

2.8 Interference at the Transducer Due to Misalignment

When the mirror and tranducer are improperly

{

aligned, the refleéhéd pulse will strike the transducer

at an angle. The arrival time ‘of the pulse is, therefore,

R e

no longer sharp. Also, interference across the transducer
will affect the amplitude of the received pulse.

Assume an, input pulse f(t) where

) f(t) = A sin Ot 0 < t < T

= 0 otherwise. \
Its fourier transform F(w)
o . i,wT‘ ' : ‘. '
Flw) = f f(t)e*“fat = 2BS . (20 sin 9T - Rcos ‘1) A% .
e - wT= ' w4

Now if our path length is 2d and the pulse

i

¥

>
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‘ } , . . . . th
travels with velocity V, the arrival time of the n pulse
. 2nd K
185 —~ where o is the frequency of the pulse. If
our tranducer is a square of size z, we must modify our
inverse transform to be
7 , s . 2nd, ,sin 2n6x
ey = [ e T VT W
't m W)€ - w .
: ~w S —z/2
if 0, the misalignment is small, sin 2nt ~ 2n0 .
Then
ivA y jwt jwt”
F . L o™ dlw _ ’~ w .
ntt) 2nbz {2ﬂ J m[ ¢ J
a+er T (1w sin 2T - 2 cos “aT) .
[ 3 ) ]dw}
wl{w™ - 27)
wheréd t' =t - (2d + 20)
(l
T . B s
r =t 7 (2d z6)
ot oo , +
e A 0 et L L
Ly = o1 J g Hu
—o w (w i)
If w ~» (o'+i‘?;;/ there are three poles at ~Q-ie, Q-ic
and ~if ‘\
- 4+ —i i +
I1 0(t ) (P§,+ g cos Qt )
1. = - 1 Jw 9] eimtf i _ . -
2 ' W = = - + C
21 o o (02-2%) dw ) gt ) {-1 éos Rt}
. +
13 = Tﬁ- I {1(» sinQT~- Qcos QT}dw

e w (w —27)

P

259 (¢t om)
—

{~cos.QT -~ cos at™}
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i<

l 4 j*im(t “T)
14 = 5T J % {iw sin Qt- (cos wT}dw
w{w ~7)
‘(;(L+ T ‘ -
' : \ - . {~cos Q1 ~ cos Ot )
P £
§ 1VA
where ln(t,) 07 {Il 12+I3f14}
b .
for
1 t < 37(2d120) or t.,» T + %7(2d+20)
Fo(t) =0
for
ST e <1+ B (2a-
7 (2d+zp) - t < T + g (2d-zH)

VA . .+ 3 b
Fo(t) = cos Qt ~ cos Qt
Pp(t) = apgy (€08 0 €0 :

. VA . . _ 2pd, i nozd
Tﬁ(t) = Q*DOZ sin 4 (t T) S1Mn V]

hence the n h pulse is similar to the first pulse, pbut

K delayed by 5%1 and modified by an amplitude
no z§
v
ndzi . .
v

~

Also note in the limit n » 0, § = 0 we get our original

&+
pulse.
However, the start of the pulse is not sharp but
" drawn out over a time 2“59. In this region’

. n P ; _rl .
7 (2d-z86) < t < 7 (24+z09)



. VA ]
Fn(t) 5n02 {1 cos (it
n . .+ VA
at t v (Zd’é”) ’ 1 n ‘2nez
!
4 NN | B VA B
lnlv (2d+z6H) ] = m{l

and thus there is a phase change
the normal pulse motion.
h & 3 z _ t}’l
'he intensity of the n

abeys the following

)

Thus our pulse
similar to that of double slit 4

For =z = 1 cm.

Q=5 x 10° Hz

X

vV = 700 m/s

1
60

o

6 =

The first minimum appedrs at abo

)

§
n n
{1 - COS[\-, 2d+z60 - -\7 2d Z@)]}
,
os ZnZO} VA in2 nfz
o vV 'noz °F v
! '
during transition toO

4

pulse at its maximum

shape is contaiped inside an envelope

iffraction.

ut the 23rd echo

This appears to say that my misalignment problem

(fFirst minimum at 15-20 echoes)
minute of deviation. As the mir

Vdeviatioﬁs of only seconds of ar

’

{s of the order of a
ror curvature introduces

c, it is felt at this’

, | time thé‘misalignment is due to differential contraction.’

i

\\
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This time chandge for the same parameters introduces
an error in the direction of shortest times of %g% or

.04% for two consecutive pulses.
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CHAPTER 3

EXPERIMENT

r 94

3.1  Low Temperature Apparatus

3.1-1 Cryostat

Helium is the only element which does not solidify

”

under its own vapour p;eSsure. The phase diagram (fig. 8)
shows that a minimum pressure of 25 bar is needed tg
solidify He4, As we wishea to study hcp He4 up to
pressures of 150 bar, the cryostat was constructed to
handle He4 gas, ligquid, and solid At pressures up to

250 bar (a safety margin of 100 bar).

Whereas growth at constant volume tends to

prdducé polycrystalline samples, the crystals for this

experiment were grown using a constant pressure technique.

The bottom of the pressure cell .was- conpected by a copper

-strip to the He3 fluid contalner. " The pressure cell was

manual and automatlc monitorxng«of the temperature.

-

thus cooled from the bottom. The temperature at the top

of the pressure cell was kept slightly above the m@lting
Ny

temperature (20 to 50 mk) during crystal growth by a

32Q/ft mangan;n‘wire autéma@ieally regulated heater
runnihg.inside the bressu%e‘capillary. "This ﬁeater
ensured that no solld could fofm in the caplllary and
block it, ensurlng éonstant.pressure grthh A thermom—

etér on the t0p outsmde of the pressure cell allOWed
L]

:”   . .-87 % “ o .
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. , S 3
N Figure 9 illustrates the standard He o cryostat

~.
arrangement while figure 10 shows the pumping system.

\\ ' ' 4
~ The pressure regulator on the He o pot line EWalker (1959))

M- = .

;J%aintains the temperature variations in the pot to a

few mk between 1.4k and 4k. By placing a calibrated

" ¢ '
needlae value on the ballast. volume (Ackerman (1967)),

one can cool the bottom of the pressure cell as slowly

as one wishes, facilitating automatic regulation of

Sorystat qrowthﬁfﬂi .

One f(%linq of thelué4'p6£ lasts for éb@ut 16
hours at '2k. ;ZﬁaQeri‘fﬁéﬂqrowth period can be extgnded
by réfililnﬁ,thﬂ p©£ through the fili needle valve while
?umpiné on thé’Hé4 pot. Although extreme c%réimust:bé
usad, the growth périOé may be extended indefinitely.

A rough estimate of the temperature in the pot can be”

obtained by using a vapor pressure reading oh a bourdon

i

'gauge (model FA 145, Wallace and Tiérman, Belleville,

N.J.) in the pump.line,

5

one filling of the He” pot lasted from 30r60

min. depeﬁdini}on the heat input. The lowest temperature

achievable when the wltrasonics were.Qn was about 0.7k. .

~
i

o 3.1-2 The High Pressure Cell
] Originally, these expeéiments*Weré aimed at

deEgrmining‘&he temperéture dependence of the ultrasonic

attenuation. - This consideration affééted the designrof
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,15. Vapor Pressure Bulb (2" x 1/2" X 3/8")

FIGURI 9
CRYOSTAT
' &
L. Copper Can (22" % 3" diameter)
2. INeedle Value ] .

3. Thermometer-Heater (1000 AlanFBra&&ey)
4.. High Pressure Capillary (3/32" OD = 'R/BZ" D)

5

5. pe? pot (4 1/2" = 2 3/4" diameter)

4 .
6. He Pot (1" x 1" diameter).
i

7. High Pressure Cell (see figure 11)

Ed

8, Thermometer (cryocal 2443,
AR )
type CR 250 ~ 1.5 ~ 40 ~ He')

9. Vapor Prnssurﬁ/Capillary (1/32" OD)

10, Capillary is Anchored to Héq Pot
-4

11, He  Liguid /

12, ‘He’, Liquid

13, Thermometer (1009 Allen~Bradley)

14. Copper Bar (6" x 1 1/4" x 1/4") 7
f : 3

A






FIGURE 10

L]

PUMPING AND PRESSURE GQTABILIZATION SYSTEM

1. HP3 Storage

2. Walker Pressure Reqgulator »
3. Ballast Volume

4. Noedle Value

5. Cold Cathode Guage (H.S. Martin & Sons,
‘ Evanston, T11.)
6. Diffusion’ Pump (Edwards High Vacuum, 350 Watts)
7. FExchango Gas Stc;r"aqe (HéA')
8. He’ otary Pump (sealed)
_ LA _ _
9. He Pot Rotary Pump

10, Heq Exchange and Backing Pump
o
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O
the pressure cell. A single transducer and mirror

symmetry were chosen in that it allows observation of
many echoes.  The mirror had a diameter three times the
mirror transducer distance of about 1 ecm allowing

a

deviations of the beam’path from perpendicular of up to
45° . Typical elastic éonstnnts {(for ‘example those of
Crepeawn et al (1970)) predict deviations between:ray and
’ v

wave normal of up to 207 for longitudinal waves and 35°
iQmeIADSVOrﬁPTWHVES, Thus velocities in crystals of
all Ofiéﬂté%gsgﬁ were obse rvable. The distance from

mirror to transducer was chosen to be as small as

possible while minimizing the effect of ringing by the
ft

transducer,

m

Figura 11 shows the high pressure cell and the

tranducer mounting. At first the transducer assembly

J\
¥
in)
@]
E\

ag hung freely by three Z-inch long br35ﬁ bél

was set at room temperature
14

a thread in plate. Alignment
by examining the echo pattern in xylene and acetone.
Tfhis/syétem did not maintain the alignment to 4k,

The system of suspension was therefore changed

SQ that thqbsuSPendlnq plate was no longer
in but rather held between a 1edge and a- spllt
Cerllp tightly by six set screws. The transducer'
assemblj was suspended from this plate by a set of six
pgsh—ppll bolts. ‘Three bolts pulled the assembly toward
the suspension plate whilezthreerbolts pressed it away
from the suspensipn‘plat;. This system maintained align-
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High Pressure Cell

FIGURE 11
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ment well to 4k, however, repeated cyclings to 4Kk and
room temperature gradually brought the transducer and
mirror out of alignment

It is interesting to point out that extreme
tightening of the push—’pull bolts causcd distortion in
the holding plate which gave rise to interference é[')attérnﬁ
in the ultrasonic echo pattern.

The mirror was a copper plate 3om in diamcter
(although only 2.8 cm was usable by the transducer) and
one~quarter inch thick, polished flat to(Qithiﬂ 3 fringes
of Na light. A range of polishing powders was used
including various qradés of qrit papers, alumdum powder,
emery powder and rouge powder, Aétéf the mirror was

threaded into the bottom of the pressure cell and soft

soldered it was only flat to 10 fringes of Na light
across its usable surface. Th

is corresponds to roughly
3% of a wavelength of S MHz SOunaii; a crystal at 120 bar.
The bottom of the cell (the copper mirror) was
attached by thread and nut to a 12" x 2" x %" copper bar
bent into a "U" and fasteééé>§o the base of the He3 pot.
To the fop of the pressure cell was attached the
pressure capillary. The 32Q/ft wire was grounded inside
" the top of the pressure‘cell;
' ‘he.success rate for quality crystals in this

"cell was one in four at 120 bar and two in three at

. 85 bar. . ' _ R -,

e i hy 4
r
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3.1-3 g'r_‘ygt al Growth

My experience with single crystal growth at 120
bar and 85 bar appears to be slightly different than
growth at lower pressures (for example Crepeau et al
(1970) , Wanner and Franc}g (1970) 'and Vignos and Fairbank
(1966)). Growth from the superfluid phase is only possible
at bressures in the neighbourhood of 2% bar.

o

JThe growth procedure I have followed is outlipned
below, ‘%‘ho pressure cell was brouqht t,o temperature
equlllbrlum by letting it stabilize for about two hours
witg the: sound system Opérating at a temperature about
20 mk above the,me}tinq point. The automatic heater
was then set to maintain this temperature while the low
flow calibrated héedle valve (Ackerman (1967)) in
conjunction with tgé pressure regulator (Wéiké? (1?59?)

lowered the temparature of fe This pot was
3

ﬁ
-
i
sl
e
o
¥

connected by He’ fluid and the copper "U" bar to the
bottom of the pressure céli. Thus the bottom of the
cell was slowly cooled whlle the top of the cell was
kept abOVe the melting temperature for a period of

12—?4 hours'. The longer the growthvtime,lin general,
thg .bett,er quality the rcrYStal. This final ‘temperature
gradlent was then held for another 24 hours to allow
fcrystal defects not in thermal &quilibrium (dislocations,
for example) to move to the surface outside the portion

of the crystal used for ultrasonic meéasurements. The

temperature at the top of the cell was tgen lowered by

v
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slowly changing the settling on the automatic heater until
the whole coell was filled with solid. 1f the crys}al

was still low in echoes further annealing would be done
(a further 24 hours) followed b%rcyclinq down to 1.3k

and thén back ¢lose to the melting point. If the crystal
was still of insufficient quality, i§§Was melted.
Crystals of Oer“SO echoes were kept. Only one corystal
with less than 50 echoes was studied, *D3', as it had

20 echoes of very good pulse Shape. Thié crystal how-
ever, showed a knee at véry high temperatures (2.6k) %hich

may be due to the fact it was not good quality (see

4]
ﬂh
(O}

ctions 4 and 5) .
A ? Z

The rejection rate at 120 bar was threa crystals

out of four, while at 85 bar was one out of three. From

o on

my experience it was easier to g P” Cys
| ,

[

tals at lower

UJ‘

pressures.

Although no direct evidence wad available} to

determine whether the cdrystals were single or not, there

was indirect evidence available. At 85 bar we measured
sound velocitieg that,varied up to 15%. This high
anisotropy is identical to that predicted by Gilles et al
(1968) and?found experimentally AE lower pressures by
Creapeau .et al .(1970), WQ“.er and %‘ranck (1970) and
Greywall(l970) * A&so it is unlikely that crystals with

low angle grain boundaries or dhall crystQSllﬂEs could

. produce overz’b‘ultrasonicaechoes (attenuations of the

-1

order of .1 cm ). For these reasons we believe that
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our crystals were single.

The ultrasonics were left running during growth
to facilitate monitoring.  One observes a decay in
amplitude of liquid echoes until they almost completely
disappear,. At this stage, probabdy, large numbers of
crystallites have formed and covered the mirror giving
random reflection. Then, slowly, s0lid echoes beqgin
to grow (displaced to shorter times). Annealinq;

improves both echoe quantity and quality.

3.2 Temperature Measurement and Control

The temperature at the bottom of the pressure

o
~
~—

cell was determined by an Allan Bradley resistor (100

whose resistance was measured by an Oxford instrument
, /

resistance thermometer brldq? which was rigged for two

and three terminal ruslst measurements, This allows

(T,ﬂ

one to compute the four terminals resistance assuming
the réSiStaﬁCéitO:all four leads is identical. The
resistor was prepared by grinding the ouﬁer coating down
to the carbon centre and then covering Wlth a thin coat
of GE varnish (#7031) and baked at 90°C for two hours.

The resistor was then inserted into a tightly fitted

‘machined hole in a copper block. The lead wires were
’wound several tihes aréund the end of the block, then
wbund around the copper "U" bar, then‘wound sévéral

rtimés around the He® pot. Finally the leads were anclored

“at 4k and then taken through a ,vacuum feed - through Yo
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room temperature at the top of the cryostat and connected
to the bridge. |

The new resistor at the top of the cell wés also
a 100 « AlIGDFBradlﬁyﬁ?repared in the same way and
attéched to the top outside of the pressure cell by
bolt and grease. It was not anchored at the copper "U;
bar as it was used dufinq crystal growth, but was anchofed
at the He4 pot and at 4K. /

The thermometry was later changed at the bottom
of the pressure cell using a cryocal, Inc. éaiibraQEd
resistor CR 250~1,5-40~Hé3 S/N 2443iGérmaﬂium. This
resistor was Coatéd with a mixture of vacuum grease and
copper filings and’ inserted into the "U" bar a&ﬂthé

were calibrated

U

bottom of the pressure cell, The resistor

-

against the 1962 He3 scale and the 1958 lle® scale of

2 ' .
temperatures by a vapour pressure cell bolted to the

L

bottom of the "U" bar,
At the top of the ne? pot &AwOo resistors were

used. One was a roughly calibrated two terminal

thermomeaag‘(calibrated using the boilingvpoint of He’

and the ) point) and one was a simplerlbo 2 heater.

| A 30Q/ft manganin wire‘was placed inside the

high pressure capillary and grounded to the top inside

of the pressure cell. This heater was used in conjunction

with the’thermometer at the top outside of the pressure,
cell in the following manner. A resistance R correspond-
: 4

ing to the desired Eemperaturé is set in the temperature .

s
.

L, ’ ¢

'),.gf .
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Temperature regulator schematic

FIGURE 12
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regulator (fiqgure léf. ILf the coll‘is too cold, an e.m.f.
Is sct up acrass the amplifier (105) which turns on the
transistor allowing current to flow through the manganin
wire. When the top of the cell reaches the desired tem-
perature the\e~m,f- qoes to zero and the transistor shute
off. By ChOOSqu the time constant properly, the cell
can be continuously cooled while\maintaininq the temper-~
ature at the top of the pressure cell conf@ant. The
"Manual-auto"” mode switch allows the proper settings to
be Qorked 5ut, without damaging the crystals.

1 would like to thank I§$ Vienneau for helpful
| discuseions‘whicﬁ;led to the use”bf large temperature
gradients duriﬂq annealing.

L

The calibration technl%pe for the lower thermo-

E

meter is agcurate to 10 mk throd@hout the range of

A i s
B :
K, .
¢ ; 4

3.3 High E&Eﬁsure Gas Handling Equipment

measurements .

. The purity of ﬁhe helimm?gas geed isiimportant
for many~types of g@éSuremen; on He? systems.\ Pdrifying .
by super—leakiis pndouhiedly the best method, although:
'second,sound has been observed in He4 crystals p eba;ed

./

afrom gas evaporated froﬁ liquid heliur. For

asuring
sound ve1001t1és, such hlgh purlty is prob ly-unnecessary.

Plgure 13 illustrates our gas ‘han ling procedure.‘
The system was flrst evacuated then commer01al grade-

He4 is fed lnto an~act1vated charcoal trag cooled by

¢
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’ 4
and, other materials
5 . The

1

remove water vapor

nitrogen temnperatures
Ctrasmitteg

t.o
pressarg
180 l)dl") -

nitrogen
Faguid

Liquid
Freoze at
thrbuql a
groeater than
trap and

nitrogoen
Fimnvally the ga:

again

prannedd
Lures

frreeis

that will
1t hon

hplxnm Wi

(necossary to achicve

he gas was thoen
thaermal

to a

fedd
aquilibriwm,
till

trap
then storad

The

to reach

through a liquid He
The gas was

al lowed
fod
being pumped away after warming.

was slowly
eqlilibrium was reached
I
LY
purity of gas prepared in this
3. 4
He  in He (about one .
way was found

thermal
¢

residue
limit
iatural abundance of

prao Earwd in this

‘with the
idenl
for

The
and

1s the
A o
in 107) .,  The ga:
r the growth of single crystals

und . velooidtios )

ficfﬁry
of 80

WHY

fad

Jpart

"M

natls
@

the mQasurcment
(X—cut) o
ted wlth

The,

itudinally cut
© coa

lat to Ohé part in 10T
DO A ) of evaporatﬁd alumlnum.
etalOn was chosun to be

C quartz trﬂﬂﬁaUé
thin film (,GOﬂ]A
’f ;
ju@ncy for,th ]
‘,.4‘ i"‘:‘.‘r‘ R :\ .
N3 ‘, o

tal
Phc etalon was backed by a-brass. piston polished -

LA
T furuiame
5 MHz . C
flat by hand to &k a frlnqe of sodlum light over 4its =
The backlnq plStDn is
/:4.

i

]

N
-

(1 2 cm) .
1nsertéd in a teflon sleeve,

éntlre backing ourfaCe

2y
s
»

about: 2,5 cm long .and ‘i

@t
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The dihmeter of the piston and slecve is the same as

that of the ctalon (1.2 cm) . The piston 1s spring loaded

into a large bhrans oylinder (2.5 cm in diameter) .. The

brass cylinder and piston were hand polished in g special
' ~

assemuly over 5 omoin diameter, so that both pileces could
. R . . A

be polished simultancously without rounding at the odages,

The two assemblices were made {lat to about 2 {ringes of

"Ma light by polishing with various alumdun, cmery and

rouge powders,
/

The assembly was fronted widh a E@sc flahge.

A

2.5 om in diameter and 1 om intarior hole, 2 mm thick.

This brass flange was placed agalnst the transducer to

of" the flange was slotted six times with a. file ?OV N
V?r@duéﬁ radial slégsj;béut20?01 om inféépth. Théi
purpose of éhe'slofsvwas ﬁo prevent liéuid gelium;ﬁrom
being trappédféioﬁé*to the transducer:l 1f this haﬁ%ens
the 1iqdid may }réeze later tﬁén;t@@_rest of ghe-crystal

_introducing possible'deféﬁts close to the transducer, ‘

oriéven'ﬁbt fredzing at all.

Tﬁis asééﬁbly was then mounted by push%pull'screws‘

“to anqihér,ﬁssembiy describea in section 3.1-2 and is

14

v
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Lilustrated in tlgure 11,

o

3.4 . ~2 l‘,l:‘(fi}"(’)l)i(',‘.
A Llock diagram of the clectronices is illustratod
in tigure 14. The pulge originates in an Arenberg

p'\ﬂ se goenerator (MOdel PO=6500C mod 1D ADDSD ON704) which
is pulded by a Hewlott Packard (222A) p\ll(gi(" generator,

The radio frequency signal was then matched by a stub
matching network tsnmmh a teo,  One branch of tvl'w tee
travels throuagh the h); pr<1iur< capillary and connects
to the back of the piﬂt@ﬂ in the etalon asscmbly (section
3.4=1). The other branch of the tee takes the ﬁulSé
through an Arenberg tunub]r preamplifics (PA 620 0N 3128)
and then through an Arcenboerg Wide Bnﬁﬂ Amplifiﬁr (WA'CGOxE

SN 298) . The final result is didp]ay?( on Aa Tﬁkt’?flx

-8

trigger of the scope’ wore trquézed by the the SE*%

&

pulSé from ‘a Tektronisc Time Mark Generator (type 184

‘SN 565§)£ The time markTganéath also produces.a. ...

~
At LI

secoq@'tfigqer pulsé cohefent. to the*first‘phlse to’

'_one part in 107 It was found that the 1nternal delay

trlgger and the internal normal trquer had variable

drlft of + 3 ps an.hoqr. ‘External trlgqerlnq ellmlnates

/ ,
this source of erroi . =

O L P SR s
\

~ : 3
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Firgure 14 is o block diagram illustrat 1ng the

clectronte contiguration.  The coheronce method of
measuring the velocity smploys the fact that i chandge

oo velocaty changes the start time of cach pulse.  As

the pulnes are all start Ing with the same phase, the
fleasurement of “the change in phase at a given time from
the farst’ pulse will be an indicat ion of the change in

‘velocity.  The p'tP pulse will record a change in tinme

2nd’

,,f’ i
) v

where 4 is the distance from transducer to

mirror and V  is the velocity, The larger the .n, '

. ¢ '
the larger the velocity change, Sensitivity Fﬁ,t@éreforé
enhanced by using later éghﬁﬁs,,unfortunately ttenuatiion
limits the echo so %ho5(n torabout’ n =,15 to 25. The
timo chosen for watching phase shifts must be vary. stable

i -

relative to the initial.pulse time. This accounts for

. ’
energy at the qunurator to sound motl@ﬁ in ghé crystal,
:TI. aobuﬂt;c mismatch betWULA§SOlld Hﬁq aﬁa %uartz )
is qui§é hiqh (about a faC£©£:100)? The transducer ‘ ‘ |
is equivalent to a 1 MQ ;;esistcf in a sériés with \ - '

12 : N : B,

a 20 pf Capa&itori The high frequencj line in the

~

high pressure | tube has a transmlsslon 11ne 1mpedance of
e ]
100 €. Dhe-output impedance bf the' pulse osclllator ‘

cis SOEQ. The 1npuz impedance of the ampllflers is’

90 Q.\ To match the cable in' the high preSSure tuhe to-

the transducer aireqtly would‘be;very d{fficult as we;i S
! ) ST . 7/“-““‘%' i .o P
. “a o . /"' .o v L s X ) ‘



B

asoonly being exact at one frequency . The method which
Jives qgood matching vit hout beang texribly Sensitive to
frequency 15 the stgl mat ching network lu’*'lnq COMpOsed
of three lvnqth:i‘nl cCable like the letter I with
input and output at the two vertices.  The theory needs

the length of calyle betweon source and receiver to be

”
comparable to the wavelength of the cable.  For our case
the wavelength was about 40 m  and the cable length
about 10 m. nach of the two hﬁnqinq ﬁabiﬁs woere terminated
with a variable inductor in parallel with a variable
;%Fifiﬁﬁf, fhiﬁ allowed the network to be matched with-
out cutting the cable, The *silutloﬁ for she input )
jmpwﬂaﬁﬁ; Zi ©f the petwork for a 16ad zif and dable
léngth ‘}‘ fjd WHViﬁgféth Kk 1s

fy 7 %6(1 B v
where %ﬁ is fhﬁ impedance of the cable ;‘%iﬂdlé étubg
matéhiﬂqﬁié a 'm type network, WhilérdOleé stub

. b ‘ A
; ﬁatchiﬁq is a ‘It typé:nétWGrk. Although the valués
kcén be woriéd out 'in thvory, the varlogé 1mpédances are .
not woll enough known to he' alculatcd in pragt ice, T@us
we used a dOuble Stub matchlnq %thork t@rminated in

-an varlable Cap¢C1tors ‘and 1nductors. . ,vk&’ B QI oL

X i{f‘ Tt was found that the matchln; nglng the largeét
echoes would change with. temperature Although—the ‘ :v':

Vgloclty measurements werg not affected by this, phe- ‘9
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attenuat ion measurement s were made more ditficylt,

.4-3 _Mvtl}nﬂ

The first step an measuring velocities was to
calibrate the distance travelled. This was done by
finding the time of flight in our pressure caell at

VArious pressuares in equilibrium with exchange gas to

\ .

4 } - . . .
the He  bath (4.15% K)°.  This result was then compared
at scveral pressures to known velocities in the ¥igquid,
Ahe results are discussed in 4.1.

Thé pulse echo method was used to calibrate the
B distapce as well as to establish the absolute value of’
the velocity in the ﬁﬁliai The transducer was excited
Aith a pulfﬁ f’}m th :ﬁUISé qéﬂéfﬁt@fé(?o to ?OOl%pp

4

1

>
O\

for 5 to 5 ps with a repetition rate o 5 per

0 uls

L 11‘

i

U‘

cond) . The transducer then mechanically vib rates at

ﬂ\
!

lA{ through thV'ny»tu] which

ducear,

reflected at the mirror and returned to the trans

Ly ¢
7 »
£ 3
fo'l
i
vl
o) 7, [
i
{aN
o
2y
]
(@]
for
-
el
<

Zﬂ\

Part of this pulse wa%'Ehéﬁsrefléet@d ‘and " part transmitted
to ‘the recording equipment. IF one then rectifies and:

~integrates thqrsiqnal.usinq a gate of about 1 us,

#
.

in The

‘'one gets a séries of pdlses out as in figure 1

“V time délay between each pulse was?méasured._ TO calculate
'fz’
. the averaqe txme of fllght, a léast 'squares fit to 10
( n +
e or 20 echoes yielded most aCCurate;results‘(this me thod
[ SN f ’

tends - to,nullvfy SOme systematxc errors compared ‘to a

i e

ean, for example); Ringingfof the tranf*

; . i . .
tr = f : L i : ", €
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vvause ©listortion in the tirst few echoes. For this
reason, d2tooas bhetter to take measurements on later echoes.
Wer chose cchoes around the twentioth for almost all
e a5 reament s,

Once the absolute velocity has been determined,
the phase comparison method can be used to determine the

change in velocity. #for this method a pulse with good
it
i

shape was choscen and one with which the radio {requency
signal was undistorted. The amplificr was adjusted to

trapsmit a non-recfified signal and then part of the

P
»

~cho maximum was chosen to be ceptred on the scope. pe

(0.06 ~ O,ipﬁjﬁ%) qave best results. lN%fmjliyr the delay

was in the 500 us region (the twentieth ocho), At our
A } R 4 )

_ . e L =7 i . o _
frequency a period was 4 ral0 seconds or two to four

cm. on our scale, It was found that the signal could
" .be read to 1/§0 of a wave length. As the temperature ,

] ‘ , _ o A
was. changed, .the pulse would move to lower time of

¢

flights and the ‘change. in phase wes yecorded. As: the
T . \ Ya 4 ‘
cﬁé%ge in phase is proportional to echo numﬂ.ﬂ; this .
. - ' 1

- had to be taken into apcouﬁt—ih tHe calculations. The
aPPEﬁdix~conta}ns computer programs used in the numerical
e Ba o -

Y P . \ ) .

N . . : \

A



analysas,

$.4-4 Frror Ii\/qluut,lun

Frrors an the pulse—ccho technigue came mainly .
from two sources:  variation in pulse shape and® the
”
linearity 1In the delay Arigger.  The 'AY scale was
\ .

maint ainad on onpe scale to prevent orrors by scale
changes, A typical time of fliqght was 25 ps, s0 to

see 40 ;')\l]:i(‘:} ones had to bhoe on the 1()();.5/(‘[{1 calos The
linearity in the™lelay triagger is quoted as 0.5%. Frrors
in the pulse shape were much fiore qifficult to ﬁﬂ31y99n
That part of the puls@ shape error that is systematic

can be removed by taking a least squares flt to several

sampling time aro m

fully ringing eoffocts wore S
pulses at?least 15 or so f

r
. ) - d
is a p()SﬁlblIlty of ﬂ](‘ 2

.8‘_-,7,,,, =

prcpaqated leﬂq wltzf thtT A)r

/,nﬂ(.

ec. /1 16nq1fud inal pulsé?
’Thls is very dlffLﬁ*ﬁt f@ m%movéé Random Séattcr . "
y L

&£
from thc sides of éhe bomb e@l As thL CTfCCtS of

mlqallqnmﬁnf ane (i)ffr‘agtlon also w111 coptribute to
errér.* The best Lndlcathn of err@ﬁ, 13 therefore, the
ﬁ'
¥

standard dev;atlon of the least squar% flt to the echoes ey

normally about 3%. As .the error 1n the (istance callbra~
tion is approxim@tely 1%,'$he to@al errofs were probably

about 3.5%. _ Y

[} it ,
' LN ’ -

=




The 11
toechnigue wer e
tr1ggers, the
and the distor

FFor a

2« 1077 5CCON
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t .
mitations of the phase detection
- L 8
the ftlutter time of the oscilloscope
period of the radio frequency oscillation
tion to the signal. - N

frequency of 5 MHz, the period is only

ds. If one can read the change in phase

to 1/50 of a wave length,one can achieve a precision of

-9
4 =~ 10 S e OO

€
ki

2.5 = 10 b poec

The flutter of

an error of .1.
temporatures t

" be slightly di

Some systemati

using higher f
li;itéd by;SCO
querposgiion
accuracies of
method can be
and using two
private coﬁmun
;élso. J Hold

1arge number o

d5.  Compared to our mean flight time of

, 7 B 4
onds we have an accuracy of l.G/S 10 .

the delay trigger is 2 x 1077 which gives

7 x 10;4, At low ampiitudes (at low:® .

he' attenuation was hlqh) the signal would

ﬁtbrtéafﬁéfhéps dOUbliﬂqfthé quoted error .,
o . A
C orrors are not important here, as we are

requencies, but this would still be
S

pe flutter (5 x107°). Th'e/péase

@echhique is even Bétterhéllowing
lQ~55t0710_67(McSkimin (1961)) . This
extended'by integratiﬁg’over the spec;rnh
pulses, orme sllghtly delayed (R. Wanner —1
ication). stng mcre pulses, is posszble
er (1970) has devlsed a method usfhg a:i

L,
\
f pulses prOperly delayed and 1ntegrated

"

)

I

e



to accuracy

ot

10

-8

MEang 1nvestigated,

-

All these methods are presently

although the latter would cause

® overheat ing in the sample. g

3

”

84



CHAPTER 4

‘f PEGULTS ’ .

. , ) ] ) 4 ) o
41 fluun(i.V«"l(')vM'X in Fluid He ' as a Function of Pressure

In order to calibrate the distance between the
transducer and the mirror, the sound veloclty was me'a:surwq

from 25 bar to 135 bar in the fluid at 4.15k. This
»

velocity was tten compared to the corrected valuesa of

Vignos and Fairbank (1966) from 1 bar to 50 bar in the

region of ‘overlap. : ' ¢ .

The pulse echo method was used to measure these
o #
velocities. A sound pulse was sent out from the

LI

transducer to the mirror which was reflected back. The
electronies detected the echo as well as gp¥y further

echoes and the echo train was then displayed on an

oscilloscope (Tekt éﬁix R 5656). For a more detailed "
d?éé%iptifﬂzéf the tééhﬁigué sea section ?.4;3,‘ o
The high préssureVCel};was maintaipéd g%al
égpstaht temperature b% tﬁé%mal coﬁtaét via ﬁé
" exchange gas -to a liguid heliﬁm bath at 4.15k.7 Théi
data of Viénos and Eairbagk (1966)“was extrapolated to
4 15k, using a éuadratic fit to their data at from .5k ;
Toa

to 4k. Then a correction of + 1% "~ was added to
accoufit for a systematic error noted by Wannegr (thegls,
197Q) a d Abraham et al (1970) . 'Using these values in

\

the reglon of Qverlap, a value for the distance was

! ;

¥

determined. .
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2%
Bl

I1qur< 7) shows the' resulting calculated

- . - i * . )
velocities plotted with

the

FFairbank wvs {ho square root

iy

straight line.

s/

Table 1 lists the

]
-

of .experiments., The best

»n

A

to the pressure P (bar)

Vo= Aj t A

A = 138.66

A, = 47.218

r b

" 4.2 The Eche Envelope

r
,The

A

r

results of Vignos and

87

of ,the pressure. .

Notice that the relationship is roughly a

i
i

esults of the present series

fit of the velocity V{(m/s)
isg
C AP
1Bt Ay Lo
3
. .
7’(

A, 2. ~0.472669

echo pattern in an absorptive medium with

v, fie f

properly adjusteds mlrxor and transdugvf $hould be

dccaylnq exponential, Th

/

¢t

».

décay rat is ‘arr indication

5Of‘%hé ttcnuatlon in the maté

F%@Ure 16 (top) shows the echo pattern for

acetone in our pressure cell at room ‘temperature after

[

alignment at one atmosphere pressure with a separation

-

between transducer and mirror of 1.46 cm. The velbcity

-

at these temperatures is about 1200 m/s> and the pulse

can' be seen

for abbut 3ms .

(A

.
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TABLF 1
Pressu (Bar) Velocity (m/s) 4 )% .
—— — b
130.6 615.25
100.0 561, 37
L 99 7 ‘55935
77 .1 511.67
* 47.6 439,74
47.2 439.58
39 .7 415.39
39 .6 413&97
34,1 397.11
Q1.0 .396,97
< 28,8 377.72
A
; h )
o
?\‘ i
|
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FIGURE 16 Echo Evelope:‘at{.,).xpper; f‘orr acetone at room
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L4

" volumes cqrrespond;ng to melting px

.120 bar ‘and ‘86 bar.

7 technique tJ an accuracy of about 2 x 10

'@édhﬁi@ﬁéé,,and the method of cfystﬁllgrowgh are out~ .

ke

FFigure 16 (bottom) shows the echo patt cin tor
4 - o L _ ]
hep- e at 3.7k and 120 bar for crystal D4 The maxima

and minima correspond to interferenee as prrsi(:tf‘d in

section 2.8.  Thero is not complete oxt Thetion becausie
of attehuation.  Thus, oven though the coll was properly

aligned at room tempoeraturae, the cell was unalaignoed o

3.7k. . T , id

. L ) . , ,
Frror ‘due to curvature o! the mirror will only

be of the order of seconds of -ar o whereas actual mis-

ali‘qnmént is Of the order of minputeées of aro., At present

¥
it is presumcd that differential comraction causes the:

- A

misalignment .

4.3 vVelocity as a FPunction of Temperature in Single

Crystals ofﬁthhHeé

f

“ ;/?~ : »'Thé velocity as AW ct;un Qf twmpnratu re ‘in

A . ; ,
single crystals of th Ha has been measured at two

5 R

[Fy 2

: ,The initial velocity was measured by the pulse

refleésion method to an accuracy of about 3%, The change -

in Velpéity was then' measured by the phage éémparfsbn—fi

‘ Ll

-

é- These

3 ,
llned 1p sectlons 3 4-3.and 3.1-3. ’
» : ' 8
.nf o Flgures 17 to 26 are. graphs Qn 10 of the 12

e

|
c:ystals measured The reLatlve velocxty is plotted
- SR ‘_3' -
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against the absolute temperature. The relative velocity
is the actual velocity divided by the velocity at the
coldest temperature,

%ho crystals arce numbered such that a different
letter implies a recyclying to room temperature. Thus

-

crystal E2 would be the sacond crygtal grown during

il

a specific cool down period. F2 would be the second
crystal grown during the pext cool down period.
f '

Most of the Crysﬁaié grown, show an ébrupt:change
in slope in the teﬁﬁerature‘depenéénce of. theyveIOCity,
at about 2k for Crystals atrl20 bar and at 1k for
Crystalé grown at 86 bar . We call this point the anomaly

or knee. At temperatures hiqher than TC (the tempeféture

f the knév) the veloclty roughly obeys a pow&r law of

<

the form

where n ' israbodt 4 (as pr;dicted classically).

At temperatures'below T4 the vélocity is
constant. Not all érystals grown show the anomaly (for
example, crystal A3). However, the crystals wlth the

most echoes appeared to have anomalles. a "o

Comparkﬁon .0f our results with various theorles

will.be given in the next section. Complete data on our

i

crystals are tabulated inrthe appendix.

It was a possibility thdt the knee was caused

by some"defect in the measuring apparatus. That is, the.
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. essentially identical.
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; -
v

réason the velocity remained constant wasﬁé§g5$$c the
temperature of the crystal was pot changiﬁq; *
Firstly, it should be noted that the pulse height

(that\is, the attenuation) did not reach ap extrema until
-1k or -2k lower than the anomaly. This is evidence of
the température changing after the anomaly. Secondly,
the crystals grown at lower pressures ﬁéve the anomaly
shifted to about 1k. It thus appears that the cryostat
does achieve temperatures in the crystal lower thanjthe
anomaly . v s ;7

| It was also §0531ble”that our sound beam was
heating the crystal to- the point of ﬁhking the temperature
roughly éonstantﬁ This heating, in general, would depend
on the conductivity of the crystal and thus mioht be'lnr
a differént spot for different melting préssuresi

The sound beam,was 140 vrms for 300 us per

second and at a steady current of about 2 mA for a duty’

' cycle of 80 j watts. At 120 bar the thermal conductivity

at 1k is about 10 watts/cm°k and at 2K 'is abOutVO.l

watts/cm°k. In our cell there would be created a temper~

ature gradlent of about 1 Mk at 2k and 10 2 mk at lk.

4

To make sure heatlng frOm the ultrasonics: was
‘ ]
not a probdem, an experlment was done with the duty

cycle reduced by 100 (figure 27). The two‘curves are

L 4

3 R
A e



103

‘ " I { I I
1000 - = Qs O & 0AO0 . .
. 20
B
oo o
0999 " - { A _
¢
i IS L.
N R e
X .. ﬂ” O
0.998 |- %o B
o RELATIVE VELOCITY A
= AS A FUNCTION OF P
g TEMPERATURE
— 09971 CRYSTAL F3 A s
; .119.2 BAR | 0
V(0) = 7468m/s(+27) A
’ O
0996 - O 84.04 Watts Power Dissipation O - —
A 086u Watts Power Disgipa'fion
A
0995} * -
. A
A A
.l L . a |
0- 1.0 20 30 ., 40
TEMPERATURE  (kelvin)
. FIGURE 27 Relat;.ve vSeiocity as a functlon of tem-
. - perature for crystal F3 at two dlfferent
' ultrasonlc :anut powers. :

-

L



LO4

TABLE 2

(‘rystal Q:)fii(l\ll;; P(}ig‘iﬁiﬂn Pressare
(m/s 17 3%) (+ .1k) (Bar)

A 758.9 no knee 121, 4
I 736.3 2.3 119.5
D3 VA 755.0 2.8 ’ 119.,2
na 7450 2.1 1196
DS 751.0 2.3 119.6 .
E2 757.0, 1.9 19,8
F2 717.0 1 8 119.0
F3 747.0 & 2.1 119.2
G1.2 778.0 1.2 86 . 2
H2.2 2 680.0 1, 86,6
12 669, 0 1.1 86,4
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Thiis cxperrment woan| done ogs cryatal B yoabout
voday s apart, Anncaling mipht acoount tor the ] ignt

Gt ieronoe hoetween the two roysitala At S S
: C

A tactor Jn tavour Of the o foct bheing real i
that A3 docs not show the kheeo  Parther there s large
N ' i
variation in the knece positfion as kllustsatod in table 2.
£

ok

4.4 Obseaervat i}'m:’% ol the At {anuat i‘ux
To my knowledge, thére 1s only one ment i on of
P the attenuation in an ultragonic expoeriment (Viqngs and
Fairbank (1966)) in which an upper imit was p]a(i:(;(i on
S L . N g T
the ;At't’f(?nu}‘ﬁ,,lﬁn of order ) to . om at 10 Miz .

7
over thelr measurements in the sofid from.1l to 1508 bLar. ¢
, "

{ .
No accurate measurempnts of the atténuation

nelghboring, echoas wou ld
,ajianéfrthaﬁ thé first
of temporature. Al%g, a
genefal deterioration of pulsie éhape'éonsistently
occurred at low temperétdres (but pulée;shapé’was
recoverable when the crystal yas returned to higher
temperatures) . |
b Oﬁé of gur crystals (¢rystal A8) had' very
small misalignment as well as|a 1&rge number of echoes
:(140). If we blindly apply alleast squére fit of the

i

14 [
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CRYSTAL A8
1208 BaR ,
37K
ATTENUATION - 007 cm”! !

»
CRYSTAL A8
1208 BAR
13K
ATTENUATION -~ 0.56 cm"! N .
E
A
‘SQ\X
3 4
FIGiJRE 28, Eého Pattern for crystal A8 at two
temperatures. m
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forrm

f(x) = Be PX

to the echo pattern we can get a rough idea of the

attenuation and how it is changing.

&

Crystal A8 was one of ‘the first crystals in
which a knee was observed. However, as thkaresult was
~unexpected, proper care was not taken in the velocity
K mgasurement and systematic errors occurred. There
T was left a fine integrated bulse record, fortunately,
"and that was used in the present analysis.

"~ Table 3 shows the values of the attenuation at

1

N the two témperatures measured (figure 27). If we view

~

these figures as an upper bound, the attenuation at 5 MHz

and 120 bar in solid He? is about 0.07 en™? at 3.7k and

0.56 em™ at 1.3k. This apparent increase in attenuation

was observed in all crystals except DS szhéré a small
peak may have been obsérved near 1lk).
| In érfstals showing a pronounced anomaly, the
Q attenuation increased verylrapidlyxin the knee region,
and. then increased more slowly tovléwest tempérééures. |
2 r | In all cryétals the a%ieﬁuation chénged by about
a factor‘of 3-7 from the melting point}ﬁo .75k. ‘ '

®
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AB

AB

TABLE 3

Attenuation Echoes
.068 23
o, )
.56 4
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CHAPTER 5 .
COMPARISON OF RESULTS TO THEORIES

.
5.1 Sound Velocity in the Fluid n

In section 4.1 we showed experimental results

' giving a pressure "P" dependence for the velccity

@

" wn O f

W o P!»2 .

(5.1-1)

In a corresponding states treatment we can

write for He4 -

RT 2

W = Yo g (aFrRrecrpalamsees ) L (5.1-2)

where pP* éjiﬂ_= o3p/6 for Le;nardeénes Potential
of type ’ ? - ! ;Q
T e
v L acio/mt? - (o/m) 8 .% " (5.1- 3)
A i : &v3

For He4 it has been determined from*aepond v1r1a1

coeff1c1ent data (leschfelder et al (1954)) thana

-'87.4 527 = 89.1 BAR . . ‘ ’
: cm ,

In the limit of P* = 0 we should get a value

for Y, that is about % (normal for monotonic gases).

Y o MWE(0)
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This particular treatment also assuﬁes that . P*
is small. 1In our case P* ~ 1 and as the value ot vy -
is not corréct, this simple picture muét be abandoned.
De Boes and Lunbeékv(1948)‘iutroduced corrections 4or
' !
quantum behavior by introducing an extra expansion'in,
h .

the quantum parameter A* = = 2.64 for He4 .

v me

Because A* 1is greater than one, this expansion is

! ’

invAlid in our case. j

In a aimilar.fashiou, all the simple thebr;es‘
which I have examined dealing with dense fluids, 1nclud—
‘ing the above and the solid sphere avalldble volume
theories, give bad results in either the PVT relationf}
or in the pressure dependence of the velocities. The
theories in general predict higher powers in the 'P'
dependence of the velocity Kiike P3 in the Carnevale
and Litovity (1955) theory) a% well as muéh smaller
changes in velocity with P than observed.

From the above, I éonclude‘that alproper under-
standihg'of'the velocity dépendeupe in fluid He? under
préssure will depend'on the development of a more exact
»theoretlcal treatment which takes 1nt0 account quantum h

. effécts lncludlng short and long range correlatxons.

&

5.2 Theofeti¢élfTréatmeht of Velocigy Results -

,.5;2.1 Introductlon ‘ '. S w“ o

. -

Flgures 17 through 26 show the. typlcal behav1or o
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of the relative change in velocity. We will first try
to explain those crystals showing the anomaly and then
those which do not. The temperature where the abrupt

»

change in the rate of change of the welocity (the knee)
—_—

will be labelled T..- This temperature, although not
clearly défined due to discrepancies in the veﬁocity in |
the region of the knee, is called 'I‘C for conveﬂience 6nly}
We will examihe the data in two redions T > TC and
T < TC. Above‘Tc, the velocity appears to'ﬁe adiabatic\
-and reasonably classical. Where T S}Tc we believe
that coupling between the temperature field and the
lattice field are taking pléce. One could alfernately
say that, in this region,:temperaturg.di%}efgnces are
nbeing equalized 5y coheri!g propagation inheat waves,

t

- .rather than diffusively, that is by second sound,
Notice figure 29. The second sound region -

i

ng}mally occurs for a T such that

o ' << . .
-, Q_TN <‘< 1 << QTl} . / |

The knee 4ccurs routhy at QT 21 an indication
that second sound propagatlon may be the key to under—

standlng the, anomaly. - ‘ R

5 2.2 Ve1001t17Chaqge When T > T SRR /(
- Sectlons 2. 5 ‘and 2. 6 glve detailed theories for

_c%ass;cal behavxor Qf assolld;-~§p;efly,‘1 w1ll/mentlon
their basic conclusions. |

v
|
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Classical theories all sEate that at high enough
temberatures (or low enough frequéhcies) all sound motion
will be adiabatic. Whenever a longitudinal wave is
excited it produces compressions and rarefactions which
in turn produce temperature gradieﬁts along the path of
proéaqation.

For example, a fluid with cross-section A to the
normal of wave propagation, has, say, created a temper-—
ature gradient AT. Then the amount of heat Ql flowing
across a cross—secfion in the time the wave travels )\/2

is \ -

— . 20 . . A~ AcAT
Ql Kx’_)\ix}\“w V

Now the amount of heat required to equalize the temper-

ature 1is -2 : . #
¢ . A c_AAT :
_ AA 1 m X . . -2
QZ——?fvﬁxjAT ~]R-—Vm o (5.2-2)

-

where « 1is the, thermal conductivity\

c_.-1is the heat capacity at constant presbure;*

Vm is the molar volume; < \ ﬁﬁt
vy is tﬁe‘Debye veiﬁcity.
; 1 € V%‘
, Thus if w << 7 VBEA"the propagation will be
e} o : N : m ! -

' adiabatic as opposed to isothermal.

'Now

(5.2.3) .
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By (5.2-4)
"

O

v
RA

£
ENIW

@]

u,

From thermal conductivity dath -we kpow.that
wt o=l at 1.1k to 1.5k for 5MHz at 86 bar
3 ;and 1.3k to f.?k for SMHz at 120 bar.
: F;qur%‘Zﬂ shows méan ﬁree'patﬂsﬁé£ 86 bar. }Thus for

-.

T » 1.7k we should have adiabatic propagation.

, v /
r . 1 Lz
2 V2 “p. - ,
Y (1) = (T) + o {T) (r—— - 1) N(T) . (5.2-5)
‘, ‘ . Sv ot
PO - / 3
Writing tho vechxty 1n the form dlscussed ln section 2
we rec 11 that V(T) is - adlabatic for N(T) = 1 for all
) A ,
theories. To get an idea of the form of V(T) lets recall

equation (2.5-12) .
LU R Te A a1
! VKq(T) 'Kq(o) O \{ v VA

all velocity measurements are made at constant volume

s0 .that '

: 4 £ o
U-u_ = I C,4T a T  _ for a.Debye solid .
B (o) I . B

¥ N c

If we assume that 1s,roughly constant in temperature =

iy ,~‘ ‘&
‘we can wr;te the adlabatic veloclty as
' vl =:A 4+ BT .o S
‘ a ) : '} L.
R
, < EU ) . R
. Further, “15 thermal velocity
v ety . NREELY I o Leg o '
i N
‘\ i
, : ) /. Is
" 7 . -

. ) , " 3 . ' . T
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A + BT4 -

1

;ﬁ' - 4 ‘u ¢ {;7,,?‘;’.“ T ‘ o
oy :.,'%{::" P & )
"#l& €hown in section 2.5, helium does

5

not appeaﬁ

‘té'bbey a reduced equation of state
for the velocities. However, it was determined

that in the region T > Tc’ ,

n
V (I> (li A 4 BI

~

where n varies from 3.5 to 4.5.
0

"If, as in the Debye model, we give v v the

T “a’
c, : {
same temperature dependence as o We get
~ 1

2 n

. = A
Vi A BT

. C .
v2 = v2 (;2 ~ 1) const = c + pT™

a T ey ; )

as the temperature dependent terms are small. -

| c
Now figure 30 illustrates (EE ~ 1) according
i cy
to Jarvis et al (1968). Oée can fit these data to an

equation of thé form

C .
(= -1 = Bgo) ¥

(5.3-8)
v g

where n(6) = 5.56 - .0467 GD

~and 6, is the Debye Theta
'n = 3.8 at 86 bar

n = 3.6 at 120 bar.

-
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Figure 31 shows a fit with the tﬁéo;y éﬁ Niklasson
to crystal I2 using the value of n fronﬁggﬁati@g (%>.3-8).
Although this is a three parameter fitr—'ﬁéo parameters
to fit v and one to fit the knee ~ the relaxation 7'
is of significant importance in the region of the knee
only. All the other parameters, except A and B in the
adiabatic veiocity, are experimentally determined. The
parameter A is essentially nofmalized to unity by dividing
by the isothermal velocity. Thus,we have, in reality,

a one‘parameter fit. It is interesting to note that

N(T) is within 1% of unity for the region T » 1.5Kk.

I think this is sufficient evideﬁée to state-that the
velocity above the knee is adiabatic.

It is interesting to note that the (Z)P/BT)V
data ©f Jarvis et al (1968) shows a chénqe in the power
of the temperature change at about T/60 ~ .OA_K This
change in powe#ris reflected in their (cp/cv = 1) results

giving rise to a small kink in the curves. The reason

for this behavior is pot known at present.

a

’ 2

'5.2.3 Velocity Change in the Rggion’ﬁTi~ T, - Classical
Theori, s

The velocity change relative to the isothermal

velocity in a classical model can be put in the form

@
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| DTS S N '1‘(_, I the boundary scattering relaxation
!
time.  For our case iy i, ol course a constant, roughly
107 sec.
f in this reglon is
\ ,
Jovi
b 2 'l
0
Lot : \ . A ,
l L TR i
R 4+ q ! -
¢ ‘u ‘B
thus
1,2
7 TRAN
N(T) = —— 7
2 1 !
o )
"TR
as )
P
1 v2 ’
— m—— - l N
5 7]
Thus for T -+ 0, N(T) - (1/TRZH) = 10 for our case
T + =, N(T) - 1 as Tprly 7 0 .

Figure 32 shows crystal D4 fit to the above’

14

classical equations. Although one sees’'a small plateau
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at 1.7 K to 1.9 K, this is inadequate to explain the
much larger plateau seen experimentally.
A more severe test would be to compare the N(T)

of the theory with the experimentally determined NX(T)

¥

from the above fit. This is shown in fidfite 33.
While N(T) goes from 0 to 1, NX(T) goes from ~18 to 1.
This is anbther sign of the weakness of the fit. This
fit is typical of all crystals although the lowéSQ N*(T)
values vary from -36 to -8 depending on crystal and
pressufe.

Thus, we must aﬁandon‘thé classical picture in.
explaining our results and go to a theory;wheré N(T)
can go negative.

/

5.2.4 Velocity Change in the Isotropic Niklasson Picture

There have been several theories dealing with

#

sound velocity and its temperature change in the region
{wt << 1 <<uﬁux notably (Gurevich and Efros, 1967) and
the series by Niklasson (1968, 1969, 1970, 1971). Tn

the region of interest for our frequencies of excitation,
’

-

these theories are essentially identical.

Uéing‘the notation of Niklasson (1970) we have for

N(T) ' ‘ |
(1-s%)w? 4 4rgxq}§§(o)f

(1-s%)%0% + 411312

N(T) =
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where s is the ratio of second sound to first sound.

L0
2

to lattice)

] is the attenuation of second sound (with no-coupling

O N L L e 8
u
1] - 3 5 AA M @) - A @
. u

O . s R
where r'o, 1", and 1' are all relaxation times of the

order of the total relaxation time 7

' -1
T={L+;+L]
T "B 'm

. o . e )
For an isotropic crystal, Fi becomes

1))

(;i._ 82w2T
u

>
- B
S

I

as [1'4@)] = t"(Q) = 1" independent of Q,

hence for
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»

Although the Niklassbn theory seems to give a
slightly betfer agreement for N(T), it is obviously
still unsatisfactory.

Figure 34 shows crystal D4 fitted to the iso-
tropic Niklasson theory. A slightly bett%f fit is

" possible if one varies Tt and 1 however the fit is

N’
only slightly better. Figure 35 shows the factor

N(T) with its exéerimental equivalent. -The agreement
here is qualitatively better.

In géner;l, Niklasson theory for the isotropic
case is insufficient for ourrpurposés. We can, however;
parameterize the theory for a better fit; We will do
this in the ﬁéxt éecpion. ‘ -

-

5.2.5 Velocity Change with a parameterized Niklasson
Theory |
VNiklasson (1971) has attembted a parahete:iéation
of his theory_for Argon, ' but 6ur approach is somewhat
‘different. *V' ' ' | ‘5 o
- ''As we need N(T) to'beéome large and negative,
varyjng 's™ the ratio of second sound t§ first sound,
ﬁii}:oniy haye-a small efféét; We'mus; v;ry ?*(Q)iénd 
Q). "itf we make %ﬂ(Q) 20 to 40 times larger éhg}x

"1"(Q)‘wélcag gét much better»fftsa .Figuré 36 shows

oy

~,::.x::’!, " R . ’ 4 ’ ' '
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crystal D5 with 1'(Q) =23 x 1" (Q). Figure 37 shows
the factor N(T). These fits are quite good.

Hoyever, is there a physical reason for such a
wide variation im 1'(Q) and 1"(Q)? Letslexamine these

relaxation times more closely.

l " ”
1"(Q) = ) R .Q.Q Q.
QA:GBYé a BTy 6 afyd

1

Q) = 23 f Qe

TS
Q> BY6 § apyéd

e

where

" )

Tagys =~ Tapys ‘ \
as long as we have a hcp or cubic crystal and

45 959
33 () = 3y (q) 2B
Yop @) = 3@ —

q
where 73% is the branch dependent ¢j) microscopic
gruneisen péramétér and v (g) is the maroscopic .
grdneisen parameter. Now the temperature dependence of

y varies as much as 6% (Jarvis et al (1968)) ahd'%n a

rather intritate fashion - thus there is probably some '

dependepce’on lal of yg%. As the c/a ratio for Hed

~

is constant at’most preéﬁures, there~is probably ligtle
orientation deéeﬁdence in ij (Franckland Waﬁner (}970)).
.The vector nature of I;(Q) will contribute tq.the,varia~v
~tion in this parameter. WherifévT"(Q) will be proportion;l

1

- e
~

s ' e [
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to some average 1 - say T&(Q) will be

T, ‘
isotropic!
proportional to T, - Athouqh‘IN is roughly isotropic
X
In hop He4, 1A‘varics by about 50 depending on orient-
L

ation. There will also be an effect due to anisotropy

of Iéﬁys of the order of the variation in velocity -

about 20%
1 . u
Ta = 3 L QR QT .
a QB o B™Y"6 aByd

N ¥
As crystal D4 was about 40° to the c~axis, and
) . iso , R \ .
"as ot ds .5 L at this point, and as our welghting

favors modes perpendicular to o,

™~ 2 to 4 times Tiso .
u ‘ u
i i 11
These S seem to say that Ta (Q)

w}li\probably only be 5 timesT"(Q) at:these orientations
at tgg most . .

| Hence we must look elsewhere for this variation.
If we examine the equation for the drift velocdﬁy .

Ny 1 2 ,

fO[-iR 4+ =] v (Q,2) + C Z Q. Q. V,(Q,0)
,\ _Tu a ~ 1 616 anG Y-8 g

y i L
_ ol <wlw> X ~i = . ! ’ '

= §<qx qx>) [—T-CHQaT(Q,Q)+1CU798§GTGBY6QYQ$Q%(Q;U>L

\

It can be seen that t" represents the relaxation

'in the phonon\ drift velocity due tovdiffusion like processes,

whereas 1° represents’ the relaxation due to coupling to the
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lattice deformation.,

Now, recall that helium is a quantum crystal.
Small changes in the local lattice will produce changes
in the local lattice constants which in turn will affect
Qhe phonon spectrum, These changes in the phonon spectrum,
in general, will méan quite long range effects in the
lattice due to the consequences of the self-consistent
nature of the phonon field. One can thus view CHT as
a mean free path Or coherence length which essentially
qlves the spatial dimensions of the effects of the local
lattice deformation. It is not unreasonable to expect
1" to'be larger ip quantum crystals than in ordinary

“In

crystals, which is what is observed.

We, therefore, believe that the laxqe value of
f' necessary to fit our data is direct evidence of the
quantum nature of the solid, Notice that the Vafia;ion
of no othér parameter could po slbly fit our data,

7

5.3 A Qualitative Description of the Attenuation’

During measurements, the attenuation was indirect-
ly observed throﬁgh the change in amplitude of the bulse
being observed.; The following gives a qualltatlve des~
cription of our ‘Obgervations, and a cqmparlsan to tﬂe

various theories.

At T »> T ' we observed llttle attenuation (after,

seelng over 100 echoes), however when one neared T , a

rapid increase in ‘attenuation occurred. This peak in the
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attenuation was very broad and increased steadlly to our
lowest measured values. - Onoone crystal (crystal D5) a
small decrease in attenuation was obgerved at 0.8k,
however, the decrease was very small.

Figure 38 shows attenuation from the theories
cof N%klasson and Bhatia compared to\our qualitative
appfaisal. Frystal}D5 had about 70 visible'echoes at
'3.6k, and 20 visible echoes at 0.8k -~ a change in
attepuation of about 3.5. The theory of Niklasson
appears to bg in better agreement with our qﬁalitative
éstimatés, however , our measurements are much too

primitive at this point to make any firm statements.
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‘theories is more accurate. *

CHAPTER 6

CONCLUS IONS

In single crystals of hcp He4, the velocity change

in temperature has a sharp "knee” or anomaly at % ~ §6~
This knee occurs where wt ~ 1. It can be explained in

terms of a parameterized Niklasson theory if we assume
the second sound resonance p;edicted by Niklasson is
much broader than the theory predicts.

The high temperature region gives a good fit to
the adiabatic velocity derived by Niklasson. The direc-
tion of ohange of velocity in this region (T > TC):;S
decreasing for increasing temperature, lending support
to the compressibilities, calculated by Jarvis et al.

(1968) over those calculated by Edwards et al (1965)

9]
8

alculated assuming a reduced equation of state.

The attenuation shows qualitative agreement wlth

lelassson s parameterized theory, however, only rough

qualitative data are available for ‘analysis.

Further work is necessary to‘determiné the %ine
structufe in the velocity plateau, as wel; as low temn
perature measurementS'to'determihe the value of the
vélocity;in the zerq sound limit. Measurements of the .

attenuation is necessary to determine which of several

”
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A2 Niklasson Theory as applied o Hexagonal Crystals

2

Sound waves do not propagate perpendicular to
the transducer in a hexagonal solid except at certain
symmetry points. Therefore, the phonon drift velocity
in the crystallwill in generral be at some éhgle 8(0),
a function of orientation 6, to the externally applied
field.

Thusﬁ if we excite a crystal at orientation 6,
frequency .2 and wave vector Q, we will internally
develop a phonon drift velocity at some angle 6+6(8),
with individual phonons of wave vectors and frequencies
w, q.

Assumipg linear dispersion j/,/f%i
. T

]

2 = ©)-0(8)

wherér Ej(e) is the velocity (phase and group

®
[}

velocity are identical here) of sound mode 3} at

orientation 6, as Jd. and Q are colineii
J g ) 3 ’é
O s

w = c (898" .

«

We will be performing averages over the igfBrnal
' - ¥ .‘ o

7 variables 68', ¢ ,’ _ ; , o ﬁ&

<f,g> = Zl - %g J : %%3Aj(q,w)nﬂw)[1+n(w) frg] .
‘ 3 Cell & /e S S

~

N
®
-

where ‘v, isltheavpldme of the unitipell

- ‘\  ) AR ’ e

v H
P UL

) o Lo e
o - . fli._‘"‘,,
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.

¢

Aj(q,w)‘ is the generalized spectral fit

)

' i
hiw) = 1 the bose occupation number:
ehw;ET—_1” i

1f we¢ assume harmonic phonons

\
n
it

Aij,m)“ A?(q,m) = ?[5{M+mj(q)}*6{w~wj(Q)}]

where mj(q) :’cj(e)q the harmonic phonon frequencies

We will be calculating averagessover real quantities

\‘;?%
which depend only on’ 4, Cj(b.), and 0°'.

e e % a (7 do H, T
<f,9 % Le]l v ‘Jﬁm I Aj(q,w)n(w)[n}?)+1]dwfg
) ) o -
0= Z ;‘J ﬂ(wj)[n(wj)fl]fqdq .
3 ,

Now we will use a Debye llke approximation so that

i " wDE
£ 5] [H f s 19 (w0 "]
<f,92 B~ ) flw:,0")gw,,0")
, s;g%e‘ae‘r e e
oy /KT 3
j [eﬁ Sy~ 1]
) " where '
| \a 13 M . 173
« D 2ATTN o sin 6 'de ‘. :
By = (—— ] } e )
Qo c (") £
] 7
. / cvazv e 7 : :
thgs L <w > = ~*;7——  where C, -is the heat capacigy
p atﬁconstant'yolume~per unit volume.
N
| S
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Section 2.7 gives an introduction to the theory

by Niklasson wherein the integrals are calculated assuming

an isotopic or cubic medium.

Now 1t

1

1(g') = (?“TETT +

u

total relaxation time where

1\1

1 + i—)Hl be our
™~ B

r TR, and T are the

B

umpklapp, normal and boundary relaxation times, respec-

tively. oOnl

Y

T, depends. on orientation (assumed) .

As there is no dependence on Azimuthal orientation

we can choose

¢ = §~ and thus only x and z components

will contribute.

If we define

, "sin o
6 = o)
cos 0
Siﬂz 0!
0 = 0
0
write -the s

olution to the Pieirls-~Boltzmann

equatién (usiné théfnotation of section 2.7) as

=

|

L o, lole)
A+ 1 D

<wlm>r

0% (g) cos® §() 8-5°°-3

ey

L (e')C§(6 e

2
0> ~

?
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, O - o) 6- B

iy 2 =

B = <@ 0 cos &(0)

f,O

)i

EE%. QQ(O)A if v is isotopic gruneisen

f E% ob*

. ' - A
f. is a parameter that brings the gquantum nature of He

parameter .

Tl
I

to this picture.

: B = %) b-1-8
E = <1 (00> ~ {<1(@")0> ® <1 (0")0>) iil%fli
where 'O =0 60 apd ® means outer product.
E is a fourth rank tensor.
"ﬁll o
¥ = f
= i
L =
 Now, + the generalizedathéxmal conductifity K is .
3 .
oo .01 .=,.-1 310
y S R~ _ - _ N ~N -[N"] 'ﬁ
Q-K-Q =i ¢ {2 A -}
or ;o h
= CV :60 = = = = : ~1 =
K= {E + i B-] ¥ + i(L+D")] "B}
. 2
“ 2mph
where C. = ——B—z‘A
"V M kT
A



for steady state

!

These calculations are in Q space. To convert to "r

Space one uses

in q space is equivalent to

1
=
O

o)
(Kim sinz‘ﬁ + Kl c052 G}RI
O QO
2z X

in real space. . |

Now if we assume that coupling to lattice deform-
‘ation adds oﬂly second order terms to the calculation of
second sound, we caniéerive sec@éd sound by the following

arguments .

N

[ﬁiQCv+§'?~6]$(Q?7) = lattice contributions

= where T(Q,Q) is the temperature gradient,
» ; v (. A '

or -~ )

i
i

~i?cv +3-~K-Q=0

-4

or
== - = = =e-l= 2 =
Qz+i5e{6§‘l(i+ﬁ)y %B + 2 Ae) E°°)
2 "—=—-‘= = = — - L ] :
- 2 0L 8. (B B+E°B T MEAS) T1B) 6 = 0 *
which is in the‘for@ )
lo ‘ X
% + 21136y - 12(e)cE (o)) = 0,
) ‘ ‘ ,

,K/,
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where
‘2 6 RN 1 )_—..1 o= me ] 6
0t (n) - - - {BY Bt ( +D)YY "B} -
1l A
o) 1 ;2 z=~1 & = =-]= QZ(O) =0
rpe0) = » 0~ {0p (LAD)Y "B + Sy E )
where C” and Yg arce thea speed and attenuation'ﬁf

second sound respectively.

In the normal region where second sound propagates

wT <<l e e
v}

or

kil

fm ) S U
iLH(O)}real {Aﬂxx(”)yxxﬂ

-1 .. =1 2 ~h
+AB, (0)Y, B, (0) sin"0)

where 6 .ig the orientation of the crystal in real
space .

- n r s = = s, -
Define the generalized viscosites

= erh Y ~

@ ”*MkfrI
Further, let the coupling between the temperature field

and the lattice (which is proportional to éiﬁ) ‘be non-

zexro.
6‘ﬁ - 2ﬂ1h {FO o i,[Nn]ﬁl . F'}p
= 2 | ’E' ;-‘l—; - = '
5.7 ='222 2 0(0) (AB+18-B- (2941 (E4B) ) ReB) .
T f

We will now calculate the propagation of first

sound ‘with coupling- to the local temperature deformation.
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We must solve the simultancous cquations

4 r 1 o ' ]“uf - ’ ,l ? - Py -
Yoosu T st U b e g e e W OT (G, )
¢ f H
| —jﬁx(‘\/M)A K-Q ]'T‘ (Q,.) ——p’l‘\’(_%W- e
where
W= b eUs) g
["."Y ll";’y’ ,A [lA Y
(ias . )
C (, ) are the isothermal olastic constants
alby &
Noo= ) N alky b0 0
(;'T e Ve
) = is the heat current
W is roughly the thermal expansion.

\

Solve the lower cquation fSﬁ T(Q,0)

R z‘;gQ W ®*W;Q%BT and R = %_‘+ i ;
. [=A0C +Q-K-Q1Q M P p
then
ngu* - l(§+§)f§; + if2 (ﬁifz);uj _ 1
T p WIS o :

o

Thus ) is the change in velocity and ' the change



in attenuation ftor first sound.

P R 3 — T
A LN ‘l L | (Q-W) 09’ (SFQ)'- ]
h { ~14C +Q‘K-é]
‘:‘ . ;)ZI\ e {775(—:)'W) ?77’_(W.Q)}
[—iaC *Q-K-é]
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and neglect-

Projecting onto po arization vectors n')(Q)
ing polization mixing
~ K C
C (Q, 4 ’ . 0, ¢
com oy, 7 — (& - N©,9e)
Cp(Q,a) DICT(U)I v
Z ﬁ} A e)
R wp X oof 8
N(Q, ) = Ky SE
- G~
0 LT A\
C_ 2C. C + C_ . - %,,
B M & R S S ¥ I &

T o1 T
A\ v
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A3 A Method for Scaling Flastic Constants in hcp He

We have, at present, the elastic constants at
four molar volumes from the work of Crepeau et al (1971)
at 20.97 cc/mole, Greywal et al (1970) at 20.5 cco/mole
and Franck et al (1970) at 20.32 and 19.28 co{mﬁi&.

These elastic constants were primarily determined
from acoustic Mmeasurements. There was great variety in
the method of determining the orientation, and some of
the authors used various assumptions to calculate all
the elastic contants. .

We would wish to calculate the elastic constants
at any density, the following being a. plausible way of
" doing this.

_First, Franck et al (1970) proved that as a
result of the c¢/a ratio remaining constant in hcp HeA

to Véry hiqh dEHSiti§S

)
(®)]
il

3 *

11 = E,f + G, = (3351)

‘P-_ﬂ
K
-
W
ACN!
W

Using this equation one can simplify the expres-

sion for the compressibility to
K, = a2 = A .+ (A3-2) -

T Cpp*CatC . C3542C,

The compressibility has been measured from (%%Qv
by Jarvis et al (1968) from 17.77 to 20.72 cc/mole.
A . - . A
Recalling that the. Debye Theta has also been

measured by Ahlgrs {(1970) at a wide range of molar

o



volume, one can use these data to scale the elastic
e
constants.

First we must modify the data of Crepeau et al
(1970) to fit condition (A3-1). This can be done within

thelr experimental error. -

3

Then at all four molar volumes

C33
33 C o B
o 1.3 ¢+ .01 . (A3-3)

It should also be noted that in this form systematic

!

. . . 1 : A s
errors in the measurements (such as distance ca%lbratlon
i

alibration error) are negated.

(9]
9]

éff@f,véf time scal
Also C33 and Lll
stants to find as they are simply related to the long-

are probably the simpliest elastic con-

(
* axis and in the basal

Yy

itudinal velocity along the

6 _ const
;07 }73 r
D;“\‘) v / b
Il , ~/3
, A I ¢ .
vD ;: cost x fjo sin 640 (er + V% + Vl)}
. ’ : e tl t2
F Hi4 >> v th
or He , wv_ Ve Ve us
1. 2
’ }
v, TV

or the transverse velocities are directly broportionai

]

to the Débye Theta.

Further 1let
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+C = (_ .
C (5’+2C1d

4

We will further assume thal the ratios of the

transverse velocities

Finally

g remain constant at all densities

We can finally write

o2
LN =
44 y173 \
2
& — = = A ;,OD
11 "12 9] VI73
3
6 = -
Ko (V
n o2
44 J1/3
EY 2
o e a ODW
11 712 | o Vl73
C. . +C, +C = 3__
“11°712° 713 KTZVS
C33 * 1
C13 T3 Gy
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SRS S R S - i | J
11 2.7 KTlvi a VI7§
2
' 6
Coom ot (e - 0.7 2 Dy
“12 2.7 KT V) " a VI73
!
1 2.1 a %
‘B3 rTlew e s W 4)
,
. 62
o _ 1.3 [ 3 L 2 A _D ]
"33 2.7 KTivi o V17§ ¢
Aez
C,, = D
44 Vi7'§ ,
f
From experiment o is in the range 1 to 2. TIf one chooses

a value of o and then calculates A to give the correct
ﬁﬁ, one can get réasénable fits. The fipnal fit is
surprlslnqu insensitive to the size of o.

in extrapolatlons of elastic constants for com~

parison with theories, I have used

7.876 x 10°

A =
g = 1.266
and
o 3 »9 _j
Ko (V) = _Z :{aj x 1007 x v 7}
j—-O i
‘ aO = 122.6
. a; = -18.29 )
' a, =. .8861
a = -.01354 \
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and

-~1.02
B . v ~0.83(V-14.208)
Op = €8-%¢ {17 708 e ~

A

This gives Ky to 1% and 0y to 1%.

This scaling gives results within experimental
error, except for the data of Crepeau et al (1970)
which apégar about 2% low. <Also, this scaling gives

results consistent with the velocities I have measured

at 120 bar and 86 bar.
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A4 Computer Programs
F

This appendix gives some of the computer programs

used during the completion of this work. %Y
TEMP is the function that conerts resistance to.
temperature. COTEMP and COXTEMP ;re the coefficients
used for tge main region of fit and for extrapolation
respectively. LL and LU define the main region of fit.

PO fits a number X to a polynomial with coefficients

VPLOT calculates' and plots the velocity“verSus
temperature from the raw experimental data.

VSS is used to give the printout in the next appendix.

It fits the vélocities from VPLOT to the theories of
Bgatia or Niklasson.

CODEx;arranges the raw data. SCALE calculates the
elastic éonstants at a givéﬁ pressure., THETAV calculates
the Debye theta for a given volume, while KTVM calculates
the’cqmpressibility; DEBH calcﬁlates tge Debye theta from
the elastic constants for hexégonal crystals. BﬁAT is the
theory of Bhéﬁia , while VEL givés the theory&p% Niklasson.
SDFIT, FIT, WFITL, and LINEAR are functions that calculate
the least squaré‘coefficients. REL calculgtes the relaxa=>
tion times. ﬁ@KLAPP caleulates Umklapp'relaxation times.
cv ca1¢ulates thé heat capgcity.'JORVL ¢élcu1atés?£he
,érigntation7 ;PVDEG prodﬁcgs a‘po;ynomia% 6f fracfibnai
or negative powers. . e o,

HEXA gives the‘ye}ociéieg'andlrelatedvquaptitiés.fcr

i

-

4 . ' e
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<

hexagonal crystals. DELL gives tﬁe deviation from a pure
mode. DELTAL, DELTAT1, DELTAT2 give the deviation from
wave n&rmal. VL, VT1, and VT2 give the velocities. PH is
a subroutine. N - .
VELZ,I&SET, and INFUN are functions to calculate
the orientation dependence of the velocity of second sound.
Finally, DEBC, VCUB, CUDEF, and RCR are used to
calculate the Debye theta of oubic ﬁaterials. RCR is a
functions that gives the three real solutions of a cubic

equation if they exist.
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‘ t3) : :
{107, Z+Z-8(3,P+pP)pPt3+PHI+0 G
. (111 =0 !

{12 E1:+n=p[)«'RANK OF ARGUMENT MUST BE MATRIX 0OR VECTOR'
(13] Fu:»0=p«'RANK OF VECTOR MUST RE. TW) OR "FOUR!
L1471 F6:+0=p0«'POLYNOMIAL HAS COMPLEX RQOTS!
[151 E3:'ARGUMENT MUST RAVE FOUR POHS'
v
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AS Egperimeq&gl Nata

This appendix gives the output of function VS5S. It
is a compilation of the experimental data on twelve crystals
and the fits to these crystals fron the theory of Niklasson.
The headings give the tembtﬁatureﬁ normalized velocity,
attenuation, and N(T) factor respectively for the theoreti-
cal fit. The next page gives the expefiméntal data for
the same crystal. The headings give the temperature,
absolute velocity, normalized velocity, and N(T) factor

respectively for the experimental data.

”



CHYrTAL 93 31405,

ISOTHERIAL VELIOCT DY =
A=T7T72.9 +/f/~ 28,932 yu
nenygp ezM2 .70
SECORD GOUNDI=200,0 Mt/
SUANDARD DEVIATION FN4

() LE2 I

1o Py 2
Ar"xTx

=

’

L1/ 0T/ T

\),,15\)'/

MOLAT vOriver=17 41 rroy/e
FREOUFNCY=5F0 HE
FIrr 15

J.1437

APLAXATION FACTORS 1T 1xT/.1xTAN1
50 O 70 AND 3n

OPIENS . TS BTYI. 35 AND

THRORETICAL CALCULATIANT(UIKLALSOM)

TFRYp JLodrvL o,
0.3 1.00000
J .4 V.93 ,92
0.5 0.9240498
0.6 0.932350u
0.7 0.29994
0.7 0.92391
0.9 0.93988
1.0 0.922984
1.1 0,99380
1.2 0.9397%
1.3 0,999%07
1.4 0,99957
1.5 0,.93346
1.6 ’ 2
1.7 1, 2491
1.8 = 0,95896
1. 0.939873
2.0 0.93848
4.1 0.99819
2.2 0.73787
2.3 0,99750
2.4 ,0.99709
2.5 0.93003
2.6 0.99612
2.7 0.34550b
2.8 0.994395
2.9 0.99427
3.0 0.99353
3.1 90.99272
3.2 0.29185
3.3 0.99089
3.4 " 0.984986
3.5 0.98874
3.6 0.98754
3.7 0.98625
3,r 0.98485

< QO
%

ATTFEN
0.1uB
0.237
0,303
0,363
0.436
0.503
~ D70

<

o w
»
el
Gl
»

iy
o
N

*

[e’
3

>

oo
,
e B R

PR I S, <)
- ~J

e

-

3 E
~ £ O

YOO
i
5 R

[

» Tow
[ W]
eI IR W

»

K

*
[SSI <l S Vel

(o N e]
P
r

O‘

L ] »
3 pn
W

[eo)
*

e
Do N
X

NIVErc
0,855
T0.833
T0.767
T0.61%2
"0, 3u40

0.010
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EXPFRIMENTAL DATA POR CRYSTAL 03
viTisv{O]

TEMP
3.758
3.750
3.709
3.620
3.544
3.470
3,734
3,332
3.210
3.102
2.992
2,911
2.740
2.00k4
2.531
2,384
2.218
2,085

viTi
Tol.72
701.95
702 .18
762.88
763,57
Tou .5
765,29
765.61
766 .60
767 .07
767 .89
768 .48
Jod 12
769,05
770 .30
770.59
771 .30
771 .48

0.98555
0.98585
0.98615
0.987006
0.38795
0.98908
0.99005
0.99059
0.99187
0.99248

0.99353

0.99430
0,.33513
0.39581
0.34673

- 0.93703

0.93795
0.99817

NrvEAr
1.007
1.036
1.003
0.967
0.956
0.998
1.023
1.002
1.024
0.945
0.983
1.032
8,925
1.017
1,126
0.0924
1,113
0.950

a7
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ChrYSTAL A8 ;140.8 RpPD 330/08/71

TSOTHERIAL VELOCITY = A+BxTall

A=T50.8 4/~ 32_ 84 M5 720,111 N=3_585
DFBYF @=42 25 MOLAR VOLYMF=17 .43 Cr/t
SECOND SOUND=203.u4 M/j FREQUFNCY=5E6 HZ
SJCANDARD DFVIATION FOR FTIT IS5 0,.08358
RELAXAZION FACTORS 1.SxTH,3.7xTU .6 xTAU1
ORIFNZATION IS BRTWEEN 40 AND 30

o

A
THEORFTICAL CALCULATIORS(NIKLASSOM)

TP a/(Tlrv( o) ATTER NIrFAC

0.3 0.99393 0.250 "9 _4u3

0.4 0.999537 0.3560 "9 387

0.5 0.99933 0.u66 "9 207

0.9 0.93387 . 0.575 T8, 762

0.7 0.99978 0.693 “7.884

0.8 0.93370 0.825 76,511

0,9 0.924964 0,967 T4 _818 )

1.0 0.934560 1.1190 T3 149 '

1.1 0.93953 1,242 1,772

1.2 0.79360 1.352 0769

1.3 0.99960 1.432 T0.097

1.4 0.99353 1.477 0,324

1.5 0.9b3s6 1.4%80 0.507

1.6 0.93950 1.44%0 0,697

1.7 0.9%3u40 1.3560 0,744

1.8 0.99228 1.23¢ 0,763

1.9 0.95914 1.088 0,784

2.0 0.23401 0.930 0.832°

2.1 0.79883 0.785 " 0.830

2.2 0.94875 : J.EL2 0.934 |

2.3 0.94858 0.501 0.967

2.4 0.99838 0.478 0.7283

2.5 0.9381u4 0.409 0.991

2.6 0.99787 0.352 0.935%

2.7 0,99756 0.304 0.948

2.8 0.99722 0,265 0.999 .

2.9 0,99685 0.232 0.239

3.0 0.99644 0.204 1.000 !
3.1 0,99599 . - 0.181 1,000

3.2 0.99550 0.161 1.000

3.3 0.99497 . 0.145 1.000

3.4 0.99439 0.131 +1.000

3.5 0.99376 0.1138 1,000

3.6 0.99308 0.108 1.000

o ; v | [}
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FXPEPIMENTAL DfTA POR CRYSTAL AR

TEMP v~ vLrasvio)] NIVFAC
3.530 751.97 0.993013 1.009
3.u6% 752.25 0.939339Y 1.001
3.380 752.68 0.99456 1.015
3.233 752,92 0.99488 3,91+
3.243 7 753,20 0.234533 1.010
3.183° 753.u48 0.345u2 1.0U6
3.049 753.76 0.939600 1.007
2.982 754,13 0.93650 1.012
2.890 754 .85 0.9s631 . 1.011
2.804 754 .73 0.93728 1.020
2.708 754,948 0.99700 » 1.023
2.501 755,31 0.99804 1.0y
2.318 755,73 0.9385) 0.997
2.210 755,83 0.93872 0.4931
2.090 755,96 0.39890 - 0.887
1.77+ 756,22 0.239924 0.635
1.6023 - 750,135 0.29941 0.%13
1.414 756, 46 0.99255 & 0.262
1.262 756,53 0.99365 ?;\ "0,087
0,841 756 .64 0.929979 73,023

0,784 756,69 . 0.99986 T2.427

s
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bﬁySTAL C2 +114.% RAR ;01/11/71

AT

-~

LSOTHEDPMAL VELOCI™Y = A4BxTaN

A=T738 a/- 43,18 M/5

DFERYF ez42, 09

SFECON SOUND=202.5

R="0 1185

M=3, 592

MOLAT voruve=11,5%2 CC/*
e " FREQUFNCY=Z5FEG RU

SCANDAPD DEVIATION FOR FIT 15
15T S, #x D51 xTAM

ORTENTATION T8 BITWEFRN #5 AND 20 "

RELAXATION FACTORS

0,04L2) o

TUHRORETICAL CALCULATIONS(BHATTA)

TEtp PASASE RN
0.3 0.0032491
O _u ©.0.99973
0,6, 0.934942
0.0 0.79830
w7, D.046831
0,8 0.04768
0,9 0.23725
1,0" 0.99710
1.1 0.99741
1_§/ D*gj?“&
1./ '0,93770
1*“i 0.99807
1.6 0.9981J

e . 0.93822

1.7 0.93809
1,8 0,99773
1.9 ), 92741

0
2.1 4
2,2
2i3
2.4
2.5
R,
207
2.8
2.9
3.0 0.99580.
3.1 ~0.09528
3,248 0.99u472

. 3.3 0.99410

“ 30y " 3.093M42
3.5 . - 0.99269
3.6 1 0.99190

'_ @ I

ATTFN
0,266
0.308
546
713
997
YRR

» ]

-

» a2
fo I o/ o2 TN
~3 A B~

W R

=1

SO W AT W W W R RN R O OO
> S |
t¥e]
~
<

Al
LSO~
+ TN
Ko P L

)

st [

NIVEAC
TBG . TM
. TBL L2230
T84 .699
"80.,8)3
T3 w20
“61,80u
87,627
733785
22,4713
T4 . 300

0+, 999

®
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FXPERIMPUTAL DATA FOR OPYSPAL 02

)
3
3
3
3
3
3

3
3

TENMP
3,577
36553
J,ouh
Jaiubo

L3d

3,30
A, 244

LAk

3,062

2,981

VI
T332, 24
732.33
732.061
732.87
733,23
T33.60
733,90
734,24

734,71 .

T3, 03
735,83
735,71
735,35

736,12

736 .23
T3b, 74

virirviol

0,99215
O 2322

0.997265
0.93300
O, 29344
0,9939,
O, 93440
0.J3494 1
0., 39541
0,939587
D, 93\;3‘1
0,39685
0.92717
0.99741
0.9375%4
0,.99759

MIvEAC
1.008
0.998
U.944
0.930
1.002
2.930
0.9788
0,975
0.932
0.987
0.990
1.042
0.99°
0,082
0.610

ﬁlﬂJuJ

171
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CHASTAL DY 3113.2 3A° 314/11/71
LSOTHERMAL VELOCITY = A+BxTal
ARTHB.2 a)~ 22,75 M/ 7=70_1025 M=3,534
DFBYFE =242 _0u MOLAR VOLUMFE=1T7 52 CC/' .
SECOUD SOUND=202.3 1/ FREQUERCY=5F6 HI
SLARDARD DEVIATION FOR FIP I3 0,153
RELAXATION FACTORS 1.5xTN,G. 8xTU, 45xTA4!1 .
ORIFNT. IS BT/N. %0« AND 55 OR of ARD 30
THEORELTICAL CALCILATTONSCUTKLALGNO M)
TEMP VIiraavL oy ATIFER PIryYeac -
0.3 0.93992 0,026V 76 410
G u 0,049,777 0,340 " 75980 /
V.5 0,93349 0.512 78 61n /
0.6 0.2930u 0,68 T71 . 24R )
0.7 0.949850 0,943 oM, 617
0.8 0.9973¢ 1.311 54 _334
0.9 0.93758 1,770 - T4l, 8100
1.0 0.99746 2.25% 129,627
1.1 0.,99755 2.69Y ”1;_7oq
1.2 0.9977b 3,002 12 548
" 1.1 0.93804 3,335 VALY
1.4 0.93828 3,514 4660
1.5 0.99845 3,535 T2 .787 )
1.6 0,99857 3,578 s '
4,7 0.09885 3,445
1,8 0 . 3,208 {
2.0 £.325
4,1 1,878
4,2 1,414
2.3 11,077
2. 0,857
2,5 . 0.711
2.6 L0.99804 " 0,605
AT 0.99789 0.524 .
2.8 0.99768 . 0.1459 .
2.9 0.99742 0.404
3.0 0,9971?,{—~J;ﬂ;359
3.1 0,.99677 © . 0,320 .
3.2 0.92639 . 0.287 .
3.3 0.99537 20.259
3.4 0.99551 0.235
3.5 0.99501 0.214
3.6.77,  0.99uu6 0.126
3.7 7. 0,99388 ‘0.180
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FXPFRIMPITAL OATA FOR CPYJSUAL DA

LEHP Vi~ VI TseV[ 0] rirvrac
3.612 - T3 .94 0.99440 1.004
3.568 THH 0 . 0.93445) 0.991
A, 464 THW 27 o 0.,99483 0.9%0b2
J. 414 AL S o 0.94530 0.9%80
3.361 7542 94 0,99574 1.006
3.257 755,29 0.949618 1.002
3.151 755.57 0.99655 0,969
3060 755,85 0.93691 ‘ 0.9990
2.951 756,20 0.93737 1.011
2 _HBab 756 . 5% 0.722783 1.05%1-
2,840 TS50 ,019 0.179794 1.077
2,692 TS50, 61 0,72979n 0, 9un
2,543 _ 750,63 _ 0.73979%4 0,730
2,308 750,63 0,739994 0.410
1.608 75L.u3 0,997 4 "2.373
1,185 756.63 0,9370n 12,103,



\

CR2S7AL Dw 3110 .6 3BaAR 20/11 /771

ITSOTHERNAL VELOSITZ = AslixTapN
A=T5H0 0% 4/~ W 223 /5 - B=0_ 11601 & =3 .51
DEBYFE =42 1 MOLAR? VoL =17 .54 (‘(;"
SECOND S50QURD=202,6 M/ PREQUENCY=SFv R ’
SLTANDARD DFEVIATION FOR FTT I5  0,04922
BECAXATION FrCTORE A 5xDN, 25T, 305 TAILL )
ORTERNTATIONr 15 BFETHEEN 40 AND 90
CHFORPDICAL CALCULATIORSCNTKLAGGON)
TEP rLraav{ol ATTEN rIvEnc (
0.1 0.7399H4 2,261 RO LU
0 _h 0.9400k 0.37) NGO A6)
0.5 0.794406 0,507 Ta b6
0.0 0.95337 0.683 THT 224
0.7 O 13200 D085 THz, 020
0.8 0.9J80673 1,137 Ta5 950
0.7 D.2s037 1. 4748 T27 521 0 .
1,9 0.92330 1.A21 T19 1973
1.1 0.94838 2:120 T14.320
1.2 0.9980b Z2.321 77 340
1,3 0.a98746 2,826 T4 0up
1.4 0,928930 2.401 T2.178
1.5 0.7238433 2,261 T1.183
1.6 0.,0uBGk 20242 " To, THG
1.7 Q.04807 2,701 "0 _buj
1. 0,04853 1,023 79,303 ?
1.9 0.32852 0.273 : 5
2,0 v 0,9980 0,700 o &
2.1 0,929844 0,%39 - 0 7 v ot
4,2 0,23B54 0,422 0, /74 f
2.9 0,008k 0,350 0.9
2.4 0,23824 0,230 © 0,971 .
2.5 0.98744 0,244 = 0,985
2.6 0.93770 0, 20% 0,997 ! ;
R, 7 0.93737 0,177 0,99¢ : '
2.8 0.93701 £ 0,152 0.998 -
2.9 0.93001 =« 0,132 0,939
3.0 0,99617 0,116 0,093 b
3.1 , 0.949568 0.102 - 1,000
3.2 0.39515 0.091 . 1.00¢ .
3.3 0.99458 0.081 1.000 - .
3.4 0.99396 . 0.073 1.000 .
3.5 0.99328 0.066 1.000 W
3,6 7 0.99255 0,000 1,000 !
3,7 0.92176 0,085 1.9000 "
o \" .
¥ £
‘ 2 C : .




FXPERIMENTA]

TF”D

R

LI N

T o N

Vi
Tt
Tuy
Ty
T4
R
T4
750
750
750
751

-

DATA
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2
33

o1
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£
M5

~

-

~

A

=

T
24
YT
33
29
T4
07
boJ
7 <
12
o
18

21

i~

Folt CRYSTAL Do
vimle v ool
V.1)205
DI I B O
(VR0 I A A
0,993 3
0. RN
0,994
0.949u4972
U, 39514
0.9358
0,.2396720
0.239688
0,937

0.5337860

.99818
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CPYSTAL 09 3113 0 240 ;30/11/71

LSOCHERMAL VELOCITY = AsBwTal

A=TH7.3 2/~ 13 4 S B= 0, 1147 Ned_ 591
DFBIE @=42 .1 MOLAP VOLUMP=RT S o/ k
SECOND SOUNNZRI2 .6 ML FREQUFICY=5F0 HZ
SAARDARD DEVIATION FOR FIZ IS 0.0421
RFLAXAZEOND FACTORS 2,5%xTN.1.5xTU,33xTAI1
ORTFNT. 15 BTWN. H0 AND 5% OR U5 AND 30
THEORETICAL CALCJLATIONSSCHTKLASSON)
TEMP viTarvLO] ATTEN NIVYFrC
v.3 SR EL 0.260 T55, 800
O, 0.94983 0.376 + 55 4932
2.5 0,.934672 D.502 TH4 U5
0.6 0,.734931 0,657 "52_.033
0.7 0.99890 0,872 w7190
0.8 0.09850 1,100 739,630
0.9 ,0.998272 1,524 730,307 )
1.0 0.93815 1.A40 “21.0u2 " o
1.1 0.93826 2,135 713,392 ~
1,7 0,938k49 2,383 T7.853
1.4 % 0,99 2 kY T ,300
1,4 0. Z.357 2,292
1.5 0, 2,946 71,300
1.0 0. 1, f138 0.9
1,7 0 1 44 o, .
2.1 0, 1! 0
2,2 0 0,330 0
“2"3 L Y. 0,264 9. -
2.u° 0, 0,223 0 ! '
2.2 9. 0,164 |
2.6 0, 0,157
2.7 0. 0,134
2.8 0, 0,115
2.9 Q. 0.100
3.0 0. 0.087
3.1 0.93584 0.077
3.2 ,0.99533° ¢+ 0,068 )
3.3 0.99478 S 0.061
CFs o, T .0.39418, . 0.055
3.5 0.99353, 04050 *
8.6 0.99282 0,045 y
3.7 0.99206 0,041 -
f o N ! L



"XPERIMINTAL

TFP
3.038
3.600
3J.553
3,487
3.423
3.350
3,278
3,104
3,100
3.010
2.895
2.749
2.0607

2 HE9

2,403
2,230

Vi T J
TH2, 20
T52.7%9
754 .60
753.n0
753,33
753.68
TH4 04
758 38

TH4 .71

755,04
755,39
755, 81
756,18
750, 40
756 .57
756 , 8o
754,83
756,91
756,90
756,490

DATA FOK

CRYGOAL

v(ZJrvio]

0.992%3
0.99279
0.9931h
0.99358
0.9344072
0.92u4y
0,99437
0.99540
b.0958u
0.949678
0.93675%
0,99729
0,.99778
0.9981¢
0.39830
0,99868
0,.93871
0,99874
0.949873
0.99873

.r_r[xfp/;(‘
O,.95
0.994%
0,290
0.9J5u
U.99p
1.001
1.011
1.007
1.004
1.00x
0,937
0.99u
1,001
0.978
0.97¢
0.9506
0.785
0.0u8

73,215

T67.525
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CRYSTAL E2 117.8 RAP ;27712771
ISNTHERMAL VFELOCT™Y = AaBxIall
A=T92.1 4/~ 13.28 1/, Rz 0. 1102 =3 002
NERYF =41 _88 MOLAR VoLt r=17 55 CC/
STCOrD SOYRD=201 8 MO FPOEQUFNCY=SFG H7
SEANDARD JDEVIAZION FOR FIL TS5 0.04584
KELAXATION FACTORS 1.5xTH . 1.5xTU.2TxTA] \
ORIFNTATINN IS BRUWEEN 40 AID 90
PHEORETICAL CALCULATIONS(NIKLASSOMN)
TEHE virieviol ATTEN NIKFAC
0.3 0.729995 0.270 TB5, 409
0.n 0,99380 0,31 U5 204
0.5 0,.99308 0,517 TuM 34
0.u 0.30472 0,668 42 322
0.7 0.93908 0.871 "3, 259
0,8, 0,99874 1.142 31,959
0.9 0,93851 1.4%606 24,255 &
1.0 0.938M46 1.732 10,684 )
1.1 0,99855 R.001 - 60 e
1.2 0.349874 2.228
1.3 0,798972 2.269
1.4 0,04303 2,181
1.5 0,92402 1,382 ,
1.6 039891 1,695 ?
1.7 0,.94876 PR QALY
1.8 0.99871 L o &
25‘?
2,2 (043
2:3 0.265
2L 0.223
P 0.16¢
2.6 - 0,157
2.7 0. 834
2.8 0.99697 - 0.115" 4
2.9 '0,93650 0,100 ;
3.0 0.39611 0,088 ‘
3.1 0.'99562 0,077
3.2 0,99508 ° 0.063 b !
3.3 0.939450 0.061
3.1 0.9338% 0.055
3.5 0.99317 © 10,050, R y
336 : 0,99243 ¢ 0, 046 ﬂk ! >
8.7 0.99162 0,042 : ' .
3.8 0,99070 . . 0.038 .
o j .
\j A




PXPERIMENTAL DATA FOR CPRYSJAL F2

S EMP vi7l virley(o] NIVEAC
3,720 T34, 12 0.99135 V.99
3,042 T35 .93 0.931u3 0.73J3
3.653 7T3uv,18 O.33147 J,.929%4
3,594 73u .54 0,.2Y9240 0.999
3. 4972 737 .11 D.99323 1.000
3.433 737 . hu ;0 0.493L8 1,005
3.324 . 737 .90 0.343g 1.004
35254 73830 0.93u482 1.00d
3.17%4 738.63 0.33527 1.003
3,060 739 _ 07 0.99587 1.01vu
2.971 739 38 0,990629 1.009
2 .838 7 739,73 0.33684 1.005
2.696 740,17 0.99734 0.997
2.585 T4 u3 0.99770 0,985
2. 444 THO 70 0,93807 0,959
2,277 740,99 0,985 0.925
1.975 Thq .22 0.03877 0.609
1,773 TH1.29 © 0,99886 0.141
1.015 TH1,33 . 0.99891 1 .0 4nu3
1,368 741,133 0,99891 T2.340

! 0.92891 T63.083

0.641 7‘01!33

i

.

’ H 7}
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CEYSTAL P2 ;113.0 Ban 201 /0277
LSOTHERMAL VELOCITY = AafdxTall
A=T18.4 +/~ 12,11 M/5 B="0_1013 T H=3 .59, .
DFRYF @=42, 03 HOLAR VOLUMrR=17 55 rc /e
GECOND SQUND=202.2 M/ss FREQUFNEY=5F0 HZ
SLANDARD DEVIATION FPOR FIL I5 0.04307
AELAXATION FACTORS 1. 4%xDPN,0.3x70 17T x 7411
ORIFUTATION IS5 BFETWUFEYN 50 AND 70
l + L}
ZHPORETICAL CALCILATIONS(NTKLAGS )
~ TEMP VIimlsv(nJ ATTEN NI¥FEAN
' 0.3 0.,1337 0.275 T28.331
Dl 0,949 0,397 ~28.167 &
U, h 0.123480 V,.040 27,640
0.0 0,99 364 0.558 “20.361
0.7 0.92942 0,826 .23 822 i
0.8 0.92321 1,034 T14,783 ' )
2,9 0.99909 1.261 ° T14.565
1.0, ° 0.,939912 1. 443 T9.085
1.1 0-.139928 1.438 1 TH 507
1,2 0849344 T
1.3 0493451,
1.4 0,99 349
1.5 0.399456
1.6 0.94448
1.7 0,09949
1.9
2.0
2.2 °
2.2
2.3
2.4 6 "
2.5 A
2.6 y -
2.7 # 0.99786 “
2.8 0.99755
2.9 '0,29723 ,
. 3.0 0.93687 . A o
3.1 0.99647,
3.2 0.9960u .
3.3 0.99457 ,
3.4 0.99506
3.5 0,9%450 i r
3.6, '0.'99399 . .
v 3,7 ~0, 939325
L)



~

55

TEMpP
3.637
3.621
3,501
3.5%8

3'“?).

4.33¢
J3.225
3.1vo
3.022
2,345

2.667°

2,539
4. 273
2.,05AM
1.868
1.418
0,640

FXPRRIMPNTAL DATA

vi~)

713.83
713,493
714,13
714,33
714,72
7;5;01
715.45
715 . 32
716.06
Tiw,.27

" 71 .88

717.17
T17.53
717 .84

,718_0“

718,.04,"
718 .04

FOR CPY;7ar P2
viTieviol

~

U.93303
0.93377
"0.93u05
0.99433
0.99487
U.23534
0.99589
0.93u27
0. 892674
0.39703
0,99748
0.99829
0.99879
0.949322
0.99949
0.993949
0.99949

I 4

PIvELC
0.936
1.000
J.988
1,020
0.99¢
1.000
0.934

T 1.015
0.989
0,982
0.994
0.999
0.958
1.014
1,066

"0 _063

29,706

i



CAYSTAL F3 31%3.2 HA +13/02/72
y 3

T5OTHERMAL VELOCITY = A+BxTap

A=T32.4 4/~ 11,72 M/ B="U_1Vs0 F=3.544
DEBYE e=42.06 MOLAT VOLUME=17.52 Cr/n
SECOND SOQUND=202.3 M/, FREQUFNCY=5F6 H7

SAANDARD DEVIATION FNR FIT IS 0,.05144
AELAXATION FACTORS A.5xTN,0.7T=xTJ,23xTAU1 '
ORTFENTAZION 15 BFTAEEN H5 AND 85 : ) ’

THEOPETICAL CALCULATIONS(NIKLASS5NM)
TEMD ViTssv(0] ATTFN . RIKFAC
0.3 0.9999%6 0.269 "738.,06313 ?
0.4 0,99988 0.390 T38,413 S
0.5 0.99373 0.514 T37.713
0.6 0,991351 0.658 735,983
0.7 0.99923 0.846 T32.578 - 1
0.8 0.93834° 1,030 . T27.238 » '
0.2 0.99876 1.374 720,587~
1.0 0.93873 1.646 '"T13_820 !
1.1 0,.93886 1.837 “8.109 !
1.2 0.99906 1.891 "4 219, i
1.3 0.93923 1.796 T1.945
1.4 0.99428 1.582 70884
1.5 0.99323 1.225 "0, u55 o,
1.6 0 0,976, 70,165 L4
1.7 0.683 0,229
1.8 0,476 0,608 .
1,9 0,349 1 0.828 T
4,0 0,208 0,928 !
2.1 0,210 lo.970 ,
2.2 0.108 0.987
2.3 0.13¢ 0,934
C 2.4 0,112 0.297 ,
L 2.5 b.0u3 0.999 '
2.6 0.078 0.999
2.7 0,060 1.000
2.8 .997u8 1 0.057 s 1.000
2.9, 0.39714 0,043 1.000
3.0 0.99677 © 0.0 . 1.000
3.1 0,99636 0.038 . 1.000 ’
3.2 0.99591 0.033 1.000 ; .
3.3 0.99542 0.030 1.000 -, <,
3.4 0.99489 0.027 1.000 '
3.5 . 0.99432 0.024 1.000 : @? ; T
3.6 o_sﬁxzo .. 0.022 1.000 g
' \ : {
. )
\ \
i § ¥
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EXPFRIMENTAL DATA FOR CRYSTAL F3

0.655

TEMP virlt. viTisv(o0J rrvrac
3,594 727,85 0.94378 1,105 -
3.538 728,10 0.99ug3 1.005
3.431 728,55 -~ 0.99u473 1.001
3.231 729 28 0.729573 0% 99y
3.114 729,09 0,93629 0.999
3.002 730.05 0.99678 1.004
2.940 730,20 0.49699 0,949
2.781 730.u48 2.99730u J.943
2.693 730,85 0.29787 1.020
2.470 731.15 0.9982 1 0.945 .
2,308 731,43 - 0.938BL6G 0.9u¢
217y 731.78 0.33914 1,113
1.944 731.87 0.92326 0.934
1.807 731.87 0.939392¢6 0.678
1,300 731.87 0,.999326 1,245
1,349 731.87 0,99926 T1.333
1.313 731.87 0.9%226 71,650
0.716 731.87 0,94926 28324 -

731,87 0.99926 “39 . 770
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CRYSTAL £1 & 86.2 BAR ;15/04/72

ISNTHERMAL VFLOCTITY = A+BxTal
A=T54% 4/~ 13,08 1/5 8= 0.1025 ®=3.807
DFBYR @=37_ 48" MOLAR VOLUME=18 .34 Ncym
SFCOND SOUND=178.9 /5 FREQURNCY=5E6 K.
SLTANDARD DEVIATINON FOR FIT IS5 0.0142
~RELAXATION FACTORS 1.5xTN.1xTU,4xTAU1
, ORIENTATION I5 BFTWEEN 10 AND 30

U ‘ A : }
THEORETICAL CALCULAPIONS(NIKLASSOM)

TEMP . yLTI+V[OJ ATTEN NIKFAC
0,3 0.99999/ 0.384 § 76,001 -
OLA o 0,93397 0.540 75,932
0.8 " 0.999392 0.692 75,718
d.6 0.94486 0.850 75.192
0.7 | 0.989978 1.019 T4, 254
0.8 0.94971 " 1.19% 72,981
0.9 0.99869 1.358 71.653
1.0 0.99970 A.u70 -+ "o 554
1.1 0.92973 . 1.497 ,0.184
1.2 0.99975 2.424 0.583
1.3 0.99972" *~ ' "1,266 0,750 .
1,4 +0.994367 1.057 . 0.810 . e
1.5. . 0.99960Q, 0,835 0.855 .
1.6 L 0.99354 ° 0,688 0,916
1.7 L T0,99947 0,486 0.963
1.8 0.999338" 0,374 0.985
1.9 d.99925 0,281  0.994
2.0 0,99909 L 0.223 ° 0,998 ’
2.1 0.99891 . ~ 0,183 ' 0,999,
2.2 0.99870 *0.A48 1.000
2.3 0.99845 0,121 1.000 "
20y, 0.99817 0,100 .. 1.000 !
. 2,5 0.93786 ‘0,084 /17,000 : :
2,6 0.99751 0.072 ., 1.%00,
2,7 . 0.93711 ‘0,062 1.000
2,8 0,99667 0.053 1.000"
2.9 0.33617 , 0.047 1.000
3.0 0.99562 0.041 1.000"
3.1 0.99501 0.037 1.000 e
~ ) N ‘



3

™
J

FXPPRIMENTAL DATA FOR CRYSTAL 1

TEMP verTl yirlsvtol
3.047 750.45 0.,99531
3,012 750.63 0.9355y4
2,974 750.80 0.99577
2,914 751.07 0.99613
2.840 751.35 0.996449
2,753 751.66, 0.99ub990
2.644 751.99 0.99734
2.543 752.29 0.99774
2.420 752.57 0.939812
2.2u2 752,72 0.93486)
2.092 753,18 0.94893
1.410 753,41 0,999272
1.776 753,53 0.99939
1.677 753,62 ,0.99950
1.523 753.68 0.99953
1.333 753, 74 0.99967
1.190 753 .81 0.99475
0.657 753,81 0,93975

*

RI¥YFAC
0.996
0,99
0.939
1.003
1.001
1.002
1.004
1.0
1,001
0.939
1.000
0.989
0.971
0.967
0.874
G.706
0,580

6,04
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B : o
CRYSTAL h2 5 se.6 B3AR ;04705772

-

ISOTHERMAL VFLOCITY = A4RxT*N L
A=0TH T 4/~ 6.207 "/S 3= 00,1557 =3 80‘4
~ DFBYE =37, 54 MOLAR VOLUMF=18.32 ¢C/M
X SECOND SouUNn=179.2 M/5 FREQUERCY=5F6 HZ
STANDARD DEVIATION POR FIT IS 0 .06896
RELAXATINR FACTORS 1,S5xTN,1xTU.1xTAUL
ORIFNTATION IS Brmurrﬂ 40 AND 90

THEORETICAL CALCULATIDHS(HTKLASSOH)

TEIP virlsviol ATTEN BIXFAC
0.3 1.00000 0.427 ° T0_855
0.4 0%934999 0.599 " 70,838
- 0.5 0.93998 0. 7ou 0,777
0.6 0.99995 0.928 0,638 N
0.7 0.93993 1.093 0,381 '
. 0.8 0.93990 1.253 ° T0_03s . S
0.9 0.93988 1.393 0.328
1.0 0.994986 1.485 0.628 .
1.1 0.99985 1.503 . 0.829
1.2 0.93982 1,432 0,938
1.3 10.99977 1.282 - 0,982
1.4 F 0499971 .~ 1.086 ©0.993 -
1.5 ‘/ 0.99962 0.880 ' 10,993 _ !
1.6 /'0.99951 0,633 0.994
157 [.0.99939 0.533 0.997
1.8 0.99924 0,418 0.999
1.9 0.99907 ' 0.326 r-999
2.0 . 0.99887 | 0,257 o, 1.000
2.1 0.99863 0,205 " 1,000
2.2 _  0.93837 " 0.166 1.000 \
2.3 0.99806 0.136 . 1,000 . o
2.4 0,99771 0,213 1.000
2.5 0.99732 0,095 1.000
256 0.99688 0,081 1.000
2.7 0.99639 . - 0t 069 1.000
2.8 0.99584 0,060 1.000
2.9 0,99523 0.059 - 17900
3.0

0.99455 0 bu7 1.000

-



&)

-

“ A

EXPERIMENTAL DATA FOR CRYSTAL H2

TENMP vimi "vLTlevio]
2.989 ©71.16 ., 0.99u482
2,965 671.13 0..99487
2.940 671.28 ' 0,99500
2.89u 671,45 - 0D.85526
2,847 ) 671.65 . 0.99554
.+ 2,808 671.82  5.,99581
2.771 671.96 0.99601
2,749 ©72.05 © 0.9961M4
2.686 §72.26 0.9J045
2,562 672.65 0.99703
2.551 672.68 0.94707
4.526 672,73, ' 0.,99714
2.486 ., 672.80 0.99733
2,395 | 673.04 0.99761
'2.315 673.27 = 0.99735
02,252 .  673.39 0,99813
2,214 " 673.48 . 0.99826

- 2,481 - 673,54 0.99835
2,116 673,66 0.99853.

2,064 673.74 0.99864
1.986 - 7 673,87 0.99883 °
1,941 673.92 0,39891
1.309 673.96 0.99897
1.864 674,02 0,99905
1,995 674,10, 0,99917
1.961 674,12 0.99920 .
1.830 674.15 0.99925
1.85 - 678,21 0,99835
1.58 Y o4, 24 0.99939
1,704, . 674,29 '0,99947
1.515 .. 074 .42 <~ 0,99966
1.411 K674 .45 ¢.99370
1.225 674,50 0.99378
1.1758 674,50 0.99978

0,647 o774, 50 0.99978

/

" MIXFAC
1,006 °

1.008
~1,.004
0.9499
0.998
~1.001
1.001
1.002
0.998

0.994

0.993
0.986
0.990
0.971
0.983
0.975
0979
0.976
0.974
0.967
0.970
. 0.956
0,951
0.950
1.143
1.130
1,128
13122
0,837
1.071

e 1,068

1.001
0.840
L.725
0,292

\
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CRYSTAL I2 ; 86.4 BAR ;31405/72 rg : %,
ISUTHERMAL VELOCITY = AaBxTay ’. 5 o A N
A=667.4 4+/- 26.56 M/S ' B="0.1012 w=3.866 RO
DFRYE ©@=237_51 MOLAR VOLUME=18.33 cg/r A o
SECORD 50UND=173 .1 M/5 FREQUFENCY=SE6 PRZ Lo
SLARDARD DEVIATION FOP PXT IS 0.05547
RELAXATIOR PACTORS 1.5xTN,0.2x7U,8xTAU1 <4
ORIENTATION IS BRTWEEN 45 AND 90
' P
THEORETICAL CALCULATIONS(RIKLASSON) ‘ ‘fé
TEMP viTisvL o) ATTERN _NI¥FAC o \ N
0.3 - 0.99998 0.433 12.862 . Y g
0.4 0.99993 0.610 T12.727 Y *
0.5 0.99985 0.787 T12, 296 .
0.6 0.99972-/ 0.973 11,269 i
0.7 0.93957 "1.142 79,362 o "
0.8 Q,99947 1.339 " 76,553 é£§\ '
0.9 0.93350 1.s10 73 361 ,
c1.8% 0,99962 1.421  To 3up C W
1.1t 0.99968 1,158 0.135 ,
1.2 0.99966 0,844 0.468 .
1.3 0,99962 0,565 0.666
1.4 0.93960 0.369 0,853
1.5 0.99954 0.251 0,955
1.6 0.99944 0.177 0.986 . .
1.7 0.99931 0.128 0,996 A
1.65‘ 0.99914 0.095 . 0.998 o
1.9 0.99895 0.072 - 0,999 . g ST b
2,0 0,99872 0,055 1.000 \ ‘
2.1 0.998u46 0,043 1.000
2.2 0.99816 0.035 1,000
2.3 0.99782 0,028 2,000
2.4 0.93743 20,0230 10000
2.5 0,99699 ~0, 019 1,000 .
2.6 0,99649 0.016 1,000 ' ‘
2.7 -0.99594 0,014 1,000 .7 .
.2.8 7 ©0,99532 © 0,012 1,000 coee .
2.9 0.99463 " 0.011 1,000 >~ ¢ L .
3,0 0.99387 0.009 ‘1,000, - -0



%

EXPERINENTAL OATA FQR CeYSTAL 12

TEMP

42.9606

2,955
2.930
2.837

'2.867

2.811
2,760
2,724
2.6939
2.664
2.635
2,604

2.580:
2,552

2.522
2,480
2.434
2,300
2.279
2,237
2,183
2,147
2,103
2,061
1.983

. 1.334

1.879
1.988

. 1.935

1,896
1,867
1.756
1.665

N

(

1.596:

1.525
1,449

1" 373 1‘
. 17264

(Ti?6°5.39
~ 665,70

-

T

1.088

1,008 -
0.926

‘0,648

virli
603,50
663,5%
663 0vW
663,80
663,94
- 664 18
664,39
bol4, 56
664 .70
664 78
664 _ 89
bo4 99
605,08
665.17
665,26

\ vRs, 52

005,91
666,00
660,11
666,20
666,28
66,33
666,46
666,54
666,61

» 666,70

" 666,76

666,79

666, 81
666 .90
666 %7
666,99

667.03 "

€67. 06
667,09
867,12
667,13

667,16

667,16 "
867,16

.

5,

TG

virl+viol

0.99421
0,39429
0.99442
0.39466
0.93u487
0.39523
0,99554
0.93580
0.99601
0.99613
0.99623
0.933644
0.99658
0.99670
0.9968u
0.93703
0,99723
0.99751
0.99782
0.99796
0.99812
Qs 99826
0.99837
‘0.99845
'0.,99864
0.99876
0.,99886
0.99901
0.99909
0.93913
0.39317

. 0,99930

0,99940

“0,999u4

0.99950
0.99954
0.99959,

0.99963 -

0.99965

- 0,99969

0.99369
0,99969"

0.99969-

S B

™

.
Y

v

{s,
NIXFACr
1.008
.1.008
1.002
1.001
1..001
0,998
1.000
1.001
1.010
0.998
J.998
0.995
0.998
0.934
0.992
0.891
0.988
g.985
0.981
0.976
0.975
0.975
0.967
0.951
0,937
0,937
0.921
1.125

1.116 °

- 1.100

-1.095,

1.056

1.032°

0.977
0.9ul
0,866
'O.Zﬁo
0.588
0,437
0;403
TQ,397

“1.162
T9.160
Lo T



