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ABSTRACT 
 

The high consumption and utilization of demand for small equipment, tools, and consumables in 

construction projects underscores the necessity for effective procurement strategies. Accurate 

estimation of these consumables is crucial for moving toward project completion in a timely 

manner. With recent advancements in time series analysis, artificial intelligence, and machine 

learning, these technologies can be employed to formulate predictive models.  

 This research aims to explore the advantages of using time series and machine learning—in 

combination with historical data from past projects—to identify key factors that impact demand 

for these consumables, as well as develop an efficient predictive model that analyzes and learns 

from historical data thereby facilitating precise estimations for future projects. The research 

involves collecting and analyzing historical data, analyzing current industry practices for 

estimating requirements for small equipment, tools, and consumables, and implementing time 

series analysis and machine learning algorithms to forecast demand for various types of 

consumables in construction projects. This study investigates crucial factors that influence these 

items, bridging the gap between literature review and industry practices.  

 Finally, this research proposes time series and machine learning models capable of predicting 

quantities in industrial projects using historical data. The proposed models provide an estimation 

of monthly requirements for various types of consumables throughout the project, which assists 

project managers in estimating required quantities, offering them accurate insights to help facilitate 

effective procurement strategies.  
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 INTRODUCTION 

1.1 Background and Problem Statement  

The construction sector is one of the largest industries in the world economy. Billions of dollars 

are spent every year to execute and deliver construction projects to the public. In this industry, cost 

of materials—including small equipment, tools, and consumables among others—accounts for 30-

50% of total project expenses (Heravi & Eslamdoost, 2015). Consequently, effective management 

of these resources is integral to the success of construction projects. Through such management, 

demand for resources can align with a project's requirements, allowing for a realistic and precise 

demand estimation. Generating accurate estimates of these resources is difficult as their utilization 

is contingent on various factors. Currently, estimations of these consumables are primarily 

conducted by project managers leveraging prevalent software tools and personal judgement. Thus, 

current practices rely on the expertise and experience of project professionals, which could lead to 

imprecise estimates. Moreover, the existing approach also often overlooks the latent value of 

historical data gathered from past projects. 

 Interestingly enough—and given recent advancements—machine learning (ML) algorithms 

have the potential to serve as robust tools for generating forecasting models and harnessing 

historical data to achieve precise resource estimation. Although ML algorithms have seen 

widespread adoption over the past two decades, their application for estimating small equipment, 

tools, and consumables resources is still emerging (Iwu, 2016; Gondia et al., 2020). The demand 

for these consumables varies significantly throughout the project duration, and insufficient 

forecasting methods contribute to inaccurate planning. This leads to delays in material delivery, 

directly impacting project schedules and efficiency. This study aims to develop an efficient 

predictive analytics model that learns from previous construction projects' data, facilitating the 

accurate estimation of necessary resources for diverse project types. Such a model will empower 

construction professionals to utilize their data effectively, enabling precise predictions for future 

projects’ needs. The small equipment, tools, and consumables include, but are not limited to, the 

following: discs, gloves, helmets, kneepads, respirator filters, respirator masks, safety glasses, and 

welding jackets. 
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1.2 Research Objectives  

This research seeks to forecast the demand of small equipment, tools, and consumables in 

industrial construction projects to improve project efficiency and reduce delays. The proposed 

objective will be achieved by doing the following: (1) examining current industry practices in 

estimating requirements for these resources; (2) identifying key factors affecting quantities of these 

consumables; (3) conducting Exploratory Data Analysis (EDA) for extracting insights and patterns 

between various features; (4) conducting various time series analysis techniques to forecast 

quantities throughout the project lifecycle; and (5) developing and evaluating innovative ML 

algorithms to measure their performance in forecasting the demand of small equipment, tools, and 

consumables.   

1.3 Expected Contributions  

The expected academic contributions of the proposed research can be summarized as follows:  

• Identifying current industry practices in estimating demand requirements for small 

equipment, tools, and consumables. 

• Investigating major factors impacting demand for consumables in construction projects. 

• Investigating the use of time series analysis in building a forecasting model to predict 

requirements for various consumables in the projects. 

• Developing a forecasting model using ML algorithms to predict requirements for these 

consumables in the projects. 

• Implementing the proposed model on a case study. 

The expected industrial contributions of the proposed research can be summarized as follows:  

• Developing a framework to predict quantities for small equipment, tools, and consumables 

on a project level using a company’s historical data. 

• Proposing an accurate forecast for required consumables throughout the project lifecycle, 

as opposed to limiting the estimation to a single order for total quantities of consumables 

for the whole project. 
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1.4 Research Methodology  

To achieve the research objectives, the proposed methodology is as follows: (1) conduct literature 

review and investigate current practices in the construction industry for estimating these resources; 

(2) identify factors that substantially influence the requirements of small equipment, tools, and 

consumables; (3) collect historical data of previous projects; (4) conduct feature selection to 

identify contributing factors and input variables of the model; (5) develop a forecasting model that 

utilizes time series and ML algorithms such as Artificial Neural Networks (ANNs); (6) train the 

model with preprocessed data and assess the algorithms' performance; and (7) generate predicted 

quantities for small equipment, tools, and consumables throughout the lifecycle of new projects. 

Figure 1 shows the summary of steps in the proposed methodology.  

1.5 Research Questions 

This research seeks to answer the following questions:  

• What are the patterns of demand (such as trends, cycles, and random fluctuations) for small 

equipment, tools, and consumables?  

• Which traditional forecasting methods are most accurate for the forecasting challenge at 

hand?  

• Considering various performance metrics, which ML techniques are most appropriate for 

the problem? 

• What are the primary indicators of demand, and how can we best select them?  

• Which is the most effective measure for evaluating each model's forecast accuracy (for 

instance, Mean Square Error [MSE], Mean Absolute Error [MAE], Mean Absolute 

Percentage Error [MAPE])? 

Figure 1 Research methodology 
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1.6 Thesis Organization  

This thesis is organized into five main chapters to ensure a coherent structure and systematic flow 

of information. Chapter 1 establishes the foundation of the research, presenting the background, 

problem statement, objectives, expected contributions, methodology, and research questions. 

Chapter 2 provides a comprehensive review of existing literature, covering areas such as 

construction supply chain and procurement management, the impacts of material delays, 

procurement strategies, supply chain demand forecasting, and ML applications in construction 

projects, identifying research gaps in the process. Chapter 3 details the research methodology 

including factors affecting consumables, data collection, model development, and evaluation 

methods. Chapter 4 applies the developed methodologies to a real-world situation involving EDA, 

time series analysis, and ML forecasting models, followed by a discussion of the results. Finally, 

Chapter 5 summarizes the research findings, outlines the academic and industrial contributions, 

addresses limitations of the research, and suggests directions for future research. 
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 LITERATURE REVIEW 

2.1 Introduction  

The objective of this thesis is to develop a predictive model—fundamentally based on time series 

and ML algorithms—for precise estimation of demand forecasting for small equipment, tools, and 

consumables throughout the lifecycle of construction projects. This chapter presents the previous 

efforts made in several areas including construction supply chain management, impact of material 

delays on project performance, procurement strategies to mitigate delays, demand forecasting, 

factors affecting demand forecasting, time series analysis, and, finally, ML algorithms. The 

following sections discuss the aforementioned areas in detail.   

2.2 Construction Supply Chain and Procurement Management 

Construction Supply Chain Management (CSCM) is complex as it involves multiple stakeholders 

such as owners, contractors, consultants, regulators, and suppliers, each with distinct objectives. 

This complexity is increased by uncertainties arising from project time delays, market volatility, 

changing customer needs, fluctuating project and material costs, and governmental regulations. 

Such uncertainties necessitate a cooperative approach and the coordination of activities among all 

parties to mitigate risks and enhance owner satisfaction. Furthermore, procurement—representing 

a substantial portion of a construction project's total value—involves multiple steps from material 

requisition to final supplier selection and compliance verification with standards and codes, as 

outlined by the International Standards Organization (2020). The complexity of procurement 

processes and their role throughout a project's lifecycle are emphasized in research conducted by 

Mubin and Mannan (2013) who identify procurement as a high-risk activity. Indeed, challenges in 

procurement, such as selection of underqualified suppliers, late procurement team engagement, 

and misalignment of material supply with construction timelines, significantly affect project 

outcomes (Thomas et al., 2005; Drew et al., 2004). 

 The importance of procurement extends beyond acquisition of materials. It serves as a 

mechanism for corrective actions within construction projects, which is supported by case studies 

from leading Engineering, Procurement and Construction (EPC) firms (Micheli & Cagno, 2016). 

The choice of procurement methods—influenced by factors such as cost, project delivery methods, 

and contractual terms—plays a vital role in project success (Eriksson & Westerberg, 2011). 
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Inefficient procurement strategies can lead to schedule and budget overruns (Laedre et al., 2006) 

while effective material management helps in avoiding construction delays and optimizing 

productivity (Mawdesley & Al-Jibouri, 2010; Thomas et al., 2005). Ruparathna and Hewage 

(2015) investigated the conceptualization of construction procurement, making distinctions 

between those focused on contractual purchases and those encompassing all activities necessary 

for achieving project objectives. This distinction confirms the extent of procurement's impact on 

construction projects and highlights the need for strategic, well-informed decisions in procurement 

processes to prevent material shortages or surpluses and minimize deviations from project plans. 

2.3 Impact of Material Delay on the Performance of Construction Projects 

Performance evaluation is carried out using a range of factors typically divided into two categories 

depending on the perspective being examined. The first category pertains to dimensions such as 

time, cost, and quality (Micheli & Cagno, 2016; Ling et al., 2014; Chan & Chan, 2004) while the 

second category relates to entities within the CSCM including the project owner, contractor, 

subcontractor, and consultant (Pheng & Chuan, 2006). Additionally, the most common metrics 

used by stakeholders to assess outcomes of a construction project are time, cost, quality, health, 

and safety. According to Dissanayaka and Kumaraswamy (1998), the control of time and cost 

performance is influenced by factors like the procurement system, nature of the project, 

collaboration, and performance of stakeholders. The following paragraphs detail some of the 

factors that influence project performance. 

 Construction delays have long been a significant obstacle to successful project completion. As 

a result, researchers have attempted to identify and classify such delays to reduce/avoid associated 

costs. Assaf et al. (1995) used semi-structured interviews to identify causes of construction delay 

and grouped them into nine categories: funding, materials, contractual relations, alterations, 

extended permit approval processes, workforce, scheduling and control, equipment, and 

environmental factors. Within these categories, material delay was found to be a significant 

challenge. This finding was corroborated by the work of Thomas et al. (2005) who identified 

ineffective material management as a substantial contributor to project delays and financial losses. 

Furthermore, a survey conducted by Wang et al. (2016) pinpointed five primary risks to EPC 

including inflation, government inefficiency, local material shortages, fluctuating financial 

markets, and unstable political situations. The research of Enshassi et al. (2009) confirmed that the 
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highest ranked factors influencing construction project performance were related to material 

management, particularly the unavailability of materials and resources. Based on a study of 

approximately 125 projects, Horman and Thomas (2005) concluded that material management 

related delays were indeed the most commonly documented. Thus, it is clear from previous 

research that material shortages are a recurring challenge for EPC contractors. Factors related to 

materials that impact project performance involve slow delivery, onsite material shortages, storage 

damage, specification changes during construction, and import challenges. The role of 

transportation and communication between suppliers and contractors must also be considered as 

these can contribute to procurement-related delays. 

 Construction projects rely on timely supply of necessary materials. As a result, any delay in 

the supply chain can significantly impact project timelines. Such material supply delays have been 

recognized as a primary factor in time overruns (Dey, 2000), and a number of studies have 

investigated the impact of material delays or mismanagement on project performance (Horman & 

Thomas, 2005; Thomas et al., 1999; Thomas et al., 1989). Specific construction materials such as 

pipeline, rebar, tiles, glass, rubber, cement, bulk filling materials like soil and rocks, ceramics, 

gravel, lead, paints, plastics, and plywood are consumed in large quantities and any disruption in 

their supply can also obstruct construction progress. Certain materials—termed as long-lead 

items—are required earlier in the construction process and are incorporated into project scheduling 

and contracting plans. With this being said, effective material planning—which includes 

maintaining records, determining target inventory levels, and setting the frequency of material 

delivery—can provide guidance for all subsequent activities and greatly influence the success of 

projects (Payne et al., 1996).  

2.4 Procurement Strategies for the Supply Chain to Mitigate Delays 

To enhance project performance, companies must develop plans to improve efficiency and 

effectiveness of their logistics and procurement processes (Dainty et al., 2001; Vrijhoef & Koskela, 

2000). Disruptions can have a negative impact on a firm's performance. Hence, a strategic plan is 

needed to develop proactive actions that mitigate uncertainties and vulnerabilities. A suitable and 

efficient procurement route should be tailored to the unique characteristics, objectives, and 

performance expectations of each project, given that no two projects are identical and no single 

approach is universally applicable. Unfortunately, organizations often resist adopting new 
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procurement strategies and opt to follow familiar routes even when they are unsuitable for a 

specific project, which contradicts recommended guidelines (Laedre et al., 2006). Some strategies 

that aid in mitigating delays and uncertainties are outlined in the following subsections. 

2.4.1 Inventory/Buffer Management 

Buffers and buffer management are employed to mitigate uncertainties in projects and 

procurement (Yeo & Ning, 2002). For instance, unnecessary delays in construction can be 

minimized by adding a buffer to the project timeline, which covers all planned dates for starting 

and completing project activities and milestones. In terms of material management, an inventory 

buffer can be introduced between the defined delivery date and the required onsite date (Yeo & 

Ning, 2006). An inventory buffer for construction material is crucial for improving construction 

performance (Horman & Thomas, 2005) and, furthermore, efficient inventory management by 

stakeholders in the supply network helps mitigate supply delays (Huang et al., 2012).  

2.4.2 Early Sourcing and Purchase Order 

An early sourcing strategy involves engaging suppliers at the initial stages of a project to reduce 

costs, mitigate risks, and improve quality and lead times. It is utilized to address procurement 

challenges in EPC firms (Azambuja et al., 2014). Jergeas (2009) suggests early purchase orders 

for materials as a means to mitigate delays in construction projects, while Seshadri et al. (1991) 

developed a model illustrating the relationship between multi-sourcing—where a company sources 

a particular product, service, or material from multiple suppliers—and its impact taking into 

account factors such as seller’s profit, buyer’s profit, and number of bids. To enhance reliability 

of supply, the multi-sourcing strategy is often adopted. However, it is worth noting that using a 

backup strategy is not prevalent in construction due to the time and cost involved in selection of 

suppliers.  

2.4.3 Expedite 

The procurement team should engage with suppliers in collaborative discussions aimed at 

accelerating production and shipment of materials and equipment to ensure timely delivery. This 

refers to purchase orders, project requirements, and schedules. Such a process demands meticulous 

planning as regular information sharing between contractor and supplier is crucial. In the service 

supply chain, backlogs are managed through capacity adjustment (Akkermans & Dellaert, 2005). 
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By exchanging expedite reports between the project control and procurement team, delays can be 

mitigated and supply chain performance enhanced through lead time reduction and sharing 

information on demand. Anderson et al. (2005) investigated this in their research and suggest 

several policies to diminish backlogs, which are often indicative of a system's responsiveness. 

2.4.4 Material Decision Support Models 

Experts have introduced decision support systems designed to assist managers in ensuring timely 

delivery of materials to construction sites. These systems consider factors like material inventory 

levels and storage requirements. Such models provide a deeper understanding of the procurement 

system's behavior over time and aid in formulating efficient guidelines and strategies for managing 

materials. Previous research has explored the creation of policies and their influence on various 

facets of construction projects. For instance, some studies have analyzed the effects of material 

supply decisions on construction labor productivity (Thomas et al., 1999; Thomas et al., 1989) 

while other studies have focused on establishing principles for onsite material management 

(Thomas et al., 2005). Moreover, systems intended to support material supply decisions have also 

been the subject of past research (Tserng et al., 2006; Polat et al., 2007). Jaśkowski et al. (2018) 

put forth a decision model that employs a fuzzy framework to decrease inventory costs for bulk 

construction materials. Conversely, other decision models focused on the process of supplier 

selection (Cengiz et al., 2017; Patil & Adavi, 2012; Lam et al., 2010; Ho et al., 2007). 

 

2.5 Supply Chain Demand Forecasting in Construction Projects 

Demand uncertainty is a key factor affecting supply chain performance, leading to inadequate or 

surplus inventories, inaccurate product forecasts, uncertain lead times, and inconsistent production 

planning (Lee et al., 1997; Chaharsooghi & Heydari, 2010). In the construction industry, demand 

uncertainty is often recognized as a core characteristic (Naim & Barlow, 2003; Green et al., 2005; 

Ala-Risku & Karkkainen, 2006). This uncertainty—leading to inconsistency in demand for 

construction materials—results from the distinctive nature of construction projects, a broad 

spectrum of material requirements, indeterminate construction site locations, and seasonal 

workload variations (Arbulu et al., 2003; Caniato et al., 2011; Vidalakis et al., 2011). These 

industry-specific and project-specific aspects can impede suppliers' structural decisions regarding 

warehouse location, material quantity and size, product variety, and mode of transportation (Silver 
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et al., 1998). Simultaneously, these elements can impose considerable limitations on operational 

procedures such as inventory restocking plans, delivery scheduling, load consolidation, and 

backhauling, which reduces transportation efficiency (Shakantu et al., 2008). Based on the 

aforementioned impacts, there is a need for an efficient method for sharing project data and 

deliveries information throughout the project lifecycle to improve operations management.  

 Efficient operational management of a supply chain requires centralized synchronization of 

vital data (Lee & Billington, 1995). For industrial production, this usually involves data like 

forecasts, inventory conditions across all locations, backlogs, production strategies, delivery 

schedules of suppliers, and pipeline inventory. Essentially, supply chain integration requires all 

nodes within the network to exchange and disseminate detailed and up-to-date information. 

Negligence in sharing such precise information results in inaccurate demand data thus triggering 

what is known as the bullwhip effect (Lee et al., 1997). The bullwhip effect is a phenomenon 

characterized by amplified demand fluctuations up the supply chain caused by minor changes in 

consumer demand at the retail end (Lee et al., 1997). This effect exacerbates demand uncertainty 

and inventory problems, necessitating advanced planning and coordination. Additionally, Arbulu 

et al. (2005) concluded that the introduction of Just-in-Time (JIT) in construction is contingent 

upon the project team's capability to regulate supply and precisely predict demand. The 

introduction of JIT principles—which aim to reduce waste and increase efficiency by receiving 

goods only as they are needed in the production process—can help mitigate these challenges. 

Similar to any production system, demand and supply greatly rely on each other meaning that any 

form of variability will affect the successful management of the project, eventually impacting 

overall performance of the production system by escalating costs and duration while diminishing 

quality and safety (Arbulu & Ballard, 2004). Such a situation seems to be prevalent in construction 

supply chains where high levels of complexity and uncertainty exist. Consequently, significant 

deviations in plans and material delivery can occur at every phase. 

 To alleviate adverse effects of fluctuating demand, it is essential to be able to predict these 

uncertainties. Demand forecasting forms the foundation for numerous managerial decisions within 

the supply chain such as demand planning, order fulfillment (Narayanan et al., 2019), production 

planning (Donohue, 2000), and inventory management (Silver et al., 1998). Accurate and 

trustworthy demand forecasts offer essential insights for supply chain managers to aid their 

planning and decision-making processes. However, achieving high precision in demand 
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forecasting is usually challenging due to inherent volatility and uncertainties (Syntetos et al., 2016) 

and the fact that the accuracy of demand forecasting can influence demand volatility (Gilliland, 

2010). Due to these challenges that come along with demand forecasting, it is not a straightforward 

task and, as a result, many companies and planners fail to implement a scientific forecast 

(Armstrong & Green, 2017).  

 Inaccurate predictions may result in unnecessary expenses in procurement and transportation, 

manpower, service levels, and inventory (Torkul et al., 2016). Hence, it is critical to establish an 

appropriate strategy to manage volatility. Scholars and industry professionals have suggested and 

implemented various strategies to manage demand volatility. For instance, one method to mitigate 

adverse effects of demand volatility is to augment inventory levels. While this can help offset 

demand fluctuations, it can also result in significant costs for companies (Chopra & Meindl, 2021). 

Another tactic involves increasing capacity, but this approach is typically unappealing due to the 

high costs it imposes on the supply chain. So, even though these methods can help mitigate 

challenges related to demand volatility, they may not always be cost-effective. 

 Although there are obviously difficulties and complexities associated with implementing 

demand forecasting, it is an important prerequisite for strategies aiming to manage demand 

volatility (Hope & Fraser, 2003) as it represents the first step toward addressing uncertainty and 

volatility within the supply chain. Over the past several decades, a variety of models have been 

utilized for demand forecasting (Aye et al., 2015; Fildes et al., 2008; Huang et al., 2014; Hyndman 

& Athanasopoulos, 2018; Ma & Fildes, 2017; Ma et al., 2016; Pai & Lin, 2005; Syntetos et al., 

2016). Yet, there is no one-size-fits-all solution that can resolve all forecasting challenges and 

consistently outperform all other forecasting models. Likewise, no specific methods universally 

outperform all others under all circumstances and conditions: certain models might perform better 

than others under specific conditions.  

2.6 Factors Affecting Supply Chain Demand in Construction Projects 

Effective demand forecasting for small equipment, tools, and consumables is imperative for 

successful construction project management (Vrijhoef & Koskela, 2000). The supply chain in this 

sector is highly sensitive to a multitude of factors that influence demand. This section explores key 

studies that have focused on identifying and analyzing the factors affecting supply chain demand 

for small equipment, tools, and consumables in construction projects.   
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2.6.1 Economic Conditions 

The state of the economy influences the construction sector and, consequently, the demand for 

small equipment, tools, and consumables. Navon (2005) suggests that fluctuating economic 

conditions can have an immediate and prolonged impact on construction activities. 

2.6.2 Labor Intensity and Tool Usage 

The number of workers on a construction project directly affects demand for small equipment, 

tools, and consumables. The productivity of the workers might be impacted by the shortage of 

consumables. Accordingly, more workers may result in increased tool usage, leading to higher 

demand for replacements and consumables (Naoum, 2016). 

2.6.3 Work Packages and Activities 

The design of work packages and sequence of construction activities often dictate the types and 

quantities of small equipment, tools, and consumables required at various project phases. A study 

by Chan et al. (2004) expanded on the correlation between work packages and project success. 

While the study does not focus explicitly on supply chain demand, it does emphasize the role of 

well-planned work packages and activities in project performance, which invariably includes 

supply chain efficiency. 

2.6.4 Project Size and Complexity 

The nature and scale of a construction project directly affects the requirement for small equipment, 

tools, and consumables. Williams (2017) examined how project complexity and size impact 

demand, emphasizing that larger and more complex projects typically require a wider range and 

larger quantity of small equipment, tools, and consumables.  

2.6.5 Project Warehouse Capacity 

Project warehouse capacity plays a vital role in determining demand for small equipment, tools, 

and consumables. The size and storage capabilities of the warehouse influence how much 

inventory can be stored onsite. A larger warehouse may allow for bulk purchases and the storage 

of reserve supplies, reducing the frequency of replenishment orders (Kasim et al., 2005). 
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2.6.6 Technological Advancements 

Emerging technologies can shift demand patterns for small equipment, tools, and consumables. 

Azhar et al. (2008) explored how Building Information Modelling (BIM) can alter demand patterns 

for these supplies, emphasizing the role of digitization in construction. 

2.6.7 Regulatory and Environmental Factors 

Legal regulations—particularly safety and environmental codes—dictate the types of small 

equipment, tools, and consumables that can be used. In their research, Teo and Loosemore (2001) 

consider how regulations affect procurement of materials and tools. 

2.6.8 Supplier Relationships 

Supplier collaboration can significantly influence supply chain efficiency. According to a study 

by Meng (2012), stable relationships with suppliers lead to more reliable logistics and delivery, 

affecting demand forecasting accuracy. 

2.7 Time Series Forecasting in Construction Sector 

As a result of the time-sensitive nature of construction projects, time series forecasting has 

emerged as a not only useful but necessary tool. Time series forecasting involves predicting future 

values based on past observations, and focuses on understanding and leveraging patterns like 

seasonality, trend, and cyclic behavior in historical data (Box et al., 2015). One of the most popular 

methods for time series forecasting is the ARIMA model. Hyndman and Athanasopoulos (2018) 

effectively demonstrated its application in construction supply chain demand, revealing its 

capacity to model various complex time-dependent models, especially when supplemented with 

seasonality adjustments. This section provides more detail on pivotal studies that highlight the 

adoption and effectiveness of time series methods in predicting supply chain demands in 

construction.  

2.7.1 Autoregressive Integrated Moving Average (ARIMA) 

Box and Jenkins (1970) established the foundation for ARIMA, stressing its adaptability in 

addressing non-stationary time series data. ARIMA—with its components Autoregressive (AR), 

differencing (I), and MA—offers flexibility to model a variety of time series structures. This is 
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noteworthy since the volatile nature of material demand in construction projects necessitates 

reliable forecasting models. To this end, Hosny et al. (2023) investigated ARIMA's application in 

forecasting prices of construction materials. Hwang et al. (2012) also developed another automated 

time series model for material cost forecasting. The findings highlighted ARIMA's ability to adjust 

to trends and seasonality inherent in construction projects. In addition to material demand, labor 

demand is a critical aspect of construction. Wong et al. (2005) employed ARIMA for labor demand 

forecasting for construction projects, noting the model's efficiency in capturing the complex and 

diverse nature of the industry. For seamless construction workflows, timely procurement of 

equipment is also essential. Hayat and Soenandi (2018) adopted the ARIMA model coupled with 

non-linear Backpropagation ANN (BPNN) to predict demand for key building materials, 

observing the model's resilience in responding to fluctuations in demand. 

2.7.2 Linear Regression (LR) 

Linear Regression (LR) establishes a linear relationship between a dependent variable and an 

independent predictor, making it a straightforward yet potent tool for forecasting. Draper and 

Smith (1981) introduced LR as a staple method for modeling and interpreting quantitative data in 

various domains including construction. Construction machinery is foundational for planning 

processes and vital in the administration of core operations in the construction industry. Therefore, 

precise forecasting of equipment is critical for organizations to ensure site operations can continue 

without disruption. A study conducted by Aktepe et al. (2021) utilized LR analysis to accurately 

predict future customer requests for spare parts. Data spanning from 2010 to 2018 were employed 

for the analysis with demand predictions made for 2018 used as a benchmark against actual figures. 

Another study—focused on Singapore's residential, industrial, and commercial construction 

demand—showcased the application of LR utilizing quarterly time series data spanning from 1975 

to 1994. The primary aim of this analysis was to determine the dependability of this method in 

predicting sector-specific demand (GOH, 1998). Flanagan and Norman (1983) utilized LR to 

investigate the accuracy of quantity surveyors’ predictions of project costs. This helps with 

determining early warning signs as a means of getting projects back within budget. Finally, a study 

conducted by Al-Momani (1996) was used to predict the construction cost of school buildings 

across years. Their model was built using records of 125 school projects gathered in Jordan from 

1988 to 1994. This model would then be used for predicting cost of other projects. 
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2.7.3 Artificial Neural Networks (ANNs) 

ANNs are computational models inspired by the human brain's structure and function. They are 

increasingly utilized in time series analysis for their ability to learn and model complex patterns 

and trends from historical data. This being said, ensuring that materials are available in the right 

quantities at the right time is essential for project success. In their study, Aktepe et al. (2021) 

focused on the production facility for construction machinery spare parts, where demand 

forecasting played a pivotal role in operational planning and inventory management. Their 

research was aimed at accurately predicting future customer demands for spare parts using 

historical sales data. They developed ANNs to handle complex time series data and the analysis 

included data spanning from 2010 to 2018. Another study—conducted by GOH (1998)—

addressed the construction industry's inherent volatility by making precise demand forecasting for 

stakeholders such as developers, builders, and consultants. The study addressed the residential 

sector in Singapore and used ANNs as the forecasting method, which showed potential by 

generating accurate demand predictions. An additional study evaluated forecasting capabilities of 

the Neural Network Autoregressive (NNAR) model in predicting construction output over the 

medium term. The study used quarterly time series data of Hong Kong's construction output from 

the first quarter of 1983 to the fourth quarter of 2014. The findings revealed that the NNAR model 

provides reliable and accurate forecasts for various categories of construction output (Lam & 

Oshodi, 2016).  

Perhaps most significantly, a study completed by Ihnatovich (2017) discussed predicting the 

construction equipment market demand using economic indicators to navigate market shifts 

effectively. The study ultimately provides valuable insights for construction equipment 

manufacturers, distributors, and suppliers, enabling a deeper understanding of market dynamics 

and anticipating market demand. Such foresight allows businesses to refine their strategies, 

optimize production capacities, allocate resources efficiently, maintain optimal inventory levels, 

and minimize costs while enhancing profitability and market competitiveness. Moreover, the study 

confirmed that demand for construction equipment is significantly impacted by economic 

conditions. They implemented ANNs for forecasting and successfully predicted the sales of 

construction equipment up to a year in advance across various countries including Germany, the 

United Kingdom, France, Italy, Norway, Russia, Turkey, and Saudi Arabia. 
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2.8 Machine Learning (ML) Algorithms in Construction Projects 

Construction projects consist of diverse activities that are interdependent, impact one another, and 

are influenced by uncertainties like weather conditions, geological features, and human factors. 

Therefore, effective construction management is critical to efficiently achieve construction goals 

and is fundamental to success of a project (Bush, 1973). However, due to uncertainties and the 

dynamic nature of the construction industry, practical construction management challenges are 

intricate and hard to predict (Li, 1996). Various tools have been developed and successfully 

applied to tackle these problems in construction management. Artificial Intelligence (AI)—a tool 

that has been somewhat underutilized in the construction industry thus far—refers to computer 

system designs that manage and solve problems intelligently, mimicking processes that occur in 

the human brain. With AI technology continuing to advance, applying AI paradigms is becoming 

suitable in addressing construction management challenges (Haykin, 1998; Tommelein et al., 

1992). In fact, ML—a subfield of AI—is one of the top technologies widely employed across 

various industries such as railways, aviation, and medicine (Sanni-Anibire et al., 2020). It is used 

for data modeling and developing mathematical representations of data that can then be used by 

computers to deliver accurate predictions. Despite the broad acceptance of ML algorithms over 

the last two decades, the adaptation of ML for construction management is still in the early stages 

(Jantan et al., 2009; Iwu, 2016; Gondia et al., 2020).  

 ML algorithms are categorized into three main types: supervised learning, unsupervised 

learning, and reinforcement learning. Each differ in their approach to learning and problem-

solving. Supervised learning, the most commonly used category, involves training a model on an 

already existing labeled dataset (Xu et al., 2021). The objective is for the model to learn to map 

inputs to outputs, making it suitable for problems that involve regression and classification. 

Examples of supervised learning algorithms include Linear Regression (LR) for continuous output 

prediction, Logistic Regression (Cox, 1958), Support Vector Machines (SVMs) (Cortes & Vapnik, 

1995), and Artificial Neural Networks (NNs) for classification tasks (Adeli & Yeh, 1989). 

Unsupervised learning, in contrast, deals with unlabeled data where the goal is to explore structure 

and patterns within the data. Without predefined labels, the algorithm tries to organize data, often 

by finding commonalities among different inputs (Xu et al., 2021). Common unsupervised learning 

tasks include clustering, a process by which the algorithm seeks to group data points into distinct 

categories based on their features, and dimensionality reduction, where the algorithm simplifies 
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inputs by reducing the number of variables. Examples include K-Means clustering (MacQueen, 

1967) and Principal Component Analysis (PCA) (Pearson, 1901). Reinforcement learning is a 

different paradigm where an agent learns to make decisions by performing certain actions and 

receiving feedback from said actions in the form of rewards or penalties (Xu et al., 2021). The 

algorithm learns a policy, which tells the agent what action to take according to certain conditions.  

This type of learning is much like a trial-and-error learning process and is often used in areas such 

as robotics, gaming, and navigation. It involves evaluating actions based on the reward system and 

updating the strategy accordingly to maximize cumulative reward (Xu et al., 2021). Together, these 

three types of ML algorithms form a comprehensive toolkit that can be used for addressing a wide 

range of data analysis and problem-solving issues, from predictive modeling and data classification 

to autonomous decision-making in complex environments. The following subsections provide 

further detail on several ML methods. 

 

2.8.1 Artificial Neural Network (ANN) Forecasting 

Networks are an effective strategy for decomposing complex systems into more understandable 

subsets, and are comprised of nodes as well as connections between them (Sanni-Anibire et al., 

2020; Wu & Chan, 2009). Nodes serve as computational entities in networks, while connections 

facilitate information flow among these nodes (Haykin, 1998). In the ANN approach, nodes are 

referred to as artificial neurons, which are computational models inspired by biological neurons. 

Within artificial neurons, inputs are multiplied by corresponding weights and are then processed 

by a specific activation function (Patterson, 1996). ANNs consist of such artificial neurons 

(Gershenson, 2003). ANNs were designed to process information in a way that mirrors the human 

brain and are composed of a set of interconnected input/output units with each link having an 

associated weight. The ANN method allows for modeling of large, intricate problems involving 

numerous interdependent variables, and excels in the areas of prediction, pattern recognition, data 

compression, preliminary resource planning, and decision-making (Chukwu & Adepoju, 2012; 

Mourya & Gupta, 2012; Paliwal & Kumar, 2009; Wu et al., 2021). 

Many variations of ANNs have recently been developed including activation functions, hybrid 

models, accepted values, and learning algorithms (Wu & Chan, 2009). For instance, the Recurrent 

Neural Network (RNN) is one of the most advanced ANN models (Hibat-Allah et al., 2020). This 
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type of network is widely used in speech recognition, natural language processing, and for 

modeling sequential data (Zaremba et al., 2014). The algorithm can learn sequential features of 

data, utilize patterns to predict probable scenarios, and permits previous outputs to serve as inputs 

while maintaining hidden layers (Apaydin et al., 2020). Although ANNs are applicable in both 

classification and regression problems, the models typically demand extended training periods, 

and interpreting the meanings of the nodes' computed weights can be challenging (Han et al., 2011; 

Mourya & Gupta, 2012).  

2.8.2 Linear Regression (LR) 

An essential component of supply chain management is demand forecasting, which predicts future 

material, equipment, and labor needs. Materials constitute a large portion of construction costs, 

and forecasting their demand is therefore essential. LR—a foundational statistical tool—has been 

employed in various studies to address demand forecasting (Hua & Pin, 2000). Significantly, 

Skitmore and Ng (2003) demonstrated that LR could effectively predict prices and demands of 

essential construction materials by using economic indicators and historical data showing material 

usage rates. Persad et al. (1995) also applied LR models to forecast labor demand by using project 

features such as size, complexity, and type as predictors. 

LR is considered a simple algorithm to apply, yet it does have some limitations. One of the 

major limitations is that assumptions of linearity may not always hold true in complex supply chain 

systems. The construction industry—influenced by external shocks such as political events, 

economic downturns, or unaccounted factors—may not always follow linear patterns (Wong et al., 

2011). However, as computational capabilities grew, hybrid models combining LR with other 

techniques emerged as a solution to this issue. For instance, Tsai and Wu (2009) combined LR 

with ANNs to improve forecasting accuracy for cement demand, reflecting the industry's move 

toward more complex and integrative models. While LR provides a foundational method for 

forecasting supply chain demand, the inherent complexity of construction projects necessitates 

continuous evolution and adaptation of forecasting models. As the industry advances and data 

becomes more accessible, the integration of LR with other techniques promises more accurate and 

dynamic forecasting solutions. 
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2.8.3 Decision Tree (DT) 

A Decision Tree (DT) operates by dividing source data into subsets based on values of input 

features. This process is inherently recursive, resulting in a tree-like model of decisions and their 

potential outcomes. Its hierarchical nature allows for easy visualization and interpretation, making 

it particularly valuable for stakeholders who are non-experts in ML (Quinlan, 1986). 

Desai and Joshi (2010) utilized DTs to analyze labor productivity which impacts labor demand 

forecasting. The study revealed that the model could capture non-linear patterns in demand for 

labor affected by factors such as location, temperature, and age group. This was an important 

finding as labor constitutes a significant portion of construction expenses. Additionally, Shehadeh 

et al. (2021) proposed a DT model to forecast equipment demand by evaluating their residual 

values. This study used several features to be included in the model including, but not limited to, 

equipment type, manufacture, model, and age. Another subset of studies used DTs—mainly in the 

manufacturing industry—for predicting the price of several materials such as cotton, vehicles, and 

used cars (Deepa et al., 2023; Alshboul et al., 2023).  The studies highlighted the model's ability 

to handle multiple factors such as prices in different location, car type and model, project size and 

complexity, and regional constraints. In previous studies, DTs have also been compared against 

other forecasting models. For example, in a review study conducted by Boyko and Lukash (2023), 

which forecasted the cost of heavy machinery based on several features, DTs were compared 

against several algorithms. Although each model had strengths, hybrid approaches combining DTs 

with other models showcased potential for enhanced accuracy.  

2.8.4 Random Forest (RF) 

The random forest (RF) algorithm is renowned as one of the most accurate forecasting techniques, 

and can be used for classifications and regressions that consist of multiple DTs (Wang et al., 2016). 

In the RF algorithm, each DT has a root node, which then divides into branches based on all 

conceivable outcomes. This division is repeated for each branch until reaching a node where all 

instances share the same classification (Witten et al., 2011). A randomly chosen subset of features 

in each tree is utilized to establish optimal threshold for data splitting. Consequently, numerous 

trees are trained, each making a distinct prediction (Probst et al., 2019). It is worth mentioning that 

trees that perform best in certain segments of the sample space may provide imprecise estimates 



 

20 

in other sections (Pedregosa et al., 2011). Finally, the ensemble's prediction is obtained by 

aggregating—via majority vote or averaging—the predictions of the ensemble (Wang et al., 2016). 

The overall aim of the RF algorithm is to offer a solid predictive model less prone to overfitting 

by averaging several DTs, each of which might individually exhibit high variance (Bonaccorso, 

2018). Additionally, the RF algorithm’s division method also incorporates a moderate level of 

randomness compared to a single DT (Probst et al., 2019).This being said, the primary benefits of 

using RF algorithms include: simplicity of rules produced, as well as learning and classification 

processes with no constraints on numerical or categorical data (Gorunescu, 2011); effective 

operation on large datasets without being sensitive to noise or overfitting; and ability to handle a 

considerable number of inputs while having fewer parameters compared to other ML algorithms 

such as ANNs.  

Due to the potential associated with DTs, there is now a trend toward leveraging the RF 

algorithm. As a result, there are construction industry studies wherein researchers attempt to use 

this algorithm to address various problems such as predicting occupational accidents, construction 

project delay risks, and project costs (Yaseen et al., 2020; Huang & Hsieh, 2020; Meharie & Shaik, 

2020). 

2.8.5 K-Nearest Neighbor (KNN) 

The K-Nearest Neighbor (KNN) algorithm is a fundamental and straightforward classification 

technique rooted in predicting new records based on similarity metrics. It was initially designed to 

address reliable parametric estimations of probability density during discriminant analysis when 

these were unknown. In the KNN framework, k denotes the count of neighbors participating in the 

majority voting procedure (Guo et al., 2003). More specifically, the KNN classifier requires a 

metric d and a positive integer k value (Kubat & Cooperson, 2001). When a new input needs 

classifying, the distance between the new record and training records is computed. Based on the 

pre-determined threshold for the number of neighbors (which is k), the k with closest records of 

the smallest distances are identified and selected. The class that has the majority of samples is then 

chosen as the new input class. For instance, if k is 3, the prediction for a new record will be 

determined based on the three closest neighbors. Consequently, the only parameter to be fine-tuned 

is the value of k. A smaller k value might bias the model towards outliers, while a larger k value 

could make the modeling process computationally intensive (Guo et al., 2003). The k value that 
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delivers optimal performance can be determined through trial and error. Some existing studies 

suggest different formulas for determining the optimal k value (Zhu et al., 2010; Lall & Sharma, 

1996). Indeed, various methods can be used to compute the distance in the KNN algorithm, but 

the Euclidean distance metric is perhaps the most simple and straightforward method for 

calculating distances in a multi-dimensional input space.   

Numerous studies employed the KNN algorithm across various research fields for solutions 

such as learning methods, mapping, and recognition (Dang et al., 2005; Franco-Lopez et al., 2001; 

Lee & Scholz, 2006). The KNN algorithm excels in handling classification and learning from 

extensive datasets (Rosa et al., 2003). Thus, it is a widely adopted method capable of producing 

competitive results even when compared to the most sophisticated ML methods (Song et al., 2007; 

Duda et al., 2001). 

2.8.6 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a robust supervised learning method where the outcome is 

numeric. It employs advanced algorithms to discover patterns within intricate datasets and has 

been leveraged across various fields including demand forecasting, as highlighted by Villegas et 

al. (2018). Kandananond (2012) conducted a comparative study between two ML algorithms, 

Multilayer Perceptron (MLP) and SVR, comparing them against the traditional ARIMA prediction 

approach. By assessing consumer demand forecasts for six products, the research utilized Ljung-

Box-Q statistics to test data autocorrelation prior to model application. The evaluation metric, 

MAPE, confirmed SVR's superiority over ARIMA and MLP in forecasting for the majority of 

products.  

A novel combination of SVR and Particle Swarm Optimization (PSO) algorithm was then 

proposed by Chen and Liu (2013). Their PSO-SVR model was employed to predict coal 

transportation demands, taking into account variables like railway freight turnover volume and 

coal consumption among others. Utilizing data from 1995 to 2011 and incorporating the Radial 

Basis Function (RBF) kernel into their predictive model, the combined algorithm proved its mettle 

by outperforming ANNs Back Propagation (BP) both in terms of forecast accuracy and error 

reduction. Carbonneau et al. (2008) analyzed the efficacy of cutting-edge ML algorithms including 

ANNs, RNNs, and SVR in forecasting supply chain demand datasets. The study compared these 
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contemporary models against classical methods such as LR and Moving Averages (MAs). The 

results revealed promising potential of both RNNs and SVR in demand forecasting. 

2.9 Research Gaps 

Small equipment, tools, and consumables have consistently been vital for executing construction 

projects. The effective and efficient management of these items presents a challenge, though, one 

which can determine the success of any given project. In the past, extensive research in 

construction has been conducted regarding resource allocation. However, this research has 

overlooked the estimation of these consumables, leaving this research area relatively unexplored. 

Although forecasting models are one of the solutions that could address estimation issues in a 

practical manner, there is a noticeable lack of forecasting models that have been developed to focus 

on predicting total demand for small equipment, tools, and consumables for the entirety of the 

project while taking into account its general specifications. Having only a rough estimation of 

demand for the whole project—without an understanding of how this demand will be distributed 

over time—does not provide an efficient strategy for project management. Some professionals rely 

on their expertise to estimate quantities of these consumables but, again, this is subjective and 

changes from one professional to another, as well as from one project to another. Additionally, it 

is often the case that, during early stages of a project, there may not be sufficient detail about 

project activities. This can result in substantial errors and misallocated quantities when making 

predictions at this level. Consequently, there is a need for a forecasting model that can provide 

accurate estimates throughout a project. 

Current research aims to improve industry practices by exploring relevant literature to develop 

a more robust and practical forecasting model that aids in predicting monthly demand for small 

equipment, tools, and consumables at the project level for construction projects. Acquiring insights 

into demand at project level is not only more efficient, but also more practical than making broad 

and rough estimations for the entire project based on project managers’ experience. This approach 

removes the need for detailed information about every planned activity during the project. The 

intention of this thesis is to devise a generic model that provides project managers with reliable 

results. This goal will be achieved by: (1) proposing a structured approach to assist project 

managers with collecting project information in a way that leads to more accurate predictions and 

(2) developing a forecasting model that employs ML algorithms to predict consumables required 
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over the duration of the project. While some forecasting models use LR methods, others employ a 

non-linear approach to forecast resources. This research—recognizing the strengths of various 

approaches—investigates an array of ML algorithms including both LR and ANNs, chosen 

specifically for their ability to handle large datasets and deliver accurate forecasts.  
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 METHODOLOGY 

3.1 Introduction 

The aim of this study is to forecast demand of small equipment, tools, and consumables for the 

work tasks of a project by leveraging historical project data that includes important features for 

forecasting demand of these consumables. This research encompasses numerous phases including: 

comprehending industry procedures and methodologies; studying researchers' methods in 

forecasting required small equipment, tools, and consumables resources at the project level; and 

scrutinizing the factors impacting quantities for different small equipment, tools, and consumables 

resources. Then, historical data is collected based on industry practice and an agreement with the 

industry partner involved in the study. After data collection, data cleaning and preprocessing EDA 

are performed to gain understanding of the data through trends analysis and visualizations. 

Following, time series analysis is conducted using techniques such as ARIMA, LR, and ANN. ML 

algorithms are employed to pinpoint significant elements and formulate a model capable of 

forecasting quantities for varying types of small equipment, tools, and consumables. In the final 

phase, various metrics are used to evaluate and compare the models’ performance. Figure 2 

summarizes the aforementioned phases. 

 

 

 

 

Figure 2 Proposed methodology  
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The purpose is to identify project characteristics that impact quantities of small equipment, tools, 

and consumables for construction projects. The model can define the features that have significant 

impacts on quantities forecasting. It is worth mentioning that the results of the model should be 

logical and reliable to construction professionals—particularly project managers—to provide them 

with an accurate demand forecasting model for small equipment, tools, and consumables 

resources. 

 This chapter focuses on: (1) exploring demand forecasting strategies; (2) pinpointing crucial 

project factors that impact the demand forecasting process; (3) collecting historical project 

information for utilization in the forecasting model; (4) performing data cleaning and 

preprocessing for data analysis; and (5) explaining factors in the dataset and presenting data 

through graphs/charts to elaborate upon the impact of said factors. The procedure for forecasting 

model formulation is illustrated in depth and encompasses the data preparation technique, feature 

selection, outlining model inputs, and the ML algorithms employed to predict required quantities 

for small equipment, tools, and consumables resources in construction projects. 

3.2 Factors Affecting Required Consumables 

Forecasting quantities of small equipment, tools, and consumables has been among the concerns 

of project managers for some time. Various methods have been followed by industry practitioners 

and researchers to estimate small equipment, tools, and consumables required for a project. One 

of the objectives of this research is to delve into the potential factors affecting quantities of small 

equipment, tools, and consumables on a project level, and to determine factors that could be 

utilized to forecast small equipment, tools, and consumables. This section is an exploration into 

prevailing industry practices, which is conducted in order to pinpoint project attributes that ought 

to be considered when estimating required quantities for construction projects. 

3.2.1 Industry Practices in Demand Forecasting of Consumables 

Exploring current industry practices is the first step in detecting key attributes required for accurate 

prediction. The aim is to implement an investigation approach regarding impacting factors 

considered by industry experts when estimating labor resources required to complete a work 

package. Informative discussions with experienced project managers working in the largest 

construction companies lead to a clear understanding of current resource allocation methodologies 
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in the industry. Typically, each organization has its own way of identifying staffing requirements 

and adopts qualitative and quantitative techniques including heuristic rules based on their 

experienced managers, regression models from previous projects, and their own framework to rank 

projects based on multiple project characteristics. Demand forecasting techniques used by industry 

organizations include the following: 

• Expert judgment: Construction organizations generally place high reliance on their experts' 

evaluations and engage experienced specialists who have completed similar work, seeking 

their opinions regarding which resources are needed. 

• Project management software: Some software include features designed to assist project 

managers in estimating required quantities as construction schedules are resource-loaded.  

• Bottom-up estimating: This involves dividing complex tasks into smaller ones and 

calculating quantities for each activity. It is a process of estimating individual activity 

resource needs and then aggregating them to a total estimate. This method is favored among 

construction companies due to its accuracy and simplicity. However, it demands a 

considerable amount of time to perform bottom-up estimating as every activity must be 

assessed and estimated meticulously to be incorporated in the aggregation process. 

• Referenced estimating data: Many project managers in the construction industry employ 

such data to estimate quantities. They depend on articles, books, or journals for analysis. 

The process of demand forecasting of small equipment, tools, and consumables includes various 

techniques: qualitative and quantitative. However, each of these frameworks have limitations that 

impact accuracy and lead practitioners to inaccurate estimation from employing their 

methodologies. The main setbacks are as follows: solely depending on project managers’ 

knowledge and experience, and not evaluating actual project values compared to estimated values. 

3.2.2 Factor Selection 

Key attributes impacting small equipment, tools, and consumables demand are identified through 

literature review analysis, as well as determining factors applied by industry experts through 

understanding their methods in estimating quantities. One of the objectives of current research is 

to gather significant key features from historical data to forecast quantities required for a given 

construction project. As mentioned in the literature review chapter, there are barely any prediction 

models developed by researchers that can estimate quantities of small equipment, tools, and 
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consumables required for construction projects. Yet, models exist for estimating other materials in 

the construction industry. These models typically account for elements such as project type and 

budget but often exclude other critical aspects like complexity and project delivery method 

(Elkholosy, 2020; Golabchi & Hammad, 2023). Furthermore, current models predominantly offer 

projections for overall materials demand for a project.  

 In contrast, this research seeks to develop a model for predicting small equipment, tools, and 

consumables needs for each individual time increment—be it daily or weekly—throughout the 

project's lifecycle. Some commonly considered determinants in existing models include: economic 

conditions (Navon, 2005); labor intensity and tool usage (Naoum, 2016); work packages and 

activities (Chan et al., 2004); project size and complexity (Williams, 2017); project warehouse 

capacity (Kasim et al., 2005); technological advancements (Azhar et al., 2008); regulatory and 

environmental factors (Teo & Loosemore, 2001); and supplier relationships (Meng, 2012). It is 

worth noting that some factors mentioned cannot be generalized to all types of projects. 

3.3 Data Collection Process 

Since quality of data significantly impacts accuracy and dependability of the developed forecasting 

model, historical data—encompassing various features—must be collected from contractors and 

then analyzed to gain insight into the different features. Data collection is the fundamental step for 

then being able to employ the data in the forecasting model as a means of estimating small 

equipment, tools, and consumables quantities.  

 The information required for collection—which is also based on data availability—is first 

discussed with subject matter experts where the aim is to collect historical data at the project level. 

Significantly, the data flow between manufacturers, vendors, and contractors until it reaches the 

workface onsite is based on consumables availability. On each site, there are multiple tool cribs 

for workers to use throughout the project. Each of these cribs contains different consumables/items 

required by workers to perform various tasks. Once quantities start running low in the cribs, the 

contractor’s warehouse can be used to restock these items. If the contractor’s warehouse cannot 

fulfil the ordered consumables, the request can be directed to the vendor, and the vendor can then 

directly ship the consumables to the project site or contractor’s warehouse. The vendor may also 

use the distribution center to satisfy orders. In some cases, these distribution centers are located 

near the project site. As a result, it is more convenient to ship from the distribution center directly. 
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In cases where the vendor cannot satisfy the requested items, the vendor must reach out to the 

manufacturer. The manufacturer is the last entity in the supply chain and covers both the 

manufacturer’s distribution center and the manufacturing facilities where consumables are 

produced. Figure 3 delineates the flow of consumables across the aforementioned entities. 

 

 

In this research, historical data regarding consumables information are collected via spreadsheets 

provided by the industry partner, which are primarily exported from the company’s Enterprise 

Resource Planning (ERP) systems. 

 

3.3.1 Essential Attributes for the Forecasting Model 

The following are the imperative attributes of a project: consumable category, work package 

schedule, project duration, total work hours, manpower, budget for each order, and type of project. 

This study focuses on collecting attributes from completed historical projects. Data related to 

quantities of small equipment, tools, and consumables are collected and used to train the 

forecasting model. 

Figure 3 Consumables flow across entities 
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3.3.2 Data Exploration 

After performing a literature review analysis and having discussions with industry experts, the 

following factors have been chosen for further exploration in this study: 

• Consumable category: This denotes the specific type of consumable required for various 

tasks such as gloves, helmets, or discs.  

• Work package schedule: This indicates the timeline for different tasks or activities in the 

project, helping determine when specific consumables might be needed.  

• Project duration: This represents the total timespan for project completion. It is crucial for 

understanding how long a specific consumable might be in demand.  

• Total work hours: This refers to cumulative hours anticipated for the project, which can 

indicate the intensity and therefore the potential consumption of consumables.  

• Manpower: This highlights the number of workers or professionals engaged in the project. 

A larger workforce might indicate higher consumption rates of certain tools or materials.  

• Budget for each order: This provides financial perspective, detailing how much is allocated 

for each order. It can be an indicator of the quantity of the consumables expected to be 

used.  

• Type of project: This specifies the nature of the construction project such as oil and gas, 

power, or agricultural chemicals. Different project types have unique consumable 

requirements and usage patterns. 

Some of the factors that might have an impact on small equipment, tools, and consumables 

requirements are not considered in the case study of this research due to unavailability or 

confidentiality. For example, project complexity—which could be a factor affecting required 

manhours—is difficult to collect as contractors do not include such information in their records 

and each contractor might have its own definition of complexity. Thus, only the seven factors 

listed above are used as input to the forecasting models in this research. The selected factors have 

been studied by experienced project managers to ensure accuracy. Additionally, the project 

managers have been requested to provide feedback regarding any overlooked factors that require 

consideration. 
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3.3.3 Data Sources 

Each contractor possesses their unique methodology for collecting project data. Some might 

deploy their own developed collection systems, while others may engage ERP systems such as 

Oracle and Microsoft. The industry partner engaged in this research has devised its own tracking 

system consisting of various spreadsheets, each tailored for collecting specific data. Every record 

has a unique order and project code. The initial spreadsheets available include: type of 

consumables (Line Description), project ID (Business Unit), date order is placed (Order Date), 

date order is needed by (Request Date), date supplier promises to deliver (Promised Date), unit 

cost of consumables (Unit Cost), and quantity of ordered consumables (Quantity Ordered). 

3.3.4 Missing Data 

Although contractors generally track orders and quantities meticulously, certain attributes—such 

as complexity—are often not collected. Additionally, a uniform format for data collection across 

all projects may not be followed. For instance, without a well-defined format, naming various 

orders can result in difficulty and confusion since each project manager may employ their own 

naming conventions. Establishing a predefined data acquisition system can help solve these 

challenges thus providing a clean, well-structured dataset necessary for accurate analysis, swift 

challenge identification, and future actions. The industry partner involved in this research 

developed a robust tracking system internally and then refined it over years, resulting in limited 

missing values in their collected data. However, as mentioned earlier, certain attributes are often 

absent from the contractor’s tracking systems and records. Consequently, these records are 

removed from the dataset. Additionally, outlier detection processes are completed to remove some 

records and ensure more accurate data is fed to the model.  

3.3.5 Data Transformation 

As noted above, the initial dataset provided by the industry partner includes the following features: 

Line Description, Business Unit, Order Date, Request Date, Promised Date, Unit Cost, and 

Quantity Ordered. These features are not adequate for building a data-driven model. As such, 

several modifications, transformations, and features must be added to improve model input. 
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Further explanation regarding these transformations and modifications is provided in the case 

study chapter. 

3.4 Model Development 

The aim of this research is to pinpoint substantial factors influencing small equipment, tools, and 

consumables quantities through feature selection methodologies, as well as construct time series 

and ML models to forecast small equipment, tools, and consumables quantities required for 

projects. The proposed model is developed by leveraging time series analysis and ML algorithms, 

and will, in turn, assist project managers in allocating budget proficiently during preliminary 

planning phases. 

 In the previous section, seven factors affecting small equipment, tools, and consumables 

quantities were identified. A framework is detailed for developing a forecasting model for small 

equipment, tools, and consumables quantities where the identified factors are used as inputs, as 

illustrated in Figure 4. The collected dataset first undergoes cleaning and preprocessing steps, and 

any outliers within the dataset are pinpointed through outlier detection techniques. Then feature 

selection procedures are employed to analyze the features bearing significant impact on the 

performance of the predictive model. Once this step is completed, a range of time series techniques 

and ML algorithms are examined regarding their capabilities to opt for the most suitable algorithm 

for this study. The selected algorithm is then employed in the formulation of the forecasting model. 

Finally, the performance of the forecasting model is evaluated by various metrics. 

 The coming subsections are organized as follows: data preprocessing and outlier detection are 

explained; feature selection strategy is detailed; several time series techniques and ML algorithms 

are developed and trained using the training dataset; and the performance evaluation of the 

forecasting model and validation procedure are studied in depth. 
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Figure 4 Methodology of developing the forecasting model 
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3.4.1 Data Preprocessing 

Most ML algorithms require data cleaning and preprocessing before training can take place as the 

efficiency of these algorithms is influenced by quality of input data (Wu et al., 2022). Therefore, 

it is imperative that the data is prepared properly and aligns with the algorithm to avoid misleading 

or inaccurate outcomes. One of the stages in data preparation entails addressing missing values 

encountered in the dataset. The occurrence of missing information is attributable to inadequate 

tracking throughout project duration. Additionally, outliers may be identified in the collected 

datasets, which are usually a result of shortcomings in tracking and storing procedures. Subsequent 

to this, it is essential to scale the attributes in the dataset to prevent the forecasting model from 

assigning unjustified weights to attributes owing to their larger values. Moreover, setting up 

categorical attributes is essential. The management of categorical attributes is a prerequisite of 

preprocessing, especially given that certain algorithms only accept numerical inputs such as 

regression and ANNs. Consequently, necessary alterations should be executed on the dataset prior 

to advancing to the training phase. 

 This being said, proper formatting of the input dataset is fundamental. This process consists of 

several crucial steps aimed at acquiring acceptable input data for the model and includes the 

following: deleting records with missing values, removing outliers, managing categorical project 

attributes, and normalizing the training dataset. 

3.4.1.1 Missing Values 

In the provided dataset, certain records are missing features for specific orders related to the 

project. This occurs due to improper tracking and monitoring of the orders. Therefore, a number 

of records are removed from the input data as it is impracticable to obtain this information through 

alternative means. The small equipment, tools, and consumables resources forecasting must be 

undertaken with a profound understanding of existing data and its limitations. The planning in data 

handling plays a significant role in ensuring predictions for quantities are not only accurate but 

also reflective of actual needs in construction projects, thereby enabling a more effective and 

efficient quantity estimation in early stages of project planning. 
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3.4.1.2 Outlier Detection 

Outlier detection is an important step in the data preprocessing stage of ML, aimed at identifying 

anomalous or atypical observations in the data. These outliers arise due to various factors such as 

data entry errors, measurement errors, or inherent discrepancies in the underlying process. They 

have the potential to significantly impact the training and performance of ML models if included. 

Various techniques exist for outlier detection including statistical methods, clustering algorithms 

like K-Means, and ML algorithms such as Isolation Forest and One-Class SVM. These methods 

endeavor to either model the "normal" data to distinguish outliers or directly identify outliers based 

on certain criteria. Handling outliers appropriately—by removing, correcting, or segregating 

them—is essential to build robust models capable of generalizing efficiently from the training data 

to test data. The choice of outlier detection method depends on the nature of the data and the 

problem domain, making it an area that requires careful consideration in the ML process. 

3.4.1.3 Features 

Handling categorical attributes may pose more challenges compared to numerical ones, 

necessitating certain techniques to convert them into numerical variables. This conversion is a 

pivotal process in data preparation. Some features in the collected dataset encompass nominal 

attributes such as consumable category. Nominal attributes embody discrete categorical values 

labeled without any inherent order. Conversely, ordinal attributes encapsulate categorical values 

that bear a distinct order amongst them, where the interval between these values could influence 

the small equipment, tools, and consumables forecasting model. 

3.4.1.4 Normalizing and Data Split 

Upon conversion of categorical attributes into numerical counterparts, the entirety of values within 

the dataset transition to a numerical form. These features exhibit variation in magnitude since each 

has a distinct unit. It is paramount to execute scaling on these features prior to the training of an 

ML model, with normalization standing as a prevalent method for this scaling step. This involves 

deducting the mean and then dividing by the standard deviation for each respective feature. 

 ML algorithms are indifferent to the units as their operation relies solely on the magnitude of 

the values. Hence, all project features are standardized to provide a favorable environment for the 

ML algorithm to function optimally. This standardization is realized by scaling each of the project 
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features to a mean of 0 and a standard deviation of 1. The computation of the mean and standard 

deviation should be exclusively based on the training data, ensuring that the models have not been 

subjected to values within validation and test datasets. It is debatable, however, whether the model 

should remain uninformed of future values within the training set during the training phase, 

proposing that this normalization should harness MAs. 

 Subsequently, the training dataset is arbitrarily partitioned into three distinct subsets: the 

training set, the validation set, and the testing set. The training set serves as a subset of the dataset 

dedicated to construction of predictive models. Within the developed model, the training subset 

encompasses 80% of the records. The validation set is a subset of the dataset designated to evaluate 

the model's performance during the training phase. It provides a test bed for refining a model’s 

parameters and electing the best performing model. The validation set embodies 20% of the dataset 

in the prevailing model. The testing set is a subset of the dataset deployed to evaluate the 

anticipated future performance of a model. In the developed model, 20% of the dataset is allocated 

to the test subset for small equipment, tools, and consumables demand forecasting. 

3.4.2 Time Series Forecasting Methods 

Time series forecasting is a quintessential approach in predictive analytics—especially when data 

exhibits chronological sequences—and is tailored to predict future data points based on previously 

observed values. Indeed, it captures patterns, seasonality, trends, and cyclic behaviors present in 

historical data, and is able to deconstruct data into its fundamental components: trend, seasonality, 

and residuals. Time series data is structured with time as its primary axis, where observations are 

recorded at consistent intervals. These intervals could range from milliseconds (such as in high-

frequency trading data) to decades (such as in climate change studies). Recognizing and modeling 

these components are crucial for enhancing forecast accuracy.  

 Significantly, the granularity of data and its temporal structure makes time series forecasting 

distinct from other predictive modeling techniques. Given the temporal nature of data, model 

evaluation in time series forecasting requires specialized techniques including rolling-forecast 

origin and walk-forward validation. Various methods exist for time series forecasting, each with 

its unique assumptions, complexities, and applicability. From classical statistical methods, like 

ARIMA, to advanced ML techniques, such as ANNs and Long Short-Term Memory (LSTM) 

networks, the choice of methodology often hinges on the nature of the data and specific forecasting 
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objectives. Time series forecasting is not without its challenges, though. For example, challenges 

such as stationarity, autocorrelation, and structural breaks can influence model efficacy. Moreover, 

real-world time series data can be noisy, sparse, and may have missing values.  

 The following subsections discuss these challenges and potential approaches to ensure that 

time series forecasts are both robust and reliable, as well as offer a panoramic view of time series 

forecasting thereby arming the reader with the knowledge and tools to navigate the complexities 

of predicting future data points based on temporal sequences. Through a blend of theoretical 

underpinnings and practical insights, the aim is to foster a comprehensive understanding of this 

critical predictive analytics domain.  

3.4.2.1 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is a cornerstone methodology for time series forecasting. Rooted in both AR and MA 

models, ARIMA is tailored to address data that exhibits temporal dependencies, trends, or 

seasonality, making it especially apt for tasks such as demand forecasting.  

3.4.2.1.1 Basic Concept  

• Components: ARIMA is an amalgamation of three primary components including AR, 

Integrated (I), and MA. AR uses the relationship between an observation and a certain 

number of lagged observations. Integrated (I) makes the time series stationary by 

differencing. MA uses the correlation between an observation and a residual error from an 

MA model applied to lagged observations.  

• Stationarity: A prerequisite for ARIMA is a stationary time series, meaning statistical 

properties like mean and variance are consistent over time. The Integrated (I) component 

aids in achieving this by differencing the series until it becomes stationary. The model can 

be represented as, 

 ∅(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝛿 + 𝜃(𝐵)𝜖𝑡 (1) 

 

where 𝑦𝑡 is the time series, 𝐵 is backshift operator 𝐵𝐾𝑦𝑡 = 𝑦𝑡−𝑘, 𝑑 is degree of 

differencing, ∅(𝐵) is autoregressive operator of order  𝑝, ∅(𝐵) = 1 − ∅1𝐵 − ∅2𝐵2 − ⋯ −

∅𝑝𝐵𝑝, 𝜃(𝐵) is MA operator of order 𝑞, 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞, 𝜖𝑡 is error 

term at time 𝑡, and 𝛿 is a constant term (if included in the model). 
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3.4.2.1.2 Learning Process  

• Model Parameters: ARIMA is defined by three key parameters—denoted as p, d, q—where 

p is the order of the AR term, d is the number of differencing required to make the series 

stationary, and q is the order of the MA term.  

• Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC): AIC 

and BIC are often used to assess and choose the best combination of parameters that will 

result in the optimal fit for the model.  

3.4.2.1.3 Training  

• During the training phase, ARIMA utilizes historical data to estimate parameters that will 

minimize the prediction error for future points. Leveraging temporal dependencies, 

ARIMA captures patterns and trends to make forecasts.  

3.4.2.1.4 Prediction  

• Once the ARIMA model is trained, it predicts future data points based on patterns discerned 

from historical data. It uses lags of dependent variables and previous error terms to make 

these predictions.  

3.4.2.1.5 Evaluation  

• The effectiveness of ARIMA predictions can be assessed using standard metrics such as 

MAPE, MAE, and Root Mean Squared Error (RMSE).  

3.4.2.1.6 Assumptions and Features  

• No Explicit External Factors: Traditional ARIMA does not consider external regressors. 

• Parameter Estimation: The selection of parameters p, d, q is crucial and is often determined 

using tools such as autocorrelation and partial autocorrelation plots. Properly estimated 

parameters ensure efficacy of the ARIMA model.  

• In forecasting scenarios, especially demand prediction, ARIMA presents a robust 

technique that capitalizes on patterns in sequential data. Its ability to extrapolate temporal 

patterns—be they short-term fluctuations or longer-term trends—ensures that forecasts are 

both accurate and insightful. However, it is imperative to ensure stationarity and 

appropriate parameter selection to fully exploit ARIMA's potential. 
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3.4.2.2 Artificial Neural Networks (ANNs) 

ANNs have emerged as a robust tool in the domain of time series forecasting. Owing to their ability 

to model and predict complex non-linear relationships, ANNs can capture intricate patterns and 

dependencies in time series data, offering enhanced precision in forecasts. Especially in scenarios 

where traditional linear methods falter, ANNs present a flexible approach to time series analysis 

as they can handle various temporal structures with ease.  

3.4.2.2.1 Basic Concept  

• Layered Structure: ANNs are structured with an input layer, one or more hidden layers, 

and an output layer. Each layer consists of neurons that process input data and transfer 

information to subsequent layers.  

• Weighted Summation: Within each neuron, input data is subject to weighted summation 

followed by an activation function, which introduces non-linearity thereby enabling the 

network to learn intricate patterns. An ANN focusing on a single time series feature could 

be formulated as, 

 𝑦𝑡 = 𝑓 (𝑤1. 𝑥𝑡−1 + 𝑤2. 𝑥𝑡−2 + ⋯ + 𝑤𝑛. 𝑥𝑡−𝑛 + 𝑏) (2) 

 

where 𝑦𝑡is predicted value at time 𝑡, (𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑛) are previous 𝑛 observations in 

the time series, (𝑤1, 𝑤2, … , 𝑤𝑛) are weights the model learns during training 

(corresponding to each previous observation), 𝑓 is an activation function, and 𝑏 is the bias 

term. 

3.4.2.2.2 Learning Process 

• Backpropagation: ANNs employ the backpropagation algorithm, which involves 

calculating the gradient of the loss function concerning each weight by using the chain rule. 

This process ensures minimization of prediction errors.  

• Optimization: Techniques such as Gradient Descent or its variants—including Adam and 

Root Mean Squared Propagation (RMSProp)—help in adjusting weights of the network to 

reduce error between predicted and actual time series values.  
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3.4.2.2.3 Training  

• The model ingests sequences of historical time series data, adjusting its internal weights to 

best represent underlying patterns. The architecture might involve recurrent structures such 

as LSTM or Gated Recurrent Units (GRU), which are particularly adept at capturing long-

term dependencies in time series data.  

3.4.2.2.4 Prediction  

• Once trained, the ANN can produce forecasts for future data points in the time series. Given 

the input sequence, the network generates output values based on learned patterns, ensuring 

that predictions consider both recent and historical trends.  

3.4.2.2.5 Evaluation  

• The efficacy of ANNs in time series forecasting is gauged using metrics such as MAE, 

MSE, and R-squared. Furthermore, validation techniques like walk-forward validation are 

often employed to assess the model's performance on unseen data.  

3.4.2.2.6 Assumptions and Features  

• Non-Linearity: Unlike some traditional models, ANNs do not assume a linear relationship 

in data. They are intrinsically capable of modeling complex, non-linear dependencies.  

• Temporal Dependencies: With architectures like RNNs, LSTMs, or GRUs, ANNs can 

recognize and learn long-term and short-term dependencies in data, which is important for 

time series forecasting.  

• In the realm of time series forecasting, ANNs represent a cutting-edge approach, 

particularly suited for complex datasets where other models might not yield satisfactory 

results. Their capability to learn from both long-term and short-term patterns in data—

combined with their adaptability—positions them as a potent tool for a myriad of 

forecasting challenges. However, they do necessitate careful tuning and validation to 

ensure optimal performance and to avoid pitfalls like overfitting. 

3.4.2.3 Linear Regression (LR) 

LR is a cornerstone of predictive analytics and has been adapted effectively for time series 

forecasting. This statistical approach is tailored to understand and predict future points in a series, 
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particularly when data demonstrates a linear trend over time. By assessing relationships between 

independent time variables and series’ values, LR can derive actionable insights, making it an 

invaluable tool for forecasting demand in various scenarios.  

3.4.2.3.1 Basic Concept  

• Trend Identification: In the context of time series, LR focuses on deciphering linear trends 

within data. This involves establishing a relationship between time—or time-derived 

variables—and the series' values.  

• The following equation can be used to predict the value of the time series at time 𝑡:  

 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 (2) 

 

where 𝑦𝑡 is the value of the time series at time 𝑡, 𝑡 is the time variable, 𝛽0 is intercept of 

the regression line, 𝛽1 is slope of the regression line (representing the trend over time), and 

𝜖𝑡 is the error term at time 𝑡. 

3.4.2.3.2 Learning Process 

• Coefficients: The objective of the learning process is to determine optimal values of m and 

c that lead to the best fit line, which in turn provides the most accurate forecasts.  

• Optimization: The Ordinary Least Squares (OLS) method is commonly employed to 

minimize the sum of squared residuals, ensuring the derived line fits closely to the observed 

data points.  

3.4.2.3.3 Training  

• The training phase involves feeding a set of historical data points into the LR algorithm. 

The model then learns the linear relationship inherent in this data, adjusting its coefficients 

to minimize prediction errors.  

3.4.2.3.4 Prediction  

• Once trained, the LR model can forecast future values by simply extrapolating the 

established linear trend. It is imperative to understand that, while this method is powerful, 

its forecasts are based on the assumption that future trends will mirror past behaviors.  



 

41 

3.4.2.3.5 Evaluation  

• The accuracy of the LR model's predictions can be assessed using metrics like MAE, MSE, 

and R-squared.  

3.4.2.3.6 Assumptions and Features  

• Linearity: One of the fundamental assumptions of this method is that the relationship 

between the time variable and the series’ values remains linear. This implies that changes 

in the independent variable correspond to proportional changes in the dependent variable.  

• Independence: It is essential that the residuals—the differences between observed and 

predicted values—are independent of one another. Serial correlation in these residuals can 

lead to inaccurate predictions.  

• In the domain of time series forecasting, LR offers a straightforward yet effective approach. 

Its strength lies in its simplicity, transparency, and ease with which its results can be 

interpreted. Whether predicting stock prices, sales, or demand for resources, when 

historical data demonstrates a clear linear trend, LR can provide dependable forecasts. 

However, it is crucial to acknowledge its limitations and ensure the data's behavior aligns 

with the model's underlying assumptions. 

3.4.3 Machine Learning (ML) Forecasting Methods 

The accuracy of traditional methodologies is often lacking, especially when an excess of 

interconnected variables is involved. Indeed, several advantages of ML techniques render them as 

superior choices when it comes to demand forecasting. 

 First, traditional methods are typically constrained to a limited set of demand determinants, 

while ML techniques are designed to accommodate a more extensive range of factors as 

independent variables. In other words, one-dimensional algorithms are usually employed by 

traditional models whereas multi-dimensional data spaces are navigated by ML methods. Second, 

ML techniques exhibit an unparalleled adaptability, making them applicable across an array of 

business challenges. A singular ML algorithm can be applied in areas such as sales, finance, and 

marketing, and traditional methods are simply not equipped to adapt and understand complex 

interdependencies between variables in the same flexible manner as ML. Third and last, vast data 

volumes can be analyzed by ML algorithms, leading to enhanced forecast accuracy, which remains 
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the primary aim of this research. A diverse array of data types—be they numerical or categorical—

can be integrated by ML thereby refining its forecast precision. Such inherent ability to continually 

refine forecasting is not found in conventional methodologies.  

 The following subsections evaluate the efficacy of a number of ML algorithms, offering 

insights into their suitability for this specific forecasting challenge. Based on performance metrics, 

the most optimal algorithm is then chosen to forecast consumables quantities during a project 

lifecycle. 

3.4.3.1 Artificial Neural Networks (ANNs) 

ANNs in ML are inspired by the structure and functional aspects of biological neural networks. 

They are composed of a large number of highly interconnected processing elements, known as 

neurons, working in harmony to solve specific problems. ANNs, like people, learn by example. 

They are configured for specific applications—such as pattern recognition or data classification—

through a learning process. Learning in biological systems involves adjustments to synaptic 

connections that exist between neurons. Similarly in ANNs, it involves modification of the weights 

between nodes. During the training phase, ANNs learn from data to approximate a function. They 

have a remarkable ability to derive meaningful insights from complex and noisy datasets, making 

them instrumental in fields such as image and speech recognition, natural language processing, 

and medical diagnosis.  

3.4.3.1.1 Basic Structure 

• Nodes/Neurons: The fundamental units of ANNs are nodes or neurons, analogous to the 

neurons in a biological brain. 

• Layers: Nodes are organized into layers including an input layer, one or more hidden layers, 

and an output layer. Each layer can have a variable number of nodes. 

• Connections: Nodes from adjacent layers have connections with weights assigned to them. 

These weights are the heart of learning in ANNs. Figure 5 shows a simple ANN that 

includes inputs, one hidden layer, and an output. 
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• Equation: The basic formula for a neuron's output in a single-layer network is, 

 𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
+ 𝑏) (3) 

 

     where 𝑦 is the predicted value, 𝑓 is an activation function, 𝑤𝑖 are the weights, 𝑥𝑖 are the 

inputs, and 𝑏𝑖 is the bias term. 

3.4.3.1.2 Learning Process 

• Training: ANNs learn during a training phase. The network is fed a dataset, and the weights 

between nodes are adjusted to minimize the error between the predicted output and actual 

target values. 

• Backpropagation: This is a common algorithm used for training ANNs. It computes the 

gradient of the loss function concerning the weights, which is then used to update the 

weights to minimize loss. 

• Activation Functions: Activation functions introduce non-linear properties into the system. 

Common examples include the sigmoid, tanh, and ReLU functions. 

3.4.3.1.3 Training 

• Initialization: Starts with random weights and learns to reduce errors through training. 

• Epochs and Batches: Training usually occurs over many cycles (epochs) and can involve 

breaking the data into batches for efficiency and effectiveness. 

Figure 5 Artificial neural network 
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• Optimization Algorithms: Techniques like stochastic gradient descent or Adam are used to 

change the weights and reduce the loss function. 

3.4.3.1.4 Prediction 

• Forward Propagation: Uses the learned weights to make predictions or classifications on 

new data.  

• Output Interpretation: The final layer's output is interpreted as the ANN's prediction, which 

can be a class label, a value, or a set of values. 

3.4.3.1.5 Evaluation 

• Validation Data: Separate data used to evaluate the performance of the model, ensuring it 

hasn't just memorized the training data but can generalize well.  

• Metrics: Performance is measured using metrics such as accuracy, precision, recall, and F1 

score for classification tasks; or mean squared error and mean absolute error for regression 

tasks. 

3.4.3.1.6 Assumptions and Features 

• Data Preparation: ANNs assume that input features are numerical and often normalized or 

standardized.  

• Feature Scaling: Essential for networks to learn effectively, as it ensures that all inputs are 

treated equally.  

• Overfitting: ANNs can overfit to training data, learning it too well and failing to generalize 

to new data. Techniques like dropout, regularization, and validation can prevent this.  

• Complexity and Capacity: ANNs can model complex nonlinear relationships, but their 

capacity must be balanced against the risk of overfitting. 

3.4.3.2 Linear Regression (LR) 

LR is a foundational algorithm in ML and statistics, primarily used for predictive analysis in a 

variety of fields. It establishes a linear relationship between a dependent variable and one or more 

independent variables by fitting a line to the observed data. The aim is to find the line that 

minimizes the distance between the observed points and the line itself, often quantified using 

measures such as MSE. Multivariate LR extends this concept further to multiple independent 
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variables. Training an LR model involves finding values of b that minimize the cost function, often 

achieved through optimization techniques such as Gradient Descent. Once trained, the model can 

predict the dependent variable for new data points, making it a powerful tool for forecasting. 

Despite its simplicity, LR is an effective tool, forming the foundation for understanding more 

complex ML algorithms, and is also easily interpretable, making it a valuable asset in the toolkit 

of analysts and data scientists.  

3.4.3.2.1 Basic Concept 

• Equation: The core idea behind LR is to fit a straight line that minimizes the distance 

(usually the square of the distance) between actual and predicted values. The equation for 

a simple LR is,  

 𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝜖 (4) 

 

    where 𝑦 is the predicted value, 𝛽0 is the intercept, and 𝑥 is the input feature. 

•  Multivariate LR: When there are multiple input features, the algorithm extends to 

multivariate LR and the equation becomes, 

 𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜖 (5) 

where 𝑦 is the predicted value, 𝛽0 is the intercept, 𝛽1, 𝛽2 are the coefficients of the features, 

and 𝑥 is the input feature. 

3.4.3.2.2 Learning Process 

• Cost Function: The objective of LR is to minimize the cost function, which is the MSE 

between the predicted and actual values over the training data. 

• Gradient Descent: This is a common optimization algorithm used to find values of the 

coefficients that minimize the cost function. 

3.4.3.2.3 Training 

• The model learns the coefficients—or parameters—during the training phase using the 

training data. This learning is achieved by finding the error between predicted values and 

actual values and adjusting the coefficients to minimize this error. 
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3.4.3.2.4 Prediction 

• Once trained, the model can make predictions on new data by simply adding the new data 

into the learned linear equation. 

3.4.3.2.5 Evaluation 

• Models are evaluated on how well they predict new data. Common evaluation metrics for 

LR include MAE, MSE, and R-squared. 

3.4.3.2.6 Assumptions and Features 

• LR makes several assumptions including linearity, independence, homoscedasticity, and 

normality. Violations of these assumptions can lead to poor or biased model estimates. 

3.4.3.3 Decision Trees (DTs) 

DTs are a type of supervised ML algorithm predominantly used for classification but can also 

handle regression tasks. They represent a series of decisions derived from training data that lead 

to predicted outcomes. The decisions are based on certain conditions or rules thereby forming a 

tree-like model of decisions.  

3.4.3.3.1 Basic Concept  

• Tree Structure: A DT consists of nodes that form a rooted tree, which means it is a directed 

tree with a node called the "root" that has no incoming edges. Each internal node denotes 

a test on an attribute, each branch represents an outcome of a test, and each leaf node 

(terminal node) holds a class label.  

• Splitting: DTs select the best attribute to split the data in a way that is most informative. 

The process of selecting the best attribute is determined by measures such as Gini impurity, 

entropy, or the information gain. The decision process can be represented as a series of 

branching operations where 𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the process splits into further branches; 

otherwise, it moves to a different branch or results in a prediction. 

3.4.3.3.2 Learning Process 

• Recursive Splitting: Starting with the root, the data is split based on the best attribute. This 

process is recursively continued on each branch using subsets of the dataset until one of 
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the termination conditions is met such as reaching maximum tree depth or a node contains 

data of a single class.  

• Pruning: To ensure the tree does not overfit the training data, branches that have little 

weight in predicting target values are pruned.  

3.4.3.3.3 Training  

• Training a DT involves feeding it a dataset and allowing the algorithm to learn conditions 

or rules from the training data, which then shape the decisions made by the tree.  

3.4.3.3.4 Prediction  

• To make a prediction for a new data point, the algorithm starts at the root of the tree and 

evaluates conditions at each node moving down the tree. The path followed through the 

tree ends in a leaf node, and the value or class of that leaf node is the algorithm's prediction.  

3.4.3.3.5 Evaluation  

• The performance of a DT can be assessed using various metrics. For classification tasks, 

accuracy, precision, recall, and the F1-score are commonly employed. For regression tasks, 

metrics such as MAE and MSE might be used.  

3.4.3.3.6 Assumptions and Features   

• DTs assume that the decision boundaries are parallel to the axis of the attributes being 

considered. It is also assumed that the training data can provide all rules required to 

correctly classify or predict test data.  

• DTs stand out due to their interpretability. The clear visualization of decisions, conditions, 

and outcomes mean that non-experts can easily understand the model's decision-making 

process. However, to handle challenges such as overfitting—which can make the model 

perform exceptionally well on training data but poorly on test data—regular pruning and 

parameter tuning must be completed. Ensemble methods like RF can help mitigate these 

challenges, as well. 
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3.4.3.4 Random Forest (RF) 

RF is an ensemble learning method used for both classification and regression tasks. The RF 

algorithm combines predictions from several DTs to produce a more accurate and generalizable 

prediction. By leveraging a multitude of DTs, the model becomes more resilient to overfitting and 

can capture intricate patterns in data.  

3.4.3.4.1 Basic Concept  

• Ensemble of Trees: An RF model is a collection of DTs, each trained on random subsets 

of data. The subsets are created by both bootstrapping the data and selecting random 

features.  

• Aggregated Predictions: The final prediction of the RF model is an average of the 

predictions from individual trees. The equation for an RF is, 

 𝑦 =
1

𝑇
 ∑ 𝑓𝑡(𝑥)

𝑇

𝑡=1
 (6) 

where 𝑓𝑡(𝑥) is the prediction of 𝑡𝑡ℎ tree, and 𝑇 is total number of trees. 

3.4.3.4.2 Learning Process  

• Bootstrapping: RF trains each tree on a different bootstrap sample, a random subset of the 

dataset. This ensures diversity among trees.  

3.4.3.4.3 Feature Randomness  

• During the splitting process, RF selects splits based on a random subset of features rather 

than considering all features. This introduces additional randomness and diversity into the 

model. 

3.4.3.4.4 Training  

• Each tree in an RF is trained independently. Given the random subsets of data and features, 

each tree learns slightly different patterns. This process aims to make each tree as deep as 

possible—without pruning—ensuring it captures intricate patterns in its subset of the data.  
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3.4.3.4.5 Prediction  

• For a given input, each tree in the RF provides its prediction. The RF then aggregates these 

predictions and takes the average.  

3.4.3.4.6 Evaluation  

• The performance of RF can be evaluated using metrics such as MAE, MSE, or R-squared.  

3.4.3.4.7 Assumptions and Features  

• RF, being an ensemble of DTs, does not rely on data distribution assumptions. Its strength 

arises from its ability to reduce variance by averaging out individual trees' predictions, thus 

offering more stability and resistance to overfitting. One of RF’s features is its capability 

to provide feature importance scores, which can be invaluable for understanding the drivers 

in forecasting models.  

• In demand forecasting, RF can prove invaluable due to its ability to handle large datasets 

with higher dimensionality. It can manage missing values and maintain accuracy even 

when a large proportion of data are missing. Its ensemble nature enables it to capture non-

linear relationships effectively, making it a versatile tool for predicting demand in complex 

scenarios. 

3.4.3.5 K-Nearest Neighbor (KNN) 

The KNN algorithm is a versatile method used for both classification and regression problems. It 

belongs to the family of instance-based, or lazy, learning algorithms where computation is deferred 

until prediction. For demand forecasting, KNN leverages historical data points to predict future 

demand based on similarity measures.  

3.4.3.5.1 Basic Concept  

• KNN Rule: The principle of KNN is to predict the output value of a new data point based 

on the k nearest data points in the training dataset. The closeness or similarity is typically 

determined using distance metrics such as Euclidean or Manhattan distance.  

• Choosing k: The choice of k is critical. A smaller value of k can capture noise in the data, 

while a larger k can smooth out predictions, potentially overlooking finer data patterns. The 

prediction for a new point is given by, 
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 𝑦 =
1

𝑘
 ∑ 𝑦𝑖

𝑘

𝑖=1
 (7) 

where 𝑦𝑖 are the outcomes of the 𝑘 nearest neighbors. 

3.4.3.5.2 Learning Process  

• Instance-Based Learning: Unlike other algorithms that construct an explicit model, KNN 

memorizes the training dataset. New predictions are made by searching the entire dataset 

for the most similar instances and summarizing the output variable for those instances.  

• Distance Metrics: Various metrics like Euclidean, Manhattan, Minkowski, or Hamming 

distance can be used to measure similarity or dissimilarity between data points.  

3.4.3.5.3 Training  

• Essentially, training in KNN involves storing the dataset in memory. There is no explicit 

learning phase. Instead, the algorithm uses the entire dataset in the prediction phase to find 

the nearest neighbors.  

3.4.3.5.4 Prediction  

• When predicting the output for a new data point, the algorithm searches for the k training 

examples that are closest to the point and returns the output value as the mean (for 

regression) or the mode (for classification) of the output values of its k nearest neighbors.  

3.4.3.5.5 Evaluation 

• The effectiveness of KNN can be assessed using conventional evaluation metrics. For 

regression tasks, metrics like MAE, MSE, or R-squared can be used. For classification 

tasks, metrics such as accuracy, precision, recall, and F1-score are appropriate.  

3.4.3.5.6 Assumptions and Features  

• KNN operates under the assumption that similar data points—based on the distance 

metric—will have similar output values. It is important to scale features for KNN since the 

algorithm is sensitive to variations in numerical values across different features.  

• A notable feature of KNN is its sensitivity to the choice of k and the distance metric. Proper 

tuning using techniques like cross-validation is essential for optimal performance.  
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• In the context of demand forecasting, KNN can be particularly effective when there is a 

logical and consistent pattern of similarity in the demand data. Its non-parametric nature 

allows it to flexibly capture complex relationships without making strict assumptions about 

the data's underlying structure. However, it is crucial to ensure that the chosen features are 

relevant and scaled appropriately as the algorithm relies on distance metrics for prediction. 

3.4.3.6 Support Vector Regression (SVR) 

SVR—an extension of the popular SVM algorithm—is primarily used for regression tasks. SVR 

offers a unique way to predict real-valued outputs, making it an excellent choice for demand 

forecasting, especially in situations where data might have non-linear relationships.  

3.4.3.6.1 Basic Concept  

• Margin and Hyperplane: SVR aims to find a hyperplane that best fits the data. The 

algorithm focuses on maximizing the margin while limiting the deviations of data points 

from this hyperplane, especially points that are difficult to predict.  

• Kernel Trick: One of the standout features of SVR is its ability to use different kernel 

functions, like polynomial, RBF, or sigmoid, to transform and fit non-linear data. The 

predictive model is represented as, 

 𝑦 = 𝑤 .  𝑥 + 𝑏 (8) 

 

where the aim is to minimize ‖𝑤‖ subject to |𝑦𝑖 − (𝑤 .  𝑥 + 𝑏)|  ≤  𝜖 for each data point 

(𝑥𝑖, 𝑦𝑖). 

3.4.3.6.2 Learning Process  

• Cost Function: SVR uses a cost function that not only penalizes errors larger than a certain 

threshold—termed as ε (epsilon)—but also tries to maintain a flat regression function to 

ensure simplicity and prevent overfitting.  

• Lagrangian Multipliers: The optimization in SVR involves the use of Lagrangian 

multipliers, which helps in determining support vectors that are most informative for 

predicting outputs.  
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3.4.3.6.3 Training 

• The training process for SVR is somewhat computationally intensive, especially for larger 

datasets. It revolves around finding the optimal hyperplane that can predict the continuous 

output with minimum error, subject to the constraints of maintaining a specified margin.  

3.4.3.6.4 Prediction  

• Once the SVR model is trained, predictions for new data points are made based on their 

relationship with support vectors. These support vectors are the data points that sit closest 

to the hyperplane and are most influential in defining it.  

3.4.3.6.5 Evaluation  

• The quality of SVR predictions is often gauged using typical regression metrics such as 

MAE, MSE, and R-squared.  

3.4.3.6.6 Assumptions and Features  

• Unlike many other regression techniques, SVR does not make strong assumptions about 

underlying data distribution. Instead, its strength lies in its flexibility to handle non-

linearity through kernel functions.  

• Proper parameter tuning, especially for the regularization parameter, kernel type, and 

epsilon value, is crucial for the SVR's performance. These parameters can be optimized 

using methods like cross-validation.  

• In the realm of demand forecasting, SVR shines when capturing complex, non-linear 

relationships in data. Its capacity to delineate intricate patterns using kernel functions, 

coupled with its robustness to outliers due to the epsilon-insensitive loss, makes it a potent 

tool. Nevertheless, careful tuning of hyperparameters and kernel selection are imperative 

to harness the full power of SVR for forecasting applications. 

3.4.4 Performance Evaluation 

Performance evaluation in ML and time series is a pivotal step that underscores the effectiveness, 

accuracy, and generalizability of a model concerning the problem it aims to address. This phase 

involves employing various metrics and techniques to scrutinize how well the model performs, 

both quantitatively and qualitatively. Metrics like accuracy, precision, recall, F1 Score, MAE, 
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MSE, RMSE, and Area Under the ROC Curve (AUC-ROC) are utilized based on whether the 

problem-at-hand is a classification or regression problem. These metrics provide quantitative 

insights into how well the model is performing. In particular, the confusion matrix is a visual tool 

that helps in understanding the performance of a classification model by showing true positive, 

true negative, false positive, and false negative values. Another performance metric or 

visualization often used is learning curves. These plot performance of the model on both training 

and validation datasets over time—or number of instances—and are instrumental in identifying 

challenges like overfitting or underfitting. They provide an intuitive view of how the model’s 

performance evolves with experience. 

 In addition to testing how well the model functions, performance evaluation is also important 

for: hyperparameter tuning where different configurations are compared to find the most effective 

one; facilitating comparison of different models to choose the best one for the problem-at-hand; 

and evaluating resource efficiency—like computational time and memory usage—in real-world, 

largescale applications. Moreover, ROC and Precision-Recall Curves are necessary for 

understanding the trade-off between true positive rate and false positive rate, and between 

precision and recall, respectively. They provide valuable insights into the model's performance 

across different thresholds and are particularly useful in imbalanced dataset scenarios. 

 It is worth noting that performance evaluation is not a one-time task but a continuous process, 

especially in a production environment where models must adapt to new data over time. Through 

diligent performance evaluation, the model users can ensure the robustness, reliability, and 

effectiveness of models, which is critical for successful real-world applications. In this research, 

MAE, MSE, and MAPE are used for performance evaluation. Their equations are as follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
 (9) 

where 𝑛 is number of observations, 𝑦𝑖 is the actual value, �̂�𝑖 is the forecasted value, and |𝑦𝑖 − �̂�𝑖| 

is the absolute error of each forecast; 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
 (10) 

where 𝑛 is number of observations, 𝑦𝑖 is the actual value, �̂�𝑖 is the forecasted value, and (𝑦𝑖 − �̂�𝑖)
2 

is the squared error of each forecast; 

 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1
 (11) 
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where 𝑛 is number of observations, 𝑦𝑖 is the actual value, �̂�𝑖 is the forecasted value, and|
𝑦𝑖−�̂�𝑖

𝑦𝑖
| is 

the absolute percentage error of each forecast. 

3.5 Summary 

In this chapter, the steps undertaken moved from data collection through model development to 

performance evaluation, and it was noted that data preparation presented challenges due to the 

encoding of a vast amount of information from disparate sources within the data. The acquired 

data exhibited a number of missing values, and methods of outlier detection were employed to 

remove the outliers present in the dataset. Time series techniques—ARIMA, LR, and ANN—and 

robust ML algorithms—ANN, LR, DT, RF, KNN, and SVR—were then assessed to ascertain the 

most suitable algorithm for the objectives of this study. Finally, performance evaluation was 

discussed to explain various metrics that could be used for model evaluation. 
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 CASE STUDY 

4.1 Introduction 

This chapter focuses on applying the proposed methodology—utilizing historical data from past 

projects—to develop a data-driven model for forecasting quantities and anticipated distribution of 

small equipment, tools, and consumables throughout a project's lifecycle. In alignment with the 

previously discussed methodology, a detailed development and implementation of a data-driven 

model utilizing various supervised ML algorithms to predict quantities through the project duration 

is presented. This model ensures holistic collection of historical data with emphasis on findings 

from both academic literature and prevalent industry practices. The model development also 

includes data cleaning and preprocessing, and EDA is conducted to identify patterns and trends. 

Subsequent to this, ML techniques are employed to pinpoint pivotal features thus laying the 

foundation for a model capable of forecasting demand of diverse small equipment, tools, and 

consumables. A comparison between different algorithms is shown to gain a better understanding 

of which model is most suitable for demand forecasting of small equipment, tools, and 

consumables. After the model is developed, subject matter experts validate said model by 

evaluating its accuracy and applicability within construction projects. 

4.2 Exploratory Data Analysis (EDA) 

EDA often includes visual analytics and aids in deriving trends and identifying insights within 

data. To gain better insight into trends, several preprocessing steps must be performed accordingly 

so illustrative diagrams and charts can be developed. 

4.2.1 Data Preprocessing 

For this case study, a dataset was provided by the local industrial partner and includes the following 

columns: type of consumables (Line Description), project ID (Business Unit), date order was 

placed (Order Date), date order was needed for (Request Date), date supplier promised to deliver 

(Promised Date), unit cost of consumables (Unit Cost), and quantity of ordered consumables 

(Quantity Ordered). The provided dataset is massive and includes approximately 217 Business 

Units (projects) that took place between 2017 and 2022. In addition, there were almost 70,000 
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orders placed and 20,000 types of consumables during the timespan. Due to the size of the dataset, 

rigorous data cleaning—which also included the addition of several columns to the dataset—was 

performed to ensure we had a reliable dataset that could be used in discovering trends and 

highlights between different features. Of course, having a reliable dataset is also important for 

building the model itself, and to make sure it is accurate and can be used in real-world applications.   

 This being said, the data cleaning process included several steps. The first step was to remove 

records that contained 0 quantity ordered. Following, some records in the date columns were 

corrected as they contained typos, and records with negative values under the costs and quantities 

columns were removed. Then, new columns and assumptions were identified based on the 

provided dataset as follows:  

• Delay Column: A new column named Delay was introduced to represent the expected 

variance in the schedule. This was calculated by subtracting the Promised Date from the 

Request Date. 

• Assumption of Actual Delivery Date: After consultation with subject matter experts, it was 

assumed that the Actual Delivery Date aligned with the Promised Date due to the absence 

of actual delivery dates in the dataset. 

• Order Status Values: The statuses of orders were categorized into three values including 

Delay, No Delay, or Early. 

• Request Day Column: An additional column called Request Day was added to indicate the 

day consumables should be onsite, converted from the Request Date to days since the start 

of the project. 

• Lead Time Calculation: Lead Time was calculated by subtracting the Order Date from the 

Promised Date, aiding in the prediction of when orders should be placed for the project or 

specific tasks. 

• Project Duration Estimation: Without an explicit Project Duration attribute, the duration 

was estimated using the first and last order date of all projects. 

• Project Cost Assumption: Due to the absence of a Project Cost attribute, it was assumed to 

be the total of all order costs for each project, serving as a metric for project size. 

 The aforementioned columns were then analyzed thoroughly to understand how they might 

impact our model. From the provided dataset—and for the sake of this research—specific columns 
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or features were chosen to be used while developing the model as is discussed in upcoming 

sections.  

4.2.2 Data Transformation 

The above subsection describes the most important insights and trends that were discovered by 

EDA after completing several operations on the dataset such as data cleaning and data 

preprocessing. After several rounds of discussions with subject matter experts—and after 

providing more information to the dataset—it was agreed upon that some modifications must take 

place, and these modifications should be taken into consideration while developing the model. The 

following modifications were incorporated into the dataset to provide a more reliable input for the 

model development phase: 

• Each record in the dataset relates to a specific type of consumables. Accordingly, the 

consumables were aggregated into broad categories—omitting the specific type within 

each category—and focused into eight main categories as they represent the most crucial 

types of consumables throughout a project. These categories are: discs, gloves, helmets, 

kneepads, respirator filters, respirator masks, safety glasses, and welding jackets. 

• The dataset includes several orders for each type of consumables, and many of these orders 

were placed in the same day. Therefore, these records were merged into one single record. 

• The start of the project was decided based on total hours spent on the project. The first 

record that shows total hours spent on the project was considered to be the beginning of 

the project. 

• Project Duration was recalculated as follows: for each project, the records were studied 

closely to identify the first record and last record with total hours spent on the project, then 

the difference between the dates of both records was assumed to represent Project Duration. 

• Instead of using project codes—which is an identifier—the subject matter experts provided 

project names. This is crucial for understanding the project nature (i.e. petrochemicals, oil 

and gas, etc.). 

• The Request Date column represents the date these consumables were needed. 

• The total work hours throughout the project—Work Hours—were provided. This is an 

indication of the effort required to complete the project and is essential for estimating 

monthly manpower. 
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• Due to lack of data and confidentiality matters, the budget for each order was not provided 

in the dataset. As such, it was assumed the budget for each order could be estimated by 

multiplying Quantity Ordered by Unit Cost. 

The dataset was reduced from approximately 4,300 records to 1,800 as a result of merging and 

categorizing records. The 1,800 records relate to 76 projects spanning from 2017 to 2020. The 

dataset was then studied thoroughly to discover insights and trends. 

4.2.3  Data Insights and Visualization 

Analysis was performed for annual ordered quantities and costs. The analysis revealed that 

approximately 91% of orders were delivered on time, 8% were delayed, and 1% were delivered 

early, as shown in Figure 6. Furthermore, the results revealed an important observation regarding 

noted delays across the timespan of 2017 to 2022, this being that 75% of recorded delays for each 

year were under 10 days, as represented in Table 1 and Figure 7. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 6 Orders delivery status 
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Table 1 Delayed orders delivery statistics in days 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 8 shows another important insight. It depicts Cost of Orders as a function of Quantity 

Ordered, as well as Project Duration for the whole dataset. Each blue circle represents a project, 

and the size of the circle represents Project Duration. It can be seen that the majority of project 

costs and order quantities are below 1,000,000. In addition, a higher project duration does not 

necessarily have a higher cost or larger order quantity. 

 

 

 
 
 
 

 count mean std min 25% 50% 75% max 

Year                 

2017 1413 2.86 3.96 1 1 1 3 28 

2018 1105 2.11 2.34 1 1 1 3 32 

2019 962 3.03 4.01 1 1 2 3 27 

2020 248 6.29 6.10 1 2 4 6 21 

2021 634 5.00 6.86 1 1 2 6 27 

2022 1351 7.60 4.63 1 5 8 9 36 

Figure 7 Boxplot of delayed delivery 
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More insights can be drawn regarding total quantity ordered. Figure 9 shows total annual quantity 

ordered for all types of consumables for project A. This project had a high cost, long project 

duration, and large ordered quantity compared to other projects, and the figure reveals that most 

orders were placed during the beginning of the project (in its first year). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

There were almost 20,000 different types of consumables included in the dataset. The most 

frequently ordered items among these consumables were gloves. There were many different types 

of gloves in the dataset. Therefore, the category of gloves was analyzed separately. Figure 10 

shows the order history for the glove category in project A. The first row in Figure 10—below the 

x-axis—indicates that there were no delays observed for this category. 

 

Figure 8 Expenditures based on quantity of materials and project duration 

Figure 9 Annual quantity ordered for project A 
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Figure 11 shows the percentage of each consumable category among the 76 projects where discs 

occupy the highest quantity and kneepads the lowest quantity. This shows that discs are essential 

for the majority of activities in the project, which is why they occupy the first rank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, the types of projects were studied to determine underlying features of the consumables types 

that were most used in the different project types. Figure 12 shows a comparison between two 

project types—oil and gas versus petrochemical—and it can be seen that the ranks of the 

consumables are different. The Business Unit term in the below figures refers to project. 

 
 
 
 
 
 
 
 

    Delay 

  Lead Time 

  Request Day 

Figure 10 Order history for the glove category in project A 

Figure 11 Consumption of each consumable category among projects 
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Figure 13 shows Project Duration in days (x-axis) and the summation of Quantity Ordered of the 

disc category in the projects. Each circle represents a project and the size of each circle denotes 

the number of total hours spent on the project. It can be gathered that longer project duration does 

not necessarily mean more ordered quantities or more total work hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After going through the data, Figure 14 shows that there is no trend or discovered pattern between 

the ordered quantity of each category and the day of order throughout the project. The figure shows 

fluctuations during the projects using a sample of two projects. 

 
 

Figure 12 Comparison of usage of consumable category among different types of projects 

Figure 13 Scatter chart for disc category 
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Figure 14 Order trend during two projects 
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4.3 Time Series Analysis 

4.3.1 Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA results are outlined in Figure 15 and show an error of 165.99 (i.e. the average forecast 

error) which indicates the average difference between values predicted by the ARIMA model and 

actual values in the dataset. Also, a value of +/- 135.44 provides a range around that average error, 

indicating uncertainty or variability in the error. This range suggests that, for individual 

predictions, the error can be as low as (165.99 - 135.44) or as high as (165.99 + 135.44). Another 

measure that must be considered is the MAPE with a value of 201.58. It is a metric that expresses 

the average error as a percentage of actual values and is commonly used to understand the accuracy 

of forecasting methods in relation to the magnitude of the numbers being forecasted. A MAPE of 

201.58 means that, on average, the forecasted values are off by 201.58% from the actual values. 

Typically, a lower MAPE value is desired as it indicates higher forecasting accuracy. A MAPE 

value greater than 100% can indicate substantial discrepancies between forecasted and actual 

values. Finally, it is worth mentioning that the confidence level is 80%. 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.2 Artificial Neural Networks (ANNs) 

The ANN results are displayed in Figure 16 and show an error of 165.99 (ie. the average forecast 

error) showcasing the mean difference between values predicted by the ANN and actual values in 

the dataset. Additionally, a value of +/- 429.01 indicates an interval around that average error, 

demonstrating uncertainty or variability in the error. This interval suggests that, for individual 

predictions, the error can vary and potentially be as low as (165.99 - 429.01) or as high as (165.99 

Figure 15 ARIMA time series forecasting for glove category for Project B 
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+ 429.01). For the MAPE, a value of 639.37 indicates that, on average, predictions from the ANN 

deviate by 639.37% from actual values. Similar to the ARIMA model, the confidence level is 80%. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4.3.3 Linear Regression (LR) 

LR provides a value that is an indication of the prediction error from the forecast. The LR results 

displayed in Figure 17 show an error of 165.99 (ie. the central forecast error), which means it is 

the average error between what the LR anticipated and real values in the dataset. The +/- 396.65 

shows the potential variation around this central error, indicating how much the error might 

fluctuate. This implies that the error for specific forecasts might range from (165.99 - 396.65) to 

(165.99 + 396.65). For the MAPE, a value of 669.42 indicates that, on average, predictions from 

the LR deviate by 669.42% from actual values. Similar to the ARIMA and ANN models, the 

confidence level is 80%. 

 

 
 
 
 
 
 
 
 
 

 

Figure 16 Artificial Neural Network time series forecasting for glove category for Project B 

 

Figure 17 Linear Regression time series forecasting for glove category for Project B 
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4.4 Machine Learning Forecasting Models 

4.4.1 Data Collection and Preparation 

The aforementioned modifications applied to the dataset for time series analysis were also used as 

the base for developing the forecasting models. To complete these modifications, several steps 

related to data cleaning and feature engineering were performed. First, missing values were 

removed to ensure we could provide a reliable dataset in the ML algorithms. Then, outliers were 

detected and removed from the dataset to avoid impacting its accuracy and performance. Finally, 

feature engineering was implemented to derive new columns or features that are useful for 

forecasting. After these steps were completed, the dataset includes 1,300 records, 76 projects, and 

eight consumables’ categories. 

4.4.2 Correlation and Heatmap  

In data-driven, decision-making processes, understanding relationships between different 

variables is paramount. One of the fundamental statistical tools used to measure the linear 

relationship between two variables is correlation. The correlation coefficient—often represented 

by r—ranges from -1 to 1. A value of 1 implies a perfect positive correlation meaning that, as one 

variable increases, so does the other, proportionally. Conversely, a value of -1 indicates a perfect 

negative correlation suggesting that, as one variable increases, the other decreases. A value of 0 

indicates no linear correlation between variables. While correlation analysis can provide a 

numerical understanding of relationships, visual representations often provide more immediate 

and intuitive insights. This is where heatmaps—graphical representations of data where individual 

values are represented as colors—come into play in the realm of demand forecasting. The variance 

in color intensity gives a quick, visual summary of information, making it easier to understand 

complex datasets and relationships between various factors. 

 In our case study, we used a heatmap to represent the correlation matrix of all variables. By 

visualizing our data this way, we were able to immediately spot which variables strongly related 

to the target variable, demand, as well as which variables might be redundant or not useful for our 

predictive model. This step is crucial as it can inform feature selection, ensuring that our 

forecasting model is both accurate and efficient. Furthermore, incorporating correlation analysis 
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and heatmaps ensured our subsequent modeling efforts were grounded in a solid understanding of 

underlying relationships in the dataset. By recognizing and acting upon these insights early in the 

process, we could enhance the accuracy and reliability of our demand forecasting endeavors. The 

heatmap depicted in Figure 18 shows a high correlation between Day of Order and Project 

Duration, as well as between Quantity Ordered and Budget of each order. It is also observable that 

orders are typically placed concurrently with the start of the work package, resulting in minimal 

variance between the two dates. Consequently, this demonstrates a high correlation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After generating the heatmap and drawing correlations between various features, we selected 

features as input to the forecasting model. This feature selection process relied mainly on data 

availability, confidentiality matters, and reasonable assumptions, and resulted in the following 

seven features being selected: 

•   Consumable category: This denotes the specific type of consumable required for various 

tasks such as gloves, helmets, or discs.  

•   Work package: This indicates the timeline for different tasks or activities in the project, 

helping determine when specific consumables might be needed.  

Figure 18 Heatmap for small equipment, tools, and consumables 
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•   Project duration: This represents total timespan for completion of the project. It is crucial 

for understanding how long a specific consumable might be in demand.  

•   Total work hours: This refers to cumulative hours anticipated for the project, which can 

indicate intensity and therefore potential usage of consumables.  

•    Manpower: This highlights the number of workers or professionals engaged in the project 

on a monthly basis. A larger workforce might indicate higher consumption rates of 

certain tools or consumables.  

•  Budget for each order: This provides a financial perspective, detailing how much is 

allocated for each order. It can be an indicator of quantity of consumables expected to be 

used.  

•   Type of project: This specifies the nature of the construction project such as oil and gas, 

power, or agricultural chemicals. Different project types have unique consumable 

requirements and usage patterns.  

As for the model output, this research aims to forecast quantities throughout the project. 

4.4.3 Model Development and Evaluation  

In this study, we implemented some of the most common supervised ML algorithms among 

construction management practices—ANNs, LR, SVR, KNN, DTs, and RF—for model 

development. The development process for the various algorithms included data splitting, where 

the dataset was split into training and testing. As a result, approximately 80% of records were used 

to train the model, while 20% of records were used for testing the model. Additionally, 

hyperparameter tuning was utilized in an attempt to achieve peak performance of each algorithm. 

For the developed models, we also used two metrics for evaluation. Mean Absolute Error (MAE) 

is a model evaluation metric that measures the average magnitude of errors in predictions, offering 

a simple and interpretable measure of model accuracy, while Mean Squared Error (MSE) evaluates 

the average of the squares of the errors, making it more sensitive to outliers and penalizing large 

errors more severely than MAE. Both metrics are crucial for assessing the performance of 

regression models, with MAE providing a straightforward average error and MSE highlighting 

larger discrepancies between predicted and actual values. The following subsections detail the 

results of each algorithm.  
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4.4.3.1 Artificial Neural Networks (ANNs) 

For the ANN model, the following steps were taken to achieve results: input data were first fed 

into the network; the input data were then processed in hidden layers using weights that were 

adjusted during learning; and, finally, an output prediction was produced. Table 2 summarizes 

hyperparameter values used in the model. 

 

Table 2 Hyperparameters used in the model 

Model Parameter Value Model Parameter Value 

Input layer size 7 Dropout Rate 0.2 

Number of hidden layers 3 Optimizer Adam 

Output layer size 2 Learning Rate 0.001 

Activation Functions relu Epochs 300 

Activation Function for output layer linear Batch Size 32 

First hidden layer size 256 Dropout Rate 0.2 

Second hidden layer size 128 Optimizer Adam 

Third hidden layer size 64   

 

Using Figure 19, we were able to evaluate the model's training process over 300 epochs. The 

training loss—shown in red—initiated at high values indicating significant initial prediction errors. 

However, as the epochs advanced, the training loss consistently decreased demonstrating the 

model's increasing proficiency in capturing patterns within the training data. The validation loss—

depicted in yellow—also declined but eventually plateaued. Furthermore, the training and 

validation chart of the MAE depicted in Figure 20 shows the MAE of the model throughout its 

training. By the final epoch, the training MAE decreased substantially, but the validation MAE 

revealed a slight discrepancy. The metrics used to measure performance of the ANN were the MSE 

and MAE. For our model, the MSE for DayOfOrder was approximately 223 days, and for 

QuantityOrdered, it was approximately 135 units. The MAE was approximately 12 days for 
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DayOfOrder and 8 units for QuantityOrdered. These metrics emphasize the model's modest 

performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 21 illustrates the predictive accuracy of the ANN model by plotting actual values against 

model predictions for the two different variables: DayOfOrder and the QuantityOrdered. In both 

graphs, the x-axis shows the actual values, the y-axis represents the predicted values, and the 

dashed red line indicates the line of perfect prediction. Generally, the close alignment of data points 

Figure 19 Training and validation loss 

Figure 20 Training and validation mean absolute error (MAE) 
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to this line represent a high degree of accuracy. These visualizations serve as a quantitative 

assessment of the model's performance in the domain of order prediction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.4.3.2 Linear Regression (LR) 

In this study, the model—once trained on the scaled data—was able to predict outcomes on the 

test set. The metrics used to measure performance of the LR were the MSE and MAE. For our 

model, the MSE for DayOfOrder was approximately 24 days, and for QuantityOrdered, it was 

approximately 2,514 units. For DayOfOrder, the MAE stood at about 3 days, while for 

QuantityOrdered, it was near 39 units. This suggests that, on average, the predictions of our LR 

model deviate from actual values by these respective amounts. Figure 22 shows the predictive 

accuracy of the LR model for DayOfOrder and QuantityOrdered. 

 

Figure 21 ANN demand forecasting 
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4.4.3.3 Support Vector Regression (SVR) 

After being trained, the SVR was employed to predict outcomes on the test set. The metrics used 

to evaluate the SVR's efficiency were the MSE and MAE. For our model, the MSE for DayOfOrder 

was approximately 17,392 days, and for QuantityOrdered, it was 3,125 units. For DayOfOrder, 

the MAE was approximately 91 days, and for QuantityOrdered, it reached near 40 units. This 

indicates that, on average, the predictions of our SVR deviate from actual values by these 

respective amounts. Figure 23 depicts the predictive accuracy of the SVR model for DayOfOrder 

and QuantityOrdered. 

 
 
 

Figure 22 LR demand forecasting 
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4.4.3.4 K-Nearest Neighbors (KNN) for Regression 

Once the KNN algorithm was trained, it used the training data to make predictions on the test set 

by assessing the closeness of data points within the feature space. In our model, the MSE values 

were approximately 1,232 days for DayOfOrder, and 1,438 units for QuantityOrdered. These 

figures highlight the average squared differences between the KNN model's predictions and actual 

data. The MAE values were approximately 25 days for DayOfOrder, and nearly 26 units for 

QuantityOrdered. These values suggest that our KNN model's predictions, on average, differ from 

real values by these amounts. Figure 24 reveals the predictive accuracy of the KNN model for 

DayOfOrder and QuantityOrdered. 

 

Figure 23 SVR demand forecasting 
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4.4.3.5 Decision Trees (DTs) 

After the training phase, the DT algorithm used its hierarchical structure to navigate through 

decisions based on feature values, leading to predictions on the test set. For our model, the MSE 

values were approximately 250 days for DayOfOrder, and near 921 units for QuantityOrdered. 

The MAE values were close to 9 days for DayOfOrder, and nearly 18 units for QuantityOrdered. 

These figures suggest that the predictions from our DT model, on average, have these differences 

from actual observed values. Figure 25 presents the predictive accuracy of the DT model for 

DayOfOrder and QuantityOrdered. 

 
 
 

Figure 24 KNN demand forecasting 
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4.4.3.6 Random Forest (RF) 

Upon training the RF algorithm, it used the ensemble of DTs to make predictions on the test set. 

Each tree in the forest produced its own prediction. The final output was an average of these 

predictions, providing a consensus estimate. In our model, the MSE values recorded were 

approximately 177 days for DayOfOrder, and 653 units for QuantityOrdered. Our RF model 

yielded MAE values of roughly 6 days for DayOfOrder, and close to 16 units for QuantityOrdered. 

This indicates that the predictions made by our RF model, on an average, deviate from actual 

values by these margins. Figure 26 illustrates the predictive accuracy of the RF model for 

DayOfOrder and QuantityOrdered. 

 

Figure 25 DT demand forecasting 
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4.5 Discussion 

In EDA, the analysis of annual ordered quantities and costs from 2017 to 2022 indicates that, while 

91% of orders were on time, a notable 75% of delays were less than 10 days. A significant insight 

from the data shows that most project costs and quantities were below 1,000,000 with no clear 

correlation between project duration, order size, or cost. In particular, Project A highlighted that 

substantial orders typically occurred in the initial year, reflecting early project needs. Among the 

20,000 consumable types, gloves emerged as the most ordered item, prompting a detailed analysis 

which confirmed no delays for this category. Additionally, analysis revealed that different projects 

have varying essential consumables. For example, discs were dominant in the majority, indicating 

their critical role in project activities. Comparative studies between project types—such as oil and 

Figure 26 RF demand forecasting 
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gas versus petrochemical—showed differing consumable priorities, highlighting the tailored 

nature of resource needs in diverse environments. Furthermore, data showed no consistent pattern 

between quantity of orders and timing within the project lifecycle, suggesting there are fluctuating 

requirements based on immediate project demands rather than a predictable ordering schedule. 

This lack of trend highlights the dynamic nature of the project and the necessity for adaptive 

planning and forecasting in construction projects. 

 After assessing the diverse range of time series and ML models, it was discovered that each 

offers a unique pattern of strengths and weaknesses, most notably highlighted by their MAPE for 

time series, and MSE and MAE metrics for ML models. From our results, several insights were 

revealed about the algorithms used together with their capabilities of forecasting demand of small 

equipment, tools, and consumables. 

 For time series models, the analysis confirmed that all three models—ARIMA, ANN, and 

LR—demonstrate a consistent average forecast error of 165.99. However, the reliability of these 

models varied significantly as highlighted by their error ranges and MAPE values. The ARIMA 

model, with its variability range of +/- 135.44 and a MAPE of 201.58%, had the lowest 

inaccuracies among the three. The ANN model presented a higher uncertainty interval of +/- 

429.01 and a dramatically higher MAPE of 639.37%, indicating a substantial increase in prediction 

variability and error magnitude. Finally, the LR model showed a similar pattern with its error 

variability range of +/- 396.65 and the highest MAPE of 669.42%, reflecting the most significant 

deviation from actual values among the models. These findings underscore the challenges each 

model faces in forecasting, with the ANN and LR models displaying particularly severe 

inaccuracies and variability compared to the relatively stable ARIMA model. The observed 

variability and inaccuracies in the results stem from fluctuations in order days and quantities, 

which present limited consistent trends or patterns from which the models can learn.  

 For ML models—specifically in relation to DayOfOrder predictions—ANNs presented a 

respectable performance with an MSE of 223 days and an MAE of 12 days. These results stress 

the potential of ANNs in modeling intricate non-linear relationships. In contrast, LR emerged as 

the standout performer, achieving an impressive MSE of 24 days coupled with an MAE of a mere 

3 days. Such results imply a robust ability of the LR model to decipher and represent inherent 

linear tendencies. However, not all models shared this level of precision. The SVR struggled 

considerably, registering a daunting MSE of 17,392 days and a hefty MAE of 91 days. These 
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figures cast doubts on SVR's capability in modeling this dataset optimally. On a similar note, the 

KNN results—with its MSE of 1,232 days and MAE of 25 days—underline the pitfalls of instance-

based learning, particularly in data where localized nuances might overshadow broader patterns. 

Finally, DT and RF brought a semblance of balance to the table. The DT, with its MSE of 250 

days and MAE of 9 days, proved to be a balanced approach, delicately avoiding overfitting. The 

RF further confirmed its reputation with an MSE of 177 days and an even more impressive MAE 

of 6 days, revealing the strength of ensemble learning.  

 Regarding QuantityOrdered predictions, ANNs—with an MSE of 135 units and an MAE of 8 

units—managed to navigate the complexities of the data efficiently. LR, on the other hand and 

despite earlier triumphs, faced hurdles as evidenced by its MSE of 2,514 units and MAE of 39 

units. This stark variation accentuates the significance of understanding the nature of data when 

applying models. SVR continued to struggle with an MSE of 3,125 units and an MAE of 40 units. 

Similarly, the KNN results, with its MSE of 1,438 units and MAE of 26 units, emphasizes the need 

for careful calibration for optimization. In this matter, DT and RF emerged as consistent 

performers. The DT figures presented a balance, with its MSE of 921 units and MAE of 18 units, 

while RF, with its MSE of 653 units and MAE of 16 units, solidified its position as a front-runner 

in the ensemble learning domain.  

 In conclusion, this study found that—while every model offers benefits—ANN and LR 

distinctly shine across varied forecasting domains by demonstrating a superior performance in 

forecasting the quantity and the day of order, respectively. It is worth noting, however, that these 

insights should guide—not dictate—model choice, as the specific nature of data and overarching 

goals remain paramount. 
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 CONCLUSIONS, LIMITATIONS, AND FUTURE 

DIRECTIONS 

5.1  Research Summary  

Chapter 1 outlined the significance of the construction industry and concluded that material 

costs—including small equipment, tools, and consumables—account for a significant portion of 

total project expenses thus underscoring the necessity for precise demand estimation. Estimations 

currently rely on experience of project professionals using conventional software and judgment, 

leading to potential inaccuracies. The aim of the study and research objectives were then discussed, 

which included evaluating current industry practices, identifying key factors influencing demand, 

and developing a forecasting model utilizing time series models and ML algorithms to predict 

requirements of small equipment, tools, and consumables for various project types. Following, the 

expected contributions were detailed such as academic advancements in demand forecasting 

models, as well as industrial improvements in project-level consumable estimation using historical 

data. Finally, research questions were posed. These questions involved demand patterns, 

forecasting accuracy, appropriate time series models and ML algorithms, primary demand 

indicators, and effective evaluation metrics for model forecasting. 

 Chapter 2 explored the domain of CSCM, and how demand forecasting is challenged by the 

unpredictable nature of construction projects due to factors such as varied material requirements, 

fluctuating site conditions, and weather changes. Literature regarding time series forecasting 

models—ARIMA, LR, and ANN—was then reviewed and their suitability for different forecasting 

timeframes and demands assessed. It was concluded that: ARIMA is adapted for longer-term 

predictions due to its accommodation of non-stationary data; LR is useful for straightforward trend 

analysis but is limited by non-linear complexities; and ANNs excel in managing intricate and non-

linear data, proving effective in various forecasting aspects of construction projects. Furthermore, 

a literature review was conducted upon ML models. The literature showed several efforts in the 

area of ML models—such as ANNs, DTs, RF, KNN, and SVR—each with specific applications 

and benefits in forecasting construction supply chain demands.  

 Chapter 3 outlined the methodology adopted to predict demand for small equipment, tools, and 

consumables in construction projects, beginning with an introduction to current industry methods 
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for forecasting demand and identifying key factors influencing consumable requirements. This 

foundational understanding guided the development of our model aimed at enhancing precision of 

demand estimates for construction project consumables. The research progressed through a 

detailed data collection process, where historical data was gathered and analyzed to pinpoint 

significant demand forecasting factors. This phase combined expert judgment with various 

forecasting techniques to ensure a comprehensive dataset including essential attributes such as 

consumable category, work package schedule, project duration, and budget. Subsequent stages 

involved data preprocessing and transformation to refine the dataset, addressing issues like missing 

data and outliers, as well as standardizing inputs for model development. This ensured the dataset 

was ready for analysis, maintaining crucial attributes for an accurate forecasting model. It also 

emphasized the need for data normalization and splitting for unbiased model training and 

evaluation.  

 Chapter 3 also covered time series forecasting, focusing on unique characteristics of time-

structured data. Approaches such as ARIMA were discussed for their capability to utilize temporal 

patterns in stationary data. Furthermore, LR was recognized for its application in linear trends, and 

ANN for capturing non-linear dependencies in time series data. The chapter explored various ML 

algorithms, as well, assessing their suitability for demand forecasting. ANNs were praised for their 

proficiency in complex pattern recognition and adapting biological learning processes, while LR 

was described as simple yet effective for identifying linear relationships. DTs were noted for their 

tree-like decision-making process, and RF was found to enhance DTs by combining multiple trees 

to improve prediction accuracy, handling large and complex datasets efficiently. KNN was valued 

for instance-based predictions, particularly where historical data trends were strong indicators, 

while SVR was found suitable for modeling non-linear relationships and its robustness against 

outliers recognized. Then, performance evaluation was discussed as a crucial aspect for model 

accuracy and generalizability, employing various metrics and methods like confusion matrices and 

error metrics.   

 Finally, chapter 4 discussed a detailed case study where we applied an EDA to understand 

dataset structures and relationships crucial for developing effective demand forecasting models in 

construction projects. After the EDA was applied, we performed data preprocessing and 

transformation to prepare the model input. We then applied three time series techniques—ARIMA, 

ANNs, and LR—to address the dynamic and complex nature of construction demand forecasting. 
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Following, we developed various ML algorithms to predict the demand of these consumables. 

Once the models were developed, we moved to the next stage, model evaluation, where the values 

of MAPE, MSE, and MAE were calculated. Lastly, a brief discussion about the models was 

presented. It is worth mentioning that ANN outperformed other algorithms in predicting the 

quantity. On the other hand, LR showed a superior performance when compared to the other 

models in predicting the day of order. 

5.2 Research Conclusions 

As the construction industry continues to face project delivery complexities, efficient management 

of its supply chain—especially material procurement—has emerged as a pivotal factor. Effective 

supply chain management does not only ensure timely project delivery but also maintains project 

quality and budgetary constraints. To this end, the role of predictive modeling in forecasting 

material requirements is crucial, and leveraging the potential of time series analysis and ML 

algorithms to streamline this process offers promising solutions.  

 The primary aim of this research was to understand and harness the capabilities of time series 

and ML to predict demand of small equipment, tools, and consumables in construction projects. 

The challenge was in addressing multiple factors affecting the supply chain, ranging from material 

supply delays to various procurement strategies designed to mitigate delays. We first investigated 

the development of time series models to forecast the trend of the quantity of small equipment, 

tools, and consumables versus the DayOfOrder. The results revealed numerous oscillations 

throughout Project Duration, which resulted from hidden features/factors (might be the result of 

lack of features in the provided dataset) that impacted DayOfOrder and QuantityOrdered. After 

this, we proceeded to the development and evaluation of data-driven forecasting models. Several 

ML models were developed to measure their performance. The results in Table 3 indicate that LR 

and ANNs have a higher performance in forecasting DayOfOrder and QuantityOrdered, 

respectively, when compared to other algorithms.  
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Table 3 Summary of ML models 

Algorithms 
Forecasting DayOfOrder (days) Forecasting QuantityOrdered (units) 

MSE MAE MSE MAE 

ANN 223 12 135 8 

LR 24 3 2514 39 

SVR 17392 91 3125 40 

KNN 1232 25 1438 26 

DT 250 9 921 18 

RF 177 6 653 16 

 

 

 Significantly, the development of these predictive models offers construction professionals 

advanced tools to anticipate the need for consumables, enabling more accurate and timely 

procurement decisions. This capability is critical for minimizing project disruptions and 

maintaining schedules, directly impacting project efficiency and cost-effectiveness. By accurately 

predicting consumables requirements, construction managers can improve inventory management, 

reducing the risk of excess stock or shortages. This optimized approach to inventory management 

supports better budgetary control and project quality. The findings suggest that leveraging LR and 

ANNs in demand forecasting allows for more adaptive project planning. Professionals can adjust 

procurement strategies based on predictive insights, enhancing their ability to respond to 

unforeseen challenges. 

 While the models developed through this research show promising results, the dynamic nature 

of the construction industry necessitates ongoing adaptation and refinement of these tools. 

Continuous research and data updates are essential to maintain the relevance and effectiveness of 

forecasting models. Construction professionals and researchers are encouraged to collaborate in 

refining these models, integrating new data and feedback to ensure they accurately reflect current 

industry trends and challenges. 

 In conclusion, this thesis not only highlights the potential of time series analysis and ML in 

revolutionizing material procurement in construction but also calls for a collaborative effort 

towards continuous improvement. By embracing these advanced predictive tools, the construction 

industry can enhance supply chain efficiency, project delivery, and overall project success. 
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5.3 Academic Contributions 

This research marks a significant advancement in the domain of construction management and 

demand forecasting, enriching the academic discourse with several key contributions:  

• A cornerstone of this study is its exploration of current demand forecasting practices 

for small equipment, tools, and consumables within the construction industry. Through 

a systematic review, we provide a detailed overview of existing methodologies, 

offering a foundational understanding of industry practices and identifying areas ripe 

for innovation. This not only enriches academic knowledge but also sets a practical 

benchmark for future advancements. 

• We delve into the complex dynamics influencing consumables demand including 

project-specific parameters, stakeholder behaviors, and market conditions. This 

nuanced analysis contributes a comprehensive framework for understanding demand 

drivers, significantly enriching the conversation around construction project 

management and consumable resource allocation. 

• The development of a machine learning-based model for forecasting consumable 

requirements represents a leap forward in applying data-driven approaches to 

construction management. This model demonstrates the potential of ML algorithms to 

enhance decision-making processes, offering a novel tool for academic and practical 

application. 

• A distinctive feature of this research is the rigorous evaluation of various ML 

algorithms, culminating in a detailed comparative analysis. This investigation not only 

identifies the most effective forecasting algorithms but also provides critical insights 

into their applicability in construction demand forecasting, serving as a valuable 

resource for both researchers and industry practitioners. 

In sum, these contributions significantly advance the existing body of knowledge, providing 

actionable insights and innovative tools for the construction industry. By bridging the gap between 

theoretical research and practical application, this work fosters a more sophisticated understanding 

of demand forecasting and its critical role in construction project management. 
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5.4 Industrial Contributions 

The practical contributions of this research pave the way for further advancements within the 

construction industry. The following are the primary areas where the research has made 

noteworthy industrial contributions:  

• A pivotal industrial contribution is the development of a data-driven forecasting framework 

for small equipment, tools, and consumables at the project level. This framework 

distinguishes itself from traditional estimation models by utilizing a company’s historical 

project data to generate context-specific predictions. This approach ensures forecasts are 

directly actionable, offering a significant leap over generalized estimates that often lead to 

inefficiencies.  

• The research introduces a dynamic model for consumable requirements forecasting, a 

substantial innovation over the static models traditionally employed. By providing detailed, 

timeline-specific forecasts, this model enables project managers to plan resource allocation 

with unprecedented precision. This methodical approach aids in reducing wastage, 

optimizing storage costs, and mitigating resource shortage-related downtimes thereby 

ensuring projects proceed as scheduled without unnecessary delays.  

• Equipped with precise forecasts, construction firms can enhance their procurement 

strategies, achieving better negotiation outcomes with suppliers and ensuring the timely 

availability of necessary resources. This proactive management of consumables can 

significantly reduce the likelihood of project delays, translating into considerable cost 

savings and operational efficiencies.  

• Beyond project-level forecasting, the patterns and insights gleaned from the framework 

offer valuable strategic inputs for executive decision-making. Trends in consumable usage 

can inform areas for efficiency improvement, highlight investment opportunities in critical 

equipment, and guide the formation of strategic partnerships with suppliers.  

Indeed, these contributions represent a transformative shift in how consumables are managed in 

construction projects, promising to drive operational optimizations, cost reductions, and 

improvements in project execution efficiency. By addressing the comparative limitations of 

existing models, providing a pathway for implementation, and suggesting solutions for potential 

adoption challenges, this research paves the way for widespread industry advancement. 
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5.5 Research Limitations 

This research—while intending to construct a demand forecasting model for determining 

requirements of small equipment, tools, and consumables in construction projects—faced a series 

of limitations as highlighted below:  

• Engaging industrial partners for data acquisition proved difficult, leading to a reliance 

on a dataset with limited attributes from several construction projects. These limited 

attributes resulted in coming up with assumptions so that we could include various 

features as model input. We narrowed down the consumables from 20,000 types to 

eight main categories.  

• The provided dataset was limited in scope and biased towards projects with similar 

characteristics, and also confidentiality matters governed the dataset availability. To 

mitigate these limitations, modifications were made, such as the calculation of 

manpower using work hours. Also, the introduction of a Delay column and assumptions 

regarding the Actual Delivery Date and project start dates, so we could get an insight 

of the status of the orders.  

• The envisioned comprehensive analysis was hindered by the dataset’s limitations, 

restricting the number of input variables. This limitation was addressed by inferring 

some attributes from the available features, such as project duration and budget. These 

two features were estimated based on available records/orders of the first and last 

monthly work hours and total order costs. 

• To address data gaps, the Lead Time was calculated by subtracting the Order Date from 

the Promised Date, aiding in better project planning. These steps were crucial for 

progressing with model development due to the limited number of project features that 

were available in the dataset. 

• The approach to filling data gaps aimed to enhance the dataset’s utility. The 

aforementioned assumptions together with other calculations discussed throughout the 

thesis were important to proceed with the model development. These assumptions were 

included with cautious to strike a balance between data enhancement techniques and 

the preservation of data integrity. 
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The limitations identified through this research underscore the critical role of data quality and 

availability in the development of reliable demand forecasting models. Despite these challenges, 

the study has made meaningful contributions within the confines of the available data, highlighting 

areas for future exploration and improvement in the field of construction project management. 

5.6 Future Directions 

The exploration and advancements made in this study pave the way for exciting future research 

opportunities in demand forecasting for construction as follows: 

• Future work could explore the creation of a comprehensive framework that merges 

logistics, procurement, and AI-driven prediction models. This framework would aim 

to optimize project facets such as cost, time, and resource allocation concurrently. A 

potential first step could involve pilot studies with industry partners to test the 

framework’s effectiveness in real-world scenarios.  

• With algorithms like Recurrent Neural Networks (RNNs) showing promise, 

comparative studies could be designed to evaluate the performance of various ML 

algorithms across different forecasting scenarios. These studies might focus on 

scenarios with high variability in data or projects with limited historical data to assess 

the algorithms’ predictive capabilities and adaptability.  

• Enhancing model accuracy by integrating additional attributes, such as worker skill 

levels, external economic indicators, or local labor market dynamics, represents a 

critical avenue for research. Collaborations with industry and academic partners could 

facilitate access to this broader range of data, enabling the construction of more 

nuanced and accurate forecasting models.  

• By collaborating with industry partners to deploy IoT devices and sensors at 

construction sites, researchers could gather real-time, high-quality data. Future research 

could explore the specific types of data that are most valuable for demand forecasting 

such as real-time usage rates of consumables or environmental conditions affecting 

project progress.  

• The development of user-friendly forecasting tools should prioritize end-user feedback, 

incorporating modern UI/UX design principles. Future studies might include usability 
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testing with project managers and site supervisors to identify key features that enhance 

the intuitiveness and effectiveness of these tools.  

• As the construction industry evolves, forecasting models must also adapt. Research 

could focus on designing models with embedded feedback mechanisms such as ML 

algorithms that update their parameters based on new data or outcomes. This 

adaptability ensures models remain relevant and efficient over time.  

• Developing platforms that enable real-time collaboration and integrate seamlessly with 

industry-standard tools could significantly streamline decision-making processes. 

Future initiatives could identify the essential features of such platforms, as well as the 

integration challenges and opportunities with existing project management software. 

The aforementioned directions may represent a great opportunity to advance the demand 

forecasting for small tools, equipment, and consumables in construction. Emphasizing algorithm 

exploration and user interface development will be particularly important for creating tools that 

meet the needs of industry professionals. 
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APPENDIX 

The following snapshots show some parts of the code used in developing the models.  
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