
Structural Credit Assignment in Neural Networks using
Reinforcement Learning

by

Dhawal Gupta

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Dhawal Gupta, 2021

Abstract

Structural credit assignment in neural networks is a long-standing problem,

with a variety of alternatives to backpropagation proposed to allow for local

training of nodes. One of the early strategies was to treat each node as an

agent and use a reinforcement learning method called REINFORCE to update

each node locally with only a global reward signal. In this work, we revisit

this approach and investigate if we can leverage other reinforcement learning

approaches to improve learning. We first formalize training a neural network as

a finite-horizon reinforcement learning problem and discuss how this facilitates

using ideas from reinforcement learning like off-policy learning, exploration and

planning. We first show that the standard REINFORCE approach can learn

but is suboptimal due to on-policy training: each agent learns to output an

activation under suboptimal action selection from the other agents. We show

that we can overcome this suboptimality with an off-policy approach, that it

is particularly effective with discretized actions. We provide several additional

experiments, highlighting the utility of exploration, robustness to correlated

samples when learning online and a study into the policy parameterization of

each agent.

ii

Preface

This thesis is a compilation and extension of a conference paper under sub-

mission to NeurIPs 2021, co-authored with Gabor Mihucz, Matthew Schlegel,

James Kostas, Philip Thomas and Martha White. Gabor implemented the

continual learning experiments (Section 5.2) and Monte Carlo (MC) agent

in Figure 3.4. Martha contributed to parts of introduction (Chapter 1) and

formalism (Chapter 2), she provided with the proof of proposition 1 and sug-

gestions throughout. Philip and Martha helped design the local minima exper-

iment (Section 5.1). Matthew, James and Philip helped develop ideas based

off of coagent networks and variance reduction strategies in the same. Rest of

the work is original contribution of Dhawal Gupta.

iii

To Ayush, Mummy and Papa

iv

Acknowledgements

I would like to thank my supervisor, Martha White, under whose guidance

and acumen I have learned how to think like a researcher and value collab-

oration. She has supported my ideas throughout the journey and given me

the flexibility to pursue unconventional directions. Martha has the ability and

insight to declutter noise around research and focus on things that hold value

and appreciate its possible impact. She has been a fantastic mentor.

The master’s program has been one of the most fulfilling experiences in

my life; the environment provided by RLAI, AMII, and in general, Canada is

conducive for research and makes the whole process much more joyful.

The experience would not have been possible without my friends through-

out these two years; I am especially indebted to Anmol, Alex, Katyani, Mayank,

Tanisha, Ashish, Alan, Sina, Andy, Khurram, Abhishek, Michael, Matt, Shivam,

Navya & Maithrreye for being part of this journey. Special thanks to Csaba

for being a great mentor, friend, runner and fellow rock climber. Also, thanks

to my undergrad collegiate (Infinity), who have stuck with me till now.

Lastly, everything I have accomplished and will accomplish would not have

been possible without the unconditional love and support that my parents and

younger brother have shown me; I am blessed to have such an amazing family.

v

Contents

1 Introduction 1
1.1 Related Work . 3
1.2 Contributions and Outline . 6

2 Structural Credit Assignment as a Finite Horizon Reinforce-
ment Learning Problem 8
2.1 Formalism . 8

3 Issues with Nondeterminism in CoANs 14
3.1 Continuous Nodes . 14

3.1.1 Experimental Details 15
3.1.2 Using Baselines to Lower Variance 15
3.1.3 Results with Variance Reduction 21

3.2 Controlled Nondeterminism Experiments 21
3.2.1 Failures of Simple On-policy Approaches to Reduce Non-

determinism . 23
3.3 Discrete Actions Helps Control Stochasticity, But Not Enough 24

3.3.1 Experimental Details 24
3.3.2 Results . 25
3.3.3 Investigating Nondeterminism of Discrete Agents . . . 26

3.4 Summary . 27

4 Off-Policy Learning to Learn CoAgents 29
4.1 An Off-Policy Algorithm for CoANs 29
4.2 Experimental Details . 31
4.3 Results with Off-Policy CoANs 32
4.4 Summary . 33

5 Potential Advantages of CoAN’s 35
5.1 Avoiding Local Minima . 35

5.1.1 Problem Setup and Experimental Details 35
5.1.2 Results . 37

5.2 Continual Learning on Correlated Data 37
5.2.1 The Continual Learning Problem 38
5.2.2 Experiments . 38
5.2.3 Results . 40

6 Conclusion 41

References 43

Appendix A Appendix 47
A.1 Stochastic Computation Graph for Finite Horizon MDP 47

vi

List of Figures

2.1 Framework Structure . 9

3.1 All curves are averaged for 10 runs with standard error bars.
Training different variants of CoAN’s and backprop on MNIST
and Boston Housing with one and two layer NNs. 20

3.2 Experiments highlighting issues with nondeterminism in coa-
gents. The left graph shows the effect of training with back-
prop followed by CoAN training for subsets of nodes. The right
graph depicts performance with different coagent partitioning
of the network. 22

3.3 Failures of different strategies to gradually reduce nondetermin-
ism of coagents overtime, on Boston Housing. (Left) Learning a
bias unit for variance. (Right) Decayed global variance for the
whole . 23

3.4 Learning curves fro discrete agents (ST, MC, Co, Co-G) with
single and double-layers, averaged for 10 runs, for 50 epochs
with 64 nodes on MNIST dataset. 25

3.5 All experiments in this figure are on MNIST dataset, with ex-
periment (a,b,c) use 64 nodes per layer. (a) Learning progress
of three layer network for 10K epochs, with entropy (solid line)
and sparsity (dotted line) of each layer, along with accuracy
(scaled to [0, 1]). (b) Inter layer experiment: fixing earlier lay-
ers at regular intervals for a three layer network for 2.4K epochs
(fixing at 800 and 1.6K epochs). Shows sparsity and entropy
similar to (a). (c) Intra layer experiment: training a random
fraction of subset of nodes in each layer. Shown for 150 epochs,
averaged for 10 runs. (d) Representation experiment: sensitiv-
ity curves for different number of nodes per layer ∈ [21, . . . , 29]
and different number of actions per node ∈ [2, 5, 9, 17]. Solid
line shows accuracy (scaled to [0, 1]), dotted line for entropy
(H) layer 2 and dashed line for entropy of layer 3. All agents
were trained for 100 epochs and values represent average of last
20 epochs. 28

4.1 (a) Learning curves comparing on policy and off policy actor
critic. (b) Entropy curves for off policy actor critic coagents
networks. Both the graphs are for a three layered network,
averaged over 10 runs, for 64 nodes and 1K epochs. 32

vii

5.1 First column depicts the loss curve and corresponding deriva-
tive with respect to the scalar weight of both problems. Second
column corresponds to the learning curve followed by the sensi-
tivity of α for all the methods. The stochastic node is averaged
over 50 runs. 36

5.2 Piecewise random walk problem, with sample trajectories of
{Xt}t∈N (blue) and {St}t∈N (black), with different level of diffi-
culties. 39

5.3 (a) CL experiments with problem difficulties at d = 0.98 dashed
lines and solid lines for d = 1.0 comparing backprop and CoAN’s.
(b) Sensitivity plots in CL problem for learning rate (α), for
problem difficulty of d = 0.95. 39

A.1 Example of baseline value functions and critic value functions 50
A.2 MDP . 51

viii

Chapter 1

Introduction

Training neural networks involves structural credit assignment : attributing

credit (or blame) to nodes in the network for correct (or incorrect) predictions.

The output from a node early in the network impacts all the outputs down-

stream and, finally, the prediction outputted at the end of the network. Our

goal is to adjust the weights that produced the output for this node, so that

the prediction would have been more accurate. The most widely used solution

for the structural credit assignment problem is backpropagation (Rumelhart

et al., 1986), namely gradient descent on the loss for the outputs.

Moving beyond backprop provides more flexibility in training neural net-

works. Backprop requires differentiability of activations and losses for the

network, as well as synchronicity for computing the gradient and updating the

weights. To update a node internal to the network, a full feedforward and

backward pass needs to be computed, with global gradient information sweep-

ing backwards from the output. Ideally, for online agents operating real-time,

with computational constraints, we would have nodes that update each step,

locally and asynchronously.

To make progress towards this lofty goal, we revisit an old idea: treating

each node as an agent. Work in reinforcement learning (RL), including ideas

like eligibility traces, were in fact inspired by Klopf (1982) and the hedonistic

neuron. It is not surprising that the idea of using an RL agent for each

node is found in early work, including the original REINFORCE algorithm

(Williams, 1992), which is a policy gradient approach using sampled returns.

1

Most work treating each node as an agent uses the REINFORCE update, often

with baselines for variance reduction, including work on learning with spiking

neurons (Fiete and Seung, 2006) and CoAgent Networks (CoANs) (Kostas et

al., 2020; Thomas, 2011; Thomas and Barto, 2011) which extended prior work

by Barto (1985) in the area of learning automata (Narendra and Thathachar,

1989). The work in CoANs 1) nicely formalizes the idea of a collection of

agents—each agent corresponding to a node or subset of nodes—cooperating

to maximize return and 2) provides a general theorem on the validity of using

the REINFORCE update. For this reason, we adopt their terminology and

use CoANs to refer to networks composed of agents.

More recently, other algorithmic ideas from reinforcement learning, beyond

REINFORCE, have begun to affect training of (stochastic) neural networks.

The ideas of critics and baselines, which reduce the variance of policy gradient

updates, have been well-developed for stochastic computation graphs (Weber

et al., 2019). This work provides a unification of gradient derivations, but as

yet not an investigation into practical algorithms for structural credit assign-

ment in neural networks. Other work on learning under stochastic neurons has

typically used REINFORCE as a basic method, and explored other heuristics

to improve learning, such as straight-through estimators (Y. Bengio et al.,

2013), rather than improved RL approaches. Work on credit assignment is

loosely inspired by the idea of bootstrapping in RL, including synthetic gradi-

ents (Jaderberg et al., 2017; Lansdell et al., 2020) and fixed-point propagation

(Nath et al., 2020). Works that were not motivated by bootstrapping used

similar ideas of explicitly optimizing activation vectors, such as target propa-

gation (Y. Bengio, 2014; Y. Bengio et al., 2016; Lee et al., 2015) and auxiliary

variable methods (Carreira-Perpinan and Wang, 2014)

Overall, however, the broader space of RL algorithms has not been lever-

aged to learn CoANs. These include advances in policy gradient methods, ideas

from off-policy learning, exploration approaches and planning approaches. One

reason for this omission could be that the structural credit assignment prob-

lem within the neural network has not been clearly defined as an RL prob-

lem; rather, it was simply intuitive to use REINFORCE approaches for each

2

node. Even the theory from the original CoANs work focused on the return

in the environment—since CoANs were used to solve a reinforcement learn-

ing problem—and did not explicitly formalize the structural credit assignment

problem within the network. Another reason could be that many straightfor-

ward ideas are not effective, as we show in this work.

To facilitate the use of RL algorithms, we first formalize the structural

credit assignment problem as a finite horizon RL problem. We show local

policy gradient updates provide an unbiased estimate of the joint gradient for

structural credit assignment, ensuring REINFORCE is a sound approach. We

then discuss key ideas from RL—namely exploration, off-policy learning and

planning—that can be leveraged to improve learning in CoANs. In particular,

we discuss how these methods can leverage some structural information—as

might be the case if the agent has some model information or prior information

about the environment—while still using local updates. We show that REIN-

FORCE can train multi-layered networks, but faces issues with suboptimality

due to coagents learning under nondeterminism of fellow coagents. We pro-

vide an in-depth study highlighting this problem and measuring the entropy

of different parts of the network. This in-depth study motivates the difficul-

ties in using the common on-policy approaches, and we discuss and show how

off-policy learning is a more promising direction.

Finally, we discuss the advantages of CoANs which include active explo-

ration and learning in non-standard settings. When moving away from the

standard iid learning setting, we show CoAN’s can perform better than back-

prop on a continual learning problem with a highly correlated dataset.

1.1 Related Work

The literature on approaches to structural credit assignment is vast, with

much of it using ideas different from reinforcement learning. One category of

approaches uses local updates to make activations similar to a target vector of

activations, such as target propagation (Y. Bengio, 2014; Lee et al., 2015), the

method of auxiliary variables (Carreira-Perpinan and Wang, 2014) and fixed

3

point propagation (Nath et al., 2020). Kickback approximates the backprop

update for ReLU networks, using an approximation to the gradient that allows

for local updates (Balduzzi et al., 2015). Feedback alignment (Lillicrap et al.,

2016; Nøkland, 2016) involves using random weights, instead of the actual

weights in the next layer, that avoids symmetric propagation that is thought

to be biologically implausible.

Weight perturbation and node perturbation approaches have been used

to estimate gradients, with node perturbations emerging as the preferred ap-

proach (Saito et al., 2011). Fiete and Seung (2006) showed that their node

perturbation algorithm actually includes REINFORCE as a special case, link-

ing these two classes of methods. However, the connection only exists for

Gaussian noise perturbations and REINFORCE; for other perturbations, the

connection is lost, as well as for other RL algorithms. Another form of pertur-

bation methods involve representation search for systematic generation and

testing of features (Mahmood and Sutton, 2013). This approach takes ad-

vantage of stochasticity in selecting features with a backprop like fine-tuning

algorithm which is beneficial in non-stationary settings.

Other work has focused on changes in weights across time. Spiking neural

networks and the associated spike-timing-dependent plasticity (STDP) learn-

ing rule (Markram et al., 2012) adjusts weights based on the relative timing

of activations for nearby nodes. Equilibrium propagation (Scellier and Ben-

gio, 2017) involves a phase of propagation in the network until reaching a low

energy state, followed by a learning update. This work showed similarities to

STDP, Contrastive Hebbian Learning (Movellan, 1991) and Contrastive Di-

vergence (Hinton, 2002). Reinforcement learning updates have been used for

spiking neural networks, called Reward-modulated STDP. These updates use

a global reward but with local update rules (Legenstein et al., 2010; Legen-

stein et al., 2008), with some interesting insights that perturbations can be

beneficial to induce exploration (Legenstein et al., 2010). This area has fo-

cused on delayed reward, namely assigning credit from node changes across

time and across multiple updates. The local updates use node perturbation

with eligibility traces to link perturbations on this step, to accuracy (rewards)

4

at later time steps (Legenstein et al., 2010; Miconi, 2017). A more recent

algorithm, called cross propagation (Veeriah et al., 2017), explicitly adjusts

weights back-in-time, to account for accuracy on this step, similarly to some

meta-learning strategies but completely online.

There has also been some work using REINFORCE to learn activation

paths through a network (Denoyer and Gallinari, 2014) and learning when to

activate parts of the network (E. Bengio et al., 2015; Y. Bengio et al., 2013).

Other work has connected structural and temporal credit assignment, but in

the opposite direction from this work: specifying temporal credit assignment

as a structural credit assignment problem (Agogino and Tumer, 2004).

Once we use RL agents as nodes, which have stochastic policies, there

is a clear connection to the work on stochastic neural networks. Much of

this work has looked at networks with stochastic binary activations (Y. Ben-

gio et al., 2013; Merkh and Montúfar, 2019; Neal, 1990; Raiko et al., 2015),

though the wider literature on stochastic computation graphs encompasses a

broad range of stochastic neural networks (Schulman et al., 2015; Tang and

Salakhutdinov, 2013; Weber et al., 2019). Early work considered an EM-style

algorithm (Tang and Salakhutdinov, 2013) and a simple alternative, called the

straight-through estimator (Y. Bengio et al., 2013), that directly passes the

gradient back through the node to the weights that created the activation.

The straight-through estimator has recently been shown to be a valid esti-

mator for stochastic binary networks (Shekhovtsov and Yanush, 2021), and a

lower-variance update has been proposed (Gu et al., 2016).

Multi-agent reinforcement learning approaches tackle a similar problem, in

the cooperative setting. The coagents in the neural network can be seen as a

group of agents cooperating to produce accurate predictions, though with the

notable difference that there is an ordering to the actions taken by coagents. A

common approach in this area has been to use reinforcement learning agents,

and consider mechanisms for coordination without centralization. Some ap-

proaches have been to carefully define rewards for each agent (Wolpert and

Field, 2002; Wolpert et al., 1999); to use a single global reward plus some noise

(Chang et al., 2003); to use independent Q-learners (Tan, 1993); or to estimate

5

a global critic (Oliehoek et al., 2008) potentially with local policy updates (Fo-

erster et al., 2018; Rashid et al., 2018). When using independent Q-learners

for each agent, the other agents are treated as part of the environment; conse-

quently, the environment appears non-stationary. Hyper Q-learning (Tesauro,

2003) reduces the impact of this non-stationarity by estimating other agent’s

policies. These strategies do not directly extend to CoANs, but the connection

to the cooperative multi-agent reinforcement learning problem could provide

fruitful avenues for improved algorithms.

Finally, there have been several empirical studies on alternative update

strategies and architectures. Spiking neural networks generally have lower ac-

curacy than standard deep neural networks, but a recent study has shown

that with advances in hardware and algorithms to train spiking neural net-

works, this gap has become smaller (Tavanaei et al., 2019). Stochastic neural

networks, particularly with binary activations, are challenging to train. Still,

with some improvements to the gradient estimator, they can have significant

advantages, including providing a level of regularization (Raiko et al., 2015).

In this work, we aim to provide a more comprehensive empirical investigation

into using reinforcement learning approaches to train CoANs.

1.2 Contributions and Outline

The thesis is structured as follows with the following contributions:

• Formalizing the credit assignment in a neural network as finite horizon

reinforcement learning problem, allowing for easy application of RL al-

gorithms (Chapter 2).

• Providing evidence of suboptimality of the current methods, including

REINFORCE for such networks particularly due to nondeterminism in

fellow agents of the networks and failure of on-policy learning to solve

the same. (Chapter 3)

• Introducing the use of critics and off-policy learning algorithms by lever-

aging the finite horizon formalism. Followed by providing an algorithm

6

and experiments to present the potential benefits of off-policy learning in

providing a way to deal with nondeterminism of surrounding coagents.

(Chapter 4)

• Demonstrating that CoAN’s can offer benefit over backpropagation meth-

ods in non standard problem settings. These include the possibility of

active exploration as well as dealing with continual learning problems.

(Chapter 5)

7

Chapter 2

Structural Credit Assignment as
a Finite Horizon Reinforcement
Learning Problem

This chapter describes how to formalize the credit assignment problem in a

feedforward neural network as a finite-horizon RL problem. The basic idea for

the finite horizon formulation is that the horizon is the number of layers. On

each step, the input state for the agent is the activations from the previous step,

and the output is the activations for this layer or the final output prediction.

2.1 Formalism

Here we introduce the finite horizon formalism for structural credit assignment

in neural networks. We start in the simplest setting, where we have a fully

connected feedforward neural network composed of k layers of size n hidden

units per layer. We assume we have inputs x ∈ X , prediction targets y ∈ Y ,

hidden layer activations hj = f(zj) for pre-activations zj with activation

function f . Here, err(.) refers to the error function used for supervised learning

problems, for example, mean squared loss for regression or cross-entropy loss

for classification.

Consider the following agent-environment interaction. On the first step,

given the sampled input x ∈ X , the initial observation o0 = [x, 0] where the

0 indicates the step-index in the finite horizon problem. The agent observes

input o0, takes action a0 ∈ A that is a vector of activations h1 (or pre-

8

…

x

ak = ̂y

s0 = [x]
o1 = [a0] ok = [ak−1]…

sk+1 = Terminal

rk+1 = − (̂y − y)2

rj = 0

NN Optimization as Finite Horizon RL problem

In
pu

t D
at

a

a0 a1 ak

π0 π1 πk

Figure 2.1: The problem described as a finite horizon RL problem, where each
intermediate step produces a reward of 0, and the end step produces a reward
equal to negative of the loss function.

activations z1), and the next observation is deterministically o1 = [a0, 1] =

[h1, 1] (or o1 = [f(a0), 1] = [f(z1), 1]). Then the agent inputs o1 and outputs

the activations for the next layer a1 and obtains next observation o2 = [a1, 2]

(or o2 = [f(a1), 2]). This transition is Markov, because given o1 and a1,

the next observation o2 is independent of o0. This interaction continues for

k steps, terminating at the last layer when the final action is to output the

prediction ŷ.

The majority of this process is Markov, and only becomes partially observ-

able due to the reward given at the end of the episode. The rewards received

during the episode are zero, with a reward given upon termination that is a

function of the error between prediction and target, such as err(ŷ, y) = (ŷ−y)2

with reward −err(ŷ, y). The probability of y depends on x, and so the reward

depends on x on this last step. We can obtain Markov states by simply includ-

ing x in each observation. But, because the policies are not given the ability to

use x, it is more accurate to model this problem as a partially observable one.

Formally, the partially observable finite-horizon undiscounted MDP consists

9

of state space S = X × {0} ∪ X × Rn × {1, . . . , k − 1}, actions A = Rn and

observation function o(s) = s if s has index 0 and otherwise o(s) = [h, j] for

s = [x,h, j]. Remember that the integer values are included to indicate the

layer number of the agents processing the input and hence we include {0} and

other integers in the state space.

A typical RL agent learns a separate policy for each horizon. This cor-

responds to learning one stationary policy because the step-index is included

in the state. Practically, however, these (stochastic) policies πj(aj|oj) for

j ∈ {0, . . . , k} are updated separately, without considering the single station-

ary policy. If the agent uses policy gradients, it uses parameterized distri-

butions for the policies, such as Gaussians with means parameterized by the

activations from the last layer. These policies can be updated using a REIN-

FORCE update, using the gradient of the CoAN objective.

The CoAN objective corresponds to a policy gradient objective. An episode

trajectory, with index information implicit and assuming actions are activa-

tions, looks like:

o0 = x,a0, r1 = 0,o1 = a0, . . . ,ok = ak−1,ak = ŷ, rk+1 = −err(ŷ, y), termination

Because π(a0,a1, . . . ,ak|x) = π(a0|x)
∏k

j=1 πj(aj|aj−1), the probability of

this trajectory is p(x)π(a0,a1, . . . ,ak|x)p(y|x). This is because p(x) gives the

probability of the start state; π(a0,a1, . . . ,ak|x) fully defines the probability

of the trajectory because the state outcomes are deterministic given the action

(activation or pre-activation); and p(y|x) defines the probability of the reward

on termination, since the target is stochastic. This provides a straightforward

policy gradient objective, for undiscounted return G
def
= −err(ak, y).

The policy gradient objective is defined as

J(θ)
def
=

∫
p(x)πθ(a0,a1, . . . ,ak|x)p(y|x)Gdxda0 . . . dakdy

= Eπθ ,p(x,y)[G]

where each policy πj has parameters θj and θ = [θ0, . . . ,θk]. The stochastic

gradient of this objective separates out into the following stochastic gradi-

10

ents for each policy separately: G∇θj log πj(aj|oj). We show this formally in

Proposition 1.

Proposition 1 (Policy Gradient Theorem for Structural Credit Assignment

in CoANs).

∇θjJ(θ) = Eπθ ,p(x,y)
[
G∇θj ln πj(Aj|Oj)

]
Proof. For a given trajectory and its return G, we can notice that them sam-

pled gradient of the policy objective can be written as:

G∇π(a0,a1, . . . ,ak−1, ŷ|x) =

Gπ(a0,a1, . . . ,ak−1, ŷ|x)∇ ln π(a0,a1, . . . ,ak−1, ŷ|x)]

Further we can write the derivative log term as:

∇θ ln(π(a0,a1, . . . ,ak−1, ŷ|x)) = ∇θ ln(π(a0|x)π(a1|a0) . . . π(ŷ|ak−1))

= ∇θ(ln π(a0|x) + ln π(a1|a0) + . . .+ ln π(ŷ|ak−1))

=
k∑
j=0

∇θ ln π(aj|aj−1)

Note: a−1 = x is the input and the output is ak = ŷ. The final expression

is a summation over the gradient of log probability of activations from each

layer. The activations of a layer only depends on the policy of the coagents

in that layer of the network. The policy for agents in each layer don’t share

any parameters for coagents in other layer (in fact for linear coagents, each

coagent in a layer also doesn’t share any parameter with any other coagent in

that layer.) Hence we can separate out the gradients for the policy in each

11

layer locally to depend only on the parameters of that layer i.e.:

k∑
j=0

∇θ ln π(aj|aj−1) =
k∑
j=0

∇θ ln πj(aj|aj−1)

=
k∑
j=0

∇θj ln π(aj|aj−1)

=


∇θ0 ln π0(a0|x)
∇θ1 ln π1(a1|a0)

...
∇θk ln πk(ŷ|ak−1)


Note : ∇θj ln π(aj|aj−1) corresponds to vector of gradients for∇θj ln πj(aj|aj−1)

but padded with 0’s for other coagents (6= j).

The last part comes from the summation over different groups of param-

eters and hence the total vector of gradients looks like a vector of separate

gradients.

Hence taking the gradient of the PG objective w.r.t. to the parameters

of specific coagent separate outs into the gradient of the parameters of that

specific coagent only.

A similar result has been shown for CoANs used in the RL setting (Kostas

et al., 2020, Theorem 1) and for stochastic computation graphs (Weber et al.,

2019, Theorem 2); we include the result specifically for this case because it

avoids much of the complications from those other works.

The locality of the policy gradient means policies can be updated locally

with their own gradients, with a shared global return signal. We can also easily

incorporate different control variates to reduce the variance of the gradient,

called baselines. The update is (G−V (oj))∇θj log πj(aj|oj), where the learned

baseline V (oj) estimates expected value for a given input across all actions,

meaning G − V (oj) corresponds to the advantage for the actions selected.

Subtracting a baseline as above which doesn’t depend on the current action

doesn’t introduce any bias in our gradient estimate. Several different critics

have been proposed for stochastic computation graphs (Weber et al., 2019);

12

we discuss how to make similar baselines for this finite horizon problem in

section 3.1.2.

However, the local policy gradient update is limited in that it can make

it difficult to learn nearly deterministic coagents. The variance in the policy

gradient update is composed of two components: the variance of the other

coagents and environmental. In the next chapter, we show that the culprit for

this issue is the non-determinism in other coagents contrary to the standard

issue in RL algorithms, where the variance arises from the environment. This

motivates the use of off-policy methods, that allow each agent to reason about

the greedy policy of other coagents.

Remark: We developed the formalism for a simple setting, to facilitate

understanding. However, all the ideas extend to more generic acyclic networks

because every acyclic network has a topological ordering on nodes. The state

input for each coagent still consists of the input nodes. At each time step,

whichever coagents have all their nodes evaluated—namely, have their state

input available—can produce their action. This propagates forward until a

prediction is produced. As before, this process is only partially observable

because the final reward depends on the input x.

Also the above formalism talks about linear coagents specifically as that

settings offers a direct comparison to the backprop setting. But in general the

coagents can be composed of any function approximator. For example each

node can be a neural network in itself.

13

Chapter 3

Issues with Nondeterminism in
CoANs

This chapter explores that though CoANs with REINFORCE can learn, they

are hindered by nondeterminism in other coagents. We investigate a variety of

variance reduction approaches, and find that learning plateaus at a suboptimal

point regardless. Next, we investigate more deeply and find that the coagents

learn suboptimal action selection due to other coagents outputting stochastic

actions. We switch to the discrete coagents, which allows a more principled

approach to observe the effect of reducing nondeterminism in the on-policy

setting.

3.1 Continuous Nodes

We investigate CoANs on problems where backprop is known to perform well,

define baselines, and facilitate understanding the behavior and potential is-

sues when learning in CoANs. We expect backprop to outperform CoANs,

and ask: how much worse are CoANs compared to backprop, and can we close

the gap with simple variance reduction techniques? To investigate this ques-

tion we use two well-studied datasets: MNIST (LeCun and Cortes, 2010) for

classifying handwritten digits, and the Boston Housing Dataset from UCI 1

for determining the price of a house.

Where possible, we matched the architecture and optimization choices for

1https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

14

backprop and the CoAN learner. We test both strategies using a single and

double-layer neural network, with 64 hidden nodes and ReLU activations.

3.1.1 Experimental Details

Each node in the CoAN is a single coagent using a Gaussian distribution with

parameterized mean and a fixed standard deviation, set system-wide through

a systematic sweep over σ ∈ {0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0}. Each coagent

is a linear agent in its input, where the weights of the linear function are

initialized using default settings. The feedforward procedure samples actions

from these policies and then applies the layer’s activation function (i.e., ReLU

for hidden layers or the identity/softmax function for the output layer). Both

use RMSProp (Tieleman and Hinton, 2012), with fixed β = 0.99 and stepsizes

swept for α ∈ {2−7, 2−9, 2−11 . . . , 2−15}. We use mini-batch gradient descent

with batch size 32 for MNIST with 50 epochs, and full gradient descent for

the Boston Housing Dataset with 10K epochs.

Hyperparameters are chosen from performance on a validation set held out

from the training set: 10K for MNIST and 51 samples for Boston Housing.

Results are averaged over ten independent runs and compared using area un-

der curve (AUC). Agents are evaluated in terms of the accuracy achieved in

classification and squared error loss for regression on the greedy policy learned

by each coagent. Greedy policy implies that, at the time of evaluation the

forward inferencing becomes a deterministic function, where the forward pass

comprises of using the greedy policy, which corresponds to using the mean of

the Gaussian as action of the coagent.

3.1.2 Using Baselines to Lower Variance

In this section we introduce three baselines for CoAN’s and test their effec-

tiveness alongside the REINFORCE update.

There has been quite a lot of development on variance reduction approaches

for stochastic computational graphs (SCGs) (Weber et al., 2019). Specifically,

the work around SCGs has been in optimizing NNs with stochastic nodes,

15

which precludes a straightforward application of backpropagation. The algo-

rithms developed for SCGs often take advantage of global updates which it is

possible to reparameterize, or by computing baselines from global information.

We can build on this to more explicitly take advantage of the fact that

we are tackling a particular finite horizon problem. The typical strategies

to reduce variance in the return are to (1) incorporate a baseline and (2) to

estimate the expected returns with a critic. The role of the baseline is to reduce

the variance due to the action selected. Typically, the baseline is chosen to be

the value from the state, averaged across all possible actions. If G−V (s) > 0,

then the selected action was better than the average, and the update increases

the probability of that action; otherwise, it decreases it.

The baseline for the finite horizon setting is slightly different, as a different

policy is used for each step. Let a consist of all actions outputted by the

agents, and Q(x,a) = E[−err(ŷ, Y)|X = x,A = a] the expected return for

that episode under those actions for the given input x. Here we define a−j

as the set of all actions from all the layers excluding that of layer j. Ideally

the baseline would consist of Bj(x,a−j) =
∑
aj
π(aj|aj−1)Q(x, [a−j,aj]), the

expected value for policy j, assuming the other layers chose the same actions.

policies had fixed values. Then we can use G−Bj(x,a−j) for the update to πj,

where if this quantity is greater than zero the action probability is increased

and otherwise its decreased.

Once we have Q(x,a), we can also consider using it more directly. No-

tice that these action-values model the loss function for the optimization, but

now more directly in the activations of the neural network. The policies are

effectively searching this high-dimensional space, that likely has many local

maxima. This is much lower variance than only using the return, as the agent

can directly reason about all actions’ outcomes jointly and remove variance due

to variance in the targets. However, as with all action-value critic methods,

this approach can be high bias if Q is inaccurate.

However, there is a more fundamental problem for us, as in decentralized

learning, we cannot use Q(x,a) or the baseline Bj(x,a−j). Instead, each

agent can only use local information or at most a scalar global value like the

16

return that can be easily broadcast to all nodes. Going the other extreme

from full joint action-values, we could use only a single global baseline V (x)

that reflects the average error for this input. All policies then use the update

G−V (x), without specifically considering the role of their action. This baseline

essentially just centers the updates.

Such a baseline, however, is a minimal optimization improvement. Instead,

we can also learn local baselines. For each policy πj, we can learn a simple

linear baseline Vj(oj) = 〈oj,θ(v)j〉 using Monte Carlo.

θ(v)j ← θ(v)j + α(G− 〈oj,θ(v)j〉)oj

We can also allow local communication, where nearby layers communicate

small amounts of information, like their predicted values. In this case, we use

temporal difference (TD) updates bootstrapping on values in the next layer.

In our experiments, we test using a baseline learned with Monte Carlo,

namely with the above updates. When only using a baseline, the updates are

of the form

(G− Vj(oj))∇θj ln πj(aj|oj)

We use the following three simple baselines.

• Global baseline (Co-G): maintains a scalar running average Ĝ of the

global loss function parameterized by η the rate of decay (fixed at 0.99).

Ĝt = ηĜt−1 + (1− η)Gt

• State Global baseline (Co-SG): learns a parameterized value function

associated with each input / state to the complete network and tries to

predict the loss i.e. V (x).

θ(v)t ← θ(v)t−1 + α(Gt − V (x))∇θ(v)t−1
V (x)

• State Layer baseline (Co-SL): is a per layer baseline, where we learn

a parameterized value function for each layer based on its input learned

using Monte Carlo updates from the global loss, i.e. Vj(oj).

θ(v)j,t ← θ(v)j,t−1 + α(Gt − Vj(oj))∇θ(v)j,t−1
Vj(oj)

17

Algorithm 1 provides the pseudo code for REINFORCE based method with

a layer wise state based baseline as an example. The other variants can be

easily derived depending on the locality of baseline, i.e. global baseline would

only need the running average of the global loss, whereas global state baseline

would require to estimate a value function for the global input.

18

Algorithm 1 Coagent with layer state value function for classification

Input: Number of coagents per layer n, number of layers k, feature size d
and D be the dataset distribution. Number of epochs e, batch size b, step
size α.
Initialize: Gaussian policy for all n × k coagents, with linear function
approximation for µi,j and a fixed σ, parameterized by θi,j.
Initlialize: Final layer (of size n × c) with c outputs corresponding to
number of classes for task, called as f .
Initlialize: k + 1 Value functions (v0, . . . vk), one for each layer, mostly a
linear function, parameterized by θ(v)i
repeat
x, y ∼ D batch of size b
o0 = x
// Forward Pass

for i = 0 to k − 1 do
for j = 0 to n− 1 do
// Gaussian policy for each coagent

πi,j = N (µi,j(.), σ)
ai,j ∼ πi,j(oi)
ui,j = ReLU(ai,j)

end for
// Build next coagent layer state

oi+1 = (ui,0, . . . , ui,n−1)
end for
πk = N (., σ)
ŷ ∼ πk(f(ok)))
ŷ = softmax(ŷ)
G = −CrossEntropy(y, ŷ)
// Backward Pass

for i = k to 0 do
for j = 0 to n− 1 do
// Update coagents

gi,j = (G− vi(oi))∇θi,j log(πi,j(ai,j|oi, σ))
θi,j = θi,j + αgi,j

end for
// Update baselines

gvi = (G− vi(oi))∇θ(v)ivi(oi)
θ(v)i = θ(v)i + αgvi

end for
until Number of e epochs achieved

19

BP Co-SL
Co-SG

Co-G
Co

Epochs

1 Layer 2 Layer

MNIST

BOSTON HOUSING

Te
st

 A
cc

ur
ac

y
Te

st
 L

os
s

100

90

80

70

60

50

120

100

80

60

40

20
0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K

0 10 20 30 40 50 0 10 20 30 40 50

Figure 3.1: All curves are averaged for 10 runs with standard error bars.
Training different variants of CoAN’s and backprop on MNIST and Boston
Housing with one and two layer NNs.

20

3.1.3 Results with Variance Reduction

Figure 3.1 reports the performance of the best performing parameters on a

held-out test set with the same size as the validation set. At a glance, it is

clear that backprop outperforms all the variants of CoANs. We can also ob-

serve that having a baseline can help in making learning faster, particularly

in the case of MNIST. The baseline seems to have greater effect in two layer

networks, where the one without a baseline seems to have really high variance.

However, surprisingly, there is no improvement using the local baselines as

compared to the global baseline, as can be observed from similar performance

of Co-G, Co-SG and Co-SL. This experiment also shows that subtracting a

baseline doesn’t introduce a bias, as we see all the coagents level off at simi-

lar performance. A natural questions which arises from these results is, why

does there exist a performance gap between CoAN’s and backprop. Is the

gap due to the optimization process or a poor stationary point of the CoAN

itself. Experiments running the CoAN for longer duration showed only slight

improvement, but never seem to catch on to backprop. Before this experi-

ment, we hypothesized that high variance updates would negatively impact

the CoAN optimization, but the variance reduction schemes used above did

not improve performance at all, and instead levels of at similar performance.

3.2 Controlled Nondeterminism Experiments

To investigate further, we initialized a CoAN at the backprop solution, to

examine if it moves away from it. If so, it would suggest the joint solution

among the coagents is suboptimal, and causes this gap. We pretrain a two-

layer neural network using backprop (up to 5K epochs) and then switch to

the CoAN algorithm. We use the best hyperparameters obtained in earlier

experiments for backprop and tune in the same range of parameters for σ and

α scaled down by a factor of (20, 2−1, 2−2, 2−3) as used in the past for the

coagent training phase. We allow a subset of nodes in the first layer to be

stochastic and hence learn. As shown in Figure 3.2 (left), performance starts

to degrade rapidly after more than half the nodes are stochastic, though for

21

Epochs

1

64
56

48

32

70

60

50

40

30

20

10
0 2K 4K 6K 8K 10K

Te
st

 L
os

s

BP

C3 C1-C2
C2-C1 C1-C1-C1

Epochs

Te
st

 L
os

s

120

100

80

60

40

20
0 2K 4K 6K 8K 10K

Figure 3.2: Experiments highlighting issues with nondeterminism in coagents.
The left graph shows the effect of training with backprop followed by CoAN
training for subsets of nodes. The right graph depicts performance with dif-
ferent coagent partitioning of the network.

nodes less than half, the network remains close to the initialized solution.

To further test the effect of stochastic coagents, we test different partition-

ing schemes of the two-layer coagent network. We can treat the whole network

as one coagent, and use backprop within that agent (called C3). We can use

two coagents: one that outputs the activations for the final layer and one that

learns the weights to produce the prediction (called C2-C1). In general, we

have four partitioning schemes, where we always have a prediction coagent

to keep the objective consistent, labeled: C1-C1-C1, C2-C1, C1-C2, and C3.

C1-C1-C1 has a coagent for each layer, and C1-C2 uses a linear coagent for

the first layer and a single layer neural net coagent for the next.

In Figure 3.2 (right), we see the deterministic network C3 performs sim-

ilarly to the backprop network. And as we add stochastic (non determinis-

tic) agents back into the intermediary layers the performance degrades signif-

icantly. This, along with the previous experiment, further supports the claim

that the performance issues for CoANs are primarily due to learning with

stochastic coagents, rather than problems with variance in the optimization

problem.

22

120

100

80

60

40

20
0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K

Epochs

BP Sigmoid

Exp
ReLU Fixed

BP

0.9 0.99

0.999

0.9999 1

Epochs

Te
st

 L
os

s

Figure 3.3: Failures of different strategies to gradually reduce nondeterminism
of coagents overtime, on Boston Housing. (Left) Learning a bias unit for
variance. (Right) Decayed global variance for the whole

3.2.1 Failures of Simple On-policy Approaches to Re-
duce Nondeterminism

A natural next step is to consider simple strategies to reduce the non deter-

minism of coagents gradually. For example, it is common in RL to have a

decaying schedule for the exploration parameter. Similarly here, instead of

using a fixed variance parameter for coagents, we can gradually decay this

parameter and so allow coagents to gradually learn good actions under nearly

greedy actions from other coagents.

We tested two strategies to enable the variance parameter in the Gaussian

distributed actions to decrease with time. The first strategy is to learn a σ

per node, using a bias unit per node, passed through either a sigmoid, ReLU,

or exponential activation to obtain a non-negative number. The second is to

use a decay rate for the σ of the whole network. In both cases we initialized

σ, with the best value found in the original experiments (i.e. σ = 4.0).

Unfortunately, these natural strategies to remove stochasticity in coagents

do not improve performance, as can be seen in Figure 3.3. One possible reason-

ing can be explosion in gradients of policy parameterization, mainly because

for a smaller σ, the gradient of the ∇θ ln π(a|o) term can explode significantly

for a slightly deviated sample, as can be observed in the faster decay rates in

Figure 3.3 (right), i.e., 0.9, 0.99.

23

3.3 Discrete Actions Helps Control Stochas-

ticity, But Not Enough

Here we study discrete coagents with Bernoulli discrete actions and their

stochasticity over time. Discrete networks provide an easier way to handle

stochasticity in their policy. Softmax parameterization adapts stochasticity

when learning, and can become fully deterministic if required. For a baseline

estimator, we do gradient backpropagation via straight-through (ST) estima-

tors (Y. Bengio et al., 2013; Shekhovtsov et al., 2020), because standard back-

prop cannot be used for discrete nodes. In this set of experiments, we again use

REINFORCE coagents, and test on MNIST. We measure the entropy of the

coagents over time and the sparsity of the representation to ensure reasonable

levels of activation.

3.3.1 Experimental Details

To keep comparisons similar and avoid overfitting to hyperparameters, we

adopt all the hyper-parameters from the continuous coagent case (where it

was possible). For discrete nodes, the main difference came from the prob-

ability distribution parameterization. The continuous agents used a mean

parameterized Gaussian, with a fixed standard deviation for all the nodes in

the network. In the discrete case, each coagent has |A| number of heads. In

this experiment we consider a coagent with two actions. The outputs of these

heads are fed through a softmax activation and the actions are sampled using

a Bernoulli distribution. Each action corresponds to 0 or 1 appropriately.

As the outputs are real-valued in the case of continuous agents, we can treat

each layer of the network as an agent and hence be a Gaussian distribution.

Whereas in discrete coagents, as the outputs of agents are 0 and 1 values, we

can’t do classification and regression with just those nodes. Hence, we apply

a final linear layer on top of the learned representation of binary nodes. In

essence, the πk agent in discrete agents is a deterministic agent that transforms

the binary input ok to real-valued actions and uses backprop to update this

linear layer and use the CoAN update for the agents in all the other layers.

24

ST

MC
Co-GCo

100

80

60

40

20

0
0 10 20 30 40 50

Tr
ai

n
Ac

cu
ra

cy

Epochs

1 Layer

ST

MC

Co-G
Co

100

80

60

40

20

0
0 10 20 30 40 50

Tr
ai

n
Ac

cu
ra

cy

Epochs

2 Layer

Figure 3.4: Learning curves fro discrete agents (ST, MC, Co, Co-G) with
single and double-layers, averaged for 10 runs, for 50 epochs with 64 nodes on
MNIST dataset.

Similar to the continuous case, the evaluation is performed greedily, where

the action with higher probability is selected.

3.3.2 Results

In Figure 3.4 we can see that CoANs actually perform better than the ST

estimator, and here the baseline has a bigger positive effect (Co-G versus Co).

ST estimators have difficulties when learning in more than a single layer (Y.

Bengio et al., 2013), probably due to misalignment (Shekhovtsov et al., 2020).

We also include an on-policy Monte Carlo algorithm that learns action values.

For Co-G, the ability to better control the entropy does seem to be helping,

wherein Figure 3.5(a) the entropy drops —earlier for layer one and then at 200

epochs for layer two and three—cause a sudden rise in accuracy. However, the

entropy does not fully decrease, and there is some unintuitive behavior. For

example, the first layer becomes deterministic faster, which is surprising as

it relies on stochastic actions of downstream agents. The entropy for layer

two and layer three also decreases, but eventually, the entropy starts to creep

back up while maintaining or improving accuracy. Finally, we provide a more

in-depth investigation into the stochasticity under discrete actions, including

using more discrete actions per coagent and training with (randomized) subsets

of coagents fixed.

25

3.3.3 Investigating Nondeterminism of Discrete Agents

As we saw in section 3.3.2, stochasticity in intermediate layers doesn’t decrease,

even though the coagents match backprop in terms of accuracy if trained for

long enough (i.e., > 99% training data; figure 3.5(a)). This raises the question

of why this happens. There can be multiple reasons, including (1) stochasticity

in earlier layers not giving a stationary representation to the later layers, (2)

too many interacting nodes in a single layer, (3) representation in intermediate

layers being relatively weak to support deterministic policies. We study these

properties in our subsequent experiments.

Figure 3.5(b,c,d) tests the above 3 hypothesis. To counter inter layer non-

determinism, we adopt the strategy of freezing earlier layers in the network

with a fixed training schedule, in the hope of later layers learning determinis-

tic policies on a stationary representation, which also doesn’t seem to be the

case. This training regime has an issue that the earlier layers still have con-

founding stochasticity because of randomness in the downstream layers. For

the second set of experiments, we train a subset of randomly selected nodes in

a given layer for each epoch while keeping the other nodes fixed. We observe

that except for offering some help in early learning speeds, there is no clear

benefit to have this strategy.Thirdly, counter to our intuition of the earlier

layer being more stochastic, we observe that layer 1 has a sharp decrease in

its entropy, which might be because of a strong representation it gets in the

form of images. We experiment with different number of nodes (∈ [21, . . . , 29])

in each layer to test this. We also allow agents to have more than 2 actions

(∈ [2, 5, 9, 17]), and actions correspond to a float value distributed evenly in

the interval [−1, 1]. As we can observe in Figure 3.5(d), more number of nodes

in the intermediate layer does seem to help with the entropy of those layers. In

contrast, an increased number of actions might not be that helpful for the case

of policy gradient algorithms. So rather than having a more fine-grained con-

trol, it is better to have a bigger and maybe sparse representation. Overall, we

find that the former significantly increases performance for REINFORCE coa-

gents; however, the latter approach does not substantially reduce the entropy,

26

nor improve performance.

3.4 Summary

This chapter studied the suboptimality of the REINFORCE update for coa-

gents, mainly due to nondeterminism of other coagents, and how different on-

policy updates might fail to solve this. We notice some benefits for the case of

the discrete node, where they can reduce nondeterminism autonomously based

on their gradient update, and even achieve backprop level performance with

enough samples.

In the next chapter, we introduce the notion of critics and off-policy learn-

ing as a possibility to deal with nondeterminism in the downstream nodes.

27

Layer 2

Layer 1

Layer 3

Accuracy

1.0

0.8

0.6

0.4

0.2

0
0 500 1K 1.5K 2K 2.5K

Epochs

Entropy
Sparsity

Ac
cu

ra
cy

 /
En

tr
op

y
/ S

pa
rs

ity

Layer 1 fixed Layer 2 fixed

1.0

0.8

0.6

0.4

0.2

0
 21 22 23 24 25 26 27 28 29

Number of Units per Layer

Accuracy
Layer 3 ℋ

Ac
cu

ra
cy

 /
En

tr
op

y

Layer 2 ℋ

5 actions

9 actions

17 actions

2 actions32 (50%)

16 (25%)

100

80

60

40

20

0
0 20 40 60 80 100 120 140

Tr
ai

n
Ac

cu
ra

cy

Epochs

1(1.5%) 4 (6.25%)

64 (100%)

48 (75%)

Subset Nodes

Layer 2

Layer 1

Layer 3
Accuracy

1.0

0.8

0.6

0.4

0.2

0
0 2K 4K 6K 8K 10K

Epochs

Entropy

Sparsity

Ac
cu

ra
cy

 /
En

tr
op

y
/ S

pa
rs

ity

99%

(a) (b)

(c) (d)

Figure 3.5: All experiments in this figure are on MNIST dataset, with ex-
periment (a,b,c) use 64 nodes per layer. (a) Learning progress of three layer
network for 10K epochs, with entropy (solid line) and sparsity (dotted line)
of each layer, along with accuracy (scaled to [0, 1]). (b) Inter layer experi-
ment: fixing earlier layers at regular intervals for a three layer network for
2.4K epochs (fixing at 800 and 1.6K epochs). Shows sparsity and entropy
similar to (a). (c) Intra layer experiment: training a random fraction of sub-
set of nodes in each layer. Shown for 150 epochs, averaged for 10 runs. (d)
Representation experiment: sensitivity curves for different number of nodes
per layer ∈ [21, . . . , 29] and different number of actions per node ∈ [2, 5, 9, 17].
Solid line shows accuracy (scaled to [0, 1]), dotted line for entropy (H) layer
2 and dashed line for entropy of layer 3. All agents were trained for 100 epochs
and values represent average of last 20 epochs.

28

Chapter 4

Off-Policy Learning to Learn
CoAgents

The chief difference between using RL and typical optimization approaches,

both for SCGs and standard NNs, is that we can learn off-policy. When

training a neural network, it is rarely the case that the accuracy of predictions

matters when doing an update. Rather, this setting matches the fully offline

learning setting—the pure exploration setting—instead of the online setting

where the agent needs to maximize reward while learning. This highlights that

we can also use many different exploration approaches to gather useful data

about how to adjust the policies for more accurate predictions. For example,

the behavior could choose to make a poor prediction, to gather experience that

is more useful for improving accuracy than if the on-policy best prediction was

used. This separation is in stark contrast to methods like backprop.

In this section, we show how to learn critics off-policy, and that this im-

proves on using on-policy critics. We start by describing the algorithm, and

then provide results on MNIST.

4.1 An Off-Policy Algorithm for CoANs

The first step is to modify the REINFORCE update, to use an action-value

critic. Instead of using a sampled return G, we can estimate the expected

return Qj(oj,aj), for the coagent taking action aj given input oj, namely the

29

previous hidden layer hj−1. The update then uses:

(Qj(oj,aj)− Vj(oj))∇θj ln πj(aj|oj)

Where for the final layer we do not learn a critic and simply using the im-

mediate reward (i.e., the negative of the error). These action-values can be

updated on-policy, each time the network is queried, using a SARSA update

θ(q)j ← θ(q)j + α(0 +Qj+1(oj+1,aj+1)−Qj(oj,aj))∇Qj(oj,aj)

where Qj(oj,aj) can simply be a linear function of oj,aj—namely a linear

function of [hj−1,hj]—or could itself be a small neural network.

This strategy, however, introduces bias for two reasons. First, estimating

action-values means we have some error in our expected return estimate due

both to estimate error and approximation. Second, the local action values are

actually tracking a non-stationary target. They estimate the expected return

for an action, where the expectation is taken over the input and output as

well as the actions of the other coagents. Further, the coagent is attempting

to learn how to select actions, given stochastic action selection by the other

coagents rather than the best action (greedy action) for each coagent. This

nonstationarity and difficulties in credit assignment is well-recognized as an

issue in multi-agent reinforcement learning (Foerster et al., 2018; Rashid et al.,

2018; Tesauro, 2003). However, in our setting, the known structure between

agents means we can more easily obtain a solution, than an unstructured

collection of cooperating agents.

The key is to reason about greedy actions of downstream coagents, rather

than the action they actually took. The update has a small modification, to

instead use a maximum over values in the next layer

θ(q)j ← θ(q)j + α(0 + max
a′

Qj+1(oj+1,a
′)−Qj(oj,aj))∇Qj(oj,aj)

Given the input, the agent asks: what is the value of each action, given the

maximal actions that will be taken for downstream layers? This update boot-

straps only on the action-value in the next layer, but the update for that Qj+1

also bootstraps off of the max in the next layer. Therefore, each action-value

30

starting from the end of the network is learning about maximal action-values

for downstream coagents, and propagating that information backwards. This

approach directly exploits the known Markov structure of the credit assign-

ment problem, and so should learn more efficiently than using structureless

algorithms like REINFORCE. Note the coagents need not reason about greedy

actions for upstream coagents, because action-values are conditioned on inputs

produced by those coagents.

The purpose of these experiments is twofold. Firstly, we wish to study

whether off-policy learning can indeed offer advantages in our case. Secondly,

as shown in previous experiments in section 3.3, intermediate layers have a

hard time settling to deterministic policies. By introducing critics, we can

tradeoff some variance for bias; hence we wish to observe whether coagents in

intermediate layers are able to approach a deterministic policy.

4.2 Experimental Details

We perform experiments where we estimate the Qj(oj,aj) function for each

layer in the CoAN, using the on-policy and off-policy approaches.

The on-policy case only requires a single sampling operation which is in-

cluded in the forward inferencing part. In the off-policy case, bootstrapping

from the greedy action in the next layer requires access to the joint greedy

actions of all coagents in that layer with respect to its critic. This is a hard

optimization problem, and rather than finding the joint greedy action, we just

query each coagent in the next layer for its greedy action. As these agents

learn in a stochastic environment and ideally should account for stochasticity

when learning their respective policies.

We allowed our agents to select from different forms of critics, which include

linear and single-layered neural nets with (64, 128 & 1024) nodes. We found

that NN critics worked best with 1024 nodes and a learning rate twice the value

of the CoAN. We keep the other hyperparameters the same from Section 3.3.

Note that here our goal is to understand if critics can help, and so we allow

for larger critics per coagent; practically, depending on the setting, there may

31

90

80

70

60

50
0 200 400 600 800 1000

Tr
ai

n
Ac

cu
ra

cy

Epochs

3 Layer

Co-AC Off Policy

Co-AC

1.0

0.8

0.6

0.4

0.2

0
0 200 400 600 800 1000

Epochs

Co-AC Off policy

Sparsity

Ac
cu

ra
cy

 /
En

tr
op

y
/ S

pa
rs

ity

Entropy

Layer 2
Layer 1

Layer 3Accuracy

(a) (b)

Figure 4.1: (a) Learning curves comparing on policy and off policy actor
critic. (b) Entropy curves for off policy actor critic coagents networks. Both
the graphs are for a three layered network, averaged over 10 runs, for 64 nodes
and 1K epochs.

be stronger limitations on the critics.

Algorithm 2 provides the pseudo code for critics and off-policy learning in

CoAN’s.

4.3 Results with Off-Policy CoANs

Figure 4.1 (a) presents the results for on-policy (Co-AC) and off-policy (Co-

AC Off Policy) critics. We find that off-policy critics help improve perfor-

mance, particularly later in learning, whereas the on-policy critic is plateauing

at a lower point. In the next set of graphs (Figure 4.1 (b)), we can observe

that the critics can indeed help reduce variance for intermediate layers (layer

2). We don’t observe the decay for the last layer because the last layer still

uses the noisy reward signal directly. This can be attributed to bootstrapping

from targets that average out the variance in targets because of the nondeter-

minism in downstream nodes, hence allowing for faster convergence. Still, at

the same time, biasness causes the point to be sub-optimal.

As a note, the performance with critics is actually worse than that of RE-

INFORCE, likely due to bias in the critics. Better approaches to learning the

critic off-policy, including using methods like replay, should help us close this

gap. Our goal in this experiment was primarily to contrast the on-policy and

off-policy critics, highlighting that off-policy learning is a promising direction

32

towards addressing the nondeterminism issue in CoANs.

4.4 Summary

This chapter introduced critics for CoAN’s learning and presented an off-policy

variant of the learning algorithm to deal with the nondeterminism of down-

stream nodes. We saw that off-policy learning improvements over on-policy

critic algorithms but doesn’t achieve the performance we observe with the

REINFORCE update because of the bias introduced by critics. Also, in its

current form, the layer-wise critics handle nondeterminism for nodes in down-

stream layers, ignoring the same for nodes in the same layer. This would

demand learning a critic separately for each coagent, and it is not clear how

bootstrapping will occur in that setting.

In the next chapter, we look at settings where active exploration from

CoAN’s can offer benefits for learning in nonstandard settings and even im-

prove backpropagation.

33

Algorithm 2 Binary discrete coagent with critic and off policy learning for
classification

Input: Number of coagents per layer n, Number of layers k, feature size d
and D be the dataset distribution. Number of epochs e, Batch Size: b.
Initialize: 2 action softmax policy for all n×k coagents, with linear function
approximation parameterized by θi,j.
Initlialize: Final layer (of size n × c) with c outputs corresponding to
number of classes for task, called as f .
Initlialize: Critics (q0, . . . qk), one for each layer, mostly a linear function,
parameterized by θ(q)i
Input Param: α - stepsize for gradient descent, for all components
repeat
x, y ∼ D batch of size b
o0 = x
// Forward Pass

for i = 0 to k − 1 do
for j = 0 to n− 1 do
ai,j ∼ πi,j(oi)

end for
ai = (ai,0, . . . ai,n−1)
oi+1 = ai

end for
ŷ = f(ok)
G = −CrossEntropy(y, ŷ)
qk+1(.) = G
// Backward Pass

for i = k to 0 do
// Update critics with target policy

ai+1 ← πgreedy
i (oi+1)

Qtar = qi+1(oi+1,ai+1)
gqi = (Qtar − qi(oi,ai))∇θ(q)iqi(oi,ai)
θ(q)i = θ(q)i + αgqi
for j = 0 to n− 1 do
gi,j = (Qtar)∇θi,j ln(πi,j(ai,j|oi))
θi,j = θi,j + αgi,j

end for
end for

until Number of e epochs achieved

34

Chapter 5

Potential Advantages of CoAN’s

In the previous sections, we chose settings where backprop is effective, to make

the results more interpretable and start from the standard learning setting.

Backprop is designed to decimate these problems having access to the full

model of the agents, and the problem. Whereas the motivation of the CoAN’s

goes much beyond the standard setting of supervised learning. In this chapter

we investigate two simple settings where CoAN’s can offer potential advantages

over plain gradient descent methods. First setting gives us some insight into

possibility of avoiding local minima and saddle points by using stochastic nodes

in general. Second setting provides experiments on the performance of CoAN

and gradient methods on the online learning setting.

5.1 Avoiding Local Minima

We perform a set of simple experiments to assess the performance of stochas-

tic nodes stacked against deterministic nodes for minimizing functions which

might have local minima and saddle points. The goal is to understand if the

exploration from stochastic nodes trained using policy gradient methods can

escape local minima and saddle points on simple loss surfaces.

5.1.1 Problem Setup and Experimental Details

To keep things simple, we define our loss functions to be parameterized with

a scalar weight w. For the first loss function L1(w) = −w + sinw, in which

case the optimal value lies towards w∗ = +∞, with the L1(w
∗) = −∞. The

35

Figure 5.1: First column depicts the loss curve and corresponding derivative
with respect to the scalar weight of both problems. Second column corresponds
to the learning curve followed by the sensitivity of α for all the methods. The
stochastic node is averaged over 50 runs.

loss surface has several saddle points. This problem can be solved with large

step sizes in a single direction. We also look at a problem with a real valued

global minima and several local minima with loss L2(w) = w2 + 16 sin2w,

where w∗ = 0 and L2(w
∗) = 0.

The experiment is aimed at comparing learning methods, hence we start

the optimization process from w0 = 2 for L1 and w0 = −12 for L2. We

optimize for a single weight vector, using different gradient strategies, i.e. gra-

dient descent (GD), RMSprop (swept with β ∈ {0.9, 0.99, 0.999}) and ADAM

(Kingma and Ba, 2015) (swept with β1 and β2 ∈ {[0.9, 0.99, 0.999}). We also

train a stochastic node using REINFORCE and a baseline. The stochastic

node outputs a weight in the learning process, the weight is sampled from

a Gaussian distribution where µ0 = w0 with standard deviation σ swept in

{2−2, 2−1, 20, 21, 22, 23}.

For the first problem each algorithm runs for 2000 update steps, for the

second problem, each algorithm runs for 1000 update steps. In both cases we

sweep α ∈ {2−2, . . . , 2−9} and the stochastic node is averaged over 50 runs.

36

5.1.2 Results

We report the performance of the different learning methods in Figure 5.1. For

the first loss function L1, GD and RMSprop both get stuck at the saddle points,

while ADAM is able to escape saddle points likely due to the momentum term,

and generally performs similar to the stochastic node. For the second loss

function L2, ADAM outperforms the stochastic node with larger step sizes

(and likely with smaller stepsizes too given enough steps to run), even without

added noise in the loss. RMSprop performs with α = 0.25 about as well as

the stochastic node with smaller step sizes. Gradient Descent quickly reaches

the basin of global minimum, however it oscillates around it due to the large

stepsize, whereas with smaller stepsize it gets stuck in a local minimum and

overall ends up performing worst from all four methods. As the sensitivity

curve in Figure 5.1 demonstrates, the stochastic node is insensitive to and

performs best with smaller step sizes, but at α = 2−5 and above it is unable

to learn. This experiment hence demonstrates that stochasticity in updates

is an effective strategy to optimize (although its tends to be high variance),

requires little stepsize-tuning as long as the stepsize is small enough. Whereas

for backprop ADAM proves to be an effective strategy to solve this sort of

problems with appropriate hyperparameter tuning.

One might argue that the stochastic variants of gradient descent meth-

ods can introduce the relevant stochasticity to avoid local minima and saddle

points when comparing to coagents. It is important to note, that in those set-

tings the stochasticity is not under the control of the agents, i.e. the stochas-

ticity is the feature of the environment, whereas with stochastic nodes, the

responsibility of exploration lies with the agent itself, hence giving it control

in the direction of optimization with clever exploration techniques.

5.2 Continual Learning on Correlated Data

The goal of this section is to understand the learning in online learning settings

with correlated data and the need for real-time learning and decision-making.

CoANs also naturally facilitate asynchronous inputs and updating (Kostas et

37

al., 2020), as well as learning with recurrence.

In this section, we investigate the utility of CoANs for prediction when

learning online with highly temporally correlated inputs. We expect CoANs

to be less prone to failure than backprop, which can completely overwrite

previous learning when learning on correlated data. Furthermore, because

coagents are RL agents, the policies should better track and adapt to changes

in the environment, which again is a feature of active exploration.

5.2.1 The Continual Learning Problem

To measure CoAN’s ability to learn online with various degrees of temporal

correlation, we examine the performance of Co-G on the PieceWise Random

Walk Problem introduced in Pan et al. (2021), with the same parameter

settings and target function.

Piecewise Random Walk problem

Pan et al. (2021) introduced the following problem where we have a fixed

Gaussian Xt ∼ N (St, β
2), with fixed variance β2 and mean St, that drifts

every T time steps. The mean St, stays fixed for T time steps, then drifts

according to a random walk.

In this dataset, the correlation difficulty parameter d ∈ [0, 1] controls the

amount of temporal correlation within the data: 0 stands for iid data points,

while 1 indicates a fully temporally correlated dataset, while maintaining a

stationary distribution. The dataset generated {(Xt, Yt)}t∈N is from the class

of regression problem, where xt ∼ Xt is generated as described above, and

regression label yt is defined as yt = sin 2πx2t . Figure 5.2 shows examples of

the data points produced for different level of difficulties starting from iid (d

= 0), to very difficult i.e. completely correlated (d=1).

5.2.2 Experiments

We first train Co-G and backprop for 180,000 training steps, with d ∈ {0, 0.85, 0.95, 1},

and test it every 900th step on a test set of 1,800 iid samples, with the best

38

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

0 200 400 600 800 1000

1.0

0.5

0.0

-0.5

-1.0

d=0.0

t

d=0.25

d=0.75

d=0.95
d=0.98

d=1.0

t

t

t

t

t

St = �피[Xt]

Xt

Figure 5.2: Piecewise random walk problem, with sample trajectories of
{Xt}t∈N (blue) and {St}t∈N (black), with different level of difficulties.

0.45

0.40

0.35

0.30

0 50K 100K 150K 200K 250K 300K

Te
st

 L
os

s

Steps

Co-G

BP

d=1.0

d=0.98

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

 2−14 2−13 2−12 2−11 2−10 2−9 2−8 2−7

Te
st

 L
os

s

α

Co-G

BP

d=0.95

(b)

Figure 5.3: (a) CL experiments with problem difficulties at d = 0.98 dashed
lines and solid lines for d = 1.0 comparing backprop and CoAN’s. (b) Sen-
sitivity plots in CL problem for learning rate (α), for problem difficulty of
d = 0.95.

hyperparameters picked on the validation set of equal size. Standard devia-

tion for Co-G is swept σ ∈ {2−4, 2−2, 20, 21, 22, 23, 24}. For both algorithms,

stepsize values are swept α ∈ {2−14, 2−13, 2−12, 2−112−9, 2−7}, the batch size is

fixed at 32, number of units at 50, and number of hidden layers at 1. Co-

G is trained using the RMSProp optimizer, while backprop is trained using

the Adam optimizer, both with standard β values. Then, using the chosen

hyperparameters, we allow the agent to continue learning up to 320,000 train-

ing steps on d ∈ {0.98, 1}, to gauge the long run performance on extremely

correlated data. Results are averaged over 200 runs.

39

5.2.3 Results

As expected, backprop outperforms Co-G when trained on iid samples, and

it also achieves lower error on d=0.85. Co-G begins to display an edge at

d=0.95, where it achieves similar performance to backprop, and at d=1, Co-G

performs better and continues to learn steadily, while backprop is incapable of

learning. In addition, the sensitivity plot for this experiment in Figure 5.3 (b)

depicts that while backprop’s performance is largely dependent on the correct

alpha parameter, Co-G’s performance remains approximately the same across

the swept alpha values.

Looking at long run performance after 180,000 steps, we see two interesting

phenomena. Co-G is able to continue to steadily learn on the highly corre-

lated dataset, unlike backprop. But, for d=0.98, backprop actually starts to

match the performance of Co-G. Again, Co-G may be plateauing early at a

suboptimal solution, as we found in previous results. As well, for backprop

improving eventually on this highly correlated datastream, these results are

for very carefully swept hyperparameters, and we do see that backprop is quite

sensitive to the stepsize. Under this heavy correlation, therefore, we find that

CoANs provide more robust performance, in that they provide steady progress

from the very beginning of learning and are much less sensitive to the stepsize.

40

Chapter 6

Conclusion

In this text, we investigated the use of reinforcement learning (RL) for the

structural credit assignment problem in neural networks. We formalized this

problem as a finite-horizon MDP, and showed that local policy gradient up-

dates for each node (coagent) provide an unbiased estimate of the joint policy

gradient for all nodes. We show that the basic local policy gradient update

for this coagent network (CoAN) can learn—even under difficult learning set-

tings like highly correlated data—but that it plateaus at suboptimal solutions.

Through a set of targeted experiments, we identify nondeterminism amongst

coagents resulting in each node outputting suboptimal activations, to account

for the suboptimal sampled activations of other coagents. We highlight that

off-policy learning can naturally be applied to this problem, through the use

of off-policy critics. We show that this strategy is promising, that much more

work needs to be done to improve the learned critics and mitigate bias.

An important point highlighted in this work is that RL approaches to credit

assignment have not been systematically explored for structural credit assign-

ment. The work formalized CoANs focused primarily on credit assignment

across time (Kostas et al., 2020), without exploiting the internal structure

of the network to improve coagent learning. Some of the work in stochastic

computation graphs has looked at generic uses of baselines and critics (Weber

et al., 2019), but even there when discussing RL, did not consider the rela-

tionship to structural credit assignment for a standard feedforward NN and

the ability to exploit the finite horizon structure. The Markov structure fa-

41

cilitates bootstrapping and learning about the dynamics more efficiently just

using short transitions. There are more insights, from planning, replay and

exploration, that can be leveraged to improve structural credit assignment.

In their current form, the methods presented are still limited in their ap-

plication and performance over standard methods. This raises two points to

work on in the future. The first is to obtain better off-policy methods to

close the gap between standard REINFORCE methods and actor-critic while

getting the potential benefits of off-policy learning. Having individual critics

for each coagent will allow them to also deal with non-determinism from the

coagents in the same layer and perhaps offer a more sound way to perform

greedification operation in the off-policy setting.

Secondly, studying more deeply the settings where CoAN’s have clear bene-

fits, just like we showed how CoAN’s might offer benefits in continual learning.

It demands a more rigorous investigation as to why this happens and if there

are other problem settings / non-standard network structures that can leverage

this form of credit assignment.

42

References

Agogino, A. K., & Tumer, K. (2004). Unifying Temporal and Structural Credit
Assignment Problems, In Proceedings of the Annual Conference on Au-
tonomous Agents, AAMAS. 5

Balduzzi, D., Vanchinathan, H., & Buhmann, J. (2015). Kickback Cuts Back-
prop’s Red-Tape: Biologically Plausible Credit Assignment in Neural
Networks. Proceedings of the AAAI Conference on Artificial Intelli-
gence. 4

Barto, A. G. (1985). Learning by statistical cooperation of self interested
neuron-like computing elements. Human Neurobiology. 2

Bengio, E., Bacon, P.-L., Pineau, J., & Precup, D. (2015). Conditional Com-
putation in Neural Networks for Faster Models. arXiv:1511.06297. 5

Bengio, Y. (2014). How Auto-Encoders Could Provide Credit Assignment in
Deep Networks via Target Propagation. arXiv:1407.7906. 2, 3

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2016). Towards
Biologically Plausible Deep Learning. arXiv:1502.04156. 2

Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computation.
arXiv:1308.3432. 2, 5, 24, 25

Carreira-Perpinan, M., & Wang, W. (2014). Distributed Optimization of Deeply
Nested Systems, In Artificial Intelligence and Statistics, AISTATS. 2, 3

Chang, Y.-H., Ho, T., & Kaelbling, L. P. (2003). All Learning is Local: Multi-
Agent Learning in Global Reward Games, In Advances in Neural In-
formation Processing Systems, NeurIPs. 5

Denoyer, L., & Gallinari, P. (2014). Deep Sequential Neural Network. arXiv:1410.0510.
5

Fiete, I. R., & Seung, H. S. (2006). Gradient Learning in Spiking Neural Net-
works by Dynamic Perturbation of Conductances. Physical Review Let-
ters. 2, 4

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018).
Counterfactual Multi-Agent Policy Gradients, In Proceedings of the
AAAI Conference on Artificial Intelligence. 6, 30

Gu, S., Levine, S., Sutskever, I., & Mnih, A. (2016). Muprop: Unbiased Back-
propagation for Stochastic Neural Networks, In International Confer-
ence on Learning Representations, ICLR. 5

43

Hinton, G. E. (2002). Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation. 4

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Sil-
ver, D., & Kavukcuoglu, K. (2017). Decoupled Neural Interfaces Using
Synthetic Gradients, In International Conference on Machine Learning,
ICML. 2

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization,
In 3rd International Conference on Learning Representations, ICLR. 36

Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning,
and Intelligence. 1

Kostas, J., Nota, C., & Thomas, P. (2020). Asynchronous Coagent Networks,
In International Conference on Machine Learning, ICML. 2, 12, 37, 41

Lansdell, B. J., Prakash, P. R., & Körding, K. P. (2020). Learning to Solve the
Credit Assignment Problem, In International Conference on Learning
Representations, ICLR. 2

LeCun, Y., & Cortes, C. (2010). MNIST Handwritten Digit Database. 14

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference Target Prop-
agation, In Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD. 2, 3

Legenstein, R., Chase, S. M., Schwartz, A. B., & Maass, W. (2010). A Reward-
Modulated Hebbian Learning Rule Can Explain Experimentally Ob-
served Network Reorganization in a Brain Control Task. Journal of
Neuroscience. 4, 5

Legenstein, R., Pecevski, D., & Maass, W. (2008). A Learning Theory for
Reward-Modulated Spike-Timing-Dependent Plasticity with Applica-
tion to Biofeedback. PLOS Computational Biology. 4

Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random
Synaptic Feedback Weights Support Error Backpropagation for Deep
Learning. Nature Communications. 4

Mahmood, A. R., & Sutton, R. S. (2013). Representation Search through Gen-
erate and Test, In Proceedings of the AAAI Conference on Artificial
Intelligence. 4

Markram, H., Gerstner, W., & Sjöström, P. J. (2012). Spike-Timing-Dependent
Plasticity: A Comprehensive Overview. Frontiers in Synaptic Neuro-
science. 4

Merkh, T., & Montúfar, G. (2019). Stochastic Feedforward Neural Networks:
Universal Approximation. arXiv:1910.09763. 5

Miconi, T. (2017). Biologically Plausible Learning in Recurrent Neural Net-
works Reproduces Neural Dynamics Observed during Cognitive Tasks.
eLife. 5

Movellan, J. (1991). Contrastive Hebbian Learning in the Continuous Hopfield
Model. Connectionist Models. 4

Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata - an
introduction. 2

44

Nath, S., Liu, V., Chan, A., Li, X., White, A., & White, M. (2020). Train-
ing Recurrent Neural Networks Online by Learning Explicit State Vari-
ables, In International Conference on Learning Representations, ICLR.

2, 4

Neal, R. M. (1990). Learning Stochastic Feedforward Networks (tech. rep.). 5

Nøkland, A. (2016). Direct Feedback Alignment Provides Learning in Deep
Neural Networks, In Advances in Neural Information Processing Sys-
tems, NeurIPs. 4

Oliehoek, F. A., Spaan, M. T. J., & Vlassis, N. (2008). Optimal and Ap-
proximate Q-Value Functions for Decentralized POMDPs. Journal of
Artificial Intelligence Research. 6

Pan, Y., Banman, K., & White, M. (2021). Fuzzy Tiling Activations: A Simple
Approach to Learning Sparse Representations Online, In International
Conference on Learning Representations, ICLR. 38

Raiko, T., Berglund, M., Alain, G., & Dinh, L. (2015). Techniques for Learn-
ing Binary Stochastic Feedforward Neural Networks, In International
Conference on Learning Representations, ICLR. 5, 6

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J. N., &
Whiteson, S. (2018). QMIX: Monotonic Value Function Factorisation
for Deep Multi-Agent Reinforcement Learning, In International Con-
ference on Machine Learning, ICML. 6, 30

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Repre-
sentations by Back-propagating Errors. Nature. 1

Saito, H., Katahira, K., Okanoya, K., & Okada, M. (2011). Statistical Mechan-
ics of Structural and Temporal Credit Assignment Effects on Learning
in Neural Networks. Physical Review. E, Statistical, Nonlinear, and Soft
Matter Physics. 4

Scellier, B., & Bengio, Y. (2017). Equilibrium Propagation: Bridging the Gap
between Energy-Based Models and Backpropagation. Frontiers in Com-
putational Neuroscience. 4

Schulman, J., Heess, N., Weber, T., & Abbeel, P. (2015). Gradient Estimation
Using Stochastic Computation Graphs, In Advances in Neural Infor-
mation Processing Systems, NeurIPs. 5

Shekhovtsov, A., & Yanush, V. (2021). Reintroducing Straight-Through Esti-
mators as Principled Methods for Stochastic Binary Networks. arXiv:2006.06880.

5

Shekhovtsov, A., Yanush, V., & Flach, B. (2020). Path Sample-Analytic Gra-
dient Estimators for Stochastic Binary Networks, In Advances in Neural
Information Processing Systems, NeurIPs. 24, 25

Tan, M. (1993). Multi-Agent Reinforcement Learning: Independent vs. Co-
operative Agents, In International Conference on Machine Learning,
ICML. 5

Tang, Y., & Salakhutdinov, R. (2013). Learning Stochastic Feedforward Neu-
ral Networks, In Advances in Neural Information Processing Systems,
NeurIPs. 5

45

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida,
A. S. (2019). Deep Learning in Spiking Neural Networks. Neural Net-
works. 6

Tesauro, G. (2003). Extending Q-Learning to General Adaptive Multi-Agent
Systems, In Advances in Neural Information Processing Systems, NeurIPs.

6, 30

Thomas, P. S. (2011). Policy Gradient Coagent Networks, In Advances in
Neural Information Processing Systems, NeurIPs. 2

Thomas, P. S., & Barto, A. G. (2011). Conjugate Markov Decision Processes,
In International Conference on Machine Learning, ICML. 2

Tieleman, T., & Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the Gradi-
ent by a Running Average of its Recent Magnitude. 15

Veeriah, V., Zhang, S., & Sutton, R. S. (2017). Crossprop: Learning Represen-
tations by Stochastic Meta-Gradient Descent in Neural Networks, In
Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD. 5

Weber, T., Heess, N., Buesing, L., & Silver, D. (2019). Credit Assignment
Techniques in Stochastic Computation Graphs, In Artificial Intelligence
and Statistics, AISTATS. 2, 5, 12, 15, 41, 47–50

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning. 1

Wolpert, D. H., & Field, M. (2002). Optimal Payoff Functions for Members of
Collectives. Modeling Complexity in Economic and Social Systems. 5

Wolpert, D. H., Wheeler, K. R., & Tumer, K. (1999). General Principles of
Learning-Based Multi-Agent Systems, In Proceedings of the Annual
Conference on Autonomous Agents, AAMAS. 5

46

Appendix A

Appendix

A.1 Stochastic Computation Graph for Finite

Horizon MDP

In this section we aim to connect our formalism to the more general concepts

of stochastic computation graph (SCG). This allows us to use concepts from

that work and develop algorithms for same.

Weber et al. (2019) showed that the finite horizon MDP can be seen as

stochastic computation graphs. Since we formalize our problem as a finite

horizon MDP, our problem can also be seen as an instance of SCG. First, we

define the SCG framework and then present the MDP in the same.

Definition 1 (Stochastic Computation Graph). A stochastic computation

graphs G is a directed acyclic graph, with two classes of nodes (also called

as variables).

• Stochastic Nodes (represented with circles ©, and set S1), which are

distributed conditionally on their parents

• Deterministic Nodes (represented with squares �, and set D), deter-

ministic functions of their parents. Within deterministic nodes we also

have other classes of nodes as follows

– Parameter Nodes: These nodes don’t have parents in the graph,

1not to be confused with the state set of an MDP, for this section we will focus on this
being the set of stochastic nodes in the computation graph.

47

and are set externally, for e.g. the parameters we wish to differen-

tiate with respect to θ ∈ Θ

– Loss Nodes (represented as diamonds �), which represents the

cost / losses with respect to which we aim to compute he gradient

of our parameter nodes Θ, denoted as l ∈ L.

A parent v of a node w is connected to it by a directed edge (v, w). Let L =∑
l∈L l be the total cost.

For simplicity, for a node v, we let hv denote the set of parents of v in the

graph. If there exists a path between v and w, such that a0 = v, a1, . . . , aM−1, aM =

w, where (am−1, am) are directed edges of the graph, we can say, w descends

from v, denoted as v ≺ w.

Also, we define the gradients of any sampling operation to be zero, i.e.,

the gradient of non-deterministic descendants with respect to inputs is always

zero.

Gradient estimation for SCG The expected loss J(θ) = Es∈S[L]. The

gradient of J(θ) wrt to θ is given by Weber et al., 2019, Theorem 1

d

dθ
J(θ) = E

[∑
v∈S,θ≺v

s(v, θ)L+
∑

l∈L,θ≺l

dl

dθ

]
(A.1)

The first part of the equation corresponds to the REINFORCE update. The

second part includes all the paths to cost, containing a deterministic path

from the parameters (as gradients through stochastic path automatically are

defined as 0).

Score Function. For any stochastic variable v, we let log p(v) denote the

conditional log-probability of v given its parents, and let s(v, θ) denote the

score function d log p(v)
dθ

Figure A.1 shows an example of an SCG, through which we will explain

different concepts as well.

Definition 2 (Value Function). Let X be an arbitrary subset of G, x an

assignment of the possible values to variables in X and S an arbitrary scalar

48

value in graph. The value function for set X is the expectation of the quantity

S conditioned on X :

V : x→ V (x;S) = EG\X |X=x[S]

Intuitively, the value function averages out the effect of other nodes (not

in the set under consideration X) on the cost.

Rooted cost to go. Considering a node v ∈ G, we define L(v) =∑
l∈L,v≺l l, where we can replace v with a set of nodes also i.e. V , and L(V)

would represent the cost for that set. The scalar S is usually the cost to go to

L(v) for some node (set of nodes for V).

We are going to define two more functions that generalize to the policy

gradients.

Definition 3 (Baselines). A baseline B for v is any function of the graph

such that E[s(v, θ)B] = 0. A baseline set B is an arbitrary subset of the non-

descendants of v.

Baselines are of interest because any arbitrary scalar function of B, is a

baseline for v. Common choices for baseline include, constants i.e. B = ∅, or

B = hv, i.e. parents of v.

Definition 4 (Critic). A critic Q of cost L(v) for v is any function of the

graph such that E[s(v, θ)(L(v)−Q)] = 0

Having defined critics and baselines, consider an arbitrary baseline Bv and

arbitrary critic Qv for each stochastic node v, we can define a surrogate loss

for equation A.1 which provides an unbiased gradient, i.e. Weber et al., 2019,

Theorem 2

d

dθ
J(θ) = E

[∑
v∈S,θ≺v

s(v, θ)(Qv − Bv) +
∑

l∈L,θ≺l

d

dθ
l

]
(A.2)

Where difference Qv − Bv between critic and baseline is called as the ad-

vantage function. We skip the proof for brevity.

49

v0

v1

v2 v3

l1 l2

v0

v1

v2 v3

l1 l2

v0

v1

v2 v3

l1 l2

v0

v1

v2 v3

l1 l2

v0

v1

v2 v3

l1 l2(a) (b) (c) (d) (e)

Figure A.1: (a-e) Different value functions for the same SCG with X a =
{v0},X b = {v0, v1},X c = {v1},X d = {v2},X e = {v0, v2}. The variables
averaged over are shaded in light gray.
(a,b,c) are valid baselines for v2; (d,e) cannot act as baselines for v2 since v2
belongs to those sets, but can act as baseline for v3.
(a,b,e) are critics for v0, but (c,d) are not. (b) is a critic for v1. (c) is not a
critic for v1 Finally (d,e) are critics for v2
This plot is adapted from from Weber et al., 2019, Figure 3

Definition 5 (Baseline value function and critic value function). Baseline

value function is defined as a value function for a node v which has a baseline

set B.

The critic value function is defined as a value function for set C and node

v, such that v ∈ C, and log p(v) and L(v) are conditionally independent given

C.

Figure A.2 shows the example of a finite horizon MDP defined as an SCG,

with appropriate node types. This graph structure gives us a clear picture to

identify appropriate baselines and critics for our SCG.

For the standard MDP setup (Figure A.2) in RL, C consists of the state s

and action a, which is taken by stochastic policy π in state s with probability

log π(a|s) which is a deterministic function of (s, a). The definition is more

general than the conventional usage of critics as it does not require C to contain

all stochastic ancestors nodes required to evaluate log p(v).

50

s0

a0

s1 s2

r1 r2 …
a1 a2

sT−1 sT

rT−1 rT

aT−1

θ0 θ1 θ2 θT−1

Figure A.2: SCG for a finite horizon MDP. Each step uses a different set of
parameters for their policy, unlike standard MDP setting, where the policy
applied at each step might share the same parameters.

51

	Introduction
	Related Work
	Contributions and Outline

	Structural Credit Assignment as a Finite Horizon Reinforcement Learning Problem
	Formalism

	Issues with Nondeterminism in CoANs
	Continuous Nodes
	Experimental Details
	Using Baselines to Lower Variance
	Results with Variance Reduction

	Controlled Nondeterminism Experiments
	Failures of Simple On-policy Approaches to Reduce Nondeterminism

	Discrete Actions Helps Control Stochasticity, But Not Enough
	Experimental Details
	Results
	Investigating Nondeterminism of Discrete Agents

	Summary

	Off-Policy Learning to Learn CoAgents
	An Off-Policy Algorithm for CoANs
	Experimental Details
	Results with Off-Policy CoANs
	Summary

	Potential Advantages of CoAN's
	Avoiding Local Minima
	Problem Setup and Experimental Details
	Results

	Continual Learning on Correlated Data
	The Continual Learning Problem
	Experiments
	Results

	Conclusion
	References
	Appendix Appendix
	Stochastic Computation Graph for Finite Horizon MDP

