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Abstract

The development of methods to acquire information about different characteristics
of objects has been an important aspect of scientific inquiry. The focus of this thesis is on
the development and study of a class of methods that improve the quantitative
measurement of characteristics of marketing objects. Different marketing problems
require the measurement and scaling of different characteristics of different objects.
However, the academic literature on measurement in marketing, through its continued use
of classical reliability theory to assess the quality of measurement, has focused on the
scaling of only individuals and ignores other objects, even though many purposes of
measurement may require the scaling of characteristics of such objects. Generalizability
theory is a sophisticated psychometric approach that can be applied to design efficient
measurement and explicitly take into account differences in the purpose of measurement.
In the first paper of the thesis, a generalizability theory perspective is taken to propose a
general framework to optimize the design of marketing measurement for different
purposes of measurement. An empirical study on service quality measurement was
conducted to illustrate the advantage of the generalizability approach to measurement.
The application of the framework requires the extensive use of estimates of variance
components. The second paper of the thesis investigates two issues that provide an
indication of the methodological limitations of the extant framework. First, does the
optimal measurement design depend on the method used to estimate variance
components? Second, are the interval estimates such that the optimality of a design
generated from point estimates might be seriously threatened? To answer these questions,

different statistical methods to obtain point and interval estimates of variance components




are reviewed and applied to the service quality data. The third paper of the thesis presents
a generalization of the framework to the case of multidimensional measurement. Different
ways of using multidimensional information are reviewed, the dependence of the
reliability assessment method on these different ways of using information is illustrated,
methods to assess reliability and design future measurement in each case are presented,

and finally the methodological framework is illustrated with the case of measurement of

retail store quality.
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Chapter 1
Introduction

Acquiring and interpreting information about the characteristics of objects has
been a major focus of scientific Inquiry in many disciplines. Such information is rarely
acquired in its perfect form. Either the information acquisition process of a research study
is limited to some extent, or the true state of an object’s characteristic can never be
known even if the information acquisition process is perfect. The information acquisition
process can be limited because of several important reasons, one of which is the inability
to measure the characteristic of interest under all possible conditions that affect the
measurement procedure. For a simple example in the physical sciences, consider the
measurement of the length of a table. A person with a ruler can take a measurement of the
length. The measured length might depend on the person who measures the length and
the particular ruler used by that person to measure the length. Thus, the measurement of
the length of the table by one person with only one ruler can only be an approximation to
the true length, if there is variation in the measure attributable to persons or rulers. On the
other hand, the true state of the characteristic might be “unknowable” because we can
only represent the true state isomorphically (perhaps because the characteristic is socially
constructed), or because of the inherently stochastic nature of the true state. In the social
sciences, we often find such a limit in the information acquisition process and an inability
to know the true state of the object’s characteristic. This combination results in a less than
perfect “measurement” of the characteristic of an object.

Scientific research in social sciences has pursued the development of methods to
improve the measurement of an object’s characteristic, so that the true state of the
characteristic is better represented, isomorphically or otherwise, by the measurement. A
large number of these methods originated in education and psychology, although some
were adaptations from the statistics literature. Almost all methods are statistical in nature

and this thesis is limited to methods that improve the quantitative measurement and




representation of the true state of an object’s characteristic, assuming that the
imperfections in measurement arise from the limits in the number of conditions under
which a measurement of the characteristic can be made. Whether a true state exists is
controversial, and there are many philosophical perspectives on the issue. Although an
interesting question, I abstract from it by not assuming the true state to be divinely
determined. Instead, the true state is considered to be the “limiting value of extensive
observations” (Cronbach et al. 1972) of a stable characteristic of an object, consistent
with the focus of the thesis on the number of diverse conditions under which the
characteristic is observed.

The academic discipline of marketing, like any other scientific discipline, has
been constructed on the basis of measurement of the characteristics of objects. Firms,
products, brands, consumers, markets, and distribution channels are among the objects
that are of critical interest to marketing inquiry. Thus, almost every academic research
study in marketing measures the characteristics of one or more of these objects, albeit in
different ways. The characteristics of objects such as attitudes of consumers towards a
behavior, the service quality provided by service firms, the satisfaction experienced by
consumers upon use of a service or product, the image of a firm or a brand, the size of a
market, market share of a brand, the demographics of a consumer population, and the
choices made by consumers are commonly measured by academic researchers and
practitioners in marketing. It is possible to directly observe some characteristics of some
objects, e.g., choices made by consumers can be observed by scanner data. On the other
hand, characteristics of many types of objects are uncbservable, i.e., they cannot be
observed as a fact and are therefore isomorphically represented to facilitate their
measurement. For example, the satisfaction experienced by consumers or the service
quality provided by firms are characteristics that are unobservable. The marketing
literature has numerous scales developed ostensibly for the measurement of such

characteristics, and as an indication of this activity, there are now at least two handbooks
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with details of multi-item scales developed in marketing (Bruner and Hensel 1993.
Bearden, Netemeyer, and Mobley 1993).

The measurement literature in marketing can be divided into the pre-1979 and
post-1979 periods which differ greatly in terms of the rigor associated with the
assessment of the measurement and the measure development procedure for multi-item
scales. Prior to 1979, few studies provided any evidence of reliability or validity for the
measures they used, with most exhibiting the folly of single indicants (Jacoby 1978). The
special issue of Journal of Marketing Research in 1979, which contained two seminal
papers by Churchill (1979) and Peter (1979), made a significant impact on the
development of scales in marketing. Most marketing scales published since then have
been developed on the basis of classical test theory methods recommended by the
aforementioned seminal papers. Churchill ( 1979) brought together a large part of the
extant literature in education and psychology to present an “updated paradigm” for
measurement scale development in marketing. Reliability assessment was treated as an
integral part of scale development. Peter (1979) focused on reliability and presented a
concise summary of extant methods for measurement scale evaluation, either during the
scale development stage or the scale application stage. However, the understanding was
clear, albeit implicit, across these two papers: the recommended scale development
procedures would lead to measurement scales that only need to be evaluated on their
reliability when scaling respondents on some characteristic, when used for diverse
managerial or academic purposes.

The origin of classical test theory methods in education and psychology has much
to do with the focus of the methods on scaling a characteristic of individuals. This is so
because the disciplines of education and psychology are interested primarily in individual
differences. Classical test theory focuses on the ability of a measurement procedure to
reliably scale a student’s ability or some other characteristic relative to other students in

the population. Given this focus and the seemingly parallel focus of marketing on




consumers, the adaptation of these methods in marketing was deemed to be
straightforward and thought to have required no modification. Thus, measurement scales
used in marketing have been evaluated for their ability to scale some characteristic of the
individual respondents in a survey. However, this aspect of the evaluation has always
been implicit and has almost never been explicitly discussed. The critical question that is
asked in this thesis is whether scale performance when scaling a characteristic of
individuals is the appropriate criterion to evaluate the information used to make various
managerial decisions. Different managerial decisions require scaling of characteristics of
different objects and therefore the appropriate criterion depends on the purpose of
measurement. This thesis is an attempt not only to raise this question in a precise form
but also to answer it with an alternative methodology. The process of answering this
question has led us to other areas of research that are at once novel and have strong
implications for managerial and academic practice of measurement.

Four specific issues given explicit attention in this thesis deserve mention at this
stage. First, classical test theory methods treat error as a sample from a single
undifferentiated distribution (Cronbach et al. 1972, Brennan 1983). Any study of the
evolution of statistical thought will certainly accord great importance to the revolutionary
thinking of Fisher (1925), who suggested that variation in a measure can arise from
several controllable sources, some of which are sources of error. The impact of Fisher’s
work on experimental design has been considerable in marketing and there is no reason
for marketing researchers to continue assuming error to be singularly attributable to a
single random source in the context of evaluating the psychometric properties of a
measurement procedure. In fact, the idea that variation can arise from several sources is
the primary basis of the generalizability theory work presented by Cronbach and his
colleagues (Cronbach et al. 1972) in educational psychology and further developed for

marketing in this thesis.




Second, the thesis also suggests methods to improve the efficiency of the
information acquisition process. Simply put, the data collection process for decision
making can be made more efficient by taking into account the purpose of measurement.
This is achieved by estimating the variation due to different sources, deciding which
sources constitute noise in measurement, and so are controllable, and which source(s)
constitute a signal, and then constructing a measurement instrument that leads to a better
ability to measure the characteristic of interest at lowest monetary cost. These two
important issues dominate the first paper of the thesis.

A multi-faceted theory of measurement requires modeling the variance in the
observations as a function of the variances attributable to several sources. Such modeling
is familiar in the statistics of experimental design, and results in variance components
models (Searle, Casella, and McCulloch 1992). Variance component models are used
throughout the thesis. There are several methods to estimate the parameters of such
models and the development, description, and comparison of these methods constitute a
large literature in statistics (for a selective literature review, see Khuri and Sahai, 1985
and Searle, Casella, and McCulloch 1992). The most appropriate estimation method
depends on the kind of data collected by a researcher, and also has a significant impact on
the implications drawn from an empirical study. In the second paper of the thesis, I have
reviewed the statistical methods for estimating parameters of variance component
models. I also provide an empirical comparison of the alternative methods to estimate
parameters, to answer the question of whether the implications drawn from the
substantive results in the first paper are dependent on the estimation method. In addition,
I'have presented methods, adapted from several statistical sources, to evaluate the
sampling variability of the parameters estimated in a variance components model and
form interval estimates of such parameters. The sampling variability can potentially have
a significant impact on the implications of the empirical results, if it is such that the

interval estimates have too wide a range. The empirical application of these interval




estimation methods can suggest to us whether suffficient confidence should be placed in
implications drawn from the results of the first paper of the thesis.

Finally, the thesis also suggests a multivariate method that can be used to evaluate
the ability of a measurement procedure to scale a multidimensional characteristic of an
object, and also develop efficient procedures to collect information on multidimensional
characteristics. Scores obtained on multiple dimensions are sometimes combined for
managerial purposes to provide parsimony in information. The parsimony in information
may be rewarded by a recommendation of less data collection in a decision study than
would be required if one needed reliable information for each of the individual
dimensions. Clearly, this reward is dependent on the covariances between the multiple
dimensions. Because the parsimonious information demands less data, there could be
attendant losses in reliability of information for each individual dimension. Thus, the
reliability of the more diagnostic information for individual dimensions is lessened as a
result. We explore the implications of such a trade-off between parsimony and
diagnosticity, specifically in the context of obtaining reliable information for each
objective. This multivariate extension of the concepts and methods presented in the first
paper is examined in the third paper of the thesis.

Throughout the thesis, I use the example of the measurement of service quality to
illustrate the conceptual issues and add a managerial context to the explanations. An
additional, and perhaps more important, reason to use service quality measurement as an
example is because the theory and methods are empirically illustrated in this thesis with
the measurement of the service quality provided by retail chains. Thus, the common
thread of service quality measurement will run through the thesis, making the context
common across examples and the theory. The exception is the final paper where product
quality is also measured to reflect the multidimensional nature of measuring the quality of
a retail outlet. Although the focus in this thesis is on service quality for the illustration,

the methods are equally applicable to many other areas of inquiry where measurement




scales are used, both in marketing and in the broader management literature. The
assumption made throughout the thesis is that the characteristic(s) being measured has
already been determined to be important for some managerial or academic decision-

making purpose.
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Chapter 2
Reliability Assessment and Optimization of Marketing Measurement'

Criticism of the ad hoc approaches to measurement in marketing peaked 20 years
ago with Jacoby’s 1976 presidential address to the Association for Consumer Research.
At that time few studies provided any evidence of reliability or validity for the measures
they used, with most exhibiting the folly of single indicants (Jacoby 1978). The major
turning point in marketing researchers’ concern with measure quality was the publication
of a special section on measurement in the F ebruary 1979 issue of the Journal of
Marketing Research (Peter and Ray 1984).

The special section included two articles, Peter (1979) and Churchill (1979), that
have been very influential in the development of measurement in marketing. Peter (1979)
provided a comprehensive review of the traditional psychometric approach to reliability,
also called classical reliability theory, and had the foresight to identify generalizability
theory (Cronbach et al. 1972) as being of potential interest to marketing scholars.
Churchill (1979) adopted methods already being used in the psychometric literature to
present a paradigm for the development of better multi-item measures in marketing.
Because of the clear prescription laid down by Churchill (1979), most scale development
studies in marketing have followed the methods suggested therein, clearly resulting in a
higher standard of research in marketing.

The evidence as to subsequent academic practices can be found in two projects
devoted to documenting such scales. Bruner and Hensel (1993a) searched the six leading
marketing journals from 1980 to 1989 for multi-item scale usage, and found 750
instances where basic psychometric information was reported. Moreover, there was a six

fold increase in multi-item scale usage from 1980 to 1989. Their Marketing Scales

'A version of this chapter has been published in Journal of Marketing Research, 34 (2),
262 - 275 (with Adam Finn).




10

Handbook (Bruner and Hensel 1993b) describes the 588 different multi-item scales they
found, classified into consumer behavior, advertising, and organizational, sales force, and
miscellaneous scale sections. Bearden, Netemeyer, and Mobley (1993) report on a wider
search for articles dealing with the development of multi-item scales in their Handbook of
Marketing Scales. Consistent with the methods suggested by Churchill (1979), the
structure of the description and evaluation of the scales in both Marketing Handbooks
simply emulates prior handbooks of psychological scales.

Most multi-item marketing scales reported on in the Handbooks exhibit high
reliability. Churchill and Peter (1984) and Bruner and Hensel (1993a) report mean alpha
values of .76 and .77 respectively, whilst Peterson (1994) found the median alpha values
reported in five marketing sources ranged from .76 to .81. These assessments have taken
a classical reliability theory perspective, with the measures developed and then evaluated
for their ability to scale respondents. In classical reliability theory, reliability is assessed
as the degree to which a multi-item measurement instrument consistently scales a sample

of individuals. Reliability can be expressed in mathematical form as,

2

_ _ Strue score
(2.1) r = - fQuescore

Oobserved score
where, cfme score 1S the variation among respondents’ mean scores and cgbsewed score 1S
the sum of true score variance and error variance. Thus, a scale is seen as producing
highly reliable information if it provides a consistent scaling of respondents.

Marketers have always approached scale development the same way it has been
done in psychology, as if their objective is always to scale characteristics of individuals.
However, many measurement applications in marketing require the scaling of objects
such as firms (comparing the service quality provided by firms or the marketing
orientation of firms), advertisements (comparing the effectiveness of advertisements), or
brands (comparing brand image), rather than a scaling of individuals. Such scaling may

require generalization over individuals in the population, it does not require scaling of the
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individuals. Thus, a reliability assessment method that considers only the scaling of
individuals is clearly limited in its scope.

Suggested refinements to scale development methods (Gerbing and Anderson
1988; Steenkamp and van Trijp 1991) have not addressed this limitation. Generalizability
theory, hereafter called G-theory, explicitly addresses this limitation of classical
reliability theory. G-theory, pioneered by Cronbach and his colleagues (Cronbach,
Rajaratnam, and Gleser 1963; Cronbach et al. 1972), can be viewed as the most general
psychometric theory, although Cooil and Rust (1994, 1995) recently presented an
expected loss framework that generalizes G-theory to include non-interval scales. G-
theory encompasses classical reliability theory as a special case. Moreover, the use of G-
theory allows a practitioner to design efficient measurement in applied studies.

Despite frequent citation of the Peter (1979) paper, there has been little
recognition of the advantages of using a G-theory approach for scale development in
marketing. Rentz (1987) argued strongly for the potential value of G-theory in marketing,
presenting examples based on borrowed and hypothetical data. He also illustrated the
differences between classical reliability and G-theory based measures of reliability for
some marketing scales using data from a small sample of students (Rentz 1988).
However, there have only been three subsequent marketing citations of G-theory.
Reibstein, Bateson, and Boulding ( 1988) recognized the multiple sources of variability
when assessing the reliability of conjoint analysis. Hughes and Garrett (1988) examined
the variance components for facets contributing to the observed levels of intercoder
reliability in studies reported in the marketing literature. Finally, Rust and Cooil’s (1994)
generalization of G-theory reports tables for the levels of agreement necessary between
judges to achieve levels of a proportional reduction in loss index of data quality. So while
a G-theory approach to measurement has been advocated in marketing, it has not yet been

adopted by marketers who are developing or using scales. Inspite of its potential, neither




academics nor practitioners have used it to ensure that money is not being wasted on
unnecessary data collection during measurement for marketing decision making.

In this paper, we reiterate that the classical reliability theory perspective. which
dominates scale development and academic measurement practice in marketing, is
inadequate for assessing the reliability of information gathered by using a scale.
Moreover, it frequently results in very inefficient solutions to managerial measurement
problems. These arguments are illustrated with an empirical investigation of service
quality measurement. The empirical study illustrates the importance of recognizing the
purpose for which a scale is being used, and demonstrates that a generalizability approach
to measurement can provide substantial savings over procedures currently advocated in
the academic literature. We use the G-theory approach to design efficient measurement
instruments on the basis of data collected during the development stage. The optimization
takes into account both the specific purpose of proposed measurement and the monetary
cost of the instrument. We next provide a discussion of the advantages of using the
generalizability theory framework in marketing measurement. and conclude with
limitations and directions for future research.

2.1 Using Generalizability Theory to Optimize Measurement

As opposed to the limited view of classical reliability theory, G-theory (Cronbach
et al. 1972) provides a multi-faceted view of measurement, where variation in
measurement arises from multiple controllable sources. Following the Fisherian logic of
experimental design, measurement in G-theory is expressed in terms of random effects
and variance components associated with each of the multiple sources of variance. Each
random effect is assumed to be distributed with a mean of zero and variance equal to the
variance component. The variation in the characteristic to be measured can then be
expressed as the sum of the variance components associated with each source of variance.

Cronbach et al. (1972) defined a formula for the coefficient of generalizability,
analogous to the reliability coefficient in classical rehability theory,
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2.2) E‘32 _ Suniverse score
: 7 2
Suniverse score + Orelative error

2

where Oypiverse score 1S the variance component associated with any object of

measurement (analogue of the true score variance in classical reliability theory) and
C?e[ative error 1S the sum of only those variance components that affect the scaling of the
levels of the object of measurement. The notation' is meant to show that a generalizability
coefficient is “approximately equal to the expected value . . . of the squared correlation
between observed scores and universe scores” (Brennan 1983, p. 17). For a study with a
single facet of generalization, the coefficient of generalizability is equivalent to the
reliability coefficient.

Because some of the terminology in this paper is unique to G-theory, we note
some basic definitions of terms. An “object of measurement” is a factor, such as firms.
advertisements, or brands, the levels of which need to be scaled by the measurement
instrument. A “facet of generalization” is a factor over which the researcher requires the
findings to generalize. For example, a scaling of the service quality provided by firms
should generalize over respondents in the population, thus making firms the object of
measurement and respondents a facet of generalization. The levels of an object or a facet
are the different elements constituting the factor. Six firms would constitute 6 levels of
the object of measurement ‘firms’ and 200 respondents would correspond to 200 levels of
the facet called ‘respondents’. G-theory assumes that each random effect ‘i’ is normally’
distributed with mean 0 and variance ciz - A generalizability study, hereafter called a G-
study, is the first stage of the two-stage procedure used in G-theory in which the variance
components 0',-2 associated with each effect ‘i’ are estimated from empirical data. The
second stage, called a decision study, is an applied study, the results of which are used to
make decisions. Details of G-theory are provided by Cronbach et al. (1972) and Brennan
(1983). Rentz (1987) provides the most complete account in marketing; Shavelson and

Webb (1991) provide a good introduction.
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Scaling of the levels of an object of measurement is affected by every interaction
of the object of measurement with a facet of generalization. A significant interaction
between the object of measurement and a facet of generalization implies that the scaling
of the levels of the object of measurement depends partially on the specific level of that
particular facet of generalization. Relative error variance is the sum of the variance
components associated with the interactions of the object of measurement with every
facet of generalization and the random error variance. In a fully crossed study, if A is the
object of measurement and B and C are facets of generalization, relative error variance

can be expressed as,

a2 ~2 ~2
~2 _JAXB ,9AXC , SAXBXC, random error
(2.3) G relative error = + +
Np Nc NBNc

where Ng and N, are the number of levels of facets B and C respectively.

Equation 2.3 shows that the function for relative error variance is convex in the
number of levels of the facets of generalization. Thus, the number of levels of the facets
of generalization designed into a decision study determines the relative error variance,
and therefore the expected G-coefficient.

The purpose of the measurement clearly defines the object of measurement and
the associated sources of measurement error. Optimizing measurement implies
identifying the most efficient allocation of resources along each of the sources that
constitute error in a decision study. To structure the optimization problem, we let the
decision maker choose the level of generalizability ‘g’ acceptable in the scaling of the
object of measurement (which determines the acceptable noise in the information). The
required level of generalizability will depend on the consequences that could flow from
the decision study. Nunnally (1978) suggested rules of thumb such as 0.90 as the absolute
minimum reliability for any applied study, with 0.95 being the desired level of reliability.

The same guidelines could apply in the current context.
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Given a desired generalizability, relative error variance can be reduced by
sampling along the facets that contribute to error, much the same way the Spearman-
Brown prophecy formula in classical reliability theory indicates that an increase in items
results in higher reliability. Given 3 or 4 facets along which samples can be drawn, the
question then is whether sampling should be equally distributed across facets. The answer
is no, because facets contribute different amounts of error variance. Sampling should be
in proportion to the size of the associated variance components. A desired level of
generalizability may be achieved with several designs, each a different sampling along
the facets (we call such designs iso-generalizability designs). The best choice from among
these iso-generalizability designs will depend on their costs. The lowest cost design
which satisfies the generalizability criterion will be the most efficient.

The optimization can be formally set up as follows. Assume the cost of
measurement C is a function of the number of levels of each facet and object included in
the measurement design, and the cost of each level of each facet and object. For a specific
decision study, where the object of measurement is known from the managerial problem,
cost C can be represented as,

(2.4) C=flc,, C, N, nyec)

where c, is the fixed cost of the survey instrument, C is a vector with elements
representing the cost of an observation on each facet, N is a vector with elements n, n,,
--.,Ng representing the number of levels of F facets of generalization, and n, is the
number of levels of the object cf measurement.

The cost C can be represented by different functions (such as additive or
multiplicative) depending on the data collection method. The purpose here is to minimize
the cost of the design subject to achieving a desired value g of the G-coefficient Ep®. The

relative error variance [&felaﬁve error(N )] is a decreasing function in all F elements of N .

Thus, the optimization problem can be formally stated as follows:
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(25) Minimize C =_/(C0, E » N ’ nobjecl)

N =(nn,.....np)
N subject to,

~2
O object

1. [ Eﬁz(ﬁ)] = ) — 2 &, the desired G-coefficient, and where
Cobject + [Grelative error (N)]
2

. are known a priori
relative error

&cz)bject and all variance components that constitute &

from a G-study.
2. Eachelementof N 1.
3. Each element of N is an integer.

This integer programming problem has no analytical solution. However, it can be
solved by the branch-and-bound algorithm (Salkin 1975), which is available in popular
spreadsheet packages (e.g., Microsoft Excel for Windows). The branch-and-bound integer
programming algorithm has been used by Sanders, Theunissen, and Baas (1989) to
minimize the total number of observations (product of the number of levels of all facets
of generalization) needed to achieve a desired G-coefficient. In a second paper, Sanders,
Theunissen, and Baas (1991) propose a method to maximize the G-coefficient by
choosing the number of observations that can be accommodated within a budget
constraint. Thus, the G-coefficient is specified as a result of the optimization, not as a
constraint.

Marcoulides (1995) presented an optimization method that minimizes the error
variance taking into account budget constraints. Thus, his method provides for an
efficient allocation of resources along each facet. He derived an analytical solution for the
optimum number of levels for each facet in a multi-facet design. The number of levels of
each facet in such solutions is almost always a fraction, not an integer. He then rounds
these numbers to the nearest integers around the solution. Mathematically, such an

approach is flawed because it does not necessarily lead to the lowest cost of all possible
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integer solutions and/or the minimum error variance. Our formulation makes it clear that
the chosen design will lead to at least the desired level of generalizability and will
simultaneously have minimum cost of all designs that do so. Moreover, these prior
optimization papers use hypothetical, not empirical variance component data.

2.2 Empirical Illustration with Service Quality Measurement

We illustrate the economic advantages of the G-theory approach with an
application to the measurement of service quality. Service quality measurement was
chosen for three reasons. First, service quality is an important managerial issue, so
proprietary assessment studies abound (see the cases reported in Spechler 1991).
Improving service quality has been identified as a key strategy for firms to profitably
differentiate themselves in the marketplace (Babakus and Boller 1992; Boulding et al.
1993; Cronin and Taylor 1992; Devlin and Dong 1994; Parasuraman, Zeithaml, and
Berry 1988; Rust, Zahorik, and Keiningham 1995; Zahorik and Rust 1992).

Secondly, this is an area where there is a considerable discrepancy between the
common practitioner reliance on a single item scale for each aspect of service to be
evaluated and the multi-item measurement scales advocated by academics. Practitioner
studies commonly address managerial problems using single item scales, of unknown
reliability, which seem to fit the purpose at hand (Bolton and Drew 1991a, 1991b; Devlin,
Dong, and Brown 1993; Schmalensee 1994). By following the scale development
paradigm put forth by Churchill (1979), Parasuraman, Zeithaml, and Berry (1985, 1988)
made a significant contribution to the service quality literature in developing
SERVQUAL, a multi-item measure of perceived service quality. However, SERVQUAL
consists of a large number of items (at least 21), even in the shorter one-column format
which directly measures perceived performance relative to expectations (Parasuraman,
Zeithaml, and Berry 1994b).

Thirdly, the service quality literature is an example of an area in marketing where

researchers have not recognized that the respondent is rarely the object of measurement.
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From a classical reliability theory perspective, SERVQUAL provides a highly reliable
scaling of respondents’ perceptions of five service quality dimensions (reliability,
responsiveness, assurance, empathy, and tangibles), as indicated by coefficient alphas
averaging 0.88 (Parasuraman, Berry, and Zeithaml 1991 )- As is typical of almost all
marketing measurement research, such high levels of reliability led the original
developers of the scale to claim that SERVQUAL will provide reliable information for
such diverse purposes as tracking the service quality provided by a firm, assessing a
given firm on each of the dimensions of service quality, categorizing a firm's customers
into several perceived quality segments, evaluating the level of service provided by each
store in a multi-unit retail chain, and assessing a firm's service performance relative to its
principal competitors (Parasuraman, Zeithaml, and Berry 1988).

However, such a generalization incorrectly assumes that the reliability of a
measurement instrument® can be assessed independently of the purpose for which it is to
be used. As evidence to the contrary, research has shown inconsistency in the
SERVQUAL factor structure when it is used in different service industries (Babakus and
Boller 1992; Carman 1990). Criticisms and the defense of the SERVQUAL scale
development procedure (Brown, Churchill, and Peter 1993; Cronin and Taylor 1994;
Parasuraman, Berry, and Zeithaml, 1993; Parasuraman, Zeithaml, and Berry 1994a; Teas
1994) have also implicitly assumed that the object of measurement in all service quality
applications is respondents.

Table 2.1 lists some of the management problems that would make a retailer need
to measure service quality, and shows how different problems change both the object of
measurement and what constitutes the error to be generalized over.

(Insert Table 2.1 about here)

For example, the first problem is to determine what store-level factors influence

the service quality provided by stores in a chain. Here the service quality provided by

each store in the chain must be measured accurately, so that it can be related to the other
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store-level factors. Success requires reliable measures of the service quality for each
store. There is no need to identify which customers thought they received the best or the
worst service. The measurement needs to discriminate well between stores, whilst
generalizing over the perceptions of different customers. Sources of variability that affect
the consistency of mean scores obtained for the stores constitute error in scaling the
stores. These sources include all interactions between stores and other facets, as well as
the random error component. As shown in the Table, other problems have different
objects and consequent sources of error. Of course, one managerial study may address
more than one of these problems.

2.2.1 Empirical Investigation

To demonstrate this approach, we conducted a generalizability study of retailer
service quality, and then used the estimated variance components to identify optimal
measurement designs for five different service quality measurement applications, called
decision studies.

The five sources of variability, or facets, included in the G-study were, retail
sectors (or type of retailer), retail chains, aspects of service quality, the items used to
measure service quality, and consumers. The G-study had consumers evaluate the service
quality provided by a total of nine retailers, three chosen at random from amongst the
well known chains in three retail sectors. The specific chains were Eaton’s, Wal-Mart and
Zeller’s from the department store sector, Dairy Queen, Kentucky Fried Chicken and
McDonald’s from the fast food sector, and Safeway, Save-on-Food, and Superstore from
the grocery store sector. Each chain was evaluated on nine items, three items each for
three aspects of service quality. An aspect could be any distinguishable component of the
service, such as point of sale, billing, or after sales service. However, to facilitate
comparisons with prior work in service quality measurement, the aspects we used were
randomly chosen SERVQUAL dimensions, namely tangibles, responsiveness, and

empathy. The specific items used for these aspects were randomly chosen from the
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perception items used in the SERVQUAL scale (Parasuraman, Berry, and Zeithaml
1991). Because of the work undertaken to refine SERVQUAL, these items are known to
be suitable measures for the respective aspects. The specific items and the response
format used are shown in Appendix 2.1.

For this design, retail chains were nested within retail sectors, and items were
nested within aspects. Respondents were asked to rate all nine chains on all nine items, so
they were crossed with chains, sectors, items and aspects. The more fully crossed the
design of a G-study, the more sources of variability of measurement can be estimated
(Cronbach et al. 1972). It is possible to optimize a nested measurement design for an
applied study on the basis of a fully crossed G-study, but not vice-versa.

The data were collected by mail survey in the spring of 1995. On March 20, a 12
page survey booklet was sent to a probability sample of 400 households in a Canadian
city. Each household received a questionnaire with the rating questions organized into a
block for each retail chain. The survey mailing and postcard follow-up produced a total of
133 responses, for an overall response rate of 35% after taking into account non-
deliverable surveys. Service quality evaluations by those respondents who reported they
had not dealt with a retailer over the prior 12 months were not included in the
generalizability analysis. Eight respondents failed to meet this criterion for all nine
retailers and so were completely eliminated from the analysis. From a traditional
reliability perspective, the data provided 27 scalings of the respondents’ quality
perceptions - tangibles, responsiveness and empathy for the nine chains. As coefficient
alpha averaged 0.88 (range 0.67 to 0.96) across the scales, the data are undoubtedly
comparable with those collected in previous service quality studies.

Table 2.2 provides the traditional analysis of variance for this design, along with
the associated variance components. As shown by the difference between the 10,124
potential and 6,945 actual degrees of freedom, many respondents either did not satisfy the

eligibility criterion or did not provide ratings for some chains. Variance components were




estimated by the minimum variance quadratic unbiased (MIVQUE) estimation method
(Hartley, Rao, and Lamotte 1978), available in SAS. Respondents, aspects, and items
were assumed to be randomly chosen from their respective universes of consumers who
shop at the retail chains, aspects of service quality, and items to measure aspects of
service quality. We could have chosen other retail sectors, such as sporting goods or shoe
stores, and other department or grocery chains for the generalizability study. Further.
because the retail sectors and chains are assumed to be chosen at random, they can be
replaced by others of interest in a subsequent decision application.

(Insert Table 2.2 about here)

The estimated variance components due to chains, respondents, chains by
respondents, and chains by respondents by aspects, and random error were relatively
high®. Together they accounted for about 80% of the total variance in service quality
scores. The estimates of the variance components for sectors and for the interactions of
sectors by aspects and of sectors by respondents by aspects were negative. As shown in
Table 2.2, such estimates are typically treated as if they were zero, because all negative
estimates were very close to zero (Cronbach et al. 1972). The variance component
associated with a nested facet (chains or items) is confounded with the variance
component due to the interaction between the nested facet and the facet in which itis
nested. For example, the variance component for items is confounded with the variance
component for the interaction of items and aspects, because items are nested within
aspects. Such confounding is explicitly recognized in this type of analysis.

2.2.2 Reduction of Error Variance in Applied Decision Studies

The variance components from the G-study can be used to calculate the expected
G-coefficients for planned decision study designs or to identify the lowest cost design for
a required G-coefficient. A major advantage of G-theory is that relative error variance is
partially controllable through sampling along each facet included in a decision study

because it is convex in the number of levels of the facets of generalization. For example,
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suppose a G-study shows the variance component associated with the interaction of retail
chains with items is very small, close to zero. This means the scaling of retail chains is
not dependent on items. Therefore, it would be inefficient to include more than one or
two items in any future decision study in which chains are the object of measurement.
However, we might expect the scaling of retail chains to vary across respondents. In such
a case, increasing the number of respondents will improve the generalizability coefficient
of a study in which chains are the object of measurement.

Table 2.3 quantifies the effect of increasing the number of items, aspects, and
respondents on the generalizability coefficient for the service quality provided by retail
chains within a retail sector. When retail chains are the object of measurement, the
expected G-coefficient with just one item for one aspect and 25 respondents is about 0.75.
Further, with one item per aspect, four aspects, and 35 respondents, the expected G-
coefficient is about 0.90. This example illustrates how a generalizability coefficient can
be forecast using the G-study data.

(Insert Table 2.3 about here)

The differential reduction in error variance achieved by sampling along multiple
facets also enables an optimal design to be chosen for a decision study. In the following
section, we use the general optimization procedure of Equation 2.5 to design the optimal
measurement for several managerial problems.

2.2.3 Problem 1: Benchmarking Chains Within One Retail Sector

We first consider the benchmarking problem of comparing the service quality
provided by five retail chains drawn from any one retail sector. The purpose of this
optimization is to identify the lowest cost measurement design that will allow a reliable
comparison of service quality provided by the retail chains. Clearly, retail chains
constitute the object of measurement for the study.

Respondents are the raters of the service quality delivered by the chains, but it is

expected that respondents could differ in their rank-ordering of chains. Thus, the variance
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component due to the interaction between chains and respondents constitutes one source
of measurement error variance. The items are all designed to measure service quality
provided by each chain, but again it is expected that the rank-ordering of chains could
depend on the item used to measure service quality. Thus, the variance component due to
the interaction of items and chains is the second source of measurement error variance.
Similarly, the variance components due to the interaction between aspects and chains, and
the 3-way interaction between chains, respondents, and aspects are the other sources of
error variance. Finally, random error variance, which is also confounded with several
higher-order interaction variance components, constitutes another source of measurement
error variance. Thus, relative error variance can be expressed mathematically as:

(2.6) ~2 _ 65Xr c‘;-c‘:.in 6(2:)(3 6'<2:XrXa &ra.ndom error

G2, . = + + + +
relative error . ]
n, nin, N, NeNg Nening

Consistent with Equation 2.4, the cost function for the mail survey data collection
method used in this study can be expressed as,

2.7 C=fco, C. N, D) = €+ &N, + c(nnnen, + cy(nnnn)n,

where,

1. c,is the fixed cost of the study.

2. ¢, is the unit cost of selecting and communicating with a respondent.

3. ¢, is the unit cost of an additional item i when designing and formatting the data
collection instrument. The multiplicative term (nn,) is necessary because a number of
items taken together constitute an aspect.

4. c,is the incremental cost of a lengthening of the study with an additional item on the
data collection cost for each respondent.

5. ¢=3%0,c, =85, c,=$10, c, = $0.20 for all problems examined in this paper.

6. n, is the number of respondents, n, is the number of items, and n, is the number of
aspects.

7. n is the number of retail chains under investigation, in this case equal to 5.
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8. n, is the number of retail sectors under investigation, in this case equal to 1.
9. N, is the total number of respondents, equal to n, for the crossed design and (nn.n,)
for the nested design.

Given this structure of the cost function, it is possible to minimize C over n, n,
and n,, subject to constraints suggested in Equation 2.5. Part I of Table 2.4 provides the
optimal designs with the associated costs for a range of generalizability levels. Designs
are described by the number of levels along each facet, assuming the same experimental
design (crossing and nesting) as in the G-study. Note the sharp increase in costs to
achieve generalizability levels of greater than 0.95. An interesting feature of these designs
is that they require only one item per aspect. Technically, this result is due to the relative
independence of the rating of chains and items, as reflected in the low variance
component associated with interaction of chains and items (only 0.7% of total variance).
Substantively, this result illustrates that the managerial preference for using a single item
per aspect can 1n fact be optimal for certain types of problems.

Current academic research on service quality (e.g., Parasuraman, Berry, and
Zeithaml 1994b) suggests benchmarking studies collect data separately from customers of
each chain, nesting respondents within chains. We can calculate the variance components
expected from such a nested design using the variance components from our fully crossed
G-study. Thus, it is also possible to minimize C to solve for an optimal design while
nesting respondents within the chains being benchmarked. Part II of Table 2.4 provides
the optimal sampling and the costs associated with nested designs. Note that the number
of levels required for each facet (specially, the total number of respondents N,) are much
larger for the nested designs, and so are the associated costs.

Appendix 2.2 compares mathematical expressions for relative error variance for
designs when (1) respondents are crossed with chains, and (2) respondents are nested
within chains. It is obvious that a nested design will always require at least as many, and

in most cases, larger samples of most facets than are required for a crossed design.




Therefore, the reduction in cost with a crossed design is independent of the form of the
cost function. This comparison illustrates the gain in efficiency from approaching survey
measurement research from a generalizability and optimization perspective.
(Insert Table 2.4 about here)

2.2.4 Problem 2: Identifying Priorities Jor Quality Improvement

We now consider a problem that results in a different object of measurement.
Suppose management is interested in determining which of five aspects of their retail
chain’s service quality are most in need of improvement. As this requires a reliable
scaling of the five aspects of service quality, aspects become the object of measurement.
The number of chains in this design is fixed at one, but we require optimal designs for
comparing any five aspects for any chain within any sector. Therefore, the object of
measurement becomes aspects nested within chains, which are in turn nested within
sectors. The generalizability coefficient for this design can be expressed as:
6’2 +652Xa +&§Xa
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As shown in Equation 2.8, relative error variance can be reduced by sampling
more respondents and/or increasing the number of items. Table 2.5 provides optimal
designs and the associated costs for generalizability levels ranging from 0.80 to 0.95. The
cost function is identical to that in Equation 2.7, with number of aspects fixed at 5 and
number of chains and sectors fixed at 1. Note that the number of items required for this
problem is much higher than for Problem 1. This clearly illustrates the influence of the

purpose of measurement on the optimality of a measurement design.
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The stringent requirements for number of respondents (64) and number of items
(8) per aspect to achieve generalizability of 0.90 probably results from the fact that
SERVQUAL was not developed to distinguish between aspects, rather it was developed
to distinguish between perceptions of respondents. Although Parasuraman, Zeithaml, and
Berry (1988) specifically claim SERVQUAL can provide reliable information for this
issue, SERVQUAL items were originally selected and have since been refined for their
ability to scale respondents. Thus, this problem illustrates an inadequacy of classical
reliability theory methods.

(Insert Table 2.5 about here)

2.2.5 Problem 3: Benchmarking Chains on Different Aspects of Quality

In this third problem, the retail chain’s management is interested in the more
detailed problem of benchmarking how competing chains are doing on different aspects
of service quality. For this problem, the measurement procedure should be able to reliably
scale chains on the different aspects. Thus, the object of measurement becomes the
interaction between chains and aspects. All interactions with three or more facets that also
include chains and aspects will contribute, along with random error, to the relative error
for this problem. Table 2.6 provides optimal designs for this problem, which also uses the
same cost function as in Equation 2.7. Note the increase in the number of observations
required relative to Problem 2 for each level of the G-coefficient, because of the more
detailed nature of this problem.

(Insert Table 2.6 about here)

2.2.6 Problem 4: Determining Customers’ Perceptions of a Chain’s Quality

The academic literature on service quality measurement has focused on scaling
customers’ perceptions of the quality of a specific service firm, and has reported high
reliability for this scaling of respondents nested within firm as the object of measurement.
A reliable scaling of respondents could be used to “categorize a firm’s customers into

several perceived-quality segments (Parasuraman, Zeithaml, and Berry 1988, p. 35).
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Although this is a less common managerial problem, the method presented herein should
result in a high G-coefficient for respondents as object of measurement, with the numbers
of items and aspects commonly used in the literature and a design with respondents

nested within chain. The G-coefficient for this design can be mathematically expressed as

follows:
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The predicted G-coefficient for 4 items within each of 5 aspects (making a 20 item
scale) is 0.89, which is close to the average of Cronbach’s alpha 0.88 obtained for the
SERVQUAL scale. Although interesting, this result is not surprising because of the
nature of the generalizability coefficient, which can be viewed in this empirical context as
the expected value of the usual reliability coefficient across retail sectors, retail chains,
aspects and items.

Using the optimization framework, the optimal design to achieve a G-coefficient
0f 0.95 is 1 item each for 19 aspects. If we accept the current service quality measurement
suggestion of 5 aspects, we can impose an additional constraint on the number of aspects
to be less than or equal to 5. To achieve a G-coefficient of 0.90, the measurement study
would require 6 items for each of § aspects. However, it becomes impossible to achieve a
G-coefficient of 0.95 because of the constraint on the number of aspects (see Equation
2.9). This result is independent of the cost function used in the optimization.

2.2.7 Problem 5: Simultaneously Benchmarking Chains and Scaling Customer
Perceptions
If the purpose of a managerial study is to simultaneously provide a solution to two

or more different managerial problems, then the optimization can be easily structured to
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account for such a situation. Further, there might be significant cost savings in the
process. For example, consider the multiple problems of benchmarking the service
quality of retail chains within a retail sector (Problem 1, Part IT) and determining
consumer perceptions of a chain’s quality (Problem 4). Assuming a design with
respondents nested within retail chain, we can formalize a single problem, the
optimization of which will provide a simultaneous optimal solution to each. Such a
solution can be, but is not necessarily, an optimal solution to each individual problem.

This example is formalized to derive solutions for both problems. The expressions
for G-coefficients for both problems enter the constraint set, along with two other
constraints imposed for this new problem. First, because respondents are being compared,
it is necessary to set a minimum number of respondents to be compared. Second, because
chains are being compared, it is also necessary to set the minimum number of chains to
be compared. The minimum number of respondents was set at 30, while the number of
chains was set at 5. Table 2.7 shows the optimal designs for achieving a reliability of 0.90
for the solution of both problems. Row 1 of the table shows the design for comparing
chains only. The number of respondents required is 40 whilst the number of aspects is 6.
Now examine row 2, which provides the optimal design for comparing respondents only.
The number of respondents required remains at 30, whilst the number of aspects required
is now 9. Thus, one solution (40 respondents, 1 item, 9 aspects, and 5 chains) that will
satisfy all constraints is shown in row 3. However, this solution does not minimize the
cost at the same time. Row 4 show the optimal solution for the problem. Note that the
individual solution for each problem does not satisfy the constraint for the other problem.

(Insert Table 2.7 about here)

2.3 Discussion

The application of G-theory to the measurement of service quality in the current
study illustrates a general method for designing measurement instruments so that

subsequent studies can be optimal in terms of sampling requirements, psychometric




standards, and the cost of measurement. The optimization is primarily based on the
identification of the object of measurement, which is dependent on the problem being
examined. If the variance components attributable to several sources of variance are
known from a G-study and the object of measurement is defined, it is possible to
optimize the design in terms of the number of levels of each facet. We demonstrated an
integer programming approach where the cost of measurement was minimized subject to
a constraint of a pre-specified G-coefficient. Alternatively, we can determine the G-
coefficient resulting from different sampling designs and choose a specific design with
advance knowledge of the expected generalizability and associated cost of the
measurement. If managers face a budget constraint for a decision study, then the
appropriate optimization formulation would be to maximize the G-coefficient subject to
the budget constraint.

G-theory has great potential for optimizing measurement, but has not found
acceptance in marketing. One concern may have been the cost of carrying out a two-stage
study. However, the cost of a G-study can be more than offset by the savings from a
single decision study. Using the cost function in Equation 2.7, the cost of our G-study
was $4972. The cost of achieving a G-coefficient of .95 in a decision study that optimally
compares the service quality of 5 chains within a retail sector (Problem 1 above) was
estimated to be $1166 (see Table 2.4). Thus, the total cost of the two-stage study is only
$6138. There are no specific recommendations within current service quality
measurement procedures about the number of respondents to include in such a decision
study. However, previous researchers have used approximately 4 items for each of 5
aspects and about 200 respondents per chain. This results in a G-coefficient of 0.95, but at
a cost of $10000. Thus, the two-stage procedure suggested in this paper is significantly
less costly than the procedure implicitly being advocated in the current literature. This
illustrates the economic benefits of using the G-theory framework to optimize the desi gn

of measurement.
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The measurement literature in marketing has followed Churchill’s (1979) scale
development paradigm and devoted a considerable amount of research to assessing and
trying to improve the reliability and validity of multi-item scales. However, the literature
has largely ignored the fact that there are many different underlying reasons for
conducting a measurement study. If these differences had no bearing on the measurement
procedure, ignoring them would be acceptable. However, as demonstrated in the
empirical study of service quality, the underlying purpose of measurement determines the
object(s) of measurement and therefore cannot be ignored in the assessment and desi gn of
the measurement procedure.

Current measurement research in marketing has consistently, if only implicitly,
treated customers as the object of measurement. It has ignored the possibility that other
facets, such as outlets, firms, occasions, or employees, not customers, may be the object
of measurement. Most managerial purposes require generalization over individuals,
whereas most measurement research in marketing fails to do so and ignores other facets.
For example, Brown and Swartz (1989) collected data from customers of 13 physicians to
examine the applicability of a SERVQUAL type measurement procedure to professional
services. However, when investigating the reliability of the measurement instrument in
scaling respondents, they ignored the effect of potential differences between physicians.
Our paper makes an advance over such measurement procedures by explicitly
recognizing, in this example, the existence of interactions between physicians and scale
items, which can potentially result in differences in scale factor structure across
physicians.

Marketing academics have not always recognized the theoretical importance of
these differences in objectives. In the service quality literature, one consequence has been
confusion about its relationship with customer satisfaction (see lacobucci, Grayson, and
Ostrom 1994 for a useful review), because they become virtually indistinguishable if the

respondent is the object of measurement (Bitner and Hubbert 1994). Surprisingly, there
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has been greater recognition of this in customer satisfaction literature, where Hauser,
Simester, and Wernerfelt (1994) advocated managerial use of evaluation on several
facets, and Fornell (1992) and his associates (Anderson, Fomnell, and Lehmann 1994
Anderson 1994) have developed and used aggregate measures of satisfaction.

As shown in our examples, the generalizability coefficient for a specific design
varies with the source of variance that becomes the object of measurement. In our case,
more than acceptable levels of generalizability (.95) could be obtained with a single item
per aspect, 7 aspects and as few as 68 respondents when benchmarking the service quality
of retail chains within the same retail sector. This efficiency was achieved by recognizing
the advantage of using a design crossing retail chains and respondents. This application
clearly demonstrates there are instances where the apparent practitioner preference for
measuring quality with a single item per aspect is well justified. Moreover, the results
show that if respondents have sufficient experience with the alternatives to be able to
evaluate more than one, a crossed design substantially reduces the cost of a benchmarking
study. It is to be emphasized, though, that there are situations where crossed designs may
not be feasible and therefore the researcher may be constrained to use a nested design. For
example, evaluating multiple outlets of a fast food chain across different geographic
regions might be best achieved with a nested design because of the high probability that
consumers will not have had any experience of outlets in the forei gn region.

When using the G-theory approach, the researcher must clearly specify the
domain from which to sample, as this is the domain over which the information from a
measurement procedure is expected to generalize. Variance components and G-
coefficients may not generalize beyond the specified domain. The substantive results
reported in this paper only apply to the domain investigated in the G-study. The
optimization results cannot just be assumed to extend to any service, in any country,
when measured with any items. They apply to the universe of retail sectors, because we

selected from amongst retail sectors when conducting the G-study. We did not explore
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the possibility of a systematic influence of country on service quality scores. Had country
been another facet in the G-study (obviously necessitating a more nested design), we
could draw conclusions about optimal measurement designs for retail firms in other
countries. The results apply to the universe of SERVQUAL perception items, because we
selected from amongst them when conducting the G-study.

In predictions of the generalizability coefficient which will be obtained in a
decision study, G-theory assumes that the levels are chosen at random for each of the
facets over which generalization is to be made. G-theory does not identify some levels of
a facet of generalization as better than others. Thus, it does not identify which of the three
or four items (aspects) used in a G-study are the best one or two items (aspects) to select
for use in the decision study.

In addition, G-theory assumes that variance components remain stable from
generalizability to decision studies. The assumption of stability is common to
measurement research based on classical reliability theory. This assumption is critical for
the optimization of measurement to remain valid. We speculate that only major changes
in a market will cause instability in variance components. But it is also possible to verify
the assumptions made in the optimization exercise by reexamining the variance
components and the G-coefficient in the decision study.

To summarize, current reliability assessment mezhods lack validity when a
measurement instrument is used for different purposes. Neither are the methods efficient,
because the cost of measurement can become unnecessarily high. In addition, the
expected loss framework suggested by Rust and Cooil (1994) shows that the reliability in
measurement is inversely related to the loss expected from using the information for
decision making. A measurement instrument that has not been evaluated for a specific
purpose might be used for that purpose, thus resulting in a higher loss than expected. Rust

and Cooil’s framework assesses the loss expected from using the information in the form
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ofa Oto 1 index. We extend their framework to suggest that the monetary cost of
measurement can be minimized simultaneously with the expected loss.

Thus, the major contribution of this paper is to demonstrate the value of a method
that can be used to control the quality of information produced in measurement
applications. And, most importantly, this method is generalizable across concepts and
measurement application contexts.

2.4 Limitations and Directions for Future Research
2.4.1 Estimation of Variance Components

Cronbach et al. (1972) expressed apprehension that the G-theory approach mi ght
not find acceptance in the research community because of its potential complexity. Most
published studies that have used generalizability theory have been in the area of
educational testing, have 2-3 factors with small number of levels per factor, and generally
obtain balanced data. However, marketing applications would typically need to handle
larger number of factors with larger numbers of levels, and unbalanced data, which are to
be expected because of missing observations in survey research. This added complexity
places greater demands on methods of estimation and statistical inference. Balanced data
simplify the estimation of variance components and their confidence intervals (for an
introduction to the latter, see Burdick and Graybill 1992). Unbalanced data lead to several
estimation problems, such as the confounding of estimates of variance components,
biased estimates, greater likelihood of negative estimates, and excessive computational
requirements. In addition, it is more difficult to derive expressions for confidence
intervals around variance components estimated from unbalanced data. One clear
recommendation for unbalanced data is to avoid the estimation of variance components
by the method of analysis of variance. Fortunately, most of these estimation problems can
be overcome by criterion-based estimation methods such as MINQUE (Rao 1971), of
which MIVQUE is a special case, and maximum likelihood methods (Hartley and Rao

1967), so they should not necessarily limit the use of G-theory for marketing research.
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A negative estimate of a variance component is a particularly troubling problem in
the application of G-theory, because it can occur even with balanced data. In such cases,
Cronbach et al. (1972) and Brennan (1983) recommend setting the negative estimate to
zero. They differ on the procedures to adjust the other variance components after setting a
negative variance estimate to zero. Cronbach et al. (1972) suggest that the other variance
components should not be adjusted in order to maintain unbiasedness of estimates.
Brennan (1983) suggests recalculating the variance estimates adjusting for the negative
variance estimates set to zero. Alternatively, if some distributional assumptions are made,
Bayesian procedures prevent the problem of negative variance estimates (Brennan 1983).
In addition, maximum likelihood methods constrain the estimates to be non-negative.
Constraining an estimate to be non-negative implies that other estimates in the model
could be biased. Further, these alternative methods are computationally burdensome for
models that include a large number of levels for a factor such as respondents, common in
marketing research. Applications of G-theory to marketing measurement would need
advances in estimation and statistical inference methods that can overcome the problems
that arise with unbalanced data and large number of levels of factors. Because a detailed
discussion of the estimation and issues in variance components models is beyond the
scope of this paper, we refer the interested reader to comprehensive reviews of statistical
issues in variance component models by Khuri and Sahaj (1985) and Searle, Casella, and
McCulloch (1992).

2.4.2 Optimization of Measurement

Two important assumptions are made in this paper with respect to the
optimization. First, the optimizations assume there will be no missing data in the decision
studies. This strong assumption is likely to be violated often in survey research. One way
to relax this assumption when generating optimal designs may be to assume the
distribution of missing cells across different facets in the generalizability study will hold

for the decision study, and then generate optimal designs taking it into account. Thus, the
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number of levels of an individual facet will increase in proportion to the expectation of
missing data on that facet. In addition, it would be of interest to determine whether there
is a pattern of differences in the distribution of missing data between nested and crossed
designs. Such differences could be taken into account in the optimization of measurement
designs.

Secondly, the optimization simply identifies the number of respondents required,
ignoring the question of response rate. Our numerical results assume the response rate
remains constant with an increase in the number of levels of any facet, including the
object of measurement. It may be possible to represent the survey response rate as a
nonlinear function of the number of items. Essentially, this is an additional penalty for
increasing the length of the questionnaire and might have a significant impact on the
optimal designs.

Statistical sampling is one way to generate optimal designs. Statistical design
issues, such as whether a facet(s) is crossed or nested, and fixed or random, also
determine the optimal design. In addition, the efficiency of a measurement design will
depend on the form of data collection and the format of the stimulus material used in the
study if the layout of a questionnaire affects the variance components in a systematic
manner. For example, instead of putting all items for a chain in one block, we could have
created a questionnaire with a block of chains for each item. If respondents respond to the
stimulus by first setting a mean for a block and then distributing ratings around the mean,
there could be predictable changes in the variance components due to items and chains. If
the purpose of measurement is to differentiate between chains, the optimal format may
not be the same as if the purpose is to differentiate between items. Thus, the layout of the
questionnaire could be used to make a scale more generalizable. Similarly, alternative
data collection methods (e.g., questionnaires, telephone surveys, computer interactive
surveys, etc.) will not only have different functional forms for their cost, they might be

expected to generate different variance components, resulting in different optimal
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measurement designs. The interesting research question is the extent to which these
methods systematically influence the generalizability of a scale.
2.4.3 Substantive Areas of Interest

We do not consider service quality measurement to be unique in its shortcomings.
We suspect similar results and measurement efficiency gains may be achievable in other
marketing areas, ranging from the obvious, such as customer satisfaction, to market
orientation (Narver and Slater 1990), advertising effectiveness (Lastovicka 1983) and
brand equity (Aaker 1996, Ch. 10). For example, developing a new scale for comparing
the effectiveness of advertisements requires an analysis that treats advertisements as the
object of measurement and respondents as a facet of generalization. Thus, the G-theory
framework has the potential to impact measurement practices in several substantive areas
in marketing.

The central theme of the current paper is that measurement is influenced by the
conditions under which it is conducted. The generalizability of the information collected
by a measurement procedure is dependent on the number and kind of conditions under
which the characteristic is measured. The G-theory method is similar to meta-analysis in
the sense that both explore such dependencies in information. A meta-analysis most
commonly investigates the generalizability of the relationship between two variables, by
estimating the influence of inter-study differences on the relationship in an analysis of
variance framework (Farley and Lehmann 1986). The G-theory method investigates the
generalizability of information about the characteristic of an object, by estimating the
influence of the conditions under which the measurement is conducted.

The similarity between meta-analysis and G-theory leads to the recognition of one
immediate avenue of future substantive work. Some service quality researchers have
conducted relatively programmatic research on service quality. Data collected within
Some or even across several of their studies could be re-analyzed in a G-study estimating

the variance components associated with different sources of variance. Then, in the
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absence of context specific data, these variance component estimates could be used to
approximate optimal measurement for a proposed decision study. Thus, the volumes of
data collected by the service quality research community could be used for gaining
further insights in this important area of research. Such a cross-study generalizability
analysis would be quite similar to a meta-analysis. This would also provide an additional
type of empirical generalization in marketing (see the 1995 special issue of Marketing
Science on Empirical Generalizations). Similar analyses could be conducted across other

substantive areas in marketing.
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Appendix 2.1

Directions: The following statements ask how you feel about the service provided by
some XYZ area department store chains, grocery store chains, and fast-food chains.
Please indicate the extent of your agreement with each statement about each chain. Circle
a'l10" if you very strongly agree, and circle a '0' if you very strongly disagree. If your
feelings lie between these two extremes, circle a number in between '10' and '0’ that best
shows your level of agreement. There are no right or wrong answers- we are interested in
your views of the service provided by the chains.

The following statements are about Eaton’s department store chain.

1. Eaton’s stores are visually attractive.

N

. Eaton’s employees appear neat and tidy.
3. Eaton’s promotional materials are visually appealing.

4. Eaton’s employees give you prompt service.

W

- Eaton’s employees are always willing to help you.

6. Eaton’s employees are never too busy to respond to your requests.
7. Eaton’s employees give you personal attention.

8. Eaton’s employees have your best interests at heart.

9

. Eaton’s employees understand your specific needs.

Note: Each statement was accompanied by an 1 1-point scale anchored at the end-
points by the labels “Very Strongly Disagree” (= 0) and “Very Strongly Agree (= 10).

The intermediate scale points were not labeled. Also, the statements were not numbered.
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Appendix 2.2

Comparison of Relative Error Variance in Crossed versus Nested Designs

For a design with respondents crossed with chains,

-2 6’2 ~2 ~2 6’2
A2 -2 _O%cXr cXi ,9%Xa , 6 %:XrXa random error
(A2.1) G relative error ~ + + + +

n, n;n, n, n.n, nen;n,

For a design with respondents nested within chains,

~2 ~2 ~2 ol A2
- G +0 +o 1 ; o]
(A2.2) cfclau’veerror —r cXr sXr + cXi + cXa +
np nin, n,
~2 ) ~2 ~2 ~2 ~2
+°rXa+chaXs+GchXa +chi+chiXs +Gmndomen'or
Nen, nenin, Nening,

where, r stands for respondents, ¢ for chains, s for retail sectors, i for items, and a for
aspects.

Note that the expression for the crossed design (A1) is a restricted version of the
expression for the nested design (A2). Therefore, a nested desi gn will always have at least
as much relative error variance as a crossed design. Moreover, terms with variance due to
respondents enter the nested design expression for relative error variance, and such terms
will almost always be positive and among the highest in a service quality study. In such
cases, relative error variance in a nested design will be much higher than that in a crossed
design, implying therefore that greater sampling is required to attain the same level of

generalizability.
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Footnotes

1. The generalizability coefficient is denoted by Ef)2 - This notation is simple, yet
imprecise because the generalizability coefficient is an estimate of the expected value of
p2 . Thus, Eﬁz is not the expectation of the estimate of p2 , but the estimate of the
expected value of pz. It is used for simplicity, and should not be misunderstood to imply
the expectation of an estimate.

2. The assumption of normality is not a strict requirement of G-theory. However,
estimation and statistical inferences are simplified with an assumption of normality.

3. In the strictest sense, reliability is not a characteristic of a scale or instrument, it is a
characteristic of the data or information gathered by using the scale. The same scale can
produce data that are reliable and other data that are unreliable. However, because the
term “reliability of a scale or measurement instrument” is commonly used in marketing
research, we use it loosely in this paper to make arguments. When we use the term
reliability of a scale, it should be interpreted as the reliability of information gathered by
using the scale.

4. The unbalanced nature of the data in our study does not allow for straightforward
statistical tests on the variance components. Therefore, for the purpose of statistical
inference only, we used a subset of 65 respondents who provided responses to every item
in the questionnaire, to derive the variance components and the associated F-statistics.
This subset, consisting of balanced data, accounted for 76% of the full unbalanced data;
estimates of all variance components were similar in relative size to the estimates from
the full unbalanced data. All estimates greater than zero are significantly different from
zero (ProbF < 0.05), except the estimate of the variance component associated with the
interaction of sectors and respondents. All negative estimates are not significantly
different from zero. Some F-tests are approximate and derived using Satterthwaite’s

(1946) method.
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Table 2.3
Reduction of Error Variance by Sampling from Multiple Facets®
G-Study Alternative Decision Studies
Dycrors = 1 1 1 I |
Drecpondents = 1 25 35 50 100
Mygpects = | 1 4 4 4
Diprs = 1 | | 1 |
Source of Variation Estimate Expected Variance Component®
retail chain 0.69 069 069 0.69 0.69
retail sector  0.00 0.00 000 0.00 0.00
respondents 0.85 0.03 0.02 002 0.0l
aspects 0.19 0.19 005 0.05 0.05
items®  0.07 007 0.02 0.02 0.02
sector by respondents 0.02 0.00 0.00 0.00 0.00
sector by aspects 0.00 0.00 000 000 0.00
sector by items 0.02 002 0.00 0.00 0.00
chain by respondents®  1.05 0.04 0.03 0.02 0.01
chain by aspects 0.09 0.09 002 002 002
chain by items  0.03 0.03 001 001 001!
respondents by aspects 0.26 0.01 0.00 0.00 0.00
respondents by item 0.16 0.01 0.00 0.00 0.00
sector by respondents by aspects 0.00 0.00 0.00 0.00 0.00
sector by respondents by items 0.11 0.00 0.00 0.00 0.00
chain by respondents by aspects  0.63 0.03 000 000 0.00
error  0.75 0.03 001 0.00 0.00
Relative error variance 2.56 0.22 0.07 0.06 0.05
G-coefficient for chains 0.21 0.76 091 092 0.94

* All numbers truncated to 2 decimal places. Thus, a variance component of 0.00 does
not necessarily imply that it is zero.

®Represents the estimated variance component for the random effect divided by the
number of levels of the factors (other than the object of measurement) in the random
effect.

“Because items are nested within aspects, all variance components that include items
are divided by the number of items and the number of aspects.

“The variance components for the interactions of the object of measurement (chains)
with the facets of generalization are in italics.
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Table 2.5
Optimal Designs for Identifying Priorities for Quality Improvement

Ep’ "w D, pern, n.  Cost ()
0.80 0.072 2 29 461
0.85 0.051 5 43 680
0.90 0.032 8 64 1232
0.95 0.015 16 132 3572




Table 2.6
Optimal Designs for Benchmarking Chains on Different Aspects of Quality

Ep “w D pern, n,  Cost(S)
0.80 0.0233 3 73 2210
0.85 0.0165 4 102 3550
0.90 0.0104 6 159 7065

0.95 0.0049 13 296 23970
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Chapter 3
Influence of Estimation Method and Interval Estimates on Optimality of
Measurement Designs

A methodology to optimize the design of future measurement studies was a major
contribution of the paper by Finn and Kayandé (1997). They also suggested a general
framework, based on generalizability theory (Cronbach et al. 1972), to assess the
generalizability of measurement, which they illustrated with a study on service quality
measurement. Variance component models, commonly known as mixed effect models,
are the engine which allowed the framework to be put into practice. There is a large
literature in statistics on the point and interval estimation of such models (Khuri and
Sahai 1985, Searle, Casella, and McCulloch 1992, Burdick and Graybill 1992). This
literature suggests that the estimates obtained from different estimation methods can vary
with factors such as the extent of sampling on each effect and whether the collected data
make up a complete balanced design. In addition, the estimation methods are built around
different assumptions. If the estimates of variance components depend on the method of
estimation, it is obvious that the “optimal” designs generated by Finn and Kayandé
(1997) may also depend on the method of estimation. In addition, Shavelson and Webb
(1981) suggest that the variability of variance component estimates may prove to be the
achilles’ heel of generalizability theory-based approaches to measurement. In statistical
terms, this simply implies that the interval estimates of variance components might be too
wide to make any definitive conclusions about either optimal designs or generalizability
of any specific design.

In this paper, we review different methods to obtain point and interval estimates of
variance components. In addition, we use the data collected by Finn and Kayandé (1997)
to empirically illustrate the statistical estimation issues raised in the review. The paper is
structured as follows. We first provide a brief introduction to the different estimation

methods, specially in the context of balanced and unbalanced data/designs. Then, we
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present the general model underlying variance component models. Subsequent to the
presentation of the general model, we present a detailed explanation of the statistical
theory underlying each method of point estimation, and the associated issue of sampling
variability of the estimates, independent of the “balance” in the design/data. Throughout
this discussion of methods, we offer comments on the appropriateness of each method in
the presence of unbalanced data/designs. We then discuss methods to obtain interval
estimates, suggesting the appropriateness of each method in the presence of unbalanced
data/design. In the empirical section, we explore whether the estimates of variance
components depend on methods of estimation, determine the impact of the estimation
method on the optimal designs for measurement studies in the context of Finn and
Kayandé’s (1997) data, and investigate whether interval estimates might put into question
the practical usefulness of framework developed by Finn and Kayandé ( 1997). Finally,
drawing upon the empirical results and the theoretical section, we present
recommendations for future research on measurement. The recommendations range from
the type of estimation method that is most useful for a given set of data to the importance
of estimating confidence intervals in measurement research.
3.1 Methods for Estimating Variance Components

The ability of estimation methods to produce variance component estimates of
desirable properties is dependent largely on the balance in the data or design. Unbalanced
data are of two types, both of which are particularly likely to arise in marketing studies.
First, unbalanced data can occur because of missing observations. Observations are
missing because either some respondents lack experience with some levels of objects or
some respondents overlook an item in a questionnaire. Second, the design of the study
could be unbalanced, i.e., the number of levels within a nested factor could be unequal.
Both types of unbalanced data create difficulties when trying to use methods such as

analysis of variance for estimating variance components. We now give a brief description
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of several methods of estimation, with the attendant advantages and disadvantages of
each method, specially in the context of the balance in the data.

The traditional analysis of variance (ANOVA) method of estimation is the most
intuitive, because of the direct relationship of the estimates to the mean squares, sums of
squares, and degrees of freedom. However, the method produces estimates of variance
with an unknown distribution, and therefore confidence intervals are difficult to construct
(although we recognize that bootstrapping can be used to obtain confidence intervals
when the theoretical distribution is not known, we restrict the discussion in this paper to
theoretical methods). Additionally, the ANOVA method should be avoided in the
presence of unbalanced data, because the estimates with such data are biased, not unique,
and methods are essentially ad hoc (Blischke 1968, Searle, Casella, and McCulloch 1992,
Rao 1971b). The potential for negative variance estimates is another serious problem with
ANOVA methods.

The weaknesses of the estimates produced by ANOVA led to the search for
alternative methods. The computational difficulties associated with maximum likelihood
methods severely limited their use until a landmark paper was published by Hartley and
Rao (1967). Advances in computational ability have now allowed these methods to
become popular with statisticians. Maximum likelihood methods require attributing a
distribution to the data, and most closed form solutions have been derived using an
assumption of normality. The estimates produced by maximum likelihood (ML) are
optimal with very well known distributional properties, even in the presence of
unbalanced data. Additionally, maximum likelihood methods preclude the possibility of
negative estimates; although an advantage, this may result in the occurrence of biased
estimates. Maximum likelihood methods include restricted maximum likelihood
(REML), which is useful for models that include fixed effects. The REML method
maximizes that part of the likelihood function that is invariant to the fixed effects. The

traditional ML method allows the estimation of fixed effects simultaneously with
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variance components, which is not possible with REML. The major disadvantage of the
maximum likelihood method is that it is a large sample method and properties of
estimates are based on asymptotic normal theory. The sensitivity of these estimates to the
violation of large sample assumptions is of concern, primarily because of the real
possibility of few levels to factors in a study. Measurement studies in marketing have
typically employed few levels of all factors other than respondents. On the other hand, the
major advantages are the optimal properties of estimates even in the presence of
unbalanced data and the absence of negative variance estimates.

Lamotte (1970, 1971) and Rao (1970, 1971a) describe a method that is not as
computationally burdensome as ML methods because of its non-iterative nature. They
developed the minimum norm quadratic unbiased (MINQUE) estimation method, by
requiring that the quadratic unbiased estimator minimize a Fuclidean norm. This
Euclidean norm becomes the variance in the presence of normality. An important aspect
of the method is the assignment of a priori values for the variance components. The
method does not require normality, although the assumption of normality makes the
interpretation easier. The advantage of the method is that it does not solve the equations
iteratively as do the maximum likelihood procedures. This advantage results in
computationally less burdensome procedures. However, the assignment of a priori values
to the variance components is also a disadvantage because of the potential sensitivity of
the results to differences in the pre-assigned values. For example, two different
researchers can get different results from the same data set by using different a priori
values (Searle, Casella, and McCulloch 1992). This problem has been resolved by
Hartley, Rao and Lamotte (1978) by pre-assigning zeros for all variance components
(except the error variance component, which is set to 1), thus avoiding the problem of
non-unique estimators to some extent. However, the estimates can potentially be negative

and are often biased.



59

In addition to the ANOVA, maximum likelihood, and MINQUE methods,
Bayesian methods can also be used for estimation of variance components. In this paper,
we focus on only classical frequentist approaches to variance component estimation.
There are two reasons for this focus. First, classical approaches have been tested and
compared with each other more than has been the case for Bayesian methods. Second,
several simulation studies suggest that maximum likelihood methods are more efficient
than Bayesian or classical ANOVA methods for variance components estimation (Khur
and Sahai 1985), specially in the presence of unbalanced data. We now present the
statistical model underlying all variance component estimation methods.

3.1.1 General Statistical Model

The most general form of a linear model is a mixed model with both fixed and
random effects. With no fixed effects, the model reduces to a random effects model. The
distinction between fixed and random effects is essentially based on the sampling
assumptions for each factor. If the levels of a factor have been randomly sampled, the
effects associated with the factor are treated as random. If the levels of a factors have
been selected specifically because the researcher is interested in those levels, the effect
associated with the factor is treated as fixed. We refer the reader to Searle (1987), Searle,
Casella, and McCulloch (1992), and Shavelson and Webb (1981) for details on the
distinction between fixed and random effects. In this paper, all effects have been treated
as random. However, for the sake of generality, we present the more general mixed
model, with fixed and random effects. Consideration of the random effects model as a
special case of the mixed effects model is straightforward.

The general mixed model can be expressed as follows (Searle 1987),

3.1) Y=XB+Zu+e
where y is a vector of observations, X is the design matrix associated with fixed effects, B

is a vector of fixed effects associated with design matrix X, u is the vector of random
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effects corresponding to the design matrix Z for random effects, and e is a vector of error
terms defined as e =y — E(y | u), and

3.2) E(y|u)=XB + Zu

(3.3) E(y) =Xp

Thus, if there are no fixed effects in the model the expected value of y is 0.

From Equation 3.1, the variance-covariance matrix V of y can be defined as,

(G4 V =var(Zu + e)
Assuming that cov(u, e) = 0 and var(e) = cre2 I allows for an expression for V as,

(3.5) V=Zva(wz + o 1

The vector u can be partitioned into r sub-vectors,

3.6) uv={u' uw ...u ...u]

where each sub-vector u, has as elements the effects corresponding to all levels of the i

random effect. Similarly Z is partitioned as,

3.7 Z2=(Z, Z, ... Z,...Z]
This results in writing the model in Equation 3.1 as,

r
(3.8) y=XB+ XY Zu,+e

i=1
and therefore,

T
3.9) V=var (Y Zu, +e)

i=|

Now we make assumptions for the sub-vectors u;,

(3.10) E(m)=0, Vi,
(3.11) var(u,)) = cizlq , V i and where g, is the number of levels of u,,
(3.12) cov(u, w';) =0, Vi %', and

(3.13) cov(u, €') =0, V i.

Using these assumptions in Equations 3.10 through to 3.13, Equation 3.9 can be written

as,
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r
(3.14) V=3 2206 + o1

i=l

Defining further that u_ = e, cg = 0'2 , and Z, = I, the most general and common form of

the mixed model can be expressed as,

(3.15) y=XB+ ¥ Zu,
i=0

The dispersion matrix of y can then be written as the general variance components model
(Hartley and Rao 1967),

r
(3.16) V=3 zZ'c
i=0

The components of variance can be estimated by different methods, which are now
discussed in detail.
3.1.2 Analysis of Variance Estimation

The general ANOVA method of estimation is based on expressing expected mean
squares as a linear combination of variance components and then solving for the variance
components. The method is computationally and intuitively appealing, at least in the case
of balanced data. The familiarity of ANOVA procedures allows researchers to interpret
the variance components with greater ease.

The general method involves equating the mean squares from an ANOVA to the
expected values of the mean squares. The expected values of mean squares can be
expressed as linear combinations of the variance components, which are estimated by
solving the system of equations involving these linear combinations. Let m be the vector
of mean squares, with the same order as o, the vector of variance components. Then,
there is a P such that,

(3.17) E(m) = P’
Then the ANOVA estimator of o2 is 62, obtained from,

(3.18) &%=P "' m, with P nonsingular.
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These ANOVA estimators are unbiased in the case of balanced data. Grayhbill and
Hultquist (1961) also established that these estimators have minimum variance of all
estimators that are quadratic functions of the observations and unbiased. In the case of
balanced data and making an assumption of normality, these estimators are also minimum
variance of all unbiased estimators (Graybill 1954, Graybill and Wortham 1956).

The sampling variances of the estimators can be derived because the variance
components are linear functions of % variables (expected mean squares). However, in
general, there is no closed form expression for the distribution of most estimators and the
variances of the estimators are functions of unknown components.

From Equation 3.17, the variance in 6% can be written as,

(3.19) var(62) =P ' var(m) P - "
The variance of a mean square can be expressed as,

2
EM.
(3.20) var(Mi) = Auf—')]—

b

where f are the degrees of freedom associated with the mean square M,.

It can therefore be shown that an unbiased estimator of the variance of &2 s,

2
22y _p-i 2Mi -r
3.21) var(c” ) =P P
df.+2

where the notation “{,” indicates that the term in the bracket is a diagonal matrix.

This estimate of the sampling variance of the variance component estimates can
only serve as an indication of the dispersion of the estimates. Little can be done, however,
in terms of constructing confidence intervals because of the inability to derive the exact
or approximate form of the distribution of the estimates. To construct intervals, we use
methods suggested by Burdick and Graybill (1992), which have been shown to work well
for samples of all sizes. The methods are presented later in the paper in the section on
confidence interval estimation.

3.1.3 Maximum Likelihood Estimation
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Maximum likelihood estimation is tractable with an assumption of normality of
the random effects and the error terms. Assuming normality, the model in Equation 3.1

can be written as,

(3.22) y=XB +Zu +e~N(XB, V)
with V = i 2z;c
i=0
The likelihood function is then,
(3.23) L=@n)™| V|~'2 exp[ (-1/2) (y - XB) V "' (y - XB)]

The likelihood function L is converted to the log-likelihood function 1, then
maximized by taking the derivatives of | with respect to f and o‘?‘ , and setting the
resulting equations to zero. The derivation of the equations is given in Searle, Casella,
and McCulloch (1992, pg. 235-236). The resulting maximum likelihood solutions are,
(3.24) XVIXp=xVly
(3.25) tr(V"ziz;) =(y-XB) V'2ZV " {(y-XB), fori,j=0,1,2,3,.. .1

These equations are then solved for B and c2. In addition, the second derivatives
of 1 with respect to B and ciz are examined along with the parameter space restrictions,
which in case of maximum likelihood are the non-negativity of all variance components
except the error variance component, which is constrained to be positive. The maximum
likelihood solution is estimated iteratively using this specification. The advantage is that
the fixed effects 8 are simultaneously estimated along with the variance components o>,

Searle (1987) and Searle, Casella, and McCulloch (1992) provide an algebraically

simpler expression for the equations by defining,

(3.26) P=v I _vixxvixyxv!
and

r
(3.27) I=V'V=V'} 2Z/c’

i=0




Using equations 3.25 and 3.26 together with Equation 3.24 provides the following

formulation for the equations to estimate o> :
vl r~_l t 2 — D D
(3.28) {u(v z2zV'z ,Z,-)}{"i } = {y PZiZiPy}

fori,j=0,1,2,3,...,r.
The estimates of the dispersion matrix 25> of the estimates of the variance

components, in the case of maximum likelihood, are given by,
-1
r
—_ vl Iy -1 ’
(3.29) Ts2 = 2[{m o V'zz¥ zjzj)}i’FOJ

where the notation “{,,” indicates that the term in the bracket is a matrix.
3.1.4 Restricted Maximum Likelihood Estimation

Patterson and Thompson (1971) developed the restricted maximum likelihood
method for general mixed models in order to account for fixed effects in the maximum
likelihood estimation. Thus REML is a variant of the ML method, where the estimators
are obtained by maximizing only that part of the likelihood that is invariant to the
location parameter in the model in Equation 3.1, i.e., the fixed effects XB. The procedure
is given in detail in Searle, Casella, and McCulloch (1992, pg. 249-251). The resulting (r
+ 1) equations to be set to zero to estimate the variance components are,

(3.30) {u[iziz;'ﬁzjz;.)}{cf} = {y"ﬁzizgﬁy}

fori,j=0,1,2,3,...,r.

The resulting (r + 1) equations are identical to the ML Equations 3.28, except that
vlis replaced by P.

REML also has the computational burdens of the maximum likelihood estimation.
However, the REML estimates are unbiased in the case of balanced data, unlike the ML
estimates. Also, in the case of balanced data, the solutions to the REML Equations 3.30
are identical to the ANOVA estimates, whether or not normality is assumed, and are

therefore minimum variance unbiased. However, note that these solutions are not REML




estimators unless the two conditions of normality and non-negativity of estimates are
satisfied. Thus, when there are negative estimates, the ANOVA and REML solutions
should not be expected to be similar. In the case of unbalanced data, both REML and ML
estimators are biased. The REML method does not provide direct estimates of the fixed
effects in the mixed model, which are provided by the ML method.

The estimates of the dispersion matrix Y32 of the estimates of the variance

components, in the case of restricted maximum likelihood, are given by,

(3.31) LD {{mtr[Pziz;szZ})}_r_ r

i,j=0
3.1.5 MINQUE (Minimum Norm Quadratic Unbiased Estimation)

The ANOVA method of estimation yields estimators with unknown properties for
the most part. This prompted Lamotte (1971, 1972) and Rao (1971a, b, 1972) to develop
a method of estimation that would attribute desirable properties to the estimates. The
maximum likelihood methods lead to estimates being consistent, efficient, and
asymptotically normal. The important difference between ML and ANOVA methods on
the one hand and MINQUE on the other, is that the former methods result in estimates
with certain properties, whereas the latter method specifies these properties at the outset.
Therefore, MINQUE method is called a criteria based procedure. There are several
methods that fall under this category. We describe the general MINQUE procedure and
the MIVQUE(0) procedure, the latter method being used for the estimation of variance
components in the empirical illustration.

The method suggested by Rao (1970, 1971a, b, 1972) does not require the
assumption of normality and leads to estimates that have minimum variance of all
unbiased estimates that are quadratic functions of the observations. Searle, Casella, and
McCulloch (1992) provide a derivation of the results produced in this section. Let w
represent the set of weights that are the a priori values chosen by a researcher for the

. ) 2 ] .
vaniance components. The vector w is of the same order as 6° . The matrix V is now
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denoted by V,,, with the weights w in place of o, Similarly, denote P of Equation 3.26
by P,. with V replacing V. Then the estimation equations for MINQUE are similar to
the ML equations 3.28 and are given by,
5
7 14 14 - = - 1
(3.32) {u(sz.z.P 27 }{ci I=lye zzp y)

1 1w W 11w

fori,j=0,1,2,3,...,r.

A modification of the MINQUE method is the minimum variance quadratic
estimation method (MIVQUE(0)). The modification assumes normality, and additionally
assumes a priori values of 0 for all variance components with exception of o'z , which is
assumed to be 1. The MIVQUE(0) method produces estimates that are minimum variance
quadratic unbiased.

An important assumption made in the estimation by MINQUE methods is that the
a priori values assigned to variance components are the true values of the variance
components. Only then are the estimates locally minimum variance quadratic unbiased
(Sahai and Khuri 1985). This limitation is a result of the non-iterative nature of MINQUE
methods.

3.2 Methods to Determine Interval Estimates of Variance Components

Burdick and Graybill (1992) and Wonnacott (1987) argue for the use of
confidence intervals in variance component modelling because interval estimates provide
the “‘most informative summary” results of statistical inference. In addition, interval
estimates also provide an indication of the confidence we may be able to place in the
ability of an “optimal” measurement design, derived from point estimates, to provide
information of acceptable levels of generalizability.

Following this argument, we present a selection of the general methods available
for constructing confidence intervals around variance component estimates. The
dispersion matrices from ML estimation can be used to derive confidence intervals. Such

confidence intervals are easy to derive because of the assumption of normality. In the
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empirical section, we present confidence intervals on estimates derived from ML
methods. The problem with using the dispersion matrices from ML estimation for
constructing confidence intervals is that the ML methodology is based on large-sample
asymptotic normal theory. Large samples are rarely possible for most factors in
marketing surveys, and have rarely been used in most studies which use variance
component modelling. The alternative is to use approximate methods that work for all
sample sizes, small or large, although they are based on normal theory and require the use
of ANOVA estimators. Thus, the problem of using ANOVA estimators with unbalanced
data creates a trade-off between using the asymptotically normal large-sample dispersion
matrix of maximum likelihood estimators and the methods suggested by Burdick and
Graybill (1992) for samples of all sizes. Burdick and Graybill (1992) review a large
number of methods to construct confidence intervals on estimates obtained from ANOVA
methods. We present two methods in this paper; we refer the reader to their book to
obtain details of other methods.

3.2.1 Satterthwaite’s Method:

The history of interval estimation for variance components requires mention of
the methodology developed by Satterthwaite (1941, 1946). This method continues to be
popular with practitioners because of its ease of use and intuitive appeal (Burdick and
Graybill 1992, Brennan 1983). Approximate intervals for estimates of confidence
intervals can be constructed with the Satterthwaite method for almost any experimental
design. The general methodology is to €Xpress any variance component as a linear
combination of the expected mean squares from an analysis of variance, and then
attribute an approximate distribution to this combination. Any variance component in a

variance component model can be expressed as E(MS’) — E(MS"’), where,
n
(3.33) MS’ = ¥ tMS,

i=l
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N
(3.34) MS”"= 3 fMS,
i=n+l
where N is the number of mean squares that form the expression for the variance
component in question, f; is the coefficient associated with the mean square MS ..

An approximate F-test for the significance of the estimates is given by,

(3.35) F= :/%JM
where,
n 2
os)
(3.36) p= .
Z(ems )/ ot
=1
N 2
(1.0)
(3.37) q= —n-! :

T (rus e

and df; is the number of degrees of freedom associated with the mean square MS..

An approximate 100(p)% interval of an estimated variance component is then

given by,
2 5
Y, 5 OTV
(3.38) Prob| —— <o < —-—|=p
WM xtw)
2
(210
where v = ! 5 are the effective degrees of freedom; xi,(v) and xi(v) are
e
i

the lower U= (1 +p)/2and L =(] - p)/2 percentage points of the chi-squared distribution
with vdegrees of freedom.

The effective degrees of freedom is not generally an integer, and is thus rounded
off to the greatest integer less than or greater than v. Satterthwaite’s procedure is

recommended when the degrees of freedom df; are all large or, when small, all equal.
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When there are large differences in the degrees of freedom, the procedure produces
unacceptably liberal' confidence intervals (Burdick and Graybill 1992). Also, if some of
the f’s are positive and some negative, Burdick and Graybill (1992) strongly recommend
against the procedure. Additionally, Khuri and Sahai (1985) strongly question the logic of
using this procedure with unbalanced data because the mean squares are no longer
independent and do not have a distribution of a scalar multiple of a independent chi-
squared variables. Thus, the procedure is suitable for only a specific class of problems, all
of which require balanced data. Finn and Kayandé (1997) used Satterthwaite’s method on
the balanced subset of their data, to show that most of the non-negative estimates of
variance components in their study were significantly different from zero.

Several other papers (e.g., Welch 1956, Graybill and Wang 1980) have
recommended approximate large-sample confidence intervals that suffer from similar
limitations. Although Graybill and Wang’s (1980) procedure works best of all these
methods in terms of producing a confidence coefficient close to the true confidence
coefficient, all of these methods do not work well in the presence of small samples
(implying low number of levels for a factor in a study).

We now present the general procedure suggested by Ting, Burdick, Graybill,
Jeyaratnam, and Lu (1990), which overcomes the major limitations of these methods.
3.2.2 General Procedure to Construct Confidence Intervals with ANOVA estimates:

A variance component can be expressed as a linear combination of expected mean
squares. The coefficients of mean squares in these linear combinations are commonly
positive and negative. Satterthwaite’s method should not be used with negative
coefficients and hence Ting et al. (1990) suggested a general procedure that can be used
with negative and positive coefficients in the linear combination of mean squares. In
several simulation studies, Ting et al.(1990) show that their method, although
cumbersome, produces confidence coefficients close to the true confidence coefficient

even in the context of small samples.
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The notation for this procedure differs from that of Satterthwaite’s method and is
therefore explained in some detail. The estimate & of a variance component can be

expressed as,

Q 2
(3.39) Z c 8- > c§
q=1 a4 r=P+l] r

where, Si2 s are the mean squares and c,’s are the coefficients associated with them.

The lower bound for an upper (1 — «) interval on § is given by,
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Similarly, the upper bound on a lower (1 - a) interval on & is given by,
(3.41) U=86+ /VU
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3.2.3 Confidence intervals on ratios of variance components:

The interval estimation of ratios of variance components has also been given
considerable attention by researchers in statistics (Burdick and Graybill 1992). Such
ratios are of interest because they represent the proportion of total variance accounted for
by a factor, or a signal to noise ratio, or an intraclass correlation coefficient (a
generalizability coefficient). Ratios are of interest in this paper, specifically in the context
of the question raised early in this paper about the impact of interval estimates on the
optimality of measurement design. The ability to produce interval estimates of variance
components does not imply that we have an answer to the question. The reason is that it
is not straightforward to use the interval estimates to derive an interval estimate for most
ratios of variance components, or the generalizability coefficient. The estimate of the
generalizability coefficient drives the optimization process, and therefore it is important
to obtain an estimate of the sampling vaniability of the estimated coefficient.

The problem with estimating the confidence intervals around ratios of variance
components lies in the inability to attribute exact distributions to the numerator or the
denominator of most ratios. Burdick and Graybill (1992) offer approximate confidence
intervals for some ratios of variance components estimated from simple designs and also
inform us that there is no general method available to form interval estimates of ratios.

For simple, 2 or 3 factor designs (nested or crossed), Burdick and Graybill (1992) provide




confidence intervals for ratios that result in confidence coefficients close to the true
confidence coefficients. The procedures can be generalized to unbalanced data. However,
in this paper, we do not explore this possibility because of the uncertain state of the
literature regarding designs with more than three factors, specially with unbalanced data.

There is, however, one special case of ratios which deserves attention. In a
generalizability theory approach to measurement, it is common to estimate a
generalizability coefficient, assuming a specific design for a decision study to be
conducted in the future. If the data from a generalizability study were to be used for the
purposes of making decisions (instead of conducting another study for making decisions).
then the generalizability coefficient should reflect the sample sizes used in the
generalizability study. Schroeder and Hakstian (1990) use this possibility to develop a
method to estimate approximate intervals on the generalizability coefficient. The
procedure is only valid for balanced data, and only for a design that has sample sizes
equal to those in the study used to estimate the variance components.

Schroeder and Hakstian’s (1990) methodology to derive a confidence interval
around a generalizability coefficient is as follows. A generalizability coefficient E[)2 , for
a design with sample sizes equal to those used to estimate variance components, can be
expressed as a function of the mean squares M, (i= 1, 2, . . -, I) estimated in the study.
Then, it can further shown that (1- E;S2 Y(1- Ep2 ) follows an approximate F-distribution
with degrees of freedom df,, and (Nopjec-1)- dfy is defined by Satterthwaite’s (1941, 1946)
method for a combination of mean squares (see section on Satterthwaite’s method in this
paper) and n,;, are the number of levels of the object of measurement. The approximate
F-distribution results from the mean squares in the numerator and denominator, which are
independent, following chi-square distributions. Further, using Paulson’s (1942)

transformation, it can be shown that,
l l 1

(3.42) (1-Ep%)3 < NID| ¢ (1- Ep2)3, var(l - Ep2)3
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Schroeder and Hakstian (1990) show that ‘¢’ is a function of the degrees of freedom df;,
and n., and can be ignored because there is a negligible loss in precision as a result.
Using the delta method (Rao 1973, p. 387) to estimate sampling variance of an estimator,

Schroeder and Hakstian (1990) further show that the variance of 8 = (1- Ep?)'3can be

expressed as,

(3.43) var@=@' L @
where,
o = 06 00 1,8
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2
. o Emp]
and each element of the diagonal matrix T is T’ (i=1,2,..., 1), and where
1

df; are the degrees of freedom associated with the mean square M,. Thus, an approximate

90% confidence interval around the generalizability coefficient is given by,

| 1105)3
(3.44) 1-| (1- Ep?)3 i—l.96[va:(l—Ef)2)3]

As an illustration of the methodology proposed by Schroeder and Hakstian
(1990), and as an indication of the variability of the generalizability coefficient, we
estimate the interval around the generalizability coefficient for one of the problems
discussed in Finn and Kayandé (1997), using only the balanced portion of the data.

We summarize the discussion on estimation methods with a classification of the
point and interval estimation methods in terms of the situations under which each method
is most appropriate. Table 3.1 presents a simple 2 X 2 classification on the nature of the
data (balanced or unbalanced) and type of estimate (point or interval), and the summary

of methods recommended.

Insert Table 3.1 about here
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3.3 Empirical Illustration

In the preceding theory section of the paper, we reviewed the different methods of
point and interval estimation of variance components. We now explore the empirical
implications of the differences in methods of estimation on the optimal design of
measurement, the questions we raised at the beginning of this study. We use the data
collected by Finn and Kayandé (1 997) to illustrate the differences because of two reasons.
First, Finn and Kayandé’s (1997) study is the only complete application of a
generalizability theory based approach to measurement in marketing. Second, it provides
a comparison standard, specially in the context of the impact of estimation methods on
the optimality of designs generated from their study.

In this section, we first provide a brief description of the data collected by Finn
and Kayandé (1997). Then, for a specific design included in their study, we estimate
generalizability coefficients using variance components estimated by different methods
for both balanced and unbalanced data. Such a comparison will indicate the extent to
which the point estimation methods and balance in the data impact the estimated
“quality” of information, as reflected in the generalizability coefficient. We also present
optimal designs using variance components estimated from different methods, for a pre-
specified generalizability coefficient of 0.90. This comparison gives an indication of the
direct impact on the design of the optimal decision study, and therefore the cost of the
decision study.

Then, we estimate intervals on variance components using the Satterthwaite
method, Ting et al. method, and maximum likelihood methods. The first two methods are
restricted to balanced data, because of the strong recommendation not to use the ANOVA
method to estimate variance components with unbalanced data (note that both these
methods use the mean squares obtained from the ANOVA method of estimation). The
interval estimates from maximum likelihood methods are provided for both balanced and

unbalanced data. The interval estimates of variance components may not provide a
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conclusive answer to the question of whether the optimal designs are impacted by the
variance around the estimates of variance components. This is because the optimality of
designs is dependent on the ratio of variance components, and therefore would depend on
the variability in this estimated ratio. We use Schroeder and Hakstian’s (1990) method to
estimate an interval for this ratio for one specific design. However, for other designs,
including the “optimal” designs, the extent of variability in variance components will
have to be taken as an approximate indication of the variability of the estimate of the
ratio. This then would provide some indication of whether or not the optimality of
designs generated by Finn and Kayandé’s (1997) method is influenced by the interval
estimates.

3.3.1 Brief Description of Data Collected by Finn and Kayandé (1997)

Data were collected by mail from 125 respondents on their service quality
perceptions of 3 retail chains from each of 3 retail sectors. The respondents were asked to
rate the service quality of the retail chains on 3 items, drawn randomly from the set of
items contained in SERVQUAL (Parasuraman, Zeithaml, and Berry 1988), for each of 3
randomly chosen SERVQUAL dimensions, called aspects in this paper. Thus, the factors
in the design were retail sectors (3 levels), retail chains (3 levels nested within 3 sectors),
respondents (125 levels, crossed with all other factors), aspects (3 levels), and items @3
levels nested within aspects). Variance components were estimated by MIVQUE(0) and
were used to estimate generalizability coefficients for various designs, and thereafter to
estimate the optimal designs for different decision problems. Because we also compare
methods on the balance in the data, we used the balanced subset of these data to estimate
models on balanced data. This balanced subset, from 65 respondents who responded to
every item for every retail chain, contains 76% of the data points contained in the full
unbalanced data provided by the 125 respondents.

All other details of the data collection methodology are provided in Finn and
Kayandé (1997).
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3.3.2 Impact of Point Estimation Method on Optimal Designs
3.3.2.1 Impact on generalizability coefficient:

The different methods of estimation were used to estimate variance components,
and these estimates were used to estimate generalizability coefficients for a single
problem of comparing the service quality of 5 retail chains within any one retail sector. In
addition, the design suggested to be optimal by Finn and Kayandé (1997) for achieving a
generalizability coefficient of 0.90 was chosen for estimating the generalizability
coefficient under each method. The design - 31 respondents, 1 item for each of 4 aspects -
was suggested to be optimal by Finn and Kayandé (1 997) using MIVQUE(0) estimates of
variance components. These estimates in their paper were for the full unbalanced data: in
this paper, we estimate the generalizability coefficients using different methods for both
balanced and unbalanced data.

The variance components estimated by ANOVA, MIVQUE(0), ML and REML
for the unbalanced data are shown in Table 3.2. One difference between the methods is
that the ML methods produce estimates that are constrained to be non-negative, while the
ANOVA and MIVQUE(0) method produced three negative estimates (retail sectors,
sector by aspects, and sector by respondent by aspect). Note that we have set these

estimates to 0 in the Table.

Insert Table 3.2 about here

There are differences among the specific estimates from each method; however,
such differences have a significant impact only in terms of ratios of variance components.
One common comparison standard is the percentage of total variance accounted for by
each source of variance. There are no significant differences in percentage of total
variance for most sources of variance across the four methods, with the exception of three

sources for which there are noticeable, although minor, differences. The variance
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component associated with retail chains accounts for 15% of total variance with ANOVA
estimates, 14% with MIVQUE(0) estimates, but only 11% with ML and REML
estimates. Thus, any coefficient formed with chains as the object of measurement should
be smaller with ML and REML estimates than with ANOVA and MIVQUE(0) estimates,
if the relative error variance is the same across the different methods. However, the
relative error variance is also larger (as a percent of total variance) for ML and REML
estimates, implying that there is a double effect to further reduce the generalizability
coefficient for comparing chains with ML and REML estimates. This difference is
reflected in the generalizability coefficients being lower for ML and REML estimates
(0.867 and 0.87S respectively) than for ANOVA and MIV QUE(0) estimates (0.907 and
0.902 respectively).

The other two sources for which there are differences in percent of total variance
across the methods are respondents (ranges from 16% with ANOVA estimates to 19%
with ML estimates) and the interactions of chains and respondents (21% with ANOVA
and MIVQUE(O) estimates and 23% with ML and REML estimates). The increase in
percent of total variance for respondents with ML estimates is compensated for by a
decrease in percent of total variance for the interaction of chains and respondents, a
component of relative error for comparing respondent perceptions. Thus, the differences
would have little impact on a G-coefficient for the comparison of respondent perceptions.

There are differences in the generalizability coefficient for comparing chains
across different estimation methods; however, the differences are not significant enough
to worry about. Thus, although the method of estimation has some impact on the
generalizability coefficient, the impact does not seem strong enough to warrant major
attention in these data. The differences across methods do, however, alert the attention of
researchers to the possible impact of estimation method on generalizability.

The results from the balanced subset of the data are produced in Table 3.3. The

variance components for ANOVA and MIVQUE(0) are identical, and these estimates are



78

different from ML and REML estimates for some sources of variances. However. notice
how similar the estimates are for most sources of variance. In the theory section of this
paper, we mentioned that REML estimates are identical to ANOVA estimates in the case
of balanced data. We find however, that there are some differences across REML and
ANOVA estimates. The reason is the presence of negative estimates with ANOVA: thus,
the caveat to this property is important. If the estimates are negative with ANOVA, the
solutions with REML and ANOVA should not be expected to be similar specially since
REML constrains the estimates to be non-negative. There are hardly any differences in
the percent of total variance for any source of variance across the four methods; thus,
most ratios of variance components should be similar. This is reflected in the similarity of
the generalizability coefficients across the four methods. We used the same design -31
respondents, | item for each of 4 aspects - as for the unbalanced desi gn to estimate the
generalizability coefficients for retail chains. The generalizability coefficient ranges from
0.855 with ML estimates to 0.865 with ANOVA and MIVQUE(0) estimates. Thus, the
impact of method of estimation is minimal in terms of the estimate of generalizability
coefficient from point estimates of variance components, in the context of balanced data.

The differences are minor, although conspicuous, with unbalanced data.

Insert Table 3.3 about here

3.3.2.2 Impact on Optimal Designs:

The impact of different estimation methods on generalizability coefficients should
be reflected in an impact on the optimality of the design of a decision study. That there
were hardly any differences across methods for balanced data should be reflected in
hardly any differences in optimal designs across different methods. However, we should
expect to find some differences in optimal designs for unbalanced data, because there

were some differences in the generalizability coefficient across the methods. In this
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section, we report on differences in optimal designs across different methods for balanced
and unbalanced data.

In addition, we extend the investigation to two other problems identified by Finn
and Kayandé (1997), which lead to different objects of measurement. These are the
problems of identifying priorities for quality improvement (or comparing aspects of
service quality for a retail chain, Problem 2 of their paper) in a retail chain and
determining customers’ perceptions of service quality (or comparing the perceptions of
respondents nested within retail chains, an adaptation of Problem 4 of their paper). We
extended the investigation because there might be a different impact on the
generalizability coefficient, and therefore optimal designs, for different problems.

For all problems examined in this paper, we used the cost function and
optimization framework developed by Finn and Kayandé ( 1997). Estimates of variance
component serve as an input to the optimization; different estimates served as input,
based on the method of estimation.

Optimal designs, including the associated costs, for all three problems under
different methods of estimation and balanced versus unbalanced data are given in Table
3.4. We now describe the differences for each problem sequentially. The first problem is
that of comparing the service quality of S retail chains within any one retail sector. The
facets of generalization are respondents, items, and aspects. The optimal design using
ANOVA method on unbalanced data is the cheapest (8438) for Problem 1, across both
balanced and unbalanced data. However, note that the ANOVA estimation method is
strongly not recommended with unbalanced data. Thus, this lowest cost design may not
really be all that optimal.

The optimal designs with balanced data are consistently more expensive than
those with unbalanced data, not so much reflecting the lower survey response rates when
balanced data are desired, but generally reflecting the lower generalizability coefficient

for any given design. The most significant finding to take away from these results is that
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the cost of designs can differ by a large percentage amount, even though there are no
major differences in the generalizability coefficient. This is made quite obvious in this
problem, where the optimal design with ML estimates is about 50% more expensive
(8700 versus $479) than the optimal design with MIVQUE(0) estimates, cited as the
optimal design by Finn and Kayandé (1997). If one is permitted comparisons across
balanced and unbalanced data, then the optimal design with ML estimates for balanced
data is about 65% more expensive than the optimal design with MIVQUE(0) estimates

for unbalanced data.

Insert Table 3.4 about here

The results for the second problem of identifying priorities for quality
improvement in a retail chain are similar to those for the first problem. The object of
measurement for this problem is aspects for a fixed retail chain, and the facets of
generalization are respondents and items. For unbalanced data, the costs of optimal
designs range from S1154 with ANOVA estimates to $1670 with ML estimates. For
balanced data, the costs range from $962 for ANOVA and MIVQUE(0) estimates to
$1346 for ML estimates. The ML estimates result in the most expensive optimal designs
for both problems, and both balanced and unbalanced data. The pattern for the second
problem is not the same as that for the first problem, indicating that there is no empirical
reason to expect any systematic differences in optimal designs across methods of
estimation. In any case, there is no theoretical reason to expect any systematic
differences.

The third problem is an adaptation of Problem 4 from Finn and Kayandé’s (1997)
study. The comparison of the service quality perceptions of 30 respondents nested within
5 retail chains is considered in this problem. The object of measurement is respondents

nested within retail chains; the facets of generalization are items and aspects. The optimal
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designs for this problem are identical across all methods of estimation and balanced
versus unbalanced data. The optimal design costs $1470 and involves asking customers to
respond to | item for each of 9 aspects of service quality.
3.3.3 Impact of Interval Estimation on Optimal Designs

In this section, we report on the empirical interval estimates of variance
components, and their possible impact on the optimal design of a decision study. We first
report the results of methods that use mean squares from ANOVA, and therefore restrict
the discussion to balanced data. Subsequently, we report maximum likelihood interval
estimates for both balanced and unbalanced data. F inally, we discuss the interval estimate
of a generalizability coefficient using Schroeder and Hakstian’s (1990) method. All
estimates are derived using methods which have been described in detail in the theory
part of this paper.

The 90% interval estimates using Satterthwaite’s ( 1941, 1946) and Ting et al.’s
(1990) methods are presented in Table 3.5. The variance components were estimated
using the ANOVA method. The intervals produced by Satterthwaite’s method are quite
wide for most sources of variance. For example, the lower and upper bounds for the
estimate of the variance component for retail chains are 0.259 and 1.679 respectively.
Ting et al. ‘s (1990) method produces intervals that are wider than those with
Satterthwaite’s method, consistently for each source of variance except the error variance
for which the intervals are identical with both methods. Note that intervals estimated by
Ting et al.’s (1990) method, although wider, are supposed to be more conservative
relative to the more liberal intervals produced by Satterthwaite’s method (Burdick and

Graybill 1992).

Insert Table 3.5 about here




The confidence intervals using maximum likelihood methods (both ML and
REML) are estimated using the asymptotic dispersion matrix of the estimates of variance
components and the normal distribution assumption for all effects. The intervals are
presented for both balanced and unbalanced data in Table 3.6. Most intervals are again
wide, indicating that the method of estimating intervals matters little in terms of the
conclusion that the intervals around variance component estimates are too wide to
provide reasonable confidence in the optimal designs derived using the point estimates. A
number of intervals include negative lower bounds, indicating that the variance
component estimate is not significantly different from zero. For example, the lower
bound of the interval estimate for aspects is consistently negative across all sets of data
and methods of interval estimation. It simply implies that conclusions drawn about
optimal designs for identifying priorities for quality improvement (aspects as the object
of measurement) are suspect, because the variance component associated with aspects is
not significantly different from zero. A similar conclusion can be drawn for items. The
lower bound for the variance component associated with retail chains is just above zero
indicating that an interval with higher confidence (say, 95%) would probably indicate that
the variance component for retail chains is not significantly different from zero. Thus, all
optimal designs for problem 1 in Finn and Kayandé’s (1997) study are susceptible to be
rendered sub-optimal because of the variability and/or non-significance of the variance

component estimate for retail chains.

Insert Table 3.6 about here

3.3.3.1 Confidence Interval on the Estimate of Generalizability Coefficient
The method suggested by Schroeder and Hakstian (1990) was used to obtain an
interval estimate on the generalizability coefficient for a decision study that uses the same

design as a generalizability study. The mean squares from the ANOVA estimates were




used to derive the interval estimate for the generalizability coefficient to compare retail
chains, with the design that used 65 respondents rating 3 retail chains from each of 3
retail sectors on 3 service quality items from each of 3 aspects. The point estimate of the
generalizability coefficient for this design, using the ANOVA estimates from the
balanced data, is 0.897. Using the method recommended by Schroeder and Hakstian
(1990), the 90% interval on this estimate is estimated to be [0.73 0.97]. This wide
interval implies that the variability in the mean squares, and therefore variance
components, can be expected to have a large negative impact on the confidence that can
be placed in a design remaining optimal for multiple decision studies.
3.4 Discussion and Conclusions

In this paper, we set out to answer two important questions. First, does the point
estimation method used in a study have an impact on the optimality of designs using Finn
and Kayandé’s (1997) procedure? Second, we asked whether the interval estimates of
variance components and generalizability coefficients are such that the confidence placed
in optimal designs may be suspect. In the process of answering these questions, we raised
several other questions, some of which we answer in the paper and some of which we
leave for future research. To answer the first question, we had to review the different
point estimation methods available to estimate variance components, understand the
statistics of each method, and apply the same to the empirical data collected by Finn and
Kayandé¢ (1997). To answer the second question, we had to review the available methods
to form intervals around estimates of variance components, in the process identifying
most of the issues in forming such intervals, understand the statistics underlying each
method, and apply the understanding to estimate intervals for the empirical data.

The contribution of this paper, thus, can be viewed as two fold. First, we
attempted to answer the two important questions raised upfront. Second, the paper
provides a concise summary of the statistics of extant point and interval estimation

methods that were used to answer the questions, and also provides summary
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recommendations and issues, such as in Table 3.1, related to the methods and their
application. We now discuss the answers to the two important questions.

The impact of the point estimation method on optimal designs was clearly
dependent on the balance in the data. The impact is quite minimal with balanced data;
with no negative estimates, there is no impact at all. The impact is stronger with
unbalanced data. Maximum likelihood methods seem to lead to more expensive designs:
however, Searle, Casella, and McCulloch ( 1992) recommend more frequent use of
maximum likelihood procedures because of the desirable properties, such as consistency
and asymptotic normality, of the estimates, specially in the context of unbalanced data. In
addition, the asymptotic sampiing dispersion matrix of the estimators is also known,
which allows for easy interval estimation compared with methods such as ANOVA and
MINQUE. Thus, the more expensive designs with maximum likelihood methods seem to
be compensated for by the desirable properties of the estimates used to derive the designs.
ANOVA method should not be used with unbalanced data, and so the fact that ANOVA
estimates lead to a lower cost design, at least in our study, is of little comfort when there
are unbalanced data.

There are no major systematic differences in the impact of method across different
objects of measurement. In essence, the results show us that the cost of designs with
estimates from different methods depends in part on the object of measurement. For
example, the optimal designs for respondents (nested within chain) as object of
measurement were the same across all methods and balance in data. On the other hand,
the designs for the other problems were different across different estimation methods.
One conclusion that can be made is that the optimal designs for ANOVA and
MIVQUE(0) estimates with balanced data are identical across all problems, because the
estimates of variance components are identical for the two methods.

We have not compared computational speed of the different estimation methods

in this paper. With these data, MIVQUE(0) is unquestionably the best on computational
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speed, with balanced and unbalanced data. Maximum likelihood methods are most
cumbersome in time and power, and therefore their use is inhibited specially for large
problems such as the one explored in this paper. More work is required on this issue,
because the speed of computation may dictate the “total cost” of each method.

The answer to the second important question sought to be answered by this study
raises several issues. Such a wide range for most of the interval estimates unequivocally
indicates that the confidence intervals around the estimates of variance components are
too wide to provide sufficient confidence in the generalizabilty coefficients and optimal
designs derived by Finn and Kayandé (1997). In their paper, they suggested that most of
the estimated non-negative variance components were significantly different from zero:
however, they did not provide confidence intervals for the estimates. The estimates of
confidence intervals in our paper provide the argument to treat the results of Finn and
Kayandé (1997) with extreme caution. This does not mean that Finn and Kayandé’s
(1997) methodological framework is flawed because its application produces wide
interval estimates. We continue to strongly support their methodological framework,
simply because it is correct compared to classical methods. However, they appear to have
seriously underestimated the number of levels of facets that are needed in a
generalizability study to be able to rely on the conclusions as to the optimal design of the
decision studies. What we call for is more investigation into the manner in which the
application of Finn and Kayandé’s (1997) can be improved.

As is obvious from the wide interval obtained for the generalizability coefficient
using Schroeder and Hakstian’s (1990) method, the confidence interval around the
generalizability coefficient is quite wide, even with such a specific study that has a larger
number of levels for each facet than would be typically found in a decision study. It
implies two alternative conclusions, the choice of which to adopt is an open issue. The
first conclusion is that not much confidence should be placed in the point estimates of

generalizability coefficient, and therefore the optimal designs generated by using point
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estimates of generalizability coefficients be treated with caution. The alternative
conclusion is that there must be ways to improve the interval estimates of the
generalizability coefficients. This essentially implies that researchers need to embark on

projects that will lead to reduced interval width, thus increasing the confidence that they

may place in the optimal designs.
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Footnotes
1. A confidence interval is considered to be liberal if the empirical probability that the
parameter of interest lies between the upper and lower bound is lower than the desired
probability (Burdick and Graybill 1992). Alternatively, an interval is conservative if the

empirical probability that the parameter of interest lies between the upper and lower

bound is greater than the desired probability.
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Comparison of Alternative Methods for Estimation of Variance Components

Balanced data

Unbalanced data

Point Estimation

Interval Estimation

ANOVA methods produce
minimum variance
unbiased estimates that can
be negative.

ML and REML produce
non-negative estimates
with desirable properties.

ML estimates are biased.

Ting et al. (1990) provide a
general procedure to produce
approximate intervals with
confidence coefficients close to
true confidence coefficients.

Satterthwaite’s procedure not
recommended when there are
large differences in sample sizes
across effects.

The dispersion matrix of ML or
REML estimates can be used to
construct intervals; however,
large-sample property is a
potential problem.

ML and REML yield non-
negative estimates with
desirable properties except
biasedness.

MINQUE methods yield
estimates that may be
negative.

ANOVA methods not
recommended.

Methods not well defined,
although approximations can be
found for some designs in
Burdick and Graybill (1992).

The dispersion matrix of ML or
REML estimates can be used to
construct intervals; however,
large-sample property is a
potential problem.
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Table 3.2: Unbalanced data, point estimates, and generalizability coefficients for a

31 respondents, 4 aspects, 1 item decision study to compare retail chains

Methods of Estimation
Source of Variation ANOVA MIV QUE(0) ML REML

retail chain 0.745* 0.694 0.500 0.534

retail sector 0° 0°*  0.000 0.000

respondents 0.786 0.850 0.877 0.878

aspects 0.198 0.193 0.133 0.175

items 0.073 0.074 0.075 0.075

sector by respondents 0.066 0.016 0.004 0.004

sector by aspects o° 0°  0.000 0.000

sector by items 0.017 0.018 0.018 0.018

chain by respondents* 1.040 1.053 1.070 1.070

chain by aspects 0.093 0.093 0.091 0.091

chain by items 0.030 0.033 0.033 0.033

respondents by aspects 0.278 0.260 0.249 0.249
respondents by item 0.166 0.158 0.162 0.162

sector by respondents by aspects o° 0°  0.002 0.002
sector by respondents by items 0.080 0.107 0.098 0.098
chain by respondents by aspects 0.594 0.633 0.603 0.603
error 0.775 0.752 0.758 0.758

Relative error variance 0.077 0.075 0.077 0.076
G-coefficient for chains 0.907 0.902 0.867 0.875

* All numbers truncated to 3 decimal places. Thus, a variance component of 0.000 does
not necessarily imply that it is zero.

®Negative estimate set to 0.

¢ The variance components for the interactions of the object of measurement (chains) with

the facets of generalization are in italics.
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Table 3.3: Balanced data, point estimates, and generalizability coefficients for a 31

respondents, 4 aspects, 1 item decision study to compare retail chains

Methods of Estimation
Source of Variation ANOVA MIV QUE(0) ML REML
retail chain 0.520° 0.520 0.451 0.478
retail sector 0° 0°  0.000 0.000
respondents 0.716 0.716 0.706 0.708
aspects 0.222 0.222 0.162 0.216
items 0.076 0.076 0.076 0.076
sector by respondents 0° 0°  0.000 0.000
sector by aspects o° 0 0.000 0.000
sector by items 0.011 0.011 0.011 0.011
chain by respondents* 1.184 1.184 1.163 1.163
chain by aspects 0.103 0.103 0.089 0.089
chain by items 0.029 0.029 0.029 0.029
respondents by aspects 0.287 0.287 0.288 0.287
respondents by item 0.164 0.164 0.164 0.164
sector by respondents by aspects 0.058 0.058 0.056 0.056
sector by respondents by items 0.034 0.034 0.034 0.034
chain by respondents by aspects 0.514 0.514 0.515 0.515
error 0.681 0.681 0.681 0.681
Relative error variance 0.081 0.081 0.077 0.077
G-coefficient for chains 0.865 0.865 0.855 0.862

* All numbers truncated to 3 decimal places. Thus, a variance component of 0.000 does
not necessarily imply that it is zero.
®Negative estimate set to 0.
“ The variance components for the interactions of the object of measurement (chains) with the

facets of generalization are in italics.




91

poaw uonuens 1043 Yim ()Lp 14 Jo 1500 © pue ‘spadse 6 ‘won |
(suteyo pejas ¢ jo youo a0y sjuapuodsas 0¢ Jo suondasind Kjenb asiatos Suipeag)

Angengy s, uey,) v jo suondoosag Siowopn) Juiuiuuniacg (p wajqoag

beol 9bg 1 796 296 Teel 0L91 ceel bSll ($) 180D
L 6 L L 6 01 8 L SWwR)| Jo Jaquinp
LS 9 IS IS £9 8L ¥9 LY sjuapuodsay jo saquiny

(ureyd jreoa ¢ jo spadse ¢ Fuieoag) JudwoAoadwy Kjengd) 10§ sanuow duifynuop| 1z wapqoay

ObL 06L 0l1L 01L 0rY 00L oLY 8¢ ($) 150D
S S S S S S % £ $109dsy jo soquinp
! I | | | | | | Swa| Jo JoqunN
of 14 9% 9 0t S It 9¢ siuopuodsay jo Joquny
TAR TA___4NOAIN  VAONY TN 1IN 4NO0AIN VAONYV
8)e(] paduejeg gje( padusequq)

(sureypd 1131 6 Jo Apjunb aoiatas duijeag) 101008 [IGY © UM Sug) 1Ry Juppewyoudy :J wajqoag

Ahao—v @—u—-ahav— pue uuyy woJlj p pue .N '— suRjqo.tg 10j mﬁu_aec _-«——__—A_c uo poyyp uonpew)sy jo -uan-:— peoquey,




“poyow z.ozsgp—to:-wm Yim sajew)so O>_~zwv= uo pautjop jou aue S[RAIDUL UIPLJUOD asNEeIY .D—b_zo__»_a_m-:c: Sajedipw ~\=.~

SIL0 6v9°0 SIL°0 ov¥9°0 189°0 oL

1650  9pt'0 9¢S°0  £ob0 P1S0 spadse Aq syuapuodsas £q ugeyo
L900 €000 SE00 L0 PE0°0 swan £q sjuopuodsai £q 10pas
691°0 0100 £90°0 1230X0} 850°0 sioadse Aq sjuapuodsol Aq 101008
£0T0 ¢Elo 9L1°0 123 M) 9170 way £q syuopuodsal

0LV 0 €020 A% AV 16T°0 L8T0 s1adse £q suapuodsas

SE00 910°0 0€0°0 L200 6200 swoyr Aq ureyo

8ST0 6v0°0 020 $90°0 £01°0 spoadse Aq ureyo

88¢°1 S10°1 Slg'l L0l 1210 siuapuodsas £q uieyo

900 ¢00°0- 8100 30070 110°0 sway Aq 103008

860°0 8L0°0- By BU 220°0- s10adse £q 103095

¥S1°0 LET'O- ru Bu 1€0°0- s)uopuodsal £q 10)00s

9LT'0 0£0°0 9T 8¢€0°0 9L0°0 swo

€0 100 TRAN Y vLO0 [AAA spadse

081°1 LLY'0 ¥06°0 £8S°0 91L() sjuopuodsal

S10°C P10 6L9’1 6520 0¢S0 uteyo jieol

§9¢°C 0LS0- Bu U $S0°0- 10)395 [Iejol

punog punog punog  punog s dunog

ddn  aamon sddn  samong

POYRIA 5,18 )2 du |, POYPA S, 001eMy)1a))8g

BIEP padusieq wouj s)uduodsod 3dueLIBA Jo SHBWYISI YAQNY U0 S[BAID)U DUIPYUOD %, (6 PIPIS-OM |, :G°¢ J|qe L,




toL'0 tCL'0 8SL0 16L°0  STLO  8SL°0 viLo 8v9°0 189°0 VILO 8490 1890 itoua
[L90  9¢S°0 €090 9990 0bS0 €090 BLSO0  TSKO SIS0 BLS'O0  TSP'O SIS0 siwadse Aq
syapuodsas £q uteyd
IE1°0 9900 8600 tCl’'0 vL00 8600 8S0°0 6000 be0'0 8S0°0 6000 00 suan £q
siuapuodsai £q 10)09s
¥S00 150°0-  T00'0 ¢s00  ov0'0- TO00 901°0 9000 9500 901'0 9000 9500 swadse Aq
sjuapuodsai £q 10j00s
w10 TE10 7910 £61°0 €10 2910 S61°0  vElo 910 S61°0  ¥EI'0 910 wonkq sjuapuodsas
8IE0  o6L1'0 6bT0 weo  SSI'0 6bT0 I18€°0  v61'0  L8TO 188°0 ¥61'0 8870 swadse £q sjuopuodsas
0S0°0 L1000  ££0°0 8V00 8100 €£00 P00 PIO0 6200 P00 P10 6200  swoy Aq ueyo
8S1'0 200 1600 LSI'0  STO0 1600 SSI'0 ¥T0'0 6800 SS1'0 ¥200 680°0  siwadse Aq ureyo
[A4A 6160 0L0'1 81T'1 £26'0  0L0'] org’! S10°1 £91°1 OIE’l  S10°1  €91'1  swoapuodsas £q ureyo
ov0'0  v00'0- 8100 se00 100°'0 8100 L200 9000~ 1100 LTO0  9000- 1100 swan Aq J0yoas
0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 swadse £q topoas
Icro  ziro- 000 Y000 ¥00'0 +000 0000 0000 0000 0000 0000 0000 swapuodsar £q Joyoos
8S1°0  8000- SLOO 8SI°0  800°0- SLOO 651'0 9000~ 9L00 6S1I'0 9000~ 9,00 swoy
¢es’0  €81'0- sLIo Lo LST'0- €€1°0 S$9°0  €1T0-  9I1T0 ¢SY'0 8TI'0- 7910  swodse
6El’l 9190 8L8°0 S9I°1 6850 LL8O L66'0  61'0  80L0 ¥66'0 81¥'0 90,0 swapuodsos
S10°1 £S00  +ESO 1060  860°0 00S°0 8160  6£00 8LbO ¢S8°0 0500 ISP'0  uleyo jigjas
0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 000°0 __ 000°0  10199s [1e)as
punog punog. 72 punog punog ¢° punog punoyg ;° punog punog ¢° 93anog
nRddn  Jomorg Jddn  aamorg nddn  smog tddn  samorg
TWHY ‘TN "TNHY T

¥)ep podueequ)

B)Ep paduejeg

padusieq wo.y sjuduedwo) dusLIEA Jo so)ewy)sY POOYIPHI'] winwXE A uo sjeAsd)uf RduIpyU))

ejep padugjequy) pue

%06 PIPIS-OM[, :9°¢ ajqe §,




94

Bibliography
Blischke, W.R. (1968), “Variances of Moment Estimators of Variance Components in the
Unbalanced R-way Classification,” Biometrics, 24, 527-540.
Brennan, Robert (1983), Elements of Generalizability Theory. Iowa City, lowa: ACT

Publications.

Burdick, Richard K and Franklin A. Graybill (1992), Confidence Intervals on Variance

Components. New York: Marcel Dekker.
Cronbach, Lee J., Goldine C. Gleser, Harinder Nanda, and Nageswari Rajaratnam (1972)

The Dependability of Behavioral Measurements: Theory of Generalizability for

Scores and Profiles. New York: John Wiley & Sons.

Finn, Adam and Ujwal Kayandé (1997), “Reliability Assessment and Optimization of

Marketing Measurement,” Journal of Marketing Research, 34 (2), 262-275.

Graybill, F.A. (1954), “On Quadratic Estimates of Variance Components,” Annals of
Mathematical Statistics, 25, 367-372.

and C.M. Wang (1980), “Confidence Intervals on Nonnegative Linear

Combinations of Variances,” Journal of American Statistical Association, 75,

8869-873.
and R.A. Hultquist (1961), “Theorems Concemning Eisenhart’s Model I1,”
Annals of Mathematical Statistics, 32, 261-269.

and A.W. Wortham (1956), “A Note on Uniformly Best Unbiased

Estimators of Variance Components,” Journal of American Statistical

Association, 51, 261-268.
Hartley, H.O. and J. N. K. Rao (1967), “Maximum Likelihood Estimation for Mixed
Analysis of Variance,” Biometrika, 54, 93-108.
» J. N. K. Rao, and L. Lamotte (1978), “A Simple Synthesis-Based Method

of Variance Component Estimation,” Biometrics, 34, 233-244.




95

Khuri, A.I. and Hardeo Sahai (1 985), “Variance Components Analysis: A Selective

Literature Survey,” International Statistical Review, 53, 3, 279-300.

LaMotte, L.R. (1970), “A Class of Estimators of Variance Components,” Technical
Report 10, Department of Statistics, University of Kentucky, Lexington,
Kentucky.

(1971), “Locally Best Quadratic Estimators of Variance Components,”
Technical Report 22, Department of Statistics, University of Kentucky,
Lexington, Kentucky.

(1972), “Notes on the Covariance Matrix of a Random, Nested ANOVA
Model,” Annals of Mathematical Statistics, 43, 659-662..

Parasuraman, A., Valarie A. Zeithaml, and Leonard L. Berry (1988), “SERVQUAL: A
Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality,”

Journal of Retailing, 64 (Spring), 12-40.

Patterson, H.D. and R. Thompson (1971), “Recovery of Inter-Block Information when
Block Sizes are Unequal,” Biometrika, 58, 545-554.

Paulson, E. (1942), “An Approximate Normalization of the Analysis of Variance
Distribution,” Annals of Mathematical Statistics, 13, 233-235.

Rao, C.R. (1970), “Estimation of Heteroscedastic Variance in Linear Models,” Joumnal of

American Statistical Association, 65, 161-172.

(1971a), “Estimation of Variance and Covariance Components - MINQUE

Theory,” Journal of Multivariate Analysis, 1, 257-275.

(1971b), “Minimum Variance Quadratic Unbiased Estimation of Variance

Components,” Journal of Multivariate Analysis, 1, 445-456..

(1972), “Estimation of Variance and Covariance Components in Linear

Models,” Journal of American Statistical Association, 67, 112-115.

(1973), Linear Statistical Inference and its Applications, 2™ ed., John Wiley

and Sons: New York.




96

Satterthwaite, F.E. (1941), “Synthesis of Variance,” Psychometrika, 6, 309-316.

(1946), “An Approximate Distribution of Estimates of Variance

Components,” Biometrics Bulletin, Vol. 2, 110-114.

Schroeder, Marsha L. and A. Ralph Hakstian (1990), “Inferential Procedures for
Multifaceted Coefficients of Generalizability,” Psychometrika, 55, 3, 429-447.

Searle, Shayle R. (1987), Linear Models for Unbalanced Data. New York: John Wiley

and Sons.

, George Casella, and Charles E. McCulloch (1992), Variance Components.

New York: John Wiley and Sons.
Shavelson, Richard J. and Noreen M. Webb (1981), “Generalizability Theory: 1973-
1980, British Journal of Mathematical and Statistical Psychology, 34

(November), 133-166.
Ting, Naitee, Richard K. Burdick, Franklin A. Graybill, S. Jeyaratnam, and Tai-Fang C.
Lu (1990), “Confidence Intervals on Linear Combinations of Vanance

Components that are Unrestricted in Sign,” Journal of Statistical Computation and

Simulation, 35, 135-143.
Welch, B.L. (1956), “On Linear Combinations of Several Variances,” Journal of

American Statistical Association, 51, 132-148.

Wonnacott, T. (1987), “Confidence Intervals or Hypothesis Tests?,” Journal of Applied

Statistics, 14, 195-201.




97

Chapter 4
Design and Reliability Assessment of Measurement of Multidimensional Marketing
Constructs

The assessment of reliability of information gathered from marketing surveys is a
necessary activity because of the potential impact of measurement error on the
conclusions derived from the information. In the marketing literature, researchers have
commonly used Cronbach’s alpha (Peter 1979) as the measure of reliability. Rentz (1987,
1988) presented reasons, based on generalizability theory (Cronbach et al. 1972), for
discontinuing the use of Cronbach’s alpha as a measure of reliability. More recently, Finn
and Kayandé (1997a) demonstrated the usefulness of the generalizability theory approach
for assessing generalizability (a general form of reliability) and optimizing future studies
by taking into account the purpose of measurement.

In Finn and Kayandé’s (1997a) paper, the discussion of the measurement of
marketing objects was implicitly restricted to single unidimensional constructs. Any
discussion of multiple dimensions of a construct was restricted to an assumption that the
dimensions are exchangeable with each other. However, neither do constructs necessarily
have to be unidimensional nor are the dimensions necessarily exchangeable with each
other; indeed many of the important characteristics and constructs measured in marketing
are multidimensional. Finn and Kayandé (1997b) find that about 65% of all scales
developed to measure marketing constructs are multidimensional. In light of this finding,
two important questions arise. The first question that needs to be answered is whether the
reliability assessment methods are different for multidimensional constructs than those
for unidimensional constructs. Second, in the context of Finn and Kayandé’s (1997a)
methodology for designing optimal future measurement, does the multidimensionality of
measured constructs have an impact on optimal design of future measurement?

In this paper, we argue that the answers to these questions are very much

dependent on the way in which the multidimensional information is used by managers
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and researchers. The most important distinction is in terms of deciding whether to analyze
data separately for each dimension, thus treating the dimensions as distinct
unidimensional constructs, or combine the dimensions into a composite or an index, with
weights for each dimension determined by some specific criterion. The distinction is
explained best with an example. Consider the problem of assessing the performance of
managers of restaurants in a multi-restaurant chain such McDonald’s or Wendy’s, for
determining a performance-based incentive. Performance may be determined on several
dimensions such as the quality of service provided by the restaurant and quality of food
(products) served by the restaurant, as evaluated by customers or mystery shoppers (Finn
and Kayandé 1997c). The reliability of the measurement of performance on these
dimensions can be assessed separately for each dimension. The most efficient designs for
measuring each dimension separately can be generated by the methods suggested by Finn
and Kayandé (1997a). A separate assessment and optimization on each dimension can
help provide reliable information on each dimension, which can then be used in a
diagnostic sense to improve performance on each dimension. However, most firms
provide incentives based on some combination of performance scores on these multiple
dimensions. Clearly, both dimensions play an important role in determining the
attractiveness of a restaurant for its customers, and therefore sales and market share. An
easy method to combine the scores from each dimension is to create a linear combination
with equal weights, thereby suggesting that both dimensions are important, but can be
traded-off with each other. However, would the dimensions be given equal weight even
though it is known that the objects of measurement, in this case restaurants, do not differ
much on one of the dimensions, say product quality? Or more importantly, would the
weights be equal even if it is known that the product quality and service quality have been
measured with differential reliabilities? F inally, would the ideal weights still be equal if,
at the same reliability level, the cost of measurement with unequal weights is lower than

that with equal weights?
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The preceding discussion is indicative of the different ways in which a firm may
wish to use the information on a multidimensional construct such as quality or
performance. It is also indicative of the fact that a composite score, a combination of
scores on multiple dimensions, results in a gain in parsimony at the potential cost of
reliable diagnostic information. The gain in parsimony may also result in a gain in terms
of lower costs of data collection. The discussion also suggests that a composite score can
be constructed in different ways, depending on the choice of weights. The weights in a
composite can be pre-determined (equal weights or gain/difference scores), or the weights
may be determined using some criterion such as the variation of the object of
measurement on each dimension, reliability of the measurement of each dimension,
and/or cost of measurement on each dimension.

In this paper, we focus on the methods to determine the reliability of composite
scores and optimization of measurement in situation which require composite scores. We
will also provide a comparison to the case when composites are not formed and
dimensions are treated as distinct constructs, thus illustrating the costs of obtaining
reliable diagnostic information. However, the focus will be on cases when a firm needs to
combine the information from different dimensions. Some examples of such cases will be
provided, while the case of retail quality will be used as an empirical illustration.

In the next section, we review the method currently used for assessing reliability
of the composite scores formed from multidimensional measures. Then, we present
examples of cases where there might arise a need for forming composite scores on
multiple dimensions. Then we present a methodology to assess the generalizability of
composite scores, using equal or unequal weights. We also suggest a method to
determine the weights that lead to maximal generalizabilty for the composite score. Next,
we incorporate this method into the optimization framework developed by Finn and
Kayandé (1997a) for unidimensional constructs. We then provide an empirical illustration

of the methodological framework, using retail store quality as the illustrative context.
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Finally, we discuss the implications of the framework, summarize the contribution of the
paper, and suggest avenues for future research.
4.1 Current Methods to Assess Reliability of Multidimensional Constructs

Classical reliability theory methods typically recommend the evaluation of the
reliability of multidimensional measurement by first assessing the classical reliability
coefficient (typically Cronbach’s alpha) for each dimension separately, and then using
Nunnally’s (1978) formula for the reliability of a linear combination (for examples of this
procedure, see Parasuraman, Berry, and Zeitham! 1988 and Bienstock, Mentzer, Bird
1997). The formula for the reliability of a difference score (Peter, Churchill, and Brown
1993) is derived using Nunnally’s formula. Nunnally’s method has two important
limitations. First, it follows classical reliability theory and therefore all limitations of that
theory, detailed in Finn and Kayandé ( 1997a), hold for multidimensional measurement.
The most important of these limitations is the continued focus on scaling of respondents,
most often not the purpose of measurement. Second, Nunnally’s (1978) formula ignores
the possibility of covariances across dimensions. Although a multivariate analogue of
classical reliability was proposed earlier by Bock (1963, 1966) and Conger and Lipshitz
(1974), their methods have limited utility because of their continued focus on single-
faceted measurement.

Another literature on reliability comes from the factor analysis tradition.
Cronbach’s alpha requires the items to be strictly parallel or tau-equivalent. Such a strong
requirement encouraged the development of Coefficient theta (Armor 1974) and
Coefficient omega (Heise and Bohmstedt 1970), which are estimated using the
eigenvalues and communalities from a factor analysis model. Coefficient theta is derived
from the principal components model, whereas coefficient omega 1s derived from the
common factor analysis model. Both models, and therefore measures of reliability, focus
on scaling of respondents and single-faceted measurement. Therefore, from our multi-

faceted perspective, they also suffer from similar limitations as Cronbach’s alpha.
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4.2 Composite Scores in Marketing

Multidimensional information can be used in different ways to suit the managerial
purposes of measurement. The multiple dimensions could be treated as separate
dimensions and the reliability of scaling the object of measurement could be assessed
separately for each dimension. This usage assumes that there is no need to quantitatively
combine the information provided by each dimension into a composite. Some managerial
purposes might require the information from each dimension to be combined in some
way. This combination can be achieved by appropriately weighting each dimension. The
weights may be equal, pre-determined (in case of a difference score), or may depend on
some criterion such as the estimated reliability for each dimension. We now present three
illustrative examples of cases in which a need to form composite scores may arise.

Consider the measurement of the quality of a retail outlet. This is a general
version of example of the restaurant manager’s performance evaluation. The quality of a
retail outlet can be represented by the quality of both the service provided by and the
products sold at the outlet. Thus, service quality and product quality constitute two
distinct dimensions of retail store quality. A consumer’s evaluation of the quality of a
retail store will be dependent on the performance of the retailer on both dimensions.
These dimensions of service quality and product quality are not necessarily highly
correlated across all retail outlets. A retailer that carries only high quality products might
simultaneously provide poor service quality, and vice versa. Therefore, the consumer’s
choice of a retail outlet might also depend on a trade-off between these two “attributes” or
dimensions of a retail outlet.
It might be of managerial interest to measure the quality on both dimensions to

get insights into how their outlets are performing on each dimension. In such cases, a
comparison of retail outlets on their quality must focus on each dimension separately. A
manager of a retail chain might also be interested in distinguishing berween overall best

and worst retail outlets; this requires a simultaneous consideration of both dimensions.




Additionally, the manager might be interested in finding out which dimension most
impacts this discrimination between retail outlets. In a study of retail service quality,
Dabholkar et al. (1996) argue that practitioners are often interested in overall service
quality as well as dimensions of service quality. They suggest that using multiple items to
develop a measure of overall service quality might be better than a single-itern overall
measure. Thus, the question becomes, “How can the information from multiple
dimensions be best combined?” The quality of the retail outlet could be represented by a
simple average of the scores obtained for the two dimensions of qualities. This would be
a simple, equally weighted average of the scores on each dimension. However, the firm
might also be interested in creating a weighted average that discriminates best between
the retail outlets. In such a situation, it is essential to develop a method to estimate the
weights that will lead to optimal discrimination between retail outlets.

The evaluation of the performance of salespeople in a firm is a second example of
multidimensional measurement. It is well-known that objective measures of sales
performance, such as dollar or unit sales, account for only a small fraction (5% to 8%) of
the variance in the managerial evaluations of salesperson performance (Weitz 1978,
Behrman and Perreault 1982). MacKenzie, Podsakoff, and Fetter ( 1993) show that the
“‘organizational citizenship behavior” exhibited by salespeople has an impact on the
managerial evaluations of salesperson performance. The organizational citizenship
behavior is a construct composed of multiple dimensions such as altruism, civic virtues,
sportsmanship, and conscientiousness. The authors show that these dimensions impact
the managerial evaluation of performance of salespeople. Although descriptive in nature,
the study’s findings can be used by a sales manager to devise a method to evaluate
salespeople on these different dimensions. The measurement procedure can be designed
optimally within each dimension for developing scales of adequate reliability. In addition,
the manager might wish to construct a composite of the dimensions, to represent overall

citizenship behavior. The composite can be equally weighted, or constructed in such a
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manner as to provide the most generalizable scaling of salespeople. For a company with a
large salesforce, the number of variables to be used to determine salesperson performance
may have to be restricted and therefore, multiple dimensions may need to be collapsed
into a single composite, without any loss of generalizability of information and with
potential benefits of lower costs of measurement.

Consider a third example of a bank that is attempting to assess the
creditworthiness of its customers who apply for bank loan. The creditworthiness of an
individual is a multidimensional construct; however, the assessment made by the bank
should be an overall composite score, in order to ensure similar standards across all
customers. Such a composite can be formed by weighting the different dimensions
according to the importance of each dimension to the bank. Alternatively, the weights
could be determined in such a way that it maximizes the generalizability of the composite
scores. Note that generalizability is an estimate of the intra-class correlation coefficient
that measures the extent to which observed scores are correlated with true scores (or
universe scores, as they are called in generalizability theory terminology).

A composite score, whether formed by equal or unequal weighting, has to be
evaluated on its reliability, because an unreliable composite score will have the same
negative impact as an unreliable individual dimension score. But can the reliability of a
composite score be evaluated in a fashion similar to that of an individual dimension? In
the next section, we discuss a method to assess the reliability of a composite score formed
from a multidimensional construct.

4.3 Assessment of Generalizability of a Composite Score

The generalizability coefficient for each dimension can be separately assessed
using methods presented in Finn and Kayandé (1997a). Thus, all methods presented in
their paper can be applied to a multidimensional construct, assumning that there is no need
to form a composite score from the individual dimensions. The possibility that the

decision maker might be interested in a composite of multiple dimensions calls for an




104

assessment of the generalizability of the measurement of the composite. The preceding
section presented some examples of situation where managers might be interested in
composite scores. In a retailing context, a composite quality score for a retail outlet can
allow a researcher to examine the choices of customers, taking into account the trade-off
between service and product quality. This composite may provide a better indication of
an overall evaluation of the quality of the grocery chain than either dimension
independently, because of the trade-offs inherent in consumer choice.
4.3.1 Multivariate Random Effects Model

The univariate generalizability coefficient, given in Finn and Kayandé (1997a), is
derived from a univariate random effects model. The univariate random effects model is
extended here to the multivariate case for the multi-dimensional measurement context.
We use the example of measurement of the quality of grocery chains, where the quality is
assumed to be two dimensional. Information is required by management on both the
service quality provided by grocery chains and the quality of products available at the
different grocery chains. We present only the two-dimensional extension of the univariate
model as an illustration, without any loss of generality. While this is the simplest case, it
can be easily extended to any number of dimensions. The multivariate random effects
model for the two-dimensional case can be represented as,
(4.1 i =M+ 0y + By + Yy + afy + ayy + BYuix + Exije

Xaix =My + 0y + By + Yu + afy; + ayy + By + €k

fori=1,2,3,..,G grocery chains,j=1,2, 3, ..., Rrespondents, k=1, 2, 3, ... , K
items, and N =G X R X K. y, and p, represent the overall means of service quality and
product quality. a,; and o, are the effects of grocery chain i on the two variables
respectively, B,; and B,; are the effects of respondent j on the two variables, and so on.

The random effects model conditions imply that,
_ 2 2 _ 2 _ 2
var(a,) -calIG , var(a,) —c“‘zlG , var(p3,) _GB,IR s oo, var(g)) = GsIIN , and
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R
var(g,) = o'; IN

2

and all effects within a dimension are independent of each other.

The covariance components for the effects are then given by,

cov(a,, a',) = taIG ,cov(B, By =t IR v o., COV(E, €)= Ty

B
This is equivalent to the assumption that cov(ay, ) = 1, for all i, but cov(a,;, a,,) =0
forall i#i’, and so on for every effect.
The multivariate variance components model for this two-dimensional fully crossed

three-factor design is then given by,

(4.2) 2X =Lq+Zp+Ey +Xop+Tgy +Xp, +5,

where ZX is a 2 X 2 (representing the 2 dimensions) variance-covariance matrix of
observations, Za is the 2 X 2 variance-covariance components matrix of the effects due

to grocery chains, ZB is the 2 X 2 variance-covariance components matrix of the effects

due to respondents, . . . , and Zs is the 2 X 2 variance-covariance components matrix of

the error term.
4.3.2 Multivariate Generalizability Coefficient

The univariate generalizability coefficient can now be extended to the multivariate
case by assuming that the multiple dimensions are to be used to form a composite score
for each retail outlet. The multivariate coefficient (Joe and Woodward 1973, Woodward

and Joe 1976) with grocery chains as the object of measurement is given by,
w2, w w2ow

W2 w+w [Zrelative error] w ) WX, w+w [Zaﬁ +Zay +Zs] w

(43) p=

where @' is a vector of weights to be used in constructing the composite score, and the
elements of the relative error variance-covariance components matrix have been
appropriately divided by the respective numbers of items and respondents. In the example
of grocery chains, this coefficient evaluates the generalizability of composite scores, with
appropriately chosen weights for service and product quality, for grocery chains.

4.3.4 Choice of weights
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The weights can be chosen on the basis of theory or, in the absence of theory, can
be equalized. Cronbach et al. (1972) suggest that composites scores can be formed for the
purposes of examining the generalizability of difference or gain scores, commonly used
in the assessment of student ability in educational psychology. Difference scores are
simply composites with 1 and -1 as the weights for each dimension. Similarly, difference
scores have been used prominently in work on service quality measurement by
Parasuraman and his colleagues (Parasuraman, Zeithaml, and Berry 1988; Parasuraman,
Berry and Zeithaml 1991). They use the difference between a respondent’s perceptions
and expectations to conceptualize service quality. Difference scores are commonly used
in other areas of marketing, as evidenced in the review by Peter, Churchill, and Brown
(1993). In all such cases, the weights are determined a priori.

An alternative view of Equation 4.3 suggests that it can be interpreted as an
expression in which the weights can be selected to maximize the generalizability
coefficient for any given design of interest for a subsequent decision study, as opposed to
being determined purely by theory. The variance-covariance components for both the
object of measurement and relative error are known, and therefore the weights can be
chosen to maximize the generalizability coefficient (Joe and Woodward 1973). Choosing
the weights to maximize the generalizability coefficient is equivalent to solving the

following eigenvalue problem:
(44) [[Zrelativc error +Zu ]-l Zu _ps] ws =0

In this eigenvalue problem representation, the vector of weights ®_ is an
. - - - -l
cigenvector corresponding to an eigenvalue p, of the matrix [Zm,a,,-,,cm + Za ] Zu .

Generally, an additional constraint used in solving the eigenvalue problem is that
®'e =1, thus normalizing the eigenvector @ to have length 1.
Equation 4.4 shows that the choice of the eigenvector corresponding to the largest

eigenvalue as the vector of weights @ will result in a composite of maximal
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generalizability for any given design. Thus, instead of choosing the number of levels of
sources of error in order to increase generalizability, the weights are chosen to maximize
the generalizability of a composite score from any given design.

This representation also indicates the dimensions on which the object of
measurement is best measured with a research design. The dimension with hi ghest weight
is the dimension on which the object is best discriminated. In other words, the signal to
noise ratio is highest on that dimension. For example, in the two dimensional problem of
comparing the quality of grocery chains, an optimal weight of 0.95 for service quality
(which implies a weight of 0.31 for product quality, assuming a normalized eigenvector)
implies that the measurement procedure is better at discriminating between grocery
chains on service quality rather than the product quality of the chains. Note how this
method recognizes that any measurement procedure is prone to error, and dimensions are
weighted according to how well the dimension discriminates between the objects of
measurement as well as the qualitv of measurement of the variable (alternatively, the
extent to which it is measured with error).

4.3.5 Optimization of Multi-Dimensional Measurement Designs

The multivariate generalizability coefficient can be used in the procedure
suggested in Finn and Kayandé (1997a) to optimize the design of future decision studies.
Thus, we now include the cost of a measurement study as a factor to optimize the
decision study. Following Finn and Kayandé (1997a), cost C of a decision study can be
represented as,

(4.5) C=fce C, N, nyer)

where c, is the fixed cost of the survey instrument, C is a vector with elements
representing the cost of an observation on each facet, N is a vector with elements n,, n,,
.-l Tépresenting the number of levels of F facets of generalization, and Ngyiect 1S the

number of levels of the object of measurement.
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The purpose of the optimization is to minimize the cost of the desi gn subject to
achieving a desired value g of the multivariate G-coefficient p given in Equation 4.4.
Given a choice of weights w, the denominator in Equation 4.4 is a decreasing function in
all F elements of N . Thus, the optimization problem can be formally stated as follows:

(4’6) Minimize C =_f(c09 E [} ﬁ * nobjecl.)

subject to,
1. p 2 g, the desired G-coefficient.

2. Eachelementof N 1.

3. Each element of N is an integer.

In addition to the choice of number of levels of the F facets of generalization, the
choice of weights can also be included in this formulation. Thus, the minimization of cost
is achieved by simultaneously choosing an optimal vector of weights for a composite
score and an optimal design for a decision study. This simultaneous optimization should
lead to a lower cost than a mere optimization using one of the two criteria.

4.3.6 Estimation of Variance-Covariance Components

Variance components can be estimated by several methods such as ANOVA,
MIVQUE(0), and maximum likelihood (Searle, Casella, McCulloch 1992). Covariance
components can be estimated by the same methods proposed for the estimation of
variance components. The problem, however, is that standard statistical packages do not
allow for estimation of covariance components. Also, the theory on estimating covariance
components for unbalanced data is relatively sparse. Because the theory is sparse on this
topic, we limit our focus to balanced data and designs. In balanced designs, the effects
with covariance will be those that are common across the two dimensions. For example,
both product quality and service quality of a single grocery chain is evaluated when
forming a composite score. Thus, there is a covariance component between the effects of

grocery chains on service quality and product quality. Similarly, the same respondents
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might have evaluated the grocery chains on both dimensions. In such cases, we find a
Symmetric variance-covariance components matrix. However. it is unlikely that same
items will be used to measure both dimensions. Typically, these dimensions are distinct
and, therefore, they are measured with different items. The expected covariance for items
across dimensions is then equal to zero. Therefore, the variance-covariance components
matrix for such facets as items has variance components in the diagonal and all off
diagonal elements are zero.

Searle, Casella, McCulloch (1992) provide an easy estimation method for
covariance components. They show that for simple balanced designs (balanced and small
number of factors) such as that of the grocery chain measurement, every covariance
component can be represented by,

= _1{ 2 2 2
“4.7) T, = cov(ay;, ay) = 5(6(1!*2 -crQll - cajj

2 . - . .
where G, represents the components of variance for the variable (X, + X,), which is

1+2

really a composite score. Further, they use general results from Searle and Rounsaville

(1974) to show that,

4.8) : =l(az iy -al]
a2\ %, o a,

We use this general methodology for all covariance components that are estimated
in the empirical study. More complex measurement problems, specially with unbalanced
data, might not be adequately served by using this approximation. In such cases, it might
be necessary to use maximum likelihood methods, which are beyond the scope of this
paper.

The estimated variance-covariance components matrices can be negative definite
because the methodology used to estimate them does not specifically preclude this
possibility. There are two options to resolve this empirical possibility, which theoretically

should not occur. First, Woodward and Joe (1976) and Webb and Shavelson (198 1)
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suggest that the researcher could simply set all the elements of the negative definite
matrix to zero, thus eliminating the matrix from all calculations. However, this results in
the elimination of information that can and should be used. In particularly troubling
cases, it can mean few results, because of the possibility of having the variance-
covariance components matrix associated with the object of measurement set to zero. The
second possibility is to reconstruct the matrix with only the positive eigenvalues and
associated eigenvectors. This can be viewed as the multivariate equivalent of setting a
negative estimate of a variance component to zero (Terry Elrod 1996, personal
communication). Thus, this approach leads to less loss of information than summarily
setting the whole matrix to zero, and is to be generally preferred.
4.4 Empirical Illustration

The framework is illustrated with an application to the measurement of the quality
of retail chains. Retail quality was chosen as the illustrative context because of the
importance given by the marketing literature in recent years to the measurement of the
quality of service and products. However, with the exception of Dabholkar et al. (1996),
the quality of products and the quality of services have been treated independently, with
any single study only concerning itself with one or the other. However, it should be
obvious that the quality of a retail outlet is determined by both quality of products and
quality of service provided. Thus, it makes sense to simultaneously consider both
dimensions of retail quality. Our work differs from Dabholkar et al.’s study in terms of
the primary focus and the object of measurement. Our primary focus is to illustrate a
methodology whereas their focus was on assessing a model of retail service quality,
which included the physical product aspect also. Second, the object of measurement in
their study was always the respondent. F ollowing Finn and Kayandé’s (1997a)
arguments, we suggest that the usefulness of a model that treats only the respondents as

object of measurement is limited at best and misleading at worst.
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Our study design included three randomly chosen dimension of SERVQUAL
(Parasuraman, Berry, and Zeitham] 1991), which were combined to form a single
dimension of service quality, and one additional dimension of product quality. The
variance-covariance components for service quality dimensions were averaged to
represent the single dimensions of quality of service provided by the retail chain. The
items used in the questionnaire are shown in Appendix 4.1. We illustrate the procedure
assuming that the quality of a retail outlet is represented by the two dimensions of service
quality and product quality.

The four sources of variability, or facets, included in the multivariate G-study
were, retail sectors (or type of retailer), retail chains, the items used to measure service
quality, and consumers who responded to the questionnaire. The G-study had consumers
evaluate the service quality and product quality provided by a total of nine retailers, three
chosen at random from amongst the well known chains in three retail sectors. The
specific chains were Eaton’s, Wal-Mart and Zeller’s from the department store sector,
Dairy Queen, Kentucky Fried Chicken and McDonald’s from the fast food sector, and
Safeway, Save-on-Food, and Superstore from the grocery store sector. Each chain was
evaluated on twelve items, nine items for the dimension of service quality and three items
for product quality. The nine items for measuring service quality were drawn randomly
from the SERVQUAL items representing three randomly chosen sub-dimensions of
service quality, namely tangibles, responsiveness, and empathy. We chose to collapse the
items around these three sub-dimensions into a single dimension for two reasons. First,
Finn and Kayandé (1997a) showed that the variance component associated with these
dimensions was negligible and therefore it is safe to assume that the dimensions are not
distinct, when the purpose is to scale objects of measurement such as retail chains.
Second, we chose two dimensions because of the resultant simplicity of exposition.

All other details of the data collection methodology, such as response rate and

sample selection method, for this study are given in Finn and Kayandé’s ( 1997a) paper.
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In addition, because of the difficulties encountered with estimation on unbalanced data
and because this study is illustrative only, we chose only those respondents who provided
complete data. The balanced data from 65 respondents accounted for 76% of the full
unbalanced data from 125 respondents.
4.5 Results

The variance-covariance components matrices for each random effect are
provided in Table 4.1. There are no covariance components for items and any effect
involving items because the items were not common across dimensions. On the other
hand, effects involving respondents (but not items) have covariance terms because the
same respondents responded to both product and service quality dimensions. An
additional note is about the negative-definite matrices for retail sectors and items. Both
matrices are negative-definite because of a negative variance component. Both matrices
play no part in the estimation of generalizability coefficients, and hence the negative

components have been truncated to zero.

Insert Table 4.1 about here

4.5.1 Univariate Results

Following Finn and Kayandé’s (1 997a) recommendations that the generalizability
coefficient for each object of measurement should be estimated separately, we estimated
the generalizability coefficients for the comparison of retail chains and respondents
respectively. The generalizability coefficients for comparing retail chains and respondents
are given at the bottom of Table 4.1 (these coefficients are estimated for single levels of
each facet of generalization).

The generalizability coefficients for the comparison of both retail chains and
respondents on service quality are higher than that for product quality. For the

comparison of retail chains, the result was due to the variance component associated with
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the interaction of items and chains being very small for service quality relative to the
same component for product quality. In substantive terms, the finding implies that the
scaling of chains did not depend on the different items measuring service quality whereas
the scaling of chains depended very much on the different items measuring product
quality. In other words, the service quality items had internal consistency (associated with
the chains as object of measurement), whereas product quality items did not have internal
consistency. For the comparison of respondents, although the variation in product quality
perceptions among respondents was greater than the variation in service quality
perceptions, the variation in service quality on each component of relative error variation
was smaller than the same variation in product quality. Therefore, the generalizability
coefficient for comparing respondents on service quality perceptions was greater than that
for comparing respondents on product quality perceptions.
4.5.2 Optimal Designs for Decision Studies

We use the optimization framework provided in Equation 4.6 to find optimal
designs to measure service quality and product quality for two different problems of
comparing retail chains and comparing respondents. The cost function used in the
optimization is given in Appendix 4.2. Optimal designs are derived for the univariate and
multivariate case.
4.5.2.1 Problem 1: Comparison of Retail Chains

We consider the problem of comparing five retail chains in any one retail sector
on the dimensions of service quality and product quality, and on a composite of the two
dimensions. The weights for the composite are either equal or determined using
Equations 4.4 and 4.6.

Table 4.2 provides the optimal designs in each case. The first design is for the
measurement of service quality only; to achieve a generalizability coefficient of 0.90, 38
respondents will be required to provide ratings on 2 items measuring service quality. The

cost of this decision study is $ 366. The second design illustrates the differences in
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design, depending on the dimension being measured. To achieve a generalizability
coefficient of 0.90 for measuring product quality, 79 respondents will have to respond to
9 items measuring product quality. The cost of this design is $ 1556, almost 4 times as

much as that for measuring service quality.

Insert Table 4.2 about here

It is obvious that it is less efficient to conduct two separate studies for measuring
service quality and product quality, when the same retail chains are being compared. The
same respondents can be used to measure both service quality and product quality. The
third design reflects this combination, where 79 respondents provide ratings on 1 item of
service quality and 9 items of product quality for a total cost of S 1685. The cost is
cheaper than the combined cost of conducting two studies. Note how the number of
service quality items reduced from 2 to 1, primarily because the increase in number of
respondents was compensated for by a decrease in number of items.

These three designs cover the cases when the purpose is to separately analyze the
information on each dimension for diagnostic purposes; thus, the designs provide
independently generalizable measures for each dimension. We now consider designs
which are optimal for composite scores. The first composite score considered here is the
equally weighted composite of the two dimensions. A generalizability coefficient of 0.90
is expected to be achieved when 62 respondents provide ratings on 1 item measuring
service quality and 3 items measuring product quality. The cost of such a decision study
is $758, about half of the cost . a study .hich is expected to obtain independently
generalizable scores for each dimension. The reduction in cost is substantial; however,
this reduction is accompanied by a reduced diagnostic ability. While this design helps
achieve a generalizable composite, it provides a measure for product quality that has a

generalizability coefficient of 0.805, not sufficient for applied decision-making (Nunnally
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1978). Thus, the diagnostic information provided by independently generalizable scores
on each dimension is traded-off with the parsimony in information and reduced cost of a
design to obtain generalizable composite scores.

The final design uses Equations 4.4 and 4.6 to derive an optimal design and
optimal weights for the composite score. As seen in Table 4.2, to achieve a
generalizability coefficient of 0.90 for the optimal composite, only 37 respondents are
required to rate 5 chains on 2 service quality items and 1 product quality item. The
weights are 0.998 for service quality and 0.057 for product quality. The weights imply
that the chains are better discriminated on service quality than product quality. The
reasons could be two-fold. The chains might truly differ more on service quality than on
product quality; this is a reflection of greater variability in service offerings and higher
standardization in the quality of products across retail chains. Secondly, the result might
also be due to the quality of the measures, and therefore the costs of improving the
measures. The univariate analysis suggested that the measurement of service quality was
of better quality than that of product quality. Thus, the weights are also indicative of the
quality of measures. Which of the two reasons is more dominant cannot be ascertained,
primarily because it is impossible to measure “true” service or product quality.
4.5.2.2 Problem 2: Comparison of Respondents

The issue of comparison of respondents on their service quality and product
quality perceptions arises in the context of segmentation. If the intent of a retail chain is
to develop segments of customers, then it is important for the chain to obtain
generalizable scores for comparing respondents on each dimension. The object of
measurement for this problem is respondents, and the facets of generalization are retail
sectors, retail chains, and items.

The optimal designs for this problem are in Table 4.3. The first case is a
comparison of service quality perceptions only. Because of the high variance component

associated with the interaction of respondents and chains, 42 chains are needed to obtain a
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generalizability coefficient of 0.90 for comparing service quality perceptions across
respondents. The number of items required are 5, leading to a total cost of $3510. The
requirements for product quality are even more stringent; respondents have to rate the
product quality of 47 chains from within each of 5 retail sectors on 6 different items. The
cost of this design is $ 22710. A design to achieve generalizable scores for both
dimensions requires respondents to rate the service quality of 42 chains on § service
quality items and product quality of 47 chains within each of 5 retail sectors on § product

quality items. The total cost is $ 26070.

Insert Table 4.3 about here

Table 4.3 also shows the optimal designs for an equally weighted composite and
an optimally weighted composite. The equally weighted composite is expected to have a
generalizability coefficient of 0.90 when respondents rate 39 retail chains from 5 retai]
sectors on 3 service quality items and 3 product quality items. The cost of such a design
is $ 18870, lower than the cost of the design to achieve independently generalizable
scores on each dimension. An even cheaper design is obtained when the composite is
weighted optimally. A generalizability coefficient of 0.90 is expected when respondents
rate 14 chains from 1 retail sector on 4 service quality and 4 product quality items. The
optimal composite has weights of 0.853 for service quality and -0.521 for product quality.
The cost of this design is $1942, substantially lower than any other design that measures
both service and product quality.

Note that the composite has a negative weight, which is difficult to interpret.
Moreover, the composite becomes very difficult to interpret as a meaningful construct.
We take the view that although such a composite may lead to a lower cost design, it is
difficult to interpret and therefore should not be used. Such a view is consistent with the

opinion expressed elsewhere about composites with negative weights (Peter, Churchill,
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and Brown 1993). We also view the negative weight as an indication that the comparison
of the levels of the object of measurement, in this case respondents, will be better if one
of the variables is left out of the composite. Thus, it essentially implies that the product
quality, as measured by this procedure, does not help discriminate between respondents.
An indication of this is provided by the optimal composite when we restricted the weights
to be non-negative. The last design in Table 4.3 provides the result that the optimal
composite should have a weight of | for service quality and 0 for product quality. The
number of items was restricted to be positive, and therefore the number of product quality
items is 1; the cost of this design reflects this additional item. Otherwise, the design and
cost is identical to the first design for measuring service quality only. However, we would
like to emphasize that the fact that a dimension such as product quality is given a weight
of zero does not imply that it should be ignored. It simply implies that there are few
differences across respondents on product quality perceptions.

An alternative approach to interpret negative weights is to examine the conditions
under which a composite with negative weights will be more generalizable than a
composite with positive weights. An investigation of this perspective may also shed some
light on when the reliability of a difference score can be expected to be greater than the
reliability of a simple average score across dimensions. To conduct a preliminary
investigation of this issue, we attempted to find the conditions that lead to the reliability
of difference score being greater than the reliability of a “sum” score (an average score).
The investigation revealed that the conditions depend on the sign of the covariance
components associated with the object of measurement and relative error. Basically, there
are two distinct situations, outlined next.

Situation 1 occurs when the covariance components for the object of measurement
and the relative error are both positive or when the object covariance is negative and error
covariance is positive. Then the reliability of a difference score is greater than the

reliability of sum score when,
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4.9) O1, object 92, object S cov(l, 2)object
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O1. relative error T 2, relative error cov(l, 2)relative error

where &7 ..., represents the variance component for the i* dimension associated with the

object of measurement and cov(l, 2)qbiec: TEPreESents the covariance component (between
dimensions 1 and 2) associated with the object of measurement. Similar interpretations
can be made for the relative error variance-covariance components in Equation 4.9.

Situation 2 occurs when both covariances are negative, or when the object
covariance is positive but the error covariance is negative. In this situation, the condition
in Equation 4.9 is reversed, for the reliability of a difference composite to be greater than
the reliability of a sum composite. To interpret this finding, we set the variance
components for both dimensions for both the object and relative error to be equal to each
other. Then, for both situations, if the covariance component associated with the relative
error is greater than the covariance component associated with the object of measurement,
then the reliability of a difference score will be greater than the reliability of a sum score.
This preliminary investigation has suggested the algebraic conditions that may lead to a
difference composite being more reliable than a sum composite. More work is required
on the substantive interpretation of this finding, specially because of the widespread
prevalence of difference score composites in the marketing literature.
4.6 Discussion and Conclusions

The empirical illustration on retail quality was intended to demonstrate the
method in a context that might be intuitively appealing. The resultant designs from
problem 1, comparison of retail chains, shows that there are different ways to use the
information from the measurement of a multidimensional construct such as retail quality.
If the purpose is to obtain generalizable scores of service quality only, then the design
would be inexpensive relative to a purpose of obtaining generalizable scores of product
quality. Obtaining independently generalizable scores for each dimension implies

selecting the higher number of levels for those facets that are common to both
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dimensions. In our illustration, respondents were a common facet across both dimensions;
thus, 79 respondents were chosen for the combined study, even though the comparison of
chains on service quality required only 38 respondents.

The optimal design for obtaining a generalizable equally weighted composite was
shown to cost about half of what it would cost to obtain independently generalizable
scores for each dimension. Thus, the trade-off between parsimony and diagnosticity was
demonstrated by this illustration. In addition, we demonstrated how optimal numbers of
levels can be selected for minimizing cost, while choosing the optimal weights for
maximizing generalizability. A higher weight for a dimension indicates a combination of
greater “true” differences on the dimensions across the object of measurement and/or
“better” quality of measurement on the dimensions for the specific object of
measurement.

There is a potential for a misleading managerial interpretation of the “optimal
weights™ as being indicative of the importances of the dimensions. Such a situation could
arise if the manager decided that a dimension is not important because of a low weight
produced by this analysis. This in turn could lead the manager to ignore the dimension,
perhaps at the cost of ignoring the potential to make changes on the dimension that might
lead to benefits such as higher profits. It should be made clear at this stage that we do not
recommend ignoring a dimension in case of a low weight; we emphasize that a low
weight implies either a situation of no differences across the levels of an object of
measurement and/or greater error in the measurement of the object.

At the outset, we set out to answer two important questions. F irst, we asked if the
reliability assessment methods for multidimensional constructs are any different from
those for unidimensional constructs. We can now say that the reliability assessment
method is not theoretically different. However, the method to assess reliability depends
on whether or not there is an interest in forming a composite. The focus of the paper has

been on composites, primarily because the formation of a composite score from



individual dimensions implies that the calculation of the generalizability coefficient
include the vector of weights used to form the composite. The second question we asked
was whether optimal designs for future decision studies depend on multidimensionality of
the construct. From the results obtained in the study of retail quality, we can now say that
the optimal design depends on two factors, both of which are related to the use of the
information obtained from a decision study. Is the interest in obtaining independently
generalizable scores for each dimension or is the interest in obtaining a generalizable
composite of all dimensions? Independently generalizable scores for each dimension
imply a more expensive design, although there are advantages of diagnosticity. A
generalizable composite implies a less expensive design, but at the potential cost of
unreliable diagnostic information. Thus, it is clearly a trade-off between reliability of the
diagnosticity of information, parsimony, and cost of design. Secondly, the weights given
to each dimension of a composite determine the optimal design. Thus, the composite can
be improved to reflect a better discrimination between the levels of the object of
measurement. Such a design is clearly the cheapest design in terms of monetary costs,
because there are trade-offs made in terms of obtaining much less reliable information on
each dimension and the loss of interpretability, as we saw in the case of the optimal
composite for the second problem of comparing respondent perceptions. A natural
application of this framework is the assessment of the generalizability of a composite
formed with certain weights determined by theory. It is entirely possible that the
composite has very poor generalizability; thus, weights determined by theory do not
necessarily lead to good empirical measures. The optimization framework can also
suggest ways to improve the design of a study that uses such a composite, so that the
composite is made more generalizable.

Among the limitations of the methodology are the possibility of negative definite
variance-covariance components matrices and the potentially difficult interpretation of

negative weights. Future research can also explore substantive interpretation of the




conditions that lead to negative weights. Preliminary investigation suggests some
conditions that lead to higher or lower multivariate generalizability coefficients, without
altering the univariate generalizability coefficients. A high covariance component
associated with the object of measurement, with low covariance components associated
with all effects that are part of the relative error leads to a higher multivariate
generalizability coefficient than for a situation with low covariance components for the
effect associated with the object and high covariance components for the effects
associated with the relative error. In addition, in the two dimensional case, the
multivariate generalizability coefficient for the composite will be higher than each
univariate generalizability coefficient if and only if the ratio of the object covariance
component and the sum of the relative error and object covariance components is higher
than each univariate generalizability coefficient. We call this investigation preliminary
because it is based on restrictive assumptions, and is limited to the two-dimensional case
explored here. For example, it assumes equivalence of the numbers of levels for each
facet of generalization across each dimension. This is not a necessary condition in an
actual decision study design.

To summarize, we presented a methodological framework to evaluate the
reliability of multi-dimensional measurement, commonly conducted in the marketing
literature and practice. In addition, we also presented an optimization method that extends
Finn and Kayandé’s (1997a) framework to multidimensional measurement. The
contribution of the article is to present different methods to assess reliability under
different uses of the information, and to show that the optimal measurement design

depend on the way in which the information is intended to be used.




Appendix 4.1
Directions: The following statements ask how you feel about the service and

products provided by some department store chains, grocery store chains, and fast-food
chains. Please indicate the extent of your agreement with each statement about each
chain. Circle a '10' if you very strongly agree, and circle a '0' if you very strongly
disagree. If your feelings lie between these two extremes, circle a number in between '10'
and '0' that best shows your level of agreement. There are no right or wrong answers- we
are interested in your views of the service provided by the chains.

The following statements are about Eaton’s department store chain.

1. Eaton’s stores are visually attractive.

2. Eaton’s employees appear neat and tidy.

3. Eaton’s promotional materials are visually appealing.

4. Eaton’s employees give you prompt service.

5. Eaton’s employees are always willing to help you.

6. Eaton’s employees are never too busy to respond to your requests.

7. Eaton’s employees give you personal attention.

8. Eaton’s employees have your best interests at heart.

9. Eaton’s employees understand your specific needs.

10. The products available at Eaton’s are of high quality.

11. Eaton’s has all the items I want to buy at a departmental store.

12. Eaton’s has a good selection of quality products.

Note: Each statement was accompanied by an 1 1-point scale anchored at the end-points
by the labels “Very Strongly Disagree” (= 0) and “Very Strongly Agree (= 10). The

intermediate scale points were not labeled. Also, the statements were not numbered.




Appendix 4.2

Cost Function used in the Optimization

Extending Finn and Kayandé’s (1997a) cost function to the multivariate case, cost C of a

multivariate survey design is given by,

C =Afc,, C s N s Nepaing) = Co+ clNr(max) tc (ni(sq) + ni(pq)) n.n, +c¢ (ni(sq) Nsgy + Mipg) Mrpgy) M1

where,

1.
2.
3.

10.
11

Cois the fixed cost of the study.

¢, is the unit cost of selecting and communicating with a respondent.

C, is the unit cost of an additional item i when designing and formatting the data
collection instrument.

¢, is the incremental cost of a lengthening of the study with an additional item on the
data collection cost for each respondent.

¢ =30, ¢, =85, ¢, = $10, ¢, = $0.20 for both problems 1 and 2.

N, is the number of respondents who respond to the service quality items, N, is the
number of service quality items.

Ny is the number of respondents who respond to the product quality items, n,,, is
the number of product quality items.

Ni(max) 18 the greater of n,,, and N, When both dimensions are being measured
simultaneously, every respondent responds to items on both dimensions. Thus, the set
of respondents is common across both dimensions. In addition, in calculations of cost
(for designs where both dimensions are measured simultaneously) in Tables 4.2 and
4.3, we replace n,, and ., with N, .

For any problem where the design is being optimized for one dimension only, all
terms that involve the other dimension are equal to zero.

n, is the number of retail chains, and 1, is the number of retail sectors.

For problem 1, n, is equal to § and n, is equal to 1. For problem 2, N,..,, is equal to
30.




Table 4.1: Estimated Variance-Covariance Components Matrices

Service Product
Source of Variation Quality Quality

Retail Sector  0.000* -0.008
-0.008 1.048

Retail Chain 0.623 0.395
0.395 0.457

Respondents 1.003 0.804
0.804 1.123

Items 0.076 0.000
0.000 0.000°

Sector X Respondent 0.027 0.211
0.211 0.186

Sector X Items 0.011 0.000
0.000 0.072

Chains X Respondents 1.698 0.898
0.898 1.970

Chain X Items 0.029 0.000
0.000 0.218

Respondents X Items 0.164 0.000
0.000 0.222

Sector X Respondents X Items 0.034 0.000
0.000 0.223

Error 0.681 0.000
0.000 1.094

Generalizability Coefficient for
Comparing Retail Chains 0.205 0.122

Generalizability Coefficient for
Comparing Respondents 0.278 0.233
‘Truncated to zero from -0.007
*Truncated to zero from -0.0003
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Chapter §
General Discussion and Conclusions

The central theme of this thesis is that the measurement of a characteristic of an
object is influenced by the conditions under which the characteristic is measured. Thus,
information gathered by a measurement procedure is dependent on the state of the object
at the time of measurement. Additionally, informational dependencies are created when
only a subset of conditions that affect the measurement of the object’s characteristic are
explicitly recognized in a measurement study. In the face of such potential informational
dependencies, the generalizability of the information gathered is restricted to the domain
of inquiry for that measurement study. The potential of informational dependencies exists
not only in the multi-item survey measurement procedures examined in this thesis, but
also across other procedures such as the analysis of scanner panel data or observational
methods. For example, any substantive conclusion about the effect of sales promotions on
a performance criterion, such as sales or market shares, has to take into account the
potential for the variation in the results across product categories. That such studies are
conducted across different product categories reflects the possibility of a variation in
results across categories. A meta-analysis of these results can then be used to determine if
such variation is systematic, and the magnitude of the systematic variation (Farley and
Lehmann 1986). A meta-analysis often allows the researcher to find interesting
informational dependencies that otherwise were not identified in the literature. Farley and
Lehmann (1986) imply then that a meta-analysis primarily investigates the empirical
generalizability of substantive research conclusions.

This thesis generalizes the study of generalizability by suggesting that such
questions can be asked a priori, rather than post-hoc as is the case with a meta-analysis. It
is not my argument that every study that is conducted must include all the conditions that
might affect the measurement. To suggest thus would clearly reflect a lack of research

experience. Research domains have to be limited because it is not possible to examine the
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variation due to every condition in the universe in a single study. However, it is certainly
possible to recognize not only the limitations of the domain of inquiry, but also the
potential methods to generalize the substantive results. Generalizability theory (Cronbach
et al. 1972) offers a powerful methodology to examine variation due to different
conditions of measurement.

Additionally, this thesis argues that it is of paramount interest for marketers to
recognize the purpose of measurement, whether a study has academic or managerial
purposes. High reliability when one facet is the object of measurement does not ensure
high reliability when other facets are the object of measurement. That the same data can
provide “good” information for one purpose and “poor” information for another purpose,
is unfortunately not recognized in the marketing literature. Generalizability theory ...
enables you to ask your questions better; what is most significant for you cannot be
supplied from the outside” (Cronbach et al. 1972, pg. 199, italics added). This thesis is a
demonstration of the theory within the domain of marketing measurement, and the ability
of the theory to improve the quality and efficiency of marketing measurement. To my
knowledge, it is the first complete application of the theory within marketing to a
substantive marketing measurement issue.

This thesis uses the previous arguments to suggest and demonstrate that the use of
classical test theory methods in marketing measurement evaluation is flawed to the extent
that, (1) the measurement is affected by different conditions under which the
characteristic is measured, (2) the measurement studies have purposes other than scaling
respondents, (3) future measurement studies can be efficiently designed on the basis of
past information, and (4) the characteristic being measured may in some cases be
multidimensional.

The first paper of the thesis provided a demonstration of the methodology to the
measurement of service quality, treating the dimensions of service quality as different

levels of a single factor. The service quality application illustrates a method of designing
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measurement instruments so that repeated measurement studies can be optimal in terms
of data collection requirements, psychometric standards, and the cost of measurement.
The optimization is primarily based on the identification of the object of measurement.
which is dependent on the purpose of measurement, and knowledge of the relative sizes
of the variance components. The paper also demonstrates a simple integer programming
optimization approach, where the cost of measurement is minimized subject to a
constraint of a pre-specified generalizability. This summary of the first paper suggests
that the primary contribution of the first paper is in demonstrating the methodology on
the measurement of a substantively important marketing issue, and the possibility of
designing efficient measurement studies.

The first paper also points to the importance of designing applied measurement
studies using both statistical principles and substantive insights. For example, the
possibility that a certain measurement task requires a large number of items could be
construed as a problem in traditional survey research because of fatigue and non-response
problems. However, in the generalizability theory formulation, the use of mystery
shoppers would overcome this problem. The ability to compare levels of an object with
an “eye” for detail might also be an argument to use mystery shoppers over traditional
survey respondents. Traditional survey respondents essentially report on their natural
experiences, which have sometimes been acquired several months before the survey
response. The responses from mystery shoppers are more current, because they respond
immediately after the experience. Thus, this provides an additional contribution of the
extant work.

The methodology flowing from generalizability theory is statistical in nature and
much more complex than the simple methods used in applying classical test theory
methods. This has led to a neglect of the theory in marketing as well as a continuing
dependence on classical theory methods. This thesis provides the first full application of

the theory in marketing, and as a result identifies complexities such as unbalanced data
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that do not normally occur in applications of generalizability theory in other disciplines
(e.g. education and psychology). Such complexities bring into play the need to recognize
the availability of different estimation methods, the focus of the second paper of the
thesis. The paper estimates confidence intervals for variance components, an issue
considered extremely important by the original proponents of generalizability theory, but
rarely investigated in the measurement application literature. The second paper of the
thesis showed that optimality of measurement designs depends on the different estimation
methods, but not in any systematic way. The paper also alerted researchers to the
possibility that the intervals on variance components were such that it is difficult to place
much confidence at the current time in the optimality of designs constructed using
methods suggested in the first paper of the thesis. This is so not because of the
inadequacies of the methodological framework from the first paper, but because of the
wide intervals on variance components estimated from a small number of levels of facets.
Thus, the paper clearly implies that future research is required on how to better apply the
framework developed in the first paper.

Finally, the thesis recognizes that an object’s characteristics can be
multidimensional. Salesperson performance measurement (Behrman and Perreault 1982,
Bush et al. 1990), salesperson job satisfaction (Churchill, Ford, and Walker 1974),
service quality (Parasuraman, Zeithaml, and Berry 1988), market orientation (Narver and
Slater 1990), emotional responses to advertisements (Holbrook and Batra 1987),
customer market power (Butaney and Wortzel 1988), organizational buying power (Kohli
1989), channel member satisfaction (Ruekert and Churchill 1984) are a few examples of
multidimensional characteristics that abound in marketing. The assessment of the
generalizability of multidimensional measurement requires a multivariate extension of
generalizability theory. The final paper of the thesis suggests the appropriate
methodology and provides a demonstration of the methodology on the measurement of

the quality of a retail outlet. Multivariate generalizability theory provides an additional
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insight of interest into multidimensional concepts. In the paper, I showed that it is
possible to determine optimal weights for the dimensions to form a composite score. The
composite score could be used to compare different levels of the object, or could be used
as an explanation for some related phenomenon. For the comparison of levels of the
object of measurement, the optimal weights represent the weighting of dimensions such
that the generalizability of such a comparison is maximal. Although there is high
possibility that an optimally weighted composite will better explain relationships with
other characteristics of the levels of the object, I have not investigated this interesting
possibility in this thesis.

As far as managerial contributions are concerned, the thesis demonstrates a
methodology to efficiently design measurement studies of managerial interest. The first
paper clearly demonstrates the importance of taking into account the management
problems underlying the need for the measurement of service quality. The claim made in
this thesis that the assessment of the “quality” of information is dependent on the
managerial purpose implies that the methodology is flexible enough to accommodate
diverse managerial purposes. The estimation methods, although highly statistical in
nature, have much to do with the dependability of the estimates of variance components.
The estimates of variance components are the key input to the optimization exercise and
thus their dependability has to be of prime interest to managers who are potential users of
this methodology. The methodological framework can be applied to several different
measurement problems, including efficient new product concept testing, the assessment
of customer service by mystery shopping, the assessment of quality of public transport,
and the assessment of quality of store image measurement. Other areas of potential
fruitful applications include conjoint analysis for new product assessments, assessment of

advertising effectiveness, and brand equity.
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Future research opportunities in this area of research are aplenty. Most of the
opportunities flow from the limitations of the work in this thesis, which I have outlined
below.

Negative variance estimates (or negative definite variance-covariance components
matrices) are a potential problem in most variance components models estimated with
methods that do not put constraints on parameter estimates. In such cases, Cronbach et al.
(1972) and Brennan (1983) have recommended setting the negative variance to zero.
They differ on the procedures to adjust the other variance components after setting a
negative variance estimate to zero. Cronbach et al. (1972) suggest that the other variance
components should not be adjusted in order to maintain unbiasedness of estimates.
Brennan (1983) suggests recalculating the variance estimates adjusting for the negative
variance estimates set to zero. In the second paper of the thesis, [ suggested the use of
maximum likelihood methods for preventing negative variance estimates, although this
results in biased estimates. Alternatively, if some distributional assumptions are made and
computational complexity is accepted, Bayesian procedures prevent the problem of
negative variance estimates (Brennan 1983). Bayesian variance components models are
now in use and several researchers in genetics have explored Bayesian methods to
estimate variance components. It is expected that Bayesian methods would be used for
estimation in the near future because “generalizability theory . . . is Bayesian in
everything but a formal sense” (Novick 1976).

Generalizability theory also assumes that variance components remain stable from
generalizability to decision studies. This assumption is critical for the optimization of
measurement to remain valid. We speculate that only major changes in a market will
cause instability in variance components. But it is also possible to verify the assumptions
made in the optimization exercise by reexamining the variance components in the applied

study.




136

An important assumption is made in this thesis with respect to the optimization.
The optimization assumes that there will be no missing data in the decision studies. This
strong assumption is likely to be violated often in most methods of data collection. One
way to relax this assumption when generating optimal designs might be to assume that
the distribution of missing cells across different facets in the generalizability study will
hold for the decision study, and then generate optimal designs taking it into account.
Thus, the number of levels of an individual facet will increase in proportion to the
expectation of missing data on that facet.

Statistical sampling is one way to generate optimal designs. Statistical design
issues, such as whether a factor(s) is crossed or nested, and fixed or random, also
determine the optimal design. Moreover, the efficiency of a measurement design will
depend on the form of data collection and the format of the stimulus material used in the
study if the layout of a questionnaire affects the variance components in a systematic
manner. For example, instead of putting all items for a chain in one block as in the layout
used for this thesis, the research study could have used a questionnaire with a block of
chains for each item. If respondents respond to the stimulus by first setting a mean for a
block and then distributing ratings around the mean, there could be predictable changes in
the variance components due to items and chains. If the purpose of measurement is to
differentiate between chains, the optimal format to be used may not be the same as if the
purpose is to differentiate between items. Thus, the layout of the questionnaire could be
used to make a scale more generalizable. Similarly, alternative data collection methods
will not only have different functional forms for the cost, they might be expected to
generate different variance components, resulting in quite different optimal measurement
designs. What remains to be explored is the extent to which such methods systematically
influence the generalizability of a scale.

The results from the second paper of the thesis imply that the optimality of

designs developed from point estimates of variance components may be questionable
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because of the width of the confidence intervals around the estimates. F urther research
should investigate the development of optimal designs using information on the
confidence intervals around the estimates of variance components. Thus, the optimization
conditions would be expanded to include an a priori restriction on width of the interval
around the generalizability coefficient. As a first step, a simulation should provide an idea

of the impact of this additional condition.
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Appendix I
Statistical Model Underlying Measurement in Classical Test Theory and
Generalizability Theory

Classical Test Theory: Underlying Statistical Model and the Reliability Coefficient

Assuming individuals are measured on some characteristic X, the random variable
X with mean p, and variance o°,, can be represented as the sum of a true score random
variable T with mean y, and variance o’, and error score random variable E with mean y,
and variance ¢°,. Further, it can be shown that H. is equal to zero (Traub 1994, pg- 31).
This representation is derived from the fundamental equation of classical test theory
(which is a tautology and therefore, is not falsifiable),
(A1) X,=T,+e,
where, x, is the p™ individual’s observed score, 1, is p* individual’s true score, and, e, is
the error in measuring the p* individual’s true score.

Over more than one individual, Equation A1 can be written as,
(A2) X=T+E

Given the definition of variances, and the independence of T and E (Traub 1994,
pg. 32), i.e., the covariance between T and E is zero, the variance of the observed score X
can be written as,
(A3) ¢’ =o'+,
The reliability coefficient is defined as the intraclass correlation coefficient and is
indicative of the ability of the measure to *. . . consistently rank-order and maintain the
distance between subjects (upto a linear transformation)” (Peter 1979). It is expressed as

the proportion of observed variance that is due to the true score variance,
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(A4)

O
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If the measure is capable of discriminating between individuals, then the
reliability will be relatively high. If all individuals obtain similar scores, then the true
score variance will be zero and therefore, reliability will be zero. Reliability can be
assessed in many different ways including test-retest reliability, internal consistency, and
alternative forms reliability; however, the fundamental basis for the estimation of
reliability is Equation A4. The most popular estimate of reliability (internal consistency)
in the marketing literature is coefficient a or Cronbach’s a (Cronbach 1951), which is

expressed as,

(AS) o= 1=

where,

2. . . ..
G is the variance of each item i, i = 1,2,3,..n

0'{2 is the total variance of the n-item scale

As is obvious in Equation AS, this formula is strictly for multi-item scales. This
formula provides an estimate of the reliability coefficient, as defined in Equation A4,
only when the items are parallel (the items have equal means and variances). However,
such parallel tests/items are difficult to construct in most measurement contexts, in which
case coefficient a provides an estimate that is the lower bound of the reliability

coefficient.




A close examination of either Equation A4 or Equation AS shows that error is
treated as essentially undifferentiated in classical test theory. In Equation A4. error is
assumed to be inherently random. Equation A5, on the other hand, assumes that error in
measurement comes from the items not measuring identical constructs and therefore,
increasing the number of items decreases error to the extent that the additional items are
highly positively correlated. In either case, error originates from a single source and the
object of measurement is always the individual. The model can be extended to include
any object of measurement, however the assumption of single-faceted nature of error does
not change.

Generalizability Theory: Variance Components Models and Generalizability Coefficient

As opposed to the limited view of classical test theory, generalizability theory
(Cronbach et al. 1972) provides a multi-faceted view of measurement, where variation in
measurement can arise from multiple controllable sources. Following the Fisherian logic
of experimental design, Cronbach and his colleagues suggested expressing measurement
in terms of random effects models. Thus, the “error formerly seen as amorphous is now
attributed to multiple sources, and a suitable experiment can estimate how much variation
arises from each controllable source” (Cronbach et al. 1972). Cronbach, Rajaratnam, and
Gleser (1963) and Gleser, Cronbach, and Rajaratnam (1965) presented the theoretical
foundations of generalizability theory. Thereafier, several studies in educational
psychology have applied and extended generalizability theory. Prominent among the
reviews of the literature on generalizability theory are Brennan (1983) and Shavelson and
Webb (1981, 1991). The focus of this explanation is on the underlying statistical model,

which is not explained elsewhere in the thesis.



Consider a simple problem of the measurement of service quality provided by
grocery chains. Such a measurement problem arises when the management of a grocery
chain is interested in comparing its service quality to that of its competitors. A marketing
researcher will, in all probability, conduct a survey with multiple items (questions) that
ask multiple respondents to evaluate the service quality provided by a number of grocery
chains on a rating scale (ignoring, for the moment, the possibility that the items might be
representative of substantively different aspects of service quality). Classical test theory
methods will either assess the reliability of the multi-item scale for each individual
grocery chain (treating them as distinct) or treat grocery chains as contributing no
variance in the measure and therefore aggregate over all chains. However, familiar
experimental design principles suggest at least 3 different systematic factors in this
market research study, viz., grocery chains, respondents, and items. Now we proceed to
partition the variation in ratings into these and associated sources of variation.

An observed rating for any grocery chain (i) by any respondent (j) on any item (k)
is represented by Xii- The average rating for any grocery chain over all respondents and
all items is denoted by p,. This average rating is taken to represent a universe score for a
grocery chain because it is the expected value over all respondents and all questions in the
universe of respondents and questions. This representation is based on the assumption of
random sampling of items and respondents from the universe of items and respondents.
Similarly, the expected rating given by a respondent J over all grocery chains and all
items is p; and the expected rating on an item k over all respondents and grocery chains is
denoted by p,. Similarly, H; represents the average over all items, p,, represents the

average over all respondents, and H; represents the average over all grocery chains.
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Finally, pu denotes the grand mean over all grocery chains, items, and respondents. Note
that these values are not observable owing to the fact that they are population parameters.
An observed rating X, can be expressed in terms of these parameters. The rating

X given by respondent j to grocery chain i on item k can be partitioned as,

(A6) X = (grand mean)
+u-p (grocery chain effect)
- (respondent effect)
+u, - (item effect)
Rl TR TR TR T (chain by respondent effect)
aal Ll TR TR (chain by item effect)
Rl T TR TR (respondent by item effect)

T Kk — Ky — My — My +

B+ i+ — (residual effect)
where every effect s’ has a distribution with mean zero and variance o°,. All effects are
assumed to be independent of each other. The model can be succinctly written as the
random effects model,
(A7) Xo =u+o;+ Bi+ v+ af; + oy, + BY + &4
where a, B, y, etc. represent the random effects and ¢ represents the error term.
Thus the variation in the ratings X,;. can represented by,

2 _ .2 2 2,2 2 2 2
(A8) Ox =0q +0p +0y +04p +0gy +0p, +0¢

Equation A8 is the familiar variance components model (Searle, Casella, and

McCulloch 1992). The estimated variance components are representative of the expected
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variation in the population defined by the conditions observed in an experiment. All
levels of each factor are assumed to be randomly sampled from an infinite population.
The general model can be modified to include fixed effects and finite populations.
Generalizability Coefficient:

A research study is conducted for the purposes of theory development and/or
gathering information for decision making. Studies conducted for the latter purpose are
generally called applications or decision studies, whereas studies for the former purpose
are appropriately called theoretical or generalizability studies. A large number of
academic studies in marketing are conducted for the purpose ot theory development;
however, in recent years an increasingly large number of academic studies are being
conducted for the purposes of measurement scale development. Such measurement scales
are often recommended to practitioners for the purposes of marketing decision making.
The ability of a measurement scale to reliably scale the characteristics of an object of
measurement determines an important aspect of the quality of information that results
from using the measurement scale. Cooil and Rust (1994) suggest that an intraclass
correlation coefficient can be interpreted as an indicator of the loss expected from using
the information resulting from the use of a measurement procedure. Thus, an intraclass
correlation coefficient close to 1 indicates that the loss from using the measurement scale
can be expected to be very small, whereas a coefficient close to 0 indicates the loss can be
expected to be very large.

An intraclass correlation coefficient in the context of a variance components
model representation of a measurement procedure has been defined within

generalizability theory. The generalizability coefficient is analogous to and subsumes the
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reliability coefficient. Before giving an expression for the coefficient, it is Important to
discuss the basis for the formula. Of the several sources of variance in a measure, there
are some that constitute signals in the context of a specific application. For example, in
the example of service quality of grocery chains, the variation attributable to the service
quality provided by grocery chains might be of substantive interest to the decision maker.
The service quality of grocery chains is then the characteristic being observed, grocery
chains are the object of measurement, and different grocery chains constitute levels of the
object. Then, the signal would be of better “quality” if the variation attributable to
grocery chains is large relative to other sources of variance. The signal thus depends on
the purpose of measurement, i.e., the use to which the information from the measurement
will be put.

The error in the signal is of paramount interest in generalizability theory, for some
of the error is controllable. A variance component of significance associated with the
interaction of the object of measurement with any other source of variance implies that
the scaling of the levels of the object of measurement (or the signal) is dependent on that
source of variance. Thus, such measurement dependency implies that this variance
component will constitute error in the measurement of the object of measurement.
Another interpretation is that the scaling of the levels of an object of measurement should
generalize over a larger universe, and therefore these sources of error are substantively
defining the universe over which the information from the signal can be generalized. An
option is to remove the source that contributes error, quite clearly implying that the
universe of generalization becomes smaller. For example, if the service quality of grocery

chains were assessed by a single respondent, and making the reasonable assumiption that
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there will be heterogeneity among respondents in their evaluations, it will not be possible
to generalize the results from the single respondent to the universe of respondents. Thus,
although the signal-noise ratio might be quite high, the universe of generalization will be
highly limited and of little practical use.

Scaling grocery chains in terms of their service quality is an example of an
application of a measurement procedure that results in information for the purposes of
comparative decisions. In the context of the variance components model in Equation A8,
the error in measurement for comparative decisions can be defined in terms of the
variance components associated with the n-way interactions of grocery chains with
respondents and items. The error in measuring the characteristic of interest is the sum of
all variance components associated with the interaction of the object of measurement with
all other sources of variance accounted for in the study. This error is called relative error
variance in generalizability theory and is defined in the context of the grocery chain
example to be,

. 2 2
[0} [¢3
2
(A9) oo, . =—Y 4 5 £
relative error

n n n,
respondents items respondents items

where n is the number of respondents, and n  is the number of items.
respondents items

The division of each component by the number of levels of the facet reflects the
important property of a distribution of mean scores or effects that the variance of the
distribution is equal to the variance of the individual elements divided by the respective
sample sizes (Brennan 1983, Cronbach et al. 1972). The sample sizes are the number of

levels for each facet.
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These basic concepts allow for an expression of the generalizability coefficient

(Cronbach et al. 1972), given in Equation A10:

4

2 cuniverse score
(A10) Ep® = 5 R

. +0 .
universe score relative error

where cﬁmveme score 1S the variation in effects associated with any object of measurement

(analogue of the true score variance in classical test theory) and cfelmve error 1S the sum

of only those variance components that affect the scaling of the levels of the object of

measurement. The notation Ep2 is meant to show that a generalizability coefficient is
“approximately equal to the expected value . . . of the squared correlation between
observed scores and universe scores” (Brennan 1983, p. 17, emphasis mine). The
generalizability coefficient can be used in two important contexts. First, it can be used to
examine the reliability of the information gathered in a generalizability study, if the
information is intended to be used for decision making purposes. Second, it can be used
to determine a sampling scheme for future applications such that the reliability of the
information in the future is of a certain desired value. Thus, the generalizability

coefficient can be used to recommend efficient designs which result in high reliability.
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Appendix I1

STORES IN THE EDMONTON AREA

A SURVEY OF EDMONTON AREA RESIDENTS

Over recent vears numerous retail organizations have gone banirupt. Some critics have suggested half the
existing organizations will not be around in the year 2000. However, little is known about what people like
yourself think of the service provided by stores in the Edmonton area and how they are used. This survey is
designed to find out your opinjons about the service and products provided by grocery stores, deparment stores
and fast-food outlets in the Edmonton area. Please answer all of the following questions. if vou wish 0
comment op any question or to qualify vour answers, please use the margins or a separate sheet of paper. Your
comments will be read and taken into account.

Thank you for your help and participation in this research project.

Dr. Adam Finn, Project Director.

Department of Marketing & Economic Analysis Need further information?
Faculty of Business, University of Alberta Call 492-5369
Edmonton, Alberta T6G 2R6




Please indicate whether you agree or disagree with the following statements about stores in the Edmonton area.
by circling the appropriate aumber representing your level of agreement or disagreement.

Suongly Mildly  Nerther Agree  Mildly Strongly
Agree Agree Nor Disagree  Disagree Dusagree
2 [ am now paying much less for my groceries than [

did last vear. 1 2 3 4 s
b.  Department stores should provide a greater variety

of new services. 1 2 3 4 5
¢ Big grocery stores should be licensed to sell wine

and beer. 1 2 3 4 3
d Service quality is declining at Edmonton area fast-

food outlets. 1 2 3 4 5
¢.  Departunent stores have better goods now than a vear

ago. 1 2 3 4 3
£ Deparment stores are providing better service

quality in recent years. i 2 3 4 5
g  GST should be included in the sheif price, not added

when paying. 1 2 3 4 s
b You can get better bargains by buying larger

quantities or sizes. | 2 3 4 s
i Ilike paying for goods at a department store with

my credit card. i 2 3 < s
J- I'would like to send in an order and have my

groceries delivered. I 2 3 4 5
k. Iprefer large free-standing ‘box’ stores to small

stores in shopping malls. 1 2 3 <4 s
L. There are too many phoney price reductions at

department stores. 1 2 3 4 s
m.  The arrival of big stores like Wal-Mart has made

existing stores more responsive 1o customers 1 2 3 4 )
n.  Fast-food prices have gone down in last two years. 1 2 3 4 5
0.  Fast-food outlets sell unhealthy jtems. i 2 3 4 5
p-  Edmonton needs more grocery stores. 1 2 3 4 s
q.  Big grocery stores should have to ciose on Sundays. 1 2 3 4 s




The following statements ask how vou feel about the service and the products provided by some Edmonton area
deparmment stores, grocery stores, and fast-food outlets. Please indicate the extent of your agreement with each
statement about each store or outlet. Circle 2 '10' if you very strongly agree, and circle a ‘0’ if you very strongiy
disagree. If your feelings lie berween these two extremes, circle a number in between ‘10* and '0' that best shows
your level of agreement. There are no right or wrong answers- we are interested in your views of the service and
products provided by the stores.

The first set of statements are about Eaton’s department stores. After the statements about Eaton’s, there
will be statements about other department stores, fast-food outlets, and grocery stores.

very very
strongly strongly
disagree agree
Eaton’s stores are visually artracdive. 0 1 2 3 4 5§ 6 7 8 9 10
Eaton’s employees appearneatandtdy. 0 1 2 3 4 5 6 7 8 9 10
Eaton’s promotional materials are visually appealing. 0 1 2 3 4 § 6 7 8 9 10
Eaton’s employees give youpromptservice. 0 1 2 3 4 5 6 7 8 9 10
Eaton’s employees arc always willingtohelpyow. 0 1 2 3 3 5 6 = 8 9 10
Eaton’s employees are never t0o busy to respond to0 your requests. 0 I 2 3 4 5 6 7 8 9 10
Eaton’s employees give youpersonalattendon. 0 I 2 3 4 5 6 7 8 9 10
Eaton's employees have your bestinterestsatheart. 0 ! 2 3 4 5 6 T 8 9 10
Eaton's employees understand your specificneeds. 0 I 2 3 4 5§ 6 T 8 9 10
The products available at Eaton’sare of highquality. 0 1 2 3 4 5 6 7 8 9 10
Eaton’s has all the items [ want to buy atadeparmentstore. 0 | 2 3 4 S 6 7 8 9 10
Eaton’s has a good selection of qualityproducts. ¢ 1 2 3 4 § 6 7 8 9 10
The following statements are about Wal-Mart’s department stores.
very very
strongly strongly
disagree agree
Wal-Mart’s stores are visually attractive. 0 1 2 3 4 § 6 T 8 9 i0
Wal-Mart's employees appearneatandtidy. 0 1 2 3 4 S 6 7 8 9 10
Wal-Mart’s promotional materials are visuallyappealing. 0 1 2 3 4 S 6 7 8 9 10
Wal-Mart's employees give you promptservice. 0 1 2 3 4 5§ 6 7 8 9 10
Wal-Mart's employees are always willingtohelpyou. 0 1 2 3 4 § 6 7 § 9 10
Wal-Mart's employees are never 100 busy to respond to your requests. 0 I 2 3 4 5 6 7 8 9 10
Wal-Mart’s employees give you personal attention. 0 | 2 3 4 5 6 7 8 9 10
Wal-Man's employees have your bestinterestsatheart. 0 1 2 3 4 5 6 7 8 9 10
Wal-Mart’s employees understand your specificneeds. 0 1 2 3 4 5 6 7 8 9 10
The products available at Wal-Mart are of highquality. 0 1 2 3 4 S 6 7 8 9 10
Wal-Mart has all the items I want o buy at adeparmmentstore. 0 1 2 3 4 5 6 7 8 9 10
Wal-Mart has a good selection of qualityproducts. 0 I 2 3 4 S 6 7 8 9 10
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The following statements are about Zeller's department stores.

very
strongly
disagree

Zeller’s stores are visually antractive.

Zeller’s employees appear near and tdy.

Zeller's promotional meterials are visually appealing.
Zeller’s employees give you prompt service.

Zeller’s employees are always willing to help vou.

Zeller’s employees are never too busy to respond to your requests.
Zeller's employees give you personal attention.

Zeller’s employees have vour best interests at heart.

Zeller’s employees understand your specific needs.

The products avaiiable at Zeller's are of high quality.
Zeiler’s has all the jtems [ want to buy at a department store.
Zeller's has a good selection of quality products.

OOOOOOOOOOOO

1
i
I
I
i
I
1
i
I
1
1
1

The following statements are about Kentucky Fried Chicken’s (KFC) fast-food outlets.

very
strongly
disagree

KFC’s outlets are visuaily attractive. 0

KFC’s employees appear near and tdy. 0

KFC's promotionai materials are visually appealing. 0
KFC'’s employees give you prompt service. 0

KFC's employees are always willing 0 help you. 0
KFC's cmployess are never too busy to respond to your requests. 0
KFC's employees give you personal attention. 0

KFC's employees have your best interests at heart. 0
KFC's employees understand your specific needs. 0

The products available at KFC are of high quality. 0

KFC has all the items [ want to buy at a fast-food outlet. 0
0

1
1
!
1
1
1
1
1
1
|
1
KFC has a good selection of quality products. 1
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The following statements are about McDonald’s fast-food outlers.

very
strongly
disagree

McDonald’s outlets are visually anractive. 0

McDonald's employees appear neat and tidy. 0

McDonald's promotional materials are visually appealing. 0
McDonald’s employees give you prompt service. 0

McDonald's employees are always willing to belp you. 0
McDonzld’s employees are never too busy to respond to your requests. 0
McDonald’s employees give you personal attention. 0
McDonald’s employvees have vour best interests at heart. 0
McDonald’s employees understand your specific needs. 0

The products available at McDonald's are of high quality. 0
McDonald's has all the items [ want to buy at a fast-food outler. 0
McDonald's has a good selection of quality products. 0

i e B T S T

The following statements are about Dairy Queen’s fast-food outlets.

very
strongly
disagree

Dairy Queen’s outlets are visually attractive.

Dairy Queen’s employees appear neat and ddy.

Dairy Queen's promotional materials are visually appealing.
Dairy Queen's employees give vou prompt <ervice.

Dairy Queen's employecs arc always willing to help vou.

Dairy Queen’s emplovees are never 100 busy to respond to your requests.
Dairy Queen's employees give you personal attention.

Dairy Queen’s empioyees have your best interests at heart.
Dairy Queen's employees understand your specific needs.

The products available at Dairy Queen are of high quality.
Dairy Queen has all the items I want to buy at a fast-food outler.
Dairy Queen has a good selection of quality products.
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The following statements are about Superstore’s grocery stores.

very
strongly
disagree

Superstore's stores are visually artractive.

Superstore's empioyees appear neat and udy.

Superstore's promotional materials are visually appealing.
Superstore’s empioyees give you prompt service.
Superstore’s employees are always willing to help vou.
Superstore's employees are never too busy to respond w0 your requests.
Superstore's employees give you personal attention.
Superstore’s emplovees have vour best interests at hearr.
Superstore's employees understand vour specific aeeds.
The products avaiiable at Superstore are of high quality.
Superstomhasalltheimnslwamtobuyaxagmccyszore.
Superstore has a good seiection of quality products.

e e

OOOOOOOOOOOO
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The following statements are about Save-On Food’s grocery stores.

very
strongly
disagree

Save-On Food's stores are visually artractive.

Save-On Food's employees appear neat and udy.

Save-On Food's promotional materials are visually appealing.
Save-On Food's empiovees give vou prompt service.

Save-On Food's employees are always willing to help vou
Save-On Food's empioyees are never too busy to respond to your Tequests.
Save-On Food's empioyees give you personal attenrion.
Save-On Food's employees have your best interests at hear:.
Save-On Food's employees understand your specific needs.
The products available at Save-On Food are of high qualiry.
Save-On Food has all the items [ want to buy at a grocerv store.
Save-On Food has a good selection of quality products.
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The following statements are about Safeway’s grocery stores.

very
strongly
disagree
1
1

Safeway’s stores are visually atractive. 0
Safeway’s physical faciiities are visually appealing. 0
Safeway’s employees appear neat and udy. 0
Safewsay’s promotional materials are visually appealing. 0
When Safeway promises 0 do something by a certain time, it does so. 0
When vou have a probiem, Safeway shows a sincere interest in solvingit. 0
Safeway performs the service right the firstime. 0
Safeway provides its services at the time it promuses to do so. 0
Safeway insists on error-free billing. 0
Employees of Safeway tell you exacly when the services will be performed. 0
Safeway’s empioyees give vou prompt service. 0
Safeway's employees are always willing to help vou. 0
Safeway's employees are never 1o busy to respond to your requests. 0 |
The dehavior of empioyees of Safeway instills confidence in customers. 0
You fee} safe in your Tansactons with Safeway. 0
Employees of Safeway are coansistenty courteous. 0
Employees of Safeway can answer vour questions. 0
Safeway gives you individuai artention. 0
Safeway has operanng hours convenient w ail its customers. 0
Sareway's employees give vou personal artention. 0
Safeway’s employees have your best interests at hearr. 0
Safeway’s emplovees understand your specific needs. 0
The products available at Safeway are of high quality. 0
Safewayhmallt.hcituns[wanuobuyaxagmwysmrc. 0
Safeway has a good selection of quality products. 0
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Now we would like to ask some questions about vour past and current shopping behavior.
Please answer each of the following questions about your major grocery shopping tips.

A. At which of the grocery stores below have you shopped during the past twelve months? (Circle as many
numbers as apply in column A)

B. Which grocery store did vou shop at most often during the past twelve months? (Circle one number in
column B)

C. At which grocery store did vou most recently shop? (Circle one number in column C)

D. Please indicate how much money, if any, you have spent on groceries at each of the stores listed below
during the last four weeks. (Write in zero or the dollar amount in column D).

A B C D
Shopped at in the Amount spent in
past 12 months Shopped at most Shopped at most the last
Grocery Store: (circle as many as often recently four weeks

apply) (circle one) {circle one) (write in the oumber)
Safeway 1 1 1 S
IGA 2 2 2 S
Save-On-Food 3 3 3 S
Food for Less 4 4 4 S
Superstore 5 s 5 S

Now we would like !0 ask you to rate the overall service quality provided by some Edmonton area grocery
stores. If you feel that overall service quality provided by a store is excelleat, piease circle a 10. On the other
hand, if you feel service quality provided by a store is very poor, please circle a 0. If vour feelings lic between
excetlent and very poor, please circle a number between ‘10" and *0" thar closely indicates vour feeling about
the store’s service quality.

Very Neither very poor
Grocery Store: Poor nor excellent Excellent
Safeway 0 1 2 3 4 5 6 7 8 9 10
IGA 0 1 2 3 4 5 6 7 8 9 10
Save-On-Food [1} t 2 3 4 5 6 7 8 9 10
Food for Less 0 1 2 3 4 5 6 7 8 9 10
Superstore 0 1 2 3 4 5 6 7 8 9 10




Please answer each of the following questions about your major department store purchases.

A. Arwhich of the department stores below have you shopped during the past twelve moaths? (Circle as many
numbers as apply in column A)

B. At which department store did you shop most often during the past twelve months? (Circle one number in
column B)

C. At which department store did vou most recently shop? (Circle one number in column C)

D. Please indicate how much money, if any, you have spent on goods at each of the stores listed below during
the last four weeks. (Write in zero or the dollar amount in column D).

A B Cc D
Shopped at in the Amount spent in
past 12 mouaths Shopped at most Shopped at most the last
Department Store: (circle as many as often recently four weeks

apply) (circie ane) (circie one) (write in the number)
The Bay 1 1 1 S
Eaton’s 2 2 2 S
K-Mart 3 3 3 S
Sears 4 4 4 )
Wal-Mart 5 5 s S
Zeller's 6 6 6 S

Now we would like t0 ask vou to rate the overall service quality provided by some Edmonton area department
stores. [f you feel that overall service quality provided by a store is excellent, please circle a 10. On the other
hand, if you feel service quality provided by a store is very poor, please circle a 0. If your feelings lie between
excellent and very poor, please circle a number berween *10° and *0* that closely indicates vour feeling about
the store’s service quality.

Very Neither very poor
Department Store: Poor nor excellent Excellent
The Bay 0 1 2 3 4 5 6 7 8 9 10
Eaton’s 0 1 2 3 4 5 6 7 8 9 10
K-Mart 0 1 2 3 4 5 6 7 8 9 10
Sears 0 1 2 3 4 5 6 7 8 9 10
Wal-Mant 0 1 2 3 4 5 6 7 8 9 10
Zeller's 0 1 2 3 4 5 6 7 8 9 10




Please answer each of the following questions about vour fast-food outlet visits.

A. At which of the fast-food outlets listed below have you eaten (or taken-out) a fast-food meal during the past
twelve months? (Circle as many numbers as apply in column A)

B. Which fast-food outlets did you eat a (or take-out from) most often during the past tweive months? (Circle
one number in column B)

C. Which fast-food outlets did you most recently eat at or take-out fast-food? (Circle one numper in column C)

D. Please indicate how much money, if any, you have spent on fast-food at each of the outlets listed below
during the last four weeks. (Write in zero or the dollar amount in column D).
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A B C D
Eaten at in the Amount spent in
past 12 months Eaten at most Eaten at most the last
Fast-Food Qutlet: (circle as many as often recently four weeks

apply) (circle one) (circle one) (write in the number)
A&EW 1 1 1 S
McDonald’s 2 2 2 )
Arby’s 3 3 3 )
Dairy Queen 4 4 4 S
Wendy's 5 5 5 S
Kennucky Fried Chicken 6 6 6 S
Harvey's 7 7 7 S

Now we would like to ask you to rate the overall service quality provided by some Edmonton area fast-food
outlets. If you feel that overail service quality provided by an outlet is excellent, please circle a 10. On the other
band, if you feel service quality provided by an outlet is very poar, piease circle a 0. If your feelings lie between
excellent and very poor, please circle a number between ‘10’ and *0” that closely indicates vour feeling about
the outlet’s service qualiry.

Very Neither very poor
Fast-Food Outler: Poor nor excellent Excellen
t
A&W 0 1 2 3 4 5 6 7 8 9 10
McDonald’s 0 l 2 3 4 5 6 7 8 9 10
Arby’s 0 1 2 3 4 5 6 7 8 9 10
Dairy Queen 0 1 2 3 4 5 6 7 8 9 10
Wendy’s 0 1 2 3 4 5 1 7 8 9 10
Kentucky Fried Chicken 0 1 2 3 4 s 6 7 8 9 10
Harvey's 0 1 2 3 4 s 6 7 8 9 10
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Finally, we would like to ask you some questions about yourself to help interpret the results of the stuay.

Are you male or female? (Circle a number)

l MALE
2 FEMALE

What is your present age? (Circle a number)

15TO 24
25TO 34
3ISTO44
45 TO 54
55TO 64
65 AND OVER

[= RV I S PY I N )

What is your present marital starus? (Circle a number)

I NEVER MARRIED

2 MARRIED

3 DIVORCED OR PERMANENTLY SEPARATED
4 WIDOWED

About how long have you lived in the Edmonton area? (Write in a number)

YEARS :

How many people, if any, do you have living with you in your household, for each of these age groups? (Write
in a number for each age group. If none, write in ‘O")

UNDER 5 YEARS
STO12
I3TO19

20 AND OVER

Are you employed (or studying) ar a particular locaton outside the home, to which vou travel most days of most
weeks? (Circle a number)

l NO
2 YES




What was your approximate total household income before taxes in 19947 (Circle a aumber)

LESS THAN S 19,999
$ 20,000 TO $ 39,999
$ 40.000 TO $ 59,999
$ 60.000 TO $ 79,999
$ 80,000 TO $ 99,999
S 100,000 OR MORE

L= NV I SN PV

What is the highest level of education you have completed? (Circle a aumber)

ELEMENTARY SCHOOL OR LESS
SOME HIGH SCHOOL

HIGH SCHOOL GRADUATE

SOME COLLEGE/ UNIVERSITY
COLLEGE/UNIVERSITY GRADUATE
POST GRADUATE WORK

= NP R N VSR N

Do you own (including paving off 2 mortgage) vour home? (Circle a number)

1 YES
2 NO

Ls there anything else you would like to tefl us abour the service quality of stores in the Edmonton area? If so.
please use the space below for that Ppurpose. or include your comments on a separate sheet of paper.
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