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ABSTRACT

Based on Darcy's law, Fick's dispersion law and the continuity equation, a
new mathematical model for one-dimensional miscible displacement has been
developed. To analyze the effects of the parameters included in the model, an
approximate analytical solution to the model was found. Furthermore, a theoretical
analysis based on linear perturbation theory, together with the new model, has been
made to derive a dimensionless scaling group to predict the onset of insiability. The
experimentally determined effluent curves of miscible displacements were compared

with the theoretical results which were calculated using the new model.

It was found from the approximate analytical solution that the transition
zone grows with the square root of time at early stages when dispersion dominaies.
As a displacement goes on, the transition zone grows linearly with time when the
effect of dispersion is negligible. Experimental data published in the literature
confirmed this phenomenon [Withjack, 1988]. Through effluent history match
calculations, it is shown that the effective viscosity ratio and the dispersion
coefficient increase with increasing flow rate, and the dispersion coefficient

decreases as the viscosity difference becomes larger.
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NOMENCLATURE
A parameter defined by Equaton (5.27)
Cross-sectional area, m2
Variational coefficients
A parameter defined by Equation {5.28)
Solvent concentration, dimensionless
Unperturbed solvent concentration, dimensionless
Solvent concentration perturbation, dimensionless
Amplitude of solvent concentration perturbation, dimensionless
Longitudinal dispersion coefficient, m?/s
Transverse dispersion coefficient, m2/s
Effective viscosity ratio, dimensionless
Fractional flow of oil in effluent, dimensionless
Fractional flow of solvent in effluent, dimensionless
Fractional flow of solvent in effluent caused by convection, dimensionless
Gravitational acceleration, m/s2

Heterogeneity factor of the porous medium, dimensionless



1 Instability number, dimensionless

k Absolute permeability, m2

K Ratio of transverse to longitudinal dispersion coefficients, dimensionless
L Length of the porous medium, m

Ly Width of the porous medium, m

Ly Height of the porous medium, m

M Gradient of the natural logarithm of unperturbed viscosity, m-!
P Pressure, Pa
P Unperturbed pressure, Pa

P Pressure perturbation, Pa

p(2) Amplitude of pressure perturbation, Pa

Pe Peclet number, dimensionless

q Total volumetric flow rate, m3/s

Qo Volumetric flow rate of oil, m3/s

ds Volumetric flow rate of solvent, m3/s

9oD  Volumetric flow rate of oil caused by dispersion, m3/s

9ov  Volumetric flow rate of oil caused by convection, m3/s



4sD  Volumetric flow rate of solvent caused by dispersion, m3/s
Qsv Volumetric flow rate of solvent caused by convection, m3/s
Rp Experimentally measured breakthrough recovery, dimensionless

Rpc Calculated breakthn. gh recovery, dimensionless

t Real time, s

u Velocity in the x-direction, m/s

u Unperturbed velocity in the x-direction, m/s
u* Perturbation velocity in the x-direction, m/s
v Velocity in the y-direction, m/s

v Unperturbed velocity in the y-direction, m/s
v* Perturbation velocity in the y-direction, m/s
\'% Displacement velocity, m/s

Vk Permeability variation coefficient defined by Walsh et al. [1993],

dimensionless

w Velocity in the z-direction, m/s

g

Unperturbed velocity in the z-direction, m/s

w* Psrterbation velocity in the z-direction, m/s



w(z)

Ho

Hs

|

Amplitude of velocity perturbation in the z-direction, m/s
Moving coordinate

Stationary coordinate

Wave number, m-1

Dirac delta function

Any perturbed dependent variable

Any unperturbed dependent variable

Perturbation to any of the dependent variables
Amplitude of perturbation to any of the dependent variables
Viscosity, Pa.s

Unperturbed viscosity, Pa.s

Perturbation viscosity, Pa.s

Oil viscosity, Pa.s

Solvent viscosity, Pa.s

Density, kg/m3

Unperturbed density, kg/m3

Perturbation density, kg/m3



Po

Ps

Tb

Oil density, kg/m3

Solvent density, kg/m3

Pore volumes injected, dimensionlcs_ss
Breakthrough recovery, dimensionless

Function defined by Equation (7.6), dimensionless
Porosity, dimensionless

Dimensionless length



1. INTRODUCTION

As the cost of petroleum exploration increases, it becomes desirable to
recover more oil from already-found oil reservoirs. Because ordinary water
flooding leaves approximately 50 to 60 per cent of the original oil unrecovered,
various enhanced oil recovery methods have become more and more important.
Miscible displacement attracts people's attention because very high recovery can be
obtained from the contacted parts of a reservoir. But the development of miscible
flooding projects is slow due to the very large investment required and the
uncertainty of oil production performance.

The uncertainty associated with the oil production performance arises out of
fingering and gravity tonguing of the less viscous and less heavy miscible solvent
into the reservoir fluid, which causes severe reduction of the volumetric sweep
efficiency [Stalkup, 1984]. This phenomenon becomes more complicated when the
heterogeneity of the reservoir is taken into account [Hewett and Behrens, 1993].

To decrease the expenditure involved, a principal soivent slug, which is
miscible with the in-situ reservoir oil, is chased by a cheap solvent which is
miscible with the principal solvent, but not with the oil. Because of dispersion
between the principal solvent and the oil, as well as between the solvent and the
chasing solvent, the principal solvent slug is diluted to a level below which it can be
miscible with the reservoir fluid. So, it is very important to predict the extent of
dispersion or mixing as the solvent slug travels through the reservoir formation.

The difference in miscible solvent components and operating conditions
divides the process into two cuiegcries. When the injection fluids for miscible
displacement mix directly with reservoir oils in al proportions and their mixtures

remain single phase, they are called "first-contact-miscible". Some other injection
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fluids, although they are not first-contact-miscible with reservoir fluids, can also
form a continuous transition zone of fluid compositions that ranges from oil to
injection fluid composition, through a series of in-situ mass transfers of the
components between the reservoir oil and the injection fluid. Miscibility achieved
by in-situ mass transfer of components resulting from repeated contact of oil and
injection fluid during flow is called "multiple contact” or dynamic miscibility
[Stalkup, 1984].

As compared to immiscible displacement, first contact miscible flooding has
a very distinct characteristic: there is no interface between the displacing and the
displaced fluid. Consequently, it is not necessary to consider the effect of capillary
forces as one has to for immiscible flooding. But another phenomenon, dispersion
or mixing between the injection solvent and the reservoir oil, which affects the
displacement performance, must be taken into account in addition to the pressure
force.

Great efforts have been made to develop mathematical models to describe
miscible displacement adequately [Dougherty, 1963; Koval, 1963; Perrine, 1963;
Deans, 1963; Coats and Smith, 1964; Nguyen and Bagster, 1979; Fayers, 1984;
Vossoughi et al., 1984; Udey and Spanos, 1991; Udey and Spanos, 1993; Walsh
and Withjack, 1993] . There are basically three types of mathematical models for
miscible displacement. The first one is the standard theory which is a combination
of Fick's law and the continuity equation. Based on this theory, the transition zone
length grows with the square root of time. Some recent experiments have
demonstrated that this is not always true [Walsh and Withjack, 1993]. Furthermore,
the value of the dispersion coefficient needed by a simulation to match an actual
field scale miscible displacement is usually much larger than that obtained from the

breakthrough curves of core flooding in the laboratory [Pickens and Grisak, 1981].
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Therefore, the dispersion is apparently scale dependent. The second approach is to
use immiscible two-phase flow theory for miscible displacement, which means that
dispersion is totally neglected. Based on this theory, the transition zone length
grows linearly with time. Obviously, this theory approaches the correct solution
only when the flow rate is great enough or other variables such as heterogeneity of
the porous medium and the properties of the fluids make convection dominate the
process. In fact, dispersion plays a very important role during miscible
displacement [Blackwell et al., 1959]. Finally, the third approach is to combine the
effects of dispersion and convection.

The purpose of this study is to use the third approach to derive a
mathematical model for miscible displacement, which includes the viscosity ratio of
the fluids and the heterogeneity of the porous medium explicitly in the model. Then,
the model is used to match the experimental data taken in this study and published
in the literature. Moreover, by incorporating linear perturbation theory with the new
model, an attempt is made to derive a dimensionless scaling group for the
thecretical prediction of the onset of instability of a miscible displacement conducted

in a heterogeneous porous medium.



2. LITERATURE REVIEW

First contact miscible displacement, theoretically speaking, can recover
100% of the contacted oil due to the fact that there is no interface between the
displaced oil and the injected solvent. But, in practice, the viscosity difference of
the oil and solvent and the heterogeneity of the porous medium decrease the sweep
efficiency to such an extent that miscible displacement is no longer attractive or
profitable. In addition to the traditional convection-dispersion equation, which was
derived from Fick's first diffusion law and valid only for matched miscibie fluids
and homogeneous porous media [Aris and Amundson, 1957], some different
mathematical models have been proposed, which are capable of taking into account
unmatched densities and viscosities and the non-uniform properties of the porous
medium. Because of the very large number of papers in the literature, only major
works are reviewed in this section.

When the Fickian dispersion law is employed to describe the mixing effects
of matched fluids in a uniform porous medium, one obtains the traditional
convection-dispersion equation [Aris and Amundson, 1957], which is given as
Equation (2.1):

-(v.Vc)+V.(D.'Vc)=—a£.

ot 2.1)

In a semi-infinite, one dimensional system, the above equation has an error function
type solution [Brigham, 1974]. When the Dirichlet condition at the inlet and the
Neumann condition at the outlet end are applied for a finite system, the solution has

the form of an infinite series of error functions, where the successive terms arise
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from superimposed reflections at the outlet end [Oguztoreli and Farouq Ali, 1984].
Brigham [1974] pointed out that the concentration of one fluid in the effluent
measured during the displacement experiment was a flowing concentration (or
fractional flow of the fluid as used in this study), which is different from the in-situ

concentration. The definition for the flowing concentration is

Uox -’ 2.2)

Because the gradient of concentration is negative, Equation (2.2) indicates that the
average concentration flowing across a plane is always greater than the
concentration in the plane. If the Neumann condition is applied at the outlet end, the
flowing concentration and the in-situ concentration become identical at the outlet
end.

The transition zone, as predicted by Equation (2.1), grows with the square
root of time or distance travelled. If the transition zone is defined as the interval
between the 10 and 90% concentrations, it can be expressed as [Walsh and

Withjack, 1993]
AL = 3.62 , / L
P, 2.3)

Equation (2.1) models successfully the performance of miscible displacements
conducted in beads and sand packs [Van Rosenberg, 1956). Zhang [1993]
observed that Equation (2.1) may be valid even when the viscosity ratio is
unfavorable, provided that the displacements are stable and proper effective

dispersion coefficients are used.
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But asymmetric effluent concentration profiles from consolidated cores,
which are relatively more heterogeneous than beads or sand packs, have been
observed. To explain this phenomenon, Coats and Smith [1964] proposed a
capacitance model. This model includes dispersion and convection in a flowing
region of the core and mass transfer between flowing and stagnant regions. By
adjusting the parameters included in the model, it has been used successfully to
match the skewed effluent histories of miscible displacements conducted in
heterogeneous consolidated cores [Coats and Smith, 1964; Baker, 1977; Bretz and
Orr, 1987]. But there is no experimental evidence to support the assumption that the
stagnant volume is a physical reality. When two miscible fluids having a favorable
viscosity ratio are used to conduct a displacement in a heterogeneous core, a
symmetric effluent curve has been observed by Houseworth [1993]. A conclusion
which may be drawn from that observation is that the capacitance effect may be a
result of the permeability contrast instead of the stagnant volume.

Koval [1963] proposed a simple mathematical model for unstable miscible
displacement in heterogeneous media. By assuming that mixing of the fluids can be
neglected, he constructed a modified Buckley-Leverett equation, in which the
permeability ratio was assumed to be proportional to the ratio of the two
concentrations. One parameter was used to represent the effective viscosity ratio
and another parameter was used to represent the heterogeneity of the porous
medium. This model is valid only when the velocity is high enough that convection
controls the process. In fact, even molecular dispersion can not be neglected at field
conditions [Blackwell et al., 1959]. Koval's model predicts that a given
concentration advances at a constant speed. So the transition zone length grows

linearly with time. This phenomenon was observed by Walsh and Withjack [1993]
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using the computer-assisted tomography (CAT) technique. But Lacey et al. [1958]
pointed out that the transition zone growth was non-linear for the first few inches.

Nguyen and Bagster [1979] proposed a mathematical model for unstable
miscible liquid-liquid displacement. They adopted Scheidegger's minimum energy
concept to calculate the cross-sectional area of the finger zone according to the
stationary point of the energy dissipation function, which is

=—1
Ho/Hs+1 (2.4)

A
The effects of viscosity difference, density segregation and flow rate were
considered in this model. But two very important factors for miscible displacement,
mixing and the heterogeneity of the porous medium, were not taken into account.

As the development of new methods for in-situ concentration measurements
in consolidated cores such as the CAT technique and the nuclear magnetic
resonance (NMR) method {Wang et al., 1984; Hicks Jr et al., 1984; Vinegar, 1986;
Hove et al., 1987] progresses, more and more evidence has appeared to support the
idea that the transition zone grows linearly with time, not the square root of time as
required by the standard convection-dispersion equation. To account for this
phenomenon, the effective dispersion coefficient has to be scaled acconding to the
actual field size [Pickens and Grisak, 1981]. A possible explanation for the scale
dependence is that dispersion is affected by field scale heterogeneities [Hewett et
al., 1993]. So, some researchers tended to use the immiscible displacement theory,
which neglects the dispersion, thus emphasizing the effect that heterogeneities of

the porous medium, or permeability variations, have on the linear relationship



8

between transition zone growth and time, in spite of the fact that dispersion in the
field situation is very important.

Udey and Spanos [1991] [1993] proposed a new approach to predict
miscible flood performance according to breakthrough curves obtained from the
miscible displacement tests conducted on field cores. They noticed that the so-called
scale-dependence of effective dispersion coefficients was a result of the "naive"
application of the standard convective-dispersion equation in cases where the

kinematics of the mixing zone is characterized by

d?AL _ o,
de? 2.5)

which differs dramatically from that of the standard miscible theory:

d’AL __¥DL
de2 2132 (2.6)

Consequently, they argued that for a high flow-rate regime, the kinematics are
better described by the immiscible theory than by the standard miscible theory.
Udey and Spanos used a recently proposed immiscible theory and found the
solution whose kinematics are consistent with experimental evidence. Unlike Koval
[1963], who assumed an effective viscosity ratio, Udey and Spanos proposed that
the viscosity can be related to the underlying functions A(S1) and B(S1), which

appear in their solution, by

1 __AGSy  BGy
HGSD W H2 Q.7
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where Vk is a permeability variation coefficient defined by Walsh et al. [1993]. This
is called the permeability variation (PV) model. But they also noticed that the PV
model completely ignores the mixing contribution due to Fickian dispersion and the
mixing contribution due to Fickian dispersion is largest at early times when the
concentration gradient is the greatest. To improve the prediction of the mixing zone
length, they assumed that the total length of the mixing zone can be approximated
by adding the individual effects; that is, the total length can be computed from

AL =512 ./ +3.60 V1.
vV P. k (2.10)

This is called the permeability variation plus Fickian (PVPF) model. Equation
(2.10) was used successfully to match the CAT measured transition zone growth by
Walsh and Withjack. But Equation (2.8), which is based on permeability variation
7nly, was said to be able to match the effluent curves quite well. In this case, Walsh
and Withjack used the PV model to match the effluent curves and used the PVPF
model to match the transition zone length data. There seems to be some doubt as to
whether the Fickian dispersion should be added to the permeability variation when
this approach is used to match the effluent history and the transition zone, which are

important phenomena in a miscible displacement.
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3. STATEMENT OF THE PROBLEM

From the survey of the literature on miscible displacement through porous
media in the previous chapter, it becomes clear that the unfavorable viscosity ratio
of the miscible fluids and the heterogeneity of the porous medium make the
performance of a miscible displacement unpredictable by the standard convection-
dispersion equation. Although immiscible theory can describe the kinematics of a
miscible displacement for the late period of a process [Koval, 1963; Udey and
Spanos, 1993], it can not match the transition zone growth for the early stage of the
process, which takes place in a heterogeneous porous medium or in which fluids
having an unfavorable viscosity ratio are used. Thus, there is a need to develop an
equation which includes explicitly the viscosity ratio and the heterogeneity factor
and which can be used to describe a miscible displacement adequately.

In addition to establishing a mathematical model, the second objective of
this study is to find an approximate analytical solution to the proposed model to
demonstrate the relationship of transition zone growth with time through an entire
process.

Coskuner and Bentsen [1989] derived a dimensionless scaling group which
can be used to define the boundary separating stable displacements from those
whic! are unstable. The miscible displacements conducted in a glass bead pack by
Zhang [1993] indicated that the scaling group worked well. But it is still not clear
whether the heterogeneity of a porous medium affects the ease with which an
instability initiates. Thus, the third objective of this study is to use linear
perturbation theory, together with the proposed model, to derive a theoretical
dimensionless group which can be used to predict the onset of instability of a

miscible displacement conducted in a non-homogeneous porous medium.
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Finally, the fourth goal is to perform some miscible displacements in a sand

pack, using miscible fluids with different viscosities, to test the proposed model.
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4. THEORY

The main purpose of this section is to derive a mathematical model for
miscible displacement through porous media. The development of the model is
based on the material balance or continuity equation and an assumption that miscible
displacement may be viewed as a combination of the immiscible displacement and
macroscopic dispersion of the two fluids. Darcy's law is employed to describe the
immiscible displacement and the dispersion is described by Fick's law. The model

may also take the properties of the fluids and the porous medium into account.

4.1 Generalized Dispersion-Convection Equation

Consider a horizontal displacement of oil by a solvent in the x direction as
shown in Figure 4.1. The fluids are assumed to be miscible in all proportions. For
convenience, the difference in densities of the fluids is ignored. Consequently, the
effect of gravity separation may be neglected. It is also assumed that the fluids and
porous medium are incompressible, and that there are no interactions between the
fluids and the porous medium. Although the two fluids constitute a single phase
during the course of the displacement, Darcy's law is assumed to be applicable for
predicting the volumetric flow rate of each phase which is caused by the pressure
gradient acting on each phase [Dougherty, 1963]. According to these assumptions,

one has

4.1)
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and

Jov = - .k_o..Aa& .
o ax 4.2)

The pressure in the solvent and the oil should be identical because no interface

exists between the solvent and oil. The following equation must be satisfied:
Ps=Po=P, (4.3)

When two miscible fluids come in contact, mass transfer between the two fluids
takes place. The mass flux is controlled by the dispersion coefficient and the
concentration gradient, according to Fick's law. If the concentration of solvent is c,
the concentration of the other fluid must be 1-c. When Fick's law is applied for

each fluid, one has

dsp=-DLA ad
ax (4.4)
and
a(1-
Gso=-DLA (-0) .
ox 4.5)

The dispersion coefficient, DL, theoretically, is concentration dependent. But

generally it is treated as a constant for convenience [Perkins and Johnston, 1964].
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The fluxes qsD and gso are equal in magnitude, but opposite in direction.
The mass flux caused by concentration diﬂ‘ergnce always goes from the point with
higher concentration to the point with lower concentration.

In a miscible displacement, the fluids in the porous medium are subject to a
pressure gradient and a concentration gradient at the same time. Auriault and
Lewandowska [1994] have shown that, for chemical and water transport, the
macroscopic equations reveal zero-valued cross-coupling coefficients based on
passing from the micro scale to the macro scale, using the method of
homogenization of periodic structures. As a consequence, the total flow rate of one
fluid across any section is assumed to be a linear combination of the flow rate
caused by the pressure gradient and that caused by the concentration gradient.

Thus, one obtains

Js = qsv + QsD 4.6)

and

Jo = Gov + QoD . 4.7)

The total flow rate of the two fluids is denoted by q and is defined by

q=Qqs+qo, (4.8)

Consider a constant flow rate displacement; that is, q is constant. Now, define the

fractional flow of solvent as
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q’- 4.9)

Consider a small element [A (Ax) ¢], where the concentration of solvent is ¢ and
that of oil is (1-c), at time t. The total volume of solvent is [c A (Ax) ¢]. At the time
t+At, the concentration of solvent increases to c+Ac. The total volume of solvent at
time t+At must be [(c+Ac) A ¢ Ax]. During the time period At, the total volume of
solvent flowing into the element is [qs(x) At], and that flowing out of the element is
[as(x+Ax) At]. From the point of view of material balance, the increase of solvent
volume during time At must be equal to the difference of the solvent volume

flowing in and flowing out of the element. That is,

AdAxAc = (- as(X + Ax) + qg(x)) At . (4.10)

Dividing the above equation by (Ax)(At) leads to

AAC ¢ = - IXFAX)-Gs(X)
At Ax 4.11)

In the limit, as At and Ax approach zero, Equation (4.11) becomes

?ﬂg + OA i:- =0.
ox ot (4.12)

Material balance is also valid for another fluid, say, oil. Thus, a similar continuity

equation can be written as
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9qo +0A o(1-c) =0.
oax ot

(4.13)
From Equation (4.9), qs may be expressed as
s =qfs. (4.14)
Replacing qs in Equation (4.12) with Equation (4.14), one has
qaé + ¢A—a£ =0.
ax at 4.15)
The bulk Darcian flow rate is denoted by u and is defined as
asa (4.16)
Thus, Equation (4.15) may be rewritten as
of 0% _j
ax "o (4.17)

By combining Equations (4.1), (4.2), (4.3), (4.6), (4.7), (4.16), the following

equation can be derived for fractional flow
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ko Hs (4.18)
By defining
Fe=—J1— |
1Ks Ho |
ko Hs (4.19)

fs can .be expressed as

fS=FS '&22

L
ox (4.20)

Equation (4.20) indicates that the fractional flow of solvent, or the flowing

concentration of solvent, consists of two parts. The first part, Fs, is caused by
convection. The second part, - (DL/u)(9c/0x), is due to dispersion. The parameter,
fs, is always greater than Fs because (d¢/dx) is negative everywhere for all time.

Inserting Equation (4.20) into Equation (4.17), and considering Fg to be
function of concentration only, one has

2
dF; &c D d¢c ¢d_

e ax " axz “a “.21)

Equation (4.21) is a general convection-dispersion equation for one dimensional

miscible displacement. But it is a non-linear differential equation if Fg is not linear

with c.
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4.2 Effective Viscosity Ratio

For immiscible displacement, viscosity ratio is defined as the ratio of the
viscosity of one phase to that of the other phase. Although it has been assumed that
the two miscible fluids retain their identities, with respect to their dynamic
properties, when applying Darcy's law, the viscosity contrast of the two fluids is,
in actual fact, moderated by dispersion. When an unfavorable viscosity ratio is
considered, the effective viscosity ratio is usually taken to be some value less than
that which pertains to the pure component ratio. Koval [1963] proposed a formula
for effective viscosity ratio which indicates that the effective viscosity ratio is the

average viscosity of a mixture of 22% solvent and 78% oil:

14
E = [0.78 + 0.22 (22)4]
Hs (4.22)

The above equation was based on a set of displacements conducted in a uniform
sand pack, in which fingering and channelling were minimized. Hence, the
effective viscosity, according to Koval, was isolated. In fact, the effective viscosity
ratio is also affected by displacement velocity. When the velocity is slow enough
for wansverse diffusion to smear out the microscopic fingers, the effective viscosity
ratio, which is obtained frem the match calculation of experimental data using the
new model derived in this chapter, is less than that calculated using Equation

(4.22).

4.3 Heterogeneity Factor
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When a fluid is displaced by another miscible fluid having the same
viscosity as that of the displaced fluid in an absolutely homogeneous porous
medium, 100% of the displaced fluid should be recovered when one pore volume
of displacing fluid has been injected, if no dispersion exists. This is _~ called
piston-like displacement, which can be achieved computationally by assuming that
the effective permeability to one fluid is exactly proportional to its concentration.

That is,

£
1-c (4.23)

&

If the porous medium is not uniform, it is inevitable that some displaced fluid will
be left unrecovered when one pore volume of displacing fluid has been injected,
provided the other conditions are kept unchanged [Stalkup, 1984]. This can be

achieved computationally by assuming that

_C
ko 1-c (4.24)
where H is a heterogeneity factor, which is greater than one. By definition, the
magnitude of H is a reflection of the degree of heterogeneity of the porous medium.
In fact, it is difficult to measure H directly. But it can be estimated by matching the

effluent curves when two miscible fluids with equal viscosity are used.

4.4 The Function Fg



21

Utilizing the concepts of effective viscosity ratio, E, and heterogeneity
factor, H, the function Fs of Equation (4.19) may be written as

1 1
g ¢*ae (4.25)

Taking the derivative of Fg with respect to ¢, and putting it into Equation (4.21),

one obtains

[HE-c+112ax Y ox2 Yo

(4.26)
The above equatiun is a mathematical model which takes viscosity difference and
heterogeneity into account. It is a second order non-linear partial differential
equation. A numerical scheme is needed to obtain its solutions.

4.5 Dimensionless Form

To make Equation (4.26) dimensionless, the following definitions have to

be introduced:

=10
oL 4.27)
=X
§’L’ (4.28)

and
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P, =uL
Dy 4.29)
Then, Equation (4.26) can be rewritten as
2
HE 9 1 09%¢ dc_
- 2 P, ~p2 :
[(HE-1)c+1]“ 9§ 9t~ ot (4.30)

The concentration ¢ is a function of § and 1. The entities Pe and HE may be treated

as parameters.

4.6 Initial and Boundary Conditions

Consider a horizontal miscible displacement through a porous medium of

length L. Initially, the medium is saturated completely with oil. Then a solvent is

continuously injected at the point £=0. The initial condition and boundary

conditions at the inlet end are as follows:

c€,0)=0 4.31)

and

c0)=1. (4.32)

Next, it is assumed that the boundary condition at the outlet end takes the form

[Oguztoreli and Farouq Ali, 1984]
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u
ox (4.35)

which is identical to the equation for flowing concentration proposed by Brigham
[1974]. Second, consider another limiting case where the dispersion is neglected;

tha is, D] =0. Then, Equation (4.20), the fractional flow equation for the solvent,
becomes

fi=—ol
1

5 (4.36)

L
FIF

and Equation (4.20) reduces to

df, dc

df, ¢ dc _
dc oJx )

Uor (4.37)

=]

-+

The solution for the above quasi-linear equation is

dx _udfs
dt o dc 4.38)

The above solution is the same as the Buckley-Leverett equation for immiscible
displacement, which indicates that a given concentration advances at a constant

velocity, provided that dfg/dc is time-invariant.

4.8 Numerical Solution to the Proposed Model
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Equation (4.30) is a non-linear, second order, partial differential equation.
Exact analytical solutions to this equation are unavailable at the present time. In
order to investigate the general behavior of the equation, a numerical scheme was
used to find discretized solutions over the space and time domain of interest for
different Peclet numbers and for different values of the product of the effective
viscosity ratio and the heterogeneity factor, HE.

Numerical methods usually suffer from numerical instability problems. For
Equation (4.30), the solution behavior becomes worse as the Peclet number
becomes larger. Some new numerical methods have been proposed to improve the
solution behavior [Oguztoreli and Farouq Ali, 1984]. But the interest here is just to
find solutions of the equation. So, a finite difference approximation was utilized
with cautiously selected fine grids in space (A£=0.025 ~ 0.01) and small steps in
time (At=1x10~5x10) which were chosen so that material balance requirements
were satisfied 1.+ :: degree of 2%. The finite difference equations were solved using

the SOR method.

4.8.1 Concentration of Displacing Fluid in the Effluent

To be specific, the Peclet number was set at 400. Then, for different values
of HE over the range of 1 to 10, concentrations of the dispiacing fluid in the
effluent were calculated as a function of dimensionless time or pore volumes
injected, as shown in Figure 4.2. When HE equals one, the effluent curve is very
close to a symmetric "S" shape. Moreover, the breakthrough time is late, which
means that a high unit displacement efficiency is to be expected. This solution is
also very close to the analytical solution, which is a combination of a series of

complementary error functions when the Dirichlet inlet boundary condition and
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Neumann outlet boundary conditions are applied [Oguztoreli and Farouq Ali,
1984]. As HE becomes larger, the time to breakthrough becomes shorter. Also, the
effluent curves no longer have the symmetric "S" shape, but become distorted and
display long "tails". At a specific injected solvent volume, more displacing solvent
is produced from the core via high permeability streaks or because of overriding of

the more mobile injected fluid; hence, more displaced fluid is left unrecovered.

4.8.2 Transition Zone Length

Walsh and Withjack [1993] pointed out that dispersion affects both the
length of the mixing zone and the effluent history. Hence, it is necessary to
investigate how the mixing zone evolves with time in addition to the effluent
history.

Theoretical solutions to the standard convection-diffusion equation indicate
that the interval between solvent concentrations of zero and 100% is infinitely long.
Therefore, the distance between 10 and 90% concentrations or other concentrations
are assumed to dictate the length of the transition zone. In numerical solutions, the
concentration gradients at the front and back edges of the transition zone are close to
zero. It is also difficult to locate the noints of zero and 100% concentration. To
improve the accuracy, the interval between the 20 and 80% concentrations was
defined as the transition zone length in this section.

Figure 4.3 shows the transition zone growth with dimensionless time for
different combinations of the effective viscosity ratio and the heterogeneity factor,
where the Peclet number was chosen, as before, as 400. For all cases, when the
displacement process starts, the mixing zone grows with the square rcot of time,

which indicates the dispersion mechanism is Fickian. But as HE increases in
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magnitude and as displacement goes on, the Fickian mechanism becomes less and
less significant and the transition zone grows almost linearly with time, which
means that the behavior of the mixing zone growth is coatrolled mainly by the

viscosity difference of the fluids and the heterogeneity of the porous medium.
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S. APPROXIMATE ANALYTICAL SOLUTION

The purpose of this section is to demonstrate the growth of the transition
zone during the course of a miscible displacement and to compare the solutions
obtained from an approximate analytical scheme with those obtained from the
numerical method. Because Equation (4.30) is a second-order, non-linear partial
differential equation, an exact analyticai soiution is not available up to now, which
makes it difficult to analyze the effects of some variables in the equation on the
displacement performance and to avoid numerical dispersion when the convection
mechanism dominates. As a consequence, even an approximate analytical solution

can be very helpful in this regard.
5.1 Transition Zone Growth

The transition zone growth, in the course of a miscible displacement, is
defined in this chapter as the interval between the points where the solvent
concentration is 100 percent and that where the solvent concentration is zero. But in
the literature, different concentration ranges have been employed because the
analytical solution to the standard convection-dispersion equation indicates that the
length of the transition zone between 100 percent and zero percent solvent
concentration is infinite.

First, make a substitution:

Ei=&-1. (5.1
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Utilization of Equation (5.1) changes the solvent concentration from a function of §
and 1 to a function of §; and 1. Note that the utilization of Equation (5.1) implies
that the concentration ¢=0.5 travels at a velocity of u/¢. This is valid for the
standard convection-dispersion equation or when HE=1. The derivatives of ¢ with

respect to & and T in terms of &; and T can be expressed as follows:

9

Jt OJ&, (5.2)
and

Fe_ o

%k 3%, (5.3)

Inserting Equations (5.2) and (5.3) into Equation (4.30), one has

i - _1_ 82c . HE ac
ot Pege? [(HE-1)c+1)? 3¢, (5.4)
Use is made now of the transformation
=5
A(T) (5.5)

where A.(7) is the half length of the transition zone, which is a function only of time.

Utilizing this transformation, the dimensionless length 1 is scai “= by the transition
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zone length between -1 and 1. To proceed further, it is necessary to assume a
function for c(n). It is convenient to use the following polynomial form:

=1 m3.
c—4('r| 3n+2). (5.6)

Note that, other functional forms for c(n)), such as higher order polynomials, or
even the error function, could have been used. However, Equation (5.6) was
selected because of its simplicity. The accuracy of the assumed concentration profile
depends on how far away it is from the real concentration distribution, which is
unknown. But it is thought that these kinds of curves are similar to the real

concentration profile, and it is known that thev satisfy the following boundary

conditions:

c-DH=1, (5.7
and

c(1)=0. (5.8)

The derivatives of c(n) with respect to 1} are as follows:

o 3 .,
———Z(Tl -1),

(5.9)

and
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2
..a__c_. =%-‘n .
on? (5.10)

The first and second order derivatives of the concentration, c, with respect to &, are

obtained through Equations (5.9) and (5.10). They may be written as

O __1 9
91 A(t) 9n (5.11)

and

82c _ 1 82c
987 A1) am?

(5.12)

Multiplying Equation (5.4) by N and integrating the resulting equation over the

range of M from -1 to 1 lead to

1 1 1

ac

dc p e HE
nan=} =——mndn- ndn .
ot Pe 52 [(HE-1)c+1]? 9,
4 4 (5.13)

Inserting Equations (5.9) through (5.12) into Equation (5.13), and completing the

integration, one has

AA =S5 151,
dt P, 4° (5.14)
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where

I, = HE (1-n2mdn .
[} [(HE-1)c+1]2 (5.15)

The integral Io reflects the effect of heterogeneity and viscosity ratio. When the
product of HE is one, Ip is zero. When HE increases, I also increases, as shown
in Figure 5.1.

Now, consider two limiting conditions:

1). When 1 approaches zero, the half transition zone length, A(z), must also be very
small. In this case, A(T) is assumed to be negligible. Then, Equation (5.14) may be
simplified to

Add S
dt P, (5.16)

The solution to Equation (5.16), with initial condition of A(0)=0, is
A(T) = 4 /l-U .
© Pe (5.17)

In order to compare the transition zone length predicted using Equation (5.17) with
that obtained using the standard convection-dispersion equation, Equation (5.17)
has be converted into the transition zone length between concentrations of 3.5 and
96.5%. According to Equation (5.6), thé transition zone length between the

concentrations of 3.5 and 96.5% is about 77.3% of 2A(t). Consequently,
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- k)
23.5%-96.5% = 4.90 4 / P (5.18)

The transition zone length, obtained using the same concentration range calculated
from the standard convection-diffusion eduation, has the same form as Equation
(5.18). But the coefficient preceeding the square root sign is 5.12. The coefficient
in Equation (5.18) changes slightly with different assumed funetions for c(M). The
fact that Equation (5.18) is similar to that which is derived using the standard
convection-diffusion equation suggests that the miscible displacement process,
during the early stage, is controlled mainly by the Fickian dispersion mechanism.

2). When 7t approaches infinity, the second term on the right hand side of Equation
(5.14) must be much greater than the first one. In this case, it may be neglected; that

is,

dA _ 15y
dt 4 °° (5.19)
Under these conditions, Equation (5.19) can be integrated to obtain
=15
A(r) = a L. (5.20)

Obviously, A(1) increases linearly with dimensionless time 1. The transition zone
length between the 3.5% and 96.5% concentrations can also be shown to be

defined by

A3.5%.96.5% = 5.80 It . (5.21)
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and

Pe - (5.26)

4 P.A (5-27)

If the second term on the right hand side of Equation (5.27) approaches zero, the
derivative of A with respect to T will be close to a constant, (15/4)Io, which means
that the transition zone grows linearly with time, hence dictating a non-Fickian-
dominated mechanism. With a larger Peclet number, i.e. smaller dispersion
coefficient, and a longer transition zone length, i.e. later times of a miscible
displacement, the second term is closer to zero. Figure 5.2 presents the haif iengths
of the mixing zone obtained using Equation (5.24). For the two cases where HE is
1.5 and 2, respectively, the Fickian dispersion mechanism dominates during the
early time. As a displacement goes on, the heterogeneity of a porous medium and
the viscosity difference of the two fluids control the behavior of the transition zone

growth.
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5.2 Procedure for Calculating fg

In this section, the procedure used to calculate the effluent history curves for
a one-dimensional miscible displacement based on the approximate solution scheme
are discussed. Then the solution is compared with that obtained using the numerical
method.

At the outlet end, § equals one. It is desired to calculate the fractional flow
of the solvent, fs, at dimensionless time, t. The procedure for doing this is outlined
below.

1) calculate the half length of the mixing zone length, A, according to Equation
(5.24);
2) calculate the variable 1| from

*

Tl:l_";_
A SEEMERNE (5.28)

3) calculate the concentration at £=1, according to Equation (5.6). But note that ¢ is
one when 1 is less than -1 and is zero when 1) is greater than 1;

4) calculate fg using

. ¢ L3
T L+ L 4 ‘
a I'{E)C+HE P.A

(5.29)
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The above steps are based on the assumption that, after breakthrough of the injected
solvent, the "S" shaped concentration profiles are assumed to proceed along the x
direction continuously. In this case, the derivative of the concentration ¢ with
respect to distance x at the outlet end is no longer zero, which yields the second

term on the right hand side of Equation (5.29).

5.3 Comparison with Numerical Solution

Figures 5.3 through 5.5 show comparisons of effluent curves obtained
using the numerical and approximate schemes. According to the analytical solution
to the mathematical model (Equation 4.30) with HE=1, the concentration
distribution at a given time is a combination of error functions, which takes a
symmetric "S" shape approximately [Oguztoreli, M. and Farouq Ali, 1984]. In the
approximate analytical scheme, the concentration profiles are assumed to take a
symmetric "S" shape (approximated by a third degree polynomial) for all cases.
Consequently, a very good agreement is achieved for the case of HE=1, as shown
in Figure 5.3. Only for the breakthrough time and the time wher. the solvent
concentration in the effluent approaches 1, is the difference i~ the two solutions
detectable, which arises out of the difference in th¢ =ssumed and the true
concentration profiles. Figure 5.4 shows the comparisc of the effluent curves
when HE equals 1.25, indicating also a good agrec:a..cui«. As HE becomes more
removed from 1 and the standard miscible theory does not apply, the true
concentration profiles are distorted. But in the approximate analytical solution
scheme, the concentration profiles are assumed to have the same shape. As a

consequence, the accuracy of the solution using the approximate analytical scheme
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decreases. As shown in Figure 5.5 for HE=2, the difference between the solvent
concentrations in the effluent predicted using the approximate method and the

numerical scheme is pronounced, but still acceptable.
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6. COMPARISONS WITH PUBLISHED DATA

In this section, numerical solutions to Equatior: (4.30) and the approximate
analytical solutions to Equation (4.30) (derived in chapter 5) are used to match
some published experimental data by adjusting the product of the effective viscosity
ratio and the heterogeneity factor, HE, as well as the Peclet number. The parameters
which prevent the standard convection-diffusion equation from describing a real
miscible displacement process properly are the difference of viscosities of the fluids
and the heterogeneity of the porous medium. Hence, two kinds of miscible flooding
data were chosen to be compared with the solutions to Equation (4.30). The first
kind involves miscible displacements using fluids with different viscosities, but
conducted in uniform porous media, such as a sand pack. The second type involves
miscible displacements conducted in a consolidated sandstone, such as a Berea

core, which is considered to be heterogeneous.

6.1 Comparison with Brigham et al.'s Data

Brigham et al. [1961] reported a series of experiments on miscible
displacements in various porous media. In studying the effect of viscosity ratio on
the mixing process, they performed an unstable miscible displacement with a pair of
oils for which the viscosity ratio of the displaced to displacing oil was 5.71. The
experiment was performed in a glass-bead pack with an avefage bead diameter of
0.1 mm. They observed the development and growth of viscous fingers. Their

experimental results for this case are matched using the newly developed
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mathematical model, Equation (4.30). The porous medium, glass-bead pack, is
considered to be uniform. As a consequence, the heterogeneity factor, H, is
believed to be 1. To match the experimental data, the effective viscosity ratio and
the Peclet number are adjusted to be 1.33 and 50, respectively. The effective
viscosity ratio matched here is slightly smailer than 1.57, which is calculated using
Koval's formula. Figure 6.1 shows concentrations of the displacing fluid in the
effluent for both the experimental and the model results. In view of the disturbances

in the experimental data, the agreement is reasonably good.
6.2 Comparison with Withjack's Data

Withjack [1988] performed two miscible displacements using fluids with
viscosity ratios of 6.97:1 and 67:1, respectively. The displacements werz conducted
in a Berea consolidated core, which is not as homogeneous as a glass-bead pack. In
addition to the concentrations of displacing fluid in the effluent, measured with
time, the normalized distance, which was defined by Withjack as the dimensionless
flood front position, was also determined at the same time by use of the CAT
technique. Their results were matched also using the new model in such a way that,
using one set of optimal HE and Peclet numbers, the effluent histories and the
normalized distances were matched simultaneously. Figures 6.2 and 6.3 compare
the experimentally determined and calculated, using the approximate analytical
solution, effluent curves and the normalized distance curves, for the 0.97:1 and
67:1 viscosity ratio curves, respectively. While the agreement for the 0.97:1

viscosity case is good, the 67:1 viscosity ratio case is less satisfactory. For the first
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case, the matched HE and Pe are 1.05 and 200, respectively. Consequently, the
approximate analytical scheme works quite well in this ran ge of HE and Pe. The
good agreement is probably due to the slightly favorable viscosity ratio. For the
second case, the matched HE and Pe are around 4.3 and 7, respectively. As
demonstrated in Chapter 5, the difference between the assumed symmetric
concentration profiles and the distorted ones may be the reason for the pronounced

difference between the exp.rimental and matched data.



Concentration of Solvent in Effluent

1.2

1.0

0.8

0.6

04

0.2

0.0

— .
]
——  calculated
- (] measured
u = 0.006 cmv/s
- Pe=50
Viscosity ratio=5.71
H=1
a— E=133
I { r ! I LI

0.0 0.5 1.0 1.5 20 2.5

Dimensionless Time

Figure 6.1 Comparison of Effluent Curve of Brigham's
Data with Numsrical Solution

50



Nommalized Distance

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.3 Comparison of Normalized Distance of Withjack's

viscosity ratio=67 : 1
HE=4.3, Pe=7

viscosity ratio=097 : 1
HE=1.05, Pe=200

0.0

T | T | T
0.2 0.4 0.6

Dimensionless Time

Data with Approximate Analytical Solution

0.8

52



53

7. PREDICTION OF THE ONSET OF INSTABILITY

Coskuner and Bentsen [1989] derived a dimensionless scaling group to
predict the onset of instability for miscible displacement based on small perturbation
theory . In their derivations, the standard convection-dispersion equation, which is
valid for matched fluids and homogeneous porous media, was used. Their scaling
group has been tested by Zhang's [1993] miscible displacements conducted in
glass-bead pack porous media. Although it has been recognized that, even a very
small heterogeneity of the porous medium, such as permeability variation, may
initiate instability, it is not clear if the degree of the heterogeneity of a porous
mediam has any effect on the ease with which an instability initiates.

In this chapter, some theoretical analysis is undertaken on how
heterogeneity affects the onset of instability. This analysis is based on linear
perturbation theory, together with the newly proposed mathematical model derived
in Chapter 4. The miscible displacements in a homogeneous porous medium
conducted in this study showed that the effective viscosity ratio approaches one
when displacement velocities are very small or when the displacements are stable.
Hence, in this chapter, the effective viscosity ratio is assumed to be one because

what is considered here is the onset of an instability.
7.1 Basic Equations
Consider a downward displacement of one fluid by another in the z'

direction in a heterogeneous porous medium (H>1) as shown in Figure 7.1. The

mathematical description of the flow system is given by [Neuman, 1977]
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ou_ dv, K ow
i+ oo,
3x+ay+az' .1
ga_ll_’_ég_*&u =0
¢ at ax k ' (7.2)
Baa—v+-g—9-+%v 0,
U 7.3)
Ea—a‘“—'-l--ép—.+%w-pg=0,
o 9 (7.4)
and
d ydc  y oc dc 92c 3¢ 92c
— vV W - + - —_—=
ot ¢ax+¢ay+¢w(°)az' Dr(axz ayz) DLaz-z 0.
(.5)
where
vey=—-H —.
[((H-1)c+1] (7.6)
When the displacement is stable, one has
u=v=0, (7.7)

w=V=0, (7.8)
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Q_B.=a—r—,=0 .
ox Oy (7.9
B,Ey pg=o0,
oz k (7.10)
and
— — 2_
%%+Mw(a)9i,-ma ©=0.
) oz oz (7.11)

7.2 Small Perturbations Theory

According to the small perturbation scheme, the dependent variables of a
system are slightly disturbed about their stable values to examine the stability of the
disturbed variables. Thus,

E=C+C . (7.12)
where

C =C u, VvV, W, p, P. K. (7.123)

Then, Equation (7.12) is inserted into Equations (7.7) through (7.11). If the non-

linear terms are neglected in the resulting equations, the following set of finear
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partial differential equations, in the moving coordinates given by z=z'-vt/¢, are

obtained:

ou* +av‘+8w -0,

ox dy oz (7.13)
paa: aap %u =9.

¢ (7.14)
pov* ap -0,

o a[ ay (7.15)

a ap p’ M_(_il‘l_ t_d_p * 0

+ w + c c'g=
o ot az k dc dc (7.16)
and

ac* v ac” vd\[l 82 *
—_— + -— -
o 0 Y(C) = 52 +[ ¢ —c* \I»’(C)] ax2 ay2 )

2 *
I W

0z2 (7.17)

A disturbance in a linear system may be expressed as a Fourier series. Therefore,

U=l ei(ax+By)+or, (7.18)
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If an appropriate form of Equation (7.18) is substituted into Equations (7.13) to
(7.17), the perturbation variables U(2), ¥(z2) and P(z) may be eliminated. Two

ordinary differential equations coupling €(z) and W(z) are obtained:

PG U .. 5 ., dp 1 du L. po. . ~
[-—+-—7)D4-(2-—+ ) D+GC+——)]W=-N; €(2),
oy ky2 ¢oy2 9z ky2 dz k¢ ¢

(7.19)
and
dy oc ~ Y(C) ot
m2-2L2. V NE g 5, YO W(2) ,
DL ¢p; dcdz D 9 (7.20)
where
~yvdp dp
€=k d de &’ (7.21)
and
2
‘Yz=(12+B . (7.22)

The operator, D, represents differentiation with respect to the z direction.

7.3 Marginal Instability
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Coskuner and Bentsen [1989] pointed out that the marginal state is
characterized by 6 = 9 If advantage is taken of this fact, Equations (7.19) and
(7.20) may be simplified as

[D2+MD -] =§°—_k—7—26(z) ,
H (7.23)

and
D2-Ky2- _Ld_‘l’_gé_] @) =@__a_é_i'ﬁ(z) R
dc oz oz
oDy Dy ¢ (7.24)
where
_d Inpt
M= e (7.25)
and
Dy
K==,
DL (7.26)

Coskuner and Bentsen [1989] reasoned that any arbitrary small perturbation which
grows or decays within the very small time period after time zero will continue to
do so for the whole duration of the displacement. As a consequence, it is assumed
that 9c*/oz is negligible for times only slightly larger than zero [Coskuner, 1987].

And the boundary conditions for Equations (7.23) and (7.24) are as follows:
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¢(z)=0 at z=0and z=L, (7.27)

and

W(z)=0 at z=0and z=L. (7.28)

Equations (7.23) and (7.24), together with boundary conditions (7.28) and (7.29),
may be solved using a variational scheme, which has been used in the stability
analysis of natural convection [Chandrasekhar, 1961]. Hence, it is assumed that

W(2) can be expressed in the form of a sine series:

W(z) = z A sin (m—E——)
m=] (7-29)

Inserting Equation (7.29) into (7.24) yields

2 V. _dydt, = y@© & « mrz
(D“-Kvy- ) C(z) = Y Amsin( ).
oDl & oz DLo oz m=1 (7.30)

Because Equation (7.30) is a linear, ordinary differential equation, the solution &(z)

may be assumed to take the form

Dp¢ 92 m=1 (7.31)

where Cm(z) is the solution of the equation
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mz-xvz-D—lf—d"’a")cm-sm unz)

® dc 0z 7.32)
which satisfies the following boundary conditions:
Cm (0 =0, (7.33)
and
Cm@L)=0. (7.34)

Putting the assumed solutions of €(z) and W(z) into Equation (7.23) leads to

(D2 +MD - 2) E Am sm(—E—) w_‘l’(__)ac

Cm(2) .
DL % ey
(7.35)
Undertaking the differentiations, one has
3 AmYmsin(T2) - z AmBmeos(TiZ) =R2y2 ): AmCm(2) ,
m=1 m=1
(7.36)

where
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r2 - . kNew(© ae

HeD 92 (7.37)
= (MR)2
and
B = Mmx
m L (7.39)

Multiplying Equation (7.36) with sin(nmz/L) (n=1, 2, ...), and integrating it with

respect to z over the range of O to L, one obtains

oo L

m=1 2R%y RZ2m2-m2) |,
n=1, 2, ... (7.40)

where,
Omn =1 only when n=m; otherwise, it is zero.

The second term in Equation (7.40) should be set equal to zero when (n-m) is even.

From Equations (7.32) through (7.34), Cr, can be solved for as

sin(mu)
L2 ¢DL dC aZ

(7.41)
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provided that 9€/0z is considered an average concentration gradient over the life of a

displacement [Coskuner and Bentsen, 1989]. Then,

L
f Crn(@)sin@2)dz = - . Sl .
; e L

L ¢Dy, 9 oz (7.42)

Because Equation (7.40) represents a system of homogeneous, linear equations for
Am, it is necessary for the determinant of the coefficient matrix to be zero in order

that A, has non-trival solutions. That is,

det(amn’YmL ___ 2nBmL + SmnL y=0,
2R2y2  aR2y2(n2-m2) (m?-zgz +Ky2 + Y ﬂiié‘_)
L2 ¢Dp dc oz
m=1, 2, .., n=1, 2, ... (7.43)

The actual condition for marginal instability can be obtained by solving Equation
(7.43). Chandrasekhar [1961] has shown that even the vanishing of the upper left
element of the determinant yields a very good approximation to the exact condition
of marginal instability in natural convection. Then, following Chandrasekhar's

analysis gives

LYm=1 L

+ — =
2R% 2(1%+ K72 +—¥-5’d%g—°)
L ¢Dy, & o2 (7.44)

0.

Inserting the expression for Ym=1 and R2 into Equation (7.44), one obtains
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VO | (x2 gy v W08 n2 +1)(—1—+1>72

mDL | L%2 gpp % 0 L2

(7.45)

Coskuner and Bentsen [1989] defined the wave number Y (when m=n=1) as

Y = (5% + (B2

P

(7.46)

Considering Equation (7.46) and the expression for N , one can rewrite Equation

(7.45) as follows:

v__&___ -
(kdc i 2)y(©)

RoDL Q ¢pp, dc oz

where,

g L+
L2132

If the instability number I is defined as

+(1+1)——d“’] 1:2(-1—+1)(1+K) Li+1§

3
(7.47)

(7.48)

A" u L%L%
( W(C)
I_[ dC dC g‘V( +(1 + 1)_d‘|’]ac L%+L§
H¢DL [9) ¢DL dc oz (1 +1)(l +K)

(7.49)
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then, the marginal instability condition is
I=n2. | (7.50)
7.4 Comparison with Coskuner and Bentsen's Theory

Coskuner and Bentsen [1989] have derived a dimensionless scaling group
to predict the onset of an instability for miscible displacements where the standard
diffusion equation was used, which has been tested by miscible displacements

conducted in glass-bead packs. The instability number was defined as

L{LY
kQEE P B2
I' = -k dc _dc 7 ¢ X+ -y

wo 2 Lind+x)
HoDL, o TG

(7.51)

Note that the difference between I and I' is caused: by W(©) and dy/(E)/dc, For &
homogeneous porous medium where H equals one, Y(€) and d¥(€)/dc are one and
zero, respectively. In such a case, the two instability numbers, I and I', become
identical. Although it is not clear how heterogeneity affects the onset and
development of instability, it is reasonable to assume that the heterogeneity is
favorable for the generation of instability. In this regard, the instability number, 1,
must be greater than the instability number, I', which was derived by Coskuner and
Bentsen, when the heterogeneity factor H is greater than 1. This yields W(©) > 1,
provided that the increase in the magnitude of the instability number, I, due to the
second term in the bracket on the right hand side of Equation (7.49) can be

neglected; conservatively, that is,
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8. EXPERIMENTAL

In order to test the mathematical model derived in Chapter 4, a series of
miscible displacements were performed to measure effluent histories. Miscible
fluids having different viscosity ratios were used to investigate the effect of
viscosity difference on the displacement performance. All displacements were
conducted in a vertical sand pack model. The fluid with higher density was
produced or injected at the bottom ot the model and the fluid with lower density
was produced or injected at the top of the model. By doing this, the effects of
gravity segregation could be minimized. The porous sand pack was prepared
carefully to make it uniform. Different displacement velocities were supplied by a
Ruska pump. As a consequence, only the effect of viscosity ratio and displacement

velocity has been investigated experimentally.

8.1 Description of Experimental Apparatus

A schematic diagram of the experimental apparatus used in this investigation
is shown .n Figure 8.1. There are esseniially four parts in the system: 1) a sand-
pack model used as a porous medium; 2) two reservoirs containing the displaced
and displacing fluids; 3) a Ruska pump which provides a constant rate supply of
injected fluid; 4) a receiver to collect effluent at the bottom or the top of the model,
and an Abuy type refractometer for concentration measurement of the effluent.

The sand pack model was made of plexiglass and sealed by epoxy. The two
ends were connected with inlet and outlet lines, respectively. The plexiglass holder
was filled with 60 - 120 mesh silica sand. The dimension of the sand pack is

1000x7.5x10 mm. The porosity and absolute permeability of the sand pack are
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30.7% and 1.58 darcy, respectively. A Ruska pump was used to provide constant

injection rates over arange of 8.5 to 560 cc/hr.

8.2 Experimental Procedure

The silica sand which was used to pack the model was 60 to 120 mesh.
First, the sand was pre-treated with HCL acid for four hours and then flushed by
distilled water. The clean but wet sand was put into an oven at about 300°C to
remove the residual water. The dry sand was poured into the vertically placed
model through the open end at the top. During the process, the sand was compacted
by tapping the model with a rubber hammer.

To measure the pore volume and the absolute permeability of the sand pack,
the sand pack was placed under vacuum until the pressure was 0.001mmHg. Then,
distilled water was allowed to imbibe into it. The amount of imbibed water was
measured and considered to be the pore volume of the sand pack. After the
measurement of the pore volume, water was injected into the sand pack
continuously at a constant rate by the Ruska pump. At the same time, the pressure
difference at the inlet and outlet end was measured with a manometer. The Ruska
pump was set to another rate, and another pressure difference was measured.
Darcy's law was used to calculate the absolute permeability. The average of three
measurements was considered to be the absolute permeazbility value of the sand
pack.

Before the beginning of a displacement, the porous medium must be
saturated entirely with the displaced fluid. To this end, the displaced fluid was
injected into the sand pack using the Ruska pump. For the first two pore volume's

of injection, the injection rate may be set as high as 50 cc/hr. Then, the rate was
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decreased to the magnitude which was the desired displacement velocity, for
another one and half pore volume's injection, or until the produced fluid was the
same as that which was injected. After the sand pack was saturated, the
displacement started with the injection of the displacing fluid at a constant rate. The
produced fluid was collected with a graduated receiver. The weight of the effluent
was measured and then converted into volume by its density measured with a
densitometer. The concentration of the displacing fluid in the effluent was also
measured with an Abby refractometer. Before breakthrough of the displacing fluid,
measurements were made for every 10 cc of effluer: ~roduced. After that,
measurements were performed for each 2 - 5 cc of production. Each measured
value was assumed to be representative of the fluid passing the end of the sand pack
during the small time interval. For each run, the displacement was continued until
approximately 1.5 to 2 pore volumes of displacing flv id were injected. |

Water and a mixture of water and glycerine were used as the two miscible
fluids. By changing the concentration of glycerine in the solution. different
viscosities of the mixtures can be obtained. Figure 8.2 shows the viscosi: : - f the
glycerine solution at a temperature of 30°C.

Water and glycerine have different refractive indices. Figure 8.3 shows the
refractive index of the glycerine solution, at a temperature of 30°C, measured with
an Abby type refractometer. From this figure, it can be seen that the refractive index
of the solution depends linearly on the volume per cent of glycerine in the glycerine-
water mixture. To measure the concentration of the displacing fluid in the effluent,
the refractive index of the effluent is determined and then converted into

concentration according to Figure 8.3.
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9. EXPERIMENTAL RESULTS AND DISCUSSION

The purposes of this experimental investigation were: 1) to perform miscible
displacements using fluids with different viscosities; 2) to test the ability of the new
model derived in Chapter 4 to predict the effluent history of a miscible
displacement; 3) and to evaluate the effects of viscosity ratio and displacement
velocity on the performance of a miscible displacement.

The results of a series of iniscible displacements conducted in a
homogeneous sand pack are presented in this chapter. Four different pairs of
miscible fluids with different viscosity ratios were used in this laboratory
investigation. The properties of the fluids used are listed in Table G.1. The injection
rates, which were obtained using a Ruska pump, ranged from 10 cc/hour (0.32
m/day) to 80 cc/hour (2.59 m/day).

Three groups of displacements were conducted using fluids with
unfavorable viscosity ratios, while one group of displacements was performed
using favorable-viscosity-ratio fluids. Similar experimental work has been done
{Brigham et al., 1961]. But the displacement velocities were so high (greater than 5
m/day) that immiscible displacement theory can be used to approximate the process
[Koval, 1963; Udey and Spanos, 1991; Udey and Spanos, 1993]. At lew flow
rates, the effects of longitudinal dispersion may not be neglected. Zhang [1993]
pointed out that she noticed near "S"-shaped effluent curves even whan
unfavorable-viscosity-ratio fluids were used, provided that the displacements were

stable. But no experimental data were given in her thesis.

$.1 Comparisons of Effluent Curves with Theoretical Predictions
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All displacement tests were conducted at a constant flow rate. The
displacing fluid, which was first-contact miscible with the displaced fluid at all
proportions, was injected into the sand pack continuously. The dimensionless time
was obtained by dividing the measured volume of the injected fluid by the pore
volume of the sand pack. The mathematical model, Equation (4.30), together with
initial and boundary conditions, Equations (4.31) through (4.33), was solved to
give the fractional flow of the displacing fluid at the outlet end; that is the effluent
curve or history. In the theoretical calculation, two parameters, Pe and HE, were
adjusted to yield the best match with the corresponding experimentally determined
effluent curve. Because the porous medium used in this study is a sand <k, which
is believed to be homogeneous, the heterogeneity factor, H, for th« sas 50 is

assumed to be one.

9.1.1 Displacements with Favorable Viscosity Ratios

Figure 9.1 shows the effluent curves of miscible displacements using fluids
with a favorable viscosity ratio ef 0.24 for three different flow rates. Accorging to
Coskuner and Bentsen [1989], miscible displacements using favorable-viscosity-
ratio fluids are stable if the displacements are conducted in a homogeneous porous
medium. As a consequence, the effluent curves for the three different rates all have
a symmetric "S" shape, as shown in Figure 9.1. It can be seen from the figure that
the effluent curves coincide quite well for the different flow rates. Furthermore, the
dimensionless transition zone length, around the breakthrough time of the
displacing fluid, can be obtained from the curves, and is estimated to be about 0.07.

The characteristics of a miscible displacement using fluids with a favorable

viscosity ratio are a narrower effluent curve, which indicates a narrower transition
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zone, and a symmetric "S"-shaped effluent curve. The narrower transition zone
implies a more efficient displacement result. This may be caused by the reduction in
dispersion and/or by the favorable viscosity ratio. The standard dispersion-
convection equation may be used to match the effluent curves shown in Figure 9.1
because they have a symmetric "S" shape. The solution to the standard dispersion-

convection equation was given by Brigham [1974] as follows:

2

1-t
fo = L erfo(Lt ) + 1 ) \('715‘)
=3¢ C(2T7P_"t e) 2VnP.t © 2¥1/P. 9.1

If Equation (9.1) is used to match the effluent curves shown in Figure 9.1, only
one parameter, the Peclet number, is adjustable. This means that the transition zone
growth and the effluent history are controlled solely by dispersion. A narrower
transition zone necessitates lower dispersion; hence, a higher Peclet number.
Consequently, a Peclet number of about 4500 is required to match the effluent
curves as shown in Figure 9.1. Because, when the Peclet number is higher than
3000, the change in the effluent curve is not very sensitive to Pe, the Peclet number
of 4500, which is obtained through matching calculations, is an approximate result.

The new model, Equation (4.30), also predicts a symmetric "S"-shaped
effluent curve when the product of H and E is equal to or less than one. To match
the effluent curves shown in Figure 9.1 using the new model, a combination of
Peclet number, 250, and effective viscosity ratio, 0.59, is found by comparing the
predicted effluent curves with the experimentally determined ones. The agreement is
reasonably good as shown in Figure 9.1. Other combinations are also possible if
only the effluent curve is to be matched. Note, however, that the width of the

transition zone depends on two factors: the Peclet number and the effective
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viscosity ratio. If the narrowing of the transition region is attributed to a reduction
in dispersion, and if the effective viscosity ratio is taken to be one, a Peclet number
of about 4500 is needed to match the effluent curve. Under these circumstances, the
new model and the traditional convective-dispersion model become identical. If the
narrowing of the transition zone is brought about partly by a favorable viscosity
rati, a Peclet number of 250 is needed to match the effluent curve, if the effective
viscosity ratio is set equal to 0.59.

Although different models and different values of the parameters can yield
. the same effluent history, the behavior of the transition zone growth depends
markedly upon the approach used. The transition zone length predicted by Equation
(2.1) in an one-dimensional system is given by Walsh and Withjack [1993]:

Azsq . r =5.12 ./ X
3.5% - 96.5% Pe (9.2)

Equation (9.2), together with the matched Peclet number of 4500, and the new
model, Equation (4.30), together with the matched Peclet number of 250 and the
matched effective viscosity ratio of 0.59, are used to calculate the transition zone
growth with dimensionless time. The results are shown in Figure 9.2. Because no
experimental data on the transition zone growth in this study are available, it is
impossible to say which is correct. But it is very important to notice that, although
the transition zone length around the breakthrough time predicted using the two
approaches is almost the same, the growth of the transition zone at early time differs
significantly. With the new model, Equation (4.30), the lower Peclet number of
250 indicates more pronounced dispersion. Therefore, the transitior. zone grows

rapidly, during the early stages, when the concentration gradient is the greatest. As
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the displacement goes on, the concentration gradient decreases and the effect of the
favorable viscosity ratio becomes more pronounced, dampening the growth of the
mixing zone. The new model, Equation (4.30), properly accounts for the effect of
the interplay between dispersion and effective viscosity ratio on the behavior of
transition zone growth. The traditional model, Equation (2.1), together with a high
but unchanged vaine of Peclet number, predicts that the transition zone length
growth is caused and centrolled solely by dispersion. As can be seen from Figure
9.2, the transition zone iength calculated using Equation (9.2) does not grow as
rapidly as that calculated using the new model; rather, it grows steadily with the
square root of time. Walsh znd Withjack [1993] also noticed that the effluent curve
of a miscible displacement conducted in a Berea sandstone could be matched usir.g
different models. But the different models predicted different rates of transition
zone growth. Hence, it is vci important to obtain information on mixirng zone
growth, in addition to the effiuent history, for a better understanding of a miscible

displacement taking place in a porous medium.

9.1.2 Displacements with Unfavorable Viscosity Ratios

When the flauids used have an unfavorable viscosity ratio, viscous
"fingering” may occur. Thus, the dispiacement is not stable [Coskuner and
Bentsen, 1989]. Figures 9.3 and 9.4 show the effluent curves obtained from the
experimental data and the theoretical match calculations for two miscible
displacements using fluids with viscosity ratios of 4.15 and 36.59, respectively
[The rest of the curves are in Appendix A}. The flow rate for the two displacements
is 0.00113 cm/s. As can be seen from the graphs, the breakthrough time of the

displacing fluid becomes shorter for the displacements with a higher viscosity ratio.
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Figure 9.3 shows a more rapid increase of the displacing fluid concentration, which
implies a shorter transition zone length around the breakthrough time. It is also
noticeable that disturbances exist among the experimental data, which indicates
viscous "fingering" developed during the displacements.

Figures 9.3 and 9.4 show that the effluent curves are no longer symmetric
"S"-shaped. The phemomenon of the distorted "long-tailing" effluent curve is more
pronounced in Figure v.4. In such a case, the waditional dispersion-convection
equation with an erv function type solution does not apply [Brigham, 1974]. The
new model, Equs1i(4.30), is employed to match the elongated effluent curves by
adjusting the Pzciet number and the effective viscosity ratio. For Figure 9.3, where
the viscosity ratio is 4.15, the matched parameters are: Pe =375; E=1.25. For
Figure 9.4, where the viscosity ratio is 36.59, the matched Peclet number is 600
and the matched viscosity ratio is 1.75. Notice that the effective viscosity ratio is
always less than its corresponding component viscosity ratio because dispersion
can moderate the viscosity contrast when two miscible fluids contact. Nevertheless,
the more mobile displacing fluid still tends to override the mixing front, resulting in

an early breakthrough of the displacing fluid.
9.2 Breakthrough Recovery

Fluids with an adverse viscosity ratio give rise to early breakthrough of the
displacing fluid. Recovery of the displaced fluid at the breakthrough time is called
breakthrough recovery. The dimensionless time used in this study is defined as the
volume of injected fluid divided by the total pore volume of the porous medium.
Moreover, the amount of injected fluid is equal to the amount of produced fluid,

prior to breakthrough of the injected fluid. As a consequence, the magnitude of the
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1
= FasAa L 9.5)

Obviously, the breakthrough time is equal to one when the integral, 15, approaches
zero. This means that the displacement is a piston-like displacement when matched
fluids are used and dispersion does not exist. If matched fluids are to be used and

the dispersion is considered to control the process, a formula for the breakthrough

time may be derived as
=1+ -4/(1+32)°-1.
P. P, (9.6)

It is clear that increased dispersion results in an earlier breakthrough. The
breakthrough time approaches one when the Peclet number approaches infinity,
which is the same conclusion as that drawn from Equation (9.5).

Table 9.2 shows the comparisons of the measured breakthrough recoveries
with those calculated using Equation 9.4. From the table, it can be seen that a
higher effective viscosity ratio and/or lower Peclet number give(s) rise to a reduced
breakthrough recovery. Due to the disturbances existing among the experimental
data, which are caused by i'ns.-tability of the displacement, it is difficult to determine
the breakthrough time accurately. Hence, the comparisons here are not rigorous.
Nevertheless, it is possible to point out that the calculated breakthrough recoveries
are slightly higher than those measured for the displacements performed in this
study. For Brigham's data, the predicted value of breakthrough recovery (52%),
which is calculated using Equation (9.4) together with the parameters from the
effluent-curve-match, is about 8% higher than the measured value. One possible

reason for this difference may be that the velocities of the displacements conducted
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in this study are much lower than those used in Brigham's displacements. In a
lower flow rate displacement, more time is available for the molecules of the fluids
to mix, which results in more complete mixing and a more pronounced dispersion
effect. In this case, a longer “toe" on the concentration profile is ¢xpected. As a
consequence, the approximate analytical scheme predicts a later breakthrough of the
displacing fluid. It is also noticeable that the breakthrough recovery estimated from
Brizham's data may not be accurate because there is not enough data around the

breakthrough time, as shown in Figure 6.1.

9.3 Effective Viscosity Ratio

The effective viscosity ratio, defined in this study, is a complicated concept.
It reflects the actual viscosity contrast of the fluids. But it is not equal to the value of
the actual viscosity ratio because it is affected by other factors. In the derivation of
the new model, Equation (4.19), the defining equation for Fs, includes a mobility
ratio of the displacing solvent to that of the displaced oil. To make the problem
tractable, the permeability ratio and viscosity ratio, which are affected by
concentration, are considered separately.The permeability ratio may be assumed to
be proportional to the ratio of the concentrations of the fluids [Jankovic, 1986]. Due
to the mixing between the fluids, the effective viscosity ratio is usually taken to be
some value less than that which pertains to the pure component viscosity ratio.
Koval [1963] proposed a formula, Equation (4.22), for the effective viscosity
ratio. His formula was based on a series of high flow rate miscible displacements,
where dispersion can be neglected. In fact, macroscopic dispersion is influenced by
displacement velocity [Perkins and Johnston, 1964]. As a consequence, the

effective viscosity ratio, which is less than the normal viscosity ratio due to the
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moderation of the viscosity contrast caused by dispersion, is influenced by
displacement velocity. In this study, no attempt is made to propose a formula to
calculate the effective viscosity ratio; rather, it is obtained by matching the predicted
effiuent history (Equation (4.30)) with the experimentally measured effluent curve.

Figure 9.5 presents the effective viscosity ratios. It may be seen from the
graph that the effective viscosity ratio increases almost linearly with :he
displacement velocity. The three curves also demonstrate a trend that the effective
viscosity ratio approaches approximately one when the displicement velocity
approaches zero. When the displacement velocity decreases, the transverse
dispersion may have more time to suppress the initiation and development of
viscous fingers. Another possible reason may be that dispersion has more influence
on the displacement performance at a lower flow rate. Hence, it may be inferred
that, at very high flow rates, the effective viscosity ratio may approach a fixed value
because dispersion has little effect on the process at high velocities.

It can also be seen from Figure 9.5 that, as the viscosity ratio increases, the
effect of displacement velocity on the effective viscosity ratio increases. For
example, when the viscosity ratio is 4.15, the effective viscosity ratio increases
only from 1.25 at 0.0011 cm/s to 1.46 at 0.037 cm/s. But for the viscosity ratios of
8.54 and 36.59, the effective viscosity ratios increase more rapidly with

displacement velocity .
9.4 Dispersion Coefficient
Liquid dispersion in a porous medium is affected not only by the properties

of the fluids, but also by the properties of the porous medium and by the flow rate.

The effective macroscopic dispersion coefficient, which was proposed to account
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for the total effect of dispersion, was astumed to be the sum of the molecular
diffusion and the convective dispersion coefficient [Perkins and Johnston, 1964].
The molecular diffusion i1~ a porous medium is mainly controlled by the properties
of the fluids and the porous medium. Hence, it is not affected by flow rate. The
convective dispersion coefficient was found to be dependent on velocity [Perkins
and Johnston, 1964].

If the effluent history of a miscible displacement can be modeled by ihe
traditional dispersion-convection equation, the effective dispersion coefficient can
be determined using the straight line method [Brigham et al., 1961]. In this study,
the new model, Equation (4.30), is used to match the effluent curves. Because of
the disturbances among the experimental data, the matched Peclet numbers are not
accurate. So the dispersion coefficient calculated from the matched Peclet number is
not accurate either. But still, some trends may be seen from the data.

Figure 9.6 shows the dispersion coefficients changing with viscosity ratio
for the displacements with velocities of 0.00113 cm/s and 0.00038 cmys,
respectively. The dispersion cocfficient decreases as the viscosity ratio increases.
Brigham et al.[1961] performed a group of miscible displacements using favorable
viscosity ratios of 0.175 and 0.998. When the viscosity ratio increased from 0.175
to 0.998, they found that the mixing rate decreased accordingly. As discussed in
Section 9.1.1, one of the reasons for the reduced mixing rate may b= a favorable
viscosity ratio. But when Fick's law is used to describe the dispersion in a liquid
phase, the dispersion coefficient changes significantly with concentration
[Lydersen, 1983]

Figure 9.7 shows how displacement velocity affects the dispersion
coefficient. For all three viscosity ratios of 4.15, 8.54 and 36.59, it is observed that

the dispersion coefficient increases with increasing displacement velocity. The three
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curves seem to converge at low flow velocities. This is expected because, at low
flow velocities, molecular diffusion dominates the longitudinal mixing and the
dispersion coefficient is independent of flow velocity. At high flow velocities,
convective dispersion dominates the longitudinal mixing and the dispersion
coefficient becomes dependent on flow veiocity. Brigham et al. [1961] suggested

that the dispersion coefficient increases with flow rate according to

DL =aul?, 9.7)

From Figure 9.7, it is observed that the data are not sufficient to draw a
relationship, but it is clear that the dispersion coefficient increases with increasing
velocity. Especially when the flow velocity is greater than 0.0015 cmy/s, the

dispersion coefficient increases with increasing flow rate almost linearly.
9.5 Effects of Flow Rate and Viscosity Ratio on the Effluent Curve

An effluent curve reflects the transition zone passing through the outlet end
of a porous medium. The breakthrough time, the time period for the transition zone
to pass the outlet ead and the shape of the effluent curve indicate how the mixing
takes place in a displacement.

If a viscosity ratio is favorable, the effect of flow velocity is not detectabie
when the velocity is greater than 0.00113 cm/s, as shown in Figure 9.1. If the
standard dispersion-convection equation is used to describe the dispersion
behavior, the Peclet number obtained from the match calculation should be the same
for the three cases. According to the definition for the Peclet number, Equation

(4.29), the dispersion coefficient must be proportional to the flow velocity to keep
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the Peclet number unchanged when the velocity increases. If the new model,
Equation (4.30), is used to describe the displacement behavior, two parameters, the
effective viscosity ratio and the Peclet number, can be adjusted. In this case, it is
questionable to say that the Peclet number is the same for the three velocities.
Hence, it is impossible to draw a conclusion that the dispersion coefficient is
proportional to the flow velocity. As discussed in Section 9.1.1, additional
information is needed for the purpose of choosing a proper model [Walsh and
Withjack, 1993].

Shown in Figure 9.8 are the effluent curves for three displacement
velocities: 0.00038 cm/s, 0.00075 crri/s and 0.00113 cm/s. The viscosity ratio for
the three displacements is 8.54. It can be seen from the graph that increasing the
flow velocity results in an early breakthrough of the displacing fluid. The time
period for the transition zone to pass the outlet end also becomes longer, which
means that more displaced fluid is left behind the flood front after breakthrough. To
achieve the same recovery, more displacing fluid must be injected. It is also
noticeable that the disturbances becorne more pronounced as the velocity increases.
Both the amount of dispersion and effective viscosity ratio increase as the flow
velocity increases. An increased dispersion coefficient and an increased effective
viscosity ratio both result in a reduction in displacement efficiency or recovery of
the displaced fluid. So it is desirable to reduce the displacement velocity in a
practical miscible flooding project to achieve a high oil recovery. At low flow
velocities, the transverse dispersion may alleviate the recovery reduction caused by
viscous fingering, although it can not prevent completely the formation and
development of viscous fingers [Blackwell et al., 1959].

An unfavorable viscosity ratio is always an adverse factor for oil recovery,

either for immiscible or miscible displacement. Figure 9.9 presents the effluent
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curves for three viscosity ratios: 4.15, 8.54 and 36.59. The displacement velocity
for the three cases is 0.00113 cm/s. It is very clear that increased viscosity ratio
gives rise to a decreased breakthrough recovery. For example, when the viscosity
ratio is 4.15, the breakthrough recovery is about 67%. When the viscosity ratio is
increased to 36.59, the breakthrough recovery is decreased to 51%. A larger
volume of displacing fluid is needed for the concentration of displacing fluid to
reach one. From the graph, if the viscosity ratio is 4.15, about 1.5 pore volumes of
displacing fluid can displace the displaced fluid completely. If the viscosity ratio is
36.59, about 2.0 pore volumes of displacing fluid must be injected for a complete
displacement of the displaced fluid. If the porous medium is heterogeneoviz, a
reduction in the volumetric sweep efficiency caused by the adverse viscosity ratio
would be expected in addition to the reduction in the unit displacement efficiency.
The displacing fluid used in a miscible flooding project is usually less viscous than
the reservoir oil. An adverse viscosity ratio is difficult to avoid. Therefore, it is very
important to use other techniques to stabilize the miscible flooding front for a high

sweep efficiency.

9.6 Discussion of Errors

Because most of the displacements conducted in this study were unstable,
the concentrations of displacing fluid in effluent after breakthrough fluctuate
significantly. The method of determining the concentration of effluent at a given
time is to measure the refractive index of a certain amount of the effluent produced
during a certain amount of time. The effluent curve measured using this method
would be smoother than that measured with an ideal instant concentration

instrument.
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Another enor may be introduced by the density difference of the fluids. The
maximum difference in density is 0.197 according to Table 9.1. In all
displaceinents, flow is vertical and the heavier fluid is always injected at the bottom
of the porous medium or the lighter fluid is injected at the top of the porous
medium. This favorable density difference may help to suppress the formation and
growth of viscous fingers [Blackwell et al., 1959]. If this is true, the measured
effluent curve may be smoother and may show a more optimistic result than is
expected when using fluids with equal density.

The errors in pore volume and permeability measurements have no
significant effect on the shape of the effluent curve or on the calculations, provided
that they do not change significantly during the displacement test. This assumption

is genergllv scceptable.
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displacing fluid
i 2 3 4
viscosity(Pa.s)| 3.41*10-3 0.82*10-3 0.82*10-3 0.82*10-3
density(g/cm3) 1.1038 0.9952 0.9952 0.9952
refractive 1.4004 1.3322 1.3322 1.3322
index
displaced fluid
viscosity(Pa.s)| 0.82*10-3 3.41*%10-3 7.0*10-3 30.0*10-3
density(g/cm3) 0.9952 1.1038 1.1417 1.1922
refractive 1.3322 1.4004 1.4143 1.4432
index
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Table 9.2 Breakthrough Recovery : Experimental and Matched

Ho/ts | 103*u E Io Pe Rb Rpe | 103*DL
cm/s cm?/s
4.15 1.13 1.25 | 0.076 | 375 0.67 0.68 | 0.031
4.15 1.88 1.39 | 0.110 | 250 0.62 | 0.63 | 0.075
4.15 3.00 1.47 | 0.130 | 250 0.58 0.61 1.201
8.54 0.38 1.11 | 0.036 | 300 0.76 | 075 | 0.125
8.54 0.75 1.25 | 0.076 | 350 0.70 | 0.70 | 0.215
8.54 1.13 1.43 | 0.120 | 400 0.61 0.64 | 0.282
36.59 | 0.38 1.33 | 0.090 | 400 0.68 0.70 | 0.094
36.59 | 1.13 1.75 | 0.180 | 600 0.51 0.57 | 0.188
5.71 6.00 1.33 0.09 50 0.60 | 0.52
Brigham
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10. SUMMARY AND CONCLUSIONS

A new mathematical model for cne-dimensional miscible displacement has
been proposed, which includes the viscosity ratio and the heterogeneity factor
explicitly. An approximate analytical solution to the new model has also been
found. Furthermore, a linear perturbation theory was employed, together with the
new model, to obtain perturbation equations which were solved using a variational
technique. Then, a dimensionless scaling group and its critical value at the onset of

instability for miscible displacements in heterogeneous porous media was derived.

A vertical sand pack was used to carry out a series of miscible
displacements in whick: the viscosity ratio and flow rate were charnged. The effluent
curves measured from the displacements were matched using the new model.
Keeping in mind the limitations of the new model, and for the experiments

performed herein, the following conclusions may be drawn:

1. The new model was used successfully to match effluent curves and
transition zone length data published in the literature and the effluent

histories of the miscible displacements conducted in this study.

2. An approximate analytical solution to the new model was found and it
demonstrated that the transition zone of a miscible displacement grows with
the square root of time at early stages when the concentration gradient is the
greatest. As the displacement goes on, the transition zone growth increases

linearly with time when dispersion becomes negligible.
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Theoretical analysis based on linear perturbation theory, together with the
new model, indicates that the miscible displacements conducted in a
heterogeneous porous medium have larger instability numbers than those
conducted in a homogeneous medium, if other conditions are kept

unchanged.

The effective viscosity ratio used in this study appears to become larger with

increasing flow velocity.

Higher dispersion coefficients and higher viscosity ratios reduce the

displacement efficiency.

The dispersion coefficient decreases as the viscosity difference becomes

larger and increases as the flow velocity becomes higher.
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11. SUGGESTIONS for FUTURE STUDY

The following studies are suggested to extend the present study:

More miscible displacements using different viscosity ratios at different
flow velocities should be performed to quantify the relationship between

effective viscosity ratio and flow rate.

The heterogeneity factor should be correlated to a permeability variation

coefficient or some other measurable parameter.

Miscible displacements should be conducted in heterogeneous porous media

to test the scaling group for the prediction of the onset of instability.

Different functional forms for tilting the concentration profile should be tried
to account for the deformation of the true concentration profiles caused by

heterogeneity and viscosity ratio.

More effort should be made to include the gravity difference in the

mathematical model and to extend it to other dimensions.

Miscible displacements should be conducted in porous medium models with
different lengths to see if the dispersion coefficient, which is included in the

new mathematical model, is scale dependent.



102

References

Aris, R and Amundson, N.R.: 1957, Some remarks on longitudinal mixing or
diffusion in fixed beds, AIChE J. 3, p. 280.

Auriault, J.L. and Lewandowska, J.: 1994, On the cross-effects of coupled

macroscopic transport equations in porous media, Trensport in Porous
Media 16, p. 31.

Baker, L.E.: 1977, Effects of dispersion and dead-end pore volume in miscible
flooding, SPE J. 6, p. 219.

Blackwell, R.J., Ravne, J.R. and Terry, W.M.: 1959, Factors influencing the
efficiency of miscible displacement, Trans. AIME 216. p.1.

Bretz, R.E. and Orr, F. M, Jr.: 1987, Interpretation of miscible displacements in
laboratory cores, SPERE 11, p. 492.

Brigham, W.E.: 1974, Mixing equations in short laboratory cores; SPE J. 2, p. 91.

Brigham, W. E., Reed, P. W. and Dew, J. N.: 1961, Experiments on mixing
during miscible displacement in porous media; SPE J. 3, p. 1.

Chandrasekhar, S: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon
 Press, Oxford.

Coats, K.H. and Smith, B.D.: 1964, Dead-end pore volume and dispersion in
porous media, SPE J. 3, p. 73.

Coskuner, G.: 1987, Instability of miscible displacement, PhD thesis, University
of Alberta.

Coskuner, G. and Bentsen, R.G.: 1989, Effect of length on unstable miscible
displacement, J. Canad. Petrol. Technol. 28(4), p. 34.

Deans, H.A.: 1963, A mathematical model for dispersion in the direction of flow in
porous media, SPE J. 3, p. 49.

Dougherty, E.L.: 1963, Mathematical model of an unstable miscible displacement,
SPE J. 6, p. 155.

Dumore, J.M.: 1964, Stability considerations in downward miscible displacements,
Trans. AIME, 231, p. 356

Fayers, F.J.: 1984, An approximate model with physically interpretable parameters
for representing miscible viscous fingering, SPE paper No 13166 presented
at the 59th Annual Technical Conference and Exhibition, Houston, Texas.



103

Hewett, T.A. and Behrens, R.A.: 1993, Considerations affecting the scaling of
czlissglacemems in heterogeneous permeability distributions, SPEFE 12, p.

Hicks, P.J., Jr., Narayanan, K.P. and Dearn, H.A.: 1984, An experimental study

of miscible displacements in heterogeneous carbonate cores using X-ray
CT, SPEFE 3, p. 55.

Houseworth, J.E.: 1993, Characterizing permeability heterogeneity in core samples
from standard miscible displacement experiments, SPEFE 6, p. 112.

Hove, A.O., Ringen, j.K. and Read, P.A.: 1987, Visualization of laboratory
corefloods with 4id of computerized tomography of X-rays, SPERE S, p.
148.

Jankovic, M.S.: 1986, Analytical miscible relative permeability curves and their
usage with compositional and pseudo-miscible simulators, Journal of
Canadian Petroleum Technology, 25, p. 55

Koval, E.J.: 1963, A method for predicting the performance of unstable miscible
displacement in heterogeneous media, SPE J. 6, p. 145.

Kwok, W., Hayes, R.E. and Nasr-El-Din, H.A.:1995, Dispersion in consolidated
sandstone with radial flow, Transport in Porous Media, 00, p. 1

Lacey, J.W. Draper, A.L. and Binder, G.G., Jr.: 1958, Miscible fluid
displacement in porous media, Trans. AIME 213, p. 76.

Lee, S.-T., Gary, K.-M. and Culham, W E.:1984, Stability analysis of miscible
displacement processes, SFE paper No. 12631 presented at the SPE/DOE
Fourth Symposium on Enhanced Oil Recovery held in Tulsa, OK.

Lydersen, L. A.: 1983, Mass Transfer in Engineering Practice , John Wiley &
Sons, Chichester, p.16.

Neuman, S.P.: 1977, Theoretical derivation of Darcy's law, Acta Mechanica 285,
p- 153.

Nguyen, H.H. and Bagster, D.F.: 1979, Unstable miscible liquid-liquid
displacement in porous media: a new model for predicting displacement
performance in homogeneous beds”, The Chemical Engineering Journal
18, p. 103.

Oguztoreli, M. and Farouq Ali, S.M.: 1984, Mathematical treatment of the miscible
displacement from porous media, AIChE J. 2(1), p. 55.

Perkins, T.K. and Johnston, O.C.: 1964, A review of diffusion and dispersion in
porous media, Trans. AIME 231, p. 356.

Perrine, R.L.: 1963, A unified theory for stable and unstable miscible
displacement, SPE J .9, p. 205.



104

Pickens, J.F. and Grisak, G.E.: 1981, Scale-dependent dispersion in a stratified
granular aquifer, Water Resource Res . 17, p. 1191.

Stalkup, F.L, Jr.: 1984, Miscible Displacement, Henry L Doherty Series, SPE,
Monograph Volume 8.

Udey, N. and Spanos, T.J.T.: 1991, A new approach to predicting miscible flood
performance, Paper No. $1-5 presented at the CIM/AOSTRA Technical
Conference in Banff, Alberta.

Udey, N. and Spanos, T.J.T.: 1993, The equations of miscible flow with
negligible molecular diffusion, Transport in Porous Media 10, p. 1.

Vinegar, H.J.: 1986, X-ray CT and NMR imaging of rocks, J. of Petrol. Technol.
3, p. 257.

Von Rosenberg, D.U.: 1956, Mechanics of steady state single-phase fluid
displacement from porous media, A/ChE J. 2(1), p. 55.

Vossoughi, S., Smith, J.E., Green, D.W. and Willhite, G.P.: 1984, A new
method to simulate the effects of viscous fingering on miscible displacement
processes in porous media, SPE J. 2, p. 56.

Walsh, M.P. and Withjack, E.M.: 1993, On some remarkable observations of
laboratory dispersion based on computed tomography (CT) , Paper No.
CIM 93-22 presented at the CIM 1993 Annual Technical Conference in
Calgary, Alberta.

Wang, S.Y., Ayral, S. and Gryte, C.C.: 1984, Computer-assisted tomography for
the observation of oil displacement in porous media, SPE J. 2, p. 53.

Withjack, E.M.: 1988, Computed tomography for rock-property determination and
fluid-flow visualization, SPERE 12, p. 696

Zhang, X.: 1993, Effect of core length on miscible displacement, MSc thesis,
University of Alberta.



105

13. Appendix A

Additional Effluent Curves: Experimental versus Matched
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